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ABSTRACT 

Unlike most chemical reaction dynamics, microbial behavior depends not only 

on the present state of the environment surrounding a microorganism but, more 

importantly, on its past history as well. Herein lies a major obstacle in the mod

eling of a biological process with a simple set of equations. By incorporating a 

culture's past history in the form of a time-lag kernel, a novel approach to biopro

cess identification and modeling is formulated. A time-lag kernel is included in the 

state equations, and a generalized method of mathematical simplification via the 

transformation of an integro-differential equation to a set of first-order OD E's is de

veloped. The time-lag convolution integral arises during the process of transforming 

a structured, mechanistic model into an equivalent unstructured model as a result of 

lumping. The resulting model possesses the combined advantages of the simplicity 

of an unstructured, lumped-parameter model and the predictive power of a complex 
\, 

structured model. The experimental determination of the kernel is performed by 

cultivating Saccharomyces cerevisiae in a chemically defined medium of either glu

cose or ethanol as the limiting carbon source and in a tightly controlled environment 

of temperature and pH. All the model parameters can be feasibly resolved with a 

simple set of e~periments. The validity of the time-lag modeling approach is clearly 

demonstrated experimentally by its superior capability in predicting the various 

transient responses under different modes of operation. Seemingly unreproducible 

experiments are shown to be united when time-lag effects are taken into consider

ation. This modeling work fits within the general framework of on-line computer 

parameter estimation, control, and optimization of a biochemical reactor. As such, 

the proposed modeling approach to biological systems identifies the cause-effect 

relationship more clearly and is well suited for process control purposes. 
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(Monod model) -+ y (time-lag model). 
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1.1 INTRODUCTION 

It has been pointed out that two important problems in the optimal design and 

operation of a biological reactor are the lack of reliable biological sensors and the 

lack of simple mathematical models with satisfactory predictive capability ( Cooney, 

1979; Wang and Stephanopoulos, 1984). The sensor inadequacy is especially acute 

in the areas of continuous measurement of cell mass and substrate/product con

centrations, which, incidentally, are among the most fundamental state variables 

in nearly all fermentation systems. The relatively poor state of instrumentation 

means that the current measurements are discrete in time and frequently contain a 

high level of noise that must be filtered out before they are to be used to control a 

bioreactor (Stephanopoulos and San, 1984). 

The objectives of developing a mathematical model are twofold. First, mathe

matical models represent a measure of one's comprehension about the system under 
\, 

investigation. It is really a concise way of summarizing one's knowledge so that the 

behavior of a system can be predicted, given the environmental conditions and any 

disturbances thereof. Only when the understanding is firm can one translate the 

concept into a mathematical model; the translation is at best a fuzzy one when 

the understanding is vague. However, one should be cautioned that the converse is 

not always true; a seemingly clearly stated model on paper may not always have 

an equally clearly demonstrated valid basis in practice. In other words, one un

derstands no more than what a model states, but not all models accurately reflect 

the reality that one observes. Consequently, a model that contains unverifiable 

assumptions should be suspected. 

Secondly, mathematical models are needed both for control purposes and in 

bioreactor design. They are the condensed versions of our knowledge about a sys

tem, and their sophistication can vary widely. A useful model should be properly 
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balanced with respect to its mathematical complexity and its ability in capturing 

the essential features for the intended purpose. It should also be simple enough to 

help one better understand the process and to permit improvement or optimization 

of the process; not vice versa. It should allow the direct determination of at least 

its key parameters, if not all parameters, by following some feasible experimental 

procedures. A well designed model itself should guide one in designing such ex

periments, as well as suggesting new ones so that the understanding of the system 

can be further deepened and the model itself can be improved. In this respect, 

the validity of a complex model is especially questionable when it contains a large 

number of parameters whose values cannot be experimentally evaluated individu

ally. The success of models in engineering has always depended on the valid use 

of approximations and assumptions in reducing the complexity of the real world to 

simple and manageable mathematical abstraction, and biochemical engineering is 

no exception in this respect. 

Most of the modeling concepts widely used in biochemical engineering have not 

changed for more than two decades. This is especially true for lumped parameter 

microbial cell growth models. Many newly proposed models are derivatives of these 

basic concepts (Fredrickson and Tsuchiya, 1977). On the other hand, single-cell 

models that incorporate the details of gene replication, translation, and transcrip

tion have only recently been proposed (Shuler et al., 1979; Domach and Shuler, 

1984; Domach et al.,, 1984; Ataai and Shuler, 1985); these models are not widely 

used because their validity and utility have not yet been fully established. Thus, as 

far as the existing models are concerned, they are either inadequate during transient 

operation (lumped parameter models), too complicated for control and optimiza

tion purposes because the calculation is too time consuming (single-cell models), or 

contain a large number of parameters that cannot be determined directly within a 
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reasonable time constraint (structured models) for most practical applications. De

spite significant modeling efforts, simple, descriptive, and easy to construct models 

are not yet available. This research effort is partially aimed at answering some of 

these problems. 

1.2 AIM AND SCOPE OF THIS WORK 

Shown schematically in Figure 1.2.1 is an interactive estimation-control

optimization scheme in which the on-line measurement on a bioreactor is passed 

through an estimation-filter block to reduce the noise and to yield a set of on-line 

estimates for the state variables and growth parameters. The presence of gross 

measurement errors can be detected by applying the material balance constraints, 

and the source of errors can be identified, followed by error rectification itself. One 

such methodology based on the x2 hypothesis is presented in Appendix E. The 

corresponding program source codes are listed in Appendix F. These estimates are 
\, 

used as the basis for feedback control as well as for on-line process modeling. The 

biochemical process is continuously modeled, new values of the model parameters 

are estimated, and the biological model itself, including the shape of the kernel, is 

constantly updated. This can be accomplished by tracking the control history and 

comparing the deviation of the actual state away from the predicted values. Al

though such an ideal scheme does not presently exist in a completed form that can 

be directly implemented in an actual process, the state and parameter estimation 

and the new approach to modeling proposed herein is a step toward the realization 

of such a scheme. 

This study is motivated by the general observation that time-lag effects fre

quently exist in a biochemical reactor system. Its existence has long been recog

nized, for example, at the beginning of a batch fermentation in the form of a lag 

phase. It is also present when a culture is transferred into a new richer medium 
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that is capable of supporting a higher growth rate than the original one. The recog

nition of the inadequacy of the unstructured models in predicting the lag behavior 

has prompted the proposal of a range of structured models to explain these time-lag 

observations. However, most of these models are too complicated and are unsuitable 

for process control purposes. 

The objective of this study is to develop a simple model that can predict a 

variety of transient as well as steady-state behaviors commonly encountered in a 

biological reactor. Some of these behaviors include lag phases, diauxic growth, 

asymmetric responses, hysteresis effects, and damped and sustained oscillations. 

The model shall express the cause-effect relationship in a form appropriate for 

practical use in a process design and control environment. 

This study attempts to address mainly the second problem regarding the mod

eling of a biochemical reactor. A new approach to bioprocess identification and 
\, 

modeling is outlined. The proposed approach considers the effect on rates and 

yields of not only the present state of the system but also the previous history 

through the concept of a kernel integral. The resulting set of integro-differential 

equations are then shown to be equivalent to a set of first-order ordinary differential 

equations representing a generalized structured model. These simple ordinary dif

ferential equations can then be relatively easily manipulated with the well developed 

mathematical techniques to yield insightful information on the dynamics of the sys

tem, including the analysis of the stability of steady states, etc. Furthermore, size 

reduction techniques are outlined, which can lead to a directly observable model of 

a lower dimension while preserving simultaneously the biological significance of var

ious parameters. Finally, it is demonstrated experimentally that a time-lag model 

can be used to predict correctly transient behaviors based on parameters that have 
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been determined from steady-state fermentation runs. The experiments were con

ducted in accordance with the state-of-the-art on-line monitoring techniques, and 

on-line and off-line data were analyzed with advanced parameter estimation algo

rithms. 
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CHAPTER 2 

THEORIES 

ON THE TIME-LAG KERNEL 



-9-

2.1 INTRODUCTION 

It is a well established fact that human reaction to environment depends not 

only on the nature of the immediate surrounding environment but, to a large de

gree, on past human experience as well. The same statement also holds true for a 

microbial system. The dynamic behavior of a biological system is intimately con

trolled both by the prevailing environmental conditions and by the past histories. 

It is not uncommon for the response to some external stimuli to appear at a later 

time. Quite often, this dependence on past history is totally neglected in modeling 

a microbial system. As a result, it is sometimes difficult to reproduce or interpret 

biological experiments. Similarly, it is difficult to extract definite information from 

a set of experiments that seem inconsistent, when time-lag effects are not properly 

considered. 

Time-lag effects are frequently encountered in microbial systems. For exam-
1, 

pie, they are present at the beginning of a batch fermentation in the form of a lag 

phase. Figures 2.1.1-2.1.6 show some of the measurements recorded for a batch fer

mentation of 5.0 g/1 of glucose by Saccharomyces cerevisiae. The continuous lines 

represent the on-line measurement of the corresponding variables, and the circles 

indicate off-line measurements. The fermentor was inoculated at O hour, and micro

bial growth did not begin to accelerate until one hour later. Glucose consumption 

and cell growth were accompanied by ethanol production. As glucose became ex

hausted, microbial activity, as indicated by the oxygen uptake rate (OUR), carbon 

dioxide evolution rate (CER), and total growth rate, dropped to an insignificant 

level. The growth rate rested for approximately one hour before ethanol was finally 

utilized for further growth. As ethanol became completely depleted, the level of 

CER rose suddenly due to the uptake of a small amount of acetic acid formed ear

lier. These two distinct growth phases can be easily inferred from the OUR, CER, 
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and total growth rate curves. In fact, the leveling off of the biomass concentration 

curve during metabolic shifts in a batch fermentation has long been used to detect 

graphically the existence of diauxic growth. 

For example, the diauxic batch fermentation of glucose in which ethanol is 

formed as the intermediate product exhibits a lag phase before glucose begins to 

be consumed; another lag phase is present before ethanol is taken up, as shown in 

Figure 2.1.5. The dependence of the first lag phase on the inoculum condition has 

been extensively studied in the past. It is the second lag that is most often used to 

detect the presence of more than one metabolizable substrate in a fermentor. 

A drop in the growth rate in the middle of a fermentation run is due to the fact 

that a microorganism needs time to undergo a metabolic adjustment before it can 

shift from the utilization of glucose to that of ethanol. The production of enzymes 

and cofactors needed for the metabolization of ethanol is induced only when the 
\, 

glucose concentration drops to a critically low value. Synthesis of these enzymes, 

in turn, requires additional intermediates that must first be constructed from still 

lower intermediates, and so on. 

Similarly, when the nutrient concentration is increased, the level of growth en

zymes present in a cell must be increased before a higher rate of biomass synthesis 

can be achieved. Again, the metabolic mechanism in this case must be adjusted, 

and a factory with a higher capacity has to be assembled so that a larger amount 

of chemicals can flow through the anabolic and catabolic pathways. For example, 

when the limiting substrate concentration is increased as a result of a step change 

in the dilution rate in a continuous fermentor, the specific growth rate of the mi

croorganism does not start to increase immediately, as does the limiting substrate 

concentration. This point is illustrated in Figure 2.1.7, which is recaptured from 
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Figure 2.1.5. Glucose concentration as a function of time in a batch fermentation of 

S. cerevisiae in 5.0 g/1 of glucose. The solid line represents the on-line 
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San ( 1984). In this figure, the dotted lines that represent the Kalman filter es

timates of the corresponding variables are more reliable than the solid lines that 

represent the results of applying a moving average. The figure shows that although 

the glucose concentration was increasing after a sudden shift in the dilution rate 

from 0.123 hr- 1 to 0.258 hr- 1 at 0.0 hour, the observed apparent specific growth 

remained the same until 1.1 hours later. 

In addition to the aforementioned time-lag phenomena, time-lag effects are also 

manifested in various observed oscillatory behaviors due to the response's depen

dence on the past history. It is well known that time-lags in control variables can 

destabilize a system and render it oscillatory. Similarly, the presence of time-lags in 

state variables can also profoundly influence the stability of the system and cause 

an otherwise stable system to oscillate. Oscillations in biological systems are quite 

prevalent and are frequently reported in literature. One such example is the contin-
\, 

uous ethanol production from glucose by using Zymomonas mobilis. The literature 

data shown in Figure 2.1.8 are taken from Lee et al. Note that when the dilution 

rate is shifted up from 0.05 hr- 1 to 0.10 hr- 1, the system oscillates in a damped 

manner. When the glucose concentration in the feed is increased from 150 g/1 to 200 

g/1, the oscillation is much more sustained at the same dilution rate of 0.10 hr- 1. 

As shown in later sections, a model can exhibit this type of oscillatory behavior, 

including the effect of increased limiting substrate concentrations in the feed on 

the oscillation tendency, as a result of incorporating a simple time-lag term in the 

mathematical model. 

This adaptive characteristic of the biological system minimizes the waste and 

1s essential for the survival of a living organism. It is one of the main factors 

that differentiate a biological process from a more traditional, purely physical or 
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chemical process. Thus, an attempt at modeling a biological process must consider 

the adaptive properties that cause history, memory, or time-lag effects. 

As there are quite a number of models in biochemical engineering, there are 

also many ways of characterizing a model. Discussion on this topic can be found in 

the section on modeling in Appendix G. One fundamental way to classify models 

is to divide them according to the degree of structure that is incorporated in each 

model. As in other disciplines, a biological model of growth and product formation 

can be either unstructured or structured. However, regardless of what approach one 

takes, the purpose of modeling is to express one's knowledge of the system under 

study in explicit, concise terms, usually mathematically. One also wishes to gain 

the ability to predict the output of a system for a given input. This concept is 

graphically expressed in Figure 2.1.9. In modeling a biological reactor, the input to 

the system is composed of such variables as the limiting substrate concentration in 
\, 

the fermentation broth, the temperature, and the pH; the output variables of inter-

est from the system consist of such variables as the specific growth rate, substrate 

to cell yield coefficients, and a variety of specific product formation rates. 

In the unstructured modeling approach, the relationship between the output of 

the system and input of the system is described by a constitutive equation relating 

the former to the latter. For example, the specific growth rate can be expressed 

as a direct function of the limiting substrate concentration. The famous Monod 

model falls within this category. The advantage of the unstructured approach is 

that the resulting model is relatively simple and is usually adequate in describing 

steady-state behaviors. The main criticism of an unstructured model is that the 

relationship between, for example, µ and s is largely empirical in nature and there 

is often the unstated assumption of balanced growth. Although balanced growth 

processes have attracted much attention within the last few decades, it is a highly 
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idealistic concept. Balanced growth requires every component in the cell to be in

creasing at exactly the same ratio, such that the composition of the cell remains 

unchanged as it grows and expands. As we now know, this state is rarely reached 

during a transient; it is an exception rather than a rule. Because of this over

simplification, the model cannot predict various phenomena observed in transient 

situations. 

To overcome this problem, one has traditionally resorted to structured models 

to describe both steady-state and, especially, transient observations. The structured 

modeling approach is graphically represented in Figure 2.1.9. In this approach, a 

microbial cell is basically viewed as an expanding chemical reactor in which an ex

tremely large number of enzymatically catalyzed parallel and sequential reactions 

occur simultaneously in a complicated reaction network. Related models of nu

trient and ion diffusion are generated to describe how the transport of chemical 
\, 

species across the cell membrane is accomplished, and how transport rates are af-

fected by the membrane composition. Anabolic and catabolic pathways are usually 

included in a reasonably respectable model to show the fate of reaction intermedi

ates. Biological feedforward and feedback mechanisms are also inevitably consid

ered. So included in structured models are the branching and rejoining of reactions, 

the generation and deactivation of different important enzymes and cofactors, the 

replication process such as DNA synthesis initiation and cell division, and the tran

scription and translation processes of protein formation. In the structured modeling 

approach, ideally, one differential equation is written for each of the chemical species 

under consideration. However, it is neither possible nor desirable to consider liter

ally thousands of chemical compounds. Although the process of lumping is more 

closely associated with the unstructured approach, it is also widely implemented in 

the structured approach to narrow the number of species under consideration to a 

manageable level. Therefore, any modeling attempts in the biological field, strictly 
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speaking, result in lumped models, unless every chemical species present in a cell is 

accounted for. 

If performed correctly, the structured approach yields a high degree of insight 

into the workings of metabolic pathways and internal control mechanisms. However, 

the unavailability of sensors to monitor the course of these reactions inside a cell 

often makes it extremely tedious or impossible, depending on the type of models, 

to verify the validity of the proposed detailed mechanisms. A structured model 

is, by its nature, complicated. It usually contains many parameters and variables 

that are difficult to measure or estimate. In such cases, the proposed mechanism 

can at best be viewed as a logical educated hypothesis and should not be confused 

with experimental facts. The inherent, but often hidden, lumping process results in 

the drift of these model parameters as environmental conditions change. Because 

it is currently not possible to track the changes in these model parameters or to 

estimate continuously all the states, a co~plicated structured model cannot yet be 

practically used in a process control environment. 

In addition, a structured model does not clearly show the cause and effect re

lationship that is so vital in the formulation of a control strategy in which one must 

consider the relationship between the manipulated variables and the controlled vari

ables. To make matters worse, the reaction rates in a structured model are often 

expressed in terms of discontinuous functions; thus, the mathematical analysis of a 

structured model is not at all routine. Its solution is not even guaranteed by the 

Existence and Uniqueness Theorem in the theoretical studies of ordinary diff eren

tial equations. Predicting the response to a simple input by inspecting the rate 

expressions in such a model is also beyond an average person's mathematical fore

sight. The cause and effect relationship is often obscured behind a large number of 

equations. Lengthy computer simulations are always called for when it is necessary 
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to predict the model response. Heavy computational overload also excludes a com

plicated structured model from being utilized in feedback or feedforward control. 

Furthermore, the metabolic mechanisms proposed in these models are largely 

based on our current understanding of Saccharomyces cerevisiae or Escherichia coli 

as a result of decades of intensive research by many investigators. One must invest 

a considerable amount of time and energy to reach the same level of knowledge for 

other microbial systems as one now has on these two species. One would find it diffi

cult to conceive a valid, working structured model for a new organism that possesses 

different metabolic mechanisms, if one was under time constraints. For various eco

nomically competitive reasons, in practice one frequently encounters situations in 

which quick results are urgently needed to manufacture certain microbially derived 

products. 

Thus, there is clearly a need for a model that is simple and can explain and 
\, 

predict not only the steady-state results but also the transient behaviors. In this 

thesis, a modeling approach is proposed that incorporates the past history of the 

microorganism in the form of a time-lag integral in the system's dynamic equation. 

This new modeling technique attempts to lump all the internal steps that are of no 

interest to a process controller in a time-lag kernel. The proposed approach aims 

to keep the structure of the model as simple as possible so that each term in the 

entire set of dynamic equations can be easily comprehended. At the same time, the 

dynamic behavior can be predicted without the voracious consumption of computer 

time. In this proposed approach, the cause-effect relationship is defined through 

a time-lag integral, whose mathematical meaning can be better understood by a 

process engineer. Specifically, the cause and the effect are related through a time

lag kernel that summarizes the dynamic response in a very compact manner. As a 

result, a more accurate and realistic representation of the actual biological system 
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is obtained and is ready for use in fermentor design and control. The aim in our 

modeling approach is to merge the advantages of both structured and unstructured 

modeling approaches and simultaneously to suppress the objectionable shortcomings 

of the respective approaches. In the following section, a novel approach to bioreactor 

modeling is introduced that, through the use of time-lag kernels, combines the 

simplicity of an unstructured model with the power of a complex structured model. 

2.2 FORMULATION OF TIME-LAG EQUATIONS 

The concept of a variable's dependence on its past history has been in existence 

for quite some time (May, 1973; Cushing, 1977; MacDonald, 1982). In ecological 

studies, the interaction of prey-predator has been described by the Volterra model, 

which includes a kernel associated with one of the states of the system. It might be 

interesting to note that the Volterra model was originally proposed to compensate 

for the duration for animals to reach maturity and to show the oscillatory trajectory 
\, 

of a prey-predator system (Volterra, 1931). It is also quite possible that some of the 

oscillatory behaviors often observed in a fermentor may be due to the instability 

caused by the presence of time-lags. An approach somewhat similar to the one 

proposed herein was taken by Powell (1969). 

However, the model never really gained much significant following and had 

been largely forgotten over the years because no attempt was made to answer the 

question of what shape the integral should take or what types of biological signifi

cance the integral had. Even more damaging to the survival of the model has been 

the incorrect formulation of the integral and the misinterpretation of the kernel's 

meaning. For example, the integral has been expressed as: 

lot k(t, h)n(h)dh, (2.2.1) 
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which is not strictly valid. The effect before time zero plays the most important 

role in explaining the existence of a lag phase at the beginning of a batch fermen

tation, and it is this crucial effect that has been totally disregarded in the above 

formulation when the lower integration limit is set to 0. Another inadequacy of 

the above integral is that n(t) in that equation is the number of cells in the system 

(i.e., the population density), and the growth rate of a population, expressed as 

d'":t~t), is thought to depend on the history of the population density, instead of the 

environment. Furthermore, the usage of the integral is not quite correct. 

For example, let us consider the famous logistic equation of growth in popula

tion theory, 
dn(t) 
~ = an(t) [1 - ,Bn(t)] , (2.2.2) 

where a is a growth constant, ,B is the reciprocal of the asymptotic cell concentration 

in the stationary phase, and n(t) again is the population or cell density. In the 
\, 

misguided approach, the integral is simply added to the end of the originally existing 

equation that describes the reproduction rate of a population. It is frequently 

expressed as: 

dn(t) 1t ----;ft= an(t) [1-,Bn(t)] + 
0 

k(t,h)n(h)dh. (2.2.3) 

This treatment results in no time lag. On the contrary, it yields quite absurd results 

if the function for k(t, h) is not chosen carefully. For example, if a constant value 

of K is assigned to k(t, h), as has been routinely done in the past, the equation 

d:~t) = an(t) [1 - ,Bn(t)] +Kit n(h)dh (2.2.4) 

indicates that the integral term f~ n(h)dh increases without bound if K is positive. 

Consequently, n(t) also increases almost exponentially without limit. Alternatively, 

if K is negative, then d~~t) remains negative as n(t) becomes negative because the 

integral term J; n(h)dh is finite and positive at that point. See Bailey and Ollis 
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(1977). Furthermore, the kernel has been interpreted as no more than a crude 

memory function or an empirical weighing factor. The biological significance of 

the kernel was not realized, nor was its power or potential, and it is the author's 

opinion that one's knowledge of the microbial metabolism and cellular regulation 

was not being fully utilized. Thus, one sees that, unfortunately, the time-lag kernel 

integral has, over the years, been formulated incorrectly, applied inappropriately, 

and interpreted inaccurately. It is the purpose of this section to dispel some of the 

criticisms raised earlier concerning the time-lag approach to modeling a biological 

process. 

In this section, we will formulate a model using the time-lag kernel approach 

and answer questions regarding the kernel's functional form. The essence of the 

approach is the inclusion of kernel functions in the equations that describes the 

dynamics of a bioreactor. However, the method used to apply the concept of time-
\. 

lag kernels is quite different from Volterra's. The development of the model is based 

on the original presentation of Appendix H. 

As an introductory example, first consider the familiar case of a continuous 

bioreactor of Figure 2.2.1 modeled by a lumped-parameter two-state-variable model, 

namely: 
dx(t) 
dj = -Dx(t) + µ(s)x(t) 

ds(t) 1 
----;ft"= D [s1 - s(t)} - Y. µ(s)x(t), ., 

(2.2.5) 

(2.2.6) 

where we assume that the specific growth rate, µ, of biomass, x, is a function of the 

limiting substrate, s. 

Many different forms have been proposed in the past to relate µ to environ

mental variables, including s. Of course, one of the most widely used relationships 
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is that described by a Monod model: 

(2.2.7) 

where µ= is the maximum specific growth rate and Ks is the half-saturation con

stant, and Ys is the substrate to cell yield coefficient, that is usually assumed to 

be constant. Various modifications to the above basic Monod model have been 

proposed. For example, a maintenance term can be included in either the biomass 

dynamic equation (Herbert, 1958) or the substrate dynamic equation (Pirt, 1965) 

or both; a substrate or production inhibition term may appear in the expression 

forµ in a variety of ways (Fredrickson and Tsuchiya, 1977), or the yield coefficient 

may be treated as a function of other states (Tanner, 1979). 

The above model and its variations, and for that matter almost all other un

structured models presently in use, state that the behavior of the biomass-substrate 
\, 

system depends only on the present state, and there is no provision for the past 

history of the microorganism. It is implicitly assumed that the quality of the cell 

biomass, i.e., the cell composition, does not affect the growth and the reproduction 

of the microorganism. However, it is known that the observed response of a cell 

population at a certain time instant is the composite result of various biological 

processes that were initiated at different time instants in the past, as a response 

to the instantaneous environmental conditions prevailing at each particular time. 

These various processes result in a present overall specific growth rate that can be 

described with the introduction of a time-lag kernel, k(t, h), in the specific growth 

rate: 

d:~t) = -Dx(t) + [f.t
00 

µ[s(h)]k(t,h)dh] x (2.2.8) 

d:~t) = D [s1 - s(t)] - :s [f.t
00 

µ[s(h)Jk(t,h)dh] x(t). (2.2.9) 
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Note that in this formulation, the microorganism's growth rate is assumed to be 

affected by the chemical environment, namely the limiting substrate concentration 

in the fermentation broth surrounding a cell. Lag effects due to other environmental 

factors such as temperature, pressure, pH, ionic strength, and nutrient composition 

can also be handled similarly. 

In order for this time-lag model to be more than just an exercise in mathe

matical manipulation, we need to consider the following questions: What is the 

functional form of the time-lag kernel and its proper mathematical expression, and 

what procedure should be followed if one is to determine this function experimen

tally, and can the functional determination indeed be carried out feasibly with the 

presently available techniques and sensors? When the function is found, one is apt 

to ask what biological or physical significance does the kernel have. As mentioned 

previously our stated objective is to develop a simple but adequate model for use 
\, 

in process design and control. However, the introduction of a kernel results in a 

set of integro-diff erential equations for which mathematical theories are not well 

developed. Therefore, we need to demonstrate that the introduction of time-lag in

tegrals does not really complicate the analysis of the system. These are some of the 

points that will be addressed later in this thesis. First, we will proceed to develop 

a scheme to represent the kernel function. As will be shown later, our handling of 

the kernel is more general in the sense that the shape of the kernel is not restricted 

to some pre-defined set of functions. 

We will first examine a more specific but simpler problem to familiarize our

selves with the notion of time-lag kernel and to acquire a better understanding of 

it. Afterwards, a more general matrix representation of the time-lag kernel will 

be presented for a vector of dynamic equations in later sections. For a linearized 
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time-invariant system, k no longer depends on t and the integration variables h 

separately but on the difference t - h. 

d:~t) = -Dx(t) + [J_t= µ[s(h)]k(t- h)dh] x(t) 

ds(t) = D [s1 - s(t)] - __!_ [/t µ[s(h)]k(t - h)dhl x(t). 
dt Y3 -= 

(2.2.10) 

(2.2.11) 

Non-dimensionalization can be carried out to simplify above equations without 

any loss of generality. If time is scaled with reference to n- 1 and concentrations 

are scaled with reference to s I, then we have: 

d:~t) = [-1 + J_t= µ[s(h)]k(t - h)dh] x(t) 

d~t) = 1 - s(t) - :
3 

[it= µ[s(h)]k(t - h)dh] x(t). 

(2.2.12) 

(2.2.13) 

The kernel k(t) is usually referred to¥. the impulse response function in process 

control terminology and can be interpreted as a weighing factor. Shown schemati

cally in Figure 2.2.2 is the graphical interpretation of a time-invariant kernel integral 

that relates the input to the output of a linear system. The input to the system 

is divided into a string of impulses. The response of the system to the impulse 

input is described by the impulse transfer function. Thus, the output of the sys

tem corresponding to a single impulse is determined by the shape of the impulse 

transfer function multiplied by the magnitude of the impulse input. The overall 

output of the system as a response to the entire string of impulse inputs is simply 

the summation of all the similarly shaped individual impulse responses of different 

magnitudes. The output integral can be conceptualized as the response to a string 

of impulses, each of which is felt by the system over a period of time according to 
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the impulse transfer function. In summary, one adds together all the responses to 

each individual stimuli to find the overall response to a specified input. 

It should be noted that the interpretation is straight-forward only for a linear 

time-invariant system. The shape of the impulse will change in time if the system is 

time variant, and the superposition principle does not hold if the system is nonlinear. 

The integral y(t) = J~
00 

µ(h)k(t - h)dh is known in mathematics as a con

volution integral or a Faltung integral, a German term meaning folding. Another 

interpretation of the convolution integral is presented in Figure 2.2.3. The right 

part of the paper containing the kernel function is folded over so that the origin of 

the kernel function matches the current time in the input curve. The dotted lines 

in the figure connect the weighing factor from the kernel function to the input of 

the system. The response of the system is simply the summation of all the input 

values weighed by the corresponding values of the kernel. As time passes, the fold-
\, 

ing is continually shifted toward the right side of the paper to match the origin of 

the kernel function with the current time, and the same process of calculating the 

output is repeated. 

In our kernel integral associated with the specific growth rate of the population, 

the input to the system described in the above equations is what we will call the 

intrinsic specific growth rate of the microorganism, the output from the system 

is what we will denote as the observed specific growth rate, and the system is a 

collection of microbial cells themselves, each being viewed as a minute chemical 

factory. Since it can be generally assumed that future state have no effect on the 

present, k(t) can be implicitly set to zero for t < 0. A non-zero kernel value for 

t < 0 means response before excitation or the determination of the present state 

based on future events, which is not physically realizable. For t > 0, a kernel 

function that is not identically zero implies the dependence of the response on 
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· to the output of a linear system. 
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the past histories. Note that, strictly speaking, k(t) is not a time-lag probability 

distribution function and k(t) < O, i.e., negative weighing, is possible; whereas, it 

is not possible to have k(t) < 0 if k(t) were interpreted as a probability distribution 

function. Correspondingly, it is not strictly mathematically correct to interpret the 

kernel as a memory function or a forgetting factor, although doing so may help the 

mental visualization of the time-lag concept. 

The µ in the integrand of Equations (2.2.10) and (2.2.11) is the specific growth 

rate that would have been realized if the system operated at a steady state charac

terized by the corresponding value of s for a prolonged period of time; it is the true 

specific growth rate in the absence of time-lag effects; thus, the term intrinsic spe

cific growth rate is reserved for this variable. The presently observed apparent value 

of the specific growth rate is given by the integral of Equations (2.2.10) or (2.2.11). 

It can be viewed as a string of instantaneous intrinsic specific growth rates, each 
\, 

of which affects the microorganism's actually realized growth rate according to the 

specifications of the time-lag kernel. The future course of action for the population 

is, thus, explicitly guided by the kernel function. 

What kind of shape does a kernel take, and how do different shapes of the kernel 

affect the ultimate dynamic behavior of the microbial behavior? Various possibilities 

exist for the functional form of k(t). Figure 2.2.4 lists three of the many possibilities. 

First, one can set k(t) to be a simple delta function centered at the origin, o(t), 

meaning that both the future and the past have absolutely no effect on the specific 

growth rate and that the immediate present carries all the weight. The integral 

f~
00 

µ[s(h)]k(t - h)dh reduces to µ[s(t)] in this case, and Equations (2.2.10) and 

(2.2.11) reduce to the conventional unstructured model of Equations (2.2.5) and 

(2.2.6). In other words, this represents the unstructured model in which there is 
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no time-lag. Thus, the limiting case of the absence of time-lag is automatically 

included in our formulation. 

Another possibility is to assume that there is a fixed time lag in the response of 

the system, i.e., k(t) = 8(t-r), meaning that the specific growth rate depends on the 

substrate concentration at a discrete time instant r units before the present. Only 

two scalar parameters are needed to completely specify a delta function, namely the 

magnitude and the time lag, r. In actuality, only r is needed since the area under 

the kernel function must be unity, as shown in a later section. The state equations 

in this case are reduced to: 

d:~t) = [ - 1 + µ[s(t - r)]] x(t) 

ds(t) = 1 - s(t) - __!__µ[s(t - r)]x(t). 
dt Y~ 

(2.2.14) 

(2.2.15) 

Although this function can be easily specified without generating a vast number 
\, 

of unknown parameters to be evaluated experimentally, one criticism of this type 

of function is that it is not easy to justify why the specific growth rate should 

depend on the environment at a specified time instant in the past based our current 

knowledge on the biology of growth and reproduction. One of the cases where it 

may be reasonable to assume so is when a certain amount of delay is needed for the 

organism to mature before reproduction is possible. Another case is the eucaryotic 

cell cycle where different events must proceed in sequence before a cell can undergo 

mitosis and divide. For most commonly encountered situations, a discrete time 

delay is obviously a quite drastic assumption. Nonetheless, it can be considered as 

a special limiting case in our formulation. 

This type of approach, employing a discrete constant time lag, is frequently 

used in population dynamics, although it is generally formulated in such a way that 
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a} k(t) = 8(t) 
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k(t) = 8 ( t-T) 
b} 
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Figure 2.2.4. Three frequently used functional forms of k(t): (a) delta function without 

time-lag; (b) delta function with a discrete time-lag, r, i.e., time-delay; 

(c) general distributed time-lag. Note the direction of past and future 

are the reverse of the conventional time plots. 
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a state variable's response depends on its own past histories rather than on the en

vironment. Similar time delay, sometimes called dead-time, is also used in process 

control, although the time delay in process control is often associated with one or 

more of the controlled variables or measurements instead of the state of the system. 

This subtle difference makes the mathematical problem statement completely dif

ferent, and the theories developed to deal with the time delay problems in the field 

of control or signal processing are relatively helpless in analyzing the above set of 

equations. Mathematical analysis of this discrete time delay case can be performed 

by using the theories of differential-difference equations {Bellman and Cooke, 1963). 

As briefly shown in the following section, the relatively simple system of Equations 

(2.2.14) and (2.2.15) can be successfully analyzed. However, because mathematical 

theories of differential-difference equations are not as well developed as those deal

ing with ordinary differential equations, some problems may arise in integrating and 

analyzing this type of differential-differenC'e equation in general, especially when the 

set of equations is slightly more complicated than Equations (2.2.14) and (2.2.15). 

The third choice presented in Figure 2.2.4 is an arbitrary continuous and dif

ferentiable function for t > 0. For t < 0 the function is identically equal to zero. 

Note that the influence of the present state of the environment on the system is 

proportional to the magnitude of the kernel at t = 0. The influence of the envi

ronment at r units into the past is given by the value of the kernel at t = r, i.e., 

k( r). Similarly, the effect of the future state at a time r units from now is given by 

k( -r), which is zero because the future should not affect the present. Therefore, 

the direction of the flow of time is the reverse of what one is accustomed to, due to 

the convolution nature of the impulse transfer function. 

To specify such a general function theoretically requires that an infinite number 

of points along the curve be given. In actuality, the number of points specified is 
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finite, and the quality of the curve will be in some way proportional to the number 

of points given to specify the curve, with the rest of the curve being generated by 

some interpolation schemes. Traditionally, such an approach is neither convenient 

nor practical, and the function specified in such a manner is not fit for an extensive 

mathematical analysis. 

A more general approach is to express an arbitrary function k(t) in terms of 

a series of base functions. Such approximation of functions by other well studied 

base functions has always been adopted not only in the field of engineering but also 

in mathematical science. Taylor's series expansion with polynomials and Fourier 

series expansion with sine and cosine functions are some of the most popular ones. 

However, in this work we shall take a noteworthy exception in the choice for the base 

function. Neither polynomials nor sine/cosine functions will be indiscriminately 

used to approximate the kernel. The approximation of an analytical function k( t) is 
\, 

accomplished by expressing it as a summation of exponential distribution functions 

of order m or less, and the formidable task of specifying a complete function with an 

infinite number of points is reduced to that of finding a small number of coefficients 

such as a0 , a 1 , etc. 

(2.2.16) 

where the general expression for the nth exponential distribution function is: 

fort> 0 

fort< 0. 

(2.2.17) 

The reason for choosing this relatively unknown set of exponential distribution 

functions will become apparent in later sections. In summary, these base functions 

are chosen over the traditional power series or trigonometric functions because they 

permit the transformation of the integro-diff erential equations into a set of simple 
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first-order equations to be carried out with care. The first two exponential distri

bution functions are sometimes used in ecological studies of population dynamics, 

and they have over the years earned special names. The 0th-order exponential dis

tribution function, k0 (t), and the 1st-order exponential distribution function, k1(y), 

are called weak and strong generic delay, respectively. 

n=O 

n=l 

. . . weak generic delay 

. . . strong generic delay. 

(2.2.18) 

(2.2.19) 

Some of the properties of the exponential distribution functions are shown in 

Figure 2.2.5. Specifically, the function has a maximum value of T~!nne-n at t = nT. 

Furthermore, the ith moment of kn(t) is: 

Joo• (n+i)I • 
ith moment of kn(t) = -oo t'kn(t)dt = n! "T'. (2.2.20) 

Note that the functions are normalized such that the 0th moment of the function, 

i.e., the area under the curve, is unity. Since the kernel function relates the intrinsic 

specific growth rate to the observed specific growth rate in the presence of past 

history effects, the two quantities should be equal in the absence of history effects. 

As a result, the area under the kernel function in this case must be unity. This 

need for normalization explains the factor T~! Tn in Equation (2.2.17). The first 

moment, which corresponds to the average delay, is proportional to both the lag 

time-constant, T, and the order of the exponential distribution function, (n + 1): 

r = (n + l)T. (2.2.21) 

Thus, the functions both flatten out and shift toward the right as n increases. The 

first few of these exponential distribution functions are shown in Figure 2.2.6. 

The variance, which is indicative of the degree of spread of the function from 

its average delay, is calculated from the first moment and the second moment: 

T2 
a2 = (2nd Moment) - (1st Moment) 2 = (n + l)T2 = --. 

n+l 
(2.2.22) 
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Thus, one sees that the average spread is proportional to the average delay but 

inversely proportional to the "order" of the kernel function. 

If these functions shown in Figure 2.2.6 are normalized with respect to the 

average lag, (n + l)T, then one can see that the peak at the average lag becomes 

higher and narrows as n increases, as indicated in Figure 2.2. 7. It can be shown 

that as n----+ oo, kn(t)----+ h(t-r), where r is the average lag. In this limiting case, 

the state equations are again reduced to Equations (2.2.14) and (2.2.15). Therefore, 

the discrete time-lag is included in this general treatment of the kernel function as 

a limiting special case, if exponential distribution functions described in Equation 

(2.2.17) are chosen as the base functions for series expansion. 

Another interesting property of the exponential distribution function can be 

derived by differentiating Equation ( 2.2.17) with respect to t: 

Thus, the additional property is that: 

where 

{ 

0 fort< 0 
k-1(t) = h(t) = 

0
00 fort= 0 

fort> 0. 

(2.2.23) 

(2.2.24) 

(2.2.25) 

The above equation can also be regarded as a generating function for kn(t). The 

dynamics of such a system is graphically described in Figure 2.2.8, where each 

increase in the order of the kernel function represents one first-order time-lag in the 

dynamics. 

At close inspection, the nth-order exponential distribution function is identical 

to the residence time distribution function of a system of n-CSTR.s in series in the 

modeling of a chemical reactor. This is not at all surprising, if one views each 
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output of the system exiting from the last block is described by kn(t). 

,i:,.. 
'11 

I 



-46-

block in Figure 2.2.8 as a homogeneous tank of equal volume. In this case, the 

unit impulse entering the system is analogous to the addition of an impulse of 

tracing dyes dumped into the first stirred tank at time zero to raise its initial dye 

concentration to unity. The dyes are then carried by the fl.ow to the subsequent 

tanks and, eventually, through the entire system. The dye concentration appearing 

at the exit of the last tank can be described by kn(t). 

If tracing dyes are added at t = 0 to m separate tanks as indicated in Figure 

2.2.9, the dye concentration at the exit can be described by m exponential distribu

tion functions. The number of exponential distribution functions needed to describe 

a system is the same as the number of distinctive entry points of impulses. 

The general expression for the case where impulse disturbances ( e.g., tracing 

dyes) enter into each tank can be derived rigorously. 

dko(t) _ -k (-) -....;..-~_ at 
dt 

dk1(t) - -
dt = -k1(t) + ko(t) 

{2.2.26) 

where t = t- The above set of equations can be rewritten in a matrix form as: 

dko(i) 
ko(t) di -1 0 0 0 dk1Ji) 

1 -1 0 0 k1(t) dt . {2.2.27a) 
dk,.-1(t) 0 0 -1 0 kn-i(t) dt 0 0 1 1 
dk,.(t) kn(t) 

di .J 
____., 

~ k(t) 
dk(t) 

dt 
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dk~t) = .Jk(t). 
dt 

(2.2.27b) 

Note that the transition matrix for k(t), .J, is already in a block-diagonal Jordan 

normal form whose matrix exponential expression can be especially easily obtained. 

The solution to the above first-order vector-matrix differential equation is simply 

the exponential of .J multiplied by the initial condition of k. 

k(t) = exp(.Jt)k(O) 

_e-l_ 0 0 0 ko~O~ te-t e-t 0 0 k1 O (2.2.28) . . . 
ln-ie-t ln-2e-t e-t o_ kn-1(0) 
tne-t In-le-t 'ie-t e-t kn(O) 

Similar to the introduction of an impulse to the 0th tank in our original treat

ment, the presence of the impulse at points other than the 0th tank is signified by 

the nonzero initial condition for ki(O). As a demonstration, if the impulse is allowed 

to enter the 2nd tank and the ith tank with magnitudes of 0.3 and 0.7, the output 

from the system would be: 

0 
0 

_e-l_ o_ 0 0 k2(0) = 0
/ 

te-t e-t 0 0 . 
k(t) = 

. . . 
k·(O) - o.1 

'tn-ie-t 'tn-2 -t -t o _ ' - T 
- e - _ e -

ine-t tn-le-t te-t e-t 

(2.2.29) 

0 
0 

Expanding the matrix multiplication, one obtains the output from the end of the 

system: 

k () _ 0.3( t )n-2 _i 0.7( t )n-i _..t_ t--- er+-- er 
n T T T T (2.2.30) 

In addition, the intermediate values along various parts of this specialized example 

system are also available as individual columns in the above matrix expression. 

This slight detour further clarifies the relationship between a time-lag kernel and n 

CSTRs in series. Note that the resulting kernel is merely a linear combination of the 
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original set of base exponential distribution functions. Also note that the original 

case where an impulse is introduced only at one end of n first-order systems in series 

is contained in this general treatment as a specilized case. However, for simplicity, 

only this specilized case will be emphasized hereforth. 

Accordingly, if k(t) is expressed as the sum of m exponential distribution 

functions, the observed specific growth rate at time t, expressed as a functional 

y(t) = J~(X) µ[s(h)]k(t- h)dh, will be the weighed sum of m integrals, each of which 

being y3(t) = J~(X) µ[s(h)]k;(t - h)dh j = 1, 2, ... , m. This argument can be shown 

to be true by the following equation, starting with k(t) = ~~o a3k3(t): 

y(t) = 1-t(X) µ[s(h)]k(t - h)dh 

k(t - h) 

= {= µ[s(h)] ,[~ a;k;(t - h)] dh 

=~a;[{= µ[s(h)]k;(t - h)dhl 

Y;(t) 
m 

= La;y3(t). 
j=O 

(2.2.31) 

In actuality, the weighing factors a/s and the lag time-constant T are chosen in 

such a way as to fit the observed transient of the specific system in a shift-up or 

shift-down experiment. A small value of m varying from one to three usually gives 

a very satisfactory fit, and it is rarely necessary to employ m with orders larger 

than four. 

Quite significantly, we are not bounded by the limited functional shapes of 

each individual exponential distribution function. By expressing the kernel as a 

linear combination of these base functions, any sufficiently smooth continuously 

differentiable function can be represented if a sufficiently large number of base 
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functions are used. This is because the approach is essentially the same as expanding 

the function g(t) = ei' k(t) by a power series. Multiplying the resulting power series 
t 

by e-°T yields the series expansion of function k(t) in terms of the exponential 

distribution functions as the base functions. 

It may be rigorously proved that an analytical function k(t) can be expressed 

by a series of exponential distribution functions if the order is sufficiently large. 

Basically, the proof proceeds as the following. Given that k(t) is an analytical 

function and that e½ is certainly an analytical function, it follows that the product 

of these two analytical functions, el k(t), is also an analytical function. Since any 

analytical function can be expended in Taylor's power series, it suffices to state that 

el k(t) can be approximated by: 

(2.2.32) 

which, when multiplied by e-½, yields: 1
' 

k(t) = aoe-t + a, G) e-t + a2 Gr e-+ +•••+a- Gr e-+ + • • • 

= aoko(t) + a1k1(t) + a2k2(t) + ... + arnkrn(t) + ... 
(2.2.33) 

Theoretically, m could be extended to oo, but two or three terms should be 

sufficient under most circumstances in practice. For example, a linear combination 

of k0 (t) and k 1(t) results in: 

k(t) = ( ao~ + a1;2) e-+, (2.2.34) 

where a0 + a 1 = 1 so that the area under the kernel is normalized to unity. Some of 

the shapes of k(t) generated by a combination of these two base functions are shown 

in Figure 2.2.10. The block process diagram for this simple linear combination is 

shown in Figure 2.2.11. Note that the first term corresponds to the system response 

at the exit as a result of the impulse stimulus introduced at the last block, and the 
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second term represents the response due to the impulse stimulus imposed on the 

first block. The component associated with a 1 must propagate through two blocks 

before exiting; whereas, that associated with a0 travels through only a single block. 

Furthermore, it is also possible to generate many other shapes for the kernel with 

different combinations of higher-order base functions that are linearly independent. 

This is equivalent to having impulses directed at various blocks as indicated in 

Figure 2.2.9. 

For example, a linear combination of two or more exponential distribution 

functions of different time constants is also possible if the process responsible for 

the time-lag is known to possess more than one characteristic time constant. The 

simplest two block combination can be described by: 

(2.2.35) 

\, 

where aa + ab = 1 as seen before. Schematically, this corresponds to two parallel 

tanks of unequal volumes, thus, unequal residence time constants. See Figure 2.2.12. 

For an impulse going through two system blocks of unequal time constants in series 

in a noninteracting sequential manner, dynamic equations for each block can be 

written as: 

Ta dk;?) + ka(t) = 6(t) 

dkb(t) 
Tb dt + kb(t) = k0 (t). 

(2.2.36a) 

(2.2.36b) 

The output from the first block k 0 (t) is simply the 0th-order kernel function: 

(2.2.37a) 
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Figure 2.2.10. Linear combination of the 0th-order exponential distribution function, 
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And the output from the second block kb( t) is: 

f t 1 t-h. 

kb(t) = ka(h) · -e-Ti: dh 
-oo Tb 

= -e-Ta.-e Tb dh f t 1 ..1L 1 _ t-h. 

-oo Ta Tb 

These results can be more easily obtained by using transfer functions: 

(Tas + l)Ka(s) = Q(s) 

Which may be easily solved algebraically to yield: 

Or in time domain, it is equivalent to: 
\, 

for Ta=/= Tb 

for Ta = Tb = T . 

{2.2.37b) 

{2.2.38b) 

{2.2.38b) 

{2.2.38d) 

Similar to passing through two dynamic systems in parallel, passing through 

two different dynamic systems in series results in an overall kernel that is a linear 

combination of two exponential functions, each possessing the characteristic time 

constant of the respective dynamic system block. The only exception is when two 

dynamic blocks have exactly the same time constant, in which case the solution 

reverts back to the original first-order kernel base function. 

When there is interaction between the two dynamic systems in series as shown 

in Figure 2.2.13, Equation {2.2.36) is modified slightly. 

dka(t) 
Ta dt + aka(t) = Labkb(t) + qa(t) (2.2.39a) 

dka(t) 
Tb dt + f3kb(t) = L00ka(t) + qb(t). (2.2.39b) 
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In the Laplace domain, they are equivalent to: 

The overall transfer function for this second-order system is: 

(2.2.40a) 

(2.2.40b) 

For example, when Ta = 1, Tb = 2, a = 1, /3 = 1, Lab = 0.5, and L 00 = 1, the 

characteristic equation of the system is: 

(Tas + a) (Tbs + /3) - L 00 Lab =0 

(s + 1)(2s + 1) - 0.5 = 2s2 + 3s + 0.5 =0, 
(2.2.42) 

which has the roots s 1 = -1.309 and s2 = -0.1909. Thus, the new characteristic 

time constants are T1 = 1.ioo = 0.76391'and T2 = 0 _1~ 09 = 5.236. Therefore, this 

interacting second-order system can also be described by an equivalent two first

order systems in parallel. Note that the effect of interaction is reflected mainly in the 

modified time constants, with one being shortened and the other being lengthened. 

In general, the effect of interaction is to retard the system response. This interacting 

example just considered is shown in Figure 2.2.14, which may sometimes be viewed 

as a positive feedback or recycle. 

A general second-order system subject to an impulse can be described by: 

(2.2.43) 

The solution to this general form depends on the magnitude of the parameter E. 

k(t) = 
for O < e < 1 

fore= 1 

fore> 1. 

(2.2.44) 
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Note that the case e = 1 is the general kernel used throughout this thesis; whereas, 

the case e > 1 gives rise to two system time constants and has just been treated. 

The last case with e < 1 is under-damped and yields oscillatory responses. Thus, 

negative values are permissible for a kernel. This confirms the earlier contention that 

although a kernel may be considered as a weighing function, strictly speaking, it is 

not a probability distribution function for which negative values are mathematically 

undefined. 

The more general treatment of a two-dimensional linear dynamic system can 

be facilitated in a matrix notation. 

[¥] dx:i(t) 
dt ....___.., 

dJit) 

(2.2.45) 

The important parameters for this general set of dynamic equations can be calcu-
\, 

lated from the fundamental matrix A as follows. 

T= 1 
(detA)½ 

-trA 
€=----

2(detA)½ 

The system response's dependence on the parameter € is the same before. 

(2.2.46) 

(2.2.47) 

In summary, a mixture of the above two methods of combination with equal 

and/ or unequal system time constants results in: 

(2.2.48) 

where, again, ao + a1 = 1. 

One can extend this manipulation further to a general third-order system such 

as Figure 2.2.15, and so on. Of course, theoretically, one need not be restricted 

to the straight flow-through format of Figure 2.2.8 or Figure 2.2.9. The dynamic 
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blocks and flow streams may be arranged in an infinite number of ways. To demon

strate some possible configurations, a hypothetical systems block diagram is shown 

in Figure 2.2.16. As in classical process control, the flow diagram may contain 

feedforward streams, feedback/recycle streams, and cross interactions; the impulse 

disturbance may also be introduced at various points. Furthermore, a group of 

blocks may be combined together to give a single equivalent block. Or, conversely, 

a block with complicated system dynamics may be decomposed into a set of simpler, 

preferably first-order, blocks that display the same dynamics as the original. 

Since the performance of a thorough and exhaustive systems analysis of any or 

all possible combinations of such complicated configurations is not the immediate 

objective of this study, it is not pursued further. It suffices to state that this thesis 

recognizes the presence of these dynamic blocks that prevent the effect of an input to 

a system to be observed instantaneously at the exit. The exact structure of the lag 
\, 

or delay is closely related to the configuration of these dynamic blocks; therefore, the 

nature of the blocks can be inferred from the observation of lag behaviors. The later 

part of this thesis is devoted to the experimental determination of the number and 

the time constant of the dynamic blocks for a biochemical reactor. The fundamental 

approach taken in this thesis is to describe a system as a series of simple first-order 

dynamic blocks represented graphically in Figure 2.2.8. This thesis also attempts 

to approximate a system with complicated dynamics, e.g., Figure 2.2.16, into an 

equivalent but simpler one. 

2.3 SOLUTIONS TO GENERAL TIME-LAG EQUATIONS 

The reason for choosing exponential probability distribution functions is that 

they permit the easy and elegant transformation of a set of integro-differential 

equations into a set of simple ordinary differential equations. These exponential 
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distribution functions possess the property that each and every one of them is the 

solution to the following differential equation: 

with the initial conditions: 

dikn(O) 
dti = O for i = 0, 1, 2, ... , n - 1 

dnkn(O) 1 
dtn rn+l for i = n. 

For example, k0 (t) = ;e-i satisfies: 

with the initial condition: 

Similarly, k 1 (t) = .J,re-½ satisfies: 

with the set of initial conditions: 

1 
ko(O) = r· 

\, 

k1 (0) = O 

dki(O) _ _!_ 
dt r2 • 

(2.3.1) 

(2.3.2) 

(2.3.3) 

(2.3.4) 

(2.3.5) 

(2.3.6) 

(2.3.7) 

(2.3.8) 

The above properties of the exponential distribution functions can be used to elim

inate the kernel from the integro-differential Equations (2.2.12) and (2.2.13) and 

convert them into a larger, but mathematically identical, set of first-order ordinary 

differential equations. 

If we treat the integral containing the kernel as a new function Yn(t), defined 

as: 

(2.3.9.0) 
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then repeatedly differentiating Yn(t) with respect to t with the help of Leibnitz's 

rule yields: 

dyn(t) 
dt 

d2 yn(t) 
dt2 

d3 yn(t) 
dt3 

(2.3.9.3) 

(2.3.9) 

(2.3.9.n - 1) 

(2.3.9.n) 

(2.3.9.n + 1) 

Each of the above equations is first multiplied by (nt 1)Ti, where (nt1
) is the 

ith binomial coefficient that corresponds to the order of the derivative in y( t), as 

indicated by the last number of the equation label (2.3.9). Adding the resulting 
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equations and collecting terms that are common in d;~;J0) gives: 

(2.3.10) 
I 

As indicated in Equation (2.3.1), one of the powerful properties of the exponential 

distribution functions is that I.:~!01 Ti(nf 1) d;~;ft) = 0. Thus, with the integrand 

of the above equation being identically equal to zero, the above equation is reduced 

to one without the integral: 

(2.3.11) 

Since d; ~;J0 l = 0 for i = 0, 1, 2, ... , n - 1 from Equation (2.3.2), all the d; ~;J0 l 

terms on the right-hand side of the above equation, except for the last one, are 



-66-

identically equal to zero. Thus, with the additional help of Equation (2.3.3) in 

evaluating d";tJ0l, which is equal to T!+ 1 , Equation (2.3.10) is further reduced to 

a much simpler form: 

(2.3.12) 

The simplicity of the last equation is not at all surprising nor coincidental, for 

simplicity is what we are striving to achieve. As a matter of fact, the original theo

retical basis for choosing the exponential distribution functions as the base functions 

stems from the desire to replace the integral expression of Equation (2.3.9.0) with 

a highly simplified differential equation such as Equation (2.3.12). Specifically, the 

base function kn(t) has been chosen to enable just such a simplification. Note that 

the choice of the base function kn(t) is not unique; it need not be exactly the same 

exponential distribution function as we 4-itve adopted, as shown by the following 

derivation. However, other forms of simplified equations that are different from 

Equation (2.3.12) will result if other types of functions are employed as the base 

kernel functions. For example, if another base kernel function is the solution to the 

same differential equation as Equation (2.3.1): 

n+l ( ) · L n + 1 ~d'kn(t) = 
. -'- d. o, 
' t' i=O 

but with a slightly different set of initial conditions: 

k(O)# 0 

~kn(O) O 
dti 

for i = 0 

for i = 1,2,3 ... ,n, 

then the new equivalent differential equation that is satisfied by Yn(t) is: 

(2.3.13) 

(2.3.14) 

(2.3.15) 

(2.3.16) 
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which is similar to Equation {2.3.12) but definitely not exactly the same. In general, 

any of the terms appearing in Equation {2.3.11) may be retained by specifying a 

slightly different set of initial conditions for d;~;J0). 

Appreciation for the meaning of the kernel can be further enhanced by tracing 

the steps followed to derive the base functions. The choice of a "nice" base ker

nel function can be arrived at by the following argument. Starting with Equation 

{2.3.9.0), one wishes to eliminate the integral first by taking the derivatives of Equa

tion {2.3.9.0) repeatedly, then somehow by adding these derivatives with different 

combinations, and finally by choosing the kernel base function that enables the inte

grand to be set to zero after similar integral terms have been collected. Adding the 

derivatives of Equation (2.3.9) linearly yields the following equation that is similar 

to Equation (2.3.10): 

(2.3.17) 

Since kn(t) is still undefined at this point in the derivation, theoretically one can 

choose any set of functions as long as they are linearly independent. Forcing the 



-68-

integrand in the above equation to be equal to zero yields the first condition that 

must be satisfied by the kernel base functions: 

(2.3.18) 

= o, 

where the linear differential operator .C { •} is defined as: 

(2.3.19) 

Thus, Equation (2.3.18) can be rewritten in a simplified manner as: 

\, 

(2.3.20) 

Imposition of this condition reduces Equation (2.3.17) to: 

(2.3.21) 

In this way, the integral involving kn(t) is replaced by a differential equation 

in terms of Yn(t). Keeping this overall scheme in mind, a linear combination of 
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Equations (2.3.9) leads to a differential equation in Yn(t) whose homogeneous form 

is exactly the same as that satisfied by kn(t): 

(2.3.22) 

Because the homogeneous differential equation involving Yn(t) satisfies exactly the 

same equation as that which describes kn(t), kn(t) is basically the solution of Yn(t) 

in the absence of forcing functions on the right-hand side. Thus, the output from a 

nth-order system, Yn(t), is described by the nth-order kernel function, kn(t), and the 

specific solution. The homogeneous solution to the system dynamic equation, kn(t), 

is an intrinsic property of the system under study, and the specific solution depends 

on the nature of the forcing input on the right-hand side of Equation (2.3.11). 
I, 

The final solution to the system dynamic equation is the linear combination of the 

homogeneous solution and the specific solution. 

From well known theories of calculus, the general solution to the constant 

coefficient homogeneous linear equation of (2.3.18) is: 

(2.3.23) 

where a is a constant determined from the initial conditions. Substituting this into 

Equation (2.3.18) yields: 

(2.3.24) 

In order for Equation (2.3.24) to be zero, the terms preceeding ert must be set to 

zero, because ert itself is never zero if the solution is not a trivial one. Thus, we 
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obtain the characteristic ( or auxiliary) equation associated with both Equations 

(2.3.18) for kn(t) and (2.3.22) for Yn(t): 

0. (2.3.25) 

The above algebraic equation can be solved to give the kernel base functions. 

If there exis.t n + 1 distinct roots, then the n + 1 base kernel functions will be 

simple exponential functions, each with different time constants. When the roots 

are repeated, the fundamental solutions to Equation (2.3.18) corresponding to these 

repeated roots r0 are erot and terot. A very special case exists where the roots to 

the above equation are repeated n + 1 times. 

(2.3.26) 

In this case,· the solution to Equation (2.3.18) are erot, terot, t2 erot, t 3 erot, •.. , 

tn-lerot, and tnerot. In our notation, w~'have set ro = J, and there is only one 

time constant because there is only one root. Other cases where roots are distinct 

are not considered in detail here. 

With the integral in Equation (2.3.17) now gone, if one wants to really simplify 

that equation, it is only logical that kn(t) should have the property that all n initial 

values of d;:i;J0l being O except for one single d;~;J0l which should be allowed a finite 

value to prevent the trivial solution from taking over. An inspection of Equation 

(2.3.17) indicates that the resulting differential equation in Yn(t) is the simplest 

when d,.;;-J0) is finite, because that term appears only once in Equation (2.3.17). 

This corresponds precisely to a condition in which the roots to the characteristic 

equation (2.3.25) are repeated n + 1 times. Consequently, in order for Equation 

(2.3.26) to be t,rue, the coefficients in the characteristic equation are simply binomial 

coefficients, i.e., bi = (n!1
). Thus, after considering the time constant, it follows 

that each of the Equations (2.3.9) should be multiplied by the respective binomial 
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coefficient Ti (nt 1), and we have effectively forced kn ( t) to satisfy the constant 

coefficient linear differential equation (2.3.18). 

A similar procedure as the one just outlined above may be used to obtain 

the appropriate form for the base functions in other circumstances. By now, it 

should be clear as to how the constant coefficients preceeding the derivatives of 

kn(t) in Equation (2.3.21) are determined. Different choices of k(t) may leave a 

few nonzero derivatives of k(t) at t = 0. This, in turn, generally will not yield 

binomial coefficients as the constant coefficients preceeding the derivatives of kn(t) 

in Equation (2.3.21). 

In general, the resulting equivalent differential equation is one order higher than 

the kernel originally contained inside the integral in Equation (2.3.9.0), including 

Equation (2.3.12), which is the result of a special case of repeated roots for the 
i 

characteristic equation. For example, for the 0th-order kernel ko(t), the equivalent 
\, 

differential equation is: 

(2.3.27.0) 

Similarly, for n = 1, n = 2, ... , n - 1, and n, the integrals involving k1(t), k2 (t), 

... , kn-1(t), and kn(t) are transformed respectively to: 

(2.3.27.1) 

(2.3.27.2) 

(2.3.27) 

Tndn11n-1(t) + Tn-i dn-l1ln-1(t) + + Td11n-1(t) + (t) = (t) 
dtn n dtn-1 . . . n dt Yn-1 µ 

(2.3.27.n - 1) 

rn+l dn+lyn(t) +(n+l)Tndnyn(t) + .. . +(n+l)Tdyn(t) +Y (t) = µ(t). (2.3.27.n) 
dtn+ 1 dtn dt n 
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Notice the similarity between these equations, (e.g., Equations (2.3.27.0), 

(2.3.27.1), and (2.3.12)), and those equations that are satisfied by the correspond

ing kernel functions, ( e.g., Equations (2.3.4), (2.3.6), and (2.3.1)). A higher-order 

differential equation such as Equation (2.3.27.0) can be easily transformed into a 

set of first-order differential equations through some well known canonical transfor

mations. Thus, for a 0th-order kernel, the set of integral state equations of (2.2.12) 

and (2.2.13) is reduced to the following: 

dx - = (y-l)x 
dt 
ds 1 - = 1-s--yx 
dt Yl! 
dy 1 - = -(-y+µ). 
dt T 

(2.3.28) 

(2.3.29) 

(2.3.30) 

As shown in later sections, the biological significance of the 0th-order kernel can be 

extracted from the above equivalent set of equations. One of the possible interpre-
1, 

tations of the above set of equations is that the rate of reproduction of the biomass 

is autocatalytically proportional to the biomass itself and to a new variable y. If 

one so wishes, this variable y can be interpreted as the concentration or level of 

some "critical enzyme" that limits the growth of the microorganism. Furthermore, 

Equation (2.3.30) indicates that this "critical enzyme" follows a first-order deacti

vation kinetics, and its rate of formation is described by the function µ( s). Ifµ has 

a Monod form, then the production of the enzyme follows that of Michaelis-Menton 

kinetics, which, incidentally, is originally derived to describe enzyme kinetics. Thus, 

time-lag formulation can partially explain the relationship between the enzyme ki

netics and microbial specific growth rate in terms of the equivalence of the integral 

form and the differential form. 
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Similarly, for a simple nth-order kernel kn(t), the integral is transformed to the 

following set of equations: 

{2.3.31) 

dt = Zn 

dzn 1 [ ~ (n + 1) i ] dt = rn+l - ~ i T Zi+µ(t) . 

Linear Combination of Base Functions 

This approach would not have been very useful if one is restricted only to 

the individual exponential distribution functions. For more complicated dynamics, 

one would expect to employ a set of these base functions in order to describe the 
\, 

behavior of the system. Because of the linear properties of the differential and 

integration operators, a linear combination of more than one base function of kn(t) 

will leave the approach unchanged. For example, if k(t) is expressed as a linear 

combination of n exponential distribution functions: 

(2.3.32) 

the general observed specific growth rate y(t) = J~
00 

µ(s(h)]k(t - h)dh also has the 

same linear combination of the individual observed specific growth rates Yi(t)s, each 

of which describes the dynamic behavior of a purely ith-order subsystem governed 

i = 1, 2, ... , n. (2.3.33) 
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The fact that k(t) and y(t) both comply with the same linear combination can be 

proved by the following steps: 

y(t) = J_t= µ[s(h)]k(t - h)dh 

= J_t= µ[s(h)]· 

· [aoko(t - h) + a1k1(t - h) + ... + an+1kn+1(t - h) + ankn(t - h)] dh 

k(t-h) 

= ao it= µ[s(h)]k0 (t- h)dh+a1 it= µ[s(h)]k1(t - h)dh+ ... 

Yo(t) Y1(t) 

+ an-1 it= µ[s(h)]kn-i(t - h)dh +an it= µ[s(h)]kn(t - h)dh 

y,._i(t) y,.(t) 

= aoYo(t) + a1Y1(t) + ... + an+lYn-dt) + anYn(t). 
{2.3.34) 

The remainder of this section is de\l'bted to the derivation of the differential 

equation satisfied by y(t) for a system governed by a general kernel function that 

can be described by Equation {2.3.32). Again, for simplicity, it is our objective 

to reach an equation that describes a general y(t) in a form similar to Equation 

{2.3.27.n), which describes Yn(t), where n is the order of y(t). This is accomplished 

by repeatedly differentiating Equations (2.3.27.0)-(2.3.27.n) that describe the rela

tionships satisfied by each individual output component and by adding the resulting 

equations in order to obtain an equation similar in form to Equation (2.3.27.n). The 

form similar to Equation (2.3.27) is desired because it has the same order as the 

general y(t). 

First, Equation (2.3.27.0) is differentiated and then multiplied by appropriate 

constants. 
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(n) T:!:_ . T 2 d2yo(t) Tdyo(t) = Tdµ(t) 
I dt x . n dt2 + n dt n dt 

n(n - I)T3 d3 yo(t) n(n- I)T2 d2 yo(t) = n(n- I)T2 d2 µ(t) 
2 dt3 + 2 dt2 2 dt2 

n Tn-2 
( ) 

dn-2 

n - 2 -dt_n ___ 2 X : 

The factors applied to Equation (2.3.27.0) to obtain the preceeding equations are 

identified on the left hand side of each equation. Adding these questions together, 

one obtains: 

(2.3.36) 
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which can be further expressed in a simple summation notation: 

(2.3.37) 

In deriving this general expression, the special property of adding two neighboring 

binomial coefficients has been used. 

(2.3.38) 

Note that the left-hand side of the resulting Equation (2.3.37) has exactly the same 

format as that of Equation (2.3.27). 

Similarly, Equation (2.3.27.1), when multiplied by the left hand quantities 

yields: 

(
n - l)r.!!:....x: 

1 dt 

( ) 

. 1 
n - 1 i-1 <P-
. T -d·1x: 

i - 1 t•-

n -1 i+l lP 
( ) 

·+1 

i + 1 T dti+ 1 x: 
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(2.3.39) 

(
n - 1) rn-2 dn-3 X : 

n - 2 dtn-3 (n -1) rn-l dn- 1Y1(t) + (n -1) Tn_ 2dn- 2Y1(t) 
n-3 dtn-l n-3 . dtn- 2 

+ (n - l)rn-sdn-
3

y1(t) = (n - l)rn-sdn-
3
µ(t) 

n - 2 dtn- 3 n - 2 dtn- 3 

Tn-l __ X. 
(

n - 1) dn- 2 

n -1 dtn-2 · 
(n - l)Tndny1(t) + 2(n - l)Tn-1 dn-1Y1(t) 

dtn dtn-l 

(
n -1) dn-l 

rn--x· 
n dtn-l · 

+ (n - l)Tn-2dn-2Y1(t) = (n - l)Tn-2dn-2µ(t) 
dtn-2 dtn-2 

rn+l dn+ly1(t) + 2Tndny1(t) 
dtn+l dtn 

+ rn-1 dn-lyi(t) = rn-1 dn-lµ(t) 
dtn-1 dtn-1 

In the same way as for Yo(t), adding the above equations of Y1(t) together, one 

obtains: 

(2.3.40) 

which can be rewritten compactly as: 

(2.3.41) 
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Similar to Equation (2.3.38), the following special property of adding three neigh

boring binomial coefficients has been used in deriving the above compact equation. 

(2.3.42) 

Continuing the same process further for Y2(t), Ys(t), ... , Y;(t), ... , Yn-2(t), 

Yn-1(t), and finally for Yn(t), one arrives at: 

'f ( n + 1) T'd'y2(t) f (n -2)r•d"µ(t) (2.3.41.2) 
i dt" i dt" 

i=O i=O 

n+l · 

~ (n ~ 3)r•d'~\tl L (n '. 1) Tid'y3~t) (2.3.41.3) 
i dt" i=O 

\, : (2.3.41) 

'f (n + 1) T'd'y;(t) 
n-j . 

- L (n ~ j)rid'µ~t) (2.3.41.j) 
i dt" i dt" i=O i=O 

(2.3.41) 

n+l ( ) . t (2)rd'µ(tJ L n + 1 Tid'Yn-~(t) (2.3.41.n-2) 
. i dt" . i dt" 
t.=O t.=O 

n+l ( ) . 
1 . L n + 1 Tid"Yn-_1(t) L (~)Tid'µ~t) (2.3.41.n-1) 

. i dt" i dt" 
t.=0 i=O 

n+l · 0 . 

~ (n; l)r•d'~_<tl L (o)rid'µ~t) (2.3.41.n) 
i dt" 

i=O 

The right-hand quantities in the last three equations are simply µ(t) + 2Tdi~t) + 

T2d:J;~t), µ(t) + Td1~~tl, and µ(t), respectively. Adding all the above equations 
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together once more, with each equation being weighed by ai, gives: 

I, (2.3.43) 

Finally, with the following relationship 

(2.3.44) 
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Equation (2.3.43) is ultimately reduced to: 

Or, more compactly, 

(2.3.45a) 

(2.3.45b) 

which is the final general result sought as a counterpart of Equation (2.3.12) when 

k(t) is a linear combination of base functions described by Equation (2.3.32). 

General First-Order Kernel: Specifically, for a general first-order kernel that 

has the form: 

(2.3.46) 



- 81-

Linear manipulation according to the differentiation and multiplication operations 

indicated at the left-hand side of the following equations yields: 

ao x (2.3.27.0) : 

d 
aoT dt x (2.3.27.0) : 

a1 X (2.3.27.1) : 

Summation of the above three equations yields: 

T 2 [ d
2
y0 (t) + d

2
y1(t)l + 2T [ dyo(t) + dyi(t)l 

ao dt2 a1 dt2 ao dt a1 dt 

(2.3.47.1) 

(2.3.47.2) 

(2.3.47.3) 

dµ(t) 
+ (aoyo(t) + a1Y1(t)] = [ao + a1]µ(t) + aoT~. 

(2.3.48) 

Consequently, substituting y(t) = aoYo(t) +a1Y1(t), d~~t) = ao dyJ}t) +a1 dy~t(t), and 

d~~t) = a 0 d
2

!;2<t) + a 1 d'l!t12(t) and utilizing the unity condition on the coefficients, 

i.e., ao + a 1 = 1, one can convert the i1'tegral y(t) = J~
00 

µ[s(h)]k(t - h)dh to a .. 
second-order ordinary differential equation: 

T 2 d2y(t) Tdy(t) ( ) _ ( ) Tdµ(t) 
dt2 + 2 dt + y t - µ t + ao dt ' (2.3.49) 

which can be further transformed to a mathematically equivalent set of two first

order ordinary differential equations. 

(2.3.50) 

(2.3.51) 

For example, with the kernel of Equation (2.3.46), the system dynamic equations 

(2.2.12) and (2.2.13) are now: 

dx - = (y- l)x 
dt 
ds 1 - = 1-s- -yx 
dt Ya 

(2.3.52) 

(2.3.53) 
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dy 
-=z 
dt 
dz 2 1 1 1 dµ ds - = --z - -y + -µ[s(t)] + ao---
dt T T 2 T 2 T ds dt 

2 1 1 
= -Tz - T2Y + T2µ(s) 

1 dµ(s) 1 dµ(s) 1 1 dµ(s) + ao--- - ao---s - ao-----yx. 
T ds T ds T Y., ds 

(2.3.54) 

(2.3.55) 

General Second-Order Kernel: The same procedure can be carried to a general 

second-order kernel function of the following form: 

The equations to be summed are indicated below. 

a0 x (2.3.27.0) : 

d 
ao2T dt x (2.3.27 .0) : 

d2 
aoT2 dt2 x (2.3.27.0) : 

a1 X (2.3.27.1) : 

d 
a1T dt x (2.3.27.1) : 

a2 X (2.3.27.2) : 

Summing up these six equations yields: 

(2.3.56) 

(2.3.58) 

Since, as mentioned previously, a first-order kernel is usually sufficient in de

scribing bioreactor dynamics, the dependence of the specific growth rate ( and other 

similar culture parameters) on the past history of the culture can thus be described 
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with only two additional differential equations. This modest increase in the dimen

sion of the system is a small price to pay considering the significantly enhanced 

predictive capabilities of the model. 

2.4 KERNALS AND KALMAN FILTERS 

Filter versus Kernel: In an attempt to invert the convolution integral from 

simulated system input and output, one sees that the noise in the system input is 

effectively filtered by the integral operation, and only the slow moving trends pass 

through the integral. Thus, one can deliberately impose a system dynamic equation 

on the noise and force it though a dynamic system block, where the noise will be 

dampened. Various filter designs are based on the concept of adding a dynamic 

system block between the source of noise and the smoothed signal. This concept is 

graphically illustrated in Figure 2.4.1, where Tis the time constant of the dynamic 

system block corresponding to the noise filter. 
\, 

One may visualize the working of such a filter by considering the random injec

tion of dyes in a CSTR, where the dyes are the visualized representation of noise. 

If the stirred tank is infinitesimally small, i.e., the dynamic system block or the 

filter having a small time constant, the dye concentration in the tank outlet will 

fluctuate in about the same way as that in the inlet. On the other hand, if the 

tank is large,, the extra buffering capacity will absorb most fluctuations in the inlet 

dye concentration, and the outlet dye concentration will only vary gradually and 

smoothly despite the quick fluctuation in the inlet. The same argument and theo

ries developed for the kernel can also be applied to noise filtering, except that the 

system input is now substituted with noise, the dynamic system block is viewed 

as the filter, and the system output is equivalent to the smoothed output. The 

relationship between kernel and noise filtering in parameter/state estimation will 

be briefly discussed in this section. 
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Figure 2.4.1. A kernel that describes the relationship between the system input and 

output can be effectively used for noise filtering. 
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As an example, for a set of general nonlinear system dynamic equations: 

dx(t) dt = f(x) + ,(t) (2.4.1) 

and measurement equations: 

y = h(x) + e(t), (2.4.2) 

the following extended Kalman filter has often been used. 

d!~t) = f(x) + K(y - h{x)), {2.4.3) 

where K is the Kalman filter gain defined by: 

(2.4.4) 

The corresponding variance dynamic equation is: 

A \, ~?) = fx(x)P + Pf;{x) + Q - Ph;'(x)S- 1hx(x)P. (2.4.5) 

The details of this scheme will not be deliberated here, since the Kalman filter is 

also reviewed in Appendix G. 

An adaptive extended Kalman filter has been applied by Stephanopoulos and 

San (1984) in bioreactor estimation. Their most significant contribution is the 

addition of the system dynamic equations for states or parameters whose dynamics 

are not well known. In general, time invariant parameters can be estimated by 

setting the dynamic equation to zero. The estimates are quite accurate if these 

parameters are indeed time invariant. However, setting the dynamic equation to 

zero does not work well if these parameters/states change with time. For example, 

the specific growth rate of a culture is one such variable that changes during the 

course of fermentation and yet for which there exists no suitable dynamic equation. 
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One approach is to assume that it is driven purely by a white noise ~ of variable 

intensity a 2 • 

dµ(t) = 0 + dt) 
dt 

(2.4.6) 

Doing so, in accordance with one's lack of knowledge on the dynamic process of 

µ(t), avoids wrongly giving any structure to µ(t). 

Another way of looking at this equation, in light of the previous discussion 

on CSTRs in series, is that the above equation describes a system input/output 

relationship that is separated by a first-order system block of an infinitely long time 

constant. 

lim 
T-+oo 

dµ(t) = _µ(t) + dt) 
dt T 

dµ(t) = ~(t) 
dt 

(2.4.7a) 

More precise formulation would place the time constant T in the right place. 

Tdµ(t) + µ(t) = dt) 
dt 1, 

(2.4.8) 

Graphically, this equation is shown in Figure 2.4.2. Hence, it is not surprising 

that the adaptive filter is sluggish in response, in view of the long time-constant 

employed. 

To improve the estimation algorithm, Stephanopoulos and San first suggested 

the use of the following equations: 

d:~t) = C(t) + 11(t) 

dC(t) = 1l'(t) 
dt 

(2.4.9a) 

(2.4.9b) 

The reason behind the use of the above equations is to convert white noise 17(t) 

to colored noise dt). This is indeed true as shown later, but the dynamic repre

sentation of these equations is not quite conventional. This author believes that 

their intention is really as two dynamic filter blocks in series, as shown in Figure 
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Figure 2.4.2. Noise filtering with a first-order dynamic system block. 
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2.4.3, where each noise enters into separate dynamic blocks. ( An analogous exam

ple of how kernels tie the system output to the system input is treated in Section 

2.2, where the possibility of a system input entering into more than one first-order 

dynamic system block is also briefly discussed.) In that case, the filter equations 

should have been: 

Tµ, d:~t) = -µ(t) + C(t) + TJ(t) 

dC(t) 
Tc-----;ft = -C + TJ'(t) 

(2.4.lOa) 

(2.4.l0b) 

The first of these equations represents the last dynamic block and the second equa

tion represents the first dynamic block on the left. 

This slight modification only clarifies the use of these filter equations and gives 

them some physical meaning, e.g., CSTRs in series; it does not invalidate the orig

inal treatment of parameter/state estimation. When viewed as imposing two first

order filters in series and, thus, providing\more buffer between the noisy input and 

the ultimate estimate, it is clear why the estimate should be less noisy as compared 

to the original treatment where the variable C(t) is not considered. However, the 

inclusion of the variable C(t) in itself does not improve the sluggish response, al

though they filter the incoming noise quite well. The reason is that although the 

two filter equations originally proposed by Stephanopoulos and San do provide the 

means for the two noises 17(t) and t1'(t) to pass through two system blocks, they 

are implicitly assigned an infinitely long time constant. (These equations have T 

misplaced; Equations (2.4.l0a) and (2.4.lOb) are believed to be the best ones.) 

lim 
Tc-oo 

d:~t) = C(t) + 11(t) 

dC(t) = t1'(t) 
dt 

(2.4.lla) 

(2.4.llb) 
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To correct for this sluggish response, Stephanopoulos and San further suggested 

the use of a finite time constant that has the same order as the typical system 

response time represented by the dilution rate, D. 

dµd(t) = C(t) + tJ(t) 
' t 

dC(t) = _ C(t) + tJ'(t) 
dt T 

(2.4.12a) 

(2.4.12b) 

Because these equations are missing the term involving µ( t) itself, a possible 

exponential decay term in the characteristic equation, (Ta1:+-i), is substituted with 

a constant 1. It is not optimal and is a special case of the modified formulation ., 

of Equations (2.4.l0a) and {2.4.l0b) presented earlier. Our modified set of filter 

equations have an overall second-order transfer function: 

(Tµs + l)U(s) = C(s) + Qµ(s) (2.4.13b) 
\, 

(2.4.13b) 

which can be combined to give the final transfer function: 

(2.4.13c) 

In the time domain, the correlated noises tJ(t) and tJ'(t) are filtered through a 

convolution integral: 

(2.4.14) 

where kc(t) and kµ(t) are the filter kernel equations. 

{2.4.15a) 

(2.4.15b) 
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A more general form of the second-order filter equations may be expressed as: 

dµ(t) 
Tµ,~ + f3µ(t) = iµcC(t) + qµ(t) 

dC(t) 
Tc~+ aC(t) = /cµµ(t) + qc(t) 

The filter transfer function for these equations is: 

The corresponding characteristic equation is: 

which can be expressed in an even more general form: 

T 2 s2 +2eTs+l=0. 
\, 

Equating the above two equations, one obtains: 

T= 
a/3 - 1µ,c"Ycµ 

aTµ, + f3Tc = 2eT 
a/3 - "Yµ,c"Ycµ, 

(2.4.16a) 

{2.4.16b) 

{2.4.18) 

(2.4.19) 

(2.4.20) 

(2.4.21) 

A second-order filter with the desired properties can be designed by assigning 

proper values to the filter parameters. A similar equation has been discussed in 

the section entitled "Formulation of Time-Lag Equations". The time-domain filter 

equation corresponding to the above characteristic equation is: 

(2.4.22) 
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Usually, the critically damped case of f. = 1 is chosen. The underdamped case of 

0 < f. < 1 is to be avoided due to the oscillations, although the response is fast. 

The overdamped case of f. > 1 is not desirable because the response is sluggish. 

These equations used for adaptive parameter identification and state estimation 

can be viewed as imparting weighing functions to the noise that drives the system. 

In effect, the noise is passed through a separate pre-filter before being subjected to 

Kalman filtering, although only one integrated program is usually written for the 

combined adaptive filtering and Kalman filtering. Figure 2.4.4 shows the application 

of the pre-filter developed in this section. 

Colored Noise: Another interesting point provided by the above set of equations 

is the transformation of white noise to colored noise. White noise is one where the 

autocorrelation function is a delta function. The autocorrelation function ¢xx(t) is 

defined as: 
I, 

(2.4.23) 

where E is the expected value operator. Because averaging a member of the ensem

ble over time gives the equivalent result as averaging all members of an ensemble 

at a fixed time due to the ergodic hypothesis, the above equation can be expressed 

alternatively as: 

1 JT <Pxx(t) = lim 
2
T x(t)x(t + r)dt 

T-ex> -T 
(2.4.24) 

The autocorrelation function <l>xx(t) in the frequency domain is called the power 

spectral density function, denoted as ~xx(w). Thus, with our earlier definition of 

Fourier transform, it is expressed as: 

(2.4.25) 

As mentioned previously, various other common forms of definitions for Fourier 

transform exist, and it is advised to use the transform in a consistent manner. 
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Because the filter equation and the kernel satisfies exactly the same mathe

matical relationship, the convolution theorem of Fourier transform can be used to 

see how the noise structure is transformed by the filter as it reduces the noise level. 

For example, the following convolution integral describes how the noise 17(t) can be 

reduced by the filter k(t). 

Ysmooth(t) = 1-too k(t - h)17(h)dh (2.4.26) 

In the frequency domain, the following relation holds. 

Ysmooth(w) = K(w) · E(w) (2.4.27) 

The power spectral density function of a noisy variable can be calculated by 

multiplying the Fourier transform by its complex conjugate. The filter transfer 

function can also be obtained similarly. The objectives here are to investigate how 

a first-order dynamic filter transforms t~e power spectrum of a noisy input. This 

can be accomplished by simply taking the Fourier transform of the kernel ( or filter 

equation). 

K(w) = 1 {k(t)} = 1-: ei
21r"'tk(t)dt 

Substituting a 0th-order kernel, one obtains: 

2 
1 + i21rwT· 

(2.4.28) 

(2.4.29) 

The above equation is basically one of i+tT, factors such as 21r being dependent 

on the definition of a Fourier transform. The power spectral density of a first-order 

kernel is: 

( ) *( ) 1 1 * 1 
p = Ko w · Ko w => 1 + iwT · 1 + iwT = 1 + w2T 2 • 

(2.4.30) 

This function is plotted in Figure 2.4.5 along with a few other frequently encountered 

power spectral density functions. 
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Thus, given a white noise that has an evenly distributed power spectral density 

of Figure 2.4.5a, the filter modifies the noise structure by multiplying . ;T 1 to the ~w 

original constant function. This process results in the smoothed estimates having 

the power spectral density of iwiT:i. Note that the power of high frequency compo

nents for the smoothed estimates is low, and high frequency noise is thus reduced 

by the filter. Because the power spectral density function of the resulting smoothed 

estimates is no longer even, the filter has rendered the original white noise into a 

"colored" one. 

In summary, this section describes the use of a kernel as a filter equation to 

relate the system input and the system output. When the system is regarded as 

a filter, the system input consists of the noisy input, and the system output is 

the smoothed output. Thus, there exist many applications for the kernel concept 

outside of bioreactor modeling. 
\, 

2.5 REDUCTION OF STRUCTURED MODELS 

TO UNSTRUCTURED MODELS 

The difference between a complex structured model and a simple unstruc

tured model is analogous to that between statistical and classical thermodynamics. 

Whereas a structured model attempts to explain the observed phenomena through 

a large set of differential equations in terms of the more fundamental variables such 

as the concentrations of various intermediates, unstructured models are usually 

composed of those variables that can be physically "seen" or "felt" more readily 

and are, thus, more comprehensible to human minds. The proposed modeling ap

proach herein attempts to retain the general form of an unstructured model so as 

to facilitate simple physical interpretation of the variables by such familiar terms 

or concepts as the specific growth rate. At the same time, this modeling approach 

attempts to incorporate only those metabolic intermediates that are important to 
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AUTOCORRELATION FUNG. POWER SPECTRAL DENSITY 

8(t) 
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Figure 2.4.5. Autocorrelation functions and power spectral density functions for some 

frequently used random processes. 
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the dynamics of the system. It also attempts to reduce the order of a compli

cated structured model through the judicious process of lumping and the analysis 

of eigenvalue-eigenvector of a linearized system. How this can be accomplished is 

outlined below. 

Origin of the Time-Lag Kernel: In general, a dynamic system (including a 

structured model) can be described by a set of first-order differential equations: 

dx(t) 
~ = f (x, u, t), (2.5.1) 

where x is the state vector and u is the input to the system. Currently, there is no 

general established way of solving such a set of differential equations if they are non

linear. As long as the nonlinearity is not too severe, one generally quasi-linearizes 

the nonlinear set of equations around the point of interest before attempting to 

solve them. For a system linear in the state variables, the above equation can be 

written as: \, 

dx(t) 
~ = A(t)x(t) + g(t). (2.5.2) 

Note that the dependence of A on time does not destroy the linearity. The 

fundamental-matrix solution to the above differential equation is expressed by the 

following Lagrange formula: 

x(t) = ltoo K(t, h)g(h)dh 

= K(t, to)x(to) + lt K(t, h)g(h)dh, 
to 

(2.5.3) 

where K is the fundamental matrix of Equation (2.5.1). 

K is also sometimes called the transition matrix. It has a few well known, 

extremely useful properties. The first one is that it satisfies the following matrix 

differential equation analogous to the homogeneous form of the state vector differ

ential equation: 

dK~; to) = A(t)K(t, to) fort~ to, (2.5.4) 
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with the initial condition: 

K(to, t0 ) = I. 

This dynamic relationship can be further generalized for any h > t0 : 

dK~:, h) = A(t)K(t, h) fort> to, h > to. 

K(h,h) = I for h > t0 

The kernel matrix also satisfies the adjoint differential equation: 

for t 2 to, h 2 to. 

For any t 1 , t 2 , t 3 2 t0 , the kernel matrix can be chained: 

The above equation leads directly to the following identities: 

I= K(t1, ti) = ~(ti, t2) · K(t2, ti) 

==> K(t1 , t2) = [K(t2, ti) ]-
1

• 

(2.5.5) 

(2.5.6) 

(2.5.7) 

(2.5.8) 

(2.5.9) 

(2.5.10) 

Thus, the kernel matrix is nonsingular for all t 2 t0 and h > t0 • This can also be 

seen from the fact that exponential functions are never equal to zero. Furthermore, 

(2.5.11) 

These properties are listed because they can be quite useful when handling a time

lag kernel. 

Because the matrix K(t, h) depends on t and h separately and because the ma

trix itself may be monstrously dimensioned with numerous nonzero off-diagonal ele-· 

ments, it is difficult to be graphed and visualized in the traditional three-dimensional 

space that one is accustomed to. Thus, the meaning of each element of the matrix 

usually cannot be readily communicated with such conventional and easily compre

hensible biochemical engineering terms a.s specific growth rate or yield, etc. 
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If the linearization matrix A(t) is constant, then this solution further reduces 

to: 

(2.5.12) 

where 

(2.5.13) 

Thus, the appearance of a kernel in Equations (2.2.8)-(2.2.11) is spontaneous; it 

arises mathematically during the process of solving a set of differential equations. As 

shown in the above derivation, what is called the kernel is mathematically equivalent 

to the fundamental matrix of a set of first-order ordinary differential equations. One 

also sees that the kernel inside the time-lag integral when expressed as k(t - h) is 

actually the linearized time-invariant scalar representation of the more general form 

of K(t,h) of Equation (2.5.3). 

Evaluation of a Multidimensional Time-Lag Kernel: There exist a number of 

techniques that can be used to evaluate then x n matrix exponential eAt. The first 

method uses the infinite series expansion: 

At 1 ( )2 1 )3 e = I + At + 1 At + 1 ( At + .... 
2. 3. 

(2.5.14) 

This method requires the repeated evaluation of matrix multiplications and is rather 

tedious. The second method makes use of the Cayley-Hamilton theorem. A conse

quence of this theorem is that a matrix exponential eAt of dimension n x n, can be 

expressed as an (n - l)th degree polynomial: 

n-1 

eAt = L /3,-Ai. 
j=O 

(2.5.15) 

Thus, the problem is one of evaluating the n coefficients of /3;, j = 0, 1, 2, ... , n-1. 

The third method relies on the direct integration of 

(2.5.16) 
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with the initial condition: 

e0 = I. (2.5.17) 

This is equivalent to integrating ( n x n) simultaneous first-order ordinary differential 

equations. 

Many other methods are available. The method used in this thesis converts 

the matrix A into a diagonal ( or at least a Jordan normal) form via a similarity 

transformation. 

(2.5.18) 

where T is the transformation matrix composed of generalized eigenvectors, and J 

is a converted block-diagonal Jordan matrix that has the form: 

0 

0 

0 0 J,n 

Each of the above Jordan blocks J;, dimensioned n; x n;, has the form: 

.,\ . 
3 1 0 0 0 

0 .,\ . 
3 1 0 0 

0 0 .,\ . 
3 0 0 

J;= 

0 0 0 .,\ . 
3 1 

0 0 0 0 .,\ . 
3 

n; columns 

The matrix exponential of e3 t is also block diagonal: 

0 

0 0 

0 

0 

n; rows . 

(2.5.19) 

(2.5.20) 

(2.5.21) 
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where the matrix exponential of the jth Jordan block e3 ;t is: 

e:>..;t te:>..;t 
2 

t
3 e:>.. ;t Le:>..;t 

2! 3! 

0 e:>..;t te>..;t .t:e:>..;t 
2! 

e.J1t = 
0 0 e>..;t te:>..;t nj rows. (2.5.22) 

0 0 0 e:>..;t 

nj columns 

Finally the original matrix exponential can be evaluated by an inverse similarity 

transformation: 

(2.5.23) 

Time-Lag Kernel from a Structured Model: The structured model and the 

unstructured model are related in that a structured model can be reduced to an 

equivalent unstructured model. It will be shown that the connection between them 

is provided by the time-lag kernel. 1, 

The first step is to partition the vector of state variables, x(t), based on whether 

they appear in an unstructured model. Those variables that appear in the resulting 

unstructured model are grouped in x 1 (t), and the remainder of the state vector 

x(t) that are included only in the structured model but not in the unstructured 

model are grouped in x2(t). For example, the biomass, substrate, and product 

concentrations will be contained in x 1 (t). All the intermediates and enzymes that 

are not considered as the product will be part of x2(t). The result of this partition 

of x(t) is: 

x(t) = [ ::~:n . (2.5.24) 

The linearization matrix A(t) and the non-homogeneous forcing function g(t) can 

be partitioned similarly: 

(2.5.25) 
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(t) = [gi(t)]. 
g g2(t) (2.5.26) 

With this partition, Equation (2.5.2) becomes: 

dx 1(t) 
dt = A11(t)x1(t) + A12(t)x2(t) + g 1(t) (2.5.27) 

dx2(t) 
dt = A21(t)x1(t) + A22(t)x2(t) + g2(t) 

(2.5.28) 

= A22(t)x2(t) + g(t), 

where g(t) = A21(t)x1(t) + g2(t) is the nonhomogeneous part of Equation (2.5.28), 

which has a fundamental matrix solution analogous to Equation (2.5.12) as de

scribed by: 

X2 = ltoo K22(t, h)g(h)dh, (2.5.29) 

where K22(t, h) is the fundamental matrix to A22 (t) of Equation (2.5.28). 

Thus, the unstructured model's equivalent of the structured model of Equation 

(2.5.1) is now reduced to Equation (2.5.2~), whose more general form is: 

(2.5.30) 

where x 2 is the time-lag integral defined by Equation {2.5.29). If x 1{t) is composed 

of the biomass and limiting substrate concentrations as in our previous example, 

then x 2 is simply the scalar observed specific growth rate, previously denoted y. 

Similarly, u is composed of control variables which, in our previous example, are 

the dilution rate, D, and the substrate concentration in the feed, SJ· K 22 is the 

scalar time-lag kernel, k, and g is the scaler intrinsic specific growth rate, µ. 

Note that Equation (2.5.30) alone is the unstructured model; the addition of the 

information provided by the integral in Equation (2.5.29) upgrades it to a structured 

model because these two combined equations are the exact equivalent of the original 

structured model described by Equation (2.5.2). The time-lag kernel matrix K22 

is the relationship that ties these two traditional modeling approaches. As can be 
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seen from the preceeding equations, the time-lag kernel arises quite naturally as a 

consequence of reducing a larger set of dynamic equations of a structured model to 

a smaller set of dynamic equations of an unstructured model. 

It is emphasized that the time-lag kernel is not simply an artificial mathematical 

concept; it is derived from a biological basis. Its presence can be explained by the 

fact that there exists a large collection of metabolic pathways and regulation steps. 

When a microorganism is subjected to a stimulus, it requires time for the cell to 

respond to the external stimuli as it adjusts its internal states one after another. For 

example, intermediate metabolites, precursors, enzymes, and various cofactors may 

be needed before the final product, which may be a specific enzyme, a chemical, or 

simply the cell biomass itself, can be assembled. Thus, the time-lag kernel compacts 

all our knowledge about the actual process of how a cell responds to the external 

stimuli into a simple functional form. It is the fundamental matrix to the missing 
\, 

dynamic equations. Conversely, a kernel has an equivalent representation in terms 

of structured dynamics. We see that a unique kernel can be constructed given the 

dynamics of the system, but the reconstruction of structure from a kernel function 

is not unique because more than one different process can be responsible for the 

same response and, thus, the same kernel function. In such a circumstance, the rule 

of modeling dictates that the simpler mechanism be chosen. 

The kernel concept can be used to check the validity of the proposed mech

anism in a structured model. For example, if the experimentally obtained kernel 

function does not agree with that directly derived from the structured model, one 

can conclude that the original hypothesis is perhaps erroneous, and, as mentioned 

earlier, the shape of the kernel function can give one some insight as to the type 

of mechanism that may be responsible for the observed kernel. One may then re

vise his hypothesis and recheck to verify if the kernel function now conforms to the 
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assumed mechanism. Alternatively, one may build a reasonably good structured 

model from some experimentally determined kernel functions. For example, if one 

were to find that the time-lag kernel could be approximated by a 0th-order expo

nential distribution function, then, based on the implied meaning of this kernel, 

one might plan further experiments aimed at identifying the rate limiting "critical 

enzyme." Thus, the kernel might be used to help suggest the type of experiment to 

be performed. 

The link provided by the time-lag kernel is analogous to the relationship in 

statistical thermodynamics that translates such esoteric concepts as the number of 

possible quantum states (i.e., the degeneracy) associated with the energy level, the 

canonical ensemble partition function, and the undetermined multiplier to such com

monly understood concepts as temperature, pressure, entropy, energy, and chemical 

potential. The introduction of a time-lag kernel eliminates the need to maintain a 
\, 

close monitor on the complicated internal state of a microorganism, many of which 

cannot be easily monitored, just as a thermodynamic partition function cannot be 

easily measured. The use of a time-lag kernel allows a fermentation technologist to 

concentrate on those variables that he can intuitively feel and "see" through the 

available measurements, just as a chemical plant operator functions with tempera

ture and pressure. 

Examples of Structured Model Reduction: 

The methodology on the reduction of a structured model to an unstructured 

model will be demonstrated by analyzing some typical structured models. Par

ticular attention will be focused on the determination of whether a model indeed 

has structures and, if so, which state variables have structures. As mentioned pre

viously, the appearance of a time-lag can be attributed to the process dynamics 

associated with the structure. The time-lag kernel associated with the neglected 
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kinetic information when a structured model is reduced to an unstructured model 

will be derived theoretically. 

Imanaka 's Model of Enzyme Production: (Imanaka et al., J. Ferment. Technol., 

50, 633, 1972.) One of the structured examples is Imanaka's model of enzyme (a

galactosidase) production developed for Monascus sp. The kinetic expressions are 

derived based on the operon theory of enzyme production. For a batch fermentor, 

the model consists of the following set of eight dynamic equations: 

Biomass: 

Glucose: 

Galactose: 

Intra. Galactose: 
i!< 

Repressor: 

Rep /Ind Complex: 

mRNA: 

Galactosidase: 

dX _ X 
dt -µ 

drsB, -- = k4r · sB, - ksrsB, - µrsBi 
dt 

de - = ksm-µe 
dt 

{2.5.31.1) 

{2.5.31.2) 

(2.5.31.3) 

{2.5.31.4) 

{2.5.31.5) 

{2.5.31.6) 

{2.5.31.7) 

{2.5.31.8) 

In the above equations, the macroscopic variables X (biomass), SA (glucose), 

and SB (galactose) are expressed in concentration units of mg/(reactor volume); 

whereas, the intracellular components sm (intracellular galactose), r (repressor), 

rsB, (repressor-inducer complex), m (messenger RNA), and e (a-galactosidase) are 
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expressed in concentration units of mg/(g cell). Note that each of the dynamic 

equations for the intracellular components has a term that contains µ multiplied by 

the component itself. This term represents the dilution factor due to the expanding 

cell volume as the microorganism grows. 

Similarly, for a continuous fermentor, the above set of equations become: 

Biomass: 

Glucose: 

Galactose: 

Intra. Galactose: 

Repressor: 

dX 
-=µx-DX 
dt 

R /Ind C 1 d""Ji:s;i = k R . S Bi - k RS · - DRS · ep omp ex: dt 4 X s n, n, 

mRNA: 

Galactosidase: 
dE 
-=ksM-DE 
dt 

(2.5.32.1) 

(2.5.32.2) 

(2.5.32.3) 

(2.5.32.4) 

(2.5.32.5) 

(2.5.32.6) 

(2.5.32.7) 

(2.5.32.8) 

As in the batch fermentor, X (biomass), SA (glucose), and Sn (galactose) are 

expressed in concentration units of mg/(reactor volume). However, intracellular 

components Sni (intracellular galactose), R (repressor), RSni (repressor-inducer 

complex), M (messenger RNA), and E (a-galactosidase) are expressed in concen

tration units of mg/(fermentor volume) in the above set of equations for a contin

uous fermentor. The symbols for the cellular volume-based variables are in lower 
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case letters, and those for the fermentor volume-based variables are in upper case 

letters. This change of units is used to keep the two sets of equations in similar 

forms. These two sets of variables differ from each other by a factor of X: 

R=X·r 

M=X·m 

E=X•e 

(2.5.33.a) 

(2.5.33.b) 

(2.5.33.c) 

(2.5.33.d) 

(2.5.33.e) 

The first three of these equations describe the concentration variation of the 

major macroscopic components in the fermentor. These expressions are directly 

obtained from the well-known unstructured dynamic equations, with Monod-type 
I, 

of specific growth rate constitutive relationships. 

for SA< SAc 

for SAc ~ SA 

(2.5.34.a) 

(2.5.34.b) 

(2.5.34.c) 

Because these first three dynamic equations contain no state variables other than 

themselves, they are completely decoupled from the rest of the equations and can 

be solved independently of the enzyme production. Furthermore, because of this 

complete decoupling, there is no structure for the biomass, glucose, or galactose. 

Thus, there is no time-lag in the response of these variables. 

However, the above statement does not hold true for the enzyme. As shown in 

Figure 2.5.1, there are five dynamic steps that separate the overall output (e) from 

the input (D, SAJ, and SBJ ). Thus, all the structure is contained in a sequence of 
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events that finally lead to the enzyme production. The enzyme production requires 

the presence of mRNA (m), which is produced when the repressor level is below 

the critical level of re. Mathematically, this on/off event can be expressed as: 

k6 = { k6 for r < re 
0 for re :'.Sr 

(2.5.35) 

The repressor, in turn, is produced at a constant rate and is inactivated by combin

ing with the inducer - the intracellular galactose (sBi)· The transport of galactose 

into the cell is effectively turned off when the fermentor glucose concentration ex

ceeds a critical value of SAe• This statement is expressed mathematically as: 

(2.5.36) 

As the first example, the continuous fermentor with a step change in the dilu

tion rate from D=l.40 hr- 1 to D=l.42 hr- 1 at t=0 hr is simulated with the above 
I, 

set of equations. The same set of model parameters claimed to be used by the 

original authors are employed to generate the concentration profiles. The values of 

the parameters used are reproduced below: 

Experimental Model Values 

µm.A 0.215 hr- 1 

µm.A 0.208 hr- 1 

KsA 0.154 g/1 

KsB 0.258 g/1 

Ki 0.139 g/1 

YA 0.530 g/g cell 

YB 0.516 g/g cell 
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BLOCK DIAGRAM OF IMANAKA:S MODEL 

INPUT 
I D, SAf' 

DYNAMICS # I 

X, SA, s B 

DYNAMICS #' 2 

Ss1 

DYNAMICS #' 3 

R, RS 81 

DYNAMICS # 4 

M 

DYNAMICS # 5 

IE 
OUTPUT 

Figure 2.5.1. Steps leading to the formation of galactosidase. 
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Undetermined Model Values 

k1 40. hr- 1 

k2 1. mg/ (g cell)-hr 

k3 1. hr-1 

k4 0.1 (g cell) /mg-hr 

ks 0.0001 hr-1 

k6 1. hr-1 

k7 8. hr-1 

ks 4. K unit/(mg mRNA)-hr 

u 100. hr- 1 

G2 3.5 mg/(g cell)-hr 

KrnB 0.00000001 \, g/1 

Critical Values 

SAc 0.225 g/1 

re 0.803 mg/(g cell) 

Operating Conditions 

D 0.140 --t 0.142 hr- 1 

SJA 20. g/1 

SJB 5. g/1 
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Initial Conditions 

Xo 13. g/1 

SAo 0.223 g/1 

SBo 0.0501 g/1 

8Bi0 2.5 mg/(g cell) 

ro 0.718 mg/(g cell) 

rsBiO 1.28 mg/(g cell) 

mo 0.0104 mg/(g cell) 

eo 0.297 K units/(g cell) 

The original authors' results are reproduced in Figure 2.5.2. The results of 

this author's simulation are shown in Figures 2.5.3 and 2.5.4. It should be noted 

that even after an extensive effort in e)(perimenting with various sets of model 

parameters and the time of the dilution rate shift, the author was unable to obtain 

the type of behavior claimed by Imanaka et al. Because, as mentioned previously, 

the first three macroscopic variables are decoupled, these three dynamic equations 

can be analyzed independently of the rest of the equations. It is known that for 

a system described by Monod-style dynamics, a sudden increase in the glucose 

concentration shown in Figure 2.5.2 at t=7 hr is not possible unless some type 

of external disturbance is introduced at that instant. Alternatively, suppose the 

dilution rate were shifted at t=7 hr, there would also be sudden changes in the 

biomass and galactose concentrations at the same time, which are not present in 

the same figure. 

The first step in expressing a structured model in a time-lag format is to identify 

the unstructured variables. In this example, the state vector for the unstructured 
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variables is: 

(2.5.37) 

The remaining intracellular variables are partitioned into x 2 (t): 

(2.5.38) 

Thus, the equivalent unstructured model presented in the form of Equation (2.5.30) 

is: 
dX(t) 

dt 
dSA(t) 

dt 
dSa (t) 

dt 
dE(t) 

dt ,.__., 
dxdp) 

µx-DX 

-..JAµAX + D(SA/ - SA) 

-..J
8
µnX + D(Sn1 - Sn) 

k8M-DE 

\, 

(2.5.39) 

The above equation indicates that there is a single time-lag variable M in the 

dynamics of enzyme formation. The time-lag kernel differential equation can be 

obtained for this multidimensional system from the dynamics of x 2 (t). Following 
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Equation (2.5.28), the linearized dynamics of x2(t) is expressed as: 

dSB;(t) 
dt 

dR(t) 
dt 

dRSai 
dt 

dM(t) 
dt _,,_... 

dxdt(t) 

+ 

ucBsB t x t 
K.,.B+sB t 

[ k2 + k,Rx~BjO] x(t) 

_ k,RoSB;o X(t) xg 
k6rcX(t) 

g(t) 

\, 

(2.5.40) 

The solution of the above set of dynamic equations is expressed in the time-lag 

kernel matrix form of Equation (2.5.29) as: 

x2(t) = 1:= ~g(h)dh 
K22(t-h) 

= J_t= K 22 (t - h)g(h)dh. 

(2.5.41) 

Thus, the time-lag variable M(t) in Equation (2.5.39) can be expressed in an equiv

alent kernel integral format as: 

(2.5.42) 
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where ki3(t) is the ijth element of the matrix exponential eA:.nt. 

The above equation can be simplified for the dilution rate shift-up example. 

Because of the large value of U, the dynamics of SBi is fast, and sBi is zero for 

the most part. Thus, its dynamics can be ignored to reduce the dimension of the 

system by 1 in order to facilitate greatly the mathematical analysis. With sBi = 0, 

Equation {2.5.40) becomes: 

(2.5.43) 

Note that linearization is not necessary with sni = 0. At D=0.142 hr- 1, substitut

ing the numerical values for the model parameters into A 22 gives: 

[

-1.142 0.0001 

A22 = O -0.1421 
-1 0 -oLJ {2.5.44) 

-1.142 - ,\ 0 

0 =det!A22 - >.II= 0 

0.0001 
-0.1421- ,\ 

-1 0 
0 

-8.142- ,\ 
{2.5.45) 

= {-1.142- >.)(-0.1421- >.)(-8.142- >.) 

==> >.1 = -1.142 >.2 = -0.1421 ,\3 = -8.142 

[ 

7 -7.9999 0~] 
T = ~ -7999t0001 

[

-0.1429 
T-1 = O 

0.1429 

{2.5.46a) 

1.43 X 10-5 0] 
-1.25 X 10-5 0 
-1.79 X 10-6 1 

(2.5.46b) 
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[

-7 -7.9999 

= 0 -79991.0001 

1 1 
[

-0.
0
1429 1.43 X 10-

5 
0~] 

-1.25 X 10-5 

0.1429 -1.79 X 10-6 

---------
T T-1 

(2.5.46c) 

With the given initial conditions, Equation (2.5.41) is now reduced to: 

[ 

R(t) ] [k 11 (t) 
RSm(t) = k2i(t) 

M(t) k31(t) 
...._,.-

X2(t)) 

t [k11(t - h) 
+ 1 k21(t - h) 

0 k31(t - h) 

(2.5.47) 

Finally, the time-lag variable M(t) is described by the following kernel integral: 

M(t) = ltoo { 0.1429( eAa{t-h) - eAi{t-h)) + 0.803eAa{t-h)} X(h)dh 

k(t - h) 

= 0.1429 ( eAat - eAit) R(O) + eAat M(0) 

+ lot { 0.1429 ( eAa(t-h) - eAi{t-h)) + 0.803eAa(t-h)} X(h)dh. 

Note that for k6 = O, the above equation is reduced to: 

(2.5.48) 

(2.5.49) 

and there is no time-lag in the response of the enzyme because all the terms in the 

time-lag integral are practically equal to zero. 



-119-

In Figure 2.5.5, the enzyme profile calculated with the time-lag approach, with 

a kernel described by Equation (2.5.48), is contrasted with that calculated by in

tegrating the full set of eight dynamic equations. The kernel is turned on when 

SA < SAc· Note that this critical point can be determined with the unstructured 

variables, and no knowledge of the process structure of enzyme induction and re

pression is used in the time-lag calculation. It is apparent that there is no visible 

difference between the two curves. Also shown in the same figure is the enzyme level 

as a function of time, calculated with Equation (2.5.49) for the entire duration. Since 

the dynamic equations for biomass, glucose, and galactose concentrations are un

structured, there is absolutely no difference in calculated results of these variables, 

whether a full set of equations is used or not. 

The next example is the simulation of enzyme production in a batch mode. For 

reference purposes, Imanaka et al. 's experimental results and model prediction are 

reproduced in Figure 2.5.6. As in the continuous mode of operation, this author was 

unable to reproduce the same curves with the model and parameters provided by 

Imanaka et al., although the overall features of the obtainable batch fermentation 

are comparable. The following is a list of the model parameters that were used that 

differ from the ones used in the previous example of continuous fermentation, due 

to the different operating conditions (temperature, nutrient composition, etc.) 

Experimental Model Values 

µmA 0.190 hr- 1 

µmB 0.162 hr- 1 

KsA 0.145 g/1 

KsB 0.307 g/1 

YA 0.377 g/g cell 

YB 0.361 g/g cell 
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Undetermined Model Values 

ks 6.67 K unit/(mg mRNA)-hr 

Initial Conditions 

Xo 0.5 g/1 

SAo 10. g/1 

Sno 3. g/1 

SBiO 0. mg/(g cell) 

ro 0.91 mg/(g cell) 

TSBiO o. mg/(g cell) 

mo 0. mg/(g cell) 

eo 0. K units/(g cell) 

The simulated results calculated witJi a full set of eight dynamic equations 

are plotted in Figures 2.5. 7 and 2.5.8. The enzyme concentration for the time

lag approach, shown in Figure 2.5.9, is calculated based on the following dynamic 

equation: 
de(t) dt = k8m(t) - µe(t), (2.5.50) 

where the time-lag variable m(t) is activated at the time when SA becomes smaller 

than the critical glucose concentration of SAc• This critical time, denoted as tc, 

can be determined from the macroscopic variables without the knowledge of the 

structure of enzyme production. The slight deviation is due to the fact that the 

enzyme profile determined by the full set of dynamic equations is based on the 

internal on/off mechanism of mRNA production, which depends on the value of 

( r c - r). This value is not available to an unstructured model that does not consider 

the internal mechanisms, and the closest on/off switch available to an unstructured 

model is the crossing of S Ac by SA. In view of the fact that only macroscopic 
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Figure 2.5.6. Time course of cell growth and o:-galactosidase production in a mixture 

of glucose {1%) and galactose (0.3%). Reproduced from Imanaka et al. 

(1973). 
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variables are used to generate the concentration profiles, the agreement is quite 

good. 

The equivalent time-lag kernel for the batch case can be derived from Equations 

(2.5.31.4)-(2.5.31.7). As before, instead of manipulating the entire set of equations 

simultaneously, it is beneficial to make some simplifications. Because U and k1 are 

large, one can apply the quasi-steady state assumption to SBi• Furthermore, because 

KrnB is extremely small, one can assume that K~!~s = GB for SB> KrnB• This 

leads to: 

dsm 
0 = dt = U(GB - 8Bi) - k1sBi - µsBi (2.5.51a) 

UGB UGB SA < SAc 
s Bi ~ U k ~ U k = 2.5 for + 1 + µ + 1 & SB > K rnB 

(2.5.516) 

With this simplification, a matrix equation similar to Equation (2.5.43) can be 

obtained: 

The dynamic matrix, after substituting model parameters, is: 

[

-1.25 - µ 

A22 = 0.25 
-1 

0.0001 
0.0001 - µ 

0 

0 J r-1.25 _ µ 
0 ~ 0.25 

-8-µ -1 

-1.25-µ- ,\ 0 0 

0 = det!A22 - .\II = 0.25 -µ->. 0 

0 

-µ 
0 

-1 0 -8 - µ - >. 
= (-1.25- µ- >.)(-µ- >.)(-8 - µ- >.) 

-\1 = -1.25 - µ -\2 = -µ ,\3 = -8-µ 

[-6.75 0 

fl [ 1 
0 ~] -6.75 

==> T= 1.35 1 T-1 = 0~2 1 
1 0 0 6.75 

(2.5.52) 

_}_J 
(2.5.53) 

(2.5.54) 

(2.5.55a) 

(2.5.55b) 
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[-6.75 0 

~] ['t 
0 }..] [-6.~5 0 

K(t) = eAnt = 1.35 1 e..\:it 0.2 1 

1 0 0 1 0 6.15 

T eJt T-1 [ ,,,, ~o }..] - 0.2( e..\:it - e..\it) e..\:it 

_l_(e..\st _ e..\it) ~o 
6.15 

Finally, the time--lag variable for the batch fermentation is: 

{ 

0 fort~ tc 

m(t) = mtc + f/c k(t - h)X(h)dh for tc < t ' 

where the kernel k(t) is described by: 

k(t) = _1_ (e..\st - /11t) + 0.803e..\st 
6.75 

= 0.9511e..\at - 0.1481e).1t 

~] 
(2.5.55c) 

(2.5.56) 

(2.5.57a) 

and the pre-integral factor mtc used to absorb all the information between t = -oo 

and t = tc is: I, 

(2.5.57b) 

Tanner's Model: {Tanner, Biotechnol. Bioeng., 12, 831, 1970.) Another enzy

matically based structured model proposed to describe the gluconic acid fermenta

tion will be reduced to an unstructured equivalent with the inclusion of a time--lag 

kernel. Readers are referred to the original paper for a detailed discussion on the 

mechanism. The set of ten dynamic equations that comprise this model are listed 

below: 

Biomass: 

Substrate: 

d(X) = k (RS)= k3(RS) X 
dt 

3 
(R) + (RS) 
'--" 

11 

(2.5.58.1) 
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Ribosomes: 
d(R) 

(2.5.58.3) - = -k1(S)(R) + (k2 + 2k3 + k4 + ks)(RS) 
dt 

R-S Complex: 
d(RS) 

(2.5.58.4) = k1(S)(R) - (k2 + k3 + k4 + ks)(RS) 
dt 

Enzyme 1: 
d(E1) 

dt = k4(RS) - k6(S)(E1) + (k1 + k8 )(E1S) (2.5.58.5) 

Enzyme 2: 
d(E2) 

dt = ks(RS) - k9(L)(E2) + (k10 + k11)(E2 L) (2.5.58.6) 

El-S Complex: 
d(E1S) 

dt = k6(S)(Ei) - (k1 + k8 )(E1 S) (2.5.58.7) 

(2.5.58.8) 

Gluconolactone: 

I, 

Gluconic Acid: (2.5.58.10) 

Note that for small values of k6 and k7 , the first four equations become de

coupled from the rest. And it is this simplified special case that is analyzed here. 

Furthermore, this model is formulated in such a way that the first equation for 

biomass is redundant; the biomass in this model is proportional to the sum of (R) 

and (RS): 

(2.5.59) 

At the beginning of a batch fermentation, (RS) = 0. Thus, the observed 

specific growth rate y(t) = (R}(~~!f ~(;ht) is zero initially. Because (RS) gradually 

increases during the course of a batch fermentation, the initial lag phase can be 

described. At the end of a batch fermentation it settles back to zero, corresponding 

to the stationary phase. Thus, (RS) is the equivalent of the previously mentioned 
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"critical enzyme" that directly controls the specific growth rate. This interpretation 

is consistent with Equation (2.5.58.1) 

Although one can rigorously partition the above ten variables into x 1 and 

x 2 and consider the entire set of dynamic equations in deriving the equivalent 

kernel function, such full blown treatment is often not necessary. For example, the 

kernel for a batch fermentation can be adequately approximated by considering only 

Equation (2.5.58.4), which can be solved to yield: 

(RS)(t) = ltoo e-(ko+ks)(t-h) k 1S(h)R(h)dh 

= (RS)o e-(ko+ks)t + r e-(ko+ks)(t-h) k1S(h)R(h)dh 
...__., lo 

0 

= lot e-(ko+ka)(t-h)k1S(h)R(h)dh 

(2.5.60) 

where (RS)o = 0 can be assumed, and, for simplicity, k2, k4, and ks have been 

combined into one constant k0 • 

(2.5.61) 

In order to formulate the time-lag kernel in the specific growth rate, one can massage 

the above kernel integral into the equation for y( t). 

ks(RS)(t) 
y(t) = (R)(t) + (RS)(t) 

ks 
~ (R)t (RS)(t) 

= ~ r e-(ko+ka)(t-h) k 1S(h)R(h)dh 
(R)t lo 

~ lot (ko + ks)e-(ko+ks)(t-h) µ(h)dh 

(2.5.62) 

The reduction to a Monod cell growth equation used in the last step is discussed 

extensively in the original paper. Thus, the kernel associated with the specific 

growth rate is a 0th-order exponential function with a lag time constant of (ko+k3 ): 

k(t) = (ko + ks)e-(ko+ka)t (2.5.63) 
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The following model parameters are used to simulate the batch response of the 

Tanner model: 

Tanner Model Values 

ko 3. 

k1 1. 

k2 1. 

ks 1. 

Initial Conditions 

(S)o 1.50 

(R)o 0.05 

(RS) 0 0.00 

The simulated batch response of the model is shown in Figure 2.5.10, and 

the time-lag kernel calculated directly from the response of Figure 2.5.10 by the 

Fourier transform method is shown in Figure 2.5.11 along with the derived kernel 

of Equation (2.5.63). The agreement is rather good, considering the fact that only 

one dynamic equation is used to approximate the kernel function. 

The results of batch simulation using the simplified 0th-order kernel just de

rived are shown in Figure 2.5.12 for the biomass and substrate concentrations and 

in Figures 2.5.13 and 2.5.14 for the intrinsic and observed specific growth rates, re

spectively. It can be seen that the time-lag kernel gives results that are very close to 

the structured model predictions, which is expected in view of the close agreement 

of the kernel. An even better fit can be obtained if the kernel function is derived 

with the entire set of dynamic equations. 

The response of a continuous fermentor after a shift up or down in the dilution 

rate is simulated next. The time-lag kernel for a continuous fermentor can be 
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obtained by first partitioning (X) & (S) into X1 and (R) & (RS) into X2. The 

dynamic equations for (R)(t) and (RS)(t) are then linearized around the steady

state values. 

(2.5.64) 

It suffices to state that eAnt can be obtained as before after performing an eigen

value - eigenvector analysis. They are 0th-order kernels: 

Shift Up /Down 

D=0.2 -+ 0.3 -+ 0.2 hr- 1 : 

Kernel 

k(t) = 5.2se-5 ·25t 

k(t) = 6.14e-6 · 14t 

k(t) = 5.67e-5 ·67t 

The time constants are slightly different for each case, reflecting the fact that the 

original dynamic equations are not perfectly linear and that the quasi-linearization 

constants differ slightly at different dilution rates. 

