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ABSTRACT 

The mammalian cerebral cortex is organized into a variety of two-dimensional 

areas whose anatomical and physiological organization is obscured by the 

folding of the cortical mantle in three dimensions. This organization can be 

revealed by unfolding the cortex so as to produce a two-dimensional 

representation or map of its surface. To produce such mappings, we have 

developed algorithms for computational cartography which maximally preserve 

intrinsic geometry while unfolding the cortical surface. Our computational 

algorithms were used to produce the first computational maps of the entire 

primary visual cortex of the macaque monkey (Carman and Van Essen, 1985), 

and the first completely noninvasive mapping of in vivo human visual cortex 

(Carman and Mora, 1989). 

In order to measure the geometry of the region of cortex to be mapped, a 

reconstruction of a surface or layer of cortex must be obtained from a typically 

sparse sample of contours of section. We obtain a solution to this 

reconstruction problem by computing a flow which fuses pairs of images 

containing successive contours of the surface. These flows are governed by a 

pair of complex harmonic potentials which represent translations, rotations, 

and scalings which combine to produce a conformal mapping of the two images 

onto a third fused and interpolated image. Since these potentials are 

harmonic, their values over a region of the images can be computed from 

samples taken only along the boundary of that region by solution of the Dirchlet 

problem. Thus, a coarse to fine series of samples on concentric annuli, similar 

to the sampling of the primate retina, can be used to compute such flows at a 

continuum of spatial scales. A number of visual problems arising in the analysis 

of motion, stereo, and shape information are formally equivalent to this 
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reconstruction problem and can therefore also be solved by computing such 

flows. Remarkably, the equations which determine these flows can reproduce 

many aspects of the topography of the first stages of the primate visual pathway, 

suggesting that such flows may also be computed by the mappings of the 

cerebral cortex. 
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1. Mapping the Cerebral Cortex 

1.1 Introduction 

In the second century, Ptolemy described terrestrial cartography as the "survey 

of the whole in its just proportions" and the representation "in pictures the 

whole known world together with the phenomena contained therein" (Wilford, 

1982). This is an apt description of the goals of cortical mapping, with the 

notable exception that the "world" of the cerebral cartographer consists of the 

cortical structures together with the sensory, associative, and motor images 

which they generate, and which are themselves representations of the world of 

our subjective perception. 1 Indeed, contemporary efforts to map the cerebral 

cortex are but part of a larger project which seeks an explanation of how the 

various levels of cortical organization all combine to provide a substrate for the 

representations of our conscious experience. These various levels range from 

the cortex as a whole, to the areas into which the cortex is subdivided, and 

finally to the neurons that comprise each area. Accordingly, these efforts rely 

on both anatomical and physiological measures taken at various scales, such as 

the extent of the different cortical areas and the topology of their 

interconnections, combined with such physiological measures as the 

topography of the projection from the periphery onto the cortex. 

1. The mappings which we seek to construct are of mappings that the cortex 
elaborates of the sensory, associative, or motor fields. Although the term 
"cortical map" has been used to describe either of these 1n separate 
contexts, we will attempt to keep the distinction clear b_y referring l.o the 
former as a mapping ofl.he cortex, and the latter as a pro3ection or image in 
the sensory, associative, or motor domains. 
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Although the first mappings of the visual cortices were made 50 years ago 

(Talbot and Marshall, 1941, 1942), a rigorous theory describing the organization 

of the cortex still does not exist. This effectively limits researchers to 

phenomenological interpretation of their anatomical and physiological 

observations, and has precluded any significant progress in the project of 

emulation of biological vision. This is partially a result of empirical limitations 

on the number and accuracy of the observations that can be made, akin to 

limitations that distorted the continents on the maps of the earliest terrestrial 

cartographers. But this is also a consequence of a more significant limitation 

on our understanding of the function of cortical areas, and how these functions 

relate to the anatomical and physiological organization we observe. Such 

limitations can result in substantial misinterpretation of observations, akin to 

the depiction by early mapmakers of the Earth as flat and situated at the center 

of the universe. 

The work which will be described first began with the objective of overcoming 

some of the methodological limitations on the construction of maps based on 

empirical observations of the cortex. However, we soon found it necessary to 

consider the theoretical functions of the very cortex which we sought to map. 

We were compelled to do so by the isomorphism between computational 

problems which arose in the course of the work and certain "unconscious 

processes" of vision. Analysis of this isomorphism led to elucidation of 

hypothetical functions for the earliest visual areas, and for a link between these 

functions and the projection of the visual field through various stages of the 

visual pathway. These theoretical considerations suggest how the solution to 

the aforementioned computational problems should proceed, and are presented 
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as such in the context of the aforementioned mapping endeavor. This 

hypothesis for the relation between the function of cortical areas and their 

anatomical and physiological organization is further discussed at the end of this 

work, in order to make clear how it leads to a unified view of many fundamental 

aspects of cortical organization, such as the characteristic two-dimensional 

laminar organization seen throughout the cortical mantle. 

Figure 1. Laminar organization of the cortex as seen in a parasaggital section 
through macaque cortex. 

It has been known for some time that the cortex consists of a series of laminae 

defined on the basis of anatomical criteria (Figure 1 ). These laminae are 

considered either as separate layers, or collectively as a single thick layer which 

overlies the white matter and subcortical structures. From this perspective, the 

layer(s) of interest are intrinsically two-dimensional surfaces which happen to 
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be embedded within a three-dimensional cortex. In some species, the cortex is 

highly folded into a series of sulci and gyri, presumably reflecting constraints of 

packing and connectivity which determine its shape during ontogeny and 

phylogeny (Richman et al., 1975 ). In such species, which include most primates 

and humans, the organization of the various cortical subdivisions is obscured by 

these convolutions. For example, when anatomical or physiological data are 

combined to delineate the extent of a cortical area, these areas are frequently 

represented as the shaded portions of a standard series of histological sections. 

The spatial distribution of the cortical area cannot be determined directly from 

such an image. The cortical surface must first be mentally "reconstructed" in 

order to appreciate the extent and location of the area on the brain surface 

(Figure 2). Similarly, the need to generate this reconstruction when anatomical 

or physiological data are presented on such parallel sections obscures the 

anatomical and physiological organization both within and between cortical 

areas. 

These difficulties can be circumvented by "unfolding" the cortex so as to 

produce a map of the cortical surface of interest upon which such anatomical or 

physiological observations can be projected. Perhaps the simplest way to 

obtain such maps is to literally unfold the cortex by removing the underlying 

white matter, leaving a flexible sheet of gray matter which can be flattened and 

then sectioned tangentially (Woolsey and Van der Loos, 1970; Imig and Brugge, 

1978; Tootell and Silverman, 1985; Olavarria and Van Sluyters, 1985 ). While such 

physical unfolding has been achieved for small regions of the cortex, such as 

individual areas of the macaque cortex, it is not well suited for mapping 

extensive regions such as the collection of cortical areas comprising the visual 
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Figure 2. The extent of the second visual area (striped) represented on serial 
sections. From Gattass et al., 1981. 

cortex of primates. Typically, the cortex becomes torn during the unfolding, 

while the laminae remain significantly nonplanar due to residual intrinsic 

curvature. When the unfolded cortex is subsequently sectioned tangentially, the 

tears produce discontinuities in the unfolded surface, while the residual 
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curvature precludes obtaining homogeneous sections of single laminae. In 

addition, the technique is difficult, being used relatively infrequently in 

comparison to the conventional parallel-plane sectioning of the intact brain. 

Finally, the physical unfolding of cortex can only be done postmortem, 

rendering it unsuitable for in vivo functional mapping in subhuman or human 

primates, made possible by the advent of noninvasive anatomical and 

physiological imaging techniques, such as nuclear magnetic resonance imaging 

and positron emission tomography (Mora, Carman, and Allman, 1989). For these 

and other reasons, one would like to be able to obtain such mappings without 

having to rely on a physical unfolding process. 

1.2 Earlier Techniques 

Despite these limitations, the physical unfolding of cortex demonstrates that 

such mappings can be obtained. This is possible because the global geometry of 

cortex is more like that of a plane than that of a sphere, in the sense that the 

cortex has low intrinsic curvature (Van Essen and Maunsell, 1980). Intuitively, 

surfaces of zero intrinsic curvature, such as the side of a cylinder, can be 

mapped onto a plane without distortion, while surfaces with nonzero intrinsic 

curvature, such as the sphere, must be distorted in such mapping (Gauss, 1827; 

Coxeter, 1961, Ch. 20; Hildebrandt and Tromba, 1984, pp. 69-70). To the extent 

that the sulci and gyri arise from folding transformations of the cortex, they do 

not contribute to the intrinsic curvature of the surface and can be removed by 

unfolding without introducing distortions. 2 However, once this is done, there 

2. Mathematicians prefer to use the term bending to describe the process by 
which a flat sheet would be deformed to resemble the surface of lhe cortex 
(see, for example, Hilbert and Cohn-Vossen, 1952). In this precise usage, 
bending refers to any transformation of a surface which leaves all arc 
lengths and angles on that surface invariant, and which therefore leaves the 
intrinsic geometry of the surface invariant. However, neuroscientists 
conventionally use the term folding in this context, and this convention will 
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will remain deviations of the cortex from planarity due to its small intrinsic 

curvature, and which will result in distortions in the course of any mapping onto 

the plane. Such intrinsically curved regions are known to occur in the macaque 

cortex, such as the regions where gyri or sulci merge, as evidenced by the fact 

that incisions need to be made in such regions in the course of manual 

unfolding (Olavarria and Van Sluyters, 1985 ). Since the intrinsic curvature is 

approximately zero elsewhere (Van Essen and Maunsell, 1980), we conclude that 

the curvature is not constant, but varies as a function of cortical location. 

Hence, we expect that distortions arising from such intrinsic curvature will also 

vary from one region of cortex to the next. Accordingly, any method for 

obtaining an unfolded mapping of the cortex should be able to measure such 

distortions and, when they must occur, attempt to minimize them in a 

controlled fashion (Gilbert, 1974; Bassett, 1972). This could be achieved either 

by distributing the distortion over large regions, or by concentrating the 

distortion in a few small regions, depending on the purpose for which the map is 

produced. 

A number of previous investigators have attempted to obtain approximations to 

such unfolded maps with varying degrees of success. The simplest of these is the 

perspective projection of exposed, relatively smooth surfaces of the brain, as 

illustrated in Figure 3. This method is of limited use in that it only preserves the 

component of distances parallel to the plane of projection, resulting in a 

be adopted here (see, for example, Van Essen and Maunsell, 1980). 
Nevertheless, it is useful to keep in mind that bending of a given surface may 
or may not lead to the development of folds in that surface. 
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Figure 3. Perspective projection of exposed surfaces of cat visual cortex. Some 
portions of the cortex have been cut away in order to reveal underlying 
cortical surfaces. From Tusa et al., 1978. 

foreshortening of distances which will be a function of the particular 

"viewpoint" or axis of projection, as well as the shape of the surface being 

projected. In addition, information buried within sulci or beneath gyri can only 

be revealed by cutting way the obscuring portions of cortex. Since these regions 

may be part of the cortex which is of interest, some investigators have made use 
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Figure 4. Schematic unfolding of surfaces of cat visual cortex. Regions which 
were hidden within sulci have been shaded. From Reale and Imig, 1980. 

of schematic unfolded maps, as illustrated in Figure 4. Such schematic 

unfoldings typically preserve topology and geometry along some contours, but 

only at the expense of introducing discontinuities along others. Also, such 

schematic unfoldings approximate large regions of the cortical surface by flat 

polygons, thereby introducing distortions like those mentioned for the case of 

orthogonal projection above. Related to these are the "brainprints" illustrated 



10 

Medial 

I 
Dorsal 

'"'"'°'+ '°"'"°' Ventral 

I 
Medial 

36 

D 
© 

ru 

j 
10 

15 

20 

E 
25 u 

(I) 
a, 
C: 30 

-' 
a, 
u 35 

U) 

ro 40 
C: 
0 
L 
0 45 u 
cr, 
C: 
0 50 

< 
a, 
u 55 
C: 
ro ....., 
(I) 

60 
0 

65 

70 

Isometric Scale (cml 
75 

0 5 10 

80 

85 

10 15 

Distance Along Anterior-Posterior Axis (cm) 

Figure 5. 'Brainprints' of human cerebral cortex. Regions which were hidden 
within sulci have been shaded. From Jouandet et al., 1988. 
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in Figure 5, which preserve distances along, but not between, contours of section 

without introducing as many discontinuities in the mapped areas. However, the 

anisotropic preservation of length produces large distortions of geometry on the 

map as an unavoidable consequence when this technique is applied to the highly 

folded surface of the human brain. All of these methods share the major 

disadvantage that distortions are anisotropic and not quantified in most cases, 

making it difficult to determine the accuracy of representation of any given 

region on a particular type of map. 

Figure 6. Two-dimensional maps of macaque cerebral cortex. On the left are 
lateral (top) and medial (bottom) views of surface of the hemisphere 
which is mapped on the right. Dark lines on the map represent 
boundaries of cortical areas, light lines the contours of section used in 
producing the map, and dashed lines the fundi of sulci. From Van 
Essen and Maunsell, 1980. 
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In an effort to overcome these limitations, Van Essen and Zeki (1978) and Van 

Essen and Maunsell ( 1980) developed a rnanua.1 technique for the construction of 

two-dimensional, unfolded representations of the cerebral cortex (Figure 6 ). In 

this technique, the maps are produced by the iterative repositioning of the 

contours of section of a specific lamina of cortex obtained from histological 

sections (Van Essen and Maunsell, 1980, Figure 13). During this repositioning, 

the length of contours is kept constant while their shape is allowed to change, 

with some effort being made to keep the spacing of contours on the map 

comparable to their true spacing on the cortex. In addition, by tracking the 

distortions of small lengths, angles, or areas during the mapping, the technique 

enables one to quantify distortions as a function of position on the maps. 

While this manual technique demonstrates the feasibility of producing such 

two-dimensional maps of the folded surface of the cortex from the contours of 

section, it has several shortcomings. The maps are tedious to construct, often 

taking several days to map a region the size of macaque primary visual cortex 

( 1200 square mm) and weeks to map an entire cerebral hemisphere (8,000 

square mn,). They are also inherently limited in their acuracy, since they rely 

on manual techniques prone to cumulative errors, and since measures of 

geometry to be preserved are inherently anisotropic. Finally, since these maps 

are typically made without reference to a true three-dimensional 

reconstruction of the cortex, they rely on some subjective judgement to provide 

information about the spacing of contours of section from one region of cortex 

to the next, and therefore show variability between maps of the same tissue 

prepared by different cortical cartographers. Despite these shortcomings, the 

manual technique represented a substantial improvement over previous 



13 

methods, and provided a strong foundation for the further development of the 

technique. That the manual technique involved little more than the iterative 

repositioning of contours in conjunction with preservation of local geometry 

suggested that computers could be programmed to perform the task by making 

use of variational or optimization methods. While the prospect of developing 

computational algorithms for the production of unfolded maps of the cortex 

appeared promising, it also raised questions as to what measures of local 

geometry should be preserved in such mappings. We now turn to a review of the 

properties which define the various mappings. 

1.3 Preservation of Topology and Geometry 

Perhaps the most familiar mappings are the various mappings of the Earth's 

surface (Richardus and Adler, 1972; Gardner, 1975). These maps exhibit several 

properties which are desirable for mappings of the cortical surface as well. 

These properties allow us to distinguish several different classes of mapping on 

the basis of what aspects of topology and geometry they do and do not preserve. 

In the present context, a mapping M can be formally described as a 

representation of one surface Son or by another surface S' for which every point 

P on S has a corresponding point P' on S', and for which this correspondence is 

unique and reciprocal (Richardus and Adler, 1972). More precisely, a mapping M 

which transforms points P to points P' is given as: 

P' = M(P), 

while the inverse mapping is given as: 

The simplest example of a mapping is the identity mapping I in which each point 
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Pis mapped or projected onto itself: 

P' = l(P) = P. 

In order to avoid discussion of uninteresting cases, we consider that the 

mappings of interest are determined only to within an arbitray global 

translation, rotation, and scaling. 

s S' 

Figure 7. Continuous or topological mappings place points in the set Sin one to 
one correspondence with points in the set S'. Thus each point P and it_s 
neighborhood N in set S are mapped to the image P' and its 
neighborhood N' in set S'. 

Mappings of the cortex should be continuous, meaning that if P maps to P', then 

the neighbors of P should also .map to the .neighbors of P'. More precisely, a 

mapping M is continuous if for every neighborhood N of P all points in that 

neighborhood are mapped by Minto a neighborhood N' of P' (Figure 7). Mappings 

which exhibit such continuity are referred to as being topological. Such 

mappings are possible between any two surfaces which are topologically 

equivalent by virtue of being of the same genus, that is to say, for surfaces which 

have the same number of bounding curves (Alexandroff, 1961 ). We note that to 
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say that a mapping is topological amounts to a restriction on the ordering of 

points so as to preserve neighborhoods in the course of mapping. Thus a 

continuous mapping does not require the preservation of any geometry per se. 

The property of continuity may also be shared by several more restrictive classes 

of maps, which preserve local measures of area, angle, or length. 

s S' 

Figure 8. Area-preserving mappings project the region A bounded by contour C 
and having area a to the region A' bounded by contour C' and having 
the same area a. Note that lengths, angles, and shapes need not be 
preserved. 

Of these, area-preserving mappings are the least restrictive, requiring only 

that the area bounded by any closed curve be preserved in the area bounded by 

the image of that curve (Figure 8). Clearly, however, one can stretch or squeeze 

local regions while leaving the area invariant, so that lengths and angles will not 

in general be preserved by such mappings. If we instead stipulate that the angle 

between any two curves be preserved in the angle of the image of those curves, 

then we obtain a conforrnal mapping (Figure 9). As the name suggests, the 
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s S' 

A' 

Figure 9. Conformal mappings project two curves AB and CD intersecting at an 
angle El to the curves A'B' and C'D' intersecting at the same angle El. 
Note that lengths and areas need not be preserved. 

shapes or conformations of sufficiently small figures carry over to their images 

under such mappings. Alternatively, the shape or conformation of a figure will 

be preserved approximately and in a manner which improves as the size of the 

figure decreases. One can see this by considering a triangle: if all three angles 

are to be preserved under the mapping, then the triangle must be similar to its 

image, so that the ratios of lengths of the sides of the triangle will be preserved. 

Conformal maps are valued for this property, even though they do not 

necessarily preserve lengths or areas. Also, conformal mappings will by 

definition preserve the orthogonality of a coordinate system, such as the 

Cartesian grid in the plane, permitting conformal mappings to be described 

geometrically as transformations of a given coordinate system. Alternatively, if 

we stipulate that the length of any curve be preserved in the length of the image 

of that curve, we obtain an isometric mapping (Figure 10). This mapping is more 

restrictive than either of the earlier mappings, as can be seen by again 
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Figure 10. Isometric mappings project points A and B separated by a distanced 
along curve C to the points A' and B' separated by the same distanced 
along the curve C'. 

considering a triangle: if the lengths of all three sides are to be preserved under 

the mapping, then the angles must all be preserved as well. In this sense, the 

isometric mapping can be regarded as the particular case of the conformal 

mapping having unity magnification. Finally, the geodesic mappings may also 

be distinguished. These map the geodesics, which are the curves of minimal 

length, of one surface onto the geodesics of another. Since they preserve a 

subset of distances, they can be regarded as a degenerate case of the isometric 

mapping, which we have already considered. Other properties of all these 

mappings are discussed in Hilbert and Cohn-Vossen (1952) and Richardus and 

Adler (1972). 

Note that in all these cases we regard the areas, angles, or distances as being 

measured with respect to some some curve(s) on the surface being mapped. This 

enables us to measure the intrisic geometry of a surface regardless of how it 
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may be embedded in a space of higher dimension. This intrinsic geometry will 

be invariant under the various possible foldings or ernbeddings of the surface in 

the larger space. For example, the distances along a curve on a two

dimensional surface embedded in a three-dimensional space will not depend on 

the way in which the surface is folded. Such intrinsic distances will therefore be 

preserved when the surface is unfolded in the course of mapping. In contrast, 

the Euclidean distance between any two points along the curve, as measured 

along a straight line connecting those points, will in general depend on the 

details of how the surface is embedded in space. Such extrinsic distances will 

change as the surface is unfolded, and are thus not suitable measures of 

geometry to preserve during mapping. The problem of finding a set of intrinsic 

measures of distance on a discrete polygonal surface is known as the discrete 

geodesic problem,, and has been treated by Mitchell et al. (1987). In general, we 

would like to preserve as much of the intrinsic topology and geometry of a 

surface as possible in its mapping. We will now consider how continuity, area, 

angle, and length can each be preserved at least for subsets of a typical cortical 

surface when mapped onto the plane. 

To show that there exists a continous mapping of such a cortical surface onto 

the plane, it is sufficient to note that the two are topologically equivalent. In 

particular, the surface of cortex and a region of the plane bounded by a single 

contour are both surfaces of genus zero having a single hole. As a consequence, 

one surface can be transformed into the other via deformations involving 

stretching or shrinking, but not cutting or gluing of portions of the surface. 

This can be accomplished by an imaginary "unfolding" of the cortex, so that its 

surface deforms into a sphere with a single hole, and then "flattening" this 
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surface into a subset of the plane bounded by a single contour. Since such 

deformation can be accomplished without introducing discontinuities, it is by 

definition an example of a continuous mapping. Thus, as a consequence of their 

topological equivalence, it is possible to obtain a continous mapping of the 

cortex onto the plane. Such mappings can be obtained in practice by requiring 

that each point on the surface of cortex have a corresponding point on the map, 

and that points which are neighbors on the cortex are likewise neighbors on the 

map. Since continuity is one of the most fundamental properties sought for our 

maps, this operation will in fact become one of the steps of our mapping 

procedure. 

Similarly, we can imagine producing an area-preserving mapping of the cortical 

surface on the plane as follows. Construct a model of the surface of interest 

using a uniform layer of perfectly deformable but incompressible material 

(something like plasticine comes to mind). Now carefully deform this model 

onto the plane so that it does not tear or break. Each unit area will be able to 

change shape as needed to allow the surface to deform onto the plane, although 

some angles and lengths may be changed in the process. However, since the 

material is incompressible, the total area and the area of each of the subregions 

will be preserved. More formally, we can show that an area-preserving mapping 

of the cortical surface onto the plane can be constructed as follows. We start by 

measuring the entire area a of a surface S enclosed within a boundary contour C. 

We create a map of this surface by drawing an arbitrary contour C' on the plane 

which encloses a surface S' having the same area a. Now we partition the surface 

into two disjoint regions and measure their respective areas a 1 and a 2 . We 

proceed to partition the area of our planar map into two regions with areas a 1 
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Figure 11. The relationship between principle curvatures and local surface 
shape. The signs of the Gaussian and mean curvature are indicated. 

and a2 , respectively. We now repeat this process of partitioning the surface and 

then the map so as to preserve the areas within each progressively smaller 

subdivision. In the limit of infintessimal areas a. we obtain an area-preserving 
'l, 

map of the original surface. Thus, by ensuring that the area of each 

successively smaller neighborhood is preserved, we have that the area within 

any closed curve whatsoever will be preserved. We can localize any point on such 

a map by finding the image of a small region in which the point lies, taking the 

region as small as we like through further subdivision until we obtain the point 

in the limit. Although this construction proves the existence of such an area-

preserving map, we would not use it in practice since it preserves area without 
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regard to any other aspects of geometry. 

