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ABSTRACT 

A nonlinear finite element procedure for arch dams is described in which the 

gradual opening and closing of vertical contraction joints and predetermined hori

zontal cracking planes are considered. A special joint element approximately rep

resents the deformations due to plane sections not remaining plane at each open 

joint and allows a single shell element discretization in the thickness direction to be 

used for the dam. Compressive and sliding nonlinearities are not included. Finite 

element treatments are also used for the water, assumed incompressible, and for 

the foundation rock, assumed massless, with all degrees of freedom ( dof) off the 

dam condensed out. For efficiency in the computations, the condensed water and 

foundation matrices are localized in a way which maintains good accuracy. The 

response of Pacoima Dam to the 1971 San Fernando ground motion recorded on a 

ridge over one abutment and scaled by two-thirds is computed first for water at the 

intermediate level that existed during the 1971 earthquake and then for full reser

voir. In the first analysis, the dam exhibits pronounced opening and separation of 

the contraction joints, allowing violation of the no-slip assumption. The presence 

of a full reservoir greatly increases the dam response, enough to bring some of the 

assumptions of the analysis into question. Reducing the ground motion scale to 0.44 

with full reservoir drops the response back to a reasonable level, but the contraction 

joint separations remain. 
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CHAPTER I 

INTRODUCTION 

I.I General Introduction and Background 

Finite element methods for linear elastic analysis of the response of arch· dams 

to earthquake motions are well established [1-5]. Analyses of a number of dams have 

been carried out, many in response to the state of California's ongoing program to 

ensure the safety of dams in the state. One common characteristic of these analyses 

is the computation of high tensile stresses which occur during the dynamic response. 

The tensile stresses are generally largest in the arch direction in the upper portions 

of a dam, and, depending on the dam geometry, can reach values of 6 MPa (1 

MPa = 145 psi) under moderately strong ground shaking and higher under severe 

motions [6-12]. 

The large tensile stresses computed in linear finite element analyses are unreal

istic as the tensile strength of concrete under static loads is typically about 3 MPa, 

with perhaps a 50% increase under dynamic loading due to strain rate effects [13]. 

In addition, arch dams are often built with vertical contraction joints spaced at reg

ular intervals. The contraction joints may be grouted, in which case they might be 

able to carry some small tensile stress, or they may be ungrouted, in which case no 

tensile stress can be transmitted across the joints. Also, an arch dam is constructed 

in a series ·of lifts, each lift being several feet high. The bond between the co~crete 

in successive lifts is imperfect, possibly giving rise to planes of weakness. Imperfect 

bond may also be present at the foundation interface. Thus,. even the limited tensile 

strength of concrete may not be attained over the major portion of the dam. 

The occurrence of computed tensile stresses in excess of those capable of being 

carried presents a dilemma for the analyst seeking to design a new dam or to deter

mine the safety of an existing dam. In essence, the nonlinear response and stability 

of the dam must be predicted from linear elastic analysis. Typically, concern over 

large tensile stresses is alleviated using a load transfer argument [14]; for example, 
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the load carried artificially by computed arch tensions is assigned to the cantilevers 

which are often more lightly stressed. Along this line, tensile arch stresses from a 

linear analysis have been converted to equivalent radial loads and then applied to 

the cantilevers in a subsequent static anaiysis [10,12]. In another case [11], the stiff

ness of the center portion of the upper arches was reduced in a subsequ.ent dynamic 

analysis. However, such procedures cannot account for cantilever cracking [15,16] 

which has been shown to occur in model tests [17,18], estimate increased compres

sive stresses resulting from opening or impact at joints and cracks, and include the 

effects of sliding at joints or cracks which involve friction and the presence of shear 

keys; nor are they rigorous enough upon which to base important seismic safety 

decisions. Clearly, some analysis procedure for including nonlinear features of the 

seismic response of arch dams is needed. 

A survey of the literature on finite element modeling of cracks and joints shows 

that two approaches are common: the smeared crack approach and the use of joint 

elements. In the sme~red crack method [19-23], cracks and joints are modeled in 

an average or smeared sense by appropriately modifying the material properties 

at the integration points of regular finite elements. Smeared cracks are convenient 

when the crack orientations are not known beforehand because the formation of 

a crack involves no remeshing or new degrees of freedom ( dof). Compressive and 

sliding nonlinearities have been included. However, smeared crack methods have 

only limited ability to model sharp discontinuities, and work best when the cracks 

to be modeled are themselves smeared out as in reinforced concrete applications. 

Joint elements are more appropriate for modeling opening and closing of dis

crete cracks and joints. The simplest joint element is a nonlinear spring [24] which 

has infinite strength in compression, finite strength in tension, and spans the joint 

connecting the nodes of the finite elements on opposite sides. More sophisticated 

joint elements [25-28] have been borrowed from those used in rock mechanics [29,30] 

where the joints between rocks are of finite width and filled with a soft, no-tension 

material. A disadvantage of joint elements is the additional dof associated with 

the double-node arrangements. Joint elements can be constructed to include slid-
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ing [31], while nonlinear behavior in compression can be included in the adjacent 

finite elements. Of major concern is the mechanism of opening and closing of the 

joints and cracks which probably takes place continuously, i.e., gradual opening and 

closing without impact, although some localized impact may occur following joint 

separation. Representation of the gradual opening and closing with the use of joint 

springs requires a multiple finite element discretization in the thickness direction 

(assuming linearly interpolated elements are used) which, for an arch dam, typi

cally modeled with a single shell element in the thickness direction, would be very 

expensive. The rock mechanics type joint element does exhibit gradual opening 

and closing of a sort, even with a single, linearly interpolated finite element in the 

thickness direction; however, the behavior differs from that at an interface joint or a 

crack which is characterized by plane sections not remaining plane during opening. 

Thus, this approach is thought not to be valid; in any case, its accuracy has never 

been established. A similar problem exists with the smeared crack approach. 

A number of other joint treatments have been developed [32-34], but have 

drawbacks and have not been applied to three-dimensional arch dams. The interface 

smeared crack model_ [32,33] _represents cracks discretely like joint elements but, 

like smeared crack elements, does not introduce additional dof. Its behavior is 

similar to that resulting from the use of joint springs and, thus, similarly requires 

extra through-thickness discretization to represent gradual opening and closing. 

In [34], the finite element interpolation functions were modified to account for a 

partially open joint at the element boundary. Although the bi-linear displacement 

interpolation in the thickness direction may be too restrictive, the technique does 

have potential. Apparently, the only previous attempt to account for joint opening 

in a dynamic analysis of a three-dimensional arch dam is [26]. 

1.2 Objectives and Scope 

The purpose of the research described in this dissertation is to examine the 

effect of the opening of vertical contraction joints and predetermined cracking planes 
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within the dam and along the dam-foundation interface on the earthquake response 

of arch dams. Both nonlinearities are modeled similarly with a special joint element 

designed to efficiently represent the gradual opening and closing of a joint and to 

be used in conjunction with a single shell element discretization in the thickness 

direction of the dam. A number of important nonlinear effects are excluded from 

the joint model. First, it is assumed that the stress-strain relationship for the 

concrete in compression remains linear throughout the analysis. Second, sliding 

along the joints and crack planes is assumed to be prevented by friction and/or 

built-in shear keys. This assumption is questionable under conditions of complete 

separation at a crack or joint. Third, when a joint located below the top surface of 

the water opens on the upstream face, water, to some degree, will enter the joint 

and exert a pressure which will tend to pry the joint open further. This effect is not 

modeled, though it is briefly addressed. Fourth, cavitation, which will occur in the 

water if the dynamic component of pressure reduces the absolute pressure to the 

vapor pressure, is also not included. In addition to the assumptions on nonlinear 

behavior, this study employs simplified treatments of foundation interaction, omits 

spatial variations in fre~field ground motions, and neglects water compressibility. 

1.3 Outline of Present Work 

Chapter II describes the development of a special joint element which efficiently 

and accurately represents gradual opening and closing in two-dimensional slabs 

and arches using a single slab finite element discretization in the thickness (depth) 

direction. The joint element introduces two extra dof in addition to the three 

regular dof at each node of the structure. The manner in which the joint element 

is incorporated in a regular finite element mesh and the solution procedure for the 

nonlinear finite element equations are described. 

In Chapter III, an analysis of a two-dimensional jointed arch (which is a repre

sentative horizontal cross-section of a concrete arch dam), in which the arch material 

is modeled by slab elements and the joints by the special joint elements, is compared 
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to an analysis of the same arch in which the arch material is modeled by means 

of many plane strain elements and the joints are modeled by means of several no

tension springs rigid in compression. The comparison illustrates the accuracy and 

relative efficiency of the former method. In addition, the special joint element is 

used in a comprehensive earthquake response analysis of the arch. Responses of the 

arch with and without joints are compared to assess the effect of joint opening. 

Chapter IV describes the generalization of the two-dimensional joint element in 

a simple, approximate way for use in analysis of three-dimensional arch dams. Finite 

element treatments for the water, assumed incompressible, and for the foundation 

region, assumed massless, are described. For efficiency in the computations, all the 

water and foundation dof off the dam are condensed out, and it is shown that the 

condensed water and foundation matrices can be localized in a way which maintains 

accuracy. A method is described by which the dead weight of the dam is applied in 

steps in order to approximately simulate a construction sequence. 

Chapter V describes a full three-dimensional nonlinear analysis of Pacoima 

(arch) Dam subjected to the 1971 San Fernando earthquake ground motion recorded 

on a ridge over one abutment of the dam and scaled by two-thirds. The response 

of the dam is computed first for water at the intermediate level that existed during 

the 1971 earthquake and then for the full reservoir. A third response analysis is 

also described for the case of the dam with a full reservoir subjected to less intense 

ground shaking. 

Chapter VI, the final chapter, summarizes the major findings of this study and 

prese:n.ts conclusions regarding the range of applicability of the analytical technique 

described herein. 
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CHAPTER II 

TWO-DIMENSIONAL JOINT ELEMENT [35] 

This chapter outl~nes the development of the two-dimensional joint element, 

showing how the gradual opening and closing of joints in two-dimensional slabs 

and arches can be accurately and efficiently modeled by a two-dof nonlinear spring 

element. Some important features, as well as the limitations of the element, are 

described. The nonlinear equations of motion of a two-dimensional arch or slab are 

developed, and the solution scheme is presented. 

2.1 Joint Modeling, Analytical Considerations 

Idealized behavior of an interface joint in a simply supported slab of unit width 

(perpendicular to the plane of the page), depth h and length 2d is shown in Figure 

2.1. Material properties of the slab are assumed to be homogeneous, isotropic 

and linearly elastic, and small displacement and strain conditions are assumed. 

The presence of friction and/ or built-in shear keys is assumed sufficient to prevent 

sliding along the joint. The slab is subjected to an axial force P and a varying end 

moment M, both applied to the ends of the slab as shown. For stability, P must be 

compressive (negative). Initially, when Mis zero or very small, the whole joint is in 

compression and remains closed. When M is increased to a value of - Ph/ 6, then 

from simple beam theory, the normal stress at the bottom of the joint becomes zero. 

As lv1 is increased beyond this value, the joint opens gradually. The maximum value 

of M is -Ph/2, obtained when the joint opening reaches the top. Failure of the 

joint would actually precede M = -Ph/2 because of the large compressive stress 

across the joint when the contact area reduces to a small value. 

Figure 2.2 shows the M - OT and M - UT relations where (}T and UT are the 

total rotation and axial translation, respectively, at the support. For M < -Ph/6, 

the joint remains closed, and 
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()T = ()E ~ 12lv.fd(l - v 2)/Eh3 by beam theory neglecting shear deformations 

UT = u E = -Pd/ Eh, (2.1) 

where E =Young's modulus; v =Poisson's ratio; and the subscript E denotes elastic 

behavior. For M > -Ph/6 the joint opens; Or increases nonlinearly, as does Ur due 

to a prying action at the joint. The joint may be considered to cause an additional 

rotation and axial translation at the support; i.e., in addition to the elastic values 

()E and U E which would occur if the joint were absent. The displac~ments due to 

the joint are 

(2.2) 

and are also plotted in Figure 2.2. 

If, instead of being subjected to a constant axial load P and moment M varying 

from 0 to -Ph/2, the joint were subjected to a constant end moment M and an 

axial load varying from some large compressive value ( < -6M/h, M positive) up 

to a value of -2M/h, behavior similar to that described above and illustrated in 

Figures 2.1 and 2.2 would be observed. Initially, with a large negative axial load, 

the joint would remain closed, but as P decreases in magnitude, gradual opening 

of the joint would result until P reaches a value of -2M / h, at which point the 

opening would reach the top. For this case, two additional sets of curves, analogous 

to those shown in Figure 2.2 relating total and joint rotations and total and joint 

translations at the support to axial load P, would be obtained. 

It will be convenient to view the joint as a structural element with its own 

tangent stiffness defined by 

(2.3) 

where 
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[ K J J = [ koo kou ] , 
kuo kuu 

(2.4) 

and M and P are the moment and axial force across the joint. The tangent stiffness 

matrix [KJ] is the inverse of the tangent flexibility matrix [FJ] where 

and 

{ 
dOJ} { dM} dUJ = [FJ] dP 

[FJ] =[too foul· 
!us fuu 

(2.5) 

(2.6) 

The terms foe and fuo in [FJ] are the slopes dOJ/dM and dUJ/dM from the 

curves in Figure 2.2. The other terms Jou and fuu are dO J / dP and dU J / dP 

where d(}J and dUJ are caused by an increment in dP keeping M constant. The 

matrices [FJ J and [KJ J are symmetric, i.e., feu = fue and kou = kue. The terms 

of [ F J J and [ K J] can be shown, by dimensional analysis, to depend only on the 

elastic modulus E, Poisson's ratio v, slab depth h, length d, and the dimensionless 

parameter -M /Ph. Independence of d results if d/ h is sufficiently large (see next 

section). The functional dependence on -M/ Ph is one-to-one except at M and P 

both equal to zero. Alternatively, [KJ] and ~ FJ] can be expressed as one-to-one 

functions of ()Jh/UJ except when both UJ and OJ equal zero. Thus, the behavior 

of the joint is independent of loading and deformation history. 

The structural element represented by [ KJ J is equivalent to a three parameter 

spring system. The three parameters are a rotational spring of tangent stiffness ke, 

a translational spring of tangent stiffness ku, and the location Ji of the translational 

spring (Figure 2.3). With a large d and a set value of Poisson's ratio, dimensional 

analysis leads to the following expressions for the spring parameters, 

ku = E·h(-M/Ph or fJJh/UJ) 

ke = Eh 2·h(-M/Ph or ()Jh/UJ) 

h=h·/3(-M/Ph or fJJh/UJ). 

(2.7) 
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Relation to the components of [KJ] is given by 

keu = kue = -hku (2.8) 

kuu = ku. 