The fermentor response after a shift-up in the dilution rate is shown in Figure 

2.5.15, and the response after a shift-down is shown in Figure 2.5.16. The steady

state values before the disturbance are used as the initial conditions. 

Steady-State Values 

D=0.2 hr- 1 D=0.3 hr- 1 

(S)u 1.05000 1.84286 

(R),,,, 2.23750 1.73030 

(RS)u 0.55938 0.74156 
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The time-lag kernels calculated from the response curves for each of these cases, 

shown in Figures 2.5.17, 2.5.18, and 2.5.19, are compared with those obtained as 

a result of model reduction. Because the agreement between the actual kernel and 

the approximated kernel is once again quite good, the time-lag kernel approach can 

be used to simulate the transient r~sponse of a continuous fermentor. 

In summary, one of the attractions of using a complicated structured model 

is that is can be used to predict the bioreactor behavior under various operating 

conditions, provided that the kinetic steps are properly identified and all the model 

parameters are correctly assigned. Through literature examples in this section, it 

is shown that some of the dynamic steps in a structured model can be eliminated 

without seriously affecting the predicted output. Furthermore, a structured model 

can be reduced to an unstructured model with the difference being absorbed by 

the time-lag kernel. In model translation/reduction, it is often convenient to quasi

linearize a set of nonlinear differential equations. The next logical step is to analyze 

the eigenvalue and eigenvector of the linearized dynamic matrix A(t). Such an 

analysis can yield useful information on the relative time scales of various processes. 

After grouping variables properly according to the process time constants, one can 

simplify and reduce the dimension of the system by retaining only the first few most 

important modes. Eliminating the remaining nonsignificant modes, like pruning a 

tree, helps to clarify the main feature of the model. 

Parametric vs. Non-Parametric Modeling Approaches: 

In conjunction with the discussion on the connection between a structured 

model and an unstructured model, it should be noted that our time-lag kernel 

modeling approach can also be viewed as a combination of other two opposing 

modeling approaches. One such example is the classification of models based on 
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the presence or absence of differential and algebraic equations in the description of 

the process dynamics. 

One of the methods of model classification is based on the representation of 

one's knowledge. A model can be classified as parametric if a parameter space is 

used to describe the process dynamics. In this approach, one's knowledge about 

the system under consideration is translated into a set of mathematical equations 

in terms of differential dynamic relationships supplemented, if necessary, by alge

braic constitutive relationships. The output of the system is completely determined 

once one is supplied with the model parameters, initial conditions, and forcing func

tions. Properly viewed, both the initial conditions and forcing functions may also 

be considered as additional parameters. The dimensionality of the description in a 

parametric model is finite. 

On the other hand, a non-parametric model of a black box type is also fre

quently used to describe the system dy~amics when one's knowledge about the 

system is poor or when the system is complicated and its description cannot be 

easily reduced to mathematical equations. The characterization of the system is 

carried out in a function space without resorting to the use of differential equations. 

For example, one may choose to use Fourier series expansions, spectral densities, au

tocovariance and cross-covariance matrices, time series, or impulse response and, of 

course, time-lag kernel functions. One or more of these relationships may be used to 

transform the forcing input to the system output without assuming the underlying 

structure of the process. These models are in principle infinitely dimensioned. 

The advantage of a parametric model, being finite dimensioned, is that the 

system can be described concisely with a finite number of parameters. However, 

there is a price to be paid for this conciseness in terms of large prediction errors if 

the system orders or model parameters are not correctly chosen. ff the system is 
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complicated or if one cannot make valid assumptions regarding the physical process 

structure with a certain degree of confidence, then a non-parametric model may be 

advantageous. Because such a non-parametric model may be infinitely dimensioned, 

it has the capability of yielding a system output that matches exactly with the 

observation. 

The proposed kernel modeling approach is a hybrid of the parametric and non

parametric approaches. See Figure 2.5.20. For example, state dynamic equations 

are written explicitly for those variables whose dynamics are well known. There is 

absolutely no doubt that the state equations for the biomass and substrate concen

trations in a chemostat are valid if cell growth is regulated by a limiting substrate. 

These dynamic equations for macroscopic variables are derived based strictly on ma

terial balance concepts; all other effects can be treated as variations in the specific 

growth rate and/or the yield coefficient. Thus, one can justifiably use a parametric 

approach to model the macroscopic observations. 

On the other hand, one often does not know enough about the dependence of 

.the specific growth rate on other variables. Under these circumstances, it is not 

practical to derive the dynamic equations for the specific growth rate. In such an 

attempt, sound judgment must be made as to what to assume and what to ignore, 

and these assumptions must be verified. In specifying the dynamic equations, the 

model orders must be known, and functional forms must be supplied. One often 

uses saturation functions of the Michaelis-Menten type whenever rate expressions 

are called for, but how often, if ever, are these expressions experimentally justified? 

Bimolecular elementary reaction rate expressions are often used also, but few stud

ies have actually been conducted with the same degree of rigor that is demanded 

in the traditional proposal of a chemical reaction mechanism. Model discrimina

tion is seldom performed in biochemical engineering. The moment one single such 
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expression is inserted into a dynamic equation without independent verifications, 

the model complexity becomes superficial. It contains essentially a black box at 

this level. More complexity beyond this point is inconsequential because patterns 

contained inside a black box cannot be seen. 

A complex parametric description usually contains numerous model parameters 

whose values must somehow be evaluated, in addition to the model's sensitivities 

to variations in the parameters. As pointed out previously, the predicted system 

behavior can be drastically different if the system order, functional form, or model 

parameters are not chosen correctly. It has the inherent danger that the entire 

model can crumble if there exists a weak link in the model such as an incorrect 

assumption. 

Thus, for the part of the process whose dynamics are well-known, one can 

employ the parametric modeling approach. Whereas, for the part that either is 
I, 

too complicated to be expressed mathematically with confidence or calls for excess 

investment of resources, one can resort to a non-parametric description. This com

bined approach is especially suited for a system where the level of understanding is 

not uniform across the process substructure. And many examples exist in biochem

ical engineering where the understanding of the process is quite nonuniform. It is 

not unusual that one can write the differential equations for macroscopic or lumped 

variables that can be easily quantified ( unstructured modeling), but the dynamics 

for the intracellular components are often vague. One sacrifices knowledge of the 

process if a purely non-parametric approach is to be taken. On the other hand, 

one often needs to surpass his means if a purely parametric approach is taken. By 

using the combined approach, one can optimize effort by fully utilizing the current 

knowledge, without the danger of overreaching. 
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One example of such combined modeling approaches is the time-lag chemostat 

system demonstrated throughout this thesis; it uses differential equations for the 

biomass and substrate concentrations but gracefully switches to a time-lag kernel 

relationship to transform the input disturbance in the limiting substrate concen

tration to the observed specific growth rate. It should be emphasized that the 

chemostat example is used mainly to illustrate the time-lag approach. By no means 

does this simple example insist on the use of a time-lag kernel at level of the specific 

growth rate. If one is quite certain on the dynamics of certain intracellular compo

nents, then dynamic equations can be written for these components, and time-lag 

kernels can be employed for more intricate lower level sub-processes. It is only 

natural that the transition between a parametric approach and a non-parametric 

approach should be based on one's judgement as to which level his understanding 

of the process becomes vague. One should identify the level at which further struc

tural refinement becomes superfluous due 1to the lack of actual knowledge. There is 

no need for a time-lag kernel if one's application does not demand accuracy beyond 

this point. Otherwise, the use of a time-lag kernel is recommended to compensate 

for the lack of detailed knowledge. 

Since a model is to be judged based on its intended purpose, in many appli

cations a time-lag kernel approach is a viable, attractive alternative to either an 

oversimplified unstructured model ( abridged parametric model) that does not per

form adequately, an overly complex structured model {fully developed parametric 

model) whose detailed description is unnecessary, or a purely black box approach 

(non-parametric model) that has little appeal due to the total lack of process struc

tures. 
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2.6 COMPUTER SIMULATED SOLUTION OF THE KERNEL 

The mathematical form of a convolution integral involving a kernel function is 

frequently encountered in other fields of studies. As a result, many names are com

monly associated with this convolution integral and the related kernel function. For 

example, in non-Newtonian rheology, especially in the studies of polymeric fluids, 

the kernel function is known as the memory function, usually employed to describe 

the effect of past history on the apparent viscosity, stress, and strain. It will be 

interesting to see how the methodology introduced in this study can be applied to 

solve problems in fluid mechanics. In reactor kinetics and mixing studies in chem

ical engineering, the kernel function is known as the residence time distribution 

function (RTD). It is functionally equivalent to an impulse response function in the 

studies of systems process control, as previously mentioned during the introduction 

of the kernel. In a multidimensional form, it is called a transition matrix in sys

tems dynamics and optimal control theon-es, or it is referred to as a fundamental 

matrix in mathematics in dealing with a set of ordinary differential equations. This 

mathematical equivalence was exploited earlier in reducing a structured model to an 

unstructured model. Techniques parallel to those used in estimating the residence 

time distribution will be developed to facilitate the experimental determination of 

the kernel. 

Proper experimental design can greatly simplify the task of estimating the 

kernel function. Many types of transient experiments can be performed and closely 

monitored to estimate the kernel function. The ideal perturbation that may be 

introduced to the system can be either a step change in the input, an impulse change 

in the input, or a sinusoidally varying input. Although these ideal perturbations 

can be easily implemented physically in the case of, for example, a tracer injection 

experiment used to estimate the residence time distribution of a stirred tank or a 
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tubular reactor, they cannot be easily realized in our demonstration two-dimensional 

system of biomass and substrate concentrations. 

The input variable in our system is the intrinsic specific growth rate, which 

depends on the limiting substrate concentration in the fermentor; it is not the 

substrate concentration in the feed stream, which the operator has a more direct 

control. An impulse in the input variable requires an impulse in the fermentor sub

strate concentration, assuming dependence of the intrinsic specific growth rate on 

the substrate concentration. Although the substrate concentration in the fermentor 

can be easily increased by injecting a concentrated dose of the substrate, it is dif

ficult to lower the substrate concentration immediately to effect an impulse in the 

input. Similarly, a step increase in the substrate concentration demands that it be 

held at a constant value that is a notch above that before the step change. Such 

trajectories can only be realized by implementing rigorous control actions that can 

further complicate the dynamics of the system; neither is it easy with the current 

sensor and control technology to maintain the substrate concentration at a con

stant, desired level. As a result, an extensive analysis of such purely hypothetical 

situations imparts little practical benefits and will not be overly emphasized here. 

Similarly, it is not a trivial matter in achieving a sinusoidal change in the substrate 

concentration in a fermentor, although a sinusoidal change in either the dilution 

rate or the feed substrate concentration is attainable with high quality variable 

speed pumps and gradient mixers. 

Since the kernel is equivalent to an impulse response function, it is simply the 

output of the system after being subjected to an impulse perturbation. Alterna

tively, it is the first-order derivative of the output of the system after the intro

duction of a step perturbation in the input. The determination of such a kernel 
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given the input and the output of the system is termed an inverse problem. Theo

retically, it is not very difficult. However, because ideal perturbations that greatly 

simplify the estimation of the kernel cannot be introduced in a fermentor in real

ity and because random errors and noises cannot be totally eliminated, techniques 

must be developed to determine the kernel, given the non-ideal input characteristics 

and noisy output measurements. Of the various methods attempted, the five most 

promising ones will be discussed here. Namely, they are Fourier transform assisted 

kernel inversion, estimation based on the time-lag differential equation via polyno

mial approximation, iterative cyclic approximation, inverse numerical integration, 

and least-square error via multivariable minimum search. 

Fourier Transform Assisted Kernel Inversion 

The first method utilizes the well known powerful convolution theorem of the 

Fourier transform. The convolution integral involving two functions µ(t) and k(t) 

in the time domain, y(t) = f~= µ(h)k(t- h)dh, is a simple product of the two 

functions in the Fourier domain: 

Y(w) = U(w) • K(w), (2.6.1) 

where Y(w), U(w), and K(w) are the Fourier transforms 1 of the functions y(t), 

µ(t), and k(t), respectively. 

Y(w) 1 {y(t)} 

U(w) 1 {µ(t)} 1-: i 2~wtµ(t)dt 

K(w) = 1 {k(t)} = 1-: ei
2~wtk(t)dt 

(2.6.2) 

(2.6.3) 

(2.6.4) 

Collecting all the measured variables in Equation (2.6.1) on one side, one obtains: 

K(w) = u- 1 (w) · Y(w). (2.6.5) 
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Thus, theoretically, only simple algebraic manipulations are required to deter

mine the kernel in the Fourier domain. The kernel function in the transformed 

domain, either Fourier or Laplace, is commonly referred to as the transfer function 

in systems theories. Transfer functions are encountered in all types of systems, 

chemical, electrical, or mechanical, and they are indispensable in the description of 

the system dynamics. It is no surprise that such a function is also the backbone of 

the current time-lag approach. In short, the kernel is determined from the measured 

input-output pair when the system is subjected to some disturbance. 

J" {output} = K(w) ~ Kernel 
J" {input} 

(2.6.6) 

Finally, the kernel in the Fourier domain 1s converted to the time domain 

through an inverse operation: 

(2.6.7) 

where y- 1 signifies the inverse Fourier transform operation as defined by the fol

lowing equation. 

(2.6.8) 

Note that a few slightly different versions in common use exist for the defini

tions of the forward and inverse transforms. Sometimes, the transform pair for an 

arbitrary function f (t) are defined as: 

F(w) = J" {f(t)} (2.6.9a) 

and 

f(t) = 1-i {F(w)} = 2-f 00 iwt F(w)dw. 
2,r -oo 

(2.6.9b) 

Alternatively, the factor of 2,r is sometimes divided equally among both expressions: 

1 Joo F(w) = J" {f(t)} = . ~ e-iwt f(t)dt 
y27r -oo 

(2.6.l0a) 
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and 

1 Joo f(t) = 7-l {F(w)} = ~ iwt F(w)dw. 
y27r -oo 

(2.6.lOb) 

Or, sometimes, they are defined to be the reverse of those used here: 

F(w) = f {f (t)} = 1_: e-i21rwt f (t)dt (2.6.lla) 

and 

(2.6.llb) 

As long as one uses a consistent set of definitions throughout, the exact definition 

employed does not affect the end results. The advantage of the definition used in 

this study, over that of Equations (2.6.9a) and (2.6.9b), is that the same subroutine 

can be used to calculate both the forward transform and the inverse transform 

without any modification, due to the similarities in both expressions. 

The discrete form of the forward Fourier transform is obtained by substituting 
\, 

the integral operation with a summation operation and by substituting dt in the 

continuous integral notation by the sampling interval At. For simplicity, At is 

usually set to unity so that the basic time unit is At. Furthermore, the units of 

frequency (rad/time) becomes J,, and w in the continuous notation becomes f in 

the digitized version. 

N-1 N-1 

F; = L fti-w;t - :I: fte1-2i1-t j = 0,1,2, ... ,N - 1, (2.6.12a) 
t=O t=O 

where w; = 2
;/ is the jth Fourier frequency, and N is the number of discrete data 

represented as an equally spaced time-series. The values for the running index 

ranges from O to N - 1, and there are N terms in the summation sign. The 

summation does not include t = N because the function f is assumed to be periodic, 

i.e., Jo= f N· The implication of this assumption will be discussed in length in the 
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later part of this section. In the matrix transformation notation, the above equation 

is equivalent to: 

Fo eoo eo1 eo2 eo,N-1 Jo 
Fi e10 eu e12 e1,N-l !1 

F2 e20 e21 e22 e2,N-l !2 (2.6.12b) 

FN-1 eN-1,0 eN-1,1 eN-1,2 eN-1,N-l fN-1 
'-,,.--' ...___., 

F E f 

F - E-f, (2.6.12c) 

where e;t = exp( i 2;p) is the jtth element of the forward transform matrix E. Note 

that due to the complementary nature of the frequencies, F; = FN-i' where "*" 

denotes the adjoint of a complex matrix, and only F0 to Fli. need to be calculated. 
l 

The discrete inverse transform corresponding to Equation (2.6.12a) is: 

N-1 N-1 

ft 1 ~ F -iw t 1 ~ F -i:..tit = - L ;e 1 = - L ,-e N 
N N. 

i=O 3=0 

t = 0, 1, 2, ... , N - 1, (2.6.13) 

\, 

where the factor J, results from substituting dw with J; t:,.j, which is simply J., 

because j takes on integer values. Similarly, in the matrix notation, the above 

equation is equivalent to: 

* * * * 
Jo eoo eo1 eo2 eo,N-1 Fo 

* * * * Ji 1 
e10 eu e12 el,N-1 Fi 

12 * * * * F2 - e20 e21 e22 e2,N-1 
N * 

fN-1 * * * e* FN-1 .._,_,__, eN-1,0 eN-1,1 eN-1,2 N-1,N-l '--v--" 
f E* 

F 

(2.6.13b) 

f - _!:_E* · F (2.6.13c) 
N ' 

where e;,- = exp(-i 2;J·t) is the tjth element of the reverse transform matrix E*. 

Note that both E and E* are symmetric matrices. In addition, E·E* = E* ·E = J;I. 

Recent development in the fast Fourier transform (FFT) algorithm has made 

the calculation of a Fourier transform much faster, especially for a high-dimensional 
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problem where N is large, e.g., N > 500. The original function is obtained when 

one sequentially applies the Fourier transform to a function, followed by the inverse 

Fourier transform. Shifts in both the horizontal axis and the vertical axis do not 

change the final outcome; neither does the number of points used to describe the 

function. For completeness, the computer codes needed to perform FFT are in

cluded in Appendix D. The algorithm has been tested for different even functions, 

such as :i; 2~ 1 , different odd functions, such as ;, and non-even-non-odd functions, 

such as e-:i;. Various tests have further verified that the Fourier transform subrou

tine presented in Appendix D is fully functional. 

Shown in Figures 2.6.la and 2.6.lb are the computer simulated responses of 

a biochemical reactor described by Equations (2.2.12) and (2.2.13). When the 

dilution rate is shifted up from 0.3 hr- 1 to 0.7 hr- 1 at t=2 hr, the theoretical 

response of the system is deterministically calculated based on the assumption that 

SJ = 5 g/1, Ya = 0.5 g/g, and µ(s) = g:f;J;~:- In this simulation study, a step 

change in the dilution rate is employed as the disturbance because it can be readily 

implemented experimentally and because it represents one of the more challenging 

cases. In addition, with all other variables under close control, a shift-up or shift

down experiment can better reveal the more fundamental nature of the system. 

For the purpose of this simulation, the µ versus s curve is assumed to follow a 

Monod model. However, it need not be so; any constitutive relation can be employed 

without loss of generality. A valid kernel inversion algorithm should be applicable to 

any functional form of µ(s). In simulating the response, the true kernel is assumed 

to be a first-order function: 

(2.6.14) 

with ao = 0.2 and T = 1.0 hr. This function is shown in Figure 2.6.2. 
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Figure 2.6.1. (a) Biomass and substrate concentrations m a continuously operated 

bioreactor after a shift-up in the dilution rate from 0.3 hr- 1 to 0.7 hr- 1 . 

(Parameters used: µ = g:~;1~::; s 1 = 5.0g/1; Y., = 0.5g/ g.) (b) Intrinsic 

and observed specific growth rates. 
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The objective of this section is to develop the algorithm needed to determine 

the shape of this kernel function, based on the intrinsic specific growth rate (input), 

µ(t), and the observed specific growth rate (output), y(t). However, before an 

appropriate algorithm can be applied to the actual experimental data to estimate 

the kernel function for a given system of microbial population, one must evaluate 

the effectiveness of each algorithm and be made aware of all possible pitfalls. This 

can best be performed by comparing the two kernels, the first kernel being the 

estimation based on the given input and the theoretical response of the system and 

the second one being the original so-called true kernel that is used to generate the 

output response. More concisely, the objective is to develop a valid solution to the 

inverse problem, taking into full consideration the practical limitations imposed on 

the capabilities of the existing experimental apparatus, e.g., non-ideal stimuli and 

noisy measurements. 

Based on the simulated values, Fourier transforms are performed on the deter

ministic values of µ(t) and y(t), and the inverse transform of ~f :~ is taken naively 

according to Equation (2.6.7). These basic steps are described by the following 

graphic statement where each boxed block indicates the mathematical operations 

performed, e.g., [TI being a forward Fourier transform, I f- 1 1 being the correspond

ing inverse Fourier transform, and the outer box being the combined forward-inverse 

Fourier transforms. 

The results of performing the above sequence of operations in accordance with 

the description of the convolution theorem of Fourier transforms are presented in 

Figure 2.6.3. Obviously, the curve of the estimated kernel does not match that pre

dicted by Equation (2.6.7). The main reason for the failure from the point of view 
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of continuous treatment is that in order for the Fourier transform to be valid as 

defined in Equations (2.6.2)-(2.6.4), the original function to be transformed must 

satisfy both the Dirichlet condition, which requires the finiteness of discontinuities 

in a periodic function, and the condition that the improper integral f~ IJ(t)ldt is 

finite. Thus, our failure can be attributed to the fact that neither f~(X) lµ(t)ldt nor 

f~(X) ly(t)ldt exists if the increased values of µ(t) and y(t) after a step disturbance in 

the dilution rate are not forced down to their respective original values by another 

equal step change in the dilution rate in the opposite direction. It is emphasized 

that either the functions should be truly periodic, or, if a certain section of each 

function is clipped out and repeated according to this template, the resulting pe

riodic functions should still describe the input and output relationships reasonably 

accurately. However, these conditions are not satisfied by the given response func

tions used for this simulation when the bioreactor is subjected to a single step shift 

in the dilution rate. One could theoreti~ally use other types of stimuli, but the 

impetus for simulation would be lost. 

In parallel, the reason for the failure from the perspective of discrete analysis 

is that in any actual calculation, instead of extending the time to infinity, a time 

window is ultimately created through which data are viewed because the duration 

of an experiment is finite. See Figure 2.6.4. Any data extending to the left (past) 

and right (future) of this imposed time window cannot be seen by the algorithm 

and are neglected. Thus, an integration from -oo to +oo that is needed to obtain 

the Fourier transform as indicated by Equations (2.6.2)-(2.6.4} is not performed 

in actuality. Instead, the continuous improper integration from -oo to +oo is 

substituted with a discrete summation from only t = 0 to t = N, as indicated by 

Equation (2.6.12}. 
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A direct consequence of employing the definition of Equation (2.6.12) is that 

the function ft is implicitly assumed to be periodic outside the window. Thus, 

the relation f nN+t = ft holds true for n = ±1, ±2, ±3, ... , which is identical to 

collapsing all t, both past and future, into the limits defined by the time window. 

Equivalently, due to the aliasing effect, all frequencies collapse into the interval (0,1r) 

in the frequency domain. These properties are expressed graphically in Figure 2.6.5. 

Moreover, because the function is discontinuous at the end-points where a time 

window is imposed, there also exist overshoots known as the Gibb's phenomenon, 

which is caused by the approximation of a discontinuous function by a truncated 

Fourier series. In short, the method fails because the algorithm is made to believe 

that both the input and output functions are periodic as indicated in Figure 2.6.5c, 

both of which generally deviate greatly from the real nature of the given functions. 

Because of these aliasing properties of digitized Fourier transforms, the Fourier 

transform method cannot be directly appljed to estimate the kernel function when 

the input to the system is or resembles a step function. Thus, the theories on 

convolution integrals do not provide much help in this case. 

One common trick used on a function that has unequal values at both bound

aries of the time window is to subtract a function from it such that the resulting 

function's end-points are forced to be equal, as indicated in Figure 2.6.6. Mathe

matically, this is expressed as: 

f(t) = µ(t) - g(t). 

y(t) - f_t°" µ(h)k(t - h)dh 

it°" [f(h) + g(h)}k(t - h)dh 

f_toc, f(h)k(t - h)dh + ltoc, g(h)k(t - h)dh. 

YJ Yo 

(2.6.15) 

(2.6.16} 
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Figure 2.6.5. (a) All frequencies collapse into (0,1r). (b) In the time domain, the col

lapsing frequencies bring periodicity to data outside the time-window. 

(c) Neglected points outside the time-window are forced to be the peri

odic images of those inside the window. Note the sharp discontinuities 

at the window boundaries. ( d) There is no discontinuity at the window 

boundaries when the function returns to its starting value. 
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Thus, 
l{y(t)} 1 {YJ (t) + Yg(t)} 

(2.6.17a) 
1 {Y1(t)} + 1 {yg(t)}, 

which is equivalent to 

(2.6.17b) 

Although f(t) now satisfies the finiteness condition, it is not strictly periodic, as 

the portion outside the time window is not the exact duplicate of that inside the 

time window, as shown in Figure 2.6.6. As a result, this technique does not work 

because each of the following equalities cannot be guaranteed. 

Yg(w) 1 Ug(w) • K(w), 

where U1(w) = 1 {f (t)} and Ug(w) = 1 {g(t)}. 

(2.6.18) 

(2.6.19) 

Since one can obtain an impulse-like ~\lnction by differentiating a pulse-like step 

function, it is hoped that similar techniques of Fourier transforms can be applied to 

the derivatives of the system input and output. Just such an approach is attempted 

next. First, the convolution integral is differentiated once with respect to t: 

(2.6.20) 

With a simple change of variables, the above equation is equivalent to: 

(2.6.21) 

Leibnitz's rule of integral differentiation states that for 

1
b(t) 

f(t) = ~(h, t)dh, 
a(t) 

(2.6.22) 

the derivative is: 

f(t) = 1b(t) a~1h, t) dh + ~[b(t),t]dbd(t) - ~[a(t),t]da(t). 
a(t) t t dt 

(2.6.23) 
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Figure 2.6.6. Forcing the boundary points in a time window to be equal in values by 

subtracting a triangular function g(t) from the original function µ(t). 
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Employing this rule of integral differentiation on Equation (2.6.21), we have: 

y'(t) = dy(t) 
dt 100 aµ(t - h) k(h)dh 

0 at 

Jt ak(t - h) 
-oo µ(h) at dh + µ(t)k(O). 

Applying Fourier transforms to Equations (2.6.24a) and (2.6.24b) yields: 

Y(w) = U(w) · K(w) 

and 

Y(w) U(w) • K(w) + U(w)k(O), 

(2.6.24a) 

(2.6.24b) 

(2.6.25a) 

(2.6.25b) 

respectively, where Y(w) = 1 { d~~t) }, U(w) = 1 { d~~t) }, and .K(w) = 1 { d~~t) }· 

Of these two equations, the first one is much more useful. As a special case, for 

a step change in µ(t), di~~t) is an impulse function, and Equation (2.6.24a) simply 

reduces to: 

(2.6.26) 

which states that the kernel function is the derivative of the output function y(t). 

Note that Equation (2.6.25a) is similar in form to Equation (2.6.1). 

This algorithm is applied to the same simulation data presented m Figure 

2.6.1. The derivative quantities d~~t) and di;Jt) shown in Figures 2.6.7a and 2.6.7b 

are approximated by y,-i;- 1 and /Lt-J:.~'- 1 , respectively, according to the following 

digitized scheme. 

t 00 0 

- L µt-;k;!it + L -;:;:; k;!it 
j=O j=t+l 

t 

L µt-;k;!it 
j=O 

(2.6.27a) 
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t 

Yt L µ3-kt-;/::,,.t 
3"=-00 

-1 0 t 

L ~ kt-;/::,,.t + L µ;kt-;/::,,.t 
i=-oo 

t 

L µ;kt-;/::,,.t 
j=0 

j=0 

(2.6.27b) 

Although the above two representations have different running indices in the sum-

mation, they are identical when expanded, as they should be. 

(2.6.27c) 

The last equalities in both Equations (2.6.27a) and (2.6.27b) are valid only if 

µ,- = 0 for j = -1, -2, -3, ... , i.e., if the same type of condition for Laplace trans

forms holds. This additional, but numerically crucial, condition is often neglected 

in practice, leading to grossly erroneous conclusions. This fact suggests that one 

should work in terms of deviation variables or shift the µ axis' reference point so 

that µ; = 0 for j = -1, -2, -3, ... , which can be easily achieved without loss of 

generality. A similar shift in the axis is also applied to Yt• Furthermore, because 

all the values of µ,- are constant from j = -oo to j = -1, one should perturb the 

system from a steady-state in order to take advantage of the above relations. Thus, 

one may encounter difficulties if these conditions are not satisfied. 

Taking the difference of Equation (2.6.27), one obtains: 

Yt - Yt-1 [t µt-;k;/::,,.t] [~ µt-1-;k,-t:,.t] 
3=0 3=0 

[~ µt-;k,-t:,.t] - [~ µt-1-;k,-t:,.t] 
3=0 3=0 

0 

+ µoktt:,.t - ,:::-; ktt:,.t 
t 

L (µt-j - µt-1-;)k,-t:,.t 
i=0 

(2.6.28) 
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The above equation can be written in a difference operator notation: 

where 

Yt - Yt-1 

(2.6.29) 

(2.6.30a) 

(2.6.30b) 

Note that the differential system input /J,t -;:tt-i indeed resembles an impulse; con

sequently, one expects the differential system output Yt-:.;-1 to be close to the true 

kernel function. Fourier transforms are applied to these curves and the resulting 

kernel is displayed in Figure 2.6.7c. The agreement between the originally assumed 

kernel and the calculated one is quite good. Graphically, the following mathematical 

operations are performed. 

Because there is always noise present in the measurements of both the input and 

the output in actuality, the simulation is now carried one step further to include the 

presence of 5% white noise. The noisy functions of y(t) and µ(t) are shown in Figures 

2.6.Sa and 2.6.Sb. The first set of kernel determination from noisy data assumes 

that there is noise in µ(t) but not in y(t). The resulting kernel function, shown 

in Figure 2.6.8c, indicates that there exists a small, tolerable degree of deviation. 

However, when there is noise in the system output, this approach breaks down 

entirely. As shown in Figure 2.6.Sd, the kernel resulting from the following series 

of operations: 

0~}fD~17-1 j -k 
m"J Vy fTl ___.!:_. l1[J 

Ynoisy -+ ~ ----t L.:J ~ 
'-----'-""""'------------' 
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becomes totally buried under the noise and appears to be nonsense when a Fourier 

transform is applied directly to noise-free µ(t) and noisy y(t). The estimated kernel 

is equally useless when there are noises in both µ(t) and y(t). 

The reason the direct application of Fourier transforms on noise-free V Yt and 

noisy V µt yields satisfactory results is that µ(t), being the input to the dynamic 

system, is part of the integrand, and the integral operation f ~
00 

has a tendency 

of filtering out the noise in µ(t). In contrast, the direct application of Fourier 

transforms fails whenever there is noise in y(t). Taking the difference between Yt 

and Yt-l amplifies the noise to signal ratio to such an extent that Vyt is totally 

swamped in noise. In summary, since a difference operator cannot be applied to 

noisy y(t) at all, the direct Fourier transf?,rm method proves to be rather powerless 

when the input to the system resembles a step function. 

Noise Reduction 

Because noise is the source of so much difficulty in the kernel estimation, it 

is hoped that the aforementioned techniques can perform satisfactorily if the noise 

level in the system input, and especially in the system output, can be reduced 

significantly. In this section, noise reduction is attempted via two classical routes: 

the least-square polynomial fitting in the time domain and the application of a 

low-pass filter by manipulation of windows in the frequency domain. 
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Multidimensional Linear Regression Analysis 

This method is chosen as representative of the various available methods in the 

time domain. An orthogonal set of polynomials is used to fit the noisy (5%) curves 

of µ(t) and y(t), thus removing much of the noise. The following set of coefficients 

are obtained from linear regression. 

Coefficients from Linear Regression on µ(t) 

Degree 1 t t2 t3 t4 t5 t6 t1 

0 0.480 

1 0.462 0.0417 

2 0.442 0.0178 -0.00151 

3 0.424 0.0418 -0.00820 4.97e-4 

4 0.403 0.0882 -0.0314 
', 

0.00453 -2.25e-4 

5 0.385 0.149 -0.0787 0.0186 -0.00199 7.90e-5 

6 0.372 0.211 -0.149 0.0497 -0.00850 7.20e-4 -2.40e-5 

7 0.363 0.271 -0.237 0.104 -0.0252 0.00340 -2.41e-4 6.98e-6 
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Coefficients from Linear Regression on y(t) 

Degree 1 t t2 t3 t4 t5 t6 t1 

0 0.445 

1 0.359 0.0190 

2 0.297 0.0607 -0.00465 

3 0.286 0.0758 -0.00885 3.12e-4 

4 0.288 0.0719 -0.00690 -2.44e-5 1.88e-5 

5 0.304 0.0153 0.0371 -0.0131 0.00166 -7 .36e-5 

6 0.314 -0.0328 0.0905 -0.0369 0.00663 -5.63e-4 1.83e-5 

7 0.308 0.00427 0.0351 -0.00262 -0.00386 0.00113 1.19e-4 4.40e-5 

The above calculation is based on a ,fitting range of 2-11 hours. Because the ,. 

polynomial curves have difficulty turning corners quickly, the goodness of fit deteri

orates significantly whenever the first two hours of steady-state values are included. 

In addition, data have been extended to the right of the time window by one hour 

prior to polynomial fitting so that the much greater deviation from the true values 

near the end of the interval is effectively avoided. Some of the smoothed polyno

mials for µ(t) are shown in Figure 2.6.9a, and those for y(t) are shown in Figure 

2.6.9b. From these figures, it can be seen that the agreement between some of the 

polynomial approximations and the true input and output response curves is indeed 

quite close. Of these, the 7th-degree polynomial for µ(t) and the 4th-degree poly

nomial for y(t) give especially good fits and are used for the subsequent simulation 

studies. 
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After smoothing with polynomials, the Fourier transform method is then ap

plied to the derivatives of these smoothed functions as described by the follow

ing block diagram, where j Poly I signifies the operation of polynomial smoothing 

through linear regression. 

0 ~}~_IS 11-11 -+ k 
~ Ysmooth I" I 'vy fJ1 -S lfil 

Ynoisy -+ ~ ---+ V ---+ L:J 
'------'--------------' 

The resulting kernel function, as can be seen from Curve #4 in Figure 2.6.9c, 

generally follows the true kernel (Curve #1), granted that it is slightly noisy and 

there are some noticeable deviations. The effect of noise in y(t) alone is studied by 

another simulation in which the noise in µ(t) is totally suppressed, as described by 

the following scheme. 

µ---+~~ 0~}[;]~ K r;=il 
~ ,::; -+ ~ 

~ Yamooth ml 'vy lj1 Y U 
Ynoisy -+ ~ ---+ ~ ----t \~ L:J ----t ~------------

-+k 

This calculated kernel, corresponding to Curve #3 in Figure 2.6.9c, closely follows 

Curve #4. Furthermore, the effect of noise in µ(t) alone is shown in Curve #2. 

Thus, the major source of deviation of the estimated kernel from the true one is 

traced back to the presence of noise in the original y(t), although noise in µ(t) also 

contribute to the deviation to a certain degree. 

Various other combinations of noise structure in the input and output functions 

have been attempted. However, the center of the noisy kernel estimate always 

deviates somewhat from the true kernel, and the agreement is never as good as one 

wishes. This is due to the fact that although the noise contained in the output 

function itself is greatly reduced through polynomial smoothing, the slope of the 

function is not represented well by the polynomial approximation. 
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Low-Pass Filter in the Fourier Domain 

Another commonly used method of noise reduction is to truncate the high 

frequencies in the Fourier domain. Theoretically, a Fourier transform is a least

square fit of f(t) to the orthogonal base functions of sin(jwt) and cos(jwt), given 

the degree of fit. Whereas, the previous regression analysis method calculates the 

least-square fit_ of a given function f(t) to a given number of base functions of 

orthogonal polynomials with degrees of n or less in t. One of the tasks performed 

by a Fourier transform is to form an inner product between the given function f(t) 

and the 0th frequency (w0 ) and to extract all the constant components of the original 

function f ( t), which is equivalent to calculating the average value of f ( t) over the 

time window. The first fundamental component of the Fourier transform with a 

frequency of w1 = t extracts from f (t) all the components with that frequency, and 

so on. As a result, a noisy and highly oscillating function will have large amplitudes 

at high frequencies, where the amplitude\is defined as IF;I = ✓Re{F;} + Im{F;}. 

On the other hand, the amplitudes of the discrete Fourier transform for a smooth 

function are generally small except at low frequencies. Thus, through spectrum 

analysis, information on the distribution of frequencies can be obtained. (A similarly 

structured harmonic analysis enables one to extract the dominant frequencies and 

phases of a time series.) 

m.-1 N-1 L F,-e-,w,t + L F,-e-,w,t (2.6.31) 
j==l j==m. 

smooth part intermediate part noisy part 

Therefore, smoothing can be effectively accomplished by imposing a window 

after the original function is transformed into the frequency domain. Many different 

types of filters or windows, each with a unique characteristic filter transfer function, 

have been proposed in the past. Shown in Figure 2.6.l0a is the original boxcar 

window in the frequency domain. An ideal low-pass filter, shown in Figure 2.6.lOb, 
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will allow all the frequencies less than the cutoff frequency, we, to pass unaltered, 

and none of the component with frequencies higher than we will pass through. To 

reduce Gibb's phenomenon caused by a suddenly truncated Fourier series and to 

accelerate the convergence, this ideal filter is often modified. For example, a linear 

filter with a transition band of f> is shown in Figure 2.6.l0c. Finally, a cosme 

window, another c01:nmonly used filter, is shown in Figure 2.6.lOd. 

The filter used in this simulation study is a cosine one defined by the following 

equation: 

for O :S W :S We - f> 

for We - f> :S W :S We + f> 

for We + f> :S W :S 7f , 

(2.6.32) 

where 8 is the transition band which, for simplicity, is set in this study to be 2we. 

The function is graphically represented in Figure 2.6.11. The degree of smoothing 

obtainable depends on the cutoff frequenry we, and this is demonstrated in Figures 

2.6.12 and 2.6.13 for µ(t) and y(t), respectively, where it is shown that noise levels 

can be greatly reduced when We is small. However, deviations from the true values 

at two ends of the smoothed function tend to become large for small We• This is due 

to the fact that the end points of the original curves do not match and the Fourier 

transform attempts to force them to meet at the half way point. Furthermore, after 

a window is applied to a function, the function becomes more distorted at sharp 

corners, e.g., at the onset of disturbance, when We is small. Faithful reconstruction 

of the original function becomes difficult when only a few low frequencies can be 

used. 

Similar to the approach taken in polynomial approximation, functions of µ(t) 

and y(t) smoothed with frequency windows are used to generate a kernel based on 

the following scheme where I Window I indicates smoothing through the application 
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Figure 2.6.10. a) The original boxcar window. b) An ideal filter transfer function with 

cutoff frequency We• c) A linear filter with a transition band of 8. d) A 

cosine filter with a transition band of 8. 
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NOISE REDUCTION THROUGH FREQUENCY WINDOWING 
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Figure 2.6.12. a) The original function of µ(t) with 5% noise. b) Noise reduction via a 

cosine low-pass filter with We= 0.5,r. c) We= 0.2,r. d) We= 0.05,r 
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NOISE REDUCTION THROUGH FREQUENCY WINDOWING 

Boxcar Window 

a) 

-I .... 
6 
w 
tt 
oc we= 0.5v 
:c 
I- b} 
3 
0 oc 
(9 

(.) 

lJ... 
(.) 
w 
a. en We = 0.2 v 
a w c) > 
0:: w en 
en 
0 

We = 0.05v 

d} 

0 2 4 6 8 10 
TIME (hr} 

Figure 2.6.13. a) The original function of y(t) with 5% noise. b) Noise reduction via a 

cosine low-pass filter with We= 0.5,r. c) We= 0.2,r. d) We= 0.0571" 
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of a frequency window, and the results of the calculation are shown in Figure 2.6.14. 

µ - L.:.J - fJl ..!!..+ y L:'..J K y-1 
ful Vµ. ~ } 

Ynoisy --+ I iz:J :.!'..., I Window I Y,=,. ~ I "'-"-"i'" ~ _:<c,,, lz:J i'.., [El --+ [E"ij 
These generally disastrous results, except for perhaps We = 0.0571", are not at all sur

prising, considering the amount of noise still remaining in the smoothed functions. 

Note that the estimated kernels are not only noisy and unreliable, but the degrees 

of variation also span a few orders of magnitudes. A slight variation of the above 

scheme is presented below, and the results of applying frequency windows imme

diately before taking the final Fourier inversion to obtain the kernel are plotted in 

Figure 2.6.15. 

fnl Vy 
Ynoisy - L.:.J -

IT] u ~ 
L:'..J - y K . K,mo th -1 ~ } - 1-1--+ lw mdow 1 = ~ --+ k.mootb 0~ u ..._ _________________ ~ 

The above scheme is preferred over applyiP,g two separate frequency windows on the 

noisy µ(t) and y(t) individually. This is because the subsequent division operation 
,., 
~ totally cancels out the effect of prior frequency windows; it is also numerically u 
disastrous ( i.e., division by 0) beyond the transition band. 

The main reason for the failure will be briefly pursued here. For example, 

Figure 2.6.16 is the power spectral density of the noisy (5%) y(t), where power is 

defined as: 

P(w) = F(w) • F*(w) (2.6.33) 

In the above equation, "*" denotes the complex conjugate operation. Except for 

the very low frequency components that yield the deterministic part of the curve, 

this power spectral density function is basically the Fourier transform of the auto

correlation function of the noise. The rather evenly spread spectrum of the system 

input verifies that the noise used in this simulation is indeed white, just as white 

light is composed of photons of various frequencies. 

-k 
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Most deterministic functions have less than half a dozen or so frequencies where 

the power spectrum is significantly nonzero. For example, the power spectrum 

of deterministic Vy(t) is shown in Figure 2.6.17. Those of other deterministic 

quantities such as µ(t), y(t), and k(t) all decay to zero just as quickly, usually within 

the first five frequencies. All the difficulties with estimating the kernel function via 

the Fourier transforms, based on a near-step stimulus, is that a first-order difference 

operation must be carried out beforehand. Because V is a high-pass filter, this 

operation is highly undesirable from the perspective of model parameter estimation. 

The periodogram of the first k(t) presented in Figure 2.6.14, which is esti

mated from noise free µ(t) and noisy y(t) with no frequency window, is contrasted 

against that of the true k(t) in Figure 2.6.18. The power spectrum of the true 

k(t) approaches zero so quickly, as frequency is increased, that it cannot be shown 

distinctly in the same figure. The periodograms of other variables involved in this 

simulation, such as V µ(t) and Vy(t), alsc,, display a similar behavior, namely that 

the low frequency components are highly suppressed while the high frequency com

ponents are magnified by the difference operation. 

Note that the power for the disastrous k(t) increases almost linearly as fre

quency is increased; whereas, the power for the deterministic k(t) is all contained 

within the first few frequencies. The power spectrum of k(t) estimated with 

We = 0.5,r, shown in Figure 2.6.19, basically displays the same behavior as the 

previous one that is without any frequency window, except that the power at high 

frequencies is reduced by the applied cosine filter with a reflection point at 0.5,r. 

However, it still falls short of cleaning up the undesirable frequency components, 

and the final kernel estimate is not satisfactory. Other cutoff frequencies did not 

significantly improve the kernel estimation, nor did the application of another fre

quency window to K ( w) immediately before the last inverse Fourier transform. 
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Again, the failure is due to the fact that the small waves in the smoothed functions 

make the slopes of the smoothed functions totally unreliable, although the functions 

themselves are perfectly usable in certain other applications. 

Time Series Analysis 

Finally, time series analysis has also been applied to kernel estimation based on 

the auto-covariance and cross-covariance matrices of the system input and output. 

Results similar to those of Fourier transforms have been obtained. Namely, the 

kernel is estimated correctly in the absence of noises. However, the time series 

method fails badly whenever there are noises in the system output for a step input, 

despite the fact that this method has been specifically developed to solve just this 

type of problem in which dynamic models are to be identified from noisy data. 

Tapering in the Time Domain 

When a time window is applied arbiq;arily, the end points may not necessarily 

match nicely, though the function may be truly periodic. This gives rise to a 

phenomenon known as leakage, which is the direct result of viewing a finite section 

of an infinitely long data series. Leakage phenomenon is manifested in an oscillatory 

Fourier transform. To reduce the leakage, tapering techniques analogous to the 

windowing techniques in the frequency domain can be employed in the time domain 

to soften the edges of a boxcar window so that less weight is applied to the points 

near the edge of the window. While many taper functions have been used in the 

past, the split cosine bell taper shown in Figure 2.6.20 is used in this simulation and 

in the analysis of sinusoidal dilution rate experiments in the subsequent chapters. 

However, the use of tapering in the time domain is generally not advised if the 

curve near two ends of the time window initially is not close to zero, for doing 

so will highly distort the shapes of the system input and output response curves, 
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resulting in questionable estimates for the kernel. 

½ [1 - cos(tta.tper 1r)] for O < t :s; ttaper 

Taper = 1 for ttaper :s; t :s; t J - ttaper (2.6.34) 

1 [1 - cos( N -t 1r)] for t t < t < t 2 tta.per f - taper _ _ J , 

where ttaper is the last point where taper will be applied. 

Direct Polynomial Approximation 

A variation of smoothing via the polynomial approximation is simply to find 

the coefficients of least-square fit of the noisy function to the time-lag differential 

equation, given the order of the polynomial. All the higher derivatives of this 

function are then directly calculated from these coefficients. In previous sections, 

it has been derived that the following relationship holds for a linear combination 

of k(t) = I:?=o aiki(t), where ki(t) is the ith exponential distribution function 

1 ti -½ 
TTe • 

(2.6.35) 

Specifically, for the first three kernels, namely the 0th-order k(t) = Je-½, the 

first-order k(t) = (aoJ + a1,Jr) e-+ with (a0 + a1 = 1), and the second-order 

k(t) = (ao:}. + a1,Jr + a2~) e-½ with (ao + a1 + a2 = 1), the following respective 

linear differential equations are satisfied. 

Td~~t) + y(t) = µ(t) (2.6.36) 

T 2 d2y(t) + 2Tdy(t) + y(t) = µ(t) + a Tdµ(t) 
dt2 dt O dt 

(2.6.37) 

T 3 d
3
y(t) + 3T2 d2y(t) + 3Tdy(t) + y(t) = µ(t) + (2a + a )Tdµ(t) + a T 2 d

2
µ(t) 

dt3 dt2 dt O 1 dt O dt2 

(2.6.38) 
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Equations (2.6.36)-(2.6.38) can be written in a general form: 

(2.6.39) 

where O:i = Ti Lj=i (nan-j• In this estimation scheme, a suitable order n is 

first assumed for the kernel to be estimated, and a value for T is subsequently 

assumed to start the process. Then the left hand side of the above equation, i.e., 

g(t) = E~:01 (nt1)Tidi!(,t) is evaluated and treated in the linear regression scheme 

as the dependent variable. Subsequently, the coefficients OiS are obtained by ap

proximating the function g(t) with the remaining n+l base functions of d;:!t?l, which 

can be directly evaluated from the polynomial approximation to the measured µ(t). 

In the stochastic digital domain, the last equation can be expressed as: 

t = o, 1, 2, ... , (2.6.40) 

\, 
where Ut denotes the estimated values of g(t) based on the smoothed y(t), and ft 

the errors due to the fact that the above correlation does not always hold true 

in the presence of noises or the kernel is not exactly a linear combination of the 

base exponential distribution functions. Expressed in a matrix format, ready to be 

subjected to numerical calculation, the above equation is: 

[~L [~] [~L dt O 

[~L [~] r~1 [ao] ['o] dt l dt" l 
0:1 E1 

[!!I!] [~] r~1 . . + . ' {2.6.41) 
dt 2 dt2 2 dt" 2 ~~ ~~: . : . . 

'-v-" 
g [~L [~L [~] '-v--' '-v-" 

a E 
dt" t 

µ 

Or in a more compact notation: 

(2.6.42) 
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where the columns ofµ, are assumed to be mutually linearly independent. This rank 

condition is automatically satisfied if the polynomial used to estimate µ(t) is of at 

least degree n. The sum of squared errors is: 

t 

J = z:::>,; = ET f = (g - µ,. o:)T (g - µ,. 0:). (2.6.43) 
j=O 

From linear regression theories, the estimate of o:, denoted henceforth as &, when 

J is minimized is: 

(2.6.44) 

Finally the value of J at the minimum is: 

J -T- A T A 

min = g g - aµ, µ,o:. (2.6.45) 

For all orders of k(t), the first coefficient corresponding to the term µ(t), i.e., 

a 0 should be unity. If not, another value of T is assumed and the least-square fitting 
\, 

process is repeated. Finally, when the coefficient corresponding to µ( t) converges 

to unity, the remaining coefficients £l:iS are converted to ais, with which the kernel 

function is now completely defined. This process is repeated with a new assumption 

on the order of the kernel. 

As a demonstration, this technique is applied to the same example of a step 

increase in the dilution rate. The following set of coefficients is obtained assuming 

the degree of the least-square polynomial for µ(t) to be 7 and that for y(t) to be 

4; these, as shown previously, were the degrees that proved to represent adequately 
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the corresponding noisy curves. 

Coefficients from Linear Regression 

1 t t2 t3 t4 t5 t6 t7 

µ 3.63e-1 2.71e-1 -2.37e-1 1.04e-1 -2.52e-2 3.40e-3 -2.41e-4 6.98e-6 

µ' 2.71e-1 -4.73e-1 3.12e-1 -1.0le-1 1.70e-2 -1.45e-3 4.89e-5 

µ" -4.73e-1 6.24e-1 -3.02e-1 6.Sle-2 -7.24e-3 2.93e-4 

µIll 6.24e-1 -6.04e-1 2.04e-1 -2.90e-2 1.47e-3 

µ(4) -6.04e-1 4.08e-1 -8.69e-2 5.86e-3 

µ(5) 4.08e-1 -1. 74e-1 1.76e-2 

µ(6) -1.74e-1 3.52e-2 

µ(7) 3.52e-2 

Coefficients from !linear Regression 

1 t t2 t3 t4 

y 2.88e-1 7.19e-2 -6.90e-3 -2.44e-5 1.88e-5 

y' 7.19e-2 -1.38e-2 -7.31e-5 7.52e-5 

y" -1.38e-2 -1.46e-4 2.26e-4 

ylll -1.46e-4 4.Sle-4 

y(4) 4.Sle-4 

From these curves the vector g is constructed from y, y', ... , and the matrixµ. 
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from µ, µ', ... , for the assumed order of the kernel according to the following table. 

Order Time-Lag Differential Equation 

True y" + 2y' + y = µ + 0.2µ' 

For example, when n is assumed to be 1, as the assumed kernel time constant 

T changes, so do the the coefficients ao and a1 calculated through least-square 

regression. Shown in Figure 2.6.21 is the variation in the least-square regression 

estimate of the first coefficient ( a 0 ) on the right hand side of the equation in the 

above table. The kernel time constant T corresponding to where a 0 is unity is 
I, 

1.153 hour. From the variations of a 0 and a 1 as a function of T, the fraction of 

the 0th-order component in the composite kernel, namely a0 , is calculated and is 

shown in Figure 2.6.22. The least-square estimates of the kernel time constant 

and coefficients subject to the condition that a0 = 1 are displayed below for other 

assumed kernel orders. 
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Summary of Least-Square Values 

n J T ao 0'.1 0'.2 0'.3 0'.4 

0 0.0891 1.686 1.0000 

1 0.0655 1.153 1.0000 0.1480 

2 0.0589 0.922 1.0000 0.1322 -0.0568 

3 30.0917 3.574 1.0000 5.2856 5.5902 1.627 

4 1.5139 2.043 1.0000 -3.6392 -2.1596 1.534 1.582 

1 True 1. 1.0000 0.2 

Note that the values of the error function J at a 0 = 1 are about the same for n = 0, 

n = 1, and n = 2. However, they increase significantly for n ~ 3. From these values 

of J, one can be quite confident that the order of the kernel is either 0, 1, or 2, but 

probably not 3 or more. 

\, 

Based on these estimates of the coefficients in the time-lag differential equation, 

the kernel parameters are completely specified by Equation {2.6.39). The coefficients 

on the right hand side of that equation represent the contribution from each expo

nential distribution base function, namely r Lj=i (nan-j• They are listed below 
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for the first ten kernel orders. It is basically a table of binomial coefficients. 

Coefficients for d;:;},t) on the RHS of Equation (2.6.37) 

Order of t 

Kernel (n) 0 1 2 3 4 5 6 7 8 9 

0 1 

1 1 1 

2 1 2 1 

3 1 3 3 1 

4 1 4 6 4 1 

5 1 5 10 10 5 1 

6 1 6 15 20 15 6 1 

7 1 7 21 35 35 21 7 1 

\, 
8 1 8 28 56 70 56 28 8 1 

9 1 9 36 84 126 126 84 36 9 1 

For example, for n = 3, all rows up to and including n = 3 in the above table 

are extracted and shown below. 

Example: Coefficients for n=3 

0 

1 

1 

1 

i ( xTid;ti{t)) 

1 

1 

2 

3 

2 

1 

3 

3 

1 
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Directly from this table, the following set of equations is obtained. 

1st column: ao = (l·a3 +l·a2 +l·a1 +l•ao) xT0 µ 

2nd column: a 1 = ( 

3rd column: a2 = ( 

4th column: a3 = ( 

These equations give rise to: 

1 · a2 +2 ·a1 

1 · a1 

+3 ·ao ) X Tl dµ.(t) 
dt 

+3 ·ao ) X T2d2µ.(t) 
dt 2 

1 · ao ) X T3d3µ.(t) 
dt 3 

(2.6.46) 

Because the above transformation matrix B has a triangular form, the coefficients 

can be easily solved in a reverse order to derive the kernel parameters. Finally, the 

results are presented in the table below, and the corresponding estimated kernels 

are plotted in Figure 2.6.23. 

Summary of Estimated Kernel Parameters 

n T ao a1 a2 a3 a4 

0 1.686 1.0000 

1 1.153 0.1284 0.887 

2 0.922 -0.0668 0.277 0.790 

3 3.574 0.0356 0.331 0.710 -0.0769 

4 2.043 0.0908 -0.183 -0.512 -0.5700 2.175 

1 1. 0.2 0.8 True 

As predicted by the error function J, reasonable estimates are obtained with 

n = 0, n = 1, and n = 2. The reason that the estimated kernels, although close, 

do not exactly match the true one is that although the polynomial approximations 

of the system input and output functions quite accurately describe these curves, 
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the derivatives of these approximations do not represent the slopes of µ(t) and 

y(t) as well as the functions themselves. This fact is shown in Figure 2.6.24 where 

the first-order derivative of the polynomial approximation of y(t) is contrasted with 

that of the true one. The agreement deteriorates even more quickly for higher-order 

derivatives. 

It is important to note that the minimum value of J = Lt f.i over the entire 

range of T generally decreases as the order of the kernel is increased. This is to be 

expected since there are now more parameters that can be manipulated to ensure 

a better fit. The error functions for the first few orders are plotted against T in 

Figure 2.6.25. Furthermore, the minima of these error functions are shown in Figure 

2.6.26. 

However, the value of T that gives rise to the minimum error function does 

not always yield the parameters needed to satisfy the condition that o:0 = 1. The 
I, 

following table gives the two values of T, the first one corresponding to o:0 = 1 and 
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the second one corresponding to minimum J. 

Summary Error Functions and Kernel Parameters 

n T ao J 

0 (ao=l) 1.686 1.0000 0.0891 

0 (min J) 1.766 1.0000 0.0870 

1 (ao=l) 1.153 1.0000 0.0655 

1 (min J) 1.071 0.9974 0.0627 

2 (ao=l) 0.922 1.0000 0.0589 

2 (min J) 0.810 0.9965 0.0511 

3 (ao=l) 3.574 1.0000 30.0917 

3 (min J) 0.480 0.9980 0.0108 

4 (ao=l) 2.043 1.0000 1.5139 

4 (min J) 0.345 0.9956 0.0087 

The discrepancy between the two values of T can be described by a factor 

defined as the ratio of : 00 
• If a kernel can indeed be expressed as a linear combi-

min 

nation of n independent exponential distribution base functions, then in the absence 

of any noise, a0 = 1 should occur exactly when there is a perfect match, i.e. when 

J = 0. When the system is corrupted by noises, the T where a 0 is unity should 

be close to the T where the error function is minimized. The equivalence of these 

two delay time constants results in a unit discrepancy factor. Thus, one expects 

this discrepancy factor to be unity if kernel order is correctly guessed. This factor 

is plotted in Figure 2.6.27 as a function of the assumed order of the kernel. Once 

again, from this plot it can be concluded that the order of the kernel is either 0, 1, 
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or 2, with n = 1 being the best guess because it yields a discrepancy factor nearest 

to one. The original true kernel used for this simulation indeed has n = 1. 

Finally, it should be noted that the above table indicates that a 0 is not at all 

sensitive to variations in other kernel parameters such as T. Similarly, the error 

function J near its minimum value is relatively fl.at and is insensitive to variations 

in parameters such as T. See Figure 2.6.25. 

Iterative Cyclic Approximation 

In the Fourier transform method considered previously, it was demonstrated 

that Fourier transforms cannot be applied naively and directly on the system input 

and output pair, for the convolution theorem does not hold for non-periodic func

tions. Rather, the transform must be applied on the differenced quantities when 

the system input closely resembles a step function where the function values at the 

beginning of the experiment are significantly different from those at the end. The 
I, 

need for difference operations is based on the implied periodical assumption on the 

functions to be transformed. The failure of the Fourier transform method in the 

presence of noise in the system output is attributed to difference operations, which 

amplified the noise. The next method considered for kernel inversion attempts to 

modify the system input and output so that Fourier transforms can be applied on 

them directly, instead of on the differenced quantities. 

First, the problem of how the system input and/or output functions should 

be modified will be addressed. To begin, there is no question that the integral 

relationship between the system input µ(t), and the system output y(t) in the 

continuous time domain described below is true: 

y(t) = lt
00 

µ(h)k(t - h)dh. (2.6.47) 
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Furthermore, the corresponding digital form is also valid within the time window: 

t 

Yt L µt-jkjD..t. (2.6.48) 
i=-oo 

If the system is perturbed from an established steady-state, then µi = 0 for i = 

-1, -2, -3, ... , where µt and Yt are formulated as perturbation variables. Figure 

2.6.28 shows the system output calculated this way and the function calculated 

according to the following operation in accordance with the convolution theorem of 

the Fourier transform, which states that the transform of the system output is the 

product of the transform of the system input and the transform of the kernel. 

µ--+ 

k--+ 
0 ~} IU • Kl Y~c 1.1-ll --+ Ycyclic 

[]_IS 

Thus, if the function Ycyclic (t) can be approximated, one can directly apply a Fourier 

transform to obtain the kernel. 

A system with an ideal, perfect step system input at t = t* is presented in 

Figure 2.6.29. A Fourier transform assumes that the function will repeat the same 

pattern outside the time window, i.e., infinitely periodical. From the Fourier trans

form's perspective, the system effectively has two disturbances, a step up at t = t* 

and a step down at t = 0 (or at t = ti), respectively designated as µa(t) and µb(t) in 

the figure, although the step down input is artificially created by the time window 

in the transform and does not exist in reality. 

(2.6.49) 

In essence, the second disturbance is a virtual one. Since the convolution integrals 

and, hence, the Fourier transforms are additive, one can treat the system input 

as two separate step functions and calculate the system response to each of the 

stimuli independently. These individual system output functions are noted in the 
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figure as Ya(t) and Yb(t). Note that Yb(t) is a vertically reflected and horizontally 

shifted image of the physically measured Ya(t) because the step inputs have the 

same magnitudes but are oppositely directed. Therefore, the cyclic system output 

Ycyclic(t) can be easily obtained. 

Ycyclic(t) = Ya(t) + Yb(t), (2.6.50) 

where 

==> Yt (2.6.51a) 

==> Yhigh-ss - Yt•+t (2.6.51b) 

To be sure, there are also an infinite number of these step ups and downs in the 

past in addition to the two just considered, and each of these will contribute to the 

final observed response. If the time window is wide enough, the effect of these past 

virtual disturbances will have decayed to,insignificant levels corresponding to the 

tail section of the kernel function. Besides being perfectly rectangular, long t 1 - t* 

makes· it an ideal system. 

However, the system input encountered in real applications frequently is not 

so ideal. One such non-ideality is illustrated in Figure 2.6.30. Non-ideality comes 

from two independent sources: a time interval of t 1 - t* that is not long enough 

to establish fully a new steady-state and a near-step input imposed on the system. 

As before, this non-ideal input can be decomposed into µa(t) and µb(t), with the 

known observed effect of Ya(t) for µa(t) and the presently unknown effect of Yb(t) 

for µb(t) that remains be calculated once the kernel is known. 

(2.6.52) 

Ycyclic(t) = Ya(t) + Yb(t). (2.6.53) 
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Ya(t) = /_too µa(h)k(t - h)dh ~ Yt (2.6.54a) 

Yb(t) = J_t
00 

µb(h)k(t - h)dh (2.6.54b) 

But because the kernel itself is not yet known, an iterative process of kernel esti

mation is suggested. Note that except for the near-step up at t = -(t1 - t*), µb(t) 

is an almost perfect step down. Part of what makes an input function ideal is the 

length of t 1 - t*. Thus, a near-step up at the distant past can be safely neglected 

if t 1 - t* is long enough. As opposed to the ideal step input, the imperfection in 

the shape of the step input makes µa(t) and µb(t) nonsymmetrical, which, in turn, 

makes Ya(t) and Yb(t) nonsymmetrical. 

The once decomposed µb(t) can be further decomposed into µb1(t), µb2(t), and 

µb(t) = µb1(t) .1.,. µb2(t) - µb3(t) 

Yb= Ybl (t) - Yb2(t) - Yb3(t). 

Yb1(t) = 1-too µb1(h)k(t - h)dh ~ Yhigh-ss - Yt*+t 

t 

(2.6.55) 

(2.6.56) 

(2.6.57a) 

~ I:)µhigh-11s - µt*+t-;)k;!}.t 
i=O 

~ ~O 

(2.6.57b) 

(2.6.57c) 

This is graphically illustrated in Figure 2.6.32. In summary, the cyclic y( t) is to be 

calculated as: 

Ycyclic(t) = Ya(t) + Ybl(t) - Yb2(t) - Yb3(t), (2.6.58) 

The decomposed µb1(t) contains most of the parental function µb(t) and has the 

same but inverted shape as the original physically measured system input. The 

response to µb1(t) is designated as Ybl(t), and it constitutes the first-order major 

correction to y(t) in achieving the true Ycyclic(t). The response of the system to the 
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Figure 2.6.30. Decomposition of a non-ideal system input into µa(t) whose response is 

known and µb(t) whose response is to be estimated. 
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Figure 2.6.31. Further decomposition of µb(t) into µb1(t), µb2(t), and µb3(t). The re

sponses to µb1(t) and µb3(t) are known. Only the response to µb~(t) need 

be estimated. 
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input µbl (t) is simply the inverted image of the actual measured and known system 

output. So is the response to µb3 (t), except that only an insignificant amount of 

residual will be felt in the time window if the kernel decays to O within the time 

interval t 1 - t*. This response will be termed third-order or tertiary correction. 

Thus, the only part of the original µ(t) that has not yet been considered is µb2 (t), 

which is shaped like an impulse, suggesting that the second-order correction Yb2(t) 

should be similar to a reduced version of the kernel. 

Because the secondary correction cannot be obtained without some a priori 

knowledge on the kernel, it is neglected in the first approximation of the cyclic y(t). 

Figure 2.6.32 shows the relative magnitude and the relationship of these correction 

terms in our simulation. The kernel estimated through a straight forward Fourier 

transform of µ(t) and Ycyclic(t) is shown in Figure 2.6.33. 

The results of first iteration is reasonable but slightly oscillatory due to the 

neglected second-order correction. In the second iteration, the second-order correc

tion is calculated based on the kernel after the first iteration. Figure 2.6.34 shows 

that after this correction the cyclic y(t) used in the second iteration is already in

distinguishable from the true cyclic y(t). The kernel fails to converge to the true 

curve even in the absence of noises in both µ(t) and y(t), although the iterative 

algorithm is convergent and there is little difference between the true Ycyclic(t) and 

the Ycyclic ( t) calculated from the estimated kernel. This fact demonstrates that 

more than one kernel can give rise to the identical observed behavior; the relation

ship is not one-to-one, and the kernel is not unique. (It is unique, though, if the 

kernel is constrained to be a linear combination of the base exponential distribution 

functions.) 



0 
L() . 
0 

L() 
tj-

• 
I- 0 
:::J 
0... 
I-
:::> 0 
0 tj-. ~o 
w 
~ 
>
(/) LO 

drrrue Cych 

0 
r<) 

Initial Quess of 
Cyclic y(t) 

First Order Correction 
Second Order Correction 

d~ 1/ j. I . ?::=t:: I J 

2 4 6 8 10 
TIME (hr) 

Figure 2.6.32. Various correction terms that transform the original y(t) into Ycyclic(t). 

The first-order correction, which is the reflected image of the original 

y(t), represents the majority of the overall needed correction. The initial 

guess of Ycyclic(t) is the summation of the true y(t) and this first-order 

correction. 

0 
C\,! I-
0 :::J 

(L 
I-
:::J 

L() 0 . 
0~ 

w 
~ 
>-0 (/) . 

Oo 
f-
(/) 

t,:) 
t,:) z ~ 

LO 0 I 

of-
·U Ow 

0::: 
0::: 

oo qu 
0 



l.() . 
0 

~ 
CYCLIC KERNEL DECONVOLUTION 

. 
0 

r<) . 
0 

_J 

~ (\JV/I t\ ~,,.. True Kernel 
0:: . 
WO 
~ " or 

0 . 
0 

. 
0 

I 

0 

"--~ IV I I I '-'1 '-if 11'-'1 I 

Noise in Input: 0% ~ 
Noise in Output: 0°/o ""~ 

2nd Iteration 

2 4 6 8 
TIME (hr) 
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Due to the initial failure to include the secondary correction to Ycyclic(t), the 

kernel's oscillation around the true curve persists once the kernel is allowed to do so. 

Note that the kernel resulting from the Fourier transform operations, as any other 

function, is also implicitly periodic. For example, the two end-points in the given 

time window are always equal, and the true kernel can never be forced out of this 

Fourier transform-based scheme if it does not have equal end-points. Figure 2.6.35 

demonstrates the effect of lengthening the pre-perturbation time from 2 hours to 4 

hours. This technique can be used to push the onset of oscillations in the estimated 

kernel to a later time. 

The converged estimates of the kernel function in the presence of noise in the 

system input µ(t) based on the following scheme are shown in Figure 2.6.36. 

Although the estimated kernel oscillates around the true curve, much closer agree

ment is possible when it is further fitted to a set of base exponential distribution 

functions in a least-square sense. On the other hand, the presence of noise in 

the system output y(t) is extremely detrimental to kernel estimation via a Fourier 

transform on the cyclic y(t), as illustrated in Figure 2.6.37. 

µ-+ 0..s}rvl~r;:=u 
.... I c--l-..... , 1/c,rcllc !"Tl y tm L::__J 

Ynoisy -+ ye ie -+ ~ -+ 
-+k __________ __. 

Finally, noise reduction through either polynomial approximation or frequency 

windowing is attempted at various points along the same route as before. The 

objective here is to force k( t) to converge while suppressing the noise. 

µ-+ 

f'p:J:l 1/amooth jc 1 • 11/c,rcllc 
Ynoisy -+ ~ -+ ye ie -+ 
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~---~======~-------. .---~ L:'..J K 1.1-11 µ -t ljl ~ } ~ 
Ynoisy -t 10 ~ IWindowl Y,~

th 
~, 1/s~

th 
jcycliel 1/~c 0 ~ u -t 

For example, frequency windows can be applied to smooth the original noisy y(t) 

before forming Ycyclic(t). The results from the above set of operations, though not 

shown, are not encouraging due to the fact that the noise in the kernel in each 

iteration is not filtered, which, in turn, causes the next estimate of Ycyclic(t) to be 

noisy. This problem can be eliminated if smoothing by polynomial approximation 

or by a frequency window is applied at the point after Ycyclic(t) has been formed. 

L:'..J -t y K 1.1-11 k µ-trJiU}~ 
. IC /' 11/cycllc rp,:,::l/ 1/1mooth f'Tl Y U -t -t Yn01sy -t _ ye ie _ -t ~ -t ~ -t .._ _________ _____, 

IC 1 · 11/cycllc Ynoisy -t ye ie -t 
-tk 

which is equivalent to the following block diagram. 

µ-t ljl u }~ L:'..J -t y -!S jWindowl K,morth 1.1-11 
,-I c--1-·-,11/cycllc rTl y u - -

Ynoisy -t ye ie -t tZJ --+ .._ _________________ ____. 

-tk 

The results of these operations are shown in Figure 2.6.38 and 2.6.39 for k(t) 

and Ycyclic(t). It is clear that there is a vast improvement over the results shown 

in Figure 2.6.37, which do not have smoothing applied. As before, the agreement 

of the estimated Ycyciic(t) with the true Ycyclic(t) is quite good, partly due to the 

fact that the end-points are equal, but the agreement of the estimated k(t) with 

the true k(t) is not as good. Nonetheless, considering the fact that the system 

input structure used throughout simulations in this section is most demanding, the 

method survived the tough test quite well. In summary, the method of cyclic kernel 

deconvolution studied in this section is similar to the original Fourier transform 

method, but it avoids taking the difference operation that is generally considered 

undesirable in a noisy function. 
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Inverse Numerical Integration 

An alternative approach is to solve the set of digitized integral equations di-

rectly. Expanding Equation (2.6.27a) Yt = L,~·=o µt-jkjf),,.t yields: 

Yo {µokof),,.t} 

Y1 {µ1ko + µok1!),,.t} 

Y2 {µ2ko + µ1k1 + µok2!),,.t} 

(2.6.59) 

Yt-1 {µt-1ko + µt-2k1 + ... + µ1kt-2 + µokt-11),,.t} 

Yt {µtko + µt-1k1 + ... + µ1kt-1 + µoktf),,.t }, 

which can be represented very compactly in a matrix notation: 
\, 

[ ;., l µo 0 0 0 

· [ Z~=]-~1• 

µ1 µo 0 0 
µ2 µ1 µo 0 (2.6.60) 

k2. 

µt µt-1 µt-2 0 kt ---....-, ---....-, 
y µ k 

Note that in the above equation it is assumed that µi = 0 for j = -1, -2, -3, ... , 

which can be physically achieved if one introduces perturbation from a steady state 

and works in deviation variables. Due to this assumption of µj = 0, the matrix µ 

is lower triangular, and the solution for k can be easily obtained recursively from 
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ko to kt without resorting to the high-dimensional matrix inverse. 

ko 

(2.6.61) 

Because the above equations suggest division by µo, any steady-state values 

prior to the introduction of the near-step perturbation have µ = 0 and are not used 

in the calculation. In addition, because a factor of ..1.. is involved in the calculation of 
µ.o 

every k;, this scheme may not always yield a curve k(t) with a 0th moment of exact 

unity, as it should be, if there are noises in µo. Any error in the kernel estimation 

due to incorrect µ 0 will propagate to the next step, for the determination of the next 

k; depends on all the k;s calculated up to that point. This algorithm's sensitivity to 

uncertainties in µ 0 is shown in Figure 2.6.40, where deterministic system input and 

output are w,ed per the following schematic in which 11-' I signifies the inverse 
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numerical integration. 

Too small of an estimation for µo tends to cause oscillations in k(t), as demonstrated 

in Figure 2.6.40b. However, as long as the initial guess of µ 0 is within the same 

order of magnitude of the true value, the algorithm seems to work well, as evidenced 

in Figure 2.6.40c. As the guesses of µ 0 deviate further away from the true value, the 

estimated kernels as well as the areas under these curves start to diverge from the 

true curve. See Figure 2.6.40d-f. One need not be concerned about this divergent 

behavior because it can be detected by the deviation in the curve's first moment 

and_ because it is unlikely that a specific growth rate of over 1 hr- 1 is to be guessed. 

It is further suggested that the area be normalized at the end of the calculation. 

The results of numerical simulation using this approach show the same tendency 

as other methods, namely that although errors in µ(t) are automatically reduced 
\, 

via the filtering effect of the summation process and can be tolerated, any errors in 

y(t) directly affect the calculation of k;. Errors in k;, in turn, propagate through 

the summation and affect the calculation of the next k;+l• The cumulative effect 

again leads to the general failure of the method when there are noises in y( t). See 

Figures 2.6.41 and 2.6.42 resulting form the following respective operations. 

µ •• u: : } [Z] --+ k 

µ---+} 1[11-1 
Ynouiy---+ lLJ ---+ ~ 

Finally, noisy curves of µ(t) and y(t) are first smoothed by either polynomial ap-

proximations or frequency windowing as before, and the results are shown in Figures 

2.6.43 and 2.6.44, respectively. 

ro:,:i 1-'1mooth} [J 
µnoisy ---+ ~,----, ---+ 1- l ---+ k 

IP l I Y1mooth Ynoisy ---+ 0 Y ---+ , 
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µnoisy --+ I Window I /Ls~t h } I 1 ~ l 1----, k 

lw • d I !/smooth 
Ynoisy --+ in OW --+ 

Least-Square Error via Multivariable Minimum Search 

The last method to be considered seeks the kernel model parameters that min

imize the sum of square-errors between the measured y(t) and the predicted y(t) 

based on the assumed kernel. The algorithm is described in the flow diagram of 

Figure 2.6.45. First, the order of the kernel is assumed so that the number of param

eters can be identified. One then provides the initial guesses for the distribution of 

weights for each base function, ais, and the kernel time constant, T. A kernel func

tion is constructed from these given parameters, and the system output is predicted 

from this kernel, given the system input. The objective function J is formulated 

according to the following equation, and the sum of square-errors is evaluated. 

J = J E
2 = / (Ymeasured - Ypredicted)

2 
\, 

N 

==>- L(Ymeasured - Ypredicted); 

t=O 
(2.6.62) 

Any of the well established numerical methods on multivariable function min

imization may be employed to seek J = minai,T { Lt E';}. This process is repre

sented graphically in Figure 2.6.46 for a first-order kernel with two variables, namely 

ao and T. 

For all practical purposes, the noise in the system input and output may be 

assumed to be normal and independent, i.e., (er:~)i ~ N(O, 1). The sum of the 

normalized square-errors, :[:~1 (er:fl~, can thus be expected to follow a x2 proba-
• 

bility distribution function with v = N - 1 degrees of freedom. Usually, N is large, 

and probability tables do not list the ch,-2 distribution for a large N. Fortunately, 

it can be approximated by a N(v, 2v) as a result of the central limit theorem. 
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Figure 2.6.45. Double-looped flow diagram of kernel model parameter determination 

by searching for the minimum of the sum of square-errors between the 

measured y(t) and the predicted y(t). 
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If the assumed order of the kernel is too small, there are not enough parameters 

to fit adequately the measured system output, and a significant amount of errors 

can be expected. Conversely, if the assumed order of the kernel is correct, the 

amount of errors between the predicted y(t) and the measured y(t) will match the 

x2 probability distribution function. Increasing the kernel order beyond the true 

one will not reduce the objective function by any significant amount. 

For example Figure 2.6.4 7 demonstrates the use of statistical hypothesis testing 

to derive the correct kernel order. Given the desired level of significance, e.g., 95%, 

the point at which the cumulative probability distribution function is 0.95 can be 

located either from the graph or from a table. Following the dotted arrow in the 

figure, the corresponding value of the objective function is noted. The kernel order is 

increased until the minimum of the sum of square-errors comes down to the noted 

value. In Figure 2.6.4 7, a second-order kernel is needed to satisfy the specified 

confidence level. 

In our simulation, the same system input and the true kernel functions con

sidered throughout this section are used. Noises corresponding to 5 % of the true 

values are then added to the intrinsic specific growth rate µ(t) and the observed 

specific growth rate y(t) of the culture to represent the uncertainty present in the 

actual measurements. The reconstruction of the kernel is initiated by assuming its 

order to be O and by picking an arbitrary value for the lag time-constant T. (Area

sonable value for T should be of the same order of magnitude as the bioreactor time 

constant, i.e., the reciprocal of the specific growth rate.) From the noisy transient 

data of µ(t) and k(t), the curve for the theoretically predicted observed specific 

growth rate is generated by integrating the transformed differential equation for 

y(t). The mean square deviation of the y(t) predicted by the kernel away from the 
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observed y(t) is then minimized over the choice of T. 

~n(Yrneasured - Ypredicted)
2 (2.6.63) 

After the above objective function is minimized with respect to T, the sum 

of normalized square deviations is obtained. A x2-test is used to test the original 

hypothesis that the kernel is 0th-order. A confidence interval of 95 % is a reasonably 

good value to apply to the hypothesis testing. If the test result on the minimized 

objective function indicates that the deviation is statistically significant, the order 

of the kernel k(t) is increased by 1, and the entire minimization process is repeated. 

Otherwise, the hypothesis is accepted, and the reconstruction process is terminated. 

In this example, as the order of the kernel is increased from 2 to 3, the decrease 

in the objective function is negligible, the algorithm decides that the the order of 

the kernel is 1, which is indeed the true value. From the noisy transient data of 

µ(t) and y(t), the kernel was reconstructe'd by minimizing the residue expressed in 

Equation (2.6.62). The simplified minimization algorithm is presented in the first 

part of Appendix D. The resulting kernel is shown in Figure 2.6.48c. 

Simulation Studies of Other Types of Perturbation 

Since the frequency response function or the pulse response function can be 

considered merely as another representation of the impulse response function (i.e., 

the kernel), various other types of signals such as sinusoidal, periodic rectangular, 

periodic triangular, or pulse can all be utilized to determine experimentally the 

shape of the kernel. The previous example of a step increase in the dilution rate 

represents the most difficult case of estimating the impulse response function from a 

pulse experiment. Because the impulse response function is the slope of the output 

from a pulse input, the problem is basically that of estimating the slope of the 

output from a noisy curve, which is not trivial no matter which method is used. In 
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Figure 2.6.48. {a) Simulated input { i.e., the specific growth rate in the absence of time

lag effects) as a function of time in a continuously operated bioreactor 

described by the state equations {2.2.10) and {2.2.11) after a shift-up 

in the dilution rate from 0.3 hr- 1 to 0. 7 hr- 1 • {Parameters used: µ = 

~:~~7;::i BJ= 5.0g/1; Y. = 0.5g/g; noise level in measurement= 5% .) 

{b) Simulated output {i.e., the observed specific growth rate containing 

time-lag effects) as a function of time. {Upper smooth curve: the true 

value of y(t); lower smooth curve: the calculated value of y(t) based on 

the estimated kernel function of (c). (c) True and estimated shapes of 

the kernel. 
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general, a method can be expected to work well for other types of stimuli if it works 

well for a step input. Subjecting a numerical method to the toughest test helps to 

force out its deficiencies so that one is made aware of the reason and circumstances 

where an algorithm succeeds or fails. Furthermore, if possible, one would like to 

find a way of estimating the kernel from a strictly shift-up or shift-down experiment 

starting from a well defined steady-state so that the response from each case can 

be contrasted, especially if there exists any difference. 

Although none of the previously described algorithms manages exceptionally 

well in noisy conditions, they work quite well when the direct input, not the deriva

tive, is an impulse function or remotely resembles an impulse function. For example, 

the Fourier transform method is applied to a situation where the levels of both the 

input and output return to their respective starting values within the time-window, 

so that there are no discontinuities at the time-window boundaries when each func

tion is repeated on both side of the time-window. This periodic version of the 

function is conceptually indicated in Figure 2.6.5d. As a specific example, Figures 

2.6.49a and 2.6.49b display the results of simulating the response of the time-lag 

system where the dilution rate is suddenly increased from the original steady-state 

value of 0.3 hr- 1 to 0. 7 hr-1 at t = 1 hr and subsequently restored back to 0.3 hr- 1 

at t = 2 hr. The parameters used in this simulation are the following: s1 = 5 g/1, 

Y., = 0.5 g/g, and µ(s) = \ 51r~1
". As before, Fourier transforms are performed g ., • 

on µ(t) and y(t), which are transformed to U(w) and Y(w), respectively, and the 

results of the inverse transform of ~f :~ are shown in Figure 2.6.50. 
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Indeed, the Fourier transform method can be effectively utilized to estimate 

the kernel function in this deterministic case. The kernel estimated from the noisy 

input and output signals is shown in Figure 2.6.51, which indicates that the Fourier 

transform method can be effectively used. 

µnoisy-+ 0 7} ~ ~ 11-11 -+ k 

Ynoisy -+ 0 -+ 
L...,;;c=------------' 

Further extensive simulation shows that other methods can be used to give good 

results for this case. 

Much better agreement between the true kernel and the estimated one can be 

achieved if an impulse can be applied to the system. This last simulation demon

strates the difficulty in achieving an impulse. Although only one hour of pertur

bation in the dilution rate is used, the system input µ(t) is not at all close to an 

impulse. Furthermore, the estimated kernel is in considerably better agreement 
I, 

with the true one if the noise level is decreased. ( Of course, in almost all methods, 

the reconstructed kernel coincides with the true one in the absence of noise.) 

Summary 

Throughout this section, the system input, µ(t), is assumed to be the true 

specific growth rate in the absence of time-lag effects. Given s(t), this true specific 

growth rate µ(t) is obtained from a µ versus s curve constructed from a series of 

steady state experiments, in which the time-lag effects are eliminated. The system 

output, y(t), is the observed specific growth rate, which is derived from the slope 

of the culture growth curve. Much better results can be expected when a Kalman 

filter is applied to reduce the noise level in the measurement of the specific growth 

rate. This is especially true when the problem is more demanding, as in the case of 

a near step input to the system. In this case, Fourier transforms, as well as all other 

methods considered in this section, do not yield the exact answer, and deviations 
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between the true kernel and the estimated curve is rather significant when there is 

noise in the system output. This is because a kernel is sensitive to the system output 

and cannot be estimated exactly; conversely, the system output is insensitive to the 

kernel, and a slight variation in the kernel model parameters or in the functional 

shape does not significantly affect the predicted output. 

Kernel deconvolution strongly depends on the nature of the disturbance. If 

the input is impulse-like, i.e., if the value of the input starts and ends at the 

same level, the techniques of Fourier transforms can be directly applied without 

taking the difference operation to estimate the kernel function in the convolution 

integral. The Fourier transform method or any of the variations thereof also give 

good results if the input is periodic. In these cases, the estimation of the kernel can 

be accomplished without resorting to the use of exponential distribution functions, 

although it may eventually be approximated by an expansion of such functions to 

facilitate the mathematical analysis of th~ system. 

In summary, the following is a list of the methods discussed in this section. 

Method Use of Base Functions 

1 Fourier Transform No 

a) Noise Reduction via Linear Regression No 

b) Noise Reduction via Frequency Windows No 

2 Time Series Analysis No 

3 Polynomial Approximations Yes 

4 Iterative Cyclic Approximation No 

5 Inverse Numerical Integration No 

6 Quadratic Minimum Search Yes 
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Of these methods, only polynomial approximation and quadratic minimum 

search are confined to the use of linear combination of base functions. All other 

methods are not confined by any specific set of base functions; thus, they are gener

ally applicable to any arbitrary functions and at times may be preferred. Nonethe

less, they may be slightly modified to accommodate exponential distribution base 

functions. One way is to approximate the resulting kernel function by a set of 

these base functions at the end of calculation. Typical computer programs used to 

calculate the impulse response function by utilizing Fourier transforms and other 

principles are listed in Appendix D. 

2.7 LOCAL STABILITY ANALYSIS 

Stability analysis of an open loop system is of utmost importance in any process 

control consideration. For a successful venture, one must have a model that can 

display the correct dynamic behaviors, especially the instabilities, oscillations, and 
\, 

hysteresis. An inappropriate choice of models can lead to an unfruitful exercise. 

No advanced control theories can fully rectify the mistake of choosing a model that 

cannot describe the oscillatory instabilities if they are indeed observed in practice. 

Any existing inherent unstable tendencies must be fully incorporated in any sound 

control strategies. This section attempts to analyze theoretically the stability of a 

time-lag model. 

One of the advantages of transforming an integral differential equation into a 

purely differential one is that one can directly utilize the well-developed stability 

and bifurcation theories to analyze mathematically the behavior of the time-lag 

system in the same way as one would analyze a system with no time-lag. The 

type of dynamic equations most frequently encountered in biochemical engineering, 

including the examples used here, are nonlinear in nature. Although there are 

a number of methods generally employed for the analysis of a set of nonlinear 
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dynamic equations, each method is limited in applicability, and there is currently 

no general technique that can be universally applied. In this section, the dynamics 

of a chemostat culture in the presence of time-lag kernels is analyzed, employing 

techniques from the classical linearized stability analysis. 

Formulation of State Equations 

As a fundamental example, the non-dimensionalized state equations for a sim

ple chemostat, without product formation, is presented below. 

dx(t) 
~ = [-1 + µ[s(t)]] x(t) (2.7.la) 

ds(t) 1 
---;ft = 1- s(t) - Y., µ[s(t)]x(t) (2.7.lb) 

The states in the above equations are clearly the biomass concentration, x(t), and 

the limiting substrate concentration, s(t). The model parameters are the specific 

growth rate, µ, and the substrate to cell yield coefficient, Y.,. The stability of this 
\, 

classical system has been previously analyzed (Koga and Humphrey, 1967). 

It is conceivable that time-lag effect may be present in either or both of these 

growth parameters. First, the presence of a time-lag only in the specific growth 

rate will be considered. 

d~~t) = [-1 + /_too µ[s(h)]k(t - h)dhl x(t) 

d:~t) = 1- s(t) - ;., [/_too µ[s(h)]k(t - h)dhl x(t) 

(2.7.2a) 

(2.7.2b) 

These dynamic equations can be analyzed more readily, if the observed specific 

growth rate is treated as an additional state, so that the integrals in the above 

equations are eliminated. 

dx(t) 
~ = [-1 + y(t)] x(t) (2.7.3a) 

ds(t) = 1 - s(t) - 2-y(t)x(t) 
dt Ya (2.7.3b) 
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y(t) = J_t
00 

µ[s(h)]k(t - h)dh = 1= µ[s(t - h)]k(h)dh (2.7.4) 

As discussed in previous sections, the differential form of the last equation 

depends on the order of the kernel. For a 0th-order kernel ko(t), the last equation 

is equivalent to one additional differential equation: 

dy(t) = _!_ [-y(t) + µ(t)] 
dt T 

0th Order (2.7.5) 

For a purely 1st-order kernel k1 ( t), the two additional differential equations are: 

dy(t) = z(t) } 
dt 

d:~t) = ;
2 

[-2Tz(t) - y(t) + µ(t)] 
1st Order (2.7.6) 

For a mixed 0th- and 1st-order kernel k(t) = aoko(t) + a1k1(t), the following two 

equations are added. 

dt 
dy(t) = z(t) } 

dz t 1 1, dµ t 
d~) = T 2 [-2Tz(t) - y(t) + µ(t) + a0T d~)] 

Combined 1st Order 

(2.7.7) 

Steady-States 

The steady-state values of x0 and so are obtained by setting the above differ

ential equations to zero. Thus, the manipulation is purely an algebraic one. 

0 = [-1 + Yo] xo 

=> Yo= 1 or xo = 0 (Washout) 

1 
0 = 1 - so - -yoxo 

Y. 

=> xo = Y11 (l - so) 

Yo = lim f 00 µ(s(t - h)]k(h)dh 
t-00 10 

= µ(so] 100 

k(h)dh = µ(so] 
~ 

l 

=> µ(so) = µo = 1 or so= µ- 1 (1) 

(2.7.Ba) 

(2.7.Bb) 

(2.7.9) 
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Alternatively, the steady-state value for µo can be obtained by setting each of the 

differential equations of d~t) and/or d~~t) to 0. Thus, the steady-state values of 

xo, so, and µ0 are not altered by the presence of time-lag effects. This is certainly 

expected, because there should be no time-lag effects at steady-states. 

0th-Order Kernel 

Linearization: First, how the stability will be affected by the inclusion of a 

0th-order time-lag in the specific growth rate will be investigated via the linearized 

state equations around the steady-state values. The transformed state equations 

are: 
0 

dX(t) ----
dt = (-1 + Yo) X(t) + xoY(t) 

dS(t) 1 ~ 1 -- = -- Yo X(t) - S(t) - -xoY(t) 
dt Ya Ya 

dY(t) = ..!.µ~S(t) - ..!_Y(t) 
dt T 1, T 

The transformed variables X(t), S(t), and Y(t) are defined as: 

X(t) = x(t) - x0 

S(t) = s(t) - so 

Y(t) = y(t) - Yo 

And µ~ is the slope of the µ versus s curve at the steady-state value of s. 

(2.7.l0a) 

(2.7.lOb) 

(2.7.l0c) 

(2.7.lla) 

(2.7.llb) 

(2.7.llc) 

(2.7.12) 

Jacobian Matrix and Characteristic Equation: The Jacobian matrix for the 

linearized set of differential equations is: 

(2.7.13) 
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The characteristic equation for the differential equations (2.7.lOa-c) is: 

(2.7.14) 

where C is the stability variable that persistently appears in stability analysis. 

(2.7.15) 

Necessary and Sufficient Conditions: The first-order necessary and sufficient 

condition for the system of differential equations to be asymptotically stable is that 

all the roots of the characteristic equation must lie to the left of the imaginary axis 

on complex plane, i.e., the real part of each of the roots shall be negative. 

There are many ways to analyze this characteristic equation. Solving the roots 

directly is not always the best approach, ~pecially in view of the fact that currently 

there exists no formula for degrees of 5 or above. Since our objective is to find the 

signs of the roots, the application of such classical tests as the Routh test may be 

more appropriate. The Routh test states that all the coefficients ais in the following 

nth-degree characteristic equation must be positive. 

(2.7.16) 

Secondly, all the elements in the first column of the Routh array being positive 

constitutes the necessary and sufficient condition for a stable system, where the 
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Routh array is formulated for a nth-degree polynomial as follows. 

Row Elements 

1 ao a2 a4 

2 a1 a3 a5 

3 b1 b2 

4 C1 C2 

5 di 

6 e1 

The first two rows are taken from the coefficients in the characteristic equation. 

The subsequent rows are calculated as: 

I, 

Thus, the Routh array for a 0th-order kernel is: 

0th-Order Kernel 

Row Routh Array Elements 

1 

2 

3 

4 

1 

1 + 1. T 

J[(l + C)(l + J) - C] 

}(1 + C) 

(2.7.17) 

The consequence of the first condition on the signs of the coefficients of the 

characteristic equation is that C > 0 must hold for a stable non-washout steady

state. Subsequent analysis of the Routh array also confirms that C > 0 is the most 

restrictive condition in the sense that all other conditions are automatically satisfied 

if C > 0. Since 1 - so is always positive from material constraints, the necessary 
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condition for a stable steady-state reduces to µ~ > 0 for a system with a time-lag 

in the specific growth rate characterized by a 0th-order kernel. This is the same as 

the original two-dimensional state equations without time-lag. 

The stability for a general constitutive form of µ( s) is illustrated in Figure 

2.7.1, where the stability can be easily inferred from the slope of the µ(s) curve 

as it crosses the operating curve corresponding to the dilution rate. The operating 

curve is a constant of 1 due to the non-dimensionalization by the dilution rate. 

Having a negative slope, the second steady-state for a substrate inhibition kinetics 

is always unstable. 

The inclusion of a 0th-order kernel in the time-lag makes it possible for the roots 

of the characteristic equation to have imaginary parts; whereas, the roots for the 

state equations without time-lag are always real, and the approach to the steady

state is always exponential. The direct consequence is that the system approach 
\, 

to the non-washout steady-state can be oscillatory if the time delay constant T is 

large enough. The boundary between the exponential and the damped oscillatory 

return to steady-state can be calculated from the following algebraic equation, which 

corresponds to repeated roots for the characteristic equation. 

where 
1 

p = - (-T2 + T + 3TC - 1) 
3T2 

1 
q = 

27
T 3 (2T3 + 24T2 -9T2 C -3T-9TC + 2). 

(2.7.18a) 

(2.7.18b) 

(2.7.18c) 

The graphical interpretation of the stability variable C is illustrated in Figure 

2.7.2. It is the slope of the curve µ(s) at s0 multiplied by the baseline 1 - s0 , or 

equivalently it is the length of the right hand side of the triangle extending from 
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s = 1. The effect of changes in the dilution rate on C is illustrated in that figure. 

The region of damped oscillations is mapped in Figure 2.7.3. 

Mixed 0th- & 1st-Order Kernel 

Although the 0th-order kernel is not strong enough to cause the non-washout 

steady-state to be outright unstable, it can induce damped oscillations. Thus, one 

may expect that the system may be forced to become unstable if the order of 

time-lag is increased. As shown later, this is indeed so when a 1st-order kernel is 

employed. 

When the stability variable C or the time-lag constant T is small, the roots of 

the above fourth-order characteristic equation lie to the left of Point A in Figure 

2.7.4. They are all real and negative, and the system approaches the non-washout 

steady-state in an exponential manner. As C or T is increased, the roots pass 

through Point A where the roots are repeated. This corresponds to the oscillation 
\, 

boundary in that figure. As C or T is increased even further, the repeated roots 

split into the imaginary plane in mirror images, and the system approaches the 

steady-state with damped oscillations. Finally, Point B in Figure 2.7.4 is reached, 

where the roots cross the imaginary axis. The non-washout steady-state is no longer 

stable. It can be proved that at this point the system enters into a state of sustained 

oscillations. Briefly, it can be shown that: 

a) there is no stable steady-state to attract the trajectories in the x and s plane; 

b) the trajectories must be confined within the boundaries imposed by material 

balance, e.g., 0::; s(t)::; 1, 0::; x(t) Si., 0 < y(t) S maxµ(s), and O::; z(t)::; 

max dµ(a). 
da 1 

c) the trajectories cannot cross each other at any one point within these bound

aries, for doing so would violate the fundamental existence and uniqueness 
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theorem of ordinary differential equations. 

Under these constraints, the trajectories must be oscillatory. In a two

dimensional system, the trajectories must enter a stable limit cycle; however, for a 

higher-dimensional system, they need not be. For example, in a three-dimensional 

system the trajectories may have the option of spiraling around the surface of a 

torus. 

To find these oscillation and stability boundaries corresponding to Points A and 

B in Figure 2.7.4 for a mixed 0th- and 1st-order kernel k(t) = aoko(t) + a1k 1(t), 

a similar approach as outlined for the 0th-order kernel is performed. First, the 

linearized set of equations are: 

0 
dX ( t) ..---.,. 

dt = (-1 + Yo) X(t) + xoY(t) 

dS(t) 1 ~ 1 -- = -- Yo X(tJ - S(t) - -xoY(t) 
dt Y11 Y11 

dY(t) = Z(t) 
dt 

dZ(t) 1 1 , ~ 1 , 
~ = -aoT y

11 

µ0 Yo X(t) + T 2 (1 - Ta0 )µ0 S(t) 

1 2 
- T2 (1 + Ta0 C)Y(t) - TZ(t) 

The corresponding Jacobian matrix and characteristic equations are: 

0 = detl.\I - .JI = 

0 
-1 
0 

,j2 (1 - Tao)µ~ 

,\ 0 -Xo 0 
i. ,\ + 1 i. Xo 0 
0 0 ,\ -1 

(2.7.19a) 

(2.7.19b) 

(2.7.19c) 

(2.7.19d) 

(2.7.20) 

ao~ i.µ~ -~(1 - Tao)µ~ ~(1 + TaoC) >. + i, 
1 1 1 1 

O = .\4 + T(T + 2).\3 + T 2 (2T + 1 + Ta0 C).\2 + T 2 (1 + C + TaoC) + T 2 C 

(2.7.21) 
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And the following Routh array is obtained to perform the Routh test. 

Mixed 0th- & 1st-Order Kernel 

Row Routh Array Elements 

1 1 ~(2T + 1 + Ta0 C) ~C 

~(1 + C + Ta0 C) O 

3 ;jr(T + 2)(2T + 1 + Ta0 C) - ~(1 + C + Ta0 C) ;jr(T + 2)C 

5 ;jr(T + 2)C 

The term c1 in the above Routh array is the most restrictive one. 

O <c1b1 = 

(;3 (T + 2)(2T + 1 + TaoC) - ; 2 (1 + C + TaoC)] (;2 (1 + C + Ta0c)] 
1 )2 - T 4 (T+ 2 C 

(2.7.22) 

After some algebraic manipulation, the above inequality is reduced to a polynomial 

form. 

After applying the quadratic formula, the two solutions of the above equation are 

found in the following simple forms, of which only the boxed second solution is of 

any practical concern. 

- < 0< < (T
2
+2T+l) I C 2 I 

(1 + Tao) (1 - 2a0 )T 
(2.7.24) 

The stability boundaries for some representative values of a0 are plotted in 

Figure 2.7.5. Note that there exist stability boundaries for ao < 0.5, which indi

cates that the system can be unstable if C or T is large. For 0.5 ~ a0 the 0th-order 

kernel contributes more significantly to the combined kernel, and the roots of the 
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characteristic equation do not cross the imaginary axis for O < C as in the purely 

0th-order kernel. Note that a0 = 0 corresponds to a purely 1st-order kernel. Al

though not shown, the boundaries for the onset of damped oscillations exist for all 

a0 to the left of the stability boundaries. 

Higher-Order Kernels and Higher-Dimensional Equations 

The stability boundaries for a higher-order time-lag kernel are calculated in a 

similar manner, and they are plotted in Figure 2. 7 .6. As the order of the kernel is 

increased, the C and T parameter space corresponding to stable steady-states are 

cornered further. 

In summary, a full spectrum of dynamic behavior, including damped oscil

lations (when a 0th-order kernel is included) and sustained oscillations (when a 

1st-order kernel is included) can be predicted. The inclusion of the time-lag kernel 

greatly extends the utility of the simple bioreactor model considered in this sec-
\, 

tion to a wide range of oscillatory behaviors, which it cannot predict in its original 

unmodified form. 

The inclusion of kernels in other variables such as Y., and x can also be analyzed 

in a manner similar to what was done with time-lags in the specific growth rate. 

The same approach can also be extended to other state equations that contain 

more model parameters, such as a maintenance term in the biomass state equa

tion (Herbert's model), a maintenance term in the substrate state equation (Pirt's 

model), substrate inhibition, variable yield coefficients, cell recycle, or spatial inho

mogeneities. It would be interesting to investigate the effect of time-lag on modes 

of operations other than a CSTR, e.g., plug flow, batch, or fed-batch. In addition, 

the approach described herein can be carried out for a higher-dimensional system 

of product formation, mixed substrates, or mixed cultures. Considering the variety 

of transient behaviors that are possible with the simplest set of chemostat state 
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equations, an extremely rich collection of dynamic responses is expected to emerge 

from applying such an analysis to these slightly more-complicated systems. Fur

thermore, it is suggested that the effect of time-lag on process control consideration 

and optimal control formulations be vigorously pursued in future studies. 

Comparison of Dynamic Responses 

Many models have been proposed in the past to fit experimental data, some

times with the expressed objectives of explaining the oscillatory behaviors. Many 

variations of Monod's model exist, but they all give approximately the same re

sponse, at least too similar to show any statistically significant differences when 

they are fitted to experimental data corrupted with errors. A slightly better fit 

of one model does not at all imply that the model correctly describes the system, 

and one should be warned that choosing a model based only on data fitting is not 

a sound approach. If possible, the process should induced to express novel distin-
1, 

guishable dynamic features. Being drastically noticeable, oscillations and hysteresis 

are powerful tools that can be exploited to discriminate models. 

Therefore, it is interesting to compare the dynamic response of a kernel-driven 

system with that predicted by other models. One of the modifications to the original 

chemostat system equations is to assume a non-constant substrate-to-biomass yield 

coefficient. The fact that the yield coefficient sometimes is not constant has long 

been recognized. The proposed remedies include the addition of a maintenance 

term in the biomass dynamic equation (Herbert, 1958) or a maintenance term in 

the substrate dynamic equation (Pirt, 1965). More recently, a yield coefficient that 

depends linearly on the limiting substrate concentration has been proposed (Essajee 

and Tanner, 1979). The effect of the yield expression on the stability of the system 

has been analyzed (Crooke et al., 1980). 
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A relatively simple chemostat described by the following set of dynamic equa

tions is considered. 
dx(t) 
- = [-1 + µ(s)] x(t) 

dt 
ds(t) 1 - = 1 - s(t) - --µ(s)x(t) 

dt Y:, (s) 

(2.7.25a) 

(2.7.25b) 

These equations are exactly the same as those considered before, with the excep

tion that the yield coefficient is not necessarily a constant. It is found that the 

eigenvalues (roots of the characteristic equation) for this linearized system are: 

where 

r = 1 + µ~(1 - so) - YC: (1 - s0 ) 
Yo 

(2.7.26) 

(2. 7.27) 

The system becomes oscillatory (damped), when the eigenvalues have imaginary 

parts, or, equivalently, when the quantity inside the square root is less than zero. 

(2.7.28) 

The system becomes unstable with sustained oscillations (limit cycles) when the 

real parts of the eigenvalues become positive. Thus the necessary and sufficient 

condition for stability is .X < 0. 

(2.7.29) 

For simplicity, a Monod growth expression is substituted. 

as 
µ(s)= /3+s' (2.7.30) 

where o. = l!:!!!Dm is the non-dimensionalized maximum specific growth rate and /3 = & 
. a1 

is the non-dimensionalized half-saturation constant. The steady-state values for this 

generalized system containing a variable yield coefficient can be calculated by: 

/3 So=-
o.-1 

(2.7.31a) 
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xo = Y.,(so)[l - so] (2.7.31b) 

Tanner's Model: The conditions for the existence of limit cycles are explicitly 

derived for three commonly encountered yield coefficient expressions. The first 

expression is linear in the limiting substrate concentration. 

(2.7.32) 

where B' = B s l is the non-dimensionalized slope of the Y., versus s line. The 

condition for limit cycles is: 

_A_ < _a/3_(_1 -_/3)_-_{3_(_1 +_/3_) 
Bs1 (a - 1) [(a - 1)2 + {3]" (2.7.33) 

The stability region for this yield expression is shown in Figure 2.7.7, where the 

parameter space for limit cycles is under the respective curve. For parameters that 

lie in the region immediately outside these curves, the approach to the steady

state is ( damped) oscillatory. For paramt:!ters even further away from the dotted 

oscillatory boundaries, the classical exponential approach is predicted. 

The response of the system after a step increase in the dilution rate from 

0.05 hr- 1 to 0.1 hr- 1 is shown in Figure 2.7.8 for different substrate concentrations 

in the feed stream. Here, s 1=200 g/1 corresponds to the first dot at If--;- = 0.25, 

which is within the unstable region in Figure 2.7.7; s1=150 g/1 corresponds to 

the second dot at If--;- = 0.33, which is on the stability boundary; and s 1=100 g/1 

corresponds to the third dot at If--;- = 0.50, which is outside the stability boundary. 

As s l decreases, the parameters move away from the stability boundary, and the 

system becomes more stable after an upward shift the dilution rate. 

Herbert's Model: The second commonly encountered expression for the yield 

coefficient is inversely linear in the limiting substrate concentration. 

(2.7.34) 
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where B' = .ll.... is the non-dimensionalized negative slope of Y., versus 1. line. The 
"f " 

condition for limit cycles is: 

s1A (a -1) 2 (20: - 1- ,B) 
-B- < --=----,B-( (....:....o:___;_--1-) 2_+_,B_] ~. (2.7.35) 

The stability boundaries for this yield expression are plotted in Figure 2.7.9. The 

parameter space under the stability boundaries gives rise to limit cycle behaviors. 

Pirt 's Model: The third commonly used expression for a variable yield coeffi

cient has the same saturation form as the Monod model. 

(2.7.36) 

where B' = .ll.... is the non-dimensionalized half-saturation constant of the yield 
"f 

expression. The corresponding condition for limit cycles is: 

_s 1 < ----( a_-_1 ___ ) ____ [ (_a(---1_-_,o_) _-_1_-_,0--'--'-) l 
B ,B[(o:1-o-1) 2 +,B] 

(2.7.37) 

The stability boundaries of the above equation are plotted in Figure 2.7 .10. 

The above three functional forms of Y.,(s) are plotted in Figure 2.7.11 along 

with the classical constant form. The first linear relationship is very useful because 

other expressions of Y., ( s) all reduce to this linear form when they ~re linearized 

around the steady-state in a localized stability analysis. 

The second form of yield coefficient Y.,(s) = A - ~, is encountered when there 

is a maintenance term in the biomass dynamic equation. The inclusion of this 

maintenance term changes the apparent yield coefficient. The modified dynamic 

equations are: 
dx(t) dJ = [-1 + µ(s)] x(t) - mx(t) 

ds(t) 1 
~ = 1- s(t) - Y.,(s)µ(s)x(t), 

(2.7.38a) 

(2.7.38b) 
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I 

where m = ~ is the non-dimensionalized maintenance coefficient. The observed 

apparent yield coefficient is a function of the specific growth rate, which is a function 

of the substrate concentration. 
A B ,---._ 

yapp(s) = ytrue (l - ~) Mon;~dytrue (l - m) _ ylltruem/3 ,!_ 
Jl ., µ( s) ., 0: 0: s 

B 
=A-

s 

The condition for damped oscillations is: 

(o:-1-m)2 (o:-1-m)2 

( 1 + m) [ o:D + + ( o: - 1 - m)] < /3 < ( 1 + m) [ o:D - - ( o: - 1 - m) ]' 

where 

D± = (1 + 2m) ± 2✓m(l + m). 

(2.7.39) 

(2.7.40) 

(2.7.41) 

These boundaries are plotted in Figure 2.7.12. The condition for limit cycles is: 

(o: - 1- m)(o: -1- m - /3- f3m) 
f = 1 + R( ) < 0, 

O:JJ 1 + m 
(2.7.42) 

which is never true; therefore, limit cycle behaviors cannot be predicted by the 

addition of a maintenance term in the biomass dynamic equation. 

The third form of yield coefficient Y.,(s) = Bf+., arises when a maintenance 

term is added to the substrate dynamic equation. 

dx(t) dt = [-1 + µ(s)] x(t) 

ds(t) 1 - = 1 - s(t) - --µ(s)x(t) - mx(t) 
dt Y.,(s) ' 

I 

(2.7.43a) 

(2.7.43b) 

where m = ~ is the non-dimensionalized maintenance coefficient. The presence of 

this term changes the apparent yield coefficient. 
A 

~ 
a S 

Yapp( ) = 1 Monod Y.true + m ., s 1 ,n => ______ a __ _ 
yJrue + µ(.,) a m/J +s 

ytrue + m 
• 

(2.7.44) 
....___., 

B 

As 
=--

B+s 
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Thus, the apparent Y.., always has the same form as µ( s). The condition for damped 

oscillations is: 

Y.''"'m < 2 . a/3 - 1 (a -1) 2 + 13· 
1 [ J< a - 1 )( a - 1 - /3) l a/3 (2.7.45) 

The parameter ytr~e is basically the ratio of the amount of substrate utilized for 
B ,n 

growth to the amount of substrate used for maintenance. The oscillation boundaries 

are shown in Figure 2. 7 .12. Similarly, the condition for limit cycles is: 

1 a/3 --- < ------ < 0 y
11
truem (a -1)2 + /3 ' (2.7.46) 

which again is never true. Typical responses of this system after a shift-up in the 

dilution rate from 0.05 hr- 1 to 0.1 hr- 1 is shown in figure 2.7.14. 

A Literature Example 

Finally, the dynamic response of a time-lag model with a mixed first-order 
I, 

kernel k(t) = 0.2k0 (t) + 0.8k1 (t) is simulated in Figure 2.7.15. In these dynamic 

simulations, the parameter values of are chosen to be close to those observed by 

Lee, Tribe, and Rogers (1979), one of which is presented in Figure 2.1.8. (Rounded 

numbers are chosen for the parameters.) Rigorous data fitting was not attempted, 

because the objective here is to compare the main features of their experimental 

data and the predictions from various models. A range of models were simulated 

to see which ones could display the type of oscillations that are in agreement with 

the literature data. 

Note that the various modifications of the yield coefficient to the basic model 

presented here are all capable of yielding approximately the correct magnitudes 

for both the biomass and substrate concentrations. In addition, all these models 

correctly predict a higher tendency for the system to become unstable when the 

substrate concentration in the feed stream is increased. However, neither of the 
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maintenance models can exhibit the sustained oscillations that are reported by Lee 

et al.; thus, they are ruled out at this stage. Figure 2. 7.8, simulating a linear yield 

coefficient, and Figure 2.7.15, simulating the inclusion of a time-lag kernel, appear 

to be very similar at first glance. Both predict approximately the correct period 

of about 40 hours, in addition to the amplitudes of oscillations for the biomass 

concentration ( e.g., 1~5 g/1 at s1=200g/1) and the substrate concentration ( e.g., 

10~50g/l at s i=200g/I). Actually, the linear yield coefficient model in the figure 

predicts a variation of the biomass concentration between approximately 3~4 g/1; 

whereas, the time-lag model simulation shows a variation of approximately 3~6 g/1. 

Nevertheless, these discrepancies can be largely eliminated by carefully choosing a 

better-fitting yield coefficient. However, at closer inspection, the phase difference 

between the oscillations in the biomass concentration and the substrate concentra

tion for the linear yield coefficient is approximately 90 degrees, with the biomass 

concentration behind the substrate conc~tration; whereas, that for the time-lag 

kernel is approximately 180 degrees. Since the data from Lee et al. shows a phase 

difference of 180 degrees, one can conclude that the time-lag model is the superior 

one. 

The significance of the illustration presented here is the demonstration that a 

time-lag model can withstand the more-critical test of oscillations where others have 

failed. If desired, the parameters can be refined to achieve a better fit. Furthermore, 

the product concentration is not considered because product formation can be de

scribed as a linear combination of a growth-related term and a nongrowth-related 

term. Superior fit of this third variable, including phase shift and amplitude, can be 

expected by appropriately assigning different weights to these two separate terms. 
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Figure 2. 7 .15. Simulated dynamic response of a time-lag model with a mixed first-order 

kernel k(t) = 0.2k0 (t) + 0.8k1 (t}. 
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2.8 FREQUENCY RESPONSE 

One of the powerful tools of modern systems analysis is based on the frequency 

response from a forced sinusoidal perturbation. This is especially true for a dynamic 

system with time-lags. 

Time-Lag Kernel Transfer Function 

The characteristic equation of a time-lag system is discussed previously in the 

derivation of the kernel function in the section "Solutions to General Time-Lag 

Equations." The choice of the expression for the kernel base function is based on 

the desire that it should satisfy the following differential equation. 

(2.8.1) 

The elegance of this expression can be much appreciated in formulating the transfer 

function of the time-lag kernel. This can be easily accomplished by tracing backward 
I, 

the steps that have been taken to obtain the expression for the kernel. Basically, 

the reciprocal of the kernel's characteristic equation is equivalent to its transfer 

function. For the above nth-order kernel function, the Laplace transform is simply: 

(2.8.2) 

where s is, unfortunately, the Laplace variable, not the substrate concentration. 

The use of s as the Laplace variable is well established, and this commonly ac

cepted convention is followed in this section. Little confusion should arise since the 

distinction of these two terms can be quite clearly inferred from the usage. Follow

ing this notation, K(s) and D(s) in the above equation are the Laplace transform 

of k(t) and 6(t) (Dirac delta function), respectively. 

1CX) 1 
K(s) = .C {k(t)} = e-atk(t)dt = 

o (1 + Ts)n+l 
(2.8.3a) 
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1 (2.8.3b) 

Thus, the transfer function of the kernel is simply: 

D(s) I I K(s) Impulse ~ Gk ( s) ----+ Kernel 

(2.8.4) 

which is, of course, the same as that for a system of n + I first-order dynamic blocks 

in series. 

(2.8.5) 

where Ko = (H:Ts) is the transfer function for one single decoupled first-order 

system. From the above equation, it is clear that the kernel function is implicitly 

the response of the system to an impulse input. The claim that k(t) is the impulse 

response function of the system is thus proved. 

Because k( t) is chosen to satisfy Equaifon (2.8.1), this in turn forces the variable 

that directly contains the time-lag, e.g., Yn(t) = J~(X) µ(h)kn(t - h)dh, to conform 

ideally to the following equation. 

(2.8.6) 

Applying the Laplace transform operator to both sides of the equation, one obtains: 

(2.8.7) 

where Y(s) and M(s) are the Laplace transforms of the functions y(t) and µ(t), 

respectively. 

Y(s) = f, {y(t)} = 1(X) e-"ty(t)dt 

M(s) = f, {µ(t)} = 1(X) e-stµ(t)dt 

(2.8.8a) 

(2.8.8b) 
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As before, the transfer function for an arbitrary input is 

M(s) 
1 1 

Y(s) 
System Input --+Gy(s) ~ System Output 

1 
(2.8.9) 

which is identical to the Gk(t) just derived, as it should be, because the homogeneous 

part of the time-lag differential equations satisfied by k(t) and y(t) are the same. 

The meaning of the kernel is now ever clearer. The kernel describes how the system 

( e.g., the observed specific growth rate) responds to a disturbance in the input 

( e.g., the intrinsic growth rate that is directly related to the limiting substrate 

concentration.) Since the theories of frequency response and stability analysis are 

quite well developed for such a fundamental system, no further detailed discussion 

is warranted here. 

A similar approach can be taken to obtain the transfer function for a generalized 

nth-order kernel that is a linear combinat1'on of the n + 1 base functions. 

(2.8.10) 

It has been proved that the complementary equation that must be satisfied by the 

time-lag variable y(t) is: 

(2.8.11) 

The transfer function for this generalized system is: 

Intrinsic Sp. Growth Rate~ IG11 (s) I Y(s~ Observed Sp. Growth Rate 

G (s) - Y(s) - E7-o ~rs• - E7-o a.rs• 
11 - M(s) - E7:01 (nil)Tisi - (1 + Ts)n+l, 

(2.8.12) 
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which can be further decomposed by a partial fraction expansion: 

~ ~-1 a1 ~ 
Gy(s) = --- + ( ) + ... + ( ) + ( ) ( 1 + Ts) n+ 1 1 + Ts n 1 + Ts 2 1 + Ts 

n 
~ ai 

- !- (1 + Ts)i+l. 
i=O 

(2.8.13) 

Such a system is equivalent to dividing the overall system disturbance M(s) into 

smaller fractions and introducing each fraction at different points along the n + 1 

first-order system dynamic blocks shown in Figure 2.8.1. Note that the ao com

ponent passes through only one block; whereas, the an component passes through 

n + 1 blocks in series. 

Time-Lag System Transfer Functions 

Our problem is more interesting. Note that the above transfer functions are 

formulated with the intrinsic specific growth rate µ(t) as the forcing input and the 

observed specific growth rate y(t) as the output. Since a set of nonlinear state 
\, 

equations are under consideration, the various transfer functions for such a system 

cannot be easily obtained without first linearizing the state equations around the 

point of interest that is usually composed of the steady-state values. 

In general, a system of differential equations containing a set of time-lag vari

ables can be written as: 

dxi(t) 
dt = fi(x1,x2, u, t) (2.8.14a) 

dx2(t) 
dt =f2(x1,x2,u,t), (2.8.14b) 

where x 1 (t) is the n 1 x 1 vector of the original state variables, x 2 (t) is the n2 x 1 

vector of time-lag variables, and u(t) is the m x 1 vector of control variables. The 

dynamics of the state and time-lag variables are described by the n 1 x 1 and n2 x 1 

vector functions f1 and f2 , respectively. In our chemostat example, x 1 (t) consists 

of the cell-biomass concentration x(t) and the limiting substrate concentration s(t). 

x 2 (t) is the observed specific growth rate y(t), the higher time derivatives of the 
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observed specific growth rate z(t) = d:ftt), and possibly the substrate to cell yield 

coefficient Ys (t), whose dependence on other state variables and time-lag though will 

not be extensively considered here. u(t) consists of the dilution rate D(t) and/or 

the feed substrate concentration s1(t) in our chemostat example. 

There are two related but distinct ways to obtain the transfer function for such 

a generalized system of dynamic equations. In the first method, the entire combined 

equation of dimension nt X 1, where nt = n1 + n2, 

(2.8.14c) 

dx(t) 
~ = f (x, u, t) (2.8.14d) 

may be linearized to yield: 

~(t) = AX(t) + BU(t). 
t \, 

(2.8.15) 

Linear transformation has been performed by shifting the axes to coincide with the 

steady-state values: [xi(t) - Xio] => X(t). In the above equation, A = fx is the 

nt x nt square Jacobian matrix of the combined function f. Similarly, B = fu is 

the nt x m control matrix. The following respective standard definitions are used 

consistently for the differentiation of a scalar L with respect to an m-dimensional 

column vector v and the differentiation of an n-dimensional column vector g with 

respect to another m-dimensional vector v. 

Lv(v) = dL(v) 
dv 

dg(v) 
gv = 

dv 

[
BL BL BL ] 
Bv1 Bv2 . . . Bvm. ... Row Gradient Vector (2.8.16a) 

2.Jl.J.. 2.Jl.J.. !!.Jn.. 
8t11 8t12 8t1m 

!!Jl.!. !!Jl.!. !!.Jn.. 
8t11 8t12 8t1m ... Jacobian Matrix (2.8.16b) 

2.Jl.J.. 2.Jl.J.. .!!Jzi.. 
8t11 8t12 8t1m 
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The fundamental matrix A in the above equation can be further diagonal

ized, or at least converted into a Jordan normal form, via the classical method of 

eigenvalue and eigenvector decomposition. This transformation yields: 

(2.8.17) 

where the tilde sign above each variable signifies that the quantities have been 

transformed by a nonsingular nt x nt similarity transformation matrix T composed 

of eigenvectors, or generalized eigenvectors in the case where only Jordan normal 

form can be achieved. 

(2.8.18a) 

(2.8.18b) 

(2.8.18c) 

This diagonalized equation can be manipvlated via Laplace transform to give: .. 
(sl - A)X(s) = BU(s). (2.8.19) 

Or, equivalently, the effect of the system input U(s) on the transformed system 

output X(s) can be expressed compactly in an nt x m transfer function matrix as: 

(2.8.20) 

Tranafer Function 

For a diagonalized matrix A, the quantities to be inverted in the above equation 

are scalars rather than a full matrix. The separation of the original set of state 

variables into an equivalent set of modes makes the mathematical operation simple 

and elegant, because they are dynamically independent of each other. Standard 

methods of modal analysis can be applied to the modal dynamic equation of (2.8.17) 

to identify the dominant time constants or to predict the system stability. Although 

the decoupling afforded by the T-transformed quantities is convenient to work with 
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mathematically, is is sometimes too abstract for the average person. Thus, the 

transformed equations are commonly inverse transformed by pre-multiplying with 

T and post-multiplying with T- 1 once more to regain the original set of variables. 

