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ABSTRACT

Quasi~static solutions of the problem of a right cireular
perfectly conducting cylinder with closed plane ends subjected to
longitudinal electric, transverse electric, longitudinal magnetic and
trangverse magnetic uniform applied fields are found for eylinders
with diameter to length ratios of % ’ % s 12 and 4., The corres=-
ponding electric and magnetic polarizabilities, which are necessary and
sufficient for determining the total cross section and angular distri-
bution of scattering when the ecylinder is illuminated by a plane
electromagnetic wave arriving at any angle of incidence and in any
state of polarization provided that the wavelength is long compared
with the greatest dimension of the cylinder, are obtained. The method
for calculating the seattering is indicated and outstanding features

of the angular distribution in elementary cases are discussed.
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I. INTRODUCTION

1,00, Definition of the Problem and Applications. The
‘research reported in this thesis is concerned with the scattering pro=-
duced by a short (non-infinite in length) right circular perfectly
conducting cylindef with closed plane ends when the latter is illuminated
by a plane electromagnetic wave whose wavelength is long compared with
the greatest dimension of the cylinder. The assumption of long wave=-
length reduces the prcblem to one in which the applied fields in the
neighborhood of the cylinder may be regarded as locally uniform and in

which only the induced quaSi¥static electric and magnetic dipole moments,

ﬁé and ﬁM » are of consequence. The primary objective, therefore, is
the caleulation of the electric aﬁd magnetic tensor polarizabilities,
aij and ﬁaij’ of a shqrt right circular cylinder under the influence
of uniform applied fields.

The results obtained make possible not only the calculation of
the total cross section and angular distribution of scattering by a single
isolated cylinder but also the prediction of the properties of an arti=-
fiecial refractive medium composed of a lattice of small cylinders accord=-
ing to the methods of Kaprielian (1) and others (2), (3). An example of
this type of ealculation is to be found, for instance, in the derivation
of the Clausius-Mossotti formula. Another situation in which the results
of this research are useful is in the problem of the perturbation of
resonant cavity frequencies by the introduction of ;mall cylindrical

objects. A formila due to Miller (4) and Slater (5), recently rederived

in an elegantly simple way by Papas (6), gives the frequency shift in



terms of the unperturbed fields and the values of the induced momentse
In the process of finding the magnetic polarizability, the problem of
designing a winding to be placed on the surface of a finite cylinder in
order to prodﬁce a uniform magnetic field within is auwtomatically solved;
also solved is the hydrodynamic problem of the flow of a perfect fluid
around such a cylinder since the magnetic lines of force of the total
external field have the same form as the streamlines of flowe.

For the short right circular cylinder with body axes chosen as
in figure 1.00-~1, the two tensor polarizabilities are lsimultanemzsly
diagonal and each has the properiy that its xx and yy components are
equal, Only two distinet components of each tenéor mist be determined;

these are called a and /3 £? where £ refers to the

e * %t Bop
longltudinal (z) direction and t +to the transverse (x or y) direction.

The tensor components are defined in terms of the dimensionless forms

3
%o = “——-Me"' >
e, v
M
d = -——e—t—_ M
® EE*‘U’O ’ (1)

M
B = MMmp .
28 B,QVo 4

M Mg
Be ve ,J

by employing the geometrical volume, Voo of the cylinder as a divisor.

ﬁtt":

Rationalized M.K.S. units are used in these formulas and in all others
appearing in this thesis. The problems of determining the four components

listed above are called the longitudinal electric, the transverse electric,



the longitudinal magnetic and the transverse magnetic problems respec-
tively; the corresponding abbreviations, LE, TE, IM and TM, are em=-
ployed freqﬁently.

For the cylinders considered here and for all other perfectly
conducting objects with rotational symmetry, the TE and IM problems
are intimately related and are sometimes collectively designated as the

TE-LM'problem. As a result of this relationship

Bop =~ % Ayt @

and all such objects which are small compared with wavelength have
identical relative angular distributions of scattering provided that the
ineident wave is polarized with its magnetic vector parallel to the axis
of rotational symmetry. Van de Hulst comments upon the angular distri-
bution of scattering by an ellipsoid under these conditions (7)e The
statement expressed by equation 2 is proved in Section IV,

4 vniform system of nomenclature with regard to the physical
features and dimensions of the'cylinder is used throughout. This system

is presented in figure 1.00-2,

1.01. Method of Solution. As an example of the method of
solution, the longitudinal electric problem is discussed in some detailj
the general features of this method are the same as those of the prqcedure
used by Smythe for the’solution'of the freely charéed right circular
cylinder (8)s In the longitudinal electric problem the cylinder is

subjected to a uniform applied electric field in the z direction and the



<~ - -

Figure 1.,00-1. The Cylinder and its Body Axes.
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Figure 1,00~2, Cross section of the Cylinder with Nomndlé‘ture.
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resulting electric dipole moment in the same direction is required. For
a temporary expedient, the cylinder should be regarded merely as a geo=
metrical surface upon which a variable charge distribution can be placed.
This charge is the correct one if and only if the field which it generates
is equal and opposite to the applied field at all points upon and within
the surface. The technique employed has two salient aspects. First, the
charge distribution is expressed in terms of a manageable number of vari-
able coefficients in such a way that a good approximation to the true
distribution is potentially attainable. Second, an equal number of mathe-
matical conditions are imposed upon the internal (or surface) field of the
charge so that, if satisfied, the applied field will indeed be cancelled
to a good approximation within (or upon the surface of) the cylinder, The
selection of coefficients and conditions must be such that a set of well=-
conditioned simultaneous linear equations is generated. The solution of
these equations yields the values of the coefficients and the problem is
solved.

Both aspects of the technique just deseribed permit, at least
in principle, a wide choice of methodology. In this thesis the charge
distributions, whether on the side or end of the cylinder, are represented
as finite weighted sums of certain biorthogonal functions based upon hyper-
geometric polynomials. Additional linear or constant terms, known as
"phasic® terms, are included to facilitate the approximation of the true
distributions especially in cases involving very large or very small values
of a/b, The biorthogonal functions employed here have an argument and
three parameters; this gives them sufficient generality to serve for‘the
description, not only of the charge distributions which ocecur in the IE
problem, but of any of the charge or current distributions necessary for

the solution of the other three problems. Two types of functions are
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defined. Only one of these plays a part in the charge or current expan-—
sions; the other is complementary to it in the orthogonality relation.

The functions are
- v
Vo (3’, 5,7, u) = QAm (—I)w1 ur(l- u?) 2E (—m,m+ V+¥+3; ¥+3; u.z) (1)

and
Wm (X,Lv) u) = b, ('!)m urzﬁ (-m, m+v+¥+ 8; ¥+§; u.z), (2)

where
_ M(ms+ ¥+7)
Gm = M(r+%) M(m+1+2) 27 )
and ,
b = 2"V (2m+v+F+3) M (Mev+T+T) . @
" [ (¥+3) M(m+1)

The multiplicative constants, a, and bm’ are defined as they are in order
to simplify both the orthogonality relation and certain integral trans-
forms (see Appendix A) which play an important part in the analysis. The
orthogonality relation (which may be obtained from the Jacobi polynomial

representations given in equations 6 and 7 below ) is simply

|
/‘\Trm% 22 du = Smn - ()
0

The parameter & , which appears in this relation, creates the distinction
between side and end functions since it is one-~half for the former and
unity for the latter; the dimensioniess argument, u, is equal to z/b or
to P /a in the two cases, respectively. The parameter g‘ contro}s the

parity of the function, being zero for even parity and unity for odd parity.



Finally, the parameter 7 controls the type of singularity exhibited by
the barred functions, ’q—rm(u), as u tends to unity, that is as the

edge of the cylinder is approached. TFor charge distributions and for
current distributions in which the current flow is parallel to the edge,

7 mst equal minus one-third; for current distributions in which the
flow-is normal to the edge, however, 7) takes the value of plus two=thirds.
These values are dictated by the fact that, locally, the edge resembles a
two dimensional right-angled corner, solutions for which may be obtained

by the use of the Schwarz transformation. The various paraneter values

are summarized in Table 1.01-1.

Application Parity .4 ' 2y~ 1
Side even % 0 0
Side odd % 1 0
End even 1 0 1
End  odd 1 1 1

Table 1.01-1

All of the biorthogonal functions may be expressed in terms of

Jacobi polynomials (9) as follows:

— _ r‘(h’H’l) g- _ 21/ (‘”;Uir!"') 2_ .
Vin (%,3,9,u) = e o (-w)" P | (2u-1); (6)
z“”(zm+v+r+ 2) M(mev+vel) u{- P(z)'n}')(z“.z__ I). )

‘\k‘r\ (U;;)?},U.) = P(m+x+§.) m



In particular, the functions used on the side may also be expressed in
terms of Gegenbauer polynomials (10):

- Cme) C(mege3)Peg) % oV (VHR
«ym(%,g,v,u)= M(m+i+v) z:r‘(m+zl+-£-+§) (- C2m+§ (w);

i - 2 (2m+veL+L) M (442) CW'%: (u) (9)
\k"‘(—i’ 5, u) - ar /2 2m+3% .

Returning to the specific ‘considera'bion of the IE problem,
the side and end charge distributions are written in terms of the dimension-
less variable coefficients, T and t’m’ ag follows:
Ns-1 N
V‘b“‘+Z_ Fin "”m b 3)b for Izl b

o _ - r5(10)
& - RE=Y for 12155 |
\ y

Ne"' 3
t +Z_ tm‘l’m('lox 3,0.) for psa

- T(r)=+ p- (11
0 for p>a

C’E

The terms involving Ty and t’b will be recognized at once as the basic
terms described earlier; E 1is the magnitude of the applied electric field.
Attention is novw directed to the mathematical conditions which
the field of the charge must fulfill. Speaking of potential rather than
of field, the potential of the charge distribution, V( p,z) should ideally
be equal to 2E at all points upon and within the surface of the cylinders

If R(k) and T(k) are the Fourier and zeroth-order Bessel transforms



of R(z) and T(pP ) respectively, it is shown in Section III that the

potential of the charge distribution is given by

a/ R(k) Ko(ka) I, (ke) sin kz dk

o0

F k) e P T, (ke) sinh kz dk. )
o

The first integral converges within and uwpon the infinite cylinder P = a,
the second between and upon the infinite parallel planes 2z = % b. The
total expression therefore correctly represents the field at all points
within and upon the surface of the cylinder.

A potential which is independent of ¢ and regular in a neigh-
borhood of the origin, as is that given in equation 12, may be expanded in
a series of the spherical harmonics T Pn(cos ©). Since the nth harmonic
reduces to z  upon the z axis, the harmonic expansions for Ioﬁcp) sin kz
and for Jo(kf>) sinh kz have the same coefficients as the Maclaurin
expansions of sin kz and sinh kz respectively, a fact noticed by Ramo
and Whinnery (11)s Thus the expansions are |

I, (ke) sin ke Z ((—l) (k )ZPH PZP-H (cos ®) (13)

2p+1)!

and

2p+!

00
- Z |
L(wsmhk%:pwm(“r) Popwr (0280 19

Introducing ¢, the half-diagonal of the cylinder, at appropriate places
in order to make certain quantities dimensionless, one finds that the

potential of the charge distribution is
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o0
\V _ r 2p+i|
LB a O B, o

where the coefficients, /\p’ are given by

w,v 2p+
N = G & {60/ R0 Kolia) (9 ak

¢ 0]
+ f T e kP (k)™ dlk | (16)

Since R(k) is a sum of functions involving the r, coefficients and
ﬁ"(k) a sum of functions involving the 'bm coefficients, 16 becomes a
set of simultaneous linear equations if a finite number of the /\ P are
set equal to desired values. Although there are N charge coefficients
(N= Ns + Ne +2), only N = 1 of the /\p can be specified since another
relationship called the "edge condition" must be included. This is
explained in Section III. The matrix elements themselves are actually
2F1 hypergeometric functions as is also shown in Section III. A potential
which is "meximally linear® in a neighborhood of the origin and very nearly

equal to 2E is secured if

|  for p=o

= . (17)
M O for Jsps<N-2

The equations have been solved for N = 18 and for five different values
('g; ’ -;- s 1, 2 and 4) of a/b; the results are given in Section II,

Similar techhiques are used to solve the TE-~LM problem and finally the
TM problem which is by far the most difficult, and the most interesting

of all.
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It was originally planned to expand the potential of the charge
distribution in the non=-singular or unbarred biorthogonal functions, defined
in equation 2, on the side and end surfaces of the cylinder itself and
then to secure méximal linearity of the potential by setting appropriate
coefficients equal to unity or to zero., This was, in fact, the real
rajison d'étre of the biortbogonal functions. The plan was intended to
exploit the fact that a solution of Laplace'!s equation which is regular
within a given closed surface and is approximately linear, that is propor-
tional to 2z for example, at all points upon this suiface, will be even
nmore accurately linear at points within., The matrix elements for the
similtaneous linear equations which result when this method is used, how=-
ever, involve infinite integrals of the products of four Bessel functions.
Although these are reducible to convergent infinite series through the
agency of Meijer's G-function (12), computational difficulty finally caused

the abandonment of the method,.