2.2 Joint Modeling, Numerical Treatment 

Computation of [KJ] or [FJ] is difficult analytically because of the mixed 

boundary condition at the joint, i.e., zero displacement along that part of the joint 

which is in contact, zero tractions along that part of the joint which is open. How

ever, a nonlinear finite element solution of the problem illustrated in Figure 2.1 is 

possible. Only half the joint and slab (to one side of the plane of symmetry) need 

be considered. The finite element mesh of this system, shown in Figure 2.4, uses 8 

elements through the depth of the slab and 20 elements along the length from the 

plane of symmetry to the end of the slab. The elements are four-node, linearly elas

tic, plane strain elements. Each node of the mesh has two dof, namely translations 

in the z and x directions. Nodes at the joint have their x dof free and their z dof 

connected by horizontal springs to the fixed plane of symmetry. These springs have 

zero stiffness within the open portion of the joint and have large stiffness ( ~ oo) 

within the closed portion of the joint, i.e., they are rigid in compression and have 

zero stiffness and strength in tension. 

The z translations of the 9 dof at the right end of the mesh in Figure 2.4 move 

nearly as a straight line, but not exactly; this makes the computation of Or and 

Ur somewhat arbitrary. Therefore, these nine z dof were constrained to move as a 

straight line by transforming to the two dof Or and Ur using a penalty method. 

The nondimensionalized M - (} J and M - U J curves obtained from the finite 

element system are shown in Figure 2.5. The elastic portions 8 E and U E of the sup

port displacements (computed with the mesh of Figure 2.4 with all springs intact) 

have been subtracted out. Note that, in contrast to the smooth curves of Figure 

2.2, those of Figure 2.5 are piecewise linear; slope changes occur every time a spring 
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opens or closes. The joint condition is denoted by i where Iii is the number of open 

springs at the bottom (positive i) or top (negative i). Slopes of the linear segments 

give f~8 and fboi the superscript denotes the joint condition. The curves in Figure 

2.5 were obtained by applying a constant axial load and a varying moment to the 

right hand end of the slab. A second pair of curves (not shown) was obtained by 

applying a constant moment and a varying axial load to the end of the slab. Then 

solution for a load increment dP with a particular joint condition leads to !Ju and 

fhu· 
Inversion of [FJ]i yields [KJ]\ which is given m Table 2.1 in the form of 

the equivalent spring parameters k~, kh and hi. These parameters are constant 

within ranges of -M /Ph or () J h / U J which correspond to particular joint conditions. 

Note that as the joint opens, h increases and the springs soften. Under complete 

separation, stiffnesses of the equivalent springs are zero. 

The behavior of the joint shown in Figure 2.4, modeled by 9 spring elements 

through the depth of the beam, is intended to approximate the continuous opening 

behavior shown in Figure 2.1. The error in the finite element model depends on 

the number of spring elements employed, and consequently on the number of plane 

elements. The results presented for the mesh with eight plane elements in the depth 

direction differed significantly from those obtained using a coarser mesh with four 

elements through the depth; however, they agreed well with results obtained with 

a finer mesh using 16 elements in the depth direction. Use of the latter results 

would require 35 possible conditions (0,+1, ... ±17) for each joint, as opposed to 

19 possible conditions (0,±1, ... ±9) using the results obtained from the mesh with 

eight elements through the depth. This would require many more iterations and a 

significant increase in computation time for solution of an actual problem without 

giving any significant improvement in the accuracy of the analysis. Therefore, all 

the analyses described in this thesis were performed using the results presented in 

this chapter obtained from the mesh in Figure 2.4. 

Numerical experience has shown that the joint spring parameters are inde

pendent of the distance d between joint and support if d exceeds 0.7h. Thus, for 
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multiply jointed structures, some error will be present when the joint spacing is 

less than 0.7h due to interference between adjacent joints. However, this error is 

small for joints spaced as closely as 0.5h. At closer spacings, the error becomes 

significant. Chapter V presents results for Pacoima Dam, a typical arch dam. It 

will be seen in tha~ chapter that the minimum spacing of the vertical contraction 

joints approaches 0.5h only in the lower part of the dam, where little or no joint 

opening occurs. Numerical experience has also shown only a weak dependence of 

the joint spring parameters on Poisson's ratio. All results presented in this thesis 

will be for v = 0.2, a value typical for concrete. 

As pointed out in Chapter I, nonlinearities ansmg from large compressive 

stresses acting across the joint are not taken into account. These large stresses 

can occur at times of high axial compression when the bending moment is large 

enough to cause significant opening. Nonlinear behavior in compression is an im

portant feature in the failure response of an arch dam [36], and thus the analysis 

methods described in this study may be unable to predict ultimate stability. Also, 

cracking within the finite elements and sliding along the joints is not permitted. 

In the experimental results of [36], no cracking occurred within the discrete blocks 

comprising the arch rib, and the pressure of friction was sufficient to prevent sliding 

between the blocks. Thus, based on these results, the last two assumptions may be 

reasonable except in the case of severe ground motion. The effect of complete joint 

separation on the no sliding assumption is discussed in Chapters IV and V. 

A feature of a joint model which may be desirable is the ability to carry some 

tensile stress. Vertical contraction joints in an arch dam may be grouted, in which 

case they could have some tensile strength. This is accounted for in the following 

manner. If at a closed joint the moment is sufficient to cause tension on a face which 

has· not opened previously, then that tensile stress is computed assuming a linear 

stress distribution through the depth of a joint and then compared to a specified 

limiting tensile stress. If the stress at the face does not exceed the limiting stress, 

the joint is held in the closed position. If the limiting tensile stress is exceeded, joint 

opening is allowed to take place from that face in the manner described previously. 
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Further, once opening has taken place at a face, the limiting tensile stress for opening 

at that face is set to zero. 

For output purposes, when a joint is completely closed, the values of M and P 

at the joint are converted to normal stresses by assuming a linear stress distribution 

across the full depth of the joint. At a partially open joint, the normal stress 

at the closed face is computed using a triangular stress distribution with a no

tension zone (Figure 2.6). In both cases, M and P are sufficient to determine the 

stress distribution. However, as joint condition ±8 (only end spring in contact) 

is approached; the depth of the triangular stress block goes to zero, and the peak 

compressive stress goes to infinity. Such behavior often occurs either as a joint 

completely separates or as it reestablishes contact after complete separation and 

is a result of using only a finite discretization in the thickness direction (Figure 

2.4). Consequently, these high stresses are thought to be fictitious, or at worst, to 

lead to minor chipping of the concrete at the edge of the joint. As an arbitrary 

fix to this problem, the depth of the triangular stress block for joint conditions ±7 

and ±8 was assumed to vary linearly from the depth computed from Mand P at 

0Jh/UJ = ±3.1306 (i.e., when the third spring from the face just breaks) to a zero 

depth at 0Jh/UJ = ±2.0, with the peak stress adjusted to maintain the total force 

at P. However, peak stresses which were felt to be unrealistically high still resulted, 

so as an additional measure, a minimum stress block depth was established at 1/8 

of the joint depth. 

In addition to the stresses at a joint, a second important computation for output 

purposes is that of the joint opening displacement at the upstream and downstream 

faces. If the material on either side of the open portion of the joint deforms as a 

straight line, then the opening at the face of the joint is simply the relative rotation 

of the joint, 0 J, times the depth of the joint opening. Tests with the mesh shown in 

Figure 2.4 have shown that only if the contact depth is small can the joint opening 

be computed reliably in this manner. If a significant portion of the joint is closed, 

the joint opening at a face exceeds that predicted by the method described above. 

In this case, the joint opening displacement can be more accurately computed as 
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the relative rotation, 0 J, times a depth h • which is greater than the depth of joint 

opening. Results from the mesh of Figure 2.4 for the actual value of h * for each 

joint condition are given in nondimensionalized form in Table 2.1. For any value 

of -M/ Ph other than those given in Table 2.1, h* can be determined by linear 

interpolation. 

2.3 Solution Scheme 

The finite element used is a two-dimensional slab element which includes shear 

deformations [37]. Figure 2. 7 shows the element in its parent and mapped forms. 

The element has 2 nodes located at the mid-thickness, each of which has three dof 

associated with the local z,x axes. The z axis is in the mapped 17 direction and 

lies along the nodal 'normal', and x is perpendicular to z. The three dof are z and 

x translations of the nodal normal and a counterclockwise rotation iJ of the nodal 

normal. Linear shape functions are used for all dof. Two conditions imposed are 

zero normal strain perpendicular to the plane of the element, and zero in plane 

normal stress in a direction perpendicular to the mapped ~ direction. The 6x6 

linearly elastic element stiffness matrix is denoted by [Ke]. 
Joint planes are located at element intersections and create a double-node 

condition, as shown in Figure 2.8. Five dof to define the positions of the nodal 

'normals' a-b and A-B are associated with such an arrangement. The five dof 

are average translations Wav and Uav along z and x, the average rotation Oav, the 

relative translation Urel along x (opening positive), and the relative rotation Orel 

(positive for opening at the bottom, or negative z edge of the joint). The relative 

displacement along z is zero since sliding is not allowed. At the joint (Figure 2.8), 

the nodal dof (numbered 1 and 2) are related to the average and relative dof by 

Ui = Uav - Urel 

01 = Bav +Orel 

U2 = Uav + Urel 

02 =Dav - Orel· 
(2.9) 

Stiffness terms associated with the average dof are the same ones which would 

be used if the joint plane were absent. Stiffness terms associated with the relative 
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dof are provided by the 2 x 2 tangent stiffness matrix [ K J Ji of the joint element 

defined in the preceding section and by the adjacent finite elements. For an end 

joint at a plane of symmetry or at a support, [KJ Ji can be used directly; it must 

be multiplied by 2 at an interior joint. With the unmodified [ KJ Ji, equation 2.3 

(and also equation 2.21) apply only for an end joint; the resulting values of }vf and 

P or dM and dP must be divided by 2 at an interior joint. These considerations 

follow from the fact that the spring elements in the mesh in Figure 2.4 represent a 

joint at a plane of symmetry or fixed support and from the transformations defined 

by equation 2.9. Nonlinearities are associated only with the relative joint dof. 

The time integration scheme for the nonlinear equations of motion employs 

Bossak's extension of the standard Newmark method. This extension ~38,39] in

volves the intro,duction of a parameter, Cf.B, to provide algorithmic damping in the 

high frequency range where spurious (numerical) oscillations can result from certain 

types of nonlinearities. The solution scheme employs Newton iterations within time 

steps to establish equilibrium. (In static problems, time steps are employed as a 

convenient way to increment the load.) 

Development of the solution scheme proceeds from the time integration equa-

tions, 

{ a,L+I (t - .6.t)} = { a(t)} + { (1 - /)a(t) + /lll+l (t + .6.t)} .6.t (2.10) 

and 

1 1 
{al+ I (t + .6.t)} = --2 { a1(t ~ .6.t) + .6.a1 - a(t)} - -a(t) 

/Jilt /3.6.t 

-( 2~ - 1) { a(t)}, (2.11) 

and the general equation of motion which expresses equilibrium attained after the 

lth iteration in time stepping from t to t + .6.t, altered from standard form, i.e., 

{pl+ I (t + .6.t)} -T- [ c: {ah-I (t + .6.t)} + [1\1] { a,l+l (t + .6.t)} ~ {f(t T .6.t)}, (2.12) 
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to Bossak 's form, 

(2.13) 

where {a(t)}, {a(t)} and {ii(t)} are vectors of nodal displacements, velocities and 

accelerations at time t relative to any earthquake motions, and { a(t)} includes static 

displacements; notations 1(t + .6.t) and 1+ 1 (t + .6.t) signify the approximations to the 

state at time t + .6.t after (l - 1) and l iterations, respectively, with 1 (t + .6.t) = (t); 

/ and /3 are integration parameters where, for unconditional stability (guaranteed 

only for the linear solution), / 2: t and /3 2: ~(k + 1)
2

; ,6. denotes incremental 

quantity; {p1+1 (t ---- .6.t)} =vector of stiffness forces which corresponds to the state 

{ al-i-l (t + .6.t)}; {f(t + .6.t)} = vector of applied nodal forces on the dam at time 

(t + .6.t); and [C~ and [M] are the damping and mass matrices of the structure: 

Substitution of equations (2.10) and (2.11) into the linearized form of equation 

(2.13) leads to the following algorithm for the lth iteration step in the computation 

of the state at time t + .6.t, with the state at time t known. 

1. Compute the incremental displacement { .6.a1} from 

+ [ ( 1 ; !!.~ B) M + G - I) cl { <i( t) } 

+ [ (( 2~ - I)(! - aB) - aB)M + ( 2~ - l)AtC l { ii(t) ), (2.14) 

where 



-16-

{p1(t + L).t)} = {p({a1(t + ~t)})} 

{ a1 (t + ~t)} = { a(t)} 

{p 1 (t + ~t)} = {p({a(t)})} 

and where {p1+1 (t _;.._ L).t)} has been linearized by 

2. Compute the new approximation to { a(t + ~t)} from 

{2.15a) 

(2.15b) 

(2.16) 

Compute {p1- 1 (t + ~t)} from {p1(t - L).t)} and { ~~1 
}. After convergence, com

pute 

{ a(t + L).t)} = { a(t)} + { (1 - 1)a(t) + 1a(t + ~t) }~t 

{ a(t + ~t)} = ~ { a(t + ~t) - a(t)} - -i-a(t) - ( la - 1) { a(t)} 
(J~t }J~t 2}-' 

(2.17) 

and proceed to the next time step. 

In the above, 

[M] = the mass matrix of the stucture. Mass terms are associated with both 

the average and relative dof at a joint. The mass terms associated with the average 

dof are the same ones associated with a single node which would be used if the joint 

plane were absent. The mass terms associated with the relative dof come from the 

adjacent finite elements through the transformations defined by equation 2.9. No 

mass is associated with the joint elements. To account for interaction effects with 

an incompressible water domain, [ M] can be augmented by an added mass matrix 

[Ma] in equations 2.13 and 2.14 above and equations 2.18 and 2.19 below. 

[CJ =the damping matrix of the structure. Rayleigh damping [40] is assumed; 

i.e., [c] is constructed as a linear combination of the mass matrix [M] and the 

linearly elastic stiffness matrix [ K'] as 
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[cj = ao [M] + a1 [K':, (2.18) 

where [ K'] is the stiffness matrix of the structure excluding all joint element stiffness 

terms. Thus, no structural damping is associated with the joint elements. 

[ K] = the tangent stiffness matrix of the structure. [ K] is assembled from 

the linearly elastic matrices [Ke] of the finite elements and the current tangent 

matrices [KJ]i of the joint elements. Due to large changes in the terms of [KJ~i 

for different values of i (as the joints open and close), the current matrix [ K] is 

always used in each iteration. The modified Newton method, which uses a tangent 

matrix from a previous configuration that is updated from time to time, results 

in fewer matrix factorizations but requires an excessive number of iterations. This 

difficulty is common in analysis of contact problems. 

{f(t + D.t)} = specified nodal load vector at time t - D.t. For static plus 

earthquake loading [40], 

{f(t-'-- D.t)} ={/st} - [M Mg] {r}iig(t ~ D.t), (2.19) 

where {!st} = static load due to, say, water pressure; ~Mg] is the portion of the 

mass matrix which couples support dof (i.e., dof which <!-re fixed) and non-support 

(free) dof; { r} is an influence vector which depends on the direction of earthquake 

motion; and ag(t + D.t) is the ground acceleration at time t + D.t in the given 

direction. 