In the original non-transformed notation, the above nt x m transfer function matrix 

is equivalent to: 

Transfer Function (2.8.21) 

Transfer Function 

In the second method, the transfer function is first formulated for the intrinsic 

case of no time-lags by considering the dynamics involving only the state variables. 

To this transfer function is then multiplied the kernel transfer function to obtain 

the overall system response to variations in the control variables. This decoupling 

approach is illustrated in Figure 2.8.2. 
I, 

The linearized dynamic equation for the state variable is obtained from Equa

tion (2.8.14a): 

(2.8.22) 

where Au = f1x 1 (an n1 x n1 matrix), A12 = f1x2 (an n1 x n2 matrix), and 

B1 = f1u (an n1 X m matrix). 

The kernel transfer function for the time-lag variables x 2 can be directly ex

tracted from our earlier discussion in this section. For the jth element of the x 2 

vector, the following time-lag differential equation: 

(2.8.23) 

is translated to the Laplace domain as: 

(2.8.24) 
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where each kernel transfer function G2; describes the dynamics of the individual 

time-lag variable X 2,-(s) as a response to changes in the corresponding intrinsic 

variable Z,-. 
(2.8.25) 

Thus, the following relation can be written for the entire set of non-interacting 

time-lag variables. 

X21(s) G2i(s) 0 0 Z1(s) 
X22(s) 0 G22(s) 0 Z2(s) 

(2.8.26a) 

X2k(s) 0 0 G2k(s) Zk(s) 
'-._,-' ~ 

X2(s) G2(s) Z(s) 

X2(s) = G2(s)Z(s) = G2(s)Zx1 X1(s) (2.8.26b) 

The last relation in the above equation is obtained by using the chain rule of dif

ferentiation. 

(2.8.27) 

Each row of the linearization matrix Zx11 i.e., essentially a row gradient vector, 

contains only one nonzero element if the intrinsic quantity depends on only one 

state variable. The corresponding row of Zx 1 will contain more than one nonzero 

element if the intrinsic variable depends on more than one state variable. A com

mon example is a specific growth rate expression that contains concentrations of 

multiple limiting substrates, products, and inhibitors. Furthermore, for an inter

acting time-lag system, the kernel transfer matrix G 2 (.s) will not be purely diagonal 

as above. The interaction will be manifested in some nonzero off-diagonal terms. 

An interacting system may result if, for example, the observed specific growth rate 

depends not only on the intrinsic specific growth rate µ but also on the intrinsic 

yield coefficient Ya. Although only the simpler examples of non-interacting, single 
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time-lag, single state dependent systems will be considered in this thesis, the for

mulation can be extended to more complicated systems with little or no significant 

modification. 

The final relationship between the state variables X 1 and the control variables 

U in the presence of time-lag effects results from combining Equations (2.8.22) and 

(2.8.26b) together. 

Transfer Function 
(2.8.28) 

The analogous transfer function expression with a diagonal transformation can also 

be derived similarly through eigenvalue and eigenvector analysis. The block diagram 

of this time-lag system is presented in Figure 2.8.3. 

In this second method, one takes the Laplace transforms of Equations (2.8.14a) 
. \, 

and (2.8.14b) separately to derive the respective transfer functions. One of the 

immediate advantages is the ease of manipulation afforded by a smaller system 

dimension. Another advantage is the fact that the analysis of the time-lag system 

is decomposed into two parts so that the individual results from each part can be 

easily derived from the classical systems theories on frequency response. The first 

part expresses the dependence of the system states (system output) on the control 

variables (system input) in the original time-lag free system, and the second part 

represents the additional contribution due to the presence of time-lags. Thus, the 

overall system response can be clearly attributed to these two separate effects. Note 

that the formulation of transfer function considered in this section is quite general 

in the sense that it allows the presence of multiple time-lag variables, each of which 

in turn may depend on multiple state variables. Multivariable extensions of the 

basic time-lag theory are discussed in detail in a later section. 
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Chemostat Example 

For simplicity, possible time-lags in the yield coefficient will not be considered 

here. Likewise, forcing in the substrate feed concentration is not simulated in this 

example. Nonetheless, the effect of all these variables can be studied in exactly the 

same manner. 

First, a simple chemostat system of Equations (2.2.5) and (2.2.6) is used to 

demonstrate the calculation of the transfer function with no time-lag. The starting 

linearized state equations are: 

(2.8.29) 

where the subscript "o" signifies the steady-state values for the corresponding vari

ables. Furthermore, D0 = µ 0 and s J - so = i. xo. From the above equation, the 

transfer functions relating the states X(s) and S(s) to the sinusoidal disturbance 

in the dilution rate D(s) are calculated. 

(2.8.30a) 

G(s) = [~] 
~ 

(2.8.30b) 

where, as before, C = i.xoµ~ = (s1 - so)µ~ is the stability variable. After the 

matrix inversion, the transfer functions in the absence of time-lag are: 

X(s) 1 
G!(s) = D(s) = -xo s + c (2.8.31a) 

S(s) 1 1 
G i ( 8 ) = D ( s) = Y., xo s + c · (2.8.31b) 
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Note that for the system to be locally stable, the denominator of the transfer func

tion, which is equivalent to the characteristic equation of the linearized system, 

must have negative roots. 

=? s = -C (2.8.32) 

Thus, as derived previously, the system is stable only if C is non-negative. 

To demonstrate the first method of calculating the transfer function for a sys

tem with a combined 0th- and 1st-order time-lag kernel, k(t) = aoko(t) + a1k1(t), 

in the specific growth rate, the linearized chemostat state equations with a sinu

soidal forcing in the dilution rate are derived directly from Equations (2.2.10) and 

(2.2.11). The following equations result from incorporating a dilution rate forcing 

in the equations used in the preceeding section on chemostat stability analysis. 

dX(t) 
d = xoY;(t) - xoD(t) 
t " 

dS(t) 1 1 
-d- = -y YoX(t) - Do S(t) - y xoY(t) + (s1 - so) D(t), 

t ., --.,..., ., '--" 
Yo 1 

dY(t) = Z(t) 
dt 

-Xo 
Y., 

dZ(t) 1 1 , 1 , 
-;;;- = -aoT Y., µ0 yoX(t) + T 2 (1 - aoTYo)µ 0 S(t) 

1 2 1 
- T2 (1 + CaoT)Y(t) - TZ(t) + CaoTD(t) 

(2.8.33a) 

(2.8.33b) 

(2.8.33c) 

(2.8.33d) 

The Jacobian matrix A= fx for the above set of system dynamic equations is: 

0 0 Xo 0 
1 -yo 1 0 --yo --xo 

A= Y. Y. 
(2.8.34) 

0 0 0 1 
1 1 t ~(1 - aoTYo)µ~ -i2 (1 + CaoT) 2 -aoT Y.µoYo -T 
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And the corresponding control matrix B = f 0 is: 

B= 

-Xo 
..1....xo 
Ye 

0 

Cao} 

(2.8.35) 

The transfer function for this system of dilution rate forcing is computed by sub

stituting the above matrices A and B directly into Equation (2.8.21) . 

G(s) = (sl -A)- 1B 

s 0 -Xo 0 
-1 

-xo 
....!...yo s+yo 1 0 1 -Xo -xo Y. Y. Y. -

0 0 s -1 0 
1 1 1 -~(1 - aoTYo)µ~ ~(1 + Ca0 T) s + _g_ ao-4,C aoT Y.µoYo T 

(2.8.36) 

The determinant of (sl - A) in the above equation is exactly the same as the 

characteristic equation encountered in local stability analysis. 

detlsI-AI \, 

s O -xo 0 

..1....~ s+~ ..1....~ 0 y., Y. 

0 0 s -l 
1 1 , 1 (1 T ) 1 1 (1 C T) 2 aoTy.µoYo -v - ao Yo µ 0 v + ao s + T 

= ; 2 (s4T2 + s3 (2T + T 2 yo) + s2 (1 + 2Tyo + CaoT) + s(yo + C + CaoTYo) + Cyo] 

= (s ;;o) [s(l + Ts)2 + C(l + a0Ts)] 

The inverse of (sl - A) is: 

(sl-A)-1 = 1 

detisl - AIT2 

where 

qu = (s + Yo)(l + Ts) 2 + C + Ca0 Ts 

(2.8.37) 

(2.8.38) 

(2.8.39a) 

(2.8.39b) 
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q14 = T 2 xo(s + Yo) 

1 2 
q21 = --yo(l + Ts) 

Y., 

q22 = s(l + Ts) 2 + CaoT(s + Yo) 

q24 = -T2 
;., xo(s + yo) 

q31 = -:.,µ~yo(l + aoTs) 

q32 = µ~s(l - aoTYo) 

Finally post multiplying (s1 -A)-1 by B gives: 

GK(s) 
D 

G~(s) 
D 

G.r.(s) ' 
D 

Gz.(s) 
D 

where 

G ( ) X(s) (1 + Ts) 2 

% 8 = D{s) = -xo s(l + Ts) 2 + C(l + a0 Ts) 

G () S(s) 1 (1 +Ts)2 

f; 
8 

= D{s) = Yaxo s(l + Ts)2 + C(l + a0 Ts) 

G.r. 
8 

= Y(s) = C(l + a0 Ts) 
D ( ) D(s) s(l + Ts) 2 + C(l + a0 Ts) 

Note that X(s) and S(s) are closely related by: 

In addition, ~f :J can be expressed as the following products: 

(2.8.39c) 

(2.8.39d) 

(2.8.39e) 

(2.8.39/) 

(2.8.39g) 

(2.8.39h) 

(2.8.39i) 

(2.8.40) 

(2.8.41a) 

(2.8.41b) 

(2.8.41c) 

(2.8.42) 

C ,.--_ 
Y(s) (1 + aoTs) 1 1 (1 + Ts) 2 Y(s) M(s) S(s) 
D(s) - (1 + Ts) 2 ~ Yaxo s(t + Ts) 2 + C(l + a0 Ts) = M(s) · S(s) · D(s) 

~M(s) 
Y(s) S(s) S(s) 
.M(s) D(s) 

(2.8.43) 
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Because of the dimension of the system, the analytical solution of (s1 - A)- 1 

is rather involved. For this four-dimensional system, an analytical solution can 

try one's patience. For a slightly higher-dimensional system, an analytical solution 

may be beyond an average person's level of perseverance, and a reduction in the 

dimension afforded by the following second method can be well appreciated because 

it greatly simplifies the algebra. 

Based on the same set of chemostat state equations subject to a combined 

0th- and 1st-order time-lag in the specific growth rate, the derivation of the trans

fer function is now demonstrated by using the second approach. The linearized 

state equations (2.8.33a) and (2.8.33b) used in the first method are expressed in an 

appropriate matrix form as: 

[
~] [ 0 
d~~t) = -#;Yo 

..._,__, 
~~(t) 

Au 

The transfer function for a combined 0th- and 1st-order time-lag kernel, k(t) = 

aoko(t) + a1k1 (t), is decoupled from the rest of the state equations and is derived 

separately. 

T 2d2Y(t) TdY(t) Y() = M() TdM(t) 
dt2 + 2 dt + t t + ao dt 

==> T 2s2Y(s) + 2TsY(s) + Y(s) = M(s) + a0 TsM(s) 

==> G ( 
8

) = Y ( s) = 1 + aoT s 
11 M(s) (1 + Ts) 2 

(2.8.45a) 

(2.8.45b) 

(2.8.45c) 

The constitutive relationship of µ( s) can be similarly linearized around the steady

state value s0 to yield: 

M(s) = µ~S(s) (2.8.46) 
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Substituting the above relationship into the kernel transfer function, one obtains: 

(2.8.47) 

Finally, the overall transfer function 1s obtained by combining Equations 

(2.8.44) and (2.8.47) together. 

G1(s) = (sl- (Au+ A12G2(s)Zx1 )]-

1
B1 

sl Au A12 G2(s) z 

l~A ~J-[-J.Yo -~.]-[-~~xo] [ti:~~~]~ 
-1 

(2.8.48a) 

(2.8.48b) 

After expansion, the first element of the 1~bove vector equation gives the effect of 

variations in the dilution rate on the biomass concentration. 

Gx s = X(s) = -xo (1 + Ts)2 
o ( ) D(s) s(l + Ts) 2 + C(l + aoTs) 

(2.8.49a) 

Similar transfer function is also obtained to relate the substrate concentration to 

the dilution rate. 

G~(s) = S(s) = ..!__xo (1 + Ts)2 
o D(s) Y., s(l + Ts) 2 + C(l + a0 Ts) 

(2.8.49b) 

Furthermore, the dependence of the observed specific growth rate on the dilution 

rate can be obtained by multiplying all the expressions together. 

Y(s) Y(s) M(s) S(s) 
D(s) = M(s) · S(s) · D(s) 

[
(1 + a0Ts)] , [ 1 (1 + Ts) 2 

] 

= (1 + Ts) 2 (µo] Y., xo s(l + Ts) 2 + C(l + a0 Ts) 

Y(s) 
D(s) 

C(l + a0Ts) 
s(l + Ts) 2 + C(l + a0 Ts) 

(2.8.49c) 

(2.8.49d) 
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Of course, the results of the second method are exactly the same as those derived 

through the first method. 

As a special case, the transfer functions in the absence of time-lag effect are 

calculated by setting T = 0 in the above equations. 

lim Gx(s) = -xo-
1

-
T-..o D S + C 

lim G~(s) = .!._xo-
1

-
T-+O D Y. 8 + C 

(2.8.50a) 

(2.8.50b) 

Although it has been pointed out that GK ( s) and G Ji.. ( s) are related by a constant 
D D 

ratio, it is interesting to note that this conclusion is true whether or not there is 

time-lag: 

(2.8.51) 

Note that G.x.(s), G~(s), and Gy(s) all have a common denominator s(l + 
D D D 

Ts) 2 +C(l-t-a0 Ts), which, when set too/is the same as the characteristic equation 

of (2.7.21). 

s(l + Ts) 2 + C(l + a0 Ts) = 0 (2.8.52) 

As before, the local stability of this time-lag system can also be analyzed with 

the above equation. The roots to the above equation are negative and, thus, the 

chemostat system is stable provided that the following condition is satisfied: 

2 
CT<---, 

1-2ao 
(2.8.53) 

which is again the same as that derived previously. The above point corresponds 

to where the two complex roots cross the imaginary axis. A similar analysis is 

carried out for the fork point where two real roots become equal and branch into 

the complex plane. This is the boundary for damped oscillation. For a chemostat 
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with a 0th-order time-lag, an exponential approach to the nontrivial steady-state is 

possible if 
1 

CT<-. 
4 

(2.8.54) 

If the chemostat has a purely 1st-order time-lag, the corresponding condition is: 

4 
CT<-. 

27 
(2.8.55) 

For a general combined 0th and 1st-order time-lag kernel, the condition for an 

exponential approach to the steady-state is: 

-(27 - 36a0 +Ba~)+ J(27 - 36ao + 8a5) 2 - 64a~(ao - 1) 
CT< 

8 
3 • 

ao 
(2.8.56) 

How the linearized variables depend on each other is shown in Figure 2.8.4. Be

cause both Gx.(s) and G~(s) in Equations (2.8.49a) and (2.8.49b) have a quadratic 
D D 

polynomial of s in the numerator and a cubic polynomial of s in the denominator, 
\, 

the functions approach ¼ for large values of s. Hence there is a first-order time-lag 

between the dilution rate input and the biomass/substrate concentration output. 

Because the intrinsic specific growth rate is assumed to be a direct function of the 

substrate concentration, it is in perfect synchronization with the substrate concen

tration. The time-lag between the intrinsic specific growth rate and the observed 

specific growth rate depends on the relative weight given to the order of the kernel 

as a0 • From the kernel transfer function of Equation (2.8.45c), it is clear that the 

order of lag with respect to the intrinsic specific growth rate or the substrate con

centration is one for ao = 1 but increases to two for ao = 0. Thus, the order of lag 

in the observed specific growth rate with respect to the dilution rate forcing is two 

for ao = 1 and increases to three for ao = 0. 

From these transfer functions, it is a simple matter to calculate the theoretical 

amplitude ratio (AR) and the phase angle</> by substituting the Laplace variables 
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with iw. 

(2.8.57) 

(2.8.58) 

Sinusoidal Dilution Rate Forcing for the Linearized Chemostat Example 

Before proceeding with the discussion on the dependence of the system response 

as a function of the time-lag kernel, a brief comment is warranted here on the 

unfortunate use of "order" in two different contexts in this section. This thesis has 

consistently used a mathematical time-lag kernel order counter that starts from O; 

however, a dynamic system order counter starts from 1, in accordance with the 

established usage. This is analogous to bit counting in computer science following 

either the bit order convention or the bit number convention, where the first bit 

(bit order) is referred to as the 0th bit (bit number). Although there should be 

little confusion from the context, ordinal :rru.mbers will be spelled out (first, second, 

etc.) when the order of a dynamic system is being referenced; they will remain 

numeral (1st, 2nd, etc.) when the order of the kernel function is the subject. Thus, 

a 0th-order kernel function gives rise to a first-order system lag, and a purely 1st

order kernel function gives rise to two first-order system lags in series, which is also 

commonly referred to as a second-order system. 

Following the previous chemostat example, the effect of changes in the time-lag 

parameters on the theoretical frequency response of the linearized chemostat system 

is studied with a generalized 1st-order kernel function: k(t) = aoko(t) + a1ki(t). 

The stability variable used in this simulation is 0.5 hr- 1 , and all the parameters and 

the combinations thereof are well within the stability limit of CT < 0 _5 :ao. Thus, 

one is assured that the transfer functions are not stretched beyond the valid regime 

in obtaining the Bode diagrams. The parameters whose effects are to be studied 



- 310-

are th.e lag time constant, T, the relative weight of the kernel between the 0th

order base function and the 1st-order base function, a0 , and the stability variable 

C. Representative points chosen from the kernel parameter space are indicated in 

Figure 2.8.5. 

Three separate Bode plots are presented in each of the following amplitude ratio 

figures and phase angle figures as functions of the forcing frequency. These plots are 

derived from the respective transfer functions described by Equation (2.8.49a) for 

the biomass concentration with respect to oscillations in the dilution rate, Equation 

(2.8.45c) for the observed specific growth rate with respect to oscillations in the in

trinsic specific growth rate, and Equation (2.8.49d) for the observed specific growth 

rate with respect to oscillations in the dilution rate. The substrate concentration is 

not plotted because its oscillation is always in the opposite direction of the biomass 

concentration. Furthermore, the last plot of the observed specific growth rate with 

respect to the dilution rate is redundant, Hecause it can be calculated from the first 

two. Namely, for a linearized system, the amplitude ratio of the last plot is the 

product of the amplitude ratios of the first two plots, and the phase angle of the 

last plot is the sum of the phase angles of the first two plots. 

For the amplitude ratio plots, the magnitudes have been normalized with re

spect to the steady-state values, i.e., A.R.o = limw-+O A.R.(w), which are the same 

as those obtained by directly settings-+ 0 in the respective transfer functions. For 

example, the biomass/D A.R. plot is normalized with -x0 ~. 

1. G ( ) 1. ( 1 + Ts) 
2 

1 Im X S = lm -Xo----------- = -xo-
a-+0 D a-+O s(l + Ts) 2 + C(l + aoTs) C 

(2.8.59) 

Similarly, the phase angles have also been referenced to the steady-state values, e.g., 

180° has been added to the actual phase angle for the biomass/ D and Y / D plots. 

Effect of Lag Time Constant with a0 =0: Figures 2.8.6 and 2.8. 7 are used to 

compare the effect of time-lag constant for a purely 1st-order time-lag kernel, i.e., 
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ao = 0. Except for the case of T = 0, i.e., no time-lag at all, all the high frequency 

asymptotes in the A.R. plot of Y / M have slopes of -2, and the corner frequencies are 

We = J:,. This is to be expected from a system with two equivalent first-order lags in 

series, where each lag contributes -1 to the high frequency asymptotic slope. With 

each lag contributing -90° to the high frequency phase angle, the same conclusion 

that a purely 1st-order time-lag kernel is equivalent to two first-order CSTRs in 

series is also confirmed in the corresponding phase angle plot of Y / M, where the 

phase angle decreases from 0° to -180°. 

The A.R. and phase angle plots for biomass/ D, however, are considerably more 

complicated. Because Equation (2.8.49a) is not a simple first-order system with the 

general form of 1+
1
T ~, it does not yield asymptotes with readily identifiable corner 

frequencies. This can be demonstrated by decomposing the normalized Equation 

(2.8.49a) into either five first-order dynamic blocks for 

for ao i=- 0 

for ao = 0 

or four first-order and one second-order dynamic blocks otherwise. 

G (s) . - (I+ Ts)2 
'% normalu:.ed - z,s(l + Ts)2 + (1 + aoTs) 

GK ( S) no~malired = 
D 

(1 + Ts) 2 

(1 + T1s)(l + T2s){l + T3s) 

(1 + Ts) 2 

(2.8.60) 

(2.8.61a) 

(2.8.61b) 

In general, an nth-order polynomial can be decomposed into n first-order factors, 

one for each real root of the equation. If two roots occur as complex conjugate 

pairs, then these two factors can be combined to yield an equivalent real second

order factor. 

Note that when e < 0.707 in the above equation, there exists a maximum in 

the decomposed amplitude ratio that corresponds to the factor (1 + 2€T2 s + Tf s2 ) 
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in the denominator of G x ( s). The amplitude ratio of this component can rise above 
D 

unity only when there is a maximum. This maximum is attained at Wmax described 

. by the following equation: 

(2.8.62) 

As a rule of thumb, the maximum occurs in the vicinity of Wmax = ,A because the 

factor .J1 - 2E2 is usually close to unity. The corresponding maximum amplitude 

is described by: 
1 

A.R.max = 2e.J1 - 2e2 (2.8.63) 

Otherwise, A.R. decreases monotonically as w is increased. As the damping coeffi-

cient € __. O, A.R.max __. oo. The normalized transfer function at this point of zero 

damping can be obtained by substituting (CT)crit = 0 _5 :_ao into Equation (2.8.61). 

G (s) . . _ (1 + TcritS)
2 

'% normalu.ed,cnt - (l T.t.ill. ) [l (l _ 2 )T2 2 ] · + 2 S + ao crit 8 
(2.8.64) 

\, 

This is the point where the two complex roots of the characteristic equation cross 

h · · · t±· 1 ±·Ji3a:;c t e 1mag1nary axis a I ✓l-2aoTcrlt = I 2 crit• 

As an example, for a0 = 0, T=2.0 hr, and C=0.5 hr- 1
, which is the same as 

the value used to generate the Bode diagram, one gets CT = 1 > 2~; thus, the 

normalized transfer function is decomposed into four first-order and one second

order dynamic blocks: 

(1 + 2s)2 

G '% ( s) normalized = 8s3 + 8s2 + 2s + 1 
(1 + 2s) 2 

(1 + 1.14s) (1 + 2 · 0.162 • 2.65 s + 2.65 s2 ) 
'-v-' '-v-' '-v-' 

e T2 Tf 

(2.8.65) 

The decomposed Bode diagrams are shown in Figures 2.8.8 and 2.8.9. 

Note that the factors in the numerator of G x ( s) tend to pull the overall A.R. 
D 

curve up; whereas, the factors in the denominator produce the opposite effect. As 

T is decreased, the corner frequency for the factor (1 + Ts) 2 shifts toward the 
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right. Concurrently, T2 in the factor ( 1 + 2ET2s + TJ s2) in the denominator is also 

decreased, which forces the resonant frequency Wmax toward the right. In addition, 

E becomes larger and depresses A.R.max• Eventually a point is reached where all 

the factors work in concert to dissipate completely the maximum in the amplitude 

ratio. The biomass/ D plot in Figure 2.8.6 shows that in the absence of time-lag 

effects, i.e., when T = 0, the response becomes purely first-order with the We= C. 

On the other hand, as T approaches the stability limit values of Tcrit 

c(o.i-ao) with ao = 0, the normalized transfer function Gi(s) becomes: 

(2.8.66) 

Thus, for a0 = 0, the roots of the characteristic equation cross the imaginary axis 

at -T 1 = 0
2

• On the Bode diagram, the appearance of this unstable steady-state is 
crlt 

manifested in A.R.max -+ oo as w -+ Wcrit = -T
1 for Tcrit = 0

2
• The biomass/ D plot 

crlt 

in Figure 2.8.6 has Wcrit=0.25 hr- 1 , because the value of C used in this simulation 

is 0.5 hr- 1 • Although the overall order of the system of biomass/ D is one, as 

shown by the asymptotic slope of -1, a maximum in the A.R. can be induced with a 

nonzero T. The maximum amplitude ratios of biomass/ D curves in Figure 2.8.6 are 

plotted in Figure 2.8.10 as a function of T for a0 = 0. The corresponding maximum 

frequencies as a function of Tare plotted in Figure 2.8.11, and changes in the values 

of T2 and e as T is increased are demonstrated in Figure 2.8.12. It is apparent that 

it is most strongly influenced by the second-order factor of (1 + 2eT2 s + TJs2 ) in 

the denominator of the transfer function. 

Similar interesting behavior for nonzero T can also be observed in the phase 

angle diagram. There is a very sudden drop in the phase angle near Wmax• Note 

that at first glance, phase angle for biomass/ D appears to become positive for large 

values of T. Since a positive phase angle means that disturbances are observed be

fore the perturbation is imposed, such anticipatory behavior is obviously physically 
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impossible. One should be reminded that the phase angle curve for biomass/ D has 

been shifted up by 180° so that all angles are referenced to 0°as w --+ 0. Finally, 

the phase angle for biomass/ D decreases from 0° to -90°, which is consistent with 

the asymptotic slope of -1 in the corresponding A.R. plot. 

Effect of Lag Time Constant with a0 =0.4: The effects of the time-lag constant 

in a combined 0th and 1st-order kernel are studied with an example of ao = 0.4. 

The Bode diagrams for this case are displayed in Figures 2.8.13 and 2.8.14. 

The asymptotic slopes for the biomass/ D plots are -1. Aside from the generally 

slightly lower A.R.max, there is basically not much difference in the biomass/ D plots 

between these figures and the previous ones with ao=O. 

The asymptotic slopes of the Y / M plots are theoretically -1, but they are dif

ficult to measure accurately unless w is very large. The decomposed Bode diagrams 

for a0 =0.4 and T=l.0 hr are shown in Figures 2.8.15 and 2.8.16. As the frequency 
\, 

is increased, the A.R. curve initially bends down toward an asymptote with a slope 

of -2 corresponding to the factor of {I+~..,p- The effect of (1 + a0 Ts) then be

comes more pronounced, and the A.R. curve is pulled up toward the high frequency 

asymptote with an overall slope of -1. In an attempt to gain more information from 

the Bode diagrams, the theoretical A.R. plot for Y / M is derived from the transfer 

function G 11 = ~~:\. 

Slope of the Bode diagram is: 

1 
_ d log A.R. d log A.R. 

S ope - d log w = w dw -
( a~T2w2 + 2 - ai)T2w2 

(1 + a~T2w2 ) (1 + T 2w 2 ) 

The slope of the curve is -1 at: 

1 
Wt = --;:::===r 

TJ1-2ai 

1 
for ao < "V2 = 0.707. 

(2.8.67) 

(2.8.68) 

(2.8.69) 
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Figure 2.8.14. Effect of the lag time constant, T, on the phase angles for linearized 

chemostat state equations subject to a sinusoidal dilution rate forc

ing and a combined 0th-order and 1st-order time-lag kernel. (ao=0.4, 

C=0.5 hr- 1 .) 
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A slope of -1 does not exist for a0 > 0.707. The tangent line passing through this 

point intersects A.R. = 1 at the comer frequency of:·· 

for ao <= 0.707. (2.8.70) 

For a0 0.4, these comer frequencies are 1.s!3T, e.g., W-1=1.091, 0.546, 0.364, and· 

0.273 hr- 1 for T=0.5, 1.0, 1.5, and 2.0 hr, respectively. Furthermore, the high 

frequency asymptote is described by: 

{ 
log ?ft- - logw 

logA.R.oo = 
log ifT - 2 log w 

for ao # 0 

for ao = 0. 
(2.8.71) 

The intercept of the high frequency asymptote with A.R. = 1, thus, occurs at: 

{ 
¥" for ao # 0 

We= l 
. T .. for ao = 0 . 

(2.8.72) 

Because of the same interactions between the divided components, the phase 

angle curve initially sets out toward -180° but is eventually pulled back to -90°. 

Based on the denominator of the transfer function, the system order of biomass/ D is .· 

technically 2, but the system order based on the high frequency asymptote behaviors 

of A.R. and phase angle is 1. Because of this complication, the asymptotic A.R. 

slope is difficult to obtain accurately from the Y / D plot. 

Effect of a0 with T=l.0 hr: The effects of the weight distribution between the . 

0th and 1st-order kernel base functions are studied in Figures 2.8.17 and 2.8.18. This 

example assumes T=l.0 hr. One of the significant features of these figures is that the 

asymptotic slopes for the Y / M plot are one for ao > 0 but shifts to two for a0 = 0. 

As indicated by Equation (2.8.72), for T=l hr, the asymptotes cross A.R. = 1 at 

a0 for ao # 0 and at 1 for a0 = 0. The A.R. curves fan out as w is increased. At a 

d d • ht f 1 • lO ht • A R Jl+lOOao O 1 eca e rig o T' i.e., w = T' one o ams . . = 101 ~ • a.o. 

Similarly, the asymptotic phase angles for the Y / M plot are -90° for a0 > 0 

but drops to -180° for a0 = 0. Thus, it can be used to determine the presence of the 
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EFFECT OF WEIGHT DISTRIBUTION AMONG 0TH AND 1ST ORDER 

2 
s 
0 

~ 
a: 
w 
0 
:::> 

Q 

I- -:::::i 0 
Q. 
~ 
<l: 

0 

BIOMASS 

o._____.__~'---l---'--_.___,_...._. ___ __._ _ __.___.__,_=--
0.01 0.05 0.1 0.5 5 IO 

2 
s 
0 

~ 
a: 
w 
0 
:::> 

Q 

I- -:::::i 0 
Q. 
2 
<l: 

0 

(OBSERVED SPECIFIC GROWTH RATE}//L 

C), .___..___._-___ _._ _ __.___._......,..-=---__._ _ __.____.___.__---=-
0.01 0.05 0.1 

2 
~ 
0 

~ 
a: 
w 
0 
:::> 

Q 

!::: -: 
_J 0 
a.. 
2 
<l: 

0 

(OBSERVED SPECIFIC GROWTH RATE}/0 

T = LO hr 
D = 0.25 t 0.1 hr-I 

0-0o = 0.0 
b._00 = 0.2 
C-Oo = 0.4 
d-Oo = 0.6 
e._00 = 0.8 
f _ 0 0 = I.O 

0 .____.._..__._,_ ___ _,_,_ _ _.___._ ........... ,,,.-__._ _ __._~........,~--:-::! 
0.01 0.05 0.1 0.5 I IO 

FREQUENCY (hr-1) 
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EFFECT OF WEIGHT DISTRIBUTION AMONG 0TH AND 1ST ORDER 
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1st-order kernel component. Note that there exist minima in the phase angle curves 

for O < ao < 0.5. The frequency at which the minimum occurs can be calculated 

explicitly. 

1 
=?-Wmin=T 

2-ao 

ao(l - 2ao) 
for O < ao < 0.5 

(2.8.73) 

(2.8.74) 

Thus, for ao=0.2 and 0.4, the above equation gives Wmin = J:.3.873 and J:.4.472, 

respectively. 

Effect of Stability Variable with ao=0.4 and T=l.O hr: In the linearized chemo

stat state equations, different operating conditions and model parameters can all be 

conveniently grouped into a single stability variable C. The effects of the stability 

variable on the frequency response are shown in Figures 2.8.19 and 2.8.20. The most 

interesting feature of the A.R. plot for biomass/ D is the sharp increase in A.R.max 

as C is increased. Note that with a0 =0.~ and T=l.0 hr, the critical value of C is 

10 hr- 1, at which point A.R.max-+ oo. This limiting Wmax is TJ/_
200 

2.236 hr- 1• 

The plot of A.R.max as a function of C is shown in Figure 2.8.21, Wmax is shown 

in Figure 2.8.22, and changes in T2 and € in the transfer function decomposition 

are plotted in Figure 2.8.23. Note that in contrast to changes in T that is shown in 

Figure 2.8.11, Wmax increases along with C. the direction of changes in T2 shown 

in Figure 2.8.23 is also the opposite of that shown in Figure 2.8.12. 

Dynamic Simulation of Sinusoidal Dilution Rate Forcing: 

It is emphasized that the above frequency analysis is based strictly on trans

fer functions that are derived from linearized state equations. Because the state 

equations are actually nonlinear, the response of the system subjected to a similar 

sinusoidal dilution rate forcing is further simulated more realistically by directly 

integrating the nonlinear dynamic equations. The basic model parameters used in 
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EFFECT OF STABILITY VARIABLE 
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Figure 2.8.19. Effect of the stability variable, C, on the amplitude ratios for linearized 

chemostat state equations subject to a sinusoidal dilution rate forcing. 

(ao=0.4, T=l.O hr.) 
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chemostat state equations subject to a sinusoidal dilution rate forcing. 
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this simulation are: µ,n=0.5 hr, Ks=l g/1, Ys=0.5, and 81=5 g/1. The mean dilu

tion rate is 0.25 hr- 1 , and its amplitude of oscillation is 0.1 hr- 1 . These values give 

rise to a steady-state biomass concentration of 2 g/1 and a steady-state substrate 

concentration of 1 g/1 at the mean dilution rate. Thus, based on the linearized 

chemostat equations, the stability variable C 0.5 hr- 1 is the same as that used 

consistently in generating the previous Bode diagrams based on a strictly linearized 

analysis. As before, the effects of the lag time constant, T, the relative weight of 

the kernel, a0 , the mean dilution rate and the forcing amplitude, A, are studied 

from this set of simulations, and those effects associated with nonlinearities will be 

identified. 

The Bode diagrams presented hereafter are the result of dynamical system 

simulation by integrating the chemostat equations for at least five cycles. Once the 

initial transient component vanishes and the "steady-state" solution is established, 

the time and magnitudes that correspond to the maxima and minima in the biomass 

concentration, the substrate concentration, the intrinsic specific growth rate, and 

the observed specific growth rates are recorded for each frequency. Because of 

the nonlinear relationships, responses of these variables are not purely sinusoidal, 

although the forcing dilution rate is strictly sinusoidal. 

The results from one of the dynamic simulations used to construct the Bode 

diagrams are shown in Figure 2.8.24 for the biomass concentrations. The kernel 

parameters used to generate these plots are ao=0.4 and T=l.0 hr, and the period 

of dilution rate oscillation is 20 hr with an amplitude of 0.1 hr- 1 centered around 

0.25 hr- 1 • Figure 2.8.24 shows that even without the time-lag, the biomass concen

tration as a function of time is not sinusoidal; the entire curve is shifted somewhat 

downward from the calculated steady-state concentration, based on the mean di

lution rate. With time-lag, the curve turns around its minima at a much slower 
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rate than it does around its maxima. There also exist some inflection points in 

the response curve during the downward cycle. In this example, the amplitude is 

amplified slightly, and the biomass response with a time-lag is generally ahead of 

that without a time-lag. 

Figure 2.8.25 shows the various specific growth rates for the above example. 

Note that the observed specific growth rate is consistently behind the correspond

ing intrinsic specific growth rate with time-lag. The oscillation amplitude of the 

observed specific growth rate is smaller than that of the intrinsic specific growth 

rate, which is in turn even smaller than the specific growth rate obtainable with no 

time-lag. This successive decrease in the amplitude is expected because the time

lag relationship is mathematically equivalent to a first-order low pass filter for a 

0th-order kernel function. Furthermore, the oscillations in both y(t) and µ(t) are 

larger than that in the dilution rate, which is not possible for a chemostat system 

with no time-lag. \, 

It should be warned that a direct comparison of the phase angles between 

the specific growth rate with time-lag and that with no time-lag is not valid. For 

instance, Figure 2.8.25 shows that during the upward cycle, the specific growth rate 

in the absence of time-lag appears to be ahead of that with a time-lag. It must be 

stressed that the correct reference curve must be selected in order for the comparison 

to be valid. In this case, the specific growth rate with no lag should be referenced 

to the corresponding substrate response curve, and phase angle calculation of the 

intrinsic and observed specific growth rates should also be based on similar variables. 

Because the rate of change in the biomass concentration depends on y(t) -

D(t), the biomass concentration curve changes its direction at the point where 

y(t) and D(t) cross each other. In other words, a local maximum in the biomass 

concentration corresponds to where y(t) dips below D(T), and a minimum point 
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is reached when y(t) overtakes D(t). The logarithmic biomass concentration is the 

same as the area between the two curves y(t) and D(t). 

ln ;i~~ = lot y(t') - D(t')dt' (2.8.75) 

In comparison to the biomass concentration, nonlinearities are more pro

nounced for the specific growth rate. The reason for this is that the model variables 

in effect are subjected to double nonlinearities. The first set arises in the state 

dynamic equations and yield distortions in the state variables, e.g., the substrate 

concentrations. As the model variables, e.g., the intrinsic specific growth rate, 

are calculated by another nonlinear constitutive relationship, they become further 

distorted. 

The dynamic trajectories of this example are shown in Figure 2.8.26 in a three

dimensional phase plane. Of course, being on paper in reality, it is actually a 
\, 

two-dimensional representation thereof. The approach of the initial state to the 

"steady-state" periodic trajectory that appears as a loop can be seen. The entire 

curve lies within the positive octant. Because an nth-order time-lag kernel adds 

n + 1 orders to the system dynamics, this example, based on biomass and 'substrate 

state equations, is effectively a 4th order system. Therefore, it is only a projection 

of a four-dimensional curve into a three-dimensional space. 

Because of the reduction in the dimensional space during plotting, foldings that 

are not possible in a purely two-dimensional dynamic system can often appear for a 

certain range of model parameters. One such example is created by increasing the 

oscillation period of the dilution rate forcing to 42 hr, while all other parameters 

remain unchanged from the previous example. 

The biomass concentration shown as a function of time in Figure 2.8.27 has 

developed small notches at its maxima. This is due to the fact that y(t) and D(t) 
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cross each other three times near their minima, as shown in Figure 2.8.28. This 

intriguing behavior can be explained as follows. First, the observed specific growth 

rate remains high during the downward cycle of the dilution rate due to the presence 

of time-lag. A high specific growth rate fast depletes the substrate and causes the 

substrate concentration to overshoot slightly. The substrate concentration, in turn, 

translates into the intrinsic specific growth rate. Responding to the intrinsic growth 

rate with time-lag, the observed specific is brought down and crosses below the 

dilution rate curve. At this point, the biomass concentration reaches a maximum, 

and the substrate concentration reaches a minimum and swings back up. The rate 

of decrease in the observed specific growth rate is sharply reduced, and it again 

crosses the dilution rate curve, this time going above. Such micro-oscillation of 

the observed specific growth rate around the dilution rate can occur for a range of 

forcing periods. The overall effect is the appearance of local minima and maxima, 

or notches/indentations, in both the bio:fuass and substrate concentration curves. 

Because of the longer oscillation period in this example, the system can better 

adapt to the slowly changing operating conditions, and the distortions in the specific 

growth rate curves become smaller. Similarly, the amplitude ratios of the specific 

growth rates are not as great as in the previous example. 

The state trajectories for this system are plotted in Figure 2.8.29. The trajecto

ries cross themselves at certain points in the projected space. In a fully dimensioned 

space, state trajectories cannot cross themselves, for doing so implies that there ex

ists more than one solution for the same initial value problem. The well known 

Existence and Uniqueness Theorem in ordinary differential equations denies the ex

istence of such cross points. Finally, the notch is seen in the lower right hand side 

of the "steady-state" loop. 
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The significance of this second example is that it is possible to explain such 

an interesting behavior in terms of classical chemostat equations with only the 

addition of a time-lag kernel. However, no attempt is made to induce and observe 

such "notch" behaviors in a fermentor experimentally. 

Bode Diagrams from Direct Dynamic Simulation: 

Although the absolute maxima and minima in each cycle are relatively easy to 

identify, because of the distortion in the response curves, the conventional defini

tions of amplitude ratio and phase angle are not directly applicable in our system. 

This difficulty is demonstrated in the previous example, where multiple local max

ima/minima are possible. Thus, these nonlinear effects necessitate constructing new 

definitions for the amplitude ratios and phase angles for the biomass concentration 

and the specific growth rates. The definitions are shown graphically in Figure 2.8.30 

for the biomass concentration, Figure 2.8.31 for the observed specific growth rate 
\, 

with respect to the intrinsic specific growth rate, and Figure 2.8.32 for the observed 

specific growth rate with respect to the dilution rate. 

In each of the three diagrams, six amplitudes are identified. In Figure 2.8.30, 

for example, these are: 

A:i:,max = Xmax - Xo 

A:i:,min = Xo - Xmin 

A:i:,mm = Xmax - Xmin 

A* * :z:,max = Xmax - Xo 

A* * :z; min = Xo - Xmin , 

(2.8.76a) 

(2.8.76b) 

(2.8.76c) 

(2.8.76d) 

(2.8.76e) 

(2.8.76/) 
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where x is the dynamically simulated sinusoidal response curve of the biomass con

centration, x* is the theoretical steady-state value of biomass concentration cor

responding to the dilution rate at that instant. The subscripts "max" and "min" 

signify that the values are the absolute maximum and minimum, respectively, in 

each cycle, and x0 is the steady-state biomass concentration at a constant mean di

lution rate of D0 • From these individual amplitudes the following three amplitude 

ratios are constructed: 

AR 
_ A:z:,max 

• •:z:,max = A* 
:z:,max 

AR 
_ A:z:,min 

• •:z:,min = A* . 
:z:,m1n 

(2.8.77a) 

(2.8.77b) 

(2.8.77c) 

Because of the upward vertical shift in the biomass concentration from the instan

taneous steady state values, the following inequality holds: 

A.R.:z:,min < A.R.:z:,mm < A.R.:z:,max (2.8.78) 

In a similar manner, eight critical points are identified in each cycle for each 

of the three combinations of response curves and reference curves. In Figure 2.8.30 

for the biomass, for example, these eight points are used to calculate the following 

four phase angles: 

( ) 
360° 

<P:z:,min = t:z:,min - t:,min Ti 

360° 
<P:z:,up = (t:z:,up - t:,up) Tl 

360° 
<P:z:,dn = ( t:z:,dn - t:,dn) TJ 

(2.8.79a) 

(2.8.79b) 

(2.8.79c) 

(2.8.79d) 

where t:z:,max and t:z:,min are the times at which the dynamically simulated biomass 

concentration reaches the highest and lowest values, respectively. Similarly, t! -,max 
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and t;,min are the times of maxima and minima, respectively, for the theoretical 

instantaneous steady-state values of biomass concentration corresponding to the 

dilution rate. The times at which the curves cross Xo are identified as (c,up, t:,up, 

(,: dn, t* d . Finally, in the above equations T1 = 2
1r is the period of the dilution , x, n w 

rate. 

In Figure 2.8.31, similar definitions are constructed from the dynamically sim

ulated response curves of the observed specific growth rate and intrinsic specific 

growth rate, which is the reference. In Figure 2.8.32, the reference curve is replaced 

by the dilution rate. Incidentally, these reference curves allow both the amplitude 

ratios to be normalized to unity and the phase angles to approach 0° at low fre

quencies. 

The following general observations are made from a series of dynamic simula

tions. The maxima in the biomass concentration always coincide with the minima 
\, 

in the substrate concentration, and vice versa. The normalized amplitude ratios of 

these two states as functions of the forcing frequencies are also identical. Because 

the intrinsic specific growth rate, µ(t), is a direct monotonically increasing function 

of s(t), its maxima and minima are also synchronized with the substrate concen

tration, even though the shapes of the response curves do not coincide, again due 

to the nonlinear constitutive relationship of µ( s). The order in which maxima and 

minima are reached is summarized below: 

D(t) ==> s(t),µ(t) => y(t) => x(t) 

This sequence is in agreement with Figure 2.8.4. 

The effects of nonlinearities are manifested in Figures 2.8.33 and 2.8.34. All 

the curves in these figures should coincide with the linearized model in the absence 

of distortions from the ideal sinusoidal behavior. From the biomass A.R. diagram, 
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it can be seen that A.R.x,max is consistently above the linearized model and that 

A.R.x,min is consistently below the linearized model. A.R.x,mm, being the weighted 

average of A.R.x,max and A.R.x,min and lying in between these two values, is con

siderably closer to the linearized model. 

A.R.x,mm = Ax,max + Ax,min 

A* + A* A.R.:,: ma.x + A.R.:,:,mln 
x,max x,min = 1+'i l+r ' 

T 

(2.8.80) 

h - A:,ma.x h" h. ·t "f A* - A* W ere r - A* , W lC IS Unl y l x max - x min· 
:i:,mln t , 

It is generally true that A.R . .11. min < A.R . .11. min· Note also that there is a region 
µ' µ' 

in which A.R . .JL max and A.R . .JL min deviate significantly from each other. Due to 
D' D' 

the extremely small amplitudes and periods, results in the high frequency region, 

i.e., w > 5 hr- 1 are not very reliable. Furthermore, sudden jumps of phase angles 

near the mid region, i.e., 0.2 hr- 1 < w <0.3 hr- 1 are caused by the difficulties 

encountered in identifying the minima and maxima when there are notches in the 

\, 
response curves. 

In parallel to the linearized analysis, the effects of the lag time constant, T, for 

a purely 1st-order kernel and a combined 0th/1st-order kernel are studied in the 

next four frequency response diagrams (Figures 2.8.35, 2.8.36, 2.8.37, and 2.8.38). 

The effects of the 0th-order fractions in the kernel function, ao, are shown in Fig

ures 2.8.39 and 2.8.40. The amplitude ratios used to plot these diagrams are based 

on the difference between the maxima and minima, and the phase angles are the 

algebraic average of <Pmax and <Pmin• The overall behavior in terms of corner fre

quencies and slopes is similar to the linearized model, except that the dynamically 

simulated amplitude ratios are consistently lower than those of the linearized model. 

In general, there is wider deviation for larger amplitude ratios. This is mainly due 

to the physical constraint that concentrations cannot be increased indefinitely nor 
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Figure 2.8.33. Effect of nonlinearities in the chemostat state equations on the amplitude 

ratios with a sinusoidal dilution rate forcing (ao=0.4, T=l.0 hr.) 
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negative. Thus, the amplitude ratios often cannot match those values achievable 

using the linearized analysis. 

Finally, the effects of forcing amplitudes and the mean dilution rates are studied 

with the following oscillations: 

Curve Dilution Rate Xo So µ~ C 

(hr- 1) (g/l) (g/1) (1/g-hr) (hr- 1) 

a (Ref) 0.250±0.100 2.00 1.00 0.125 0.500 

b (Mid) 0.250±0.150 2.00 1.00 0.125 0.500 

C (Hi) 0.325±0.075 1.57 1.86 0.061 0.193 

d (Low) 0.175±0.075 2.23 0.54 0.211 0.943 

For a linear system, the response should not depend on the amplitude of the forc

ing variable. As indicated by Figure 2.8141, the amplitude ratios for biomass are 

strongly influenced by the amplitude of the dilution rate oscillation, and there are 

some small differences in the middle frequency range for Y / M; whereas, the ob

served specific growth rate with respect to the dilution rate is not influenced. This 

is also generally true for the phase angle plots presented in Figure 2.8.42, although 

there are some shifts in the biomass plots. The last two curves in the above table 

are used to study the effects of the stability variable C, and the dynamic simulation 

shows the same behavior as predicted by the linearized model. Again, the high 

amplitude ratios are generally lower than those given by the linearized model. 

Numerical Problems: 

Even with the classical Monod chemostat equations, there exist numerical prob

lems when the substrate concentration is approaching depletion very quickly. One 

such case is encountered near the end of a batch run. In certain situations, this 

makes the changes in the substrate concentration quite "stiff" in the sense that 
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Figure 2.8.35. Effect of the lag time constant, T, on the amplitude ratios for a chemo-

stat system subject to a sinusoidal dilution rate forcing, dynamically 

simulated with a purely 1st-order time-lag kernel. ( ao=0.0, See text for 

chemostat model parameters used.) 



0 
t() 

0 

w 
_J 0 
<.'.) t() 

z I 
<( 

w 
(f) 0 
<( (!) 
J: I 
a... 

0 
(j) 

I 

0 
(\J 

T 
0.01 

0 
(!) 

0 

w 
_J 0 
<.'.) (!) 
z I 
<( 

w 
(f) 0 
<( (\J 
:r: -
0. I 

0 
0) 

T 
0 
st 
(\J 
I 

0.01 
0 
(j) 

w 
_J 0 
<.'.) (j) 
ZI 
<( 

w 
(/) 0 
<( 0) 

~T 

0 ,.._ 
(\J 

I 
0 
ID 
r<) 

- 357 -
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Figure 2.8.36. Effect of the lag time constant, T, on the phase angles for a chemostat 

system subject to a sinusoidal dilution rate forcing, dynamically sim

ulated with a purely 1st-order time-lag kernel. (a0 =0.0, See text for 

chemostat model parameters used.) 
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Figure 2.8.37. Effect of the lag time constant, T, on the amplitude ratios for a chemostat 

system subject to a sinusoidal dilution rate forcing, dynamically simu

lated with a combined 0th-order and 1st-order time-lag kernel. (ao=0.4) 
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Figure 2.8.38. Effect of the lag time constant, T, on the phase angles for a chemostat 

system subject to a sinusoidal dilution rate forcing, dynamically simu

lated with a combined 0th-order and 1st-order time-lag kernel. (ao=0.4) 
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Figure 2.8.39. Effect of the 0th-order fraction in the kernel function, a0 , on the ampli

tude ratios for a dynamically simulated chemostat system subject to a 

sinusoidal dilution rate forcing. (T=l.0 hr.) 
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EFFECT OF WEIGHT DISTRIBUTION AMONG 0TH AND 1ST ORDER 
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Figure 2.8.40. Effect of the 0th-order fraction in the kernel function, ao, on the phase 

angles for a dynamically simulated chemostat system subject to a sinu

soidal dilution rate forcing. (T=l.0 hr.) 
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EFFECT OF OSCILLATION AMPLITUDE 
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Figure 2.8.41. Effect of the oscillation amplitude of the sinusoidal dilution rate on 

the amplitude ratios for a dynamically simulated chemostat system. 

(ao=0.4, T=l.0 hr.) 
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Figure 2.8.42. Effect of the oscillation amplitude of the sinusoidal dilution rate on the 

phase angles for a dynamically simulated chemostat system. ( ao=0.4, 

T=l.0 hr.) 
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throughout most of a fermentation run the specific growth rate stays at a high 

value close to µ,n, and the substrate is quickly consumed. Because in practice the 

half-saturation constant Kil is usually relatively small, the specific growth rate does 

not reflect the effect of Kil until the last moment before the substrate is totally 

exhausted. Suddenly, the specific growth rate drops to zero. This type of problem 

can be effectively handled with a good stiff numerical integration method. 

With the time-lag model, to this numerical difficulty are added the problems 

mentioned in association with a discrete time-delay. Thus, although not as prob

lematic, the numerical difficulties associated with integrating a set of differential 

equations with a discrete time-delay is also present in a time-lag system. Because 

the observed specific growth rate lags behind the intrinsic specific growth rate, which 

is in direct synchronization with the limiting substrate concentration, one needs to 

introduce a shutoff factor that can automatically cut off the substrate consumption 

when the substrate concentration drops td'-values very close to zero. Therefore, the 

physically impossible occurrence of a negative substrate concentration is prevented. 

There are a small number of places this shutoff factor can be inserted in the system 

dynamic equation. The following is one example. 

d:~t) = [ - 1 + y(t)/11 (s)] x(t) (2.8.81a) 

ds(t) 1 
--;ft= 1 - s(t) - Ya y(t)f11 (s)x(t) {2.8.81b) 

When placed at these points, fil(s) should be O for s ~ 0 to cut off any residual 

y( t), and many expressions exist for this slight modification. For example, the 

substrate concentration can be prevented from overshooting into the negative region 

by installing a shutoff factor / 11 that corresponds to an on-off switch. 

for s ~ 0 
for s > 0 

{2.8.82) 
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Physically, this equation means that there is no growth when there is no substrate 

present. Although this logically simple solution effectively prevents substrate con

centration from becoming negative, it is numerically too drastic for most integration 

routines to handle properly without inducing convergence problems within each in

tegration step. To soften the stiffness, a saturation expression may be used. 

Motivation for Frequency Response: 

for s :s; 0 

for s > 0 
(2.8.83) 

In closing, it is appropriate to reiterate the objectives of this section. On the 

surface, it may seem that few truly new concepts are contained in this section. 

Because of the special care taken during the formulation of the time-lag theory in 

previous sections, much of the work has indeed already been done. Precisely, the 

beauty of the time-lag approach lies in its simplicity and the ease with which the well 
\, 

developed systems theories can be directly applied with practically no modification. 

This simplicity is demonstrated through the derivation of the transfer functions and 

in the prediction of response to sinusoidal disturbances in the dilution rate. Thus, a 

researcher need not waste effort on model evaluation, and a typical process control 

engineer is not required to possess a mathematical knowledge beyond what has 

already been mastered. 

2.9 EXTENSIONS 

Extensions to Time-lags in the Yield Coefficient 

Although throughout this thesis the presence of time-lag is considered only in 

the specific growth rate, it is not restricted to that variable. For example, another 

variable in the basic set of chemostat dynamic equations is the cell-biomass to 

substrate yield coefficient Y.,. This yield coefficient may change if there is more 

than one pathway that can lead the starting reactant or some intermediates to 



- 366 -

different end products, including the cell-biomass, or if the reaction stoichiometry 

is variable. 

The simplest theoretical example is illustrated below where the substrate can be 

directed toward either biomass synthesis or another non-biomass product formation. 

S ----+~1 Biomass 

S ----+~2 Product 

(2.9.la) 

(2.9.lb) 

where 6 and 6 are the extents of the respective reactions, and ~1 and ~2 are the 

simplified stoichiometry coefficients. It is quite common that the enzymes that 

catalyze the alternative metabolic pathways are induced by the presence of certain 

substrates or inducers. This leads to the dependence of the steady-state level of al

ternative metabolic enzymes on, for instance, the substrate concentration. Because 

the synthesis or even the activation of the enzymes for the newly induced pathway 
\, 

cannot be achieved instantaneously, the existence of dynamic lags is inevitable. It 

is apparent that a shift in the substrate concentration will not immediately increase 

the rate of material flux in the newly available pathway. The rate of the alternate 

metabolic reaction must be synchronized with the finite rate of accumulation of 

active enzymes. As a result, there is a time-lag in the adaptation of the extents of 

reaction #2 to changing environmental conditions. 

ff the product formation is not rigorously considered, for example, the produc

tion of CO2 due to energy waste that is dependent on the substrate concentration, 

then the apparent yield coefficient is defined as: 

v ( ) _,. MWbioma88 €1(s) 
.L" S - :)1 ( ) ( ) • 

MW 11ub11trate 6 S + €2 S 
(2.9.2) 

Thus, it is clear how the yield coefficient may depend on the substrate concentration 

and how the observed apparent yield coefficient in a dynamic experiment may lag 

behind the intrinsic apparent yield coefficient measured in steady-state experiments. 
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With the inclusion of a time-lag in the yield coefficient, the set of Equations 

(2.2.5) and (2.2.6) can be written as: 

dx(t) · dt = [-1 + µ(s)] x(t) (2.9.3a) 

ds(t) = 1 - s(t) - 1 µ(s)x(t) 
dt f~

00 
Y11 [s(h)]ky(t - h)dh ' 

(2.9.3b) 

where f~
00 

Y11 [s(h)]ky(t-h)dh is the observed yield coefficient that lags behind the 

intrinsic yield coefficient in accordance with the description of the time-lag kernel 

ky(t). Following the same approach as that adopted for a time-lag in the specific 

growth rate, the last equation can be expressed in terms of the time-lag variable 

ds(t) 1 
dt = 1 - s(t) - Ya(t)µ(s)x(t), (2.9.4) 

where Y11 (t) is defined as: 

(2.9.5) 

Analogous to a time-lag in the specific growth rate, for a general nyth-order 

time-lag kernel ky (t) that is a linear combination of the base exponential distribu

tion functions ki ( t), 

(2.9.6) 

the observed yield coefficient Ya(t) satisfies the same type of differential equation 

as before. 

ny (") where /3i = ~ ~ bny-j 

(2.9.7) 

The solution to this case will not be further elaborated. It suffices to note that 

all the steps closely parallel those considered previously for a time-lag in the specific 

growth rate. 
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Extensions to Multiple Time-Lags 

Because of the versatile manner in which the time-lag concept has been for

mulated, the extension of the methodology to more than one time-lag variable is 

now a straightforward matter of performing more routine mathematical exercises, 

even though the resulting behaviors can be quite interesting. As an example, a 

non-interacting formulation is presented below for time-lags in both µ(t) and Y.,(t) 

simultaneously. 
dx(t) dt = [-1 + y(t)] x(t) 

ds(t) 1 
---;ft= 1 - s(t) - Y.,(t) y(t)x(t). 

As before, 

satisfies: 

(2.9.8a) 

(2.9.8b) 

(2.9.9a) 

where a,= f: (!)an,-; (2.9.9b) 
,=~ 

for a time-lag in the specific growth rate that is of the form: 

(2.9.9c) 

Similarly the observed yield coefficient: 

y., (t) = f_t
00 

Y.,[s(h)]ky(t - h)dh (2.9.l0a) 

satisfies: 

ny (.) 
where /3i = ~ ~ bny-; 

,=~ 
(2.9.l0b) 

for a time-lag in the yield coefficient which has the following general form: 

(2.9.l0c) 
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Note that the order of the time-lag kernel for the specific growth rate and that for 

the yield coefficient need not be the same. 

Finally, while cases where the time-lag variables are interacting may be fully 

analyzed, this complication is not considered in this thesis. 

Extensions to Time-Lags with Multivariate Dependence 

Throughout this thesis, the time-lag variable is assumed to depend on only 

one variable, for example, the dependence of the intrinsic specific growth rate on 

the limiting substrate concentration. Our formulation of the time-lag concept is 

general enough to absorb the time-lag variable's dependence on more than one 

independent variable with practically no modification. For example, if the intrinsic 

specific growth rate is dependent on an array of state variables, x 1 , x2, ... , Xm, 

then the time-lagged response of the observed specific growth rate is: 

It can be seen from a careful re-examination of the derivation that the conversion of 

the above time-lag integral into an equivalent differential equation is not affected by 

the actual functional form of the intrinsic specific growth rate nor its dependence 

on other variables. In general, a time-lag variable may be a function of multiple 

independent variables, but no modification is necessary at this step. Because of the 

powerful and general nature of the formulation, the time-lag differential equation 

to be satisfied for a generalized nth-order kernel is exactly the same as the special 

example, in which the specific growth rate is a function of only one independent 

variable. 

where O:i = t ({)an-; (2.9.llb) 
,=, 

Although the time-lag differential equation remains unchanged, the intrinsic 

specific growth rate's dependence on more than one independent variable is reflected 
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in the expanded expression for the derivatives of d'!:t\t) in the above equation. The 

first time derivative can be calculated by using the chain rule of differentiation: 

{2.9.12) 

Or equivalently, 
d:1:1 
dt 

dµ(t) [ 8µ 8µ 8µ] 
d:1:2 
dt 

dt 8x1 8x2 8xm 

µx dxm {2.9.13) 
dt ..._,._, 
t 

dx 
= µxdt 

The second time derivative is: 

d
2
µ(t) = .!!:_ [ dx] 

dt2 dt µxdt \, 

d2:1: 
7 

= [::1 8µ 8µ] 
d2:1: 
7 

8x2 8xm 

µx d2:1::im 
dt 

'-..,-' 

x 
821!. 821!, 821!, 

d:1:1 
8:1:18:1:1 8a:28a:1 8a:m8a:1 dt 

[dx1 dx2 dxm] 
821!. 821!, 821!, da:2 

+ dt 
8a:18a::, 8a:28a:2 8a:m8a:2 dt 

dt dt 

XT 821!. 82~ 821!, da:w 
8z18Zm 8a::,8a:m 8a:m8Zm dt ..._,._, 

µxx x 

{2.9.14) 
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The third time derivative is: 
d3 µ(t) d [ d

2
x dx T dx l 

dt3 = dt µx dt 2 + ( dt) µxx(dt) 
(2.9.15) 

d3x dx T d
2
x dx T ( d ) dx 

= µxdt 3 + 3(dt) µxx(dt 2 ) + (dt) dtµxx (dt)' 

where 
831!:. 831!:. 831!:. 

dx1 dx2 ~ 8x18x18x1 8x28x18x1 8xm8x18x1 
dt dt dt 

831!:. 831!:. a3l!:. 
d 0 0 0 
dt (µxx]= 

8x18x18x2 8x28x18x2 8xm8x18x2 

0 0 0 8al!:. 8al!:. 831!:. 
8x18x18Xm 8x28x18xm 8xm8x18xm 

83l!:. 831!:. a3l!:. 
0 0 0 8x18x28x1 8x28x28x1 8xm8x28x1 

dx1 dx2 ~ asl!:. a3l!:. asl!:. 
dt dt dt 8x18x28x2 8x28x28x2 8xm8x28x2 + 

0 0 0 aal!:. asl!:. asl!:. 
8x18x28xm 8x28x28xm 8xm8x28Xm 

+ ... 
831!:. asl!:. asl!:. 

0 0 0 8x18xm8x1 8x28xm8X1 8xm8xm8x1 

0 0 0 »,3 l!:. asl!:. asl!:. 

+ 8x18xm8x2 8x28xm8x2 8xm8xm8x2 

dx1 dx2 dxm 
aal!:. asl!:. asl!:. dt dt dt 

8x18xm8Xm 8x28xm8Xm 8xm8Xm8Xm 
(2.9.16) 

Although the mathematics quickly becomes intractable because the order of 

the time derivative increases with the order of the kernel, the concept is simple. 

After applying the chain rule, the appropriate state dynamic equations are substi

tuted for the c:; terms in the time derivatives. At this point, stability analysis or 

dynamic simulations can be conducted with the same methods as used previously. 

Thus, this time-lag methodology can be extended effortlessly to specific growth rate 

expressions that contain, among other effects, inhibitor, product, or multiple lim

iting substrate terms. Temperature and pH effects on the specific growth rate can 

also be accommodated. Other time-lag variables' dependence on more than one 

variable can also be treated similarly. 
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Extensions to Nonlinear Kernel Differential Equations: 

Only linear operators have been treated in the previous sections. The kernel 

dynamic equation has been linear, and the kernel function has been assumed to be 

expressible as a linear combination of the base functions. Likewise, when dynamic 

equations are nonlinear, we have used the method of quasi-linearization. Linearizing 

a set of nonlinear dynamic equations around the point of interest is attractive 

because the results can be analyzed easily with the well-established mathematical 

theories. However, if the global behavior is to be analyzed more precisely, the 

nonlinear process dynamics should be retained to reflect the process structure. This, 

in turn, requires the formulation of a nonlinear time-lag kernel. The general steps 

taken are briefly illustrated on following pages without an extensive analysis. 

With a slight modification, it is possible to extend the time-lag kernel method

ology to a nonlinear system. In contrast to the standard linear treatment, there 
\, 

is no analogous all-powerful method to handle a nonlinear system. The method of 

Volterra series is used in this discussion because it is a logical extension of the lin

ear kernel representation. The following treatment has the advantage that a linear 

system can be viewed as a specialized case of the nonlinear system. 

The input and output relationship for a dynamic nonlinear process can be 

represented with the following series of time-lag kernel integrals that are similar to 
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the original time-lag kernel already considered. 

y(t) = /~
00 

µ(h)ki(t - h)dh 

+ /_too /_too µ(h1)µ(h2)k2(t - h1,t - h2)dhidh2 

+ /_too /_too /_too µ(hi)µ(h2)µ(h3)k3(t - hi, t - h2, t - h3)dhidh2dh3 

+ ... 

+/_too ... /_too µ(hi)µ(h2) ... µ(h,)k,(t - hi, t - h2, ... , t - h1)dhidh2 ... dh1 

l times 

= fo
00 

µ(t - h)ki(h)dh 

+ 100 100 

µ(t - hi)µ(t - h2)k2(h1, h2)dh1dh2 

+ fo
00 

fo
00 

fo
00 

µ(t - h1)µ(t - h2)µ(t - h3)k3(hi,h2,hs)dhidh2dh3 

+ ... 

l times 
(2.9.17) 

This can be considered as a series of convolution integrals, each representing 

the degree of interaction between the input impulses introduced into the system 

at different times. The first term groups all the linear, noninteracting elements 

together. In this term, the contribution to Ylinear(t) from two individual inputs 

µi(t) and µ 2 (t) can be computed separately and later added. In short, the signals 

can be superposed for the linear term. 

(2.9.18a) 

However, when there are quadratic, cubic, or higher-degree interactions between the 

signals, higher-degree convolution integrals should be included in the description of 
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the output as a function of the input. 

Yquadratic(t) = !~00 !~00 µ(hi)µ(h2)k2(t - h1,t - h2)dh1dh2 (2.9.18b) 

Ycubic(t) = 1-too 1-too 1-too µ(hi)µ(h2)µ(h3)k3(t - h1, t - h2, t - h3)dh1dh2dh3 

(2.9.18c) 

Ylth degree(t) = 

]~00 .. · ]~00 µ(hi)µ(h2) ... µ(hi)ki(t - h1,t - h2, ... ,t-hi)dh1dh2 ... dh1, 

l times 
(2.9.181) 

where k1(t 1 , t2, ... , ti) is an impulse response of the lth degree, and the time-lag 

kernel integral containing ki( .. . ) is a functional of the lth degree. Thus, the overall 

output is the summation of all these linear and nonlinear effects. This is analogous 

to an lth degree polynomial. 
\, 

y(t) = Ylinear(t) + Yquadratic(t) + Ycubic(t) + • • • + Ylth degree (2.9.19) 

If the disturbance is imposed on an established steady-state, i.e., if u(t) = 0 for 

t < 0, then the kernel integrals can be simplified slightly by replacing the limits of 
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integration from -oo => t to O => t. 

y(t) = it µ(h)k 1(t - h)dh 

+ it it µ(hi)µ(h 2)k2(t - h1, t - h2)dh1dh2 

+ it it lot µ(hi)µ(h2)µ(h3)k3(t - h1, t - h2, t - h3)dh1dh2dh3 

+ ... 

+it ... lot µ(hi)µ(h 2) ... µ(hi)k,(t - h1, t - h2, ... , t - hz)dh1dh2 ... dh1 
___,_., 

l times 

= it µ(t - h)k1(h)dh 

+ it it µ(t - hi)µ(t - h2)k2(h1, h2)dh1dh2 

+ it it it µ(t - hi)µ(t - h2)µ(t - h3)k3(h1, h2, h3)dh1dh2dh3 

+ ... 

l times 
(2.9.20) 

Each of the kernel functions satisfies: 

(2.9.21) 

(2.9.22) 

ki,sym(t1,t2,• .. ,ti)=~! [k.::,asym(t1,t2,••·,ti) + •·· + k.::,asym(ti,ti-1,•··,ti)] 

(2.9.23) 

The first of the above three conditions physically means that the current states 

are not affected by future events. The second condition is needed for stability and 

convergence. The third one is a symmetry condition which states that a high

degree time-lag kernel is either symmetrical with respect to interchanging of the 
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time variables or can be reduced to such a symmetrical form by combining the 

asymmetrical ones. 

The original linear time-lag formulation can be obtained by setting all 

higher-degree terms in the nonlinear time-lag kernel equation (2.9.17) to 0, i.e., 

Yquadratic(t) = 0, Ycubic(t) = O, ... , and Ylthdegree(t) 0. Equation (2.9.17) 

is a truncated functional power series analogous to a truncated power series. 

This analogy can be clarified by considering a limiting case of k1(t) = b18(t), 

lent to the special case of a system with no dynamic elements. Substituting these 

relationships into Equation (2.9.17) results in a simple input-output relationship 

described by a polynomial of degree l: 

(2.9.24) 

As l -+ oo, one obtains: 

i times 
(2.9.25) 

Although, in principle, any continuous nonlinear dynamic process can be repre

sented this way, just as any continuous function can be represented by an infinitely 

dimensioned power series expansion: 

(2.9.26) 

Similarly, most continuous functions cannot be exactly represented by a finitely 

dimensioned polynomial, an arbitrary functional generally cannot be expressed ex

actly with a finite number of kernel integrals. Just as one seldom uses more than 

a few terms in the power expansion to evaluate the function f(t), only a few terms 



-377-

are usually needed to give a reasonably accurate system response for a nonlinear 

system, especially when the nonlinear expansion is carried out around the point of 

interest. In fact, because mathematical manipulations can become cumbersome, it 

is not advisable to use more than the first two or three terms. 

The dynamic equation and initial conditions satisfied by the kernel function 

can be derived if the corresponding nonlinear dynamic equation for the process is 

known, as indicated by the following differential equation having the general form: 

{ 
dy(t) dy1(t)} { dµ(t) dµ 1(t)} 

D{y(t)}+N y(t),---;u-,···,~ =D{µ(t)}+.M µ(t),~,···, dtl , 

(2.9.27) 

where D { •} is the linear differential operator, and JI { •} and .M { •} are the residual 

nonlinear differential operators. The first step is to take the derivatives of Equation 

(2.9.17), using Leibniz's rule of differentiation of a functional. The resulting expres

sions for y(t), d12it), •.. , d~N) are substituted into the above equation. Following 
\, 

the same procedure used in Section 2.2, similar terms are collected and compared 

to arrive at the differential equation and initial conditions that describe the kernel 

function. 

One of the advantages of using a Volterra series, besides the similarities in the 

form of kernel integrals, is that the nonlinear dynamic equation can be easily manip

ulated in a transformed domain, either Fourier transform or Laplace transform. As 

an example, the use of multidimensional Laplace transforms will be demonstrated. 

An I-dimensional Laplace transform ..C{·} for a function J(t1,t2, ... ,t,) is defined 

as: 

F1(s1,s2,•••,s1) = ..C{J(t1,t2, ... ,tz)} 

= J00 

••• J00 

J(t1, t2 , ••• , ti) exp [t s.t.] dt1dt2 ... dtz. 
-oo -oo i=l 

l times 
(2.9.28) 



- 378 -

Thus, the lth degree kernel integral: 

Ylth degree(t) 

= lt= ... f ~00 µ(hi)µ(h2) ... µ(h1)k1(t - h1,t - h2, ... , t - h1)dh1dh2 ... dhi 

~ 
l times 

l times 

can be transformed into: 

where 

Yith degree(s) = £ {Ylth degree(t)} 

(2.9.29) 

(2.9.30) 

(2.9.31a) 

(2.9.31b) 

(2.9.31c) 

A common technique used to simplify the manipulation of a multidimensional 

Laplace transform is the association of variables. In place of a single real time 

variable t, this technique temporarily uses a multiple of time variables t 1 for s 1 , t2 

for s2 , ••• , and ti for s1• At the end, all these intermediate time variables are set 

to be t because time is only one-dimensional: 

(2.9.32) 

Likewise, the variable in the transformed domain that corresponds to t is s, which 

can be obtained by setting: 

(2.9.33) 
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By usmg this shortcut, the inverse Laplace transform .C - l { •} of a two

dimensional function can be obtained by first working with two separate time vari

ables ti and t2. 

(2.9.34) 

These time variables are then changed to t (ti ⇒ t and t2 ⇒ t), and 81 + 82 = 8: 

(2.9.35) 

l 1c2+ioo 
=-. F2(8) exp(8t)d8. 

21ri c2-ioo 
where 

(2.9.36) 

\, 

A similar process can be repeated to reduce F1(8 1 ,82, ... ,8,) to F1(8). It should 

be cautioned that other variations in the definitions of the Laplace transform pairs 

exist, and these definitions should be followed consistently. 

One of the simplest nonlinearities is the multiplication of two factors: 

y(t) . [J:
00 

µ(h)ka(t - h)dhl • [!..too µ(h)kb(t - h)dhl 

= !..too !..too µ(h1)µ(h2)ka(t - h1)kb(t - h2)dh1dh2. 

The Laplace transform representation is: 

which is the same as: 

(2.9.37) 

(2.9.38a) 

(2.9.38b) 
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Ka(s1) = .C {ka(t1)} 

Kb(s2) = .C {kb(t2)} 

Kab(s1, s2) = Ka(s1)Kb(s2) = .C {ka(t1)kb(t2)} 

(2.9.39b) 

(2.9.39c) 

(2.9.39c) 

An example of the dynamic equation that contains the above quadratic term 

dy(t) 2 Ji:"+ y(t) + a [y(t)] = µ(t) {2.9.40) 

The differential equation satisfied by the time-lag kernel is simply the homogeneous 

portion of the above equation: 

dk(t) 
di:°+ k(t) + a [k(t)J2 = 0 (2.9.41) 

The Laplace transform of the kernel differential equation is: 

(s1 + s2)K2(s1,s2) +K2(s1,s2) +a ( 
1 

) ( 
1 

) = O 
'--"' \, s1+1 s2+1 

(2.9.42) 

d~(tt) k(t) . Quadratic term 

After some algebraic manipulations, the above Laplace transformed nonlinear time-

lag kernel is reduced to: 

a 
K2(s1,s2) = -----------

(s1 + s2 + l)(s1 + l)(s2 + 1) 

The above kernel is inverse-transformed to yield: 

k2(t1, t2) = a { exp {-(t1 + t2)} - exp {-½[(t1 + t2) - lt1 - t2I]}} 

Finally, t 1 and t2 are substituted with t to give: 

{2.9.43) 

(2.9.44) 

(2.9.45) 

In summary, the kernel function in the time domain becomes complicated for most 

nonlinear processes. However, the corresponding expressions in the transformed 

domain are generally simple if a Volterra series is used to describe the nonlinear 

behavior. 
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2.10 DISCUSSION 

Microbial behavior depends not only on the present state of the environment 

but on past histories as well. This is the main reason for the inadequacy of the 

simple set of Equations (2.2.5) and (2.2.6). The dependence of a culture on its 

past history is manifested in the presence of a lag phase in the beginning of a batch 

cultivation. It is also present during the transient of continuous fermentors resulting 

from, among others, a shift-up of nutrient concentration. Such lag has often been 

explained in terms of the need to synthesize the necessary pools of enzymes and 

intermediates before the rate of substrate utilization is adjusted to the changed 

conditions. 

The time-lag model, in its general form, is quite flexible and is capable of 

explaining various observed phenomena. In addition to those mentioned in previ

ous sections, it describes the asymmetric response of a biological process after the 
\, 

dilution rate or the feed concentration of the limiting nutrient is shifted up or down. 

The behavior of a chemostat after a shift-up or a shift-down in the dilution rate 

is simulated with a Monod model and the corresponding time-lag model proposed 

in the preceeding sections. Figures 2.10.1-2.10.3 show the theoretical response 

of a chemostat after a shift-up in the dilution rate from 0.2 hr- 1 to 0.4 hr- 1 . 

Representative values found in a typical fermentation are used in this simulation: 

µ,n = 0.5 hr- 1
, Ka= 1.0 g/1, Ya= 0.5 g/g, ao = 0.2, T = 1.0 hr and S1 = 5.0 g/1. 

As indicated in Figure 2.10.1, the biomass concentration predicted by the time-lag 

model is decreasing faster than that predicted by the classical Monod model. At 

the same time, Figure 2.10.2 shows that the limiting substrate concentration of 

the time-lag model is increasing faster than that of the Monod model. Because the 

instantaneous intrinsic specific growth rate is expressed as a function of the limiting 

substrate concentration existing at that time incident, the intrinsic specific growth 
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rate predicted by the time-lag model also leads that predicted by the Monod model. 

Note, however, that the observed specific growth rate, which is an integral of all 

the past growth rates weighed by the kernel function, lags considerably behind that 

calculated in the Monod model. 

The corresponding response of the same chemostat after a shift-down in the 

dilution rate from 0.4 hr- 1 to 0.2 hr- 1 is shown in Figures 2.10.4-2.10.6. Again, 

after the perturbation, the biomass concentrations predicted by both models in

crease toward the same steady-state value, while the substrate concentrations of 

both models decrease toward the corresponding steady-state value. As in the shift

up simulation, the time-lag model resulted in a faster response in the changes in 

concentrations. Similarly, the intrinsic specific growth rate in the time-lag model 

leads the specific growth rate in the Monod model, which, in turn, is followed by 

· the observed specific growth rate in the time-lag model. 

' .. 
Thus, the word "lag" in the time-lag· model does not describe the quickness 

in the response in concentrations, which usually constitutes the primary measure

ments. Rather, it describes the sluggish response in the specific growth rate when 

the time-lag kernel function is associated with the specific growth rate. In general, 

the time-lag model predicts a quicker initial response of the biomass and substrate 

concentrations toward the eventual steady-state values in both cases where the di

lution rate is either shifted up or shifted down. 

The concentration response in a shift-up or shift-down is made much more 

quickly as the average time-lag of the kernel function is increased. As the initial 

response is made quicker, the system tends to overshoot, resulting in an oscillatory 

approach toward the eventual steady-state values. Sustained oscillation can result 

if the average time-lag exceeds the critical value. This is analogous to the response 

of a controller under proportional action, where a large controller gain brings a 
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quicker response and simultaneously makes the system more prone to overshoot 

and oscillation. 

If the observed specific growth rate is plotted against the limiting substrate 

concentration, a hysteresis behavior can be observed. Figure 2.10. 7 shows that the 

transient path followed during a shift-up operation by a system exhibiting time

lag in the specific growth rate does not coincide with the path predicted based 

on steady-state data, i.e., the Monod model in this simulation study. Similarly, 

the system does not retrace the same path followed earlier as the dilution rate is 

decreased to the original value. The overall effect is the creation of an area enclosed 

by the shift-up and shift-down paths. Thus, the hysteresis behavior can also be 

easily explained with the inclusion of a time-lag kernel in the specific growth rate. 

In summary, much benefit can be derived from the recognition of time-lag. It 

is a well-known fact that time-lag can cause, among other undesirable problems, 
\, 

serious instability difficulties if it is neglected in a control strategy. Furthermore, an 

optimal control scheme may not be optimal if time-lag is not properly considered. 

Figure 2.10.8 shows a hypothetical run in a bioreactor. The data collected during 

the short transient period after the start-up can be used to update the shape of 

the kernel and other model parameters. Based on the updated model, model pa

rameters, and objective functions, an optimal path can be calculated by an on-line 

computer. Occasionally, deliberate excursions can be introduced to update the ker

nel and model parameters if they are suspected of gradual changes during a long 

steady-state run. A simple, powerful model, such as the one proposed herein, and 

the state of parameter estimation scheme discussed in the previous sections can be 

used in the combined forward and feedback control of a bioreactor. 
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CHAPTER 3 

EXPERIMENTAL METHODS AND MATERIALS 



- 393 -

3.1 FERMENTOR AND GENERAL INSTRUMENTATION 

The study of the dynamics of Saccharomyces cerevisiae was conducted in a 

modified New Brunswick Microferm fermenter at 30 °C and ambient pressure. The 

schematic of the entire experimental apparatus is shown in Figure 3.1.1. The gen

eral aseptic techniques so vital to the successful operation of a fermenter will not 

be discussed here. Rather, only those components unique to our system will be 

described in more detail in the following sections. This section will concentrate on 

the various on-line measurements, and Section 3.5 will concentrate on the off-line 

measurements used in this study. 

Fermentor: The fermentor unit has factory built-in temperature and stirrer 

speed controllers. Either a 14-liter jar or a 5-liter jar can be fitted on this fermen

tor for the cultivation of microorganisms. Most of the fermentation studies were 

performed with a 5-liter jar; this volume was deemed most appropriate because it 
\, 

offered sufficient working volume so that the disturbance to the system caused by 

repeated sampling was not significant, and yet it is small enough to be handled 

easily with low nutrient consumption rate, especially under continuous operations. 

Various aspects of the fermentor were carefully controlled so that as many extrane

ous physical influences as possible were eliminated. This was done to ensure that 

the intrinsic biological behavior was selected. Wall growth, as checked visually, was 

nonexistent in all the experiments; this was accomplished by using a relatively high 

stirring rate (500 rpm). 

The original fermentor head plate was heavily modified to allow for the instal

lation of all the necessary ports. The following ports populated the head plate: 

a pH electrode port, a dissolved oxygen electrode port, an inoculation port, three 

separate wells for a thermometer, a temperature control thermistor, and a temper

ature recorder thermistor, an inlet and an outlet for the cooled/heated water used 
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in temperature control, a fresh air inlet, an exhaust air outlet with a condenser and 

the associated inlet and outlet for the continuously flowing cooling water, an inlet 

and an outlet for the afr recirculator, an acid addition port, a base addition port, an 

antifoam addition port, a nutrient addition port, a continuous withdrawal port that 

was used to maintain a constant volume, an off-line sampling port, an inlet (return) 

port and an outlet (withdrawal) port to provide the recirculation of fermentation 

broth needed both by the continuously operated flow filter as part of the on-line 

glucose analyzer and by the optical flow-through cell of the spectrophotometer as 

part of the optical density measurement, an inlet and an outlet port for the Teflon 

tubing as part of the on-line ethanol analyzer. There was a total of twenty-four 

ports. Finally, a magnetic stirrer coupler also occupied a large part of the head 

plate. 

Sampling: The off-line sampling port, shown in Figure 3.1.2, was secured onto 
\, 

the fermentor head plate by a 316 stainless steel Swagelok assembly. All other 

ports were also constructed similarly, except for the continuous withdrawal port, 

which had silicone ferrules instead of the usual 316 stainless-steel ones. This allowed 

the withdrawal tubing to slide along the swagelok assembly and made it possible 

to adjust the tip position of the outlet, thus, the level of the fermentation broth, 

while maintaining a sterile tight seal. By pumping the withdrawal line at a rate 

slightly larger than the nutrient feed rate, it was possible to maintain the working 

volume at a constant level. This was accomplished rather easily by coupling the 

waste withdrawal line and the nutrient feed line to the same peristaltic pump with 

two different sized pump heads. The working volume was initially approximately 4 

liters for batch runs, and it was held at 2 liters for continuous runs. The broth levels 

were marked on the side of the fermentor jar at various points during a fermentation 
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run, and the actual volume was determined afterwards by transferring the entire 

contents into a graduated cylinder. 

Waste Flow Rate: The waste flow rate was measured as often as necessary 

with a 100-ml graduated cylinder attached to the waste line as shown in Figure 

3.1.3. After ea~h measurement, the content of the graduated cylinder was emptied 

by hanging the cylinder in the inverted position. Because the entire flow rate mea

surement unit was autoclaved along with the fermentor, the risk of contamination 

arising from the waste flow rate measurement was totally eliminated. When not in 

use, the graduated cylinder was kept in the inverted position, and the waste stream 

was simply collected in a 23-liter waste jar. The waste jar was aseptically replaced 

with another sterilized one when it became full. 

Foaming: Foaming was controlled by the continuous addition of autoclaved 

0.2 g/1 silicone antifoam ( General Electric) by a peristaltic pump at such a rate 
\, 

that the antifoam concentration in the fermentor was maintained at approximately 

2-10 mg/1. 

Nutrient Addition: The filtration-sterilized nutrient was passed through an

other 0.2 µm filter and two breaker units before finally being added to the fermentor 

by a peristaltic pump (Cole-Parmer). The nutrient feed pump was controlled by a 

pump speed controller (Cole-Parmer) that was modified to be commanded either by 

a manually adjusted set-point or by a computer generated variable set-point that 

was sent through a D / A converter and an isolation amplifier energized by a 12-volt 

power supply. The electrical modification is described in Appendix A. For example, 

one of the calibration curves of the dilution rate versus the voltage output from the 

D / A converter is shown in Figure 3.1.4. Such calibration curves were generated for 

every run, because the actual flow rate delivered by the pump depended not only 

on the pump speed and the size of the pump head used but also on such artifacts as 
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the tubing material, the length of service, the tension stress applied to the tubing 

section within the pump head, and the tubing installation procedure. 

pH Measurement: A glass combination pH probe (Ingold) was used to monitor 

the pH in the fermentor. This electrode's response was found to be very stable, with 

a drift of only 0.02 pH unit for a duration of three months. Because the electrolyte 

in the pH electrode, in the absence of a pressurized electrode holder, boiled over 

during autoclaving, the electrolyte solution was withdrawn from the pH electrode 

prior to autoclaving and refilled afterward. The pH probe's signal was sensed by 

a pH controller (Chemtrix), which had the capability of maintaining the pH in the 

fermentor to 0.02 pH units within the set-point when operated in the expanded 

scale. In order to achieve this accuracy, the pH controller was slightly modified. 

For example, the original 1-turn potentiometers were replaced with respective 10-

turn high-quality potentiometers and locking dials. HCl and NH4 OH solutions of 
' . .. 

known concentrations (approx. 0.1 N) were added by two separate small peristaltic 

pumps (Markson) to achieve a constant pH. The pH of the fermentor was set at 

5.00 throughout this entire work, except for a few runs that were designed to follow 

the microorganism's transient response to a shift in the pH. The pH controller's 

on/off actions were monitored by measuring the voltages across the switch relays 

that energized the power outlets for acid and base addition pumps. A voltage drop 

of greater than 0.5 volt across the relay signaled that the pump was on; whereas, a 

voltage drop of less than 0.5 volt meant that the pump was off.. The pH readings 

were also tapped; however, this proved to be unnecessary because the excellent 

controller performance practically ensured that the pH value was constant. 

Dissolved Oxygen Measurement: A dissolved oxygen electrode (New 

Brunswick) was initially installed in the fermentor. However, in the absence of 

an in situ sterile calibration procedure, the drift of the electrode was too severe to 
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be of any practical use in a long-lasting fermentation experiment, and its use was 

quickly abandoned. It is suggested that research be continued on the automatic 

in-situ calibration of sensors in the future. 

Sparging: The original design of the stirrer for the 5-liter jar was such that 

either a very high rate of air sparging (;,5 liter per minute) or a relatively high level 

of agitation (;,700 rpm) was required in order to achieve the level of aeration needed 

to provide a sufficient amount of oxygen to the culture so that oxygen availability 

did not affect the growth. Because the uncertainties in the oxygen uptake rate and 

carbon dioxide evolution rate were proportional to the air flow rate, a lower rate of 

air sparging was desired. Similarly, gentler stirring is preferred due to the possibility 

of the adverse effects arising from a high shear rate on the cell wall at a high rpm. 

The stirrer shaft was extended and the stirrers were strategically placed so that a 

fine swarm of air bubbles could be distributed throughout the whole fermentation 

broth at 300 rpm. This also eliminated the possibility of an incomplete mixing 

and the presence of a dead zone in the fermentor. In addition, an air recirculation 

pump was constructed from an aquarium air pump. This air recirculation pump 

was tested to be leak free, and the air flow rate delivered by it was adjusted with a 

Variac. After passing through a condenser to rid excess water, part of the exhaust 

gas from the fermentor was diverted to the recirculation pump. It reentered the 

fermentor through a newly constructed multi-channeled sparger separately located 

below the original single-hole sparger. See Figure 3.1.5. The recirculation air flow 

rate is adjusted with a Variac and measured with an air flow meter. A calibration 

curve for the air recirculation pump is shown in Figure 3.1.6. Air filters (0.2 µm) 

were placed on each side of the recirculation pump so that the pump did not need to 

be autoclaved. The purpose of installing this air recirculating pump was to increase 

the gas-liquid mass transfer characteristic of the fermentor without increasing the 
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net air flow rate. The addition of the air recirculation pump did not affect the 

calculation of OUR and CER. 

Air Flow Rate: The air was supplied by compressed air available from Caltech's 

Central Warehouse. Each cylinder was analyzed for the oxygen and carbon dioxide 

content (averaging 20.946% and 0.033%, respectively), and the result was used 

in the calculation of OUR and CER. The air flow rate was carefully controlled 

by a high-precision mass flow controller (Tylan) and calibrated with the water 

displacement method. The air flow rate was set at 1.0 liter/min. The compressed 

air, after passing through a two-step pressure regulator (Matheson), was filtered to 

prevent any dust particles or oil droplets from impairing the normal operation of 

this sensitive controller. The principle of operation of this controller can be found 

in Appendix G and will not be discussed here. 

Gaseous Oxygen and Carbon Dioxide Measurement: The inlet air was first 
\ ~ 

humidified by bubbling it through a CuSO4 solution. It was subsequently passed 

through a heated glass wool filter provided in NBS's original equipment for steril

ization and finally circulated through a series of 0.2 µm gas filters to ensure absolute 

sterility before being sparged into the culture broth. The exhaust gas stream from 

the fermentor was stripped of excess water by passing it through a condenser filled 

with ceramic pellets. It was further dried in two columns of anhydrous CaSO4 

(Drylite) with color indicators. The oxygen and carbon dioxide concentrations 

in the dried exhaust gas were subsequently determined with a Beckman Model 

755 Paramagnetic Oxygen Analyzer in the zero suppressed range (19-21 %) and a 

Horiba Model PIR-2000 infrared gas analyzer, respectively. Both gas analyzers 

were calibrated before and after every run with a range of standard gases of known 

concentrations of oxygen or carbon dioxide. To evaluate the drift in the instru

ments' response, the calibration procedures were also carried out during those runs 
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that lasted longer than 24 hours. Each calibration procedure took 5 minutes to 

execute manually. One typical calibration curve of the CO2 analyzer is shown in 

Figure 3.1.7. Because the paramagnetic oxygen analyzer senses the partial pressure 

of oxygen in the sample, not the percent concentration, the total external gauge 

pressure has a profound influence on the readings of the analyzer. Thus, the effect 

of external pressure fluctuations on the oxygen analyzer's response was corrected 

by monitoring the ambient pressure on-line with a pressure transducer (Setra Sys

tem). A typical calibration curve for the pressure transducer is shown in Figure 

3.1.8. Because the gas analyzers, especially the oxygen analyzer, were also sensitive 

to the gas fl.ow rates, they were monitored by air fl.ow meters (Linde Specialty Gas) 

and regulated manually with rotameters at 250 ml/min for the oxygen analyzer and 

400 ml/min for the carbon dioxide analyzer. 

Biomass Concentration Measurement: A stream of broth was continuously 
I, 

withdrawn from the fermentor and fed into a bubble trap. A peristaltic pump 

was used to circulate the sample through a 0.2 mm flow cell in a spectrophotometer 

(Spectronic 21, Bausch & Lomb) to measure the optical density at 660 nm. The fl.ow 

cell had no dead-zone, and the velocity of the sample flowing through the cell was 

high enough to discourage any possible wall growth. The sample was then joined 

with the overflow from the bubble trap and returned to the fermentor. As shown in 

Figure 3.1.9, instead of the fermentor sample, the filtration-sterilized water stored 

in a separate reservoir could be pumped through the flow cell as often as necessary 

to recalibrate the optical flow cell. The actual procedure was extremely simple; it 

consisted of merely moving the clamps to appropriate positions in the flow lines. 
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3.2 ON-LINE GLUCOSE ANALYZER 

An on-line glucose analyzer was constructed, and the schematic of this device 

is shown in Figure 3.2.1. The principle of detection of this analyzer is based on 

the oxidation of glucose by some oxidants. For many decades, this wet chemistry 

method has been used to analyze the glucose level in blood serum and plasma 

samples (Fingerhut et al., 1963). This is also the widely used flow method with 

AutoAnalyzers. However, its use in the fermentation field is not widespread due 

to the nonselective nature of the method. Many components are oxidized if the 

oxidant is highly reactive. Conversely, glucose oxidation will not proceed unless 

the oxidant possesses adequate oxidation power. Although the enzymatic method 

of glucose oxidase-peroxidase is the most specific, it is relatively expensive, and, 

as in any enzyme-based method, the ease of reagent preparation and the stability 

consideration must also be weighed. 
' .. 

In our study, Fe+3 was selected because of its moderate oxidation-reduction 

potential. The oxidation of glucose was catalyzed in the presence of cyanide ions 

and under alkaline conditions at an elevated temperature of 90 °C. The reaction 

proceeds as follows: 

Oxidation: Glucose+ ½ 0 2 ---+ Gluconic acid (3.2.1) 

Alkaline conditions were required to handle safely the cyanide solutions to 

prevent the evolution of the deadly cyanide gases under acidic conditions. Under 

this condition, other potentially oxidizable components typically present in the fer

mentation broth, such as ethanol and ammonium ions, were tested for interference 

with the glucose measurement, and they were found to exert insignificant effect on 

the response. The glucose concentration was determined photometrically due to 
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the change in color upon the reduction of Fe+3 (yellow) to Fe+2 (colorless). As 

indicated in the absorbance spectrum shown in Figure 3.2.2, the ferricyanide(III) 

solution had a maximum absorbance at a wavelength of 420 nm; this setting was 

used in the measurement of Fe+3 concentration. Figure 3.2.3 shows that a duration 

of 5 minutes is needed for the reaction to reach completion. 

Calibration curves were routinely generated for the on-line glucose analyzer, 

and one such curve is shown in Figure 3.2.4. The response is quite linear (in the 

inverted sense) below the saturation point. A disadvantage of this method is that 

it works well only in the limited glucose range below the saturation point; thus, the 

concentration of the ferricyanide in the feed solution must be changed according 

to the range of glucose concentration in the fermentor. This is caused by the fact 

that the measurement indicates the level of the residual ferricyanide, rather than 

the level of the reduced ferrocyanide that is ultimately proportional to the glucose 
\, 

concentration. There has been an effort by various investigators (Fingerhut et al., 

1963; Fingerhut et al., 1966; Klein et al., 1966) to couple the ferrocyanide formed 

in Reaction (3.2.2) to another color reaction of blue molybdate. 

Another commonly used wet chemistry method employing dinitrosalicylic acid 

was also found to be highly suitable for the on-line determination of glucose concen

trations (Miller, 1959). This method tests for the presence of free carbonyl group 

( C=O), the so-called reducing sugars. This involves the oxidation of the aldehyde 

functional group present in, for example, glucose and the ketone functional group 

in fructose. Simultaneously, 3,5-dinitrosalicylic acid (DNS) is reduced to 3-amino,5-

nitrosalicylic acid under alkaline conditions: 

Reduction: Aldehyde Group --+ Carboxyl Group (3.2.3) 

Oxidation: 3, 5-Dinitrosalicylic Acid --+ 3-amino, 5-nitrosalicylic Acid (3.2.4) 



w 
(.) 
z 
4 

~ 

0 

CD C\J a: . 
00 
(J) 
CD 
4 

d 

0 
d '-----~---...._ ___ _,__ ___ ___.__ ___ __,_ ___ _....___. 

360 380 400 420 440 460 480 
WAVELENGTH, A, (nm) 

Figure 3.2.2. Absorbance spectrum of potassium ferricyanide(iii) in the visible range. 

,.,._ 
1--' 
~ 

I 



t"1 
0 

Glucose Cone. = 0.0109 g/1 

~Fe(CN)6 Cone. = 0.35 g/1 

(\J 

w d 
(.) 

Sodium Carbonate Cone. = 40.0 g/1 

A= 420 nm 

Temperature = 85°C z 
<t 
en 
0:: 
0 
Cf) 

en 
<t 

0 

REACTION COMPLETION: 2-5 MIN 

0 d __ ___._ __ ~ __ __,__ __ ...._ _ ___. __ __._ __ _..__ _ _____, 
0 10 20 

REACTION TIME 
30 40 

Figure 3.2.3. Response of the glucose analyzer due to the oxidation of glucose by Fe+3 • 

Note that the reaction is essentially complete at 2-5 minutes after the· 

reactants are mixed together. 

~ 
t--' 
~ 

I 



E 
C: 

0 
C\J 
¢ ._ 
<( 

w 
(.) 

z 
<( 
0) 
a:: 
0 
en 
0) 
<( 

0 
d 

C\J 
d 

~ 
d 

<.D 
d 

0) 

d 

- 414 -

S 
. ~ 

aturat1on 

0.35 g/1 FERRICYANIDE 

40.0 g/1 SODIUM CARBONATE 

GLUCOSE ANALYZER CALIBRATION CURVE 

0.00 0.05 0.10 0.15 

GLUCOSE CONC. (g/1) 

Figure 3.2.4. Glucose analyzer's response as a function of glucose concentration. 



- 415 -

In the on-line automated scheme, an equal volume of the DNS reagent solution 

(10 g/1 DNS, 2 g/1 phenol, 0.5 g/1 Na2 803 , 10 g/1 NaOH) is mixed with the cell

free sample. The development of red-brown color after heating the reaction mixture 

at 90°C for 5 minutes is continuously detected with a spectrophotometer at 575 

nm. Because dissolved oxygen can interfere with the above oxidation-reduction 

reactions, sulfite, which itself is not necessary for the color reaction, is added in the 

reagent to absorb the dissolved oxygen. In addition, phenol, up to 2 g/1 in the DNS 

reagent, intensifies the color density. It changes the slope of the calibration curve 

of absorbance versus glucose concentration but does not affect the linearity. The 

above procedure yields an absorbance of 1 unit for 1 g/1 of glucose in the original 

sample in the absence of phenol in the reagent, as opposed to an absorbance of 

2.5 unit for 1 g/1 of glucose in 2 g/1 of phenol. This property can be exploited to 

achieve maximum sensitivity for dilute samples. 
I 

" The above reaction scheme shows that one mole of sugar will react with one 

mole of 3;5-dinitrosalicylic acid. However, it is suspected that there are many side 

reactions, and the actual reaction stoichiometry is more complicated than that 

previously described. The type of side reaction depends on the exact nature of the 

reducing sugars. Different reducing sugars generally yield different color intensities; 

thus, it is necessary to calibrate for each sugar. In addition to the oxidation of 

the carbonyl groups in the sugar, other side reactions such as the decomposition of 

sugar also competes for the availability of 3,5-dinitrosalicylic acid. Although this 

is a convenient and relatively inexpensive method, like the ferricyanide reduction 

method, its specificity is intrinsically low. On the other hand, the color intensity 

of the DNS method is proportional to the glucose concentration; whereas, it is the 

difference in the absorbance that is proportional to the glucose concentration in the 

ferricyanide reduction method. 
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A common recurrent technical problem with the above wet chemical methods 

is the formation of precipitate in a basic environment from the proteinaceous com

pounds present in the fermentation broth. Among the various bases tried, sodium 

carbonate was found to produce the minimum amount of precipitate with the fer

ricyanide reduction method. In order to prevent the precipitate from interfering 

with the photometric measurement, two parallel interchangeable filter holders were 

installed in the line immediately before the spectrophotometer. Clamps were used 

to direct the sample fl.ow through the unclogged filtration unit, and the dirty filter 

paper was replaced with a new one. The switching time depended on the sample 

fl.ow rate, usually every 4-8 hours. The use of a dialysis unit for the elimination 

of both cells and protein compounds from the reaction mixture may be an attrac

tive alternative that has not been considered in this work. However, the diffusion 

of glucose across the dialysis membrane and the possible membrane fouling may 

complicate the measurement. 

One of the difficulties encountered was in the construction of an autoclavable 

continuous fl.ow filter used to generate a stream of clear filtrate from the fermen

tation broth. The main body of the filtration unit was fabricated out of a 3-inch

dia. rod of Plexiglass. Other machinable materials such as stainless steel or heat

resistant polycarbonate plastic may also be used for this purpose. Rubber 0-rings, 

clamps, and precise lathing techniques were employed to achieve a leak-free, sterile 

seal. The construction of the cross-flow filtration unit is shown in Figure 3.2.5. 

To regenerate the fouled filter membrane after a prolonged period of operation, 

a backfl.ush capability was built into this glucose analyzer. The excess filtrate was 

stored in a 5-ml reservoir before being returned to the fermentor. During the filter 

membrane regeneration, clamps were placed in appropriate positions along the lines, 

and the direction of the filtrate pump was reversed. By so doing, the filtrate from 
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this reservoir was forced back across the membrane to clear the plugged pores. The 

backflush procedure, which lasted 2 minutes, was carried out manually as often 

as necessary to restore the efficiency of the continuous filter. The time interval 

between backflush operations depended on the type of filter membrane used, its 

pore size and structure, the size and the level of debris and antifoam particles in 

the fermentor, the cell size and cell density, and the rate of filtrate withdrawal. 

A wide range of filter membranes of different materials and pore sizes were 

tested. A 0.8-µm polyacetate filter membrane with laser-drilled straight-channelled 

pores (Nucleopore) was among the most efficient of the many filter membranes 

tested for filtration characteristics. For example, in the absence of contaminants, it 

was able to function continuously for a stretch of more than 24 hours at a filtrate 

withdrawal rate of 2 ml/min. However, this filter membrane was quickly plugged 

when smaller contaminants similar in size to that of the membrane pore (approx. 

1-3 µm) were present. In fact, the unexp~cted plugging of the membrane was often 

used as an early alarm that warned the presence of contaminants. 

The fermentation broth containing cells and debris was pumped into the cross

flow filter's main compartment at a recirculation rate of less than 10 seconds per 

cycle. This relatively high recirculation rate ensured that the consumption of glu

cose was minimized during the transport of the broth to the filter membrane surface 

and that the glucose concentration in the filtrate was close to that in the fermen

tor. The compartment housed a spinning star-shaped circular magnetic stirrer that 

prevented the build-up of a filter cake on the surface of the filter membrane. This 

measure was necessary because the filtration efficiency could have been drastically 

and fatally reduced if a filter cake was undisturbed and allowed to accumulate. 

A suction pressure was applied across the membrane to withdraw a stream of 

clear filtrate. The clear filtrate was first stripped of air bubbles in a bubble trap so 
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that the flow rate was not affected. The bubble-free filtrate was then proportionately 

mixed with a ferric cyanide solution in 40 g/1 of sodium carbonate. The relative 

flow rates of the filtrate stream and the ferric cyanide stream were maintained at a 

constant ratio of approximately 1 to 3.5, which was the inherent relative flow rate 

achieved with the combination of a 7013 pump head and a 7014 pump head ( Cole

Parmer), respectively, when both heads were installed on the same peristaltic pump. 

The filtrate consumption rate of this destructive method was 1.3 ml/min. The 

reaction proceeded for 15 minutes as the mixture passed through a coil submerged in 

a constant-temperature water bath at 90 °C. The reacted mixture was subsequently 

cooled to room temperature in a condenser. After the bubbles present in the line 

were again eliminated in a bubble trap so that the optical properties were not 

affected by the presence of air bubbles, the absorbance of the reaction mixture 

was continuously monitored with a spectrophotometer (Spec 21) interfaced to the 

microcomputer. ' .. 

3.3 ON-LINE ETHANOL ANALYZER 

An on-line ethanol analyzer utilizing a piece of expanded porous PTFE (poly

tetrafluoroethylene or Teflon) tubing was constructed. Other tubing materials such 

as regular PTFE, Tygon and silicone were tested, and only a minute amount of 

ethanol could be detected in the carrier gas in each case. A schematic diagram of 

the final device used in the experiment is shown in Figure 3.3.1. 

Nitrogen was used as the carrier gas, and its flow rate was controlled by a mass 

flow controller (Tylan) set at 30 ml/min. The precise control of the carrier gas flow 

rate by a state-of-the-art mass flow controller is central to the accurate measurement 

of the ethanol concentration because the response of the flame ionization detector 

(FID) is a strong function of the amount of combustible materials passing through. 

The possibility of contamination from this carrier gas line was reduced by installing 
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a 0.2-µm air filter before it was connected to the fermentor. The carrier gas was 

then passed inside a 1-meter-long expanded Teflon tubing, 3 mm i.d., 4 mm o.d., 

0.5 · µm pore-size, that was wrapped around the baffles and submerged under the 

fermentation broth. The flexible expanded Teflon tubing used was marketed under 

the name of POREFLON and was donated by Sumitomo Electric Industries, Osaka, 

Japan. Another source of microporous Teflon tubing was a product named Gore-Tex 

marketed by W. C. Gore (Elkton, Maryland). 

The tubing method for detecting ethanol is described by Dairaku and Yamane 

(1979) and Heinzle et al. (1981), and the mathematical description of the diffusion 

process across the membrane is described by Yamane et al. (1981). The tubing 

method takes advantage of the hydrophobic properties of Teflon in that the ex

panded porous Teflon is easily penetrable by volatile components such as ethanol 

but impervious to water below the wetting pressure, or the minimum permeation 

pressure. 
' .. 

These tubings are available in a wide range of diameter, wall thickness, and 

porosity. These parameters, in turn, determine the minimum water entry pressure 

(the pressure drop at which water is forced through the tubing wall), minimum 

bubble point (the pressure drop at which air can be forced through the wall and 

sparge on the other side), and air permeability. Typical values of water entry 

pressure are 40 psi for 0.2µm tubings, 20 psi for 0.45µm tubings, and 10 psi for 

1.0µm tubings. Similarly, typical values of bubble point are 13, 7, and 3 psi for the 

respective tubings. To avoid the external liquid water from entering into the tubing 

and extinguishing the flame in the FID detector when the pressure inside the tubing 

was much less than that of the fermentor broth, and to prevent the carrier gas from 

sparging into the fermentation broth when the reverse condition was true, the pore 

size of the Teflon tubing as well as the flow rate and the pressure of the carrier gas 
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flowing inside the tubing were chosen such that the pressure drop across the tubing 

wall in either direction was below both the minimum water entry pressure and the 

minimum bubble point. 

The carrier gas line was wrapped in a coil of heating wire, and the Variac 

controlling the energy output from the heating wire was set to prevent the con

densation of water vapor in the line. Two water traps were installed immediately 

before the line entered the gas chromatograph to ensure that water drops would 

not extinguish the flame in the FID detector. The presence of ethanol in the carrier 

gas was detected by a flame ionization detector equipped in a gas chromatograph 

(Varian, Model 3400). It is important to note that although a gas chromatograph is 

employed, separation of the substance to be detected is not effected with a packed 

column. Rather, it is accomplished with a Teflon tubing. As a matter of fact, the 

column is totally bypassed. The GC was operated under the following conditions 
I, 

throughout all the runs: injector temperature = 120 °C, column temperature = 

250 °C, detector temperature= 300 °C, air flow rate= 300 ml/min, and hydrogen 

gas flow rate = 60 ml/min. 

The selectivity of the gas chromatograph 's FID was reasonably adequate; 

among those chemical compounds listed in Varian 3400 Gas Chromatograph Opera

tor's Manual as giving minimal or no response with the FID detector are: 0 2 , CO2 , 

N2 , air, H2 0, and NH3 • In addition, no volatile component other than ethanol was 

present at a significant level under the fermentation condition studied. Therefore, 

the Teflon tubing method of continuous on-line ethanol analysis adapted in this 

work is highly accurate, sensitive, inexpensive, and simple. 

The dead-time due to the transport of the carrier gas through 25 meters of 

the tubing before reaching the GC was about 9 minutes, and the transient response 

had a time constant of approximately 5 minutes. The delay in response is caused 
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both by the plug flow of the carrier gas through the tubing (dead-time) and by 

the diffusion of the volatile component through the liquid boundary film and the 

membrane pores (first-order delay). One typical response curve of GC signal to 

a step change in ethanol concentration is shown in Figure 3.3.2. The stability of 

the FID's baseline was repeatedly checked overnight with the carrier gas passing 

through the POREFLON tubing submerged in 2 liters of water in the fermentor, 

and the drift was found to be negligent, i.e., less than 0.0001 volt out of a normal 

operating voltage of 3-5 volt. Thus, there was no need for frequent recalibration 

during a fermentation run. The FID response was found to be linear to the ethanol 

level in the range tested (o-40 g/1), although only a narrower range is shown in 

Figure 3.3.3, which was originally generated as one of the calibration curves to be 

used in converting the electrical signals to ethanol concentrations. 

3.4 DATA ACQUISITION SYSTEM 
\, 

The signals from various instruments were sent to the microcomputer through 

shielded coaxial cables. On-line data acquisition was automated by a Z-80 based 

microcomputer with a S-100 data bus, synchronized by a 2-MHz internal clock, 

and operated under CP /M 80 operating system. The microcomputer consisted of 

a CPU board, a 64K memory board, a real time clock (SciTronics), a floppy disk 

controller, two 16-channel A/D boards ( Analog Devices), a 16-channel D / A con

verter (Analog Devices), two serial ports, and two parallel ports. The peripherals 

included a terminal (Televideo Model 925), two 470K floppy disk drives (Tandon), 

a printer (µ-science), a plotter (Bausch and Lomb), and a network line for com

munication with other computers. The general architecture and the working of a 

microcomputer are described in Appendix G and will not be discussed here. 

One of the data acquisition programs is listed in Appendix B. During an ex

perimental run, the oxygen concentration, the carbon dioxide concentration, the 
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pressure, the optical density, the glucose concentration, the ethanol concentration, 

and the nutrient pump speed were continuously sampled, averaged, and recorded at 

1-minute intervals. There are significant noise problems with some of the measure

ments if the sampling rate is too high. There are also practical considerations of 

data storage. Conversely, alias effects and low levels of confidence may result from 

the slow response if the sampling rate is too low. Both the acid and base addition 

pumps' ON /OFF activities were also monitored and recorded. 

3.5 EXPERIMENTAL PROCEDURES 

Microorganism: Saccharomyces cerevisiae, i.e., the baker's yeast, strain ATCC 

4126, was employed as the model system to conduct the microbial dynamic studies. 

This microorganism was chosen because of its well studied metabolic pathways and 

the ease of cultivation in a fermentor. This is a facultative anaerobe, 5 to 8 µmin 

diameter. 

Culture Maintenance: A pure stock culture of Saccharomyces Cerevisiae, strain 

ATCC 4126, was maintained by periodic plate transfers, approximately once every 

month, in a YPG (Yeast extract-Peptone-Glucose) medium (1.5 g/1 yeast extract, 

10 g/l glucose, 5 g/1 peptone, 20 g/l agar). The inoculum was prepared by asep

tically transferring a single colony from the pure culture plate with an inoculation 

loop into a 250-ml flask containing the sterilized growth medium described in Table 

3.5.1. The colony was subsequently allowed to propagate in a temperature con

trolled flask shaker. One ml of the culture near the end of its exponential growth 

phase was further transferred from the initial flask to another flask so that the 

culture was acclimated before finally being inoculated into the fermentor. 

Nutrient Preparation: A large batch of the nutrient, approximately 40 liters, 

was prepared according to the recipe presented in Tables 3.5.1-3.5.4, and its pH 

was first brought close to 5 with KOH pellets. The pH was then adjusted to 5.00 by 
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Table 3.1 
The Composition of the Defined Medium for the Baker's Yeast 

Compound Concentration 

MgC12·6H2O 0.52 g/1 
(NH4)2SO4 12.0 g/1 
H3PO4 {85%) 1.6 ml/1 
KCl 0.12 g/1 
CaC12-2H2O 0.2 g/1 
NaCl 0.06 g/1 
MnSO4•H2O 0.024 g/1 
CaSO4·5H2O 0.0005 g/1 
H3BO3 0.0005 g/1 
Na2MoO4 ·2H2O 0.002 g/1 
NiCI 0.0025 mg/I 
ZnSO4•7H2O 0.012 g/1 
Co8O4-7H2O 0.0023 mg/I 
KI 0.0001 g/1 
FeSO4(NH4)2SO4·6H2O 0.035 g/1 
myo-Inositol 0.125 g/1 
Pyridoxine-HCI 

\, 
0.00625 g/1 

Ca-n-Pantothenate 0.00625 g/1 
Thiamine-HCI 0.005 g/1 
Nicotinic Acid 0.005 g/1 
D-Biotin 0.000125 g/1 
Carbon Source ( e.g., Glucose) 0-50 g/1 
EDTA 0.1 g/1 
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Table 3.2 
Mineral Stock Solution {l00X) 

Compound Weight-Volume 

HsPO4 (85%) 160. ml 
KCl 12.00 g 
CaCh·2H2O 20.00 g 
NaCl 6.00 g 
MnSO4•H2O 2.40 g 
CaSO4·5H2O 0.05 g 

HsBOs 0.05 g 

Na2MoO4·2H2O 0.20 g 

NiCl 0.25 mg 
ZnSO4-7H2O 1.20 g 

CoSO4•7H2O 0.23 mg 
KI 0.01 g 

Add water to 1 liter 
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Table 3.3 
Vitamin Stock Solution (lO0X) 

Compound Weight-Volume 

myo-Inositol 12.5 g 
Pyridoxine-H Cl 0.625 g 
Ca-n-Pantothenate 0.625 g 
Thiamine-HCl 0.5 g 
Nicotinic Acid 0.5 g 
D-Biotin 0.0125 g 

Add water to 1 liter 
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Table 3.4 
Normal Strength Working Nutrient Solution 

Compound Weight-Volume 

Phthalic acid, monopotassium salt 0.20 g 
MgCb-6H2O 0.52 g 
EDTA 0.1 g 
(NH4)2SO4 12.00 g 
Mineral Stock Solution 10. ml 
FeSO4(NH4)2SO4 ·6H2O 0.035 g 
Vitamin Stock Solution 10. ml 
Carbon Source ( e.g. Glucose) 0-50 g 

KOH (for pH=5.0) 1.62 g 

Add water to 1 liter 

Adjust pH to 5.00 with lN KOH solution 
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the drop-wise addition of HCl or KOH solutions. The recipe represents a modified 

version of that used by Oura (1974). Because of the dissociation constant associ

ated with the phosphate ions, phosphate cannot be used effectively as a buffering 

agent below a pH of 5.5. Instead, phthalic acid was used. This choice was based 

on the observation that phthalic acid did not support the growth of S. cerevisiae 

nor affected the growth dynamics (Davison, 1985). This defined medium, which 

contained various minerals essential for cell growth, as well as the heat-sensitive vi

tamins, was not autoclaved. Instead, it was forced through an autoclavable 0.2 µm 

filter (Gelman) under the influence of gravity into two 23-liter autoclaved nutrient 

jars. The minerals and vitamins were present in the medium in an excess amount 

so that the cell growth rate was not limited by any of the trace elements. 

Fermentor Start-up: The fermentor was thoroughly cleaned with distilled wa

ter, and all the necessary attachments to the fermentor were made. Except for some 
' ., 

vents that were provided by air filters, the whole fermentation unit, including the 

accompanying tubings, filters, and the various reservoir jars, was totally sealed from 

the outside environment. The entire unit was autoclaved at 112 °C for 30 minutes. 

After cooling to room temperature, the fermentor was filled to the working volume 

with the same defined growth nutrient as that used to propagate the inoculum in 

flasks. The fermentor was often left uninoculated for 4-5 days to test for sterility 

under aeration. When the existence of sterility was confirmed by visually inspecting 

the clearness of the broth, the fermentor was inoculated aseptically with a sterilized 

syringe containing approximately 50 ml of the exponentially growing culture. 

After autoclaving, only under some unavoidable situations, such as the chang

ing of a waste jar or a filter, was the fermentor ever briefly open to the outside 

world. Then, the aseptic procedures were strictly followed to reduce the possibility 

of contamination. Sometimes a 20 % phosphoric acid solution was used in lieu of 
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ethanol for sterilization when ethanol production/ consumption was being studied. 

A continuous operation free of any contaminants of more than three months was 

sometimes achieved. The presence/absence of contaminants in the fermentor during 

a run was determined via visual inspection of the sample under a microscope. It 

was double-checked by streaking a loopful of the undiluted sample taken from the 

fermentor on YPG and EMB {Eosin Methylene Blue) agar plates. EMB medium 

was prepared according to the following recipe: 10.0 g/1 peptone, 10 g/1 glucose, 

5 g/1 dipotassium phosphate, 0.4 g/1 eosin, 0.065 g/1 methylene blue, and 13.5 g/1 

agar. The presence of contaminants in the nutrient feed reservoir was determined 

by the turbidity of the solution. 

Off-Line Sampling: Off-line samples were aseptically withdrawn from the sam

pling port periodically. Extra care was taken to ensure that the collected sample 

was indeed representative of the broth in the fermentor. During each sampling, 
' ,, 

by squeezing the rubber bulb, the small quantity of the stagnant liquid originally 

present in the sampling tube was first purged back into the fermentor. The rub

ber bulb was then released to withdraw approximately 7 ml of the broth from the 

fermentor. The sample was collected in a glass vial attached to the port. As a 

Bunsen burner flamed around the sampling port, the original glass sampling vial 

was removed and quickly replaced with another sterile glass vial. The same sam

pling procedure was repeated for the second time to withdraw another aliquot of 

approximately 7 ml. Although two separate vials of samples were taken each time, 

only the content from the second vial was used for the off-line analysis. The con

tent from the first vial was discarded because when subjected to off-line analysis 

it yielded concentration readings that were significantly different from those of the 

subsequent samples. It was probably due to entrainment from the stagnant liquid 

in the sampling tube despite the initial purging. 
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From the second vial, 4 ml of the off-line sample was immediately poured 

into a 5-ml syringe and forced through a 0.45 µ,min-line filtration unit (Millipore) 

that was locked at the tip of the syringe through a Luer-Lok fitting. The filtrate 

collected in a small, tightly capped glass vial was quickly frozen. The frozen filtrate 

was to be defrosted later and subjected to a series of analysis for glucose, ethanol, 

and acetic acid concentrations. Everything was at ready before each sampling so 

that the time elapsed during the entire sampling procedure, between the initial 

sample collection and the placement of the filtrate in a freezer, was usually no more 

than 10 seconds. The lower detection limit of the enzyme kits used in the off-line 

measurements proved not to be the limiting factor in determining the accuracy of 

the off-line measurements when the concentrations of glucose or ethanol were low. 

Rather, it was the ability to stop quickly the consumption of glucose or ethanol. For 

example, with a specific growth rate of 0.5 hr- 1 , a cell concentration of 2 g/1, and a 

substrate to cell yield coefficient of 0.4, th'e decrease in the substrate concentration 

. th 10 d ·t t kt filt t th 11 · (o.5H2 H10l 7 /1 m e secon s 1 oo o er ou e ce s 1s (sGoo)(o.4) ~ mg . 

Cell Size and Size Distribution: A Coulter counter was routinely used to count 

the number of cells and the cell size distribution. A 0.100 ml off-line sample from 

the fermentor was diluted in 10.0 ml of filtered electrolyte solution. The theory 

of operation of a Coulter particle counter is described in detail in the Operating 

Manual accompanying the instrument. It is described by Hunt, 1980, and Davison, 

1985, as well. The operation of the device is based on the change in the resistivity as 

particles of different sizes suspended in an electrolyte solution pass through a small 

orifice that separates the two electrode plates. The sudden jump in the resistivity 

is detected and counted electronically. Furthermore, the magnitude of the jump 

in the resistivity signal is approximately linear with the diameter of the particle, 

although it also depends to a certain extent on the type of microorganisms, growth 

conditions, and viability. A range of interchangeable orifice sizes are available; the 
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best results are achieved with an orifice diameter of 2 to 20 times the diameter of 

the particles to be measured. A large orifice-to-particle diameter ratio decreases 

the measurable signal intensity, and a small diameter ratio invites chronic plugging 

problems. Since the yeast cells were approximately 5 µm in diameter, a 20 µm ori

fice was used consistently in this study. This distribution in the signal fluctuation 

is sorted with a multichannel analyzer {MCA-ND-555) operated at !/amplification 

of 8 and !/{aperture current) of 8. The channel number is a measure of the volume 

of the particle passing through the orifice in a Coulter counter; therefore, the cell 

size is approximately proportional to { channel number)½, with channel 60 corre

sponding to 6 µm. The channel number to physical size conversion was determined 

with latex calibration particles of well-defined uniform diameters {Duke Scientific). 