102, Checking the Solution. Checking of the solution of the
IE problem is accomplished by calculating the total potential of both
charge distribution and applied field at some point on the surface, for
example the poles If this total potential is not zero, it is possible to
calculate a local deformation of the surface which, if actualizéd, would
make the total potential on the deformed surface zero. The technique
applicable at the equator is similar except for the fact that the z

derivative of the potential rather than the potential itself must be used.
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A modification of this method, employed for checking the TM problem
at the equator, is deseribed in Section V. The values of the local
deformations at pole and equator, which are quite small compared with
the cylinder dimensions, are given in Section II along with the other
results.

| An estimate of the accuracy of the results is obtained by
solving the problem repeatedly with larger and larger numbers of
equations and observing the limi%t toward which the calculated value of
the polarizability tends. It is found that for a maxiﬁum number of
equations equal to eighteen, the polarizability ean be found to five
significant figures with some doubt about the least significant figure.
The accuracy is poorest for extreme ratios of a/b, best for a/b equal
to unity. In the latter case, the least significant figure is either

exect or in error by at most one unit,
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II. RESULTS

The two distinet

2.00, Electric and Magnetic Polarizabilities.

tensor components of the electric and of the magnetic polarizability are

given in Table 2.00~1,

: IE Problem TE Problen IM Problem T™ Problem
a/o %20 %t Boo Bt
0 o 2,0000 ~1,0000 ~2.0000
}; 15,071 2.3151 -1.1575 -1.8508
-12- 7.0966 2.6115 -1.3057 -1.7352
1 3.8614 3. 1707 =1.5853 =1.5793
2 204325 L1173 =2, 1087 =1.4131

Table 2. 00-1

When a/b approaches infinity, the cylinder takes on the

appearance of a disk and all four problems are susceptible to solution

in closed form., For the TE and IM problems, these solutions are

non~trivial ahd

as was shown by Rayleigh (13).

Met
eE,

dtt = -Zﬁu ~

-

2,}*P4p41, -
By

3 .

8
3

16 a3

& .
b

(1)

This means that as a/b tends to infinity,

(2)
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2.01. Scattering by Electric and Magnetic Dipoles: Total

Cross Section. When a plane wave of angular frequency w is incident
upon the cylinder of figure 1,00-1, electric and magnetic dipoles varying
sinusoidally in time are induced. In the general case, even in-phase
components of these dipoles are not necessarily at right angles to one

another in space. The total Hertz vector (14) in phasor* notation is

v e—ikr ~ ~ i
Z=2——{ Mg +¢(Myx&)(I- )} o

4mrer

where k = 2u/A =w /e, The term "i/kr" becomes negligible in the far

zone and will be dropped forthwith. As r tends to infinity

E:VX(VX%)N kz(Eeée+§¢é¢)3 (2)

thus the complete expression for the far zZone scattered electric field is

. 12 -1kr
Eeg = m_{MEx cos © cos ¢ +ME‘j cos & sin ¢

- ME-Z sing - ?‘:'Mmc sing + 'EMM\j cos ¢};
o kze-ikr‘

v v , v .
._.é.mecosecos¢ "I!ZMM\J cos & sin¢ +—'é-MMi sme}. )

A quantity, A, which varies simusoidally in time will be writlen in
terms of its associated phasor, A, in the following way:

A= Re Ae'wt
The complex conjugate of A will be written 2 and ]Alz = KA.

If & is a vector, |A]° =14 - i.
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It is seen that the scattered field of the magnetic dipole is comparable
in magnitude to that of the electric dipole only if IMMI/é is com=
parable to IMEI. When the dipoles are induced by a plane wave field,
this condition is realized and the two sets of fields interfere in the
optical sense producing a total pattern which is in general significantly
different from that of a single dipole alone.

The Poynting integral of the scattered field and the basis for

the calculation of the scattering cross section is

I 2 '
P=-— [|E|"r?dN. (5)
2n
It is easy to evaluate this since every cross preoduct term vanishes under
integration. Thus
k4-
27(4-'175)2

P= {lMsxlz(cosze cos?¢ + sin?)
+ IMEylz (cos?e sin¢ + cos?d)
+'M53,2 sin®e
+’<!:7L | Mmcr2 (C°526 cos % + sin®¢)
ta IMnylz (cos?6 sin?é + cos?d)
+E‘3'Mmi|25i"29} d0 . “
Finally

. k;+
P - 27~ bme?

IMel“+ & [Mul*L. )

The total integral is simply the sum of the individual Poynting integrals

of the electric dipole field alone and of the magnetic dipole field alone
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regardless of the spatial angles between in-phase components of the. two

dipoles. This interesting property is almost immediately deducible from
the fact that electric dipole radiation hys odd parity whereas magnetic

dipole radiation has even parity.

Let two scalar constants of proportionality be defined as

follows:
[Me|
c1Elw ®
and
B = [ Mw - =|{Mwm] , ©)
|Blve €c|E|we

where |E| and |B| are the magnitudes of the incident field vectors

and Vo is the geometrical volume of the cylinder. Given that the incident
field is a plane wave, the utmost in generality is attained if this wave

is assumed to be elliptically polarized. In this case the incident
electric field may be regarded as having complex direction cosines, ;i’

and
3

°‘2=i(.2“ij‘v‘i)(i°‘i15’i)3 (i0)

J:l 1= =/

a similar definition may be written for /3 2. If equations 8 and 9 are

substituted into 7, the total scattering cross section becomes

o = k4'v°2 (az+ﬂ2) : (1)
6 r
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2.02. Discussgion of the Angular Distribution. If all angles

of incidence and all states of polarization of the incident wave field
are considered, a wide variety of angular distributions is encountered.
For this reason the present discussion is limited to cases in which the
incident field is linearly polarized with the electric field parallel to
one of the body axes of the cylinder as shown in figure 1.,00-1 and the
magnetic field parallel to another. Consider the coordinate system XYZ
of figure‘2.02-1 with origin at the center of the cylinder and oriented
such that the X axis is parallel to the incident electric field, the Y
axis to the incident magnetic field and the Z axis to the direction of
propagation of the incident wave. In this system the angle @ is the
scattering angle in the usual sense. Three cases are distinguished. In
case I, the cylinder axis is parallel to the incident electric field;

in case II it is parallel to the direction of propagation and in case III
it is parallel to the incident magnetic field. Formulas for the angular

distributions in the three cases are as follows:

Case I; cylinder axis parallelto E:

do _ k*w? 2 2
dan  lem? [dppeos @ +3y |" cos® 2

2 . o,
Case II, cylinder axis parallel to & x B:

4 2
:; ) t:oz {[“tt cos@+ By ] cos” &

+[°‘~tt + By cos @]2 sin? § } )
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Ioveation of
Cylinder

Figure 2.02-1, Coordinate System for Description of the Angular
Distribution.
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Case III; cylinder axis parallel to B:

4 _2 2
ik S NRELEE N A

+[|-—écos@]zsin2§}. (3)
All of these are special cases of the general formula
do _ M O(‘z {[C‘os@-!- —@-]2€°$2§
dn lo ar? «
| +[|+a@cos @]zsin2;§} (4)

and the characteristics of the relative angular distribution are dependent
upon but one parameter, namely (3 /a, which invariably lies within the
range =1 < (B/a) <0, When /3 /o tends to zero, as it does for a long
cylinder with axis parallel to E or for a short cylinder with axis
parallel to £ x B, the magnetic dipole becomes negligible and the scatter-
ing approaches what is known as Rayleigh seattering, or scattering by an
electric dipole alone. On the other hand, when (3/a tends to minus
one, as in the case of a short cylinder with axis parallel to E or a
long cylinder with axis parallel to E x B, the magnitudes of the two
dipoles tend to become equal, The writer takes the liberty of calling
" the limiting form of this ‘bype of scattering Huygens scattering since the
angular distribution is the same as that of a Huygens source (15). As
the scattering approaches the Huygens type, the total cross section
similtaneously approaches zero.

All the angular distributions have two null directions which
always occur in the XZ plane at an angle @n given by

@n = arc cos - 3/a. For Rayleigh scattering, @n = ﬂ/2; for
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Huygens scattering the null directions coalesce and @n =0, Of
particular interest is the case in which the axis of the cylinder--or of
any perfectly conducting object having rotational symmetry and dimensions
small compared with wavelength-=is paré.llel to B. For this situation,
B/a is always equal to minus one~half, @n‘ = 1/3 and the scattering

is sphere~like or identical in relative angular distribution with that
produced by a perfectly conducting sphere, Relative angular distributions
- for the three types of scattering just discussed afe illustrated in figures

2,03, Charge and Current Distributions; Local Surface

Deformations. The charge distributions for the LE and TE problems
are expressed as finite weighted sums of the barred biorthogonal functions,
'\;m( ¥s Ty~ -;- » U), in a manner deseribed briefly in Section I and
in equations 3.,00-1, 3.00=2, 4.01=1 and 4.01-2. The corresponding
coefficients r n? tm’ S and L obtained by solving simultaneous
linea.r equations 3.00=4 and 4.01=4, are given in Tables 2.,03-1 through
2,03-5 which follow immediately., It should be noted that the @-going
current in the LM problem is related to the surface charge in the 1TE
problem and a single tabulation suffices for boths In the TM problen,
the "fundamental" current distributions zs OB the side and j pe on
the upper end are written as fini’cerweighted sums of the functions

Val ¥s T55 5 u) in equations 5.00-11 and 5.00-12. The coefficients
fm and g, for these sums, also obtained by solving similtaneous linear
equations, are tabulated beside the corresponding coefficients for the

IE and TE~LM problems. In these tables, the notation ®"X(p)" means

X times 10p.
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(o)

Figure 2,023, Sphere-Like Scattering. |

A do
an
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Figure 2.02-4s Huygens Scatterings
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Detailed descriptions of the theory of the local surface
deformations Ap and Az are given in Sections III, IV and V, under
the appropriate ‘snbsection headings. These déformations apply to the
equator and the pole of the cylinder respectively and indicate the amount
by which the surface would have to be deformed locally in order to make
it an equipotential in the IE and TE problems or a surface upon which
normal B vanishes in the TM problem., The quantities beside the
headings "Equator Check" and "Pole Check" are essential for the calculation
of the deformations and are explained under the subsections mentioned.
In each case they represent some potential or field quantity generated by
the distribution on the cylinder and normalized with respect to the magni-

tude of the applied fields A successiul technique for checking the

TM problem at the pole was not found.



a/b = %
1E TE~LM ™
m Vrm sm fm
basic 40.12905187 (40) 40,40387637 (+0) 40,13801434 (+1)
0 40,23603290 (+1) 40, 14690787 (+1) +0,91240051 (40)
1 -0,11393541 (40) -0,43239914 (+0) +0,43020551 (+0)
2 -0,19185823 (-1) =0,65706908 (=1) +0,11880738 (40)
3 -0,52174681 (=2) =0,17221441 (=1) 40,17780986 (=1)
4 «0o 16484165 (=2) =0.54219231 (=2) ~0s75448651 (=2)
5 =0,53665621 (=3) ~0,17807221 (=2) ~0.97450942 (=2)
6 -0,16813125 (=3) =0,56407302 (=3) «0,63465352 (=2)
7 ~0.48283874 (=4) ~0.16353609 (=3) -0,30670392 (-2)
8 =0,12195426 (=4 ) ~0,41591873 (=4) ~0,11642718 (=2)
9 ~0,25981907 (=5) =0, £8990999 (~5) =0, 34677943 (=3)
10 ~0.44409406 (~6) =0.15241129 (=5) =0,78764085 (=4)
11 -0.56727317 (-7) =0.19470442 (=6) ~0.12874568 (=4)
12 ~0,47918712 (~8) =0,16423381 (~7) ~0,13517016 (=5)
13 ~0,20011235 (~9) ~0,68402739 (=9) ~0,68553750 (~7)
Equatar EZ/E = V/aE cos { = Bp /B sin @ =
Check ~1.00000002 +1,00000002 -1.,00000001
sp fa negligible negligible negligible
n t Y &
basic 40, 15200248 (=1) =0, 17172000 (+0)
0 +0,35624820 (+1) +0,14693027 (+1) ~0,41228663 (+0)
1 ~0,39128625 (=1) 4+0,32011553 (-1) ~0,16349816 (+0)
Pole V/bE EP/‘E cos @ =
Check +0,99999875 ~0.99902328
Az /o -0,00000037 =0,00022077

Table 2.03=1e




=1
a/o = 5
=====q=‘
1E TE=LM ™
w
n rm sm fm
basie ~0,19225150 (=4) 40,38965487 (+0) 40.13425268 (+1)
0 +0,18367917 (+1) 40.16055212 (+1) 40,76126544, (+0)
1 -0,43838691 (=1) -0,35509127 (+0) +0,22253894 (+0)
2 ~0454930270 (-2) =0,43967119 (~1) 40,50457558 (=1)
3 ~0,10582670 (=2) ~0,10119125 (=1) +0,10818778 (=1)
4 «0,23834773 (-3) =0,28016839 (=2) +0,11689120 (=2)
5 054147255 (=4) ~0,78539136 (=3) «0,66550668 (=3)
6 «0,11308514 (=4) ~0,20187101 (=3) ~0,55657526 (=3)
7 =0,20056279 (=5) =0.43956298 (=4) 0423414408 (=3)
8 «0.27611488 (~6) ~0,74296836 (=5) =0,63595086 (=4 )
9 ~0,25757920 (=7) ~0.85391338 (=6) =0.10633429 (=4)
10 ~0,12042175 (~8) 049561337 (=7) =06 84251433 (~6)
Equator EZ/E = V/eE cos @ = Bp /B sin ¢ =
Check =1.00000003 +1.,00000009 ~1.00001590
sp/a negligible negligible 40,00000827
nm % n wm gm
basic +0.46938430 (=1) 40,50835705 (=~2)
0 40,23357609 (+1) 40,13797193 (+1) ~0e33634571 (40)
1 -0,82663119 (~1) 40,88406931 (~1) =0,15216622 (+0)
2 =0,76227915 (-2) 4+0.25064651 (-1) 0. 97479695 (=1)
3 -0,1269292/, (~2) +0,77264312 (=2) «0,54630065 (=1)
4 =0,16584913 (-3) 1015415744, (=2) 0417509611 (=1
Pole V/bE = Ep /& cos § =
Check +0,99999997 ~1,00002004
Az/ob negligible +0,00000890