{p1(t + D.t)} = nodal load vector which is in equilibrium with the stresses 

that correspond to the strains in the configuration { a1 (t + D.t)}. {p1 ( t + D.t)} is 

assembled from vectors {p~(t + D.t)} of the finite elements and vectors {pj (t + D.t)} 

of the joint elements. For the finite elements 

{p~(t+D.t)} = [Ke]{a~(t+D.t)}, (2.20) 

where { a~(t + D.t)} is the element displacement vector. The joint load vector 

{pj(t + D.t)} contains the two terms M 1(t - D.t) and P 1(t + 6.t) computed from 
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(2.21) 

where the joint condition i is determined from the value of the parameter 
Al A l 
f)rez(t + 6.t)·h/Urel(t + 6.t). Note that no integration is required to compute 

M 1 ( t + 6.t) and P 1 ( t + 6.t) as is implied by equation 2.3. The reason is the inde

pendence of the stress state from the deformation history; i.e., the same 1vl1(t + 6.t) 

and P 1(t + 6.t) would result from any deformation path including the one in which 

u;el(t - 6.t) and o~ez(t + 6.t) increase from zero to their final values maintaining 

the same ratio throughout, which takes place entirely under joint condition i. 

Additional features of the solution algorithm are the following: 

1. The choice 
1 

I= - - CX.B 
2 

1 )2 (3 = -(1 - CX.B 
4 

(2.22) 

is convenient because it produces no algorithmic damping at aB = 0 (con

stant average acceleration method) and results in minimal damping at low 

frequencies for nonzero aB. The variation of damping with frequency for 

nonzero (negative) values of aB is shown in Figure 2.9. 

2. The Rayleigh damping matrix [ C], expressed by equation 2.18, gives any 

mode with natural frequency w (radians/sec) a damping ratio given by 

e = a.ow+ a1. 
2 2w 

{2.23) 

Specifying e at two frequencies w is sufficient to determine a.0 and a 1 . As 

e from equation 2.23 can often be made to vary slowly over the frequency 

range of interest, the modal frequencies do not have to be found precisely. 

3. The solution at time t + 6.t is obtained following an iteration in which no 

joint condition changes occur. 

4. Use of the current tangent matrix [ K] is expensive because it must be re

formed and recomputed in each iteration of each time step. This would be 
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particularly true for three-dimensional problems, and Chapter IV describes 

methods to ensure maximum computational efficiency in that case. 

5. For linear matrix equations, the Bossak-Newmark time integration scheme 

with the Bossak parameter a3 ::;o is unconditionally stable. In the applica

tion here to a nonlinear matrix equation, no instabilities were encountered 

which allowed the choice of Dot to be based solely on accuracy criteria. 

6. The algorithm described above is for a nonlinear analysis. A linear analysis 

may be performed simply by specifying the condition of each joint to be 0 

at all times. 

7. Removal of the dynamic terms (mass, damping, velocity and acceleration) 

from the algorithm described above gives the static solution scheme. 

8. A basic requirement of any proposed algorithm is that the computed values of 

A1 and P at the joints under linear analysis (no opening) be accurate. In the 

present algorithm, M and P are computed directly from the displacements 

of the joint springs. Comparison to analytical solutions of linear slabs and 

arches under static loading has shown lvf and P to be very accurate. Results 

presented in Chapter III will reinforce this. 
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Figure 2.1 Idealized Behaviour of an Interface Joint. 
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Moment versus support displacements due to joint action under 
constant axial force. Results are from the finite element model. 
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Determination of the compressive stresses at a partially open 
joint using a triangular stress block with a no-tension zone. 
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Algorithmic damping ratio, €, as a fraction of critical, plotted 
against wtlt/27r for aB = -0.05, -0.1, -0.3 for a single degree 
of freedom oscillator, natural frequency w radians/sec (source, 
[39]). 
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CHAPTER III 

TWO-DIMENSIONAL ANALYSIS RESULTS 

This chapter compares some results of static and dynamic analyses of a two

dimensional jointed arch, for the purpose of demonstrating the accuracy and use

fulness of the equivalent joint element developed in Chapter II. In one case the arch 

is modeled with slab finite elements connected by these joint elements, and in the 

other case, a fine discretization through the depth of plane finite elements and joint 

springs is employed. 

Thereafter, a more extensive analysis of the arch structure, using the slab 

elements, is performed in which the arch is subjected to a series of successively 

stronger ground motions in order to observe the increasing amount of joint opening 

which occurs and its effect on the dynamic response of the arch, and also to compare 

the linear and nonlinear behavior of the structure. 

3.1 Accuracy and Efficiency of Joint Element 

Chapter II outlined the development of the equivalent two-dimensional joint el

ement designed to model the gradual opening and closing mechanism of an interface 

joint in a slab using a single slab element discretization through the depth. This 

technique produces a much more efficient solution than that obtained by the type of 

mesh shown in Figure 2.4, which uses nine spring elements and eight plane elements 

through the depth. Regarding accuracy, both techniques should be comparable for 

a simple slab such as shown in Figure 2.1 because this was the calibration problem 

for the equivalent joint element. Of interest, however, is the performance of the joint 

element in a more complex arch structure containing several joints and subjected 

to a dynamic load, such as an earthquake excitation. 

The jointed circular arch pictured in Figure 3.la will be used as a test problem 

and is intended to represent a horizontal cross-section of an arch dam. It has a unit 

height of 1 meter and a uniform depth of 5.5 meters. The radius to the mid-depth 
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of the arch is 45 meters. Material properties of the concrete are Young's modulus 

E of 27,500 MPa, Poissons's ratio of v 0.2, and mass density of 2500 kg/m3 . Due 

to symmetry, only half the arch is modeled, subtending an angle of 60°. The five 

blocks are separated by contraction joints which, along with the abutment joint, 

have no assigned tensile strength. 

The arch is located at a depth of 45 meters below the water surface and is 

precompressed by a static pressure of 0.44 MPa. Using this value of water pressure 

in a design of the arch by circular ring theory (uniform axial force, zero bending 

moments) where the circumferential compressive stress is given by 

a= pr/h (3.1) 

(p = water pressure, r = radius, h = depth), then the arch depth of 5.5 meters 

corresponds to an allowable compressive stress of 3.6 MPa. 

Two finite element models are employed in analysis of the arch: one of slab 

finite elements ~nd equivalent joint elements (Figure 3.la) and one of plane finite 

elements and joint springs (Figure 3.lb). The latter model contains nine spring and 

eight plane elements through the depth, a discretization similar to that in Figure 

2.4. Translational dof of the plane element nodes are transformed to radial and 

tangential components. Joints are numbered 1 (abutment) through 6 (center), and 

no joint sliding is permitted. To enforce this constraint in the mesh of Figure 3.1 b, 

the two opposing center nodes at each joint are connected by a rigid radial spring 

(not shown in the figure). 

The structure is first subjected to the forces due to the static pressure of the 

water as shown in Figure 3.la. In the slab element mesh, the forces are applied in 

the radial direction at each of the six nodes. In the plane element mesh, the static 

pressure is distributed along all the nodes on the upstream face of the mesh. Figure 

3.2 shows that the resulting circumferential stress distributions at the joints in the 

slab element mesh (a) and the plane element mesh (b) are very similar. Departures 

from the uniform stress distribution due to the presence of bending moments are 
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well approximated. No joint opening occurs. 

With the static loads still acting, the arch is subjected to earthquake ground 

motions applied in the x (stream) direction. The ground motion applied is the 1940 

El Centro record shown in Figure 3.3 which has a peak acceleration of about 0.34g. 

Only the first four seconds of the record are employed but contain the maximum 

accelerations. The time step !:it equals 0.02 seconds. Interaction with the water is 

approximately accounted for by added masses which, in the case of the shell element 

mesh, are attached to the radial dof at each of the six nodes, and, in the case of the 

plane element mesh, are attached to and uniformly distributed among the radial dof 

on the upstream face of the arch. The values of added mass shown in Figure 3.la 

are reasonable for water at a depth of 45 meters. Values of the Rayleigh damping 

coefficients a 0 and a 1 in equation 2.18 are chosen to give damping ratios of 5% at 

frequencies of 4Hz and 20Hz, giving a minimum damping ratio of 3.7% at about 

9 Hz. The Bossak high frequency dissipation parameter aB described in Chapter 

II is chosen as -0.2. This value of aB gives algorithmic damping ratios increasing 

from 0.3% at 4 Hz to 2!% '.Lt 10 Hz to 6% at 20 Hz. At high frequencies both 

the Rayleigh and algorithmic damping increase rapidly. Incidentally, the first six 

eigenvalues of the linear structure (including added mass) range from about 3.5 Hz 

to 24 Hz. 

Linear dynamic analyses of the structure are performed by not allowing any 

joint to open. Figures 3.4 a to i present the results; slab element mesh results are 

shown solid and the plane element mesh results are shown dashed. Included are time 

histories at joints 1 and 6 of radial displacement (joint 6 only), axial force, moment, 

and circumferential stress at the upstream and downstream faces. The two sets of 

curves in Figure 3.4 agree well. Some differences do exist and are attributed to the 

different discretizations; i.e., slab elements vs. the refined plane element mesh. 

Figures 3.5 a ton present results for the nonlinear dynamic analyses of the arch 

using the slab and plane element discretizations. The time history responses plotted 

include those of Figure 3.4 as well as the amount of opening at the upstream face 

of joint 1 and at the upstream and downstream faces of joint 6 and the position of 
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the contact point at each joint, i.e., "crack tip" location. In Figures 3.5 b and i, the 

upper and lower traces represent opening from the upstream and downstream faces, 

respectively, of the joint. Agreement between the two sets of curves, while not quite 

of the quality obtained with the linear responses, is still reasonable. Indications 

are that accuracy of the equivalent joint element improves for more severe openings 

(Figures d and j). 

In conclusion, taking into account the different finite element discretizations, it 

may be said that the equivalent joint element developed in Chapter II represents the 

opening behavior of an interface joint reasonably well including opening width and 

joint axial force, moment and stress. The effect of the joint on the overall response 

of the structure is well captured. Needless to say, use of the mesh shown in Figure 

3.la is computationally much more efficient than use of the mesh shown in Figure 

3.lb. The nonlinear analysis of the arch using the plane element mesh required 

about 50,000 seconds of CPU time on a PRIME 500 computer. The corresponding 

analysis using the slab element mesh took less than 700 seconds of CPU time. In 

addition, since much of the 700 seconds was set-up time, which remains constant 

regardless of the earthquake duration, a longer duration would show an even more 

dramatic difference in computation time. 

3.2 Nonlinear Analyses of Jointed Arch 

With the ability of the equivalent joint element to adequately model the open

ing and closing mechanism of an interface joint in a structure as well as its effect on 

the overall behavior of the structure confirmed, a more comprehensive study of the 

same arch structure described previously using the slab element discretization is 

performed here. The effect of nonlinearities on the arch response is revealed by ex

amining the response to the El Centro ground motion (Figure 3.3) with acceleration 

scaled by f = 0.50, f = 0.75, f = 1.00 and f = 1.25. Again, the ·first four seconds 

are applied in the x direction. All parameters of the previous solution including 

geometry, static loads, added masses and damping are kept the same except that a 
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2 MPa tensile strength is assigned to the abutment (joint number 1). 

Results from the nonlinear analyses are shown in Figures 3.6 a to f and include 

time histories of radial displacement (joint number 6), upstream opening (joint 

number 1), axial force, -M / P, position of joint contact and maximum compressive 

stress (the latter quantities at both joints). The quantity - M / P represents the po

sition of the axial force P (measured from the mid-depth line), and varies between 

+2.75 meters (upstream face) and -2.75 meters (downstream face). In plotting the 

maximum compressive stress at a joint, no distinction is made between whether 

the stress occurs at the upstream face or downstream face. This information can 

be determined from the sign of -M / P. As described in Chapter II and illustrated 

by Figure 2.6, the location of the joint contact point and the value of the maxi

mum compressive stress across a joint are computed from M and P using a linear 

compressive stress distribution with a no-tension zone. 

Each part of Figures 3.6 a to f contains the responses to all four earthquake 

ground motions. All curves are solid lines. In each part, the curve for f = 1.25 

exhibits the greatest response; the curves for f = 1.00, 0. 75 and 0.50 show progres

sively less response. The radial displacement curves in Figure 3.6a indicate that the 

displacement response of the dam increases approximately linearly with the level 

of excitation even though significant joint opening occurs (see discussion of Figure 

3.6e below). The amplitudes of the displacement curves closely correspond to those 

obtained from linear analysis using the same excitation levels (not shown). Evi

dent in Figure 3.6a, as well as the other figures, is a slight period elongation in the 

response which becomes more pronounced as the excitation level increases. This 

period elongation is due to a reduction in stiffness caused by joint opening. Where 

the response and joint opening are smaller near the ends of the time histories, the 

period elongation is less. 

The axial force response in Figure 3.6c is similar at joints 1 and 6, and, in fact, 

at all joints. This feature is also true under static loading. In one cycle, at time 

t = 2.3 seconds, P is reduced to about 12% of its static value for the case where 

the ground acceleration is scaled by a factor of 1.25. Therefore, a somewhat more 
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intense excitation would cause a complete separation and a possible violation of the 

no-slip assumption. 

Examination of Figures 3.6d and e reveals the joint opening behavior. At f = 

0.50, joint opening is essentially confined to joint 1 where the penetration depth is 

about 2.5 meters (less than one-half of the joint depth). At f = 1.25, joints 1 and 6 

open severely to depths of about 4 meters (about three-quarters of the joint depth). 

Figure 3.6f shows that the maximum compressive stress reaches about 20 MPa at 

both joints. These stress levels are probably permissible for many concrete dams for 

an unusual loading condition. Additionally, if the ultimate concrete strength exceeds 

about 30 MPa (a reasonable value if E = 27,500 MPa) then the assumption of a 

linear stress-strain relation is not too bad. To put the joint opening in perspective, 

Figure 3.6b shows the time history of the opening at the upstream face of joint 

number 1. At f = 1.25, the maximum opening is about 0.2 cm with a duration of 

0.18 seconds. This time history may prove useful in a future analysis to determine 

the extent of water entering an open joint, an effect not considered here. 
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Figure 3.1 Fixed ended arch used to verify the equivalent joint element. 
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North-south component of 1940 El Centro ground acceleration. 
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a to i (next 5 pages). Comparison of the dynamic linear re

sponses computed from the slab-equivalent joint element mesh 

and the plane element-joint spring mesh. 
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a ton (next 7 pages). Comparison of the dynamic nonlinear re

sponses computed from the slab-equivalent joint element mesh 

and the plane element-joint spring mesh.· 
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a to f (next 5 pages). Dynamic nonlinear responses of the arch 

with the slab-equivalent joint spring mesh for various intensities 

of ground motion as specified by the scale factor f. 
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CHAPTER IV 

ANALYSIS OF THREE-DIMENSIONAL ARCH DAMS [41] 

This chapter describes how the two-dimensional joint element whose develop

ment and use was outlined in Chapters II and III can be generalized in a simple 

but approximate way for use in analysis of a three-dimensional arch dam (Figure 

4.1). It describes how the effects of both foundation-structure interaction and fluid

structure interaction can be accounted for with only a minimal increase in storage 

requirements and with little loss of computational efficiency. The solution algorithm 

presented in Chapter II is generalized for the three-dimensional problem. Lastly, a 

method is described whereby the dead weight of the structure can be applied in a 

manner which simulates the actual construction sequence for a typical arch dam. 