Other aspects of surface geometry, such as length or angle, can also be 

preserved. To help illustrate this, we develop the notion of the curvature of a 

surface, as follows. We can decompose any smooth, continuous surface bounded 

by a single contour into regions each characterized by the signs of the principle 

curvatures K 1 and K 2 (Hilbert and Cohn-Vossen, 1952). These principle 

curvatures, which correspond to the maximum and minimum curvatures along 

curves through a given point on a surface, determine whether the shape of a 

surface is locally flat, parabolic, elliptic, or hyperbolic (Figure 11 ). The average 

of these principle curvatures, 

known as the mean curvature KM' provides a measure which depends both on 

intrinsic surface properties and on extrinsic folding of the surface. In contrast, 

the product of the principle curvatures, 

known as the Gaussian curvature Kc, remains invariant under the folding 

transformations which are chiefly responsible for the formation of the sulci and 

gyri. Thus, the Gaussian curvature provides a measure of the intrinsic 

curvature of a surface. As noted earlier, the cortex has little or no intrinsic 

curvature over most of its surface, with the exception of certain regions where 

the intrinsic curvature is nonzero. Over those regions where the Gaussian 

curvature is zero, we can obtain an isometric mapping onto the plane 

(Hildebrandt and Tromba, 1984, p. 69). However, since the Gaussian curvature 
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differs from zero in at least some regions, and since one cannot reduce the 

Gaussian curvature of a surface to zero by segmenting it, we we do not expect to 

obtain an isometric mapping in general. Thus, we do not expect to be able to 

map the cortex onto the plane without some distortion. This is true even if we 

use discrete polygonal approximations of a cortical surface, which although 

locally planar, are already distorted versions of the actual cortical surface. 

However, for those regions characterized by a constant Gaussian curvature, it is 

possible to obtain a conformal mapping of that region onto the plane (Hilbert 

and Cohn-Vossen, 1952, p. 269). While the nonuniformity of the Gaussian 

curvature of the cortex makes finding a single, continuous conformal mapping 

of this surface impossible, such a mapping might be obtained piecewise by 

segmenting the cortex into regions each having approximately constant 

Gaussian curvature. If this process of segmentation is carried out so as to give 

segments which are sufficiently small, we can obtain an approximation to a 

variable conformal mapping of the surface of the cortex. 

Regardless of the mapping selected, we will need to make measurements of 

surface geometry to be preserved in the course of mapping. Our ability to make 

such measures will, however, be constrained by the form and availability of the 

data. In particular, the surfaces to be mapped will in general not be 

continuously sampled, so that measurements of topology and geometry of the 

surface cannot be made directly from the sample. Instead, we will need to 

reconstruct the surface from the sample before such measures can be taken. 

The reconstruction of such the highly folded surface of the cortex from the 

typically sparse sample will prove to be our most difficult undertaking. Since 

the possible approaches to the reconstruction of the cortex will depend on the 



23 

nature of the data which are available, we next turn our consideration to the 

question of the selection of the surface to be mapped. 

1.4 Selection and Sampling of the Surface to be Mapped 

In the cortex, one can generally distinguish six or more layers which span the 

radial distance from its surface to the boundary of the grey and white matter. 

These layers can each be considered to be a continuous and smooth shell of gray 

matter of some thickness, laid one on top of the other to comprise the cortex. 

While it is possible to map each of the layers separately, or to generalize the 

mapping to a three-dimensional volume, for most current applications it is 

sufficient to select only one layer for mapping. Although in principle any of the 

layers could be selected, usually either the exterior surface of the cortex or 

layer IV are chosen, as they can be consistently distinguished in a wide variety of 

anatomical data. By neglecting the thickness of the chosen layer, we can 

approximate it by a two-dimensional surface embedded within the three

dimensional cortex, providing an ideal substrate for mapping. 

In order to map the chosen cortical layer, we must make measurements of the 

local topology and geometry of this surface to be preserved in the course of 

mapping. To do so, we would ideally select a continuous and isotropic sample of 

sufficient density to determine the chosen surface at a desired resolution 

(Gabor, 1946; Shannon, 1948, 1949; Landau, 1967; Logan, 1977; Marr et al., 1979; 

Requicha, 1980; Curtis and Oppenheim, 1987; Marvasti, 1989 ). If such sampling 

of the surface were possible, we could determine the topology and geometry as 

needed for mapping from direct measurement of sets of points in the sample. 

However, the chosen surface cannot be sampled in this manner, since in almost 
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all cases the surface lies within an opaque volume of tissue. In order to expose 

the surface of interest, the volume of tissue must be "sliced" in some manner, 

and a subset of points sampled from the contours defined by the intersection of 

this surface with the planes of section. 

Figure 12. Histological sections of macaque cortex obtained by microtomy. 
Sections are separated by 500 microns on average. 

Examples of such anatomical data include a series of histological sections 

obtained by postmortem microtomy of monkey cortex (Figure 12), or a series of 

noninvasive magnetic resonance images of human cortex obtained in vivo. 

Since isotropic measurements of topology and geometry of the surface cannot 

be made directly from such contours, we must reconstruct a reference surface 

upon which such measurements can be made for the purpose of mapping. But in 

general, not all contours of section from a surface will be available for this 

purpose, due to technical limitations on the number and spacing of usable 

sections which can be obtained from a given brain. For example, histological 

processing of brain sections can result in tissue shrinkage and breakage, both 
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within and across sections. Even when all sections are in principle available, 

histological processing can differentially distort adjacent sections, making the 

continuity of limited value for the reconstruction of the surface (Van Essen and 

Maunsell, 1980). But more typically, different subseries of sections undergo 

various histological procedures to obtain different kinds of data, effectively 

limiting the sample of the surface to be mapped to those sections subjected to 

comparable histological processing. Even if we distribute this sample uniformly 

across the brain so that it consists of, say, every sixth section, there still are a 

number of sections separating each pair of contours in the sample. For a typical 

section spacing of say 30 microns, this means that planes of section are 180 

microns apart -- enough distance for surface contours to undergo significant 

changes in shape. Similarly, the various noninvasive procedures, such as 

magnetic resonance imaging of the human brain in vivo, have technical and 

economic limitations which effectively limit the number and spacing of 

contours of section which can be obtained (Brownell et al., 1982; Norman and 

Brant-Zawadzki, 1985; Oldendorf, 1985; Sokoloff, 1985; Fox et al., 1986; Raichle, 

1986). Although the advent of confocal microscopy and advances in resolution 

of noninvasive techniques promise to bring us closer to an ideal continuous 

sampling of surfaces, at present these techniques are not in general use. For all 

these reasons, the contours of section will in general not be strictly serial or 

adjacent to one another, but rather will constitute a sparse, discontinuous, and 

anisotropic sample of the chosen surface. These characteristics of the sample 

can result in ambiguities in the subsequent reconstruction of the surface, as 

will be described in the next section. 

An additional problem arises when the alignment of contours with respect to 
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each other is lost in the process of acquiring the data. For example, once 

histological sections are cut from the brain, the original alignment of one 

section relative to the next may be difficult to determine. However, it is possible 

to obtain registration of the data by translation and rotation of the contours so 

as to bring them into alignment with one another or to a set of independent 

fiducial points (Weinstein and Castleman, 1971; Levinthal and Ware, 1972; 

Merickel, 1988; Herbin et al., 1989). This alignment procedure is facilitated 

through the use of three-dimensional computer graphics, which permit the 

manipulation of contours so as to achieve registration (Figure 13). A series of 

images of the cut surface of the brain which record the absolute alignment of 

the sections can be used as a reference for such registration, as well as for 

rectification of other distortions arising from histological processing. 

Furthermore, the noninvasive procedures such as magnetic resonance imaging 

and positron emission tomography typically obtain data in register, at least 

within a given scan. Thus the registration problem does not arise in all cases, 

and where it does, solutions are available. We thus assume in the following that 

such registration of the contours has been achieved in one way or another, so 

that the distances and angles between points on the contours agree with the 

values that would be obtained if we could make the corresponding measures 

directly from the surface. 

1.5 Reconstruction of the Sampled Surface 

Formally, we describe the reconstruction of a surface to be the recovery of the 

intrinsic topology and geometry of the surface from measures taken on a sample 

or projection of the surface. In most cases, the intrinsic properties of a surface 

cannot be directly determined from the sample, due to the loss of topology from 
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Figure 13. Contours obtained from sections of macaque striate cortex (above) 
are brought into registration with one another (below). 

discontinuities in the sample, and due to differences between the geometry of 

the surface and that of the space in which the sample is embedded. We view it as 

the fundamental problem of vision, to which the other problems of vision can be 

reduced by an appropriate mapping. If this is the case, then it should be 

possible to solve these other problems from within a general unified theory of 

vision once a solution to the reconstruction problem is known (Carman 1987). A 
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variety of approaches to the reconstruction problem have been proposed, mostly 

by mathematicians and computer scientists, and often with the intent of 

computing so1ne visual surface representation. 

We begin with a review of this literature to provide a taxonomy of surface 

representations for the neuroscientist interested in the general problem of 

surface reconstruction. This problem has been viewed alternatively as an 

exercise in tiling a two-dimensional surface, in fitting a bivariate function, in 

deforming a two-parameter model, or in constructing a mapping or vector field 

on a topologically equivalent domain. Regardless of the description, the 

representation chosen must be sufficient to capture the relevant measures of 

topology and geometry for surfaces of interest. Several representations of 

surfaces have been proposed in the context of va,rious applications (for reviews, 

see: Marr and Nishihara, 1978; Srihari, 1981; Morganthaler and Rosenfeld, 1981; 

Marr, 1982; Foley and Van Dam, 1982; Barsky, 1983; Ritter and Tou, 1984; Samet, 

1984; Brady et al., 1985; DeFloriani et al., 1984; Lancaster and Salkauskas, 1986; 

Horn, 1986; DeFloriani, 1989). Since surfaces are embedded in three 

dimensions, most representations make use of the familiar three Cartesian 

coordinates (x,y,z) to give the positions of points, with additional dimensions 

sometimes used to represent various attributes at each point or to permit the 

representation of time. 

We can· characterize the various representations in terms of the fields, or more 

generally, manifolds over which they are defined. Thus, we distinguish pixels 

defined on two-dimensional image planes from voxels defined on three

dimensional object volumes. In between these two extremes are found a variety 
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of parametric surfaces, defined by way of implicit or explicit parametrizations 

of two-dimensional manifolds of various topology (Alexandroff, 1961; Munkres, 

1984; Flanders, 1989). To distinguish the elements of such parametric surface 

representations from the alternatives, we refer to them as psxels (pronounced 

'sik-sels). We will now consider these alternatives for surface or object 

reconstruction so as to provide an overview of existing approaches, as well as a 

running critique to motivate the development of our own representation for 

surfaces. 

One common choice of representation is a scalar function of position on a two-

dimensional field, often referred to as a scalar field. When this representation 

is used to represent surfaces in or on some computing device, the scalar field is 

often referred to as an image comprised of pixels, with the value of the scalar 

giving the elevation or distance of a surface. With this representation, the 

reconstruction problem can be formally described as finding a bivariate 

function z = /(x,y) defined on a two-dimensional field (x,y) which interpolates 

the points sampled by our data contours (xi, yi, zi), i = 1, ... ,n. Examples of this 

approach have been developed by several authors (Grimson, 1982; Terzopoulos, 

1983; Poggio et al., 1985; Xu and Lu, 1988). Such scala~ field models have an 

appealing simplicity, since the isoelevations can be interpreted as isopotentials 

of interpolating functions which are solutions to Laplace's equation, allowing 

them to be easily computed by relaxation on a digital computer or by analog 

resistive nets (Koch et al., 1986). Surfaces obtained in this fashion are 

guaranteed to be of minimal area, although not necessarily unique (Hildebrandt 

and Tromba, 1984). Once this is done, the neighbors of points and their 

coordinates can be found either by travelling along the isoelevations or in the 
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Figure 14. Determination of topology from the gradient of a potential 
representing the elevation of a surface. Contours show the lines of 
constant elevation of a surface, while needles show the direction of 
the local gradient. The isoelevation contours can be regarded as an 
interpolation of the four contours along which the surface was 
originally sampled. 

orthogonal direction along the gradients (Figure 14). However, the properites of 

such minimal surfaces may not be well-suited to the reconstruction and 

interpolation of arbitrary surfaces. For instance, surfaces formed by folding of 

a planar sheet have zero Gaussian curvature everywhere, so that local regions 

can be either planar or parabolic, while the reconstructed minimal surfaces 

must have zero mean curvature, so that local regions are either planar or 

hyperbolic. More generally, such scalar functions of two-dimensional fields are 

profoundly insufficient as a general representation for surfaces of objects. The 

most obvious difficulty arises with the assumption that the surfaces to be 

represented are single-valued functions of the field. While the single surface of 

an opaque object can be represented as a scalar function of the image plane, the 

"near" and "far" surfaces of a transparent object cannot. This representation is 

also insufficient for representation of an integrated view of two or more images 
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of various surfaces in the vicinity of an occlusion, such as might be obtained 

during stereoscopic or kineopic viewing. 

Figure 15. The projection of multiple and topologically discontinuous points 
P 1 , P 2 , and P 3 of a continuous surface along a single ray and onto a 
single point O of the retinal image (Koenderink, 1987). 

These troublesome examples, which occur about as often as they are ignored, 

share the property that multiple and topologically discontinuous regions of a 

continuous surface may project to a given point on the image (Figure 15). The 

frequent occurrence of such nonfunctionality in our data precludes the use of 

scalar functions defined on two-dimensional fields in the case of surface 

reconstruction from planar contours. 

One means of overcoming this difficulty also involves representing the surface 

as a scalar function, but makes use of a three-dimensional field. When this 

representation is used to represent objects, the scalar field is often referred to 

as a scan comprised of voxels, with the value of the scalar giving the (binary) 

existence, or (continuous) probability or density of the object at a given voxel. 
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Although this representation is usually used with solid objects, their surfaces 

alone can be represented, in which case the scalar gives some measure of the 

existence of the surface at a given voxel. With this representation, the 

reconstruction problem can be formally described as finding a function 

s = f(x,y,z) defined on a three-dimensional field (x,y,z) which interpolates 

the points sampled by the data contours (xi, yi' zi), i = 1, ... ,n where we set 

s = 1 on the surface and s = 0 otherwise. Such a representation can in 

principle be used to represent transparent or folded surfaces which cannot be 

represented as scalar functions of two-dimensional fields. Some authors have 

made use of such representations, in part because biomedical data are often 

represented in this fashion (Lorensen and Cline 1987; Sander and Zucker, 1988). 

However, there are few advantages to this approach. In particular, one cannot 

find the interpolant by solving Laplace's equation on the three-dimensional 

field, since adjacent or apposing surfaces tend to blend together. One might 

remedy this by proposing a surface process to segment the volurne analogous to 

the use of line processes to segment an are a (Koch et al., 1986). However, since 

surfaces typically occupy only a small fraction of the volume in which they are 

embedded, such a scalar function defined on a three-dimensional field is a 

rather inefficient representation for the reconstruction of a surface. It may, 

however, be appropriate in other domains such as the reconstruction of volumes 

from a sparse series of scans. 

A third possibility represents points on a surface as a mapping (discrete) or 

vector function (continuous) defined on a two-dimensional field or manifold. A 

manifold is a space which locally resembles either a metric space or a domain in 

such a space, but which is actually neither of these. Rather, it is a collection of 
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local coordinate neighborhoods embedded in the space (Alexandroff, 1961; 

Flanders, 1989). Thus, the manifold is neither the plane of an image nor the 

volume of the scans of an object, but can be thought of as a region topologically 

equivalent to the surface of the object. Since topology varies among objects, 

reconstruction requires the estimation of topology for the construction of such 

a manifold, in parallel with estimation of the geometry defined upon the 

manifold which gives the shape of the surface. By parametrizing the surface by 

a two-dimensional coordinate net (u,v), we obtain a manifold upon which we 

can define a three-dimensional vector field whose points P = (x,y,z) = f(u,v) 

represent the observed geometry of the surface. However, almost all previous 

work on reconstruction of three dimensional surfaces has involved either the 

estimation of topology, or the estimation of geometry, but not both in parallel, 

primarily because most procedures assume rather than construct the manifold 

which provides the domain for the reconstruction. The reason for this is that 

the parametrization (u,v) is in general difficult to obtain from typical samples 

(e.g., Sander and Zucker, 1988). Nevertheless, it is the most promising of the 

representations for reconstruction of topology and geometry of arbitrary 

surfaces. We will pursue this approach later in this section. 

As is apparent from the above survey of surface representations, a general 

solution to the reconstruction problem will be relevant to problems of visual 

object representation and recognition. We will develop this parallel here and 

throughout this section for two reasons. First, the ease with which the human 

visual system solves this problem causes us to underestimate its difficulty, 

which becomes apparent as soon as one attempts to develop an algorithm to 

solve the problem in any degree of generality. Thus, despite over a decade of 
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work by a number of investigators, the problem of surface reconstruction can 

still be solved in only a few limited cases. Second, the parallel suggests that 

surface reconstruction is isomorphic with certain other visual processes, which 

allows us to apply our knowledge of vision to obtain a solution to the 

reconstruction problem. Furthermore, by virtue of this isomorphism, this 

solution in turn provides us with a better understanding of these visual 

processes, and how they might be accomplished given the known structure of 

the visual pathway. We will elaborate on this point later in this section and in 

the Discussion at the·end of this work. 

What evidence is there that the visual system reconstructs both the topology and 

geometry of objects in the manner suggested above? When we are first presented 

with an unfamiliar object in the visual environment, we will not know anything 

about how the parts of the object are connected to one another (topology) or the 

shape they describe (geometry). This situation is exemplified by the random dot 

cinematograms and stereograms of Julesz ( 1971 ), which can present any of a 

number of different kinds of surfaces to the visual system through temporal or 

spatial correlations between otherwise random images. In such stimuli, the 

individual dots in each image constitute a sampling of the surfaces of an object 

which are presented in such a way as to remove explicit cues to the topology and 

geometry of the objects. The visual system can assemble or group these dots 

into sets corresponding to the figure and ground, demonstrating that the visual 

system· is capable of discovering and representing the different parts of an 

object and their interconnections, which is tantamount to a specification of 

topology. Furthermore, objects having the same topology can be further 

distinguished on the basis of their shape. The ability of the visual system to 
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determine and represent such shapes demonstrates that it is capable of 

determining the geometry of objects as well. Since neither topology or geometry 

are available directly from such random dot images, the visual system must 

determine these from correlations on the random dot image pairs. This requires 

solution of the well-known correspondence problem (Julesz, 1971; Marr, 1982) 

in order to obtain the mapping of one image onto the other of the pair which 

identifies the corresponding points. The correspondence problem can also be 

regarded as being solved by the reconstruction of the structure responsible for 

the correlations between the two images (Carman 1987). We shall pursue this 

point later as well. 

The visual system can also distinguish differences in intrinsic and observed 

geometry. For example, objects having the same topology and intrinsic 

geometry, but differing in the way in which the objects are embedded in space by 

a bending of one surface into another, are seen as different conformations of 

the same object. Conversely, surfaces having the same topology, but differing in 

-
their intrinsic geometry by a deformation of one surface into another, are seen 

as having shapes which, if sufficiently different, will be regarded as different 

objects. Taken together, the discriminability of the afo:r:ementioned objects is 

evidence that the visual system is capable of distinguishing both the topology 

and geometry of objects embedded in space, and therefore of solving the 

reconstruction problem as we have defined it. Since objects differing by only a 

change in location or conformation should be recognized as the same object, the 

reconstruction of objects by the visual system should preceed the recognition of 

objects per se. Presumably the perceptual constancy of objects differing in this 

way arises from those aspects of topology and geometry which remain invariant 
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under such transformations. Yet most proposals regarding object recognition 

fail to appreciate that both topological and geometric ambiguities can and do 

arise due to the effective undersampling of objects arising from the limited 

availability of cues (DeYoe and Van Essen, 1988). 

Having described the parallel between some aspects of visual perception and the 

general problem of surface reconstruction, we return to the particular problem 

at hand. The reconstruction of the cortex for the purpose of mapping requires 

the determination of the intrinsic topology and geometry of a surface which is 

embedded within the familiar three-dimensional Euclidean space, based on a 

sample consisting of the contours of section. Since this sample is continuous 

within contours, there is no difficulty determining the neighbors of points, and 

therefore the distances between points, along the same contour. However, since 

the sample is discontinuous between contours, the neighbors of points on one 

contour which are located on other contours will in general be ambiguous. This 

topological ambiguity pre-vents the accurate determination of the curves of 

minimal length on the surface of the object, which are known as the geodesics of 

the surface (Hilbert and Cohn-Vossen, 1952; Hildebrandt and Tromba, 1984). 

Since the intrinsic geometry of a surface is completely determined by these 

geodesics, the topological ambiguity also produces an ambiguity of the intrinsk 

geometry of the surface. This is because the geodesics will in general change 

direction in regions where the surface changes shape, so that we cannot 

determine their direction on a sparse, discontinuous sample of a variable 

surface. Since the ambiguities in reconstruction of intrinsic properties of the 

surface arise from the presence of topological discontinuities in the sample of 

the surface, we refer to this as the the topological problem (Figure 16). 
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A B 

C D 

Figure 16. The topological problem. A: Perspective view of a folded surface. 
Surfaces are shaded in proportion to their distance, with the nearest 
surface being white and the farthest dark gray. B: Projection of 
surface shown in (A). Discontinuity in sampling (gap) arising from 
the fold produces an ambiguity as to whether and how point P is 
topologically connected to points Ql or Q2. C and D: Two possible 
interpretations of the surface sampled in (B), showing the geodesics 
(checked lines). The topological ambiguity has metric consequences. 

Although no notion of geometric measure is needed to define a continuous or 

topological space, geometry provides a convenient means of determining 

topology. Through the use of a suitable metric, which measures the distance d 
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between any two points of a space, the topological notion of neighborhood can be 

expressed in terms of the geometric notion of distance. Thus, the neighborhood 

of a point P can be described as the set of all points N within a distance d of P. 

Futhermore, we can use this geometric description of neighborhoods to 

reconstruct unknown topology given the geometry of a sample, which in turn 

may allow us to determine the intrinsic geometry of the surface. Provided that 

the sample is sufficiently dense, points which are neighbors in the space of the 

sample will also be neighbors on the surface being reconstructed. If this is the 

case, then the ordering of distances from one point to its neighbors on a surface 

(intrinsic geometry) will be preserved in the ordering of distances among the 

corresponding points in the sample (observed geometry). Such a nonparametric 

ordering of points by distance requires only that relative distances along the 

surface be preserved in the sample space (cf. Todd and Reichel, 1989). 

In the case of the reconstruction of the cortical surface for mapping, the 

contours taken from separated planes of .section represent a sample of the 

surface which is continuous within, but not between, the planes of section. 

Thus, while neighboring points can easily be found for a given point within the 

same contour, the identity of neighboring points on adjacent contours can be 

ambiguous. If a surface is sectioned so that the contours are sufficiently close, 

the distances along any curve on the surface will be well-approximated by 

distances between samples along that curve, so that the topology recovered in 

this way will reflect the true topology of the surface. On the other hand, if the 

sections are sufficiently far apart, the relative distances between points may 

differ significantly from those on the surface, so that we are not able to 

unambiguously determine the topology of the sampled surface. Indeed, if the 
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contours are sampled so sparsely that the surface is underdetermined, it may be 

impossible to reconstruct a unique surface from the contours alone (Gabor, 

1946; Shannon, 1948, 1949; Landau, 1967; Logan, 1977; Marr et al., 1979; 

Requicha, 1980; Curtis and Oppenheim, 1987; Marvasti, 1989). 