Data on frequency and channel number were graphically displayed and sent to a 

microcomputer through an RS232C interface for further analysis and processing. 

The volume used for each set of analysis Jas 50 µl after dilution with the electrolyte 

solution. This gave a typical total.count of 104-105, e.g., 2 x 107 ~ 2.x 108 cells/ml, 

after subtracting the background. 

Biomass Concentration Measurement: One ml of the off-line sample was diluted 

with 5 ml of distilled water, and the optical density was measured at 660 nm with a 

Spec 21 spectrophotometer (Bausch and Lomb). It was found from Coulter counter 

measurement that the cell size depended on the growth rate, thus, the dilution rate. 

Consequently, the optical density to cell dry weight correlation was a function of the 

operating conditions, such as the dilution rate, because the optical density depended 

on, among other variables, the cell size. Figure 3.5.1 demonstrates the shift in the 

cell size distribution as measured with a Coulter counter after the dilution rate 

was shifted from 0.070 hr- 1 to 0.229 hr- 1 . Figure 3.5.2 shows the dependence 

of the ratio of dry weight to optical density as a function of the dilution rate for 

yeast growing on glucose. Calibration curves were frequently generated to convert 
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the optical density measurement to the equivalent dry weight measurement. One 

such calibration curve is shown in Figure 3.5.3. The dry weight was determined by 

first passing 100 ml of the withdrawn sample through a pre-weighed 45-µm filter 

membrane (Millipore) that had been dried and stored in a desiccator, then followed 

with ample washing. The cells were dried along with the filter paper in a petri dish 

at 105 °C until the weight of the filter cake remained unchanged, i.e., ±0.00lg, over 

a 6-hour period of time. This generally took 12-24 hours. Prolonged heating was 

avoided because it caused oxidation and browning of the filter cake and the filter 

membrane. 

Elemental Analysis: Some of the representative dried biomass samples were 

analyzed for their elemental composition by Larry Herrling of Caltech's Analytical 

Lab. Among the elements analyzed were C, H, N, and the ash content. The missing 

weight was assumed to be contributed by oxygen, which was not independently 
' ,, 

analyzed. Organic compounds of known compositions were subjected to the same 

analytical procedures to verify the accuracy of the externally contracted analysis. 

Some of the. results for those samples taken under various steady-state conditions 

are presented in Table 3.5.5 for the culture grown on glucose and in Table 3.5.6 

for the culture grown on ethanol. Oxygen and hydrogen contents seemed to be 

uncorrelated to the growth rate. However, a higher nitrogen content, which is 

related to the protein content in cells, was detected for faster growing cells under 

either glucose or ethanol limitation. This observation is graphically shown in Figures 

3.5.4 and 3.5.5. 

Enzymatic Analysis: At the conclusion of each run, the frozen off-line sam

ples were defrosted and analyzed for the glucose and ethanol concentrations with 

#15-UV and #331-UV enzymatic kits, respectively, from Sigma. Acetic acid con

centration was determined with a Boehringer UV enzymatic kit. These enzymatic 
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Table 3.5 
Elemental Analysis of C, H, N, & Ash for Steady-State Growth in Glucose. 

Dilution Rate Weight % Elemental Composition 

(hr- 1 ) C H N /3 ,* 8 

0.0722 43.83 6.35 7.97 1.739 0.545 0.156 
0.1419 43.88 6.29 8.41 1.720 0.537 0.164 

43.78 6.44 8.49 1.765 0.536 0.166 
0.1566** 43.88 6.27 8.80 1.715 0.531 0.172 

43.51 6.37 8.88 1.757 0.538 0.175 
0.2634 44.58 6.48 8.72 1.744 0.508 0.168 
0.3542 43.34 6.24 8.90 1.728 0.545 0.176 

43.00 6.22 8.91 1.736 0.556 0.178 
0.4317 42.93 6.21 9.23 1.736 0.553 0.184 

42.88 6.21 9.24 1.738 0.554 0.185 

Average 43.56 6.31 8.76 1.738 0.540 0.172 

* 1 was calculated by taking the missing weight with 10 wt% ash. 
** The cells were elongated. 
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Table 3.6 
Elemental Analysis of C, H, N, & Ash for Steady-State Growth in Ethanol. 

Dilution Rate Weight % Elemental Composition 

(hr- 1 ) C H N Ash {J "I* 8 

0.0000 45.10 6.35 8.26 9.7 1.690 0.509 0.157 
44.94 6.37 8.26 10.0 1.701 0.508 0.158 

0.0640** 47.54 6.82 7.79 6.2 1.721 0.499 0.140 
0.0918 45.21 6.49 7.92 9.6 1.723 0.511 0.150 

45.19 6.49 8.01 9.5 1.723 0.511 0.152 
0.1040 45.88 6.47 8.14 9.0 1.692 0.499 0.152 

46.11 6.45 8.15 8.9 1.679 0.494 0.152 
0.1146 45.71 6.33 8.24 10.0 1.662 0.488 0.155 

45.56 6.38 8.28 9.6 1.680 0.497 0.156 
0.1252 45.05 6.20 8.46 12.2 1.651 0.468 0.161 

44.87 6.36 8.46 11.3 1.701 0.485 0.162 
0.1325 45.28 6.36 8.47 11.2 1.686 0.475 0.160 

45.33 6.33 8.~3 10.9 1.676 0.480 0.159 
0.1391 44.56 6.34 8.48 10.2 1.707 0.512 0.163 

44.45 6.38 8.48 9.8 1.722 0.521 0.164 
0.1433 44.58 6.24 8.59 10.4 1.680 0.508 0.165 

44.59 6.28 8.59 10.0 1.690 0.514 0.165 

Average** 45.15 6.36 8.33 10.1 1.691 0.499 0.158 

* "I was calculated by taking the missing weight. 
** D=0.0640 hr- 1 is excluded from averaging. 
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methods all work quite similarly. The oxidation of the substrate under considera

tion is specifically catalyzed by an appropriate set of enzymes, and the reactions are 

coupled such that nicotinamide adenine dinucleotide (NAD) is reduced to NADH, 

which absorbs light in the UV range (340 nm). For example, in the enzymatic 

glucose determination, glucose is oxidized by NAD via a two-step process with the 

participation of hexokinase: 

Hexokinase 
Glucose + ATP ----------+ G-6-P + ADP 

G-6-PD 
G-6-P + NADP ----- 6-PG + NADPH , 

(3.5.1) 

(3.5.2) 

where the following abbreviations are used: ADP (!!denosine di_Ehosphate), 

ATP (gdenosine t_ri_Ehosphate), G-6-P (!l_lucose-6-p_hosphate), G-6-PD (!l_lucose-6-

p_hosphate gehydrogenase), N ADP (n.icotinamide gdenine ginucleotide _Ehosphate), 

NADPH (n.icotinamide gdenine ginucleotide _Ehosphate, reduced), and 6-PG (6-

p_hospho!l_luconic acid). The presence of 
1
the end product NADPH causes a linear 

increase in the absorbance at 340 nm. The detailed principle of measurement and 

analytical procedures are explained in the operation manuals that accompany each 

product, and will not be reiterated here. The procedure described by the man

ufacturer, however, was modified slightly, depending on the concentration of the 

applicable component in the sample. 

In the modified procedure, cold distilled water (for glucose kit) or pyrophos

phate buffer solution (for ethanol kit) was added to freeze-dried enzyme preparation 

in the vial provided as prescribed by the original procedure. The reagent vial was 

gently repeatedly inverted to dissolve the content. A small aliquot of the reconsti

tuted working enzymatic reagent, usually 3.0 ml, was transferred with an adjustable 

digital pipet to a cuvet. The absorbance of the enzyme solution before the addi

tion of the sample, Ao, was recorded. Immediately, a small, known volume of the 

sample was added to the enzyme solution and mixed. The enzymatically catalyzed 
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reaction was allowed to proceed for approximately 10 minutes until the absorbance 

no longer increased. This final absorbance of the reacted solution, A 1 was recorded. 

The concentration of glucose or ethanol in the sample is calculated from the follow

ing equations: 

Cone. (g/1) 

Ao Vem.yme 

Venzyme + Vsample 

Venzyme + Vsample 

Vsample 

f ac X .6.A X !dilution, 

(3.5.3) 

(3.5.4) 

(3.5.5) 

where Venzyme is the volume of the enzyme reagent used, and Vsample is the volume 

of the sample. The calculation of the increase in the absorbance, .6.A, also takes 

into consideration the effect of adding sample to the enzyme solution on the blank 

absorbance. Finally, the dilution factor, f dilution, is combined with the change in 

the absorbance and the absorbance-to-concentration conversion factor, lac, to yield 

the concentration. lac was 0.028965 and 0.0073955 for glucose and ethanol, respec

tively, although the actual values varied slightly between runs. The vendors claimed 

that these highly specific enzymatic methods required no extensive standardization 

and that the absorbance readings were reliable without considering the interf er

ences from other species. Nevertheless, the absorbance-to-concentration calibration 

curves were routinely generated by following the same procedures with standard 

solutions of known glucose and ethanol concentrations in this work to update lac• 

With this modification, the detection limits of these enzymatic methods were 

widened considerably. For example, by using a higher ratio of sample volume to 

enzyme reagent volume, the lowest concentrations detectable by the method can be 

decreased from 2.0 mg/1 to 0.1 mg/1 for glucose and from 0.1 mg/1 to 0.05 mg/1 for 

ethanol. 

Gas Chromatography: The saved off-line filtrate samples were acidified to ap

proximately pH=l.52 with 10 µl of 12N HCl. At this pH, more than 99.9% of the 
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total acetate is present in protonated form, i.e., acetic acid, that can be detected 

with a gas chromatograph equipped with a Chemsorb 102 column and a flame 

ionization detector. The ethanol in the filtered sample was also resolved and deter

mined simultaneously from the gas chromatograph. Thus, the off-line ethanol and 

acetic acid concentrations were determined with two independent methods. The re

sults, as compared with those from the off-line enzymatic method described above, 

were quite reproducible. The off-line ethanol measurements also agreed with the 

on-line data. 

Other experimental procedures, analytical methods, and microbial cultivation 

techniques closely follow those described by San (1984) and Davison (1985) and will 

not be repeated here. 

3.6 DATA ANALYSIS PROCEDURES 

At the conclusion of each experime~t, the original on-line data files stored 

in a CP /M format on 8.5 inch floppy diskettes during that run were transferred 

to a VAX 11/780 computer and backed up on a magnetic tape. They were also 

converted to the PC/DOS (Disk Operating System) format so that the wide range 

of software developed to run under that operating system could be fully utilized. 

The subsequent off-line data reduction/analysis was performed mostly on an IBM 

Personal Computer with 640K operated at 4. 7MHz. Except for a few standard 

subroutines, all the programs needed for data acquisition, reduction, analysis, and 

presentation were written by the author. A few of the critical ones used in the data 

analysis of this thesis are listed in Appendix C. 

Figure 3.6.1 shows the major steps taken to reduce the raw experimental data. 

Because of the large amount of information, the files were named consistently, with 

the first part of the file name indicating the date of the start of the run and the 

file extension ( .XXX) indicating the type of information stored. An interactively 
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operated program named CORRECT was immediately used to display the logged 

voltage data on the oxygen concentration, carbon dioxide concentration, pressure, 

base addition rate, optical density, glucose concentration, and ethanol concentration 

on two computer monitors, one graphically and the other numerically. The occa

sional discrete sharp spikes in the raw data were replaced with the last sound data. 

These extreme noises, if left unaltered, sometimes caused convergence problems in 

the integration routine used in the subsequent Kalman filter. 

The off-line calibration information was processed through regression analy

SIS. Based on the calibration data, individual programs BIOMASS, GLUCOSE, 

ETHANOL, CEROUR, and PH were run interactively to convert the on-line volt

age or absorbance readings to biomass concentration (g/1), glucose concentration 

(g/1), ethanol concentration (g/1), CER (mole/I), OUR (mole/I), RQ (dimension

less), and ammonia uptake rate (mole/I-hr). The conversions were based on the 
\, 

calibration information supplied to the programs as the computer prompted for 

them at the beginning of the program execution. Note that the pressure effect was 

properly considered in the calculation of the gaseous oxygen concentration. Based 

on the information on the biomass composition, CER, OUR, and ammonia uptake 

rate, the program BALANCE performed elemental material balance to give the 

substrate-to-biomass yield coefficient, Y.,, the product-to-biomass yield coefficient, 

Yv, and the total growth rate, R. A negative product-to-biomass yield coefficient 

indicated that the component of interest was being utilized rather than produced 

by the microorganism. Finally, the results from BALANCE were combined with 

the concentration measurements in the program KALMAN to obtain better filtered 

estimates on the concentrations and the observed specific growth rate as functions 

of time. 
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The intrinsic specific growth rate as a function of time was calculated from 

the Kalman estimate of the substrate concentration and the curve on the intrinsic 

specific growth rate versus the substrate concentration, as discussed in Chapter 2. 

The kernel inversion programs listed in Appendix D were applied to the intrinsic 

specific growth rate and the Kalman estimate of the observed specific growth rate 

to calculate the time-lag kernel. 



-449 -

CHAPTER 4 

EXPERIMENTAL RESULTS 
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4.1 INTRODUCTION 

To reconstruct a time-lag kernel, the simulation studied in the previous sections 

suggests that the steps illustrated in Figure 4.1.1 be followed. Although this example 

is based on a kernel associated with the time-lag effects in the specific growth rate, 

kernels associated with other variables can also be treated analogously. According 

to Figure 4.1.1, the first step in the experimental determination of the kernel is 

to measure the intrinsic specific growth rate. Because the specific growth rate in 

the absence of any time-lag effect is defined to be the intrinsic specific growth rate, 

one can measure it when the "quality", or the internal chemical composition of the 

cell remains unchanged for a long period of time such that any possible time-lag 

effects cease to dominate the observed behavior. When the intrinsic specific growth 

µ(t) stays at a constant value, the observed specific growth rate, y(t), expressed as 

y(t) = J~= µ[s(h)]k(t - h)dh, approaches the intrinsic specific growth rate. This 

concept can be shown mathematically as follows: 

lim y(t) = lim It µ(h)k(t - h)dh. t-= t-= -= 
(4.1.1) 

With the change of variables h' = t - h, the above relationship is transformed to: 

lim y(t) = lira 1-= µ(t - h')k(h')dh'. 
t-+O<J t-oo 0 

(4.1.2) 

Because the specific growth rate is constant, it is taken outside the integral in the 

above relationship. This leads to: 

lira y(t) = µ 1-= k(h')dh' 
t-= 0 (4.1.3) 

The last step is due to the realization that the 0th moment of the time-lag kernel 

function is normalized. This point is not coincidental; it is intentionally planned 

during the original formulation of the theory in order to expedite the physical 



PROCEDURE FOR THE GENERATION OF TIME DELAY KERNEL 

Steady State ~L Experiments 

~l=: s 

,-

Time 
.~ ~tc 

j~ Time 
Transient 

Experiments Time 

{c 
Time 

Figure 4.1.1. Experimental procedure for the generation of time-lag kernel. 

Prediction 

I 
,l:,,.. 
c:.n 
I--' 



- 452 -

interpretation of the kernel integral. If the 0th moment of the kernel function were 

not normalized, the translation from the observed values to the intrinsic values 

would not have been as straightforward. Thus, when the intrinsic specific growth 

rate, µ, is a function of limiting substrate concentration, s, in a fermentor, a µ 

versus s curve can be obtained through a series of steady-state runs with different 

dilution rates. Note that the specific growth rate as defined in the following set of 

equations is the same as the dilution rate for that steady-state run: 

dx 
dt = -Dx + µ(s)x (4.1.4) 

ds 1 
dt = D(s1 - s) - Y., µ(s)x. (4.1.5) 

As a result, the required µ versus s curve is constructed by rotating the steady

state s versus the operating D curve. If more than one limiting substrate is utilized 

during fermentation, more than one such series will be required for each of the 

limiting substrates present in the fermentor. 

During a transient experiment in which the dilution rate or the feed substrate 

concentration is shifted up or down, the substrate concentration can be continuously 

measured or estimated as a function of time. By referring to theµ versus s curve es

tablished during the earlier steady-state runs, µ[s(t)] can be generated continuously 

as well. The substrate concentration needed to generate the µ(t) curve can either 

be estimated from a material balance around the fermentor or measured directly 

with an on-line analyzer. In addition to the substrate concentration, the adaptive 

Kalman estimation scheme presented earlier can be used to provide a continuous 

estimate of the observed instantaneous specific growth rate y(t). Finally, from the 

curves of µ(t) and y(t), the kernel is generated with the same method as that used 

to simulate the reconstruction of a kernel. 

In the following discussion, the procedure outlined above will be traced to study 

the time-lag dynamics in a fermentor. First, by using either glucose or ethanol as the 
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source for energy and carbon, a series of steady-state experiments are performed to 

determine the intrinsic behavior for the culture of Saccharomyces cerevisiae. Then, 

the shape of the kernel is determined in a variety of experiments in which the 

dilution rate is shifted up or down. Sinusoidal perturbation experiments of the 

dilution rate have also been completed for a range of forcing frequencies. With the 

aid of the parameter and state estimation algorithms, the on-line measurements 

are utilized to determine the state of the system, including the limiting substrate 

concentration and the observed instantaneous specific growth rate. From these 

estimates, the shape of the kernel function is determined. The presently proposed 

time-lag approach to bioprocess identification and modeling is ultimately tested in 

terms of the model's capability in predicting the microbial behavior in a variety of 

situations. 

4.2 STEADY-STATE EXPERIMENTS ON ETHANOL 

A series of steady-state experiments were performed with 5.0 g/l of ethanol 

in the feed stream. The biomass concentrations and ethanol concentrations were 

regularly measured, and it was decided that a steady-state had been reached when 

the biomass concentration and the ethanol concentration remained unchanged for 

no less than 5 to 10 residence times. The steady-state experiments were carried out 

in both directions. More specifically, the dilution rate was first started from a low 

value and was progressively shifted to higher settings in a step-wise manner. When 

the culture was nearly totally washed out and failed to reach a steady-state, and 

when it was evident that the maximum specific growth rate had been exceeded, 

the dilution rate was brought back down to a value less than the maximum specific 

growth rate. From then on the dilution rate was shifted down progressively in 

small steps until it became difficult to assure that a steady-state was reached in 
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a reasonably acceptable amount of time (about a week). The complete cycle was 

repeated three times. 

The resulting biomass concentration ( dry weight) as a function of the dilution 

rate is plotted in Figure 4.2.1, and the wet weight and the optical density as a 

function of the dilution rate are plotted in Figures 4.2.2 and 4.2.3, respectively. 

The variation of the ratio of the dry weight to the optical density as a function of 

the cell growth rate is shown in Figure 4.2.4. As mentioned earlier, the variation 

in this ratio is probably due to changes in the cell morphology such as shape and 

size. In addition to the dry weight and the optical density, the wet weight of the 

cell is also measured. The wet weight is determined in the process of measuring the 

dry weight. After about 100 ml of the culture sample was collected and filtered, 

the wet filter cake was weighed, along with the filter membrane, and the weight of 

the wet filter membrane was subtracted from the total. Despite the fact that the 
' ., 

method employed is a crude one, the variation in the ratio of the wet weight to the 

dry weight as shown in Figure 4.2.5 can be a rough indication of the water content 

in the cell. Although the trajectories of the biomass and ethanol concentrations 

were not exactly retraced between those steady-states reached after a shift-up and 

those reached after a shift-down, it could not be stated conclusively that a hysteresis 

existed for the combination of S. cerevisiae and ethanol because the deviation was 

relatively insignificant in view of the experimental errors. 

Finally the ethanol concentration as a function of the dilution rate is shown in 

Figure 4.2.6. Note that the steady-state ethanol concentration remains at a rela

tively low value for the range of dilution rate below 0.07 hr- 1 • The ethanol versus 

dilution rate curve is rotated to generate the more familiar representation of the 

µ versus s relationship, which is reproduced in Figure 4.2.7. Under the conditions 

studied, the dilution rate {specific growth rate) versus ethanol concentration curve 
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shows that the function is a monotonically increasing one and that ethanol inhibi

tion is not yet strong enough to invert the sign of the slope of the curve. Although 

not shown in Figure 4.2. 7, when 10.0g/l of ethanol was used in the feed, a steady

state ethanol concentration of 5-6 g/l was achieved at a dilution rate of 0.175 hr- 1 . 

Because only a limited number of experiments were performed with 10.0 g/l of 

ethanol and because most of the experiments of interest were far away from these 

conditions, these extreme points were not considered in the later analysis. As the 

ethanol concentration is increased from zero, the specific growth rises very sharply. 

Thus, a very small value of the Michaelis-Menton half-saturation constant is needed 

to describe the behavior in the region of low ethanol concentration. The specific 

growth rate continues to rise at a much slower pace as the ethanol concentration 

increases beyond 0.05 g/1. The experimental points in Figure 4.2. 7 are scattered, 

and the µ versus s line can only be an approximation. 

' ., 
From the measured biomass and ethanol concentrations, the substrate to 

biomass yield coefficients as defined in Equations (4.1.4) and (4.1.5) were calcu

lated by setting the derivative in these equations to zero, i.e., 

X 
Y.,=--

s1 -s 
(4.2.1) 

The result of this calculation for the yeast culture growing in 5.0 g/1 of ethanol is 

shown in Figure 4.2.8. 

4.3 STEADY-STATE EXPERIMENTS ON GLUCOSE 

By following the same procedure established in Figure 4.1.1, a series of steady

state runs were conducted with 5.0 g/1 of glucose in the feed stream. The criterion 

on the decision of the attainment of a steady-state is similar to that for the steady

state experiments with ethanol as the feed, except that the time during which the 

biomass, glucose, and ethanol concentrations are required to remain constant is 

increased from 5-10 residence times to 10-15 residence times. 
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As in the ethanol steady-state experiments, the dilution rate was either pro

gressively increased or decreased and the resulting dry weight as a function of the 

dilution rate is shown in Figure 4.3.1. The wet weight and optical density are 

also displayed in Figure 4.3.2 and 4.3.3, respectively. Similar to the findings in the 

ethanol feed experiments, the ratio of the dry weight to the optical density is a 

quite strong function of the dilution rate; this fact has been demonstrated in Figure 

3.5.2. The ratio of the dry cell weight to the wet cell weight is shown in Figure 

4.3.4, which again suggests that the ratio varies as a well correlated function of the 

specific growth rate. Actually, the correlation may be better if an improvement 

is made on the method used to measure the wet weight so that the water content 

between the microbial cells is eliminated in a more regulated manner. 

The steady-state glucose concentration is plotted against the operating dilution 

rate in Figure 4.3.5. It remained low for the entire range of the dilution rates, and 
' " 

the insert in this figure shows the same plot in the expanded scale in the glucose 

concentration. The curve is rotated and replotted in Figure 4.3.6. The same graph 

plotted in an expanded scale in Figure 4.3.7 shows that the growth stopped slightly 

before the glucose concentration was reduced to zero. Because of the low value of 

the steady-state glucose concentration and because of the scatter in the data points, 

the parameters for the µ versus s line, especially the half-saturation constant if a 

Monod model is to be fitted, could not be accurately determined. 

The substrate to biomass yield coefficients for this set of steady-state experi

ments are shown in Figure 4.3.8. Furthermore, ethanol is produced in large quan

tities at dilution rates above 0.30--0.35 hr- 1 , although its production is relatively 

insignificant (about 0.005 g/l out of 5.0 g/1 of glucose feed) at lower dilution rates. 

This fact is shown in Figure 4.3.9, magnified in Figure 4.3.10. This sudden rise in 

the ethanol production coincides with the sudden rise in the glucose concentration 
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Figure 4.3.4. Ratio of wet weight to dry weight of the biomass material vs. dilution 

rate for cells grown in 5.0 g/1 of glucose in the feed. The variation is 

probably due to the water content of the cells. 
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with an increasing dilution rate. This observation corresponds to the well known 

Crabtree effect, which states that fermentative growth accompanied by ethanol pro

duction is possible even with adequate aeration in an environment with high glucose 

concentrations. For the baker's yeast under study, the Crabtree effect is dominant 

at a glucose concentration of approximately 0.04 g/1. 

4.4 TRANSIENT EXPERIMENTS - BATCH 

The results from one of the batch experiments on 5 g/1 of glucose are shown in 

Figures 2.1.1 to 2.1.6. The data obtained from another batch glucose experiment 

are shown in Figures 4.4.1 to 4.4.9. Throughout the remainder of this thesis, the 

noisy solid lines are reserved for the directly measured or derived on-line continuous 

values. The circles represent the values determined in separate off-line samples by 

the methods described in the chapter on materials and methods. The yield coeffi

cients based on glucose and ethanol are the direct result of applying macroscopic 
\, 

and elemental material balances on the fermentor. 

The results of one of the many batch growth experiments of S. cerevisiae con

ducted on 5 g/1 of ethanol are also described in Figures 4.4.10 to 4.4.17. 

4.5 TRANSIENT EXPERIMENTS - CONTINUOUS 

The determination of the kernel was carried out for an experiment in which 

the dilution rate was shifted up from 0.100 hr- 1 to 0.288 hr- 1 • As before, S. 

cerevisiae was grown and maintained continuously with a constant feed of 5 g/1 of 

glucose. The resulting kernel is shown in Figure 4.5.1. The response of the glucose 

concentration in this experiment was close to an impulse; consequently, the intrinsic 

specific growth rate was nearly an impulse as well. Thus, it was able to derive the 

kernel function without resorting to the base function expansion in this case. The 

shape of the kernel function suggests that it has both a 0th-order element and a 

first-order element. 
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rate of base addition needed to maintain a constant pH in the fermentor. 
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Figure 4.4.4. Cell biomass concentration as a function of time in a batch fermentation 
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4.6 RESULTS 

The kernel obtained above is used to predict the batch response of the run pre

sented in Figures 2.1.1 to 2.1.6. The predictions of the time-lag model are presented 

in Figures 4.6.1 through 4.6:5, along with the off-line measurements represented by 

the circles. The smooth solid line next to the averaged noisy measurement in Fig

ure 4.6.1 represents the evolution of biomass concentration as a function of time 

based on the time-lag model of this thesis. For comparison, the time course pre

dicted by the corresponding Monod model is also shown in the same figure. Both 

of the curves are generated by using the same set of growth parameters obtained in 

the series of steady-state experiments described earlier; the only difference is that 

time-lag effects are recognized in the time-lag approach and ignored in the corre

sponding conventional Monod model. It can be seen that the time-lag approach 

gives a far superior prediction for the time variation of the biomass concentration 
' ., 

than the Monod model does. Similar predictions are also generated for the glucose 

and ethanol concentrations in Figures 4.6.2 and 4.6.3. Once again, the superiority 

of the time-lag model is well demonstrated in these two figures. 

The total growth rates predicted by both models are shown in Figure 4.6.4, 

and the specific growth rates are shown in Figure 4.6.5. These growth rate curves 

indicate the source of discrepancies in the two modeling approaches. According to 

the Monod model, the specific growth rate of the yeast is instantaneously raised 

to a high value and the growth starts immediately when the inoculum is placed 

inside the fermentor. On the other hand, the time-lag model predicts a slow rise in 

the specific growth rate, and only approximately 5 hours after the inoculation does 

the growth rate become significant. The time needed for the cells to synthesize 

the necessary intermediates and enzymes before a full growth can be ensured is 

accounted for in the time-lag model but neglected in the Monod model. As a 
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for the computer simulation are listed in Figure 4.6.6. 
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Figure 4.6.2. Comparison of the prediction of the glucose concentration as a function 

of time from the time-lag model and the Monod model in a batch fer
mentation of S. cerevisiae in 5.0 g/1 of glucose. The parameters used for 

the computer simulation are listed in Figure 4.6.6. 
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result, the Monod model predicts a much higher growth rate in the beginning of 

the batch fermentation, which leads to a much sooner exhaustion of the glucose 

substrate. 

The existence of two distinct and completely separated growth regions for the 

diauxic growth of yeast on glucose and ethanol is experimentally demonstrated in 

Figure 2.1.3, which shows the time course of the total growth rate calculated from 

the on-line pH activities. Because the oxygen uptake rate and the carbon dioxide 

evolution rate are indicative of the level of intracellular metabolic activities, the 

gas measurements shown in Figures 2.1.1 and 2.1.2 further confirm that the growth 

regions are separated. These two separated growth regions are predicted by the 

time-lag model as shown in Figure 4.6.4. Note that although the Monod model also 

predicts two regions of growth arising from the consecutive consumption of glucose 

and ethanol, they are not separated and qualitatively incorrect. The drop in the 
,, 

growth rate predicted by the Monod model occurs too soon and is quantitatively 

incorrect, as well. 

The kernel function used to generate the predicted curves for the time-lag 

model is shown in Figure 4.6.6, along with the values for all the other parameters. 

The sensitivity of the time-lag model to the variations in the assumed model 

parameters is studied. The values of the maximum specific growth rate, µm, the 

half-saturation constant, Ka, the glucose to cell yield coefficient, Ya, the product 

(ethanol) yield coefficient, Yv, the relative order of the kernel, ao, and the lag 

time-constant, T, are varied around the original settings. Shown in Figures 4.6. 7 

through 4.6.13 are the changes in the predicted values of the biomass concentration, 

the glucose concentration, the ethanol concentration, and the specific growth rate 

as these model parameters are varied. One sees that the response is affected when 

µm is changed in either direction by 10 %, while even a 10-fold change in the value 
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of K 8 does not seriously affect the prediction. The relative insensitivity of the 

concentration response to Ks can be explained in terms of the much higher glucose 

concentration prevailing throughout the first phase of the fermentation compared to 

the value of K 8 • Changes in the values of Y8 affect mainly the biomass and ethanol 

concentrations during the diauxic phase, whereas changes in the values of Yv affect 

only the ethanol concentration. One interesting observation is that the relative order 

of the time-lag kernel shifts the concentration responses only indistinctly. Similar 

to the insensitivity of K~, this is only true for a batch fermentation. Finally, the lag 

time-constant of the kernel function strongly influences the course of the output. 

Of course, in the limit as T approaches O, one expects the behavior to approach 

that predicted by the Monad model shown in Figures 4.6.1 through 4.6.6. 

Because a small amount of the cell-free filtrate is destructively used in the anal

ysis of the glucose concentration, the flow rate associated with the biomass dynamic 
., 

equation is slightly lower than the flow rate associated with the glucose dynamic 

equation. Physically, this is equivalent to the existence of a cell recycle loop. Math

ematically, slightly different dilution rates of D:x and D 8 were appropriately used in 

the analysis of the system dynamics, as described by the following set of equations, 

when the glucose analyzer was in operation: 

dx 
dt = -D:xx + µ(s)x (4.6.1) 

ds I 
dt = D~(s1 - s) - Ys µ(s)x (4.6.2) 

dp I 
dt = -DsP + Yvµ(s)x. (4.6.3) 

For a batch fermentor, the variable Ds is equal to 0, and the variable D:x is equal 

to -~, where F is the flow rate of the filtrate stream in the continuous cross-flow 

filter flowing into the glucose analyzer and V is the instantaneous volume of the 

broth in the bioreactor. For a continuous fermentor, D,, is the dilution rate based 
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Figure 4.6.10. Effect of the ethanol to biomass yield coefficient, Yp, on the predicted 

trajectories of a) biomass concentration, b) glucose concentration, and 

c) ethanol concentration. 
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on the inlet nutrient flow rate, i.e. ~' and Dx is the dilution rate based on the 

outlet waste flow rate, i.e. Fo;;F. The Dxx term does not represent the loss of 

biomass due to the outflow; it represents the effect of concentrating the biomass 

material due to loss of fluid in the filter. Consequently, the continued increase in 

the biomass concentration in Figure 4.6.1 after the exhaustion of all the substrates 

does not suggest a continued cell growth but reflects the concentration effect of the 

glucose analyzer. The glucose analyzer continued to be in operation even after the 

exhaustion of glucose was evident. 

4. 7 DISCUSSION 

An observability test shows that the Kalman filter cannot observe the state of 

substrate concentration in Equations (2.2.5) and (2.2.6) with only the measurements 

of the total growth rate and the substrate to biomass yield coefficient. Because of 

the relatively small value of the glucose. concentration observed throughout most ., 

of the continuous runs, the Kalman filter technique failed to estimate the glucose 

concentration correctly in the absence of a continuous glucose measurement. For 

a very small glucose concentration, s, the term D ( s J - s) is not sensitive to the 

actual value of s. It is the difference of s 1 - s, not s alone, that makes up the term. 

Thus, a 0.05 g/1 (i.e., 1 %) of uncertainty in the feed glucose concentration of 5.0 

g/1 will cause the same absolute magnitude of uncertainty in the estimated values 

for the residual glucose concentration, which itself is 0.01-0.03 g/1 under most of 

the circumstances. Therefore, a 1 % uncertainty in the feed glucose concentration 

translates into an error of 500 % in the estimate for the residual glucose concen

tration in a fermentor. This is clearly not acceptable, and an independent means 

of measuring the glucose concentration continuously on-line is needed. Similarly 

a small error in the measurement of the dilution rate will also lead to the same 

conclusion. 
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Furthermore, the curve of the specific growth rate versus the limiting substrate 

concentration is extremely steep at low glucose concentrations. Consequently, the 

estimate for the intrinsic specific growth rate from the substrate concentration mea

surement is also exceedingly sensitive to the glucose concentration, and idealistically, 

an experiment should be planned such that the glucose concentration profile as a 

function of time is as near an impulse as possible to achieve a dependable estimation 

of the kernel. 

Although the above discussion concerns the fermentation of glucose, the same 

argument over the substrate observability problem of the Kalman filter and the 

sensitivity of the µ(s) function also applies to the continuous fermentation in which 

ethanol is employed as the limiting substrate. 

Because of these difficulties, it is suggested that some other variables represent

ing the intrinsic growth rate, perhaps soµie rate-limiting enzymes that participate 
'~ 

in the "master reaction" of a complex reaction network, be identified and their time 

course be monitored with an advanced analytic technique. Such capability will 

greatly enhance the observability of the kernel. Perhaps those types of kernel asso

ciated with variables other than the specific growth rate can be determined as well. 

In general, vital information is stored within the composition of the intracellular 

mixture of bio-molecules. To gain a more fundamental understanding on the work

ings of a cell, it is necessary that one quantify this composition. Analogous to the 

use of a microscope that allows an investigator to observe the shape of an object in 

greater spatial detail, the capability to monitor continuously the changes in the in

ternal biochemical composition will allow one to see events in greater chronological 

detail. Thus, achieving a continuous measurement capability is equivalent to pos

sessing a time magnifier. This capability poses perhaps the greatest promise in the 

true understanding of a biological system. Many biologically important molecules 
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can be detected with a spectrofluorometer because they can be photometrically ex

cited to give fluorescent emission. Among these are a variety of proteins, vitamins, 

· cytochromes, amino acids, and NADH. Many more can be specifically labelled with 

appropriate fluorescent stains and measured. A fully automated cytoflowmeter or a 

scanning fluorescence spectrophotometer will greatly contribute toward continuous 

quantification of the intracellular composition. 

We view a microbial cell as a self-controlled and self-sustained chemical reactor. 

Ultimately, one would like to be able to control directly the reaction conditions. This 

is theoretically possible when enough information is available on the cell metabolism, 

regulation, and replication process, but the jump from the basic understanding to 

the actual implementation of that learning is a major one. This modeling work, 

aimed at the immediate objective of automating the entire fermentation system, is 

part of the larger effort toward that jump. 

No matter how small a cell is, it is a complete chemical reactor in itself. Cur

rently, one has almost no control over the internal composition of a cell; one is to

tally at the mercy of the runaway chemical reactor. The runaway chemical reactor's 

course of action generally benefits the microorganism and ensures its own survival, 

but it seldom matches the interests of the helpless operator. One can no longer 

wait and hope to reap profit from the natural action of a cell; he must have at least 

some control over the events occurring inside the microscopic cell. Even a limited 

control capability will greatly enhance the performance of a bioreactor. During the 

past decade, there has been an overwhelming enthusiasm toward the modification 

of one of the components in this chemical reactor, namely the DNA component, by 

applying either the genetic manipulation techniques or the hybridoma technology 

to bestow a cell with novel capabilities. Quite frequently, the desired genes are 
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already in place in the natural environment and there is no need to encode such ca

pabilities. However, the abundant expression of such genes into the desired product 

is not· guaranteed, whether they are naturally derived or artificially encoded. The 

level of effort in the bioprocess engineering has not matched that in the field of gene 

manipulation. Thus, one may build a machine and yet not know how to operate it. 

One is surrounded by an abundance of highly sophisticated hardware ( the cells). 

And if benefit is to be derived from this hardware, one must generate the software 

needed to drive the hardware to meet the society's needs. This work comprises a 

step toward the improved operation of this new machine and the elimination of the 

disparity between the potential capability of the machine and the actual output. 

To operate the complex chemical reactor, one can either scale down the cell 

handling equipment or scale up the cell to a more manageable size. In this way, one 

can more closely control the factors affecting the synthesis of the desired product, 

such as the addition of certain inducers and promoters. For example, one can 

formulate the chemical composition and reproduce the same condition in the reactor 

in such a way that the desired product can be selectively synthesized and the waste 

minimized. 

Because of the complex nutrient requirement, until about a decade ago a chemi

cally well-defined synthetic medium without the addition of serum for the cultivation 

of an animal cell culture was not possible, but today it is. We hope that one day 

we can formulate the exact conditions existing inside a cell and scale up a cell to 

a larger biochemical reactor. Indeed, this will be the largest scale up problem one 

has ever encountered. Undoubtedly, this will be the most complex chemical reactor 

man has ever designed, which will also demand the most advanced control formula

tion for its operation. Included in this ultimate process control formulation will not 

only be the process controller algorithm but also the solutions to the problems in 
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sensor development, regulator design, the identification of the controlled variables 

and the manipulated variables, and the process modeling and optimization. 
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CHAPTER 5 

CONCLUSIONS AND PROPOSALS 
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5.1 CONCLUSIONS 

The importance and the presence of time lag have been recognized for many 

years, and in this thesis we have attempted to offer a simple mathematical means 

by which the idea of time-lag can be incorporated into the existing models without 

drastically increasing the complexity of the models. Armed with the time-lag kernel, 

the proposed model can predict the transient behaviors as well as the steady-state 

behaviors. The kernel is shown to be the by-product during the reduction of a 

structured model to an equivalent unstructured model. It contains all the informa

tion that is lost during model reduction; all the biological knowledge is compressed 

into a time-lag kernel. It is powerful, and it has biological significance and a phys

ical interpretation. The representation of a system's dynamics in an input-output 

format makes it straightforward to identify the cause-effect relationship, a quality 

indispensable in process design, control, and optimization. 

Furthermore, it is shown that despite the presence of time-lag integrals in the 

dynamic equations, the proposed approach is indeed simpler. By expanding the 

lag kernel in a series of exponential distribution functions, the integro-differential 

equations can be easily reduced to a set of first-order ordinary differential equations 

for which the mathematical theories are well developed and various established 

analytical techniques are immediately available. It is emphasized that one of the 

advantages of the proposed methodology is precisely the manner in which the time

lag equations are formulated to allow the direct application of these tools. The 

stability analysis of a set of equations containing time-lags, for example, is the 

result of the direct application of such well established mathematical methods. 

Finally, it is demonstrated through computer simulated experiments that the 

time-lag kernels can be feasibly reconstructed from the presently available mea

surements. The steps required to elucidate the time-lag kernel are outlined and 
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executed. The time-lag kernels have been determined experimentally for a system 

of S. cerevisiae growing on glucose and ethanol. The performance of the time-lag 

model in predicting the actual transient behavior is shown to be much superior to 

that of the unstructured model that does not consider the time-lag effects. As far 

as the author is aware, this is the first time that steady-state data have been suc

cessfully used to describe the transient behavior in a rigorous manner. Among the 

commonly observed phenomena in a bioreactor correctly predicted by this model 

are the oscillatory trajectories, the asymmetrical transient behaviors following a 

shift-up or shift-down in the dilution rate in a continuous fermentor, and the lag 

phase and diauxic patterns in a batch fermentor. 

5.2 PROPOSALS AND FUTURE WORK 

As shown in Chapter 2, the time-lag approach to bioprocess modeling can be 

viewed as a method of lumping a set of r~actions. Other previously proposed lump-., 

ing techniques and dimension reduction methods should further enhance the appeal 

of the time-lag approach proposed herein. It is well known that the age of the 

inoculum also affects the length of the lag phase in the beginning of a batch fer

mentation. Further studies are also desirable to extend the time-lag kernel concept 

to account for the age or size distribution of a culture. On the other hand, the 

same transformation technique used here to eliminate the integral in a differential 

equation can be applied to the similar type of equations frequently encountered 

in various other fields. For example, the memory effect present in the studies of 

non-Newtonian polymeric fluids can be treated in a more general manner, and the 

memory function may be more readily related to the more fundamental underlining 

causes in terms of inter-molecular interactions, polymeric molecular conformation, 

or the stretching of chemical bonds. In addition, as demonstrated in Chapter 2, the 

solution of some of the non-Newtonian flow equations may be greatly simplified if 
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the memory function is expanded in terms of the exponential distribution functions 

instead of the more commonly used power series expansions. 

The time-lag kernel considered in this thesis is substantially associated with 

a set of linear time-invariant dynamic equations. The time-lag kernel approach to 

time dependent dynamic equations may be investigated as the next logical step. 

Highly nonlinear dynamic equations may be directly studied only as the final resort 

if quasi-linearization cannot adequately approximate the actual system. However, 

a visual or mental perception of the kernel for these more complicated situations 

may prove to be difficult for the uninitiated, and the gain may not be substantial 

to warrant the use of time-lag kernels because one of the major attractions of the 

time-lag kernel approach lies in its simplicity. Overreaching should be avoided. 

It is important to keep in mind that the proposed time-lag kernel offers a bal

ance between the two conventional appro.µ:hes. It offers an alternative for those who ., 

are caught in a situation where an unstructured model does not meet their needs 

and at the same time their means does not satisfy a structured model's appetite 

· for all the necessary parameters. Even when a close tracking of all the structured 

model's states becomes technically feasible in the future, installing all such capa

bilities in a bioreactor may not be prudent or expedient. It is originally proposed 

for use in the control and optimization of a fermentation process in which certain 

mechanisms may be too intricate, irrelevant, insignificant, or simply too impracti

cal to be troubled with. Granted, it is not suitable for the improved fundamental 

understanding of the dynamics of bioreactors; in this case, one ultimately needs to 

resort to a fully expanded structured model. Currently, no single modeling method 

is all powerful, and no such claim is made on this one, either. A model is a tool. 

As such, it can be extremely useful if it is chosen for the right job. Conversely, an 
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otherwise perfectly good tool can afflict damage to itself, the work, and even the 

operator if it is not applied judiciously. 

This modeling work contributes to the larger effort toward the ultimate objec

tive of the advanced control of a biological reactor. As repeatedly pointed out in 

Appendices E and G, the lack of reliable continuous on-line sensors and the inad

equacy of the heretofore proposed models constitute the bottleneck restricting the 

advancement of biochemical engineering. More effort is needed in the area of biosen

sor development. In the future studies, other recently developed instruments should 

be added to the fermentor. An ammonia electrode, and a variety of enzyme elec

trodes and enzyme thermistors will provide one with more valuable information. In 

the past few years, a gas chromatograph, a high performance liquid chromatograph, 

and a mass spectrometer have been interfaced to a computer by various independent 

investigators in the field of biotechnology, and the information obtained from these 
;, 

automated instruments, especially when they are operated simultaneously, should 

enable one to construct a very reliable model, which in turn can be of great asset in 

devising the strategy needed to control a fermentor. This includes various modes 

of fermentor operation, including a transient operation. 

One cannot overemphasize the fact that except for the fluorescence measure

ment of NADH, all the presently available probes capable of being interfaced to 

a computer measure the level of components outside the microbial cells, while the 

majority of the enzymatically catalyzed reactions occur inside a cell. In future 

research, other methods of detecting the internal concentrations should be investi

gated. For example, various fluorescence measurements, the use of tunable laser, 

development of on-line staining techniques coupled with the computer interfacing of 

a fl.ow cytometer should command more attention. The possibility of adapting re

cent advances in other areas, especially those in the clinical or immunological field, 
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should be seriously considered. For example the sonar techniques developed in the 

medical diagnostic field should be quite promising. It may be possible that ultra

sonic waves can be used to measure the cell size distribution nondestructively and 

to eliminate contaminants that have significantly different sizes from the working 

strain. 
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APPENDIX A 

EXTERNAL CONTROL OF PUMP SPEED 
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A EXTERNAL CONTROL OF PUMP SPEED 

Figure A.1 shows the schematic of the Master Flex pump speed controller ( Cole

Parmer). The control signal fl.ow and the current fl.ow that supplies power to the 

pump motor are indicated in the diagram. 

The voltage of the power supply, V H, and the voltage of the spent current after 

passing through the DC pump motor, VL, are extracted and fed into the feedback 

sensor. The difference in these two voltages represents the loss in the potential, 

thus, the speed of the pump motor. The feedback sensor converts this difference 

originally ranging between O and 115 volts into a voltage ranging between O and 

5 volts with respect to the signal ground, identical to the output from the speed 

setpoint. Notice that the signal ground in this speed controller circuit is 12 volts 

above the power ground, which is a floating one compared to the true earth ground 

due to the method employed in obtaining ,a rectified current source. The comparator 
•! 

subtracts the pump speed voltage from the setpoint voltage. This relatively weak 

signal is subsequently fed into a follower and converted into a stronger signal capable 

of driving the subsequent circuit. Finally, this strengthened signal is used to adjust 

VL in the ramp capacitor. Because the resistance in the pump motor has a fixed 

value, varying VL eventually has the same effect as controlling the speed of the 

pump. 

Because the Master Flex pump speed controller has a floating power ground 

and a similarly floating signal ground that are both quite different from the earth 

ground, directly replacing the speed set point voltage with the the digital-to-analog 

signals from a computer will create a path for a large current flow, as shown by 

the dotted line in Figure A.2. Thus, the direct connection will not work, and an 

interface circuit must be built to achieve common mode rejection and signal isolation 

between the speed controller and the computer. A direct connection without a 
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proper interface circuit will easily overload and burn out the power circuit in the 

pump speed controller, for the pump speed controller is made to believe that it is 

receiving a very large setpoint. Similarly, the computer is also in grave danger of 

being severely damaged, if the D / A board does not have built-in overload protection. 

Physical isolation between a computer and an actuating device can be achieved 

with an isolation amplifier, a transformer, or an opto-isolator, with an opto-isolator 

being the most compact, convenient, and inexpensive. An opto-isolator is composed 

of a light emitting diode and a light sensitive transistor pair. The intensity of light 

emitted from the diode depends on the current passing through it. The emitted light 

is detected by the light sensitive transistor. The current induced in the transistor 

in turn depends on the intensity of light it receives. Thus, working in concert, the 

current in one loop induces current in another loop. The current from one part 

of the circuit does not physically flow into the second part of the circuit; there is 
., 

no electrical connection. The signals are· connected only by a light transmission, 

accomplishing the electrical isolation. 

Two interface circuits utilizing opto-isolators were built. The first circuit dia

gram is shown in Figure A.3. In Part I of the circuit, the signal from the computer's 

D / A, ranging between O and 10 volts are converted into 1.01-1.05 volts required by 

the 4N30 opto-isolator. This conversion is necessary due to the highly nonlinear 

input-output response of the 4N30 chip. The range of 1.01-1.05 volts represents 

the narrow linear working limits of the 4N30 chip. This narrow working range 

also makes the adjustment of the potentiometers somewhat tricky. The first part 

of this circuit is powered by an external power source of +15V and -15V. Part II 

of the circuit converts output from the opto-isolator to 0-5 volts required by the 

speed setpoint. A double-throw switch is installed to change between LOCAL and 

REMOTE modes of setpoint inputs. 
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The second interface circuit is shown in Figure A.4. Part a) of the circuit, con

sisting of two nearly identical parallel parts, is used to duplicate the input current, 

•. - ..!!in.. 
ihn - R;,.. The current induced between the collector and the base of· the light 

sensitive transistor, i 1 , is a function, f() of the input current, i.e., 

Similarly, for the lower half of the circuit: 

The operational amplifiers # 1 and # 2 provide the respective currents i 1 and i2 • 

The input-output characteristics for the two opto-isolators should almost be the 

same, and they are also expected to vary hand-in-hand as they are both subjected 

to the same temperature change or as they age together. The feedback of the# 3 

operational amplifier enables one to equa~e: v1 = v2 • Thus, 

If R2 is tuned such that R1 = R2, then i2in = i1in• Finally, the output current, 

i2in, is provided by the transistor. The overall effect is that the input current is 

duplicated exactly in a current loop that is electrically isolated from the input, 

and the entire circuit is made insensitive to the nonlinear characteristics of the 

op to-isolator. 

Part b) of this second circuit simply converts the current into an output signal 

that can be received by the actuating device. The overall relationship between the 

input signal, Vin, and the output voltage, Vout, is expressed by: 

where v4 is adjusted by the pot R1. 
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Although these two isolation interface units were built specifically for the Mas

ter Flex speed pump controllers, the same interface circuit design can be employed 

repeatedly for many other applications as well. Note that because 4N30 requires 

lmA to operate, the critical input voltage is 2.2 volt if ~n is 2.2 KO. This critical 

input voltage can be overcome with additional minor modification to the existing 

circuit. In the final version, a Schmitt trigger and a solid state relay were added to 

reverse the direction of rotation in a peristaltic pump. The reverse flow was utilized 

in the programmed periodic backflushing of the continuous cell filtration unit. 



- 537-

APPENDIX B 

LISTING 

OF THE ON-LINE DATA ACQUISITION PROGRAM 
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(* ************************************************************************** *) 
(* ************************************************************************** *) 
(******The following program was compiled with MT Plus Pascal ***** *) 
(******compiler (Digital Research) and was one of the programs run ***** *) 
(******during some experiments in which the nutrient flow rate was ***** *) 
(******sinusoidally controlled. ***** *) 
(* ************************************************************************** *) 
(* ************************************************************************** *) 

PROGRAM EXPERIMENT; 

CONST PI~ 3.1416; 

TYPE 

VAR 

STRING9 = ARRAY[1 .. 9] OF CHAR; 

F1,F2,F3 TEXT; (*datafile 
F1_NAME STRING; (*datafile 
F2_NAME STRING; (*datafile 
F3_NAME STRING; (*datafile 
F_RESULT INTEGER; (*datafile 
TIME ARRAY[0 .. 12] OF BYTE; 
DAYS ARRAY[0 .. 6] OF STRING9; 
YEAR 1982 .. 1990; 
MONTH 1 .. 12; 
DAY 1 .. 31; 
WEEKDAY 0 .. 6; 
HOUR 0 .. 23; 
MINUTE 0 .. 69; 
SECOND 0 .. 69; 
COMMENT STRING; 

identifier *) 
name*) 
name for base pump 
name for acid pump 
*) 

PHHIGHA BOOLEAN; (* acid addition ON*) 
PHHIGHB BOOLEAN; (* base addition ON*) 

activity*) 
activity•) 

OLDSEC INTEGER; (* time of last round of sampling*) 
DELTA_T INTEGER; (* data sampling interval*) 
COUNT INTEGER; (* number of sec the pH controller is ON*) 
N_SEC INTEGER; (* the time of pH controller ON/OFF*) 
TAKE INTEGER; (* number of sample to average*) 
I INTEGER; (* ith data point*) 
PHA REAL; (* voltage across the acid ON/OFF relay*) 
PHB REAL; (* voltage across the base ON/OFF relay*) 
VOLTAGE REAL; (* channel voltage*) 
DA_PERIOD REAL; (* sine period in# of data points*) 
DA_SHIFT REAL; (* sine phase shift in degree*) 
DA_DEGREE REAL; (* sine angle in degree•) 
DA_OMEGA REAL; (* sine angle inradian *) 
DA_VMAX REAL; (* maximum output voltage to channel O *) 
DA_VMIN REAL; (* minumum output voltage to channel O *) 
DA_VOLTAGE: REAL; (* voltage to be output to channel O *) 
DA_AMP REAL; (* amplitute for the sine wave*) 
DA_BASE REAL; (* base for the sine wave*) 
DA_I INTEGER; (* counter for sine wave*) 
CHO,CH1,CH2,CH3,CH4,CH5,CH6,CH7,CH8 : REAL;(* channel voltage*) 
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(* ************************************************************************** *) 
(*****The following function is used to detect the pressing of keyboard****) 
(* ************************************************************************** *) 

EXTERNAL FUNCTION CBDOS(FUN, PARM: INTEGER) : INTEGER; 

(* ************************************************************************** *) 
(******enter file informations, dates, and comments ***** *) 
(* ************************************************************************** *) 

PROCEDURE INITIALIZE; 

BEGIN(* begin of procedure INITIALIZE*) 
WRITE('ENTER NAME OF DATAFILE: 
WRITE('ENTER NAME OF PH FILE - BASE: 
WRITE('ENTER NAME OF PH FILE - ACID: 
WRITELN('ENTER ANY COMMENT ON THIS RUN: 
WRITE('ENTER NUMBER OF SECONDS BETWEEN SAMPLING: 

'); READLN(F1_NAME); 
'); READLN(F2_NAME); 
'); READLN(F3_NAME); 
'); READLN(COMMENT); 
'); READLN(DELTA_T); 

WRITELN ( • ANALYSER CHANNEL #') ; 
WRITELN(' OXYGEN O'); 
WRITELN(' CO2 1'); 
WRITELN(' PH-HIGH-BASE 2'); 
WRITELN(' PRESSURE 3'); 
WRITELN(' OD 4'); 
WRITELN(' GLUCOSE 6'); 
WRITELN(' ETHANOL 6'); 
WRITELN(' PH-HIGH-ACID 7') 

END; (* end of procedure INITIALIZE*) 
• l 

(* ************************************************************************** *) 
(******Enter D/A converter information ***** *) 
(* ************************************************************************** *) 

PROCEDURE ASK_DA; 

BEGIN(* begin of procedure ASK_DA *) 
WRITE('ENTER THE MAXIMUM VOLTAGE FOR DA: 
WRITE('ENTER THE MINIMUM VOLTAGE FOR DA: 
WRITE('ENTER THE PERIOD IN POINTS: 
WRITE('ENTER THE PHASE SHIFT IN DEGREES: 
DA_AMP :-= (DA_VMAX - DA_VMIN)/2.0; 
DA_BASE :- (DA_VMAX + DA_VMIN)/2.0; 
DA_I :-= O; 

END; (* end of procedure ASK_DA *) 

'); READLN(DA_VMAX); 
'); READLN(DA_VMIN); 
'); READLN(DA_PERIOD); 
'); READLN(DA_SHIFT); 

(* ************************************************************************** *) 
(* ***** A/D converter with amplification ***** *) 
(* ************************************************************************** *) 

FUNCTION AD(CHANNEL,AMPLIF: INTEGER) : REAL; 



CONST PORT= $AO; 
MASK= $20; 
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VAR LOW_BYTE,HIGH_BYTE: INTEGER; 

BEGIN(* begin of function AD*) 

(* address of the base port*) 
(* completion code for A/D *) 

(* store the amplification factor in the first port*) 
IF AMPLIF=4 
THEN OUT[PORT]:=$02 
ELSE OUT[PORT]:=$00; 

(* store the channel number in the second port*) 
OUT[(PORT+1)]:=CHANNEL; 
(* output OOhex to the third port to trigger A/D conversion*) 
OUT[(PORT+2)]:=$00; 
(* wait for the completion of A/D conversion, as signaled by the first port 

returning a value of MASK*) 
WAIT(PORT,MASK,TRUE); 
(* obtain the result from the third port (low byte) and the fourth port 

(high byte), with a 12-bit resolution, i.e. 0 to 2047 *) 
LOW_BYTE :=INP[(PORT+2)]; 
HIGH_BYTE:=INP[(PORT+3)]; 
(* The most significant bit contained in the fourth port determines the 

polarity of the voltage*) 
IF HIGH_BYTE > 128 

THEN 
BEGIN 

HIGH_BYTE:=HIGH_BYTE-255; 
LOW_BYTE :=LOW_BYTE -256 

END; . 
(* 0 corresponds to 0.0 volt; 2047 corresponds to 6.0 volt*) 
AD:= 6.0*(266.0*HIGH_BYTE+LOW_BYTE)/2047.0 

END; (* end of function AD*) 

(* ************************************************************************** *) 
(• ***** D/A converter ***** •) 
(* ************************************************************************** *) 

PROCEDURE DA(VAR VOLTAGE:REAL; CHANNEL:INTEGER); 

CONST PORT• $CO; 

VAR HIGH_BYTE,LOW_BYTE 
DA_VOLTAGE 

INTEGER; 
REAL; 

(• address of the base port*) 

BEGIN(• begin of procedure DA•) 
(* D/A is the reverse of the A/D listed above•) 
(* The D/A range is set at -10.0 to +10.0 volt•) 
IF VOLTAGE>• 0.0 

THEN 
BEGIN 

DA_VOLTAGE:• VOLTAGE; 
HIGH_BYTE :• TRUNC(2047•DA_VOLTAGE/2560); 
LOW_BYTE := TRUNC(2047•DA_VOLTAGE/10-256•HIGH_BYTE); 
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OUT[(PORT+CHANNEL*2)] := HIGH_BYTE; 
OUT[(PORT+CHANNEL*2+1)] := LOW_BYTE 

END 
ELSE 

BEGIN 
DA_VOLTAGE:= VOLTAGE+ 10.0; 
HIGH_BYTE := TRUNC(2047*DA_VOLTAGE/2560); 
LOW_BYTE := TRUNC(2047*DA_VOLTAGE/10-256*HIGH_BYTE); 
OUT[(PORT+CHANNEL*2)] := HIGH_BYTE + 128; 
OUT[(PORT+CHANNEL*2+1)] := LOW_BYTE 

END; 
END; (* end of procedure DA*) 

(* ************************************************************************** *) 
(******read real time clock RTC-100 ***** *) 
(* ************************************************************************** *) 

PROCEDURE READ_TIME; 

CONST PORTO =24; 
PORT1 =25; 
PORT2 =26; 
PORT3 =27; 

VAR I : INTEGER; 

(* address of the base port*) 

BEGIN(* begin of READ REAL-TIME-CLOCK*) 
OUT[PORT1]:=$FO; 
OUT[PORT0]:=$0F; 
OUT[PORT3]: .. $FC; 
OUT[PORT1]:=$F4; 
FOR I:=-0 TO 12 DO 

BEGIN 
OUT[PORTO]:=I; 
TIME[I]:=SHR( INP[PORTO], 4) 

END; 
OUT[PORT1]:•$F8; 
OUT[PORT0]:•$0F; 
OUT[PORT3]:•$F8; 
OUT[PORT1]:•$FC; 
OUT[PORT0]:•$0F; 
YEAR:•(TIME[12]*10)+TIME[11]; 
MONTH:•((TIME[10] t 3)*10)+TIME[9]; 
DAY:•(TIME(8]•10)+TIME[7]; 
WEEKDAY:•TIME[6]; 
HOUR:=((TIME[6] t 3)*10)+TIME[4]; 
MINUTE:•(TIME[3]*10)+TIME(2]; 
SECOND:•(TIME[1]*10)+TIME[O] 

END; (* end of READ REAL-TIME-CLOCK*) 

(* ************************************************************************** *) 
(******read seconds off real time clock RTC-100 ***** •) 



- 542 -

(* ************************************************************************** *) 

PROCEDURE READ_SEC; 

CONST PORTO =24; 
PORT1 =25; 
PORT2 =26; 
PORT3 =27; 

BEGIN(* begin of READ_SEC *) 
OUT[PORT1]:=$FO; 
OUT[PORT0]:=$0F; 
OUT[PORT3]:=$FC; 
OUT[PORT1]:=$F4; 
OUT[PORTO]:=O; 
TIME[O]:=SHR(INP[PORT0],4); 
OUT [PORTO] : =1; 
TIME[1]:=SHR(INP[PORT0],4); 
OUT[PORT1]:=$F8; 
OUT[PORT0]:=$0F; 
OUT[PORT3]:=$F8; 
OUT[PORT1]:=$FC; 
OUT[PORTO] :=$OF; 
SECOND:=(TIME[1]*10)+TIME[O] 

END; (* end of READ_SEC *) 

(* address of the base port*) 

(* ************************************************************************** *) 
(* ************************************************************************** *) 
(******take in lab data with chann~ls 0-7 *) ***** *) 
(******output voltage to channel Oto control the nutrient pump ***** *) 
(* ************************************************************************** *) 
(* ************************************************************************** *) 

BEGIN (* begin of EXPERIMENT*) 
(* read in filename, sampling time, and comments*) 
INITIALIZE; 
ASK_DA; 

(* open data output 
ASSIGN(F1,F1_NAME); 
ASSIGN(F2,F2_NAME); 
ASSIGN(F3,F3_NAME); 

(* output comment*) 
WRITELN(F1,COMMENT); 

file and pH output file*) 
REWRITE(F1); 
REWRITE(F2); 
REWRITE(F3); 

(* read in the current time and initialize*) 
READ_TIME; 
WRITE(F1,MONTH:2, '/',DAY:2,'/',YEAR:2,' '); 
WRITELN(F1,HOUR:2,':',MINUTE:2,':',SECOND:2,' ',DELTA_T:3,' seconds/sample'); 
PHHIGHB:•FALSE; 
PHHIGHA:-=FALSE; 
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(* wait until the initial number is entered*) 
WRITE('WHEN READY, ENTER THE INITIAL NUMBER, (E.G. 0) '); READLN(I); 

(* ************************************************************************** *) 
(* keep taking data until CTRL-C is pressed*) 
REPEAT 

(* ********************************************************************** *) 
(* calculate the sinusoidal voltage with the given amplitude and period*) 
DA_OMEGA := DA_I/DA_PERIOD + DA_SHIFT/360.0; 
DA_DEGREE := DA_OMEGA*360.0; 
DA_VOLTAGE := DA_AMP * SIN(2.0*PI*DA_OMEGA) + DA_BASE; 

(* output calculated voltage to D/A converter*) 
DA(DA_VOLTAGE,O); 

(* restart the period when the end of the period is reached*) 
IF DA_I >= DAYERIOD THEN DA_I:=O; 
DA_I := DA_I+1; 

(* ********************************************************************** *) 
(* initialize at the start of each datum interval*) 
I:=I+1; 
N_SEC:=O; 
TAKE:=O; 
COUNT:=O; 

(* keep reading A/D and averaging\,throughout the datum interval *) 
WHILE ( DELTA_T > N_SEC) DO 

BEGIN(* keep taking data and average*) 

(* ****************************************************************** *) 
TAKE:-=TAKE+1; 
VOLTAGE:•AD(0,1); 
VOLTAGE:mAD(1,1); 
VOLTAGE:-=AD(3,1); 
VOLTAGE:-=AD(4,4); 
VOLTAGE:-=AD(6,4); 
VOLTAGE:•AD(6,4); 

CHO:a(CHO•(TAKE-1)+VOLTAGE)/TAKE; 
CH1:•(CH1•(TAKE-1)+VOLTAGE)/TAKE; 
CH3:•(CH3•(TAKE-1)+VOLTAGE)/TAKE; 
CH4:•(CH4•(TAKE-1)+VOLTAGE)/TAKE; 
CH6:•(CH6•(TAKE-1)+VOLTAGE)/TAKE; 
CH6:•(CH6•(TAKE-1)+VOLTAGE)/TAKE; 

(• ****************************************************************** •) 
(• read pH controller information once every second•) 
READ_SEC; 

IF SECOND<>OLDSEC THEN 

BEGIN(* if second<>oldsec *) 

(* base addition information•) 
PHB:-=AD(2,1); 

(• keep track of the number of second the pH controller is ON•) 
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(* output to a file recording the activity of the base pump*) 
IF PHB > 0.5 THEN 

BEGIN 
COUNT:=COUNT+1; 
IF NOT PHHIGHB THEN 

BEGIN 
WRITE(F2,I:6,N_SEC:3,' -'); 
PHHIGHB:=TRUE 

END 
END 

ELSE IF PHHIGHB THEN 
BEGIN 

WRITELN(F2,I:6,N_SEC:3); 
PHHIGHB:=FALSE 

END; 

(* acid addition information*) 
PHA:=AD(7,1); 

(* keep track of the number of second the pH controller is ON•) 
(• output to a file recording the activity of the acid pump•) 
IF PHA > 0.5 THEN 

BEGIN 
COUNT:=COUNT+1; 
IF NOT PHHIGHA THEN 

BEGIN 
WRITE(F3,I:6,N_SEC:3,' -'); 
PHHIGHA:=TRUE 

END 
END 

ELSE IF PHHIGHA THEN 
BEGIN 

WRITELN(F3,I:6,N_SEC:3); 
PHHIGHA:=FALSE 

END; 

OLDSEC:=SECOND; 
N_SEC:=N_SEC+1 

END(• if second<>oldsec then•) 

END; (* keep taking data and average•) 

(* ********************************************************************** •) 
(• convert the OD and glucose voltage to absorbance •) 
CH4:=CH4/4; 
CH4:=-LN(CH4)/2.303; 
CH5:=CH5/4; 
CH5:=-LN(CH5)/2.303; 

(• output data both to data files and to screen in column format•) 
(• 1st column oxygen •) 
(• 2nd column ... carbon dioxide•) 
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(* 3rd column pH controller *) 
(* 4th column pressure *) 
(* 5th column biomass *) 
(* 6th column glucose *) 
(* 7th column ethanol *) 

WRITELN(F1,I:6,CH0:7:3,CH1:7:3,COUNT:4,CH3:7:3,CH4:7:3,CH5:7:3,CH6:7:3,DA_VOLTAGE:7:3); 
WRITELN( 

I:6,CH0:7:3,CH1:7:3,COUNT:4,CH3:7:3,CH4:7:3,CH5:7:3,CH6:7:3,DA_DEGREE:8:3); 

(* CTRL-A resets the values for the D/A converter*) 
IF ~BDOS(06,255) = $01 THEN ASK_DA; 

(* keep taking data until CTRL-C is pressed*) 
UNTIL ~BDOS(06,255)=$03; (* CTRL-C terminates data taking*) 

CLOSE(F1,F_RESULT); 
CLOSE(F2,F_RESULT); 
CLOSE(F3,F_RESULT); 

END. (* end of EXPERIMENT*) 

(* ************************************************************************** *) 
(* ************************************************************************** *) 



-546-

APPENDIX C 

LISTING 

OF THE DATA ANALYSIS CODES 
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C ***************************************************************************** 
C ***************************************************************************** 
c These programs are used to convert the raw laboratory data into 
c more meaningful information. 
c REGRESS regression analysis, used to obtain calibration curves. 
c BIOMASS calculate the biomass concentration from lab data. 
c GLUCOSE calculate the glucose concentration from lab data. 
c ETHANOL calculate the ethanol concentration from lab data. 
c CEROUR calculate CER, OUR, and RQ from lab data. 
c PH calculate the ammonia consumption rate, RNH3 
c BALANCE calculate yield coefficients based on CER, OUR, and RNH3 
c KALMAN Kalman filter 
C ***************************************************************************** 
C ***************************************************************************** 

C ***************************************************************************** 
C ***************************************************************************** 
c This program finds the leastsquare fit of a set of points to power expansions. 
c n = max number of independent measurements 
c ipt = number of independent measurements 
c k = max order of fit= kk-3 
c mdp(l) = order of fit= iorder - 1 
c eresp absolute weight (Y/n) 
c mresp = more points to read (Y/n) 
c wresp read weight from the same file (y/N) 
c xresp = write x to out.out file (y/N) 
c cresp = center the analysis (y/N) 
c The least-squaree cureve at xis (rl.'ght after the exit from RLFOR) ... 
c y(x) • b(iorder,2) + b(1,2)*x + b(2,2)*X**2 + b(3,2)*X**3 
c + ... + b(iorder-1,2)*x**iorder 
c To increase accuracy, perform analysis with an artificial center. 
c Link with IMSL's RLFOR in REGRSS.LIB 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM REGRESS 
parameter (n=600,k=7,kk=10) 
character fname•40,resp*1,eresp*1,mresp*1,wresp*1,cresp*1,xresp*1 
dimension xyw(n,kk),mdp(3),albp(2),anova(13),b(kk,12),pred(1,1) 
real•8 wk(2000) 

C ***************************************************************************** 
c Read in the data of x, y, and weight 
C ***************************************************************************** 

write(•,600)' assign absolute weight (Y/n) ' 
read(*,600)eresp 
write(•,600)' read data from a file (Y/n)• 
read(*,600)resp 

C ***************************************************************************** 
c Read data from terminal 
C ***************************************************************************** 

if(resp .eq. •n• .or. resp .eq. 'N')then 
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write(*,600)' enter independent k dependent variables k weight:' 
write(*,600) 
do 5 i=1,n 

write(*,651)i 
651 format(' x(',i2, ')= ') 

read(*,502)xyw(i,1) 
write(*,652)i 

652 format(' y(' ,i2, ')= ') 
read(*,502)xyw(i,2) 
if(eresp .eq. 'n' .or. eresp .eq. 'N')then 

write(*,600)' enter the% error: ' 
read(*,502)error 
xyw(i,3)=xyw(i,2)*xyw(i,2)*error*error 

else 
xyw(i,3)=1. 

endif 
write(*,600)' more data (Y/n)' 
read(*,500)mresp 

if(mresp .eq. 'n' .or. mresp .eq. 'N')goto 6 
5 continue 
6 ipt=i 

write(*,654)ipt 
654 format(' Number of points read ',i5) 

write(*,600) 

C ***************************************************************************** 
c Read data from a file 
C ***************************************************************************** 

else ~\ 
write(*,600)' enter filename: ' 
read(*,500)fname 
open(1,file=fname,status='old') 
write(*,600)' read weight from the same file (y/N)' 
read(*,500)wresp 
if(wresp .eq. 'y' .or. wresp .eq. 'Y')then 

do 10 i=1,n 
read(1,*,end=11)xyw(i,1),xyw(i,2),xyw(i,3) 
xyw(i,3)=xyw(i,3)*xyw(i,3) 

10 continue 
11 close(1) 

20 

else 
if(eresp .eq. 'n' .or. eresp .eq. 'N')then 

write(*,600)' enter the% error ' 
read(*,602)error 

endif 
do 20· i-1,n 

read(1,*,end=21)xyw(i,1),xyw(i,2) 
if(eresp .eq. 'n' .or. eresp .eq. 'N')then 

xyw(i,3)=xyw(i,2)*xyw(i,2)*error*error 
else 

xyw(i,3)=1. 
endif 

continue 



21 close(!) 
endif 
ipt=i-1 
write(*,654)ipt 
write(*,600) 

endif 
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C ***************************************************************************** 
c Center the analysis 
C ***************************************************************************** 

write(*,600)' want to shift the center for calculation (y/N)' 
read(*,600)cresp 
if(cresp .eq. 'y' .or. cresp .eq. 'Y')then 

write(*,600)' enter the center for x: ' 
read(*,602)xcent 
do 30 i=1,ipt 

xyw(i,1)=xyw(i,1)-xcent 
30 continue 

endif 

C ***************************************************************************** 
c Find the least square estimate 
C ***************************************************************************** 

mdp(3)=0 
albp(1)=0.05 
write(*,600)' enter the order of fit: ' 
read(*,601)iorder 
mdp(1)=iorder - 1 
call rlfor(xyw ,n, ipt, 100. ,mdp, a,lbp,anova, b,kk;pred, 1, wk, ier) 

C ***********************************~***************************************** 
c Shift the coefficient given by RLF0R subroutine so that the intercept is the 
c 1st element in b(i,2). 
C ***************************************************************************** 

temp=b(iorder,2) 
do 40 i=iorder,2,-1 

40 b(i,2)=b(i-1,2) 
b(1,2)=temp 

write(•,600) 
write(•,600)' the least square coefficients: ' 
write(•,600) 
write(•,602)(b(i,2),i=1,iorder) 
write(•,600) 

C ***************************************************************************** 
c Generate a yy vs. xx curve 
C ***************************************************************************** 

open(2,file='out.out',status='new') 
write(•,600)' enter number of points to be generated in output: ' 
read(•,601)npt 
write(•,600)' enter the starting x-value: ' 
read(•,602)xstart 
write(•,600)' enter the step size: ' 
read(•,602)h 
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write(*,600)' want to write x values (y/N) ' 
read(*,500)xresp 

do 60 j=1,npt 
xx=float(j)*h+xstart 

C ***************************************************************************** 
c Generate a polynomial 
C ***************************************************************************** 

yy=b(iorder,2) 
do 65 ii=l,iorder-1 

65 yy=b(iorder-ii,2)+xx*yy 

if(xresp .eq. 'y' .or. xresp .eq. 'Y')then 
write(2,602)xx,yy 

else 
write(2,602)yy 

endif 
60 continue 

close(2) 

C ***************************************************************************** 
c Standard formats 
C ***************************************************************************** 
500 format(a) 
501 format(i4) 
502 format(e13.5) 
600 format(a\) 
602 format(1pe13.5,9e13.5) 

stop 'goodbye' 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c This program reads in on-line OD readings & convert them to 
c biomass concentration (g/1) based on a calibration curve 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM BIOMASS 
character fname•40,resp*1 

C ***************************************************************************** 
c Calibration curve to convert OD flow cell absorbance to dry wt 
C ***************************************************************************** 

write(*,600)' enter calibration curve aO: ' 
read(•,602)a0 
write(•,600)' enter calibration curve al: ' 
read(•,602)a1 
write(•,600)' enter calibration curve a2: ' 
read(•,602)a2 

C ***************************************************************************** 
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c Enter file information 
C ***************************************************************************** 

open(2,file='out.bio',status='new') 
100 write(*,600)' enter filename: ' 

read(*,500)fname 
open(1,file=fname,status='old') 

do 10 i=l,9999 
read(1,550,end=50)0D 

550 format(31x,f7.3) 

C ***************************************************************************** 
c Convert the on-line OD reading to biomass dry weight 
C ***************************************************************************** 

b=aO+a1*0D+a2*0D*OD 
write(2,604)b 

10 continue 

50 close(!) 
write(*,600)' more files (y/N) ' 
read(*,500)resp 
if(resp .eq. 'y' .or. resp .eq. 'Y')goto 100 

close(2) 

C ***************************************************************************** 
c Standard formats 
C ***************************************************************************** 
500 format(a) 
501 format(i4) ;, 
502 format(e13.5) 
600 format(a\) 
604 format(1pe13.5) 

stop 'goodbye' 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c Read in the lab data on glucose analyzer~ calculate glucose cone. (g/1) 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM GLUCOSE 
character fname•40,resp*1 

write(*,600)' enter the number of points of delay in analyzer: ' 
read(•,501)idelay 
write(*,600)' enter the background level of absorbance signal: ' 
read(•,502)backgd 
write(*,600)' enter the absorbance per g/1 of Fe+3 cone.: ' 
read(•,502)slope 
write(*,600)' enter g of Fe+3 to react with 1g of glucose: ' 
read(•,502)react 
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write(*,600)' enter the dilution factor of the glucose analyzer: • 
read(*,502)factor 
iend=O 
ibegin=1 

C ***************************************************************************** 
c Enter file information 
C ***************************************************************************** 

open(2,file='out.out',status='new') 

650 
5 

write(*,600)' enter filename: ' 
read(*,500)fname 
open(1,file=fname,status='old') 
do 6 i=1,idelay 

read(1,650,end=50)x 
format(38x,f7.3) 

continue 

iend=O 
ibegin=1 

200 do 10 i=ibegin,iend 
read(1,650,end=50)x 

C ***************************************************************************** 
c Generate glucose cone. 
C ***************************************************************************** 

x=(x-backgd)/slope 
y=(Fefeed*(factor-1.)-x*factor)/react 
write(2,604)y 

10 continue 

C ***************************************************************************** 
c Enter points of change in the feed Fe+3 cone. 
C ***************************************************************************** 

write(*,600)' enter the feed Fe+3 cone: • 
read(*,602)Fefeed 
write(*,600)' next point of switch in the Fe+3 feed: • 
read(*,601)iend 
ibegin=i 
goto 200 

60 close(!) 
ibegin•i 
write(*,600)' more files (y/N) • 
read(*,600)resp 
if(resp .eq. 'y' .or. resp .eq. 'Y')then 

write(•,600)' enter filename: • 
read(•,600)fname 
open(1,file=fname,status='old') 
goto 200 

endif 

do 60 i=1,idelay 
60 write(2,604)y 

close (2) 
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C ***************************************************************************** 
c Standard formats 
C ***************************************************************************** 
500 format(a) 
501 format(i4) 
502 format(e13.5) 
600 format(a\) 
604 format(1pe13.5) 

stop 'goodbye' 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c Read in the lab data on GC voltage and gegerate ethanol cone., given the 
c coefficients to a piecewise polynomial calibration curve. 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM ETHANOL 
character fname*40,resp*1 
dimension a(15) 

iend=0 
ibegin=l 
write(*,600)' enter the number of point of delay: • 
read(*,501)idelay 

C ***********************************~***************************************** 
c Enter file information 
C ***************************************************************************** 

open(2,file='out.out',status='new') 
100 write(•,600)' enter filename: ' 

read(*,600)fname 
open(l,file=fname,status='old') 

200 do 10 i•ibegin,iend 
read(1,660,end=60)x 

650 format(46x,f7.3) 
if(i .le. idelay)goto 10 

C ***************************************************************************** 
c Generate a polynomial 
C ***************************************************************************** 

y=-a (iorder) 
do 20 ii•l,iorder-1 

20 y•a(iorder-ii)+x*y 
write(2,604)y 

10 continue 

C ***************************************************************************** 
c Enter coefficients 
C ***************************************************************************** 

write(*,600)' enter the number of coefficients: ' 
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write(*,654)ii 
654 format(' a' ,i2, ': ') 
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write(*,600)' next point of switch in polynomial: • 
read(*,501)iend 
ibegin=i 
goto 200 

50 close(!) 
ibegin=i 
write(*,600)' more files (y/N) ' 
read(*,600)resp 
if(resp .eq. 'y' .or. resp .eq. 'Y')goto 100 

do 60 i=l,idelay 
60 write(2,604)y 

close(2) 

C ***************************************************************************** 
c Standard formats 
C ***************************************************************************** 
600 format (a) 
501 format(i4) 
502 format(e13.5) 
600 format(a\) 
604 format(1pe13.6) 

stop 'goodbye' 
end ;, 

C ***************************************************************************** 
C ***************************************************************************** 
c This program calculate CER & OUR & RQ from .dat files in which the volume 
c is either varying due to the continuous withdrawal of samples or 
c piecewise constant. 
c The results are output to out.cer and out.our & out.rq files. 
c The background effect is fully implemented in 02 calculation. 
c The pressrue effect is considered in 02 calculation. 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM CEROUR 
dimension C02cai(3),C02caf(3) 
character fname•40,resp*1 

C ***************************************************************************** 
c Initialization 
C ***************************************************************************** 
c backgound CO2 cone (in%) 

C02bak=0.033 
c cone. of 02 in air & 02 in the low-range calibration gas (in%) 

02air •20.946 
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02calb=19.225 

write(*,600)' enter air flow rate (liter/min): ' 
read(*,502)Qin 

c convert into mole/hr 
Qin=Qin*2.39557 

C ***************************************************************************** 
c CO2 calibration 
C ***************************************************************************** 

write(*,600)' use standard initial cal. curve for CO2 (Y/n) ' 
read(*,500)resp 
if(resp .eq. 'n' .or. resp .eq. 'N')then 

write(*,600)' enter the initial calibration curve: ' 
write(*,600) 
do 6 i=1,3 

write(*,654)i 
654 format(' C02C',i2,': ') 

read(*,602)C02cai(i) 
6 continue 

else 
C02cai(1)=0. 
C02cai(2)=0.29013 
C02cai(3)=4.67739e-2 

endif 
write(*,600)' enter the final calibration curve: ' 
write(*,600) 
do 6 i=1,3 

write(•,654)i 
read(•,602)C02caf(i) ;! 

6 continue 

C ***************************************************************************** 
c 02 calibration 
C ***************************************************************************** 

EHI=20.6630 
EL0=18.9358 
write(•,600)' enter initial 02 cal. for 19,226i (volt): • 
read(•,602)02Lcai 
write(•,600)' enter initial 02 cal. for air (volt): ' 
read(•,602)02Hcai 
write(•,600)' enter initial cal. pressure (volt): ' 
read(•,602)Pcai 
write(•,600)' enter final 02 cal. for 19,226i (volt): ' 
read(•,602)02Lcaf 
write(•,600)' enter final 02 cal. for air (volt): • 
read(•,602)02Hcaf 
write(•,600)' enter final cal. pressure (volt): ' 
read(•,602)Pcaf 

c convert the final calibration to the same basis as the initial pressure 
temp=(02Hcaf-02Lcaf)/(02air-02calb)/Pcaf*(Pcai-Pcaf) 
02Lcaf~02Lcaf+temp*02calb 
02Hcaf•02Hcaf+temp•02air 
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C ***************************************************************************** 
c Enter volume information 
C ***************************************************************************** 

write(*,600)' enter total pts for this run: • 
read(*,601)ntotal 
write(*,600)' enter rate of cont. volume withdrawal (liter/hr): • 
read(*,602)Rvol 
Rvol=Rvol/60. 
write(*,600)' enter initial volume of fermenter (liter): • 
read(*,602)Vi 
Vsample=O. 
write(*,600)' next point of sampling: ' 
read(*,601)iend 
ibegin=1 

C ***************************************************************************** 
c Enter file information 
C ***************************************************************************** 

open(2,file='out.cer',status='new') 
open(3,file='out.our',status='new') 
open(4,file='out.rq',status='new') 

100 write(*,600)' enter filename: ' 
read(*,600)fname 
open(1,file=fname,status='old') 

200 do 10 i=ibegin,iend 

read(1,660,end=60)02v,C02v,Pv 
660 format(6x,f7.3,f7.3,4x,f7.3) ;! 

weight= float(i)/float(ntotal) 

C ***************************************************************************** 
c Convert C02v (in volt) to C02per (in%) 
C ***************************************************************************** 

C02i = C02cai(1) + C02cai(2)•C02v + C02cai(3)*C02v•C02v 
C02f = C02caf(1) + C02caf(2)•C02v + C02caf(3)*C02v•C02v 
C02per m C02i*(1.-weight) + C02f•weight 

C ***************************************************************************** 
c Convert 02v (in volt) to 02per (in%) 
c pressure correction is included 
C ***************************************************************************** 

02v=02v+13.16*(Pcai-Pv) 

c convert 02v (in volt) to 02per (in%) 
02i=(02v-02Lcai)*(EHI-EL0)/(02Hcai-02Lcai) 

02i=02i+EL0+0.00266*C02per+0.368 
02i=02i/1.00368 

02f=(02v-02Lcaf)•(EHI-EL0)/(02Hcaf-02Lcaf) 
02f•02f+EL0+o.00266•C02per+0.368 
02f•02f/1.00368 

02per = 02i*(1.-weight) + 02f*weight 
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C ***************************************************************************** 
c Calculate Qout 
C ***************************************************************************** 

Qout = Qin*79.021/(100.-C02per-02per) 

C ***************************************************************************** 
c Calculate CER & OUR (in mole/hr-liter) 
C ***************************************************************************** 

volume=Vi-Rvol*float(i)-Vsample 
CER (Qout*C02per-Qin*C02bak)/100./volume 
OUR (Qin*02air-Qout*02per)/100./volume 
RQ CER/OUR 

C ***************************************************************************** 
c Output CER & OUR & RQ 
C ***************************************************************************** 

write(2,604)CER 
write(3,604)0UR 
write(4,604)RQ 

10 continue 

write(*,600)' enter the cumulative volume withdrawn (liter): • 
read(*,602)Vsample 
write(*,600)' next point of sample: ' 
read(*,601)iend 
ibegin=i 
goto 200 

50 close(l) 
ibegin=i ;~ 
write(*,600)' more files (y/N) ' 
read(*,600)resp 
if(resp .eq. 'y' .or. resp .eq. 'Y')goto 100 

close(2) 
close(3) 
close(4) 

C ***************************************************************************** 
c Standard formats 
C ***************************************************************************** 
500 format(a) 
501 format(i6) 
502 format(e13.6) 
600 format(a\) 
604 format(1pe13.5) 

stop 'goodbye' 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c This program calculates the rate of base addition based on ON-OFF information 
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c The method is based on San's paper 
C 

c CONTINUOUS MODE 
c cR = Ra*(1-exp(-D*dt2))/(1-exp(-D*dt)) 
C 

B&B 26, p1212, eqn (19) 

c FEDBATCH MODE 
c VO*dt2 + Fpsec*(t2*t2-t1*t1)/2. 
C 

C 

C 

cR = -------------------------------
VO*dt + Fpsec*(t2*t2-t0*t0)/2. 

B&B 26, p1213, eqn (26) 

c BATCH MODE 
c cR = Ra*dt2/dt B&B 26, p1212, eqn (20) 
C 

c where dt2 = interval in which pH controller is ON-OFF 
c dt = interval between ON-ON= dt1+dt2 
c ion, ionold = cumulative sec at which pH controller is turned ON 
c ionmin, ionsec = min l sec at which pH controller is turned ON 
c iof = cumulative sec at which pH controller is turned OFF 
c iofmin, ioffsec = min & sec at which pH controller is turned OFF 
c itotal = the total number of seconds pH controller is on 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM PH 
dimension dt2(5000),dt(6000) 
character mode*1,fname*40,resp*1 

C ***************************************************************************** 
c Initialization 
C ***************************************************************************** 

lastpt=O 
dt2ave=O. 
dtave=O. 
nave=O 
ionold=O 
itotal=O 

write(*,600)' mode of operation (c=cont.,b=batch,f=fedbatch: ' 
read(*,600)mode 
write(*,600)' enter the total pts for this run: ' 
read(*,601)ntotal 
write(*,600)' enter number of pts to average: 
read(*,601)na 
write(*,600)' enter rate of base addition (moles/hr): ' 
read(*,602)Ra 
if(mode .eq. 'c' .or. mode .eq. 'C')then 

write(*,600)' enter volume of fermentor (liter): 
read(*,602)volume 
Ra-=Ra/volume 

endif 

C ***************************************************************************** 
c Enter file information 
C ***************************************************************************** 

open(2,file='out.ph',statusm'new') 
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100 write(*,600)' enter filename: ' 
read(*,500)fname 
open(l,file=fname,status='old') 

C ***************************************************************************** 
c ********************* main data analysis loop, PART I*********************** 
C ***************************************************************************** 

C ***************************************************************************** 
c Read in the pH controller ON/OFF data 
C ***************************************************************************** 
200 read(1,551,end=50)ionmin,ionsec,iofmin,iofsec 
551 format(2x,i4,1x,i2,4x,i4,1x,i2) 

C ***************************************************************************** 
c Calculate the intervals 
C ***************************************************************************** 

ion=ionmin*60+ionsec 

C 

C 

C 

C 

150 

iof=iofmin*60+iofsec 
dt2temp=float(iof-ion) 
dttemp=float(ion-ionold) 
itotal=itotal+iof-ion 
lastpt is the last recorded point 
ionmin eq lastpt+l=current point means that the last ionmin was also the 
same as the current ionmin 
if(ionmin .eq. lastpt+l)then 

dt2ave=(dt2ave*float(nave)+dt2temp)/float(nave+1) 
dtave=(dtave*float(nave)+dttemp)/float(nave+l) 
nave=nave+l 

else 
assign dt and dt2 up to but not including the present ionmin 

lastpt=lastpt+l 
dt2(lastpt)~dt2ave 
dt(lastpt)=dtave 
dt2ave=dt2temp 
dtave=dttemp 
nave=l 
if(ionmin .gt. lastpt+1)goto 150 

endif 
ionold=ion 
goto 200 

C ***************************************************************************** 
c **************** End of the main data analysis loop, PART I***************** 
C ***************************************************************************** 

C ***************************************************************************** 
c Reset data file 
C ***************************************************************************** 
50 close(!) 

write(*,600)' more files (y/N) • 
read(•,600)resp 
if(resp .eq. 'y' .or. resp .eq. 'Y')goto 100 
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C ***************************************************************************** 
c Fill up the rest of data 
C ***************************************************************************** 

do 60 i=lastpt+1,ntotal 
dt(i) =dtave 

60 dt2(i)=dt2ave 
write(* 1 653)itotal 

553 format(' total number of sec pH controller is ON: ',i6) 
write(*,*) 

if(mode .eq. 'f' .or. mode .eq. 'F')then 
c enter volume information********************************************* 

write(*,600)' enter the rate of filtrate removal (liter/hr):' 
read(*,602)Fphr 
Fpsec=Fphr/3600. 
Fpmin=Fphr/60. 
write(*,600)' enter initial volume of fermenter (liter): • 
read(*,602)Vinit 

endif 

ibegin=1 
iend=O 

dt2ave=O. 
dtave=O. 

C ***************************************************************************** 
c ********************* main data analysis loop, PART II********************** 
C ***************************************************************************** 

~ ! 

300 do 10 i=ibegin,iend 

C ***************************************************************************** 
c Take the running average 
C ***************************************************************************** 

if(i .le. na)dt2ave=dt2ave+(dt2(i)-dt2ave)/float(i) 
if(i .le. na)dtave=dtave+(dt(i)-dtave)/float(i) 
if(i .gt. na)dt2ave=dt2ave+(dt2(i)-dt2(i-na))/float(na) 
if(i .gt. na)dtave=dtave+(dt(i)-dt(i-na))/float(na) 

c the output is shifted by na/2 to encounter the average effect 
if(i .le. na/2)goto 10 

if(mode .eq. 'f' .or. mode .eq. 'F')then 
c VO•dt2 + Fpsec•(t2•t2-t1•t1)/2. 
c cR = -------------------------------
c VO•dt + Fpsec•(t2•t2-tO•t0)/2. 

volume=Vinit-Fpmin•float(i)-Vsample 
up= volume•dt2ave - Fpsec•dt2ave•(2.•dtave-dt2ave)/2. 
dn = volume•dtave - Fpsec•(dtave•dtave)/2. 
cR = Ra/volume•up/dn 

endif 
if(mode .eq. 'b' .or. mode .eq. 'B')then 

cR • Ra•dt2ave/dtave/volume 
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endif 
if(mode .eq. 'c' .or. mode .eq. 'C')then 

cR = Ra*(1.-exp(-D*dt2ave))/(1.-exp(-D*dtave)) 
endif 

write(2,604)cR 
10 continue 

C ***************************************************************************** 
c **************** End of the main data analysis loop, PART II**************** 
C ***************************************************************************** 

C ***************************************************************************** 
c Re-enter dilution rate, volume of fermentor, and sample withdrawn. 
C ***************************************************************************** 

if(iend .eq. ntotal)goto 15 
if(mode .eq. 'f' .or. mode .eq. 'F')then 

write(*,600)' enter cumulative vol. taken as sample: (liter)' 
read(*,502)Vsample 
write(*,600)' enter next point of sampling: ' 

endif 
if(mode .eq. 'b' .or. mode .eq. 'B')then 

write(*,600)' enter volume of fermentor (liter): ' 
read(*,502)volume 
write(*,600)' enter next point of sampling: ' 

endif 
if (mode . eq. 'c ' . or. mode . eq. 'C ') then 

write(*,600)' enter the dilution rate in (hr-1): 
read(•,502)D 
D=D/3600. ;! 
write(•,600)' up to which pt is this dilution rate valid 

endif 
read(•,501)iend 
ibegin=i 
if(iend .gt. ntotal)iend=ntotal 
goto 300 

C ***************************************************************************** 
c Flush out the rest 
C ***************************************************************************** 
15 do 20 i=1,na/2 
20 write(2,604)cR 

close(2) 

C ***************************************************************************** 
c Standard formats 
C ***************************************************************************** 
600 format (a) 
601 format(i4) 
502 format(e13.6) 
600 format(a\) 
604 format(1pe13.5) 

stop 'goodbye' 
end 
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C ***************************************************************************** 
C ***************************************************************************** 
c This read in data from NH3 & CER & OUR files. 
c It calculates the total rate of growth (R) and yield coefficients (Ys k Yp). 
c The .NH3 file is actually the net rate of OH- addition. (Both base and acid 
c addition rates are combined.) 
C 

c Glucose---> biomass+ ethanol 
c Glucose substrate 
c Ethanol ... product 
C 

c Ethanol---> biomass+ Acetic acid 
c Ethanol... substrate 
c Acetic acid ... product 
c Rnh3 = (c+FF)R 
C 

c The INVERSE of the real yield is output to .Ysm and Ypm files 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM BALANCE 
character carbon*1,fname1*40,fname2*40,fname3*40 

C ***************************************************************************** 
c Initialization 
C ***************************************************************************** 

write(*,600)' Carbon source (g/E): (g=glucose, e=ethanol): ' 
read(*,600)carbon •! 
write(*,600)' enter biomass formula: ' 
write(*,600) 
write(*,600)' H: ' 
read(*,602)beta 
write(*,600)' 0: ' 
read(*,602)ganuna 
write(*,600)' N: ' 
read(*,602)delta 
write(*,600)' enter the ash content in%: ' 
read(*,602)ash 

C ***************************************************************************** 
c Calculate molecular weight of biomass 
C ***************************************************************************** 

Wbio = 12. +beta+ 16.*gamma + 14.*delta 
Wbio m Wbio/(1.-ash/100.) 

C ***************************************************************************** 
c Calculate the "degree of reductance" 
C ***************************************************************************** 

if(carbon .eq. 'g' .or. carbon .eq. 'G')then 
z = ( beta - 2.*gamma - 3.*delta) / 4. 

else 
z • ( beta - 2.•gamma - 3.*delta -2.) / 4. 

endif 
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C ***************************************************************************** 
c Enter file information 
C ***************************************************************************** 

write(*,600)' enter filename containing CER: ' 
read(*,500)fname1 
open(1,file=fname1,status='old') 
write(*,600)' enter filename containing OUR: ' 
read(*,500)fname2 
open(2,file=fname2,status='old') 
write(*,600)' enter filename containing Rnh3: ' 
read(*,500)fname3 
open(3,file=fname3,status='old') 
open(11,file='out.Ysm',status='new') 
open(12,file='out.Ypm',status='new') 
open(13,file='out.Rm',status='new') 

ibegin=1 
iend=O 

100 do 10 i=ibegin,iend 
read(1,*,end=50)CER 
read(2,*,end=50)0UR 
read(3,*,end=50)Rnh3 

C ***************************************************************************** 
c Calculate the stoichiometric coefficients & the yield coefficients 
C ***************************************************************************** 

if(carbon .eq. 'g' .or. carbon .eq. 'G')then 
f = delta*(CER-OUR)/Rnh3 - z 
e = delta*CER/Rnh3 
a= (1.+e+2.*f)/6. 
Ys = a*180./Wbio •, 
Yp = f•46./Wbio 
R = Rnh3/delta*Wbio 

else 
tempi= (OUR-1.5*CER)/Rnh3 
temp2 = (delta*temp1 + z) 
f = temp2/(1.-FF*temp1) 
R = Rnh3/(delta+FF*f) 
e = CER/R 
a (1.+e+2.*f)/2. 
Ys = a*46./Wbio 
Yp-= f*60./Wbio 
R .. R*Wbio 

endif 

C ***************************************************************************** 
c Output Ys & Yp 
C ***************************************************************************** 

write(11,604)Ys 
write(12,604)Yp 
write(13,604)R 

10 continue 
write(•,600)' enter the correction factor of pH addition: ' 
read(•,502)FF 
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write(*,600)' up to which pt is this factor valid: ' 
read(*,601)iend 
ibegin=i 
goto 100 

60 close(!) 
close(2) 
close(3) 
close(11) 
close(12) 
close(13) 

C ***************************************************************************** 
c Standard formats 
C ***************************************************************************** 
600 format(a) 
601 format(i4) 
602 format(e13.6) 
600 format(a\) 
604 format(1pe13.6) 

stop 'goodbye' 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c KALMAN FILTERING 
c Read in .Bm, .Sm, .Pm, .Ysm, .Ypm, ,.Rm 'measurement' files 
c Estimate the biomass, substrate,prdduct concentrations. 
c Estimate the specific growth rate, Ys, and Yp. 
c Output results as Bk, Sk, Pk, Ysk, Ypk, MUlc ••• (k stands for kalman) 
c Reciprocal of Ys and Yp are used in working 
c Assignment of number 
c 1 biomass cone. (gm/liter) 
c 2 substrate conc.(gm/liter) 
c 3 product cone. (gm/liter) 
c 4 Ys (gm biomass/gm substrate) 
c 6 Yp (gm biomass/gm product) 
c 6 MU (hr-1) .. read in (hr); work in (min); output in (hr) 
c Link this program with DERIV, MATRIX, and DVERK(IMSL). 
c Size ... 
c m=dimension of measurement equations 
c n=dimension of state equations 
c nsize c (nstart-1) + n*(n+1)/2 ... the size of integration 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM KALMAN 
parameter (m=6,n=6,nstart=7,nsize=27) 

external deriv 
character fname1*40,fname2*40,fname3*40,fname4*40,fname6*40, 

* fname6*40 
dimension x(nsize),xdot(nsize),c(24),w(nsize,9) 



-565-

dimension p(n,n) 
dimension Ym(m),error2(n),err2in(n) 
common/c1/Db,Ds,sf,Ym,error2,err2in 

call seta(p,O.,n,n) 
C ***************************************************************************** 
c Open input data files 
C ***************************************************************************** 

write(*,6OO)' enter input filename (.Bm): 
read(*,5OO)fname1 
open(11,file=fname1,status='old') 
write(*,6OO)' enter input filename (.Sm): 
read(*,50O)fname2 
open(12,file=fname2,status='old') 
write(*,6OO)' enter input filename (.Pm): 
read(*,50O)fname3 
open(13,file=fname3,status='old') 
write(*,6OO)' enter input filename (.Ysm): ' 
read(*,60O)fname4 
open(14,file=fname4,status='old') 
write(*,6OO)' enter input filename (.Ypm): ' 
read(*,50O)fname5 
open(15,file=fname6,status='old') 
write(*,6OO)' enter input filename (.Rm): 
read(*,5OO)fname6 
open(16,file=fname6,status='old') 

C ***************************************************************************** 
c Open output data files 
C ***********************************.***************************************** 

open(21,file='out.Bk',status='new') 
open(22,file='out.Sk',status='new') 
open(23,file='out.Pk',status='new') 
open(24,file='out.Ysk',status='new') 
open(26,file='out.Ypk',status='new') 
open(26,file='out.Muk',status='new') 

C ***************************************************************************** 
c Input initial data from keyboard 
C ***************************************************************************** 

write(*,6OO)' enter initial biomass cone. (g/liter): ' 
read(*,502)x(1) 
write(*,6OO)' enter initial substrate cone. (g/liter): ' 
read(*,6O2)x(2) 
write(*,6OO)' enter initial product cone. (g/liter): ' 
read(*,5O2)x(3) 
write(*,6OO)' enter initial 1/Ys: ' 
read(*,5O2)x(4) 
write(*,60O)' enter initial 1/Yp: ' 
read(*,6O2)x(6) 
write(*,6OO)' enter initial specific growth rate (hr-1): ' 
read(*,6O2)x(6) 

write(*,6OO)' enter error in biomass cone. (g/liter): ' 
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read(*,602)error2(1) 
write(*,600)' enter error in substrate cone. (g/liter): ' 
read(*,602)error2(2) 
write(*,600)' enter error in product cone. (g/liter): ' 
read(*,502)error2(3) 
write(*,600)' enter error in 1/Ys: ' 
read(*,602)error2(4) 
write(*,600)' enter error in 1 1/Yp: • 
read(*,602)error2(6) 
write(*,600)' enter error in specific growth rate (hr-1): ' 
read(*,602)error2(6) 

c convert to inverse variance 
do 10 i=1,n 

error2(i)=error2(i)*error2(1) 
err2in(i)=1./error2(1) 
p(i,i)=error2(i) 

10 continue 
c These errors are also considered equivalent to the measurement error 
c read in the measurement error in total growth rate 

write(*,600)' enter error in total growth rate meas. (g/1-hr):' 
read(*,602)error2(6) 
error2(6)=error2(6)*error2(6) 
err2in(6)=1./error2(6) 

C ***************************************************************************** 
c Initialize everything 
C ***************************************************************************** 

write(*,600)' enter tolerance :i,n integration (0.0001-0.0006) • 
read(*,602)tol •, 
tincrm = 1. /60. 
sf = 6.00 
call sqra2x(p,x,n,nstart,n,nsize) 
index=2 
call setx(c,0.,24) 
c(1)=3. 
c(2)=1.e-6 
time ... 0. 

ibegin=1 
iend=0 

100 do 200 i=ibegin,iend 

write(*,601)i 
C ***************************************************************************** 
c Input data data files 
C ***************************************************************************** 

read(11,*,end=999)Ym(1) 
read(12,*,end=999)Ym(2) 
read(13,*,end=999)Ym(3) 
read(14,*,end=999)Ym(4) 
read(16,*,end=999)Ym(6) 
read(16,*,end=999)Ym(6) 
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C ***************************************************************************** 
c Estimate kalman state variables 
C ***************************************************************************** 

time= float(i-1)*tincrm 
timend = float(i)*tincrm 
call dverk(nsize,deriv,time,x,timend,tol,index,c,nsize,w,ier) 
write(21,604)x(1) 
write(22,604)x(2) 
write(23,604)x(3) 
write(24,604)x(4) 
write(25,604)x(5) 
write(26,604)x(6) 

C ***************************************************************************** 
c Check for integration errors 
C ***************************************************************************** 

if(index.ge.0 .and. ier.le.0) go to 200 
write(*,97)timend 

97 format(' error in deriv at t= ',f8.2) 
write(*,98)index 

98 format(' index= ',i4) 
write(*,99)ier 

99 format(' ier = ',i4) 
tol = tol*1.1 
write(*,182)tol 

182 format(' tol = ',f8.5) 

200 continue 

C **********************************~***************************************** 
c Read in new dilution rate 
C ***************************************************************************** 

write(*,600)' enter dilution rate for B eqn. (hr-1): • 
read(*,502)Db 
write(*,600)' enter dilution rate for S eqn. (hr-1): • 
read(*,502)Ds 
write(*,600)' up to which pt are these dilution rate valid 
read(*,501)iend 
ibegin=i 
goto 100 

999 close(11) 
close(12) 
close(13) 
close(14) 
close(15) 
close(16) 
close(21) 
close(22) 
close(23) 
close(24) 
close(25) 
close(26) 
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C ***************************************************************************** 
c Standard formats 
C ***************************************************************************** 
500 format(a) 
501 format(i6) 
502 format(e13.5) 
600 format(a\) 
604 format(1pe13.6) 

stop 'goodbye' 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c State equations and variance equations to be used with Kalman filter 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE DERIV(nsize,time,x,xdot) 

C ***************************************************************************** 
c Assign sizes 
C ***************************************************************************** 

parameter (m=6,n=6,nstart=7) 
dimension x(nsize),xdot(nsize),p(n,n),pdot(n,n),q(n,n),rinv(m,m), 

*fx(n,n),hx(m,n),hxt(n,m),err(m),g(n,m),gt(m,n),qq(m,m), 
*temp1(m),temp2(n),temp3(m,n),temp4(n,m),temp6(n,n),temp6(n,n) 
dimension Ym(m),error2(n),err2in(n) 
common/c1/Db,Ds,sf,Ym,error2,err2in 

C ***************************************************************************** 
c Assign state variables 
C ***************************************************************************** 

bb = x(1) 
SB = x(2) 
pp= x(3) 
yys= x(4) 
yyp= x(6) 
uu-= x(6) 

C ***************************************************************************** 
c Assign matrix p 
C ***************************************************************************** 

call sqrx2a(p,x,n,nstart,n,nsize) 
C ***************************************************************************** 
c Assign the bottom half of p 
C ***************************************************************************** 

call sysfil(p,n) 
C ***************************************************************************** 
c Assign fx 
C ***************************************************************************** 

fx(1,1)-= 
fx(1,6)-= 
fx(2, 1) 
fx(2,2) 
fx(2,4) 

uu-Db 
bb 
-uu*yys 
-Ds 
-uu*bb 



fx(2,6) 
fx(3 I 1) 
fx(3,3) 
fx(3,5) 
fx(3,6) 

-bb*yys 
UU*YYP 
-Ds 
uu*bb 
bb*yyp 
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C ***************************************************************************** 
c Assign hx 
C ***************************************************************************** 

hx(1, 1) 1. 
hx(2,2) 1. 
hx(3,3) = 1. 
hx(4,4) = 1. 
hx(5,5) 1. 
hx(6,1) uu 
hx(6,6) = bb 
call transp(hxt,hx,m,n) 

C ***************************************************************************** 
c Assign err 
C ***************************************************************************** 

err(l) = Ym(1)-bb 
err(2) = Ym(2)-ss 
err(3) = Ym(3)-pp 
err(4) Ym(4)-yys 
err(5) = Ym(5)-yyp 
err(6) = Ym(6)-uu*bb 

C ***************************************************************************** 
c Assign rinv 
C ***************************************************************************** 

rinv(l,1) = err2in(1) 
rinv(2,2) = err2in(2) 
rinv(3,3) err2in(3) 
rinv(4,4) = err2in(4) 
rinv(5,5) err2in(6) 
rinv(6,6) err2in(6) 

C ***************************************************************************** 
c Assign q 
C ***************************************************************************** 

call q2abat(qq,hx,p,hxt,temp4,m,n) 
qq(l,1) = 2.*(err(l)*err(1)-error2(1)-qq(l,1)) 
qq(2,2) 2.*(err(2)•err(2)-error2(2)-qq(2,2)) 
qq(3,3) = 2.*(err(3)•err(3)-error2(3)-qq(3,3)) 
qq(4,4) = 2.*(err(4)•err(4)-error2(4)-qq(4,4)) 
qq(6,6) = 2.*(err(6)•err(6)-error2(6)-qq(6,6)) 
qq(6,6) = 2.*(err(6)•err(6)-error2(6)-qq(6,6)) 
if(qq(1,1) .le. O.)qq(1,1) = 0. 
if(qq(2,2) .le. 0.)qq(2,2) m 0. 
if(qq(3,3) .le. 0.)qq(3,3) = 0. 
if(qq(4,4) .le. 0.)qq(4,4) = 0. 
if(qq(6,6) .le. 0.)qq(6,6) 0. 
if(qq(6,6) .le. O.)qq(6,6) = 0. 
call setoff (qq,0.,m) 
g(l,1) = 1. 
g(2,2) = 1. 
g(3,3) = 1. 



g(4 ,4) 1. 
g(5,5) 1. 
g(6,6) 1./bb 
call transp(gt,g,n,m) 
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call q2abat(q,g,qq,gt,temp3,n,m) 
C ***************************************************************************** 
c Calculate the state eqn. 
C ***************************************************************************** 

call mulyax(temp1, rinv, err,m,m) 
call mulyax(temp2, hxt,temp1,n,m) 
call mulyax( xdot, p,temp2,n,n) 

xdot(1) = xdot(1) + (uu-Db)*bb 
xdot(2) = xdot(2) + Ds*(sf-ss)-uu*bb*yys 
xdot(3) = xdot(3) - Ds*pp+uu*bb*yyp 

C ***************************************************************************** 
c Calculate covariance eqn. 
C ***************************************************************************** 

call q2abat(temp5, hxt, rinv, hx,temp3,n,m) 
call q2abat( pdot, p,temp5, p,temp6,n,n) 
call subcab( pdot, q, pdot,n,n) 
call mulcab(temp5, fx, p,n,n,n) 
call addcab( pdot, pdot,temp5,n,n) 
call transp(temp6,temp5,n,n) 
call addcab( pdot, pdot,temp6,n,n) 

C ***************************************************************************** 
c Relate pdot to xdot 
C ***************************************************************************** 

call sqra2x(pdot,xdot,n,nstart,n,nsize) 

return 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c This subroutine is originally copied from IMSL and modified to work under 
c IBM DOS with MicroSoft FORTRAN compiler. 
c See IMSL documentation for the proper usage. 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE DVERK (n,fcn,x,y,xend,tol,ind,c,nw,w,ier) 
integer n,ind,nw,ier 
real x,y{n),xend,tol,c(1),w(nw,9) 
integer k 
real zero,one,two,three,four,five,eeven,ten,half,p9 
real c4d15,c2d3,c5d6,c1d6,c1d15,c2d96,temp 
real rk(39),repe,rtol 
data zero/O.O/,one/1.0/,two/2.0/,three/3.0/ 
data four/4.0/,five/5.0/,eeven/7.0/ 
data ten/10.0/,half/0.6/,p9/0.9/ 
data c4d16/.2666667/ 
data c2d3/.6666667/ 
data c6d6/.8333333/ 



data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
data 
ier = 0 
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c1d6/.1666667/ 
c1d15/.6666667e-1/ 
c2d96/120.4273/ 
reps/1.1921e-07/ 
rtol/2.4651e-32/ 
rk( 1)/.1666667e+00/ 
rk( 2)/.5333333e-01/ 
rk( 3)/.2133333e+00/ 
rk( 4)/.8333333e+00/ 
rk( 5)/.2666667e+01/ 
rk( 6)/.2500000e+01/ 
rk( 7)/.2578125e+01/ 
rk( 8)/.9166667e+01/ 
rk( 9)/.6640625e+01/ 
rk(10)/.8854167e+o0/ 
rk(11)/.2400000e+01/ 
rk(12)/.8000000e+01/ 
rk(13)/.6560458e+o1/ 
rk(14)/.3055556e+O0/ 
rk(15)/.3450980e+00/ 
rk(16)/.5508667e+00/ 
rk(17)/.1653333e+01/ 
rk(18)/.9455882e+00/ 
rk(19)/.3240000e+00/ 
rk(20)/.2337882e+00/ 
rk(21)/.2035465e+01/ 
rk(22)/.6976744e+01/ 
rk(23)/.6648180e+01/ 
rk(24)/.1373816e+00/ 
rk(25)/.2863023e+00/ 
rk(26)/.1441786e+0O/ 
rk(27)/.7600000e-01/ 
rk(28)/.3899287e+00/ 
rk(29)/.3194444e+00/ 
rk(30)/.1350384e+o0/ 
rk(31)/.1078330e-01/ 
rk(32)/.6980519e-01/ 
rk(33)/.6260000e-02/ 
rk(34)/.6963012e-02/ 
rk(35)/.6944444e-02/ 
rk(36)/.6138107e-02/ 
rk(37)/.6818182e-01/ 
rk(38)/.1078330e-01/ 
rk(39)/.6980519e-01/ 

if (ind.lt.1.or.ind.gt.6) go to 290 
go to (5,6,40,146,265,266), ind 

6 if (n.gt.nw.or.tol.le.zero) go to 296 
if (ind.eq.2) go to 16 
do 10 k=1,9 

c(k) = zero 
10 continue 

go to 30 
16 continue 



do 20 k=l,9 
c(k) = abs(c(k)) 

20 continue 
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if (c(1).ne.four.and.c(1).ne.five) go to 30 
do 25 k=l ,n 

c(k+30) = abs(c(k+30)) 
25 continue 
30 continue 

c(10) = reps 
c(11) = rtol 
c(20) = X 

do 35 k=21,24 
c(k) = zero 

35 continue 
go to 45 

40 if (c(21).ne.zero.and.(x.ne.c(20).or.xend.eq.c(20))) go to 285 
c(21) = zero 

45 continue 
50 continue 

if (c(7).eq.zero.or.c(24).lt.c(7)) go to 55 
ind= -1 
go to 9005 

55 continue 
if (ind.eq.6) go to 60 
call fen (n,x,y,w(l,1)) 
c(24) = c(24)+one 

60 continue 
c(13) = c(3) 
if (c(3).ne.zero) go to 120 
temp= zero •! 
if (c(l).ne.one) go to 70 
do 65 k=l,n 

temp= amaxl(temp,abs(y(k))) 
65 continue 

c(12) = temp 
go to 115 

70 if (c(l).ne.two) go to 75 
c(12) = one 
go to 116 

76 if (c(1).ne.three) go to 86 
do 80 k=1,n 

temp= amax1(temp,abs(y(k))/c(2)) 
80 continue 

c(12) = aminl(temp,one) 
go to 116 

86 if (c(1).ne.four) go to 95 
do 90 k=1,n 

temp= amax1(temp,abs(y(k))/c(k+30)) 
90 continue 

c(12) = aminl(temp,one) 
go to 116 

95 if (c(1).ne.five) go to 106 
do 100 k=1,n 

temp= amax1(temp,abs(y(k))/c(k+30)) 



100 continue 
c(12) = temp 
go to 115 

105 continue 
do 110 k=1,n 

temp= amax1(temp,abs(y(k))) 
110 continue 

c(12) = amin1(temp,one) 
115 continue 
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c(13) = ten*amax1(c(11),c(10)*amax1(c(12)/tol,abs(x))) 
120 continue 

c(15) = c(5) 
if (c(5).eq.zero) c(15) = one 
if (c(6).ne.zero.and.c(5).ne.zero) 
if (c(6).ne.zero.and.c(5).eq.zero) 
if (c(6).eq.zero.and.c(5).ne.zero) 
if (c(6).eq.zero.and.c(6).eq.zero) 
if (c(13).le.c(16)) go to 125 
ind= -2 
go to 9005 

125 continue 
if (ind.gt.2) go to 130 
c(14) = c(4) 

c(16) 
c(16) 
c(16) 
c(16) 

= amin1(c(6),two/c(5)) 
= c(6) 
= two/c(5) 
= two 

if (c(4).eq.zero) c(14) = c(16)*tol**c1d6 
go to 140 

130 if (c(23).gt.one) go to 135 
temp= two*c(14) 
if (tol.lt.c2d96*c(19)) temp= p9*(tol/c(19))**c1d6*c(14) 
c(14) = amax1(temp,half*c(14)) 
go to 140 

135 continue 
c(14) = half*c(14) 

140 continue 
c(14) = amin1(c(14),c(16)) 
c(14) = amaxl(c(14),c(13)) 
if (c(8).eq.zero) go to 145 
ind= 4 
go to 9006 

146 continue 
if (c(14).ge.abs(xend-x)) go to 160 
c(14) a amin1(c(14),half*abs(xend-x)) 
c(17) = x+sign(c(14),xend-x) 
go to 166 

160 continue 
c(14) = abs(xend-x) 
c(17) = xend 

156 continue 
c(18) = c(17)-x 
do 160 k=1,n 

w(k,9) = y(k)+c(18)*w(k,1)*rk(1) 
160 continue 

call fen (n,x+c(18)*c1d6,w(1,9),w(1,2)) 
do 166 k=1,n 

w(k,9) = y(k)+c(18)*(w(k,1)*rk(2)+w(k,2)*rk(3)) 
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165 continue 
call fen (n,x+c(18)*c4d15,w(1,9),w(1,3)) 
do 170 k=1,n 

w(k,9) = y(k)+c(18)*(w(k,1)*rk(4)-w(k,2)*rk(5)+w(k,3)*rk(6)) 
170 continue 

call fen (n,x+c(18)*c2d3,w(1,9),w(1,4)) 
do 175 k=1,n 

w(k,9) = y(k)+c(18)*(-w(k,1)*rk(7)+w(k,2)*rk(8)-w(k,3)*rk(9) 
1 +w(k,4)*rk(10)) 

175 continue 
call fen (n,x+c(18)*c5d6,w(1,9),w(1,5)) 
do 180 k=1,n 

w(k,9) = y(k)+c(18)*(w(k,1)*rk(11)-w(k,2)*rk(12)+w(k,3)*rk(13) 
1 -w(k,4)*rk(14)+w(k,5)*rk(15)) 

180 continue 
call fen (n,x+c(18),w(1,9),w(1,6)) 
do 185 k=1,n 

w(k,9) = y(k)+c(18)*(-w(k,1)*rk(16)+w(k,2)*rk(17)-w(k,3) 
1 *rk(18)-w(k,4)*rk(19)+w(k,5)*rk(20)) 

185 continue 
call fen (n,x+c(18)*c1d15,w(1,9),w(1,7)) 
do 190 k=1,n 

w(k,9) = y(k)+c(18)*(w(k,1)*rk(21)-w(k,2)*rk(22)+w(k,3)*rk(23) 
1 -w(k,4)*rk(24)+w(k,5)*rk(25)+w(k,7)*rk(26)) 

190 continue 
call fen (n,x+c(18),w(1,9),w(1,8)) 
do 195 k=1,n 

w(k,9) = y(k)+c(18)*(w(k,1)*rk(27)+w(k,3)*rk(28)+w(k,4)*rk(29) 
1 +w(k,6)*rk(30)+w(k,7)*rk(31)+w(k,8)*rk(32)) 

196 continue ;, 
c(24) = c(24)+seven 
do 200 k=1,n 

w(k,2) = w(k,1)*rk(33)+w(k,3)*rk(34)-w(k,4)*rk(35)+w(k,6) 
1 *rk(36)+w(k,6)*rk(37)-w(k,7)*rk(38)-w(k,8)*rk(39) 

200 continue 
temp= zero 
if (c(l).ne.one) go to 210 
do 206 k=1,n 

temp= amax1(temp,abs(w(k,2))) 
206 continue 

go to 260 
210 if (c(l).ne.two) go to 220 

do 216 J.cz:1,n 
if (y(k).eq.zero) go to 280 
temp= amax1(temp,abs(w(k,2)/y(k))) 

216 continue 
go to 260 

220 if (c(1).ne.three) go to 230 
do 226 k=1,n 

temp= amax1(temp,abs(w(k,2))/amax1(c(2),abs(y(k)))) 
226 continue 

go to 260 
230 if (c(1).ne.four) go to 240 

do 236 J.cz:1,n 
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temp= amax1(temp,abs(w(k,2))/amax1(c(k+30),abs(y(k)))) 
235 continue 

go to 260 
240 if (c(1).ne.five) go to 250 

do 245 k=1,n 
temp= amax1(temp,abs(w(k,2)/c(k+30))) 