4.1 Body of the Dam 

Chapter II outlined the development of a special element to model gradual 

opening and closing of interface joints in a two-dimensional arch or slab. The results 

of Chapter III showed the element to be both accurate and efficient for this purpose. 

However, for realistic analysis of arch dams, generalization needs to be made to the 

three-dimensional situation. This can be done in a simple but approximate way. 

The dam is divided horizontally and vertically into blocks, each of which is 

represented by a single shell element. The vertical joint planes are the actual con

traction joints in the dam. Typically, these might be spaced at intervals of about 

15 meters, with perhaps ten or twelve such planes across the crest of the dam. 

Consequently, all of the contraction joints can be modeled without undue computa

tional effort. The horizontal joints represent predetermined planes where cantilever 

cracking is constrained to occur. Horizontal crack orientations are suggested by 

the vertical orientation of the contraction joints [15] and by the possible horizontal 

pl~nes of weakness in the lift joints, and are supported by shaking table studies 

[17,18] on small scale models built with contraction joints (but probably with keys 
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omitted). As typical lift heights are small, the spacing of horizontal joints in the 

finite element model is governed by computational limitations. As described in 

Chapter II, cracking at the face of a joint occurs when the tensile stress there ex

ceeds an assigned tensile strength. Approximations regarding cracking, i.e., the 

predetermined locations and an absence of fracture mechanics criteria, are noted. 

As in the two-dimensional treatment, no joint sliding is permitted. At a hori

zontal joint, the validity of this constraint requires that contact be maintained with 

sufficient friction. In the contraction joints, however, slip would be constrained 

even under a condition of complete separation if right angled keys were present. 

Typically, though, keys have beveled geometries which permit an amount of free 

slip during joint separation dependent on the bevel angle (Figure 4.2). Although 

omitted here, joint slip is certainly a desirable feature to include in a nonlinear 

analysis of an arch dam. Inclusion of joint slip would entail a considerable increase 

in complexity of formulation and in computational effort and is not included for 

these reasons. 

Discretization of the dam employs linearly interpolated shell elements which 

include shear deformations (the type with independent interpolations for translation 

and rotation [37]). A single el~ment discretization through the thickness of the dam 

is utilized. The element may be three-noded (for use in the vicinity of the dam

foundation interface) or four-noded. Figure 4.3 shows the four-noded element in 

its parent and mapped forms. The element uses mid-thickness nodes, each node 

having five dof associated with the local x,fj and z axes. The z is in the mapped 

rJ direction and lies along the nodal 'normal', or through-thickness direction; x is 
perpendicular to z and lies in the horizontal x - z plane; y is perpendicular to both 

z and x and oriented so that x,fj and z form a right-handed system. The five dof 

needed to describe the position of the nodal 'normal' are translations U,V and W 
in the x,y and z directions, respectively, and rotations 0 and a about y and i:, 

respectively. 

The joint planes are located at element boundaries and can produce four types 

of nodal arrangements. At a node where no joint planes intersect, the standard 
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five dof are used. In Figure 4.4a, where a vertical joint plane is present, seven dof 

are used for the double node arrangement involved; five average translations and 

rotations (Uav, Vav, Wav, Oav and &av) of the nodal normals a-band A-B, plus the 

relative translation Ur el (opening positive) and relative rotation Orel (opening on 

downstream face positive). The joint plane in Figure 4.4b is horizontal. Again, 

seven dof are used to define the position of the nodal normals c-d and C-D; the 

same five average translations and rotations ( U av ... &av) as for the vertical joint, 

plus the relative translation Vrel (opening positive) and rotation &rel (opening on 

downstream face positive). Lastly, the intersection of a vertical and horizontal 

joint plane provides the fourth nodal arrangement. Nine dof are required here; 

Uav, Vav, Wciv, Oav, &av, Urel, Orel, Vrel and &rel· A single joint suffices along the dam-

foundation interface and represents the interface itself. In this case, the local fj axis 

is rotated to make x 'perpendicular to the interface, and the joint is treated as 

vertical. 

The shell elements contribute stiffness to both the average and relative dof at 

a node as determined by transformations which, where both horizontal and vertical 

joints are present, are given by 

U1 = Uav + Urel U2 = Uav + Urel U3 = Uav - Urel U4 = Uav - Urel 

V1 = Vav - Vrel V2 = Vav + Vrel V3 = Vav + Vrel V4 = Vav - Vrel 

01 = Bav - Orel 02 = Oav - Orel 03 = Bav +Orel 04 :--- Bav +Brei 
(4.1) 

&1 = &av - &rel &2 = &av + &rel &3 = &av + &rel fr4 = &av - &rel, 

where the nodal numbering refers to that of the unassembled elements appearing 

in Figure 4.5. The resulting stiffness terms associated with the average dof are the 

same ones associated with the single node which would be used if the joint planes 

were absent. The 2 x 2 joint stiffness matrices [ K J] i assemble into the Urel and Orel 

dof at each node containing a vertical joint and into the Vrel and &rel dof at each 

node containing a horizontal joint. 

Table 2.1 presents sets of values of the elements of ~ KJ] i together with 
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the ranges of - M /Ph and f}J h / U J for which each [ K J J i holds, all in non

dimensionalized form. To determine the 2 x 2 joint stiffness matrix at a particular 

node, the values shown in Table 2.1 must be scaled: 

(a) by the elastic modulus at the node. Since a node may be associated with 

several elements, the elastic modulus would normally be taken as the av

erage of the elastic moduli of the adjacent finite elements. 

(b) by the effective height V (in the case of a vertical joint, Figure 4.4a), width 

H (horizontaljoint, Figure4.4b), or length {dam-foundationinterfacejoint, 

not shown) at the node. 

(c) by the depth of the joint, computed by an averaging procedure using linear 

weighting functions varying from one at the node to zero at the adjacent 

nodes. This procedure actually results in little difference except at the 

vertical joints at the nodes on the crest where the averaging picks up only 

the increased dam thickness below the crest. 

Then for a joint at a particular node, the translational and rotational stiffnesses 

and location of the translational spring are given by 

k~ = ( :~2 ) ·Eav·h~v·beff 
kh = ( k;) ·Eav·beff 

Jii = (~)·hav, 

(4.2) 

where k~/Eh2 , kh/E and hi/hare the nondimensionalized values from Table 2.1; 

Eav is the average elastic modulus at the node, hav is the average depth of the joint; 

and beff is the effective height, width or length of the joint. Then the terms of the 

2 x 2 stiffness matrix for the joint are given by equation 2.8. 

4.2 Seismic Input 

The earthquake excitation can be defined by three components of free-field 

ground acceleration, one horizontal in the upstream-downstream direction, one hor-
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izontal in the cross-stream direction, and one vertical. In reality, considerable vari

ation in the amplitude and phase around the canyon occurs. While nonuniform 

boundary excitations can_ be included in finite element analysis of structures [40], 

no accepted procedure for defining realistic free-field motions for a canyon geome

try exists. Therefore, only uniform free-field motions are employed in this thesis as 

excitation to both dam and water. 

4.3 Foundation of the Dam 

Only a finite portion of the foundation rock, fixed at its far end, is included. To 

avoid system resonances with artificially low frequencies, foundation mass is omit

ted. This technique has not prevented reasonable correlations from being obtained 

to forced vibration field test results [42,43]. An extent of massless foundation region 

(measured radially away from the dam) of about the darn height is required for a 

converged eigensolution of the dam-foundation system :44]. Radiation damping is 

represented indirectly by including the foundation stiffness matrix in the Rayleigh 

damping matrix and choosing the Rayleigh damping coefficients appropriately. The 

mathematical formulation of the damping appears in Section 4.5. 

The foundation is meshed using standard 8 to 20 node rectangular prism and 

6 to 15 nqde triangular prism elements. Figure 4.6 shows the 20 node element in its 

parent form. Three dof are associat~d with each node, namely translations in the 

global x, y and z directions. The stiffness matrix of the foundation is formed element 

by element and assembled in the standard way. Since only the response of the dam 

is of interest, to avoid carrying all the foundation dof (which would necessitate 

much extra storage and computation time), the foundation dof off the interface are 

condensed out prior to assembly (condensation is possible because the foundation 

is massless). The disadvantage of this procedure is that the resulting condensed 

foundation stiffness matrix is full (i.e., no handedness), and, on assembly into the 

global stiffness matrix, couples together dof st all nodes on the dam-foundation 

interface, thus destroying the bandwidth of the dam stiffness matrix. This results 
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m an unacceptably large problem in a computational sense which is avoided by 

localizing the condensed foundation stiffness matrix. 

Figure 4. 7 shows a diagram of a dam mesh with its associated foundation 

mesh. A consequence of the condensation process is that the dof at, for example, 

node number 3 are coupled to all the dof at nodes 1,3,6, ... 58 along the interface. To 

avoid this coupling, in a row of the stiffness matrix corresponding to a particular dof 

at node number 3, only the diagonal stiffness term and the coupling terms between 

that dof and the other dof at node number 3 and the neighbouring nodes 1 and 6 

are retained. All other stiffness terms are set to zero. This procedure is repeated 

for all the dof along the dam-foundation interface and results in an approximate 

foundation stiffness matrix which assembles only into nonzero terms of the dam 

stiffness .matrix and, thus, produces no nodal coupling not already present. This 

procedure enables foundation-structure interaction to be modeled with no penalty 

other than the addition of some extra dof along the dam-foundation interface which, 

in the rigid foundation case, would be fixed. Results presented in Chapter V will 

show that the errors incurred by the localization process described above are very 

small and well within acceptable limits. 

4.4 Water Domain 

While water compressibilH;y can be important in the earthquake response of 

arch dams [44,45], its inclusion requires a considerable computational effort. Many 

pressure dof must be carried, especially since the frequency domain transmitting 

boundary employed for the water domain in [44,45] has no exact counterpart in the 

time domain. Since the focus of this study is on the effect of joint opening, water 

· compressibility is omitted in order to keep the computational effort to a reasonable 

level. A finite element model is employed rather than the more conventional lumped 

added mass approach which has been shown to be a poor representation of an 

incompressible water. domain [46]. 

Incompressible water is governed by the three-dimensional Laplace equation, 
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a2p a2p a2p 
ax2 + ay2 - az2 = 0, P =dynamic pressure (compression positive) (4.3a) 

subject to the boundary conditions 

aP an + PwAn = 0 along accelerating boundaries 
( 4.3b) 

P = 0 at the free surface, 

where An is the boundary acceleration in the direction of the inward normal n, and 

Pw is the water density. The reservoir floor and sides are assumed to accelerate 

rigidly at the specified earthquake motions; i.e., no water-foundation interaction is 

included. 

The water domain is meshed by means of linearly interpolated, 6 or 8 node, 

three-dimensional finite elements. Figure 4.8 shows the 8-node element in its parent 

form. One dof, namely dynamic water pressure, is associated with each node. The 

nodes of the water mesh at the upstream face of the dam should lie along the nodal 

'normals' of the shell element mesh. The water mesh is extended upstream for a 

sufficient distance (about twice the dam height) to approximate an infinite reservoir. 

The omission of water compressibility allows the condensing out of any dof which 

does not need to be carried; this set includes all dof off the upstream face of the 

dam. 

The finite element formulation for the water is 

(4.4) 

where [Kpp] is the "stiffness" matrix of the water domain [47] condensed to those 

dof on the dam-water interface (symmetric matrix, but full); { ap} is the vector of 

dynamic water pressures at the interface; {fp} is the vector of nodal acceleration 

quantities which arise from rigid accelerations of the dam face and the reservoir 

floor and side walls at the uniform earthquake motions [48]; [Mp] is a. matrix which 

transforms nodal accelerations of the dam to nodal acceleration quantities of the 
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water [47]; and {a} is the dam nodal acceleration vector. The last term in equation 

4.4 is the water domain load arising from the accelerations of the dam relative to 

the uniform free-field motions. Because of the proximity of the nodal 'normal' to 

the true normal at the upstream face of the dam, the contribution to this load term 

is included only for the average translational dof of the dam. 

4.5 Solution Scheme 

The equation of motion for the darn-foundation system which expresses equi

librium attained after the lth iteration in time stepping from t to t + b.t is 

{pl+ I (t + b.t)} + [KJ {al+ I (t + b.t)} + (CJ { a,l+I (t-+- b.t)} + [M] { a,l+l (t + b.t)} 

(4.5) 

where {p1+1 (t + b.t) }=vector of nodal stiffness forces of the dam which corresponds 

to the state { a1+1 (t + b.t)}; {a}' {a} and {a} are vectors of nodal displacements, 

velocities and accelerations relative to the earthquake motions, and {a} includes 

static displacements; the notation 1+ 1 (t + b. t) signifies the approximation to the 

state at time t + b.t after l iterations, with 1 (t + b.t) = (t); and 

[.K] = the condensed and localized foundation matrix whose translational dof 

have been transformed into shell compatible dof and assembled into the average 

translational and rotational dof at the interface. 

[lv1] = the mass matrix of the dam. Mass terms come from the shell elements 

and are associated with both the average and relative dof at a joint as determined 

by the transformations of equation 4.1. 

[C] is the Rayleigh damping matrix, 

[c] = ao[M] + ai[K' + .KJ, (4.6) 

where [ K'] is the linear stiffness matrix of the shell elements only (all joint stiffness 

terms excluded). Thus no structural damping from the joint elements is present. 
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{f (t + .6.t)} = specified nodal load vector at time t + .6.t given by 

{! (t + .6.t)} = {!st} - ~M] (r] { ag(t + .6.t)}, (4.7) 

where {!st} contains the dead loads of the dam concrete and the static water forces; 

[r] -:-- matrix of influence vectors, one for each component of ground motion; and 

{ lig ( t + .6.t)} contains the x, y and z components of the free-field ground acceleration 

at time t + .6.t. 

[Kr] = a matrix which transforms dynamic water pressures at nodes on the 

upstream dam face to nodal forces on the average translational dof on the dam :4 7], 

and 

(4.8) 

where [Mp] is defined for equation 4.4. 

Equations 4.4 and 4.5 are coupled, and they may be combined into a single 

partitioned matrix equation as 

Kp l { a1
+

1 
(t-:- .6.t) } [ C 

Kpp a~+ 1 (t + .6.t) + O 

OJ {0,1
+

1
(t + ~t)} = { f(t + ~t) }· 

0 0 fp(t+~t) 
(4.9) 

This global partitioning between the dam and the water dof is for notational conve

nience only. In practice, each pressure dof is assembled immediately following those 

dof of the adjacent dam node. 

One method of solving this set of equations is to solve the lower part (i.e., 

equation 4.4) for {a~+ 1 (t + ~t)} as 

(4.10) 

and substitute into the upper part to get 



where 

and 
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{pl+ 1(t+flt)} + [k]{a1+1 (t +flt)}+ [c]{a1+1 (t+flt)}+ 

[M +Ma] { a,l+l (t +flt)} = {f(t +flt)} + {f a(t +flt)}, (4.11) 

(4.12a) 

(4.12b) 

The physical interpretation of (Ma] is an added mass matrix; the term in row i, 

column j of [Ma] is the force from the water on dam dof i resulting from a unit 

acceleration of dam dof j. {fa} contains the dam loads due to the water pressures 

resulting from the rigid accelerations of the dam face and the reservoir floor and 

side walls at the uniform earthquake motions. 