There are, however, are a variety of definitions of neighborhoods. Many of these 

share the criterion of minimal distance in some space (Ahuja, 1982; Grunbaum 

and Shephard, 1989). For example, the neighbors of a set S of points on the 

plane or in a volurn.e can be found by constructing the Voronoi tesselation, 

which subdivides the plane or volume into polygons or polyhedra each of which 

contains all points closer to a given member of S than to any other member 

(Voronoi, 1908; Rogers, 1964; Watson, 1981; Riedinger et al., 1988; Grunbaum and 

Shephard, 1989). Alternatively, if we are only interested in the neighbors within 

S , we may construct the Delaunay triangulation, which connects members of S 

that are closer to each other than to any other member (Delaunay, 1906; Rogers, 

1964; Lee and Schachter, 1980; Watson, 1981; Riedinger et al., 1988; Grunbaum 

and Shephard, 1989). The Delaunay triangulation can thus be regarded as the 

dual3 of the Voronoi tesselation (Figure 17). While the Delaunay triangulation 

can be constructed from straight line segments on the plane or in a volume, 

these should be generalized to curves when constructing the tesselation on 

arbitrary surfaces. More typically, however, piecewise-linear approximations to 

these curves are employed. 

3. Two figures or axioms which have the formal _pro~erty of remaining 
unchanged by exchanging "straight lines" and "points ' are referred to as 
duals. It is a remarkable fact that all the axioms of plane :r,rojective 
geometry have duals (e.g. "two points determine a line' and 'two lines 
aetetmine a point" are duals). The principle of duality is discussed at length 
by Hilbert and Cohn-Vossen ( 1952). 
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Figure 17. An example of a Delaunay triangulation (dashed lines) of a set of 
points (filled circles) and its dual, the Voronoi tesselation (solid 
lines) (Lee and Schachter, 1980). 

In some cases, the topological problem is "solved" by specifying neighbors via 

interactive grouping of points on the surface so as to define and assemble 

contours to approximate the surface of interest. Exploiting human vision to 

assist in this process, Levinthal and Ware (1972) presented pairs of contours 

stroboscopically so as to produce apparent motion between neighboring points 

on adjacent contours, while Marko et al. (1988) and Leith et al. (1988) presented 

stereoscopic views of sections so as to produce binocular fusion of neighboring 

points. In other cases, the topology was explicitly sought by algorithms which 

grouped points on the surface into discrete polygonal tiles, and in turn 

assembled the tiles to approximate the surface of interest. Such a 

representation is referred to as a tiling or tesselation of the surface. Many early 

developers of such computer imaging or object modelling algorithms made use 

of heuristics to select the grouping of points defining the tiles. Keppel ( 1975) 
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proposed an algorthm which sought to subdivide the surface into nested convex 

hulls, and introduced the use of planar graphs to represent neighborhood 

relationships between points (Harary, 1969; Berge, 1985 ). Alternative heuristics 

based on minimal area, equalaterality, similarity in orientation, and other 

measures of triangular tiles were also proposed (Fuchs et al., 1977; Christiansen 

and Sederberg, 1978; O'Rourke, 1981; Batnitzky et al., 1981; for early reviews 

and more heuristics, see: Cook, 1981; Gana pa thy and Dennehy, 1982; Funnell, 

1984). 

Many of these early heuristic algorithms did not obtain appropriate or unique 

solutions, since objects are not generally shaped according to such heuristics. 

They also typically could not reconstruct branched objects for which a single 

cross section splits into two. A recent proposed extension to one of these early 

algorithms offers no demonstration that the extension is sufficient (Livadas, 

1989). In an attempt to obtain a uniquely defined tesselation, several 

investigators defined tesselations according to the Delaunay triangulation of a 

sparse sample projected into two dimensions (Lee and Schachter, 1980; Watson, 

1981; Ahuja, 1982; Sloan and Houlsby, 1984; Watson and Philip, 1984). 

Unfortunately, the Delaunay triangulation does not ahyays produce triangles 

whose edges approximate the contours of section, and produces triangles on the 

interior and between exterior surfaces, requiring extensive editting to obtain 

just those triangles on the surface. Recently, Boissonnat (1988) proposed an 

extension designed to overcome these difficulties, but even this extended 

algorithm does not properly reconstruct sparse samples. This is a consequence 

of grouping on the basis of straight-line distances between points in the process 

of constructing the Delaunay triangulation. Due to the topological problem, 
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such distances do not follow the geodesics in general, and thus do not reflect the 

true minimal distances between points. Thus points which are actually quite 

distant on the surface can be grouped together to form tiles which are not part 

of any real surface. However, the construction of a Delaunay triangulation 

would provide a unique solution to the problem of surface reconstruction if 

measurements of geodesic distances between points were available, or if the 

sample is dense enough so that the difference between geodesic and sampled 

distances were negligible. 

The discrete, polygonal tesselation can be extended to include blending 

deformations of the surface tiles, allowing us to obtain a piecewise continuous 

covering of the surface using patches or two-dimensional splines or, in our 

terminology, psxels. Here a manifold is specified by an orthogonal 

parametrization (u,v) of the surface, and the spline as a vector field (t(u), g(v), 

h(u,v)) defined over local regions of the manifold. Such a parametrization can 

always be obtained for a continuously sampled surface, for example, by using 

length along an orthogonal net of curves on the surface to give f(u) and g(v). 

However, obtaining this parametrization for a sparse, discontinuous sample of a 

surface requires solving the topological problem. In most cases in the literature 

on psxels, this problem is not even addressed, since they have been used 

primarily for modelling and imaging known surfaces rather than reconstructing 

unknown ones. Thus, we will not review this literature at length here (for 

reviews, see: Foley and Van Dam, 1982; Barsky, 1983; Lancaster and Salkauskas, 

1986). Some exceptions worthy of note can be found. Dierckx et al. (1988) 

describe an algorithm for generating a tensor product psxellation of surfaces 

starting from contours of section. They require that the parametrization either 
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be given a priori, or be obtainable by a trivial subdivision of the contours of 

section into an equal number of segments. Neither of these conditions is 

acceptable in our case. A geometrically sophisticated approach was taken by 

Sander and Zucker (1988), who used a series of biomedical scans represented on 

voxels to obtain a local parametric surface patch covering, or psxellation, of 

relatively simple surfaces contained therein. These authors recognized the 

topological problem and made use of several results from differential geometry 

of surfaces in order to reconstruct the toplogy. They were able to accomplish 

this using measures of surface geometry, namely the principle curvatures and 

the surface normal at each point. These were locally available in the scans used 

by Sander and Zucker, but are not in our contour data, so that their methods 

cannot be applied directly. 

The local surface patch or spline representation can be further developed into 

-models representing an entire simple object or part of a more complicated one. 

Here the manifold and model are defined as for the psxels above, except that a 

single global model has replaced the collection of locally defined psxels. The 

various models include generalized cones or cylinders which either represent 

the surfaces themselves, or are used as a manifold upon which a scalar function 

can be defined to represent the surface (Binford, 1971; Marr and Nishihara, 1978; 

Marr, 1982). Both cases were proposed as a means to obtain an object-centered 

representation for visual images and memory. Since the shape of an object is 

not known a priori, both the topology of the model and the mapping of visual 

images onto the model must be determined. Usually, the class of model to be 

found in an image is specified a priori, which essentially ignores the topological 

problem. The mapping of visual information is also simplified through 
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restricting the problem to objects and models which have a one-dimensional 

axis of symmetry or "skeleton" which is found using symmetry-seeking 

processes operating on the image. As a result, the surfaces which can be 

represented are thus restricted to be functions of either spherical or cylindrical 

coordinates (van Oosterom, 1977; Brevdo et al., 1987; Terzopoulos, 1987; 

Terzopoulos et al., 1987; Dierckx et al., 1988; Horaud and Brady, 1988; 

Terzopoulos et al., 1988; Bresler et al., 1989). The more general superquadric 

surfaces were described by Barr (1981, 1984) in the context of solid modelling 

and deformation, and Solina and Bajcsy ( 1990) have described an algorithm to 

fit them to rangefinder data. Unfortunately, all these models are insufficient 

for representing the various surfaces of the brain to be reconstructed. Neither 

the surface nor the cross sections of cortex posess the assumed symmetries and 

therefore cannot be directly represented by one-parameter models. While this 

might be remedied by developing the capability to construct shapes on more 

complicated "skeletons" of two or more parameters, and perhaps a hierarchy of 

shape, such a generalization does not yet exist. Furthermore, the folds of the 

cortical sulci and gyri cannot be represented by radial scalar functions defined 

on the models or generated by radial deformation of the models such as have 

been demonstrated to date. 

A more general model-based approach to surface reconstruction can be based 

on the notion of shape inference and reconstruction. One possible approach 

relies on the simple partitioning of smooth surfaces into regions of positive or 

negative Gaussian curvature by the parabolic lines, for which the Gaussian 

curvature is zero (Hilbert and Cohn-Vossen, 1952). Thus the zeros of curvature 

on the occluding contour of an object can be used to infer the possible 
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segmentations of the object into parts which are locally convex, concave, 

parabolic, or hyperbolic (Beusmans et al., 1987). The generic pairings of such 

zeros of curvature are limited to those for which the parabolic lines do not 

intersect. We applied this approach to the reconstruction problem in vision, and 

found that the same inferences could be made for the contours of section as well 

( Carman, 1987). In this case, the parabolic line segments reconstructed by 

pairing the zeros of curvature on different contours subdivide the surface 

spanned by the contours into local regions having different shape. 

Interestingly, generic pairings of the zeros of curvature also obey the restriction 

that the resulting parabolic line segments do not cross. Milios (1989) proposed 

segmenting contours into convex and concave primitives and then finding a 

minimum cost graph which matches the primitives on neighboring sections. A 

similar approach was taken by Kehtarnavaz et al. (1988), with the exception that 

their primitives were not based on curvature but rather a semantic description 

of local contour shape subject to syntactic comparison, very similar in spirit to 

the codon primitives proposed by Hoffman and Richards (1984). Kehtarnavaz 

and de Figueiredo ( 1988) also proposed using the zeros of the total curvature 

along three-dimensional contours as a means of segmenting and matching 

contours. This total curvature is the length of the Darboux vector, which 

includes the normal curvature on a surface plus the torsion about a contour. In 

the case of contours contained within the planes of section, the torsion is zero, 

and hence the segmentation would be the same as proposed above. Thus, the 

main contribution of this proposal is the obvious generalization to three

dimensional contours which may be needed in other reconstruction problems. 

A completely different approach to shape matching was proposed by Wilkin et al. 
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( 1987), who described an elegant algorithm for tracking the structure of one

dimensional signals across scales to obtain a deformation which maps such 

signals on to each other. Their algorithm incorporates many useful 

components found in earlier approaches, making this an important work for 

anyone interested in this general class of problem. Although they do not 

consider the question of reconstruction per se, their approach can be readily 

adapted to the matching of pairs of contours of section for which local 

orientation has been computed as a function of length along the contour. We 

implemented a version of this procedure based on an earlier report by Witkin 

(1983), and found it to work satisfactorily, except that ambiguities sometimes 

arose which could not be resolved by the algorithm. An example of this approach 

has recently been published (Algazi et al., 1989). These approaches based on 

shape or signal matching are all limited in that they are intended for 

intrinsically one-dimensional data, and no true generalization to two 

dimensions has been proposed. This becomes a problem for structures that split 

or merge. In the case of a surface sampled by contours of section, this results in 

the splitting of a single contour into two or more contours, or the merging of two 

contours into a single contour. Such splitting and merging of surfaces occurs 

rather frequently within the cortex, in the form of surface folds which develop 

to form the sulci and gyri, so that some means of accomodating them must be 

provided. While it is possible to handle these cases using some form of 

interactive proceedure, the most appropriate solution would be to find a 

matching or correspondence proceedure which is genuinely two-dimensional. A 

final proposal by Lin et al. ( 1989) attempts to reconstruct surfaces from 

contours of section by a combination of interpolation within contours, 

interpolation between contours, and spline fitting. Although most of their 
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reconstructions are rather simple, they provide one solution to the problem of 

branched structures by solving the interpolation and reconstruction separately 

for all possible combinations of pairs of contours from two adjacent sections, 

and then taking the solid union of those reconstructions as the desired surface. 

While this approach will succeed for visualization, it will not yield a topological 

surface useful as a reference for subsequent mapping without additional 

processing. Nevertheless, the notion of superposition of surface structure may 

be useful for other possible approaches to splitting and merging of contours in 

the course of solving the reconstruction problem. 

None of the techniques which we have reviewed above are capable of solving the 

problem of reconstruction of surfaces from sparse, discontinuous samples. 

Each lacks some crucial feature, such as a sufficiently general representation of 

surfaces, or the use of sound geometric principles to obtain the reconstruction. 

Nor does any proposal appear to proceed in a natural, biological style of 

computation that can be understood within the context of the structure of the 

visual system, which we know must also solve this problem. There are several 

key features of the organization of the visual system which suggest how such 

computations might be accomplished. First, all stages.of the visual pathway 

have a laminar organization, suggesting that the processing of visual 

information is intrinsically two-dimensional. This restriction to two

dimensional, laminar organization as opposed to three-dimensional, nuclear 

organization permits a marked reduction of complexity of the neural circuitry, 

but also restricts us to computations which can be implemented in such 

architectures. Second, most of these stages have both feedforward and feedback 

connections, suggesting that processing at each stage is influenced by that at 
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the next. Thus we contrast the conventional view of a primarily feedforward flow 

of visual information, which projects from one stage to the next, with an 

alternative view in which information is iteratively transformed via the 

feedforward and feedback projections. Third, the topographic transformations 

from one stage to the next can be substantial, and presumably reflect the 

processing of visual information at each. Even small differences in topography 

and magnification can profoundly affect the flow of information between one 

stage and the next, since the transformations are cumulative under such 

iteration. Fourth, the known connectivities and selectivities of neurons within 

the visual pathway suggest that the representation of information at each stage 

is not static but rather dynamic and dissipative. By this, we mean that the 

iterative mapping of information under these topographic transformations will 

either contribute to a stable flow or dissipate otherwise. We have developed a 

solution to the reconstruction problem which is based on computing such flows, 

which was driven by these fundamental observations of the visual pathway and 

the fundamental properties of dynamic systems (for reviews, see Abraham and 

Shaw 1982; Crutchfield et al., 1986; Stewart, 1989; more detailed treatments of 

relevant issues are given by Crutchfield, 1984; Hogg and Huberman, 1985 ). We 

now turn to an overview of this proposal. Although we discuss the proposal in 

terms of the reconstruction problem, it should be clear that many if not all 

problems in vision can be solved by computing such flows. 

We begin by noting that the problem of reconstructing an entire surface can be 

subdivided into a reconstruction of the portion of the surface which spans the 

space between the contours on two neighboring planes of section. Since the 

sample is sparse, we must solve the topological problem in order to find the 
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Figure 18. The representation of topology by a discrete graph. Points sampled 
from the contours of section (solid and shaded curves) are 
represented by nodes (filled circles). Nodes considered to be 
neighbors are joined by edges (arrowhead pairs). 

points on one contour which are neighbors of points on another contour. One 

possible representation for this problem would be a graph (Harary, 1969; Berge, 

1985) consisting of a set of nodes representing the discrete sample along a 

contour, which are linked by edges representing associations or matches 

between the nodes which are considered to be neighboring (Figure 18). The 

graph can be considered to be undirected, in which case the topology is 

symmetric, or directed, in which case asymmetric neighborhoods can be 

represented. However, this representation is discrete and has no intrinsic 

topological structure for incorporation of information about ordering 

constraints (Yuille and Poggio, 1984) or partial solutions obtained at various 

scales (Carman, 1987) in any simple manner. An alternative representation 
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Figure 19. The representation of topology by a continuous flow. All points on 
the contours of one section are mapped to the contours of the other 
section. The arrows show the direction, if any, of the flow. 

would be a continuous flow (Figure 19). This flow can be regarded alternatively 

as a mapping of the plane onto itself, or a mapping of one plane onto another 

(Whitney, 1955). On the latter interpretation, the flow can be regarded as the 

continuous generalization of the discrete graph. Surprisingly, the relationship 

between the discrete graph and the continuous flow does not appear to have 
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been previously noted. The flow can be regarded as being either undirected or 

directed, in analogy with the graph. 

Unlike the graph, the flow is defined on a continuous two dimensional domain 

which is intrinsically topological. Thus, flows can be defined which are 

themselves mappings of the plane which preserve neighborhoods at each point. 

Such topological flows between one plane and another thus provide a very 

general representation of topology, correspondences, or associations subject to 

ordering constraints. Such constraints apply in the topological problem, since 

valid reconstructions will preserve the order of points between contours. More 

explicitly, the order of points on one contour must be the same for the order of 

the neighbors of those points on another contour. Such constraints appear in 

many of the early visual processes, suggesting a common representation 

(Carman, 1987). For example, the ordering constraint is applicable in the 

correspondence problems of stereopsis (Yuille and Poggio, 1984) and kineopsis 

(Hildreth, 1984), as well as to the problem of determining the shape of an object 

from the correspondences of the parabolic points on its occluding contour 

(Beusmans et al., 1987). We note that since the flow is defined on the plane, the 

ordering of points under the action of the flow will be preserved regardless of 

what direction is chosen. Thus the common difficulty of generalizing a one

dimensional constraint to two-dimensional domains does not arise. 

Topological flows are represented by single-valued, continuous complex 

functions, which by definition preserve point neighborhoods (Curtiss, 1948; 

Sokolnikoff and Redheffer, 1958; Fuchs and Shabat, 1964). These functions are 

defined on the complex plane whose points (x,y) are represented by a complex 
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nu1nber z such that 

Z = X + iy 

where i is the imaginary squareroot of minus one. We consider complex 

functions f of the form 

w = f(z) = u(z) + iv(z). 

where / is single-valued and continuous for some domain D of the plane. We 

recognize these two condtions as equivalent to the conditions of one-to-one 

correspondence and preservation of neighborhoods defined for continuous or 

topological mappings. The derivative off with respect to z is given by: 

f '( ) - au (z ) . av (z ) 
Z - ax + l ax 

The differentiability off implies its continuity. For f to be differentiable for 

each point of D, its partial derivatives must exist on D and satisfy the Cauchy

Reimann equations: 

au 
= ax 

av 
ay , 

au av 
ay = -ax 

Applying these equations to the previous result, we obtain an alternative 

equation for the derivative off: 
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f '(z ) = au (z ) . av (z ) ax + l ax 
au (z ) . OU (z ) =--- -l-----'-~ ax ay 

= gradu (z) 

where the bar denotes the complex conjugate. Thus the derivative of f(z) is 

given by the conjugate of the gradient of u(z). Functions f which are single-

valued and differentiable are termed regular or analytic. Such functions are of 

particular importance because it can be shown that their real and imaginary 

parts each satisfy Laplace's equation, for which reason they are termed 

harmonic and conjugate harmonic functions. A function f which is analytic and 

whose derivative t' is nonzero for all points of D is said to be a conformal 

mapping of D. We have briefly discussed these before in our survey of the various 

kinds of mapping. 

Such conformal mappings have the property that for some sufficiently small 

neighborhood, they approximate an affine or similarity transformation 

composed of a translation from z 0 to f(z 0 ), a rotation of angle arg(t' (z
0

)), and a 

scaling of magnitude lt'(z0 )1 (Fuchs and Shabat, 1964, pp. 59-60). As such, two 

contours of section which differ locally from each other by similarity 

tranformations can be mapped onto each other by determining a complex 

analytic function/ which takes the values of translation, rotation, and scaling 

observed in the neighborhood of each sample. These are related to the mapping 

/by: 
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Rotation: (f 'c >> -1 ( - au czo) I au czo)) arg Z O = tan ay ax 

Scaling: I 
If (z o) I= 

These same properties of the conformal mapping also permit the use of local 

linear interpolation on sparse samples: 

w = az + b, 

where a and bare complex numbers given by: 

a= t'(zo) 

o = /(z
0

) - t' (z0 ) z 0 

Such interpolation will be valid over a sufficiently small neighborhood in the 

vicinity of a sample. Thus, if we make local estimates of f(z 0 ) and f'(z 0 ), they 

can be used to approximate the mapping f in the neighborhood of z 0 . A 

collection of such estimates off can be considered a distributed representation 

of the reconstruction. We emphasize that the values of translation, rotation, 

and scaling will depend upon the actual sampled data, and so will differ in 

general from point to point in the planes of section. 

We refer to surfaces generated by conformal mappings from one contour of the 

surface to the next as the conformal surfaces. Such surfaces are quite general, 

as they include all the surfaces which can be generated by analytic functions. 
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Furthermore, conformal mappings can develop multiple contours into multiple 

surfaces above a point, so that surfaces which are folded or laminated so as to 

have multiple elevations above a given point of the plane can be easily 

represented. We therefore overcome the restrictions of earlier methods, such as 

those based on the minimal surfaces or thin plate splines. While here we 

consider the reconstruction of a single fixed "slice" of the surface spanning two 

sets of contours of section, the representation is readily extended to include 

extended, deforming surfaces, which can be represented by variation of the 

conformal mapping from "slice to slice" or over time. Such mappings can be 

expressed as functions of the elevation e and the time t: 

f(z,e,t) = u(z,e,t) + iv(z,e,t). 

Alternatively, iteration of a single mapping over time will suffice to represent 

those surfaces which have the required self-similarity, so that the mapping 

becomes a function of an iteration parameter n: 

f(z,n+ 1) = u(t(z,n)) + iv(t(z,n)). 

Such surfaces include the well-known fractals (Mandelbrot, 1982) which have 

recently been applied to image compression of biological structure (Barnsley 

and Elton, 1988; Barnsley and Hardin, 1989; Barnsley et al., 1989). Finally, we 

note that although we have considered the case of a single conformal mapping of 

an entire domain D, our approach can be generalized to include a mapping of D 

which is piecewise continuous, so as to accomodate surfaces of different objects 

as well. 

The reconstruction of such surfaces from their contours of section can be 

accomplished by determining the local values of /(zj) and/' (zj) for a series of 
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samples of the contours. Since surfaces in general exhibit structure across a 

continuum of scales (Koenderink, 1984), we must also make these estimates off 

and t' across scales. In other contexts, discrete pyramids have been proposed as 

one means of obtaining such a sample (Adelson et al, 1984). However, this 

approach suffers from the difficulty that pyramids represent structure at only a 

few discrete scales (e.g. every octave), rather than as a continuum. Thus, 

structure at one scale is ambiguously connected to form at the next scale, 

producing topological ambiguities within the scale space itself. We propose an 

alternative means of reconstruction which involves estimating f and t' across 

such a continuum of scales, thereby obtaining a single conformal mapping 

which represents the superposition of the structure found at each scale. The 

method is based largely on the complex variable theory and the known 

macroscopic structure of the first stages of the visual pathway. In the following, 

we provide an overview of this method, followed by consideration of its parts in 

some detail. 

We begin by taking our samples across a continuum of scales a which vary from 

the periphery (coarse) to the center (fine), as seen in the primate retinal 

sampling (Figure 20) (Koenderink, 1986). These samples are resolution-limited 

by convolution with a Gaussian of width determined by the scale of the sample. 

Thus each isoeccentric annulus of samples represents structure at a given scale 

and resolution. For each sample, the local component of f(zj) is obtained by 

computing a flow which finds the local translations on the samples. This flow is 

given by the conjugate of the gradient of a potential cpl, producing a local 

radially symmetric flow which displaces points of the two samples in opposite 

directions so as to remove translational differences between them. Given the 
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Figure 20. Continuous scale sampling by the primate retina. The size of each 
hexagonal tile is proportional to the scale of the corresponding 
sample (Koenderink, 1986 ). 

values of this potential at samples on an annulus, we can determine the values 

of the potential on the interior of this annulus by solving the Dirichlet problern 

(Sokolnikoff and Redheffer, 1958). This is done for all annuli, and the potentials 

determined on the interior of each superposed across scales, so that at the 

center of the sampling we obtain a potential which incorporates information 

from all scales to determine the translational component /(z) of the mapping. 