Table 2,032,




Az/fb

negligible

af/o =1
e —
IE TE=LM ™

s e e s e e — — —— ne—
nm rm sm fﬁ

basic -0,37616817 (1) +0,25340314 (+0) +0,13033492 (+1)
0 40.14921036 (+1) 40,19371617 (+1) 40.53501366 (+0)
1 «~0,83747159 (=2) =0,32219422 (4+0) 40,79623388 (=1)
2 40423944987 (=2) ~0,38977600 §-1) +0.37836744 (-2)
3 40,12471808 (=2) =0.93990090 (~2) ~0,82212558 (=2)
4 +0,48160777 (=3) ~0,25945051 (=2) =0,73917111 (=2)
5 40, 1469836/ (=3) ~0,64974220 (=3) ~0.38698448 (=2)
6 +0.31457070 (=4 ) ~0,12162489 (=3) =0,12481735 (=2)
7 4034949152 (=5) ~0,12244613 (=4) ~0,19337628 (=3)

Equator EZ/E = V/eE cos ¢ = Bp /B sin g =
Check -1.00000001 +0,99999999 ~1,00000002

sp/a negligible negligible negligible
n Y Vi €

basic +0,87113326 (-1) «0.13425511 (40)
0 40.16193448 (1) 40.14792105 (+1) -0.30423830 (+0)
1 =0.11224086 (+0) +0,58149961 (=1) -0,12867214 (+0)
2 ~0¢ 14340444 (=1) 40,17095607 (~1) =0.77295716 (=1)
3 0434812949 (=2) +0.59774893 (-2) ~0,47329430 (~1)
4 ~0,95870761 (=3) +0420469643 (-2) 0425538463 (=1)
5 ~0,23986408 (-3) +0,59421158 (=3) =0,10835430 (~1)
6 =0,44962281 (=4) 40,12429137 (~3) =0,31312670 (=2)
7 =0,45407822 (=5) 40.13669068 (=4 ) ~0.45560872 (=3)

Pole V/eE = Ep /B cos §f =

Check +1,00000001 =0,99999996

negligible

Table 2.03-3,



™

fm

basic ~0,65161515 (=2) 40,16191166 (+0) 40,12426150 (+1)
) +0,12482169 (+1) 4+0,23744087 (+1) 40.33052551 (+0)
1 +0.24818534 (=1) =0,28135556 (+0) 40,16573362 (~1)
2 +0.91060187 (=2) =0,33694020 (-1) -0,16308601 (=1)
3 4+0,28707901 (=2) «0,72222609 (=2) -0,16129686 (-1)
4 +0.56748900 (=3) =0,11581174 (-2) ~0,64332057 (=2)

Equator EZ/E = V/aE cos §f = Bp /B sin g =
Check ~1,00000271 +0.99999988 ~0.99976251

Ap /fa +0,00000121 ~0,00000005 =0,00009534,
m tm Wﬁ gm

basic 4+0.16025169 (+0) «0.22721442 (40)
0 +0,11683321 (+1) +0,15658591 (+1) =0625782519 (+0)
1 -0,12492981 (+0) 4042693596 (=1) =0, 10634017 (4+0)
2 =0,17150631 (~1) +0,12814464 (=1) «0,59408680 (=1)
3 =0,42141901 (=2) +0.43243348 (=2) ~0,34135506 (=1)
4 =0,12098644 (=2) 4+0.14993639 (-2) =0,18268058 (-1)
5 =0.34737952 (=3) 40,49000507 (=3) -0,85853189 (=2)
6 ~0.90947390 (=4) 40,14126899 (=3) -0,33773169 (=2)
7 «0,20111927 (=4) 40,.33697692 (~4) «0,10559328 (=2)
8 0434459642 (~5) 40.61418057 (~5) =0.24441984 (=3)
9 =0,40094338 (~6) 4+0,75263582 (=6) -0437088616 (=4)
10 -0,23533528 (=7) 4046182535 (=7) =0,27604425 (~5)

Pole V/bE = EP/E cos f =

Check +1,00000002 -1,00000003

Az/b negligible negligible

Table 2,03=4,




afb =4
s oy —————
IE TE=LM ™
— e e e e —
m rm sm £m
basic =0,91407486 (1) 40436981774 (40) 40.11775220 (+1)
0 4+0.11655470 (+1) 40,27748758 (+1) +0.18233431 (40)
1 +0.92149445 (=2) -0.13470990 (+0) 40.78426568 (=3)
Equator EZ/E = V/aE cos ¢ = Bp /B sin § =
Check -0.99979406 +1.00001613 ~1.00377770
ap fa -0,00005287 +0,00000530 +0,00094614
m tm Wm gm
basic 40,16831628 (+0) ~0,10545599 (+0)
) +0,92928755 (+0) 40.15388757 (+1) ~0,21276529 é 3
1 -0,15311162 (+0) +0,82957625 (-1) =-0,98721873 (=1
2 ~0,25352751 (~1) +0.25448502 (=1) =0,61353937 (~1)
3 =0,71931540 (=2) 40,96857682 (=2) =04 39662601 (=1)
L ~0,23904452 (=2) 4+0.39007948 (=2) «0,24407099 (=1)
5 «0,81543454 (=3) +0,15309282 (-2) -0,13635446 (=1)
6 ~0,26584526 (=3) +0.55635828 (~3) =0.67028961 (=2)
7 ~0,78893956 (=4) +0,18020312 (=3) =0,28260460 (=2)
8 ~0.20466149 (=4) | +0.50262768 (=) -0.99587013 (=3)
9 =0.44553523 (=5) 40,11635018 (=4) ~0.28439526 (=3)
10 ~0,77488570 (=6) 40.21335661 (=5) «0,63101622 (=4)
11 ~0.10037598 (~6) 40.28945170 (=6) =0,10193176 (=4)
12 ~0.85747540 (=8) 40.,25757752 (=7) =0,10655254 (=5)
13 ~0,36132625 (=9) +0,11256670 (=8) ~0.54072219 (=7)
Pole VAE = Ep /B cos § =
Cheek +1.00000001 -1,00000001
Az /o negligible negligible

Table 2.03-5,
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ITI, THE LONGITUDINAL ELECTRIC PROBLEM

3.00. Scope of the Longitudinal Flectric Problem. The object
of this section is the derivation of the expressions necessary for the
calculation of the induced electric dipole moment in tpe cylinder of figure
1.,00=1 when & uniform electric field of magnitude FE 1is applied in the
positive 2z direction. The induced surface charge densities on the side
and ends of the cylinder are expressed in terms of the barred bidr’chogonal

functions defined in Section I, On the side

N_g" ‘

"b%"“z_—"m‘i’m("z‘, )—3:% slelsb
T e =0
=% = R(z)= " (1)
€k 0; l2|> b

and on the upper end Ne-!
Z ~ L Py, A

tb+ tm \Vm(|101~-§)z)} psa

e . T(e) = mee (2)

b
The charge on the lower end is equal and opposite to the charge on the
upper erd since odd parity in 2z prevails. In a neighborhood of the

origin, the potential of the total surface charge may be put inte the form

V X r 2p+l
P Z /\P (?) P‘.!PH (cos ), (3)
p=o

Tt will become obvious thet the /\ P in this expression are linearly re-

lated to the r

b? Tp? tb and t n coefficients in the following way:



29

N ob Ne-!
X:brb +Z X:m h, + XP t, +Z X:mtm = /\p A

m=o0 m=0
Note that the "b" index is used with the basic terms, the "m" with the non-
basic terms, It is important to realize that the functions associated with
the basic terms, namely z/b and unity, are really special cases of the
-Q}m functions with both v and m set equel to zero, It is sufficient,
therefore, to derive detailed expressions for only the non-basic terms; the
corresponding expressions for the basic terms are obtainable from these simply
by substituting zero for v and m. |

Evidently the primary task is the derivation of expressions for
the matrix elements (the X's) in equation 4, There are a total of N charge
coefficients (N = Ns + Né + 2); ¥ -1 of the /\p are get equal to the

following values

/\p = ' (5)
o for Isp<€N-2

and an additional relationship involving the charge coefficients, known as
the "edge condition", is added, The edge condition is described in sub=-
section 3,02, The final result is a set of simultaneous linear equations
of order N which may be solved for the charge coefficients, Once the
latter are known, the induced electric dipole moment is easily calculated
according to the method of 3.03. Checking of the LE problem is described

in subsections 3.04 through 3.06.
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3,01, The Matrix Elementa, With reference to figure 3.01-1,

the internal and external potentials due to the side density are

®©
\ésI 3 a/ R(k) K, (ka) I, (kp) sin kz dk 0
°
ard
o
Msm _ CL/ R(k) Io (ka) Ko(kp) sin kz dk, (2)
E [
respectively., Here R(k) is as yet undefined. The density is
Ver _ AVer 3
e [ 5 5E] 7
p=a
Invoking the appropriate Wronskian, one has:
w N
% . R(z)=/ R (k) sin kz dk. (%)
ek /
Invertings
b
E(k): %/ R(z) sinh kz dz. (5}

Tt is seen that R(k) is the Fourier sine transform of R(z) and therefore
equation 1 expresses the internal potential of the side charge density by
meansbof the transform of that density.

A similar technique is applied to the ends., With reference to
figure 3,01=2, the internal and éxternal potentials due to the erd densities

are

00
\él = a/ -T_(k) e—kb Jo (kp) sinh ke dk (6)
0
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Pigure 3,01-1. The 8ide of the Cylinder showing Internal (I) and
External (II) Regiems.

-
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Figure 3.01-2. The Bnds of the Oylinder showing Internal (I) and
External (II) Regions.
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and 0o

Ver - Q/ ‘T"(k) sinh kb J, (kp) €~ki dk. (7)
E

(-]

Again, T(k) 4is as yet undefined. The density on the upper end is

O Ver aVe]I]
Te = e[ - (8)
) o oz z=b :
and
o f
:é = T(p) = a/ T (k) Jo(kp) kdk . (9)
()
Invertings
o
Tl)= 3 / T () . (ke) p e - o)
()

This time T(k) is the zeroth~order Hankel transform of T(P) and 6 is
the expression of the internal potential of the ends via that transform,
The total internal potential, V, is evidently the sum of VsI

and v, As vwas pointed out in Section I, it can be expressed in spherical

IO
harmoniecs through the agency of the two expansions

e -nP 2p+ 1
I, (kp) sin ke = —(%T (kr) PZPH (c0s8)  (11)
p=o )

amd
00
| 2p+i
J; (kp) sinh kz =Z -(-2—P+—')T (kr) Pzp,_,.(“‘ 6). (12)
P:O )

Combining 1, 6, 11 and 12, and using factors of "c" for dimensional reasons,

one obtains
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oo
';V?= > (2p+|)' {(—n)/ R(k) K,(ka)(kc)

P:O

® 2p+l
"'/ T (k) e™*® (ke) P dk} ('ct) 2p+|(c°$ ). (13)

The /\ of equation 3,00-3 are easily identified:

-}

With the aid of Appendix A, the two transforms R(k) amd T(k) are found

to be |

Y. -m

iy Va+
(kb) m=0 (kb)

and

Tka) N, 0" Tams 14 (ka)
o~ J, (ka) (-1) 2m+ |+ v (ke

K= adt —— + t - (16)
Tk { ®  ka m (ka)'t?
m=o

In this section, is always equal to minus one-third for the non-basic

terms and to zero for the basic terms H the latter value is evident in the
above expressions., The forms for the generalized matrix elements, applicable
to either basic or non~basic terms, are obtained by substituting the express-

ions for the transforms into equation 14. Thus the side matrix elements are

' m+p g s
X" (2)" L tb/ K, (a) J2mt% 42 88 P75

P (2p+1)! (kb)¥+?

Let kb = x, and
oo
2

X, (‘f?)éﬂ (%) P+/Ko (%) Jm,: o B 2P (18)

P (2p+1)!

o



34
By (16), the infinite integral is
I(%) = 22""/‘2") M(m+p+34L)1 (m+p+34)
(2/b)*P+2M*3S P (2m+ 72 +v) (19)
F(m+p+3a,mept3a; 2m+%o+v; - b%/a’).
The side matrix elements may be written finally in either of two forms

depending upon whether the hypergometric function is alloved to remain as

it is or whether it is transformed (17). These are

L)
XP

prm ZP"vr’(m+p+3/z) F(m+p+34)

M%) r(zp+2)r(zm+%+v)

2
(%)ZP(_:_)ZM+ij—Z Fmepr3s,meps % ;2m+ %405~ — ) (20)

2
(8 (&) Fmepe %, moprivwsmetias ) | | @
\ v

Am+ 2

Using the same procedure for the end matrix elements, one obtains:

o0
Xem- (-n"  a? / kb Temaisw (ka) ) (2P ) (22)
P (2p+1)! < (ka)'*?

Now let ka = x, and recall that e = (2/m)1/? (wv)!/? K /p(kb). Then

o0
2p+! V

S m+ 1+ (%)
Xo= (2) s £(E) (B) /Ky e) Tttt e )

By (18), the infinite integral is

)= 2% 2 " p(mep+ ) M(mep+1)
(b/a)?Pt2m* 72 [(amez+ )

flo

I(

F(m+p+3/2) m+ptl; 2m+2+2; -a*/p*).