The difficulty with the method of solution outlined above is that [Ma J is a full 

matrix and couples together average translational dof of the dam at all nodes as

sociated with the dam-water interface. Consequently, the handedness of the global 

mass matrix is lost and solution of equation 4.11 becomes computationally pro

hibitive. A possible remedy for the loss of handedness is to localize [A-'fo1.] in the 

same manner as was previously described for the condensed foundation stiffness 

matrix. However, unlike the foundation stiffness matrix, where such a localization 

process resulted in minimal errors, localization of [Ma J led to unacceptably large 

errors. 

To see the reason why localization of [Ma) fails, consider the membrane analogy 

to the two-dimensional form of equations 4.3a and b, where P represents the out

of-plane displacement and An the out-of-plane boundary traction. In this analogy, 

[ Kpp] in the finite element formulation, equation 4.4, is a stiffness matrix. Thus, 

from equation 4.12a, [Ma] must have the characteristics of a flexibility matrix. The 

intrinsic nature of a flexibility matrix makes it unamenable to localization. 
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The stiffness characteristics of [ Kpp], which is also full due to the condensation 

procedure, suggest that the preferable solution scheme is to solve equation 4.9 with 

a localized [ Kpp J. The penalty in dealing with equation 4.9 is an extra dof at each 

dam node due to the adjacent pressure unknown which is carried. Compared to 

solving equation 4.11, the penalty (assuming each dam node has 9 dof; i.e., both 

horizontal and vertical joints are present) is approximately ~02
2 

-1 = 23% on storage 

and ~~
3 

- 1 = 37% on computation time, which are acceptable if the localization is 

accurate. For the example of Chapter V, this is the case. 

Rewriting equation 4.9 in the Bossak form followed by linearization of 

{p1+1 (t + ~t)} (equation 2.15b) and substitution of equations 2.10 and 2.11 leads 

to the finite element solution scheme, 

[ 

(1-etn) L< __:;_C + K + K-
/3At2 lV.1 + j3At 

(l-aB)M 
/3At2 P 

Kp l { ~a1 
} { f(t + .6.t) } 

Kpp ~ap 1 = fp(t + ~t) -

P t + ~t - /3At2 + {3At + 
{

I( )} [(1-aa)M __:;_C K-

0 (I-as) M 
j3At 2 P 

[ 

(1-aa)M +__:;_Cl [ (1-an)M + (2 - 1)cl + f3At2 ' {3At {a(t)} + {3At /3 {a(t)}+ 
(l-aa)M (1-aB) M 

/3At2 P /3At 1 P 

2/3 i 2/3 { a(t)}, [(( _!_ -1)(1- et.B) - et.B)M + (....'.1. - l)~tC] 
(( 213 -1)(1- et.B) - et.B)Mp 

( 4.13) 

where [ K] = tangent stiffness matrix of the dam (linear shell elements and tangent 

joint elements), and {p1(t + ~t)} = vector of nodal stiffness forces of the dam 

corresponding to the state { a1(t + ~t) }. Construction of [K} and {p1(t + ~t)} in 

each iteration proceeds as is described in Chapter II. Multiplication of the lower 

partitioned equation by (l-:::_~~~:w together with the identity defined by equation 

4.8 results in a symmetric left hand side matrix. 

This equation corresponds to equation 2.14 of the two-dimensional treatment, 

and the solution procedure outlined in Chapter II carries over to the present case. 
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As emphasis has been on obtaining the dynamic part of the solution, the next 

section presents a few details on the static part. 

4.6 Static Solution 

Three different techniques of computing static stresses in an arch dam due to 

the dead weight of the concrete are in use. 

(a) The dead weight acts instantly on the continuous and completely finished 

structure. 

(b) The dead weight is tak'en by independently acting cantilevers [3,10,49]. 

( c) A staged construction sequence is simulated. In each stage, the dam is 

raised by independent extension of the cantilevers, and the contraction 

joints are grouted up to the level attained in a previous stage [3,50]. 

The first method, the simplest and most often used, is to be avoided since the 

stresses in the upper portion of the dam are largely due to it being pulled down by 

the portion of the dam below. The last method is the most realistic, and a version 

which corresponds to continuous grouting of the cantilevers as they are raised is 

employed here. The description will make use of the mesh in Figure 4. 7. 

The condensed, localized foundation stiffness matrix is first assembled into the 

global stiffness matrix followed by the 2 x 2 joint element stiffness matrices for each 

joint in the mesh, which are held in the closed position during the application of the 

dam self-weight. The shell element stiffness matrices [Ke] and self-weight vectors 

{fe} for the bottom row of elements (numbers 21,27,33 and 39) are assembled into 

the global stiffness matrix and force vector, respectively, and the resulting system 

of equations is solved for the incremental displacements. These displacements are 

nonzero only for the dof on the dam-foundation interface and dof associated with 

the bottom row of elements. The shell element stiffness matrices and self-weight 

vectors for the second row of elements (numbers 15,20, .. .44) are then assembled, 

and the resulting incremental displacements are computed. Nonzero increments 

result only for the dof associated with the dam-foundation interface and the bottom 
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two rows of elements. This process is continued until the total stiffness matrix is 

assembled and the total self-weight vector is applied. The consequence of applying 

the self-weight via this construction sequence method is that the stresses in any row 

of elements result only from the weight of that row of elements and the elements 

above, as opposed, for example, to the method whereby the dead load is applied 

instantaneously to the completely finished structure where stresses, say in the top 

row of elements, result in part from the weight of the bottom row of elements, 

an unrealistic situation. Results presented in Chapter V will show that the stress 

distribution resulting from the construction sequence method of application differs 

significantly from that resulting from the instantaneous application method. The 

assumption that no joint opening occurs during application of the dead load is not 

violated. 

Following application of the concrete dead load, the static water pressure is 

applied. This is performed in a single "time step" with iterations to allow for joint 

opening. The equation solved is a specialized version of equation 4.5 with dynamic 

terms omitted and { a~+l (t + ~t)} replaced by the vector of static water pressures. 

The static solution for the concrete dead load and the static water pressure, thus 

computed, is used as the initial condition for the dynamic computation. 
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Figure 4.1 Arch dam-water-foundation rock system (adapted from [5]). 
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CONTRACTION 

PLAN VIEW OF CONTRACTION JOINT 

Typical detail of a conttaction joint in an arch dam showing 

beveled keys. 
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Figure 4.5 Node at Intersection of Horizontal and Vertical Joint. 
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-80-

CHAPTER V 

THREE-DIMENSIONAL ANALYSIS OF PACOIMA DAM 

This chapter describes the studies carried out on Pacoima Dam which inves

tigate techniques for application of dead load, effects of the localization of the 

foundation and water domain discretizations, earthquake responses under full and 

partially full reservoir conditions using different ground motion intensities, and the 

effect of the no-slip constraint in the joints as pertains to possible collapse of the 

dam. Of the three earthquake analyses presented, one attempts to simulate the 

1971 earthquake experience when the reservoir was only partially full, another re

peats this analysis with full reservoir, and the third employs a full reservoir with a 

more typical, less severe ground motion. 

5.1 Description of dam and ground motion 

Pacoima Dam is a 111 meter high constant angle arch dam. It has a crest 

length of 180 meters and contains about 170,000 cubic meters of concrete. The 

thickness of the dam's center cantilever varies from about 3.2 meters at the crest to 

30 meters at the base. The dam, which was constructed between 1925 and 1929, is 

located approximately 7 kilometers northeast of Central San Fernando, California. 

The February 9, 1971, San Fernando earthquake had a Richter magnitude of 

6.6 and caused moderately strong (15-25%g) to very strong (2::: 25%g) shaking over 

a wide area. The earthquake was generated by slip on a fault making an angle of 

approximately 45° with the horizontal. While the surface expression of the fault 

was located several miles from Pacoima Dam, the epicenter was almost directly 

beneath the dam [51]. The earthquake caused permanent differential movement of 

the sides of Pacoima Canyon, opened the previously grouted contraction joint on 

the thrust block at the left abutment to nearly a centimeter, and caused a small 

crack near the base of the thrust block. (During construction, a volume of insecure 

rock from the left abutment had been removed and replaced by the concrete thrust 
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block.) In addition, the earthquake cracked the gunite cover on both abutments, 

caused slumping of an 8,000 m 2 area on the left abutment, cracked the lining of the 

spillway outlet tunnel, and started: a number of rock slides from the canyon walls 

in the vicinity of the dam [6]. The ground motions recorded by a strong motion 

accelerograph located on a ridge about 15 meters above the left abutment of the 

dam were the highest earthquake accelerations ever recorded (Figure 5.1). Peaks 

in excess of 1 g occurred in both horizontal components, and a maximum peak of 

about 0. 7 g occurred in the vertical component. The strong motion had a duration 

of approximately 7.5 seconds. Thus, despite the severe shaking, the body of the 

dam suffered only slight damage. However, at the time of the earthquake, the water 

level stood 45 meters below the crest. 

5.2 Dam, water and foundation discretizations 

Finite element meshes of the dam, foundation region and water are shown in 

Figures 5.2, 5.4 and 5.5, respectively. 

The dam mesh consists of 60 mid-thickness nodes and 51 three- and four- node 

linearly interpolated shell el.ements. Note that the dam is not perfectly symmetric 

because of the thrust block at the left abutment where the dam terminates in an 

approximately vertical plane. The thrust block is modeled as part of the foundation. 

Reduced, one-point integration to prevent shear locking is used for the dam stiffness. 

Both vertical and horizontal joints are present at each node of the dam, except 

along the crest where vertical joints only are present and along the foundation 

interface where a single joint suffices. The vertical joints coincide with the vertical 

contraction joints, spaced at intervals of approximately 15 meters in the actual dam. 

The topmost horizontal joint is approximately 11 meters below the crest. The other 

horizontal joints are spaced at intervals of about 20 meters. Material properties of 

concrete used in the finite element calculations are as follows: 

tensile strength = 2.1 MPa in the vertical joints 

= 3.1 MPa in the horizontal joints 
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= 2.1 MPa in the foundation interface joints 

Young's modulus = 20,700 MPa 

Poisson's ratio = 0.2 

Specific gravity = 2.4. 

The tensile strength of the horizontal joints is set equal to O.Sy'i[ plus a 15% 

increase to allow for strain rate effects, where f~ is the compressive strength of the 

concrete determined from cylinder tests to be about 29 MPa [6]. The strength of 

the grouting in the vertical joints and that of the bond between the dam and the 

foundation is unknown, so the lower value of 2.1 MPa is arbitrarily assigned to 

both. The value of Young's modulus is based on seismic surveys [52], and it and 

the values for Poisson's ratio and specific gravity were used in previous analyses 

[6]. Figure 5.3 shows the developed downstream profile of the dam. The nodes are 

numbered 1 to 60; the arches are labelled AO to A6 and the cantilevers C-7 to CS. 

This figure will serve as a reference drawing for later discussions. 

The foundation mesh shown in Figure 5.4 employs 296 nodes and 158 eight-node 

linearly interpolated brick elements. Reduced integration is used for the foundation 

stiffness. The foundation mesh extends outward from it's interface with the dam a 

distance of about 70 meters. The material properties of the foundation used in the 

analysis are as follows: 

Young's modulus= 13,800 MPa 

Poisson's ratio = 0.25. 

The foundation modulus is an average value based on seismic surveys [52], but does 

not account for possibly softer material on the left abutment. 

Figure 5.5 shows the finite element mesh of the water in the full reservoir 

condition. It consists of 420 nodes and 306 six- and eight-node fluid elements. 

The mesh extends radially outward from the dam for a short distance and then 

extends in the upstream direction for 180 meters. Note that since water-foundation 

interaction is not modeled, the boundaries of the water and foundation meshes need 

not coincide. The finite element mesh for the water used in the simulation of the 

1971 earthquake had its free surface 45 meters below the dam crest and is not 
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shown. 

5.3 Static load application 

Chapter IV describes various methods whereby the dead weight of the dam 

can be applied. Two will be considered here. In the first, which will be referred to 

as the instantaneous application method, the dead load is applied instantaneously 

to the continuous and completely finished structure. In the second, referred to as 

the construction sequence method, the dead weight is applied in a manner which 

attempts to simulate a construction operation using continuous grouting of the 

contraction joints. Figures 5.6 a and b compare the results of analyses of Pacoima 

Dam obtained using these two methods to apply the dead weight; also included are 

results for combined dead weight and hydrostatic load (for the full reservoir case). 

Both figures show the normal stresses in the joints at the crest of the dam (arch 

AO, see Figure 5.3 for arch and cantilever numbers) and the normal stresses on the 

horizontal cracking planes at the crown cantilever (cantilever CO). The deformed 

shapes of the top arch and crown cantilever are also shown. 

Comparison of Figures 5.6a and 5.6b shows that the arch stresses are sensitive 

to the manner in which the dead load is applied, while the cantilever stresses are less 

so. Application via the construction sequence results in stresses along the top arch 

of the dam which are typically less than or equal to 0.1 MPa tension or compression, 

while the instantaneous application results in stresses in the top arch which range 

from -0.4 MPa (compression) to 1.5 MPa (tension). (Recall that the joints are 

grouted and hence able to carry some tensile stress.) Since the hydrostatic load 

is applied in the same manner in the two cases, differences in the stresses under 

the combined loading are not as striking as in the case where the dead weight acts 

alone; nonetheless significant differences do occur at and near the abutments in 

the top arch. The smaller displacements which occur for the construction sequence 

calculation are attributed to the fact that the reference displacements for each 

row of elements are taken as zero when added. Thought to be more realistic, the 
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static solution obtained via the construction sequence method is used as the initial 

condition for the earthquake responses presented later. 

5.4 Localization of foundation and water stiffness matrices 

As outlined in Chapter IV, the condensed foundation and water stiffness ma

trices, [.KJ and [Kpp], respectively, are localized to preserve the bandwidth of the 

global stiffness matrix of the dam. In order to assess the loss of accuracy incurred 

by the localization process, the first six eigenfrequencies of the finite element system 

(with the joints in the closed position) are presented in Table 5.1 for the cases indi

cated. Comparison of case 1 (empty reservoir, original foundation stiffness matrix) 

and case 2 (empty reservoir, localized [ K]) . shows that localizing [ K J loses little 

accuracy; the errors in the computed eigenvalues range from 0.1 % to 1.2%. Cases 3 

and 4 both have the original foundation stiffness matrix and a full reservoir, case 3 

having the original ~Kpp] and case 4 the localized [Kpp]. Comparison shows that 

some noticeable error is incurred by localizing [ K PP J . The error is largest (about 

5%) for the first and fourth modes and ranges from about 0.1% to 2% for the other 

modes. Case 5 is included in Table 5.1 to illustrate the fad that use of the local

ized [Kpp] is, despite the errors incurred, a big improvement over the conventional 

lumped added mass representation of incompressible water (technique described in 

[46,53]), albeit at a cost of one dof per node. Comparison of cases 3 and 5 shows 

errors of 17% to 21 % in the latter. Incidentally, the resonant frequencies of Pacoima 

Dam for empty reservoir or low water condition, as determined by forced vibration 

tests [54,55] are in the range 5.1 Hz to 5.5 Hz for the fundamental symmetric mode 

and about 5.6 Hz for the fundamental antisymmetric mode. These values are in 

reasonable agreement with the finite element results. 