In the course of solving the Dirichlet problem, we will generate a log 

transformation of the original samples. Since rotations and scalings on the 

input correspond to translations on this log representation, we can determine 

the local component of /'(zi) by repeating the above process. Thus we obtain a 

second potential <p2 whose conjugate gradient gives the local component of the 
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rotation and scaling t' (z) of the mapping. These two potentials cpl and cp2 will 

thus provide our distributed representation of the reconstructed surface. We 

note that these potentials do not represent the surface geometry directly, but 

rather describe the values of f(z) and t'(z) of a conformal mapping f of one set of 

contours of section onto the other. We now turn to a more detailed exposition 

of the calculation of the local flows used to compute translations on the sample 

or its log transform. 

For each local sample of the two planes of section, we find the local components 

of f(zi) or t'(zi) by constructing a potential cp whose conjugate gradient gives a 

flow field which will advect or transport the samples onto each other, so as to 

remove any translational difference between the two images. This 

unconventional choice of relation between potential and flow yields a potential 

which is a harmonic function, and yet which also produces a flow field which is 

radially symmetric and proportional to the distance between corresponding 

points in the two samples. _An example of such a potential evaluated at z 0 due to 

a point in the sample at z is given by the real part cp of the complex function F: 

F(z,z0 ) = cp(z,z0 ) + i-,P(z,zo), 

= q(z - zo)2 

= [q(x - xo)2 - (y - Yo)2 ] + i[2q(x - xo)(y - Yo)] 

where q is plus or minus one according to whether the point at z is in the first or 

second of the two planes of section. That cp is harmonic can be easily verified. 
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The gradient of the real part cp is given by: 

gradcp = 2q(x - x 0 ) - i 2q(y - y 0) 

while the conjugate gradient is given by: 

gradcp = 2q(x - x 0 ) + i2q(y -y0 ). 

Figure 21. A: The isopotentials of cp (lines) and its gradient (arrows) in the 
vicinity of a point z 0 . B: The isomagnitudes (lines) an directions 
(arrows) of the conjugate gradient for the same region. 

The general form of such a potential and the conjugate gradient flow field is 

illustrated in Figure 21. 
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To obtain the potential or flow over an entire sample due to a number of points 

in both planes of section, we simply take the sum of the potentials or flow 

components over all points: 

<psum= "5;,(qi(xj-xo)
2

-(yi-yo)
2

) 
J 

gradip = I;2q.(x.-x0 )+i2q.(y.-y0 ). 
sum i J J J J 

This flow field for the entire sample is recognized as the first moment over the 

area of the sample. It will therefore be zero when two samples which differ by a 

translation are superimposed or fused. To achieve this, each point j is subjected 

to a flow vj according to its 'sign' qi: 

Convergence is guaranteed for two local samples which differ by a translation. 

Furthermore, differences in rotation and scaling do not affect the final result 

due to the symmetry of the flow field. A simulation of the computation of 

translation by conjugate gradient flow is shown in Figure 22. Note that here we 

do not include the contribution from regions outside the local sample to either 

the potential <p or the flow v. In practice, global components of the potential 

would be summed with the local potential before the computation of the 

conjugate gradient and the determination of the net flow. While this is a rather 

elaborate scheme for the computation of local moments, it has the advantage of 

allowing precomputation of the spatial component of the potential by mapping 

given by F(z,z0 ), so that linear sums over such a map could compute the 

potential cp and determine the flow v appropriate for a given potential and the 

value of q for each point. We note that the potentials thereby obtained will be 

spatially oriented with a period of 1T, but that this orientation will vanish at the 

center of the sample z 0 . These and other aspects of the spatial organization of 
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Figure 22. Computation of translation by conjugate gradient flow. Two local 
samples differing by a translation are shown superimposed, with the 
large open circles and the small filled circles representing points of 
each of the two samples. The fine dots show the path taken by points 
under the action of the flow. The three frames show an initial, 
intermediate, and final positions of the points during the simulation 
of the flow. Two samples differing by the same translation will 
experience the same flow, regardless of the distribution of points. 

such a local computational map are similar to those observed in the vicinity of 

each cytochrome oxidase 'blob' of primate visual cortex. 
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Given a series of such local estimates 9'(t;) of a harmonic function on an annulus 

parametrized by t;, we can find the potential on the interior of the annulus by 

solving the Dirichlet problem through use of a Green's function (Sokolnikoff and 

Redheffer, 1958; Fuchs and Shabat, 1964). The Green's function g(z,z 0 ) is given 

by: 

where /(z,zO) is a complex analytic function having a sole zero at z 0 and chosen 

so as to produce a conformal mapping of the do1nain D of interest onto the unit 

circle centered on the origin. If our samples lie within a disc of radius R 

centered on z 0 , then we obtain the desired mapping using the bilinear 

transformation: 

Substitution of this into the previous formula gives the Green's function: 

With this Green's function we proceed to solve the Dirichlet problem through use 

of Green's formula: 

<p(z)=-1 1 <p(')i)g(,,zo) ds 
2n an 

C 

where t; parametrizes the boundary of the unit disc onto which the samples have 

been mapped, and n is the inward normal on that boundary. Alternatively, since 

we are seeking the values of a harmonic function, we can make use of a resistive 

net to find the solution (Koch et al., 1986 ). 
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This can be done by mapping the values of the potential <p(() onto a resistive disc 

using a conformal mapping whose real part gives the above Green's function: 

The values taken by the nodes of such a resistive disc will be the desired 

solution. The flow field at each point can be computed by finite difference 

approximation of the conjugate of the gradient for each sample node of the grid. 

We note that the solution obtained will be valid even for <-p(() which has a finite 

number of discontinuities, provided it is piecewise-continuous. Thus multiple 

structures imaged in the same region can be reconstructed with the aid of line 

processes (Koch et al., 1986). 

This complex logarithmic mapping of the input domain provides a 

representation in which log length and angle of input vectors are explicitly 

represented. If we repeat the identical computation taking was our domain to 

be sampled, we will obtain a flow which determines translations along u and v, 

which correspond to scalings and rotations on z. Thus, the local similarity f(z) 

and /'(z) at each point z can be determined, and a composition of flows which 

map one image conformally onto another can be determined (Figure 23). 

Although we have described this for the case of images consisting of two 

contours of section, it should be clear that the method can be applied to 

problems in early vision in general, and can be considered a model for the first 

stages of the visual pathway. 

Finally, we note that computational mappings such as described above can be 

applied to the more general problem of the reconstruction of entire surfaces of 

objects from generic views of their surfaces. We note that any smooth surface 
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Figure 23. Computation of general similarity by conjugate gradient flow. Two 
local samples differing by a translation, a rotation, and a scaling are 
shown superimposed, with the large open circles and the small filled 
circles representing points of each of the two samples. The fine dots 
show the path taken by points under the action of the flow. The three 
frames show an initial, intermediate, and final positions of the points 
during the simulation of the flow. Two samples differing by a 
translation, rotation, and scaling experience a flow having a spatial 
dependence appropriate to produce synchronous fusion of all points 
at the same time. 

can be parametrized along its lines of curvature, which are developed by 

following the directions of the principle curvatures4 from one point to the next 
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Figure 24. The lines of curvature on a surface form an orthogonal net which 
parametrizes the surface (Hilbert and Cohn-Vossen, 1952). 

on the surface (Hilbert and Cohn-Vossen, 1952). The lines of curvature can be 

regarded as being generated by pairs of geodesics anchored at foci on the 

surface; these foci are the umbilic points for which the curvature is the same in 

all directions on the surface. For example, each line of curvature on the 

ellipsoid is generated by geodesics of constant total length (Figure 24). Since 

the principle curvatures are orthogonal everywhere they are defined, the lines 

of curvature are guaranteed to be locally orthogonal at their intersections. Due 

to their orthogonality, the lines of curvature can be regarded as the lines of 

level and lines of flow of a complex harmonic function defined on a 

topologically equivalent manifold (Curtiss, 1948). On this interpretation, the 

umbilic points are the sources and sinks of a geodesic flow which is described by 

the lines of curvature of a surface. In the case of the ellipsoid shown above, this 

4. Recall that the priciple curvatures are the maximum and minimum normal 
curvatures defined al each point of a surface. 
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flow could have sources at the two foci shown atop the object, and sinks at the 

two foci on the bottom of the object. Although we picture the ellipsoid as it 

might appear in visual projection, a more 'cortical' representation could be 

obtained by a conformal mapping which preserves the orthogonality of the lines 

of curvature. Given such a representation, various surfaces could be generated 

by placing the appropriate sources or sinks of geodesic flow upon it. The theory 

we have described above gives a general technique for obtaining a distributed 

representation of any conformal mapping, and as such provides a foundation for 

the reduction of visual processes to a common algorithm. 

1.6 Optimal Mapping by Elastic Deformation 

As described above, the intrinsic curvature of the surface of cortex permits only 

a subset of its topology and geometry to be preserved when mapped onto the 

plane. Since the intrinsic curvature is not constant, but varies with location on 

the cortex, no single class of mapping based on the preservation of a single 

geometric measure will produce a minimally distorted map across all regions. 

However, we can attempt to preserve several such measures simultaneously, so 

that as much of the surface topology and geometry will be preserved as is 

possible within each mapped region. This can be achieved by quantifying the 

distortion associated with each measure, and reconfiguring the map so as to 

minimize a numerically weighted sum of these component distortions across all 

the mapped regions. The ability to combine several possible mappings by 

selecting such a weighting of distortions offers a significant advantage over the 

ad hoc choice of any one of them, and is arguably the best that can be done 

under the circumstances. For example, the cortical cartographer may choose to 

allow anisotropic shearing or bending distortions, in those areas where it is not 
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possible to preserve all aspects of geometry in the course of mapping. This can 

be done by selecting a weighting which places a greater emphasis on 

preservation of linear rather than angular measures, with the result that the 

measured distances will be preferentially preserved as compared to angles or 

areas. Once such a weighting has been selected, the mapping is obtained in 

effect by deforming the surface of cortex so as to minimize the weighted sum of 

distortion, thereby producing a map which preserves as much of the geometry as 

possible for a chosen weighting. We refer to such a mapping as optimal in the 

sense that no other map can be obtained which has a smaller weighted sum of 

distortion for the chosen weighting. We also refer to the mapping as adaptive in 

that the same procedure will result in an optimal map regardless of the details, 

such as the distribution of intrinsic curvature, of the surface being mapped. 

We could attempt to preserve each of the geometric measures of topology, 

length, angle, and area by including measures of each in the optimization, and 

allowing the extent of preservation of each to be determined during the course 

of the optimization. However, we will argue that it is preferrable to treat the 

preservation of topology as a fixed constraint or boundary condition, and to 

eliminate the explicit preservation of area per se. The reasons for these choices 

are as follows. Although we could introduce discontinuities on the basis of 

surface geometry by modelling the tearing of a surface subjected to forces 

exceeding some elastic limit (Terzopoulous and Fleischer, 1988), the resulting 

"torn" maps will not be very useful if they include discontinuities through 

regions of interest. Hence, we require that discontinuities be introduced not in 

the specific locations which if torn would minimize distortion, but in nearby 

locations which correspond to the boundaries of cortical areas. For example, 
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the boundary of striate cortex is usually circumcised in the course of manual 

unfolding. We therefore will require that the mapping maintain topology except 

at specified boundaries of cortical areas. These locations are in general chosen 

to coincide with those selected by Van Essen and Maunsell (1980). Second, we 

choose not to preserve the measure of area since this measure is completely 

determined by the measures of length and angle. 

Figure 25. Relationship between length, angle, and area for a triangular 
surface tile. See text for details. 

This can be seen by considering the relationship between area, length, and angle 

for a gi~en region on the surface of cortex and in the plane of the map (Figure 

25). Each triangular tile spanned by three points Pi' Pj' Pk has area 
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so that these values of length l and angle 0 determine the area of the tile. If 

these triangular tiles are sufficiently small, the area on the surface spanned by 

geodesic curves through the three points is approximated by cxijk• Thus, if the 

lengths and angles for each such tile are preserved, then so will be the area of 

each tile. Since the total area of either the surface or the map is obtained by 

summing over all such tiles, the preservation of each tile's area guarantees the 

preservation of the total area on the surface on the map. However, preservation 

of each of these lengths and angles may not be possible due to frustration in the 

mapping, whereas preservation of area is always possible. Should applications 

arise in which exact preservation of areas are deemed more important than the 

alternative, we can use the measures of length and angle with the above 

equation to obtain a measure of area, allowing us to perform an area-preserving 

mapping instead. In practice this change requires editting only a single line of 

computer code. 

By attempting to preserve a weighted measure of length and angles, we achieve 

an optimal mapping which will minimize distortions differentially for different 

regions of a surface. For example, a region with zero intrinsic curvature can be 

mapped isometrically onto the plane, while a region with constant intrinsic 

curvature can only be mapped conformally onto the plane. By minimizing both 

the linear and angular distortion, we obtain an adaptive mapping which 

attempts to preserve as much of the surface geometry as possible. Under such 

an adaptive mapping, regions will be mapped isometrically where possible (zero 

intrinsic curvature) by preserving measures of length. Alternatively, regions 
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will be mapped conformally where possible ( constant intrinsic curvature) by 

preserving measures of angle. Provided our surface is reconstructed using 

sufficiently small surface patches, so that intrinsic curvature is approximately 

constant over each, one of these two conditions should always hold. The result 

of the adaptive mapping will thus in general be a discrete approximation to a 

continuously variable conformal mapping of the surface of cortex onto the 

plane, but for those particular cases where the cortex has zero intrinsic 

curvature, the mapping will become isometric. The residual distortions which 

may be present in any given map may be quantified in terms of the linear and 

angular components of distortion, so that the deviation of the map from 

isometricity or conformality can be displayed as a function of location, and 

taken into account in subsequent analyses based on these maps. This adaptive 

feature of the mapping will be demonstrated later by application of the same 

mapping process to a variety of surfaces having different values of intrinsic 

curvature. 

Thus the measures of local connectivity, length and angle are sufficient to 

characterize the local geometry of the cortical surface for a wide range of 

possible mappings. 

A mapping of the cortical surface which preserves topology, length, and angle 

can be obtained by deformation of an elastic model (Sokolnikoff, 1946; 

Terzopoulos et al., 1987). In such models, topology is maintained by coupling a 

sampling of points or nodes by elastic elements which tend to keep the nodes 

together. In most elastic models, these elements are usually longitudinal 

springs having a resting length tfi corresponding to the length between the 

nodes i and j they join, as measured on the surface to be mapped. When the 
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actual length lii of the spring differs from this resting length, the spring 

provides a restoring force f .. along its longitudinal axis only, of magnitude: 
tJ 

lf--1 = - /C .• (l .. - l?.), 
'iJ 'iJ tJ 'iJ 

where Kif is the longitudinal elastic coefficient (units of force per unit 

elongation), and is given by: 

Ko 
,c .. =-

tJ l?. 
tJ 

where K
O is the longitudinal elasticity (units of force per unit elongation per 

unit resting length) of the surface (Figure 26). 

o---r~---o 
~-------- Ii = /Di ---------.. 

_...,F ~ -F-.. 
o---r~'---o 
~ - - - - - - - - - - - li > !Di - - - - - - - - - - - -.. 

Figure 26. Longitudinal spring under compression, at rest, and elongation. 
Arrows show the direction of the force fif exerted by the spring in 
each condition. 

This relationship permits us to obtain the value of IC .. for a particular spring 
'iJ 

connecting nodes i,f from the value of the elasticity IC 0
, which is a constant for a 
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homogeneous and isotropic medium. This provides a normalization of the 

restoring force per unit resting length so that the elastic response of the surface 

to length deformations does not depend on the spacing of neighboring nodes. 

Two longitudinal springs of different resting length will thus exert the same 

force in response to proportional deformations, say a doubling of the resting 

length. 

While models constructed from, say, a Cartesian grid of such longitudinal 

springs respond accurately to homogeneous deformations, such as stretching 

uniformly in all directions, they fail to respond properly to inhomogeneous 

deformations, which result in shearing and bending along the longitudinal axis 

of the spring. Thus the above model of an elastic surface provides no restoring 

force for the preservation of angles during deformation, and is insufficient for 

our purposes. A more realistic model would join neighboring nodes with 

deformable "elastic beams" offering restoring forces and torques when they are 

stretched, sheared, bent, or twisted. The response of such beams and surfaces 

constructed from them to deformation is complex, and the full description 

requires the introduction of tensor notation and stress-strain relationships 

(see Sokolnikoff, 1946, Chapter IV). These will not be pursued here, since the 

construction of an elastic model suitable for mapping by deformation of the 

cortical surface does not require the inclusion of all such responses to 

deformation. For example, twisting about the longitudinal axes of the beams 

should be allowed to occur freely in the course of unfolding the elastic surface, 

as such twisting does not represent a distortion of geometry on the surface per 

se. 5 Hence we do not include restoring torques against such twisting in our 

elastic model. In addition, if the beams are sufficiently short, then bending and 
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shearing can be approximated by the rotation of a rigid beam about an elastic 

base, which offers a restoring torque proportional to the angle of rotation (see 

Appendix I). Thus, for our present purposes, it will suffice to approximate such 

elastic beams by a superpostion of springs which provide a restoring force fif 

described above to oppose stretching along their longitudinal axis, and a 

restoring torque to oppose rotation of this axis about the nodes. 6 Accordingly, 

we add to the above model a torsional spring producing a restoring torque tifk 

when the angle ®ifk between neighboring beams if and ik differs from the 

corresponding resting angle @?.k as measured on the surface to be mapped. 7 
'iJ 

This restoring torque has magnitude: 

It . "k I = - A '"k ( ® '"k - ®? "k) 'i} • 'i} 'i) 'i} 

where;>,... 'k is the torsional elastic coefficient (units of torque per unit rotation), 
1J 

and is given by: 

and ;>,.. 0 is the torsional elasticity (units of torque per unit rotation per unit 

resting angle) of the torsional spring (Figure 27). This relationship permits us to 

5. While twisting deformations will occur when surfaces embedded in three 
dimensions are deformed to lie in the plane, such deformations cannot be 
compensated by motions in the plane alone. Thus, including restoring 
torques against such twisting deformations would offer no improvement in 
the ability of an elastic model to serve as a substrate for cortica mapping. 

6. Note that the addition of a longitudinal spring joining nodes f and k does not 
achieve the same result. Use of a longitudinal spring in this manner would 
introduce an additional dependence<.fn the length ofthe beams if and ik as 
well as on the angle between them "ifk. In compar~on, use of a torsional 
spring introduces only the dependence on the angle "ifk, so that linear and 
angular distortions wi11 produce separable restoring forces and torques. 

7. Whereas the longitudinal restoring force can be defined in terms of the 
difference in the length of the beams, requiring only two subscripts to 
specify each longitudmal component, the restormg torque is defined in 
terms of the difference in the angle between two oeams, requiring three 
subscripts to specify each torsional component. 
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\ Si = Soi 
\ 
\ 
\ 
\ 

\ 

' \ 
\ 

\ Si> SOi 
\ 
\ 
\ 

Figure 27. Torsional spring under compression, at rest, and elongation. Arrows 
show the direction of the torque t . . k exerted by the spring in each 
condition, and the direction of the Porces f which result at the end of 
the radial beams. 

obtain the value of "ijk for a particular torsional spring acting between beams 

i,j and i,k from the value of the torsional elasticity AO
, which in the present 

model can be shown to be a scaled version of the longitudinal elasticity IC 
O (see 

Appendix I), and therefore also a constant for a homogeneous and isotropic 

medium. This provides a normalization of the restoring torque per unit resting 

angle so that the elastic response of the surface to angular deformations does 

not depend on the angular spacing of neighboring nodes. Two torsional springs 

of different resting angle will thus exert the same torque in response to 

proportional deformations, say a doubling of resting angle. 
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If we wished to simulate the dynamics of such an elastic model, it would be 

necessary to resolve the restoring forces acting on each of the n nodes in order 

to obtain a set of n coupled equations of motion, whose solutions could be 

obtained numerically. However, we are not interested in the actual motion of 

the nodes of such an elastic model, but rather in the shape or conformation of 

the model which has least distortion. This distortion is measured by the 

differences in local geometry on the deformed model as compared to those on 

the resting surface conformation. For our choice of mappings which preserve 

length and angle, these distortions are proportional to the magnitudes of the 

forces f .. and torques t. "k described above. These forces and torques can be 
i7 iJ 

integrated to obtain the associated scalar energies, with the energy due to linear 

distortion of a single beam being given by: 

and the energy due to angular distortion by a pair of beams being given by: 

Thus we see that the beams which connect adjacent nodes on our elastic model 

will have zero energy when their lengths l .. and angles e. "k are at their resting 
iJ i7 

values lfj and efjk' and will have positive increasing energ.y when they are either 

stretched or compressed by increasing amounts or bent by increasing amounts 

in either direction. This energy is determinined in the neighborhood of a given 

node i by summing over the beams i,j connecting that node to its neighbors j, to 

give the energy for each node due to linear distortion: 

and by summing over the angles spanned by adjacent pairs of beams i,j and i,k 

in cyclic fashion to give the energy for each node due to angular distortion: 
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e 1 "' ( o )2 e · =-2 LJ "- · 'k ® "k - ® "k · 
-i, • k -i,7 'tJ -i,7 

J, 

Since the energy stored in these elastic beams is proportional to the linear and 

angular distortion, the conformation of least distortion will have minimum 

total energy, where this minimum will in general be greater than zero. This 

total energy is given by summing over the linear and angular energies 

contributed by each node: 

Etotal = Elinear + Eangular 

= 21 ~ ~ e ~ . + ~ I: e ~-k 
i i iJ i f,k 'tJ 

where i ranges over all nodes so that all lengths and all angles on the surface 

contribute to this sum. We note that each term Elinear and Eangular is similar 

to the root-mean-square error for n measures x, given by: 

1 
1 n 2 2 

RMS Error= (- ~ (x. - x?) ) 
n i=l -i, -i, 

which is a common measure of distortion of maps (Richard us and Adler, 1972; 

Gilbert, 1974; Bassett, 1972). In the present case we have normalized not by the 

number of measurements n, but rather by their resting values, so as to give a 

root sum of the error or distortion per unit measure. Thus, by altering the 

conformation of the elastic model of the cortical surface so as to minimize the 

sum of the linear and angular energies associated with each node across all 

nodes on the map, we obtain a mapping of that surface which has minimal 

distortion. 

1. 7 Optimal Conformations and Global Energy Minima 

An elastic surface will spontanously adopt this minimal energy configuration, 
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provided that there exist no dynamic barriers to doing so. Such barriers are well 

known to occur in a variety of physical and chemical processes, and occur for 

elastic surfaces when the energy cannot simply be decreased, but must first be 

increased in order to go from one equilibrium conformation to another of lower 

energy. The amount of energy increase needed is termed the transition energy 

of the conformational change. Such barriers to conformational change exist for 

elastic surfaces in three dimensions, as can be seen by considering an elastic 

hemispherical shell such as half of a hollow rubber ball. If such a hemispherical 

shell is turned inside-out, it will remain that way even though its energy is 

higher than that of its inside-in, resting conformation. In order to get the shell 

to return from the inside-out to the inside-in conformation, one must 

overcome the transition energy via deformation forces sufficient to allow the 

shell to pass through an unstable transition conformation of higher energy. 