(24)
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Again the matrix element may be written in either of the two forms

Xem =7 22P°Y [ (me p+%) M(mep+1)
P M%) Map+z) Mam+%+v)
[ 2p a\2m+2p+2 a?y |
(T (@™ Fnop s, moprss 2o aons - 5
(25)
3 db
am+2 2
B)@) " F(mepek,mopriemszmetions; &) || o)

It should be remarked that expressions 20 and 25 converge absolutely only
for 0< (b/fa) <1 and 0 < (a/b) <1 respectively although they are
suséeptible to analytic continuation (19') into the ranges 1 < (b/a) <
and 1 < (a/b) < ©» , The analytic contimations involve 0’ functions;f

and are somewhat difficult to handle computationally; moreover both original
series and continuations converge only conditionally or not at all for

a = b, depending upon the value of p. The writer finds expressions 21 and
26 better adapted to computation in general; both series converge absolutely
for all srguments and all indices in the entire range of interest. As might
be expected, however, convergence is slow when the argument is near unity in

either case,

3.02, The Edge Condition. It was mentioned in Section I that

the edge of the cylinder locally resembles a two dimensional right-angled

corner; in the IE problem this corner appears as if it were freely charged and

* Here ¥ (2) =f‘z_ log re).
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the surface charge density a distance £ away from the edge in either
direction must therefore be proportional to _£ -1/3 for small £ . The
gelection of minus one-third for the value of ¢ insures that the indi-
vidual '\]}m(u) functions will have this desired behavior in a neighborhood
of unit argument, that the total charge density on the side will be asymp-
totic to 81,6-1/ 3 and that that on the upper end will be asymptotic to
02 1?,-1/3 as £ tends to zero. The additional condition that C1 = 62,
called the "edge condition" in this thesis, must also be imposed; it
appears simply as another equation adjoined to the systvem of 3,00=-4 as
explained earlier, |

Using the summation formula for the hypergeometric funetion of

unit argumeni: ( 20 ), it is seen that

Jim Vi (8,3, 2u) - %m )" r(x+z) M(2)
u->1 (1-u?)® F(m+e¥+y) M(-m-2)

0" r(-v)

P(-m-2) M(m+1+v) 2¥

- ‘ -
F(1+2) 2% M

In other words, as u tends to unity,'

(1- u?)”
(a’?v u) ~ r(i+v) 2%

(2)

Tt is convenient that this form is independent of &, & and m. Evidently,

as 2z - by

Ns-1 .
~ b-v (b—Z)’) E (3)
R(i) M(i+2) m=o0 " ’
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and, as P = a,

. -'
a—‘l) (O.-P)-u Ne

T(P) ~ e o) tm . (4)
m=o
The edge condition becomes
Ng-! o Ne-|
b”)z y = 4 th - (5)
ms=o m=0

Substituting minus one=-third for % , the additional equation which must
be satisfied by the rm and tm coefficients is obtained. The basic
terms, which remain finite at the edge, do not appear in this equation,

which is

Ns-l Ne""

2 b= (8)0 ta= 0 ©
m=o0 m=o0

3.03. Calculation of the Dipole Moment. The 2z, and only,

component of the induced electric dipole moment is calculated by taking the
integral of 2z times the charge density over the entire surface. The

derivation is as follows:

b :

?EEE = Zar:{z Riz)a dz + 4-’"'51 T(e)p dp- (1)

Converting to dimensionless variables,

| [
Me: - 4,,,.0_57 wuR(u)du + 4mbai/T(u) udu. (2)
ek A o

Note that u in the first integral is orthogonal to every term in R(u)

except the basic and the first non-basic, since it may be identified as
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I i ;
Vv, ('2',', ] u)/bo (3, |,7) in either case. Similiarly unity in the second
integral may be identified as 4, (l s o,v,u) /bo(') o)-u), The geometrical volume,
A\ which is equal to 2va2b, may be divided out and the final expression

for the polarizability is

2b b ro iy t
of = 25 + +2 + ° (3)
L2 a [b.,(é,l,f)) b.,(i,',-,%)] [bo(wﬂ) b.,('ﬁ:a")]

Numerical values for bo(a’ » T 7 ) may be calculated from express-

lon 1.01-4. It is obvious that the values of b (3 ,1,0) amd b (1,0,0)
must be three and two respectively; the fact that expression 1,01~} does
indeed give these values constitutes a good check upon the integrity of the
system of biorthogonal functions, The numerical values are given in

Table 3,03=1,

1 .
bogg ,1,0) = 3,0000000
b (& ,1, - 1)= 1.9386755

022 T3 e
b°(1 ,0,0) = 2,0000000

by (1,0,-3) = 1.4330188

Table 3,031

3.04. Local Surface Deformations, The charge distribution

calculated for the cylinder is subject to certain inevitable errors and
it follows that if the calculated charge were forcibly fixed to the cylinder,
the latter would not quite be an equipotential surface under the joint action

of this charge and of the applied field, Since the errors are small, however,
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at any given surface point it is possible to calculate the local normal
outward deformation, An, which the surface would have to undergo in order

to become an equipotential. ILet Vt be the total potential, due to both
charge and appligd field, just outside the surface at a point where the
caleulated local charge density is o . Then the differential coefficient
avt/an, which is insensitive to small positive or negative local surface
displacements, will be very nearly equal to =0/e. The calculated potential
at a given surface point will be the sum of the potential, V, due to the
charge alone and the potential, Va, due to the applied field. The surface

deformation, then, must be such that

V+va--—g—'An=o (1)
or
V+V,
An = ——E—i*—— (2)
€

The caleculation of surface deformations will be undertaken at
the equator and at the pole of the cylinder. In the IE problem, equation
2 becomes indeterminate at the equator and both numerator and denominator

mist be differentiated with respect to z. Therefore

~E,- E
Js
Z

Ap= (3)

QL

L
€

®

wvhere Ez represents the field of the charge alone and, as has been
customary, E represents the applied field. It is convenient to divide
by the latter and to introduce factors of a and b. The final result is



E
ar_ b E Y )
@ @ R’ (o)
Since
- :
—\Vm (‘;",I)V’O) = (-')m Am (%,')1))) (5)
Ng-!
/
R'0)= 2yt 2 0" apm b - (6)
: m=0
At the pole, equation 2 applies directly, and
V- bE
Az = —E———— (7)
€
or
Vo |
"'5— = bE . (8)
T (o)
Since
'\.Fm (I,O,V'O) = (-I)m Qm ( I o)v)) (9)
Ne“'
T(o) = a,t, +Z 1) ap, te - (10)
m=o0

The problems of celeulating EZ/E and V/bE are considered in the next

subsection,
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3.05. Derivation of the Checking Coefficients. At the equator,

let the part of Ez due to the side charge alone be denoted Ez g* This
quantity is obtained by differentiating the negetive of 3,01-1, then set-

ting 2z equal to zero and p equal to a. In normalized form, E is

Z8
o
E =" R (k) Ko(ka) Io(ka) k dk . (1)
» o
Stnce f(k) is itself a sum, as given in 3.01-15, it is clear that E /&
is of the forn; Ne-|
Eﬁ:Ab"bJ’Z Am T (2)
n=0
vhere the Am are
= (2')'/2( l)m b °"J'zm+:"/z+u(k'>)
Am="\m) G a oyar Kotk L () k. @)

Letting kb =p and a/b =T,

o

Am= :é!'(a%)'/z(”)m""/ Jz:;:{‘;”(p) K, (pT) I, (p7) d (p?). (4)
By (21)
K, (em) I, (p7)= —"—;:-yf G:-l (,::zfr2 0 {"‘) o) (5)
and
P ) sz+=/,_+u(P) = fGEW) G;Z (Ipz m'é,-rn-l-u). (6)
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The infinite integral of a product of G-functions is, under suitable

conditions, another G-function (22). Thus the A~ coefficient is

. (M

—(0)" 2 22 (g
A = T 633 (4—'r

~-m="%, Yo, mri+?
m ar

O)O)O

Evidently Ab’ the basic coefficienf, is simply the Ao coefficient with
7 set equal to zero.

The part of “Ez at the equator due to the end charges alone is
denoted E, o and is obtained by differentiating the negative of 3.01-6, then

setting 2z equal to zero and p equal to a. Thus

oo
i*e - -a/ Fk) kb I, (ka) k dk. e)
[
Again T(k) is a sum, as given in 3.01=16, and Eze/E is of the form
Fae o
E = Bbtb+m___o Bm tm . (9)

The Bm are therefore
)

B = -(-i)maz/ Jz(:+)'7+"fka) P T (ka) k. (10
a

Now let ka = p, and

® p
B, = —(*')m/ e TJ,(p) Jm;’;”(p) dp . (11)

By (23)
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Yo-Ya, -2
(12)

m+‘/2,-m-'/z—v,m+ Yo ,"m-%-Y

-v -/ 12
P JolP) Temren (B = T 2624 (Pz

The infinite integral of an exponential and a G=-function is another

G-function (24). Therefore the B coefficients are

(13)

0) '/2 )XZ-%)‘:V‘Q )

m+'/2"m-'/z-l), m+ '/z)—h'l"/z"v

Attention is now turned to the potential at the pole. That
part due to the side cherge alone is obtained by setting 2z equal to b
and p equal to zero in 3.01=1. Thus

o
V ~ 3
l;)—Es = %/ R (k) Ko(ka) sin kb dk; (14)
(o]
V. Ns”|
-b_;=cbrb+Z Con m 5 (15)
m=0

2 m 00 T 5 (kb
- (2 a . 3/, 49
Cm’ (F) -1 b —b‘/ K, (ka) sin kb 2"‘(‘;:);2” dk. (16)
[e]

Now let kb = p, and note that sinp = (1:/:2)1/2 p1/2 J1/2(p). Then

Cwm = )" %/ Ko (PT) T, (p) Jz'";:/f;” ®) 4(p?). a7

Two factors of the integrand are written as G-functions:

-2 ’ -Va-Ya ) (18)

?

-1~V - i2
P J’/g(P) ‘szr’/zw(”: ar 4624(P2

m+Ya,m,-m-1-2,-m=-%-



bl

2_2
Ko(pT)= 4 G::(" T o,o). (19)

The Cm coefficients are

~m-Y2 ~m m+i+v,me Y+ ¥
? ) ) 2 ) (20)

G “fr*
Ch’\= 4.("'/2 T 64'4 (—4—__

1)/2, ‘/Z+v/2) o J o

The part of the potential at the pole due to the ends alone is

found by setting 2z equal to b and p equal to zero in 3.01-6. Thus

0
F\/é = —:—/ T (k) e kP sinh kb dk; (21)
Ng"
'S/Ei" Doty + 2 Dmtms (22)
m=0
oo
D =(_‘)m &_2 |'e-2kb Jam+ 1+ v (ka) dk ; (23)
m b - 2 (ka)l-l-‘l)
@ 2P J’ ()
_£P P
Do (0" F [ (1= F ) Dmapz® ap.

This integral is simpler than those which have just been considered. It
is ccnvenient to split Dm into Dmr’ the part due 1o the remote end,
and Dmp’ the part due to the proximate end:

00

- 2P (p
D = = )" 5[ €T Tz dps )
0

(26)

~ lim D
T->00 mr

D



By (25)
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the £inal form for Dm is

o m v [ r(men)
Dm -1) T 2 {P(m+3/2+1))

M(2m+1) 2_2m F(m+‘/2,m+l+v5 2m+2+z),-[l+ ;ga]-')

M(2m+2+9) [I + %z]mﬂ/g

. (27)
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3.06, HNumerical Values of the IE Checking Coefficientg.
app =1
i:} Am Bm Cm Dm
basic | -0.29092770 | ~0.027496835 | +0.12636348 | +0.11721778
0 -0.33551515 ~0.038094261 +0.20544521 +0. 13959347
1 +0.34521422 +0,000636674 +0.,02583489 =00 06445809
3 +0,29985009 +0, 000000071 =0,00363311 =~0,03524047
4 ~0.28393154 =0,00079207
5 +0, 27219552 +0,00007923
6 =0+26324614 +0,00011040
7 +0, 25613764 +0,00003220
8 =0,25028169
9 +0.24531356
10 =0, 24099940
1 +0,23717830
12 -0.23373160
Table 3.06~1
=1
a/b = 3
n Am Bm Gm Dm
basic «0,32601991 =0, 08268658 +0,13328993 +0.21922359
0 =0.38941423 =0,11352682 +0.20515054 +0.25806868
1 +04 34362707 +0,00422630 =0,00091545 =0,12866229
2 =0.31022369 {3, 00001874 =02 00494770 +0,08927276
3 40,2905 6866 =0, 00000726 =0, 00035600 =0607048091
VA =04 27754842 +0, 00000047 +0,00015500 +0.05920399
5 +0.26794921 +0, 00002700 ~0.05156477
6 =0,26036741 +0.04599020
7 +0.25411243
8 =04 24879877
9 +0.24418865
10 =04 24012402

Table 3.06~2
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a/b =1
m Am Bm Gm Dm
basic | =0.32877249 =0, 17868116 +0.10378375 +0. 381 96601
0 -0,39732877 =0.24711785 +0.15655223 +0.43883735
1 40433349897 +0,00421629 =0,00941805 =0,25383775
2 =04 30477222 +0, 00278894 =0, 0005 6000 +0, 17839283
3 +0,28791833 =0.00019761 +0,00010880 =0,14095486
4 0427610605 =0.00002614 +0,11840765
5 40, 26706035 +0, 00000406 -0,10312952
6 ~0.25976597 +0, 00000013 +0.09198040
7 +0, 25367836 =0.08342408
8 =0, 24847089 +0,07661395
Table 3,06~3
a/b
n Am Bm Gm Dm
basic =0.32342644, -0,28150102 +0.0529464,66 +0.58578644,
) =0.39053524 ~0.21200798 +0,080432247 +0.64377273
1 +0432964616 =0, 04799989 =0,003582010 «=0.47308746
2 =0.30350317 +0,01354131 +0,000089476 40, 35197905
3 40, 28734661 +0.00360955 +0,000000281 ~0,28122666
4 -0,27578341 =0,00030521 4+0.23671525
5 +0,26685358 =0, 00020968 =0420624399
6 =0,25962259 =0, 00000542 +0.18395848
7 +0.00001011 =0, 16684780
8 +0,00000128 +0.15322784
9 -0, 00000039 =0 14208404
10 -0, 00000011 +0. 13276707

Table 3, 06"4
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a/b

n A B, C, Dy
basic -0.32019622 ~0,36248288 +0.018151740 40.76393203
0 =0,38590956 059374414 +0.027888457 +0.79345858
1 +0.32868365 =0.19822756 =0, 000476891 =0,76063475
2 ~0.30321292 =0.01102474 +0,000006597 40, 64208498
3 +0,28721018 +0,01862766 =0, 000000078 ~0454203742
A +0,00854478 +0.46662303
5 40, 00107944, =0.41018405
6 -=0,00062555 +0,36712587
7 =(,00038019 =0,33342051
8 -0,00007223 +0.30635902
9 +0,00001903 =0.28413382
10 +0,00001663 +0.26552189
11 +0, 00000420 =0,24967695
12 ~0,00000043 +0,23599859

Table 3.06~5
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IV, THE TRANSVERSE ELECTRIC AND LONGITUDINAL MAGNETIC PROBLEMS

4+00. Perfectly Conducting Objects with Rotational Symmetry.