245 continue 
go to 260 

250 continue 
do 255 k=1,n 

temp= amax1(temp,abs{w(k,2))/amax1(one,abs{y(k)))) 
255 continue 
260 continue 

c(19) = temp*c(14)*c(16) 
ind= 6 
if (c(19).gt.tol) ind= 6 
if (c(9).ne.zero) go to 9005 

265 continue 
if (ind.eq.6) go to 275 
X = c(17) 
do 270 k=1,n 

y(k) = w(k,9) 
270 continue 

c(22) = c(22)+one 
c(23) = zero 
if (x.ne.xend) go to 50 
ind= 3 
c(20) = xend 
c(21) = one 
go to 9005 

276 continue 
c(23) = c(23)+one 
if (c(14).gt.c(13)) go to 50 
ind= -3 
go to 9005 

280 continue 
ier-= 132 
go to 9000 

285 continue 
ier .. 131 
go to 9000 

290 continue 
ier-= 130 
go to 9000 

295 continue 
ier = 129 

9000 continue 
call uertst (ier,'6hdverk ') 

9005 continue 
return 
end 
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C ***************************************************************************** 
C ***************************************************************************** 
c Used in DVERK 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE UERTST (ier,name) 
integer ier 

c the following three lines are changed from the original imsl-vax 
c integer name(1) 

integer i,ieqdf,iounit,level,levold,nin,nmtb 
character name(1),ieq,nameq(6),namset(6),namupk(6) 
data namset/'u','e','r','s','e','t'/ 
data nameq/' • , • • , ' ' , • • , • • 1 • • / 

data level/4/,ieqdf/O/,ieq/'='/ 
c the following line is changed 
c call uspkd (name,6,namupk,nmtb) 

write(*,*)' error from dverk' 
call ugetio(1,nin,iounit) 
if (ier.gt.999) go to 25 
if (ier.lt.-32) go to 65 
if (ier.le.128) go to 6 
if (level.lt.1) go to 30 
if (ieqdf.eq.1) write(iounit,35) ier,nameq,ieq,namupk 
if (ieqdf.eq.O) write(iounit,35) ier,namupk 
go to 30 

5 if (ier.le.64) go to 10 
if (level.lt.2) go to 30 
if (ieqdf.eq.1) write(iounit,40) ier,nameq,ieq,namupk 
if (ieqdf.eq.O) write(iounit,40) ier,namupk 
go to 30 •~ 

10 if (ier.le.32) go to 16 
if (level.lt.3) go to 30 
if (ieqdf.eq.1) write(iounit,45) ier,nameq,ieq,namupk 
if (ieqdf.eq.O) write(iounit,45) ier,namupk 
go to 30 

16 continue 
do 20 i=l,6 

if (namupk(i).ne.namset(i)) go to 25 
20 continue 

levold"' level 
level"' ier 
ier = levold 
if (level.lt.O) level 4 
if (level.gt.4) level 4 
go to 30 

26 continue 
if (level.lt.4) go to 30 
if (ieqdf.eq.1) write(iounit,60) ier,nameq,ieq,namupk 
if (ieqdf.eq.O) write(iounit,50) ier,namupk 

30 ieqdf = 0 
return 

35 format(19h *** terminal error,10x,7h(ier = ,i3, 
1 20h) from imsl routine ,6a1,a1,6a1) 

40 format(27h *** warning with fix error,2x,7h(ier = ,i3, 
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1 20h) from imsl routine ,6a1,a1,6a1) 
45 format(18h *** warning error,11x,7h(ier = ,i3, 

1 20h) from imsl routine ,6a1,a1,6a1) 
50 format(20h *** undefined error,9x,7h(ier = ,i5, 

1 20h) from imsl routine ,6a1,a1,6a1) 
55 ieqdf = 1 

do 60 i=1,6 
60 nameq(i) = namupk(i) 
65 return 

end 

C ***************************************************************************** 
C ***************************************************************************** 
c Used in DVERK 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE UGETIO(iopt,nin,nout) 
integer 
integer 
data 
if (iopt.eq.3) 
if (iopt.eq.2) 
if (iopt.ne.1) 
nin = nind 
nout = noutd 
go to 9005 

5 nind = nin 
go to 9005 

10 noutd = nout 
9005 return 

end 

iopt , nin, nout 
nind,noutd 
nind/1/,noutd/2/ 

go to 10 
go to 5 
go to 9005 
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C ***************************************************************************** 
C ***************************************************************************** 
c Calculate the kernel in convolution integral by direct numerical integration 
c y(t)=integral from Oto inf of { x(t-h)*c(h)*dh} 
c Link with ASM.OBJ (for ASKSHT) 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM INTEGRATE 
parameter (nn=SOO) 
character fname1*40,fname2*40,resp*1 
dimension x(nn),y(nn),c(nn) 

write(*,600)' Step size: ' 
read(*,602)step 

write(*,600)' System input filename: ' 
read(*,600)fname1 
open(11,file=fname1,status='old') 

write(*,600)' System output filename: ' 
read(*,600)fname2 
open(12,file=fname2,status='old') 

write(*,600)' First point to be included: ' 
read(*,601)ifirst 

do 3 i=l,ifirst-1 
read(11,*)xjunk 

3 read(12,*)xjunk 

do 6 i=l,9999 
read(11,*,end=6)x(i) 

6 read(12,*,end=6)y(i) •, 
6 close(11) 

close(12) 
n=i-1 
if(n .gt. nn)stop 'Input file dimension is too big' 

C ***************************************************************************** 
c shift in the vertical axis 
C ***************************************************************************** 

write(*,600)' Vertical offset in the system input: ' 
read(*,602)xshift 

write(*,600)' Vertical offset in the system output: ' 
read(*,602)yshift 

do 10 i""'1,n 
x(i)•x(i)-xshift 

10 y(i)•y(i)-yshift 

C ***************************************************************************** 
c Use x(l) as the initial quess for xO 
C ***************************************************************************** 

write(*,661)x(1) 
write(*,600)' Use x(l) as the initial quess for xO (Y/n) ' 

read(*,600)resp 
if(resp .eq. 'n' .or. resp .eq. 'N' .or. x(1) .eq. O)then 

write(*,600)' 1st quess of xO over the vertical offset: • 



read(*,502)x0 
else 

x0=x(1) 
endif 
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C ***************************************************************************** 
c See if the kernel is normalized 
C ***************************************************************************** 
100 temp=area(x,y,c,n,step,x0,iflag) 

write(*,650)iflag,temp 

write(*,600)' Enter automatic loop (exit/y/N) ' 
read(*,500)resp 

if(resp .eq. 'e' .or. resp .eq. 'E')goto 200 
if(resp .ne. 'y' .and. resp .ne. "Y')then 

write(*,600)' Next quess of x0 over the vertical offset: ' 
read(•,602)x0 

goto 100 
endif 

110 write(•,600)' 1st quess of x0 over the vertical offset: ' 
read(•,602)xleft 

write(•,600)' 2nd quess of x0 over the vertical offset: ' 
read(•,602)xright 

write(•,600)' Tolerance in x0: ' 
read(•,502)xtol 
if(xtol .le. 0.)xtol=1.e-8 

write(•,600)' Tolerance in area: ' 
read(•,602)ftol 
if (ftol . le. 0.) ftol=1. e-8 •, 

write(•,600)' Hit both shift keys to stop iteration 
write(•,600)' Be patient!' 

xoold=xleft 
temp=area(x,y,c,n,step,xoold,iflag) 

if(iflag .eq. 1)goto 110 
foold=temp-1. 

xold=xright 

C ***************************************************************************** 
c Iterate with the improved chord method to _find the correct x0. 
C ***************************************************************************** 

do 160 icount~1, 9999 
temp=area(x,y,c,n,step,xoold,iflag) 

if(iflag .eq. 1)goto 110 
foold•temp-1. 

write(•,662)icount,xold,fold+1. 
dx=xold-xoold 
df•fold-foold 
if(abs(dx) .le. xtol)goto 200 
if(abs(df) .le. ftol)goto 200 
xneW"'xold-fold•dx/df 
if(xnew .It. xleft)xneW"'xleft 
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c if(xnew .gt. xright)xnew=xright 
xoold=xold 
foold=fold 
xold=xnew 
call asksht(ishift) 
if(ishift .eq. 3)goto 200 

150 continue 

200 write(*,600)' Kernel function filename: ' 
read(*,600)fname1 
open(11,file=fname1,status='new') 

c Do not write out c(1), 
c but add another c(n) at the end so that the total number is still n 

write(11,603)(c(i) ,i=2,n) 
write(11,603)c(n) 
close(11) 

write(*,600)' Continue (y/N) • 
read(*,600)resp 

if(resp .eq. 'y' .or. resp .eq. 'Y')then 
write(*,600)' Next quess of xO: ' 

read(*,602)x0 
goto 100 

endif 

C ***************************************************************************** 
c Standard formats 
C ***************************************************************************** 
500 format(a) 
501 format(i6) ': 
502 format(e13.5) 
600 format(a\) 
603 format(1pe13.6) 
650 format(' iflag= ',i1,'; Kernel area= ',1pe13.5) 
651 format(' xO= ',1pe13.5) 
652 format(i6,'th iteration: xO= ',1pe13.5,' Kernel area= ',e13.5) 

stop 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c Numerical integration of the given array x over 1 ton: 
c step=step size, 
c Used by PROGRAM INTEGRATE 
C ***************************************************************************** 
C ***************************************************************************** 

REAL FUNCTION XINT(X,N,STEP) 
dimension x(1) 
xint•O. 
do 10 i-=1, n 

ia•4-mod(i,2)•2 
a=float (ia) 



xint=xint+a*x(i) 
10 continue 

xint=xint*step/3. 
return 
end 
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C ***************************************************************************** 
C ***************************************************************************** 
c Solve the convolution integral by direct numerical integration 
c iflag = 1 ... xO is too small; calculation failed. 
c Used by PROGRAM INTEGRATE 
C ***************************************************************************** 
C ***************************************************************************** 

REAL FUNCTION AREA(X,Y,C,N,STEP,XO,IFLAG) 
dimension x(1),y(1),c(1) 
iflag = 0 
do 10 j=1,n 

sum=O. 
do 11 i=1,j-1 

11 sum=sum+x(j+1-i)*c(i) 
c(j)=(y(j)/step-sum)/xO 

c stop and get out before the program issues math-overflow 
if(abs(c(j)) .ge. 1.e10)then 

iflag=1 
area=O. 
return 

endif 
10 continue 

c Calculate the area under the kernel 
area=xint(c,n,step) 

return 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c Direct kernel determination from the polynomial smoothed input and output 
c curves of y and x. 
c Given the coefficients to a polynomial y, x, and the order, find the 
c coefficient of least square fit. 
c y(t)=ay(1)+ay(2)*t+ay(3)*t**2+ay(4)*t**3+ ... +ay(iydeg)*t**(iydeg-1) 
c x(t)=ax(1)+ax(2)*t+ax(3)*t**2+ax(4)*t**3+ ... +ax(ixdeg)*t**(ixdeg-1) 
c Iterate, until the coefficient of xis unity. 
c Maximum orders: 
c ixdeg = 16 
c iydeg-= 16 
c iorder = k 
c Note: the actual starting x-value is xstart-h 
c wk ... work space of at least k*(2*n + 3*k + 3) 
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C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM POLY-XY 
parameter (n=500,k=6) 
character resp*! 
dimension t(n),yy(n),x(n,k),y(n,k),a(15),ax(15),ay(15) 
dimension b(k),wk(6126) 

write(*,600)' step size: ' 
read(*,502)h 

write(*,600)' last flat point for x: ' 
read(*,501)ixlast 
xoffset=float(ixlast)*h 

write(*,600)' last flat point for y: ' 
read(*,601)iylast 
yoffset=float(iylast)*h 

write(*,600)' x-value of flat points: ' 
read(*,602)xflat 

write(*,600)' y-value of flat points: ' 
read(*,602)yflat 

write(*,600)' number of coefficients of input polynomial: ' 
read(*,601)ixdeg 

do 6 i=1,ixdeg 
write(*,660)i 

5 read(*,602)ax(i) 
write(*,600)' number of coefficients of output polynomial: ' 

read{*,601)iydeg 
do 10 i=1,iydeg 

write(*,651)i 
10 read(*,602)ay(i) 

do 20 i=1,n 
20 t(i)=float(i)*h 
C ***************************************************************************** 
c Generate the polynomial function x and its derivatives 
c ideriv=1 original x x(*,1) 
c ideriv=2 x' x(*,2) 
c ideriv=3 x'' x(*,3) 
C 

C ideriv•k x(k-1) 
C ***************************************************************************** 

do 40 i-=1,ixdeg 
40 a(i)sax(i) 

do 100 ideriv=1,k 
c do 100 ideriv=l,ixdeg-1 !use this to get all the non-zero derivatives 

write(•,662)ideriv-1 
652 format(' Processing the ',i2,'th derivative of input') 

do 60 is1,ixlast 
60 x(i,ideriv)•xflat 

if(ideriv .eq. 1)xflat=0. 
imax=ixdeg-ideriv+1 
do 66 i=ixlast+1,n 

x(i,ideriv)•a(imax) 
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do 56 ii=l,imax-1 
56 x(i,ideriv)=a(imax-ii)+(t(i)-xoffset)*x(i,ideriv) 
55 continue 
c Find the coefficient of the next polynomial 

do 60 i=l,ixdeg-ideriv 
60 a(i)=a(i+l)*float(i) 
c write(11,15)(a(i),i=1,ixdeg-ideriv) 
100 continue 

C ***************************************************************************** 
c Generate the polynomial function y and its derivatives 
C ********************************~******************************************** 

do 140 i=l,iydeg 
140 a(i)=ay(i) 

do 200 ideriv=l,k 
write(*,653)ideriv-1 

653 format(' Processing the ',i2,'th derivative of output') 
do 150 i=l,iylast 

150 y(i,ideriv)=yflat 
if(ideriv .eq. l)yflat=O. 
imax=iydeg-ideriv+l 
do 155 i=iylast+l,n 

y(i,ideriv)=a(imax) 
do 156 ii=l,imax-1 

156 y(i,ideriv)=a(imax-ii)+(t(i)-yoffset)*y(i,ideriv) 
155 continue 
c Find the coefficient of the next polynomial 

do 160 i=1,iydeg-ideriv 
160 a(i)=a(i+1)*float(i) 
200 continue ·, 

300 write(*,600)' Order of fit (lowest =1): ' 
read(*,601)iorder 

if(iorder.le.O .or. iorder.gt.k)goto 300 

350 write(*,600)' Enter Tau: ' 
read(*,602)tau 

C ***************************************************************************** 
c Form the left hand side of the kernel differential equation: 
c N+1 dAi y N dAi x 
c SUM bin(N+1,i) T••i ------- = SUM a_i -------
c i=O dtAi i=O dtAi 
c Change of variables: i=j-l;iorder=N+l ======> 
c iorder+1 d-(j-1) y 
c SUM bin(iorder,j-1) T••(j-1) ---------- = 
c j=1 dt-(j-1) 

iorder 
SUM 
j=1 

a_(j-1) 

C ***************************************************************************** 
do 240 i=1,n 

240 yy(i)=y(i,1) 
do 250 j=2,iorder+1 

tfactor=bin(iorder,j-1)•tau••(j-1) 
do 260 i=1,n 

260 yy(i)=tfactor•y(i,j)+yy(i) 
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250 continue 

c Find the least square estimate 
call leasts(yy,x,b,error,n,iorder,wk,n) 
write(*,500)' Least-square coefficients: • 
write(*,656)(b(i),i=1,iorder) 
write(*,657)error 
write(*,600)' Guess another Tau (Y/n) 
read(*,500)resp 
if(resp .eq. 'n' .or. resp .eq. 'N')goto 300 
goto 350 

C ***************************************************************************** 
c standard formats 
C ***************************************************************************** 
500 format(a) 
501 format(i4) 
502 format(f15.5) 
600 format(a\) 
650 format(' ax',i2,': ',\) 
651 format(' ay',i2,': ',\) 
656 format(1pe15.5,10e15.5) 
657 format(' Error= ',1pe15.5) 

stop 
end 

C ***************************************************************************** 
C ***********************************•***************************************** 
c Calculate the real binomial coefficient 
c Used by PROGRAM POLY-XY 
C ***************************************************************************** 
C ***************************************************************************** 

FUNCTION NBIN(N,K) 
top=float(n) 
do 10 i-=1,k-1 

10 top=top*float(n-i)/float(k+1-i) 
nbin-=top+0.6 
if(k .eq. O)nbin=1 
return 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c Calculate the integer binomial coefficient 
c Used by PROGRAM POLY-XY 
C ********************************************************·********************* 
C ***************************************************************************** 

FUNCTION BIN(N,K) 
bin=float(n) 
do 10 i=1,k-1 
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10 bin=bin*float(n-i)/float(k+1-i) 
if(k .eq. O)bin=1. 
return 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c Find the linear least square fit per p265 of Box k Jenkins without weighing 
c y(i) = a(1)*x(i,1)+a(2)*x(i,2)+ ... +a(k)*x(i,k) i=1,2, ... ,n 
c y = X*a 
c where y = n measurements 
c x = independent variables (e.g. x(1,1)=1, x(1,2)=t(1), x(1,3)=t(1)**2, 
c etc., where t = true independent variable) 
c a= k estimate of parameters 
c n number of measurements 
c k number of degree 
c The least squares estimate is given by: a=inverse(Xt*X) * Xt * y 
c error= sum of square error= yt*y - bt*Xt*X*b 
c wk ... work space of at least k*(2*n+3*k+3) 
c nn ... row dimension of X exactly as declared in the calling statement 
c Used by PROGRAM POLY-XY 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE LEASTS(Y,X,B,ERROR,N,K,WK,NN) 
dimension wk(1) 
dimension y(1),X(nn,1),b(1) 

c Allocation of work space 
c +-n--+-k--+-k--+-n--+-k+3---+ Total work space needed= k*(2*n+3*k+3) 
c k Xt I XX I XXil C I wkinv I 
C +----+----+----+----+-------+ 

iXt = 1 
iXX k*n+iXt 
iXXi k*k+iXX 
iC = k*k+iXXi 
iwkinv= k*n+iC 

C ***************************************************************************** 
call TRANSP(wk(iXt),X,n,k,nn,k) 
call MULCAB(wk(iXX),wk(iXt),X,k,n,k,k,nn) 
idgt=O 
call LINV2F(wk(iXX),k,k,wk(iXXi),idgt,wk(iwkinv),ier) 
call MULCAB(wk(iC),wk(iXXi),wk(iXt),k,k,n,k,k) 
call MULYAX(b,wk(iC),y,k,n,k) 

error=XY(y,y,n)-XAY(b,wk(iXX),b,wk(iwkinv),k,k) 
if(ier .eq. 129)write(•,600)' Singular Matrix Inversion' 

600 format(a) 
return 
end 
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C ***************************************************************************** 
C ***************************************************************************** 
c Find the impulse transfer function by the Cyclic Fourier transform method. 
c The effect of cyclic convolution is corrected so that difference operation 
c is not necessary. 
c x system input 
c gx Fourier transformed system input 
c y system output 
c cy cyclic system output 
c gy Fourier transformed cyclic system output 
cc kernel 
c gk Fourier transformed kernel 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM CYCLIC 
parameter (nn=1000) 

c dimension iwk(76),wk(76),x(nn),y(nn),cy(nn),c(nn) !for nn=500 
dimension iwk(nn),wk(nn),x(nn),y(nn),cy(nn),c(nn) 
complex gx(nn),gy(nn),gk(nn) 
character fname1*40,fname2*40,resp*1 

write(*,600)' Step size: ' 
read(*,602)step 

write(*,600)' System input filename: ' 
read(*,600)fname1 
open(ll,file=fnamel,status='old') 

write(•,600)' System output filename: ' 
read(*,600)fname2 
open(12,file=fname2,status='dld') 

do 6 i=1,9999 
read(11,•,end=6)x(i) 

6 read(12,*,end=6)y(i) 
6 close(ll) 

close(12) 
n=i-1 
if(n .gt. nn)stop 'Input file dimension is too big' 

C ***************************************************************************** 
c Shift in the vertical axis 
C ***************************************************************************** 

write(*,600)' Original steady-state offset in the system input: ' 
read(*,602)xslow 

write(*,600)' Original steady-state offset in the system output: ' 
read(*,602)yslow 

do 10 i=l,n 
x(i)-=x(i)-xslow 

10 y(i)=y(i)-yslow 

C ***************************************************************************** 
c Transform input x 
C ***************************************************************************** 

call FFTRC(x,n,gx,iwk,wk) 
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do 15 i=2,n/2+1 
15 gx(n+2-i)=conjg(gx(i)) 

C ***************************************************************************** 
c Calculate the initial adjustment of y due to cyclic effects 
C ***************************************************************************** 

write(*,600)' Last point before perturbation: • 
read(*,501)ilast 

write(*,600)' New steady-state value of x: • 
read(*,502)xshigh 
xshigh=xshigh-xslow 

write(*,600)' New steady-state value of y: • 
read(*,502)yshigh 
yshigh=yshigh-yslow 

iter=0 

100 iter=iter+1 
write(*,650)iter 

C ***************************************************************************** 
c Add the mirror image of y(t) to cy(t) 
C ***************************************************************************** 

do 20 i=1,n-ilast 
20 cy(i)=cy(i)+yshigh-y(ilast+i) 

C ***************************************************************************** 
c Adjustment of y due to cyclic effects 
C ***************************************************************************** 

do 25 i=1,n •~ 
25 cy(i)=cy(i)+y(i) 

write(•,600)' Write cyclic system output (y/N) • 
read(*,500)resp 

if(resp .eq. 'y' .or. resp .eq. 'Y')then 
write(*,600)' Cyclic system output filename: • 

read(•,600)fname1 
open(11,file=fname1,status='new') 
write(11,603)(cy(i),i=1,n) 
close (uni t=11) 

endif 

C ***************************************************************************** 
c Transform output cy, which is adjusted for cyclic effects 
C ***************************************************************************** 

call FFTRC(cy,n,gy,iwk,wk) 
do 30 i-=2,n/2+1 

30 gy(n+2-i)-=conjg(gy(i)) 

write(•,600)' Cutoff pt (0 if no freq windowing to cyclic y): • 
read(•,601)ncut 

call WIND0W(n,gy,ncut) 

if(ncut .gt. 0)then 
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write(*,600)' Write F-transformed cyclic system output (y/N) ' 
read(*,500)resp 

if(resp .eq. 'y' .or. resp .eq. 'Y')then 
write(*,600)' F-transformed cyclic system output filename: ' 

read(*,500)fname1 
open(11,file=fname1,status='new') 
write(11,604)(gy(i),i=1,n) 
close(11) 

endif 
endif 

do 40 i=1,n 
40 gk(i)=gy(i)/gx(i) 

C ***************************************************************************** 
c Invert frequency transfer function to get impulse transfer function 
c Remember to take the conjgate before calling FFTCC 
C ***************************************************************************** 

do 50 i=1,n 
50 gk(i)=conjg(gk(i)) 

call FFTCC(gk,n,iwk,wk) 
do 60 i=1,n 

60 gk(i)=conjg(gk(i))/float(n) 
C ***************************************************************************** 
c Take the real part of gk, because the impulse response function is real 
C ***************************************************************************** 

do 70 i=1,n 
70 c(i)=real(gk(i))/step 

C 

C 

81 
C 

82 

80 

write(*,600)' Write kernel func~ion (y/N) ' 
read(*,600)resp 

if(resp .eq. 'y' .or. resp .eq. 'Y')then 
write(*,600)' Kernel function filename: ' 

read(*,600)fname1 
open(11,file=fname1,status='new') 
write(11,603)(c(i),i=1,n) 
close(11) 

endif 

write(*,600)' Continue (y/N) • 
read(*,600)resp 

if(resp .eq. 'y' .or. resp .eq. 'Y')then 
Calculate the additional adjustment of cy due to near-step input 

do 80 i•1,n-ilast 
cy(i)=O. 

,Little impulse near t=O 
do 81 j .. 1,i 

cy(i)=cy(i)-c(j)*(xshigh-x(ilast+i+1-j)) 
step-down long ago in the negative t 

do 82 j=i+1,n-ilast 
cy(i)=cy(i)-c(j)*(xshigh-x(n+i+1-j)) 

cy(i)=cy(i)*step 
continue 
do 86 i-n-ilast+1,n 



85 cy(i)=O. 
goto 100 

endif 
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C ***************************************************************************** 
c Standard formats 
C ***************************************************************************** 

.500 format(a) 
501 format(i6) 
502 format(e13.5) 
600 format(a\) 
603 format(1pe13.5) 
604 format(1pe13.5,e13.6) 
650 format(' iteration = • ,i4) 

end 

C ***************************************************************************** 
C ***************************************************************************** 
c Find the impulse transfer function by minimizing the square deviation 
c between the predicted value of y and the measured value of y. 
c The order of the equation and the parameters of k are quessed. 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM MINIMUM 
dimension x(500),y(600),yp(600),h(500),t(600) 
n=500 
step=0.02 
base=0.3 •, 
open(unit=11,file='x',status='old') 
read(11,16)(x(i),i=1,n) 

15 format(10e13.5) 
close(unit=11) 
open(unit=11,file='y',status='old') 
read(11,15)(y(i),i=1,n) 
close(unit=11) 
open(unit=11,file='t',status='old') 
read(11,16)(t(i),i=1,n) 
close(unit=11) 

C ***************************************************************************** 
c Generate the impulse response function 
C ***************************************************************************** 
100 type *,'enter a' 

accept *,a 
type *,'enter tau' 
accept •,tau 
do 6 i=1,n 

temp=t(i)/tau 
6 h(i)=(a+(1.-a)•temp)•exp(-temp)/tau 

C ***************************************************************************** 
c Calculate the predicted output y 
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C ***************************************************************************** 
do 10 i=1,n 

yp(i)=O. 
do 20 j=1,i 

20 yp(i)=yp(i)+h(j)*x(i+1-j) 
do 30 j=i+1,n 

30 yp(i)=yp(i)+h(j)*base 
yp(i)=yp(i)*step 

10 continue 

C ***************************************************************************** 
c Calculate the square of deviation of predicted y from the measured y 
C ***************************************************************************** 

sum=O. 
do 40 i=1,n 

delta=yp(i)-y(i) 
40 sum=sum+delta*delta 

type * , • J=' , sum 
go to 100 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c Given a function (f), find the Fourier transform (g). 
c Tapering and windowing are optional 
c See the IMSL documentation on the length of the work vector. 
C ***************************************************************************** 
C ***********************************~***************************************** 

PROGRAM F-TRANS 
c Maxmium length of work vectors= 3*n+160 

parameter (nn=2000) 
character fname*40 
dimension iwk(1000),wk(1000),f(nn) 
complex*8 g(nn) 

write(*,600)' Enter filename to be converted: • 
read(*,600)fname 
open(11,file=fname,status-•old') 

do 6 i-=1,9999 
6 read(11,*,end=6)f(i) 
6 close(U) 

n=i-1 
if(n .gt. nn)stop 'Input file dimension is too big' 

write(*.600)' End point of taper ((O=default) if no tapering): ' 
read(*,601)ntaper 
call TAPER(n,f,ntaper) 

call FFTRC(f,n,g,iwk,wk) 
do 10 i-=2,n/2+1 

10 g(n+2-i)=conjg(g(i)) 
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write(*,600)' Cutoff pt (0 if no freq windowing): ' 
read(*,501)ncut 
call WINDOW(n,g,ncut) 

write(*,600)' Fourier transformed filename: ' 
read(*,500)fname 
open(11,file=fname,status='new') 
write(11,604)(g(i),i=1,n) 
close(11) 

c standard formats 
500 format(a) 
601 format(i6) 
600 format(a\) 
604 format(1pe13.5,e13.5) 

stop 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c Given the Fourier transform (g), find the inverse transform. 
c Windowing is optional 
c See the IMSL documentation on the length of the work vector. 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM FI-TRANS 
c Maxmium length of work vectors W 3*n+150 

parameter (nn=2000) 
character fname*40 
dimension iwk(1000),wk(1000) 
complex*8 g(nn),gwk(nn) 

write(*,600)' Filename to be converted: ' 
read(*,600)fname 
open(11,file=fname,status='old') 

do 6 i=l,9999 
read(11,*,end=6)gr,gi 

6 g(i)=cmplx(gr,-gi) 
6 close(11) 

n=i-1 
if(n .gt. nn)stop 'Input file dimension is too big' 

c Work in gwk 
100 do 10 iml,n 
10 gwk(i)=g(i) 

write(*,600)' Cutoff pt (0 if no freq windowing): • 
read(*,601)ncut 
call WINDOW(n,gwk,ncut) 

call fftcc(gwk,n,iwk,wk) 
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do 20 i=l,n 
20 gwk(i)=conjg(gwk(i))/float(n) 

write(*,600)' Filename to store real results: ' 
read(*,600)fname 
open(11,file=fname,status='new') 
write(11,603)(real(gwk(i)),i=1,n) 
close(11) 

write(*,600)' Save complex results (y/N) 
read(*,600)resp 

if(resp .eq. 'y' .or. resp .eq. 'Y')then 
write(*,600)' Filename to store complex results: ' 

read(*,600)fname 
open(11,file=fname,status='new') 
write(11,604)(gwk(i),i=1,n) 
close(11) 

endif 

write(*,600)' Try different windows (y/N) 
read(*,600)resp 

if(resp .eq. 'y' .or. resp .eq. 'Y')goto 100 

c standard formats 
600 format(a) 
601 format(i6) 
600 format(a\) 
603 format(1pe13.6) 
604 format(1pe13.6,e13.6) 

stop 'goodbye' 
end 

C ***************************************************************************** 
C ***************************************************************************** 
C Find the impulse transfer function by the Fourier transform method. 
C Difference operation is optional, and pts at either end can be neglected. 
C Tapering and windowing are optional. 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM FOURIER 
parameter (nn=1000) 
character fname1*40,fname2*40,resp*1 
dimension iwk(nn),wk(nn),x(nn),y(nn) 
complex*B gx(nn),gy(nn),gk(nn) 

write(*,600)' Step size: ' 
read(*,602)step 

write(*,600)' System input filename: ' 
read(*,600)fname1 
open(11,file=fname1,status='old') 

write(*,600)' System output filename: ' 
read(*,600)fname2 
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open(12,file=fname2,status='old') 

do 5 i=1,9999 
read(11,*,end=6)x(i) 

5 read(12,*,end=6)y(i) 
6 close(11) 

close(12) 
n=i-1 
if(n .gt. nn)stop 'Input file dimension is too big' 

C ***************************************************************************** 
c Shift in the vertical axis 
C ***************************************************************************** 

write(*,600)' Vertical shift for the system input: • 
read(*,502)xshift 

write(*,600)' Vertical shift for the system output: • 
read(*,502)yshift 

do 9 i=1,n 
x(i)=x(i)-xshift 

9 y(i)=y(i)-yshift 

C ***************************************************************************** 
c Difference operations for x and y arrays 
C ***************************************************************************** 

write(•,600)' enter number of difference operations: ' 
read(•,501)idelta 

do 20, j=1,idelta 
do 10 i=1,n-idelta 

x(i) =x(i +1)-x(i) 
10 y(i)=y(i+1)-y(i) 

do 11 i=n+1-idelta,n 
x(i)=O. 

11 y(i)=0. 
20 continue 

if(idelta .ge. !)then 
write(*,600)' Record the differenced quantities (y/N) ' 
read(•,500)resp 
if(resp .eq. 'y' .or. resp .eq. 'Y')then 

write(•,600)' Differenced system input filename: ' 
read(•,500)fname1 
open(11,file=fname1,status='new') 
write(11,603)(x(i),i=1,n) 
close(11) 

write(•,600)' Differenced system output filename: • 
read(*,600)fname1 
open(11,file=fname1,status='new') 
write(11,603)(y(i),i=1,n) 
close(11) 

endif 
endif 

C ***************************************************************************** 
c Set the pts [1,ifirst) and (ilast,n] to be 0 
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C ***************************************************************************** 
write(*,600)' First point to be included: ' 

read(*,601)ifirst 
write(*,600)' Last point to be included: ' 

read(*,601)ilast 
do 26 i=l,ifirst-1 

x(i)=0. 
26 y(i)=O. 

do 26 i=ilast+1,n 
x(i)=0. 

26 y(i)=0. 

C ***************************************************************************** 
c Take Fourier transform of x and y 
C ***************************************************************************** 

write(*,600)' End point of taper ((O=default) if no tapering): ' 
read(*,601)ntaper 

call TAPER(n,x,ntaper) 
call FFTRC(x,n,gx,iwk,wk) 
do 30 i=2,n/2+1 

30 gx(n+2-i)=conjg(gx(i)) 

call TAPER(n,y,ntaper) 
call FFTRC(y,n,gy,iwk,wk) 
do 40 i=2,n/2+1 

40 gy(n+2-i)=conjg(gy(i)) 

write(*,600)' Want to record the transformed quantities (y/N) ' 
read(*,600)resp ·! 
if(resp .eq. 'y' .or. resp .eq. 'Y')then 

write(*,600)' System input CF-transformed) filename: ' 
read(*,600)fname1 
open(11,file=fname1,status='new') 
write(11,604)(gx(i),i=1,n) 
close(11) 

write(*,600)' System output CF-transformed) filename: ' 
read(*,600)fname1 
open(11,file=fname1,status='new') 
write(11,604)(gy(i),i=1,n) 
close(11) 

endif 

C ***************************************************************************** 
c Take the convolution division to get the transformed impulse response 
c function 
C ***************************************************************************** 

do 60 i=1,n 
60 gk(i)=gy(i)/gx(i)/step 

write(•,600)' Record the F-transformed kernel function (y/N) • 
read(*,600)resp 
if(resp .eq. 'y' .or. resp .eq. 'Y')then 
write(*,600)' Impulse transfer CF-transformed) filename: ' 
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read(*,500)fname1 
open(11,file=fname1,status='new') 
write(11,604)(gk(i),i=1,n) 
close(11) 

endif 

C ***************************************************************************** 
c Take inverse Fourier transform to get the impulse response function 
C ***************************************************************************** 

write(*,600)' Cutoff pt (O(default) if no freq windowing): • 
read(*,501)ncut 

call WINDOW(n,gk,ncut) 

c Remember to take the conjgate before calling FFTCC 
do 60 i=1,n 

60 gk(i)=conjg(gk(i)) 
call FFTCC(gk,n,iwk,wk) 
do 70 i=1,n 

70 gk(i)=conjg(gk(i))/float(n) 

C ***************************************************************************** 
c Take the real part of gk, because the impulse response function is real 
C ***************************************************************************** 

do 80 i=1,n 
80 x(i)=real(gk(i)) 

write(*,600)' Kernel function filename: ' 
read(*,500)fname1 
open(11,file=fname1,status='new') 
write(11,603) (x(i) ,i=1,n) •l 
close(11) 

C ***************************************************************************** 
c Standard formats 
C ***************************************************************************** 
500 format(a) 
501 format(i6) 
502 format(e13.6) 
600 format(a\) 
603 format(1pe13.6) 
604 format(1pe13.6,e13.6) 

stop 'goodbye' 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c Symmetrically taper a given function f(n), starting at ntaper. 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE TAPER(n,f,ntaper) 
dimension f (n) 
pi=3.1416 
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do 10 i=1,ntaper 
factor=(l.-cos(pi*float(i-1)/float(ntaper)))/2. 

f(i)=f(i)*factor 
10 f(n-i+1)=f(n-i+1)*factor 

return 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c Look at a function g(n) through a 'cosine window' 
c neut= the point at which the function is cut off 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE WINDOW(n,g,ncut) 
complex*8 g(n) 
if(ncut .le. O)return 

pi=3.1416 
do 10 i=1,ncut 

factor=(l.+cos(pi*float(i-1)/float(ncut)))/2. 
10 g(i)=g(i)*factor 

do 20 i=ncut+1,n/2+1 
20 g(i)=O. 

c Fourier transform is symmetric 
do 30 i=2,n/2+1 

30 g(n+2-i)=conjg(g(i)) 

return 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c IMSL SUBROUTINE (See IMSL Manual for detail) 
c Fast Fourier transform of a real valued sequence 
c a{n) ... input vector to be transformed 
c x(n/2+1) ... output complex vector 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE FFTRC(a,n,x,iwk,wk) 
integer n,iwk(1) 
real a(n),wk(1) 
complex x(1) 
integer nd2p1,nd2,i,mtwo,m,imax,nd4,np2,k,nmk,j 
real rpi,zero,one,half,theta,tp,g(2),b(2),z(2),ai, 

1 ar 
complex ximag,alph,beta,gam,s1,zd 
equivalence (gam,g(1)),(alph,b(1)),(z(1),ar),(z(2),ai), 

1 (zd,z(1)) 
data zero/0.0/,half/0.6/,one/1.0/,imax/24/ 
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data rpi/3.141593/ 

if (n .ne. 2) go to 5 
c n equal to 2 

zd = cmplx(a(1),a(2)) 
theta= ar 
tp = ai 
x(2) = cmplx(theta-tp,zero) 
x(l) = cmplx(theta+tp,zero) 
go to 9005 

5 continue 
c n greater than 2 

nd2 = n/2 
nd2p1 = nd2+1 

c Move a to x 
j = 1 
do 6 i=1,nd2 

x(i) = cmplx(a(j),a(j+1)) 
j = j+2 

6 continue 
c Compute the center coefficient 

gam = cmplx(zero,zero) 
do 10 i=1,nd2 

gam = gam + x(i) 
10 continue 

tp = g(1)-g(2) 
gam = cmplx(tp,zero) 

c Determine the smallest m such that n is less than or equal to 2**m 
mtwo = 2 
m = 1 ''. 
do 15 i=l,imax 

if (nd2 .le. mtwo) go to 20 
mtwo = mtwo+mtwo 
m = m+l 

15 continue 
20 if (nd2 .eq. mtwo) go to 1 25 

c n is not a power of two, call fftcc 
call fftcc (x,nd2,iwk,wk) 
go to 30 

c n is a power of two, call fft2c 
25 call fft2c (x,m,iwk) 
30 alph = x(l) 

x(1) = b(l) + b(2) 
nd4 = (nd2+1)/2 
if (nd4 .lt. 2) go to 40 
np2 = nd2 + 2 
theta., rpi/nd2 
tp = theta 
ximag = cmplx(zero,one) 

c Decompose the complex vector xc into the components of the transform 
C O~~np~. 

do 35 k-= 2,nd4 
nmk • np2 - k 
s1 = conjg(x(nmk)) 



alph = x(k) + s1 
beta= ximag*(s1-x(k)) 
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s1 = cmplx(cos(theta),sin(theta)) 
x(k) = (alph+beta*s1)*half 
x(nmk) = conjg(alph-beta*s1)*half 
theta= theta+ tp 

35 continue 
40 continue 

x(nd2p1) = gam 
9005 return 

end 

C ***************************************************************************** 
C ***************************************************************************** 
c IMSL SUBROUTINE (See IMSL Manual for detail) 
c Fast Fourier transform of a complex valued sequence 
c a(n) ... input/output vector 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE FFTCC (a,n,iwk,wk) 
integer n,iwk(1) 
real wk(1) 
complex a(n) 
integer i,iam,iap,ibm,ibp,ic,icc,icf,ick,id,idml,ii, 

1 ija,ikb,ikt,ill,im,ird,isf,isk,isp,iss,ita,itb, 
2 j,ja,jf,jj,jk,k,k0,k1,k2,k3,ka,kb,kd2,kf,kh,kn, 
3 kt,ktp,l,11,m,mm,mm1,mp 
real cm,sm,c1,c2;<:3,s1,s2,s3,c30,rad,a0,a1,a4,b4, 

1 a2,a3,b0,b1,b2,b3,zero,half,one,two,z0(2), 
2 z1(2),z2(2),z3(2),z4(2) 

complex 
equivalence 

1 
2 
3 
data 

1 
data 

za0,za1,za2,za3,za4,ak2 
(za0,z0(1}),(za1,z1(1}),(za2,z2(1)), 
(za3,z3(1)),(a0,z0(1)),(b0,z0(2)),(a1,z1(1)), 
(b1,z1(2)},(a2,z2(1)),(b2,z2(2)),(a3,z3(1)), 
(b3,z3(2)),(za4,z4(1)),(z4(1),a4),(z4(2),b4) 
rad/6.283185/, 
c30/.8660264/ 
zero,half,one,two/0.0,0.6,1.0,2.0/ 

if (n .eq. 1) go to 9006 
k -= n 
m -= 0 
j .. 2 
jj .. 4 
jf = 0 

c Determine the square factors of n 
iwk(1) -= 1 

6 i = k/jj 
if (i*jj .ne. k) go to 10 
m • m+1 
iwk(m+1) = j 
k -= i 



go to 6 
10 j = j + 2 

if (j .eq. 4) j = 3 
jj = j * j 
if (jj .le. k) go to 6 
kt = m 
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c Determine the remaining factors of n 
j = 2 

15 i = k / j 
if (i*j .ne. k) go to 20 
m = m + 1 
iwk(m+l) = j 
k = i 
go to 16 

20 j = j + 1 
if (j .eq. 3) go to 16 
j = j + 1 
if(j.le.k) go to 16 
k = iwk(m+1) 
if (iwk(kt+1) .gt. iwk(m+1)) k = iwk(kt+1) 
if(kt.le.O) go to 30 
ktp =kt+ 2 
do 26 i = 1,kt 

j = ktp - i 
m = m+1 
iwk(m+1) = iwk(j) 

26 continue 
30 mp= m+1 

ic = mp+1 
id= ic+mp 
ill = id+mp 
ird = ill+mp+1 
ice= ird+mp 
iss = icc+mp 
ick = iss+mp 
isk = ick+k 
icf = isk+k 
isf = icf+k 
iap • isf+k 
kd2"' (k-1) / 2 + 1 
ibp"" iap + kd2 
iam"' ibp + kd2 
ibm • iam + kd2 
mm1 .. m-1 
i = 1 

36 1 = mp - i 
j .. ic - i 
iwk(ill+l) = 0 
if ((iwk(j-1) + iwk(j)) .eq. 4) iwk(ill+l) = 1 
if (iwk(ill+l) .eq. 0) go to 40 
i = i + 1 
1 • 1 - 1 
iwk(ill+l)-= 0 

40 i"" i + 1 



if(i.le.mm1) go to 35 
iwk(ill+1) = 0 
iwk(ill+mp) = 0 
iwk(ic) = 1 
iwk(id) = n 
do 45 j = 1,m 

k = iwk(j+1) 
iwk(ic+j) = iwk(ic+j-1) * k 
iwk(id+j) = iwk(id+j-1) / k 
wk(ird+j) = rad/iwk(ic+j) 
c1 = rad/k 
if (k .le. 2) go to 45 
wk(icc+j) cos(c1) 
wk(iss+j) = sin(c1) 

45 continue 
mm= m 
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if (iwk(ill+m) .eq. 1) mm= m - 1 
if (mm .le. 1) go to 60 
sm = iwk(ic+mm-2) * wk(ird+m) 
cm= cos(sm) 
sm = sin(sm) 

60 kb= 0 
kn = n 
jj = 0 
i = 1 
c1 = one 
s1 = zero 
11 = 1 

66 if (iwk(ill+i+1) .eq. 1) go to 60 
kf "' iwk(i+1) 
go to 66 

60 kf-= 4 
i • i+1 

66 isp = iwk(id+i) 
if (11 .eq. 1) go to 70 
s1 = jj * wk(ird+i) 
c1 = cos(s1) 
s1 -= sin(s1) 

c Factors of 2, 3, and 4 are handled separately. 
70 if (kf .gt. 4) go to 140 

go to (76,76,90,116), kf 
76 kO-= kb+ isp 

k2 ... kO + isp 
if (11 .eq. 1) go to 86 

80 kO • kO - 1 
if (kO .lt. kb) go to 190 
k2 • k2 - 1 
za4 • a(k2+1) 
a0 • a4*c1-b4*s1 
b0 • a4*s1+b4*c1 
a(k2+1) "'a(k0+1)-za0 
a(k0+1) = a(k0+1)+za0 
go to 80 

86 kO "' kO - 1 



if (kO .lt. kb) go to 190 
k2 = k2 - 1 
ak2 = a(k2+1) 
a(k2+1) = a(k0+1)-ak2 
a(k0+1) = a(k0+1)+ak2 
go to 85 

90 if (11 .eq. 1) go to 95 
c2 =cl* cl - s1 * sl 
s2 =two* cl* s1 

95 ja =kb+ isp - 1 
ka = ja + kb 
ikb = kb+l 
ija = ja+l 
do 110 ii= ikb,ija 

kO = ka - ii+ 1 
kl= kO + isp 
k2 =kl+ isp 
za0 = a(kO+l) 
if (11 .eq. 1) go to 100 
za4 = a(k1+1) 
al= a4*c1-b4*s1 
bl= a4*s1+b4*c1 
za4 = a(k2+1) 
a2 = a4*c2-b4*s2 
b2 = a4*s2+b4*c2 
go to 105 

100 zal = a(kl+l) 
za2 = a(k2+1) 
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105 a(kO+l) = cmplx(a0+a1+a2,b0+bl+b2) 
a0 =-half* (al+a2) + a0 •, 
al= (a1-a2) * c30 
b0 =-half* (b1+b2) + b0 
bl= (b1-b2) * c30 
a(kl+l) = cmplx(a0-b1,bO+a1) 
a(k2+1) = cmplx(a0+b1,b0-a1) 

110 continue 
go to 190 

115 if (11 .eq. 1) go to 120 
c2 •cl• cl - el• s1 
e2 .. two• cl* el 
c3 =cl* c2 - el* e2 
e3 =el* c2 +cl* e2 

120 ja .. kb+ isp - 1 
ka • ja + kb 
ikb .. kb+1 
ija '"' ja+1 
do 135 ii• ikb,ija 

kO-= ka - ii+ 1 
kl .. kO + iep 
k2 =kl+ iep 
k3-= k2 + isp 
za0 .. a(k0+1) 
if (11 .eq. 1) go to 126 
za4 "" a(k1+1) 
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al= a4*c1-b4*s1 
bl= a4*s1+b4*c1 
za4 = a(k2+1) 
a2 = a4*c2-b4*s2 
b2 = a4*s2+b4*c2 
za4 = a(k3+1) 
a3 = a4*c3-b4*s3 
b3 = a4*s3+b4*c3 
go to 130 
za1 = a(k1+1) 
za2 = a(k2+1) 
za3 = a(k3+1) 
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130 a(k0+1) = cmplx(a0+a2+a1+a3,b0+b2+b1+b3) 
a(k1+1) = cmplx(a0+a2-a1-a3,b0+b2-b1-b3) 
a(k2+1) = cmplx(a0-a2-b1+b3,b0-b2+a1-a3) 
a(k3+1) = cmplx(a0-a2+b1-b3,b0-b2-a1+a3) 

135 continue 
go to 190 

140 jk-= kf - 1 
kh = jk/2 
k3 = iwk(id+i-1) 
kO =kb+ isp 
if (11 .eq. 1) go to 150 
k = jk - 1 
wk(icf+1) = c1 
wk(isf+1) = s1 
do 145 j = 1,k 

wk(icf+j+1) = wk(icf+j) 
wk(isf+j+1) = wk(icf+j) 

145 continue 
150 if (kf .eq. jf) go to 160 

c2 = wk(icc+i) 
wk(ick+1) = c2 
wk(ick+jk) = c2 
s2-= wk(iss+i) 
wk(isk+1) = s2 
wk(isk+jk) = -s2 
do 166 j-= 1,kh 

k • jk - j 

* cl - wk(isf+j) * s1 
* s1. + wk(isf+j) * cl ., 

wk(ick+k)-= wk(ick+j) * c2 - wk(isk+j) * s2 
wk(ick+j+1) = wk(ick+k) 
wk(isk+j+1) = wk(ick+j) * s2 + wk(isk+j) * c2 
wk(isk+k) = -wk(isk+j+1) 

155 continue 
160 kO -= kO - 1 

k1 • kO 
k2 ... kO + k3 
za0 '"' a(k0+1) 
a3 = a0 
b3 • bO 
do 176 j-= 1,kh 

k1-= k1 + isp 
k2 • k2 - isp 
if (11 .eq. 1) go to 166 



k = kf - j 
za4 = a (k1 +1) 
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a1 = a4*wk(icf+j)-b4*wk(isf+j) 
b1 = a4*wk(isf+j)+b4*wk(icf+j) 
za4 = a(k2+1) 
a2 = a4*wk(icf+k)-b4*wk(isf+k) 
b2 = a4*wk(isf+k)+b4*wk(icf+k) 
go to 170 

165 za1 = a(k1+1) 
za2 = a(k2+1) 

170 wk(iap+j) = a1 + a2 
wk(iam+j) = a1 - a2 
wk(ibp+j) = b1 + b2 
wk(ibm+j) = b1 - b2 
a3 = a1 + a2 + a3 
b3 = b1 + b2 + b3 

175 continue 
a(k0+1) = cmplx(a3,b3) 
k1 = kO 
k2 = kO + k3 
do 185 j = 1,kh 

k1 = k1 + isp 
k2 = k2 - isp 
jk = j 
a1 = a0 
b1 = b0 
a2 = zero 
b2 = zero 
do 180 k = 1,kh 

a1 = a1 + wk(iap+k) * wk(~ck+jk) 
a2 = a2 + wk(iam+k) * wk(isk+jk) 
b1 = b1 + wk(ibp+k) * wk(ick+jk) 
b2 = b2 + wk(ibm+k) * wk(isk+jk) 
jk = jk + j 
if (jk .ge. kf) jk = jk - kf 

180 continue 
a(k1+1) = cmplx(a1-b2,b1+a2) 
a(k2+1) = cmplx(a1+b2,b1-a2) 

186 continue 
if (kO .gt. kb) go to 160 
jf - kf 

190 if ( i .ge. mm) go to 196 
i • i + 1 
go to 66 

196 i .. mm 
11 • 0 
kb= iwk(id+i-1) + kb 
if (kb .ge. kn) go to 216 

200 jj = iwk(ic+i-2) + jj 
if (jj .lt. iwk(ic+i-1)) go to 206 
i • i - 1 
jj = jj - iwk(ic+i) 
go to 200 

206 if (i .ne. mm) go to 210 



c2 = cl 
cl= cm* cl - sm * s1 
s1 = sm * c2 +cm* s1 
go to 70 
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210 if (iwk(ill+i) .eq. 1) i = i + 1 
go to 55 

215 i = 1 
ja = kt - 1 
ka = ja + 1 
if(ja.lt.1) go to 225 
do 220 ii= 1,ja 

j = ka - ii 
iwk(j+1) = iwk(j+1) - 1 
i = iwk(j+1) + i 

220 continue 
c The result is now permuted to normal order. 

225 if (kt .le. 0) go to 270 
j = 1 
i = 0 
kb= 0 

230 k2 = iwk(id+j) + kb 
k3 = k2 
jj = iwk(ic+j-1) 
jk = jj 
kO =kb+ jj 
isp = iwk(ic+j) - jj 

235 k = kO + jj 
240 za4 = a(k0+1) 

a(k0+1) = a(k2+1) 
a(k2+1) = za4 ·, 
k0-=k0+1 
k2 = k2 + 1 
if (kO .lt. k) go to 240 
kO = kO + isp 
k2 = k2 + isp 
if (kO .lt. k3) go to 235 
if (kO .ge. k3 + isp) go to 245 
kO"" kO - iwk(id+j) + jj 
go to 235 

245 k3 - iwk(id+j) + k3 
if (k3 - kb .ge. iwk(id+j-1)) go to 250 
k2 "" k3 + jk 
jk - jk + jj 
kO - k3 - iwk(id+j) + jk 
go to 236 

250 if- (j .ge. kt) go to 260 
k = iwk(j+1) + i 
j - j + 1 

256 i • i + 1 
iwk(ill+i) = j 
if (i .lt. k) go to 256 
go to 230 

260 kb-= k3 
if (i .le. 0) go to 265 



j = iwk(ill+i) 
i = i - 1 
go to 230 

265 if (kb .ge. n) go to 270 
j = 1 
go to 230 

270 jk = iwk(ic+kt) 
isp = iwk(id+kt) 
m=m-kt 
kb= isp/jk-2 
if (kt .ge. m-1) go to 9005 
ita = ill+kb+l 
itb = ita+jk 
idml = id-1 
ikt = kt+l 
im = m+l 
do 275 j = ikt,im 

iwk(idml+j) = iwk(idml+j)/jk 
275 continue 

jj = 0 
do 290 j = 1,kb 

k = kt 
280 
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jj = iwk(id+k+l) + jj 
if (jj .lt. iwk(id+k)) go to 285 
jj = jj - iwk(id+k) 
k = k + 1 
go to 280 

285 iwk(ill+j) = jj 
if (jj .eq. j) iwk(ill+j) = -j 

290 continue 
c Determine the permutation cycles of length greater than or equal to two. 

295 

do 300 j = 1,kb 
if (iwk(ill+j) .le. 0) go to 300 
k2 = j 
k2 = iabs(iwk(ill+k2)) 
if (k2 .eq. j) go to 300 
iwk(ill+k2) = -iwk(ill+k2) 
go to 295 

300 continue 
c Reorder a following the permutation cycles 

i • 0 
j .. 0 
kb .. 0 
kn - n 

305 j = j + 1 
if (iwk(ill+j) .lt. 0) go to 305 
k "' iwk(ill+j) 
kO .. jk * k + kb 

310.za4"" a(kO+i+l) 
wk(ita+i) = a4 
wk(itb+i) = b4 
i .. i + 1 
if (i .lt. jk) go to 310 
i = 0 



315 k = -iwk(iII+k) 
jj = kO 
kO = jk * k + kb 

320 a(jj+i+1) = a(kO+i+1) 
i = i + 1 
if (i .It. jk) go to 320 
i = 0 
if (k .ne. j) go to 315 
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325 a(kO+i+1) = cmpix(wk(ita+i),wk(itb+i)) 
i = i + 1 
if (i .It. jk) go to 325 
i = 0 
if (j .It. k2) go to 305 
j = 0 
kb= kb+ isp 
if (kb .lt. kn) go to 306 

9005 return 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c IMSL SUBROUTINE (See IMSL Manual for detail) 
c Fast Fourier transform of a complex valued sequence of power two 
c a(n) ... input/output vector 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE FFT2C (a,m,iwk) 
integer m,iwk(1) 'l. 

complex a(1) 
integer i,isp,j,jj,jsp,k,k0,k1,k2,k3,kb,kn,mk,mm,mp,n, 

1 n4,n8,n2,lm,nn,jk 
real rad,c1,c2,c3,s1,s2,s3,ck,sk,sq,a0,a1,a2,a3, 

1 b0,b1,b2,b3,twopi,temp, 
2 zero,one,z0(2),z1(2),z2(2) ,z3(2) 

complex za0,za1,za2,za3,ak2 
equivalence (za0,z0(1)),(za1,z1(1)),(za2,z2(1)), 

1 (za3,z3(1)),(a0,z0(1)),(b0,z0(2)),(a1,z1(1)), 
2 (b1,z1(2)),(a2,z2(1)),(b2,z2(2)),(a3,z3(1)), 
3 (b3,z3(2)) 

data sq/.7071068/, 
1 sk/.3826834/, 
2 ck/.9238796/, 
3 twopi/6.283186/ 
data zero/O.O/,one/1.0/ 

mp "" m+1 
D-= 2**m 
iwk(1) = 1 
mm -= (m/2)*2 
kn "" n+1 

c Initialize work vector 
do 6 i=2,mp 



iwk(i) = iwk(i-1)+iwk(i-1) 
5 continue 

rad= twopi/n 
mk=m-4 
kb= 1 
if (mm .eq. m) go to 15 
k2 = kn 
kO = iwk(mm+1) + kb 

10 k2 = k2 - 1 
k0 = k0 - 1 
ak2 = a(k2) 
a(k2) = a(kO) - ak2 
a(kO) = a(kO) + ak2 
if (kO .gt. kb) go to 10 

15 c1 = one 
s1 = zero 
jj = 0 
k = mm - 1 
j = 4 
if (k .ge. 1) go to 30 
go to 70 

20 if (iwk(j) .gt. jj) go to 25 
jj = jj - iwk(j) 
j = j-1 
if (iwk(j) .gt. jj) go to 25 
jj = jj - iwk(j) 
j = j - 1 
k = k + 2 
go to 20 
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25 jj = iwk(j) + jj ·, 
j = 4 

30 isp = iwk(k) 
if (jj .eq. 0) go to 40 

c Reset trigonometric parameters 
c2-= jj * isp * rad 
c1 = cos(c2) 
s1 = sin(c2) 

35 c2 = c1 * c1 - s1 * s1 
s2 = c1 * (s1 + s1) 
c3 = c2 * c1 - s2 * s1 
s3 = c2 * s1 + s2 * c1 

40 jsp = isp + kb 
c Determine fourier coefficients in groups of 4 

do 60 i•1, isp 
kO-= jsp - i 
k1 • kO + isp 
k2 = k1 + isp 
k3 = k2 + isp 
za0-= a(kO) 
za1 "' a(k1) 
za2"' a(k2) 
za3-= a(k3) 
if (s1 .eq. zero) go to 45 
temp• a1 



a1 = a1 * c1 - b1 * s1 
b1 =temp* s1 + b1 * c1 
temp= a2 
a2 = a2 * c2 - b2 * s2 
b2 =temp* s2 + b2 * c2 
temp= a3 
a3 = a3 * c3 - b3 * s3 
b3 =temp* s3 + b3 * c3 

45 temp= a0 + a2 
a2 = a0 - a2 
a0 = temp 
temp= a1 + a3 
a3 = a1 - a3 
a1 = temp 
temp= bO + b2 
b2 = b0 - b2 
b0 = temp 
temp= b1 + b3 
b3 = b1 - b3 
b1 = temp 
a(kO) = cmplx(a0+a1,b0+b1) 
a(k1) = cmplx(a0-a1,b0-b1) 
a(k2) = cmplx(a2-b3,b2+a3) 
a(k3) = cmplx(a2+b3,b2-a3) 

60 continue 
if (k .le. 1) go to 55 
k = k - 2 
go to 30 

66 kb= k3 + isp 

-609-

c Check for completion of final itera~ion 
if (kn .le. kb) go to 70 
if (j .ne. 1) go to 60 
k = 3 
j = mk 
go to 20 

60 j = j - 1 
c2 = c1 
if (j .ne. 2) go to 65 
c1 = c1 *ck+ s1 * sk 
s1 = s1 * ck - c2 * sk 
go to 36 

66 c1 • (c1 - s1) * sq 
s1 = (c2 + s1) * sq 
go to 35 

70 continue 
c Permute the complex vector in reverse binary order to normal order 

if(m .le. 1) go to 9006 
mp• m+1 
jj ... 1 

c Initialize work vector 
iwk(1) = 1 
do 76 i-= 2,mp 

iwk(i) = iwk(i-1) * 2 
76 continue 



n4 = iwk(mp-2) 
if (m .gt. 2) n8 iwk(mp-3) 
n2 = iwk(mp-1) 
lm = n2 
nn = iwk(mp)+1 
mp= mp-4 

c Determine indices and switch a 
j = 2 

80 jk = jj + n2 
ak2 = a(j) 
a(j) = a(jk) 
a(jk) = ak2 
j = j+1 
if (jj .gt. n4) go to 85 
jj = jj + n4 
go to 105 

85 jj = jj - n4 
if (jj .gt. n8) go to 90 
jj = jj + n8 
go to 105 

90 jj = jj - n8 
k = mp 

95 if (iwk(k) .ge. jj) go to 100 
jj = jj - iwk(k) 
k = k - 1 
go to 95 

100 jj = iwk(k) + jj 
106 if (jj .le. j) go to 110 

k = nn - j 
jk = nn - jj 
ak2 = a(j) 
a(j) = a(jj) 
a(jj) = ak2 
ak2 = a(k) 
a(k) -= a(jk) 
a(jk) = ak2 

110 j -= j + 1 
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c Cycle repeated until limiting number of changes is achieved 
if (j .le. lm) go to 80 

9005 return 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c Simulate the biomass and substrate cone. in a time delay kernel model 
c with constant or sinusoidal dilution rate. 
c By setting amp=O., constant dilution rate is also simulated. 
c By setting tau=O., the Monod model is also simulated. 
c By setting ub=O., the Monod model is also simulated. 
c By setting us-=O., the Monod model is also simulated. 
c By setting D=O., batch fermentation is also simulated. 
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c By setting Yb=O., constant yield coefficient is also simulated. 
c The program stops if "9999" is the answer to the question: 
c 'up to which pt are these dilution rate valid 
c For the sinusoidal case, report the last high and low values of B(biomass), 
c S(substrate), MU(intrinsic specific growth rate), Y(observed specific 
c growth rate), and D(dilution rate). 
C ***************************************************************************** 
C ***************************************************************************** 

PROGRAM SIMULATE 
parameter (n=4) 
character resps*1,respw*1 
external deriv1,deriv2 
real Ks,Ki 
dimension x(n),xdot(n),c(24),w(n,9) 
dimension tmin(5),xmin{5),tmax(5),xmax(5),xold{5),xup(5) 
common/c/um,Ks,Ki,Ya,Yb,Yc,Yd,Ye,ub,us,a,tau,D,sf 

C ***************************************************************************** 
c constant dilution rate or sinusoidal dilution rate 
C ***************************************************************************** 

write(*,600)' Input simusoidal dilution (y/N) • 
read(*,500)resps 
if(resps .eq. 'y' .or. resps .eq. 'Y')then 

write(*,600)' Write individual files (y/N) • 
read(*,500)respw 

else 
respw='Y' 

endif 

e **********************************~•***************************************** 
center model parameters 
C ***************************************************************************** 

write(•,600)' u(s)==um•s/(Ks+s+Ki*s*s) • 
write(•,600)' um: 

read(•,602)um 
write(•,600)' Ks: 

read(*,502)Ks 
write(•,600)' Ki: 

read(•,502)Ki 
write(•,600)' Y(s)=Ya + (Yb+Ye•s)/(Yd+Ye•s) • 

write(•,600)' Monod model: Ya= Yb=O. Yc=O. 
write(•,600)' Linear model: Ya= Yb=O. Ye= 
write(•,600)' ub model: Ya= Yb=- Ye=O. 
write(•,600)' us model: Ya=O. Yb=O. Ye= 
write(•,600)' Constant part of Ye (Ya): 

read(•,602)Ya 
write(•,600)' Variable part of Ys (Yb): 

read(•,602)Yb 
write(•,600)' Variable part of Ye (Ye): 

read(•,602)Yc 
write(•,600)' Variable part of Ys (Yd): 

read(•,602)Yd 
write(•,600)' Variable part of Ye (Ye): 

read(•,602)Ye 

Yd=1. 
Yd=1. 
Yd=O. 
Yd= 

Ye=O. • 
Ye=O. ' 
Ye=1. • 
Ye=1. • 
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write(*,600)' Mintenence term in biomass equation (ub): 
read(*,502)ub 

write(*,600)' Mintenence term in substrate equation (us): 
read(*,502)us 

write(*,600)' Fraction of 0th order kernel (a): 
read(*,502)a 

write(*,600)' tau: ' 
read(*,502)tau 

write(*,600)' Sf: 
read(*,502)sf 

write(*,600)' Step size: 
read(*,502)step 

write(*,600)' Constant Dilution rate (hr-1): • 
read(*,502)DO 
D=DO 
Damp=O. 
Dfreq=O. 

write(*,600)' up to which pt are these dilution rate valid 
read(*,501)iend 

ibegin=1 

C ***************************************************************************** 
c open files 
C ***************************************************************************** 

if(respw .eq. 'y' .or. respw .eq. 'Y')then 
open(1,file='out.B',status='new') 
open(2,file='out.S',status='new') 
open(3,file='out.mu',status='new') 
open(4,file='out.y',status='new') 
open(6,file='out.D',status='new') 

endif 

C ***************************************************************************** 
c calculate initial steady state values 
C ***************************************************************************** 

alpha=um/D 
beta=Ks/sf 
betai=Ki*sf 
delta=L+ub/D 
gamma=us/D 
if(Ki .eq. O.)then 

sO=sf*beta*delta/(alpha-delta) 
else 

temp=(alpha-delta)*(alpha-delta)-4.*delta*delta*beta*betai 
sO=sf*((alpha-delta)-sqrt(temp))/2./delta/betai 

endif 
yy=Ya + (Yb+Yc*sO)/(Yd+Ye*sO) 
bO=yy*(sf-s0)/(1.+yy*gamma) 
write(•,661)b0,s0 

x(1) bO 
x(2) = sO 
x(3) = D 
x(4) .. 0. 



index=! 
tol=1.e-4 

100 do 200 i=ibegin,iend 
timend=float(i)*step 
time =float(i-1)*step 
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if(resps .eq. 'y' .or. resps .eq. 'Y')D=D0+Damp*sin(Dfreq*time) 
if(tau .gt. 0.)then 

call dverk(n,deriv1,time,x,timend,tol,index,c,n,w,ier) 
else 

call dverk(2,deriv2,time,x,timend,tol,index,c,n,w,ier) 
endif 
xmu=wn*x(2)/(ks+x(2)) 

C ***************************************************************************** 
c find the last maximum and minimum values 
c xup(*)=O ... the curve was moving down the last time 
c xup(*)=1 ... the curve was moving up the last time 

if(resps .eq. 'y' .or. resps .eq. 'Y')then 
c switch in slope from negative to positive (i.e. detect MIN) 

if(xold(1) .lt. x(1) .and. xup(1) .eq. O)then 
xup(1)=1 
xmin(1)=xold(1) 
tmin(1)=time-step 

endif 
if(xold(2) .lt. x(2) .and. xup(2) .eq. 0)then 

xup(2)=1 
xmin(2)=xold(2) 
tmin(2)=time-step 

endif ·, 
if(xold(3) .lt. xmu .and. xup(3) .eq. 0)then 

xup(3)=1 
xmin(3)=xold(3) 
tmin(3)=time-step 

endif 
if(xold(4) .lt. x(3) .and. xup(4) .eq. 0)then 

xup(4)=1 
xmin(4)""xold(4) 
tmin(4)=time-step 

endif 
if(xold(6) .lt. D .and. xup(6) .eq. 0)then 

xup(6)=1 
xmin(6)=xold(6) 
tmin(6)=time-step-step 

endif 
C ***************************************************************************** 
c switch in slope from positive to negative (i.e. detect MAX) 

if(xold(1) .gt. x(1) .and. xup(1) .eq. !)then 
xup(1)=0 
xmax(1)=xold(1) 
tmax(1)=time-step 

endif 
if(xold(2) .gt. x(2) .and. xup(2) .eq. !)then 

xup(2)=0 



xmax(2)=xold(2) 
tmax(2)=time-step 

endif 
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if(xold(3) .gt. xmu .and. xup{3) .eq. 1)then 
xup(3)=0 
xmax{3)=xold(3) 
tmax(3)=time-step 

endif 
if(xold(4) .gt. x(3) .and. xup(4) .eq. 1)then 

xup(4)=0 
xmax(4)=xold(4) 
tmax(4)=time-step 

endif 
if(xold(6) .gt. D .and. xup(6) .eq. 1)then 

xup(6)=0 
xmax(6)=xold(6) 
tmax(6)=time-step-step 

endif 
C ***************************************************************************** 
c save the current value for next comparision 

xold(1)=x(1) 
xold(2)=x(2) 
xold(3)=xmu 
xold(4)=x(3) 
xold(6)=D 

endif 
if(respw .eq. 'y' .or. respw .eq. 'Y')then 

write (1, 604)x(1) 
write(2,604)x(2) 
write(3,604)xmu 
write(4,604)x(3) 
write(6,604)D 

endif 

C ***************************************************************************** 
c check for integration errors 

if(index.ge.O .and. ier.le.O) go to 200 
write(•,97)timend 

97 format(' error in deriv at t= ',f8.2) 
write(•,98)index 

98 format(' index• ',i4) 
write(•,99)ier 

99 format(' ier • ',i4) 
tol .. tol•1.1 
write(•,182)tol 

182 format(' tol • ',f8.6) 

200 continue 

C ***************************************************************************** 
c read in new dilution rate 
C ***************************************************************************** 

if(resps .eq. 'y' .or. resps .eq. 'Y')then 
write(•,600)' enter average Dilution rate (hr-1): ' 
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read(*,502)DO 
write(*,600)' enter amplitute in hr-1: ' 
read(*,502)Damp 
write(*,600)' enter frequency (=2*pi/period) in hr-1: ' 
read(*,502)Dfreq 

else 
write(*,600)' enter constant Dilution rate (hr-1): ' 
read(*,502)D 

endif 
write(*,600)' up to which pt are these dilution rate valid 
read(*,501)iend 

999 

650 

ibegin=i 
if((iend .lt. ibegin) .or. (iend .eq. 9999))goto 999 
goto 100 

if(respw .eq. 'y' .or. respw .eq. 'Y')then 
close(!) 
close(2) 
close(3) 
close (4) 

endif 
if(resps .eq. 'y' .or. resps .eq. 'Y')then 

write(*,650) 
format ( ' tmin xmin tmax 
write(*,605)tmin(1),xmin(1),tmax(1),xmax(1) 
write(*,605)tmin(2),xmin(2),tmax(2),xmax(2) 
write(*,605)tmin(3),xmin(3),tmax(3),xmax(3) 
write(*,605)tmin(4),xmin(4),tmax(4),xmax(4) 
write(*,605)tmin(5),xmin(5),tmax(5),xmax(5) 

endif ·, 

xmax') 

C ***************************************************************************** 
c some standard formats 
C ***************************************************************************** 
600 format(a) 
601 format(i6) 
602 format(e13.6) 
600 format(a\) 
604 format(1pe13.6) 
606 format(1pe13.6,6e13.6) 
651 format(' bO= ',1pe13.6,' sO= ',e13.6) 

stop 'goodbye' 
end 

C ***************************************************************************** 
C ***************************************************************************** 
c 0th and 1st order time delay kernel model for biomass and substrate 
c Variable yield coefficient and maintenance terms can be included 
c Used by PROGRAM SIMULATE 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE DERIV1(N,TIME,X,XDOT) 



-616-

real Ks,Ki 
dimension x(n),xdot(n) 
common/c/um,Ks,Ki,Ya,Yb,Yc,Yd,Ye,ub,us,a,tau,D,sf 

KKs=Ks/1000. 
factor=x(2)/(KKs+x(2)) 

bottom=Ks + x(2) + Ki*x(2)*x(2) 
uu =um*x(2)/bottom 
duu=wn*(Ks-Ki*x(2)*x(2))/bottom/bottom 
yy=Ya + (Yb+Yc*x(2))/(Yd+Ye*x(2)) 

xdot(l) 
xdot(2) 
:xdot (3) 
:xdot (4) 
return 
end 

= 
= 
= 
= 

(x(3)*factor-D-ub)*x(1) 
D*(sf-x(2))-x(3)*factor*x(1)/yy-us*x(1) 
x(4) 
-2.*x(4)/tau-x(3)/tau/tau+uu/tau/tau+a*duu*xdot(2)/tau 

C ***************************************************************************** 
C ***************************************************************************** 
c Plain Monod model for biomass and substrate 
c Variable yield coefficient and maintenance terms can be included 
c Used by PROGRAM SIMULATE 
C ***************************************************************************** 
C ***************************************************************************** 

SUBROUTINE DERIV2(N,TIME,X,XDOT) 
real Ks,Ki 
dimension x(n),xdot(n) 
common/c/um,Ks,Ki,Ya,Yb,Yc,Yd,Ye,ub;us,a,tau,D,sf 

KKs=Ks/1000. 
factor= :x(2)/(KKs+:x(2)) 

uu =wn*:x(2)/(Ks +:x(2)+Ki•:x(2)•x(2)) 
yy=Ya + (Yb+Yc•x(2))/(Yd+Ye*x(2)) 

xdot(1) = (uu•factor-D-ub)•x(1) 
xdot(2) = D•(sf-x(2))-uu•factor•x(1)/yy-us•x(1) 
return 
end 
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APPENDIXE 

APPLICATION OF MACROSCOPIC BALANCES 

TO THE IDENTIFICATION 

OF GROSS MEASUREMENT ERRORS 

(The text of Appendix E consists of an article coauthored with G. N. Stephanopou

los which has appeared in Biotechnology & Bioengineering, 25, 2177-2208, 1983.) 
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Application of Macroscopic Balances to the 
Identification of Gross Measurement Errors 

NAM SUN WANG and GREGORY STEPHANOPOULOS, Chemical 
Engineering Department, Califomia Institute of Technology, Pasadena, 

California 91125 

Summary 

A systematic method is presented which is capable of both detecting the presence of grossly 
biased measurement errors and locating the source of these errors in a bioreactor through statis
tical hypothesis testing. Equality constraints derived from material and energy balances are em
ployed for the detection of data inconsistencies and for the subsequent identification of the sus
pect measurements by a process of data analysis and rectification. Maximum likelihood 
techniques are applied to the estimation of the states and parameters of the bioreactor after the 
suspect measurements have been eliminated. The level of significance is specified by the experi
menter wbile the measurements are assumed to be randomly, normally distributed with zero 
mean and known variances. Two different approaches of data analysis, batchwise and sequen
tial, that lead to a consistent set of adjustments on the experimental values, are discussed. Sev
eral examples based on the fermentation data taken from literature sources are presented to 
demonstrate the utility of the proposed method, and one set of data is solved numerically to 
illustrate the computational aspect of the algorithm. 

INTRODUCTION 

At present, highly accurate and reliable measurements on a fermentation 
process are frequently difficult to obtain. Moreover, due to various types of 
errors in measurements, these raw measurements rarely form a consistent set 
of data which satisfies exactly the energy and material balance equations. 
These errors may originate in random or systematic sources and may be sig
nificantly large. Consequently, the control and optimization of a process with 
state estimates that are based on grossly erroneous measurements may result 
in an unstable or nonoptimal operation. Furthermore, experimental studies 
of microbial growth kinetics based on biased data will certainly lead to false 
conclusions and unreliable models. The purpose of this article is to demon
strate how a relatively small amount of extra effort in data analysis can allow 
an experimenter to detect the presence of gross errors, to locate their sources 
if gross errors are indeed found to exist, and to rectify the data in an optimal 
manner. 

The proposed method makes use of the macroscopic and elemental bal
ances applicable to a biological process. These balances have been employed 
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in the past for the on-line reactor_ identification by off-gas analysis. 1 However, 
they can also be used to test the consistency of data in an overdetermined 
system. A system overdetermination results when the number of variables 
that are directly measured is larger than what is needed for the full identifica
tion of the system by the application of the available constraints. Erickson 
and co-workers2-4 have tested the consistency of various sets of data with re
gard to the above balances. In this article, we carry these ideas one step fur
ther in that we provide a method for identifying the measurements that most 
likely contain gross errors and cause the violation of the macroscopic balance 
constraints. 

In chemical engineering literature, numerous articles have dealt with the 
problem of statistical adjustment of raw measurements to fit material balance 
equations arising from simultaneous chemical reactions. Kuehn and David
son5 have studied the basic problem of data adjustment when the measure
ments contain only small random errors. Ripps6 has introduced a serial elimi
nation algorithm in which one measurement at a time is totally deleted and 
the effect of the deletion on an objective function evaluated. Nogita 7 has ex
panded the usefulness of the serial elimination algorithm, and Madron and 
co-workers8 have introduced a powerful, yet simple, multidimensional chi
square (x2 ) test, which we believe to be superior and will be used in this arti
cle. Finally, Romagnoli and Stephanopoulos9 have proposed a highly effi
cient algorithm that permits sequential processing of the measured data and 
minimizes the effort in matrix computation, especially when the dimension of 
the problem is large. 

Despite the fact that errors are present in virtually all the measurements 
taken in a fermentation process, in the past only a small number of articles 
have appeared in the literature which recognize this fact and incorporate sta
tistics in the analysis of fermentation data. De Kwaadsteniet and co
workers10 have considered the presence of random errors in their calculation 
of Y~·H•, m ATP, and the 95 % confidence intervals. De Kok and Roets, 11 

Geurts and co-workers, 12 and Dekkers and co-workers 13 have adjusted their 
raw data by using the maximum likelihood principle so that the results con
form to the elemental balance equations; the adjusted data are then used to 
estimate such variables as the RQ ratio, Y1i-i, and PIO. Solomon and co
workers14 have checked for the level of consistency before parameters are esti
mated from different sets of measurements. Previously, Erickson and co
workers2·4 have already applied consistency checks to a ~umber of 
fermentation processes to assess the reliability of the measured parameters. 
However, in the above studies, no criterion was given to allow a systematic 
detection of the presence of gross measurement errors, and it is not clear ex
actly what magnitude of deviation in the consistency test was considered nor
mal and tolerable. Furthermore, when one does indeed conclude the inconsis
tency to be significant, the number of measurements suspected of having 
gross errors and the source of errors cannot be. determined unambiguously. 
As pointed out by Solomon and associates, 14 their procedure of simple linear 
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regression also has the disadvantage that it yields multiple, significantly dif
ferent estimates for the same parameters. 

In the next section, a set of equality constraints is derived from the material 
and energy balances around a biochemical reactor. The assumptions on the 
process characteristics and on the measurements are then stated, and the 
widely recognized solution to the least-squares minimization problem subject 
to a set of equality constraints is presented without proof. The use of a multi
dimensional chi-square (x2) test is proposed for assessing the validity of the 
original assumptions on the process characteristics and measurements and to 
detect the presence of gross errors. Next, a strategy to establish the source of 
gross errors by means of serial elimination of suspect measurements is dis
cussed. Some useful results that simplify matrix computation and permit se
quential analysis are also presented. One literature example is worked out in 
detail in Appendix A to demonstrate the simplicity and the usefulness of the 
proposed procedure. A few additional results obtained from the application 
of the same procedure to literature data are also shown, followed by a brief 
discussion on the likelihood of instrument malfunction and measurement ac
curacy during the various phases of a fermentation process. 

FORMULATION OF MACROSCOPIC BALANCES 

Assuming that the processes of growth and maintenance of microorgan
isms can be represented by an overall chemical reaction in which substrate is 
biologically converted to cell mass and extracellular metabolic products, one 
can write: 

-aCxHyO, - h02 - cNH3 + CaHt10.,,Nc5 

+ dH20 + eC02 + /Ca,Ht1,0')',Nc5, = 0 (1) 

where CxHyO,, C0 Ht10.,,N6 , and C0 ,Ht1,0'Y,N6 , represent the chemical for
mulae for the substrate, cell biomass, and extracellular metabolic product, 
respectively. Since it is only the relative amounts of the cell biomass elements 
that can be determined, ex in the cell biomass formula can be set equal to 
unity without any loss of generality. Also, the stoichiometric coefficient of cell 
biomass was set equal to unity in the above equation, but any multiple of 
these coefficients would be an equally valid representation of the process. It 
should be pointed out that the above overall reaction can be expanded into a 
set of simultaneous reactions such as biomass formation from substrate, di
rect product formation from substrate, ATP generation by direct substrate 
oxidation and oxidative phosphorylation, etc. In the latter formulation some 
information on reaction stoichiometry is available, but the extents at which 
each of these parallel reactions participate in the overall process appear as 
additional unknowns. The final result is that both formulations contain the 
same amount of information. The advantage of eq. (1) is that it is simpler and 
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more directly observable, while the expanded scheme is more suggestive of 
the underlying mechanisms. 

If one further assumes that all the important chemical species involved in 
biological process (I) and their chemical formulae, including that of biomass, 
are known and constant, it is then possible to write the following elemental 
balances for C, H, 0, and N: 

for C: 

xa =a+ e + a'f (2) 

for H: 

ya + 3c = {3 + 2d + {3 'f (3) 

for 0: 

za + 2b = I' + d + 2e + I' 'f (4) 

for N: 

C = 0 + OJ (5) 

An energy balance can also be written if the heat of fermentation, Q, is 
measured: 

-aHc - bHo2 - cHNH
3 

+ Hb + dHH
2
o + eHco

2 
+ JHp + Q = 0 (6) 

The stoichiometric coefficients can be calculated by considering the macro
scopic balances over the bioreactor: 

d(C.V) 
~ = 11 · R V + cf> · 

dt 1 1 
(7) 

where Ci is the concentration of componentj in the system, <l>j is the net rate of 
input of componentj to the system by transport, R is the total rate of biomass 
production, "j is the stoichiometric coefficient of eq. (I) for componentj, and 
V is the appropriate system volume. 

For a steady-state chemostat operation, (dCj V)ldt = 0, and eq. (7) re
duces to: 

<I>. 
11-R = -~ 

J V (8) 

The above equation is also customarily used for 0 2 and CO 2 even under tran
sient conditions by applying the quasi-steady-state principle; however, one 
should be cautioned against the effect of varying pH on the dissolved CO2 
level. Equations (7) or (8) can be used with off-line measurements of the con
centrations in the streams entering and leaving the system to yield all the stoi-
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chiometric coefficients except that of water. The latter can be calculated by 
employing one of the elemental-energy balances (2)-(6). The remaining bal
ances must also be satisfied, and they impose four (or three, if the heat is not 
measured) equality constraints on the measurements. One can subsequently 
utilize these equality constraints to test the consistency of the obtained mea
surements (see refs. 2-4) and, furthermore, to locate the suspect measure
ment if grossly biased errors are detected in the data. The development of a 
method for this purpose is the objective of this article. It should also be 
pointed out that these balances can be utilized for the on-line evaluation of 
the stoichiometric coefficients from the measurements of 0 2 and CO2 concen
trations whenever an on-line automated monitoring of the system is desired 
for control, or other, purposes (see ref. 1). 

In a batch operation there is no liquid flow to the system; so, except for 0 2 
and CO2 , <I>i = 0 and, as eq. (7) indicates, the stoichiometric coefficients are 
calculated by taking the derivatives of the various concentrations measured as 
functions of time. The only exceptions are oxygen and carbon dioxide which 
can still be calculated from eq. (8) because the bioreactor is a continuous 
system with respect to the gases even during a batch operation. 

If x" is a vector of the stoichiometric coefficients as its components, then 
eqs. (2)-(6) can be written as: 

A'x" = b' (9) 

where 

-x 0 0 Cit 0 1 a' ... C 

-y 0 -3 {j 2 0 {j' ... H 

A'= -z -2 0 'Y 2 'YI ···O 

0 0 -1 0 0 0 o' ... N 

-He -Ho2 -HNHJ Hb H H20 Hco2 HP ···heat 

a 

b 0 

C 0 

x" = l b' = 0 

d 0 

e -Q 
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Since not all of the stoichiometric coefficients are measurable by applying eq. 
(7) or (8), the unmeasured ones are then eliminated from eq. (9) to yield: 

Ax'= b 

The vector x' now has as its elements all the measured coefficients. If, for 
example, the stoichiometric coefficient of water is unmeasured then A, x ', 
and b will be: 

-x 0 0 a a' 

-y + 2z 4 -3 fJ - 2-y -4 (J' - 2-y' 

A= 0 0 -I 6 0 6' 

(-,+~) 
HH1o 

(-2+~) 
HH,o 

( HNH,) 
HH,o 

(-r-~) 
HH,o 

(i _ Hco,) 
HH 1o 

( , HP ) "r ---
HH,o 

a 
0 

b 
0 

C 

x' = b= 0 (11) 
1 

Q 
e 

HH20 

It is more convenient to use eq. (10) in its homogeneous form, which can be 
obtained through a parallel translation. Thus, setting 

x = x' + h 

Equation (10) reduces to: 

Ax= 0 

where the constant vector h is any solution satisfying: 

Ah= -b 

(12) 

(13) 

(14) 

Equation (13) now summarizes in a compact form all the equality con
straints that must be satisfied by the vector of measured variables x. With 
regards to the consistency of these measurements, one can ask the following 
questions: 

1) What is a proper criterion to test whether the measurement vector x 
contains only random errors or grossly biased errors? 

2) If only random errors are present, what is the best estimate of the mea
sured quantities? 

3) If gross errors are detected, what measurement is likely to be biased, 
and if the source of inconsistency is identified, how can the remaining mea
surements be rectified to yield a set of consistent estimates? 
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Answering the above questions is the subject of the work reported here. The 
starting point is eq. (13) representing the equality constraints that must be 
satisfied by a vector of measured variables x. This general representation is 
equally applicable to a multitude of cases involving a variety of carbon and 
nitrogen sources, products, cell biomass, and a full spectrum of possible mea
surements. Each individual case will have to be reduced to the form of eq. 
(13) before the algorithms of the following section can be applied. 

STATISTICAL HYPOTHESIS TESTING FOR 
GROSS ERROR DETECTION 

Hereafter, let A beam X n matrix and x be a vector of measured variables 
of dimension n. Hence, Ax = 0 is composed of m linearly independent equa
tions, with 1 :5 m < ,z. Since all actual measurements contain random er
rors, Equation (13) generally is not satisfied. Let o be the vector of measure
ment errors, and x and x be the vectors of true values and measured values, 
respectively. Then, 

x=x+o (15) 

We assume that the error vector, o, is normally distributed with a zero mean 
and with a variance-covariance matrix v,. Mathematicalty, this can be ex
pressed as: 

E[oJ = 0 

t/, == E{(x - x)(x - x)T] = E{ooT] 

(16) 

(17) 

where£ is the expected value operator. In the balance of any additional infor
mation that may indicate otherwise, each measurement error is assumed to be 
independent of one another and uncorrelated. Thus, under these assump
tions, y, can be considered diagonal. Since the actual values for the compo
nents of v, are not known in reality, any best estimates such as simple vari
ances will suffice. 

The presence of the random errors o in the measurements will produce a 
vector of residuals E in the balance equations. It is easy to show that E is re
lated to o by: 

E =Ao= -Ax 

E[E] = AEloJ = o 
"'== E[HTJ = AE[ooTJAT = Av,Ar 

An estimate of the error o can be obtained by solving the problem: 

Minimize J = o7 v,- 10 subject to Ao= E 
a 

(18) 

(19) 

(20) 

According to the above formulation, the best estimate of o is obtained by min
imizing the sum of the error squares scaled according to the level of confi-
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dence one places on each measurement. The solution to the above con
strained minimization problem is given by15 : 

(21) 

which also coincides with the maximum likelihood estimation. 8 This is be
cause when o is normally distributed, the function to be minimized is the 
same for the least-square minimization problem as for the maximum likeli
hood minimization problem. When o is not normally distributed, the result 
presented in eq. (21) remains a valid solution to the weighted least squares 
minimization problem posed above, although it will no longer be the maxi
mum likelihood estimate. Hereafter, the diacritical mark ~ signifies that the 
variable in concern is the estimated quantity rather than the true value or the 
measured value. The corresponding variance-covariance structures for 5 and 
(x - x) are respectively: 

x = x + 5 (22) 

~ = E[MTJ = ,t,AT<t>-l£[€€TJ<r1Ait, = ,t,AT<t>-'A,J; <23> 

E[(x - x)(x - x)T] = £[(6 - 0)(6 - o)T] = VI - i (24) 

The last equality in Equation (24) is due to the fact that 

£[(5 - o)(5 - o)TJ = E[&&TJ - E[MTJ - E[MTJ + E[UTJ 

= ~ - £[MT] - £[MT] + "' 
and that 

E(MTJ = E[MTJ = E{(,t,ATq,- 1<:)oTJ = El,t,ATq,-•AooTJ 

= ,t,ATcf>-IAit, = ~ 
Because of the negative term in eq. (24), the resulting estimate x has a smaller 
standard deviation than the raw measurement i, and, therefore, x is likely to 
be more accurate and reliable than i after corrections are made. It is also 
certainly internally consistent. Note that although we have started with the 
assumption that xi's are uncorrelated, the resulting estimates, xi's, are inher
ently correlated; this can also be concluded from the fact that the off-diagonal 
elements of the matrix~. consequently of E[(x - x)(x - x)T], contain non
zero entries . 
. We can now formulate a test function to judge whether the residuals in the 

balance equations deviate significantly away from their expected distribution 
of zero means. The most reasonable and natural choice for the test function is 
the weighted square of the residuals of the balance equations: 

h = ET ct>- 1t: (2S) 

The distribution that applies to the above test function needs to be estab
lished at this point. If the residuals t: are assumed to have identical and inde
pendent normal distributions, i.e., if t: ~ N(O, </,), where</, is diagonal, then 
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the test function h is equal to the sum of squares of m elements which are 
independently and normally distributed. In this case h follows a chi-square 
(x2 ) distribution with m degrees of freedom. 14 However, it is not the residuals 
but the measurements which are independent and uncorrelated with covari
ance i/t assigned by the experimenter according to the level of confidence he 
has on each measurement. Therefore, i/t is diagonal, but <f, [which is related to 
i/t by eq. (20)] in general is not diagonal because E is correlated. Thus, we 
cannot yet conclude that h has a x2 distribution or that the degree of freedom 
is m because E is composed of m elements. Using the fact that 

l,Tijt-ll, = (t/tATq,-lc::)TiJt-l(ijtATq,-lc::) = ETq,-1(AijtAT)q,-1E 

= ETq,-l(q,)<f,-lE = ET<f,-IE 

we can express the test function h in eq. (25) as: 
n A2 

h = l,Tijt- 16 = E !L 
. I 2 1= (Jj 

(26) 

where n is the number of measurements, and ai = iJtf2 is the standard devia
tion of the jth measurement. Note that the test function now has the same 
form as the performance index. 

Since each of then elements hi/ ai is approximately distributed according to 
the standardized Gaussian distribution, we conclude that the random vari
able h, being the sum of squares, is best characterized by a x2 distribution. 
Some comments of the degree of freedom of this x2 distribution is in order. 
Although the term EJ=i oJ lu}, which is unfortunately unknown, has n de
grees of freedom, the actually computed term EJ= 1 8} I aJ has only m degrees 
of freedom, which is the same as the number of constraint equations. This is 
so because 5/s are not all independent of one another. This may be reasoned 
in the following manner. When only n - m measurements are taken, the 
system is just determined. In this case, all the measurements are necessarily 
interpreted at their full values. No adjustment on them is possible because 
there is no equation to constrain then - m measurements; thus, there is no 
degree of freedom. However, each measurement in addition to the original 
n - m measurements introduces one constraint equation, which makes some 
adjustments possible, and gives the term EJ= 1 8} I aJ one degree of freedom. 
Conceptually, we can treat the first n - m measurements as the bare essen
tials that are needed to determine the system and the remaining m measure
ments as the luxuries that are used to provide adjustments and increase the 
accuracy of the estimates. Thus, the whole set of 11 measurements only sup
ports m degrees of freedom. 

We want to emphasize that the data adjustment algorithm presented in eq. 
(21) does not use the assumption of uncorrelated measurement errors. Conse
quently, the results in eqs. (22)-(24) remain valid even when the covariance 
matrix i/t is not diagonal. The assumption of the error vector o being indepen
dent and uncorrelated is used in reaching the conclusion as to what distribu-
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tion function best describes the random variable h, namely the x2 distribution 
with m degrees of freedom. Thus, if the error vector o is not totally uncorre
lated, then, strictly speaking, the test function h does not follow a x2 distribu
tion. In actual situations, some correlations in measurements are unavoid
able. For example, an error in gas flow rate measurement results in correlated 
errors in b (i.e., the 0 2 consumption rate) and e (i.e., the CO2 evolution rate). 
The effect of correlated nondiagonal covariance matrix VI on the evaluation of 
his briefly discussed in Appendix C. In fermentation systems, we have found 
the effect of off-diagonal terms in VI to be relatively small (approximately 10% 
for the example in the Appendices). Therefore, despite the problems arising 
from correlation, the x2 criteria still proves to be a superbly valuable tool in 
detecting and identifying large systematic errors in measurements. 

Our judgment on error detection is strongly dependent on the outcome of 
the hypothesis testing performed on the test function. We reject the hypothe
sis that the amount of errors present in the measurements is not significant 
with .a confidence level of 1 - 6 if h ~ x1 ~8(m), i.e. if the test is failed. On the 
other hand, if the test is passed, we cannot prove that the assumptions that 
measurements contain only random errors are satisfied. (See Fig. 1 for a 
graphical interpretation of this fact. For the readers' convenience, some of 
the most frequently used numbers of the x2 distribution function are provided 
in Table I.) A confidence level of 90 or 95%, or equivalently 0.1 or 0.05 for 8, 
is usually adequate. We will use a confidence level of 90% in the numerical 
examples presented later. 

By using the residual values and the value of</, as determined from eqs. (18) 
and (20), one can apply this test before the adjustments are determined. If the 
test shows that measurement errors are consistent with their variance-covari
ance structure, the amount of correction needed to satisfy balance equation 
(13) is calculated from eq. (21), and the optimal constrained estimate of xis 
given by eq. (22). On the contrary, if the above test fails, we conclude that one 
or more of the measurements have grossly biased errors that cannot be statis
tically accounted for by the assumption that they are all randomly and nor
mally distributed. In this case we need to proceed one step further to identify 
the source of the abnormally large errors. 

~ 
lil z w 
0 

t 
...J 
ai 

I 

AREA UNDER THE CURVE • I 

TAIL AREA• e 

Fig. 1. Xi-, probability distribution with m degrees of freedom. 
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TABLE I 
Probability Points of the x 2 Distribution with m Degrees of Freedom• 

(J (tail area probability) 

Degrees of freedom 0.50 0.25 0.10 0.05 0.025 

m = 1 0.455 1.32 2.71 3.84 5.02 
m =2 1.39 2.77 4.61 5.99 7.38 
m =3 2.37 4.11 6.25 7.81 9.35 
m=4 3.36 5.39 7.78 9.49 11.1 

•source is ref. 18. 

LOCATION OF THE SOURCES OF GROSS ERRORS 

0.01 

6.63 
9.21 

11.3 
13.3 

If the source of a gross error remains unidentified, a single large correction, 
which is actually needed only on the erroneous measurement, is distributed 
among all other statistically correct measurements which need little adjust
ment. To locate the measurements with gross errors when the original com
plete set of data fail the hypothesis test, we delete one measurement at a time, 
and calculate the performance index after the deletion of each measurement. 
Due to the numerical identity of the performance index J and the test func
tion h, the calculation of performance indices can be carried out before the 
actual adjustment is made. These performance indices obtained from each 
deletion of one measurement are then compared with one another and also 
with the x2 criteria, with the degree of freedom appropriately decreased by 
one to account for the loss of one constraint equation due to the deletion of 
one measurement. 

If the deletion of one measurement is all that is needed to pass the test, we 
shall conclude that there is only one erroneous measurement. The one whose 
deletion yields the lowest values for the performance index is usually judged to 
be erroneous because it is most likely to be the correct choice. To be sure, the 
source of error may actually lie in other measurements whose deletion result 
in slightly higher performance indices. Nonetheless, without any further in
formation, this is the best decision in a statistical sense that one can make. 
Those measurements whose deletion also give rise to performance indices that 
are, though not the minimum but, low enough to pass the hypothesis testing 
should also be scrutinized for possible sources of errors. 

If the deletion of a single measurement fails to produce an acceptable value 
for the test function, we delete one more measurement from the remaining 
n - 1 measurements. All the possible combinations of then measurements in 
groups of two must be tried, for discarding indiscriminately the two measure
ments that individually yielded the two lowest performance indices does not 
necessarily result in the lowest value of the test function. If the deletion of two 
measurements is not successful, the process is repeated until the x2 test is 
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passed or until m - 1 measurements have been deleted. Although inconsis
tency is usually due to the presence of gross errors, it may also be caused by 
erroneous'modeling and process disorder. For example, one may have ne
glected some significant species that are actually involved in the reaction in a 
fermenter; the biomass elemental composition used in eq. (1) may have been 
erroneous. Since the occurrence of gross errors is usually infrequent, the pres
ence of numerous gross errors in a small set of data is statistically very im
probable. Therefore, such encounters should be approached with extreme 
skepticism with regards to the validity of the constraint equations, the origi
nal estimation of the magnitude of random errors an experimenter assigns to 
his data, or any one of the other assumptions made in deriving eq. (13). 

The above discussion described the basic idea underlying the algorithm for 
the identification of the suspect measurement. In carrying out the deletion 
process, one can return to eq. (9), treat the questionable measurements as 
unmeasured, form a new balance eq. (13), compute the performance index, 
and finally calculate the maximum likelihood estimate for the remaining 
measurements. Another way is described by Romagnoli and Stephano
poulos. 9 Although it is conceptually slightly more involved, it is much simpler 
to program and to implement in actual calculations. Because this method 
successfully avoids inverting a square matrix repeatedly, it is indispensable 
especially when the size of the problem is large. Of course, both methods yield 
exactly the same result. 

The ensuing discussion will follow that of Romagnoli and Stephano
poulos, 9 and concerned readers are referred to their recent article for a de
tailed discussion. The original measurement vector x is partitioned into two 
parts; c measurements are suspected of having gross errors and u = n - c 
measurements are assumed to possess only small random errors with zero 
mean values: 

dimension (xu) = u 

X = [::] dimension (xc] = c 

dimension [x] = n = u + c 

Similarly, matrices A and 1" can be partitioned as: 

V' = [V!u O] 
0 V'c 

(27) 

(28) 

(29) 

When there are gross errors, the variance-covariance matrix for the measure
ments is: 

[
V!u O ] V'n = 
0 Y'c + 111" 

(30) 
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where Ai/; is the bias in the covariance of the c suspect measurements. The 
distinction between 1/; and 1/; n is that 1/; corresponds to the situation in where 
there are no gross errors; whereas, Vin includes a bias term, Ai/t. It can be 
shown that the new maximum likelihood estimate of o when gross errors are 
present is still given by eq. (21), whose applicable form is now: 

(31) 

where 

"'= Aif;AT 

<l>n = Ai/tnAT = "' + Ac(Ay,)A"{ (32) 

Again, subscript 11 signifies that the variable carrying it involves the bias term 
Av,. Using a matrix inversion lemma, we can express q,;; 1 in eq. (32) as: 

q,;; 1 = q,- 1{1 - Ac[(Ay,)-I + A"{q,-IAcJ-IA"{4>-I} (33) 

When one has enough information about the process to produce a rough 
estimate of the bias term, Ai/;, he should use it. Otherwise, a very drastic mea
sure, a total deletion of these c measurements, is taken. Since setting the bias 
(Av,); in each of the c measurements to oo is equivalent to deleting the c mea
surements, the estimate of o of the remaining measurements is: 

~ - T -I Ou - V'uAu<l>u E (34) 

where 

(35) 

is the variance-covariance matrix for E after c measurements are deleted. 
Note that <1>;; 1 = lim<i1,J,J;-"" 4,;; 1 * (Aui/tuAr)- 1, is still am X m matrix 
even after the deletion of c measurements. Since ¢;; 1 is whatever left of <1>;; 1 

after the deletion of c measurements, we expect 4,; 1 to be necessarily singular 
due to the reduction in the number of constraint equations. Since one always 
works with 4,;; 1 rather than <l>u, there is no need to be concerned with invert
ing a singular matrix 4,;1 back to 'Pu• Note also that Au in eq. (34), being the 
result after deletion, has the dimension of u = 11 - c; whereas, An in eq. (31 ), 
being the estimate before deletion, has the full dimension of n. The term 
AcfA"{ 4,-1 AcJ-1 A"{ 4,- 1 in eq. (35) represents the fraction of correction ap
plied to the original 4,- 1 = (A,J,AT)- 1 due to the deletion of c measurements. 
If deletion is made for one measurement at a time, we need to invert only a 
scalar A"{ 4,-1 Ac to calculate Au. 

The new performance index (or test function) is now: 

h = Er4>;1E = Ar,J,;'Au (36) 

The first equality in the above equation is used to evaluate h before adjust
ments are computed, and Eis readily obtained from eq. (18). 

An algorithm implementing the above results in the deletion process can be 
summarized as follows: First, the inverse of 4, is calculated for the repeated 
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use with eq. (35) in the sequel. After the measurements to be deleted have 
been selected, matrices, A and 1/1 are partitioned as indicated by eqs. (28) and 
(29), and 4>;; 1 is calculated from eq. (35). With 4>;; 1 known, the test function 
h can be evaluated from eq. (36) and compared to the criterion. If the test 
fails, a new set of measurements is selected and the process is repeated. If the 
test passes, a suspect measurement has been located, and the corrected values 
of the measurements are calculated by applying eq. (34). 

An example that fully illustrates the method has been worked out in detail 
in Appendix A. Also another approach that analyzes the residual errors by 
considering one equation at a time is discussed in Appendix B. This method 
allows a sequential processing and is particularly useful when the dimension 
of the matrix A is large. 

APPLICATION TO LITERATURE EXAMPLES 

The methodology outlined in the previous sections was applied to the full 
set of data of de Kok and Roels. 11 (See Appendix A for a detailed demonstra
tive calculation involving one of the sets of data in this example.) The results 
of the analysis are displayed in Table IIA. The corrected values (Table IIB) 

TABLEIIA 
Performance Indices for a Glucose-Limited Steady-State Continuous Culture of 

S. cerevisiae CBS 4268 

h 

After deletion of 
D No 

(h-1) deletion a b B e 

0.008 3.91 1.53 3.90 1.69 0.67< 
0.008 35.07b 27.06 2.12d 26.43 34.96 
0.017 2.07 0.04 1.70 0.06 1.19 
0.033 1.65 0.00 1.31 0.01 1.18 
0.047 1.99 0.07 1.85 0.10 1.18 
0.052 0.23 0.01 0.15 0.00 0.21 
0.072 2.42 1.86 0.01 1.73 1.27 
0.076 2.20 0.01 1.78 0.00 1.98 
0.092 0.53 0.20 0.50 0.23 0.12 
0.092 1.01 0.17 0.43 0.13 1.00 
0.102 2.50 2.29 0.11 2.20 0.86 
0.112 2.71 0.43 1.12 0.33 2.70 
0.113 1.73 1.07 1.51 1.14 0.11 
0.118 0.54 0.25 0.09 0.22 0.46 

• Sources of data is ref. 11. 
bThe test function lies outside the 90% confidence level. 
•Toe CO2 measurement is questionable. 
dThe 0 2 measurement is to be deleted. 
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TABLE IIB 
The Measured and the Estimated Values of Stoichiometric Coefficients for a Glucose-

Limited Steady-State Continuous Culture of S. cerevisiae CBS 426• 

Stoichiometric coefficientsb 

D a b e C d 
(h-1) (mol/C mot biomass) 

0.008 0.333 1.1 1,4c d 

0.364 1.136 1.186 0.170 1.526c 
0.008 0.35 3.8 1.4 

0.375 1.202r 1.252 0.170 1.592 
0.017 0.383 1.5 1.6 

0.416 1.437 1.487 0.170 1.827 
0.033 0.317 1.04 1.1 

0.342 1.005 1.054 0.170 1.395 
0.047 0.413 1.2 1.2 

0.378 1.220 1.270 0.170 1.610 
0.052 0.300 0.82 0.86 

0.309 0.807 0.857 0.170 1.197 
0.072 0.29 0.54 0.73 

0.275 0.597 0.647 0.170 0.987 
0.076 0.322 0.67 0.73 

0.290 0.689 0.739 0.170 1.079 
0.092 0.3 0.7 0.7 

0.288 0.680 0.730 0.170 1.070 
0.092 0.317 0.7 0.8 

0.297 0.734 0.784 0.170 1.124 
0.102 0.3 0.62 0.85 

0.290 0.691 0.741 0.170 1.081 
0.112 0.35 0.78 0.92 

0.316 0.843 0.893 0.170 1.233 
0.113 0.3 0.8 1.0 

0.316 0.845 0.895 0.170 1.235 
0.118 0.285 0.57 0.67 

0.274 0.596 0.646 0.170 0.986 

•Source of data is ref. 11. 
be and d arc calculated from elemental balance equations using the corrected values of a, 

b, and e. 
cThe CO2 measurement is questionable. 
d Raw experimental data. 
"The maximum likelihood estimates with deletion carried out at a 90% confidence level. 
1Maximum likelihood estimate after 0 2 measurement is deleted. 

differ slightly from those obtained by the original investigators mainly be
cause the uncertainty we assign to each measurement is different from that 
assigned by them. We have consistently used errors of 6, 11. 7, 5 and 11.1 o/o 
for the glucose, oxygen, biomass, and carbon dioxide measurements, respec
tively. Besides the oxygen measurement in the second set of data at D = 
0.008 h-1, which has already been determined to be in error in Appendix A, 
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the carbon dioxide measurement in the first set of data at D = 0.008 h - 1 is 
also suspected of being erroneous. The errors of the rest of the measurements 
appear to lie within the expected limits. 

Table III contains the results of data analysis performed on the reported 
data of Geurts and co-workers. 12 In their study, S. cerevisiae CBS 426 was 
grown continuously in a medium containing a mixed substrate of glucose and 
ethanol in various ratios. The measured variables are the net fluxes of glu
cose, ethanol, oxygen, biomass, and carbon dioxide. The suggested formula 
for the biomass, CH1.83 O0_56 N0_17 , is used to derive the constraint equations. 
An error of 10% is used for all the measurements except for that of ethanol, 
for which an error of 20% is used to obtain the corrected values. The fact that 
the test functions for each run are all below the value of xa.9(m = 2) = 4.61 
indicates that the original assumptions made on the process characteristics 
and measurement error structures are not violated significantly. We suspect 
that, although not a 90% confidence level, the oxygen measurement of run 
No. 2 may be erroneous because its deletion greatly slashes the performance 
index from 4.06 down to a mere 0.31. The corrected values of the measure
ments for this and the following examples are not given because of space limi
tation. They can be calculated by applying the proper formulae of the text. 

The raw data of Dekkers and associates 13 of the growth of S. cerevisiae CBS 
426 under both aerobic and anaerobic conditions in a continuous fermentor 
were also analyzed. Glucose was used as the carbon source and ammonium 
sulfate as the nitrogen source. Ethanol formation was detected under aerobic 
conditions, and both ethanol and glycerol productions were detected during 
anaerobic fermentation. In the aerobic studies, the reported average value of 
CH1.83 Oo.56N0_17 is used as the biomass composition, and in anaerobic stud
ies the average value of CH1.86 O0_60 N0.16 is used. An error of 10% is used for 
all the measurements in deriving the test function and the corrected values. 

TABLE Ill 
Performance Indices for a Steady-State Continuous Culture of S. cerevisiae CBS 426 on a 

Mixed Substrate of Glucose and Ethanol" 

h 
Carbon source 

in the feed After deletion of the measurement of 
glucose-ethanol No 

Run (wt "lo) deletion Glucose Ethanol 02 Biomass CO 2 

I 8.75-1.25 0.43 0.33 0.02 0.35 0.30 0.43 
2 7.50-2.50 4.06 3.36 2.99 0.31b 3.56 1.26 
3 5.00-2.50 0.61 0.60 0.23 0.16 0.58 0.42 
4 5.00-5.00 0.04 0.00 0.03 0.04 0.00 0.02 
5 2.50-7.50 1.83 1.43 0.30 0.18 1.29 1.04 
6 1,25-8.75 0.23 0.02 0.16 0.19 0.03 0.08 

"Source of data is ref. 12. 
ho2 measurement is questionable. 
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The results of data analysis for the aerobic growth experiments of Dekkers 
and co-workers 13 are shown in Table IV and those for the anaerobic case are 
shown in Table V. The measured values for the aerobic case, as can be seen 
from the test functions presented in Table IV, are reasonably internally con
sistent. The hypothesis test is passed for every single set of data except, possi
bly, the run at D = 0.205 h- 1 for which a process disorder could have been 
caused by a different sterilization method. 

As shown in Table V, the consistencies for the anaerobic data are not as 
good as for the aerobic data; three out of fourteen sets of data are judged to be 
inconsistent at a 90% confidence level. The inconsistencies of the runs at D = 
0.014 h- 1 and D = 0.051 h- 1 are believed to be caused by erroneous read
ings of carbon dioxide, and that at D = 0.058 h-1 is probably due to a high 
reading of ethanol. Since for the purposes of analysis an error of 10% is con
sistently applied to all the measurements, this estimate of uncertainty may 
have been somewhat unrealistic. The inconsistency at D = 0.014 h -t may not 
be as serious as the test function indicates if a more realistic set of variances is 
used for runs at low dilution rate where the absolute values of the readings are 

TABLE IV 
P~rformance Indices for a Glucose-Limited Steady-State Continuous Culture of 

S. cerevisiae CBS 426 with Ethanol Production under Aerobic Conditions• 

h 

After deletion of the measurement of 
D No 

(h-1) deletion Glucose 02 Biomass CO2 Ethanol 

0.008 1.74b 1.65 0.45 1.70 0.02 1.58 
0.017 0.21 0.01 0.21 0.02 0.14 0.09 
0.033 0.36 0.19 0.28 0.22 0.07 0.34 
0.047 0.72 0.32 0.59 0.38 0.18 0.67 
0.052 0.05 0.00 0.05 0.00 0.04 0.03 
0.073 2.92 2.25 0.17 1.97 1.17 0.36 
0.094 0.08 0.04 0.02 0.03 0.06 0.00 
0.103 3.17 2.99 0.01 2.82 0.57 1.27 
0.129 0.77 0.03 0.77 0.07 0.64 0.51 
0.145 0.24 0.21 0.08 0.22 0.00 0.22 
0.174 0.80 0.04 0.66 0.01 0.80 0.21 
0.185 0.70 0.03 0.67 0.08 0.50 0.57 
0.202 0.62 0.25 0.48 0.17 0.60 0.08 
0.205 3.38 2.40 0.30 2.74 0.01 2.67 
0.220 0.73 0.22 0.68 0.14 0.73 0.20 
0.230 2.27 0.75 1.44 0.48 2.09 0.19 
0.256 1.92 0.07 1.63 0.21 1.11 1.78 
0.277 0.76 0.15 0.27 0.23 0.09 0.75 
0.287 0.94 0.05 0.63 0.12 0.36 0.92 

•source of data is ref. 13. 
bWhen the measured value of net ethanol flow is 0, a variance of 0.01 is used. 
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TABLE V 
Performance Indices for a Glucose-Limited Steady-State Continuous Culture of S. 

cerevisiae CBS 426 with Ethanol and Glycerol Production under Anaerobic Conditionsa 

I, 

After deletion of the measurement of 
D No 

(h-1) deletion Glucose Biomass CO2 Ethanol Glycerol 

0.012 2.02 0.04 0.00 1.90 1.37 0.28 
0.014 3.32 1.27 1.64 0.63 3.31 2.56 
0.014 10.99b 9.53 10.19 o.ooc 9.05 10.99 
0.017 0.27 0.13 0.16 0.04 0.26 0.24 
0.027 1.52 n.a. n.a. n.a. n.a. n.a. 
0.030 0.33 0.18 0.13 0.28 0.02 0.04 
0.034 1.52 0.32 0.52 0.56 1.52 1.09 
0.051 7.17b 3.37 4.50 0_74< 5.98 6.79 
0.053 0.57 0.26 0.18 0.51 0.06 0.03 
0.056 0.88 0.61 0.72 0.01 0.64 0.88 
0.058' 1.66 1.14 1.34 0.02 1.18 1.65 
0.058 10.20b 8.69 7.81 8.24 o.ood 4.56 
0.062 2.61 2.46 2.58 0.23 0.94 2.43 
0.067 0.79 0.78 0.74 0.20 0.15 0.57 
0.094 1.70 0.44 0.67 0.47 1.68 1.29 

•source of data is ref. 13. 
bThe test function lies outside the 90% confidence level. 
<The CO2 measurement is to be deleted. 
dEthanol measurement is to be deleted. 

generally small in magnitude and the percentage of error is large. However, 
the error in ethanol reading at D = 0.058 h -t is more definite. A visual in
spection of the plot of ethanol production rate versus D shown in Dekkers' 
article reveals that this measurement is indeed an outlier. Thus, the system
atic application of the proposed procedure is able to single out a statistically 
erroneous measurement without reference to other sets of data or human ex
perience. 

The next set of analysis is based on the data originally reported by Selga and 
co-workers16 and later extensively analyzed by Erickson and co-workers, 2 and 
the results are given in Table VI. Brevibacterium was grown in an undefined 
complex medium that contains, among other nutrients, molasses and com 
extract. The consumption rates of reducing sugars and oxygen and the pro
ductivities of biomass, carbon dioxide, and lysine in a batch fermentor were 
recorded for each 12-h interval for the first 48 h of the fermentation. Erick
son's practice of relating the heat evolution rate to the oxygen consumption 
rate is followed in the statistical analysis here. The heat evolution rate is taken 
as another independent oxygen measurement which is related to the heat evo
lution rate by 108 kcal = 1 mol 0 2 (i.e., 27 kcal/equivalent available elec
trons transferred to oxygen). As before, an error of 10% is assigned to all the 
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TABLE VI 
Performance Indices for the Batch Growth of Brevibacterium in a Complex 

Medium with Lysine Production under Aerobic Conditions• 

h 

After deletion of the measurement of 
Period No 

Run (h) deletion Sugar Oz Heat Biomass CO2 Lysine·HCI 

1 0-12 72_79b,c 7.59 57.30 70.51 8.45 62.80 11.09 
12-24 28.95b 0.37d 21.63 28.95 0.54 22.33 1.11 
24-36 0.75 O.o7 0.51 0.71 0.04 0.75 0.02 
36-48 2.33 0.03 1.81 2.33 0.01 2.19 0.03 
0-48 1.44 0.08 1.21 1.41 0.10 1.15 0.16 

2 0-12 62.25b 2.05d 53.30 65.00 2.61 55.75 4.60 
12-24 2.51 0.19 1.73 2.45 0.09 2.51 0.01 
24-36 4.24 0.10 3.97 4.15 0.20 3.38 0.43 
36-48 0.35 0.17 0.03 0.34 0.20 0.08 0.23 
0-48 2.85 0.10 2.66 2.84 0.19 2.16 0.37 

3 0-12 10.23b 0.07d 9.46 10.07 0.12 9.64 0.59 
12-24 5.77 0.20 4.70 5.75 0.09 7.53 0.20 
24-36 1.57 0.13 1.48 1.47 0.18 1.44 0.32 
36-48 24.89b 0.71d 21.97 23.77 0.81 21.16 1.41 
0-48 0.14 0.14 0.12 0.01 0.14 0.14 0.14 

•Source of data is ref. 2. 
bThe test function lies outside the 90% confidence level. 
cThe following three sets of simultaneous deletion of two measurements results in 

passing performance indices: h (heat and sugar) = 0.27, h (heat and biomass) = 
0.01, and h (heat and lysine) = 0.99. 

dSugar measurement is to be deleted. 

measurements except heat measurements for which an error of 40% is used. 
The empirical formulae of C8 H130 4N and CH20 suggested by Erickson are 
used for the biomass and reducing sugars. Table VI shows that S out of 12 sets 
of data in 12-h intervals fail the x2 test. These inconsistencies all occur either 
at the beginning or at the end of the batch fermentation when accurate mea
surements are especially difficult to obtain. Since the deletion of the sugar 
measurements yield the smallest performance indices in all five cases, one can 
conclude that sugar measurements may be erroneous. Because the individual 
deletions of biomass and lysine measurements also result in passing test func
tions in all cases except the 0-12 h period of run No. 1, the possibility of these 
two measurements being the sources of errors should also be examined. The 
performance indices of the 0-12 h period of run No. 1 suggest that equating 
heat evolution rate to oxygen evolution rate is not valid at the beginning of run 
No. 1 even when an error of 40% is allowed for the equivalence relation. Com
pared to the lengthy consistency analysis by Erickson and associates, 2 the 
proposed x2 analysis is capable of simpler unbiased detection and identifica
tion of the sources of errors. 
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The next set of data is reported by Ferrer and Erickson. 4 Candida lipoZvtica 
was cultivated in a batch fermentor using 11-hexadecane as the carbon source 
and ammonium sulphate as the nitrogen source. The rates of substrate and 
oxygen consumption and biomass and carbon dioxide production were mea
sured. The results of analysis for run No. 4 are shown in Table VII, which is 
obtained by using the same values of 'Yb = 4.291 (for the equivalent available 
electrons/C mol biomass) and ub = 0.462 (for the weight fraction of carbon 
in biomass) as used by Ferrer and Erickson. As before, a measurement error 
of 10% is assumed. Low CO2 measurements were judged to be the cause of 
errors in five instances and a high 0 2 measurement was blamed in one in
stance. Moreover, they occur either at the beginning or at the end of the batch 
runs. Although not shown, the results of analysis of their data for other runs 
also display the same tendency of attributing errors to CO2 measurements. 
The erroneous CO2 measurements may have been caused by the dissolved 
CO2 that was not properly accounted for. 

Finally, the data for this last example of continuous culture of Aerobacter 
aerogens in a glucerol-limited medium was originally reported by Herbert 17 

and later analyzed for consistency by Erickson and co-workers. 3 The experi
mentally measured values of biomass and substrate concentrations at each 
reported dilution rate are used. Since not all the oxygen uptake rates and 

TABLE VII 
Performance Indices for a n-Hexadecane•Limited Batch Growth of Candida lipolytica 

under Aerobic Conditions (run 4)• 

h 

After deletion of the measurement of 
Time No 
(h) deletion Substrate 02 Biomass CO 2 

0 109.94b 76.04 36.74 46.30 5.03d 
2 26.08b 24.29 4.06 16.00 1.90d 
4 21.54b 17.24 7.07 7.69 o.ood 
8 8.J5b 5.63 4.37 1.12 0.78d 

10 4.47 1.72 3.65 0.01 1.68 
12 0.92 0.83 0.28 0.40 0.00 
14 I.OS 1.04 0.0J 0.89 0.18 
16 3.36 3.19 0.00 3.20 1.23 
18 2.68 2.66 0.08 2.36 0.65 
19.5 2.60 2.60 0.18 2.14 0.46 
21.5 1.97 1.69 0.71 0.85 0.00 
23.5 3.68 J.67 0.29 3.07 0.74 
25.5 5.9Sb S.21 2.06 J.41 0.2Jd 
26.5 9.50b 7.19 o.1s< 8.79 8.68 

•Source of data is ref. 4. 
bThe test function lies outside the 90% confidence level. 
<The 0 2 measurement is to be deleted. 
dThe CO2 measurement is to be deleted. 
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carbon dioxide evolution rates are reported at the same dilution rates as bio
mass and substrate concentrations, the straight lines passing through the ex
perimental points in the of 4>02 vs. D and <I>c02 vs. D plots are used to generate 
the "measured" values. The same 'Yb = 4.291 and ub = 0.462 as used by 
Erickson and co-workers3 are used here, and the results of our analysis are 
shown in Table VIII. The consistency of every set of data, except the last, is 
found to be remarkable, and the deviation of the last set of data can also be 
seen in Herbert's plot, in which the lines drawn through the experimental 
points totally missed the measurements at D = 1.01 h -I_ As Figure 1 shows, 
the occurrence of extremely large performance indices is rare; so is the occur
rence of phenomenally small ones. The consistently small performance indices 
in this example are due to the application of smoothing of random noises when 
values read from the "best fit" lines are used as measurements. The objective of 
this example is to show that biased data manipulation may be suspected if the 
performance indices are consistently unreasonably small. 