Such barriers also arise when surfaces having a three-dimensional resting 

conformation are restricted to two dimensions, which reduces the number of 

degrees of freedom available for conformational changes. For intrinsically 

curved regions of the surface, this can give rise to frustration (Kirkpatrick, 

1977), in which no single conformation of the surface minimizes the distortion 

of all geometric measures. Instead, different subsets of these measures are 

satisfied by different conformations having local minimum energy, separated by 

intermediate conformations of higher energy. As a result, the energy landscape 

upon which this optimization occurs can become pocked with relative energy 

minima which correspond to conformational folds of two kinds (Figure 28). The 

first kind involves a folding of one continuous contour on the surface about 

another due to shearing within the plane, and produces a non-local distortion 
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Figure 28. Two kinds of folds which can arise from relative energy minima. A. 
The first kind results from shearing within the plane. B. The second 
kind results from shearing of the plane "over itself" so as to produce 
a degeneracy in the mapping. Some folding of the first kind has been 
added to permit visualization of the contours in (B). 

of shapes of the contours on the elastic map. The second kind involves a folding 

of one region over an adjacent region due to shearing of the plane "over itself" so 

as to produce a degeneracy in the mapping, wherein two or more points on the 

cortical surface project to a single point on the elastic map. Simple 

optimization algorithms, which attempt to proceed along trajectories of strictly 

decreasing energy, become trapped in such local energy minima, and will then 

be unable to find configurations at or near the absolute minimum energy and 

distortion (Bounds, 1987). In order to find configurations at or near the global 

energy minimum, we applied the stochastic optimization technique known as 

sirnulated annealing (Kirkpatrick et al., 1983). In our application of this 

technique, we assume the map to be in some initial suboptimal configuration, so 

that the sum of energy Etotal is greater than its minimum value. Nodes on the 

map are then visited randomly, and local random displacements dr. = (dx, dy) 
'!, 

in the plane of the map attempted, so as to simulate the thermal motion of a 

collection of particles (Metropolis et al., 1953). Such displacements are 
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evaluated to determine if they are to be accepted or rejected by calculating the 

change in energy that would result: 

E ( d ) _ Etotal( d ) _ Etotal(r .) . 11 r ., r. - r. + r. , 
'i 'i 1. 'i • 

We note that only those local beams defining lengths i .. and angles El . . k which 
'iJ 'iJ 

would be deformed by the displacement dr i need be considered in this 

calculation, since only those will contribute to a change in the energy. A 

displacment dr. resulting in a negative value of L-.E (r ., dr. ), corrersponding to a 
'i 'i 'i 

decrease in local energy and an improvement in local geometry on the map as 

compared to the cortical surface, is always accepted. However, displacements 

which result in a positive value of 11E (r i' dr i), corresponding to an increase in 

local energy and a less favorable local geometry, are also accepted with a 

probability given by the Boltzmann distribution: 

-l'.E (r., dr.) / kBT(t) 
P(11E(r.,dr.))=e i i 

'i 'i 

where kB is Boltzmann's constant and T(t) is a control parameter termed the 

temperature which is a function of time t. The initial value of the temperature 

T(O) is set high, so that effectively all displacements are accepted, allowing for a 

randomization of the positions of the nodes from their initial positions. The 

temperature is then decreased over time, according to: 

T(t) = T(o) a.t 

where a. is chosen slightly less than unity to produce a slow exponential decrease 

in temperature over time, hence the term "annealing." This results in a 

progressive increase in the probability that a displacement will improve the 

local geometry over the course of the annealing. Nevertheless, there is always 

some probability that a displacement which actually increases energy and 

degrades local geometry will be accepted. This provision makes it possible for 
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the algorithm to escape from local minima so that it can continue on to obtain a 

map of absolute minimum global energy, provided that the annealing is done 

slowly enough, so that all the nodes can be considered to be at approximate 

thermodynamic equilibrium (Geman and Geman, 1984). 

Having outlined the theory behind the mapping of the cerebral cortex, we now 

turn to a description of the practical methods employed in the computation of 

such maps. 
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2. Methods 

Having developed the theoretical background for the mapping, we now consider 

the methods employed in practice for mapping the cortex. The process of 

cortical mapping generally involves four steps: 

1. Selection of the lamina to be mapped, and of a subset of points to obtain a 

sample approximating the laminar surface; 

2. Reconstruction of the surface to be mapped, so that geometry on this 

surface can be measured to provide a ref ere nee for lengths and angles on 

the map; 

3. Creation of the map and optimization of its local geometry by comparison 

to the reconstructed reference ("unfolding"); and 

4. Projection of data from the cortical lamina to color the surface of the 

unfolded map. 

Each of these steps will be discussed in detail below. All algorithms were 

implemented in either Fortran or Cina Unix environment. Computers used for 

this work included a Masscomp 5400 computer with three 68020 CPUs and Aurora 

graphics displays, a Silicon Graphics Iris 2400 with 68010 CPU, and a Silicon 

Graphics Personal Iris 4D20G. Most algorithms are portable with the exception 

of those for the reconstruction of surfaces, which made extensive use of 

hardware-dependent features of the Silicon Graphics Iris family. 

2.1 Sampling of the Surface to be Mapped 

In order to sample the surface of interest, the tissue containing the surface is 

invasively or noninvasively sectioned to generate the contours C defined by the 
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Figure 29. A series of magnetic resonance images of human occipetal cortex 
and the contours of section obtained from them. Images are in the 
parasaggital plane, spaced 2.7 mm apart. 

intersection of with the parallel planes of section. Examples of such contours 

can be seen in histological sections obtained by postmortem microtomy of 

monkey cortex, or a series of magnetic resonance images of h uman cortex 

obtained in vivo (Figure 29). Such contours can be digitized directly from 

histological sections by use of a rear-projection digitization tablet, or from 

images by use of a grapics cursor manipulated via a mouse (Forbes and Petry, 

1979). These digitized data consist of an ordered list or series of points, together 

with any other information which may be associated with the points, such as 

anatomical or physiological data. The digitized data thus consist of a series of 

contours CD' each consisting of a total of ND data vectors D( i) indexed by the 

integer i, where O ( = i <ND' The data vectors thus have the form: 
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D(i) = [x(i), y(i), z(i), cx(i), {3(i), ... ], 

where x, y, z give the three-dimensional coordinates of each point, while ex, {3, ... 

code a series of alphanumeric labels specifying what data if any are found at 

that point. The data ex, {3, •.. might be sampled directly from the images being 

digitized, sampled from other images which are in register with the image being 

digitized, entered via a microscope interfaced to a computer, or entered 

manually via keyboard. The order or sense in which the data are digitized 

provides an implicit orientation of the surface useful for subsequent 

reconstruction and mapping operations, and is therefore preserved. We 

arbitrarily select a counterclockwise sense for digitization of the contours when 

viewed from above, i.e., when looking down the z axis. The data are taken at the 

full resolution of the digitization device so that they may be subsequently 

smoothed, resampled, and represented either as a series of discrete points taken 

along the contour, or as a piecewise-continuous spline of the contour. 

Regardless of which contour representation is used, the points which comprise 

the discrete sample or which define the splines will be used as the nodes which 

are mapped in the course of computational unfolding. 

The discrete representation consists of a series of contours C which are 

smoothed and subsampled versions of the digitized contours C n· Some 

smoothing is almost always required to remove noise introduced by manual 

tracing or other digitization. For the discrete representation it is achieved by 

low-pass filtering the contour so as to remove or reduce these sources of noise. 

For uniformly digizited contours, we compute the following approximation to a 
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convolution with a Gaussian aiong the length of the curve: 

~ w(j,s)D(i+j) 

P(i) = 
j=-s,s 

~ w(j,s) 
j=-s,s 

where the coefficients w(j,s) can be taken from the binomial distribution: 

w(i,s) - ( Zs ) - (Zs}! 
- s+j - ( s+j)!( s-j)! 

with Zs giving the width of the smoothing kernel. Typical values of s range from 

2 to 3 pixels or digitization units. Once smoothed in this fashion, the digitized 

contours can then be decimated by sampling points every S units. We choose S 

to be uniform over the length of the contours for reasons which will be explained 

below. The data components ex, (3, ... are attributed to the nearest sample P. This 

results in an ordered set or list of n nodes indexed by i, where O < = i ( N. Each 

such node can thus be characterized by position P(i), tangent T(i), and 

curvature K(i): 
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P(i) = [x(i), y(i), z(i)] 

T(i) = dP(i) 

ds 

= P(i+Lli) - P(i) 

\P(i+Lli) - P(i)I 

K(i) = dT(i) 

ds 

= T(i+Lli) - T(i) 

IP(i+Lli) - P(i)I 

where ds is the infintesimal displacement along the contour, here approximated 

by finite differences computed at the resolution Lli of the digitized data, and IAI 

denotes the norm or magnitude of the vector A. This representation of the 

contours has the advantage that the geometry of the curves is simply computed 

and explicity represented. This geometry was used in the course of performing 

reconstructions of some the sampled surfaces, as will be described later. 

Alternatively, the contours C can be represented by piecewise-continuous cubic 

splines specified by position and/or tangent values at nodes (also known as 

knots in the spline literature) along the contours. We select the piecewise cubic 

spline as it is the lowest order spline for which the measures of position and 

tangent can be continuous where the endpoints of two splines meet. In addition, 

once coefficients determining the spline are calculated, the values of the 

position, tangent, and curvature along the spline can be readily computed. In 

three dimensions, each piece of a parametric cubic spline is given by P(u), where 

the parameter u can be considered the normalized length along the spline, so 

thatO <= u <= 1: 
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P(u) = [x(u), y(u), z(u)], 

where 

x(u) = a u 3 + b u 2 + c u + d , 
X X X X 

y(u) = ayu
3 + byu

2 + cyu + dy, 

z(u) = a u 3 + b u 2 + c u + d . z z z z 

Differentiation of these parametric equations with respect to the parameter u 

gives the tangent vector T(u): 

where 

T(u) = dP(u) 
ds 

= 
(t 2 + t 2 + t Z J1 /2 

X y Z 

t = dx(u)/du = 3a u 2 + Zb u + c , 
X X X X 

ty = dy(u)/du = 3ayu
2 + Zbyu + cy, 

tz = dz(u)/du = 3azu2 + 2bzu + cz. 

Differentiating again gives the curvature vector K(u): 



where 

K(u) 

= 

dT(u) 

ds 
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(k 2 + k 2 + k 2) 1 /2 
X y Z 

k = d 2 x(u)/du2 = 6a u + Zb, 
X X 

ky = d 2 y(u)/du2 = 6ayu + Zb, 

kz = d 2
z(u)/du

2 = 6azu + Zb. 

Depending upon data available and the desired properties of the interpolating 

spline, for each coordinate one can obtain a series of four equations in four 

unknowns which can be solved given four data values at the nodes (Foley and Van 

Dam, 1982; Lancaster and Salkauskas, 1986). Thus, given two endpoints P(O), 

P(f) and the tangents at the endpoints T(O), T(t) we can obtain the Hermite 

spline which passes through and takes the specified values of the tangent at 

those endpoints. Alternatively, given four points and the desire for continuity of 

position, tangent, and curvature of the endpoints, while sacrificing the 

requirement that the curve pass exactly through the data points, we can obtain 

the B-spline. The latter has the desirable property that it smooths over the 

data points and. so can be used to effectively filter noise from either manual 

digitization or digital quantization. The B-spline is computed by matrix 

multiplication: 

P(i,u) = U M N 



where 

U = [ u 3 

M = 1 

6 

u 
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1] 

-1 
3 

-3 
1 

3 
-6 

0 
4 

x(i-1) y(i-1) z(i-1) 
= x(i ) y(i ) z(i ) 

N x(i+1) y(i+1) z(i+1) 
x(i+2) y(i+2) z(i+2) 

-3 
3 
3 
1 

1 
0 
0 
0 

The B-spline thus obtained is defined on the interval between node i and i+ 1 as 

u is varied from O to 1. When the end of this interval is reached, the nodes 

defining N are all incremented by one to obtain the spline on the next interval. 

Again we select the spacing of the nodes which determine N to be uniform for 

reasons to be given below. Note that the product MN provides us with a matrix of 

coefficients for the components of P(i,u) which permit the determination of tlre 

components of the tangent and curvature as well. Finally, once an unfolded map 

is obtained, the coordinates of the mapped nodes can be used in N to give images 

of the splines on the unfolded map. The cubic splines thus provide a more 

efficient representation of contour data, and are to be preferred over the 

discrete representation when the number of contours and desired resolution 

become high. 

In order to accurately map the chosen surface of cortex at a given resolution, 

the nodes which comprise the discrete sample or which are used to define the 
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splines of the contours C should satisfy two criteria. First, the sampling should 

be homogeneous, having equal density in all regions of the surface, so as to 

provide equal resolution of all parts of the surface during the mapping. Second, 

the sampling should be isotropic, having a comparable density in all directions 

along the surface. Optimal sampling schemes which attempt to sparsely sample 

curves where their shapes change most rapidly do not satisfy these criteria 

(Pavlidis, 1974; Pavlidis, 1978; Dunham, 1986; Dorst and Smeulders, 1987). 

Achieving such a homogeneous, isotropic sample is difficult in practice due to 

the variation in distances between contours generated by sectioning of a 

nonuniform shape by parallel planes of section. For a surface inclined by an 

angle 1'J to planes of section /J.z apart, the distanced between points on adjacent 

contours will be: 

d /J.z 

cos('l'J) 
.. 

Thus the spacing /J.z between planes of section effectively limits resolution of the 

mapping, since from the above equation d must be at least /J.z. Furthermore, 

since the angle 1'J varies from one region of the surface to another, the value of d 

will vary along the contour, so that a sample taken along the contours cannot in 

general be both homogeneous and isotropic. 

One solution to this problem would be to provide for an adaptive sampling which 

would iteratively reconstruct the surface based on the existing sample and then 

adjust the sampling to obtain the desired properties. Since the final sample 

would not necessarily lie along the original contours, any data sampled along 

those contours would require interpolation. Such adaptive sampling and 

interpolation are beyond the scope of our current methods and have thus far not 
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proven necessary. Instead, we find it sufficient to seek a sample which is 

homogenous along the contours and isotropic on on average. The latter implies 

a sampling l::i.s along contours which is greater than the minimum spacing l::i.z but 

less than the maximum spacing which may occur. Empirically, we have found 

that a spacing l::i.s = 1.41 *f::,.z provides an approximately uniform, isotropic 

sampling of surfaces. One can show that the expectation of d will have 

approximately this value for surfaces intersecting the planes of section at 

angles ranging from -2n/5 ( 19" ( 2n/5, with all surface angles equally likely. 

Once reconstruction has been completed, statistics on the internode distances 

in various directions on the surface are computed so as to determine the density 

and isotropy of the sampling of the surface. If these statistics suggest large 

anistropy, the spacing l::i.s along the contour can be changed to correct for the 

average anisotropy. Alternatively, one can obtain additional contours of section 

either directly from the data set, or by interpolation of existing contours, so as 

to better sample the surface. This interactive proceedure is often necessary 

where the surface is approximately tangential to the planes of section, as 

distances between contours can be quite large in such areas. 

2.2 Reconstruction of the Sampled Surface 

As described in Section 1.5 above, the reconstruction of surfaces from sparse 

samples is a challenging problem. Accordingly, we initially performed the 

reconstruction interactively. This was accomplished through creation of a 

graphic interface between the user and the data comprising the sample of the 

surface. This interface, implemented on Silicon Graphics Iris computers, 

provided a dynamic perspective projection of the three-dimensional contours 

and nodes of the sample, enabling the user to view the data from various 
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directions and to manipulate the data so as to provide kineoptic cues. Both 

perspective and dynamic cues were thus available to provide information about 

the shape of the surface being reconstructed. Information about the topology of 

the surface was stored within the program as a list of nodes ni, each of which 

had a list of edges giving the indices of other nodes ni which are neighbors of ni. 

We refer to this abstract set of nodes and edges as the neighborhood graph G. 

Figure 30. User interface for graphical viewing and reconstruction of three
dimensional reference surfaces. The menu on the right permits 
selection of one of several working environments. The menu at the· 
top permits selection of options within a given environment. A 
cursor (arrow) manipulated via a mouse is used to select one or more 
nodes, to be joined by an edge as neighbors, here represented by line 
segments between the nodes. 
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The display provided the user with a visualization of this neighborhood graph 

(Figure 30). Nodes were represented by small points of different colors for 

different planes of section. Selection of menu entries enabled a variety of 

options for construction of the neighborhood graph G. Most of these options 

involved selecting nodes through use of a cursor tied to a mouse, and creating 

edges between nodes in a manner which depended upon the menu option 

selected. The simplest option created a single edge between two nodes. Such 

edges were displayed as line segments between selected nodes. Other menu 

entries enabled interactive and automatic interpolation between existing edges, 

editting to undo errors or remove unwanted edges, options to move the data in 

three dimensions so as to permit better viewing or selection of nodes, printing of 

views for documentation, and saving the current neighborhood graph G to disk. 

Neighborhoods of nodes within a given contour were automatically determined 

by their order along the contour, with sequential nodes taken to be symmetric 

neighbors. 

Once this graphical user interface was developed, we attempted to automate the 

reconstruction process using a variety of approaches which we developed or 

which had appeared in the literature reviewed earlier. These efforts included ( 1) 

computing Delaunay triangulations of the surface, (2) reconstruction of 

minimal surfaces defined on the domain of the planes of section and 

represented by a scalar elevation satisfying Laplace's equation, (3) matching of 

shapes of contours based on zeros of curvature across a continuum of scales, as 

well as (4) methods based on the differential geometry of surfaces. When used on 

sparse samples of a surface, all these methods succumbed to one or both of the 

following problems: (a) the representation was incapable of representing folds in 
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the surface, or (b) the method was incapable of reconstructing surfaces 

spanning different numbers of contours on the two sections. Both of these 

difficulties can be traced to underlying assumptions regarding the local 

topology of the domain upon which the reconstruction takes place. The first 

problem (a) arises because topology of the surface is assumed to be identical to 

that of the projective plane (parallel to the plane of section), which is only true 

if there are no folds in the surface. The second problem (b) arises because 

reconstructions between pairs of contours assume that the surface will have the 

same number of boundary curves in both sections, which will also be true only if 

there are no folds in the surface. In order to surmount these problems, two 

approaches have been taken. First, an algorithm was developed which makes 

use of the differential geometry of surfaces in order to reconstruct the 

unambiguous subset of neighborhoods, so as to accomplish at least part of the 

reconstruction automatically. This has become our standard method of 

reconstruction and will be described below. Second, we have obtained the 

solution of the general reconstruction problem, as described in Section 1.5 

above, which has been partially implemented. We anticipate that this solution 

will supplant existing methods once implementation is complete. 

Certain topologcal and geometric properties of surfaces can be used to 

determine a valid process for reconstruction of a discrete neighborhood graph 

G. First, we note that points along a contour have a definite order, so that three 

points A, B, C on one contour which have respective neighbors A', B', C' on 

another contour will have the same order along the two contours. That is, if Bis 

a neighbor of B', then A cannot be a neighbor of C' and C cannot be a neighbor of 

A'. In effect, this means that the edges of two neighboring nodes must not cross, 
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although they may converge upon a single node. If nodes along a contour are 

sequentially indexed by an integer i for one contour and j for the other contour 

while traversing the contours in the same direction, the index of nodes along 

one contour will be a monotonic function of the index of nodes along the other 

contour. This is true even for closed contours, provided we take the periodicity 

of the indexing into account. That the neighborhood graph must be everywhere 

monotonic reduces the size of the required representation from N 2 to Nlog 2N. 

Second, if all contours are traversed in the same direction (e.g. 

counterclockwise when viewed from above), we can com.pule local 

approximations to the tangent of the curve at each node. These tangents must 

be approximately in either the same direction or in opposite directions for 

neighboring nodes, depending upon whether the nodes are on the same section 

or on different sections. Their relative direction can be determined by the sign 

of the dot product of the tangents, T/Tf which will be positive if the tangents 

are in the same direction and negative if they are in the opposite direction. 

Thus, given two nodes ni and nj on contours C 1 or C 2 , the tangents of 

neighboring nodes must obey the following constraints: 

Contour of ni 

c, 

c, 

Cz 

Cz 

Contour of nj 

c, 

Cz 

c, 

Cz 

+ 

+ 

Application of this direction constraint rules out numerous incorrect 

neighborhoods, such as those which might leave the surface and extend through 
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an object. Yet it still permits the determination of correct neighborhoods 

across local convex or concave portions of the surface, where nodes have their 

neighbors on opposite sides of the same contour. Third, and finally, we note that 

two points which are on geodesics are by definition symmetric neighbors 

separated by a minimal distance. Thus, nodes which are each other's symmetric 

nearest neighbors are likely to be neighbors on the surface. Such symmetric 

nearest neighbors can be found by examining the matrix of all internode 

distances, and selecting those which satisfy the aforementioned constraints. In 

practice, when the nodes are sparsely sampled from a highly folded surface, it is 

not always possible to find such symmetric nearest neighbors on the surface. In 

such cases, either interpolation or interaction must be applied to reconstruct 

the remaining neighborhoods. Several views of such a reconstruction is shown 

in Figure 31. Once such a reconstruction of the surface topology is obtained, 

local measurements of lengths z .. and angle 0 .. kin the vicinity of each node are iJ i7 

obtained from simple geometry. 
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Figure 31. Four views of a surface reconstructed from f!.ie contours of section 
shown in Figure 29 above. The view proceeds from a ventral aspect to 
a medial aspect going clockwise from the top left. 

2.3 Mapping of the Reconstructed Surface 

The process of mapping begins with the creation of a node image on the map for 

each node on the reconstructed reference surface. Whereas the positions ri of 

nodes of the reference surface have three coordinates, 
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ref_ ( ) r . - X ., y ., Z . , 
'l, 'l, 'l, 'l, 

the nodes on the map are given only two coordinates, 

making the map planar by definition. In the following, we will refer to the nodes 

on the map simply as nodes for brevity, unless the distinction is necessary. 

In some cases these nodes are all initially placed at the origin (0, 0) of the plane, 

and topography allowed to emerge in the course of mapping. While this provides 

a powerful demonstration that the algorithm can generate topographic 

organization even when initially absent, it is not the most efficient means of 

beginning the mapping process. In order to save the computation required to 

initially establish topography, we can begin with an initial estimate for the map 

with correct topography but not necessarily correct geometry. Such a 

topographic ordering of the nodes can be obtained through use of their 

neighborhood relationships to sort them into order on the plane. Although 

there are several approaches to obtain such an ordering (Acton, 1970), we obtain 

it by converting the previously obtained neighborhood graph G into a regular 

graph for which there are an equal number of edges originating from and 

terminating upon each vertex. 8 Once this is done, this "regularized" graph can 

be imaged on the plane by identifying each vertex with one of the points of a 

cartesian grid. For those cases where the neighborhood graph is already regular, 

8. Normally the term regular signifies that the sum of edges originating and 
terminating from each vertex are equal for all vertices. Here we relax the 
definition so as to also apply to subgraphs of a regular graph, whose vertices 
have equal numbers of originating ano terminating edges, the total number 
of whicll may differ from one vertex to another. Tlius a subgraph G' formed 
by "trimming" vertices and edges originating or terminating from those 
vertices from a regular graph G is also referred to as regular. 
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the initial estimate for the map can be produced directly from it. 

This sorting is accomplished as follows. The number of edges which originate 

from or terminate upon each vertex v. of the neighborhood graph Gare counted. 
'l, 

The former quantity, known as the degree of divergence d+(vi)' while the latter 

is known as the degree of convergence d-(vi) of each vertex. By construction of 

G, the divergence d+(vi) will have values 2 or 3 at boundaries of the graph, and 4 

otherwise. However, the convergence d (vi) will vary between 2 and 

considerably larger integers. The process of regularizing these graphs is 

accomplished by reducing the convergence to equal the divergence for each 

- + vertex, so that d (v .) = d (v .). This can always be done by searching the graph 
'l, 'l, 

for vertices where this does not hold, and replacing each such vertex with a pair 

of vertices each having d-(vi) reduced by one. In the process of doing so, the 

value of d-(vi) of a neighboring vertex can be increased by one, which will 

generate a chain of such replacement which continues until it either closes onto 

itself or reaches a boundary. This process is continued until all vertices have d 

(vi) = d+(vi)' at which point the graph is termed regular. The vertices of this 

graph are then put into correspondence with points in a planar grid consisting of 

squares whose sides have the average length between nodes on the reference 

surface. The positions of these points are then used as the initial positions for 

the images of nodes of the reference surface, each of which has a vertex in the 

original neighborhood graph G. 