In order to further investigate the errors incurred in localizing [ .KJ, the foun

dation region as described by the original and local [ .KJ is loaded by nodal forces 

and the resulting displacements plotted (Figure 5. 7). Agreement between the two 

sets of displacements is nearly exact at the load point, and, although some errors 
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are evident at distant nodes, the displacements there are small. The agreement 

evident in Figure 5. 7 is consistent with that for the eigenvalues in Table 5.1. 

Results of an investigation of the errors incurred in localizing [ Kpp] are pre

sented in Figure 5.8. The water domain as described by the original and local 

[ Kpp] is excited by accelerations at the dam face, and the resulting hydrodynamic 

forces acting on the dam are plotted. Agreement between the two sets of forces is 

good, but not quite of the quality attained in Figure 5.7. These results are again 

consistent with those of Table 5.1. 

5.5 Dynamic analysis of Pacoima Dam under severe ground motion; 

full and partially full reservoir. 

Nonlinear dynamic analysis of Pacoima Dam is performed to simulate the 1971 

earthquake experience (water level 45 meters below the crest). As stated previ

ously, ground motion records were obtained by an accelerograph located at the site. 

However, a question of the degree of influence of the accelerograph location upon 

the record obtained can be raised. The instrument was located on the edge of a 

narrow, badly fractured ridge about 15 meters above the dam crest. Observation 

of the disturbance of topsoil and loose rock on the ridge crest as compared to other 

areas in the vicinity of the darn indicated that the ground motion on the ridge was 

unusually high [6]. Consequently, the applied ground motions used in this analy

sis are those of Figure 5.1 (all three components employed) reduced by a third to 

approximately account for amplification effects on the ridge. This reduction has 

been used in previous analyses [6]. It is expected that a more severe case for the 

stability of the dam is the full reservoir condition. To determine how the dam might 

have fared in this case, a second nonlinear analysis is carried out with the water 

level at the crest. Further, to assess the effect of joint opening, and to compare the 

nonlinear analysis results with conventional linear analysis results, additional linear 

analyses (joint opening prevented) at the two water levels are performed. For all 

the computations, the Rayleigh damping parameters o:o and a 1 are chosen to yield 



-86-

5% damping at 4 Hz and 20 Hz, while Llt = 0.01 seconds, and aB = -0.2 to provide 

moderate high frequency diss_ipation (0.5% at 10 Hz, 2% at 20 Hz). Each nonlinear 

analysis required about 40 minutes of CPU time on a Cray X-MP /48 computer. By 

comparison, each linear analysis required about 10 minutes of CPU time. 

Results of the analyses, including the static stresses and the maximum ten

sile and compressive stresses and joint openings reached during the earthquake, 

are shown in Figure 5.9. (All earthquake responses include the static component.) 

Figure 5.9a, for example, shows the top arch of the dam (Arch AO). Results are pre

sented both for the partially full and full reservoir cases. For. each case, the stresses 

across the arch under static (dead weight of concrete plus hydrostatic) loading, the 

maximum tensile stresses at the joints computed via a linear analysis, the maximum 

joint opening widths computed via a nonlinear analysis, the maximum compressive 

stresses at the joints computed via a linear analysis and the maximum compressive 

stresses computed via a nonlinear analysis are shown. Thus, for example, from the 

plot labelled "MAX. TENSIONS LINEAR ANALYSIS" for the partially full reser

voir case, the maximum tensile stress at the left abutment of the arch reached 5.0 

MP a (tensile stress positive) during the earthquake. It occurs at the downstream 

face of the joint and, at the time of its occurrence, the stress at the upstream face 

of the joint is -3. 7 MPa (compressive). The maximum tensile stress reached across 

the crest during the earthquake is 6.5 MPa at node 22 (for node numbers see Figure 

5.3), and it may occur at a different time from that at which the maximum tensile 

stress occurs at, say, the left abutment. Thus, the stress distribution shown is not 

the distribution at any particular time; rather, each joint is shown at the time the 

tensile stress reaches a maximum there. · Similarly, for any of the plots in Figure 

5.9a, the stresses (shaded, amplitudes given to one decimal place) or openings (un

shaded, amplitudes given to two decimal places) shown at each joint occur at the 

time the indicated quantity (MAX. TENSIONS LINEAR ANALYSIS, for example) 

reaches a maximum there, except, of course, for the static stress pictures. Note that 

in the plots of maximum openings, if no opening occurs at a joint, the joint is shown 

at the time the tensile stress reaches a maximum there (e.g. node 49, partially full 
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reservoir case), and that in the nonlinear analysis, the maximum compressive stress 

at a joint often coincides with partial opening of the joint. Figures 5.9c, 5.9e, 5.9g 

and 5.9i show the maximum stresses and openings at arches Al to A4 displayed 

in the same manner as Figure 5.9a, while Figure 5.9b, 5.9d, 5.9f, 5.9h and 5.9j 

show the corresponding results for cantilevers C-2 to C2. Incidentally, none of the 

maximum compressive stresses shown in Figure 5.9 occurred with a contact depth 

less than the 1/8 joint thickness minimum discussed in Chapter IL 

Results of the linear analyses to the earthquake motions show whether or not 

nonlinear behavior will occur and roughly indicate the amount of nonlinearity to 

be expected. Tensile stresses computed from the linear analyses with the reservoir 

partially full reach 6.5 MPa in arch AO (node 22) and about 2.5 MPa in a number 

of cantilevers, showing that opening of the contraction joints will take place. In 

addition, this opening will transfer considerable load to the cantilevers and lead to 

an increase in the cantilever tensions. Presence of the full reservoir increases the 

tensile stress to 9.1 MPa in arch AO (node 36) and to 4.0 MPa in several cantilevers, 

showing that significant joint opening and cracking will occur. Maximum compres

sive stresses (12.5 MPa in arch AO, node 29, full reservoir) from the linear analyses 

are not in the nonlinear range, but impacts and partial joint openings may result 

in significantly higher values. 

The nonlinear response of the dam with the partially full reservoir (earthquake 

simulation case) exhibits complete separation in the upper portions (top 50m) of 

most of the contraction joints with the maximum opening of 2.3 cm occurring on 

the upstream face at node 16. As outlined in previous chapters, it is assumed in 

this study that slip is prevented in the vertical contraction joints by friction and/ or 

shear keys and in the horizontal cracking planes by friction. Even in the case of 

complete separation of a vertical contraction joint, slip would be prevented if the 

shear keys (30 cm deep in Pacoima Dam) were perfectly "square". However, the side 

walls of these keys are actually beveled at 20° to 30° (measured from the normal 

to the contraction joint) and would allow some free slip under complete separation 

with unknown consequences on the dam response. (If a joint opens uniformly by 
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1 cm, relative radial displacement of up to 0.5 cm, a significant amount, would 

be permitted.) Although the openings of the contraction joints increase the loads 

carried by the cantilevers; nonetheless, the cantilever tensions remain below the 

3.1 MPa tensile strength except at the downstream face at node 24 where a small 

amount of cracking occurs. Thus, for the cantilevers, the no-slip assumption may 

not be violated. 

The predicted openings of the contraction joints are not necessarily in conflict 

with the lack of observed cracking following the 1971 earthquake since such evidence 

may have been hard to detect. On the other hand, a 2.4 cm permanent narrowing 

of the canyon which occurred as a result of the earthquake [6] and is not induded 

in the analysis would, assuming that it occurred simultaneously with the strong 

ground motion, offset much of the computed openings of the contraction joints 

and consequently reduce the cantilever tensions. Also, the uniform ground motion 

assumption (i.e., the assumption of spatially uniform free-field motion of the canyon) 

is generally felt to result in an overestimation of the dam response [ 56]. The only 

joint opening predicted by the analysis which is known to have occurred is that at 

the left abutment of the dam. However, the actual opening may have been caused 

by the slumping of the rock mass on the left abutment which was not included in 

the analysis. 

The maximum arch compressive stress in the nonlinear response with the reser

voir partially full is 12.7 MPa which occurs on the crest at node 43 and is less than 

half the value off~ (29 MPa). Consequently it does not violate the assumption of 

a linear stress-strain relation in the concrete. No other arch compression exceeds 

10 MPa and compressions in arches Al, A2 etc. are much smaller. The maximum 

cantilever compressive stresss is 6.3 MPa. It occurs at the upstream face at node 

24 and corresponds to a partial opening on the downstream face at that node. 

Although the times at which the openings and compressive stresses reach maxi

mum values are not shown in Figure 5.9, most of the larger openings and compressive 

stresses in the dam for the partially full reservoir occur between t = 8 seconds and 

t = 9 seconds. To further examine the nonlinear behavior during this time period, 
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Figure 5.10 presents a sequence of 12 'snapshots' taken from t = 8.21 to t = 8.30 

seconds and from t = 8.54 to t = 8.98 seconds. The layout of each snapshot is the 

same as that in Figure 5.6; i.e., the stress distributions along the top arch (AO) and 

crown cantilever (CO) are presented together with the deformed shapes, including 

joint openings, <;>f the arch and cantilever. The first three pictures, at t = 8.21, 

t = 8.25 and t = 8.30 illustrate the behavior during the period when the maximum 

downstream displacement occurs. The magnitude of this symmetric deformation 

is about 5.0 cm at node 22. The deformation is accompanied by compressive arch 

stresses, reaching _8.6 MPa at the left abutment (node 58) at t = 8.25. The accom

panying cantilever stresses are much smaller (max. 1.6 MPa compression, 1.5 MPa 

tension) suggesting that much of the load is taken by arch action. 

Both the maximum joint opening and maximum compressive stress on the 

dam occur during the period t = 8.54 and t = 8.98 seconds. The maximum joint 

opening (2.3 cm at node 16) occurs at t = 8.63 seconds at the time of the maximum 

upstream displacement of the dam (about 6.0 cm radial displacement at node 22) 

and is accompanied by significant opening at several other joints along the arch 

and by a significant increase in cantilever stresses (up to 4.3 MPa compression, 2.3 

MPa tension). Approximately half a cycle later, at t = 8.73 seconds, the arch has 

displaced into an axisymmetric configuration, and the maximum compressive stress 

of 12.7 MPa occurs at node 43 under a condition of partial opening. Another half 

a cycle later, at t = 8.91 seconds, significant opening occurs at several joints across 

the arch, and the displacement and stress patterns are very similar to those at the 

previous large upstream excursion at t = 8.63 seconds. 

The full reservoir significantly increases the dam response (Figure 5.9) with 

openings in the contraction joints reaching 5.3 cm at node 29 and openings in the 

cracking planes reaching 6.7 cm at node 37; both maxima occur under complete 

separations. The maximum compressive arch and cantilever stresses reach values 

of 19.7 MPa (at node 58) and 25.2 MPa (at node 23), respectively. Note that 

both of these maximum compressive stresses are accompanied by partial opening 

of the joint from the opposite face with a corresponding reduction in the stress 
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block depth. However, unlike the partially full reservoir case, where large (2::: 9 

MPa) compressive stresses only occur at partially open joints, in the full reservoir 

case compressive stresses up to 18 MPa occur at joints which are completely closed 

(node 29). Further, in the full reservoir case, the arch compressive stresses at the 

crest and. the cantilever compressive stresses in the top horizontal joint are large 

enough to bring the linear stress-strain assumption for the concrete into question. 

In addition, both the large separations which occur in the contraction joints and the 

large lift-off in the top horizontal joint violate the no-slip assumption. As pointed 

out previously, the beveled contraction joints allow some relative radial motion to 

accompany complete opening, while the assumption that friction along the cracking 

planes prohibits slip is obviously violated in the case of complete lift-off. 

Figure 5.11 presents a sequence of 11 'snapshots' of the top arch and crown 

cantilever for the nonlinear response with full reservoir taken between t = 8.04 and 

t = 8.53 seconds. During this period, maximum values are reached for joint openings 

in the top arch and crown cantilever as well as for the cantilever compressive stresses. 

The maximum arch compressive stress of 19.7 MPa occurs at node 58 at a slightly 

later time, but this is an isolated stress event occurring over a much reduced contact 

area for a very short duration and not accompanied by other large compressions 

along the arch. Consequently, the large compressive stress occurring at and near 

the crown of the arch during the time period encompassed by Figure 5.11 may be 

of greater importance. 

Significant contraction joint opening, up to about 2.0 cm at node 36, occurs dur

ing the upstream displacement of the arch from t = 8.04 to about t = 8.20 seconds, 

and is accompanied by small partial openings of the cantilever joints. Complete 

separation of a cantilever joint (node 30) occurs at t = 8.22 seconds when the dam 

is beginning its downstream excursion. Approximately one quarter of a cycle later, 

at t = 8.28 seconds, the dam reaches its maximum downstream displacement, about 

11.0 cm at node 29, coinciding with high compressive stresses across almost the full 

length of the arch. The maximum stress of 18 MPa occurs at the crown of the 

arch and is at about the upper limit for the linear stress-strain assumption. Shortly 
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thereafter, another cantilever separation occurs at node 30 followed by recontact 

and development of a large cantilever compressive stress (18.4 MPa) at maximum 

upstream displacement ( t = 8.37 seconds). After reversal, complete cantilever sep

aration again occurs culminating in the maximum opening of 6.6 cm in the top 

cracking plane at t = 8.47 seconds and coinciding with the maximum contraction 

joint opening (node 29) of 5.3 cm. The cycle concludes at about 8.53 seconds. There

after, no joint openings or compressive stresses occur which are comparable to those 

occurring during the time period encompassed by Figure 5.11. However, because of 

the violation of the material linearity ( 25 .2 MP a compr~ssion in cantilever -1) and 

no-slip assumptions, a more sophisticated analysis would be required to determine 

the fate of the dam in the full reservoir condition subjected to the specified ground 

motions. The cantilever lift-offs also warrant further investigation, as the source of 

this feature of the response is not evident. 

Selected time histories of the dam response, shown in Figure 5.12, provide 

additional insight into the nonlinear behavior. Each quantity plotted is displayed 

from t = 6.0 seconds to t = 10.0 seconds since most of the important activity 

takes place in this time range. Plots of average radial dynamic displacement at 

node 29 (Figure 5.12a) show larger peak amplitudes and some period elongation 

due to joint opening, although the period elongation for the full reservoir case 

is obscured by a high frequency component of the response. For the nonlinear 

responses, displacements are generally greater upstream than downstream because 

of joint opening although an occasional large downstream displacement is seen as, 

for example, in the full reservoir case at t = 8.28 seconds giving rise to high arch 

compressive stresses (see Figure 5.11). 

Time histories of the contraction joint openmgs at node 29 (Figure 5.12b) 

show that the precompression provided by a full reservoir significantly reduces the 

number of joint openings; i.e., the joints tend to rattle less. On the other hand, 

the openings which do occur are typically of greater amplitude and longer duration 

(0.1 to 0.15 seconds for the larger openings) than in the partially full reservoir case 

(about 0.08 seconds duration). As was pointed out in Chapter III, joint opening 
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may allow for water intrusion with unknown consequences on the dam response. 