CONCLUSIONS 

The suggested procedure for detecting and isolating gross errors through 
the use of statistical hypothesis testing is conceptually simple. It provides a 

TABLE VIII 
Performance Indices for a Glucerol-Limited Steady-Stage Continuous Culture of 

Aerobacter, aerogens• 

h 

After deletion of the measurement of 
D No 

(h-1} deletion Glucerol 02 Biomass CO2 

0.050 0.06 0.06 0.01 0.06 0.00 
0.115 0.20 0.14 0.01 0.16 0.12 
0.125 0.24 0.14 0.17 0.11 0.03 
0.250 0.26 0.24 0.00 0.26 0.07 
0.350 0.32 0.28 0.12 0.24 0.01 
0.485 0.40 0.31 0.19 0.25 0.02 
0.510 0.33 0.33 0.06 0.30 0.00 
0.625 0.39 0.34 0.14 0.29 0.01 
0.750 0.50 0.36 0.27 0.28 0.05 
0.850 0.40 0.37 0.10 0.33 0.00 
0.910 0.38 0.37 0.00 0.38 0.06 
0.935 0.46 0.37 0.20 0.30 0.03 
0.980 1.48 0.38 0.75 0.64 1.31 
1.010 5_55b 0.37 5.54 O.OJC 4.26 

•Source of data is ref. 17. 
bThe test function lies outside the 90% confidence level. 
caiomass measurement is to be deleted. 
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potentially powerful means for the systematic analysis of a set of measure
ments subjected to equality constraints. It gives a much more reliable and 
internally consistent set of estimates with only little extra effort in computa
tion. All the necessary calculations and decisions can be readily made by a 
computer. Thus, it can be incorporated into the existing process of auto
mated data collection, analysis, and computerized control of a biochemical 
reactor. There is the advantage that an operator may be warned of instrumen
tal malfunctions or process disorders. Its usefulness becomes especially sig
nificant as future development in sensors enables us to take more measure
ments that are related through some constraints. In order to improve the 
accuracy of the estimates. it can be applied to the on-line continuous estima
tion in which a Kalman filter is used to estimate the growth parameters of a 
biochemical reactor. 19 As long as an investigator uses the correct model and 
makes the proper measurements, it can be employed in both aerobic and an
aerobic fermentation processes under various conditions and in different 
modes of operation, let it be batch, fed-batch, or continuous. 

APPENDIX A: A NUMERICAL EXAMPLE 

The data of de Kok and Roets 11 will be used to illustrate the numerical aspect of the proposed 
strategy. Saccharomyces cerevisiae CBS 426 was cultivated in a medium in which glucose is uti
lized as the carbon source and ammonium sulfate as the nitrogen source. The steady-state flows 
of the substrate, oxygen, biomass, and carbon dioxide were measured for a range of dilution 
rates. CH1,a30o.56No.t7 was used as the elemental composition for the biomass in correcting the 
experimental data to conform to the elemental balances. No extracellular metabolic product is 
assumed to be present. Thus, reaction (1) for this problem is: 

aC6H1206 + b02 + cNH3 --+ BCH1_83 0 0_56 N0_17 + dH20 + eC02 

Matrix A' and the vectors x • and b' of eq. (9) are: 

a 

[-6 0 0 1.00 0 

~] 
... c b 

-12 0 -3 1.83 2 ·•· H C 

A'= x• = b' = 0 
-6 -2 0 0.56 ···O B 

0 0 -1 0.17 0 ... N d 

e 

The net consumption of NH3 and the net production of H 2 0 were not measured; so coeffi
cients c and d are eliminated from the above equations to yield AJC' = 0 where 

[
-60 A= 

0 

-2 -0.1 
1.0 :J x' = 
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If the reaction has already been normalized with respect to the biomass stoichiometric coeffi
cient, then we set B equal to 1 and consider it not as a measured variable but as an exact quantity. 
In this case, the dimension of x' is reduced by one. Since during the normalization process all 
other stoichiometric coefficients are divided by B, the error in biomass measurement is distrib
uted among the other stoichiometric coefficients. This has the disadvantage that gross errors in 
the biomass measurement will not be detected as such but diagnosed as errors in another quan
tity. When the biomass measurement errors are random, normalization will not affect the result. 
In this example, the above formulation will be retained so that the possibility of gross biomass 
errors can be considered, and the equality constraint can be represented as Ax = 0 with x = x' 
and A as given above. 

At a dilution rate of 0.008 h -I, de Kok and Roels reported the measurements on the net flows 
of glucose, oxygen, biomass, and carbon dioxide. Since a continuous steady-state operation is 
achieved, there is no accumulation·of chemical species, and the net fluxes indeed represent the 
relative values of the stoichiometric coefficients. Therefore, the measurement vector is: 

The measurement errors used in this example are 6, 11.7, 5, and 11.1% for a(substrate), 
b (oxygen), B(biomass}, and e(carbon dioxide), respectively. Thus, the variance-covariance ma• 
trix for 6 is: 

' = ["" f ~'' 
Equations (18) and (20) give: 

0 

(3.80 X 0.117)2 

0 

0 

t =-Ai= -[
-06 

0 

-2 

1.0 

-0.1 

[
0.04253 0.04805] 

<I>= A,/,AT = 
0.04805 0.88730 

Applying eq. (25) yields for the test function: 

0 

0 

(1.00 X 0.0S)2 

0 

[

0.351 1] 3.80 = [-0.30] 
2 1.00 4.90 

1.40 

[ 

25.0480 ,,,-1 = 
-1.3564 

-J.3564] 

1.20050 

h=tT4>- 1t=35.01 

This value is compared to the x2 distribution function of 2 degrees of freedom (two constraint 
equations). Because x~.'1(2) = 4.61 < 35.07 = h, the hypothesis testing fails if a 90% level of 
confidence is desired. Thu~. we can state with 90% of confidence that some of the measurements 
have gross errors that are much larger than can be reasonably expected from the original vari
ance-covariance structure. Note that this conclusion is reached in a very early stage of the error 
analysis. Normally, we do not need to proceed further to calculate the maximum likelihood esti
mate for this entire set of measurements because it will inevitably be erroneous, but we shall 
calculate it here so that it can be referred to later for the purpose of comparison. Applying eqs. 
(21) and (22) directly and substituting the required numerical values, we have: 
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0.0375] 
-2.4864 

-0.0370 

-0.0382 
[

0.3875] 
1.3136 

x=x+i= 
0.9630 

1.3618 

... a 

..• b 

•·· B 

•.. e 

Had the hypothesis test been passed, we would stop here. However, since gross errors arc sus
pected, the deletion algorithm is applied to locate the source of errors. 

First, consider the deletion of measurement x 1 = a (i.e., the glucose measurement). The ma
trices are partitioned according to eqs. (27), (28), and (29): 

X = [::] 
['@] Xu= 1.00 Xe= {0.35] 

1.40 

[_: 1.0 
A= [AuAeJ A = u 

-0.1 

[

(3.80 X:0.117)
2 

fu = 

f= 

0 

(1.00 X 0.05)2 

0 

The scalar to be inverted in eq. (35) is: 

[fu O] 
0 fe 

:J A= e [-:] 

fe = {(0.35 X 0.06)2] 

Equation (35) is used to calculate the variance-covariance matrix for E after the deletion of a: 

After this, the new his calculated according to cq. (36), and the hypothesis testing is applied to 
the set of retained measurements: 

h0 = fr,/1; 1f = 27.06 

Because of the deletion of one measurement, the number of constraint equations is reduced from 
2 to I. The above test function is now compared to x~.9 (1) = 2. 71. Thus, we see that deleting a 
only brings the performance index from h = 35.07 down to h0 = 27.06, which is still far short of 
what is needed to pass the test. 

Next, consider the deletion of the measurement x 2 = b (i.e., the oxygen measurement.) The 
partitioning of matrices for this case is done as follows: 

[•-~1 Xu= 1.00 Xe= (3.80] 

1.40 

[-: 
1.0 :] [ _:] A = A= u 

-0.1 
e 
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[

(0.35 X: 0.06)
2 

1/,u = 

These matrices give: 

0 

(1.00 X 0.05)2 

0 

A°[ ,t,- 1 Ac= 4.8019 

[A'[,t,- 1Ac]-l = 0.2083 

The new test function for the case of deletion of b is: 

hb = E7 ,t,;; 1
E = 2.12 

V'c = ((3.80 X 0.117)2 ) 

Since hb = 2. 12 is less than x~.9(1) = 2. 71, we can state with a 90% level of confidence that the 
measurement b may be erroneous. The maximum likelihood estimates of the measurement er• 
rors and the measurements themselves are given by: 

A= l/,UA~,t,;; 1
t = -0.0176 

[ 

0.0187] 

-0.1704 

i = i + A = [:::::i : : : : 
1.22% · · · e 

The reconstructed value for the deleted measurement bis 1.180S. 
The same procedure is followed for the cases of deletion of Band e. The resulting test functions 

after deletions of Band e are h8 = 26.43 and h~ = 34.96, respectively. Comparing the test 
functions after each deletion, we find that deleting b gives rise to the lowest test function. Since 
the test function obtained after deleting b is small enough to pass the hypothesis test, no further 
simultaneous deletion of two measurements is necessary, nor is it possible to do so due to the 
limited number of constraint equations available. The error analysis carried out so far indicates 
that the measurement of b should be deleted. The proposed method of statistical analysis enables 
us to reach this conclusion smoothly and systematically. De Kok and Roets have also reached the 
same conclusion on this set of measurements by comparing it to other similar sets of measure
ments and by relying heavily on their past experience as to what values RQ should have. Thus, 
we sec how the proposed method can be used systematically in the face of uncertainty, and it is 
this systematized approach that is especially suited for the use in computerized data analysis and 
control of a biochemical reactor, although human experience, to be sure, is still indispensable. 

APPENDlX B: SEQUENTIAL ANALYSIS 

The basic results that are essential for the actual implementation are presented here without 
proof. (Sec Romagnoli and Stephanopoulos9 for a detailed discussion.) In the discussion that 
follows, the subscript i signifies the value for the ith step, and the subscript i - I represents the 
value of the last successful step. The variables affected by these subscripts are ~. 6, i, and h 
because they need be updated as each balance equation is processed. The prime mark ( '} is 
reserved for those variables which represent the incremental changes as a result of processing the 
ith step; whereas, the absence of the prime mark on a variable signifies that the variable under 
concern is the overall cummulative quantity. 
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First, we partition them X II matrix A as follows: 

A= (37) 

Now we process each subdivided balance equation in Ax = 0 individually. Each subdivided bal
ance equation is expressed as: 

A;x = 0 i = 1, 2, ... , m (38) 

Before any balance equation is processed, no correction can yet be applied to the measure
ments; thus, 

60 = 0 

io = i + 60 = x 

(39) 

(40) 

Naturally, the variance-covariance matrix for i 0 - xis the same as the original variance-covari
ance matrix for h, i.e. 

(41) 

The maximum likelihood incremental adjustments for the measurements due to the ith con
straint equation is: 

(42) 

and the corresponding variance-covariance matrix for 6/, which can also be thought of as the 
incremental decrease in the variance-covariance of the estimate of x thus far, is: 

where <Ii; and E/ are calculated by the following equations: 

1/J; = A;i;-1AT 

E/ = E; - A;6;-1 = -A;(i + 6;-1) = -A;i;-1 

(43) 

(44) 

(45) 

Finally, the overall correction up to now, the maximum likelihood estimate of x at the end of the 
ith step, and the corresponding variance-covariance matrix are updated according to the follow
ing equations: 

6; = 6;-1 + &; 

i; = i;-1 + 6/ = i + 6; 

i; ""E((i; - x}(i; - x)7 ) = i;-i - i; 

(46) 

(47) 

(48) 

As expected, eqs. (42). (43), (44), (45), (47), and (48) reduce to eqs. (21), (23), (20), (18), (22), 
and (24), respectively, when only a single step is taken to solve Ax = 0. One of the advantages of 
using this sequential method of processing is that <Ii;, which is the matrix to be inverted, is only a 
scalar when one equation at a time is considered. 

Once again, we can perform a hypothesis testing to detect the presence of gross errors as each 
equation is processed by formulating a test function for each stage i: 

h; = &T t/,- 16; (49) 
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This test function is then compared against xf _8(k), where k is the number of successful steps 
thus far plus I for the current step, i.e. k is i minus the number of unsuccessful steps. Actually, it 
can be tested before the calculation of the overall correction, 6;, is carried out. This can be done 
by using the following identities: 

i 

h- = E l,!Tt{,-16-' = E E-'r<f;,-:-1E_, 
I j= I ' J j= I J J J 

= h;-1 + 6/ 7 r 1li; = h;-1 + E/
7 <t,;- 1

Ef 

= h;-1 + hf (SO) 

Conceptually, the last equality in the above equation is due to the fact that the term hf T iJ,- 1 h;' = 
t/ 7 </,;-I tf can be considered as the incremental increase in h as a result of processing the ith 
subdivided constraint equation. In the above equation, only the terms corresponding to the suc
cessful steps are included in the summation. 

If the test is successful, we proceed to calculate the adjustments needed for this step and then 
to the next constraint equation. If the test is failed, one of the measurements included in the ith 
equation is suspected of having gross errors, and it is then isolated through the process of serial 
deletions described earlier. 

This sequential procedure can be used to analyze many sets of data taken under the same 
conditions. Estimation can be carried out as soon as the pertinent data become available. The 
maximum likelihood estimates of the first set can be combined in a weighted manner with the 
original data of the second set to produce a new set of estimates and an updated variance
covariance matrix. This new set of data can once again be fed through the same estimation and 
error detection algorithm. Thus, this sequential error analysis algorithm is analogous to the 
methods of running average or Kalman filtering. 

The example of Appendix A is reworked here to illustrate the application of the sequential 
analysis to error identification. We start by partitioning the matrix A according to eq. (37): 

A= [::] 

The initial values for 6, i, h, and i are: 

io = f = 
[

(0.3S :: 0.06)
2 

i 0 = i = 

0 

(3.80 X 0.117)2 

0 

0 

From cqs. (44) and (4S), we can calculate: 

4>1 = A1l0Af ::c 0.04253 

A2 = (0 -2 -0.l 2) 

[

0.35] 
3.80 

1.00 

1.40 

0 

0 

h0 = 0 

(1.00 X 0.05)2 

0 

<t>i"""
1 = 23.515 

[

O.JS 

3.80 
I) 

1.00 

1.40 

= -0.30 
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From eq. (SO), the incremental increase in the test function due to the processing of the first 
constraint equation is given by: 

h1 = EtT 4,~
1
Et = 2.12 

Thus, tbe test function after processing the first equation is: 

h 1 =ho+ h 1 = 0 + 2.12 = 2.12 

Since only on~ equation has been processed so far, the test function is compared to x~_9 (m = 
1) = 2. 71 > 2.12 = h 1 , which indicates that the test is passed. Had the test been failed, we 
would set the incremental changes of 6, i, ~. and h for this step to 0. However, since the test 
shows that this step is successful, we proceed to calculate the incremental changes of 6, i, and ~ 
directly according to eqs. (42) and (43). 

, _ T -t , _ [ :::1 : : : : 
81 - ~0A1 4>1 Et -

-0.0176 ·· • B 

-0.1704 • · · e 

[ 

0.00016 

0.00000 

-0.00016 

-0.00150 

0.00000 -0.00016 

0.00000 

0.00000 

0.00000 

0.00000 

0.0001S 

0.00142 

-0.001501 
0.00000 

0.00142 

0.01371 

Finally, each overall estimate so far is updated. 

0.0167] ••• • rO-~~ ---· 
81 = 80 + 8; = 0.0000 • · • b 3.8000 ••• b 

i 1 = 20 + 81 = 
-0.0176 ···B 0.9824 ···B 

-0.1704 ••• e 1.2296 ..• e 

r~~ 0--
0.00016 

0.001~1 

i, = ;o - ;; = 
0.00000 0.19767 0.00000 0.00000 

0.00016 0.00000 0.00235 -0.00142 

0.00150 0.00000 -0.00142 0.01044 

Now, we are ready to analyze the second constraint equation. Similar to the handling of the 
first constraint equation, we have for this step: 

<>2 = A2;1Ai = 0.8330 

<>2 1 = 1.200 

E2 = -A2i1 = 5.239 

h2 = E2T (>2 1t2 = 32.95 

h2 = h 1 + h 2 = 2.12 + 32.95 = 35.07 

The value of x5.9(m = 2) = 4.61 shows that h2 = 35.07 is too high to pass the test. Thus, the 
presence of gross errors is detected, and no correction on A, i, ;, and h can come from tbis step. 
Instead, the second constraint equation is used to find the source of gross error. By going through 
the serial deletion of the involved measurements b, B, and e as have already been done in the 
previous section, we find that the measurement of b is erroneous. The same conclusion has been 
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reached in the batch processing of the same experimental data in the previous section. The esti
mates obtained in the last successful step become the final results for this set of measurements, 
which are again consistent with those obtained in the batch processing. 

Another way to identify the source of gross error is to argue as follows. Since this second con
straint equation involves a new measurement of b that is not included in the first constraint 
equation, we can conclude that the measurement of b possesses gross errors. Although this rea
soning usually strikes out the correct sources of gross errors, our past experiences in analyzing 
other data shows that it need not always be true. A statistically erroneous measurement may 
remain undetected during the first encounter because the algorithm does not see the whole pic
ture initially. During the first encounter, certain combina_tions of the other measurements may 
soften the aggravation caused by an erroneous measurement and pull the test function just barely 
within the passing range. Therefore, to be more confident about the judgment, it is best to check 
for all the measurements involved in the current step before deciding the choice of deletion. If the 
error is detected during the second or later encounter of that measurement, we need to go back 
and reanalyze the equation in which the measurement in question is first encountered. For the 
same statistical reasons, sequential analysis may also occasionally discard some other measure
ments whose deletions do not give the lowest performance indices in the batch processing. How
ever, it is not very clear, and one will never really know, what precisely constitute the right 
choices, because, after all, the decisions on deletion are made using statistical concepts. 

APPENDIX C: EFFECT OF CORRELATION ON TEST FUNCTION 

To see the effect of correlated terms in the covariance matrix y, on the test function h, we follow 
a mathematical approach ~imilar to that used in locating the sources of gross errors. The original 
measurement vector x is again partitioned into two parts: a uncorrelated measurements which 
have a purely ~iagonal covariance matrix y," and b correlated measurements which have a covari
ance matrix v,h that is composed of both a purely diagonal v,bd and a purely off-diagonal t/,ho. 

x = [::] A= (A,,Ah) 

t/,= ["': .,,:] t/,d= [~ :J = [:" t/,bd:.,,J 

Following eqs. (32) and (33), we get: 

,t,d • At/,dAT = ,t, + Aht/,hoAr 

where 

,t,• At/,AT 

,t,i 1 = -,,-s - r 1Ah(,J,,:1 + Ar,t,- 1Ah)- 1A!r1 

(SI) 

(52) 

(53) 

(54) 

where the subscript d signifies that the variable involved contains the effect of off-diagonal t/,ho. 
and the lack of it show that the variable is devoid of t/,ho. Thus, when the measurements are 
correlated, the test function is: 

hd = ET .,,;;•E = ET .,,-•E - ET.,,-, Ah'"',:' + Ar-,,-• Ah1-• Ar-,,-•E 

= h diagonal + h com,iation (55) 

The above equation shows that the presence of off-diagonal t/,ho affects the test function by 
_ET,t,- 1Ah(t{,,:1 + Ar-,,- 1Ah)- 1Ar-,,- 1E. The test function is increased if,.,,,:• + 
Ar-,,-• Ah) is negative definite and decreased if [v,,: 1 + Ar ,t, -I Ah) is positive definite. 

The example of Appendix A is reworked here to show the effect of an error in the gas now rate 
measurement on the test function. We assume that the gas now rate contributes 8% to the 11. 7% 
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error in the measurement of b (i.e., 0 2 consumption rate) and the 11.1 % error in the measure
ment of e (i.e., CO2 evolution rate): 

[ 0 1] 
-2 2 

E =-Ai= 

[ 

(3.80)2(0.117)2 

1{,b = 
(3.80) ( 1.40)(0.08)2 

.,,bo = [ 0 
(3.80)(1.40)(0.08)2 

(3.80)(1.40)(0.08)2
] 

(1.40)2 (0.111)2 

(3.80)(1.:0)(0.08)
2

] 

[
-0.30] 

4.90 

hcom:lation = _ET<J,-IAb(l{,;;;1 + Ar<1>-1Ab]-1Arq>-IE = 4.45 

hd = hdiagonal + hcorrclation = 35.07 + 4.45 = 39.52 

As can be seen from the expression for 1{,00 , the test function is less affected when the fraction of 
error that is contributed by the gas flow rate measurement is smaller. The effect of correlation for 
the example in Appendix 

A 
Ac 

a, b, c, d, e,f 

C 

m 

mATP 
n 
PIO 
Q 
R 
RQ 
u 
V 

Nomenclature 

the matrix in the balance equation Ax = 0 (dimension = m X n) 
partitioned A that corresponds to the deleted measurements. (dimension = 
m X c) 

partitioned A that corresponds to the retained measurements. (dimension = 
m Xu) 

stoichiometric coefficients in eq. (1); a is in mol substrate/C mol biomass; bis 
in molO2 /Cmolbiomass;c isin mol NH3 /C mol biomass;dis in mol H2O/ 
C mol biomass; e is in CO2/C mol biomass;J is in mol product/C mol bio
mass 
biomass stoichiometric coefficients in eq. (1) 
nonhomogeneous term in the balance equation 
concentration of component j in the system (mol/L) 
number of measurements to be deleted 
dilution rate (h-1) 

heat of formation of species j in eq. (6) (kcal/mol) 
a constant term added to the measured stoichiometric coefficients to absorb 
the nonhomogeneous term b 
test function 
test function after deleting measurement j 
number of equations processed thus far 
the last successful step 
performance index 
k = i - (number of unsuccessful steps) 
number of constraint equations 
maintenance requirement for ATP (mol ATP C mol- 1 biomass h -I ) 
number of measurements 
efficiency of the oxidative phosphorylation (mol A TP/mol 0) 
heat evolution in eq. (6) (kcal/C mol biomass) 
rate of biomass formation; extent of reaction (l) (mol biomass L -I h- 1) 

respiratory quotient (mol CO2 /mol 0 2 ) 

number of measurements remaining after deleting c measurements 
volume (L) 
composition of substrate in eq. (1) 



X 

i 
x 

Greek 

a, (3, -y, o 
a\ (J', ")''. t,' 

Subscripts 

C 

u 
n 

Diacritics 
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true parameter vector for measured variables (dimension = n) 
measurement vector (dimension = n) 
estimate of measurement vector (dimension = n) 
measured variables to be deleted (dimension = c) 
measured variables to be retained (dimension = u) 
maximum growth yield on ATP (C mol biomass/mo! ATP) 

composition of biomass in eq. (1) 
composition of metabolic product in eq. (1) 
reductance degree of biomass (equivalent available electrons/C mnl hinn1u,\ 

measurement error vector (dimension = n) 
estimate of 6 (dimension = n). 
estimate of 6 when gross errors are present in measurements (dimension = n) 
estimate of 6 for the undeleted measurements (dimension = u) 
balance equation residual vector (dimension = m) 
expected value operator 
confidence level of x2 distribution 
stoichiometric coefficient of component j in eq. (6) 
weight fraction of carbon in biomass (dimensionless) 
standard deviation of the jth measurement 
net rate of input of component j to the system by transport (mol/h) 
variance-covariance matrix for E with no gross error (dimension = m X m); 

,t, = £fEE7 ] 
variance-covariance matrix for E when Av, is present (dimension = m X m) 
singular matrix of ,t,-;; 1 after deletion of c measurements (dimension = m X 

-1 • -1 
m); fl., ,.. ltm(d#) _.,. fl,. 
chi-square probability distribution 
variance-covariance matrix for o (dimension = n X n); 1{, = £[UT] 
t/, for c deleted measurements with no gross error (dimension = c X c) 
variance-covariance matrix for o,. with gross error (dimension = n X n); "1n 
= E[o,.o~J 
t/, for u retained measurements with no gross error (dimension = u X u) 
gross error (dimension = c X c) 
variance-covariance matrix for! (dimension = n X n); ~=£[UT) 

signifies that it is of the measurements to be deleted 
signifies that it is of the measurements to be retained 
signifies that it is of the measurements which contain both random and gross 
errors 

measured values 
estimated values 
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C **************************************************************************** 
C **************************************************************************** 
c This is used to create a file named RUN.FOR whichc ontains the necessary 
c FORTRAN codes, with the correct dimensions to call the primary subroutine 
c ERROR used for gross error detection, identification and rectification. 
c RUN.FOR is then compiled, linked with all other needed subroutines, and run 
c on a VAX computer under VMS operating system. 
C **************************************************************************** 
C **************************************************************************** 

601 

501 

602 

605 

PROGRAM CREATE 
write(6,601} 

* 
* 
* 
* 
* 
* 
* 
* 
* 

format('$the dimension of matrix a(m,n) = 
read(5,501)m,n 
format(i1,1x,i1) 
open(unit=10,file='run.for',status='new') 

write(10,602)n,n,n,n,n,n,n,n,m,m,m,m, 

format ( 

m,n,n,m,m,n,m,m,m,n, 
n,n,m,m,n,n, 
n,n,n,n, 
m,m,n,n, 
m,m,m,m,m,m,m,m,m,m, 
n,n,n,n,m,n,n,m,n,n, 
m,m, 
m,n, 
n,n,n,m 

*' -program test'/ 

') 

*' dimension pn('i1', 'i1'),~n0('i1','i1'),pn1('i1','i1'),' 
* 'pn2 ( ' i 1 ' , ' i 1 ' ) , pm ( ' i 1 ' , ' i 1 ' } , pmi ( ' i 1 ' , ' i 1 ' ) ' / 
*' dimension a(• il •, 'il '} ,at( 'il', 'il ') ,aj ( 'il ') ,ai(' il '),' 
* 'aj2('i1',2),aj2t(2,'i1'),ntest('i1', 'i1')'/ 
*' dimension x('i1'),xx('i1'),crit('i1'),e('i1'),hl('i1'),' 
* 'nj('i1')'/ 
*' dimension d('i1'),dd0('i1'),dd1('i1'),dd2('i1')'/ 
*' dimension tpm1('i1'),tpm2('i1'),tpn1('i1'),tpn2('i1')'/ 
*' dimension tpmm1('i1','i1'),tpmm2('i1','i1'),tpmm3('i1' ,' 
* i1'),tpmm4('i1','i1'),tpmmi('i1','i1')'/ 
*' dimension tpnn1('i1','i1'),tpnn2('i1','i1'),tpmn1('i1',' 
* i1'),tpnm1('i1','i1'),pni('i1','i1')'/ 
*' dimension tp221(2,2),tp222(2,2),tp2m1(2,'i1'),' 
* 'tpm21('i1',2)'/ 
*' dimension ntpm1('i1'),nindex('i1')'/ . 
*' dimension xdel('i1'),pndel('i1','i1'),edel('i1')'/ 
*' dimension a1(4,10),msrmt(10),natest(4,10),xxx(10),' 
* 'tp1(10),tp2(10)') 

write(10,605)m,n 
format( 

*' call ERR0R(pn,pn0,pn1,pn2,pm,pmi,a,at,aj,ai,aj2,' 
* 'aj2t,ntest,'/ 
*' *x,xx,crit,e,h1,nj,d,dd0,dd1,dd2,tpm1,tpm2,tpn1,tpn2,tpmm1,' 
* 'tpmm2, '/ 
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*' *tpmm3,tpmm4,tpmmi,tpnn1,tpnn2,tpnm1,pni,tp221,tp222,tp2m1,' 
* 'tpm21,'/ 
*' *ntpml,nindex,tpmnl,xdel,pndel,edel,a1,msrmt,natest,xxx,' 
* 'tp1,tp2,'/ 
*' *'i1','i1')'/ 
*' stop'/ 
* • end') 

close(unit=10) 
stop 
end 

C **************************************************************************** 
C **************************************************************************** 
C **************************************************************************** 
c Rectification of process measurement data in the presence of gross errors. 
C **************************************************************************** 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE ERROR(pn,pn0,pn1,pn2,pm,pmi,a,at,aj,ai,aj2,aj2t,ntest, 
*x,xx,crit,e,h1,nj,d,dd0,dd1,dd2,tpm1,tpm2,tpn1,tpn2,tpmm1,tpmm2, 
*tpmm3,tpmm4,tpmmi,tpnn1,tpnn2,tpnm1,pni,tp221,tp222,tp2m1,tpm21, 
*ntpm1,nindex,tpmn1,xdel,pndel,edel,a1,msrmt,natest,xxx,tp1,tp2, 
*m,n) 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 
character 

pn(n,n),pnO(n,n),pn1(n,n),pn2(n,n),pm(m,m),pmi(m,m) 
a(m,n),at(n,m),aj(m),ai(n),aj2(m,2),aj2t(2,m),ntest(m,n) 
x(n),xx{n),crit(m),e(~).hl(n),nj(n) 
d(n),ddO(n),dd1(n),dd2(n) 
tpm1(m),tpm2{m),tpn1{n),tpn2(n) 
tpmm1(m,m),tpmm2(m,m),tpmm3(m,m),tpmm4(m,m),tpmmi(m,m) 
tpnn1(n,n),tpnn2(n,n),tpmn1(m,n),tpnm1(n,m),pni(n,n) 
tp221(2,2),tp222(2,2),tp2m1(2,m),tpm21(m,2) 
ntpm1(m),nindex(n) 
xdel(n),pndel(n,n),edel(m) 
a1(4,10),msrmt(10),natest(4,10),xxx(10),tp1(10),tp2(10) 
* 120 name 

ic = 10 
open(unit=ic,file='errdat',status='new') 
open(unit=11,file='data',status='old') 

C **************************************************************************** 
c Input the comments********************************************************* 
C **************************************************************************** 

read(11,6)name 
6 format(a120) 

write(ic,B)name 
8 format(1x,a119,/) 
c If iread=O, there is no reduction of al matrix, and a is entered directly. 

read(11,9)iread 
9 format(i1) 
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if(iread .eq. O)go to 150 

C **************************************************************************** 
c Input the original matrix al and calculate the working matrix a************ 
c Put biomass term on #5 ************ 
c msrmt(i) : 0 not measured ************ 
C 

C 

1,2,3 .. = measurement order 
-1 = not used 

************ 
************ 

C **************************************************************************** 

12 

11 

4 

120 
130 

110 

read(11,12)(msrmt(j),j=1,10) 
format(10i8) 
read(11,11)((a1(i,j),j=1,10),i=1,4) 
format(10f8.3) 
write (ic,4)msrmt 
format(' measurement identification:',/,1x,i10,9i12) 
call writa(al,4,10,'a',1,10,4,ic,'(original)',10) 
call setna(natest,0,4,10) 
irow = 1 
do 110 j=l, 10 

if(msrmt(j) .ne. O)go to 110 
do 120 i=irow,4 

if(abs(al(i,j)) .gt. 0.01)go to 130 
natest(irow,j) = 1 
call swapar(al,i,irow,4,10) 
call delete(j,irow,4,a1,tp1,tp2,4,10) 
irow = irow + 1 

continue 
irow = irow - 1 
call writa(a1,4,10,'a',1,10,4,ic,'(after deleting unmeasured varia 

*bles) ',37) 
C Copy al to a for use in the actual analysis 

do 140 j=l,10 
if(msrmt(j) .le. O)go to 140 
k = msrmt(j) 
do 136 i=l,4-irow 

135 a(i,k)=a1(irow+i,j) 
c Chech to see that no other measurements are unintentially deleted 

do 136 i=1,4-irow 
136 if(abs(a(i,k)) .gt. 0.01) go to 140 

write(6,666) k 
666 format(' warning: measurement #',i2,' is effectively deleted') 

stop 
140 continue 
150 if(iread .eq. O)read(11,13)((a(i,j),j=1,n),i=1,m) 
13 format(<n>f8.3) 

call writa(a,m,n,'a',1,10,4,ic,' ',1) 

C **************************************************************************** 
c Input measurements, covariances, t significance test criteria************** 
C **************************************************************************** 

read(11,6)(crit(i),i=1,m) 
6 format(<m>f8.3) 

read(11,7)(x(i),i=1,n) 
7 format(f12.7) 



10 

read(11,7)(pn(i,i),i=1,n) 
read(11,7)(d(i),i=1,n) 
do 10 i=1,n 

pn(i,i)=(pn(i,i)*x(i))**2 
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if(pn(i,i) .le. 1.e-8) read(11,7)pn(i,i) 
x(i)=x(i)+d(i) 

call writx(x,n,'x',1,8,4,ic,'measurements:',13) 
call writa(pn,n,n,'pn',2,10,7,ic,'covariances of measurements',27) 
call writx(crit,m,'crit',4,6,2,ic,'criteria vector:',16) 

C **************************************************************************** 
c Miscellaneous junk********************************************************* 
C **************************************************************************** 

call inverq(pni,pn,n) 
c create a m*m identity matrix tpmmi 

do 401 j=1,m 
401 tpmmi(j,j) = 1. 

C **************************************************************************** 
c Check to see that error is within the specified level of significance****** 
C **************************************************************************** 

call transp(at,a,m,n) 
call q2abat(pm,a,pn,at,tpnm1,m,n) 
call invert(pmi,pm,tpmm1,tpmm2,tpmm3,tpmm4,m) 
call mulyax(e,a,x,m,n) 
call scaler(e,-1.,e,m) 
call writx(e,m,'e',1,8,6,ic,'error vector:',13) 
call writa(pmi,m,m, 'pmi' ,3,10,Sl_ic, 'inverse error covariances:' ,26 

*) 
hh • xay(e,pmi,e,tpm1,m) 
write(ic,610)hh 

610 format(' test function:',/,' hh = ',f6.2,/) 

C **************************************************************************** 
c Calculate the least square estimate without deleting any measurement******* 
C **************************************************************************** 

call mulyax(tpm1,pmi, e,m,m) 
call mulyax(tpn1, at,tpm1,n,m) 
call mulyax( d, pn,tpn1,n,n) 
call addzxy( xx, d, x,n) 
call writx(xx,n,'x',1,8,4,ic,'least square estimate of x:',27) 
if(iread .ne. 0)call UNMSRM(xx,xxx,msrmt,a1,natest,tp1,n,ic) 
if(m .eq. 1) go to 200 

C **************************************************************************** 
c Locate gross errors by deleting one measurement at a time****************** 
C **************************************************************************** 

call DEL1(pn,pn0,pn1,pn2,pm,pmi,a,at,aj,ai,aj2,aj2t,ntest, 
*x,xx,crit,e,h1,nj,d,dd0,dd1,dd2,tpm1,tpm2,tpn1,tpn2,tpmm1,tpmm2, 
*tpmm3,tpmm4,tpmmi,tpnn1,tpnn2,tpnm1,pni,tp221,tp222,tp2m1,tpm21, 
*ntpm1,nindex,tpmn1,xdel,pndel,edel,a1,msrmt,natest,xxx,tp1,tp2, 
•m,n, ic,n1) 
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if(h1(n1) .le. crit(m-1) .or. m .lt. 2) go to 200 
C **************************************************************************** 
c Locate gross errors by deleting two measurements at a time***************** 
C **************************************************************************** 

call DEL2(pn,pn0,pn1,pn2,pm,pmi,a,at,aj,ai,aj2,aj2t,ntest, 
*x,xx,crit,e,h1,nj,d,dd0,dd1,dd2,tpm1,tpm2,tpn1,tpn2,tpmm1,tpmm2, 
*tpmm3,tpmm4,tpmmi,tpnn1,tpnn2,tpnm1,pni,tp221,tp222,tp2m1,tpm21, 
*ntpm1,nindex,tpmn1,xdel,pndel,edel,a1,msrmt,natest,xxx,tp1,tp2, 
*m,n,ic) 

C **************************************************************************** 
c Sequential processing of Ax=0 ********************************************** 
C **************************************************************************** 
200 call AX0(pn,pn0,pn1,pn2,pm,pmi,a,at,aj,ai,aj2,aj2t,ntest, 

*x,xx,crit,e,h1,nj,d,dd0,dd1,dd2,tpm1,tpm2,tpn1,tpn2,tpmm1,tpmm2, 
*tpmm3,tpmm4,tpmmi,tpnn1,tpnn2,tpnm1,pni,tp221,tp222,tp2m1,tpm21, 
*ntpm1,nindex,tpmn1,xdel,pndel,edel,a1,msrmt,natest,xxx,tp1,tp2, 
*m,n,ic) 

C **************************************************************************** 
c Complete the calculation of the deleted measurements*********************** 
C **************************************************************************** 

call REC0NS(xx,a,ntest,tpn1,m,n) 
call writx(xx,n,'x',1,8,4,ic,'estimate of measurements, after reco 

*nstructing the deleted measurements, is:',76) 

C **************************************************************************** 
c Complete the calculation of the unmeasured ones**************************** 
C **************************************************************************** 

if(iread .ne. 0)call UNMSRM(xx.~xx,msrmt,a1,natest,tp1,n,ic) 

close(unit=11) 
close(unit=ic) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Sequential processing of ax=0 ********************************************** 
c 'this step' variables 0 * 
c 'overall last successiful step' variables== 1 * 
c 'overall' variables == 2 * 
c The original x and pn are saved in xdel and pndel in case one has to go back. 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE AXO(pn,pn0,pn1,pn2,pm,pmi,a,at,aj,ai,aj2,aj2t,ntest, 
*x,xx,crit,e,h1,nj,d,dd0,dd1,dd2,tpm1,tpm2,tpn1,tpn2,tpmm1,tpmm2, 
*tpmm3,tpmm4,tpmmi,tpnn1,tpnn2,tpnm1,pni,tp221,tp222,tp2m1,tpm21, 
•ntpm1,nindex,tpmn1,xdel,pndel,edel,a1,msrmt,natest,xxx,tp1,tp2, 
•m,n,ic) 
dimension pn(n,n),pn0(n,n),pn1(n,n),pn2(n,n),pm(m,m),pmi(m,m) 
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dimension a(m,n),at(n,m),aj(m),ai(n),aj2(m,2),aj2t(2,m) ,ntest(m,n) 
dimension x(n),xx(n),crit(m),e(m),hl(n),nj(n) 
dimension d(n),dd0(n),dd1(n),dd2(n) 
dimension tpm1(m),tpm2(m),tpn1(n),tpn2{n) 
dimension tpmm1(m,m),tprnrn2(m,m),tpmrn3(m,m),tpmrn4(m,m),tpmrni(m,m) 
dimension tpnn1(n,n),tpnn2(n,n),tprnn1(m,n),tpnm1(n,m),pni(n,n) 
dimension tp221(2,2),tp222(2,2),tp2m1(2,m),tpm21(m,2) 
dimension ntpml(m),nindex(n) 
dimension xdel(n),pndel(n,n),edel(m) 
dimension a1(4,10),msrmt(10),natest(4,10),xxx(10),tp1(10),tp2(10) 

write(ic,612) 
612 format(' sequential processing of ax=0 *************************') 

C **************************************************************************** 
c Initialization 
C **************************************************************************** 

ndele2 = 0 
nrow = 1 
call assgx(xdel,x,n) 
call assgx(xx,x,n) 
call assga(pndel,pn,n,n) 
call assga(pn2,pn,n,n) 
call setna(ntest,0,m,n) 

201 index1=0 
indexm=1 
ndele1 = ndele2 
hh1 = 0. 
call setnx(nindex,0,n) 
call setx(dd1,0.,n) 
call setx(dd2,0.,n) 

C **************************************************************************** 
c Process one equation at a time, from eqn #nrow to #m 
C **************************************************************************** 
c nindex(n) The measurement that has been processed 
c indexO ... The no. of measurements that have been processed 
c index! 
c index2 
c indexm 
c ndele1 
c ndele2 

The no. of equations that have been processed 
The no. of measurements that have been deleted 
The no. of going back is identified by 

C **************************************************************************** 

do 260 i-=nrow,m 
C **************************************************************************** 
c Find out how many variables have been processed successively so far 
C **************************************************************************** 

index2 = index1 
index0-= 0 
do 220 j-=1,n 

ai(j) ., a(i,j) 
if(abs(ai(j)) .gt. 0.01 .and. nindex(j) .eq. 0)index0=index0+1 

220 continue 
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index2=index2+index0 

C **************************************************************************** 
c Calculation of performance index 
C **************************************************************************** 

pm1 = xay(ai,pn2,ai,tpn1,n) 
pm1 1./pm1 
ee -xy(ai,xx,n) 
bh2 bh1 + ee*pm1*ee 
write(ic,621)i,bh2 

621 format (' after handling ', i1, •-th equation'./, • bh = ', f6. 2) 
if(hh2.le.crit(indexm) .or. m.eq.1 .or. ndele1.eq.n-2) go to 230 

C **************************************************************************** 
c Test is failed. 
c Find the least desirable measurement & delete this from the subsequent 
c ... rows of the matrix a when the sequential testing is unsuccessful. 
C **************************************************************************** 

if(ndelel .eq. 1) 
* call del1(pn,pn0,pn1,pn2,pm,pmi,a,at,aj,ai,aj2,aj2t,ntest, 
* x,xx,crit,e,h1,nj,d,dd0,dd1,dd2,tpm1,tpm2,tpn1,tpn2,tpmm1,tpmm2, 
* tpmm3,tpmm4,tpmmi,tpnn1,tpnn2,tpnm1,pni,tp221,tp222,tp2m1,tpm21, 
* ntpm1,nindex,tpmn1,xdel,pndel,edel,a1,msrmt,natest,xxx,tp1,tp2, 
* m,n,ic,nl) 

c find out which measurement is the least desirable 
do 231 j=l, n 

nl = nj{j) 
231 if(abs(ai(nl)) .gt. 0.01) go to 232 

232 if(nindex(nl) .eq. 0) go to 233 
C **************************************************************************** 
c Detection on the 2nd or later encounter************************************ 
C **************************************************************************** 
c Set the measurement to be deleted batch-wise and its covariances to 0 

ndele2 c ndele2+1 
xdel(n1) = 0. 
do 236 k=1, n 

pndel( k,nl) c O. 
236 pndel(n1, k) = 0. 

call assgx(xx,xdel,n) 
call assga(pn2,pndel,n,n) 

c Set flag back to O for all the previous sequential deletions 
do 234 j=1,n 

do 234 k=nrow,m 
234 if(ntest(k,j) .eq. 1) ntest(k,j)=O 
c Switch rows of the a matrix 

call swapar(a,i,nrow,m,n) 
c Set flag to record when and where batch deletion was made 

ntest(nrow,n1)= 2 
c Actual deletion 

call delete(n1,nrow,m,a,tpn1,tpn2,m,n) 

C **************************************************************************** 
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c Set nrow so that the next sequential analysis is performed from nrow 
nrow = nrow+1 
write(ic,625)n1,n1 

625 format(' measurement #',i1,' is found to be erroneous during' 
* • 2nd or later encounter'/ 
* • measurement #',i1, • is deleted.'/ 
* • re-analyze the whole set of data'///) 

call writa(a,m,n,'a',1,5,1,ic,' ',1) 
go to 201 

C **************************************************************************** 
c Detection on the 1st encounter********************************************* 
C **************************************************************************** 
c Correct the measurement and the covariance matrix due to sequental deletion 
233 ndele1 = ndele1+1 

xx(n1) = 0. 
do 235 k=1, n 

pn2(k,n1) = 0. 
235 pn2(n1,k) = 0. 

c Set flag to record when and where sequential deletion was made 
ntest(i,n1) = 1 

c Actual deletion 
call delete(n1,i,m,a,tpn1,tpn2,m,n) 
write(ic,626)n1 

626 format(' measurement #',i1,' is deleted.') 
go to 249 

C **************************************************************************** 
c Incremental measurement errors t covariances when test is passed*********** 
C **************************************************************************** 
230 call mulyax(dd0,pn2,ai,n,n) 

call scaler(dd0,pm1*ee,dd0,n) 
call mulaxy(tpnn1,ai,ai,n,n) 
call q2abat(pn0,pn2,tpnn1,pn2,tpnn2,n,n) 
call scalaa(pn0,pm1,pn0,n,n) 

C **************************************************************************** 
c Update parameters 
C **************************************************************************** 

do 221 j==1, n 
221 if(abs(ai(j)) .gt. 0.01 .and. nindex(j) .eq. 0)nindex(j)-=1 

index1-=index2 
indexm=indexm+1 
call addzxy(dd1,dd1,dd0,n) 
hh1-=hh2 
call subcab(pn2,pn2,pn0,n,n) 
call addzxy(xx,dd0,xx,n) 

C **************************************************************************** 
c Output of the result of the sequential analysis of this step 
C **************************************************************************** 
249 call writx(xx,n,'x',1,8,4,ic,'estimate of measurements:',25) 
250 continue 
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C **************************************************************************** 
C **************************************************************************** 
c Locate gross errors by deleting one measurement at a time****************** 
c The measurement tits covariances are copied to and worked out in xx & pn2.* 
c The modified error covariances are temporarily stored in tpm1 & tpmm2. ***** 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE DEL1(pn,pn0,pn1,pn2,pm,pmi,a,at,aj,ai,aj2,aj2t,ntest, 
*x,xx,crit,e,h1,nj,d,dd0,dd1,dd2,tpm1,tpm2,tpn1,tpn2,tpmm1,tpmm2, 
*tpmm3,tpmm4,tpmmi,tpnn1,tpnn2,tpnm1,pni,tp221,tp222,tp2m1,tpm21, 
*ntpm1,nindex,tpmn1,xdel,pndel,edel,a1,msrmt,natest,xxx,tp1,tp2, 
*m,n, ic,n1) 
dimension pn(n,n),pnO(n,n),pn1(n,n),pn2(n,n),pm(m,m),pmi(m,m) 
dimension a(m,n),at(n,m),aj(m),ai(n),aj2(m,2),aj2t(2,m),ntest(m,n) 
dimension x(n),xx(n),crit(m),e(m),h1(n),nj(n) 
dimension d(n),ddO(n),dd1(n),dd2(n) 
dimension tpm1(m),tpm2(m),tpn1(n),tpn2(n) 
dimension tpmm1(m,m),tpmm2(m,m),tpmm3(m,m),tpmm4(m,m),tpmmi(m,m) 
dimension tpnn1(n,n),tpnn2(n,n),tpmn1(m,n),tpnm1(n,m),pni(n,n) 
dimension tp221(2,2),tp222(2,2),tp2m1(2,m),tpm21(m,2) 
dimension ntpm1(m),nindex(n) 
dimension xdel(n),pndel(n,n),edel(m) 
dimension a1(4,10),msrmt(10),n~~est(4,10),xxx(10),tp1(10),tp2(10) 

write(ic,611) 
611 format(' after deletion of one measurement ... ') 

C **************************************************************************** 
c Delete one measuremet at a time, repeat for j=1 ton 
C **************************************************************************** 

do 410 j=1,n 
if(pn(j,j) .le. 1.e-6)h1(j)=1.e6 
if(pn(j,j) .le. 1.e-6)go to 410 
do 406 i=1,m 

406 aj(i) • a(i,j) 
f • xay(aj,pmi,aj,tpm1,m) 
f = 1./f 
call mulyxa( tpm1, aj, pmi,m,m) 
call mulaxy(tpmm1, aj, tpm1,m,m) 
call scalaa(tpmm1, f,tpmm1,m,m) 
call subcab(tpmm1,tpmmi,tpmm1,m,m) 
call mulcab(tpmm2, pmi,tpmm1,m,m,m) 
h1(j) = xay(e,tpmm2,e,tpm1,m) 
write(ic,620) j,h1(j) 

620 format(' after deleting ',i1,'-th measurement',/,' hh = ',f6.2) 

C **************************************************************************** 
c Calculate the least square estimate after deletion of one measurement 
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C **************************************************************************** 
call assgx(xx,x,n) 
call assga(pn2,pn,n,n) 
xx(j) = 0. 
do 413 k=l, n 

pn2(k, j) = 0. 
413 pn2(j,k) = 0. 

call mulyax(tpm2,tpmm2, e,m,m) 
call mulyax(tpnl, at,tpm2,n,m) 
call mulyax( d, pn2,tpn1,n,n) 
call addzxy( xx, d, xx,n) 

C **************************************************************************** 
C Check to see the dependence of equations 
C **************************************************************************** 

call assga(tpmnl,a,m,n) 

411 
412 

416 

643 
417 

call setna(ntest,0,m,n) 
do 411 i=l, m 

if(abs(tpmnl(i,j)) .gt. 0.01) go to 412 
ntest(i,j) = 1 
call swapar(tpmnl,i,1,m,n) 
call delete(j,1,m,tpmn1,tpn1,tpn2,m,n) 
do 417 k=l,n 

if(k .eq. j) go to 417 
do 416 i=2,m 

if(abs(tpmnl(i,k)) .gt. 0.01) go to 417 
continue 
write(ic,643) k 
format(' measurement #',il,' is also effectively deleted') 

continue 

C **************************************************************************** 
c Reconstruct the deleted measurements 
C **************************************************************************** 

call recons(xx,a,ntest,tpnl,m,n) 
call writx(xx,n,'x',1,8,4,ic,'least square estimate of x:',27) 

410 continue 

C **************************************************************************** 
c Check to see which deletion gives rise to the least square objective. 
c The result is ordered in array nj and the most erroneous measurement is 
c identified by nl. 
C **************************************************************************** 
420 call sequen(hl,tpnl,nj,n) 

nl = nj (1) · 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c locate gross errors by deleting two measurements at a time***************** 
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C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE DEL2(pn,pn0,pn1,pn2,pm,pmi,a,at,aj,ai,aj2,aj2t,ntest, 
*x,xx,crit,e,h1,nj,d,dd0,dd1,dd2,tpm1,tpm2,tpn1,tpn2,tpmm1,tpmm2, 
*tpmm3,tpmm4,tpmmi,tpnn1,tpnn2,tpnm1,pni,tp221,tp222,tp2m1,tpm21, 
*ntpm1,nindex,tpmn1,xdel,pndel,edel,a1,msrmt,natest,xxx,tp1,tp2, 
*m,n,ic) 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 
dimension 

pn(n,n),pnO(n,n),pn1(n,n),pn2(n,n),pm(m,m),pmi(m,m) 
a(m,n),at(n,m),aj(m),ai(n),aj2(m,2),aj2t(2,m),ntest(m,n) 
x(n),xx(n),crit(m),e(m),h1(n),nj(n) 
d(n),ddO(n),dd1(n),dd2(n) 
tpm1(m),tpm2(m),tpn1(n),tpn2(n) 
tpmm1(m,m),tpmm2(m,m),tpmm3(m,m),tpmm4(m,m),tpmmi(m,m) 
tpnn1(n,n),tpnn2(n,n),tpmn1(m,n),tpnm1(n,m),pni(n,n) 
tp221(2,2),tp222(2,2),tp2m1(2,m),tpm21(m,2) 
ntpm1(m),nindex(n) 
xdel(n),pndel(n,n),edel(m) 
a1(4,10),msrmt(10),natest(4,10),xxx(10),tp1(10),tp2(10) 

do 460 k=1,n-1 
do 460 j==k+1,n 

do 420 i==1,m 
aj2(i,1) a(i,k) 
aj2(i,2) = a(i,j) 

420 continue 
call transp( aj2t, aj2,m,2) 
call q2atba(tp221, aj2t, pmi, aj2,tpm21,m,2) 
call invers(tp222,tp221,2) 
call q2abat(tpmm2, aj2,tp222iaj2t,tp2m1,m,2) 
call mulcab(tpmm1,tpmm2, pmi,m,m,m) 
call subcab(tpmm1,tpmmi,tpmm1,m,m) 
call mulcab(tpmm2, pmi,tpmm1,m,m,m) 
hh = xay(e,tpmm2,e,tpm1,m) 
write(ic,641)k,j,hh 

641 format(' after deletion of two measurements, #',il,' and', 
* '#',il,' ... ',/,' hh= ',f6.2) 

C **************************************************************************** 
c Calculate the least square estimate after deletion of two measurement 
C **************************************************************************** 

call assgx(xx,x,n) 
xx(k) ""0. 
xx(j) .. 0. 
call assga(pn2,pn,n,n) 
do 423 ls1, n 

pn2(1,k)-= 0. 
pn2(k,l) = 0. 
pn2(1,j)-= 0. 

423 pn2(j,l) = 0. 
call mulyax(tpm2,tpmm2, e,m,m) 
call mulyax(tpnl, at,tpm2,n,m) 
call mulyax( d, pn2,tpn1,n,n) 
call addzxy( xx, d, xx,n) 
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C **************************************************************************** 
c Check to see the dependence of equations 
C **************************************************************************** 

call assga(tpmn1,a,m,n) 

421 
422 

call setna(ntest,0,m,n) 
do 421 i=1, m 

if(abs(tpmn1(i,k)) .gt. 0.01) go to 422 
call swapar(tpmn1,i,1,m,n) 
call delete(k,1,m,tpmn1,tpn1,tpn2,m,n) 
ntest(1,k) = 1 

do 424 i=2, m 
424 if(abs(tpmn1(i,j)) .gt. 0.01) go to 425 

write(ic,624) 
624 format(' reconstruction is not valid') 

go to 449 
425 call swapar(tpmn1,i,2,m,n) 

call delete(j,2,m,tpmn1,tpn1,tpn2,m,n) 
ntest(2,j) = 1 

do 419 1=1,n 
if(l .eq. k) go to 419 
if(l .eq. j) go to 419 
do 418 i=3,m 

if(abs(tpmn1(i,l)) .gt. 0.01) go to 419 
418 continue 

write(ic,643) 1 
643 format(' measurement #',i1,' is also effectively deleted') 
419 continue 

C **************************************************************************** 
c Reconstruct the deleted measurements 
C **************************************************************************** 

449 
450 
460 

call recons(xx,tpmn1,ntest,tpn1,m,n) 
call writx(xx,n,'x',1,8,4,ic,'least square estimate of x:',27) 

continue 
continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Delete nd-th column from the subsequent rows of the original a matrix, ***** 
c starting from the (i0+1)-th row up to and including the i1-th row. ***** 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE DELETE(nd,i0,i1,a,temp1,temp2,m,n) 
dimension a(m,n),temp1(n),temp2(n) 
do 6 k=1, n 



5 temp1(k) = a(iO,k) 
alpha1 = temp1(nd) 
do 20 j=i0+1, i1 
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if(abs(a(j,nd)) .le. 1.e-8)go to 20 
do 10 k=1, n 

10 temp2(k) = a( j,k) 
alpha2 = temp2(nd) 
alpha = alpha1/alpha2 
call scaler(temp2,alpha,temp2,n) 
call subzxy(temp2,temp1,temp2,n) 
do 16 k=1, n 

15 a(j,k) = temp2(k) 
20 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Reconstruct the deleted measurements ************************************** 
c ntest shows where deletion was made ************************************** 
c ntest = 1 ... sequential deletion ************************************** 
c ntest = 2 ... batch deletion ************************************** 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE RECONS(x,a,ntest,temp,m,n) 
dimension x(n), a(m,n), ntest(m,n), temp(n) 
do 20 i=m, 1, -1 

do 10 j-=1, n 
if(ntest(i,j) .eq. 0) go to 10 
do 6 k=1, n 

5 temp(k) = a(i,k) 
x(j) = -xy(temp,x,n)/temp(j) 

10 continue 
20 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Complete the calculation of the unmeasured ones**************************** 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE UNMSRM(x,xx,msrmt,a,natest,temp1,n,ic) 
dimension a(4,10),msrmt(10),natest(4,10) 
dimension x(n),xx(10),temp1(10) 
call setx(xx,0.,10) 
do 10 j=1,n 

do 16 i-=1,10 
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15 if(msrmt(i) .eq. j)go to 16 
16 k=msrmt(i) 

xx(i) = x(k) 
10 continue 

call recons(xx,a,natest,temp1,4,10) 
call writx(xx,10, 'x',1,8,4,ic,'final estimate of coefficients:', 

*31) 
call scaler(xx,1./xx(5),xx,10) 
call writx(xx,10,'x',1,8,4,ic,'normalized final estimate of coeffi 

*cients: ' , 42) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Sequence the array x from the smallest to the largest ******************* 
c nj(i) ... array index of the i-th smallest element ******************* 
c y(i) the original array x in the sequenced order******************* 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SEQUEN(x,y,nj,n) 
dimension x(n),nj(n),y(n) 
do 10 i=1, n 
nj(i) = i 

10 y(i) = x(i) 
do 20 i=2, n 

do 30 j=i, 2, -1 
if(y(j) .ge. y(j-1)) go to 30 
temp y(j) 
y(j) = y(j-1) 
y(j-1) temp 
ntemp nj (j) 
nj (j) = nj (j-1) 
nj(j-1)= ntemp 

30 continue 
20 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
C **************************************************************************** 
c List of subroutines on vector and matrix manipulation 
C **************************************************************************** 
C **************************************************************************** 
C **************************************************************************** 
c READC(iout) 
c Read and print comments from the terminal. 
c READX(x,n,name,namea,ia,ib,iout,label,labela) 
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c Read a real array x(n) from the terminal. 
c READNX(nx,n,name,namea,ia,iout,label,labela) 
c Read an integer array nx(n) from the terminal. 
c COPYX(x,n,ia,ib,iin) 
c Read a real array x(n). 
c COPYNX(nx,n,ia,iin) 
c Read an integer array nx(n). 
c WRITX(x,n,name,namea,ia,ib,iout,label,labela) 
c Write a real array x(n). 
c WRITNX(nx,n,name,namea,ia,iout,label,labela) 
c Write an integer array nx(n). 
c READA(A,m,n,name,namea,ia,ib,iout,label,labela) 
c Read a real matrix A(m,n) from the terminal. 
c READNA(NA,m,n,name,namea,ia,iout,label,labela) 
c Read an integer matrix NA(m,n) from the terminal. 
c COPYA(A,m,n,ia,ib,iin) 
c Read a real matrix A(m,n). 
c COPYNA(NA,m,n,ia,iin) 
c Read an integer matrix NA(m,n). 
c READD(A,n,name,namea,ia,ib,iout,label,labela) 
c Read diagonal matrix A(n,n) from the terminal. 
c WRITA(A,m,n,name,namea,ia,ib,iout,label,labela) 
c Write matrix A(m,n). 
c WRITNA(NA,m,n,name,namea,ia,iout,label,labela) 
c Write matrix NA(m,n). 
C **************************************************************************** 
c SETX(x,alpha,n) Set array x(n) to alpha. 
c SETNX(nx,nalpha,n) Set integer array nx(n) to nalpha. 
c SETA(A,alpha,m,n) Set matrix A(m,n) to alpha. 
c SETNA(NA,nalpha,m,n) Set intege~ matrix NA(m,n) to nalpha. 
c ASSGX(y,x,n) Set array x(n) to array y(n). 
c ASSGNX(ny,nx,n) Set integer array nx(n) to integer array ny(n). 
c ASSGA(B,A,m,n) Set matrix A(m,n) to matrix B(m,n). 
c ASSGNA(NB,NA,m,n) Set integer matrix A(m,n) to integer matrix B(m,n). 
c ADDZXY(z,x,y,n) Vector addition: z(n) = x(n) + y(n). 
c ADDCAB(C,A,B,m,n) Matrix addition: C(m,n) = A(m,n) + B(m,n). 
c SUBZXY(z,x,y,n) Vector subtraction: z(n) = x(n) - y(n) . 

. c SUBCAB(C,A,B,m,n) Matrix subtraction: C(m,n) a A(m,n) - B(m,n). 
c SCALER(y,alpha,x,n) Multiply a scaler constant to the vector x(n). 
c SCALAA(B,alpha,A,m,n) Multiply a scaler constant to the matrix A(m,n). 
c FUNCTION XY(x,y,n) Evaluate the scalar xt(n)*y(n). 
c FUNCTION XAY(x,A,y,wkn,n) Evaluate the scalar xt(n)*A(n,n)*y(n). 
c MULAXY(A,x,y,m,n) Matrix multiplication: A(m,n) = x(m)*y(n). 
c MULYAX(y,A,x,m,n) Matrix multiplication: y(m) = A(m,n)*x(n). 
c MULYXA(y,x,A,m,n) Matrix multiplication: y(n) = x(m)*A(m,n). 
c MULCAB(C,A,B,m,l,n) Matrix multiplication: C(m,n) = A(m,l)*B(l,n). 
c Q2ABAT(C,A,B,At,wknm,m,n) Quardratic matrix multiplication: C(m,m)=A*B*At. 
c Q2ATBA(C,At,B,A,wkmn,m,n) Quardratic matrix multiplication: C(n,n)=At*B*A. 
c SYSFIL(A,n) Fill in the lower half of the symmetric matrix A. 
c TRANSP(At,A,m,n) Transpose of matrix A(m,n) => At(n,m). 
c SQRX2A(A,x,n,ibegin,na,nx)Change an array x(nx) to a matrix A(na,na). 
c SQRA2X(A,x,n,ibegin,na,nx)Change a mrtrix A(na,na) to an array x(nx). 
c INVERS(B,A,n) Inverse of a square matrix A(n,n). 
c INVERQ(Ai,A,n) Inverse of diagonal square matrix A(n,n). 
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c INVERT(Ai,A,U,B,Ui,Bi,n) 
c SWAPX(x,y,n) 
c SWAPA(A,B,m,n) 

Inverse of square matrix A(n,n). 
Switch x(n) and y(n). 
Switch.A(m,n) and B(m,n). 

c SWAPAR(A,i,j,m,n) 
c SWAPAC(A,i,j,m,n) 

Switch two rows i and j of matrix A(m,n). 
Switch two columns i and j of matrix A(m,n). 

C **************************************************************************** 
C **************************************************************************** 

C **************************************************************************** 
C **************************************************************************** 
c Read and print comments from the terminal. 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE READC(iout) 
character* 120 name 
write(6,10) 

10 format(' enter the comments') 
read(6,20)name 

20 format(a120) 
write(iout,30)name 

30 format(lx,a119,/) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Read a real array x(n) from the terminal. 
c ia,ib ... format specification 
c iout ..• output file specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE READX(x,n,name,namea,ia,ib,iout,label,labela) 
character* C•) name 
character*(•) label 
dimension x(n) 
id= int(float(n)/10.) + 1 
write(6,3)name 

3 format(' enter the array ',a<namea>) 
4 write(6,6)((name,i),i=1,n) 
6 format(lx,<n>(a<namea>,i<id>,<ia-id-namea>x)) 

read(6,10,err=4) (x(i),i=1,n) 
10 format(<n>f<ia>.<ib>) 
14 write(6,16) 
16 format('$if want echo, enter 1; otherwise, enter O ') 

read(6,20,err=14) iecho 
20 format(i1) 

if(iecho .eq. 0) return 
call writx(x,n,name,namea,ia,ib,iout,label,labela) 
return 
end 
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C **************************************************************************** 
C **************************************************************************** 
c Read an integer array nx(n) from the terminal. 
c ia ... format specification 
c iout ... output file specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE READNX(nx,n,name,namea,ia,iout,label,labela) 
character*(*) name 
character*(*) label 
dimension nx(n) 
id= int(float(n)/10.) + 1 
write(6,3)name 

3 format(' enter the array ',a<namea>) 
4 write(6,5)((name,i),i=1,n) 
5 format(1x,<n>(a<namea>,i<id>,<ia-id-namea>x)) 

read(5,10,err=4) (nx(i),i=1,n) 
10 format(<n>i<ia>) 
14 write(6,15) 
15 format('$if want echo, enter 1; otherwise, enter O ') 

read(6,20,err=14) iecho 
20 format(i1) 

if(iecho .eq. 0) return 
call writnx(nx,n,name,namea,ia,iout,label,labela) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Read a real array x(n). 
c 11n ... input file specification 
c ia,ib ... format specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE COPYX(x,n,ia,ib,iin) 
dimension x (n) 

4 read(iin,10,err=4) (x(i),i=1,n) 
10 format(<n>f<ia>.<ib>) 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Read an integer array nx(n). 
c iin ... input file specification 
c ia ... format specification 
C **************************************************************************** 
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C **************************************************************************** 
SUBROUTINE COPYNX(nx,n,ia,iin) 
dimension nx(n) 

4 read(iin,10,err=4) (nx(i),i=1,n) 
10 format(<n>i<ia>) 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Write a real array x(n). 
c ia,ib ... format specification 
c iout ... output file specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE WRITX(x,n,name,namea,ia,ib,iout,label,labela) 
character*(*) name 
character*(*) label 
dimension x(n) 
id= int(float(n)/10.) + 1 
write(iout,20)label 

20 format(1x,a<labela>) 
write(iout,30) ((name,i,x(i)),i=1,n) 

30 format(1x,a<namea>,'(',i<id>,') = ',f<ia>.<ib>) 
write(iout,40) 

40 format(1x) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Write an integer array nx(n). 
c ia ..• format specification 
c iout ... output file specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE WRITNX(nx,n,name,namea,ia,iout,label,labela) 
character*(*) name 
character*(•) label 
dimension nx(n) 
id• int(float(n)/10.) + 1 
write(iout,20)label 

20 format(1x,a<labela>) 
write(iout,30) ((name,i,nx(i)),i=1,n) 

30 format(1x,a<namea>,'(',i<id>,') = ',i<ia>) 
write(iout,40) 

40 format (1x) 
return 
end 
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C **************************************************************************** 
C **************************************************************************** 
c Read a real matrix A(m,n) from the terminal. 
c ia,ib ... format specification 
c iout ... output file specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE READA(A,m,n,name,namea,ia,ib,iout,label,labela) 
character*(*) name 
character*(*) label 
dimension a(m,n) 
id= int(float(n)/10.) + 1 
write(6,3)name 

3 format(' enter the matrix ',a<namea>) 
4 write(6,6)((name,i),i=1,n) 
5 format(1x,<n>(a<namea>,i<id>,<ia-id-namea>x)) 

read(5,10,err=4) ((a(i,j),j=1,n),i=1,m) 
10 format(<n>f<ia>.<ib>) 
14 write(6,15) 
15 format('$if want echo, enter 1; otherwise, enter O ') 

read(5,20,err=14) iecho 
20 format(i1) 

if(iecho .eq. 0) return . 
call writa(a,m,n,name,namea,ia,ib,iout,label,labela) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Read an integer matrix NA(m,n) from the terminal. 
c ia,ib ..• format specification 
c iout ... output file specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE READNA(NA,m,n,name,namea,ia,iout,label,labela) 
character*(•) name 
character*(•) label 
dimension na(m,n) 
id• int(float(n)/10.) + 1 
write(6,3)name 

3 format(' enter the matrix ',a<namea>) 
4 write(6,6)((name,i),i=1,n) 
6 format(1x,<n>(a<namea>,i<id>,<ia-id-namea>x)) 

read(6,10,err=4) ((na(i,j),j=1,n),i=1,m) 
10 format(<n>i<ia>) 
14 write(6,16) 
15 format('$if want echo, enter 1; otherwise, enter O ') 

read(6,20,err=14) iecho 
20 format(i1) 

if(iecho .eq. 0) return 
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call writna(na,m,n,name,namea,ia,iout,label,labela) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Read a real matrix A(m,n). 
c ia,ib ... format specification 
c iin ... input file specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE COPYA(A,m,n,ia,ib,iin) 
dimension a(m,n) 

4 read(iin,10,err=4) ((a(i,j),j=1,n),i=1,m) 
10 format(<n>f<ia>.<ib>) 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Read an integer matrix NA(m,n). 
c ia,ib ... format specification 
c iin ... input file specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE COPYNA(NA,m,n,ia,iin) 
dimension na(m,n) · 

4 read(iin,10,err=4) ((na(i,j),j=1,n),i=1,m) 
10 format(<n>i<ia>) 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Read a diagonal matrix A(n,n) from the terminal. 
c ia,ib ... format specification 
c iout ... output file specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE READD(A,n,name,namea,ia,ib,iout,label,labela) 
character*(•) name 
character*(•) label 
dimension a(n,n) 
id= int(float(n)/10.) + 1 
write(6,3)name 

3 format(' enter the matrix ',a<namea>) 
4 write(6,6)((name,i),i=1,n) 
6 format(1x,<n>(a<namea>,i<id>,<ia-id-namea>x)) 
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read(5,10,err=4) (a(i,i),i=l,n) 
10 format(<n>f<ia>.<ib>) 
14 write(6,15) 
15 format('$if want echo, enter 1; otherwise, enter O ') 

read(5,20,err=14) iecho 
20 format(il) 

if(iecho .eq. 0) return 
call writa(a,n,n,name,namea,ia,ib,iout,label,labela) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Write matrix A(m,n). 
c ia,ib ... format specification 
c iout ... output file specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE WRITA(A,m,n,name,namea,ia,ib,iout,label,labela) 
character*(*) name 
character*(*) label 
dimension a(m,n) 
write(iout,29) name,label 

29 format(lx,'matrix ',a<namea>,': ',a<labela>) 
write(iout,30) ((a(i,j),j=l,n),i=l,m) 

30 format((1x,<n>(f<ia>.<ib>,2x))) 
write(iout,40) 

40 format(lx) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Write matrix NA(m,n). 
c ia,ib ... format specification 
c iout ... output file specification 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE WRITNA(NA,m,n,name,namea,ia,iout,label,labela) 
character*(•) name 
character*(•) label 
dimension na(m,n) 
write(iout,29) name,label 

29 format(lx,'matrix ',a<namea>,': ',a<labela>) 
write(iout,30) ((na(i,j),j=l,n),i=l,m) 

30 format((1x,<n>(i<ia>,2x))) 
write(iout,40) 

40 format(lx) 
return 
end 
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C **************************************************************************** 
C **************************************************************************** 
c Set all the elements of array x(n) to alpha. 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SETX(x,alpha,n) 
dimension x(n) • 
do 10 i=1, n 

x(i) = alpha 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Set all the elements of integer array nx(n) to nalpha. 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SETNX(nx,nalpha,n) 
dimension nx(n) 
do 10 i=1, n 

nx(i) = nalpha 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Set all the elements of matrix A(m,n) to alpha. 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SETA(A,alpha,m,n) 
dimension a(m,n) 
do 10 i=1, m 
do 10 j=1, n 

a(i,j) • alpha 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Set all the elements of integer matrix NA(m,n) to nalpha. 
C **************************************************************************** 
C **************************************************************************** 



SUBROUTINE SETNA(NA,nalpha,m,n) 
dimension na(m,n) 
do 10 i=l, m 
do 10 j=l, n 

na(i,j) = nalpha 
10 continue 

return 
end 
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C **************************************************************************** 
C **************************************************************************** 
c Set all the elements of array x(n) to array y(n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE ASSGX(y,x,n) 
dimension y(n), x(n) 
do 10 i=l, n 

y(i) = x(i) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Set all the elements of integer array nx(n) to integer array ny(n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE ASSGNX(ny,nx,n) 
dimension ny(n), nx(n) 
do 10 i=l, n 

ny(i) .. nx(i) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Set all the elements of matrix A(m,n) to matrix B(m,n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE ASSGA(B,A,m,n) 
dimension b(m,n), a(m,n) 
do 10 i=l, m 
do 10 j=l, n 

b(i,j) a(i,j) 
10 continue 

return 
end 
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C **************************************************************************** 
C **************************************************************************** 
c Set all the elements of integer matrix A(m,n) to integer matrix B(m,n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE ASSGNA(NB,NA,m,n) 
dimension nb(m,n), na(m,n) 
do 10 i=1, m 
do 10 j=1, n 

nb(i,j) = na(i,j) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Vector addition: z(n) = x(n) + y(n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE ADDZXY(z,x,y,n) 
dimension z(n), x(n), y(n) 
do 10 j=1, n 

z(j) = x(j) + y(j) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Matrix addition: C(m,n) ""A(m,n) + B(m,n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE ADDCAB(C,A,B,m,n) 
dimension a(m,n), b(m,n), c(m,n) 
do 10 i=1, m 
do 10 j-=1, n 

c(i,j) = a(i,j) + b(i,j) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Vector subtraction: z(n) • x(n) - y(n). 
C **************************************************************************** 
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C **************************************************************************** 
SUBROUTINE SUBZXY(z,x,y,n) 
dimension z(n), x(n), y(n) 
do 10 j=1, n 

z(j) = x(j) - y(j) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Matrix subtraction: C(m,n) = A(m,n) - B(m,n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SUBCAB(C,A,B,m,n) 
dimension a(m,n), b(m,n), c(m,n) 
do 10 i=1, m 
do 10 j=1, n 

c(i,j) = a(i,j) - b(i,j) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Multiply a scaler constant to the vector x(n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SCALER(y,alpha,x,n) 
dimension y(n),x(n) 
do 10 j=1,n 

y(j) = alpha•x(j) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Multiply a scaler constant to the matrix A(m,n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SCALAA(B,alpha,A,m,n) 
dimension b(m,n), a(m,n) 
do 10 i=1,m 
do 10 j•1,n 

b(i,j) • alpha•a(i,j) 
10 continue 

return 
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end 

C **************************************************************************** 
C **************************************************************************** 
c Evaluate the scalar xt(n)*y(n). 
C **************************************************************************** 
C **************************************************************************** 

FUNCTION XY(x,y,n) 
dimension x(n), y(n) 
xy=O. 
do 10 i=l,n 

xy = xy + x(i)*y(i) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Evaluate the scalar xt(n)*A(n,n)*y(n). 
C **************************************************************************** 
C **************************************************************************** 

FUNCTION XAY(x,A,y,wkn,n) 
dimension x(n), a(n,n), y(n), wkn(n) 
call mulyxa(wkn,x,a,n,n) 
xay = xy(wkn,y,n) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Matrix multiplication: A(m,n) = x(m)•y(n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE MULAXY(A,x,y,m,n) 
dimension a(m,n), x(m), y(n) 
do 10 i=l, m 

do 10 j=l, n 
a(i,j) = x(i)*y(j) 

10 continue 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Matrix multiplication: y(m) = A(m,n)*x(n). 
c where y = vector (m) 



C 

C 
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A= matrix (m,n) 
x = vector (n) 

C *************************************************~************************** 
C **************************************************************************** 

SUBROUTINE MULYAX(y,A,x,m,n) 
dimension y(m), a(m,n), x(n) 
do 10 i=1, m 

y(i) ,.; 0. 
do 10 j=1, n 

y(i) = y(i) + a(i,j)*x(j) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Matrix multiplication: y(n) = x(m)*a(m,n). 
c where y = vector (n) 
c A= matrix (m,n) 
c x = vector (m) 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE MULYXA(y,x,A,m,n) 
dimension y(n), a(m,n), x(m) 
do 10 j=1, n 

y(j) = 0. 
do 10 i=1, m 

y(j) = y(j) + x(i)*a(i,j) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Matrix multiplication: C(m,n)-= A(m,l)*B(l,n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE MULCAB(C,A,B,m,l,n) 
dimension c(m,n), a(m,l), b(l,n) 
do 10 i-=1, m 

do 10 j=l, n 
c(i, j) -= 0. 
do 10 k=1, 1 

c(i,j) • c(i,j) + a(i,k)*b(k,j) 
10 continue 

return 
end 
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C **************************************************************************** 
C **************************************************************************** 
c Quardratic matrix multiplication: C(m,m)=A(m,n)*B(n,n)*At(n,m). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE Q2ABAT(C,A,B,At,wknm,m,n) 
dimension c(m,m), a(m,n), b(n,n), at(n,m), wknm(n,m) 
call mulcab(wknm,b,at,n,n,m) 
call mulcab(c,a,wknm,m,n,m) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Quardratic matrix multiplication. C(n,n)=At(n,m)*B(m,m)*A(m,n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE Q2ATBA(C,At,B,A,wkmn,m,n) 
dimension c(n,n), a(m,n), b(m,m), at(n,m), wkmn(m,n) 
call mulcab(wkmn,b,a,m,m,n) 
call mulcab(c,at,wkmn,n,m,n) 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Fill in the lower half of the symmetric matrix A. 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SYSFIL(A,n) 
dimension a(n,n) 
do 10 i=1, n 
do 10 j=i+1, n 

a(j ,i) -= a(i,j) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Transpose of matrix A(m,n) => At(n,m) 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE TRANSP(At,A,m,n) 
dimension at(n,m),a(m,n) 
do 10 i=1, m 
do 10 j=1, n 

at(j, i) = a(i,j) 



10 continue 
return 
end 
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C **************************************************************************** 
C **************************************************************************** 
c Change 
C 

C 

C 

C 

C 

A 

an array x(nx) to a 
I 1 2 4 7 .. I 
I 3 5 s I 
I s 9 I 
I 10 I 
I I 

matrix A(na,na). 

C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SQRX2A(A,x,n,ibegin,na,nx) 
dimension a(na,na),x(nx) 
i = ibegin - 1 
do 10 k=1, n 
do 10 j=1, k 

i = i+1 
a(j,k) = x(i) 

10 continue 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Change a mrtrix A(na,na) to an array x(nx). 
c I 1 2 4 7 I 
c I 3 6 8 I 
c A= I 6 9 I 
c I 10 I 
C I I 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SQRA2X(a,x,n,ibegin,na,nx) 
dimension a(na,na),x(nx) 
i • ibegin - 1 
do 10 k=1, n 
do 10 j-=1, k 

i-= 1+1 
x(i) -= a(j ,k) 

10 continue 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
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c Caculate the inverse of a square matrix A(n,n). 
C **************************************************************************** 
C ***************************************************************~************ 

SUBROUTINE INVERS(B,A,n) 
dimension b(n,n),a(n,n) 
det = a(1,1)*a(2,2) - a(1,2)*a(2,1) 
b(1,1) = a(2,2)/det 
b(1,2) =-a(l,2)/det 
b(2,1) =-a(2,1)/det 
b(2,2) = a(1,1)/det 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Determine the inverse of diagonal square matrix A(n,n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE INVERQ(Ai,A,n) 
dimension ai(n,n), a(n,n) 
call seta(ai,O.,n,n) 
do 10 i=1, n 

ai(i,i) = 1./a(i,i) 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Determine the inverse of square matrix A(n,n). 
c Method used: upper and lower triangular matrix decomposition 
c A= B*U Ai= Ui*Bi 
c iwkn=order vector ... keep track of the pivoting 
c nn=row dimension exactly as specified in the dimension statement in the 
c calling program. 
c iflag=1 ... singlular matrix 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE INVERT(Ai,A,U,B,Ui,Bi,iwkn,n,iflag) 
dimension ai(n,n), a(n,n), u(n,n), b(n,n), ui(n,n), bi(n,n) 
dimension iwkn(1) 

iflag=O 

c Initialize the order vector 
do 10 i=1,n 

10 iwkn(i)=i 
call seta(b,0.,n,n,nn) 
call seta(u,0.,n,n,nn) 
call seta(bi,O.,n,n,nn) 



call seta(ui,O.,n,n,nn) 

do 20 i=l, n 
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c Piviting ... Find the maximum of a(j,i) in the ith column 
xmax=abs(a(i,i)) 
imax=i 
do 21 j=i+l, n 

if(abs(a(j,i)) .gt. xmax)then 
xmax=abs(a{j ,i)) 
imax=j 

endif 
21 continue 

c Switch i<->imax for matrices A and Band vector iwkn 
if(imax .ne. i)then 

call swapar(a,i,imax,n,nn) 
call swapar(b,i,imax,n,nn) 
itemp=iwkn(i) 
iwkn(i)=iwkn(imax) 
iwkn(imax)=itemp 

endif 

c Upper-Lower triangular decomposition 
u(i,i)=l. 
b(i,i) = a(i,i) 
do 26 k=l, i-1 

b(i,i) = b(i,i) - b(i,k)*u(k,i) 
26 continue 
c Check for singularity 

if(b(i,i) .eq. O.)then 
iflag=l 
goto 100 

endif 

do 30 j=i+l, n 
b(j,i) = a(j,i) 
u(i,j) = a(i,j) 
do 36 k=1, i-1 

b(j,i) = b(j,i) - b(j,k)*U(k,i) 
u(i,j) = u(i,j) - b(i,k)*u(k,j) 

36 continue 
u(i,j) = u(i,j)/b(i,i) 

30 continue 
20 continue 

c Invert Lower triangular matrix 
do 40 i=1, n 

do 46 j•1, i 
if(i .eq. j)then 

bi(i,j)=L 
else 

bi(i,j)=O. 
endif 
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do 46 k=j, i-1 
46 bi(i,j) = bi(i,j) - b(i,k)*bi(k,j) 

bi(i,j) = bi(i,j)/b(i,i) 
45 continue 
40 continue 

c Invert Upper triangular matrix 
do 50 i=n, 1, -1 

do 55 j=i, n 
if(i .eq. j)then 

ui(i,j)=l. 
else 

ui(i,j)=O. 
endif 
do 66 k=i+l, j 

66 ui(i,j) = ui(i,j) - u(i,k)*ui(k,j) 
55 continue 
60 continue 

c Calculate Ai=Ui*Bi 
call mulcab(ai,ui,bi,n,n,n,nn,nn) 

c Switch colums of Ai according to iwkn to get the Ai corresponding to the 
c original A; also switch the rows of A. 
100 do 60 i=l, n 

do 66 j=i, n 
if(iwkn(j) .eq. i)goto 66 

65 continue 
66 if(imax .ne. i)then 

call swapac(ai,i,j,n,nn) 
call swapar(a,i,j,n,nn) 
itemp=iwkn(i) 
iwkn(i)=iwkn(j) 
iwkn(j)=itemp 

endif 
60 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Switch the contents of two arrays x(n) and y(n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SWAPX(x,y,n) 
dimension x(n),y(n) 
do 6 i-=1, n 

temp -= x(i) 
x(i) = y(i) 
y(i) = temp 

6 continue 
return 



-683 -

end 

C **************************************************************************** 
C **************************************************************************** 
c Switch the contents of two matrices A(m,n) and B(m,n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SWAPA(A,B,m,n) 
dimension a(m,n),b(m,n) 
do 10 i=1, m 

do 6 j=1, n 
temp a(i,j) 
a(i,j) = b(i,j) 
b(i,j) temp 

6 continue 
10 continue 

return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Switch the contents of two rows i and j of matrix A(m,n). 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE SWAPAR(A,i,j,m,n) 
dimension a(m,n) 
do 6 k=1, n 

temp = a(i,k) 
a(i,k) a(j ,k) 
a(j,k) = temp 

6 continue 
return 
end 

C **************************************************************************** 
C **************************************************************************** 
c Switch the contents of two columns i and j of matrix A. 
C **************************************************************************** 
C **************************************************************************** 

SUBROUTINE S1APAC(A,i,j,m,n) 
dimension a(m,n) 
do 6 k=1, m 

temp .. a(k,i) 
a(k,i) '"' a(k,j) 
a(k,j)-= temp 

6 continue 
return 
end 
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APPENDIX G 

COMPUTER APPLICATIONS 

TO FERMENTATION PROCESSES 

{The text of Appendix G consists of an article coauthored with G. N. Stephanopou

los which has appeared in CRC Critical Reviews in Biotechnology, 2, No.1, 1-103, 

1984.) 
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I. INTRODUCTION 

During the last decade we have witnessed the use of computers in fennentation processes 
expanding at an impressive rate. Although the modern control theory was already well 
developed by the 1960s, practical applications of the theory were not feasible until an 
adequate tool for its implementation, i.e., the computer, became available. So fast was the 
computer's spread into general use after its introduction that people were even prompted to 
discuss seriously the social effects resulting from its applications. 1 

There arc two main reasons for this widespread use of computers: affordability and 
necessity. Currently, the costs of computer logic and memory devices arc plunging at an 
astonishing rate of 25 to 40%/year. 2 At the same time, the computational speed is also 
rapidly increasing, and the reliability is proportionately boosted. The advent of affordable 
microcomputers makes direct digital control (DOC) economically more advantageous than 
analog control, even for a fermentation process of relatively modest complexity. The break
even point is currently as low as 30 loops and still decreasing. 3 Hercforth, by computer we 
mean digital computer. Although analog computers arc still widely used today, they are 
increasingly becoming obsolete. Because of the fast-paced evolution in computer technology, 
one should keep in mind that the terms describing the size of a computer are only relative: 
for example, a typical microcomputer today has the computing power comparable to that 
possessed by a minicomputer in the early 1970s and to that possessed by a mainframe 
computer in the early 1960s. Aside from the economic and technical advances in computer 
hardware, computers have increasingly become an indispensable instrument to aid those 
engaged in fermentation research in maximizing their productivity and in widening their 
scope of observation as a result of shorter time lag between the physical event and the 
detection. For the fermentation industry. economic pressure and competition make the use 
of computers still more critical, not only in data acquisition, analysis, and documentation, 
but also in process optimization and automatic control of a plant. 

Although the resistance to computer application coming from the older fermentation 
technologists has mostly vanished,~ to be sure, there are still some serious hinderances to 
a fully computerized and automated fermentation process. One of them is the lack of adequate 
on-line sensors in monitoring both the physical and biological conditions inside a reactor;~ 
another one is the lack of understanding of microbial metabolic pathways and cellular control 
mechanisms, which is needed in order to model the process and formulate a meaningful 
process control algorithm so that the final objective of process optimization can be achieved. 
Because direct measurements on many important physiological variables are either inadequate 
or simply unavailable, elementary and macroscopic balances must be utilized to the fullest 
extent for the on-line estimation of many more parameters. Furthermore, efficient on-line 

Re-printed from lhc CRC Crttical Rc,ic•, in Riot«hnology. Vol. 2. luuc I. pagn t 103. Ci 11JK4 by {'RC Prus. Inc. 
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noise filtering and error detection/rectification algorithms based on statistical considerations 
arc necessary to complement the inaccurate and unreliable sensors Iha! we arc currently 
forced to use. Much more sophisticated sensors arc needed for the direct monitoring of the 
more complex fermentation processes that utilize multiple substrates and employ mixed 
cultures. 

In addition to instrumentation, many different practical aspects of the problems in computer 
application~ must be carefully considered if one desires to apply computers to fermentation 
processes successfully. Hardware/software structure, interfacing, monitoring. inslrumcnla
tion, data acquisition, data analysis, state estimation, parameter identification. ma1hcma1ical 
modeling, control, optimization, and many other selected topics must be individually studied 
and each problem painstakingly solved. Of course, depending on the needs and the objcctiYcs 
of each individual in using a computer, different areas may be emphasized. For instance. 
primary concern will be placed on the speed if the objective is merely simple data handling; 
on the other hand, profit generation will be the ultimate goal if process control is used in a 
production plant. 

A review of real-time digital computer applications to fermentation processes is presented 
in this paper. This paper is not intended to be an exhaustive survey on the topic under 
consideration. Rather, it will concentrate on the state-of-the-art development with the em
phasis placed on real-time operations. Although some of the results of microbial studies can 
often be directly applied to mammalian and plant cell cultures, the cultivation of these higher 
organisms may require quite different approaches and techniques and will 1101 be the center 
of attention of this paper_ Biological treatment of wastewater will not be considered as 
fermentation per se, and its discussion will be restricted to those few studies that potentially 
have direct applications to fermentation processes. 

At first, a very brief historical review is presented to carry us from the beginning of 
computer applications in fem1entation to the present. The subjects covered in the previously 
published general review papers by various writers from different backgrounds arc sum
marized to bring the readers up to date on the development in the area of computer applications 
to fermentation processes. It is also hoped that such a summary will widen the perspective 
and help reduce the degree of bias that is inherently unavoidable in any papers of this nature. 
Among the first ones to be attacked by the earlier investigators are some of the practical 
problems in computer hardware/software configurations and interfacing and they will be 
discussed next. The examination of the state of instrumentation and the principles of operation 
of some of the typical sensors in use today will follow with a special emphasis on the on
line capabilities. The potential ways of utilizing various measurements to infer the conditions 
inside a fermentor are pointed out. Then we will discuss how the shortage in on-line direct 
measurement sensors can be partially alleviated by the use of indirect measurements, which 
are the result of combining those directly measurable variables, sometimes quite ingeniously. 
Also reviewed are the recent developments in bioreactor state/parameter estimation with the 
utilization of various measurements. filtering techniques, macroscopic material-energy bal
ances, statistical theories, and the principles of basic biochemistry. The use of these estimates 
toward control or modeling purposes is discussed. Finally, the advances in the application 
of modem computer control and optimization techniques to fermentation processes are 
presented. 

An attempt is made not to dwell extensively on the points covered by previous reviews. 
Some of the articles referred to in these reviews may be mentioned when it is deemed 
necessary to maintain the overall cohesiveness or to stress its contribution. Undoubtedly. 
many people who are actively involved in this area are barred from leaking industrial secrets, 
and their contribution, although undeniable, may never be recorded. 
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A. Historical Overview 
The chemical process industry began utilizing direct digital. computer control in the late 

1950s. Since then the use of computer control in petroleum and petrochemical industries 
has been widespread.s On the other hand. the idea of applying computers to control a 
fermentation process was proposed in the early 1960s.'' and the fermentation industry has 
lagged behind the chemical industry in the application of computers by approximately 10 
ycars. 7 

Murao and Yamashita were among the first to discuss the possibility of using computers 
for the detection of abnormal fcrmcntatiom;_x At about the same time, the use of computers 
specifically for the purpose of modeling a fermentation process also emerged. 4 Subsequently. 
in 1969. Yamashita ct al. reported that sequential control functions such as start-up, steri
lization. and shutdowns were accomplished in pilot-scale and commercial batch glutamic 
acid fermentors by Ajinomoto Co. 10 In addition, they reported that two different approaches 
to optimization were tried. The first method relied on the detection of changes in the value 
of a principal parameter of a mathematical model. Although. in effect. an adaptive control 
scheme was considered. a rigorous treatment was not feasible at the time because of the 
problems encountered both in on-line identification of process characteristics and in the 
fommlation of an algorithm, owing to the difficulties in deriving mathematical models. 
Nevertheless. the need and usefulness of an adaptive control scheme in performing self
optimization were emphasized. The second method was heuristic; a standard pattern was 
chosen based on the accumulated past experiences and each run was duplicated by following 
the standard pattern. In this first application of a computer to a fermentation process. 
temperature. pressure. pH. air flow rate. and foam were controlled. and effluent gas com
position. glutamic acid concentrntion. dissolved oxygen. and microbe density were monitored. 

Grayson reported in 1969 that direct digital control was conducted on 36 batch penicillin 
fermentation vessels with 114 control loops in Dista Products Ltd. 11 The controlled variables 
were similar to those described by Yamashita et al. 

When the First International Conference on Computer Application in Fermentation Tech
nology was held in Dijon, France. in 1973. 11 there had only been two production plants and 
one pilot-scale plant that were described in the published reports. Moreover. not all appli
cations were completely successful. Within the next 5 years. we had witnessed about a 
dozen more institutions newly engaged. in one way or another and to different degrees of 
sophistication. in the application of computers to fermentation processes. P These institutions 
include. among others. the University of Pennsylvania. E. R. Squibb. Lord Rank Research 
Center. Station de Gene Microbiologique. Karolinska Institute, Gesselschaft Fur Biotech
nologische Forschung mbH. Fermentation Design. and Massachusetts Institute of Technol
ogy. u-1_~ 

The Second International Conference on Computer Process Control in Fermentation was 
held in Philadelphia. Penn .• in 1978. 1

" and the third one was held soon after in Manchester, 
England in 1981. 17 

Due to corporate secrecy policies. many companies do not report their activities in technical 
journals. Consequently. a significant fraction of the published papers on this subject are 
contributed by researchers in academic laboratories. Thus. the relatively moderate level of 
reporting from industrial settings is not at all indicative of the fermentation industry's attitude 
toward the use of computers in production or pilot plants. Today, computers are accepted 
as a component in control systems throughout the fermentation industry. ,x and those few 
who have not yet adopted computers undoubtedly are seriously considering the possibilities 
of incorporating one. 

B. General Reviews to Date 
There have been a few excellent general review papers on the subject of computer control 

of fcnnentation processes at different stages of development. The proliferations in the number 
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of computer applications in the recent years make it difficult for anyone to keep abreast of 
the most recent advances. Even during the writing of this paper, many new articles are 
appearing in various journals. Thus, frequent. updated reviewing is useful in a fast evolving 
field such as this. A brief discussion of these reviews will provide a broader perspective on 
the progress of this subject and enable one to see the evolution at each stage of the development. 

Nyiri was among the first to write a review article. 1" He examined the contributions prior 
. to 1971. The publications he reviewed were mostly concerned with the off-line use of 

computers such as experimental data analysis, simulation, optimal trajectory calculation, 
and parameter estimation for kinetic model construction. Only three papers cited in his 
review dealt with the use of computers for the purpose of process control. 111

-
11

-
20 A substantial 

part of the article was devoted to various miscellaneous, but quite practical and essential 
considerations such as development of models, the choice of computers and programming 
languages, methodology. and algorithms for data logging and analysis. He also emphasized 
the importance of formulating accurate mathematical fermentation models for use in computer 
control. 

In 1977, another outstanding review by Dobry and Jost examined the developments 
published between 1972 and 1977 from an industrial point of viewY They documented 11 
existing fermentation systems interfaced to computers specifically for the purpose of moni
toring and controlling a fermentor. Of the 11 systems being described, only two originated 
in industrial companies; the remaining were based in academic and institutional laboratories. 
The cost of computers was still a major factor in industry's decision to use computers; this 
was reflected by the fact that both reports from the industry dwelled on the cost justification 
of introducing computers to their respective fermentation systems. The academic and insti
tutional systems were built with two different kinds of objectives: to study the problems 
involved in applying computers and to extend the monitoring and control capabilities of the 
existing laboratory. Employees of companies which supply fermentation or control equip
ment. notably Chemap. Fermentation Design, and Taylor Instrument. tended to be more 
idealistic in their approaches to the problem. Many articles from the vendors were aimed 
at expanding the market for their systems and concentrated on the description of the systems 
they had designed for various customers. Many articles concerning model development in 
the areas of biomass production (yeast) and product production (ethanol and antibiotics) 
were also found. In addition, another set of papers discussed the application of digital 
computer systems to control fermentors on a real-time basis; however, most of them were 
of a highly speculative nature, and only very few dealt with the actual on-line implementation 
of these ideas. Finally. Dobry and Jost elaborated on the more practical industrial concerns 
such as the choice in the design of a computer-coupled fermentation system (types of control, 
data storage, computer, etc.) and the system requirements (documentation. data logging, 
computer languages for programming and the process control. etc.). 

In the following year, Weigand published a complementary review ,21 emphasizing the 
developments in computer application to fermentation from an academic/research viewpoint. 
The system at Purdue was extensively documented. The paper also superbly reviewed the 
studies on modeling. control, and parameter estimation. and optimization published from 
1973 through 1978 that was missed by Dobry and Jost. 13 Because of the difference in 
interests resulting from the difference in his background. Weigand's emphasis was highly 
contrasted with Dobry and Josi's. There exist two main objectives in employing computers: 
whereas the final goal in an industrial installation may be the increased rate of product 
synthesis, the main goal in a research institution or a pilot plant may be merely an increased 
output of information (data). 

In 1979, Armiger and Humphrey evaluated the use of the indirect measurement concept 
published in literature. 7 The merit of using component balancing techniques for the on-line 
estimation of biomass concentration and growth rates and the possibilities of using these 
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estimated values directly for control purposes were discussed. However, at the time. few 
studies were found to venture beyond the stages of on-line data acquisition and analysis. 
System hardware and software configurations were briefly discussed. There is a categorized 
list of references at the end of the paper. These references are in the areas of general papers, 
hardware and software system design. data analysis and modeling. and process control and 
optimization. 

In the same year. Zabriskie gave an insightful review which concentrated on the appli
cations of computers principally for control purposes. 22 Other areas were also discussed from 
the control perspective. Three representative studies in continuous fermentations and five 
studies in batch fermentations were each carefully scrutinized. The advantages and disad
vantages of the two approaches used in tackling control problems in continuous fermentation, 
namely, black-box and model inference methods, were argued in the face of practical 
limitations of response time and sensor availability. He observed that there existed two 
approaches in batch fermentations: the use of empirical procedures and rigorous optimal 
control theory. He further proposed an optimal multivariable control strategy for a fed-batch 
fermentor. 

In 1982 Rolf and Lim reviewed the existing hardware and software technology available 
for the implementation of computer control. 2~ General modem control schemes that combined 
the advanced steady-state optimization algorithm for continuous fermentations and dynamic 
optimization algorithms for batch and fed-batch fermentations were commented on. This 
paper's inclusion of on-line estimation/identification and filtering aimed at feedback control 
was especially notable and revealed the recent surge of interest toward on-line feedback 
control with the aid of sophisticated instrumentation. 

Finally, Hatch provided a review of the latest advances in computer applications in the 
analysis of fcrmentor conditions and in the classical type of process control of fermentors. 2◄ 
Bult also broadly surveyed the latest developments in computer-coupled instrumentation and 
the most recent studies in fermentation optimization. 25 

This brings us up to the present. Thus, we see that there are three main evolving stages 
in the use of computers - data acquisition, analysis, and control - and that each stage is 
progressively more difficult to solve. Ryu and Humphrey26 divided the progress into five 
levels. The problems in the first stage need to be solved before a purposeful attempt can be 
made to resolve the questions in the second stage. Similarly, before the control function of 
a computer can be utilized, we must be able to perform an adequate degree of data logging 
and to analyze the data collected on the fermentation system. In addition to data acquisition, 
analysis, and control functions. computers are also quite useful in sequencing a predefined 
series of operations correctly. 

When viewed as a whole. each stage is intimately connected to other stages. A successful 
execution of the functions of one stage depends on the successful implementation of functions 
not only of the same stage but also of other stages. The step of data acquisition includes 
such topics as instrumentation and computer interface. Provisions for operator access are 
also required if measurements are taken on an off-line basis. The step of data analysis 
involves the application of mathematical equations to the raw data. For example, data 
collected on the air flow rates and the partial pressures of various components, possibly 
with the help of temperature and total pressure measurements, are reduced to a set of more 
meaningful variables such as oxygen consumption rate or carbon dioxide evolution rates. 
Calculation for a number of indirect measurement variables is also possible through the use 
of some physical laws such as the concept of material balance. The data analysis step also 
includes error detections and the sending of alarms. Likewise, documentation and data 
storage/retrieval for the purposes of other calculations, graphic outputs, or for use in process 
controF7 fall within this category. The last step of control may encompass mathematical 
modeling. as well. Built into such a model is a fundamental understanding of the effect a 
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change in the controlled variahles has on the state of the fcrmentor. may it be physical. 
chemical. or biological. Various suhjccts pe11aining to the optimization of operating con
ditions and the implementation of optimal control algorithms belong to this last category as 
well. 

II. COMPUTERS 

Although the block diagram shown in Figure I is for a typical microcomputer system. 
other more powerful computers also operate with similar principles. Whether a microcom
puter is dedicated to the low level control within a massive computer network or it represents 
the sole computing means for a small research project. the importance of a microcomputer's 
role in applying computer technology to fermentation cannot be denied. A microcomputer 
is composed of a central processing unit (CPU) and primary internal memories. The internal 
control within the CPU keeps track of the registers and regulates the arithmetic and logic 
unit. The quartz oscillator synchronizes the entire operation within a computer. with the 
speed of computation determined by its frequency and word size (i.e .. the number of bits 
processed per cycle). The bus control supervises the flow of information between different 
components through a set of parallel conductors (bus). Necessary data and instruction codes 
arc stored in memory devices. which may be internal or external to the computer. Some 
limited numbers of preprogrammed instructions arc printed permanently on read-only mem
ory (ROM) chips. Since the random memories (RAM) arc relatively costly. their sizes arc 
often severely limited; therefore, RAM can only be trcared as temporary storage spaces for 
instructions and data during program execution. Rarely can all the necessary programs be 
loaded on the primary memories simultaneously, and a slightly larger program can easily 
fill the primary memory spaces of a small microcomputer to capacity and render it inoperative. 
Massive permanent storage of programs and data arc provided by external memory devices 
such as disks and tapes. Various supporting input and output peripherals, process instruments. 
process controllers, and other computers all can be connected to the computer through some 
suitable interfacing devices. 

A. Hardware 
Various researchers have extensively described the computer hardware and software sys

tems in their installations. 2M-
4

J They discussed the mechanics of connecting computers to 
fcrmcntors. most of which do not differ significantly from that encountered in chemical 
industries. Various degrees of automation and a wide range of computer selections arc 
currently available. Recently. a market survey was conducted by Fox44 to find the availability 
and cost of computer systems suitable for fermentation control. He listed five fcmtcntation 
control requirements with varying degrees of sophistication ranging from simple laboratory 
data logging to controlling 20 production fcm1cntors. He asked 50 manufacturers and sup
pliers to provide him with information and price quotations on each of the suggested systems, 
and found various proposals at each and every level. Thus. there is no problem in computer 
availability. There were even reports on reasonably low cost data acquisition and analysis 
systems using programmable desk-top computers. -"'A~·

47 However. regardless of the level of 
sophistication, a well-planned and efficient hardware and software configuration is needed 
to tic all the functions of data handling and control into one single highly effective and 
coherent automated fermentation system. 

There arc basically two kinds of computer-coupled systems in existence today. The first 
kind is more pilot-plant or production oriented. in which computers arc connected to many 
different fermentors, and software is developed for the concurrent sequential scheduling of 
plant operations for all the fcrmcntors. each at different stages of operation. Many fcrmentors 
are operated simultaneously in industry to produce different products. Even when only one 
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product is produced, a multifermentor system is favored because of the possibility of strain 
selection. The use of multiple fermenlors 10 study the effect of a large number of variables 
al the same time is also rnther routine in the field of pharmaceuticals. ~K The second kind is 
more research oriented; usually. only one fermentor is controlled in which all of the data 
acquisition, data analysis, control, and optimization functions may be carried out 
simultaneously. 

However, regardless of the type of systems, one must structure the hardware and software 
configurations so that the system can be operated efficiently as an integrated unit. Just as a 
well-structured computer program can be easily corrected when an error is detected and can 
be smoothly modified as the need arises, a properly designed hardware and software con
figuration will more than compensate for the initial small effort in provident planning. 
Flexibility to accommodate both the anticipated and the unforeseen future expansion and 
modification is an important factor to consider because new developments in products and 
fermentation technology will certainly force changes in the future. 

I. Sy.'ilem Ccmfigurntio11 
Recently. a hierarchical computer system, as shown in Figure 2, is becoming quite popular, 

especially at large installations. 4
k-~~ The advances of such a hierarchical system is listed by 

Blachere and Pcringcr'~ and Hennigan et aU4 This is analogous to the use of subroutines 
in computer programming in the sense that one can change hardware and/or software in one 
computer without affecting the assigned routines in other computers; such a structure also 
facilitates simplified system changes. A ba11cry of smaller computers, as opposed to one 
large computer, has the advantage that only one ferrnentor is affected in the event of computer 
failure. A hierarchical system is divided into different functional levels,~~ and progressively 
smaller computers arc usually used as the level gets lower.~ The first-level computer gen
erally carries high priority on-line measurement and simple proportional-integral-derivative 
(PIO) control tasks. The second level is frequently reserved for on-line data analysis and 
sophisticated control algorithms aimed toward optimization. Finally. modeling is carried out 
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at the third level on an off-line basis. Optimization based on the models developed at the 
third level arc also conducted to generate the optimal operating procedures. In general. a 
higher level holds a broader perspective over the whole fcm1cntation process and requires 
a deeper knowledge of the microbial behavior.~ Although an on-line updating of model 
parameters and an automatic adjustment in the optimal control strategy arc desirable. such 
a scheme has not yet been implemented. • 

Many variations to the aforementioned scheme arc possible. Lunde! divided the whole 
plant organization into four levels of functions and distributed computers to each level 
according to functions."'' The computer may be dedicated to only one task such as PID 
control. The usual PID control chore may be substituted by conventional analog controllers 
with the set point supplied by a computer. in which case the direct digital control (DOC) 
degenerates into digital set point control (DSC). The advantages and disadvantages of DDC 
and DSC have been pointed out by various investigatorsYAK.~.~7 Alternatively. all the tasks 
of each level may be carried out in one computer in smaller installations: however. some 
software provisions for separation of high priority foreground and low priority background 
calculations arc needed•" if data handling. modeling. control. and optimization arc all to be 
implemented simultaneously. To the authors· knowledge. no such feat has yet been accom
plished. whether the system is large or small. For a less ambitious project. the stand-alone 
configuration will suffice. In fact. one-computer systems arc very popular. and they arc 
often the only means for small. economically deprived research groups to carry out fer
mentation studies in the state-of-the-an manner.~• Since metabolic responses and delays arc 
generally much slower than the responses in a typical chemical industry. computation speed 
is not as problematic. as long as the high priority tasks such as monitoring and control arc 
not severely backed up. Otherwise. the scanning frequency must be decreased accordingly. 
While 5- lo 15-min scanning intervals may be satisfactory for parameters with slow changes 
and highly accurate measurements. I -sec intervals arc customarily needed for those param
eters that have high noise levels and require averaging lo achieve the necessary accuracy. w 

In such cases. the computing power of a small microcomputer may be inadequate if many 
additional functions are lo be carried out. 

Ncvcnhclcss. the reduction in hardware cost and the advances in computer technology 
make it increasingly more feasible to acquire one or more computers for each functional 
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level. depending upon the needs of each individual installation. Design requirements are 
highly dependent on each specific application - those for an antibiotic production arc 
certainly different from those required for single cell protein (SCP) production, and those 
for· academic research are undoubtedly different from those required in a commercial en
vironment.''0 Some of these requirements arc discussed by HampeP" and Hennigan ct al. / 4 

but reliability and flexibility arc the two most fundamental requirements in all cases. ~7 In 
conclusion, the readers should be cautioned that "Distributed systems by whatever definition 
arc nothing if not versatile. But anything which promises something for everyone is suspect."-' 

2. /merface 
A typical computer-coupled monitoring/control configuration for a highly instrumented 

fermentor is depicted in Figure 3. The computer is totally powerless unless it is properly 
connec"ted to communicate with a variety of peripheral devices. The connection between the 
real physical world and the abstraction of a computer is through interfacing, and an adequate 
method must be employed to make the computer work as the user desires. There are 
commonly five kinds of interfacing: sensors to computer for data logging. computer to 
computer for communication between computers. computer to actuator for the actual control 
phase. operator to computer for on-line interaction, and computer to operator for documen
tation. Since the interfacing techniques are not peculiar to the fermentation field and since 
they can be found from a variety of sources;x-~i .5-1."'-"2 they will not be discussed in depth 
in this paper. 

The readers should be cautioned that a universally accepted industry standard for computers 
and their accessories does not exist at the present time. This is because computers, especially 
the affordable microcomputers commonly used in the fermentation field. arc still undergoing 
drastic evolutionary changes and many new products are constantly emerging. We cannot 
simply plug one component into another and expect them to function in the same way as 
plugging household appliances into electrical outlets. Thus, to minimize the difficulties 
arising from interfacing. we should plan carefully and make sure that the modules arc 
compatible before the purchase. The signals from most of the conventional instrumentation 
devices often need to be amplified/reduced and conditioned before they can be accepted by 
the existing interfacing units. Similar procedures also apply to the signals sent out to the 
conventional pneumatically or electronically activated control devices, which usually consist 
of valves and pumps in the fermentation field. 

Analog to digital (AID) and digital to analog (DIA) converters are routinely used in 
interfacing in the fermentation field as in any other field. Interface can be either serial or 
parallel; the choices are largely dictated by the physical nature of the devices to be connected. 
The choices between analog scanning or digital multiplexing are also available; while the 
former is more economical when the number of channels is large (>25). the latter offers 
the opportunity of simultaneous logging and channel independence.7 Furthermore, instrument 
scanning can be randomly accessed or prefixed. 7-~ Randomly accessed scanning is useful 
when the dynamic time constants for various measurements differ significantly. In such 
cases. fast-changing and less reliable measurements are accessed more frequently than the 
stable ones;~• however. a price must be paid for this flexibility in terms of a higher hardware 
cost. 

B. Software 
The general software structure in a typical computer system, shown in Figure 4, is centered 

on the operating system which performs most of the drudgery involved in a computer. 
Among the most elementary but also the most tedious functions carried out by the operating 
system arc the inventory of memory space, management of files, control of program exe
cution. and coordination of all the operations. There arc basically three types of programs: 
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u1iti1y. language. and application. Utility programs start up the computer and create new 
files; language programs allow the use of high level languages: and. finally. application 
programs accomplish useful tasks. The firs! two types of programs arc widely available from 
various software vendors to run fermentation application programs. Although such topics 
as the choice of computer languages have frequently concerned fermentation investigators 
in the past. they arc not peculiar 10 fcrmenlalion applit:a1ions and will not be discussed here. 
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Among software, application programs arc of the most interest to us. Of course, computers 
do no more and no less than what they arc instructed to do. Thus, many application programs 
are necessary to carry out a variety of tasks needed to support a sophisticated fermentation 
control scheme. An organized structural arrangement of the files is essential at every level 
of computer software to insure satisfactory performance in a computer-coupled fermentation 
system. 31

•
63

•
64 Programs should be divided into manageable, small modules so that each 

procedure can be developed separately. As the need arises, each procedure should also 
possess the flexibility to be altered smoothly by any qualified pers<,m, especially those who 
did not write the original program. When the goal of program flexibility is achieved, a large 
part of the reliability problem is automatically solved. In addition, priority levels should be 
correctly assigned to each program to insure efficient allocation of computer resources. 

A swarming number of articles have indulged in the detailed description of the function 
and algorithm of various application programs. 2<1- 3 1.H • .\-l.:lh.• 1·• 2 ·!'<'.'.Sh.~M In the data logging 
phase, programs are required for scanning measurements sequentially or in any desired 
pattern, filtering out noises, converting electrical signals to physical units. and storing or 
retrieving data in a condensed form. Other application programs may also be needed to 
supply documentation in the desired format, whether alphanumeric or graphical. Although 
an on-line monitoring of all the variables of interest is ideal. due to many economical and 
technical reasons this cannot always be achieved. In such cases. the programs should be 
designed to remind operators when to take a sample and to allow them to enter the data 
from off-line measurements. which must be merged with the ones obtained on-line. 

In the data analysis phase, programs arc needed to calculate various derived variables. 
including indirect measurement quantities, from the conditioned signals obtained in the 
previous phase. This includes conversion of units. scaling, comparison with a calibration 
curve, and perhaps the use of correction factors. A set of simple algebraic equations or a 
collection of routines for integrating complex differential equations may be called upon to 
assign numerical values to a set of variables. Because of the lack of redundancy at the level 
of sensors and actuators to check for and detect the source of inoperative valves and in
struments, programs may be built in to perform self-analysis and detect errors. For this 
purpose, a periodical fault analysis can be employed to detect the failure of valvcs.M Ad-
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ditional independent measurements can he introduced to detect the instrument failure early 
enough to permit necessary actions to he taken so as to insure reliable process control.'"' 

In the process control phase. software programs arc written lo compare the measured 
values to the set point and lo generate controller outputs. In a sophisticated control scheme. 
the optimal operating condition and the dynamic path may be calculated to generate set 
points from within. Programs arc needed to sequence a wide variety of plant operations. 
including the initiation and termination of fem1entation processes. Other functions that need 
to be considered arc the automatic calibration of instruments, sounding of alanns, handling 
of emergency situations such as power failure and fatal contamination, communication in
between programs and computers, and interaction with operators to reset process variables 
and to redefine control objectives. 

The sequence of software development generally follows the logging-analysis-control 
order. The task of developing a complete set of software is both time consuming and costly. 
While many functions are commonly required by all applications, many others are not 
absolutely necessary, and the requirements for each individual application differ significantly. 
In a production plant, for example, the economic reward is contributed mainly from the 
sequencing and scheduling of a series of operations.'~' However, for research scientists, 
whose purpose is to study the biological response in a well-defined environment in the hope 
that a cause-effect relationship can be identified and the observed phenomenon explained. 
the use of computer is for mathematical modeling and data handling. Finally, it is important 
not to copsider software and hardware exclusive of each other. 

Ill. INSTRUMENTATION 

Sensors in the fermentation field are generally less reliable than their counterparts in the 
chemical industry. As always. there continues to be an urgent need for more and better 
instrumentation in a fem1entor. Instrumentation is one area where the needs of fermentation 
technology are far greater than the needs of the conventional chemical industry. Another 
area that differs most significantly from its counterpart in the chemical industry, the modeling 
of microbial behavior in a fcrrnentor. will be discussed in a later section. Unlike the relatively 
well-defined conditions encountered in most chemical industries, gas, liquid, and solid phases 
are all involved in a typical microbial environment, and this physical heterogeneity alone 
can already make sampling and measurement very difficult.~ Moreover, the dynamics of 
living organisms has a complexity unparalleled in the chemical industry, where the number 
of reactions involved are relatively few and the nature of reactions are rather uncomplicated 
and better understood. 

Because of this. the sensor requirements for the study of microorganisms are much more 
demanding. Some practical considerations in the development of a sensor include the sensor's 
potential for continuous or fully automated measurements and the capability of yielding 
appropriate electrical signals for easy interfacing to a computer. Rapid response is a desirable 
characteristic in a sensor from the point of view of both process modeling and control 
implementation. A sensor's sterilization capability is critical in achieving an aseptic fcrrnentor 
operation, which is especially important for a continuous bioreactor. Finally, cost is always 
the most crucial factor in the final decision of employing or rejecting a particular sensor 
because the additional benefit that can be gained from the use of the extra piece of equipment 
should surpass the expenditure involved. 

Instruments that either arc capable of continuous on-line measurement or possess the 
possibility of computer-coupled automatic sampling arc the main focus of the following 
discussion. Although certain methods that require batchwise manual analysis may sometimes 
be the only available alternatives, they arc not well suited for computer interfacing. A fully 
automated scheme for the monitoring of a fem1entor cannot be over emphasized if the true 
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potential of the use of computers in fcrmcntalion lcchnnlogy is to be realized. Continuous 
measurements have many advantages O\'er infrequent. in1ermi1ten1 samplings. Although. 
understandably. there may be acute storage problems if the large volume of data generated 
by the continuous measurement is not properly reduced prior lo the storage for later analytical 
or modeling purposes. a continuous on-line measurement is more likely to satisfy more of 
the sensor requirements listed previously. 

First. there is the advantage in speed. Until recently. the state variables of a fcrmcntor 
were estimated in batchwisc analyses with sampling time no shorter than one half hour. 
These analyses were usually done manually and took an unreasonable amount of time to 
complete. For example. the determination of biomass concentration alone could easily take 
anywhere from one half hour for simple cell counts or spectrophotometric measurement. up 
to I day for dry weight measurement. A continuous measurement not only is convenient 
and requires less man-hours. it also enables a speedy data collection and analysis. This speed 
is needed if a problem is to be detected early enough to take whatever control actions 
necessary in order to bring the system back to the desired state. Thus. unless on-line 
measurements are used, there will be an unacceptable amount of delay and manpower 
involved, and the control will be rendered worthless. 

Also, with on-line measurements. we can observe events that arc occurring in a time 
interval shorter than the previous batchwise sampling interval. A general analogy that may 
demonstrate the usefulness of this fact is the use of a microscope/ which allows us to see 
smaller objects than previously possible. This capability is undeniably an important asset 
under many circumstances in which the interested events last for only a short period of time. 
For example, the formation of a secondary metabolite during a certain phase of microbial 
growth cannot be satisfactorily monitored when we use the batchwisc sampling technique. 

Furthermore, the repeated outside access to the fcrmentor during the batchwise sampling 
greatly increases the chance of contamination. The problem of contamination is especially 
serious in a continuous mode of operation. and it is frequently cited as the reason for the 
termination of the entire operation. When a continuous operation is carried out in a small
scale laboratory fermentor, the batch sampling can easily disrupt the whole system due to 
high sensitivities of the microorganisms. The data collected this way and the subsequent 
analysis and modeling of the system. thus. may be quite inaccurate. 

Despite the intensive effort spent in developing new biological sensors in recent years. 
the state of available sensors is not much different from. say. a decade ago. Currently. not 
many new sensors are reliable enough to be commercially available in a form that can be 
interfaced directly with a fcrmentor. The sensor deficiency is notably serious in the meas
urement of broth composition such as nitrogen source. substrate. precursor. intermediate 
products, and final product concentrations. Sensors involving enzymes or antibodies arc 
capable of these specific measurements. As a rcsull of the substantial effort expended on 
the development of these sensors in recent years, they hold great future promises. The 
commercialization of glucose analyzers by various instrument companies in recent years is 
especially encouraging. 24 Because of the possibility of faster response time and the capability 
of measuring a wide range of components in the gas stream and fermentation broth. there 
is a noticeable trend in employing mass spectroscopy in fenncntation analysis. Highly reliable 
sensors for the biomass concentration measurement arc still absent. In addition. there is a 
serious lack of on-line sensors to measure intracellular macromolecular composition such 
as DNA, RNA, and protein (including enzyme) levels in microorganisms. Likewise, the 
elemental biomass composition (i.e., percentages of C. H. 0, N, etc.) cannot yet be done 
on an on-line basis. 

Unfortunately, because each microbial process is inherently different and so arc the 
objectives of each individual who uses such a process. the vitally important question of what 
to measure cannot be answered universally here. Since knowing what to measure presumes 
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a certain amount of knowledge of the process. it is already a quite significant step toward 
the final understanding of the process. Whether one's purpose is to formulate a process 
control scheme or merely to understand the microbial system. he must choose a sci of 
measurements which. when used alone or in combination. directly or indirectly. will yield 
an adequate picture of the process. 

Fermentation sensors arc loosely divided into four categories in the following discussion: 
physical. chemical (extracellular chemical compositions). biochemical (intracellular com
positions). and biological (cell genetics). Other methods of classification arc also avail
able. ~2

-'•
7

-
7

" It is hoped that the list of variables in Table I will provide readers a partial menu 
from which to choose and decide the "what" part of the question. We will. however, discuss 
the methods of measurement available on some of the most typical state and control variables. 
i.e .• answer part of the "how" question. Inevitably. some sensors are more useful than 
others, and a hierarchy in the sensor development activity is needed for the optimal allocation 
of resources. By examining the information that can be gained from each of the measurements 
and by considering the potential utilization of this information in modeling and control. we 
can assess the relative importance of these sensors and assign priorities accordingly. Since 
most of the devices used for the physical measurements are the same as those basic units 
used in the chemical industry, emphasis will be placed on those measurements specific to 
the fermentation industry. 

Finally. a thoroughly compiled and well-categorized list of commercial suppliers of various 
instruments is published each year along with their detailed addresses by the American 
Association for the Advancement of Sciences. 71 The 1982 issue devoted a section to bio
technology-oriented instruments.- Tannen and Nyiri also have a short list of equipment 
manufacturers.''" The readers are referred to the original papers for the more detailed de
scription of the construction of those commercially unavailable instruments. 

A few general reviews on fermentation instrumentation have been published in the 
past. 52 ·""·12-7<• The work by Solomons is especially detailed in the coverage of the physical 
measurcments. 7

~ Fleischaker et al., 77
•
711 have considered the requirements for the computer

coupled instrumentation for mammalian cell cultures. which arc slightly different from those 
for microbial cultures. 