In order to find the two-dimensional map configurations at or near global 

minimum distortion, we applied the stochastic optimization technique known 

as simulated annealing (Kirkpatrick et al., 1983). We begin with an initial map 
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configuration found as described above, and randomize it by raising the 

temperature exponentially until effectively all attempted displacements are 

accepted. This effectively destroys the original configuration and precludes any 

bias of the final map configuration. Thus, the map attains a randomly distorted 

configuration whose energy Etotal is greater than its minimum value. Nodes on 

the map are then visited randomly, and local random displacements dri = (dx, 

dy) in the plane of the map attempted, so as to simulate the thermal motion of a 

collection of particles (Metropolis et al., 1953). Such displacements are 

evaluated to determine if they are to be accepted or rejected by calculating the 

change in energy that would result: 

( ) total( ) .C:.E r ., dr. = E r. + dr. 
'l, 'l, 'l, 'l, 

We note that only those local lengths lij and angles ®ijk which would be 

deformed by the displacement dr i need be considered in this calculation, since 

only those will contribute to a change in the energy. A displacment dri resulting 

in a negative value of .C:.E (r i' dr i), corrersponding to a decrease in local energy 

and an improvement in local geometry on the map as compared to the cortical 

surface, is always accepted. However, displacements which result in a positive 

value of .C:.E (r i' dr i)' corresponding to an increase in local energy and a less 

favorable local geometry, are also accepted with a probability given by the 

Boltzmann distribution: 

where kB is Boltzmann's constant and T(t) is a control parameter termed the 

temperature which is a function of time t. The value of the temperature T(O) at 

the start of annealing is set high, so that effectively all displacements are 

accepted, allowing for a randomization of the positions of the nodes from their 
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initial positions. The temperature is then decreased over time, according to: 

T(t) = T(O) c/ 

where ex is chosen slightly less than unity to produce a slow exponential decrease 

in temperature over time, hence the term "annealing." This results in a 

progressive increase in the probability that a displacement will improve the 

local geometry over the course of the annealing. Nevertheless, there is always 

some probability that a displacement which actually increases energy and 

degrades local geometry will be accepted. This provision makes it possible for 

the algorithm to escape from local minima so that it can continue on to obtain a 

map of absolute minimum global energy, provided that the annealing is done 

slowly enough, so that all the nodes can be considered to be at approximate 

thermodynamic equilibrium. In practice, the annealing schedule is usually 

determined by a compromise between maintaining this equilibrium and 

obtaining a reasonable rate of convergence to the desired result. Finally, when 

the temperature has been reduced to the point where essentially none of the 

displacements are accepted, the map is considered "frozen" and the annealing 

halted, giving the result as the final conformation of the map. 

We can obtain an evaluation of the distribution of distortion over the map at any 

time during the mapping process by computing the RMS error of lengths, angles, 

or a combination of the two in the neighborhood of each node. If errors in both 

lengths and angles are combined, the contribution from each kind of distortion 

can be treated equally, or given a weighting according to the relative values of 

the longitudinal elasticity IC 
O and torsional elasticity AO (see Appendix I). These 

measure of distortion in the vicinity of each node can be plotted as a function of 

position of the node on the map at any stage of its computation, to show which 
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regions are undergoing the greatest distortion. In general, the amount of 

distortion for a given region of the map will depend upon the intrinsic curvature 

of the corresponding surface, with higher values of intrinsic curvature resulting 

in greater distortion on the map. Thus, examination of the distribution of 

distortion will help determine whether discontinuities should be introduced in 

the course of mapping, and where they should be made in order to relieve the 

distortion. Unlike physical unfolding processes, in which deliberate cutting or 

inadvertent tearing is irreversible, it is possible to map the same surface several 

different ways, thereby obtaining several different mappings which can preserve 

the geometry of different regions of the cortical surface. From such distributed 

measures of distortion, the mean RMS distortion can be computed for the map as 

a whole, so as to provide a single measure of the accuracy of the map in 

representing linear and angular measures of surface geometry. We provide 

examples of both of these approaches in the Applications which follow. 

2.4 Coloring the Map with Data 

During the course of mapping, the image of the current map conformation is 

displayed either as a series of contours of section by drawing line segments 

joining the mapped nodes on the same section, or as a polygonal mesh by 

drawing the line segments between each mapped node and its neighbors. This 

permits inspection of the map during the computation. Later, once the final 

map conformation is obtained, any data which were been encoded along with the 

map nodes can be projected so as to "color" the map with data, with the color 

drawn chosen to identify different categories of data, or to represent gradations 

in one or a two categories of data through use of an appropriate gray scale or 

color map. These colorings can be used to display information about the quality 
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of the 1napping, such as the regional linear or angular distortion, or actual 

anatomical or physiological data or land1narks. 

Different kinds of data are plotted differently according to their spatial 

distribution on the surface being mapped. If the data are obtained for discrete 

points, such as the locations of labelled cells, a single point can be plotted at 

that location, with bilinear interpolation being used to estimate the mapped 

position of data which does not coincide with the grid. Curvilinear distributions 

can be drawn as a series of line segments whose endpoints either coincide with 

or can be obtained by interpolation from the mapped nodes. Areal distributions 

are typically drawn by construction of a suitable color map for the intended 

display device, and then plotting a series of Gouraud-shaded polygons across 

areas of the map for which data exists (Foley and Van Dam, 1982). This 

technique has the advantage that dense data, such as may be obtained through 

video or other imaging techniques, can be judiciously reduced to a sampling of 

data values at each mapped node. 

If more than one data set exists for a given map, multiple copies of the map are 

created and colored separately in order to facilitate comparison of the various 

data sets. Since the same computed map is used in all the colorings, all 

differences observed between maps will be due to differences in the data, and 

not in the mapping itself. 
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3. Applica lions 

To provide demonstrations of the accuracy and utility of this technique, we 

applied it to obtain mappings of geometric surfaces as well as the macaque and 

human cortices. The geometric surfaces were selected to provide illustrations 

of how the algorithms performed in cases where the shape of the surface to be 

mapped was well defined and for which reasonable outcomes could be predicted. 

The cases for the macaque and human cortices were selected so as to provide a 

comparison of the results obtained to the maps constructed by hand for the 

macaque, as well as a demonstration that the technique could successfully 

unfold the highly convoluted human cortex. 

3.1 Mapping of Geometric Surfaces 

Model geometric surfaces, such as portions of a plane, a cone, and a hemisphere, 

were mapped during the initial development of these algorithms in order to 

evaluate their performance. These models were chosen since maps of their 

surfaces could readily be predicted in each case from knowledge of their 

symmetry and curvature. Intuitively, we expect to be able to map a region of the 

plane onto another plane without distortion. This is possible since both surfaces 

have zero mean and Gaussian curvature, which permits one to be mapped onto 

the other with zero distortion. The cone, which can be constructed from 

cutting, bending, and glueing a planar surface, also has zero Gaussian 

curvature, but nonzero mean curvature arising from bending of the surface 

during its construction. This mean curvature can be reduced to zero, however, 

by introducing a single discontinuity so as to allow an unbending of the surface, 

allowing for the surface to be mapped with zero distortion. In contrast, the 

hemisphere has a constant and nonzero mean and Gaussian curvature at every 
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point, so that it cannot be constructed by a finite cutting, bending, and glueing 

of a planar surface. Thus, we cannot reduce this curvature to zero by the 

introduction of any finite discontinuity, and we expect some distortion in 

mapping the hemisphere onto the plane. The distribution of this distortion 

should reflect the symmetry of the hemispherical surface. 

In the following, we present the details of the mapping of the cone and the 

hemisphere. These mappings were performed with approximately the same 

number of nodes, the same values of parameters, and the same coding of the 

mapping algorithm to facilitate comparison. After some initial exploration of 

the parameter space, the following values were chosen. The value of the 

longitudinal elasticity IC 
O was chosen to be 1.0 and the torsional elasticity AO was 

chosen to be equal to 0.0769, so as to provide a greater emphasis on the 

preservation of lengths than on the preservation of angles. The value of the 

exponential base ex was chosen to be 0.95 during annealing. All other parameters 

were chosen adaptively by the algorithm. In both cases, the map was initialized 

with all nodes at the origin of the plane, so that information regarding the 

topography of these surfaces was completely absent from the map initially. We 

expected the algorithm to reconstruct a topographic map of the reference 

surface based on local measures alone. 
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Figure 32. The surface of a cone. 

The surface of a cone (Figure 32) has principle curvatures which either lie along 

straight lines or along circles at each point, so that the surface has nonzero 

mean curvature but zero Gaussian curvature (excepting the apex). Thus in 

principle an isometric mapping of the cone can be obtained, provided that the 

mean curvature can be reduced to zero in some way. This is most readily 

accomplished by introducing a single discontinuity in the surface, allowing the 

cone to "unfold" during the mapping so that its entire surface ( excepting the 

apex) can come to lie in the plane. Such an unfolding can be demonstrated by 

using a paper model of a conical surface into which a single cut is made. Thus, 

an isometric mapping is possible from the surface of the cone onto the plane, 

and all measures of geometry can in principle be preserved. Thus, we expected 

that the map would be identical to the reference surface, up to an arbitrary 

uniform translation, rotation, or reflection. The latter can occur since 

measures of local geometry are based on the relative position of a given node 

with respect to its neighboring nodes, and will therefore be invariant under a 
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uniform translation, rotation, or reflection. 

We mapped a conical surface using a sample of nodes consisting of a polar grid 

having 8 nodes per radius and 33 nodes per cycle (Figure 33), from which the 

values of the reference lengths and angles were determined. The results of this 

mapping are shown in Figure 33. The map was initialized with all nodes at the 

origin, and the temperature increased so as to permit the nodes to "evaporate" 

from this singularity (Figure 33A). The temperature was exponentially 

increased so as to allow at least 95 percent of all displacements to occur, 

resulting in a rapid expansion of the map (Figure 33B,C). This continued until 

the map had attained a distorted but nevertheless topographic organization 

(Figure 33D). As the temperature was reduced, these distortions progressively 

decreased, resulting in a contraction of the map to an approximately correct 

size (Figure 33E). Finally, when the temperature had been reduced to a value 

such that fewer than 0.1 percent of displacements are accepted, the map was 

considered finished and the annealing halted, giving the final result (Figure 

33F). 
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Figure 33. Map of the cone. A-F: Conformations 1, 100, 200, 300, 400, and 665 
are shown. 
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Figure 34. Distribution of linear and angular distortion for the map of the 

cone. The distribution of distortion over the map is shown by plotting 
a filled circle whose radius is proportional to the combined local 
linear and angular distortion at the position of each node. The scale 
(below) shows RMS distortions of 0.0 to 0.70, in increments of 0.10, 
with larger dots signifying greater linear or angular distortion. Here 
the dots are barely visible, representing the almost zero distortion of 
this map. 

Since conical surfaces have zero intrinsic curvature, they can in principle be 

mapped onto the plane with zero distortion. We computed the sum of RMS linear 

and angular distortions in the neighborhood of each node of the map, and 

plotted this distribution of this combined distortion in Figure 34. In addition, 

the mean linear and angular distorion for the entire map was computed. We 

found an average of 0.00014 linear RMS distortion and 0.0011 angular RMS 

distortion per node for this map. These distortions are negligibly small, and 

could be made arbitrarily smaller by choosing a closer to unity, so as to produce 
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a more gradual annealing. Note also th.at the linear distortion is an order of 

magnitude smaller than the angular distortion, in agreement with our initial 

choice of IC 
O and 11. 0 to emphasize the preservation of linear measures. 

Figure 35. The surface of a hemisphere. 

The surface of a hemisphere (Figure 35) has principle curvatures which lie on 

circles at each point, such that the surface has constant nonzero mean and 

Gaussian curvature. Unlike the cone, which offered a natural choice for the 

introduction of a discontinuity so as to permit the surface to unfold onto the 

plane, no such choice exists for the hemisphere. While it is possible to introduce 

a series of cuts along longitudes of the hemisphere at regular intervals, thereby 

reducing the total curvature along continuous curves of constant latitude, such 

cuts destroy the continuity of the map. Thus, we attempted the mapping of the 

hemisphere onto the plane without introducing any such discontinuities. Since 

it is possible for such surfaces of constant nonzero Gaussian curvature to be 

mapped conformally, but not isometrically, onto the plane, we expected that 
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angles would be preserved while lengths would be distorted. As a consequence, 

we expected that the orthogonal intersections of longitude and latitude on the 

hemisphere would be preserved on the map. In addition, we expected that 

lengths on the map would on average have zero deviation from their 

corresponding lengths on the hemisphere, with a central region of compression 

and a peripheral region of expansion. As in the case of the cone, the map is 

determined up to an arbitrary uniform translation, rotation, or reflection. 

We mapped a hemispherical surface using a sample of nodes consisting of a polar 

grid having 8 nodes per latitude and 32 nodes per longitudinal cycle (Figure 35 ), 

from which the values of the reference lengths and angles were determined. 

Except for the use of this hemispherical surface to determine the reference 

lengths and angles, the mapping was identical to that used in the case of the 

cone described above. The result of applying the mapping to the hemisphere is 

shown in Figure 36. The map was initialized with all nodes at the origin, and the 

temperature increased so as to allow the nodes to "evaporate" from this 

singularity (Figure 36A). The temperature was then increased so as to allow at 

least 95 percent of all displacements to occur, resulting in a rapid expansion of 

the nodes from the origin (Figure 36B,C). This continued until the map had 

attained a distorted but nevertheless topographic conformation (Figure 36D ). As 

the temperature was exponentially reduced, these distortions progressively 

decreased, resulting in a contraction of the map to an approximately correct 

size (Figure 36E). Finally, when the temperature had been reduced to the point 

where less than 0.1 percent of displacements are accepted, the map is 

considered finished and the annealing halted, to give the final result (Figure 

36F). 
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A 

Figure 36. Map of the hemisphere. A-F: Conformations 1, 10, 50, 100, 200, and 
400 are shown. 
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Figure 37. Distribution of linear and angular distortion for the map of the 

hemisphere. The distribution of distortion over the map is 
illustrated by plotting a filled circle whose radius is proportional to 
the combined local linear and angular distortion at the position of 
each node. The scale (below) shows RMS distortions of 0.0 to 0. 70, in 
increments of 0.10, with larger dots signifying greater linear or 
angular distortion. Here the dots are barely visible, representing the 
almost zero distortion of this map. 

The distortion is plotted as a function of location on this map (Figure 37). We 

found an average of 0.053 linear RMS distortion and 0.054 angular RMS distortion 

per node for this map. This modest linear and angular distortion demonstrates 

that the algorithm is capable of obtaining mappings near the theoretical 

minimum of distortion, even for intrinsically curved surfaces. If we examine 

the spatial distribution of the distortion (Figure 37), we note that it is largest at 

the periphery, resulting from extension of distances on the map relative to 
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those on the surface of the hemisphere. Thus, the map is like an elastic model 

of the hemisphere which has been stretched starting from its edges in order to 

flatten it onto the plane. Clearly, more distortion is required in order to flatten 

the edges than the center of such an elastic model. We note that the 

intersections of lines of !attitude and longitude of this map are approximately 

orthogonal, just as they were on the surface of the hemisphere, in agreement 

with our expectation that the map should be conformal. In fact, this mapping is 

qualitatively similar to the stereographic projection of the hemisphere, which is 

a conformal mapping (Hilbert and Cohn-Vossen, 1952). 

Since the above mappings were obtained using the same mapping algorithm with 

the same choice of parameters and approximately the same number of nodes 

sampled from the reference surfaces, only the differences in measurements of 

length and angle from those surfaces can account for the differences in maps 

obtained. Since the longitudinal and torsional elasticity is independent of the 

choice of particular node sampling, we do not expect differences in the position 

or density of nodes to substantially alter the outcome, provided that the 

sampling of a surface by the nodes is sufficient to accurately represent the 

geometry of a surface. Finally, we note that our mapping algorithm is adaptive 

to the surface being mapped, producing an approximately isometric map when 

possible, and an approximately conformal map when it was not. 

3.2 Macaque Visual Cortex 

Having observed that our computational algorithms were capable of producing 

reasonable mappings of such geometric surfaces, we next attempted to obtain a 

mapping of layer IV of the entire striate cortex (area Vl) of the macaque 
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monkey . This was to be the first computational mapping of this particular area, 

and the first such mapping of any area of mammalian cortex in its entirety. 

Figure 38. Lateral view of right hemisphere of macaque cortex. The striate 
cortex is located posteriorly (left), and includes the smooth 
operculum (shown) as well as a substantial infolding of the medial 
surface known as the calcarine sulcus (not shown). 

This cortical area presents a variety of local surface characteristics, including a 

large, relatively flat region on the exposed posterior surface of the cortex known 

as the opercul um, as well as the highly infolded calcarine sulcus (Figure 38). We 

chose to map the surface described by layer IV through this region of cortex, in 

part because it is thought to be the least likely of all layers to undergo 

compression or expansion due to folding of the cortex into sulci and gyri (Van 

Essen and Maunsell, 1980 ), and it is readily identified in Nissl stained 

histological sections of the monkey brain. The layer IV contours of a series of 

horizontal sections spaced 500 microns apart on average were digitized, 
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smoothed, aligned, and sampled at intervals of 250 microns. The resultant 3,369 

nodes were then reconstructed into a three-dimensional reference surface. For 

each such node, measures of length and angle were obtained to characterize the 

local geometry in the neighborhood of the node. The mapping was performed 

using the same code and parameters as were used to map the geometric surfaces 

above, with the exception that K 
O and "JI. 

0 were both set to unity. 
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Figure 39. Map of macaque striate cortex (Vl). A-F: Conformations 1, 10, 50, 
100, 150, and 250 are shown. The contours shown are the images of 
the contours of section. This was the first computational map ever 
made of the entire macaque striate cortex. 
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Rather than begin the mapping with all points at the origin, as was done for the 

mapping of the geometric surfaces above, here we chose to begin with an 

estimate of the unfolded map (Figure 39A). This estimate was generated by using 

the topological sorting algorithm described in the Methods to move each point 

on the map so as to obtain correct local topography. Beginning from this initial 

estimate of the map, the temperature was exponentially increased until 95 

percent of all displacements were accepted. During this heating, the map 

"melts" from the initial estimate, undergoing significant conformational 

change as it does so (Figure 39B). Once the map equilibrates at this elevated 

temperature, annealing begins with an exponential decline in temperature (ex = 

0.95). Over the course of the mapping, further changes in conformation of the 

map can be seen as the regions corresponding to the operculum and to the 

dorsal and ventral aspects of the calcarine sulcus become clearly defined 

(Figure 39C,D,E). It is noteworthy that during the mapping the large scale 

structure or organization is the first to emerge, followed by medium scale 

structure, and so on, until the positions of the nodes are determined at the 

smallest scale. The emergence of structure in such a coarse-to-fine fashion is 

characteristic of annealing, which finds optimal configura lions across a 

continuum of scales by allowing the system to wander over configurations 

having energy differences of no more than kBT. As this annealing progresses, 

the progressively lower temperature results in the selection of configurations 

which have progressively lower energy. When the temperature had been reduced 

to the point that less than 3 percent of the proprosed displacements were 

accepted, the map was considered to have crystallized and annealing is halted. 
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Figure 40. Change in local distortion over the course of annealing. See next 
page for caption. 
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Figure 40. Change in local distortion over the course of annealing. A - F: The 
distribution of distortion over the map for successive conformations 
is illustrated by plotting a filled circle whose radius is proportional to 
the combined local linear and angular distortion at the position of 
each node. Large dots signify large linear or angular distortion, while 
small dots signify low distortion. The same scale has been used in 
each plot, representing RMS distortions of 0.0 to 2.50, in increments 
of 0.357 . Distortion initially spreads from the boundaries to the 
interior during heating from conformation 10 to 50 (A, B), and then 
decreases during subsequent annealing over conformations 100, 150, 
200, and 250 (C - F). 

The gradual spread and re-duction of distortion of local geometry of the map over 

the course of annealing is shown in Figure 40. The distortion is initially largest 

at the boundaries of the maps, and can be seen to spread to the interior during 

the course of the initial heating as the energies of nodes on the interior 

equilibrate with those on the boundary of the map, so as to randomize the initial 

geometry. The distortion is seen to progressively decrease during the 

subsequent annealing as the temperature is exponentially decreased. The 

distribution of distortion is plotted as a function of location on the map in 

Figure 41. The contributions of linear and angular errors to the combined 

distortion are also shown. Note how the linear and angular contributions can 

occur at the same or at different locations on the map, illustrating how this 

mapping technique is capable of adaptively combining linear and angular 

distortions so as to obtain an overall minimum of distortion across the map. If 

we examine the spatial distribution of the distortion (Figure 41D), we note that it 

is largest along the "crease" corresponding to the boundary of the operculum 

with the· dorsal calcarine cortex. We suspect that at least some of this distortion 

arises from undersampling of the surface in this acutely folded region. Such 

undersampling can lead to inaccuracies in the reconstruction, and 

concommitant distortions in the subsequent unfolding. 
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Figure 41. Contributions of linear and angular distortion to the distribution of 
distortion on the final map. (A) Final conformation of the map, 
showing the contours of section. (B - D) Distribution of distortions 
plotted as a function of node position, as in previous Figure. (B) 
Distribution of linear distortion. (C) Distribution of angular 
distortion. (D) Distribution of combined linear and angular 
distortion. The same scale has been used in each plot, representing 
RMS distortions of 0.0 to 2.50, in increments of 0.357 . 

The final conformation of the map has the lowest distortion. Since this surface 

is believed to have low intrinsic curvature (Van Essen and Maunsell, 1980), we 

expected the map to have little distortion. We found an average of 0.13 linear 

RMS distortion and 0.27 angular RMS distortion per node for this map. This 
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distortion represents a factor of two to four reduction in distortion as compared 

with comparable estimates of distortion for maps produced by the manual 

technique of Van Essen and Ma unsell ( 1980). 

Figure 42. Comparison of computed and manual maps. The final conformation 
of the computed map (above) resembles the final version of a manual 
mapping of the same data (below, from Le Vay et al., 1985 ). The solid 
lines show the contours of section and boundaries of the area in both 
maps. The dashed lines on the manual map represent a discontinuity 
introduced in order to facilitate manual unfolding, which accounts 
for much of the difference in shape of the two maps. 

More significantly, we observe that the configurations of the contours of section 

of this map are comparable to those obtained with the manual technique (Figure 

42). This result reaffirms the validity of that technique while demonstrating our 
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ability to improve upon it through quantitative mapping. 

3.3 Human Visual Cortex 

Knowledge of the organization of the brain provides a basis for the 

understanding of its normal function and pathology. Much of this knowledge 

has come from the study of the brains of subhuman primates, whereas study of 

the structure and function of the human brain has been largely limited to 

clinical or postmortem evaluations (Allman, 1988; Allman and McGuiness, 1988; 

Van Essen, 1985). However, large differences in the organization of the cortex 

have been discovered among the primates, suggesting that such indirect and 

limited study of the human brain will not be sufficient to fully and 

independently characterize its organization (Allman, 1988; Sereno and Allman, 

1989). More directed study of the human brain has been made possible by the 

recent development of two noninvasive brain imaging techniques: magnetic 

resonance imaging (MRI), which reveals the anatomical structure of the brain, 

and positron emission tomography (PET), which allows us to measure changes in 

cerebral blood flow believed to be correlated with the activity of neurons (see 

Brownell et al., 1982 for a review). By applying these two techniques to 

individual subjects, it is possible to determine not only the change in 

physiological activity due to, say, visual stimulation, but to determine the 

distribution of that activity within that subject's brain (Mora, Carman, and 

Allman, 1989). 