It is desired to prove the theorem that for any perfectly conducting object

% Gyyo An object of this type, formed

by rotating the curve p = p (z) about the z axis, is showm in figure

with rotational symmetry,/3,, = -

4.,00=-1. Iet the unit vector é"‘ point along the tangent of this curve and
the unit vector En point along the outward normal. The variable £

agscociated with é:e s meagures distance along the curve4and encompasses
the object as it varies over the interval 0 £ £ £ L. It is sufficient if
P (z) bhas a uniquely defined tangent and normal at almost every point in
this intervale.

If the applied fields consist of a uniform magnetic field, B, in
the 2z direction and a uniform electric field, E, in the x direction, the

following must be proved:

/UMME - _|_ MEX . (1)
B 2 €E

In the electric case, the scalar potential satisfies the conditions:

\
V==-E fi(pz) cos ¢;
_fl = 0 on the surface of the object;

f (2)
f, ~ P at infinity;

viv=o0.

o

In the magnetic case, on the other hand, the vector potential fulfills the
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Figure 4.00~1, A Perfectly Conducting Object with Rotational
Symetryc'
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conditions:
- - B h
A= e 7 Flr2);
f = O on the surface of the object;
% (3)
fo ~ p et infinity;
Vzﬂ = 0. 4

Application of the Laplacian operator to either cos g f,‘ or to ;¢f2

yields the same equa’c.ion in P and 2. In other words

_af_ L 0 _ | o2 fl}_ (%)
{3P2+Paf’ P*+a%‘}{h =9

Since f1 and f2 obey the same differential equation, have the same

boundaiy conditions at the surface of the object and have identical

asymptotic behavior at infinity, it is clear that f1 = f2 = f, The surface
charge density in the electric case is
= -€g,-VV = €E cos c/:(Eh-V:{-) )
and the x component of the electric dipole moment is
L 2w
MEX=// ocpcos¢p pdpdl; (6)
o “o

L
Mex= € Em [ (8, Vf)p*dL. ™)
o

The surface current density in the magnetic case is

]‘:J_'éhx(vxﬂ)=;§;é’hx(Vxé'¢f). (&)

/LL
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By vector identitjr
enx(Vxegf) = &, x(VfxEq ffvxé'¢). (9)
gince £ =0 on the surface, the second term vanishes. Continuing, |
e x (VfxEp) = VI (8 &) -8 (& VF). (o)

Obviously e, * €¢ is equal to zero and therefore

_ -B - - ,
= — e . . 11)
] Za % (g, VF) (
The magnetic dipole moment is given in general by:
My= 3 [FxJ ds. (12)

Since r =ez P

L 2nr
M -B — - 13)
My, = U//(—emeze)(a.-vﬂquw. ‘

By symmetry, the term containing e p is destroyed upon integrating over
2n in @. A1l that remains is a 2z component given by

L
Mz = %% m-/ (€n-VF) pZ e L. e
Evidently °
M L

and the asserted relation is t rue.



Problems, As is evident from the theorem of subsection Le00, it is suffiéient
to consider only the TE problem with perhaps occasional reference to its
dual, the IM problem. The objective, then, is to derive the expressions
necessary for the calculation of the induced electric dipole moment in the
cylinder of figure 1,00-1 when a uniform electric field of magnitude E

is applied in the positive x direction. The induced surface charge densities
on the side and ends of the cylinder, and their duals, are expressed in
barred biorthogonal functions with indices chosen to giire even parity on

the side and odd parity on the ends. On the side

r Ns" _ N
%D SmWim (£,0,-5,2) ;lals b
% t2gs m=e L (1)
eEcosds B =5@)= 4 (
0; 2] > b
- J
and on the upper end
Ne“ h
-—+Z Win ¥ (L1,-5,§); Psa
Oe —2MJpe W,
= = < . (2
eE cos ¢ B (P) ( )
0, pP2a
L

Phe charge on the lower end is equal to that on the upper end. Actually
S(z) and W(P) are equal to the ;n. V £ of subsection 4.00 on side
and end respectively., In a neighborhood of the origin, the potential of

the total surface charge may be put into the form

2 l
..\../é. = cos ¢Z /\ Pt (cos 9) (3)

2p+|
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Again there exists a linear relationship connecting the charge coefficients

to the /\p. It is

Ng-! | Ne-!
sb sm ‘ eb em
Yo 5b+Z Vo sm * YP Yo +Z:o Yo Wm= Ne. @
m=0 m=

Once more, § = 1 of the A p will be set equal to the values given in
3.00=5 since this will yield a maximally linear internal potential very near=-
ly equal to xE, The edge condition, described in subsection 4.03, supplies
the N th equation. The calculation of the dipole moment is cutlined in

404 and the method of checking in 4.05 through 4.07,

4e02, The Matrix Elements. With reference to figure 3.01-1, the
internal and external potentials due to the side density are

o0

L a/ S (k) Ky (ka) T, (kp) cos k= ok ()
E cos ¢ A '
and
?lsl_ = a./ g(k) I‘(ka) Ky (kp) cos ke dk, (2)
cos ¢

o

respectively. The density is related to the two potentials by 3.01=3 and,

using a Wronskian similar to that used before,

o0
gs = = S °
_GE_C_O;_;_S(.-E)./ S (k) cos ke dk . (3)
(o}
Inverting: b

S(K)= q_z;./ S(2) cos kz de.
o (4)



~ Thus equation 1 expresses the internal potential of the side density by
means of the Fourier transform of that density.

A gimilar technique is applied to the ends., With reference to
figure 3,01-2, the internal and external potentials due to the end

dengities are

)
_ Ver O/Kl(k) e-ka" (ke) cosh ka dk )
Feose 4
and
00
___\./C_H._. = a/ \:/(k) cosh kb J,(kP) e‘ki dk. (6)
E cos ¢ A
Using a now familiar procedure,
o oo
:’é—i"‘m—tﬁ = W(p) = W (k) J, (ke) kdk; (7)
° a
W= 3 [ W) J,(ke)pdp, (8)

o

and equation 5 expresses the intermal potential of the ends via the first-
order Hankel transform of the end density.

Spherical harmonic expansions of I, (kp) cos kz cos § and of
9y (kp) cosh kz cos # are now needed. Both of these represent potentials
which are regular at the origin but since both vanish on the 2z axis, the
method of subgection 1,01 is no longer applicable. It is possible to get
the desired expansions, however, by letting 2z =0 and using powers of P.

These expansions are of the form



2p+l !

I|(kP) cos kz cos ¢ = cos 4>Z A 2P+' (cos 8). (9)
At 3z = 0, that is on the xy plane, this becomes (26):

2p+l 2p+l

cos ¢Z—_ 22p+I |(p+,)| = cose
p=0°

Appzp'ﬂ (—I)P (ZP'H) ‘

22pP pl p!

. (10)

Equating the coefficients of p 2p+1 shows that A = (=1)P kZp'Fl /(2p+2)8 «

Omitting the common factor of cos %

(.,)P 2p+1
T, (kp) cos ke = Z (2P+2)' (kr) P2 o (cos 8). (11)
Similarly
2 [ 2p+l
Jl (kp) cosh kz = é m (kr) 2P+ (cos 8). (12)

Combining 15 5, 11 and 12, and using factors of "e" for dimensional reasons,

one ob’sains

x 2p+1
¢E cosd COS¢ Z (2P+2)' C{(—I)y S(k) K, (ka) (ke) PH L

/ W(k)e kb (RC) dk} (_r‘_) 2 . (cos &).

The /\p of equation 4.01-3 are

A, - T%{(—»)yg (KK, (ko) (ke) "tk +/ % () é‘““(kc)z'”'dk}- (14)

(13)



With the aid of Appendix A, the two transforms S(k) and W(k) are found

to be

% s m '
S)=(2) bls, 2B 57 5 L) Jamaaey () | )
” (kb)™2 (kb)'/z-i-v

m=0

T, (ka) NZ”' ™ J, (ka)
~ - . Jalka -l) 2m+2+7v ka . (16)
W)= dqwp ka +m =0 o (ka) '*¥

In this section, as in Section III, » is always equal to minus one-~third
for the non-basic terms and to zero for the basic terms. Substituting the
transforms into equation 14, one obtains the matrix elements. For the

gide, these are

[+ o]

sm /2 (")m+P ab J2m+'/2+ (kb) 2p+t

= = . ()

YP _(7"2-) (2p+2)! ¢ K,(ka) (kb)yz,ﬂ, (ke) dk |
[}

Iet kb =x, and

00

sm 2 C)™P a e RPYY L (e ) Tamavas o (x) 26+
V() SO 2 () i) T

[¢]

By (27) the infinite integral is
I(3)= 2%P7 27" Plmspr )M (mep+ )
b (a/b)2p+2m+z F(2m+"/z+1))

F(m+p+°’/2)rn+p+'/252m+3/z+v;—bz/a2)- (19)

The side matrix elements may be written in either of two forms as before.

These are
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p+m

Y _ 0 p-v M(m+p+%) M(m+p+2)
p r (%) r'(zp+3)f"(2m+3/z+7’)

N

(2P, 2mE2pH 2
(-l;-) (-3') F(m+p+3/2,m+p+'/,,;2m+:"/z+z)5-Z5)
< f (20)
b 2m+z
( ( ) h"+P+ m—-p+l+1)52m+/z+1) _..) .
J| en
Using the same procedure for the end matrix elements, one obtains:
m 2 %
em - _ ,
Yp = &r 2 e kb J2m+2'++z;(ko.) (ke) Pﬂdk, (22)
(2p+2), c / : (ka)
Now Let “;x’“dm“ﬂtMte*b=&hﬂm(ﬁﬂﬂKvﬁmL Then
%
em_(2y_C0” 2 Jamsasw (%) 2P+74
YP ( ) (2p+2)' ¢ E )/K &%) '“*,:; dx.(23)

By (28) +the infinite integral is
1(%)= 22P %Y [(me+p+ %) [ (m+p+2)
a (b/a)2p+2m+3 F(2m+3+7))

F(m+p+3/z,h"+p+2;2m+3+1)3- bz/a2>. (24)
Again the matrix elements may be written in either of two forms
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Yo -n™ 2P Pmep+32) M(mep+2)
P (‘%) M(zp+3) M(am+3+v)

( 2p m+2p+3 2
(E) (?) F(m+P+%)m+P+252’"+3+”5"—bi)

> 1. (25)

2m+2 a®
(“)(a) F(m+P+’/z m-pti+0;2m+3+; 7 )

(26)

403, The Edge Condition. Since the asymptotic form of the
function -\—'}m(tr, TsyV,Wn) as u tends to unity is a function of 2
only, as is shown in subsection 3,02, the edge condition for the TE

problem is the same as that for the ILE, Therefore

Ns" /!' Ne l

S - 2o | &

4e04. Calculation of the Dipole Moment. The x, and only,
component of the induced electric dipole moment is calculated by taking

the integral of p cos # times the charge density over the entire

surface., The derivation is as follows:



b a .
=rn'a/5(z)o.dz + 2m PW(P)P”LF' (1)
Zb o

Mex
ek

Converting to dimensionless variables

[
f;’léx i quazb/ S(u)du+2rrra.‘i/uW(u)u du. (2)
o ©

Note that unity in the first integral is orthogonal to every term in

S(u) except the basic and the first non-basic, since it may be identified
1

as '\I/‘o(% s OV, u)/bo(g s OyV) in gither case. Similarly u in

the second integral may be identified as ) 0(1 ) ,u)/bo(‘l o197V )e The

transverse electric polarizability and its dual, the longitudinal magnetic

polarizability, are therefore

(3)

_ _ sb So & Wp We
qt't— Zﬁl'e B [ bo(‘;‘,0,0).*. bo(lz,o)-%)jl.* b[ b°(l"'o) * bo(l’l,-é)]

The necessary munerical values are given in Table 4.04~-1.

bo(% »0,0) = 1,0000000
b (J- 0, - 1) = 0.83086092
o 2 39 3 L4

b°(1 N ,O) = 4.00000000

by(1s1s = 3) = 2.3883647
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4e05. lLocal Surface Deformations. At the equator of the

cylinder, equation 3.04-2 applies directly, and

Ap = V- ;E/ecoscﬁ (1)
or
v,
AP aEcos
= = 50) ' (2)
The denominator is simply
Ns'|
S(0)=aps, + E (-t)mam Sm - (3)
m=0

It is interesting to notice that although V is @~dependent, A p is not.
At the pole, 3.04~2 becomes indeterminate and both numerator

and denominator must be differentiated with respect to P Thus

~Ep ~E cos &
Az = = : %)
€ op

It is convenient to divide by E cos ¢ and to introduce factors of a

and b. Then
Ep ’
Az a Ecesad 5)
b b W’ (o)
where
Ne"l
Wi(0) = ayw, + E 0™ @y Wi, (6)
m=o

The problems of caleulating V/aE cos @ and EP /E cos @ are considered

in the next subsection.