A. Physical Measurements 
Almost all the measurements in this category can be measured on-line. Although certain 

sensors are preferred in biochemical engineering studies, the equipment is not much different 
from that used in conventional chemical industry. 

I. Temperature 
Thermocouples. thermistors (semiconductor), and metal resistance thermometers (plati

num) arc all capable of producing an on-line electrical signal. Thermistors arc most widely 
used in fcn11entation because of the high sensitivity and the absence of the cold junction 
requirement. It has the disadvantage that the output is highly nonlinear; some "programmers" 
arc sold to overcome this problem. High accuracies (down to 0.OOl°C) over the range of 
25 through 45°C arc possible. For other uses of temperature measurements. the reader is 
referred to the section on calorimeters. Temperature control by the use of external or internal 
heat exchangers are commonly used; it may also be affected by cooling the nutrient feed 
when the generation of heat by microbial activity is not too large. "N 

2. Ves.fel Pie.f.'Wrt' 
Diaphragm gauges are used with transducers to produce an electronic signal. They arc 

highly linear (=0.25%) and thermally stable, and a wide selection of operation ranges arc 
available. The principle of operation is described elsewhere."" 
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The fermentation broth volume is important in tem1s of the amount of inoculum introduced. 
It also serves as the basic unit of a fermentor. For example. feed rate and residence time is 
more meaningful on a per volume basis for both fed-batch and continuous cultures. Of 
course. various concentration units have always had volume as the basis. The level. hence. 
the volume (knowing the fermcntor geometry). of the fermentor can be relatively simply 
measured by a pressure transducer mounted at the bottom of the fcrmentor. A capacitance 
level prohc or a lloat-photosensor combination is also sometimes used."" Theoretically. the 
accuracy of these traditional measurements is high. hut in actuality it is not at all so. This 
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is because the liquid is far from heing tranquil due to the turbulence caused by agitation. 
the presence of swarming air hubbies from aeration. and foaming. Unfortunately. this basic 
unit is overrun by an error of approximately 5%. and in view of the liquid conditions in a 
fermentor no improvement is likely in the future. 

4. Weight 
This measurement by an electronically coupled strain gauge needs no further elaboration. 

However, tubings and connections can make the isolation of a vessel (e.g., reactor or medium 
holding tank) relatively difficult. Thus, the attainable accuracy is routinely below that of 
the scale ·s potential. 

5. Density 
For an anaerobic batch operation. a change in the volume means a change in the density. 

However, for other modes of operation, the density of the fermentation broth docs not equate 
as simply as above. Although a density measurement is rarely made in fermentation practice. 
highly accurate continuous flow methods arc available for this measurement in the bio
chemical ficld. 81 One method uses a float of known volume suspended in the fluid. A magnet 
is attached to the float and is pulled by an electromagnet. The current needed for the 
electromagnet to immerse the float totally in the fluid is correlated to the density (sec Figure 
5). Another method uses the principle of resonance of a tube in wave mechanics. The fluid 
flows inside the U-shaped capillary tubing whose ends arc anchored to a large mass. A 
magnetic coil attached to the U-tube drives the tube into resonant vibration. The same 
magnetic coil is also used to detect the frequency of the resonant vibration which depends 
on the total mass of the tube: the bare tubing and its fluid content. 

Since density measurements are seldom conducted by biotechnologists, the potential gains 
and the potential problems of using such methods, such as the complications arising from 
the presence of solids, are not yet totally clear at the present. However. some ways of 
utilizing this measurement can be speculated. The specific gravity of cells arc quite close 
to unity, and, as a result, the settling of microbial cells is relatively slow. An accurate 
density measurement can aid in predicting the rate of cell sedimentation. If the cell density 
is reasonably different from that of the fermentation broth, it should also be possible to 
relate the density measurement to the cell biomass concentration. Studies in this area arc 
recommended. 

6. Power Input 
Because the mass transfer characteristics between gas and liquid phases and, subsequently, 

the concentrations of oxygen, carbon dioxide. and volatile components in the fermentation 
broth arc intimately affected by the power input to the system, the measurement of this 
variable is important in the control of microbial respiration. The power input not only serves 
as a means for the dispersion of gas in the liquid but also ensures the homogeneous mixing 
of all the components in the fermentation broth. 82 It is also considered in the calculation of 
power consumption in optimization and in the calculation of the rate of heat removal in 
temperature control. Furthermore, the power input through the shaft must be known accu
rately to estimate the rate of heat production by microorganisms in certain instances where 
such calculations are made based on the energy balance of the whole fermentor. 

There are two types of power input instruments in common use today: a torsion dyna
mometer and a strain-gauge dynamometer. Usually, a torsion dynamometer based on the 
principle of the Hall effect is attached to the armature of the drive motor located outside 
the fermcntor. However, the actual power input to the fermentation broth through the impeller 
is less than that indicated by the dynamometer because of the friction losses in bearings 
between the motor and the impeller. It can be as high as 30% of the total power input into 
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the motor and should not be neglected outright. 70 On the other hand. a strain-gauge type of 
dynamometcr is allached to the shaft of the impeller inside a fcnncntor; thus. the actual 
power input through agitation is measured. This type of dyna1110111ctcr depends on a change 
in the resistance of the material under longitudinal or transversal stress. Aiha ct al. had 
previously described the principles of operation in detail.'''' 

7. Agi1a1io11 Speed 

Like shaft power input measurement, agitation speed also affects dissolved gaseous con
centrations. In addition, agitation by the rotating impellers creates a shear force that may 
upset the microbial cells. Although rpm figures arc customarily reported in the literature. 
one should keep in mind that larger fermentors inevitably have larger impeller diameters; 
the speed of the impeller tip is proportional to both the rotation speed and the impeller 
diameter. Tachometers arc used for the monitoring of shaft rotation speed."" A gear can he 
mounted on the device shaft outside the fermentor and either a magnetic sensor or an optical 
sensor can be used to measure the rate at which the magnetic field or light source is interrupted 
by the rotating teeth. The signals are passed through appropriate transducers to give a 
continuous electric voltage output. Gears or belts may also be mechanically connected to a 
tachometer to measure the rotation speed. but the maximum speed that can he accommodated 
by these mechanical devices is rather limited. 

8. Gas Floll' Rate 
Three kinds of devices for on-line monitoring of gas now rates arc popular among fer

mentation technologists. The conventional variable-area meter such as a rotamctcr have 
limited accuracy but arc relatively cheap. The float position in the tapered tube can he readily 
converted into an electrical signal suitable for computer interface. The second device exploits 
the thermal capacity/conductivity of the gas. The gas is heated by a coil of wire as it passes 
by. The change in the temperature of the gas registered by two thermistors located upstream 
and downstream of the heated wire is used to correlate the mass flow rate (sec Figure 6). 
This flow meter is generally marketed with a flow control device as one unit. A gas flow 
meter of the third type forces the gas flow profile to be laminar through the insertion of a 
matrix device in the line. The pressure drop is continuously measured and correlated to the 
flow rate.61( 

9. liquid Media Feed Rate 
Since no significant changes have appeared in the recent years. the readers arc referred 

to Solomons. 7
~ Turbine, rotamctcr. and electromagnetic meters arc available. However. one 

should be cautioned to the fact that manufacturers' quoted accuracy of the instruments applies 
only under an idealized environment. Since rheological properties of the fcnncntation broth 
and media affect the performance of these flow meters. the quoted level of precision can 
seldom be reached. There arc three main types of liquid pumps: propeller. diaphragm. and 
peristaltic. The diaphragm type of pump gives constant volume dosage each time the dia
phragm pulses and is capable of high flow rate. but there may be sterilization problems. 
Pcristallic pumps use steam stcrilizablc tubes that arc squeezed externally. but the maximum 
flow rate obtainable is low. Frequently. the meter and the pump are not well disti!1guishcd. 
and the combined units are commercially available for each of the three types. Alternatively. 
a liquid holding tank may be placed on a load cell that gives a continuous reading on the 
weight of the vessel. The inference of the instantaneous rntc of addition of nutrients. base/ 
acid. or antifoam from the weight measurement is inherently erroneous. and a noise filtering 
technique is required to obtain reliable information on flow rate. Nevertheless. it is a superb 
measurement on the cumulative quantity. 
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10. Viscosity 
Due to the great variability of fermentation broths, their viscosity can differ significantly 

from system to system, its magnitude spanning several orders. 82 Viscosity also varies over 
the course of a fermentation process as the composition and temperature inside a fermentor 
change. Understandably, the potential for variation is greater for a batch process than for a 
steady-state continuous operation. It is further known that the viscosity of the fermentation 
broth affects the response and accuracy of other sensors. 113 It affects the mixing characteristics 
of the system, and, subsequently, the mass transfer, heat transfer, and power consumption 
depend on it as well. Despite this, no extensive systematic effort has been spent either on 
the sensor development or on the characterization of the effect of viscosity on fermentation 
variables or the utilization of viscosity as a means of on-line bioreactor monitoring. 

Two types of devices are available: capillary and rotational viscometers. For a Newtonian 
fluid. the viscosity is proportional to the pressure drop across a capillary tube for a constant 
volumetric flow rate. Since a capillary viscometer requires the measurements of both the 
volumetric flow rate and the pressure drop.""' this type is not usually used for on-line 
monitoring. Furthen11ore, the calculation of velocity profiles inside the capillary is compli
cated if the fluid is non-Newtonian. Thus. the rotational type of viscometer is more popular 
in fermentation applications. K, Depending on the geometry, many variations of this type are 
possible: coaxial cylinder (Couvette). Brookfield, cone and plate, and turbine. All are 
described in detail by Charles. K' Alternatively. the whole fermentor can be used as a vis
cometer by combining the measurements on shaft power input (P) and the impeller rotation 

· speed (11) and by calculating the viscosity (1•) according to the correlation P ex n2 v. 7K However, 
due to the difficulties in maintaining a laminar flow. the simpler correlations derived from 
laminar flow conditions arc generally not applicable to this in situ measurement method. In 
addition. an in situ viscosity measurement is plagued with many problems such as the 
presence of air bubbles and solids in the broth as we((.K•• 

It has long been known that the presence of microorganisms, especially fungi and Acti
nom_n-t•tt•s. changes the viscosity of the broth.'"'•K7 Thus, it is theoretically possible to use 
viscosity as an indicator of cell concentration or cell morphology. 11

•-
7K.K9 In actuality. this 

has not been successfully done. For example, Perley ct al. 114 attempted to measure yeast 
concentration by this method with only limited success. Due to changes in morphology and 
various other factors affecting the viscosity, the correlation between cell concentration and 
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viscosity was poor except at high cell concentrations (>20 g/f). Rocls cl al." 7 defined a 
"111orphological factor" which took into consideration the length to diameter ratio of the 
111ycclial filaments. However. as pointed out by Blanch and Bhavaraju."" the measurable 
parameter was the "modified 111orphological factor". which was not directly related to the 
length/diameter ratio; actually. it related the viscosity to the mycclial concentration. Shim
mons ct al."'' have conducted a preliminary feasibility study to demonstrate the possibility 
of using viscosity as a biomass sensor to control the yeast concentration during the blending 
of concentrated baker's yeast with water. The control was successfully accomplished. but 
the use of viscosity measurement has not been carried out in a more realistic fcnncntation 
system. The presence of some fermentation products also changes fluid viscosity. LcDuy 
et al.''0 and Thomson and Ollis'" have studied the changes in the Newtonian behavior of the 
fcnnentation broth as polysaccharide is produced. 

The technical aspects of the rheological properties of microbial cultures have been ex
tensively and critically evaluated by Charles."~ Blanch and Bhavaraju have also reviewed 
this aspect"" and suggested the control of viscosity by dilution with water or by addition of 
nutrient shots; however. the side effects resulting from such control strategies were not 
considered. The viscosity was controlled at a constant value by the manipulation of nutrient 
flow rate in a continuous microbial polysaccharide fem1entor,"1 but it was not clear what 
was to be gained from such a control. In future investigations. we need to identify both the 
variables that affect the viscosity and those that are affected by it. Cell concentrations. 
morphology, and product concentrations are some possible candidates for correlation. 

I I. Foaming 
Since the state of foaming is not physically well defined, the measurement as such is not 

generally made. Nevertheless, the detection and control of foam are crucial in assuring a 
smooth fennentor operation. The problem may be exceptionally severe when growth media 
have a high protein content."~ The presence of foam can be detected by conductance/ 
impedance measurements, and it can be controlled with a multistage foam control system.<M 
Production scale fcnnentors usually have some built-in mechanical provisions to aid in the 
breaking up of the foam. (Actually, the foam is compressed.) Anti foam agents, either silicone 
based or hydrocarbon based. may be added alone or in conjunction with the use of mechanical 
foam breakers. The advantages and the disadvantages of different antifoam agents have been 
discussed by Wang et al. 70 The cost of antifoam agents may become intolerable if the size 
of the fcnnentor is large. Antifoam agents arc not easily sterilized and this can sometimes 
pose dangers of contamination. Furthermore, some liquid phase sensors such as the dissolved 
oxygen electrode, as well as the gas-liquid mass transfer characteristics. are severely affected 
if the concentration of antifoam exceeds 2000 ppm."·' 

Soifer ct af.'I'.\ formed a foam index that takes into consideration the volume. case of 
formation. and stability of the foam layer. They studied the effect of antibiotic level in the 
broth and the effect of nutrient composition on foaming and found the metabolites of the 
microorganisms to be critical in the formation of foam. Recently, altcmpts have been made 
to exploit the protein-concentrating property of foams to achieve a highly effective separation 
of enzymes or antibiotics from the fcm1entation broth.""'·"7 Thus, the ability to detect and 
control foam may be invaluable in a combined operation in which the continuous separation 
and recovery of antibiotics from the fermentation broth through foam removal not only solve 
the foaming problems but also help repress product inhibition and stimulate further product 
formation; at the same time. the removal of foam enables better aeration quality. 

8. Chemical Measurements 
Measurements that reflect the extracellular chemical environment fall in this category. By 

performing a simple component balance. we can infer the rate of production or utilization 
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of certain compounds such as substrate or products through concentration and !low rate 
measurements (sec Figure 7). At present, the detection and the measurement of the concen
trations of various compounds in the aqueous phase arc still very much done on an off-line 
basis. The methods of enzymatic analysis of various fermentation substrates and products. 
including a wide range of organic acids and nucleic acid derivatives, are frequently used 
and arc very valuable in monitoring the catabolic. anabolic, and energy metabolisms in 
microbial cells."" As mentioned before, off-line chemical methods arc relatively slow and 
cumbersome, and the permissible number of analyses is rather limited. Thus. continuous 
on-line instruments. especially of the probe type, are preferred. 

In (he recent years, suppliers of laboratory analytical instruments have been spending 
substantial effort in utilizing microprocessors to automate the sampling process. A Tech
nicon@ auto analyzer is one such example. In the past. sampling. gas chromatography. mass 
spectrometer. and a variety of other instruments have also been automated by microproces
sors; however, automation is inevitably accompanied by a quantum jump in the price. 
Automated analyzers capable of giving out electrical signals to a computer can also contribute 
significantly to the modeling and control of a fermentation process, not to mention the sa\"ing 
in labor. To be sure, automated analyzers still perform analyses on a batchwisc basis. and 
the disruption caused by a high rate of continuous sample withdrawal that is required for a 
large number of analyses is sometimes intolerable. especially when the fermentor is small. 

Redox potential, which is related to the ionic strength of the fermentation broth. is also 
included here. Unlike the instruments for physical conditions, the instruments in this section 
arc peculiar to fermentation technology. Even a conventional pH probe needs to be totally 
redesigned to allow sterilization. Since the methods for monitoring the substrate and the 
product will be determined by the nature of each process, they will not be listed for each 
individual compound. Rather. the general measurement concepts. such as enzyme electrode 
and automated gas chromatography. will be discussed. 

1. pH 
pH is one of the most widely monitored variables in fermentation. Steam stcrilizable and 

autoclavablc pH probes are commercially available in the form of a combined unit for the 
H • half-cell and reference half-cell. Cheaper separate units of glass and reference electrodes 
arc also available. Principles of operation can be found in Aiba et al.."" and the construction 
of a glass pH electrode is detailed by Eisenman.99 

2. Biomas.s 
The central element of a fermentation is, of course, the microbial cells. Therefore. biomass 

concentration is probably the most important parameter in various stages of the study of all 
fermentation processes. ranging from modeling to control, from inoculation to termination. 
and from single cell protein production to antibiotic production. Since the biomass concen
tration affects both the substrate consumption rate and the product formation rate. it should 
be closely and continuously monitored in almost all process control situations. Despite this 
fact. its on-line determination has not yet been accomplished in a totally satisfactory manner. 
Many methods have been tried in the past, and they can be roughly divided into the following 
categories: optical. chemical, physical, thermal. mechanical, and manual, depending on the 
principles behind the measurement. Needless to mention, each method actually measures 
different properties related to the biomass; some methods may be belier suited for certain 
purposes on certain species under certain conditions than others. Optical methods include 
light absorbance-transmittancc and scattering. Chemical methods include ATP.""' 111

• 

NADH,"'~-,w nucleic acid, and proteins.~2-111 Physical methods include viscosity,"'·7"·"-'·K•.•" 

broth density. and ionic strength. 7K·
112 The description of chemical, physical. and thermal 

methods can be found in other sections in this paper and will not be repeated. 
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IN OUT 

ACCUMULATION RATE= (RATE IN - RATE OUT) - UPTAKE RATE 

Ci = concentration of component j in the system 

R1 = volumetric rate of production of component j 

4>1= net rate of input of component j 

Fl(iUl{E 7. l\bc-r,hcopic n1111pon.:111 hal;mcc around a frrn1c·111or. 

There arc three optical methods. 11
·' depending on the angle between the incident light and 

the position of the detector: light transmission (spectrophotometer). side-scattering (nephcl
omctry). and rctroreflcctivc scattering (split-fiber optics). 

Of the three methods. the spectrophotometric method that measures the transmittance/ 
absorbancc of the fermentation broth is the most popular. Quite a few instrument companies 
market spectrophotometers that can accommodate a now-through cell to generate continuous · 
signals. Miniaturized probes that can be directly inserted into a fcm1cntor have also hccn 
dcvclopcd. 1

"·
11

• The one developed by Ohashi ct aJ. 11
• is steam sterilizable and even has 

built-in foam and bubble elimination mechanisms. Since most of the scattered light is toward 
the direction of the incident light. a bifurcated fihcr-optics light pipe can be used to detect 
the back-scattered light 11

~ (sec Figure 8). 
Because the relationship between the optical density and the cell concentration becomes 

increasingly nonlinear beyond an optical density of 0.5 (or a biomass concentration of 
approximately 0.5 g!l l all of the above devices arc limited to a low range of microbial cell 
density unless linearity is maintained either by dilution or by the use of a shorter light path. 11 " 

The deposition of microorganisms on the flow cell walls has always been a source of 
signal drift; it needs to be removed hcforc the build-up becomes significant. The design by 
Hancher ct al. m provides a periodic cleaning of the flow cell by flushing with a high
intensity jct of water. The changes in the size. sha!)I!. and opacity of the microbial cells 
make optical correlations vary from one run to another. 7

~ and it has been reported that even 
during the same run the optical property depends on the specific growth rate. 111 

Counting and sizing can be rapidly performed with a Coulter .. counter. 1 •x A schematic 
of a Coulter'11- counter is shown in Figure 9. A prefixed volume of electrolyte solution in 
which cells arc suspended is drawn through a minute opening. As a cell passes through the 
opening. it displaces the electrolyte solution with its own nonconducting body. This increases 
the electrical resistance of the fluid within the aperture. and a voltage pulse is sent to the 
signal analyzer. Since the voltage pulse is proportional to the cell volume. a size distribution 
can also be obtained with a multichannel analyzer. Although a computer can be easily 
interfaced to store and process the large amount of data generated, automatic sampling and 
operation may prove to be difficult. First. the fermentation culture has to be diluted with 

· an electrolyte solution: secondly. the obstruction of the small aperture. which leads to totally 
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erroneous readings. can occur very frequently even when there are no large particles in the 
solution. Nevertheless. its capability of a fast size distribution measurement makes this 
instrument an extremely powerful tool in a variety of studies, especially if the sampling 
process is automated. It can be a vital instrument. for example, in the study of the dynamics 
of a mixed culture where the sizes of two microorganisms arc different. 
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As expected, the above optical and counting methods fail completely when the fermentation 
broth contains suspended solids or is colored; they cannot be used on mycelium, either. 
Since the media for many industrial processes contain insoluble materials, and since fila
mentous fungi or molds arc frequently used in antibiotic products, the application of the 
optical methods is actually rather restricted. In such cases, one may be forced to use other 
chemical, physical, or thermal methods. Finally, an indirect measurement method that 
employs the macroscopic elemental balance concept to infer the biomass concentration will 
be discussed in later sections. 

Since no direct biomass sensor is available to monitor the mycclial concentration, Nestaas 
and Wang 11

"·
121 have utilized the filtration characteristic of the mycelia to construct a "fil

tration probe" shown in Figure 10. The filter cake volume (actually the height) is monitored 
by a photocell, and the filtrate volume (actually the weight) is monitored by a load cell. 
The filtration behavior was predicted from a mathematical analysis of a model, and its 
validity was confirmed experimentally. The filtration resistance was found to be proportional 
to the filtrate volume for a constant cell concentration, and it is proportional to the cell 
concentration for a constant morphology. 11

" They found that the cell concentration estimated 
from the filtration data was in good agreement with the measured cell dry weight. One of 
the basic assumptions used in the correlation was that the specific cake volume be known. 
However, it was affected by the impeller shear rate, 110 mycclial morphology. 120 and ionic 

strength of the broth. 121 The "filtration probe" was interfaced to a computer, and the probe 
operation was made semicontinuous and automatic in a later report. m 

3. Gas OJ..")'Ken and Carbon Dioxide Co11ce111ra1io11s 
Because the respiratory activity is closely related to the metabolism and the growth of 

cells, because the measurement needs not be performed in situ. and because appropriate 
instruments arc commercially available, the continuous measurement of gaseous oxygen 
concentration with a paramagnetic 0 2 analyzer and carbon dioxide concentration with an 
infrared CO2 analyzer has become quite routine in fermentation processes. The gaseous 0 2 

and CO2 concentrations are among the very few measurements that can be carried out on a 
truly continuous on-line basis. These analyzers arc commercially available and rather af
fordable by most researchers and industry. Furthermore, because respiratory activities have 
profound effects on microbial behavior. an overwhelming fraction of the control scheme to 
be described in later sections is based on these two measurements. The principles of operation 
can be found in Solomons.'~ and the basic construction has not changed for the last decade. 

Because in most circumstances air. which is routinely used as the source of oxygen, is 
spargcd into the broth at a generous rate to ensure enough oxygen being available for cell 
growth and maintenance. the difference in the oxygen concentrations between the inlet and 
outlet is relatively small. Since an oxygen analyzer yields signals in terms of oxygen partial 
pressure. a slight drift in the ambient barometric pressure caused by the opening and closing 
of a door or· the turning on and off of a ventilation system can lead to an unacceptable 
magnitude of errors in the calculation of oxygen uptake rate if the barometric pressure is 
not monitored simultaneously to calculate the needed compensation. 21

·"
1 This compensation 

is especially indispensable if the control decision is solely based on the calculated values of 
the respiratory quotient. Furthermore. a paramagnetic oxygen analyzer is also sensitive to 
the gas flow rate; thus. it also needs to be controlled well. m 

Since the presence of water vapor can cause the drift of oxygen partial pressure in a 
paramagnetic 0 2 analyzer and the condensation in the measurement cell of an infrnred CO2 

analy1.cr. a desiccation device is necessary prior to the measurements. When combined with 
the data on the gas flow rate. the gaseous 0 2 and CO2 concentrations can yield oxygen 
uptake rate (OUR). carbon dioxide evolution rate (CER). and the respiratory quotient (RQ). 
Other methods. such as the use of gas chromatography for both 0 2 and C02 •

124 oxygen 
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electrodes for 0 2 , m and thermal conductivity for CO2 , are also available but not as frequently 
used. Mass spectrometry has also been recently introduced. 12

"·
11

H The basic instrument is 
substantially more expensive than the combination of a paramagnetic 0 2 analyzer and an 
IR CO2 analyzer. but it offers the additional capability of monitoring many other gases at 
the same time such as nitrogen. ammonia. and others. Cost considerations have limited the 
use of mass spectrometer, to date, mainly to industrial laboratories. 

As a point of interest. oxygen generated by electrolysis has been used in the past to obtain 
a high oxygen concentration. In these systems the current used for electrolysis, which is 
directly related to the oxygen consumption, is continuously recorded."" and the measurement 
of gaseous 0 2 concentration is effectively eliminated. 

4. Dissolved Oxygen 
Dissolved oxygen concentration in a fermentor is generally measured with an oxygen 

electrode. Since the first autoclavable dissolved oxygen electrode was described by Johnson 
et al., 12<1 many variations and improvements have been incorporated into today's commer
cialized versions. ,:w,.m Even today the search for a beuer probe is continuing. 11• Various 
articles have appeared in the past that extensively reviewed the operation. the construction. 
and the dynamic response characteristics of various oxygen electrodes.'-'' 117 Oxygen elec
trodes can be classified as either potentiometric (galvanic) or amperometric (polarographic 
or Clark type). depending on whether a current is forced through them or not. The basic 
construction of each type is shown in Figure 11. It should be noted that these electrodes 
actually measure the activity. or the equivalent partial pressure. of the dissolved oxygen 
(oxygen tension) and not the concentration. 

In a galvanic type of dissolved oxygen electrode. oxygen diffuses to the cathode through 
a gas permeable membrane and is spontaneously reduced on a platinum surface by a highly 
reductive metal (Pb. Zn. Cd. etc.). The oxidation-reduction reaction is as follows: 

Pt 
1
/ 20 2 + H20 + 2e ---+ 20H Cathode: ( la) 
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Anode: Pb--+ Pb1
' + 2e ( 1 b) 

Only a small amount of current is drawn from the electrode to permit a voltage measurement. 
The voltage generated from the above reaction is correlated lo the oxygen tension. Although 
the electrolyte is not consumed, in time the accumulation of Pb~• ions can become a source 
of drift. 
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In a polarographic type. a constant voltage is applied hetween the anode and the cathode. 
and the current forced through the electrodes is measured. The oxidation-reduction reaction 
is essentially the same as that of a galvanic type: 

Cathode: (2a) 

Anode: Ag + Cl -> AgCI + e (2h) 

(Actually. two separate steps arc involved on the cathode; H1O! is formed first. then reduced 
further to OH-.) The current is measured and correlated to the oxygen tension. Since a 
much higher current passes through a polarographic electrode than a galvanic electrode. 
OH- generated by the cathodic reaction lends to make the broth slightly alkaline: meanwhile, 
Cl - ions in the electrolyte gradually become depicted. and the prohc life partly depends on 
the amount of c1- available. 

Because the oxygen molecules have to be brought to the membrane to react. a minimum 
fluid velocity of approximately 1.8 fl/sec is required for a commercial polarographic electrode 
to work. 13

" Since the reaction occurring on the electrode surface is limited by the mass 
transfer of oxygen through a thin boundary layer whose thickness depends on. among other 
things. the bulk fluid velocity and the oxygen diffusivity. the validity of a significant fraction 
of the published data on dissolved oxygen is, in the authors· opinion, somewhat questionable. 
The effect of boundary layer thickness on the rate of mass transfer is well known in chemical 
engineering. and the effect of fluid velocity on the boundary layer thickness is also well 
documented in the studies using a rotating electrode.1."' Thus. it seems that the best way a 
stable dissolved oxygen measurement from a polarographic electrode can be achieved is by 
rotating the electrode to establish a stable boundary layer. 

Due to a variety of factors. the signal from both types of electrodes often drifts with time. 
The drift usually is not too serious for a short-batch operation, but for a long-lasting con
tinuous operation. calibration can be difficult because the removal of the probe introduces 
the risk of contamination. To overcome this problem. the probe can be mechanically modified 
to allow in situ calibration. 140 Because electrochemical reactions arc sensitive to temperature, 
the probe needs to be compensated for temperature variations if an accurate measurement 
is to be maintained. m A thermistor is sometimes included in an oxygen probe for this 
purpose. The dynamic behavior of an oxygen electrode has been studied from time to 
time, 141

·
14

' and it was found that the contact of bubbles and liquid turbulence can cause an 
error of 20%.""· 14° Consequently. finding a space in a fcnnentor where probe-bubble inter
actions can be eliminated is not a trivial proposition. 144 

Although a great majority of the measurement on dissolved oxygen is now carried out 
with an electrode system of one of the above types. other methods arc also available. One 
of these methods uses a coil of Teflonl& tubing immersed in the fermentation broth. 14

~·
14

" 

but it is now rarely used because it requires an extensive auxiliary apparatus. including an 
0 1 analyzer or a mass speclromctcr. 147 to measure the dcsorbcd 0 1 concentration in the 
carrier gas stream. 

There arc a wide variety of studies based on the measurement from a dissolved oxygen 
probe. The solubility of oxygen in fermentation broth' 4

" and the oxygen transfer coefficient 
under ideal situations. 14

"·
1

~
1 in a fcnncntor. 114 -'q·',,_. and in trickling filter slimes have been 

studied. 1 ~~ The effect of oxygen tension on bacterial growth has also been investigated.•~•· 
By comparing the desired set point to the dissolved oxygen concentration measured by an 
electrode, the control of dissolved oxygen level can he accomplished through the manipulated 
changes in the agitation speed. m aeration rate,•~• or both of the above. ,w "'' Another method 
used to control the dissolved oxygen level is to shift the temperature in such a direction that 
the change in metabolic rate affects the oxygen consumption rate and restores the dissolved 
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oxygen concentration to the desired lcve!Y However, the benefit resulting from such a 
control scheme is not clear. It may also be affected by the use of oxygen cnrichmcnt."''·"'2 

which is advantageous when the upshift of air now rate and agitation speed alone cannot 
bring up the <lissolvcd oxygen level during the period of high oxygen demand. 

As cells grow and multiply in a batch or fed-batch fermcntor. the demand for oxygen 
increases, and dissolve<l oxygen can often become the growth-limiting factor if it is not 
maintained properly. Automatic control of the dissolved oxygen level was attempted by 
Yano et al..'"" however. some control parameters had lo be changed manually. Subsequent 
use of a microcomputer by Kobayashi cl al. 161 and Nyiri ct al. '"J successfully achieved the 
objective of keeping the dissolved oxygen at a constant level. For example. in Kobayashi 
ct al. 's study"'' of growing Candida brassicae in a fed-batch mode, three variables (the 
agitation speed, the air now rate. and the oxygen now rate) were manipulated. Moreover. 
a sharp decrease in oxygen consumption. which was interpreted as the depiction of a carbon 
source, could be detected. When it happened. the nutrient pump was switched on to avoid 
starvation. A significant point in their approach was the use of a computer to determine the 
optimum choice of a set of operating points for the three manipulated variables such that 
the lowest running cost was realized. Although both aeration and agitation can be used to 
enhance the interfacial oxygen mass transfer, they exert different side effects on the fer
mentation broth. such as shear force and foam formation. Thus, aside from the consideration 
of operating cost, a judicial selection of the combination may be required for microorganisms 
with poor mechanical strength.,,.. 

5. DiHo/l'ed Carbon Dioxide 
Due to the unavailability of reliable steam-sterilizable sensors for this measurement until 

very recently, dissolved carbon dioxide electrodes are rarely used in fermentation. This is 
partly because the carbon dioxide concentration in the aqueous phase is often assumed to 
be in equilibrium with that of the gas phase, and a readily available gas analyzer is generally 
used to deduce the dissolved carbon dioxide concentration. However, this is not always true 
due to the slow rate of desorption of CO2 from the liquid phase. •M which is. in addition. 
pH dependent. Supersaturation of CO2 both in the fennentation broth and inside the cells 
has been observed.'"" A carbon balance on the whole fennentor has. in the past. often 
indicated that some missing carbon may be in the form of dissolved carbon dioxide. This 
measurement may be very useful in closing the carbon mass balance in a fermentor. The 
consideration of dissolved carbon dioxide is especially important when fennentation is carried 
out under anaerobic conditions and when an exit gas stream does not exist. 

The commercially available electrode which measures HCo~- ions requires the liberation 
of HCO'- into CO2 gas and operates on a very strict pH range. Laboratory-constructed 
steam-sterilizable electrodes can be simply made by adapting a common pH electrode. 1

"'·
1
"" 

Sodium bicarbonate solution is sandwiched between the glass membrane of the original pH 
electrode and the newly added Teflon•g or silicone membrane, which is penneable to CO2 

(actually HCO'· ). The HCO' concentrations in the sandwiched liquid layer then influence 
the pH of that liquid. which is. in tum. sensed by the pH electrode. Similar to an oxygen 
electrode. by this method it is actually the activity. or the partial pressure of CO2• which is 
measured and not the concentration. Another method uses a coil of porous Teflon® tubing 
immersed in the broth. 1""'·

1
"" The dissolved carbon dioxide diffuses through the membrane 

and is carried away by a stream of inen carrier gas, which is subsequently passed through 
an infrared CO1 analyzer. However. the slow CO2 desorption rate through the Teflon~ tubing 
causes a significant delay in the response. A faster response is possible with a mass spec
trometer system in which a vacuum tube covered with a silicone rubber membrane at one 
end is directly insened into the fennentor as a probe. 147-1M 



- 714 -

Volume 2, Issue I 

6. Mineral Ions 
On-line specific-ion probes for a series of mineral ions arc commercially available for 

Na', K' , Mg2
' • and Ca2

' concentrations. Other ions present in the fcrrnentor such as 
PO~ - , so1- , and Cl can also be monitored. The construction and operating principles of 
ion-specific glass electrodes for various types of ions can be found elsewhere and will not 
be covered here.'''' Generally, these probes can be operated only at certain limited pH ranges 
and are not steam sterilizablc. The readers should be cautioned that these electrodes measure 
the ion activity, not the concentration. The name "ion-specific" is rather misleading because 
no electrode can truly respond to only one species of ion to the total exclusion of all other 
ions;7" it may be more appropriate to call them ion-selective instead. 

Since these mineral ions arc vital for the growth and maintenance of microbial cultures, 
they actually impart very significant effects on microorganisms. Some of these effects have 
long been studied qualitatively in the microbiological field. However, more detailed quan
titative studies suitable for fermentation control of microorganisms are scarce. Some studies 
on the effect of phosphate on Saccharomyces sp., 17° Ch/ore/la pyrenoidosa, 11 •-m and Se
lenastrum pyrenoidosa 172 have been conducted in the past. Otherwise, the fcrmentor is 
routinely supplied with an overwhelming amount of these essential mineral ions when only 
a trace amount will be sufficient to ensure a healthy growth. Although the motivation in 
doing so is to eliminate any possible complications arising from a shortage of these mineral 
ions. it is conceivable that the vast amount of overfeeding may cause undesirable side effects 
such as inhibition. Besides being uneconomical. unnecessary overfeeding of these ions 
creates a high ionic strength environment which may affect product formation as well as 
the cell growth. For example, a derepression of the enzymes involved in antibiotic synthesis 
occurred as phosphate in the broth became exhausted. m The cells reversed the metabolic 
activities from antibiotic production back to biomass production when phosphate was added 
to the culture broth. 11

' Despite the pronounced effect mineral ions exert on microbial cells, 
so far no systematic investigation has been attempted to study these effects in a fem1entor. 

7. Nitro}!.ell Source 
Ion-selective electrodes arc available for both the nitrate (NO_~ ) and ammonium (NH; ) 

ions. Although the use of these electrodes arc becoming the standard methods for measuring 
the nitrogen content in water and wastewater applications. 174 their use in the fennentation 
field is not widespread due to the sterilization problems and the strict working pH range. 
Since the measurement of nitrogen source is still a problem. an excess amount of nitrogen 
is routinely loaded into a fennentor to ensure that nitrogen limitation docs not occur. The 
same problems mentioned in the discussion on mineral ions can infest this measurement as 
well. 

8. Jonie Strength 
A continuous measurement of ionic strength requires only a relatively simple apparatus. 

This is done by perfonning a conductivity measurement on the fermentation broth. An 
alternating current of I to 10 kHz (to avoid polarization) and below I V (to avoid electrolysis) 
is supplied between two platinum plate electrodes that form a capacitor (C). 7k A change in 
the ionic strength of the broth is reflected in a change in the resistive component (R) of an 
equivalent RC circuit. The R component and the C component can be isolated from the 
combined RC measurement by electronically analyzing the phase shift between the input 
signal and the output signal. 7k Thus. the impedance/conductance of this RC configuration 
provides an indirect measurement on the ionic strength. 

During the course of fermentation. microorganisms can convert noncharged substances 
to charged species and vice versa. An example of the first case is the conversion of glucose 
to lactate or acetate; an example of the second case is the microbial utilization of NH; from 
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the broth. Because of the aforementioned fact, Hardy ct al. 175 have proposed to use this 
measurement to monitor cell metabolism. However, because the media arc routinely loaded 
with ionic species, sometimes to the saturation point, the change in the ionic strength due 
to cell metabolism is not significant compared to the total valuc. 112 Similarly, since the 
capacitance constant is affected by the nature of the broth that is sandwiched between two 
plate-electrodes, the cell concentration can be closely followed by a continuous conductance 
measurement. Fleischaker et al. 7K have reported a good agreement between the conductance 
measurement and cell count for transformed human fibroblast. Gencer and Mutharasan have 
also reported the same findings with yeast. 112 but nitrogen source and salts were absent from 
the culture medium. The disadvantage of conductance measurement for cell concentration 
monitoring is that it is highly nonspecific. One is not certain of the exact source of contribution 
to the changes in conductivity, because the overall effect of various chemical species, and 
even temperature and aeration, is also indicated by this measurement, besides microbial 
cells. For instance, the uptake and/or production of ionic species during the course of 
fermentation will cause a background drift in the biomass concentration measurement. 7K 

Since the extracellular ionic strengths affect both the intake of essential mineral ions and 
the secretion of metabolic end products through membrane transport, it is a potentially 
important variable that has long been neglected. The infrequency of its use in fermentation 
studies is not due to the ability to perfom1 a conductance measurement; rather, it is due to 
the difficulty in interpreting the result. 

9. Redox Potenrial 
The theory of redox potential can be found in any standard college freshman chemistry 

textbook. Kjaergaard has also described, among other aspects, the theory of the measure
ment. 176 In biotechnology applications, redox potential is usually measured with a platinum 
electrode in conjunction with a commonly used calomel or Ag/AgCI reference electrode. 
This measurement is highly nonspecific in the sense that the total overall oxidation-reduction 
capacity of the system is read. Thus, any inorganic or organic compound capable of oxidation 
and/or reduction, not just oxygen and hydrogen, will affect the reading. 

Glass redox electrodes have been proposed to minimize the influence of oxygen for systems 
under intensive aeration. 177 The influence of certain redox substances can be eliminated or 
reduced by covering the electrode surface with membranes impermeable to those sub
stances. 17

K Thus. the influence of oxygen can be separated. e.g., by using a commercially 
available membrane that is permeable only to gases. 17

K In addition to nonspecificity, the 
measured redox potential, strictly speaking. is not correct from a thermodynamic point of 
view because a fermentation system is definitely not in equilibrium. 176

•
177 Despite these 

shortcomings. several investigators have concluded that the redox potential can be a valuable 
indication of the metabolic activities inside a fermentor, 176

•
11

"·
1114 and the information on the 

oxidative status is more readily available from this measurement than from the dissolved 
oxygen measurement. 

Dahod has mentioned many reasons for favoring rcdox potential measurements. iKo Among 
them arc the erratic dissolved oxygen probe signals. rupture of the Teflon® membrane. and 
the membrane's contribution to the oxygen diffusion resistance. The range of operation of 
a rcdox potential probe is also wider than that of an oxygen electrode. When the dissolved 
oxygen signal drops to zero, no further information on the oxidation state of the broth is 
available: however, a negative redox potential is possible. 17

" The disadvantage of nonspe
cificity can also work as an advantage in many situations. For example. redox potential can 
be a beucr indicator of the oxygen availability to cells when severe mass transfer limitation 
creates a discrepancy between the oxygen concentration in the bulk phase and the oxygen 
availability. •K.• Redox potential is the only means to study the overall oxidation-reduction 
conditions in an anaerobic fermentation where a dissolved oxygen probe totally fails. It is 
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also better suited to the monitoring of the facultative microorganisms because the concept 
of oxygen limitation. although frequently mentioned, is vague when applied 10 these mi
croorganisms. In addition to pH and dissolved oxygen level. 1

"" fermentation product level 
has also been correlated to the redox potential measurement. 1"-' 

The control of the redox potential has been suggested. rn,.,xi.ix2 but the experimental 
actualization has been rather limited. 1"

5 Theoretically, this can be accomplished by adding 
chemical oxidizers and reducers or by sparging with a gas whose nitrogen content can be 
controlled. It is also possible to accomplish this by controlling the addition of nutrient, such 
as glucose, to the fermcnlor; however. oxygen supply may have lo be adjusted, in addition, 
in order to maintain the rcdox potential for a prolonged period of time as cell concentration 
increases in a batch fermentation. 1" 5 So far, the redox potential measurement has not yet 
been coupled to a computer for control purposes. In conclusion, this measurement can be 
easily and inexpensively obtained, but it is seldom used. The importance of this measurement 
has already been demonstrated, 1•-' but the interpretation of the result remains difficult, partly 
because of the low level of enthusiasm toward this measurement, which is, in tum, partly 
due to the difficulty encountered in interpreting the result. 

JO. Enzyme-Coupled Sensors 
During the last decade, there have been numerous activities in the development of specific 

sensors that are coupled with immobilized enzymes. Because of an enzyme's specificity for 
a particular chemical compound, a very wide range of biochemicals can be assayed selectively 
by employing proper enzymes. The research activity in enzyme-coupled sensors started 
initially in the field of clinical chemistry to determine the concentration of various amino 
acids, glucose, urea, uric acid, ethanol, etc. in blood scrum. No less than 100 scientific 
publications have dealt with these sensors; Everse et al. 1"" have compiled a partial list of 
the activities up to 1977. Guilbault'"'·'"" also has an extensive list for enzyme electrodes 
which· appeared before 1980. Practical applications of enzyme-coupled sensors have been 
restricted mainly to the areas of clinical analysis where discrete samples are generally used. 
However, their uses in fermentation fields have just begun and arc expanding rapidly in the 
recent years, as can be seen in Table 2. Various reviews have been given for enzyme
coupled sensors by Guilbault,'"'·'"" Barker and Somers.1<11

• Evcrsc ct al..'"'' and Ianniello 
and Jespersen. 107 

In an enzyme-coupled probe. an appropriate enzyme is immobilized by using one of the 
various immobilization techniques. The substrate level is determined by observing certain 
effects of the enzyme-catalyzed reaction that are characteristic of that reaction. These an
alytically observable effects generally include the generation of heat during the enzymatically 
catalyzed reactions or the appearance and disappearance of those species participating in the 
reactions. 

Depending on the method of detection. enzyme probes can be classified into enzyme 
electrodes (detection by electrochemical methods). enzyme thermistors (by thermal methods), 
enzyme mass spectrometers (by electromagnetic methods). enzyme spectrophotometers (by 
optical methods). enzyme transistors (by electronic methods), etc.1<'" Of the above sensors. 
enzyme electrodes and enzyme thermistors have been overwhelmingly dominating in the 
number of studies. Moreover. if the feed substrate concentration is known. then the above 
methods can be easily applied to the study of the kinetics of enzyme immobilization with 
only slight modifications. One such example is the continuous spectrophotometric monitoring 
of the effluent concentration of one of the species involved in the reaction inside an im
mobilized enzyme reactor. 20

"·2 "' 

In an enzyme electrode. an appropriate enzyme system capable of selectively catalyzing 
the reaction of the substrate is chosen with the following considerations: the degree of 
specificity for the substrate whose concentration is to be measured. the stability of the 
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Table 2 
ENZYME-COUPLED SENSORS FOR SUBSTRATES 

Type 

Cholesterol 
Penicillin 

Glucose 

Phenol 
Catechol 
L-Lysine 
Sucrose 
NAD 
Alcohol 
Ethanol 
Lactose 

Cholesterol oxidase 
Penicillinase 

13-Laclamasc 
Glucose oxidase 

Glucose isomerase 

Enzyme 

Glucose dchydrogcnasc 
Phenol hydroxylase 
Catcchol oxygenase 
Lysine decarboxylase 
lnvenase-mutarotase-glucose oxidasc 
Alcohol dehydrogenase 
Alcohol oxidase-catalase 
Alcohol dehydrogenase 
Lactase-glucosc oxidase 
Lactasc-glucose oxidase-ammonium molybdatc 
Lactasc-glucose oxidase-catalase 

Detection 

Pt(O, electrode) 
pH 

pH 
O, ekctmdc 

Thenni~tor 
Pt electrode 
O, electrode 
O, electrode 
CO, electrode 
O, electrode 
O, electrode 
O, electrode 
Pt electrode 
Spcctropho1ome1er 
Iodide electrode 
O, electrode 

\'car Rd. 

1977 189 
1979 190 
1978 191 
1976 192 
1979 193 
1980 194 
1982 195 
1983 196 
1979 197 
1979 198 
1980 199 
1980 200 
1983 201 
1976 202 
1979 203 
1983 204 
1979 198 
1979 205 
1979 205 
1979 205 

enzyme so that prolonged continuous analysis is possible. the involvement of observable 
chemical species. and the availability and cost of enzymes. Immobilization is sometimes 
preferred but is not absolutely necessary. The enzyme is placed in the proximity of an ion
selective electrode, and the chemical species participating in the reaction is closely monitored 
(see Figure 12). For example, glucose concentration can be determined by reacting with 
glucose oxidase according to the following reaction: 1"1

·211 

glucose oxidase 
ChH 12O,. + 02 --"-------- C,,H 111O,, + H2O2 

Sometimes a single step gives no readily measurable species. In such cases. another enzymatic 
reaction may be coupled to the first one so as to produce some directly measurable ef
fects.194·2112·20~ There still exist a few problems with these enzyme electrodes. and not all 
reported methods arc completely suitable for the direct use on a fermentation broth. Many 
studies are carried out with artificially synthesized samples, and many need cleaning with 
phosphate buffer solutions after each measurement which makes the measurement discon
tinuous. For example, Kemevcz et al. 1"'' reported the use of a dynamic method in which 
computer-coupled measurements could be made at the rate of one analysis per minute with 
better than 1% accuracy. However, liquid rinsing (to purge glucose from the electrode) and 
gas rinsing (to restore 0 2 to membranes) were necessary. and the possibility of the presence 
of 0 2 in the glucose sample solution was not considered. Saturating the membrane with 0 2 

is frequently necessary for glucose measurcmcnt. 11
'
2 Sterilization problems are rarely con

sidered and the measurement is destructive. Computer-coupled, continuous. on-line enzyme 
electrodes in a probe form, capable of being directly inserted in a fcrmcntor. arc presently 
rare. 

A variation to the above scheme is presented by Volesky and Emond2"~ in which the 
electrode is located downstream to a series of flow-through beds of immobilized enzymes. 

Enzyme thermistors have been introduced by Mosbach and co-workers and 
others. 1.,.7·20"·212·217 As shown in Figure 13, the construction of an enzyme thennistor is 
relatively simple. Two thermistors are placed in the inlet and outlet of a reaction column 
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packed with an immobilized enzyme preparation. A small stream is diverted from a fermentor 
and passed through a coil of heat exchanger immersed in a constant-temperature bath. The 
stream is then passed through a bed of immobilized enzyme packings or a column coated 
with immobilized enzymes on the inner walls. The change in the stream temperature resulting 
from the enzymatically catalyzed reactions is monitored by the two sensitive thermistors. 
The signal from these thermistors is first amplified by a Wheatstone bridge and sent to the 
next IC amplifier. The amount of heat generated by the reaction is then correlated to the 
temperature difference. Finally. the concentration is determined. For a more accurate de
termination. an identical reference column may be placed next to the working column to 
minimize the background. 

In order to obtain an accurate measurement. the reaction process should proceed to 
completion in the now cell. that. is. the reaction time should be short compared to the 
residence time for the liquid in the now cell. As long as the enzymatic reaction reaches 
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completion. the amount or heat evolved is directly proportional to the quantity of reactant 
present and independent of the activity or the enzyme if the enzyme used is highly specific. 
One wants to ensure complete reaction. but. on the other hand, a short residence time is 
preferable so that the concentrations in the fermentor can be monitored closely. Therefore. 
as the enzyme becomes deactivated. a longer residence lime. thus. longer delay. is necessary. 
An immobilized enzyme of high specific activity will improve the accuracy and sensitivity 
of the measurement because the reactor volume and. consequently. the heat capacity may 
be reduced. 

The considerations in the choice of an enzyme system arc similar to those of an enzyme 
electrode. except that the heat of reaction is of interest here. If the amount of heal evolved 
from the desired reaction is small. the primary reaction can be coupled with other heat
producing reactions to achieve a chemical amplification effect. For example, Reaction 3 
catalyzed by glucose oxidasc releases approximately 20 kcal/mol of heat. 212 However. the 
heat effect can be more than doubled if some catalase is present to carry out Reaction 3 one 
step further: 

catalasc I 
H_,0,_ --- - 0, + H,0 2 - - (4) 

The enthalpy for H20 2 decomposition is approximately 30 kcal/mol. 212 Thus. by the appro
priate coupling of reactions, the heal effect can sometimes be greatly amplified, although 
the measurement may be somewhat less direct. 

Since the above glucose conversion requires oxygen. some means of oxygen supply needs 
to be provided to avoid the problem of incomplete conversion due to oxygen exhaustion. 
In the past, attempts were made to generate oxygen in an enzyme-based electrode by 
electrolysis to prevent problems caused by oxygen depiction. 2 '" The same precaution also 
applies to other substrate-enzyme systems. The advantages of an enzyme thermistor are 
similar to those of an enzyme electrode, including enzyme stabilization in the immobilized 
state and the possibility for repeated measurements and continuous analysis. Moreover, 
unlike other existing methods, this method docs not require any elaborate preparation of the 
biological samples. Particularly. there is the advantage that the sample needs not be optically 
clear. 

Some of the immobilized enzyme electrodes (notably glucose electrode) arc commercially 
available in self-contained units. 24

•
1
"

7 Many more arc currently under intensive development. 
Although they arc mainly aimed at the highly profitable clinical market, the fermentation 
industry will undoubtedly benefit from these electrodes. as well. This is one area where the 
sensor development is truly active, and the future for enzyme-coupled probes is bright. 2<•• 

I I. Microbe-Coupled Sensors 
Because of low stability and inflexibility of enzyme sensors and other demands that cannot 

be filled by the conventional instruments, the use of immobilized whole microbial cells or 
organelles as a sensor has also been investigated quite intensively. The construction and the 
principles of operation of a microbial sensor arc similar to those of an enzyme-coupled 
sensor. Classification by the methods of detection can also be carried out similarly: microbial 
electrodes. microbial thermistors, etc. However. microbial electrodes constitute a great 
majority of the sensors constructed. A review of the literature in microbial sensors has been 
given by Mattiasson. w, Karube and Suzuki have also provided a survey of microbial sensors 
for detecting a variety of substrates in fermentation processes. 22<• 

In microbial electrodes. the immobilized cell paste may be sandwiched in-between an 
electrode and a mcmbranc,221 or the microbe-collagen membrane may directly cover an 
electrode. 222 Many microbial electrodes have appeared. Oxygen electrodes in conjunction 
with immobilized aerobic microorganisms. based on the determination of microbial rcspi-
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ration. have been used for the measurements of glucose. acetic acid, alcohols, ammonia. 
nitrate. and biochemical oxygen demand (BOD}: biochemical fuel cells in conjunclion wilh 
immobilized anaerobic microorganisms. based on the detection of electroactive metabolites. 
have been used for cell population and vitamins: pH electrodes and C0 1 electrodes with 
immobilized whole cells. based on the detection of hydrogen ions, have generally been used 
for antibiotic and glutamic acid. 11

·' A partial list of these microbial electrodes is available,114 

and Table 3 shows some of the recent additions from the area of biotechnology. Of these 
studies, the use of a computer to compensate for signal drift in real time by Yasuda is 
noteworthy. m Al1hough a microbial electrode is generally constructed for the purpose of 
measuring substrate levels. it has many side uses as well. One such use is in the testing of 
the microorganism's ability to assimilale certain substratesY• 

/2. Calorimeters 
All biological processes are accompanied by heal effects, usually the evolution of heat. 

The measurement of the heat quantity involved in a reaction has always been important in 
themuxiynamic studies, but its direct use in fem1entation studies has been considerably 
delayed because of the small rate of heat evolution in a typical microbial system. Recently, 
fast and ultrasensitive microcalorimeters have been developed and marketed,2.ts and calor
imetry has become a potentially powerful analytical tool in biological applications. 

There is a wide variety of calorimeters based on different principles of operation and 
capable of continuous measurements. The constructional details and theories on modem 
calorimeters have been discussed in many books or articles solely devoted to this instru
ment. x, .1."-1•n 

Calorimeters can be roughly classified into two major categories: adiabatic calorimeters 
and heat-conduction calorimeters. In an adiabatic calorimeter, the measuring cell is thermally 
insulated so that the amount of heat exchange between the measuring cell and the surrounding 
environment is as small as possible. The heat effect during a reaction is registered as a 
change in the temperature of the system. Usually, a calibration curve for a calorimeter is 
obtained by following the changes in temperature when a known amount of heat is dissipated 
through an electrical resistor placed inside the calorimeter. An adiabatic calorimeter of the 
crudest construction has its wall thickly lined with thermal insulators. On the other hand, a 
more advanced calorimeter has an adiabatic shield consisting of a thin wall made of a good 
conductor, usually gold, and a heater winding over the surface. The heater winding's heat 
output is automatically controlled so that the shield is at the same temperature as the measuring 
cell. In this way. no heat will be lost through the cell wall. 

In a heat-conduction calorimeter,241 the heat generated inside a measuring cell is conducted 
through the wall to the surrounding constant-temperature heat sink. The rate of heat flux 
through the wall is generally proportional to the difference in the temperature between the 
cell and the heal sink. This temperature difference is registered with a thermopile constructed 
from a long string of thermocouples soldered end to end in series. These thermocouples also 
act as heat conductors. In order to have a fast response, the thermocouples should be made 
of materials of small heat capacity and large heat conductivity. 

There arc also many other types of calorimeters based on concepts in-between the above 
two extremes. One of these is the thermoelectric heat-pump calorimeter. It is half insulated 
and half conducting. In this type of calorimeter, heat is supplied or withdrawn electrically 
from the measuring cell so as to keep the temperature inside the cell at a constant value. 
By monitoring the rate of heat input and/or output, the heat effect of a reaction is determined. 
The temperature changes in an endothermic reaction can easily be compensated by passing 
an electrical current through a resistor. For an exothermic reaction, heat is pumped out by 
a thermoelectric cooler. The thcnnoelectric cooler is based on the principle of Peltier effect, 
which is essentially the reverse of the operating principle of a thermocouple. As an electric 
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Table 3 
l\HCROBIAL SENSORS FOR SUBSTRATES 

Type 

Nitrogen dioxide 
BOD 

Phenol 
Nitrilolriaceti,· acid 

Methanol 
Ethanol 
Acetic acid 

Ammonia 

Cephalosporins 
Glucose 

Glutamic acid 

Formic acid 

l\ticrooq~anism 

Nitrifying bacteria 
Clo.Hridium l111tyricu111 
/{a/1.H'IIU/<1 llll<l/llll/<1 

Tricho.,poron cut,1111.•11111 

T. CUlll/ll'Ulll 

1'.H•udo111011ll.,. sp. 

T. brassicm· 
T. bra.uic11<' 
T. bra.uic11<' 

r. /Jra.uic11,· 
Nitroso111111ws sp. 
Citmhacta fr,·111ulii 
P. f111orc•!;ct•11c(' 

£schaicl1i11 coli 

Clostridium lmtyricum 

()ctcction Year 

0, electrode 1983 
o, electrode 1977 
O, electrode 1980 
O, electrode 1980 

1981 
O, elcctmde 1979 
Ammonia electrode 1981 
CO, electrode 
O, electrode 1979 
O, electrode 1981 
o, electrode 1981 

1981 
O, electrode 1981 
O, electrode 1981 
pH electrode 1979 
O, electrode 1979 

1979 
CO, electrode 1981 

1982 
Fuel cell 1980 

Ri:f. 

225 
222 
221 
226 
227 
228 
229 

230 
224 
224 
227 
224 
227 
223 
223 
231 
227 
232 
233 

current passes through a thermocouple in an appropriate direction. heat is absorbed at the 
junction inside the measuring cell and is released at the junction in contact with the heat 
sink. When the intrinsic resistance of the junction is taken out of consideration. the rate at 
which the heat is absorbed is related to the electrical current. 

Alternatively. the whole fcrmentor can be regarded as a calorimeter. In this case. the 
measurement is usually carried out by an in situ dynamic procedure in which the rise in the 
broth temperature is recorded when the temperature control is turned off. 1• 1·1•• This method 
is well suited for monitoring in batch fermentation. but it is not as useful in a continuous 
fennentor because the large time constant involved for the temperature measurement prevents 
the use of a quasi-steady-stale assumption for the energy balance. Another possibility is to 
employ flow calorimetry in which the heat effect is measured by withdrawing a side stream 
from the fenncntor. passing it through a calorimeter. and returning it to the fennentor after 
the measurement is completed. However. this method fails when wall growth is present or 
when cell density is so high that oxygen or certain nutrients may be exhausted during the 
transport to the flow cell. 14

~ It is also unsuitable for use with filamentous organisms or non
Newtonian Ouids.1•' 

Currently. the number of calorimetric studies in the fermentation field is relatively small. 
and calorimetry has not yet gained the attention commensurate with its importance. There 
are three main uses of calorimetric data. One is in the calculation of the cooling requirement 
in the design and scale-up of fermentation equipment as well as during the actual operation:1

••• 

the second use is in the study of microbial growth. ~47 dynamics. 1
•k and thermogenesis:w• 

the third use is in the bioassay of proteins. lipids.1
~• enzymes/~' and antibiotics. 1~

1 Using 
a dynamical method, Cooney et al..m Luong and Volesky.1 .... and Volesky and Thambimuthu1~' 

have perfonned experiments with bacteria, yeasts. and molds on various substrates and found 
that the rate of heat production during metabolism correlates well with the rate of oxygen 
consumption. Thus, by using the fact that oxygen evolution rate is also closely correlated 
with cell growth in many instances. calorimetric measurements were used to estimate the 
cell concentration.254 Wang et al.m applied the dynamic calorimetry to monitor the growth 
of Saccharomyce.,; cere,-i.riae. In the past. the ratio of heat production per oxygen consumption 
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has also been proposed as a physiological variable to monitor metabolic activities such as 
cell respiration efficiency and growth yields. 20

·' However. because it is almost constant under 
most commonly encountered circumstances, it is presently regarded as a physiological var
iable of only limited value. At one end, the efficiencies of energy conversion were found 
to be significantly different under different conditions of nutritional limitation:25

'' at the other 
end. they were found to be nearly constant under different dilution rates. 2~

7 The thermogram 
of Escherichia coli grown on glucose showed the diauxic growth on the acetate product 
after depletion of glucose. 2•~-

2
~'' Thermograms can also be used to study growth kinetics. 25" 

The typical magnitude of heat evolution was l kcal/0.3 g of cell produced. 10
' and the heat 

of combustion ranged from 5.0 to 6.4 kcal/g dry cell. 2~"-
159 However, since the heat of 

combustion is defined on the basis of dry cell weight. which includes ash, the variance is 
believed to be the result of nonunifom1ity in the cell composition from species to species 
and the result of dependence of cell composition upon growth conditions even within the 
same strain. 

I 3. Automatic Samplini and Inoculation 
Many measurements cannot be performed in situ. and many also require the sample to 

be cell-free and solid-free; therefore, sampling and sample preparation cannot be totally 
avoided. Aseptic inoculation2w and sterile sample withdrawal procedures can be readily 
automated by various mechanical configurations. 52

·
2
'"

1
·
2
"' Three methods arc available for 

the elimination of particulate matter: membrane filtration, mechanical filtration, and cen
trifugation. Continuous on-line filtration (dialysis) can be easily accomplished with a mem
brane, usually in a by-pass tubular form-"'· 2t.t-2

M or sometimes directly in the fem1entor: 1111 

however, finding a suitable membrane may be difficult in some circumstances, and the 
response time is long due to the mass transfer resistance of the membrane and the liquid 
film. 2M Depending on the flow rate, the permeability of the tubing, and the Henry's constant 
for each individual component, the delay is about 2 to IO min. 78 Although the risk of 
contamination is practically nil unless the membrane breaks, attachment of cells on the broth 
side of the membrane can restrict dialysis rates or yield false readings. A continuous selective 
separation of molecules from the broth into an inert carrier gas stream or a liquid stream is 
possible with a suitable membrane. On-line preparation of a sample by filtering and cen
trifugation for measurement purposes is still a difficult, if not impossible, mechanical en
gineering feat. 

14. Other Methods 
Finally, a great variety of off-line wet chemical and microbiological procedures arc avail

able for the analysis of a wide range of fermentation substrates and products. 271 
·272 Gas 

chromatography, 2" flame ionization detectors, 146
•
267 and spectrophotometers271 are some of 

the widely used means for detection. Some of the measurements that require no extensive 
preparation can be readily coupled to a computer; a mass spectrometer for the determination 
of gas phase components and volatile liquid phase components is one such exam
ple. 12"·127·1"'7·27"'·277 Those that require extensive sample preparation can be and have been 
incorporated into automated analysis units; the use of an auto analyzer is one such example. w 

These units consist of a series of tubings, valves, timers, pumps, and switches to perform 
a series of tasks: sampling, necessary pretreatment, mixing, dilution, etc. The sequentially 
prepared samples are finally analyzed with conventional specific detection devices such as 
spectrophotometers, electrodes, liquid chromatography, gas chromatography. mass spec
trometers, and many others. Gas chromatography has recently been automated with a com
puter-controlled electropneumatic injector. 27

" and the same principle can be applied to high 
performance liquid chromatography (HPLC) as well. 

Besides the examples discussed previously, various unique sensors have also been tried. 
An affinity sensor based on an optical detector can be used to measure the level of sugars 
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present. 27
'' Accurate. continuous determination of ethanol concentration during aerobic cul

tivation of yeasts has been accomplished hy sensing its vapor in the existing gas stream with 
a smoke detector2x" or a semiconductor gas sensor. 2"

1 A waterproof solid-slate chip ,,·ith a 
series of MOSFETs capable of determining a wide range of metal ions is currently under 
development. 2 "

2 Finally. automation can be applied to areas other than instrumentation: even 
culture screening can be automated. 2"·' 

C. Biochemical Measurements 
Now. measurements into the cells arc considered. Measurements described in this section 

arc primarily concerned with the molecular chemistry inside the cells. They arc RNA. DNA. 
protein. carbohydrate. and lipid levels. The macromolecular composition in cells is known 
to be influenced by the environmental conditions. 2

"
4 NAD. NADH. ATP, ADP. AMP 

concentrations. and various enzyme activities need to be measured as well if an in-depth 
understanding of the kinetics, the mechanics, and the pathways of microbial metabolism is 
to be reached. Unfor1unatcly, no truly on-line instruments exist for any of these measurements 
except for NADH. In addition. in most cases cells must be lyscd prior to the analysis of 
the contents. Some units capable of automated sampling arc under heavy development: 
however. they arc aimed mainly at the biological and biochemical field of study. 

I. ATP/ADP 
It is a well-known fact that adcnosinc triphosphatc (ATP) is present in all living cells as 

the currency of available energy. Because ATP parlicipates in vir1ually all the impor1ant 
metabolic reactions. the impor1ancc of the measurement of ATP levels inside a cell cannot 
be overemphasized. The energy generated in one reaction step is stored in ATP. which 
subsequently participates in another reaction that requires the release of the stored energy. 
Its occurrence is related to the total amount of viable biomass and the metabolic activity. 

The dynamics involving ATP is fast compared to the growth of cells: it takes a growing 
cell only about I sec to consume the whole pool of ATP in its body if regeneration were 
not occurring simultaneously. 7 "·

11
•

1 Thus, continuous, highly sensitive, on-line ATP meas
urements may be necessary to follow closely fast intracellular dynamic behavior in a sat
isfactory manner. Unfortunately. a truly on-line measurement of the ATP levels in a cell 
currently docs not exist. and the measurement is presently carried out by an essentially off
line batch sampling technique. Because the ATP dynamics is relatively fast. a rapid sampling 
technique is required. The reaction must be stopped to preserve the existing conditions if 
the analysis cannot be performed almost instantaneously. An automatic sampler capable of 
extremely rapid sampling and a quick quenching with phosphoric acid (to preserve the ATP 
content). though. is currently commercially available. Harrison and Harmcs have also de
scribed the operation of a rapid sampler .1•~ The final measurement of ATP level can be 
carried out on the quenched samples at a later time with a biomctcr that utilizes luminescence. 
Many investigators have shown that ATP concentration is a good indicator of cell viabil
ity; '..,·2"" ATP is absent from nonviable cells. Thus. the ATP measurement, when combined 
with other total biomass measurement, may afford the distinction between viable and non
viable fractions. In the past. many studies have correlated this measurement to biomass 
concentrations.""' .... 

Methods for off-line batch analysis of ADP and AMP have also been developed. ''"·~•1 -1•• 

Biolumincsccnce analyzer is used to monitor and integrate the light emission from the 
sample.~•• Instead of the absolute ATP level. it is sometimes more revealing to use a quantity 
called energy charge. EC, defined by: 

IATP) + 't,IADP) 
EC = (ATP) + IADPi + IAMP) 

(5) 
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Hence, it represents approximately the number of basic energy units per adcnosinc base. A 
truly on-line method or a fully automated sampling-analysis scheme would be desperately 
needed if the ATP measurement is to be incorporated in computer control. 

2. NADINADH 
Just as the extracellular redox potential is closely related to the oxygen concentration in 

the broth, the intracellular redox potential is closely related to the NADH content within 
the cell. Many reactions involved in the cell metabolism arc of the oxidation-reduction types. 
Nicotinamide adenine nucleotides have been known to be the coenzymcs of a good fraction 
of these oxidation-reduction reaction steps. Hence, by following NAD/NADH levels inside 
a cell, important information can be extracted that can be very helpful in elucidating the 
underlying model and in formulating a process control strategy. 

Harrison and Chance have demonstrated the use of an on-line fluorometer in the meas
urement of NADH level. 107 Since then, many investigators have followed with the same 
method. 105

•
1118

•
285

•
28

"'·
2
"'

1 A schematic drawing of the apparatus used by them is shown in 
Figure 14. The filtered ultraviolet (UV) light (366 nm) is shone on the culture broth through 
a window in the fcrmentor vessel wall. The UV light excites NADH to a higher energy 
state; fluorescent light with a wavelength of 460 nm is detected by a photomultiplier as the 
excited NADH is restored to its original state. In the past, several investigators have correlated 
the cell biomass concentration to this luminescence measurement. 105

•
107

•
108 However, this 

measurement is not accomplished without any problems. Although the selectivity of the 
measurement is relatively high, the background signal from, for example, the media used 
for cell cultivation also contributes somewhat. 289 The signal instability caused by the presence 
of air bubbles may force the use of a more expensive laser light source instead of a cheaper 
UV light source. m In addition, the drift in the intensity of the UV light lamp may require 
some means of normalization of the output signal. 78 

Since the intensity of culture fluorescence intensity depends on the number of cells 
containing NADH as well as the level of NADH in the cells, the fluorescence intensity is 
directly related to the cell biomass only if the level of internal NADH stays unchanged 
during the course of fermentation. The environmental conditions such as temperature, pH, 
dissolved oxygen concentration, and various nutrient concentrations all affect both the cell 
metabolic rates and pathways, and the effect of these changes may be reflected in the changes 
of the NAD/NADH level. '°5

•
108 For example, when the withholding of oxygen supply pre

vented the oxidation of NADH to NAO in aerobically growing yeast, the culture fluorescence, 
which was related to the level of fluorescent NADH. jumped to a new value within I to 2 
min. 105

•
292 Because of the fast and sensitive response of NADH level to dissolved oxygen 

concentration in a fermentation broth, culture fluorescence measurement was used to detect 
the spatial nonhomogeneities of gas-liquid mass transfer inside a ferrnentor. m ln another 
example, the NADH level decreased as the depiction of glucose prevented the replenishment 
of the high-energy NADH reserve. 105 Adding appropriate chemicals to block certain NADH 
regenerating metabolic pathways. Zabriskie and Humphrey1<1K were able to estimate that 
approximately 50% of the culture fluorescence was contributed by the intracellular NADH: 
the rest were contributed mostly by unknown sources. In yet another example, the glucose 
uptake and mixing times were studied by using the fluorometric measurement of NADH. 291 

Recently, this measurement was also used in an attempt to unveil the substrate uptake 
mechanisms for Candida tropicalis and the baker's yeast. N<• 

The fluorescence measurement of NAD/NADH has long been used by biochemists to 
study the effect of environmental conditions on cells, but it is not as regularly monitored in 
the fermentation field as are pH or oxygen and carbon dioxide concentrations. As a con
sequence, a detailed interpretation of the culture fluorescence data has not yet been accom
plished. Since many intracellular reaction steps can involve NAD/NADH, this measurement 
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Photomultiplier 
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Fl(ilJRE 14. Schc:matic dia!!rarn of ,1 lluoromc:tc:r. 

can give an indication of the overall reaction in a cell. Thus. it may be used as a basis in 
the control and on-line optimization studies. 

Besides the optical method. an electrochemical method has also often been employed by 
investigators in the fcrmentalion field. to"· 1

""·
1w·1"·' The double-electrode system, shown in 

Figure 15. takes advantage of the oxidation-reduction property of NAD/NADH. Two sets 
of electrodes are identical except that the anode of the dctermina1ion probe is exposed to 
the fermentation broth. whereas the anode of the reference probe is covered with a cellulose 
dialysis membrane. In the more sophisticated system. a built-in saturated calomel electrode 
(S .C. E. ). which is routinely used in electrochemical studies. can provide the reference voltage 
for each of the probes. For a high precision measurement. a thermistor may be attached to 
each probe to correct for the temperature effect on the electrochemical reactions. As a 
constant voltage in the range of 220 to 280 mV (vs. S.C.E.) is applied to each of the 
electrodes. NADH on the microbial cell surface is oxidized to NAO on the surface of the 
exposed anode as the cells arc brought to the anode by agitation in the fermentor. 109 Thus, 
the current produced by the reaction is related to the NADH levels on each cell. and, thereby, 
the cell concentration. The reference probe. with anode covered by a cellulose dialysis 
membrane which prevents cells from reaching the platinum anode surface. can measure the 
contribution from unknown background sources. including NADH and other oxidizable 
compounds in the fermentation broth. 

Since the electrochemical probe takes the NADH from the surface of the cells, the use 
of this method to study the internal metabolic reactions may be complicated. Furthermore, 
the output signal may depend heavily on the mass transport characteristics near the electrode 
surface because the cells must be carried to the electrode surface to donate electrons. Thus, 
the response time of the electrodes is approximately 15 min. possibly too long for the study 
of fast reaction dynamics. However. this steam-sterilizable electrode can be obtained at a 
much cheaper price than the fluorescence system described earlier. Although the output 
signal from the polarographic electrode system was found to be sensitive to temperature and 
pH""'·"" as in culture fluorest:em:e measurement. the effect of dissolved oxygen was only 
slight 11

•· as opposed to the culture fluorescence method. This method has been applied to 
monitor directly the microbial cell numbers. 11

•··""'·
1111

•
1
"' Although not so specifically stated. 

the electrochemical determination of cell populations from the oxidation of electroactive 
substances as employed by Malsunaga et al.1"' works in similar principles. 

Wallace ct al.~·•·• have recently used a unique arnpcrometric technique: however. it is not 
as commonly used among hiotcchnologists as the above two methods. 
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Although the measurement of NAD/NADH level by either culture fluorescence or polar
ographic electrode system depends on biomass concentration. metabolic activity. and a 
variety of intracellular and extracellular environmental conditions. it may be adopted to 
control purposes."'~ Ristroph et al. 28

" has employed the fluorescence measurement to de
termine the substrate feed rate in a fed-batch single cell protein (SCP) fermentation. In their 
study, Candida urilis was grown on ethanol. A control of feed rate in this fermentation is 
necessary because an overfeeding leads to acetate fom1ation which reduces the SCP yield 
on ethanol. Similarly. an underfeeding leads to a slow cell growth rate which reduces the 
volumetric productivity. Since the depletion of a carbon source can be detected by a drop 
in culture fluorescence as mentioned before, a computer can be programmed to activate the 
feed pump to add more ethanol into the fermentor when the culture fluorescence drops to 
a predetermined value. 

3. Cytophotometry and Cytofluorometry 
Although we genernlly employ unstructured. unsegregated models in the study of fer

mentation, it is well known that cells in a population do not all have the same size or a 
uniform composition. Cells behave differently at different stages of development: the met
abolic activity shifts over the growth cycle of a cell. Such tendency of treating the microbial 
system as a homogeneous population is reflected in the instrumentation we use: all the 
instruments we have considered thus far, with the only exception of the Coulter'8 counter. 
measure the bulk property of the whole population. A structured approach must be considered 
if a more fundamental understanding of microorganisms is to be gained. and a segregated 
approach is a must in studying the behavior of a mixed culture. 

Recently, a computer-coupled instrument. a laser flow microfluorometer. has been de
veloped to measure the distribution function of, among other things. the macromolecular 
contents and the cell sizes in a population. By labeling a sample of cells with a fluorescent 
stain. the frequency functions for a variety of macromolecular components such as proteins. 
certain specific enzymes, RNA, and DNA can be rapidly measured by a llow t1uorometer. 
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As shown in Figure 16. the stained sample is carried through a capillary by a laminar stream 
of sheath flow that confines the cells to the center of the flow in a straight file. A helium
neon laser is directed al a right angle to the stream. For fluorescence measurements an argon 
laser may be added. The absorbancc/scattcring al various angles and the fluorescence intensity 
at different wavelengths can all be simultaneously monitored at a rate of as many as 3 x 
IO' cells per second. 7

" 

This instrument has been applied to the measurement of many organisms: mammal
ian, m.2

"" yeast/'17
·-'

02 and bacterial cells. ·'0 ·'·-'
0

" Fazel-Madjlessi and Bailey have shown that 
the morphology and biochemical content of bacterial walls change drastically during the 
course of a batch fermentation.·'0

·'·-'
05 In addition. the effect of inoculum age, temperature, 

and aeration rate on bacterial growth rate and product formation has also been studied using 
this technique. J<•~ 

Furthermore, Hatch et al. ·'07 and Cadman-'"" have proposed to discriminate between the 
two species of Corynebacterium glutamicum and Candida utilis by using the fact that the 
ratio of light scatter to light absorbance is different for different species. With additional 
modifications, the flow fluorometer can be used in rapid cell sorting according to a prescribed 
criterion. Thus, flow microfluorometer has been useful in providing a detailed insight into 
cellular metabolism at the molecular level, but its popular use has been hampered by the 
high cost of the equipment. 

D. Biological Measurements 
Biological measurements detect the changes in contamination, mutation, morphology. 

and physiology. The Coulter® counter and cytometry measurements may reveal some of the 
morphological properties such as shape. size/size distribution, and age/age distribution. These 
measurements have been discussed previously, and they are quite critical in the formulation 
of a reliable mathematical model. For example, both the average size of cells in a yeast 
population and the difference between the mean sizes of daughter cells and mother cells 
were found to be highly dependent on specific growth rates. J0<1 The cell size and age, in 
tum, determine the macromolecular content and influence the rates of various metabolic 
activities. )OU<"' 

The ability to conduct strain selection has a profound economic effect on fermentation 
companies, and contamination can result in major economic losses. Very often, the deter
mination of contamination or mutation is an extremely difficult task, even by manual means, 
and no single method is totally infallible. Direct observation through an optical microscope 
seldom gives conclusive indications of contamination, especially at early stages. Numerous 
tests involving tedious procedures and countless plate transfers may be required before 
mutation can be detected. The trend in the industry is to automate contamination detection 
and elimination procedures so that a rapid detection may enable operators to salvage a 
fennentor batch and minimize losses. One such technique used for antibiotic production is 
an automatic bacterial detection system in which CO2 is monitored for the content of the 
labeled •~c that is originally introduced in the substrate during inoculation. 3 '° The technique 
utilizes a flow cytometer to detect the presence of microbial contaminants. 311 

The use of the off-line determination of various compounds with a gas chromatograph 
has been proposed as a means for taxonomic identification and for contamination detection;"" 
however. no report on the actual application of this idea has yet been published. Currently, 
there is a strong effort in the water and public health areas to automate rapid counting 
methods with a specificity for colifonns, especially fecal coliforms such as Escherichia 
coli. m Such methods have the potential of being applied to the fermentation field with slight 
modifications. 
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FIGURE 16. Schematic of cytoOuoromctry. 

IV. STATE ESTIMATION AND PARAMETER IDENTIFICATION 

Data collection for the sake of collection is. of course. totally fruitless. The data collected 
must be exploited through a set of manipulations lo achieve some predetermined goals. 
However, most of the data collected cannot be put to use without some further processing. 
A formidable amount of data can be generated in a short period of time and can easily 
overwhelm everyone, including the brightest scientists and the computer storage of any size. 
The essential part of the collected data must be extracted and condensed through the appli
cation of some suitable algorithms prior to the actual use or storage. In addition. the data 
from several sources may be combined to achieve a set of more comprehensible units. 
Material balance around a fermentor. whose concept is shown in Figure 7. is extremely 
valuable in this respect. The condensed set of data is further compressed to yield a concise 
set of parameter values, such as specific biomass growth rate or cell yield. through parameter 
identification and state estimation algorithms. Under certain circumstances. some quantities 
that are not directly measured. such as biomass concentrntions. can be estimated through 
the use of elemental balances. 

Although many specialized sensors are presently under development for the continuous 
measurement of cell mass and substrate/product concentrations and some have even suc
ceeded in being marketed commercially. generally. they have not yet been fully tested and 
their reliability is sometimes questionable. Since the state of instrumentation is still relatively 
poor, many measurements contain a significantly high level of noise. The rnte of failure 
may be high and the signals may even be totally erroneous. Thus. raw measurement signals 
should be conditioned through the use of suitable filters before they are made available to 
control a fermentor. 

A. Indirect Measurement 
Although some of the data collected from the fermentor can be directly used, many have 

very little physical significance when standing alone. For example. tempernture measure
ments can be directly fed back to actuate the controlling devices for the heater/cooler, pH 
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measurements can be used to activate the pumps for acid/base addition. or dissolved oxygen 
measurements can he used to control the gas flow rate or the impeller rotation speed. On 
the other hand. gas flow rate data arc relatively uninfonnative unless they arc combined 
with other measurements to form the so-called "gateway" sensors, originally coined by 
Humphrey.·"·' Indirect measurements and gateway sensors provide information at an easily 
digestable mental level on cellular metabolism and fcnnentation conditions. The consumption 
rates or production rates of many components can be calculated by taking a simple component 
balance around the fcnnentor, as shown in Figure 7. Oxygen utilization rate (OUR). carbon 
dioxide evolution rate (CER). and respiratory quotient (RQ) are easily acquired on-line and 
arc among the most frequently calculated quantities. They are very useful indicators of the 
cellular respiratory activities. Other indirect measurement variables include overall oxygen 
mass transfer rate, metabolic heat evolution rate, specific growth rate, cell yield. substrate 
utilization rate. and secondary metabolite production rate. A list of the calculated variables 
are given by Armiger and Humphrey, 7 and a set of straightforward step-by-step data analysis 
schemes are given by Nyiri. 1"·

20 Some of the more complicated schemes arc discussed below. 
However, the authors wish to comment that the delay time for various instruments must be 
taken into consideration before different measurements are combined; otherwise, the indirect 
measurements may suffer unnecessarily from large errors. 

The first example is che indirect measuremenl of specific growth rate. An indirect meas
uremenc of specific growth rate can be realized in a turbidostat system in which the cell 
concentration is lightly controlled between b""'' and bmin by an on-off feeding of fresh nutrient 
solutions via a continuous optical density measurement.''° In this simple on-off control, when 
the cell concentration reaches bn .. ~• the feed pump is actuated lo dilute the culture until bmin 
is reached. The specific growth race is calculated semiconcinuously by combining the on
line measurements of the time interval between successive nutrient addition and the optical 
density. A typical saw teeth signal curve generated from this on-off control scheme is shown 
in Figure 17. This method is applicable to both fed-batch and continuous bioreactors. although 
some careful material balance analysis may be required for the latter case. 

A similar procedure can be applied to a pH control scheme to determine the specific 
product formation rate if the product possesses acidic or basic properties. The product 
concentration required for the calculation of specific product formation rate can either be 
measured directly by one of the methods discussed earlier or be estimated through a careful 
monitoring of the cumulative amount of acid/base added to achieve neutralization. In the 
latter case. other processe~ such as the neutralization of produced carbon dioxide or the 
protons released when ammonia is taken up by the cells from the ammonium salts of the 
medium must be carefully accounted for. Acetic acid production by £. coli growing in 
glucose has been studied this way in the authors' laboratory.~•~ The same technique has 
been applied to gluconic acid production as well.tw 

The second indirect measurement to be discussed is the oxygen mass transfer coefficient. 
An adequate supply of oxygen is often vital to the growth and maintenance of many mi
croorganisms, and the availability of oxygen in a fcrmcntor depends on the volumetric 
oxygen mass transfer coefficient, k,a, as described by the following equation: 

(6) 

where q.,,(t) is the volumetric oxygen transfer rate, c:,(t) is the liquid phase oxygen con
centration in equilibrium with the gas phase, and C.,,(t) is the liquid phase oxygen 
concentration. 

In the above equation, it is important to note that k1a is a function of time in order to 
account for changes in fennentor conditions such as agitation, air dispersion. and rheological 
properties. Because chc properties of the fermentation broth are constantly changing due to 
biomass synthesis. product formation. substrate depiction, and antifoam addition, the esti-
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FIGURE 17. U,e of on-off turhi<lo,tat to calculate the spccilic growth rate. 

mate of oxygen transfer coefficient in the fermentor should be constantly updated, i.e., 
monitored on-line. by combining the measurements on gas flow rate, gas phase oxygen 
concentration, and dissolved oxygen concentration. 

There are two general methods for the estimation of k,a: the static (balancing) method 
and the dynamic (gassing-out) method. Both methods assume that the dynamics of oxygen 
is much faster than the dynamics of liquid phase-bound species such as biomass, substrate 
and products. This assumption enables one to employ quasi-steady-state approximation for 
the liquid phase. Furthermore, both methods assume that the fennentor is well mixed, and 
k,a is treated as a function of time but not space. In the first method, qo,(t) is calculated 
from the gas flow rate and the oxygen concentration in the inlet and exit stream. By infening 
C 0 ,(t) from Henry's law and by directly measuring C0 ,(t), one can calculate k,a continu
ously. •~.m These measurements have been coupled to a computer to yield an on-line estimate 
of k,a. m After a sensitivity analysis, the precision of this method was found to be limited 
by the precision of the oxygen analyzer.'~' In the second method, the transient response of 
the dissolved oxygen is continuously monitored after the air supply is interrupted for a short 
period of time. 11

~·""··"" This method is well recognized. m but it requires the deliberate 
disturbance of the system and generally yields only one single estimate for k,a. The on-line 
estimation of k,a by this second technique was attempted by Yoshida ct al.•~• He was able 
to generate k,a continuously and showed that a good convergence from the erroneous initial 
guess to the true value was possible if an appropriate algorithm was used. A more elaborate 
algorithm that took into account the inertia of the measuring instruments was also published.·"" 

Thus. by utilizing the existing relationships between the measurements, the number of 
observable variables can he greatly increased for the same number of raw measurements. 
The gateway sensor concept is important in deciding what measurements to select so that 
biologically important information can he extracted. A simple examination of the necessary 
instrumentation for realizing the interested indirect measurements can point out the priority 
in sensor development. 
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B. Macroscopic Material/Energy Balances 
The principles of macroscopic material balance and energy balances have long been known 

in chemical engineering. Their applications to fermentation fields have been summarized 
by Rocls. ·'2''--' 21 The use of on-line material/energy balance is considered a great step forward 
in fermentation technology. Because of the availability of continuous gas analyzers for 
oxygen and carbon dioxide. these material balancing methods depend heavily on the meas
urement of gas exchange conditions in a fcrmcntor. The on-line calculation of the associated 
parameters of gas exchange is not new.-'22 Since the pioneering work by Cooney ct al..·' 1

·' 

Wang ct aL,314 Zabriskie et al.,m and Zabriskie and Humphrcy/2
'' many studies based on 

elemental balances have been published. m.J_,x 

There are two variations of the material balance approach. The first method. adopted by 
Cooney ct a1.n3 and Wang et al.,324 is based on the concept of conservation of mass and 
chemical reaction stoichiometry. The basic feature of the method is to represent the biological 
conversion of substrate to cell mass and metabolic product by a chemical reaction as follows: 

where C,HyO,, C.,H130--rN6 , and C ... Hw0--r.N6 , arc the chemical formulas for the substrate. 
cell biomass, and product, respectively. Usually, it is only the ratio, not the absolute value. 
of the composition of the cell biomass that can be determined; therefore. a can be set equal 
to I without any loss of generality. 

For the moment, all the chemical formulas arc assumed known and constant, although 
there are reports that the chemical composition of cells may be affected by drastic changes 
in growth rates and by the nature and composition of the medium. 3-"'·

340 Herein lies the 
disadvantage of this method. For example, a 10% change in the cell nitrogen content during 
the course of the fermentation forced the on-line estimation of cell concentration to deviate 
from the true values in Wang et al.'s study. 324 

Note that a, b, c, d, e, and fare the six unknown stoichiometric coefficients for the 
reaction, and the stoichiometric coefficient for biomass can be normalized to I. Although 
Cooney et al. 323 have used two separate chemical reaction equations. one for biomass 
synthesis and one for product formation, the combined single-equation approach is essentially 
equivalent to their approach, and it is algebraically slightly simpler. The principle of elemental 
balances gives four equations, one for each of the elements C, H, 0, and N. 

C: 

H: 

0: 

N: 

xa = a + e + a' f 

ya + 3c = P + 2d + P' f 

za + 2b = -y + d + 2e + -y' f 

C = 6 + 6' f 

(8) 

(9) 

( 10) 

( I I) 

A quasi-steady-state approximation applied to the conservation equations for 0 2 and CO2 

gives a fifth equation needed to solve for the six unknowns: 

R = Yo, OUR = Yeo, CER 
V V 

(12) 

where R is the total rate of growth, Y <>i and Yen, are the yields of biomass with respect to 
oxygen and carbon dioxide, respectively, and V is the volume of the culture reactor (in 
liters). The quasi-steady-state approximation for 0 2 and CO2 is valid for all three modes of 
operation (batch, fed-batch, and continuous) with respect to the liquid medium. The reason 
is that the time constants of the dynamic equations for 0 2 and CO2, which are of the order 
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of the broth volume divided by the volumetric gas llow rate, arc much smaller .compared 
to that of the dynamic equations for biomass and substrate concentrations. which arc of the 
order of the broth volume divided by the volumetric medium llow rate. Equation 12 relates 
the coefficients band c in Equation 7, since the yield of biomass with respect to the component 
under consideration is essentially the reciprocal of the corresponding stoichiometric coef
ficient properly adjusted for the differences in molecular weights. 

There arc only five unknowns if we do not consider product formation; the five independent 
equations presented heretofore can be used to solve fully the five unknowns. From these 
stoichiometric coefficients, all the yield relationships can be obtained. Thus, this material 
balance method docs not require the assumption of constant cellular yield coefficients. As 
a matter of fact, no kinetic models arc used at all. 

On the other hand, one more unknown must be determined if ·single product formation 
is considered. An additional relationship is needed in order to solve for the last unknown. 
Among the possible measurements arc nitrogen source, substrate, product, and fermentation 
heat. However, a word of caution on the possibility of the use of direct substrate or product 
measurements should be mentioned here. Although these arc direct measurements of the 
states of a biochemical reactor, they cannot be used directly to solve for the stoichiometric 
coefficients in Equation 7 if their time rate of change cannot be simultaneously monitored 
with a certain degree of accuracy. A simple difference between two consecutive measure
ments cannot be used to calculate the time rate of change because of the presence of noise 
inherent in any real measurement. Thus. in this case, an estimate on the time rate of change 
of those states that arc directly measured also needs to be obtained. The use of the heat of 
fermentation, Q, together with an enthalpy balance was considered by the authors as another 
possible source of independent equation: 

However, a sensitivity analysis has revealed that, because of the close relationship between 
the heat evolution and oxygen utilization.-'"' 1

·-'"'·' Equations 8 to 11 and 13 form a nearly 
singular set of linear equations in most cases. Singularity problems can also occur if the 
degree of reductancc of the substrate and the degree of rcductancc of the product or biomass 
are the same or similar. One such example is the conversion of glucose (C6H 120 6 ) to acetic 
acid (C2H40 2 ) by £. coli. 

The second method of indirect estimation of biomass concentration and growth rate through 
on-line material balance was advanced by Zabriskie ct al. m.-'"'~ and Zabriskie and Hum
phrey. 326 This approach is based on the material balance of only one chemical component. 
With the help of a mathematical kinetic model which relates the formation/utilization of the 
chemical component under consideration to biomass growth. biomass and/or substrate con
centrations can be continuously estimated. Clearly. the accuracy of the estimates obtained 
by this method depends on the validity of the mathematical model employed. 

In the following discussion, the example of Zabriskie and Humphrcy·'26 will be used to 
contrast the two approaches. Because oxygen can be continuously measured both in the 
gaseous and aqueous phases and because it is closely related to the amount of energy produced 
or consumed by cell biosynthcsis and catabolism. it represents a component very well suited 
for this purpose. As in the first method. the quasi-steady-state assumption is applied to 
oxygen in order to calculate its consumption rate (OUR). The biomass concentration, b, is 
estimated in real time by integrating the following limiting substrate yield and maintenance 
model of Pirt. 117 

OUR 
I db 

= - - + 11\.1,b 
Y0 , dt 

(14a) 



- 733 -

CRC Critical Rn·ic11·s in Biotcc/11wlogr 

After an estimate of biomass has been obtained by integrating the above first-order linear 
differential equation. an estimate of the specific growth rate can he obtained by writing 
Equation 14a as: ·, 

I db 
µ = -

b dt 
Yo. OUR 

b - 111 Y"· ( 14b) 

The disadvantage of this method is that instead of assuming a known constant biomass 
composition used in the first method. a knowledge of the constants Y.,, and m.,, is assumed. 
The values of these parameters arc determined with off-line biomass sampling in the previous 
experiments carried out preferably under similar conditions as the real-time run. A criticism 
to this approach is that the accuracies of the biomass and specific growth rate estimates 
depend heavily on the reproducibility of the experimental conditions so that the same Y.,. 
and m,,. can be obtained. Thus. the ability to duplicate the previous experiments basically 
determines the success of this method. 

Zabriskie and Humphrey'~'' applied this algorithm to batch cultures of Thermoacri110111yces 
sp .• Streptomyces sp .• and Sacclwromyces cere1·isiae. The on-line correlations for the met
abolically simple Thermoactinomyces and Stn•ptomyces were successfully accomplished. 
but the metabolically more complex S. cere,·isiae assimilated glucose through different 
pathways during the course of fermentation. Because of the shift in the metabolic behavior 
(e.g .• the production of ethanol and acetate and the corresponding diauxic growth). the 
-values of Y.,. and m.,, were not truly constant but varied. and a correction factor based on 
a careful mathematical analysis of the representative pathways was needed to obtain good 
agreement between the estimate and the actual biomass data. The correction factor was 
expressed as a function of OUR and CER (or RQ) whose functional form was derived from 
a reference sequence of known yeast metabolic energy producing pathways such as the 
Embdem-Meyerhof-Pamas (EMP) pathways and the tricarboxylic acid (TCA) cycle. 

Another variation to the material and energy balances is the concept of the degree of 
reductance and that of an electron balance. J4

" The latter is actually the result of a linear 
combination of the elemental balance Equations 8 to 11. In this approach. energy requirement 
is divided into three parts: growth. maintenance. and product fom1ation. Some important 
regularities such as 27 kcal/g-equiv oxygen utilized and 4.291 for the degree of reductance 
of biomass are identified.·"'L'-'' The regularity between heat evolved and oxygen uptake 
means that the heat evolution rnte can be accurately correlated to oxygen measurements. At 
the same time. it implies that a heat balance may not be very useful as an additional 
independent equation in providing more information to indirect measurement due to the 
singularity problems encountered in solving linear algebraic Equations 8 to 11 and 13. as 
noted previously. If an energy balance is used in an attempt 10 estimate more stoichiometric 
coefficients. the resulting estimates will be very sensitive to measurement errors if such 
heat-oxygen regularity holds. 

The first method of macroscopic material balam:e was also applied to a hatch glutamic 
acid fermentation with Brt•1·ihacteri11111 fla\'Um by Constantinides and Shao."' The substrate 
(glucose) concentration was chosen as the additional measurement besides OUR and CER: 
however. a time lag of one half hour in the on-line estimate caused by the off-line glucose 
analysis was unavoidable due to the lack of an on-line enzymatic glucose analyzer at the 
time. The same method was also used by Swartz and Cooney'1K 10 monitor the growth of 
Ha11se1111/a polymorplw on methanol in a continuous fermentor. As before. an additional 
relationship was needed because of the presence of a product. A constant heat-to-oxygen 
ratio was used to satisfy this requirement because the heat measurement was unreliable. 
Control action was implemented to avoid methanol accumulation through an on-line ad
justment of dilution rate when the available oxygen level was reduced. However. their use 
of a constant heat-to-oxygen ratio to circumvent the sensitivity problems encountered in 
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calculating the stoichiometric coefficients is. in the authors· opinion. questionable. This is 
because the constant heat-lo-oxygen ratio is actually a manifestation of the singularity prob
lems arising in solving simultaneously the sci of elemental balance equations of Equations 
8 to. 11 and the energy balance equation. 

A variation of the second method of macroscopic material balance is to relate CER lo the 
specific growth rate (µ). and the substrate (glucose) consumption to µ through a semi
empirical yield and maintenance model.·'·"' The necessary information on the true growth 
yield and the maintenance coefficients arc evaluated from previous experiments. The on
line data on CER arc used to calculate µ. which. in turn, is used to calculate the substrate 
consumption rate. Given appropriate initial conditions. biomass and substrate concentrations 
could be estimated. 

A combination of the previously described two methods is also possible. In a study of 
penicillin fermentation by Cooney and Mou,-'·'·' instead of oxygen, carbon dioxide was used 
as the component for balancing because CER was found to be indicative of the cell growth 
rate. The calculation of biomass based on CER and the experimentally determined carbon 
dioxide yield coefficient worked well during the fast growth phase of a penicillin fermen
tation. but it failed during the transition phase and the antibiotic production phase. During 
the slow growth phase, a carbon balance was employed, with the assumption of a complete 
recovery of the carbon content in the nutrient as biomass, penicillin, and CO2 • Thus, the 
second method was used during the beginning of the fed-batch fermentation when yield 
coefficient stayed relatively constant; the first method was switched on when maintenance 
and endogenous metabolism caused the yield coefficient to vary. Biomass concentrations 
and instantaneous specific growth rates could be calculated, and an experimentally deter
mi9ed specific product fom1ation rate was used to approximate the penicillin level. A 
feedback control strategy was outlined in which the glucose feed rate was manipulated to 
maximize the specific growth rate in order to accumulate cells in the beginning of the 
fermentation.·'·'~ Feedback information was used to prevent glucose overfeeding which would 
result in side product formation and repress antibiotic synthesis in the next stage. As the 
penicillin production phase was reached, a slower growth rate was selected and maintained 
at a constant level by the control action, which at the same time also attempted to depress 
the glucose level to avoid catabolic repression. The preprogrammed desired cell growth path 
could be duplicated by the on-line feedback control, even when complex medium was 
utilized.·'"' Finally, these balancing methods were also applied to model the penicillin fer
mentation in tcm1s of a set of unstructured dynamic equations for biomass, substrate, and 
product by Hcijnen ct al. ·'"' 7 

C. On-Line Estimation 
Well-organized estimation studies in the biochemical engineering field have been quite 

limited in the past. An efficient estimation-filtering algorithm is especially indispensable in 
the face of the lack of reliable sensors for the direct observation of the important biological 
and physiochemical parameters needed for control and regulation. A good estimation scheme 
will continue to contribute significantly in a wide variety of processes even as sensor 
dcvclop1111:nt progresses. For example. a biomass sensor developed in the future may be 
useless in measuring the state of immobilized cells or those inside hollow fibers. Any 
fermentation substrate or product sensors to be developed will necessarily be specific, and 
they arc useless in other subs1r.11cs for which they arc not designed; nor will they be useful 
in an undefined medium. 

Because the variety of currently available continuous measurements is rather limited, no 
information contained in them should be wasted. For example, a pH measurement can be 
used not only to activate the pH controller. hut also to estimate a few other important 
biorcactor parameters such as the rate of formation of a metabolic product with acidic/basic 
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properties and the gas mass transfer rate from the analysis of the effect of dissolved carbon 
dioxide. Similarly. a calorimetric measurement provides other information in addition lo the 
cooling needs of a biorcactor. The limited assortment of measurements must be employed 
and interpreted. together with all other information available on the biorcactor. in order to 
estimate accurately as many important variables as possible. To this end. indirect measure
ment and material balancing methods prove to be extremely valuable. Thus. a sophisticated 
parameter estimation package is becoming increasingly important. especially as the number 
of parameters and variables expands as a result of a deeper understanding of the biological 
behavior.. 

Both balancing methods described in the previous section suffer from the inaccuracies of 
the available instruments. The error in the primary measurement is often large: its magnitude 
may be as large as over l00% of the measurement itsclf. ·'2'' These errors can have profound 
effects on the accuracy of the estimates obtained from these measurements. In one case. for 
example, the propagation of measurement errors compounded the deviation of the on-line 
biomass estimates from the off-line assay value as fermentation progressed. J.•t Noisy oxygen 
measurements were cited as one of the causes for the need of biomass concentration reini
tialization in the midst of fermentation as the deviation became unacceptably largc.·'20 

Furthermore, these balancing methods must be supplied with initial conditions which arc. 
at best. rough guesses. Despite the claim by Zabriskie and HumphrcyJ 2

" that the sensitivity 
of biomass estimates to the initial guess rapidly diminished in a batch fem1entation. this is 
not gencmlly true as shown by Stephanopoulos and San through statistical variance analysis.·,." 

In· material balancing techniques. the biomass concentration in a batch bioreactor is es
timated by integrating either Equation 14 or the following equation: 

db(t) dt = R(t); b(O) = b0 ( 15) 

However, the presence of errors in the various measurements produces rather noisy values 
for R(t) which. in tum. give rise to large fluctuations in the estimate of b(l) obtained from 
the integration of Equation 15. A useful analogy to the above procedure of estimating b(t) 
from the measured values of R(t) exists here: given the initial position of an object and the 
measurements of its velocity at various time instants. estimate the position of the object as 
a function of time. Because the initial conditions arc not accurately known and the meas
urements are corrupted by noises in actuality. Equation 15 should be written as: 

db(t) dt = R(t) + ~(t); b(O) = bu + i, ( 16) 

where. for the sake of simplicity. W) can be considered as a Gaussian white noise with 
zero mean and intensity <T2

, and. similarly. i, the uncertainty involved in the guess of b0 

with a variance of <T0
2

• 

It can be shown that b(t) will be a normally distributed random variable characterized by 
the following expected values and variances:,." 

Elb] = f' R(T)dT J., 

Varlb] = crl + cr2t 

( 17) 

( 18) 

Fed-batch and continuous ferrncntors can also be analyzed in a similar manner. The variance 
of the biomass concentration estimates increases with time for a batch or fed-batch bioreactor. 
whereas it approaches a limiting value of <T212D for a continuous fermentor. which is still 
quite high. Thus. it is highly desirable to employ a good noise filtration algorithm to boost 
the reliability of the estimated values before they arc used for modeling or control purposes. 
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The use of moving average to reduce the noise at the instrument level has always been 
very common due to its simplicity.-~2~ Measurements of oxygen concentration in the exit 
gas, for example. arc routinely scanned at a higher rate then averaged for a certain number 
of times before being used. However, the averaging methods arc poorly suited to the 
estimation of derivative quantities such as the specific growth rate. substrate uptake rate. 
and product formation rate. Although a simple average can reduce the noise level by a factor 
of Vn. where n is the number of measurements averaged. there is a practical limit to this 
number due to the considerations of time lag and time-varying nature of the quantities 
involved. No consideration to optimality is taken by the averaging method; nor is the 
estimation carried out for various variables which arc not directly measured. 

Since the operating conditions of most fermentors are strictly due to the sensitivity of 
microbial cultures to the surrounding environment, the control of the environment with a 
small degree of allowable excursion requires a more sophisticated estimation technique than 
a simple averaging to yield estimates that are almost noise-free. In a total absence of models. 
a recursive least-square filter may be used which yields estimates for the coefficients of the 
power series employed for the description of the independent variables. Thus, it is well 
suited for the smoothing of a series of raw measurements. This technique was used to smooth 
the noisy biomass optical density measurements by Jefferis et al.·'"" They expressed the 
biomass concentration as a second-order polynomial function of time. 

(19) 

The object of the whole scheme was to estimate the coefficients a.,. a,. and a2 while the 
discrete measurements were weighed in such a way that the contribution of each measurement 
decreased exponentially with time. After the coefficients were estimated. the growth rate 
was simply calculated from the following equation: 

db 
R = - = a1 + 2a2t 

dt 
(20) 

A similar algorithm was applied to other raw measurements such as the weight of nutrient 
reservoir and flow rate.73 The order of polynomial can be increased when sufficient data 
are available. 3~• It is also possible to interlock more than one state. A kinetic model may 
be incorporated into the least-square scheme to obtain a more rapid response,·""' or the least
square scheme may be combined with a Kalman filter to reach better estimates for certain 
variables when some empirical models can be applied to the raw measurement.73 

In yet another algorithm by Reu(3 et al.,351 the nonlinear model equations were quasi
linearized and the unknown parameters were each assigned a dynamic equation which was 
set to zero. Thus. the parameters were treated as constants. In one on-line batch experiment/' 1 

oxygen uptake rate was used to predict the biomass concentration, which was then compared 
to the intermittent automated optical density measurements. The deviation of the calculated 
values from the measurements was, in turn, used to iterate on the parameters (yield coefficient 
and maintenance coefficient) until the sum of the squares of the deviation was minimized. 
In another on-line experiment involving a column reactor,352 a distributed model was used 
to predict the dissolved oxygen concentration, which varied along the reactor. The dissolved 
oxygen profiles were measured, and a similar quasi-linearization method was employed to 
estimate the unknown parameters, in this case, the Stanton number and the Peclet number. 

Some soundly based and yet simple approaches, such as the material balance around a 
fermentor, as shown in Figure 7, are available for certain fermentation state variables. In 
such cases, a Kalman filter is very useful. Since its inception in the early 1960s, Kalman 
filters have been applied to chemical reactors. 353 -3~4 The extended (linearized) Kalman filter 
was applied to bioreactor state estimation and kinetic model parameter identification by 
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Svrcek ct al. ·'5 ~ They assumed that cell or substrate concentration measurements were avail
able and treated the substrate-lo-biomass yield coefficient to be constant and exactly known. 
which is not very likely in real situations. In their simulation. all the initial conditions used 
to commcnsc estimation coincided with actual values. The scheme was essentially an open
loop integration. and there was no indication that a wrong guess in the initial condition 
would eventually converge to the true value. especially if a wrong substrate-to-biomass yield 
coefficient was guessed initially. 

An adaptive Kalman-Bucy filter supplied with information readily obtainable from the 
on-line material balance was proposed by Stephanopoulos and San.-''1 ··''"·'

5
''·'~

7 The essence 
of the Kalman filter is briefly summarized below. For a more complete discussion. the 
reader is referred to the work of Stephanopoulos and San.·'·'1 •·'

4
"·

3
~"--'

57 

The dynamics of a nonlinear system and the measurements can be expressed in the general 
fom1: 

dx 

dt 
= f(x.u) + W) 

y = h(x) + W) 

(21) 

(22) 

where x is the state vector of a dynamic system, u is the nonrandom input vector. t<O is 
the random disturbance. and f(t) is the random noise in the measurement y. The linearized 
Kalman estimate, x of the true state x is described by the following set of vector and matrix 
filtering differential equations: 

dx dt = f(x,u) + P(h,<xws- 1(y - h(x)J (23) 

dP dt = (f,(x.u))P + P(f.(x.u)JT + Q - P(h.(x)JTS- 1(h.(x)]P (24) 

where P is the symmetric covariance matrix of the estimation error, and Q and S are the 
positive definite matrices which arc measures of the intensities of the noise processes t and 
f. respectively. 

[n this scheme, unknown parameters such as the specific growth rate and cell yields may 
also be estimated simultaneously by treating them as additional "state variables .. and setting 
their derivatives equal to zero. For example. when two state variables. namely. biomass 
and substrate concentrations. arc of interest in a continuous biochemical reactor. we may 
express the corresponding kinetic equations as: 

db - = -Db+ µb 
dt 

ds - = D(s, - s) 
dt 

µb 

Y, 

(25) 

(26) 

The parameters µ and Y, contained in the above equations arc not known. and can be 
estimated alongside with b and s by setting up superficial dynamic equations for them. 

dµ 
dt = ~. (27) 

(28) 
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The performance of the adaptive Kalman filter can be improved significantly by treating ~' 
as colored noise and by implementing the following equations: 

dµ. 
= C + t, (29) 

dt 

de C 
- + t, (30) 
dt 'T 

In the above equations, c is the colored noise correction variable. and Tis the time constant 
associated with c, which is usually of the same order of magnitude as the residence time 
constant. In other situations where Y, is suspected of being highly variant. we can couple 
another superfluous "state" to Y, as is done forµ. in Equations 29 and 30. 

From the material balance, Rand Y. can be indirectly measured. Thus, the measurement 
vector y is composed of: 

y, = R = h 1(b, s, µ., c, Y.) = µ.b (31) 

(32) 

A notable feature of this approach is the adaptive detection of the deviation of the predicted 
values from the measurement. The intensities of the process noise t, and ~~ in the variance
covariance matrix Q are adjusted on-line, depending on the magnitude of the deviation.''~ 
The estimation can be further improved, at the cost of a longer computation time. by 
smoothing358·w, or by relinearization for severely nonlinear systems.·""' 

· This general scheme can be applied to a wide variety of situations to estimate not only 
the states but also the associated kinetic parameters on-line continuously as long as they arc 
observable. This scheme is especially useful for estimating highly noisy derivative variables 
such as the specific growth rate. Computer simulations have shown close agreement between 
the estimate and the true values. 3·'v48

•356·m and wrong initial guesses also converged quickly. 
Its application to an actual fermentor was equally successful.:,,,, Using the data that arc 
readily available from applying material balances to the exit gas measurements. the authors 
have tried a similar technique to estimate the substrate yield coefficient and the maintenance 
coefficient simultaneously with very promising results. Finally, the Kalman filter technique 
has also been applied to waste treatment. 362

•
363 

D. Consistency Checks and Measurement Error Detection 
The discussion on estimation, thus far, applies to situations in which the number of 

measurements is just sufficient to determine a set of variables. The system is overdetem1ined 
when more independent measurements are taken than absolutely required for the full iden
tification of the system by the application of the available constraints. Because of the sensor 
inadequacy, highly accurate and reliable measurements on a fermentation process are difficult 
to obtain and are frequently limited to the ones absolutely necessary for the estimation of 
the bioreactor state. However, in some cases there may actually exist a redundancy in 
instrumentation when well-founded relationships such as material/energy balances can be 
applied to the measurement data. This redundancy is highly desirable and should be exploited 
whenever technically possible. especially in the fermentation field where the accuracy of 
sensors is extremely critical but also rather questionable. Sensor redundancy can be exploited 
in many ways. For example. suitable analytic methods can be applied to the redundant 
measurements to check the data consistency. to detect the presence of gross errors. to locate 
the source of gross errors. to minimize the noise level, to estimate the level of confidence 
in the experimental results, and to detect changes in models and model parameters. 
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Because of the various types of errors that may originate in random or systematic sources, 
the obtainable independent measurements rarely form a consistent set of data in the sense 
of satisfying the material/energy balances or other model constraints imposed on them. These 
errors may be significantly large. or, in some cases. the instrument may fail completely'. In 
such cases. the biased data will lead to false conclusions and inaccurate fermentation models 
for microbial growth kinetics. Any optimization based on these unreliable models will 
certainly be invalid. Furthermore. process control functions will possibly be rendered inop
erative if grossly erroneous measurements arc used for feedback control, resulting in unsta
ble or unproductive operations and economic losses. 

In a long series of publications, Erickson and co-workers-'4U""'-.n° have persistently ad
vocated that fermentation data should be checked for consistency by using macroscopic 
elemental balances combined with the regularities of oxygen-heat correlation and the degree 
of reductance of biomass. Consistency tests were applied to literature data from various 
fermentation processes, ranging from single-cell protein production-'42 to extracellular product 
formation.-'M .. w,.w, from batch culture·'M_rn, to continuous culture,-"""' and in a diverse col
lection of media containing hydrocarbon substrates-'"7 or nitrate as the nitrogen source.-'"" 
However, the above analyses did not consider the variation of errors contained in the 
measurements, and no criteria were given for assessing the reliability of the measurements. 
Likewise, when parameter estimation was attempted, different estimates were obtained for 
the same parameter, depending on the combination of the data set. 

A single consistent set of estimates that confom1 to the macroscopic elemental balance 
equations can be obtained by analyzing the raw experimental data with a scheme that 
incorporates the concepts from statistics and optimization. The presence of random errors 
was recognized by de K waadsteniet et al. 371 in their calculation of Y~ .• m,uP and the 95% 
confidence intervals. The maximum likelihood principle was employed by de Kok and 
Rocls,m Geurts ct al.,-m and Dckkcrs ct al.·'"0 to condition the raw data before indirect 
measurement variables such as RQ. Y~-; .. and PIO were calculated from the adjusted, 
consistent data. A slightly different approach that also used the maximum likelihood principle 
was taken by Solomon ct al. 374 to estimate these variables in one step. 

Because random errors in the measurements arc unavoidable, a certain degree of deviation·· 
in the consistency test is expected and is perfectly acceptable. To see just how large a 
deviation can be before the data arc rejected, a statistical hypothesis testing is carried out. 
Madron and co-workcrsm·-'7" introduced a powerful. yet simple, multidimensional chi square 
(X 2 ) test to indicate the level of inconsistency. Finally, Wang and Stephanopoulos"" have 
employed an on-line method to detect the presence of gross measurement errors. to identify 
the source of these errors if they arc, indeed, found to exist. to adjust the inconsistent set 
of fermentation data according to the maximum likelihood principle, and to rectify the 
erroneous data in an optimal manner. This method combines the use of macroscopic material/ 
energy balances. optimal minimization techniques. statistical hypothesis testing methods, 
and a highly efficient algorithm that was originally proposed by Romagnoli and Stcphan
opoulos. m The method contains many computational improvements to facilitate its real
time data processing. These improvements pcm1it sequential processing of the measured 
data and greatly minimize the effort in matrix computation. Such capabilities are especially 
valuable when the dimension of the problem is large. and they may prove to be critical in 
the actual on-line implementation of the combined methodology of error detection and data 
analysis. 

In Wang and Stephanopoulos· scheme. the balances that must be satisfied by the directly 
or indirectly measured variables arc written in the compact matrix form: 

Ay = 0 (33) 
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where y is the vector of the measured variables. For example, OUR, CER, substrate con
sumption rates, biomass synthesis rate, and product formation rate can all sometimes be 
measured. In this case the stoichiometric coefficients b. e, a. B, and r can be determined 
by employing balances similar to that of Equation 12. These coefficients must still satisfy 
the elemental balances of Equations 8 to I I and enthalpy balance of Equation I 3. Therefore, 
in the formulation of Equation 33, the stoichiometric coefficients will be the components 
of vector y and Equations 8 to 11 and 13 the row of matrix A for this example. 

The above equation represents a set of m linearly independent equality constraints appli
cable to a set of n measured variables y with I :,;:::;m <n. Because the vector of measured 
values contains random measurement errors o the true value for the measured variable is 

y = y + 0 (34) 

where, for simplicity, 6 can be assumed to be nomially distributed with a zero mean and 
with a variance-covariance matrix tf,. The presence of o in the measurements will force 
Equation 33 not to be exactly satisfied but will produce a residual E in the equality constraint. 

e = -Ay (35) 

Since the number of equality constraints is less than the number of unknowns, 6 cannot be 
estimated by solving Equation 33 directly; however, a maximum likelihood estimate of o 
can be obtained by minimizing the sum of the weighted error squares subject to the equality 
constraint of Equation 33: 

(36) 

where 

(37) 

Based on statistical theories, the following test function, h, was formulated to test whether 
the measurement vector y contains grossly biased errors such that the residual in the equality 
constraint is significantly large: 

(38) 

It can be shown that h is characterized by a x1 distribution with m degrees of freedom. 
Thus, the presence of gross errors can be detected with any desired level of confidence of 
I - {) in a straightforward manner by comparing h to Xi -{)(m). When the test is failed, 
the source of the gross error can be easily identified by the use of a serial elimination 
algorithm in which one measurement at a time is deleted to form new test functions. When 
a significant drop in the value of the test function is observed, the corresponding deleted 
measurement is identified as suspect. The computational effort in the serial elimination 
algorithm is further greatly reduced by the introduction of a useful matrix inversion lemma. 
Another advantage of Wang and Stephanopoulos' approach is that gross errors can be 
eliminated before Equation 36 is finally used to yield a consistent set of optimal estimates 
for the measurements. The error detection and identification potential of the scheme was 
demonstrated in the analysis of a number of literature data. The scheme was able to identify 
the same source of gross errors as suspected by the original investigators, except that. instead 
of relying on the past experiences or comparing to other sets of data, the scheme was able 
to yield the correct judgement systematically and consistently. The scheme's capability of 
systematic detection and rectification of gross measurement errors is especially valuable in 
the automated data collection, analysis. and computerized control of a bioreactor. 
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E. Estimation of Basic Hiochemical Parameters 
A macroscopic material balance involving Reaction 7 is not only useful in estimating the 

biomass concentration or the specific growth rate. It can also be used for the estimation of 
some other fundamental parameters involved in the metabolic pathways. thus. elucidating 
a given biological process. The decomposition of the overall Reaction 7 can be carried out 
in various ways. For example. it can be decomposed into two separate reactions, one for 
biomass synthesis and one for product formation.·' 1

·' A separate reaction for the respiratory 
metabolism may be added.-'7

" ATP generation by direct substrate oxidation and oxidative 
phosphorylation can be considered.-'"" and a reaction for the diauxic growth on the metabolic 
product after the exhaustion of the primary substrate is also possible. 

For example. after an analysis of the dominant metabolic pathways. the growth of yeast 
cells on glucose (C,,H, 10 6 ) with the production of ethanol (C1 H,,O,,) can be expressed as the 
following set of simultaneous reactions:-~0

--
11

~ 

TCA/glycolysis (39a) 

(39b) 

(39c) 

I 
Biomass synthesis t.: 6 C0 H120,, + o NH., + p NADH 2 + Y ATP ATP 

Cell maintenance s 5 = mATP: ATP--+ ADP (39e) 

where s,s arc the extents of the respective reactions and p is related to the degree of reductancc 
of biomass. For the sake of simplicity. some of the participating chemical compounds such 
as ADP. P, H10. and NAD arc sometimes omitted in the above equations to avoid undue 
complications. The generation of ATP through TCA cycle is biochemically well established 
in biochemistry. What is not so clear is the phosphorylation efficiency as indicated by the 
PIO ratio in the respiratory chain, the ATP yield coefficient (Y ATP) in the biosynthesis 
reaction. and the ATP requirement for cell maintenance (m,.TP). Note that various linear 
combinations of the above set of equations arc possible, and some may be more meaningful 
than others. The following arc some of the more popular permutations. 

+ (4 + 12PIO)ATP (40a) 

Equation 40a represents the internal combustion of glucose, and Equation 40b is another 
commonly used form of biomass synthesis in which the evolution of CO2 is included. 
However, the concept of linear independency indicates that no more and no less information 
is to be gained from the use of these linearly dependent reactions. 
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In the decomposed fonmdation. some information on reaction stoichiometry is availahlc. 
but the extents at which these parallel reactions pa11icipate in the overall process arc unknown 
and can be related to the stoichiometric coefficients of the overall Reaction 7. By halancing 
the nine components appearing in Equations 39a to 39e. we can obtain nine equations for 
each of the components. Of the nine equations. one equation is consumed by normalizing 
8 = ~ = I; another four equations arc the linear combinations of the elemental balances 
on C. H. 0, and N: and another three equations relate St• s~• ands., to the stoichiometric 
coefficients of Reaction 7: 

I 
st - (e 

6 
- f) (4 la) 

s2 b (41 b) 

I s, = - f . 2 (4 lc) 

Thus, the decomposed formulation in this example introduces only one additional inde
pendent equation that has not been available in the previous overall formulation. This equation 
is basically the ATP balance: 

f e 
- + 2 - + 6 PIO 
b b 

(42) 

Note that the above equation is gained only after the introduction of three additional unknown 
parameters: PIO, Y ATP• and mAn•· Therefore, this additional equation can contribute in the 
material balance scheme described earlier only when all the above parameters are known. 
Equation 42 can be rearranged to yield the following equation: 

f 6 (Y An• + mA11.) - 2p 2 p ( I + 3 PIO) - = --'-'-'"----'-'-'-'-----~ (RQ - I) - ----'------
b 6 (Y ATP + mAw) + P 6 (Y ATP + mATP) + P 

(43) 

A similar form for ethanol production with baker's yeast has been derived by Wang ct 
al.m without considering the set of parallel Reactions 39a to 39c in metabolic pathways: 

f b = (RQ - RQ0 ) (44) 

where RQ0 is the respiratory quotient when no ethanol is produced. Because the average 
degree of reductance of biomass is about 4.291,~-'K p = (4.291 - 4)12 = 0.15, and for a 
plot of fib vs. RQ Equation 43 predicts a slope of slightly less than I and an intercept on 
the RQ axis of slightly larger than I. In contrast. Equation 44 predicts a slope of I if RQ0 

is truly a constant. (Evidently. RQ., is not truly constant because it is actually a function of 
b in Wang ct al. 's formulation.) The experimental result in our laboratory confirmed this 
prediction, and a similar result. but with a much wider data scattering, was also previously 
observed.DA sensitivity analysis has shown. however. that both the intercept and the slope 
of the plot of fib vs. RQ are not very strong functions of Y AIP• mA11 •• and PIO;'·14 therefore. 
the relationship of Equation 43 is generally valid for yeasts following Reactions 39a to 39c. 
Of course, it must be rcfonnulated if the microorganisms do not undergo such pathways. 
The usefulness of this extra equation remains to be seen. However. the authors have some 
reservation about its contribution to the macroscopic elemental balance techniques. because 
the calculation of stoichiometric coefficients may be rather sensitive to the slope and intercept 
of the fib vs. RQ plot. This sensitivity may be partly related to the sensitivity resulting from 
the oxygen-heat regularity. 
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The above example of yeast growth is cited in order to demonstrate an uncomplicated 
methodology of how cell metabolism. in terms of the extents of reactions, can be monitored 
in real time with the existing instrumentation without prodding deeply into cells. The gen
eralized systematic approach to solving a set of decomposed parallel reactions is summarized 
by Rocls.-'i 1 However, it should be recognized that Reactions 39a to 39e are actually a set 
of starting assumptions. Since a different set of assumptions on the individual reactions will 
result in a different set of estimates for the extents of reactions, these assumptions must be 
independently verified through some other methods. In other words, these reactions must 
be established as the predominant representative of the intracellular metabolism despite the 
fact that the validification of these assumptions arc seldom practiced. 