MRI produces images based on the magnetic properties of nuclei with an odd 

number of protons or neutrons, of which hydrogen is the most abundant in 

biological tissues (Norman and Brant-Zawadzki, 1985). When an external 



123 

magnetic field is imposed, the magnetic moments of such nuclei can assume a 

low energy alignment with the field or a high energy alignment against the field. 

These moments can then be perturbed from this alignment by applying an 

alternating magnetic field in the form of radiofrequency waves, which can lead 

to coherent oscillation and resonance of the nuclei with the alternating field. 

The frequency at which this resonance occurs will depend on the strength of the 

constant component of the external field, permitting a spatial gradient in the 

external magnetic field to produce a spatial gradient of resonant frequencies 

within the tissue. When the radiofrequency waves are terminated, the coherent 

oscillation of the nuclei decays rapidly, and is accompanied by the en1ission of 

radiowaves whose frequency will depend on the spatial location of the nuclei and 

whose magnitude will depend on the density of nuclei per unit volume. Thus by 

recording the emitted radiowaves and applying Fourier decomposition, one can 

determine the density of hydrogen nuclei at each spatial location, provided 

certain other tissue-specific parameters are known (Brownell et al., 1982; 

Norman and Brant-Zawadzki, 1985; Oldendorf, 1985; Sokoloff, 1985 ). 

When applied to the human head, the MR images obtained show a wealth of 

internal structure. These images are displayed using a. gray scale such that 

regions with largest magnitude, corresponding to the greatest density of 

hydrogen, appear white, while regions with the smallest magnitude, 

corresponding to the least density of hydrogen, appear dark. For the spin -echo 

imaging technique used in acquiring data for this study, these differences in 

hydrogen density are mostly due to differences in the amount of water the 

tissues contain. Thus, the grey matter of the brain generally appears lighter 

than the white matter, which in turn appears lighter than the cerebrospinal 
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fluid or bone (Bradley et al., 1983). Using such images, it is possible to obtain 

outlines of the external surface of cortex, and in many cases, the contour of the 

boundary between the grey and white matter. Provided that the MRI images have 

sufficient contrast and resolution, they can provide contours representing the 

intersection of such cortical surfaces which are equivalent to those that would 

be obtained from histological sectioning of the brain. 

Just as MRI provides the capability of noninvasively imaging the anatomical 

structure of the human cortex, PET makes it possible to noninvasively detect 

changes in regional cerebral blood flow (rCBF) believed to be correlated to 

changes in neuronal activity (Raichle et al., 1976; Lassen et al., 1978; Fox et al., 

1984; Fox and Raichle, 1984; Fox and Raichle, 1986; Paulson and Newman, 1987). 

Cerebral blood flow is monitored by injecting positron-emitting compounds 

such as H2
15o into the blood circulation. Positrons emitted by such compounds 

travel short distance before anihilating with an electron to produce a pair of 

gamma rays travelling in -opposite directions. If these gamma rays intersect 

detectors consisting of scintillation crystals coupled to photomultiplier tubes, 

their line and time of traYel can be determined and this information used to 

localize the anihilation event in space. The frequency of these events from a 

given unit volume will be proportional to both the activity of the radionuclide 

and rCBF. By use of the washout curve and partition coefficients, rCBF can be 

determined accurately. By arranging detectors in rings around the head, rCBF 

can be determined for several PET image planes simultaneously. The low spatial 

resolution of PET scanners (typically greater than 1 cm) can be improved 

through use of differential imaging, wherein scans obtained during control 

trials are subtracted from scans obtained during experimental trials, 
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permitting localization of changes in rCBF to within distances on the order of 1 

mm in some cases (Brownell et al., 1982; Fox et al., 1986). 

By applying the techniques of MRI and PET to the same subject, we can 

noninvasively obtain correlated information about the anatomical structure 

and the physiological response of the brain to a variety of sensory stimuli. These 

measures of structure and function can be combined by bringing the MRI and 

PET scans into registration, and superposing the images produced by each 

technique using methods which have been described elsewhere (Mora, Carman, 

and Allman, 1989; see Appendix II). The result is shown in Figures 43 to 46, which 

display anatomical structure observed with MRI as an intensity or gray scale 

(vertical axis of color map shown on the right of each image), and the change in 

cerebral blood flow observed with PET as a pseudocolor scale (horozontal axis of 

color map). Such superpositions allow us to determine not only the changes in 

physiological activity due to, in this case, visual stimulation, but also to 

determine the region or regions of the subject's brain at which such changes 

take place (Mora, Carman, and Allman, 1989). 

However, the extensive folding of the human cortex into a series of sulci and gyri 

impedes both the visualization and analysis of the organization of such 

physiological responses on the cortex to visual stimulation. The algorithms 

described previously in connection with the computational mapping of macaque 

cortex can be used to unfold human cortex as well. Such a mapping provides a 

challenging test of our cortical mapping technique, as the sulci and gyri of the 

human cortex are both deeper and more numerous than in any other species. In 

the following, I will describe the production of such an unfolded map of the 
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Figure 43. Superposition of anatomical and physiological measures obtained 
noninvasively from a single human subject. The color map used here 
presents anatomical structure in shades of gray, and physiological 
response to visual stimulation as a pseudocoloring. A medial view of 
the right hemisphere is shown. Blue indicates no change in cerebral 
blood flow, while red color indicates increased blood flow in response 
to visual stimulation relative to flow during fixation point controls. 
The response shown here was to upper field hemiannulus stimulation 
(see Figure 49), and had a maximum value of 13.2 ml per gm per 
minute after normalization. See Fox et al., 1987 and Mora, Carman, 
and Allman, 1989 for details. 

human visual cortex through the application of these techniques. While our 

specific application is based on data obtained from MRI and PET data, the 

techniques apply generally to any sources of anatomical or physiological data, 

and we will consider such alternate sources of data to illustrate the generality of 

our approach. 

Several sources of information about the anatomical structure of the human 
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Figure 44. Superposition of anatomical and physiological measures obtained 
noninvasively fron1 a single human subject. Color map and view as in 
previous image. The response shown here was to lower field 
hemiannulus stimulation (see Figure 49), and had a maximum value 
of 11.8 ml per gm per minute after normalization. 

brain are available for use in producing an unfolded map of human cortex. For 

example, numerous atlases exist which contain sections of human cortex which 

many be suitable for mapping part of all of the human brain (Talairach and 

Szikla, 1967; Roberts et al., 1987). In addition, human cadavar brains are 

available which can be sectioned and used as the source of contours of a chosen 

layer of the cortex, much as is done in the monkey. However, large variability in 

brain structure and organization between individuals limits the usefulness of 

maps prepared from anatomical data in one subject for the purposes of 

presentation and analysis of physiological data obtained from another 

(Schaltenbrand and Bailey, 1959; Talairach and Szikla, 1967; Stensaas et al., 
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F igure 45 . Superposition of anatomical and physiological measures obtained 
noninvasively from a single human subject. Color map and view as in 
previous image. The response shown here was to perimacular 
stimulation (see Figure 49), and had a maximum value of 13.3 ml per 
gm per minute after normalization. 

1974). In order to minimize errors due to such individual differences, one woul-d 

like to obtai n anatomical and physiological data for the same subject. 

Through combined application of MRI and PET in the same subject, it is possible 

to both noninvasively measure changes in physiological activity and to localize 

those changes upon images of the anatomical structure. As illustrated 

previously, this ean be achieved through MR imaging of the subject from which 

physiological data is obtained. Contours of section can be digitized directly 

from the MRI images by use of a grapics cursor tied to a mouse, so as to obtain a 

sample of the chosen surface of cortex analogous to that obtained by 
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Figure 46. Superposition of anatomical and physiological measures obtained 
noninvasively from a single human subject. Color map and view as in 
previous image. The response shown here was to macular stimulation 
(see Figure 49), and had a maximum value of 13.4 ml per gm per 
minute after normalization. 

digitization of contours from histological brain sections. A series of such 

contours, obtained from MR in parasaggital image planes spaced 2. 7 mm apart, 

can be used as a basis for reconstructing the surface of human cortex (Figure 

29). However, the precision with which these contours can be digitized is limited 

by both the contrast and resolution of the MRI imaging process, and by the 

spacing between the MRI image planes, all of which create difficulties for the 

reconstruction of the surface to be mapped. As a result, this reconstruction 

requires a greater degree of interaction than mappings of macaque cortex, 

whose surfaces can be sampled with greater precision from histological sections. 

Nevertheless, the final reconstruction of the surface of human cortex compares 
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well with its known structure as observed in atlases or specimens of the human 

brain, and is therefore sufficient to provide a reference surface for producing an 

unfolded map of the human cortex. 

The same algorithms used for the mapping of the macaque cortex can be applied 

to data obtained from such noninvasive proceedures as MRI and PET, allowing us 

to obtain the first in vivo mapping of the human cortex. The ability to produce 

such a mapping noninvasively provides a significant advantage over other 

techniques, such as manual unfolding (Tootell and Silverman, 1985; Olavarria 

and Van Sluyters, 1985 ), which can only be performed postmortem, and which 

yield data on anatomical but not physiological organization. Since the pattern 

of activation in response to visual stimulation was already known for the medial 

wall of the occipetal cortex, we decided to map the more lateral expanse of this 

cortex hurried within adjacent sulci. We proceeded by reconstructing the pial 

surface of this cortex from the contours of section shown in Figure 29. The 

resulting reference surface, shown in Figures 30 and 31, consisted of a band 

"-
around the medial wall of the occipetal cortex, which we believe consisted 

mostly of extrastriate cortex, as well as an portion of the intracalcarine striate 

cortex. This band was cut through its most anterior aspe9t to permit unfolding. 

We then proceeded to map this region with a more efficient coding of the 

algorithm used to compute the aforementioned maps. The parameters ,c 
O and A 0 

were both set to unity, and the exponential base ex was set to 0.95 as before. 

The result of the mapping is shown in Figure 47. The elongated appearance of 

this map results from the numerous foldings of this circummedial band of 

cortex. The map is approximately 400 mm long by 17 mm wide, for a total area of 
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Figure 4 7. Map of a portion of human occipetal cortex. Conformations 0, 30, 
60, and 100 are shown. The progressive reduction of distortion during 
the course of the mapping produces the changes in local geometry 
which can be observed by comparing one conformation with the next. 
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approximate ly 6 480 square mm , making this the large st c omputa ti ona l 

unfolding yet undertaken . The map is over five times large r than the map of th e 

macaque striate cortex describe d earli e r . 

Figure 48. Relationship between the map and the surface of cortex it 
represents. All the contours of section have been colored according 
to the length along the contour (the middle contour is shown). These 
c olors were then transferred to the unfolded map so as to display the 
r e lationship between positions on the surface of cortex and positions 
on the map . 

The relationsh ip between 11>osi.tion within the occipetal cortex and position on 

the map is depicted in Figure 48. The extensive change in the relative extent of 

different sulci and gyri is evident in the lateral blending of color which can be 

seen on this map. Such rapid changes in shape and size of the cortical surface 

makes the mapping of such regions starting from such sparse samples 

challenging. Nevertheless, the final conformation of the map had a average 

linear distortion of only 0.21 and an average angular distortion of 0.31 
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Figure 49. Stimuli consisted of red and black 10 Hz counterphased annuli. The 
stimuli were presented in the upper field (superior 5.5 to 15.5 
degrees) the lower field (inferior 5.5 to 15.5 degrees), the 
perimacular region (1.5 to 5.5 degrees) and the macular region (0.1 
to 1. 5 degrees). 

Once this map had been computed, it was colored with data obtained from 

experiments which have been described elsewhere (Fox et al., 1987; Mora, 

Carman, and Allman, 1989). Changes in cerebral blood flow in response to 

viewing the four stimuli depicted in Figure 49 were determined relative to 

fixation point controls, and these differences were used to color the map of the 

corresponding cortical regions. We used the same color scale in all cases, so that 

the maps can be directly compared with one another. Differences between these 

colorings of the map cannot be attributed to differences in the particular 

surface which is mapped, since the same portion of cortex is mapped in all 

cases. Note also that we have plotted decreases as well as increses in cerebral 
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blood flow in these colorings of the map, so a s to provide a more balanced view of 

the response to these stimuli . 

Figure 50. Change in cerebral blood flow displayed on an unfolded map of a 
portion of human occipetal cortex. Going from top to bottom, the 
maps show the response to upper field, lower field, perimacular, and 
macular stimulation. The scale gives the change in cerebral blood 
flow in ml per gm per minute, after normalization. These are the 
first computational unfoldings mappings of human cortex in vivo, 
and were based entirely on noninvasive techniques. 

These are the first in vivo computational mappings of the human visual cortex 

based on noninvasive anatomical and physiological imaging (Figure 50) . 

Numerous features of these maps suggest that they contain information 

relevant to the topographic organization of both the striate and extrastriate 

regions of the human. For example, compleme ntary patterns of increased and 

decreased blood flow can be observed under some stimulus conditions. A careful 

analysis of these patterns must await a more complete reconstruction and 
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mapping of the occipetal lobe before it will be possible to give reasonable 

interpretations to such data. Nevertheless, the present maps provide a clear 

demonstration that such noninvasive computational mapping has great 

potential to reveal both the anatomical and physiological organization of the 

human cortex in vivo. 
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4. Discussion 

This work has been an attempt to attain two separate objectives, involving the 

development of empirical technique in parallel with the development of 

theoretical understanding. The first objective was to develop a series of 

algorithms to permit the production of unfolded, two-dimensional maps of the 

cerebral cortex. The second objective was to determine the general nature of 

the algorithms used by biological vision systems to obtain solutions to the 

reconstruction problem and the topological problem described earlier in this 

work. We have succeeded in both objectives, insofar as demonstrated by the 

following main results: 

1. The first computational unfolding of the entire striate cortex of the 

macaque, as presented at the 1985 convention of the Society for 

Neurosciences (Carman and Van Essen, 1985); 

2. The first computational mapping of physiological measures of regions of 

the striate and extrastriate cortices of the human, as presented at the 1989 

convention of the Society for Neurosciences (Carman and Mora, 1989); 

3. The development of a model for computation with flows of information 

based on the complex harmonic potentials; and, 

4. The simulation of fusion of images differing by affine transformations 

using such a flow model of the primate visual pathway. 

We will discuss various aspects of these empirical and theoretical advances in 

turn. 

We note that the techniques which we have developed are by no means the only 
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ones capable of producing unfolded, two-dimensional maps of the cerebral 

cortex. As yet, no quantitative comparison of these techniques has been 

attempted since at present the details of many of these techniques remain 

unpublished. Furthermore, few results from the study of anatomy or physiology 

of the cerebral cortex require quantitative precision of the mapping to reveal 

their essential nature. Typically, other factors such as the variability between 

animals and the small amount of data which can be obtained from each have 

limited more quantitative approaches (Connolly and Van Essen, 1984; Van Essen 

et al., 1984; Tootell et al., 1988). Nevertheless, such approaches might reveal a 

great deal of information about the successive transformations or maps within 

the sensory pathways of individual animals, if the proper empirical techniques 

are brought to bear. The quantiative techniques developed here represent a 

contribution in that direction. Combined with advances in anatomical and 

physiological techniques, such approaches may eventually permit and support 

functional interpretations of the successive transformations within a given 

sensory pathway (Knudsen ~et al., 1987; Lund, 1989; Carman, 1990 ). 

Nevertheless we can make a few qualitative comparisons of our techniques to 

others which are presently available. Three others described previously in the 

Introduction have been selected as representative of the techniques currently 

available. We note that all of these approaches can be regarded as instances of a 

general cartographic problem of mapping from spaces of N dimensions to M 

Whereas he used a gradient descent algorithm to obtain his mappings, which can 

be trapped in relative minima of distortion, our use of simulated annealing 

guarantees that our maps can proceed to global distortion minima in principle, 
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and will attain near global minima in practice. 

The techniques described by Van Essen and Maunsell ( 1980) rely largely on 

human judgement and approximation for the preservation of geometry, and 

thus are not conducive to the quantitative work envisioned above. The only 

mechanism for preservation of geometry intrinsic to this method is the 

preservation of length along the contours of section, which permits substantial 

distortions due to shearing of one contour relative to another. This can 

introduce significant anisotropy which will depend on the plane of section which 

produced the contours of the mapped surface. Also, the small random 

distortions which are introduced as an artifact of the mapping proceedure 

typically result in a "wavy" appearance of maps made in this fashion (e.g., LeVay 

et al., 1985 ), making comparison of maps within or between individual animals 

difficult. Finally, the construction of a map of cortical area Vl can require 

several days of tedious effort, even for those experienced with this manual 

technique. In comparison, we computed an unfolded map of cortical area Vl 

using our algorithms in only six hours. In that time, the computer made over 49 

million comparisons of lengths and angles in the course of attempting over 6 

million point movements to improve the preservation of geometry on the map. 

In principle, the distortion of such computed maps can be made as small as 

possible given the intrinsic curvature of the surface being mapped. We estimate 

that our algorithm is thus about one to two orders of magnitude faster, and 

perhaps two to three orders of magnitude more accurate, than the manual 

technique of Van Essen and Maunsell. 

The "brainprints" of Jouandet et al. (1988) have the distinction of providing the 
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first topological mapping of entire cerebral hemispheres in humans. Like the 

techniques of Van Essen and Maunsell (1980), they rely in part on the 

preservation of length along contours of section to help obtain some 

preservation of geometry. However, their contours are restricted to remain 

one-dimensional, so that they cannot undergo any change in conformation as 

permitted by our technique. Thus, the brainprints are thus best regarded as 

preserving topology, with the preservation of geometry being limited, variable, 

and imprecisely defined in terms of the various kinds of mappings. 

Nevertheless, brainprints are likely to provide a useful mapping for qualitative 

or very approximate quantitative comparisons of the locations and extent of 

large lesions in human patients. However, the detailed mapping of small lesion 

data for the purpose of inferring the functional organization of the cerebral 

cortex in man will require more precise quantitation than the techniques of 

Jouandet et al. can provide. 

Schwartz and Merker (1985, 1986) used an algorithm very similar to that of 

Sammon ( 1969) to produce mappings of the smooth, exposed opercular portion 

of macaque striate cortex. Like Sammon, they use a local gradient descent 

method in order to minimize the error between distances on the map and a set 

of global distances measured from the surface. This method can fail to obtain 

minimum distortion maps if it becomes trapped in relative minima of the 

function they seek to minimize. While it has not been possible to compare our 

methods directly, the susceptability of their algorithm to such relative minima 

could be seen in a film of the progressive unfolding of their opercular map 

shown during one presentation of their work (Schwartz and Merker, 1985 ). One 

could clearly observe several folds develop in their map, whose removal required 
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the addition of additional nodes well outside the boundaries of their map. Given 

the relative smoothness of the operculum, it is likely that their algorithm will 

require supervision and intervention of this kind to correct such foldings as 

they arise in the course of mapping regions of the cortex which are larger or 

have more intrinsic curvature. Furthermore, the mapping of Schwartz and 

Merker only attempts to preserve some subset of lengths measured on a 

triangular tesselation, which limits them to reconstruction of isometric 

approximations which are unsuitable to regions of cortex which have intrinsic 

curvature. In contrast, our algorithms attempts to preserve both lengths and 

angles measured on a quadrilateral tesselation or on surface patches fit to such 

a tesselation. This offers us the ability to independently control the weight 

given to the preservation of lengths and angles, so that either isometric or 

conformal mappings may be obtained as is appropriate, and to obtain better 

estimates of surface geometry. Finally, we have the capability of producing 

other maps, such as an area-preserving map, with only a minor change in code. 

Our technique is not without limitations, however. The guarantee of attaining 

the near theoretical minimum distortion provided by the use of simulated 

annealing also means that the technique is computationally expensive. It is 

clear, however, that annealing is necessary for at least some maps if they are 

reconfigured solely within the plane. We demonstrated this in the course of 

early efforts to find a suitable optimization method by setting the temperature 

to zero during the annealing, so as to produce a stochastic optimization which 

always attempts to decrease the distortion, instead of allowing some probability 

of increasing or decreasing distortion. The maps which resulted often became 

caught in bizarrely folded configurations symptomatic of relative minima, 
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comparable to the foldings seen in the map of Schwartz and Merker ( 1985). When 

the surfaces were mapped using annealing, however, no such folds appeared. We 

believe the occurrence of folding to be due to the inability of the map to find a 

configuration wherein measures of surface geometry are all mutually satisfied. 

This frustration is to be expected whenever intrinsically curved regions of 

surfaces are mapped onto the plane. We note that such frustration is bound to 

occur regardless of how the map is reconfigured, provided that the objective of 

the mapping is an unfolded, two-dimensional representation of such surfaces. 

We are developing alternative approaches to address these issues while at the 

same time improving the speed with which the maps can be computed. 

Fortunately, the computational demands of our present techniques are quite 

reasonable, and are by no means a limiting factor in such work. In practice, it is 

a small cost to pay for the assurance that the maps will attain near-global 

minima of distortion. 

In practice, most distortions which occur in the final maps can be traced to 

errors in the input data. This calls attention to the need for the development of 

calibration and rectification proceedures to correct distortions arising from 

histological processing, and improved sampling techniques involving video 

digitization of histological data. Further developments in nondestructive and 

noninvasive sampling by confocal microscopy, magnetic resonance imaging, and 

positron-emission tomography will all assist in achieving such objectives. 

Our current use of sampling of single contours of section can be generalized to 

accomodate sparse volumetric data, such as a distribution of labelled neurons 

not restricted to a single lamina or diffuse patterns of activation which may 
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extend across several laminae. In such cases, either the data of interest can be 

projected onto a single surface which is then mapped, or the position of data can 

be recorded with respect to two surfaces (the boundaries of the gray matter), 

both of which are then mapped together. In this manner, the entire cortical 

mantle can be mapped as a "thick sheet" to obtain the laminar pattern of 

extended or distributed data, which can then be "tangentially sectioned" to 

reveal how it varies with depth. 