The effect may not be large at node 29 where water pressures are low, but could 

be important at, say, node 31, approximately 30 meters below the surface. Figure 

5.12c shows the time histories of joint opening at node 31 at the upstream faces 

of the vertical and horizontal joints (full reservoir). At the vertical joint, a single 

significant opening of 0.6 cm with a duration of 0.09 seconds occurs at t = 8.42 

seconds, while at the horizontal joint, a considerable amount of opening occurs in 

the time period t = 6 to t = 10 seconds, with a maximum opening width of 3 

cm and duration of 0.11 seconds at t = 8.31 seconds. The time history of the 

absolute water pressure (atmospheric plus hydrostatic plus hydrodynamic) at node 

31 (Figure 5.12d) shows values at t = 8.31 and t = 8.42 seconds of 0.45 MPa and 0.15 

MPa (compression positive for water pressure), respectively. These are not close to 

the peak compressive pressure (0.85 MPa) because the large upstream openings in 

the joints occur during an upstream excursion when the dam is accelerating away 

from the water. Still, water intrusion is possible and warrants investigation. 

The time histories of arch compressive stresses at node 29, presented in Figures 

5.12e exhibit very high frequency oscillations, mitigated somewhat by the dissipa

tion parameter as, which may be partly numerical and partly due to impacts. With 

the dilatational wave velocity in concrete about 3300 m/s and with an element di

mension of, at most, 20 meters, the time for a stress wave to traverse an element 

would be about 0.006 seconds, or about half the time step length (0.01 seconds). 

Consequently the high frequency impact behavior of the stress responses probably 

cannot be accurately captured by the element and time step size employed. 

Another phenomenon which was not included in this study, but was mentioned 

briefly in Chapter III is cavitation, which occurs where the absolute pressure reduces 

below zero (actually below the vapor pressure of water, about 0.002 MPa). The plot 

of the absolute pressure at node 30 (full reservoir) in Figure 5.12f shows that while 

it drops below zero several times between t = 6.0 and t = 10.0 seconds, the negative 

pressure peaks are isolated and of short duration, and only two (-0.15 MPa at 

t = 8.40 seconds and -0.1 MP a at t = 8.90 seconds) are significantly less than zero. 
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In addition, node 30 along line CO is the only one where cavitation is indicated. 

Further, no cavitation occurs at all with a partially full reservoir. These results 

suggest that, at least for this analysis, cavitation may be a relatively unimportant 

effect. The dependence of the pressure responses on water compressibility (not 

included) is noted. 

The most important conclusion from the analysis of the dam with a full reser

voir subjected to severe ground shaking is that the primary assumptions on which 

this analysis method are based, namely the no-slip assumption in the joints and the 

linear stress-strain assumption in the concrete, are violated to too great an extent to 

draw any definite conclusions regarding the dam's stability, and thus how it might 

have fared during the 1971 earthquake had the reservoir been full. 

5.6 Dynamic analysis with lower "intensity ground motion 

A further study was undertaken to examine the response of the dam with a full 

reservoir to ground motions somewhat less intense than those used in the analysis 

described above. For this analysis, the records in Figure 5.1 are scaled to give a 

maximum horizontal ground acceleration of 0.5g. The scaling factor required is 

about 0.44, and results in a maximum vertical acceleration of about 0.3g. While 

considerably less intense than the ground motions measured at the site, this still 

represents a substantial earthquake. Both linear and nonlinear analyses were per

formed. Results of the analyses, including static stresses, maximum dynamic tensile 

and compressive stresses and maximum dynamic joint openings are shown in Figure 

5.13, displayed in the same manner as the results for previous analyses (Figure 5.9). 

It is apparent that the dam response is considerably reduced from that which 

occurs due to the more intense ground motion. However, maximum tensile stresses 

from the linear analysis are still large enough (5.2 MPa arch at node 36) to indicate 

that nonlinear behavior will be present. In fact, significant separations occur in 

several contraction joints near the top of the dam, reaching a maximum of 2.2 cm 

at node 36. This is a violation of the no-slip assumption. Below the top arch of 
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the dam, much less opening takes place. No cracking of the joints along the crown 

cantilever occurs, but significant partial opening takes place in the top two joints in 

cantilevers C-1 and Cl (Figures 5.13b and c). The maximum arch and cantilever 

compressive stresses are 10.8 MPa (node 58) and 8.3 MPa (node 38, coinciding with 

the maximum opening at that joint), respectively. The magnitudes of these stresses 

are well within the linear stress-strain realm. Stresses in the lower reaches of the 

dam are much smaller. 

Figure 5.14 presents a sequence of 'snapshots' of arch AO and cantilever Cl 

(rather than CO which does not experience any cracking or high stresses) for the 

nonlinear response taken between t = 8.93 and ·t = 9.40 seconds, during which 

time the most significant joint openings and compressive stresses occur. At t = 

8.93 seconds, complete lift-off of the uppermost block of cantilever Cl is present. 

However, the amount of lift-off is small (about 0.1 cm on the upstream face) and 

is of very short (about 0.02 seconds) duration. The maximum arch compressive 

stress (9.3 MPa at node 36) occurs at t = 8.95 seconds and is associated with a 

downstream excursion causing compression across the arch. At t = 8.97 seconds, the 

arch is still on the downstream excursion, but the peak compressive stress (8.6 MPa) 

has shifted to node 29. Another small and brief separation at the horizontal joint at 

node 37 occurs at t = 9.02 seconds. A short time later (t = 9.23 seconds), the arch is 

once again displaced in the downstream direction. During the following upstream 

excursion of the arch, at t = 9.33 seconds, the maximum cantilever compressive 

stress (8.3 MPa) occurs at node 38 while the maximum contraction joint opening 

(2.2 cm at node 36) and cantilever joint opening (1.8 cm at node 37) occur one 

time step later at t = 9.34 seconds. Note also that complete separation of the left 

abutment joint occurs at t = 9.33 seconds. Lastly, the downstream displacement 

at t = 9.40 seconds results in a stress pattern in the arch very similar to that at 

t = 8.95 seconds. 

Figure 5.15 presents time histories of average radial dynamic displacement at 

node 29 for linear and nonlinear analyses. These time histories are similar both in 

terms of amplitudes and periods, reflecting the limited amount of nonlinear activity 
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which takes place. However, this activity is sufficient to cause a 2.2 cm separation 

in the contraction joint at node 36 which, as mentioned earlier, is of some concern 

regarding violation of the no-slip assumption. The minor lift-offs seen in several 

horizontal joints may be less important. 

5. 7 Investigation of no-slip constraint in joints 

An additional calculation was made to investigate some features of not per

mitting any slip in the joints as pertains to possible collapse of the dam. The 

pseudo-static response of the dam was computed for a constant ground acceleration 

in the downstream and cross-stream directions. The tensile strength of all joints was 

set to zero, the reservoir was taken to be empty, and no dead load was applied. Fig

ure 5.16 shows the results for a 1 g ground acceleration applied in the downstream 

direction. The stresses and openings along each of the arches AO to AS and can

tilevers C-4 to C4 are displayed in a manner similar to Figure 5.6. In addition, the 

deformed shape (openings omitted) of each arch and cantilever is shown in dashed 

lines. The maximum opening at any joint is 3.69 cm on the downstream face of the 

dam-foundation interface joint at node 10. :Most of the vertical contraction joints 

and interface joints are completely or almost completely open except in the lower 

reaches of the dam where some joints have significant contact depths. Most of the 

horizontal cracking planes are open (by as much as 1.45 cm) on their downstream 

faces but are closed on their upstream faces. The maximum radial displacement of 

the crest relative to the ground is 19.8 cm. If the ground acceleration is increased 

beyond 1 g, the joint openings and compressive stresses increase linearly but the 

dam remains stable. Thus, the no-slip constraint on the joint provides sufficient 

stiffness to prevent collapse even though joints are free to open. The results of the 

pseudo-static analysis with a ground acceleration of 1 g in the cross-stream direc

tion also showed the dam to be stable, with a maximum radial displacement of the 

crest of 3.1 cm. Thus, joint slip appears to be an important ingredient for collapse, 

and the present analytical technique cannot be used for collapse simulations. 
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mode 1 (S) 

mode 2 (A) 

mode 3 (S) 

mode 4 (S) 

mode 5 (A) 

mode 6 (A) 
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Case 1 Case 2 Case 3 Case 4 Case 5 

original local original original original 

empty empty full full full 

- - FEM FEM LAM 

- - original local -

5.203 5.213 4.140 4.363 3.392 

5.245 5.270 4.324 4.405 3.588 

7.888 7.896 6.624 6.672 5.486 

8.878 8.967 7.363 7.755 5.824 

10.032 10.129 9.119 9.105 7.164 

10.432 10.565 9.346 9.358 7.357 

Eigenfrequencies (hz.) of Pacoima Dam-water-foundation sys

tem under various conditions. FEM = finite element. LAM 

= lumped added mass. S = symmetric mode. A = antisym

metric mode. [ RJ = foundation stiffness matrix. [ Kpp j = 

water stiffness matrix. 
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TIME CSECSl 
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TIME CSECSl 
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Figure 5.1 
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TIME CSECSl 

Accelerograms obtained at Pacoima Dam during 1971 San Fer
nando earthquake. 
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Figure 5.3 Dam mesh showing node numbers and the arch and cantilever 
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Figure 5.6 
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a and b (next 2 pages). Results of static load application to 

Pacoima Dam showing normal stresses (MPa, tension positive, 

compression negative) in arch AO and cantilever CO and their 

deformed shapes (solid line, original profile dashed line). 
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---- ORIGINAL CKJ 
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FORCE AT 
NOOE 35 

s ·a 

Applied forces and plotted displacements are in the z direction (approximately 
normal to the dam midsurface). 

1 

0 l 

FORCE AT 
NOOE 3 

--- ORIGINAL CKJ 

FORCE AT 
NODE 35 

CKJ 

9 8 

b. Applied forces and plotted displacements are in the x direction (normal to the 
foundation interface). 

Figure 5.7 Results of investigation to assess localization of [ .K]. Forces 
are applied at nodes 3, 15 and 35 on the foundation interface, 
and the displacements are plotted around the interface. Each 
displacement profile from the original [ .K] is normalized to a 
peak value of one and the scale factor required is also used 
to scale the corresponding displacement profile from the local 
[.KJ. 
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b. Acceleration of node 31. 

Results of investigation to assess localization of [ Kpp]. Applied 
accelerations and plotted hydrodynamic forces are in the z di
rection (approximately normal to the dam mid-surface). Each 
hydrodynamic force profile from the original [ K PP] is normal
ized to a peak value of one and the scale factor required is also 
used to scale the corresponding hydrodynamic force profile from 
the local [ Kpp] . 
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a to j (next 10 pages). Summary of the earthquake responses 

of Pacoima Dam t~ the records of Figure 5.1 scaled by 2./3. 

Results for both the partially full and full reservoirs are pre

sented: static stresses, maximum tensions for linear analysis, 

maximum openings for nonlinear analysis, and maximum com

pressions for linear and nonlinear analysis. Stresses (MPa) are 

shaded with amplitudes given to one decimal place. Openings 

(cm) are unshaded with amplitudes given to two decimal places. 
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I 
I-' 
I-' 

er' 



1.1· 1.1· '%'.! - = J_-i ::r~ J::J - =J_l)~J::J ~· 
.: ., 
('I) 

c.n -0. I -1.1 -0.I -1. '1 -1.. -a . ., . 
(o 

STATIC STATIC ~ 

1.1· I. 1=1--1-:t~ T.-1 _ =1_L2':J? 
Cl 1.e a.a 1.1 -a • ., o. 1 1.1 "11 

XI 
Pl "AX. TENSJDNS. LINEAR ANALYSIS MAX. TENSIONS. LINEAR ANALYSIS :II 
::s ..... 
c+ .... ..... 

"" XI 

~ 

l.l!_1LLt~-1 
c: 

1.1-1-r~"-T-1 
r 

r r-
~ r -i I 

"" 
...... 

:II J_ -s.o ...... 
...... "' c: ...... 

"' r- I ,,_ 
- - - 2.51 "' - - --2.4 r-

aq 1.s 2.2 2.1 ::D -s.e -4.7 2.s ., < ::D 
0 MAX. DPENINGS. NDMLJNEAft ANALYSIS Cl "AX. DPENINGS. NDMLIMEAft ANALYSIS I'll s:: - U) 

::s :a "' ~ :u 

s 1.-1-1-r ~-· -_T-1 r.-J• < 

_]=l~J.;T.-1 
Cl -0 :II c+ ..... 

0 J_ -2.9 :::! 
Cll -- - - - -4.1 0 -S.I -4.B -4.S -s. I -S. & -S. 0 Pl 
(D' HAX. ca"PftESSJDNS. LINEAR ANALYSIS MAX. CDttrftESSIDHS. LINEAR ANALYSIS 
II 
~ 

1.1~1-i~"-~ 1.1-1-r~·"-y-1 ---w ._, 

X-25.2 J.:-s.o 
- - - -9.7 - - - -I.I 

-4.2 -4.8 -4.7 -t. s -4. a -4. a 
"AX. CD"PRESSIDNS. NDNLINEAR ANALYSIS MAX. CD"PRESSIONS, NONLINEAR ANALYSIS 



FULL RESEAYIJIA 

~
. ~ ;!{-- _;_I2.' -=.a. ' 

>·;i, J: -1.,, 
J:.?\' ~. _, ......... J;;r-l::"°"" '\.~ / ,..._. STATIC • f "o 

,,,,. t\ .., <" I ,... 'II ,, ~6 ~ • 

/ ~ ,-i.'1 ...:--r-r _!_.s -~ ·,;. ~~~ ,,. ~ r-:rll -,.,./ 
~ 

X _,.,-S-s.;--" ('·"·? ·~ 
::> "!>•~ .o "' °'.• "AX. TENSIDNS f. I "::..... 't> ,,_.~,? LIN•AR ANALTSIS •• • ~· 

"' " o.. sa a. ao 1 • /-:.. 
... A· --r-r -· o, .,. •• 

~ .. ~· -u-:r~· '!' 

~.. ~ ~-r-o. ;-./.- ('"I.,, " 
:~ 0·" • 0. ~ /vfl6 MAX. llPENINGS • '.t ~ .. ~?'/ .,,!'• NONLINEAR ANALYSIS '· /1 ,(<,'.fl ~ -1.t -I.I -: o 

':'. o-~ ~I .,. , .to v:1·'b 
<)' ~ 1' Io." ~>. ~ -: 
''\ :...• ,.i-,.,--,,_, L°'l:_' ~ 

ft•"' MAX. CDMPRESSIDN;>.ci .._, 

,:( ~ .,,~ LINEAR ANALYSIS ">., ~q ~ . ..... .... . ... ~ ~· ' ~"· .....- -.-- -. . _, ·~ . 
> ,. ,.... .,, -;;J ~ 

PARTIALLT FULL RE . ..o. a ..a. s SERYIH R 

• ~· \ --r- -r-.::!'·a 
~-~ .. '\.., ,..• l\-o.1-l:Jt~o 
"'~ /~· STATIC ""O.ci 1" • '- • ~· ~ 'X :·,. .. *~r~1~· ~: ~~)~~y.~ x ......... _IJ ..., . " 'L• •• , ... ~~ •·"" MAX. TENSHINS '·:t (' 

i" "' LINEA )-.. (',q .,. ft ANALTSIS •• ' 

~"!" ·" ~-~' }. ..... ..!.[.s _-11.. ~.,. /~"' 

~
~ - - ~ ~IP ~ ~ "' •·' ... .r.-ff ... !"~ /\·· .. .. •• , •••• ~:. ll.. ('. 