V. MODELING, CONTROL, AND OPTIMIZATION 

All real processes are forced by random inputs, their mathematical models are frequently 
inaccurate, and the values of the important parameters are seldom known. The above prob
lems are more pronounced in the case of a biorcactor because of the generally poor under
standing of biological processes. indicating that feedback information must be utilized to 
obtain a satisfactory operation. Open-loop control schemes which do not utilize any feedback 
of information are subject to the effect of numerous uncertainties and perturbations which 
eventually will lead to instabilities and economic losses. Therefore, control strategies derived 
from the solution to optimal control problems cannot be entrusted for the bioreactor operation 
unless a feedback parameter adjustment mechanism is provided for. 

A schematic block diagram for the formulation of an interactive estimation-control-op
timization scheme is shown in Figure 18. The separation principle can be invoked to facilitate 
the solution of the combined estimation-control problem by considering the function of each 
element separately. Even though the validity of this principle is limited to linear systems 
only. it is usually extended to nonlinear systems as well in order to avoid the overwhelming 
complications that surface when all the functions of the problem are considered simulta
neously. Hence, the structured approach is preferred and may be the only means to solve 
the control-optimization problem without significant loss of optimality. 

In this structured approach, first a set of measurements on a biochemical reactor are made. 
These noisy measurements are then passed through an estimation-filtering scheme, and the 
relevant information is extracted to yield a set of on-line estimates for the state variables 
and growth parameters of the reactor. These estimates are subsequently fed back and com
pared to the set points, and the control signals optimizing some predetermined performance 
criteria are sent out to actuate controlling devices. The control signal is calculated by treating 
the estimates from the filters as if they were deterministic and by applying the well-developed 
deterministic control theories. The functions in the complete inner loop are carried out in 
real time with the highest priority. 

In addition to control, the estimated values for the states and parameters can also serve 
as a basis for on-line process modeling. In this function the estimates are passed through 
the outer loop as well. to generate feed-forward-control signals. In the outer loop, the 
biochemical process is continuously modeled, new values of the model parameters are 
estimated. and the biological model itself is constantly updated. Based on this updated 
mathematical model. the future state of the reactor is predicted and the optimal control 
strategy is reformulated periodically to minimize the projected value of the objective function. 
If modeling is too formidable and the rigorous dynamic optimization technique extremely 
complex to implement, an experimental optimization approach that requires no model can 
be carried out simultaneously. In this black-box approach. the optimal set points are con
stantly reevaluated through deliberate and systematic excursions from the current ones. 
Finally. the performance criteria may also be updated by an operator from outside as the 
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FIGURE IX. Flow structure of the measurement-estimation-optimization-control configuration. 

general objective of the operation or the cost structure changes. Thus, the whole feedback 
scheme is to a certain extent adaptive and self-optimizing in nature. 

By breaking the whole problem into many small manageable ones, a certain degree of 
optimality may be sacrificed in exchange for the ability to perfom1 such a combined feat. 
For example, it can be shown that only when the system dynamics and measurements are 
linear, and the random noise is Gaussian, can the separation of the functions of filtering 
and control still result in an optimal overall performance. ·"m Nevertheless, for a nonlinear 
system, which is the case most often encountered in fermentation, the separation principle 
is expected to yield a nearly optimal operation if the dynamic equations are linearized about 
the current states and if the nonlinearity is not exceedingly severe. Some promising results 
on nonlinear control based on the separation principle have been published in past years. 3-o.J~ 

The inner loop without the filtering and parameter identification-estimation block is typical 
of classical process control applications. The need to include the extra block in the inner 
loop has already been explained. The outer loop, although omitted from most chemical 
process control applications, is quite essential in the determination of the optimal operating 
conditions and the values of set points. If the process model and its parameters are known 
accurately, this determination can be made mathematically once when a set of performance 
criteria. such as a high productivity and a high yield efficiency, arc given. Only then can 
the outer loop be deleted without significantly affecting the optimum operation of the process. 
However. as mentioned before. microorganisms arc very sensitive to many parameters, some 
of them unforeseeable. Thus. the activity of an enzyme may be different from the predicted 
values. or the behavior of the microorganism may change gradually over a period of con
tinuous operation. In view of these uncertainties. an accurate analytical expression for the 
performance function in terms of this large set of parameters is presently impossible. Any 
attempt to do so is likely to produce only an incomplete expression. It is. therefore, necessary 
10 build a scheme for the reevaluation of various individual kinetic parameters. to update 
the control algorithm. and to readjust various settings when changes arc detected. This is 
especially true for a sensitive system where a tight control is essential for a successful 
performance. and most biological reactions fall in this category. 

A. Modeling 
Mathematical modeling in the biological field is a vast subject that requires the total 

devotion of a whole book. Mathematical modeling per sc is not reviewed in this article. 
Rather, the subject is reviewed here as it relates to computer applications in the areas of 
fermentor control and optimization. 
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Mathematical models arc routinely used in chemical engineering in various phases of 
operations from preliminary equipment design to the final specification of operating con
ditions and optimization. In contrast, the existing mathematical models arc rarely fully trusted 
by investigators in the biochemical engineering field. This is because the biological behavior 
has a complexity unparalleled in the chemical industry, and, consequently, its prediction 
from information about the environmental conditions is extremely difficult. Only quite 
recently has it been possible to predict in a limited way the impact of changes in control 
variables on the response of the microbial culture. 

Nevertheless, mathematical models, being the representation of our understanding and 
the condensed version of our knowledge, arc necessary for bioreactor design and the suc
cessful formulation of control strategies. In many instances, the objective of developing a 
mathematical model is explicitly aimed at providing the basis for controlling the performance 
of a bioreactor. 381 In this case, the effects of control variables (temperature, pressure, pH, 
concentration levels, etc.) on the process must be identified and described by models which 
can be referenced in making control decisions in a computerized bioreactor. Furthermore. 
they are absolutely indispensable in the calculation of optimal operating conditions, both 
static and dynamic. 

Computers are used in both stages of model formulation and model application. In the 
first stage, the formulation of a model requires systematic study and identification of the 
effect of the various model parameters. The study can be accomplished by experimenting 
in a fully controlled environment so that the effect of other variables are eliminated or, at 
least, minimized. Such full control and close monitoring is best achieved by using computers, 
especially in view of the large number of reactors usually employed for this purpose. 
Computers are also employed in the further manipulation of the collected data and in the 
identification of the model parameters as discussed in previous sections. Once a model has 
been constructed, simulations with computers are routinely carried out in biochemical en
gineering, 382 and they have been summarized elsewhere. 383 The use of a computer in the 
application of a mathematical model to control an optimization is the subject of later sections. 

I. Types of Growth Models 
The strategy of modeling has been discussed by Roels. 3114

•
385 A good starting point is 

usually the consideration of well-founded macroscopic component balances and elemental 
balances which require meticulous accounting of the participating chemicals. Creative think
ing can simplify things by selecting the most relevant state variables and the associated 
kinetic equations. Many additional constitutive equations for the conversion rate expressions 
are also needed at this stage. The most widely used state variables are biomass and substrate, 
with a Monod rate expression for biomass conversion and a yield coefficient-maintenance 
combination for substrate utilization. 

R = µ.mu S 

K. + s 

I 
R,=-R+mb 

Y, • 

(45) 

(46) 

Many variations to the Monod model have been proposed and are summarized by Fredrickson 
and Tsuchiya. ~116 

The sophistication of models ranges widely. and many classification criteria are available 
to categorize models in biochemical engineering. They can be classified as either statistical 
or deterministic, depending on whether random effects are considered; segregated or un
segregated, depending on whether the distribution of properties in a cell population is 
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differentiated: or lumped or distributed. depending on whether spatial variations in biorcactor 
conditions exist. Another classification. perhaps the most fundamental. is given by Kossen. '" 7 

According to this classification. models arc divided into phenomenological and mechanistic 
- (or structured) categories. Phenomenological models, sometimes also called formal. empir

ical, or black box models, arc usually unstructured and arc mainly used to describe the 
overall observed microbial response. These models are usually specific to the system for 
which they were developed and generally not applicable in other environmental conditions. 
On the other hand, mechanistic models structure the cell into many components in order to 
provide explanations for the observed phenomena. Thus, it is more encompassing than an 
empirical model. The success of a mechanistic model lies in its ability to predict microbial 
response under different environmental conditions; the test of its validity. therefore, is more 
stringent. In a structured model, the macromolecular components such as proteins, DNA/ 
RNA, and carbohydrates are distinguished, and the concentrations of various compounds 
and enzymes involved in different metabolic pathways arc followed.-'"" As can be seen from 
the discussion on instrumentation, these internal states of cells are difficult to observe, let 
alone quantify in real time. Thus, most models proposed to date in literature arc deterministic, 
unsegregated. and unstructured. 

2. Considerations in Modeling and the Use of Models in Computer Control 
Some of the considerations in modeling cell growth and metabolism arc shown in Figure 

19. As evidenced by this figure. there are many aspects that a model must account for, and 
these aspects are discussed below in the context of bioreactor modeling. 

First, the flow and mass transfer processes, although not strictly the problems exclusive 
of fermentation technology, arc quite dominating inside a bioreactor. Gas-liquid interfacial 
transport and the flow characteristics, influenced by rheological and surface properties, 
determine the mixing of broth, affect the heat-mass transfer properties, and create gradients 
in pH, temperature. and concentrations within the same fermentor. The relationships- between 
flow structure and reactor behavior and the methods of measurement of flow pattern, bubble 
swarm behavior. and turbulence properties were discussed by Schiigerl et al.'"" The variation 
of oxygen mass transfer coefficient inside an air lift tower loop reactor was studied recently 
by Luttmann et al. 3''0 ·"'' by using a distributed parameter model and by measuring the 
dissolved oxygen concentration profiles along the tower. Besides the oxygen mass transfer 
coefficient, the variations in gas pressure and velocity were also taken into consideration in 
estimating the kinetic parameters. 

Because gas bubbles are sparged, broken up, and dispersed by agitation. aeration intensity 
is a function of both the flow pauem and mass transfer characteristics. The effect of aeration 
intensity on the energetics of baker's yeast growth was studied by Oura by keeping other 
environmental factors constant;w~ however. the Y ATP and PIO ratio could not be determined 
simultaneously and independently. The effect of aeration on the yeast metabolism.-"'-' oxi
dative enzyme activities,,,._. and glycolytic and pentose phosphate enzyme activities'"~ in the 
absence of catabolite repression was also investigated. 

The effect of the extracellular physical and chemical environment on cell metabolism is 
well recognized. For example. the temperature effect on microbial metabolism is very 
profound because the enzymes inside a cell can only operate within a very narrow temperature 
range.- The metabolic activities at different temperatures are not the same unless the 
temperature dependencies of the enzymes are all the same, which is highly unlikely. Sim
ilarly. different enzymatic reactions have different optimum pH ranges; thus. different path
ways may be favored during the course of fermentation, and the kinetic rate expression may 
also shift as a result. The increased significance of dormant parallel shunting pathways as 
the pH is changed can be used to explain qualitatively the existence of the so-called "shoulder 
effect" in a batch fermentation. m For the same reason. maintaining the pH at a constant 
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value throughout the entire batch or fed-batch fennenlation, in spite of its popular practice. 
is generally nonoplimal. wx Although pH is mentioned as an example, the same general 
principle applies to other variables as well. 

The interface between the extracellular environment and the intracellular environment is 
the cell membrane, and the membrane transport process supplies a microbial cell with the 
necessary nutrients and removes harmful products of metabolism from it. Although cell 
behaviors are routinely correlated to and modeled in lem1s of extracellular environment. it 
is actually the intracellular environment that a cell responds to. Each cell can be viewed as 
a complex chemical reactor in which thousands of enzymatically catalyzed reactions with 
intimate interactions take place along with internal feedback controls and inhibition/repres
sion/activation. 399 These reactions can be roughly divided into two categories: those which 
break up the nutrient compounds lo derive energy (catabolism) and those which assimilate 
carbon sources to and from cell biomass (anabolism). These reactions are the heart of the 
fermentation process, and there is an urgent need to understand fundamental microbial 
behaviors in terms of catabolic and synthesis pathways. The imbalance between catabolism 
and anabolism results in internal osmotic, redox, and energy imbalances:""' The excretion 
of partially oxidized secondary metabolic product, the increased rate of respiration. and the 
shift in the respiratory mechanism to avoid excessive ATP generation are some manifestations 
of the cell's effort to level these imbalances. 41

"' An understanding of these processes will 
have a profound impact on the formulation of a process control scheme. Toward this goal. 
multicompartment mathematical models arc frequently used. 171

·"'
0

' In a multicompartment 
model, intracellular material is divided into many parts. The criteria for classification and 
the number of compartments depend on the specific process being modeled. but the most 
popular division is along the lines of macromolecular components (RNA/DNA. protein. 
carbohydrate contents, etc.). Individual considerations of each and every chemical compound 
are not practical; instead, lumping techniques should be utilized. The possible exceptions 
to this rule are the carbon source. ATP/ADP, NAD/NADH. and certain important inter
mediate products. Usually, various intracellular biochemical mechanisms are considered in 
a structured modeling approach;38

K however, the sophisticated approach is fruitful only when 
the model is centered around a few carefully selected predominant mechanisms. 

Mathematical models are used to formulate control strategics. The sophistication of the 
resulting strategies varies widely. Among the straightforward ones may be an adjustment of 
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wine fermentation temperature in order to avoid overload on cooling; the heat generated can 
be predicted based on a set of simple kinetic equations that take into account the ethanol 
inhibition and the temperature effects on various model parameters. 402 Because yeast cell 
growth and sugar uptake rate is slower at lower temperature. it is possible to spread the heat 
generation into a longer period of ti1i1e so that the overall cooling requirement can be met 
by the existing equipment. Among the slightly more involved control strategics are those 
based on gas exchange values, especially the RQ. The use of RQ as an indicator of cell 
physiology and control based on RQ has often been proposed. m For example, RQ can be 
direct I y used to estimate the extents of reactions for yeast growing on ethanol. 403 The 
interpretation of RQ in terms of physiological conditions is slightly more complicated for 
yeasts growing on glucose (see Equation 43). Wang ct al. ' 24 interpreted RQ > 1.0 as ethanol 
formation, 0. 9 < RQ < 1.0 as oxidative growth, 0. 7 < RQ < 0.8 as endogenous metabolism, 
and RQ < 0.6 as ethanol utilization. The use of models in the sophisticated computer control 
of fermentation processes has been discussed by Yoshida and Taguchi.404 

The characteristics of a proposed control strategy can be studied through the use of 
mathematical analysis and the application of control theories. A preliminary evaluation of 
the feasibility of realizing the proposed scheme can be carried out by examining the computer
simulated transient behavior and the stability of the system. The effect of different modes 
of regulation on the bioreactor behavior was analyzed by Chirkov ct al. 40

~ and a different 
mode was recommended for each different objective. Many revisions of the model may be 
necessary. and each time a new control strategy may be formulated. For example, some 
additional parameters that have been neglected in the original models, such as the maintenance 
term on substrate and endogenous decay, change the steady-state condition in a continuous 
fermentor. More importantly, these neglected parameters can affect the transient behavior; 
while a simple Monod model with a constant Y, cannot exhibit damped oscillation behaviors, 
a Monod model with a maintenance term can. 

3. Modl'I /dl•ntification and Parameter Estimation 
Mathematical estimation of model parameters is generally carried out by minimizing a 

selected objective function by some sort of optimization technique. Normally, a single set 
of parameter values arc obtained through a least-square type of algorithm. 406

•
407 Linear static 

parameter estimation methods for fitting experimental data to a model arc well established.
However, there arc no generally applicable theories for nonlinear parameter estimation. 
Alternatively, a sensitivity function can be formulated to study the relative effect of changes 
in various parameters on the observed state variables. A black-box (experimental) approach 
with least-square fitting criteria was used by Meiners and Rapmundt409 to identify some of 
the most important parameters in relation to the order of dynamic model and the time delay. 
Various interactions between input variables and output variables can be identified through 
the use of a sensitivity function, and the estimated parameters can be used to construct an 
empirical model of the dynamic system which, in turn. can be used to formulate overall 
control strategics and design controller gains. 

In yet another black-box systems engineering approach adapted by Young and Bungay,4 10 

a block diagram of the biorcactor system was first constructed from a set of Laplace-
1ransfom1ed dynamic equations for biomass and limiting substrate. The specific growth rate 
was expressed as a function of substrate. temperature, and pH; similarly, the yield coefficient 
was expressed as a function of the specific growth rate. A quick glance at the block diagram 
enabled a researcher to sec what types of experiments were needed to determine the dynamic 
relationships in each of the blocks. The response of biomass, glucose, RNA, and protein 
concentrations to separate step changes in feed glucose concentration, dilution rate, pH, and 
temperature were monitored scmicontinuously in a continuous fcrrnentor with Saccharomyces 
cwe,·isiae. The response diagrams were analyzed by the use of classical control theories, 
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and lhe model paramelers were evaluated by minimizing an objective funclion wilh an 
ileralive procedure. However. due to linearizalion in Laplace transfom1ation. the range of 
validity of the derived model was limited to the vicinity of the steady state around which 
linearization was carried out. Unfortunately. this is generally true. and some model para
meters can be identified only at certain restricted conditions. ·"· 1 

Nonlinear programming methods arc used by Alvarez and Ricano. 411 to determine the 
maximum specific growth rate. lhe Michaelis-Menten constant, and the overall substrate
to-ccll yield as polynomial functions of temperature and pH. They pointed out the prevalent 
lack of statistical analysis ori lhc estimated parameters and applied the Z-test to examine the 
randomness of the residue. Furthermore, a Student-Fisher test was employed to detect and 
delete those parameters of the polynomial regression that had no physical meaning because 
of the high standard deviation associated with them. 

Some model parameters are continuously changing despite the fact that they are commonly 
treated as constant. When these parameters cannot be empirically expressed in a closed 
functional form in terms of other independent variables, they are sometimes treated as 
dummy-state variables and their values are estimated as if they were state variables. The 
specific growth rate and substrate-to-biomass yield coefficient arc sometimes treated this 
way, as mentioned earlier in the section of on-line parameter estimation. In an attempt to 
improve the agreement between the prediction of a simple Monod model and the experimental 
data, Takamatsu et al. 412 introduced an "activity" variable, which was related to the specific 
growth rate. 

Inversely, when there are unmeasurable or uncontrollable variables, the order of system 
should be reduced through lincarization and the complexity of the system should be reduced 
through the use of simplifying assumptions.4{ ... When the number of model parameters is 
too large, the on-line estimation may become unfeasible. (For example, 87 min of CPU on 
a relatively powerful IBM 370/135 computer were consumed to estimate 24 parameters in 
a SCP respiration model!413

) In such a case, the number of parameters must be reduced to 
a manageable level.414 If some uncertain parameters still remain after the simplification 
effort, a control strategy can sometimes be formulated in such a way that the effect of these 
uncertain parameters on the overall performance is minimized.••~ 

In closing, it should be pointed out that a good agreement between the model and data 
is, although definitely necessary, far from sufficient to claim the validity of a particular 
model, especially if the data is available for only one set of conditions. For example, four 
models (Monad, Contois. linear-specific growth rate, and enzyme kinetic model of growth) 
could not be distinguished from one another by comparing the simulated batch growth curves, 
because the curves for each model based on the appropriately chosen parameter values all 
closely agreed with the fermentation data:1111 Model differentiation is often a very difficult 
task, requiring dedicated efforts. The demonstration of more general behaviors such as 
oscillations. limit cycles, and hystereses are sometimes used, but some ingenious techniques 
are frequently contrived for one-time use. Quite often. one becomes too indulged in fitting 
the data of a very limited number of experiments into a preconceived model that does not 
exhibit or cannot explain the observed global behavior. The number or the nature of the 
data are frequently insufficient or inadequate to identify the model parameters properly. 
Thus, the degeneration of creative modeling into systematic curve fitting is forewarned. 
Furthermore, the validity of the model is rarely checked under different sets of experimental 
conditions. Since a mathematical model is only an approximation of the actual phenomenon. 
it should be simple enough for us to understand. yet sophisticated enough to display all the 
pertinent behaviors correctly. In addition, a well-formulated model has an inherent capacity 
for future refinement and improvement by guiding researchers 10 design revealing experi
ments and by allowing them to observe the hitherto unnoticed phenomena. 

Finally. it is our opinion that modeling should somehow reflect the present state of 
knowledge. It should never proceed beyond such a point where the increased complexity 
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no longer contributes to the true understanding. It is almost always much easier to fit the 
same experimental data to a sophisticated model containing many dynamic equations and a 
multitude of adjustable parameters than to a simple model containing only a handful of these 
dynamic equations and a comparatively small number of parameters. The overuse of pa
rameters without adequate justification is especially tempting in the rigorous structured 
modeling approach where even the minutely significant metabolism or chemical components 
arc considered. The additional infonnation gained is hardly worth the greatly increased 
complexity. Approximations and assumptions should be critically utilized to eliminate many 
nonessential parameters and states by carefully selecting the more relevant variables ac
cording to. for example, time scalc·'x•.-'x~ and length scale. 385

--'
87 Although the extremely 

complex nature of the biological system may require complicated models, we should resist 
oversophistication because it tends to defy the very purpose of modeling by obscuring the 
essence of the model and makes the prediction of microbial behavior exceedingly difficult 
or even beyond human comprehension. In conclusion, one should be skeptical with models 
that contain an overwhelming number of parameters whose numerical values cannot be 
experimentally evaluated, for. as pointed out by Roels,384 such detailed modeling is hardly 
rewarding. History has shown that simplicity shall prevail, and herein lies the difficulty in 
modeling. i.e., how to explain intricate responses with simple lucid models. 

B. Control 
In the past, pH, temperature. dissolved oxygen, viscosity, substrate concentration, biomass 

concentration, RQ, and a wide variety of other variables have been controlled at constant 
values. in combination or alone, by various investigators with the aid of computers. In the 
studies of hydrogen or methane-oxidizing microorganisms, it may sometimes require the 
fermentor gas composition to be controlled automatically so that the gas exchange parameters 
can be meaningfully determined. 4

"' Fennentation vessel pressure and foam are routinely 
regulated but not really controlled. 

Except when specifically designed to demonstrate the technical feasibility of performing 
such control tasks. it should be cautioned that control for the sake of control accomplishes 
very little if not nothing at all. As pointed out in the previous sections, some control studies 
seem to lack purpose because they give no indication of the motivation behind them. If the 
benefit from a proposed additional control cannot be clearly stated, then setting a set of 
chosen variables at constant values merely degenerates into regulation and can no longer be 
truly regarded as control. The implementation of not only control functions but also regulatory 
functions often needs to be justified; the economic truth is that even sophisticated control 
algorithms arc warranted only if their implementation can improve the performance com
mensurate with the extra effort. 417 Thus, although regulatory controls are useful in modeling 
studies where the undesirable influences of other variables are to be eliminated, simply 
maintaining a set of variables at constant values may not always be rewarding in an industrial 
environment. 

Computer control structures for microbial cultures are shown in Figure 20. They can be 
represented by three different block diagrams. The first case (Figure 20A), which is presently 
the most widely used structure. is to institute separate controls for different variables with 
totally independent loops. The conventional on-off or PID controllers employed to regulate 
such individual variables as pH. temperature, and vessel pressure generally fall within this 
first category. In the second case (Figure 208), the interactive effects of the manipulated 
variables on the controlled variables are recognized. The simultaneous computer control of 
biomass and substrate concentrations affected through dilution rate and feed composition 
manipulations is one such example. In the third case (Figure 20C), the interactions between 
different controlled variables arc also considered in the programmed controller. Typically, 
many levels of cascaded loops arc contained in the much more sophisticated controller. In 
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the most general manner. the intracellular cnvironmcnl and metabolic activities arc directly 
measured or indirectly estimated in the outer loop. They arc compared to the desired pattern 
stored in a computer. and set-points in terms of the extracellular environmental variables 
are generated for the inner loop. This cascaded control configuration is the manifestation of 
the fact that we can only hope to innucncc the intracellular environment through manipu
lations of the extracellular environmental variables. Since the intracellular environment. over 
which we have no direct control. is what cellular metabolisms respond to. the importance 
of understanding the effects of extracellular variables on the intr~cellular environmental 
variables and metabolic activities is again emphasized. Unfortunately, the identification of 
the interactions has been hampered by the complex and nonlinear linking between various 
variables. An example of this third case is the attempt to suppress the formation of undesirable 
secondary metabolic products by monitoring gas exchange conditions. which act as indicators 
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for the intracellular metabolic activities; set-points arc then generated for biomass. substrate. 
and/or dissolved oxygen concentrations. and the controls arc finally realized by altering 
nutrient feed rate. aeration rate. etc. 

The control of a microbial system represents an ultimate challenge for many people. 
Because a fermentation process is sensitive to many variables. in theory an interactive 
multi variable, multiloop control should thrive in such a process, but in actuality such controls 
arc rare. At present. controls arc rarely carried beyond manipulations of the extracellular 
environmental conditions of temperature, pH, dissolved oxygen, and substrate concentration. 
Nevertheless, more imaginative multivariable interactive controls designed to shift intra
cellular mechanisms through the manipulation of the extracellular environmental conditions 
are expected to appear in the future. As more sophisticated control schemes arc devised. 
conventional on-off or PIO controllers will no longer be adequate and computers arc expected 
to be indispensable in carrying out such schemes. 

Finally, fermentation product recovery processes, although not extensively covered in this 
review, may be even more cost intensive than the fermentation process itself. an<l its control 
cannot be neglected in an integrated scheme. Of course, widely differing control strategics 
are possible depending on the specific method of recovery used. An example of the control 
of a lyophilization process (drying by sublimation under vacuum conditions) was discussed 
by Jefferis in which the temperature and pressure of the drying chamber were controlled to 
achieve a shorter drying time.41 x This example offered a unique method of detecting eutectic 
freezing by an electrical resistivity measurement on the fermentation product. 

In the following discussion, recent studies in the general multivariablc control algorithms. 
simple direct environmental feedback controls, and cascaded environmental controls aided 
by computers will be reviewed. Although they are centered on microbial cultures. most of 
the fundamental engineering principles and computer utilization can be directly applied in 
the same manner to animal or plant cultures as well. The major differences between microbial 
cells and animal cells that one needs to consider in computer application are listed by Nyiri.•i-• 

I. General Co111rol Algorithms 
The general algorithms for an optimal feedback controller for fermentation processes were 

adapted from the well-known optimal control theories by Fawzy and Hinton to handle 
disturbances in state variables. 420 First, a set of state equations and measurements arc ex
pressed similar to Equations 21 and 22. Then, they are linearized to yield: 

dx dt = Fx(t) + Cu(t) + GW; x(O) = 0 (47) 

y(t) = Hx(t) (48) 

where x is now the vector of the deviations of the states from the desired values, u is the 
control vector, \V is the disturbance in state variables, and y is the vector of the measured 
variables. Three possible situations were each analyzed. The first scheme assumed that all 
the states were measured. The optimal control signals for this case were calculated by 
minimizing the following quadratic cost function: 

Ii'' J = - [xTAx + uTBu]dt 
2 ... 

(49) 

where A and B arc the weighing matrices. The second scheme assumed that only some of 
the states were measured, and a solution minimizing a cost function similar to the above 
could be obtained accordingly. The last scheme, which corresponds to the most frequently 
encountered situations in fermentation processes, assumed that the states were not directly 
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measurable and that the measurements and system dynamics contained noises. The separation 
principle was applied to estimate the state variables with a Kalman filter (Equations 23 and 
24) cascaded with the deterministic approach of the first scheme. The performance of the 
optimal controller for each situation was evaluated by computer simulations in which biomass 
and substrate concentrations were maintained at the desired constant levels by manipulating 
the flow rate. As expected. the results revealed that the performance was superior when the 
states were directly measured. 

In the next study. Fawzy and Hinton•21 proposed an optimal controller for a set of multistage 
continuous fermentors. The control structure was derived to minimize an appropriate per
formance index during the transient from arbitrary initial conditions to the desired steady 
state by controlling the residence time in each fermentor separately. In order to reduce the 
computer memory requirement and facilitate computation. a multilevel computation approach 
was introduced as an alternative to the conventional single-level technique. 

However. to the authors' knowledge, no actual control has yet been implemented in which 
the controller output is determined according to the above optimal strategies. Instead. control 
studies to date arc concerned with the demonstration of the ability to reach the desired states 
without any optimality considerations. It should be pointed out that the actual implementation 
of the optimal controller strategies may not be feasible if perturbation from the desired values 
is frequent and if a large fraction of the computer resource is needed to calculate the optimal 
trajectory. Thus. the absence of optimal controllers in the existing fermentation processes 
is a reflection of the point stressed earlier that sophistication must be justified by the realizable 
improvement in performance. 

2. Direcr E11l'iro11me111al Controls 
Some processes arc inherently unstable under the conditions one wishes to operate. and 

disturbances in the state and manipulated variables cannot be totally eliminated. As a result. 
information feedback is necessary to close the control loop and ensure satisfactory operation. 
A difficulty here is the limitation of sensors capable of being interfaced to a computer to 
yield continuous. instantaneous information on the fermentor status. thus. prohibiting the 
realization of comprehensive feedback control schemes. 

A study by Boylc422 examined the possibility of manipulating the dilution rate and the 
feed substrate level for the simultaneous control of the biomass and substrate concentrations ' 
at constant values in a quasi-steady-state fed-batch fcrmentor. Following the lincarization 
of the dynamic state equations in the form of Equation 47. a mathematical analysis on the 
interaction between the state variables and control variables showed that the dilution factor 
should be used to control the substrate concentration and that the feed composition should 
be used to control the biomass concentration. The optimal controller settings were obtained 
according to the first scheme just described above. but the feedback gains were unrealistically 
high. To overcome this problem. a more direct approach was utilized to determine the 
controller law. In a subsequent application of these findings by Kalogerakis and Boyle}2 ' 

biomass and substrate concentrations were experimentally controlled to achieve a quasi
stcady-state fed-batch yeast fem1cntation in the face of various externally imposed disturbances. 

The dynamics of a continuous biorcactor subject to substrate inhibition was studied by 
Edwards ct al. ,424 and the responses of a turbidostat and a nutristat under proportional control 
of flow rate were simulated. With the help of computers. Rolf ct al. ~1 studied the effect of 
dissolved oxygen level on µ and Y, in a batch fcnnentor cultivating a methanol utilizing 
bacterium and concluded that µ as a function of the limiting substrate (dissolved oxygen) 
was nonmonotonic. Thus. there existed multiple steady states under a continuous operation. 
and the unstable steady state could be maintained only when feedback control was enforced. 
The dissolved oxygen control was actuated by first altering agitation speed then adjusting 
aeration intensity if necessary. 
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Takamatsu ct al.42
s simulated the single-variable control of constant biomass concentration 

in a continuous bioreactor by adjusting the dilution rate. They concluded that a superior 
performance was obtained when the biomass concentration was directly measured and that 
divergence was possible when the dissolved oxygen level measurement was substituted for 
the biomass concentration measurement. A noninteracting multivariable control was also 
simulated in which both the biomass and substrate concentrations were kept constant by 
individually manipulating two substrate flow streams of different concentrations (i.e., equiv
alently the dilution rate and the feed composition). Again, the controller performance was 
better when the states were both directly observable. Subsequently, an estimation method 
based on a mathematical model was proposed to derive the biomass and substrate concen
trations from the oxygen uptake measurement in an activated sludge reactor used in a sewage 
treatment plant. 42

'' The action of Pl controllers regulating the recycle rate was similarly 
simulated with a different set of models, and Takamatsu et al. noticed that even in the 
presence of a time lag of 30 min and despite the variations in the inlet flow rate and substrate 
levels, the outlet substrate concentration could be controlled almost as satisfactorily as under 
the idealistic deterministic conditions with exactly known biomass concentrations. However, 
these results were not verified experimentally. 

Although mixed culture processes dominate the natural environment, few mixed culture 
systems are used in the fermentation industry, and to the authors' knowledge none is currently 
being controlled in terms of microbial interactions. Hatch et al. 307 and Hatch and Cadman427

•
428 

have considered the possibility of multi variable computer control of a continuous competitive 
mixed culture fermentation by monitoring the concentration of each microorganism with a 
laser cytophotometer on a semicontinuous basis. In order for both competing organisms A 
and B to coexist in a continuous steady-state fermentor, the dilution rate has to be carefully 
controlled at D .. , the common value of the specific growth rate of the two species, as shown 
in Figure 21. The simultaneous control of steady-state cell densities, cell density ratios, and 
the growth rates is desired. The control strategy based on two manipulative variables (sub
strate feed rate and the dilution rate) cannot be implemented manually because of the 
sensitivity of the system; it can only be accomplished through a continuous on-line feedback 
control. The response of the classical proportional control algorithm was simulated with a 
computer, wherein the substrate feed rate was directly coupled to the concentration of the 
faster growing culture and the dilution rate was directly coupled to that of the slower growing 
culture. 307

•
428 This structure produced an excessively long response time (50 hr) for the 

system to approach to another steady state. Realizing that the dilution rate affected both 
microorganisms and that the substrate concentration affected their relative growth rates, the 
same researchers devised an improved scheme where the dilution rate was coupled to the 
total cell density and the substrate feed rate was coupled to the difference in cell densities. 
The scheme was further improved by coupling the difference in cell densities to the desired 
substrate concentration, which was, in tum, used to calculate the substrate feed rate through 
a linearized kinetic equation. After a few trials, the new scheme was able to shorten the 
response time to 4 hr. Regretably, the control scheme was not carried beyond the hypothetical 
computer simulation. 

Using a computer, Whaite and Gray performed an on-line optimization study to maximize 
the biomass productivity in a steady-state continuous fennentor. 429 From Figure 22. in which 
the schematic plot of cell concentration and cell productivity vs. dilution rate is shown, it 
can be readily concluded that the maximum biomass productivity is realized by operating 
al a dilution rate of Dm .. with the corresponding biomass concentration at b...,,, provided 
that the system parameters are known to enable the construction of such a curve and that 
they remain constant during the fermentation. In their study, the optimal biomass concen
tration was found experimentally and used as the set point. The biomass concentration was 
monitored in real time with continuous optical density measurement, and the dilution rate 
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was adjusted accordingly to keep the cell concentration at the desired value so as to actualize 
maximum productivity. Derivative action was added to minimize the oscillation caused by 
the delay in the response of cell concentration to dilution rate changes. 

Danielsson et al. 1"
7 have achieved controlling the product (glucose) concentration at a 

desired constant value as the substrate (lactose) concentration in the feed stream to a lactose 
enzyme reactor was changing in either a stepwise or a continuous manner. A standard Pl 
controller was used to adjust the feed pump speed based on the continuous glucose meas
urement performed by an enzyme thermistor containing co-immobilized glucose oxidase and 
catalasc. They also performed an experiment under more realistic conditions in which whey 
was used as the feed. The enzyme in the reactor was gradually deactivated due to the 
precipitates caused by the protein present in the whey. They demonstrated that the glucose 
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concentration could be controlled rather precisely at the desired level under gradual enzyme 
deactivation in the reactor until !he operation was discontinued because of the deactivation 
of the enzyme. 

In another experiment, 21
" production o( ethanol by an immobilized yeast was controlled 

by signals from glucose and sucrose enzyme thermistors containing glucose oxidase-catalasc 
and invertase, respectively, such that the substrate (glucose and sucrose) concentrations in 
the fermenter were kept at constant levels. 

Though not the primary concern of this paper, computer control has also been widely 
applied to wastewater treatment plants and dairy product processing factories. One of the 
examples in the latler field was supplied by Franks ct al.274 in the production of cheddar 
cheese. They proposed to control the temperature according to a prespecified profile deter
mined from the mathematical analysis of the kinetic model of syneresis for a multiorganism 
culture so that the variation in the product quality could be reduced. Some examples in the 
areas of industrial brewing and wine and soy sauce fermentations also exist, but they will 
not be elaborated here. 

3. Feed-on-Demand Co111ro/s for Biomass Production 
In recent years, feed-on-demand type of control has become very popular as a means of 

manipulating the cellular metabolic activities, especially in the area of biomass production. 
To achieve an optimal result, the nutrient feed rate often needs to be regulated so that the 
substrate concentration in the fermentor is ideal for cell growth. For example, it is well 
known that an overfeeding of sugar to yeasts results in ethanol formation even under aerobic 
conditions (commonly known as aerobic fermentation, glucose effect, or Crabtree effect). 
The same considerations regarding overfeeding and underfeeding also apply to other mi
croorganisms utilizing other substrates. In general, the formation of undesirable product not 
only lowers the cell yield but also inhibits cell growth. On the other hand, an underfeeding 
results in cell starvation and specific growth rate deterioration, reducing the volumetric 
productivity. There are two types of feedback control policies to regulate the nutrient feed 
rate. In the first type, an indirect control parameter that can be continuously monitored is 
used to serve as an indicator of the metabolic activity. RQ,'2022

··
127

•
32

"·
41"·.:io~-'• CER, 

OUR,431
•
435 DO. "'0 • 2611 ·•'16.◄37 and pH43

K are often used for this purpose. In the second type, 
the formation of the undesirable side product is directly detected by monitoring its concen
tration in the broth 2611 or in the exit gas.432

•
4

'16 Alternatively, the substrate concentration in 
the fermentor may also be directly monitored as a basis for actuating the feed pump. 2"

7 

Because the gas analyzers for 0 2 and CO2 are readily available, easily operated, and 
reasonably reliable and sensitive, RQ measurements have widely been used as the indicator 
of ethanol formation in a baker's yeast fermentation employing glucose as the main carbon 
source. 'As shown in Equation 43, RQ should be near 1.0 in the absence of ethanol fom1ation. 
The direct measurement and control of the sugar level in the fermentor may be more 
straightforward but may prove more difficult to implement. Although some glucose sensors 
are available, the direct on-line measurement of the substrate level may be presently im
possible if the substrate is composed of not pure glucose but a mixture of various sugars. 
Furthermore, even when pure glucose is used as the sole carbon source, there still exists 
the problem of determining the set point for substrate concentration such that the aerobic 
fermentation by yeast is prevented. 

Aiba et al.43
' and Nagai et al."34 were among the first to perform computer control of 

substrate feeding in baker's yeast fermentation with RQ as the control parameter. Aiba et 
al. were able to show that for a fed-batch operation and for an RQ value of near unity, the 
feed rate is explicitly dependent on the oxygen consumption rate. The disadvantage of this 
method was that the feed law used to match the substrate demand contained a constant that 
depended on the substrate to ethanol yield; thus, the success of control depended heavily 
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on the precise knowledge of this parameter. Despite these shortcomings and the lack of true 
feedback controls. they were able to control RQ at values between 1.1 and 1.2. 

Another control scheme of repeated fed-batch reactor aimed at reducing the effect of 
catabolite i1ihibition in baker's yeast fermentation was proposed by Peringer and Blacherc!"' 
The strategy was essentially to keep the substrate and the dissolved oxygen concentrations 
constant by feeding the fcnncntor with nutrient in an exponential manner. The optimal 
feeding policy could be expressed as a function of RQ and OUR; however, the expression 
involved many parameters that had to be specified. Thus, the same problems encountered 
in Aiba ct al. 's work4

~
1 also limited the usefulness of this approach. 

Although Wang et al. m remarked on the possibility of using RQ as the control parameter 
in baker's yeast fermentation. there was no evidence that they followed this method to control 
the feed rate of sugar. Furthermore, the control did not utilize the various parameters so 
painstakenly estimated from on-line macroscopic elemental balances. ln a subsequent study, 
Wang et al. m.329 derived an expression for the anticipated substrate demand, and the substrate 
feed was controlled to match this demand. The demand for substrate was a function of cell 
yield, specific growth rate, and biomass concentration. A noteworthy point on their approach 
was that instead of arbitrarily assigning constant values, these parameters and states were 
continuously estimated in real-time by using the macroscopic balance concepts described 
earlier. However, the use of RQ value alone in the feed forward, or anticipatory. control 
was not totally adequate, and a proportional feedback control law had to be added based on 
Equation 44. They were able to maintain both a high cell yield and a high volumetric 
productivity in spite of various process perturbations such as oxygen starvation and variations 
in inoculum and feed sugars. 

The respiratory quotient was similarly used as the control parameter in a· continuous 
baker's yeast fermentation by Spruytcnburg ct al. 124 A longer delay was encountered in this 
study because gas chromatographic analysis of the 0 2 and CO2 concentrations in the exhaust 
gas was employed for the RQ determination. Overshoot could not be entirely eliminated 
c1nd, subsequently, resulted in significant hysteresis behavior in metabolism. It was found 
that the microorganisms could quickly switch to aerobic fermentative metabolism in the 
presence of excess sugar. but the reversal to the more efficient oxidative growth was a slow 
process. Woehrer et al. 4 ·n compared the performance of RQ-based and ethanol-based com
puter control of fed-batch baker's yeast fermentation. ln RQ-based glucose feed control. 
ethanol formation could not be totally prevented. and the yield was lower than in the ethanol
based control. 

The respiratory quotient was also found to be a sensitive indicator of the physiological 
state of a Candida utilis culture in a single-cell protein production utilizing sugars. 322 An 
optimum carbon-to-nitrogen ratio along with suppression of ethanol formation was achieved 
by controlling RQ close to 1.0. ◄ l'M."1 When ethanol was used as the carbon source in SCP 
production. it was also desirnble to suppress ethanol level in the fennentor to minimize 
inhibitory effects and yet maintain it at a reasonable level to enhance productivity. A 
comparison of the perfonnance of automatic control in which either the dissolved oxygen 
or vapor phase ethanol concentration was employed as the control parameter for substrate 
addition was conducted for SCP cultivation in ethanol by Huang and Chu,•·"' and the direct 
measurement of ethanol gave superior performance in terms of preventing ethanol 
accumulation. 

Yano et al., 1"'
1 Kobayashi et al. .2"" and Hopkins,437 all used dissolved oxygen level as an 

indirect physiological indicator for methanol-utilizing microorganisms. However, the rela
tionship between the observed dissolved oxygen behavior and the biological interpretation 
was not always one-to-one. For example. an increasing oxygen concentration could be 
interpreted either as depletion of the substrate. in which case the substrate feed rate was to 
be increased, or as damaged metabolic capability. in which case the substrate feed rate was 
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to be decrcascd.'·17 To overcome problems arising from the use of indirect process indicators, 
Yano ct al. 2"'' and Yamane ct al. 2"

7 both measured the substrate concentration automatically 
and directly used it to adjust the substrate feed rate. 

Finally, the feed-on-demand control is critical in biological wastewater treatment proc
esses. Because industrial wastewater contains toxic substances, the metabolic mechanisms 
may be severely impaired when there is an upshifl in the toxic load. On-line computer 
control of a phenol treatment reactor with activated sludge recycle was accomplished by. 
manipulating the feed rate based on the oxygen uptake rate measurement in such a way that 
the highest phenol utilization rate was achieved.m Experimental results showed that the 
controller was responsive to the changing phenol load conditions. However, this control 
scheme did not ensure that the phenol level in the outlet was always below the value permitted 
by the government regulations; a more practical control might have resulted if various realistic 
constraints were considered. 

4. Specific Growth Rate Controls for Amibiotic or Enzyme Production 
Another area of fermentation in which cascaded environmental control strategies are often 

used is in fed-batch antibiotic or enzyme production. In these processes, there are roughly 
two phases: a growth phase and a product formation phase. In the growth phase, the usual 
strategy is to keep the cell growth rate at a maximum so that cells can accumulate in the 
shortest time possible. After enough cells are present in the fennentor, a product formation 
phase is initiated usually by shifting the specific growth rate to a lower value or by adding 
additional inducing agents. Thus, the attention in antibiotic or enzyme fermentations is 
presently centered on the control of specific growth rate affected by adjusting the nutrient 
feed rate, although the simultaneous manipulation of a combination of agitation and aeration 
such that the respiration intensity is maintained at the maximum level is also occasionally 
used.440

•
441 As in biomass production. the substrate feed rate must be carefully controlled 

in many antibiotic or extracellular enzyme productions to avoid catabolite repression resulting 
from overfeeding. Similarly, underfeeding causes starvation and may induce severe irre
versible damages to the product formation mechanisms. 

Due to the inability to conduct direct measurements of the specific growth rate or the 
substrate level in a fermcntor, indirect correlations, often purely empirical, are routinely 
used. In a fed-batch cellulase production study by Waki et al. ,-•-n because of the observed 
linear relationship between the specific carbon dioxide evolution rate and the specific growth 
rate, the fom1er was chosen as the control parameter. The optimum specific growth rate for 
the production of cellulase was maintained by the controlled feeding of a mixed substrate 
composed of cellulose and cellobiosc or glucose. 

Another study by Lundcll417 also used CER as well as RQ as the control parameters on 
which the intem1i1tent addition of carbon source was based. One noteworthy point of this 
study of 13-galactosidase production was that different sets of conditions of temperature, pH, 
agitation, and aeration were maintained between growth and production phases. Another 
practical point covered in this study was the economic emphasis of employing computer 
controls. Four different control strategics were proposed, and a comparison was made based 
on the experimentally evaluated figures of productivity and energy requirement resulting 
from each strategy. In these strategics, the fed-batch run was either terminated or additional 
nutrient was added to induce further enzyme production when the production rate fell below 
the preset value. It was concluded that a properly chosen strategy (fed-batch/continued-batch 
combination) could improve productivity over the conventional batch process by more than 
two times, at the same time substantlally reducing the energy requirement. 

Through the use of a unique on-line filtration technique. 119
·
120 the build-up and the deg

radation of mycelial biomass could be quantitatively characterized during a fed-batch pen
icillin fermentation. During the antibiotic production period, it was discovered that hyphac 
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density and cell maintenance activity, as indicated by the respiratory rate, decreased due to 
the loss of cytoplasmic components (chiefly protein) while the cell wall remained relatively 
unchanged. It was also found that the r_ate of penicillin synthesis was correlated to the hyphae 
density. 11

" A control strategy via nutrient feed manipulation was formulated by Nestaas and 
Wang which followed a predetermined desired growth profile that prevented the specific 
growth rate from dipping below =0.0 I hr- 1

, at which value the penicillin synthesis rate 
started to deteriorate rapidly . 121

A
43 The open-loop control based on the previously determined 

feed schedule functioned quite satisfactorily most of the time but failed under certain con
ditions. The deviation from the desired growth profile was minimized by using a closed
loop control scheme incorporating the difference between the desired cell mass and the cell 
mass measured directly by the filtration probe. The necessity of a closed-loop control with 
feedback of information on biomass concentration obtained from the filtration probe was 
exemplified in a situation where biomass concentration estimation by material balance failed 
due to the presence of a large amount of residual complex nutrient. 

C. Optimization 
Numerous studies and extensive reviews on optimization in fermentation processes have 

been published in recent years. 13
•
21

•
23

-
52

•
444

•
445 Dobry and Jost 13 summarized some of the 

earlier studies in optimization. Weigand21 followed with an extensive survey of the topic 
and emphatically debated the positive and the negative aspects of the rigorous mathematical 
modeling approach. Static and dynamic optimization were discussed by Blachere and Per
inger. 52 A review of two optimization approaches (the analytical approach with the maximum 
principle of Pontryagin and the direct experimental approach of trial and search) was offered 
by Aiba. 444 An excellent detailed survey of various optimization studies was given by 
Constantinides.445 Rigorous optimization techniques were contrasted with the black-box 
approach in an overview by Zabriskie, 22 which emphasized the application of real-time 
computers. Rolf and Lim23 also presented a review on the steady-state static optimization 
for continuous bioreactors and unsteady-state dynamic optimization for batch and fed-batch 
bioreactors. 

Optimal process control is perhaps the ultimate objective of applying computers to fer
mentation processes. All the works discussed thus far, though may not be specifically stated 
so, are to a certain extent .aimed at achieving this final grand goal. In view of the system 
variability. improved on-line data acquisition methods are of central importance to optim
ization and are being systematically developed. However, at the present time Kalman filtering 
techniques and interacting schemes of multivariable adaptive control are rarely applied to 
real fermentation processes in real time. On-line optimization is rarer still, and the application 

, of the optimal control configuration of Figure 18 is practically nonexistent. 
The delays in the realization of optimization strategies in actual fermentation processes 

are caused by many problems. In addition to the two main problems originated in the 
availability of sensors and mathematical models as repeatedly pointed out throughout this 
paper. there is also a lack of proven incentives. Due, mainly, to the small contribution of 
the manufacturing cost 10 the total cost of present fermentation products, lhe improvement 
in the performance resulted from the implementation of an optimal control strategy, which 
is derived with much effort, is frequently disappointingly minuscule. This is certain to 
change in the future as large volume applications of biotechnology come in line. Another 
reason of delay is the relatively small number of research groups studying optimization of 
a fermentation process. The on-line application is also often limited by the available computer 
resource. Because fermentation processes are generally confronted with nonlinear equations, 
time-consuming nonlinear programming techniques are needed to solve for the optimal set
points or dynamic paths. The automatic on-line optimization, carried out simultaneously 
with a fermentation process, requires ample dedication from the part of research investigators, 
but its successful implementation should prove to be highly rewarding. 
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In order to be accepted by the manufacturing industries, optimization must be based on 
a realistically and correctly fonnulated objective function. In the past, the objective was 
formulated to maximize the biomass productivity and substrate-to-cell yield in the case of 
fed-batch baker's yeast or SCP fermentations or to maximize the product productivity or 
product concentration in the case of antibiotic or extracellular enzyme fem1entations. The 
implication is that these fonnulations generally coincide with the objective of maximizing 
profit; however, this is not always so, especially in an antibiotic production process where 
fermentation cost is only a relatively small fraction of the total cost. In actuality, any 
meaningful optimization should consider not merely the fermentor but also other interrelated 
equipment and processes in the same plant. The influence of fcrmentor conditions on sub
sequent recovery processes and the reverse influence of recovery processes on the fermentor 
operation via recycle were discussed by Ash and Topiwala.«<, The optimal termination time 
in a batch enzyme fermentation process was studied with respect to the lag phase, the 
biomass accumulation phase, and the product formation phase, with due consideration to 
the nutrient cost and various operating costs by Attia et al.,447 and, as expected, a fermentor 
optimized so as to yield a maximum rate of enzyme production may not produce the maximum 
profit. Even external factors such as the market demand, the raw material cost, and gov
ernment regulations greatly influence the formulation of the objective function and, thereby, 
the optimal control strategy. It is not rare that an overproduction causes the market value 
of the product to slump and the inventory to stockpile; hence, an increased productivity may 
sometimes bring economic losses instead. It is quite possible that the inadequate formulation 
of an objective function may prevent the advanced optimization and control strategies de
veloped in academia from being applied to fermentation industries. 

Within the framework of fennentor optimization, there exist two major types of optimi
zation techniques. The static (point) optimization techniques are generally applied to steady
state continuous bioreactors, and the dynamic (path) optimization techniques are applied to 
unsteady-state batch or fed-batch bioreactors. Each set of techniques can be modified to 
allow on-line optimization when disturbances to the fermcntor occur, but updating the optimal 
trajectory without delay for a fed-batch or batch bioreactor may be more involved than 
calculating a new set of optimal steady-state for a continuous bioreactor. There is little 
shortage of the necessary mathematical tools. The static optimization problems can be solved 
by the application of calculus or some direct hill-climbing search algorithms. They include 
methods of Box,448 Box and Wilson,449 Hooke and Jeeves,450 Rosenbrock,4

!1
1

•
452 Powell,453 

Spendley ct al., 454 and Nelder and Mead. 455 The dynamic optimization procedure is centered 
on the application of the continuous maximum principle of Pontryagin,456 and the general 
dynamic optimal control theory is reasonably well developed to handle the type of problems 
encountered in fermentation processes. 

The optimization structure is shown in Figure 23. We see that on the top level the workings 
of market demand and economics influence the corporate decision on the manufacturing of 
certain products via a fermentation process as an alternative to other chemical processes. It 
should be stressed that fermentation is only one of a long series of steps in an actual production 
process. Thus, an optimization effort which docs not consider the other steps is of limited 
value and must be forewarned against. The objective function used in optimization should 
take both the preceding and subsequent steps into consideration. Within the fermentation 
process, there is the optimization of fermcntor scheduling. Fermentor scheduling concerns 
with the optimum allocation of ferrncntors to produce a line of products, i.e., the assignment 
of a given fennentor for a given period of time to the production of a given set of products. 
Computer-aided scheduling of multiproduct plants was studied by Prokop and Votruba. 457 

Then there is the sequencing of various events including sterilization, inoculation, and many 
others. 

Again, within the actual cultivation step, there is the choice of the mode of operation. 
The optimum choice of continuous. fed-batch. and batch operations or a combination thereof 
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FIGURE 23. Hierarchical optimization structure in a large industrial operation. 

was studied theoretically by Ohno et al. 458 and experimentally by Lundell.417 The charac
teristics of batch and continuous processes are fundamentally different. For example, batch 
cultures are synchronized to some extent with similar culture ages, whereas steady-state 
continuous cultures have an average age. One mode of operation may be preferred over the 
other depending on the microorganisms and the product involved. In general, continuous 
operations are suited to large-scale SCP productions, and batch and fed-batch operations are 
well adapted to antibiotic fermentations.459 The choice between surface fermentation and 
submerged fennentation may also need to be considered in certain processes such as citric 
acid production.460 So are the shape and size of a fermentation vessel461 and various other 
miscellaneous considerations.462 Finally, at the bottom of the optimization structure comes 
the optimization of the actual fermentation step, which is of the most interest to the majority 
of investigators. Once the optimum (static or dynamic) environmental conditions are deter
mined, the optimal controller can be designed to approach the desired conditions in the 
optimum way. 

Thus, we see that there are many levels of hierarchy in a well-posed fermentation opti
mization structure. Accounting for all the vertical activities from market to the controller and 
all the lateral activities from raw materials through final products frequently makes the 
solution of the problem exceedingly difficult, if not impossible. The approach taken to attack 
this problem is not significantly different from that taken in the chemical industry. 463 

... 
66 A 

large problem is simply divided into a set of smaller ones; each of the smaller problems is 
further divided into a set of still smaller ones until the size of the problems becomes 
manageable. This approach is similar to Okabe and Aiba's approach467

_.,
71 in a grand scale. 

For example, the objective function of the global process is expressed as the sum of the 
objective functions of the n individual subprocesses, 

(50) 

Optimization is subsequently carried out for each subprocess individually. and later recom
bined to reach the global optimum conditions. 
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In the following sections. recent global optimization studies will be surveyed first. This 
will be followed by a brief review of the static optimization studies and the on-line search 
of optimum conditions for steady-state operations. The dynamic optimization studies will 
be listed, but they will not be discussed in great detail because the present role of a computer 
is generally limited to solving a set of two-point boundary value problems or their analogs. 

I. Global Optimization 
Optimization by the method of decomposition is illustrated by a series of papers by Okabe 

et al. 472 and Okabe and Aiba. 4
''

7 
.. 

71 Production of penicillin. which involved the sterilization 
of media and air, batch fermentation, filtration, multistage extraction. and multistage evap
orating-crystallization-drying steps, was painstakingly studied. At first, the complex method 
of minimum searching techniques of Box••~ was modified to find the optimum aeration rate 
and agitation intensity.472 The second study examined the optimization of two combined 
systems: continuous sterilization and batch fermentation. 4

"
7 This was accomplished by de

composing the system under consideration into two subsystems, and optimization was carried 
out in two separate hierarchical levels. Each subsystem had its own objective function which 
depended on the input, output, and the manipulated variables of the other subsystem. The 
subsystem objective functions were first minimized individually, then the combined overall 
objective function, which was a linear combination of each objective function plus the 
equipment and the utility cost function, was minimized at the higher level. Thus, two separate 
levels of recursive calculations were required. Successful convergence was reported. The 
fact that different search procedures resulted in the same optimum conditions was reassuring. 

Another subsystem covering auxiliary operations and equipment. such as the dissolution 
vessels, preculture vessel, and boiler, were subsequently included in the decomposed op
timization formulation in addition to the two subsystems previously analyzed. 4611 Next, the 
values of the rotation speed of a rotary filter and the rate of filter-aid addition for the 
continuous filtration of an Actinomycete's broth were easily optimized . .- The next step 
after filtration was extraction. The combined process of filtration and extraction was solved 
in the same manner as that of sterilization and fermentation. 47° Finally, the last paper 
coordinated all the previous efforts for a global optimization of the entire antibiotic fer
mentation plant.471 Although four subsystems of fermentation, filtration, extraction, and 
evaporation-crystallization-drying were used in this study. the decomposition algorithm could 
be easily expanded to include sterilization. solid-waste disposal, and many other unit op
erations of significance. 

As pointed out by Weigand. 21 much of the time spent in calculation will be wasted if 
care is not exercised in the formulation of proper objective functions. In Okabe and Aiba's 
studies, the cost to produce a prescribed amount of product annually was minimized; however, 
it might have been more realistic if the profit had been maximized instead, because, in 
general. minimum cost is generally not equivalent to maximum profit as mentioned earlier. 

Another reason for using the decomposition method is that the classical one-step optim
ization algorithm may fail to find the true minimum. especially in the case of nonlinear and 
nonconvex objective function. The existence of numerous implicit inequality constraints and 
local minima may further complicate the finding of the true optimum conditions.473 Blachere 
et al.m also used an algorithm similar to Okabe and Aiba's to globally optimize a yeast 
fermentation plant. The subsystems used were medium preparation, fermentation, and 
extraction. 

Constantinides et al. 474
•
4

" and Blanch and Rogers47
" also considered problems of this 

type. For example, Blanch and Rogers47
" applied the concept of discrete maximum principle 

to the multistage continuous production of gramillicin S in which each stage was considered 
as a subsystem and evaluated the optimal pH. temperature, and the number of stages based 
on an objective function that accounted for, among others. raw material cost, product value, 
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and, most notably. the cost of antibiotic extraction. They also calculated the price of the 
product at which the operation ceased to be profitable. 

2. Static ( Point) Optimi::ation 
When reliable models arc available, static optimization can be solved in a straightforward 

manner quite simply by applying the principles of calculus. The objective of static optim
ization is to minimize a nonlinear objective function: 

J = J(x,u) (51) 

subject to a set of generally nonlinear equality constraints derived from mathematical models: 

f(x,u) = 0 (52) 

Physical inequality constraints on the control variables and system states often have not 
received proper attention in the formulation of the minimization problem. and this has resulted 
in unrealistic and impractical controller settings. If solutions cannot be obtained analytically 
in a closed form, simplex and complex (constrained simplex) search techniques arc generally 
relied on to yield solutions for simple linear or highly nonlinear problems. 

Typical model-based optimization studies that are solved mathematically arc the deter
mination of holding time and recycle ratio to minimize the total cost during the design of 
a biological wastewater treatment plant477 and the determination of the reactor pH and 
temperature and/or substrate concentration in the feed to maximize the biomass productivity 
in a chemostat. 478

•
47

" Veres et al.w experimentally determined the empirical correlations of 
specific cell growth rate and specific product synthesis rate as functions of temperature and 
pH in a steady-state gluconic acid fermentation by Acetobacter suboxydanr. The optimum 
operating conditions of temperature and pH were calculated through the use of these cor
relations and controlled with the aid of a computer. 

When the proposed model is crude and contains unknown parameters whose values depend 
on the environmental conditions. the rigorous mathematical approach fails and experiments 
must be carried out to evaluate these parameters. Numerous batch experiments in which the 
initial glucose concentration and inoculum concentration were individually varied between 
each run were conducted by Endo et al., 41111 who investigated the effect of these variables 
on the performance of aerobic alcoholic fermentation by brewer's yeast. Semicontinuous 
three-dimensional surfaces of glucose-to-alcohol yield. alcohol level at the end of the batch. 
and the time required to complete the batch were generated over a region of the controllable 
variables. Thus, given an objective function in terms of the yield. alcohol level. and fer
mentation time, the optimum initial condition for the batch fermentation could be easily 
deduced. 

When no model is available at all, the black-box approach to optimization relies totally 
on the hill-climbing search methods. Recently. a hypothetical example of this approach was 
given by Saguy,4111 who used the complex method of Box44

" to search for the most profitable 
set of values for the seven controllable variables in the .. fermentation process development 
game", which was originally introduced by Matcles.4112 Schroder and Weide••·' carried out 
the experimental determination of the optimum salt proportions in the nutrient for cultivating 
a yeast. Their selection of experimental conditions was guided by the Box-Wilson gradient 
method449 of (2")-factorial planning, where n is the number of parameters. The next study 
on optimum nutrient media formulation was performed by Votruba et al. 4114 Using the direct 
search method of Rosenbrock.45 1.

452 they were able to reduce significantly the number of 
experiments required for a step improvement in the objective function from 2" to n + I. 

· All the examples mentioned thus far in this section are basically off-line optimization 
studies. On-line optimization of the operating conditions of a steady-state continuous bio-
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reactor can be achieved by treating the whole fcrmcntor as a black box. In this approach, 
computers arc utilized to record the effect of different sets of conditions on the objective 
function. Upon the establishment of each steady state, the computer calculates the new value 
for the objective function. analyzes the dependence of the resulting patterns, and system
atically determines a new set of conditions to be implemented next according to the search 
algorithm. By this way. the optimum conditions are sought out continuously through small 
excursions from the presently known set of best conditions while the production process is 
in progress. The process of on-line optimization is repeated until the potential gain from a 
still better performance is balanced with the economic loss induced by the systematic excursion. 

The generally poor reproducibility implies that many iterations may be required to detect 
conclusively the improvement in performance through statistical analysis and hypothesis 
testings; the generally slow microbial response means that a long time is needed to reach 
the new steady state after each excursion. Hence, the on-line optimization of a continuous 
bioreactor is an extremely time-consuming process, and the improvement is likely to fade 
after the first few rounds unless the conditions used initially are grossly nonoptimal. 

The continuous production of SCP from methanol was optimized with respect to the two
dimensional variable space of temperature and pH by Uden and Heden. 485 The structured 
search pattern was constructed from Powell453 and Hooke-Jeeves450 algorithms by an on
line computer. However, no significant improvement over the initially used conditions was 
reported. Another study by Nyestc et al. 4

M
6 also searched the two-dimensional temperature 

and pH space with the Nelder-Mead simplex method455 for the continuous Hansenula anomala 
fermentation. They tried to maximize the specific growth rate, or, equivalently, to minimize 
the generation time. Similar study was also reported by Szigeti et al.,487 who achieved some 
success despite the inconveniences caused by the limited computer memory._ 

Poor reproducibility enhances the need for statistical analysis of variance to account for 
experimental variations encountered in the black-box approach of modeling and on-line 
optimization. This is especially so in the fermentation field where the experimental variations 
arc large, and many repeated experiments are needed to detect even significant changes. 
Slow response can be partially countered by the careful statistical design of experiments so 
that a large amount of information can be extracted from the same number of experiments. 
The topic of statistical design of experiments has been covered in many books. 488490 These 
ideas as applied to fermentation were discussed by Porter.491 Among these ideas, one of the 
most widely accepted and commonly practiced methods of continuous optimization in other 
industrial processes is evolutionary operation (EVOP), originally presented by Box and 
Draper."M" 

EVOP was used by Chu et al. 492 in a two-stage waste treatment system with activated 
sludge recycle to test the effect of the volume ratio and inlet flow rate on the treatment 
efficiency. Within three rounds, they were able to improve the removal of chemical oxygen 
demand (COD) from the initial low of 55 to 82% at the conclusion of the third round. 
Bernard et al. ""J varied the temperature in a continuous biomass production process according 
to an optimization pattern. and they were able to reduce the objective function value by 
37% over the original value in ten trials. In another study by Albrecht et al.,494 the optimal 
operating points for a SCP production from methane were updated by cycling small incre
ments of variations in the control variables (stirrer speed, methane-to-air ratio in the feed, 
and fermentation pressure). The variations in the natural gas composition were unavoidable, 
and this represented a source of disturbance. They estimated a saving of 5 to 7% in the cost 
as the result of implementing the computer-aided on-line optimization strategy. Another 
method that employed a model was also tried by them. In this method, the unknown 
disturbances are sometimes reflected in the model parameter. Thus, by updating the model 
parameters. they were able to maximize the SCP production from methane. 

To minimize the potential loss from unsuccessful experiments, the experimental optimi
zation need not really be constantly carried out. Instead, it can be performed during only a 
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certain assigned duration of the total operation time in order to assure that the operating 
conditions arc not too far away from the optimum ones. Alternatively. the approach suggested 
by Muzychcnko ct al. 4

"
5 can be taken. They advocated the use of simple growth models 

and urged the estimation of model parameters from the data collected during the transient 
start-up period. However, they did not specify how the optimal temperature and pH. for 
example, can be obtained this way. 

3. Dynamic (Path) Optimization 
The dynamic optimization problem can be solved by employing optimal control 

ries.-'~"-4
"" The essence of the problem is to minimize: 

f" J = <p(x(tr),tf] + , .. L(x(t),u(t),t]dt 

subject to the system dynamic constraints: 

dx 
- = f(x u t) 
dt ' ' given I.C.: x(to) 

theo-

(53) 

(54) 

The straightforward way of solving the above problem is to formulate a Hamiltonian com
posed of the Lagrangian of Equation 53 and a vector of influence functions, A: 

H = L + ATf 

The necessary conditions for an optimal solution are given by: 

aH 
ax with the terminal condition: A{fr) 

aH 
= 0 au 

(55) 

= [<1<p]T 
ax ,-,, 

(56) 

(57) 

Equations 54 and 56 fom1 a two-point boundary value problem, the solution of which is 
generally carried out numerically by a computer. The integration of Equations 53 to 57 is 
usually not an easy task. Various final-value iteration methods or control vector iteration 
methods exist and must be exercised with extreme caution in searching for the optimal 
trajectory. The above methods approach iteratively the solution, moving in a direction 
determined by the gradient of the Hamiltonian. Rather frequently, however, flat plateaus of 
the Hamiltonian exist resulting in insensitive profiles that may be incorrectly mistaken for 
the optimal solution. The tem1inal time t1 is not always given and may be included in the 
set of variables to be optimized. This basic formulation can be expanded lo include various 
constraints, e.g .• equality constraints at the terminal time, equality and/or inequality con
straints on state variables and/or control variables, interior point constraints, integral con
straints. etc. In each case. the formulation of J. H. and the necessary conditions can be 
easily modified to take these extra constraints into consideration. 

The optimal controller synthesis for approaching the desirable conditions has already been 
discussed in the control section. The optimal trajectory of the dilution rate for returning a 
continuous process to the optimum steady-state conditions was calculated by D'Ans et 
al. 497 

... .,., The singular control problem resulted from the Hamiltonian function being linear 
in the control variable (dilution rate) was solved by transforming the time integral into a 
line integral, which was further transformed into a surface integral by applying Green's 
theorem. The maximum principle and Green's theorem were similarly utilized to calculate 
the optimum approach to steady state from start-up by Takamatsu et al.~•• They considered 
the problem of maximizing amino acid production in a given period of operation. 
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Green ·s theorem was also applied in the calculation of the optimum substrate feed rate 
to an amino acid (lysine) process by Ohno ct al.~01 The tedious transformation procedure 
was circumvented by Yamane et al..~02 who posed the problem in such a way that the 
trajectory of the specific growth rate was optimized. and the feeding policy was later related 
to this optimal trajectory. Weigand et a1.sm.so• developed an optimal substrate feed policy 
for a repeated fed-batch bioreactor for biomass production when the initial and maximum 
reactor volume, the substrate concentration in the feed, and the final biomass concentration 
were prescribed. That was essentially a minimum time problem. In a more realistic situation. 
perhaps these prescribed variables should be optimized as well, based on an objective function 
maximizing the profit. 

Singular control problem was also encountered in a study by Fishman and Biryukov_so~ 
The penicillin biosynthesis in a fed-batch fermentor was modeled with due consideration to 
the cell age and optimized with regards lo the substrate addition rate. However, in the 
authors' opinion, their formulation of the optimization problem did not properly take into 
consideration the change of volume which is characteristic of a fed-batch operation. It is 
the neglect of dilution effects that enabled them to arrive at an analytical solution. Andreyeva 
and Biryukov398 modeled the effect of pH on a similar process and calculated the optimal 
substrate feeding profile. It should be pointed out that the optimization would have been 
more practical if the terminal time was not fixed but allowed to vary and be optimized 
simultaneously. 

Constantinides ct al. 474 developed a mathematical model for batch penicillin fermentation 
and estimated the model parameters from the experimental data, considering especially the 
temperature dependence of these parameters. In a following study, •7s the optimal temperature 
profile was determined based on the model developed earlier. King et al. S(x, considered the 
same penicillin problem except that only piecewise constant temperature settings were al
lowed. This suboptimal strategy was much simpler to implement and resulted in only a 2% 
decrease in penicillin production compared to the optimal trajectory. 

A similar sequence of steps of model construction and model parameter estimation and 
the application of the Pontryagin's continuous maximum principle was followed by Rai and 
ConstantinidesS<17

·'.\
011 in the optimization of a batch gluconic acid fermentation with respect 

to temperature and pH. They found that the optimum temperature and pH profiles stayed 
at constant values over most part of the fermentation duration. S<J

7 This point prompted Cheruy 
and Durand 11

' to conduct an experiment in which both pH and temperature were set at 
constant values throughoul the batch erythromycin fermentation. The experimental behavior 
resulted from the implementation of the simplified control slrategy was about the same as 
that resulted from the optimal control policy, which was determined after a similar sequence 
of steps of model construction, parameter estimation, and mathematical optimization. They 
also used many statistical criteria to evaluate the validity of the proposed model based on 
the experimental data. 

Nyestc el al.·""' proposed a structured mathematical model for a batch gluconic acid 
fem1entation. The parameters' temperature dependence was considered by performing a 
series of runs at different temperatures, and the model parameters were subsequently ex
pressed empirically as polynomial functions of temperature, with the data fitting performed 
by the method of Hooke and Jeeves:•~ Pontryagin's maximum principle was applied to find 
the optimum temperature trajectory during the batch run. 

Based on a set of simple mathematical models for an antibiotic (turimycin) fermentation. 
Guthke and Knorre~•0 calculated the optimal substrale profile and compared the performance 
of the corresponding suboptimal, but easily implemendable, trajectories. The improvement 
of performance resulting from the optimal trajectory over the suboptimal trajectories is only 
minimal. as concluded consistently in other optimization studies. 

The optimal temperature and pH profiles for an enzyme reactor subject to deactivation 
were determined by Ho and Humphrey.rn The substrate inhibition and enzyme deactivalion 
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effects were considered by San and Stephanopoulos5
'

2 lo obtain a time-varying singular 
feeding policy in a continuous reactor. The modification of the control policy to include 
feed-forward control in the presence of time lag was also considered in a later study. 51

' 

An optimal quality control for fed-batch baker's yeast production was recently carried 
out by Dairaku ct al. 514 This study was aimed at achieving a low value of the ratio of budding 
cells to total cells (so that the fermentative activity in the making of bread was maximized) 
by following an optimal trajectory of the specific growth rate. The trajectory was dctennincd 
by the method of sensitivity function analysis based on a dynamic population model. 

Beca~se of selection and enrichment, the microbial behavior and properties arc likely to 
vary over the years, or even from one run to another. The model parameters arc also destined 
to change from time to time because of various unknown disturbances to the system. Fur
thcm1ore, microbial conditions depend not only on the present state but also on the past 
histories. For example, the inoculum may not be uniform, and the duration of the lag phase 
after inoculation may vary. Thus, the periodic updating of model parameters is certainly 
desirable. However, unlike the black-box approach used in optimizing steady-state condi
tions, systematic search methods are not applicable to dynamic optimization problems. 
Nevertheless, by comparing the actual behavior to the expected behavior calculated from 
an existing model, it is possible to program the computer to elucidate the changes in the 
values of the parameters. Regretably, the on-line reevaluation of the kinetic parameters, 
which requires some creative thinking, is not presently practiced. 

The effectiveness of the optimal control strategies are rarely verified through actual ex
periments. Many optimal problems are based on highly hypothetical assumptions. For ex
ample, the validity of the starting model is often not established in advance. Many state 
variables included in the optimization consideration arc not practically measurable, and this 
prevents meaningful studies using closed loop feedback control from being actually carried 
out. 

Even when the optimal path is implemented experimentally, the control is actually a feed
forward open-loop control. Disturbances to the system and uncertainties in the model and 
its parameters arc likely to cause the actual path to deviate away from the calculated path. 
Therefore. there is a need to monitor the state of the system and to use the measurements 
to complete the feedback control loop. Ncstaas and Wang 12

1.
44

~ were able to overcome these 
difficulties by monitoring the state of the system in a penicillin fermentation with an ingenious 
filter sensor. 

Weinrich and Lapidus~'~ proposed a feedback controller whose feedback gain was designed 
in such a way that the variation in model parameters could be inferred from the combination 
of the known control history and the measured deviation of the actual state away from the 
nominal-path. The required adjustment in the controller output due to parameter variation 
was calculated by linearizing the controller output about the nominal optimal control tra
jectory. That controller was. therefore, well suited for small variations in parameters, but 
more significant variations in model parnmctcrs could also be accommodated with only a 
slight loss in optimality. 

Because optimal control strategics are rarely carried out, it is not yet conclusive as to 
how much more can be gained from the implementation of such policies. The improvement 
from the use of sophisticated optimal control may not be substantial, the optimal control 
policy may be difficult to implement due to observability problems, the model used may 
not be totally reliable, or the model parameters may not be accurately estimated. In all these 
cases. the use of suboptimal policy may be justified and, in fact, preferred. Thus. once 
again. the possible gain from optimization must be balanced by the cost in the added 
manipulation, and simple control may occasionally come ahead. 
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VI. FUTURE TRENDS OF COMPUTER APPLICATION 

Computers will definitely be an integral and natural part of the fermentation system in 
the years to come. They will prove to be a highly vital instrument for both of those engaged 
in research and production. However, the success of computer application, as pointed out 
by Dobry and Jost 13 and Anniger and Humphrey ,7 depends on the development of better 
on-line instrumentation and reliable mathematical models. The prerequisite to a true and 
meaningful optimization of a fermentation process is an accurate mathematical model that 
is capable of describing various behaviors of the microbial system under consideration. The 
prerequisite to a successful mathematical model, on the other hand, is the availability of 
sensors to detect and accurately record, either directly or indirectly, various types of relevant 
microbial responses. This relationship between computers and sound biological models is a 
two-way interaction. Not only computer-implemented optimization of a fermentation process 
requires accurate models, but the construction of representative models can be accomplished 
only through the extensive utilization of computers. This is especially true in the study of 
fundamental microbial metabolic and synthesis pathways where the intracellular feedback 
control mechanisms work at a relatively short time scale compared to the frequency of 
sampling in the studies of these internal regulatory mechanisms. Therefore, by employing 
on-line sensors and fully utilizing computers for data conditioning and analysis, it is possible 
that the unique complexity of biological processes will ultimately be understood to allow 
for the formulation of fundamentally correct and accurate models. Then, we can have a real 
chance of approaching optimization problems realistically with highly efficient and produc
tive process designs and reliable control strategy formulations. 

Presently, the application <:>f closed-loop control with a computer has been limited con
siderably because of the sca~city of reliable on-line sensors for monitoring key parameters 
in a fermentor. The succeeding work on modeling, control, and optimization will proceed 
to the extent allowed by the development of the necessary sensors. As instrumentation 
technology improves, the emphasis in the use of computers will gradually shift from collecting 
and storing experimental data to that of interpreting the microbial dynamic behavior, pref
erably in the context of simple mathematical models which contain no ambiguous, experi
mentally indeterminable parameters. Although not as rigorous as the theoretically based 
mathematical models, accurate empirical correlations capable of predicting the effects of a 
change in control variables on the response of microbial system may also be very useful in 
the formulation of control strategies. After modeling, the next logical challenge in this field 
will come from the formulation of a broadly applicable "smart" adaptive control algorithm 
that is capable of self-optimization. When all these are done, a fermentation technologist 
may leave the tedious routine to the machine and devote more of his time and energy to the 
more creative and challenging task of developing new. novel microbial processes to meet 
the needs of the future. 

VII. CONCLUSIONS 

An attempt has been made in this paper to provide the readers with a relatively broad 
perspective on recent developments in the application of computers to fermentation processes. 
Among the topics reviewed in this paper were applications in the areas of on-line data 
acquisition, analysis, process modeling, control, and optimization. At present, we are still 
some distance away from reaching our final intended objective of optimally controlling the 
whole fermentation process. Nevertheless, intense effort by both industry and academia has 
fruitfully resulted in significant progress in many aspects of computer applications. If the 
early 1970s mark the beginning of the application of computers in the fermentation field, 
then we now stand at the end of the beginning. Problems directly associated with computers 
such as hardware, software, and interfacing seem to have been thoroughly solved. To be 
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sure, there are still areas where improvt.n~nts can be made by tapping more of the power 
that can be realized by applying computer technology, but, overall, it seems that we are 
now properly equipped and are ready to advance to the next step. In this context, the optimistic 
views expressed by Armiger and Humphrey7 that the time has come for us to upgrade 
computer applications to fermentation technology to the present level of computer technology 
and possibly beyond are closer to realization than ever before. 
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NOMENCLATURE 

The matrix in the balance equation Ax = 0 (dimension = m x n) 
Stoichiometric coefficients in Equation 7; a I=) mole substrate/C mole biomass; b 
I= 1 mole 0,IC mole biomass; c I= I mole NH/C mole biomass; d I= 1 mole H,0/ 
C mole biomass; e I = 1 mole CO/C mole biomass; f I = I mole product/C mole 
biomass 

Biomass stoichiometric coefficients in Equation 7 
Biomass concentration; b I = I g/f 
Linearization matrix in Equation 47 
Concentration of component j in the system; C, I = I moll( 
Liquid phase oxygen concentration in equilibrium with the gas phase oxygen con-
centration; c:.

2 
( =) mol O,tC 

Oxygen concentration in the fermentation liquid; c .. , I= I mol O,t( 

Carbon dioxide evolution rate; CER I= I mole COJl'-hr 
Dilution rate D I= 1 hr-' -
Dilution rate at steady state; D,. I= 1 hr·' 
Energy charge, as defined in Equation 5 
Linearization matrix in Equation 47 
State dynamic equation 
Linearization matrix in Equation 47 
Linearization matrix in Equation 48 
Hamiltonian in Equation 55 
Heat of formation -0f species j in Equation 13; H, I =) kcal/mo! 
Measurement equation 
Test function 
Performance index 
Volumetric mass transfer coefficient; kLa I= I hr·• 
Lagrangian in Equation 53 
Number of constraint equations 
Maintenance requirement for ATP; m,."' I = l mole A TPIC mole biomass-hr 
Oxygen-to-cell maintenance coefficient 

Substrate-to-cell maintenance c-0efficient 
Number of measurements 
Oxygen utilization rate; OUR I= 1 m-0lc 0/t-hr 
Variance-covariance matrix for i; P • E [(x - i)(x - i)TJ 
Efficiency of the -0xida1ive phosphorylation; PIO I = J mole A TPtmole 0 
Variance-covariance matrix fort; Q • E lt~I 
Heat evolution in Equation 6; Q ( = I kcaltC mole biomass 
Volumetric oxygen transfer rate; q,., I= I mole 0/l-hr 

Rate of biomass fomtation; extent of Reaction 7; R I=) mole biomassil-hr 
Respiratory quotient; RQ I = I m-0lc CO/mole O, 
Variance-covariance matrix for(; S • E [(t'J 
Limiting substrate concentration; s I = I g/l' 
Time 
Initial time 
Final time 
Control vector in Equation 47 
Volume; V I = I liter 
Disturbance vector in Equation 47 
State vector 
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x.y.z 
y 

Composition of substrate in Equation 7 
True parameter vector for measured variables (dimension = n) 
Measurement vector (dimension = n) 5· 

Y~'i·~· Maximum ~rowth yield on ATP; y:;_•1.;, (=IC mole biomass/mole ATP 
Oxygen to cell yield coefficient 

Substrate to cell yield coefficient 

Greek Letters 

o:.j3;y,6 Composition of biomass in Equation 7 
Composition of metabolic product in Equation 7 
Measurement error vector (dimension = n) 
Estimate of 6 (dimension = n) 

a' ,13' ;y' ,6' 
6 
6 

Balance equation residual vector (dimension m) 
Ellpected value operator 
Random disturbance to the dynamic system 
Confidence level of x' distribution 
Influence function in Equation 55 
Extents of reactions in Equations 39a to 39e 
Specific growth rate; µ I= I hr-' 
Stoichiometric coefficient of component j 
Random noise in measurement 
Net rate of input of component j to the system by transport; 4>, I = I mol/hr 
Variance-covariance matrix for E with no gross error (dimension = m x m); <Ii 
E(uTJ 

<l> Terminal function be minimized in Equation 53 
Standard deviation 
Chi-square probability distribution 
Variance-covariance matrix for 6 (dimension 
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A NEW APPROACH TO BIOPROCESS IDENTIFICATION 

AND MODELING 

(The text of Appendix H consists of an article coauthored with G. N. Stephanopou

los which has appeared in Biotechnology & Bioengineering Symposium Series, 14, 

635-656, 1984.) 
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, NAM SUN WANG and GREGORY STEPHANOPOULOS 
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Summary 

A new approach 10 bioprocess identification and modeling is presented. A lime-delay kernel is 
included in the stale equations, and a generalized method of transforming the inlegrodifferential 
equations to a mathematically equivalent set of first-order ordinary differential equations is developed. 
The incorporation of a culture's past history in the form of a delay kernel greatly enhances the 
model's predictive capabilities, and the transformation permits the application of a wide range of 
well-established analytic techniques. The resulting model effectively combines the simplicity of an 
unstructured lumped model with the power of a complex structured model. Keywords: time delay; 
kernel; modeling; adaptive on-line state estimation; commensalism; integrodifferential equations. 

I. INTRODUCTION 

It has been pointed out [I) that two important problems in the optimal design 
and operation of a biological reactor are the lack of reliable biological sensors 
and the lack of simple mathematical models with satisfactory predictive capa
bility. The sensor inadequacy is especially acute in the areas of continuous 
measurement of cell mass and substrate/product concentrations, which are among 
the most fundamental state variables in nearly all fermentation systems. The 
relatively poor state of instrumentation means that the current measurements are 
discrete in time and frequently contain a high level of noise which must be 
filtered out before they are to be used to control a bioreactor. 

As far as the existing models are concerned, they are either inadequate during 
transient operation (lumped-parameter models), very complicated and time con
suming for control and optimization purposes (single-cell models) or contain a 
large number of directly indeterminable parameters (structured models) for any 
practical application. Despite significant modeling efforts, simple, descriptive, 
and easy to construct models are not yet available. 

One of the main purposes of advance measurement and modeling capabilities 
should be the satisfactory control of biological processes. This control action 
should be viewed more as a mechanism to safeguard the process against various 

Biotechnology and Bioengineering Symp. No. 14 ( 1984) 
«:> 1984 John Wiley & Sons. Inc. CCC 0572-6565184/010635-22$04.00 
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types of disturbances rather than as a mean of improving performance. To be 
sure, there are situations in which the performance of a process can be dramat
ically improved with the proper control, but these cases are less likely to be 
found in bioprocesses aiming at the volume production of fuels and chemicals. 

Perhaps the best way to describe the type of control problems that may arise 
in a biological process and the essential features of the associated control structure 
in terms of measurement and modeling requirements is by means of an example 
especially appropriate for the theme of this symposium. This example concerns 
the simultaneous saccharification and fermentation process of cellulosic and 
hemicellulosic biomass by a mixed culture of Clostridium thermocellulum (CT 1) 
and Clostridium thermosacclzarolyticum (CT2). Shown in Figure l is a schematic 
of the basic interactions of this system which has been proposed for the direct 
conversion of biomass to ethanol (2]. According to this scheme, both types of 
cellulosic and hemicellulosic biomass are first hydrolyzed by CT1 to form six
and five-carbon sugars, respectively. The same microorganism can further con
vert the intermediate six-carbon sugars into ethanol as the final product. For the 
complete conversion of biomass material into ethanol, the second organism CT2 

is introduced to convert the five-carbon sugars into ethanol. This mixed-culture 
system is an example of commensalism; namely, that interaction in which one 
population (the commensal population) depends on the growth of the host pop
ulation but not vice versa. initial studies on this system [2] showed that the 
growth of the host (CT1) is uninhibited by the concentration of the substrate, 
but the growth of the commensal microorganism (CT2) exhibits substrate inhi
bition, as shown schematically in Figure 2(a) depicting the µ. (specific growth 
rate) versus s (limiting substrate concentration) curves for the two populations. 
The productivity as a function of the dilution rate in a continuous fermentor 
employing this mixed culture is also shown. It is desirable to operate the reactor 
at a dilution rate corresponding to the maximum productivity, which is generally 
very close to the washout of the second population. 

The dynamics of commensal mixed populations growing in a continuous bio
chemical reactor has been analyzed [3}, and it is found that the phase plane 
diagram in the vicinity of the maximum productivity is quite sensitive to the 
value of the dilution rate, D as shown in Figures 2(b) and 2(c). 

For D > µ.2mu, where µ2,nu is the maximum specific growth rate of the com
mensal population, the commensal population is washed out, and the only stable 
steady state is the propagation of the host organism. For D < µ.2,nu two coex-

CT1 • C th«moc~ll11m 

CT2 • C. thermosoccharolyticum 

CT1 CT1 Cellulosic Biomass---- 6-Corbon Su,;i= (Glucose)---➔ Ethanol 

Hemicellulosic Biomass~ 5-Corbon SuQors (Pentosel--C_T_z_ Ethanol 

Fig. 1. Conversion of bioma.~s malcrial into ethanol by the mixed commensal populations of C. 
thermocdlum and C. thermosaccharolyticum. 
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Fig. 2. (a) Productivity of a process that involves a mixed culture of commensal populations as 
a function of the dilution rate. (b) Schematic of the phase plane trajectories for the case described 
in (a) when D < µ_, (3]. (c) Schematic of the phase plane trajectories for D > µ,-,. 

istence steady states are possible; one is a stable coexistence steady state (C1) 

while the other is an unstable saddle point (C2) on the separatrix. These two 
steady states are very close to each other for dilution rates close to the value of 
maximum productivity. Under normal conditions, operation at the stable coex
istence steady state is desired. However, various perturbations such as a sudden 
increase in Dor a decrease in µ.2 ..... , caused by, among other things, a perturbation 
in the pH or temperature, can cause the state of the culture to move toward the 
partial washout steady state indicated by point 8 1• If such perturbations remain 
undetected for an appreciable period of time and if appropriate corrective control 
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action is not implemented quickly; the state of the system may cross the original 
separatrix. At this point, even the best regulation of D or µ,201a, to the set point 
can only restore the phase diagram to that of Figure 2(c). However, for an initial 
composition of the mixed culture below the separatrix, this control will still fail 
to reverse the attraction of the state toward B 1• An effective control scheme of 
this system would have to determine first the current state of the reactor, establish 
the dynamics of the system, and, then, control the dilution rate in such a way 
that the separatrix passes below the current state. The dilution rate is then 
gradually restored to the previous value as the system approaches the coexistence 
steady state C 1• 

The above example shows that for a successful control, one needs an efficient 
on-line state and parameter estimation scheme to detect the perturbation early 
enough to prevent the state from crossing the separatrix, if possible. In addition, 
a descriptive dynamic model is required to assess the effects of a possible control 
action and guide the state back to the set point of operation. In the following 
sections, a systematic methodology for the on-line estimation of key bioreactor 
variables and culture parameters will be briefly presented. Subsequently, a new 
approach to bioprocess identification and modeling will be outlined. The pro
posed approach considers the effect on rates and yields of not only the present 
state of the system but also the previous history through the concept of a kernel 
integral. The set of the resulting integrodifferential equations is then shown to 
be equivalent to a set of first-order ordinary differential equations representing 
a generalized structured model. These simple ordinary differential equations then 
can be relatively easily manipulated with the well-developed mathematical tech
niques to yield insightful information on the dynamics of the system, including 
the analysis of the stability of steady states, etc. Furthermore, size-reduction 
techniques are outlined which can lead to a low-dimensional, directly observable 
model while preserving at the same time the biological significance of various 
parameters. 

II. PARAMETER AND STATE ESTIMATION 

The basic feature of the parameter and state estimation scheme as proposed 
by Stephanopoulos and San (4) is to represent the biological conversion of 
substrate to cell mass and product by a chemical reaction: 

a C,H_vO, + b 0 2 + c NH3 - C0 H 110.,B6 

+ d H20 + e CO2 + f Ca•H13•0.,•Ni• (I) 

where C,H,O,, C0 H110.yN6 , and C0 •H11,0.,•Ni• are the chemical formulas for the 
substrate, cell biomass, and product, respectively: and a, b. c, d, e, and f are 
the six unknown stoichiometric coefficients for the reaction. The principle of 
elemental balances for C, H, 0, and N gives four equations, which can be 
combined with the on-line measurement of the respiratory quotient (e / b. obtained 
from continuous gas phase 0 2 and CO2 concentration measurements) and the 
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rate of ammonium hydroxide addition for pH control to solve for the six stoi
chiometric coefficients. The various yields can be easily obtained from these 
stoichiometric coefficients. 

It should be pointed out that the above procedure yields only the stoichiometric 
coefficients (yields) of Eq. (I) and the total rates of growth (R). product for
mation, etc. However, as indicated earlier, the key bioreactor variables are the 
various concentrations and the specific rates of growth, product formation, etc. 
A direct integration of the governing differential equations based on material 
balancing cannot yield accurate estimates of the above variables, for no provision 
is made for the presence of any· noises that are always present in both the 
measurements and the process itself and that may affect significantly the accuracy 
of the so obtained variables. 

In order to eliminate such noises, an adaptive Kalman-Bucy filter is applied 
to the measurements to estimate continuously the biomass, substrate, and product 
concentrations as well as various yields and the specific growth rate of the culture. 
The essence of the Kalman filter is as follows. The dynamics of a nonlinear 
system and the measurements can be expressed in the general form: 

dx 
dt = f(x,u) + t(t) (2) 

y = h(x) + ~(I) (3) 

where xis the state vector of a dynamic system, u is the nonrandom input vector, 
{(t) is the random disturbance, and ~(I) is the random noise in the measurement 
y. The linearized Kalman estimate x of the true state x is described by the 
following set of vector and matrix filtering differential equations: 

di = f(x,u) + Ph~(x)S- 1(y - h(x)) 
dt 

dP = fx(x,u)P + Pf~(x,u) + Q - Ph~(x)S- 1h.(x)P 
dt 

(4) 

(5) 

where P is the symmetric covariance matrix of the estimation error, and Q and 
S are the positive definite matrices which are measures of the intensities of the 
noise processes { and t, respectively. 

The general state equation (2) takes the following form when applied to the 
systems of Saccharomyces cerevisiae growing on glucose-limited medium in a 
chemostat and fermenting glucose to ethanol [5]: 

dx - = µ.x - Dx 
dt 

ds I - = D(s1 - s) - - µ.x 
dt Y, 

dp I - = - µ.x - Dp 
dt Yr 

(6) 

(7) 

(8) 
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where x, s, and pare the biomass, glucose, and ethanol concentrations, respec
tively, and s1 is the glucose concentration in the feed stream. In addition, unknown 
parameters such as the specific growth rate, µ, and cell yields Y, and YP may 
also be estimated simultaneously by including them in the state vector and by 
treating the noise associated with the fast changing variable as colored, as im
plemented below: 

dµ = 
C + t1(t) (9) 

dt 

de C - = + {1(t) (10) 
dt ,. 

dY, 
(11) - = {i(t) 

dt 

dY 
=:...J!. = {it) 
dt 

(12) 

where c is the colored noise correction variable, and ,- is the time constant 
associated with c, which can be set equal too-•. Similarly, the measurement 
Eq. (3) in this case becomes: 

R = µx + t 1(t) 

Y,,ms == Y, + ti(t) 

Yp.ms = YP + ~it) 

(13) 

(14) 

(15) 

The adaptive nature of the estimation-filtering algorithm is because a varying 
intensity is used for the noise {1 depending on the value of the residue between 
measured variables and predictions for the same variables based on the available 
state estimates. If the residues are smaller than what can be attributed to the 
measurement noise and the uncertainty of the state estimates, then the variance 
of the noise is set equal to zero, which is equivalent to assuming that no change 
occurred during two consecutive measurements. In the opposite case the filter 
opens in order to accept the new measurements and adjusts the parameter values 
appropriately. 

The above methodology was applied to the continuous fermentation of S. 
cerevisiae, and Figure 3 shows some representative results of the capabilities of 
the method [5]. These figures reveal that smooth and reliable estimates on 
biomass, glucose, and ethanol concentrations are achievable. The estimate of 
the specific growth rate obtained by the adaptive Kalman filter is especially 
smooth compared to that obtained by an ordinary averaging method (RC filter). 
Additional experimental results and numerical simulation have further verified 
the ability of this methodology to provide accurate, on-line state estimates [5]. 
Furthermore, the sensitivity of the method has been investigated extensively [6] 
so that it can be claimed that the proposed methodology is reliable and can meet 
the requirements of a potential estimation-control structure for biological reactors. 
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Fig. 3. On-line estimates and off-line measurements in a dilution rate step-up experiment of 
continuous glucose-limited cultivation of S. cerevisiae with ethanol formation. Shift is at Ohr [S]. 
(a) Celt biomass concentration; (b) glucose concentration; (c) ethanol concentration; (d) specific 
growth rate. 

III. NEW MODELING APPROACH 

Mathematical models are needed for control purposes and bioreactor design. 
They are the condensed version of our knowledge about a system, and their 
sophistication can vary widely. A useful model should be properly balanced with 
respect to its mathematical complexity and its ability to capture the essential 
features for the intended purpose. It should also be simple enough to permit 
direct determination of its key parameters by performing feasible experimental 
procedures. The validity of a complex model is especially questionable when it 
contains a large number of parameters whose values cannot be experimentally 
evaluated. The success of models in engineering has always depended on the 
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valid use of approximations and assumptions in reducing the complexity of the 
real world to simple and manageable mathematical abstraction, and biochemical 
engineering is no exception in this respect. 

In the following section, a modeling approach is introduced which combines 
the simplicity of an unstructured model with the power of a complex structured 
model. The essence of the approach is the inclusion of a time-delay kernel in 
the equation describing the dynamics of a bioreactor. As an introductory example, 
consider the familiar case of a continuous bioreactor operation modeled by a 
lumped-parameter two-state-variable model, namely: 

dx = -Dx + µ(s)x 
dt 

ds l 
dt = D(s1 - s) - Y, µ(s) 

(16) 

(17) 

where we assume that the specific growth rate, µ, of biomass, x, is a function 
of the limiting substrate, s. The above model, and for that matter almost all 
other models presently in use, states that the behavior of the biomass-substrate 
system depends only on the present state, and there is no provision for the past 
history of the microorganism. It has been recognized for a long time, however, 
that the observed response of a cell population at a certain time instant is the 
composite result of various biological processes that were initiated at different 
time instants in the past as a response to the instantaneous environmental con
ditions prevailing at each particular time. These various processes result in a 
preser.t overall specific growth rate than can be described with the introduction 
of a time-delay kernel, k(t,h), in the specific growth rate: 

dx = -Dx + (J' µ[s(h)]k(t,h)dh)x (18) dt __ 

ds I (f' ) - = D(s1 - s) - - µ[s(h)]k(t,h)dh x 
~ ~ -- (19) 

The idea of a variable's dependence on its past history has been in existence 
for quite some time [7-9). In ecological studies, the interaction of prey-predator 
has been described by Volterra models, which include a kernel associated with 
one of the states of the system. As shown later, our handling of the kernel is 
more general in the sense that the shape of the kernel is not restricted. For a 
linearized time-invariant system, k no longer depends on t and the integration 
variables h separately but on the difference t - h. 

dx = -Dx + (J' µ[s(h))k(t - h)dh)x (20) 
dt -% 

ds I (J' ) - = D(s1 - s) - - µ[s(h)]k(t - h)dh x dt Y, __ (21) 
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Nondimensionalization can be carried out to simplify the above equations 
without any loss of generality. If time is scaled with reference to D - 1 and 
concentrations are scaled with reference to s1, then we have: 

dx 

dt 
( -1 + f .. µ[s(h)]k(t - h)dh)x 

ds l (J' ) - = l - s - - µ[s(h)]k(t - h)dh x 
dt Y, -x 

(22) 

(23) 

The kernel k(t) is usually referred to as the impulse response function and 
can be interpreted as a weighing factor as shown schematically in Figure 4. 
Since it can be generally assumed that future states have no effect on the present, 
k(t) can be implicitly set to zero fort < 0. Note that, strictly speaking, k(t) is 
not a time-delay probability distribution function and k(t) < 0, that is, negative 
weighing, is possible. The µ in the integrand of Eqs. (22) and (23) is the specific 
growth rate that would have been realized if the system operated at a steady 
state characterized by the corresponding value of s for a prolonged period of 
time; it is the true specific growth rate in the absence of time-delay effects. The 
presently observed apparent value of the specific growth rate is given by the 
integral of Eqs. (22) or (23) and can be conceptualized as a string of impulses 
each of which is felt by the system over a period of time according to the impulse 
transfer function. The main questions, of course, are how can one determine the 
appropriate kernel form and what is the biological significance of the latter. 
These two points will be discussed later. 

Various possibilities exist for the function form of k(t), see Figure 5. One can 
set k(t) to be a delta function, o(t), meaning that both the future and the past 
have absolutely no weight on the specific growth rate and that the present instant 
carries all the weight. The integral f'_., µ[s(h)]k(t - h)dh reduces to µ[s(t)] 
in this case, and Eqs. (22) and (23) reduce to the conventional unstructured 
model of Eqs. (16) and (17). 

Another possibility is to assume that there is a fixed time lag in the response 
of the system, that is, k(t) = o(t - T), meaning that the specific growth rate 
depends on the substrate concentration at a discrete time instant ,- units before 
the present. The state equations in this case are reduced to: 

dx 

dt 
{ - I + µ(s(t - ,-)]}x 

ds I - = I - S - - µ.(s(t - T)]X 
dt Y, 

(24) 

(25) 

Analysis of this case can be performed by using the theories of differential
difference equations I IO). The relatively simple system of Eqs. (24) and (25) 
can be successfully analyzed, but, because the mathematical theories of differ
ential-<lifference equations are not as well developed as ordinary differential 



INPUT 

- 799-

WANG AND STEPHANOPOULOS 

k(I) 

IMPULSE TRANSFER FUNCTION 

y(tl=f~h)k(t-h)dh 

OUTPUT 

IMPULSE INPUT IMPULSE TRANSFER EFFECT OF IMPULSE INPUT 
o O 1 2 2 2 2 2 2 2 o.1 FUNCTION ON FUTURE RESPONSES 

i=¢>~ : =¢>I O O O O O O O O 0 

--~-'--'--'--'--'--'--'-~ ~ - 8 • ■ t t I I M 

O-

__...,__,__,__,__,__,__,__,__...l=¢>~. =¢>10---0 .. _o_o_+o_o_o_o_o_o• 
~- - - ■ I I I ■ I I 

Q.2 

!. 

0 0 I 2 2 2 2 2 2 2 00 00 OJ O!I U 1.6 1.9 20 20 20 

rAi ,!J.1111 .. ~ rtrh., 
11 

r ~-. 
IMPULSE TRANSFER FUNCTION 

Fig. 4. Interpretation of a time-invariant kernel integral which relates the input to the output of 
a linear system. 
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(a) k(t) = 8(1) 

0 

(b) 
k(1l = a< t-Tl 

0 T 

(c) 
Future ---+---Past 

0 
t 

Present 

Distributed 
k(1) 

Fig. 5. Three frequently used functional forms of k(t): (a) delta function without time delay; 
(b) delta function with a discrete time delay T; (c) general distributed time delay. Note the directions 
of past and future are the reverse of the conventional time plots. 

equations, some problems may arise in the integration and general analysis of 
this type of differential-difference equations especially in slightly more com
plicated systems. 

A more general approach is to express an arbitrary function k(t) in terms of 
a series of base functions which permit the transformation of the integrodiffer
ential equations into a set of simple first-order equations. This is accomplished 
by approximating an analytical function k(t) as a summation of exponential 
distribution functions of order m or less: 

where the general expression for the nth exponential distribution function is 

{

T-
1 (t)" __ e-llT 

11! T 
k.(t) = 

0 

for t 2: 0 

for I< 0 
(27) 

The first two exponential distribution functions are sometimes used in ecological 
studies and they have special names. 

n = 0 

n = 

ko = T-•e-11T 

k, = T-2,e-11T 

weak generic delay 

strong generic delay 

(28) 

(29) 
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Some of the properties of the exponential distribution functions are shown in 
Figure 6, and the first few of these exponential distribution functions are shown 
in Figure 7. Note that if these functions are normalized with respect to the 
average delay, (n + l )T, then one can see that the peak at the average delay 
becomes higher and narrower as II increases (see Fig. 8). It can be shown that 
as n - oo, kit) - 6(t - -r), where -r is the average delay. In this limiting case, 
the state equations are again reduced to Eqs. (24) and (25). 

At close inspection, the nth-order exponential distribution function is identical 
to the residence time distribution function of a system of n-CSTRs in series in 
the modeling of a chemical reactor. Accordingly, if k(t) is expressed as the sum 
of m exponential functions, the observed specific growth rate at time t, expressed 
as 

y(t) = f., µ,{s(h)]k(t - lr)dh 

will be the weighed sum of m integrals 

that is, 

f,., µ,[s(h)]k/t - h)dh j = 1,2, ... , m 

y(t) = ! a1(f ~ µ,[s(h)]ki(t - h)dh) 

= {.., µ,[s(h)](~ ali(t - h))dh 

= f,, µ,(s(h)]k(t - h)dh (30) 

The weighing factors a1 and the delay time constant T are chosen in such a way 
as to fit the observed transient of the specific system in a shift-up or shift-down 
experiment. A small value of m usually gives a very satisfactory fit. 

Quite significantly, we are not bounded by the limited functional shapes of 
each individual exponential distribution function. By expressing the kernel as a 
'linear combination of these base functions, any sufficiently smooth continuously 
differentiable function can be represented if a sufficiently large number of base 
functions are used. This is because the approach is essentially the same as 
expanding the function e"Tk(t) by a Taylor's series. Theoretically, m could be 
extended to oo, but two or three terms should be sufficient under most circum
stances in practice. For example, a linear combination of ko(t) and k1(t) results 
in 

(31) 

where a0 + a 1 = I so that the kernel is normalized to unity. Some of the shapes 
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Fig. 6. Some properties of the exponential distribution functions. 

of k(t) generated by a combination of these two base functions are shown m 
Figure 9. 

The reason for choosing exponential distribution functions as the base functions 
is that they permit easy and elegant transformation of a set of integrodifferential 
equations into a set of simple ordinary differential equations. These exponential 
distribution functions possess the property that each and every one of them is 

~ ~----.-----.-----..-----,------, 

10 2.0 3.0 4.0 5.0 
DIMENSIONLESS TIME ( t/T) 

Fig. 7. Exponential distribution function of order n. 
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~ ,---------,-------,------,-------, 
n•20 

...J 
w z 
a:: 
w 
~ 

U)g 
U) 
w 
...J z 
0 
v; 
z I() 

~d 
i5 

k,.(t) = L'.(..L J"e-+ 
nl T 

T = (ntl)T · ··Average Deloy 

05 20 
NORMALIZED DIMENSIONLESS TIME (th) 

Fig. 8. Exponential distribution function of order n normalized with respect lo the average delay. 

the solution to the following differential equation: 

•+t -(n + l) d;k.(t) LT' . --. =O 
i•O l dt' 

with initial conditions: 

l
d;k.(0) = 

0 
dt; 

d"k.(0) = y-<•+ I) 

dt" 

= 0,1,2, ... .,n - I 

9~-------.---------,--------, 

...J 
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~ 
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II)~ 

~d z 
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DIMENSIONLESS TIME ( 1/T) 

(32) 

Fig. 9. Linear combination of the zero-order exponential distribution function, k0 (1). and the 
first-order exponential distribution function. k,(t); k(t) = a.k0(/) + a,k,(I). a0 + a, = I. 
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For example, ko(t) = r- 1c-"7 satisfies 

dk 
T-

0 + k0 = 0 
dt 

with initial condition: 
ko(O) y-• 

Similarly, k1(t) = r- 2re-" 7 satisfies 

T2d2k1 + 2Tdk1 + k1 = 0 
dt 2 dt 

with initial conditions: 

k 1(0) = 0 

dk 1(0) = r-i 
dt 

(33) 

(34) 

The above properties of the exponential distribution functions can be used to 
eliminate the kernel from the integrodifferential Eqs. (22) and (23) and convert 
them into a larger, but mathematically identical, set of first-order ordinary dif
ferential equations. 

If we treat the integral containing the kernel as a new function y.(t), 

y.(t) = f ~ µ(h)k.(t - h)dh (35) 

then differentiating y.(t) with respect tot, n + l times with the help of Liebnitz's 
rule yields: 

(36) 

The set of the resulting differential equations is one order higher than the kernel 
originally contained inside the integral. This higher-order differential equation 
can be easily transformed into a set of first-order differential equations through 
some well-known canonical transformations. Thus, for a simple nth-order kernel 
kit), the integral is transformed to the following set of equations: 

dy 

dz 1 
= Z2 

dt 

(37) 

dz.-1 
= z. 

dt 

d~ ( • ( + I)=; + µ(t)) 2 = r-(n+ II - L T' n 
dt ;&o i 



- 805 -

WANG AND STEPHANOPOULOS 

Because of the linear properties of the differential and integration operators, 
a linear combination of more than one base functions of k.(t) will leave the 
approach unchanged. Thus if a first-order kernel has the form: 

(38) 

Then, 

y(t) = f., µ[s(lz)]k(t - h)dh 

can be converted to a second-order ordinary differential equation: 

T2 d2y(1) + 2T dy(t) + y(t) = µ(t) + aoT dµ(t) 
dt2 dt dt 

(39) 

which can be further transformed to a mathematically equivalent set of two first
order ordinary differential equations. 

dy(t) 
-- = z 

dt 

dz(t) = -2T-1z 
dt 

(40) 

(41) 

For example, with the kernel of Eq. (38), the system dynamic equations (22) 
and (23) are now: 

dx 
dt = (y - l)x 

ds 

dt 

dy 

I 
- s - - yx 

Y, 

- = z 
dt 

dz - = 
dt 

= -2T- 1z - T- 2y + T-2µ(s) 

T
_1 dµ.(s) T_ 1 dµ.(s) r-i 1 dµ.(s) + a -- - a --s - aO' ---vx 0 ds O ds Y, ds . 

(42) 

(43) 

(44) 

(45) 

Since, as it was mentioned, a first-order kernel is usually sufficient in de
scribing bioreactor dynamics, the dependence of the specific growth rate (and 
other similar culture parameters) on the past history of the culture can thus be 
described with only two additional differential equations. This increase in the 
dimensionality of the system is a small price to pay considering the significantly 
enhanced predictive capabilities of the model. 

The dynamics of a chemostat culture in the presence of time-delay kernels 
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has been analyzed _with the use of linearized stability analysis and bifurcation 
theories. The full spectrum of dynamic behavior, including damped oscillations 
(when a zero-order kernel is included) and sustained oscillations (when a first
order kernel is included) can be predicted. The inclusion of kernels in other 
variables such as Y, and x can also be analyzed in a similar manner. Furthermore, 
product formation, although not considered in this paper, can also be similarly 
studied. More detailed and complete results on the effect of time delay on the 
stability, classical process control consideration, and optimal control formula
tions will be the subject of forthcoming publications. 

The experimental determination of the kernel has also been investigated for 
various transient situations. Shown in Figures IO(a) and IO(b) are the computer
simulated responses of a biochemical reactor described by Eqs. (20) and (21). 
From the noisy transient data of µ(t) and y(!) when the dilution rate is shifted 

"' c:i 

"' c:i 

V 
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jN 
WO z 
a: 
w 
>< 

0 
0 

al 

0 

Noisy C...-Ve····Meosurement 

-Lower Smooth Cur.e ···· y.,_.,1c,oc1 

2 4 6 8 
TIME (Iv I 

10 

"' c:i 

t<1 
0 

Fig. IO. (a) Simulated input (i.e .• the specific growth rate in the absence of time-delay effects) 
as a function of time in a continuously operated bioreactor described by the stale Eqs. (20) and (21) 
after a shift-up in the dilution rate from 0.3 lo 0.7 h- 1

• (Parameters used:µ = 0.5 s/(0.1 + s); 
s, = 5.0; Y, = 0.5; noise level in measurement = 5%.) (b) Simulated output (i.e .. the observed 
specific growth rate containing time-delay effects) as a function of time. (Upper smooth curve: the 
true value of y(t); lower smooth curve: the calculated value of y(t) based on the estimated kernel 
function of (c).) (c) True and estimated shapes of the kernel. 
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up from 0.3 to 0.7 h- 1
, the kernel was reconstructed by minimizing the mean

square deviation of the y(t) predicted by the kernel away from the observed y(t). 
The resulting kernel is shown in Figure l0(c). Here, µ,(t) is assumed to be the 
true specific growth rate in the absence of the effects of time delay. Given s(t), 
this true specific growth rate µ,(t) is obtained, in actuality, from aµ vs s curve 
constructed from a series of steady-state experiments, in which the time-delay 
effects are eliminated. For the purpose of this simulation, the µ vs s curve is 
assumed to follow the Monod model; however, it need not be so. Since the 
frequency response function or the pulse response function can be considered 
merely as another representation of the impulse response function (i.e., the 
kernel), sinusoidal or pulse methods can also be utilized to detennine experi
mentally the shape of the kernel. The above example represents the worst case 
of estimating the impulse response function from a pulse experiment. Much 
better agreement between the true kernel and the estimated one can be achieved 
if an impulse can be applied to the system; the agreement is also considerably 
better if the noise level is decreased. (Of course, the reconstructed kernel co
incides with the true one in the absence of noise.) 

The above simulation study suggests that the first step in the experimental 
determination of the kernel is to construct a µ vs s curve through a series of 
steady-state runs. During a transient experiment in which the dilution rate or the 
feed substrate concentration is shifted up or down, the substrate concentration 
can be continuously estimated as a function of t, as shown in the previous 
sections. Furthermore, by referring to theµ vs s curve, µ,[s(t)) can be generated 
continuously as well. The estimation scheme presented earlier can also be used 
to provide a continuous estimate of the instantaneous specific growth rate y(t), 
and, finally, the kernel is generated. 

Currently, work is under way in order to determine experimentally the shape 
of the kernel for a continuous culture of S. cerevisiae. Shift-up, shift-down, and 
sinusoidal perturbation experiments of the dilution rate, the substrate feed con
centration, the pH, or the temperature are being performed. The on-line meas
urements with the aid of the parameter and state estimation algorithms described 
in the previous section will be used to determine the shape of the kernel function, 
and this new approach to bioprocess identification and modeling will be tested 
in terms of the model's capability in predicting the microbial behavior, including 
the more general and revealing behavior, such as the occurrence of sustained 
oscillation, under different conditions. 

The difference between a complex structured model and a simple unstructured 
model is analogous to that between statistical and classical thermodynamics. 
Whereas a structured model tries to explain the observed phenomena through a 
large set of differential equations in terms of the more fundamental variables 
such as the concentrations of various intermediates; unstructured models are 
usually composed of those variables that can be physically "seen" or "felt" 
more readily and are, thus, more comprehensible to human minds. The proposed 
modeling approach herein attempts to retain the general form of an unstructured 
model so as to facilitate simple physical interpretation of the variables by such 
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familiar terms as the specific growth rate. At -the same time, this modeling 
approach attempts to incorporate only those metabolic intermediates that are 
important to the dynamics of the system and to reduce the order of a complicated 
structured model through the analysis of eigenvalue-eigenvector of a linearlized 
system. How this can be accomplished is briefly outlined below. 

In general, a dynamic system (including a structured model) can be described 
by a set of first-order differential equations: 

dx(t) 
-- = f(x u t) 

dt ' ' 
(46) 

where x is the state vector and u is the input to the system as in Eq. (2). For a 
system linear in the state variables, the above equation can be written 

dx(t) dt = A(t)x(t) + g(t) (47) 

The fundamental-matrix solution to the above differential equation is expressed 
by the following Lagrange formula: 

x(t) = f 00 K(t,h)g(h)dh (48) 

If the linearization matrix A(t) is constant, then this solution further reduces to: 

x(t) = f"' K(t - h)g(h)dh (49) 

where K is the fundamental matrix of Eq. (46). Thus, the appearance of a kernel 
in Eqs. ( 18H2 l) is spontaneous; it arises mathematically during the process of 
solving a set of differential equations. The eigenvalue and eigenvector of the 
matrix A(t) can be analyzed to simplify and to reduce the dimension of the 
system by retaining only the first few most important modes and eliminating the 
remaining nonsignificant modes. 

If the unstructured part of the system (i.e., biomass, substrate, product, etc.) 
are included in the state variable x(t), then the state variable can be grouped 
according to those that appear in the unstructured model [x1(t)] and those that 
are contained only in the structured model [xi(t)). 

X(t) = [Xi(t)] (50) 
X2(t) 

The Iinearization matrix A(t) and the nonhomogeneous forcing function g(t) can 
be partitioned similarly: 

A(t) (51) 

g(I) (52) 
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With this partition, Eq. (47) becomes 

dx 1(t) 
A 11(t)x1(t) + A 12(t)xi(t) + g.(t) = 

dt 
(53) 

dxi(t) 
= A21(t)x1(t) + A22(t)x2(t) + gi(t) 

dt 

= A22(t)xi(t) + g(t) (54) 

Thus, the unstructured model's equivalent of the structured model described by 
Eq. (46) is 

(55) 

where x2 is the delay kernel integral defined by: 

(56) 

where K22(r,h) is the fundamental matrix to A22(t) of Eq. (54). As can be seen 
from the preceding equations, the time-delay kernel arises quite naturally as a 
consequence of reducing a larger set of dynamic equations in a structured model 
by a smaller set of dynamic equations in an unstructured model. 

IV. DISCUSSION 

Microbial behavior depends not only on the present state of the environment 
but on past histories as well. This is the main reason for the inadequacy of the 
simple set of Eqs. (16) and (17). The dependence of a culture on its past history 
is manifested in the presence of a lag phase in the beginning of a batch cultivation. 
It is also present during the transients of continuous fermentors resulting from, 
among others, a shift-up of nutrient concentration. For example, Figure 3 shows 
that although glucose concentration was suddenly increasing at Oh, the observed 
apparent specific growth rate did not start to increase until 1. I h later. Such a 
lag has often been explained in terms of the need to synthesize the necessary 
pools of enzymes and intermediates before the rate of substrate utilization is 
adjusted to the changed conditions. The importance and the presence of time 
lag have been recognized for many years, and in this paper we have attempted 
to offer a simple mathematical means by which the idea of time delay can be 
incorporated into the existing models without drastically increasing the com
plexity of the models. Furthermore, by expanding the delay kernel in a series 
of exponential distribution functions, the integrodifferential equations can be 
easily reduced to a set of first-order ordinary differential equations for which 
the mathematical theories are well developed and various established techniques 
are available to analyze them. 
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REGION I------ REGION n ----•,REGION mi--
Update Kernel a 

Model Parameters 

Apply Optimal Control Strategies : Deliberat~ Exorsians 
I (' 

or Steady State Operations : : 
I I 

I 

0- Start-up --- Optimal Dynamic Path __ .,,._!<-
TIME Transients 

Fig. 11. Use of transient data for the determination of kernel and model parameters during the 
start-up of a bioreactor and the subsequent utilization of the model in control and optimization. 

Much benefit can be derived from the recognition of time delay. It is a well
known fact that time delay can cause, among other undesirable problems, serious 
instability difficulties if it is neglected in a control strategy. Furthermore, an 
optimal control scheme may not be truly optimal if time delay is not properly 
considered. Figure 11 shows a hypothetical run in a bioreactor. The data collected 
during the short transient period after the start up can be used to update the 
shape of the kernel and other model parameters. Based on the updated model 
and model parameters and objective functions, an optimal path can be calculated 
by an on-line computer. Occasionally, deliberate excursions can be introduced 
to update the kernel and model parameters if they are suspected of gradual 
changes during a long steady-state run. A way in which a simple but powerful 
model such as the one proposed herein and the state and parameter estimation 
scheme discussed in the previous sections can be used is in the combined forward 
and feedback control of a bioreactor. Shown schematically in Figure 12 is an 

Feedback 
Control 

Laods a Noises 

Process 
(Fermentor) 

Paromeler 1~::::;:ra:,~- -----~ 
FitterinQ 

Fig. 12. Block diagram of the measurcment~stimation-modeling~plimization-<ontrol config
uration [11 I. 
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interactive estimation-control optimization scheme in which the on-line meas
urement on a bioreactor is passed through an estimation-filter block to get rid 
of the noise and to yield a set of on-line estimates for the state variables and 
growth parameters. These estimates are used as the basis for feedback control 
as well as for on-line process modeling. The biochemical process is continuously 
mo9eled, new values of the model parameters are estimated, and the biological 
model itself, including the shape of the kernel, is constantly updated. This can 
be accomplished by tracking the control history and comparing the deviation of 
the actual state away from the predicted values. Although such an ideal scheme 
does not exist presently, the state and parameter estimation and the new approach 
to modeling proposed herein are steps toward the realization of such a scheme. 

A partial financial support for this work provided by ARCO's Young Faculty Investigator Award 
is gratefully acknowledged. 
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