At the equator,

let the part of V due to the side charge alone be denoted VS. This

quantity is obtained by setting 2z equal to zero and p equal to a in

4.02~1, Thus
V. ©. |
aE csos ¢ =/ S (k) K|(ka) I, (k°~) dk. (1)

o

Since S(k) is itself a sum, as given in 4.02-15, it is clear that

v S/aE cos @ is of the form

Ng-1
Y ' > A
= + s
aEcos¢. ‘Absb < — Am m : (2)
vhere the AI; are
/ 2 % m b mj2m+yz+v(kb) d k
Ah‘\ = (Tﬁ-') (-') : (kb)'/2+v Ki(ka)I,(ka) : (3)
o

Letting k¥Xb =p and a/b =T,

7 ® '
A= 1) 2(-0"/ Jams 29 Oy (o)1, (pr) oA (6. )

m 3 +v
PZ

By (29)

72 |
[, 0,1 )

-y |
Ki(p1) T, (p1) = ’Z - Gfg (Pz"'2
» and

K+v -(%+2) 10 ( p?
P-(/z ) ( )G' (.'.D_

‘J:‘em+'/z+v
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The infinite integral of a product of G-functions is given by (30)

-~ and the Ax:l coefficient is

A = 0" G2 (472

2ar 33

-m+73)'/2)m+l+z)) )

lio)-l

The part of V at the equator due to the end charges alone is
denoted Ve and is obtained by letting 2z equal zero and equal a

in 4.02-5. Thus

on
Ve - ~ -kb
PYIYYS [ w (k) e J, (ka) dk . (8)
Again ff(k) is a sum, as given in 4.02-16, and Ve/aE cos @ is of the
form
C Ne-!
—__Ve = BI w, + B’ W, . (9)
aE cos ¢ b™b mm
ms=o
The Bx:z are therefore
oo
B/ = ()a [ Temrarale) kb gy, (10)
[ )
Nor;: let ka =p, and
co ( P
B;“= (_')m \J—2m“;+2v+l) P) J|(P) e T dp' (11)

By (31)

Y2, -7a'% ) (12)

mer,~m-1-¥, m,~m-2-2

- 1 12
P ('”))JI(P) sz +2+v(P) =Aar % G (Pz
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The infinite integral of an exponential and a G-function is another G-

function { 32 ). Therefore the B! coefficients are

o, /2, "%,*'/z-”/z) (13)

m+l,-m-1-Y, m, -m-2-¥

Attention is now turned to the electric field at the pole. That
part due to the side charge alone is denoted E Ps and is obtained by
differentiating the negative of 4.02-1, then setting 2z equal to b and

p  equal to zero. Thus

E

—E_c_:::#— = - —/ S(k)K (ka) cos kb kdk ; (14.)
E Ng-1

Ty s Gt Chms ()

) ®
" _ _(2Y* g ab Jam+ v+ v (kb) (16)
Crn=-(3) "% [ K (k) eos kb m(;b),zfﬂ kdk.

Now let kb =p, and note that cos p = (ﬂ/2)1/2 p1/2 J_.x/z(p)’ Then

Con=-C0" F [ Ki(p) Ly (p) sz',;f‘””(”’ d(p?); ()

Va2, - Y2 )
. (18)

m,~m-/4-vV,m+/p ~m-v

P_U\L/Z(P) ‘-sz-»-yzw (p) = m_-Vz G:l:l' (Pz

Lo _l_) , (19)

K,(PT) = % G:: (p4_



The C];1 coefficients are

)™ e 1
S 644('47'

_m,m+‘/z+-u,-m—'/,_)m+v) (20)

"'/z““u/a) "'/2, '/2, "'/2

The part of the electric field at the pale due to the ends aloms
is found by differentiating the negative of 4e02=5 4 then setting 2z equal

to b and P equal to zero. Thus

[}
Ee S "~ -kb
_E:es_d—:—- -5/ Wike cosh kb kdk ; (21)
EPQ / Ne-| ’ .
T Dy + D D) (22)
m=2©0
® 2kb
D;n = - (.|)m_iz l+e” Jam+2+2 (ka) kdk (23)
2 2 +v ;
o (ka-)
® 2P\ J. (p) (24)
Dip = -(-l)m-i—/ (1+e” 7 2"‘;;’;“’ P dp .
(o]

It is convenient to split ngx into Dz;:r’ the part due to the remote end,

and lenp, the part due to the proximate end:

o
/ -2p
D¢ = -(-')mi—/ e T 'I""*z:”(p) dp;  (25)
° P
i |.‘ ’
Dmp = fr:co mr (26)

By ( 33 ), the final form for D! is



D, = - ()" 27 ) _[lme%)
["(m+"’/z+7))

.

Mzm+3) 2-2m F(h’w%, m+1+Y;2m+3 +7; [H’ TT-}]—‘)}
. (27)

M(am+3 +2) [1+ =y "tV




4+07. Numerical Values of the TE Chec Coefficients.
a/b = %
n Aé B& Gé D&
basic 4048567413 +0.0016906105 =04 24806947 =0,25012019

0 +0,46706690 +0,0028127304 =04422412217 =0,30109362
1 -0,28985737 =0, 0000460757 ~0,24373313 +0, 38686302
2 +0, 20785455 +0,0000006550 -0.05589727 «0.44637931
3 -0, 15664977 ={}, 0000000084 +0.01144904 +0.49336660
L +0, 12267493 +0,01338206
5 =0,09920657 +0.00414450
7 ~0.06998045 =0, 00065000
8 0, 06051847 =0,00025800
9 =-0,05312591

10 +0,04722013

11 =0,04241114

12 +0.03843176

Table 4.07-1
a/b = %

n AQ 3& G& Dé
0 +0.45331629 +0,015895666 ~0.34379359 =0,30242017
1 =06 2218650/ -0,000721978 =0 11071474 +0.38689050
2 +0,13383088 +0,000023358 +0,00582310 =0,44637979
3 =0, 09088765 -0, 000000433 +0.00781273 +0.49336661
4 +0,06710064 +0,00055230 -0,53283593
5 ~005250069 =0, 00040600 +0.56721244,
6 +0,04279397 : =0,59787257
7 -0,03593609
8 +0,03086104

-9 =0,02696777

10 +0,02389470

Table 4.07=2




a/b =1
m A!:‘ Bl;1 01:1 Dx;l
pasic | +0.38389461 +0.035531400 ~0,22360680 ~0.25623059
0 | +0.40239953 +0.057711954, ~0.27991450 ~0.31104949
1 =0, 14077125 =0,004428126 =0, 02426401 +0,38755941
2| +0.07339133 +0,000048910 +0,00620624, «0,44,642346
3 | =0,04729610 . +0, 000022000 +0.00007680 +0,49336930
4 | +0.03424682 ~0.00011100 =0.53283609
5 | ~0.02657598 +0.56721245
6 | +0.02157426 ~0,59787257
7 | -0.01807507 +0. 62568060
g | +0.01550001 -0.65121858
Table 4.07-3
a/b =2
m AI; BIL C;l DI:I
basic | +0.28895588 +0.08012455 ~0. 17677670 ~0,28033009
o | +0.31447305 +0.13048760 -0.21161752 ~0.34786258
1 =0, 077186377 =0, 00856820 +0,00225033 +0439686370
2 | +0.03759890 ~0.00158380 +0. 00045047 ~0.44833458
3 -0,02386230 +0,00007759 =0,00003608 +0,49373502
4 | +0.01720373 +0,00004910 +0,00000120 =0,53290393
5 -0,01332658 +0,00000140 : +0,56722.83
6 | +0.01080855 ~0.597874381
7 +0,62568100
9 +0, 67489927
10 =0,69702710

Table 4.07=4
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a/b = 4

2

n Ay B} Cp D
basic 40, 19729197 +0, 12665449 =0,11180340 =0,33541020
0 +0,22012863 - +0, 21079684 -0,13377119 =0.42300680
1 =0,04035999 =0,00124803 +0,00164845 +0.44541293
2 +0,01890936 ~0.00509499 ~0,00001084 =0447197067
3 -0,01195678 -0.00132554 -=0,00000012 +0.50412544
4 =0,00005575 ~0,53726305
5 +0,00008590 +0,56900953
6 +0.00003338 ~0.59859524
7 +0,00000350 +0,62596921
8 -0,00000180 =0,65133324
9 +0.67494462
10 =0,59704499
11 +0.71784091
12 =0,73750332

Table 4.07=5
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V. THE TRANSVERSE MAGNETIC PROBLEM

5.00. Scope of the Transverse Magnetic Problems The object of this

section is the derivation of the expressions necessary for the calculation
of the induced magnetic dipole moment in the cylinder of figure 1.00-1
when a uniform magnetic field of magnitude B is applied in the positive
y direction. The structure of the induced current system, which must be
such as to produce a magnetic field equal and opposite to the applied
field at all points ﬁithin the cylinder, merits some discussion. Certain
components of this current, namely jzs on the side and J pe on the
upper end are regarded as fundamental whereas the # components on side
and end, constructed in such a way as to make the system solenoidal, are
regarded as derived. The current on the lower end is equal and opposite
to that on the‘ upper end, A sketch of the current system appears in
figure 5.00~1,

The fundamental current components are written in terms of the

dimensionless and everywhere-positive functions, F(z/b) and G(p/a), as

follows:
/“ézs = F(2/b) cos & ; (1)
/‘éfe = - (%) G (p/a) cos . (2)

The reason for the inclusion of the factor a/P in the definition of
G(P/a) becomes evident later. A graphical illugtration of these funda-~

mental components is shown in figure 5,00-2,
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R
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Piomre 5.00=1. Ourrent Systenm for the T¥ Problom,

A Pjre f‘ Mjgs : A Alpe
B cose Bcos ¢ Bcos ¢
p— 2 —> <~
Lower End Side Upper End

Flomre 5,00-2, Skoteh of Typical Fundemental Current Cuponentos

2 F(¥b)

tasr) G(p/a)

fo t-—----- D f. }_ ______ 7l
: » P/a

rxAli ‘(%)

> P/a.
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Fimare 5.,00=3, Tyoienl Formg of the Functicos which Uegorile the
Gurpent Syetens



The derived components must satisfy

I aj¢ dlzs _
T e T hs O (3)
and
[ 9 . | dide
— < + - =0

upon side and end respectively. Using a prime to denote differentiation
with respect to the dimensionless argument z/b or P /a, it is clear that
the derived components must be

/ué‘bs = —% F'(z/b) sin ¢ (5)

ﬂé_{ = G’(P/a) sin $. (6)

B

The reason for the designation of the current components of equations 1

and 2 as fundamental should now be evident since the remaining components
are obtained from these by differentiation. Had the opposite choice been
made, integration would have been needed and arbitrary constants would have
been involved.

Iet £ Dbe the distance of a given surface point from the edge
of the cylinder on either side or end., Since the @=~going currents are
parallel to the edge, it is clear that F' and G! must be asymptotic
to constants times ,2'-‘/3 as ¢ tends to zero. This, in turn, imposes

certain requirements upon the funetions F and G. Quantitatively,

2
F(z/b) ~ C, + C, (b—z) & as z -—>b; | (7)
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2/3 '
G(p/a) ~ C5 - Cq (a-p)’" as p>a; (8)
2 Filefe) ~ @ Co (ben) )
_L-F(*/b)“'?a' 2 (b-2) as z->b; 9
' B >a (10)
G'(pla) ~ % a C,(a-p) as p .

It is seen that two edge conditions, C3 = 01 and C 4 = 02, mist be satis= -
fieds The former of these involves the basic terms only and requires that
the coefficients of these terms on side and end be equal., In other words,
the basic terms correspond to a self=-contained solenocidal system of very
simple form with currents flowing in rectangular loops around the cylinder.
Superposed upon this are the non-basic terms which give a gentle curvature
to the current lines and which supply the necessary singular behavior at
the edges. Thus the second edge condition, which concerns only the non-
bagsic terms, is very similar to the edge conditions appearing in the IE
and TE problems, It may be remarked that, although the basic terms could
have been dispensed with in the IE and TE problems, they are absolutely
necessary in the TM problemn,

As in the two previous problems, F and G are represented by
series of barred biorthogonal functionsg with the difference that 3/ is here

equal to plus two-thirds rather than to minus one-third. On the side

N‘g"
p 2 2 A
Hias S+ D Fm Won(£,0.8,%); 1215 b
22 = F (i/b)= m=o L (1)
Beos 0; lzt >b
and on the upper end Ne-1 J

P - 2 P N
' Bha t) ImU (L, 5,5); P
-P}‘Jpe ~ G(P/a)_-_- ba mZ:o m ¥m 3,a/)

12)
apBcose 0; P>a,f(
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Clearly the first edge condition is satisfied if
9 = fo (13)

and henceforth the single symbol, fb’ will be used as the coefficient of
the basic term in both F and G. With apologlies for repeating some
features of figure 5.00-2, typical forms for the five functions T,

~(a/b)Ft, G, (a/p )G, and G', are sketched in figure 5.00~3.