I' '> NDNLI > 1q v NEAR AHRL TS IS •I <'-
... ~ " 1..1 ~ I-s.. -=-2·. .,.,. ,;.,. ~ ~- ~· ~· .. x-~ ,. ..... -... -.fr ~. q"I> ~1 ~<>' .... CDMPRESSl ..... r )'. • ~ v.,.. LINEAR ANALTSIS ~ x 
,,· " ~·· ~ I .... o ...... \:!~ .,,~,, 

/>". J_. ~.. • / .. x- \-. ....... -....... Tr ~~ .. '}' J:_)_ •Cl '> ~ _ ,.. ........ T--,:.::.£. ·, 
~ ,*\•" MAX. COMPRESSION:•., ~ . ~~-<.. ~ ,...,. NONLINEAR ANALYSIS ">.• ~t> 
~ ~ ·~ ~ . ~ ... • 

Figure 5.9e. 

"'(y. ~<Ji·· MAX. COHPRESSIGN~.t~ () 
O' >• NOML I NEAR AN "( ('_" ALYSIS # 

A 

• ... 

rch 2 (ground . 1" '~ /' m~oo • 
scale = 2/ 3) ~ . ,,> 

I .... .... 
~ 
I 



"rj l_l~ J l J.~ r_J l. l!_ J-r ~- ·-y-__.J al:j' 
]_ -0.1 ~ ., 

- - - - -o.s (I) 

Ol -o.s -1. 1 -a.a -1 • ., -1... -o. 7 

~ STATIC STATIC 
:-+> 

f.J~J_LTT._J l. ]-J L 1': :r_J 
- - a.1 -1.2 - - - 2.1 

l. l 1 •• -a. 2 a.e 1. 1 \I 

() D 
MAX. TENSJDNS. LINEAR ANALYSIS MAX. TENSJDMS. LINEAR ANALYSIS :n 

~ -i ::s -c-. 

l.1~ J _~ 1; ;r.:J 
"" l.J-l-J1_£·-r_J XI 

iii" c: r 
< r- r 
ti> r -< I ., 

:JI "'11 ...... 
. ] ....... -a.1 

...... I--' "' c: w - UJ r I 
()(I "' - - - _.--I.I r ., 

1.1 2.1 -4.1 :JI -a. I -4. D -a. I 0 < :JI 
~ "AX. GPENIHGS. HDNLJNEAR ANALYSIS a "AX. DPENJHGS0 NaHLIHEAA ANALYSIS "' ::s - (J) 

p.. :JI 1'11 
:JI 

s 

l.1 r.1~1-11::r_J 
< 

- =tl_:[T._J a 
0 .... 
c+ :II ..... 
0 
::s 
t/l 
(I 

~ -4. s -a. 0 -s .• -s. ... -s. 1 -2.1 
iii" MAX. CaMPftfSSiaNs. LINEAR ANALYSIS MAX. CO"PAESSIONS. LINEAR ANALYSIS 
II 

t-.,j 

f.1-llTR l.1~1-1~·· -r__.J ---~ ....__.. 

]_ -2.1 

- - -10.2 _ - - - -S.6 
-4o. 2 -5. 2 -4. SI . -4o.D -4.2 -S.5 

MAX. COMPRESSIONS. NONLINEAR ANALYSIS MAX. CGMPftESSIONS. NONLINEAR ANALYSIS 



-114-

PRATIALLY FULL RESERVDIR 

FULL RESEAVl:UA 

~ '\ ~·" A-·' ...... ~ ... fl:t 

" ~· '}/, 1,,!" I .._!1' ~ p• t:f/ ,,. 

i
1
L !.';-~ ;,LJ..~: ~ i1kt·~a ~ ;h~ ttl ;; i

1
L .; ! ~ 

r ff I /; :i ::! /.: ~ a: t:I :; ~ 'f.:; ~ a: .. H .. ~ H" ;; ~ H"' :l ~ ~H ~ i .. H ~ I . ·:i a • ZZN • Le• I'- 0..11:• • O..c 
'1\ ll:;; N\ '1 ~a:..:\ Cf a:' o I c' d I~ 

~\__.J~ o\__.J~ i ~ ~.\__.J~.: ; ; .. \~~ ~ ~ .-.\~~ -~ i ,, '*· 1\ \C" ..J ~\ '"" z -.\~ \C",S: Vfr'"" \~. !IC z 

·0:0·~·0<~:0~ 
0 'o • 't.. ,. 't... "C!t ~, 'o 

Figure 5.9g. Arch 3 (ground motion scale= 2/3). 
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PARTIALLY FULL RESERV~IR 

FULL AESEAVGIA 

Figure 5.9i. Arch 4 (ground motion scale = 2 / 3). 
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(next 6 pages). Sequence of snapshots of arch AO and can

tilever CO from the nonlinear earthquake response of Pacoima 

Dam to the records of Figure 5.1 scaled by 2/3. Results are 

for the partially full reservoir: normal stresses (shaded, ten

sion positive, compression negative, amplitude given in MPa 

to one decimal place), joint openings (unshaded, amplitude 

given in cm to two decimal places), and deformed shape (solid 

line, original profile dashed line). 
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Figure 5.11 
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(next 6 pages). Sequence of snapshots of arch AO and can

tilever CO from the nonlinear earthquake response of Pacoima 

Dam to the records of Figure 5.1 scaled by 2/3. Results are 

for the full reservoir: normal stresses (shaded, tension pos

itive, compression negative, amplitude given in MPa to one 

decimal place), joint openings (unshaded, amplitude given in 

cm to two decimal places), and deformed shape (solid line, 

original profile dashed line). 
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Figure 5.12 

-132-

a to f (next 7 pages). Selected time histories (6.0 to 10.0 

seconds) from various analyses of Pacoima Dam using the 

records of Figure 5.1 scaled by 2/3. 
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LINEAR ANALYSIS, PARTIALLY FULL RESERVOIR 
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Figure 5.12a. Average dynamic radial displacement at node 29 
(ground motion scale= 2/3). 



..... 
c 

..... • 0 

-134-

0 
LINEAR ANALYSIS. FULL RESERVOIR -

c 
• 

N<t.--.-------------........ .,.....---~--------------------~---.......----~-----------t i .O 7.0 B.O 9.0 1 .0 
T IHE CS.ECSJ 

0 
NON-LINEAR ANALYSIS. FULL RESERVOIR 

0 . 
N 
1:~.=o----~~1~.~o--~--~-e~.-0,,,__~~~__,,,,9~.~a--------~1,...,.,.o 

TIME CSECSJ 

Figure 5.12a. (continued). Average dynamic radial displacement at node 29 
(ground motion scale= 2/3). 
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Opening of vertical joint on upstream face at node 29 
(ground motion scale = 2/3). 
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a toe (next 5 pages). Summary of the earthquake responses 

of Pacoirna Dam to the records of Figure 5.1 scaled by 0.44. 

Results are for full reservoir: static stresses, maximum ten

sions for linear analysis, maximum openings for nonlinear 

analysis, and maximum compressions for linear and nonlin

ear analysis. Stresses (MPa) are shaded with amplitudes 

given to one decimal place. Openings (cm) are unshaded 

with amplitudes given to two decimal places. 
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Figure 5.14 

-146-

(next 6 pages). Sequence of snapshots of arch AO and can

tilever Cl from the nonlinear earthquake response of Pacoima 

Dam to the records of Figure 5.1 scaled by 0.44. Results are 

for the full reservoir: normal stresses (shaded, tension pos

itive, compression negative, amplitude given in MPa to one 

decimal place), joint openings (unshaded, amplitude given in 

cm to two decimal places), and deformed shape (solid line, 

original profile dashed line). 
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o NON-LINEAR ANALTSIS. FULL RESERVOIR 
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0 
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TIME CSECSl 

Figure 5.15 Selected time histories (6.0 to 10.0 seconds) from various 
analyses of Pacoima Dam using the records of Figure 5.1 
scaled by 0.44. Average dynamic radial displacement at node 
29. 
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a and b. (next 2 pages). Results of pseudo-static analy

sis of Pacoima Dam using a lg ground acceleration in the 

downstream direction: compressive stresses (shaded, ampli

tude given in MPa to one decimal place), joint openings (un

shaded, amplitude given in cm to two decimal places), and 

deformed shape (dashed line). 



-155-

Figure 5.16a. Pseudo-static test. Arches AO to AS. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

In this dissertation, the nonlinear response of jointed concrete arch dams to 

earthquake excitation is examined. The development of a two-dof nonlinear spring 

element to model the gradual opening and closing of joints in two-dimensional slabs 

and arches is first outlined. To demonstrate the accuracy and efficiency of this 

equivalent joint element, the results of static and dynamic analysis of a two dimen

sional arch, in one case modeled with slab finite elements connected by these joint 

elements, and in the other case modeled by a fine discretization through the depth 

of plane finite elements and joint springs, are compared. Further, an extensive 

analysis of the arch structure, using the slab element-equivalent joint element dis

cretization, is carried out by subjecting the arch to a series of successively stronger 

ground motions in order to observe the increasing amout of joint opening which 

occurs and its effect on the dynamic response of the arch. Thereafter, the gener

alization of the two-dimensional joint element for use in a three-dimensional arch 

dam model is described, together with the treatment of some important features 

of the analysis, namely foundation-structure interaction, fluid-structure interaction 

and dead load application. Lastly, all these features are incorporated into a series 

of three-dimensional linear and nonlinear analyses of Pacoima Dam in which the 

dam-foundation-water system {full reservoir and partially full reservoir) is subjected 

to ground motions of various intensities. 

6.2 Conclusions 

The results of Chapter III show that the equivalent joint element, whose devel

opment is outlined in Chapter II, is capable of modeling with a reasonable degree 

of accuracy the gradual opening and closing mechanism of a two-dimensional in

terface joint. Further, the results show that the opening and cl_osing of joints in a 
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two-dimensional arch has a significant effect on the dynamic response. 

As shown in Chapter V, inclusion of a massless foundation region and an in

compressible water domain can be accomplished efficiently and accurately for a 

three-dimensional arch dam by condensing out all dof not connected to the dam 

and then localizing the condensed matrices. However, there are still errors incurred 

from omitting foundation mass and water compressibility. Those arising from omit

ting foundation mass are thought to be tolerable, while water compressibility effects 

may be important in some cases. However, inclusion of water compressibility can 

only be accomplished with a great increase in computational effort. 

Because of the dependence of the nonlinear dynamic response on the initial 

static solution, it is necessary to apply the dead weight of the dam in a more realistic 

manner than instantaneously to the continuous and completely finished structure. 

Simulation of the construction process considerably reduces the dead weight stresses 

in the upper part of the dam, especially near the abutments, and should have an 

important effect on the computed dynamic openings of the contraction joints. 

The results of the dynamic analysis of Pacoima Dam in Chapter V show that, 

for moderate to severe ground shaking, several nonlinear phenomena are present 

with varying degrees of importance. Of these, the most important is the opening of 

the upper portions of the vertical contraction joints and dam-foundation interface 

joints. Opening and separation of these joints occurs even at moderate levels of 

excitation, even if the joints are grouted, and significantly affects the dam's response. 

The separations would most certainly be accompanied by appreciable joint slip, an 

effect not considered here, since typical shear keys have beveled geometries. The 

effect of the no-slip constraint is presently unknown. Slip in the contraction joints 

could be approximately included with the addition of perhaps three more relative 

dof per node. Although this would double the computational effort, it would greatly 

improve the validity of the analysis procedure. 

Another important nonlinearity revealed in the analysis of Pacoima Dam, which 

is partly induced by the loss of arch stiffness, is cracking in the cantilevers. In addi

tion, the analysis with full reservoir and intense ground motion predicts significant 
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lift-offs in the cracking planes, which, once again, violate the no-slip constraint. 
\ 

Generalization of the analysis technique to include slip in both the horizontal crack-

ing planes and vertical contraction joints appears to be very difficult. The level of 

excitation, with full reservoir, which produces significant lift-offs in the cantilever 

cracking planes also results in compressive stresses in the nonlinear range. Nonlinear 

behavior in compression is another feature which appears to be very difficult to in

corporate in the present scheme. Thus, the present analytical technique, generalized 

to include slip in the contraction joints, will have a legitimate range of applicability, 

but may be unable to model a dam subjected to intense ground motions under the 

full reservoir condition. On the other hand, the prediction of significant lift-offs in 

the cantilever cracking planes and compressive stresses in the nonlinear range may 

indicate that remedial action need be taken. 

One way to extend the valid range of the analysis technique is to relieve some 

of the assumptions which may have increased the response level, i.e., no structural 

damping associated with the joints and uniform free-field ground motions. Struc

tural damping in the joints involves inelastic impacts and friction. A procedure for 

inclusion of inelastic impacts is not clear at the present time due to the gradual na

ture of the impacts which arises from the varying contact area. Regarding friction, 

a mechanism could be incorporated in new provisions for slip in the contr·action 

joints. Relieving the assumption of uniform free-field ground motions could not 

make use of the common pseudo-static and dynamic decomposition for nonuniform 

excitations because of the presence of nonlinearities, and the best procedure is not 

evident at present. 

The importance of water cavitation was not indicated by the analyses per

formed as the negative excursions of water pressure were few in number and small in 

amplitude. However, because water compressibility may significantly affect the dy

namic water pressures, the importance of water cavitation should ideally be judged 

when water compressibility is included. 

Incorporation of water intrusion into open joints and cracks is a difficult as

signment that would involve considerable fluid mechanics. One simplistic approach 
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would be to modify the stiffnesses of the joint elements to reflect an internal pres

sure which has the same time variation as the computed external pressure. Such 

an approach would be conservative regarding the amount of water intrusion into a 

joint or crack, but unconservative regarding the higher pressures generated when 

the water is squeezed out. 

Finally, a few comments are in order regarding implications of the present 

study on the safety of Pacoima Dam. Certainly, results of the attempt to reproduce 

the 1971 earthquake event with full reservoir show the dam to be severely stressed, 

and, even though the dam response may have been overestimated by assuming 

uniform ground motion and neglecting dissipation in the joints, it would be prudent 

to consider restrictions on the water level if a similar event were possible in the 

future. However, the earthquake with greatest potential to effect Pacoima Dam 

in the next hundred years, either a magnitude 8+ on the San Andreas Fault 32 

km distant or a repeat of the 1971 event on an adjacent segment of the same 

fault 20 km away [6], may be less severe, although a longer duration for the San 

Andreas earthquake would be of concern. Ground motion time histories estimated 

to be characteristic of these events and intended to be used as input in analyses 

had maximum accelerations slightly exceeding 0.3g for both [6]. Linear analyses 

for these possible, future motions were carried out in reference 6, but no analyses 

have been performed here. An additional consideration is that Pacoima Dam is 

primarily a flood control structure, and the possibility of an earthquake occurring 

simultaneously with a high water level is small. Lastly, a concern over the stability 

of the rock mass on the left abutment (for which much remedial action has been 

taken) has not been addressed here. 
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