5.01, The Matrix Flements, The equation

o ) dS
Ai = Im / r
. (1)

L= Z,U,z)'

agsserts the existence of a unique relationship between any rectangular

component of the vector potential and the corresponding rectangular com-
ponent of the surface current density. Since this relationship is exactly
the same as that which obtains between the scalar electric potential and
the surface charge density, one may find any rectangular component of the
vector potential by solving a boundary value problem using the following
conditions at a current bearing surface, where the direction of increasing

n is from region I into region II:

AiI - Ag]]: = 0, (2)
JAir _ OAm _ ' 3
on on HMli - )

The currents on the side, in terms of their rectangular components, are

Flxs af" _ aF cos 2¢ ; (4)
B 2b 2b



M C
-—Bls- = — .g_F_ sin 2¢ ; (5)
/uézs‘ = F cos . (6)

Considering figure 3.01=1, it is required to write down a set of vector
potential components, for regions I and II respectively, which obey
Laplace's equation, are equal at p =a and are compatible with the

current system given in equations 4 through 6. These components are

AT;I = - a/ %k—) Ko (ka) To(kp) sin kz dk

[+ ]
+acos 29/ L& i, (ka) I, (kp) sin ke dk; ()

m~
L

(k) K, (ka) I, (ke) sin kz dk; (8)

—A-VS—I-_: a.sianb/
o 2

B

[0 0]
ASSI = & cos 4’/ ?(k) K, (ka) I, (kp) cos kz dk. (9)

The corresponding components for region II may be obtained from these
nerely by writing “In“ for "Kn“ and vice versa. Applying equation 3

ab P=a,

00
L(k) / / - _ F’.
a[ L8 (,12- 1K) ksin ke dk = - 250 q10)

o0
~ . {
a./ L0 (4,15~ T,KG) ke sin ke dk= - 255 (1)

(]
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(2]

a./ F (k) (K,I,'—I,K;) k coske dk = F. (12)
(o]

The third of these yields

F(z/b) =/ ?(k) cos kz dk (13)
ana ‘

- b

F k)= ;,.’?;."/ F(2/b) cos ke dz. (14)

Thus F(k) 4is the Fourier cosine transform of F(z/b)s Equations 10

and 11 both yield

o
- e F’(%/b):/ T () sin kz dk. (15)
[+]
Differentiation of 13 shows that
T (k) = ka F(K) (16)

and the description of the vector potential in terms of F(k), and thus

vltimately in terms of F(z/b), is complete.
Since the basic term in F(z/b) implicitly contains steps at

+ by the differentiation of F generates oppositely signed impulses

at these two points and f.(k) for the basic term becomes the Fourler sine
transform of an odd impulse pair. These impulses correspond physically to
four. currents of infinitesimal cross section, two circulating around the
upper edge and two cireulating around the lower edge of an imaginary
eylindrical shell carrying the side currents only. At the upper edge, these
currents flow generally toward the negative x direction collecting near

# =0 the current which would normally leave the side and flow into the

upper end and redistributing near @ = m the current which would normally
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leave the upper end and flow onto the side. At the lower edge, two other
currents perform a similar function in the opposite sense. The internal
vector potential expressions, 7 through 9, include the vector potentials
of these impulse currents, Thus the side current sysiem alone, and its
vector potential, are solenoidal, as indeed they must be since the current
system was déliberately constructed so as to obey equation 5,00=3, Similar
remarks apply to the two imaginary disks carrying the end currents alone.
When the two disks and the shell are agsembled the impulse currents
associated with each cancel one another and only the legitimate currents
and their vector potentials remain, provided that the first edge condition,
whereby the basic coefficients on side and end are equal, has been satisfied.
These remarks become lmportant when the matrix elements for the basic
current system‘are calculated since some long expressions, which might not
otherwise be expected to cancel, are found upon closer examination to cancel.
Attention is now turned to the end of the cylinder and the

currents are written in terms of their rectangular components:

Mxe = —-;'-‘-G cos?¢p — G’ sin% ;

B
- i36r6)-3[B0-w]wzes
He - 1[26-6] sin 29.

Congidering figure 3,01=2, the following internal vector potential com=

ponents suggest themselves:



co
Ases _ _a/ ka G) kb i ke J, (kp) dk

- a cos 24>/ k“G(k) smh kz Jz (ke) dk; (19)

ABeI = - Q Sll’l 24>/ kaG(k) Slhl‘\ kE LTz (kf') dk' (20)

As before, the external vector potential components may be obtained from
the internal by writing "sinh kKb" for "e XP" and e N2 for “sinh ka',
 Applying equation 3 at 2z = b, V

a0 ~
a/ ka.ZG(k) [ 5P cosh kb + € *Esinh kb | To(ke) kdk

(o]

=%[%G+G'],‘ (21)
/ ka G(k) cosh kb+ e FPsinh kb] J, (kp) k dk
) -G
B 'E[% G- G ] ' (22)
Since
T (p)= J'(p) + g—,;,(ﬁ) (23)
and
J,(p)=-J ‘(p) + JP(P) (24)
equations 21 and 22 become
o |
a/ ka G(k) | J)'(kp) + J'k(:P)] kdk = 2G+G'; @)
w —
af kaGK) |- T, (ke) + JL?‘P)] kdk = £-G- G . (26)
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Evidently
G (F/a) = a/ G (k) J, (kp) kdk (27)
and
a
G (k) = -g':/ G (p/a) T, (kp)pdp - (28)

Again the vector potential is described in terms of an integral transforn

of the current distribution.
It is advantageous to replace the lengthy expressions used in the

internal vector potential formulas by more compact symbols. Therefore let

w ~r
_ a/_lsa_géF_(k_) K, (ka) I, (ke) sin kz dk

(]

0 .
—a/-%g—@ e_kb sinh kz J;(kf’) dk = Mo(p.2); (29)

(0] ~
a./ —IS%(H K, (ka) I, (ke) sin kz dk

oo ~
—a/-'i‘iz—c';—gk—)e'kb sinhkz J,(kp) dk = M, (P,2); (30)

a/ F(0) K, (ka) T, (kp) cos ke dk = M, (p,2). "

The total vector potential in the interior of the cylinder due to both

side and ends is now written in a very concise form as follows:



> U:LJ> ml)
™ Y

]

i

i

ol ol o

-

M, + M, cos 2¢;
M, sin 24 ;

M, cos ¢;

(Mo+ M,) cos

(—Mo + MZ) sin ¢.

The corresponding magnetic field is

BP_ Ml aMo aMz) N
'E—“("F’_J' oz oz /)
_Bé_(aMo_*_ oM2 aM.)cos
B \ oz oz oP
Bz =(2Mz + OM2 _ aMo) sin
B P op ap

(32)
$;
¢)' S (33)
¢.

Since this field is irrotational at all interior points of the cylinder,

a scalar potentisl & is sought such that B = -V ., Note that

ZIZ + aIz = Il(q_)

9

oq

Therefore

(34)

(35)
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2

-—B—Bg = a Sin 4>/ {kaF(k) K, (ka) I, (ke) sin kz

k“ZG (k) e'ka, (kp) sinh kz

+ ko PO () T, (k) sin ke

ka 8D oK 3 (1) i kz} kdk.

- 2 (36)
Now )
2 K,(a
Ky(a) = K,(2)+ -—é(—) (37)

and therefore

Bz a sin 4,/ {F(k) [Ko (ka )+ K|k(:a) ] I,(ke) sin ka

B

- Gk e 5P T (ke) sinh kz} ka kdk. (38)
Evidently a suitable scalar potential is
=
-%’—= asinfo/ {’F“(k) [Ko(ka)+ £082) T 1 (i)
cos kz + G (k) kb J,(kp) cosh ke } ka dk
(39)

and it may be verified that -V @ /B does indeed yield all the terms of

equations 33.
The problem is now clear; one must find an F and G such that

$ is maximally linear and as nearly as possible equal to yB. In other

words if
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2p+l
E = sing Z_ /\ (-—) 2|p+| (cos 6) (40)

it is necessary to sel Ao equa.l to unity and as many as possible of
the other /\p equal to zero., The symmetry of the potential under con-
sideration is very similar to that of the electric potential in the TE
problem and the results may be written down immediately. Thus

Ap= -(_z?:_'z_)_l = {(—07 F(k) ka K, (ka)+K,(ka) (kc)’""’"dk

+/ ka g(k) e‘kb (kc)r'!pi.l dk} . 1)

By Appendix A, the two trénsforms, F(x) and G(k), are
~ Jy, (kb) Z )" Tam+ v+ * (kB) (42)
F k)= b 2 2m+. 2+ s ;
(=(z ) { ® (kb)” (kp) "2 ¥

Jz (ka) (")m Jzm+ 2+ 2 (ka) (
K)= a E y . (43)
G( ) { ka. £L— 9"‘ (ka)H'?) }

In this section, o' is always equal to plus two-thirds for the non-

basic terms and to zero for the basic terms. Substituting the transforms

into 41, one obtains the matrix elements. For the side, these are

_ymEp
P () i = “b/ [ka Ke (ka) + K, (ka)]

Jam+ e+’ (kb) (k )ZP'H (W)

(kb)*2+?’
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let kb =x, and

| % o yntpP 2p+1
2= ) g =5

P (2p+2)!
0o
a a a Tom+ v+’ () 2p+
/[F"K°(?x)+K' (Fn)] SRS 2 dx )
[+]
For the non-basic glements, where p!' =1+,
Zsm L Sm Y (|+v) (non=basic). (46)
P (2p+2) b |
For the end
[/ o]

em_ (-7 a* [/ -kb Jamy2z+v (ka) zp+! (47)
PRI / e 22 (" ke k.

o

Now let ka = x and make a substitution for e™® asinthe IE and TE

problems. Then

(s <]
% ()M 2ptl % o
2= @) G‘(.af—z)' < () (ﬁwkz(a*)g‘—“‘-:%:—f"—’ P o)

For the non-basic elements

o

YBo(m 2p+l Vo 3
2 ey £ e P

(]

Z em= -1 X e,m+l| (non-basic). (50)
P (2p+2)




-8 -

The X's and Y's are matrix elements from the IE and TE problems,
respeétively, and it is fortunate that the present matrix elements can be

so simply expressed in terms of these.

The basic elements are in a class by themselves. Letting a/b =T

in equation 45, one has for the side

/
ZSb (= z(zn(r:)z)l( /[""K("")“K(""‘)] Jy‘.(/x) x*Pdx.  (51)
, A

The integrals are readily evaluated by ( 34 ) and,

Ya (_,)P 2p v 22p+‘/;_
( ) (2p+2)! (3‘) T T'(%)

[F(P*%) Fp+3z) F(pt%i, P+ 72 ; -l/p2)
+LT(P+%) TP+ %) F(pr%,p+%e; %5 -/ T?) ] 52)

The end elements are obtained from 48; replacing J 2 by 2J 1 /x =3 o? One

finds that

Z:b (z)yz(zp,mn( )2P % K ( )[ﬂ'w"” )] P, (53)

]

Evaluation of the integrals yields
b %2 2 Y
Ze =(£)__'..._ (_C_)P22p+ 2
P \T/ (2p+2)! \o
[ T2P*2 1(b+ %) P(pr1) F(P+ %, p+15 25 - T2)

TEPY2 n(p+ )T (p+1) F(P+3%, ptis 1 - —,—2)] - (54)



omy 85 L
Remembering that p is always a non-negative integer and applying the
formilas for analytic contimuation ( 35 ),

b 7 1 2p _2p+ Y
Z7=(2) o &) 2

Al F(P+3/zz)r1("/z) 3 v, .3/23_l/rr2)
["’ r(-p+ %) Flpr7a, proa)

M (p+1) T (%)

N V. 2
F("P'H) F(P"") P /Z) '/’T )

+

1N M(p+ %) r(-2) F(p+¥% +3 3% ;-1 /12
T P(—P—'/z) (P Z)P 2, 72 ) )

—o ]

The contribution of the second hypergeometric function to Z;
when p =0 and zero when p # 0; it will be denoted by the symbol { L}

(55)

b is unity

Furthermore, by ( 36)

Mea) _ ~(-0)P M (p+2) 5 (56)
M-p+Y%) (%)
rc%) _ _cofrie+v%) (57)
[(-p- %) M (%)

The final form for ng becomes
0 i) (0 ey 6
p -t v &) Grar & T Tres
["r(P“"/z)r'(P'*'/z) Fp+%, p+72; %2 5= V/7?)

S (P+RIT B+ %2) F(p+%, pr%; %5 - V/T2) || (58)
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The total basic matrix element, z:, is the sum of z;‘b and ng. Thus

b 1] 2P P r(praa) P(pea)  eviP b
ZP~{°} ar M (z2p+3) (_d) @

Fp+%, p+¥%s; % ; - b¥/a?). (59)

Transformation ylelds the polynomial form

b_fi]_ E0Pr(pta) s .3, . By,
ZP—{O} 2r (%) P(p+2) © F(P+/2, P):'VZJY‘E-z):
p=o]
{P>°}’

(vasic).

(60)

5,02, The Second Edge Condition. The first edge condition is
inmplicitly satisfied if the basic terms on side and end are combined and
governed by the same coefficient, fb’ as has been done. The second edge
condition adds an equation to the matrix and it is this equation which
must now be found. Since the condition involves derivatives, the asymptotic

form of '\]}]; as the argument tends to unity comes under investigation.

Evidently
T (15,75 u) = 2 )7

{[l; F ) 29 W 1-uD T ] F m, mavierer; ver; u?)

+ur(\-u2)v’% F(-m,m+v'+)’+§}3’+§‘3‘*z)}. @

The derivative of the hypergecmetric polynomial is obviocusly finite for

finite argument. Since ' is equal to plus two-thirds, only one term
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- gurvives and as u tends to unity,

’

"T’y; ~ -Zv,a-m (_')m(,_uz)’)"F(-m,m”’!"ﬂ'?,'aﬂ-}','l)- (2)

This becomes

— 7 =2v'(1- u?)?"! (3)
™ r(+2) 2¥f
As 2z tends to b,
, -(@5) va Nl
a ./ a v b (b‘i)
— F (2/b)~ — f . (4-)
b , m
b r(+v’) h;
As F tends to a,
, = (@5) v=1 Nl
/ -v'a (a-p)
~ . (5)
G (P/a) D) Z Im
m=20
Then
yr ! _ye Qe
%) fm = % D am ©
m=0 m=0
and the edge condition becomes
Ns‘| —/3 Ne-l
2_fm * (%) Im =0 | (7)
m=0 m=0

5.03. Galeulation of the Dipole Moment. The y, and only,
component of the induced magnetic dipole moment is obtained by taking the

following integral over the entire surface of the cylinder:



= 88 e

Mmy = 3 / (2ix- %jz) dS-

Using 5.01~4, 6 and 17, this becomes

. ,2m b
' /UMME=L a.F’_ aF’
B 2//{*[% 2b °°$Z¢]
c “-b

— acos¢ F cos 4>}adzd¢

am a

o ettt} s

o o

The terms containing 2;3 vanish and
b
4 My [z -k
—< = a = —a--}tdz
B w b 2 2b 2 }

—mb[a{%GWG’}FdF .

Converting to dimensionless variables

M ' |
LMy L F'-F)du - 24 “G)du.
Bu, 2[(11 ) 2[(uCﬁG) u

By parts

MM 1 | : 1
____B:V = 5 [uF], —/o Fdu -+ [uG]_.

The first edge condition affirms that the bracketed guantities

(1)

(2)

(3)

(4)

(5)

cancel and

an amazingly simple formula for the polarizability results. It is
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i
ﬁtt=-/oqu..

As in previous problems,

(6)°

fo fo
B = - [ bG o9 + b (L0 2) ] . (7)

The numerical values are given in Table 5.03-1,

b°(32- , 0, 0) = 1,0000000

bo(% , 0, -§-) = 1.9386755

Table 5.03-1

5.,04. Local Surface Deformations. Consider a given surface

point, P, of an arbitrary perfectly conducting object and let the surface
in a non-infinitesimal neighborhood of P be deseribed by the equation

qy = constant in a generalized curvilinear coordinate system characterized
by the unit vectors ;i’ the coordinates q and the metrical coefficients

hi' The total magnetic field adjacent to the surface is related to the

current density on the surface by

/“J— E,th) (1)

or
A= Pats )
M)z = B,t.
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Applying the condition V ° B, =0, one finds that
o = |2 S - '
2 (hah B = 4 [Z (i) - Z (kg @

Evidently An =h, & q;. If, at P, B is the field due to the surface

currents alone and §a is the applied field, then
| o -
hohs (Bi+Bia) + 1 5g (hehsBe)an=0. @
t
Solving for An and ‘subs’cituting,

h, hy hs (B,+ Bia) . (5)
o . o :
M [‘a‘qz(huhah) - a_q's(hlhz.lz):l

aAn =

At the equator of the cylinder:

q=P; hy=1;
1= %; ha=F; (6)
q, = 2; hy=1,
and
Ap = ZFBP M Bapa.) . (7)
M [ Jzs \ ]
ralial (P igs)
Now replace B pa by its equivalent, B sin #, and make appropriate normal=-
izations:
Be |
ae _ Bsiné .(@
@ I 3 Mas a3 Migs
sing 3d PR sing 2z B

Finally
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___@J"__ + |
Ap Bsin 4:
a "
~F(0) + 2 F"(0)
(9)
The function F(u) is composed of even parity functions whose
Maclauren expansions may be developed as follows:
= l ‘ m ‘12 4. es
Fo(4,0,73) = am G0 (1900 ]
i
[l m(m+'l)+/2) +.,. ]; (10)

Vi (3 2 0,v/u) = Ay (1) [' - @+ 2m{mevin})ude ] 1)

Therefore
Ns"l
FO) = apf+) 0" am fm (12)
m=0
and

Ns-1
F’ (o _'ZZ )" ap, Fm (?'+2m{m+v +/z}) (13)



5.05, Derivation of the Non-Basic Checking Coefficients.

At the equator, let the part of B P due to the side currents alone be

denoted B This quantity is most easily obtained by substituting

ps’
into equation 5.03~33 those portions of equations 5.03-29 through 5.03-31
which contain F(k), then setting p equal to a and z equal to zero.
It may also be obtained by differentiating ¢ , but considerable
manipulation of Bessel functions is required in order to translate this

form into the other, The desired expression is

@

Bs — ~ (kQ)z
Ei‘;-'/F(k)[I.Kﬁ 2 (IoKo"’IZKZ)] dk. (1)

o

Here all the Bessel functions have the argument ka. Since F(k) is

itself a sum, as given by 5.03-42, it is clear that B PS/B sin g is

of the form
B N~ "
s A f D Anf (2)
Bsing b7k MZ:O m i m

|/ (2]
A’;qz—(%)z(-')mb/[I‘K‘+ (l;a)l(IoK°+ Isz)]

(kb).(l/ﬁv)sz_i_./z_'_V: (kb) dk.

(3)
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let kb =p and a/b-T-
A:n=‘a% (")/ IK(PT)+

2

I Ko (pT)
pi4

T2 \Iz Vo 4+ 27 (p)
Iz Kz (PT)] m+p;2: 27 dp.

1T
It is convenient to speak of A“I, A;II and A% T’ according to the

(4)

- Roman numerals under the terms in equation 4. With reference to earlier

work, it is seen that
"

Az =" Am (241) 5 5)

o

Anz = 7 Am - ()

The remaining integral is new:

t

A -

mIl

- 72 % (p)
2@ " [ LK () J_Z:*f//ﬁ;j d(p?).

B

-]

The method of evaluation is parallel to that used in the IE and TE

problems, Thus

%2 _ai v
I,(pt)Ky(pT) = lz._ G,S(Pz'rz . ;,~2) ; (8)

va-v’ /-;)’ 1o [ p? ’
Pz J:zm+/+z)'(l°)- * Goz(j}j‘ m*"/z.,-""~1’). (9)

The final result is
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I ‘1
Am = = Ap (2+1) + —'2!'—

—rn-'/z,'/z,m-l-'d')
(10)
2, 0, -2

(non=basic).

m_1-’
I:Am+ d el L S 6:2 (472

fw

The part of BP due to the end currents alone is denoted B pe’
Using those portions of equations 5.03-29 through 5.03-31 which contain

G(k), one finds that

?sBT:ﬁ_ - _ ao/ﬁﬁ_g_(ﬁ o kb [J’o(ka) -J, (ka)] kdk; (11)
= - [ 80 [Tker - B o) di; 02
n Ne-'
=By +Z By, Im > (12)
Br= - (0" a /e [ (k) - 2]
J. ’ (ko.) 2
zrn(-l';:;'l"iv' (ka) dk. (14)

This time let ka = p, then

®

14 —.E. )

B = "(")"/8 T [PzJo(P)' PJ|(P)] sz::::, (p) dp. (15)
° I I

The first integral is simply -Bm+‘l5 the second is

(-]
- . (_')m/e--; 7 (p) sz+:+,) +(p) dp ; (16)
o
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-»’ Yoz, YaAa,-7%
P JI(P) ‘-TZm+2+7)' (P) =m 624, (P m+d; ~m-Y-v;mely ,-m-Y - 7

The final form of the B;; coefficients is

0, %2,%-YA, -?% ) (18)

b oy’ -m- -
m+ %, -m-5-v,mep ~m %-v

" )™ 14 2
Bp= Bt 7T 644 <4T

(non-basic).

5.06. Derivation of the Basic Checking Coefficients., At

the equator, that part of BP due to the basic terms alone is denoted

B and is given by

Pb
pr

m-‘- Abfb +Bbfb = Abﬂ, (1)

From earlier work with the non-basic coefficients, it is evident that

Ap= - (2)" b[W{I.K. (ka)

(ka)? Jy, (kb)
ka) J(ka)+ I a)] | 2alke)
an: 2 [ Ko (ka) + I K, (k )]} . @

| co
2 -kb
B, =- 2/ L2l [, (ca)- 3, (k)] Rl g, O

2



- 06 =
The latter may be rewritten as

> | kb
BZ = - a/{ka J, 7, (ka) - 1529-’—2 [T, e (ka)+ Jsz(ka)]} ..17. dk. (4)

When Ag and Bg are added together, it can be shown that the integrals

involving the quantities in the square brackets become equal to the same
expregssion in G-functions and therefore cancel. The sum of the remaining

terms is

7 v,
'('rr)z b/ I,K, (ka) (/:,;Z) dk

- a./ Jo J, (ka) e kP gk, (5)

It is useful to perform a parts integration on the second integral. Thus

Rl - )T ) 00

co

+-2'-/e"° d[ 3. J.(pT) ] ; (6)

[o]
— Ya © 1
Ap = '%“(%)/I,K.(M)p 2 dp
+%/ JoJo(pT) e P dp. (7)

This beconmes

-t

S ___L._. G'z (4_fr-2 Vzil/z)

!
b~ 2 ~ 2nar 22

(8)

21T GZZ T 0 o



By one of the Gauss recursion formulas (37)

abz
c(c+r)

F (a,b

;¢;2) —F(a,bye+i; 2) =

Therefore K“b and two possible transformations thereof are

F(a+|,b+|;c+z,'z),

A=+ - TF(3 353 -47);
' T2 2-% 3 3 4""2
=—E-T(l++’r F(E’7’3’|+4fr2)’
3
2 N2 2
:—-—'2——%(|+2T'2) F(% % 2; [If:’r’-])

(basic).

(9)

(10).

(11)



5,07, Numerical Values of the TM Checking Coefficients,

98

a/b =

]

R

Bﬂ

basic

L
OCWRTOWVPFT-WN =0

=0.51317097

=0,37373614
+0,13698592
~0,09587221
40,08071083
~0,07336844
+0,06913581
-0,06635005
+0.06432259
~0.06273584
40,06142956
=0,06031557
+0,05934058
=0.05846917
+0,05767260
=0,05691443

-0,00026831
+0,00000231

Table 5.07-1

a/b =

PO s

in i
Ab’ Am

basic

S OWR<TOWVNP W =O

ah ande

~0.53593354

~0641660071
0.19334581
-0.15901168

40, 14624983

=0,13908249
+0, 13409742
-0.13024281
+0,12708776
=0, 12441780
+0,12210551
-0, 12006988
+0.11825357

=0,00069169
«0,00011725
+0,00001080
~0,00000049

Table 5.07=2,




a/o = 1
n Kg, A B!
basgiec =0,56257577
0 =0)453810001 +0,01347200
1 +0,033926002 =0,00360099
2 =0,30535060 +0,00015761
3 +0,28803091 +0,00003327
4 =0,27614116 =0, 00000406
5 +0 26707480 =) , 00000020
6 =0, 25977300 +0, 00000007
7 +0,25368218
8 ~0.24847313
Table 5.07=3,
afb =2
n ips An By
basie =0,57045691
0 =0, 85893425 +0,09195852
1 +0, 66042932 =0,01259618
2 =0, 60707720 =0 ,00425556
3 +0BT4T70652 +0,00023736
4 =0.55157107 +0,00022391
5 +0,53370893 +0,00000885
6 ~0,51924604 =0,00001034
7 -0 00000143
8 4000000039
9
10
11

Tabls 5 ° 07"‘1& @
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a/b = 4
m K.gs Al';l B;;l
basic =0.55977485

0 =1.5839982 +0.26418332
1 +1.3149273 +0,02182087
2 -1.2128602 =0,01850443
3 +1,1488423 -0,00915989
4 =0,00128017
5 +0,.00061064
() +0,00039300
7 +0,00007805
8 =0,00001824
9 -0,00001693
10 =0 ,00000440
11 +0,00000039
12 +0,00000071
13 +0,00000023
14




APPENDIX A
HANKEIL, TRANSFORMS OF THE «Tfm FUNCTIONS
It will be shown that all of the integral transforms of the

‘\-Vm functions used in this thesis are special cases of the general

transform

/ua'(l;uz)v En(v’a-)(zuz-l) Jo(tu) udu

©

- (—l)m["(m+|+7)) 2¥ . Tom +1+a+v (t)
M(m+1) $1+? (1)

Reo > -I; Rev>~1; t real and >0;

which will now be proved. Plg-‘)"r) (212.2 ~ 1) is a Jacobi polynomial

given by (39)

(%)

Pm (2ut-1) = Fim+i1+2)

: ot -u?)
T P(me) P (v+1) FEmmeverets v =) @

Notice that this is a different form from that of equation 1,01-]1. Denote

the integral in equation 1 by f£(t)s. Then

Mm+i1+v) a Cm)r (m+v+o+1),
M(met) P (v+1) - (v+1) (),

(=)

f*)=

|
/u¢(l—uz)r+v Je (tuw) uw du. (3)

(-]
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By. (40)

[ J (t
/ucr("uz)r+vJ¢(tu)udu= 2" (rewn) mroegs ) W)

]

under the conditions Re o > =13 Re ¥ > =13 + real and > O, There=~

fore f(t) Dbecomes

f(t):..___._r(mﬂ’”)) S Cm)r (m+v+a+i), ] Jor+rsver (t)

5)
2 M(m+i) — Mr (tr2)7™! (

and it remains to evaluate the finite sum in 5. Thus

ft) = Fm+t+2) (t)c"

2 M (m+1) 2

Zm——— ad (_,)‘e (_:_)21 (-m)r (m+v +0+1),

M(est) M(og+2v+r+2+2) (1),
r=0 £2=0

(6)

The sum over r is merely a 2F1 hypergeometric polynomial of unit
argument, and |
m
[ Cm)p (meveT)y M(e+1) (7)
Mlo+vel+2) (+v+e+2)e (Dr  [(o+v+L+2¢m)[(241-m)’
r=0

(s <)

P(m+1+2) (t)“' Z 1)” (%)21

2'(m+1) 2, Me+i-m) (c+v+ L +2+m) - (8)

f@) =

2

Make a change of variable in the swmmation; let £ =m + k:

2k :
£y = £ Tlonie) (t)o- s - (%) ()

2 [(m+1) \2 F(i+k)MP(@@m+2+0+2+k) -

k=zo
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This is
1-¥

. f(t): -0)™ M(m+1+2) (E_)- I

2""'(m+|) 2 2m+i +o+2

(t) (10)

and the transform of equation 1 is true.

If o is set equal to ¥ + & - 1, the transform becomes

{
/"T’m(b', !’,?,u) Jyer-i (tu) (tw)? du

’(")m Jom+r+r+v ()

tl"X‘l'l) ’ (1)

"

If the parameters ¥ and & are allowed to take the values in all of

the combinations of Table 1.01=1, one obtaing

‘ Y,
Side; — 2 M Tomevyew(t)
even / Yin (';"L"O)v) u) cos tu du = (i’z'-) (-1 zm;'v::: 5 1(12)
o
Side l { 2 m Jom+2+v ()
» — 1 — r a m .
s / "Vm('i»l?v'u) sih tu du = (-z-) (-1 e, ;1(13)
[+]

\
Eﬁﬁ;/ ¥ (1,0,7,u) T (twudu = ¢ ‘T”"t"ll:”ms (14)
-4

End
odd

we

| |
[ Wm0 Ty udu = ()7 Temezen @,

Re ¥ > =1; t not restricted.

Because of the special values taken by ¥ and & , the singularity at
¥y

the origin which might have occurred in (tu) J ¥ +r-1 (tu) does not

appear. Both sides of equations 12 through 15 become entire functions of

+ and all restrictions on t may be removed.
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