Perhaps more significant than the development of these quantitative 

techniques for the mapping of the cortex has been the elucidation of a model, 

based on the complex harmonic potentials, for producing stable flows of 

information which correspond to solutions of the topological problem and other 

isomorphic problems of vision. As a final flourish to these results, we note that 

plotting the spatial component of the complex potentials involved in generating 

these flows reproduces many aspects of the topography of the primate visual 

pathway (Figure 51) (Carman, 1990). The qualitative similarity of these plots to 

the known typical shape and topographic organization of these stages of the 

visual pathway is remarkable in many regards (Malpeli and Baker, 1975; 

Connolly and Van Essen, 1984; Van Essen et al., 1984; To9tell et al., 1988). The 

first component of this mapping transforms the visual hemifield into the 

representation seen in the lateral geniculate nucleus. This is nothing more 

than a conformal mapping to permit combination of input from the two eyes, 

and to transform the hemifield into a disc, as the first step in construction of a 

Green's function. The second component of this mapping transforms the 

retinotopic organization of the lateral geniculate nucleus into that of Vl, the 

primary visual cortex. This is a conformal mapping which completes the 
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Figure 51. Plots of the spatial components of the complex potentials for 
computing flows for affine invariance. lsoeccentricities are plotted 
every 1 degree for the most central 10 degrees, and every 10 degrees 
thereafter. VF: visual hemifield; LGN: lateral geniculate nucleus; Vl: 
cortical area Vl; V2: cortical area V2. 

construction of the Green's function used in computing the potential governing 

translations across spatial scales through through solution of the Dirichlet 

problem (Kantorovich and Krylov, 1964). The third component of this mapping 

transforms the topography of Vl to that of V2, the second visual area. This is 
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also a conformal mapping, which repeats the construction of a Green's function 

so as to corn.pule the potential governing the rotations and scaling across spatial 

scales. The combination of these two potentials permit the determination of a 

continuous scale similarity transform for fusion of image pairs in stereopsis or 

kineopsis. Thus, the shape and organization of the visual pathway may be 

interpreted as a precomputation of the spatial components of the complex 

harmonic potentials subserving the generation of flows of information useful 

for visual processing. The mappings of the cerebral cortex can thus be regarded 

as em beddings of such flows in Euclidean space, whose existence is guaranteed 

by the embedding theorem (Whitney, 1936), and whose number is as large as the 

set of all analytic- f'llnctions, providing a large repetoire of possible 

computations from which evolution could select when "designing" sensory 

pathways in this manner. If this is a general feature of cortical organization, it 

may be possible to determine the functions performed by other cortical areas by 

quantitative mapping of their topography and determination of the analytic 

functions which produce them. If this proves to be the case, then eventually 

mathematical theory will supplant phenomenology as the foundation for the 

empirical study of mappings and functional organization of the cerebral cortex. 
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Appendix I 

Approximation of Torsional Springs 
By Longitudinal Spring Pairs 

The action of a torsional spring on a rigid beam can be approximated by the 

action of a pair of longitudinal springs attached to a fixed base (e.g., another 

beam) and which act on a-beam which pivots about its endpoint. We choose the 

two springs to have resting lengths lio such that neither spring is compressed or 

streched when the beam is at an angle 0 0 with respect to the fixed base. This 

angle corresponds to the resting angle of the torsional spring. 

Deflection of the beam from the angle 0 0 by an angle 0 will stretch one spring 

and compress the other. The springs will lw stretched or compressed by an 

amount: 

r sin( 0) = r 0 

assuming the spring is confined to a circular cam or if 0 is small. The stored 

energy e of such a spring pair is: 

e = ~ IC (l, - i,o? + ~ IC (lz - l20? 

= ~ IC (-r sin(0 - 0 0 ) )2 + ~ IC (r sin(@ - @0 ) )
2 

= IC (r sin(@ - @0 ) )2 

= IC (r(@ - ®o))2 

= IC r2 (@ - ®o)2 

= ~ /\ (@ - ®0)2 

where\= 2/C r 2 . The last equation has the form of the energy of a torsion spring 
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of resting angle 0
0

, demonstrating the desired equivalence. Note that this 

approximation is used only to determine values for coefficients K and A which 

are equivalent in terms of energy per unit displacment. Actual calculations of 

energies due to angular distortion involve no approximations. 
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Summary: Results are reported of four analyses of the distribution of REM 
sleep across nights of two subjects who slept for 50 consecutive nights on a 
regimented, but normal, sleep schedule. We found (a) a strong phase-setting effect 
of sleep onset on the distribution of REM sleep within nights, (b) no systematic 
change in the phase of the distribution of REM sleep across nights, and (c) a 
relationship between the nocturnal temperature minimum and the distribution of 
REM sleep within nights. Our results are consistent with the notion that the nightly 
distribution of REM sleep may be determined by an oscillatory process, the phase 
of which is reset at sleep onset, but which may be subject to other influences, 
such as the circadian temperature rhythm. These results are in general agreement 
with those found by investigators studying subjects on free-running or other ab
normal sleep schedules. Key Words: Sleep-REM sleep-Ultradian rhythms-
Circadian rhythms-Body temperature. 

Although the existence of a nightly REM-NREM sleep cycle has been known for almost 
three decades (1), the variability of the REM-NREM pattern both between and within 
individuals across nights remains both unpredictable and unexplained. Numerous hypotheses 
have been put forth in an attempt to explain this REM-NREM patterning: Globus (2) and 
Othmer et al. (3) suggested that the REM-NREM cycle was a manifestation of a 24 h 
basic-rest-activity-cycle (BRAC) (4) and was linked to clock time; Webb and Agnew (5) 
hypothesized that it was the manifestation of a free-running BRAC, unentrained, and 
therefore shifting in real time; Schulz et al. (6) proposed that the first REM period (REMP) 
of the night was linked to sleep onset, but that later REMPs shifted as if linked to an 
unentrained BRAC; Moses et al. (7) and Johnson (8) claimed that the REM-NREM cycle 
was a sleep-dependent process, completely distinct from the BRAC; and McPartland and 
Kupfer (9) found evidence for both a sleep-independent (BRAC) component and a sleep
dependent component in the REM-NREM rhythm. More recently, a series of investigators 
have reported a relationship between the circadian rhythm in body temperature and sleep 
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onset, sleep offset, sleep duration, REM latency, and REM duration in both free-running 
(10-12) and enforced, irregularly scheduled sleep conditions (13,14). 

This article reports the results of analyses of the REM-NREM sleep distribution of two 
subjects who slept 50 consecutive nights under an enforced, but normal sleep schedule. It 
is hoped that these analyses may provide useful baseline information for those who are 
studying free-running, disrupted or otherwise abnormal sleep in human subjects. 

METHODS 

Protocol 
Three male undergraduates (EA, JA, and TP, aged 18, 19, and 20, respectively) vol

unteered to participate in the study as part of an independent study project in psychology. 
Each slept in the laboratory for 50 consecutive nights, maintaining a constant schedule of 
lights out and awakening as selected by each subject at the outset of the study. The subjects 
were restricted from drugs, alcohol, and naps throughout the study, but otherwise maintained 
their normal routine. Each night electroencephalography, electrooculography, and electro
myography were monitored using standard techniques on Grass model 5D (JA) and Model 
7 (EA and TP) polygraphs. Two subjects (EA and TP) were also monitored for rectal 
temperature using isolated telethermometer probes (Yellow Springs Instruments Model 401) 
interfaced to a Harvard chart recorder (model 480 chart mover and model 350 recording 
modules) through a custom-designed Wheatstone bridge circuit. Temperature was sampled 
automatically at 30 s intervals. 

Analyses were performed using data only from the last 42 nights of the study to ensure 
that adaptation to the lab and to the schedule was complete. All three subjects completed 
the study, but one (EA) developed a cold with apparent sequelae in his sleep and temperature 
data; hence results from this subject were excluded from the present report. 

Scoring 
Sleep episodes were coded and scored blindly into ½ min epochs, using the criteria of 

Rechtschaffen and Kales (15). The direct Fourier transform was computed from the minute
by-minute REM-NREM time series derived from each subject-night's data (D. R Kripke, 
personal communication; 16). Using test periodicities of 70 to 140 min at 1 min increments, 
the period of maximal mean power across nights was determined for each subject (105 min 
for JA and 98 min for TP). For each night, we obtained the phase angle of the cosine 
having the period of maximal mean power for that subject, thus providing a stationary 
approximation for each subject-night's REM-NREM distribution. These phase angles were 
subsequently used in three analyses of the REM sleep distribution.of each subject (see Fig. 
1 for a pictorial description of this methodology). 

Temperature recordings were scored for the occurrence of nightly minima using two 
methods: an absolute minimum was scored for each night, and a minimum was derived 
using a least-squares fit of a cosine of 24 h period (16). Our preliminary report (17) 
discussed results based on the use of the absolute temperature minima; the present report 
is based on results using the fitted temperature minima. 

RESULTS 

The REM-NREM sleep distribution of each subject is depicted in Fig. 2. Visual ex
amination of these data suggests an entrainment of REMP 1 to sleep onset but is ineffective 
at elucidating a pattern among later REMPs. Our analyses were made in an attempt to 

Sleep, Vol. 7, No. 4, 1984 
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Woke 

V 

FIG. 1. Pictorial description of the 
quantification of the phase of each night's 
REM-NREM distribution. The shaded 
regions represent REM periods and the 
white regions NREM periods, which ap
pear as a function of time. Each curve 
is a cosine, the period and phase of which 
are obtained by application of the direct 
Fourier transform as described in the 
text. Above: A pair of nights with 
similar REM-NREM distributions yield 
nearly identical phases with respect to 
the origin set at sleep stage 2 (SS2) on
set. Below: A pair of nights with dis
similar REM-NREM distributions yield 
different phases. In this example the 
phases differ by 180°. 

confirm this apparent relationship between sleep onset and REMP 1 and to further decipher 
any pattern in the later REMPs. 

Our first analysis consisted of simple computation of the means, standard deviations, 
and correlations between timing of: lights out; sleep stage 1 and 2 onsets; REMP latencies; 
and the latency of the temperature minimum (for subject TP). Since timing of lights out, 
sleep stage 1 onset, and sleep stage 2 onset were so close and varied little in real time 
(Table 1), REMP latency correlations are reported only with respect to sleep stage 2 onset 
(Table 2), and all future reference to sleep onset refers to sleep stage 2 onset. 

The descriptive statistics confirm our initial impression: as indicated by the standard 
deviations of REMP latencies, REMP 1 was significantly more strongly tied to the.timing 
of sleep onset than were later REMPs. Additionally, the lack of significant negative cor
relations between sleep latency and REMP latencies indicates no tendency for REMPs to 
be tied to clock time. 

TABLE 1 . . Statistics of controlled 
sleep regimen 

JA TP 

X SD -
X 

Lights out 12:33 a.m. 3.42 11:19 p.m. 
SS 1 onset 12:42 a.m. 8.19 11:30 p.m. 
SS 2 onset 12:49 a.m. 8.42 11:33 p.m. 
T minimum NA NA 3:51 a.m. 
Wake 7:30 a.m. 3.49 6.59 a.m. 

SD 

4.04 
6.01 
6.55 

49.95 
1.25 

Variation in lights out, sleep stage 1 (SS 1) onset, and sleep 
stage 2 (SS 2) onset was minimal under the controlled sleep 
regimen. Mean times are given as hours:minutes Eastern stan
dard time. Standard deviations are given in minutes. 

Sleep, Vol. 7, No. 4, 1984 
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TABLE 2. REM period (REMP) latencies 
and correlations 

JA TP 

Latency SD r Latency SD r 

REMP l 62.78 11.09" -0.18 73.83 10.77b O.o3 
REMP2 170.50 25.90 -0.Ql 164.06 14.69 0.05 
REMP3 272.18 24.68 0.12 259.14 20.80 0.09 
REMP4 361.74 27.35 -0.Q3 355.26 29.62 0.17 

REMP latencies are reported in minutes from sleep stage 2 (SS 2) onset. 
Standard deviations are reported in.minutes. Correlations (r) between REMPs 
and SS2 onset are computed using latency of SS2 from midnight and la
tencies of REMPs from SS2 onset. 

•Significantly smaller than that of REMPs 2, 3, and 4 at p < 0.01. 
bSignificantly smaller than that of REMP 3 at p < 0.05 and REMP 4 at 

p < 0.01. 

The second analysis examined the distribution across nights of the phase angles of the 
REM-NREM sleep distribution obtained for each night. For each subject, these phase angles 
were plotted on a circle with the origin (phase angle of zero) set at sleep onset (Fig. 3). 
For both subjects, the Rayleigh test (18) indicated a nonrandom distribution (p < 0.05 for 
JA; p < 0.01 for TP), corresponding to an average phase angle across nights. The average 
angle was similar for the two subjects ( -90° for JA; - 83° for TP). We also tested the 
distribution of phase angles obtained by weighting each vector according to the point
biserial correlation between each night's REM-NREM distribution and the cosine approx
imating that distribution. 1 Test results with the weighted vectors were even stronger than 
those using the nonweighted distributions (p < 0.005 for JA; p < 0.001 for TP) using the 
cosinor zero-amplitude test (19) (see also Fig. 3). These results further substantiate the 
entrainment effect of sleep onset on the distribution of REM sleep through the night. 

1The length of the vector representing a given night's phase angle was set equal to the point-biserial correlation 
between that night's minute-by-minute values of sleep state (REM versus NREM) and the fitted cosine. Thus, 
if REM sleep occurred equally during the positive and negative phases of the cosine, a zero correlation (and a 
zero-length vector) would be obtained; perfect alignment of REMPs with the positive, and NREMPs with the 
negative phase of the curve, would yield a correlation of approximately 0.90. Since REM periods are generally 
shorter than their associated NREM periods, a correlation of 0.90 would not be expected even for REMPs that 
are perfectly aligned with the peaks of the cosine function. Rapid eye movement periods that are thus aligned, 
yet which last one-fourth to one-half as long as the adjoining NREMPs yield correlations of approximately 0.65 
to 0.80. As the cosinor analysis assumes a maximum theoretical vector length of 1.00, the p values obtained 
in these analyses are thus conservative. The mean point-biserial correlations for our subjects were 0.58 (for JA) 
and 0.50 (for TP). All vectors are plotted on circles of unit radius. 

FIG. 2. Above: REM-NREM sleep distributions with sleep stage 2 (SS2) onsets (2) aligned (JA left; TP 
right). Shaded portions are REM; white portions are NREM. Brackets represent lights out(<) and awakening 
(>). Below: Incidence of REM sleep over nights 9--50, as a function of latency (minutes) from SS2 onset 
(JA left; TP right). 

Sleep, Vol. 7, No. 4, 1984 
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FIG. 3. Above: Phase of the 
REM-NREM sleep distribution for 
each night with respect to the origin 
at sleep stage 2 onset. For JA (left) 
the resultant mean vector has a 
magnitude of0.28, with a direction 
of - 90° (p < 0.05, Rayleigh test). 
For TP (right) the resultant mean 
vector has a magnitude of 0.37 and 
a direction of - 83° (p < 0.ot, 
Rayleigh test). Below: The same 
phase angles as above are plotted 
on unit circles with each vector 
having a magnitude proportional to 
the point-biserial correlation be
tween that night's REM-NREM 
distribution and its cosine curve. 
(See footnote in text for further ex
planation.) For JA (left) the result
ant mean vector has a magnitude of 
0.19 with an angle of - 97° 
(p < 0.005, cosinor zero ampli
tude test). For TP (right) the re
sultant mean vector has a magnitude 
of 0.21 and an angle of - 84° 
(p < 0.001, cosinor zero ampli
tude test). 

FIG. 4. Above: Change in the 
phase of the REM-NREM sleep 
distribution between pairs of con
secutive nights, with phases deter
mined with respect to origins in 
clock time (JA, left; TP, right). The 
distributions were not significantly 
different from random (Rayleigh 
test), indicating no systematic shift 
in the phase of REM sleep across 
nights. Below: Change in the 
phase of the REM-NREM sleep 
distribution between pairs of con
secutive nights, with phases deter
mined with respect to origins at sleep 
onset (JA, left; TP, right). As above, 
the distributions were not signifi
cantly different from random (Ray
leigh test). 



171 

REM SLEEP DISTRIBUTION 353 

Next, the possibility of a shift in the phase of the distribution of REM sleep across nights 
was investigated by computation of the difference between phase angles for consecutive 
pairs of nights (Fig. 4). The resultant phase differences did not indicate a consistent shift 
in phase across nights, with the results of the Rayleigh test being consistent with a random 
change in the phase of REM sleep across nights (p > 0.05). This was found to be the case 
whether the phase differences were computed from phase angles obtained for the entire 
REM-NREM distribution for each night or from those obtained for the latter part of each 
night (e.g., all REM periods and intervening NREM periods excepting the first). 

Last we examined the relationship of the REM-NREM sleep distribution to the circadian 
temperature minima. Aligning graphical representations of the REM-NREM sleep distri
bution for each night so that all temperature minima are aligned results in the sleep pattern 
portrayed in Fig. 5. Visual examination of the corresponding histogram reveals two distinct 
peaks in the occurrence of REM sleep across nights--one approximately 20 min after the 
temperature minimum, another approximately 100 min later. 
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FIG. 5. Above: REM-NREM sleep 
distribution with temperature minima 
(*) aligned (subject TP). Shaded por
tions are REM, white portions are 
NREM. Brackets represent lights out 
( <) and awakening (> ); (2) represents 
sleep stage 2 onset. No temperature 
data available for night I . Below: In
cidence of REM sleep over nights 9-
50, as a function of latency (minutes) 
from the temperature minimum. This 
histogram differs from the one previ
ously published ( I 7) as a result of using 
temperature minima obtained by a fit
ting technique (see Methods) as op
posed to using absolute minima as had 
been previously done. 

Sleep, Vol. 7, No. 4, 1984 



354 

FIG. 6. Left: Phase angles for 
each night's REM-NREM distribu
tion with respect to the origin at the 
temperature minimum (subject TP). 
The resultant mean vector has a 
magnitude of 0.28 and a direction 
of + 79° (p < 0.05, Rayleigh test). 
Right: The same phase angles 
plotted on unit circles with each 
vector having a magnitude propor
tional to the point-biserial correla
tion between each night's REM
NREM distribution and the cosine 
approximating that distribution. (See 
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footnote in text for further explanation.) The resultant mean vector has a magnitude of 0.13 and an angle of 
89° (p < 0.05, cosinor zero amplitude test). 

To determine the significance of this relationship, we examined the distribution of phase 
angles describing each night's REM-NREM sleep distribution with respect to an origin at 
the temperature minimum (Fig. 6). Using either unweighted or weighted vectors, the 
Rayleigh and cosinor tests respectively yield significance levels of p < 0.05. 

DISCUSSION 

The results of this study can be summarized as follows. 
1. Even under conditions in which sleep onset time varies only slightly, the timing of 

all REMPs, especially the first REMP, is significantly determined by the timing of sleep 
onset. This result extends the results of Moses et al. (7) obtained from napping subjects 
and is consistent with the hypothesis that the timing of REMPs is sleep-dependent, rather 
than a manifestation of an ongoing BRAC. 

2. Rapid eye movement periods exhibit no systematic drift across nights, even when the 
first or second REMP of the night is removed from the analysis. These results represent a 
failure to replicate the findings of Schulz et al. ( 6) and again are consistent with the sleep
dependent model. 

3. There appears to be a relationship between the timing of the circadian temperature 
minimum and the timing of REMPs, such that the probability of REM sleep occurring is 
greatest approximately 20 min after the temperature minimum, and again 100 min sub
sequently. Although we have obtained this result for only one subject, it is similar to the 
findings Czeisler et al. obtained from free-running subjects ( 10, 11) and to those of Carskadon 
and Dement from subjects on a 90 min sleep-wake schedule (13). The similarity of findings 
using three sleep-wake regimens suggests either that the REM-NREM cycle is influenced 
by the circadian temperature cycle or that a third factor influences them both. To the extent 
that the temperature cycle is entrained by other circadian cues, this relationship might 
explain previous findings that have suggested a sleep-independent component of the REM
NREM distribution (9). 

We thus propose that.the nightly distribution of REM and NREM sleep may be determined 
by at least two circadian events: the initial sleep onset and the subsequent nocturnal tem
perature minumum. We hope that these findings from normal subjects on a normal schedule 
will provide useful baseline data for investigations of abnormal or disordered sleep and 
contribute to the study of the sleep process. 

Sleep, Vol. 7, No. 4, 1984 
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Attempts to demonstrate magnetic 
discrimination by homing pigeons in flight 

GEORGE J. CARMAN, MICHAEL M. WALKER, and ANDY K. LEE 
California Institute of Technology, Pasadena, California 

Eight homing pigeons, trained to fly between two elevated feeders within a flight tunnel, were 
tested for their ability to discriminate between two magnetic field stimuli and two acoustic stimuli, 
using a unitary discrete-trials procedure with successive presentation of stimuli. Magnetic stimuli 
consisted of the ambient magnetic field and a reduced magnetic field in which the vertical com
ponent of the field was reduced to 50% of its ambient value. Acoustic stimuli consisted of an am
bient white noise and the white noise plus a tone. Stimuli were paired with food reward and either 
a time penalty (Experiment 1) or electric shock (Experiment 2). Although subjects could dis
criminate sounds with our procedures, none of the subjects demonstrated discrimination of mag
netic fields. The failure of pigeons to discriminate magnetic stimuli is discussed as a consequence 
of either the failure to provide conditions sufficient for such discrimination or the absence of a 
magnetic sense in these animals. 

Although behavioral experiments in the field have sug
gested the use of a magnetic sense in the navigation of 
homing pigeons (Frei & Wagner, 1976; Keeton, 1971; 
Walcott, 1978; Walcott & Green, 1974), various attempts 
to demonstrate sensitivity to magnetic stimuli in the 
laboratory have failed (Alsop, 1987; Beaugrand, 1976; 
Delius & Emmerton, 1978; Griffin, 1982; Kreithen & 
Keeton, 1974; Mcisaac & Kreithen, 1987; Meyer & 
Lambe, 1966; Moore, Stanhope, & Wilcox, 1987; Or
gel & Smith, 1954). If a magnetic sense exists in these 
animals, such failures to demonstrate magnetic discrimi
nation in the laboratory could be due to the failure to 
satisfy any one of several prerequisites for such a demon
stration. The suggestion that flight may be necessary for 
discrimination of magnetic stimuli by pigeons (Kreithen 
& Keeton, 1974) might explain the lack of discrimina
tion of magnetic stimuli in conventional keypecking or 
cardiac conditioning paradigms. Such an explanation was 
supported by the experiments of Bookman (1977), who 
reported that mated pairs of homing pigeons discriminated 
magnetic stimuli only when they "fluttered" (performed 
sustained hovering, jumping, rapid turning, or short 
flights) before entering one or the other of two goalboxes 
located at one end of a flight tunnel. 

We began our investigations with an attempt to repli
cate the experiments of Bookman (1977), duplicating his 
apparatus and using similar magnetic stimuli and proce• 
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<lures (M. A. Bookman, personal communication, 1983). 
Two mated pairs of homing pigeons were first pretrained 
to allow for adaptation to the flight tunnel and shaping 
of their responses. During the subsequent magnetic dis
crimination training, we observed only random perfor
mance over a course of 307 trials for one pair and 149 
trials for the other pair (Carman & Mahowald, 1984). 
Random performance was observed regardless of whether 
we examined all responses made by each pair or only the 
responses made during trials accompanied by the "flut
tering'' behavior that Bookman ( 1977) had claimed to be 
correlated with discrimination of magnetic stimuli. 

Next we attempted control experiments using a variety 
of light and sound stimuli to determine whether the two
choice paradigm used by Bookman was capable of demon
strating discrimination via known sensory modalities. To 
facilitate data collection, we automated the experiments, 
thereby eliminating the handling of birds by experimenters 
and the associated possibility of inadvertent cues. In ad
dition, we used individual homing pigeons, rather than 
mated pairs of birds, the latter having often been observed 
to engage in a variety of behaviors other than the desired 
goal-directed response. Although we observed discrimi
nation of discrete light stimuli contiguous with the goal
boxes and discrimination of diffuse light stimuli presented 
between the goalboxes, we did not observe discrimina
tion of either discrete, contiguous sound stimuli or diffuse 
sound stimuli in any of 4 birds tested (Carman & Ma
howald, 1984). The failure of this paradigm to demon
strate discrimination of such known sensory stimuli raised 
serious doubts about its suitability for demonstrating the 
existence of a hypothetical magnetic sense. 

Such discriminative choice experiments, in which 
stimuli are presented successively, with only one stimu
lus present during each trial, are difficult discrimination 
tasks and frequently fail with well-understood, salient 
stimuli (Bitterman, 1979; Mackintosh, 1974). The failure 
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of the above experiments to produce discrimination not 
only of magnetic stimuli but also of acoustic stimuli led 
us to employ a unitary discrimination training procedure 
developed by Woodard and Bitterman (1974) in our sub
sequent experiments. Such unitary procedures, in which 
the rate of a single response to each of two successively 
presented stimuli is measured, yield discrimination more 
readily than choice procedures (Mackintosh, 1974), while 
requiring multiple responses during trials improves dis
crimination (Bitterman, 1979). In our experiments, in
dividually trained birds were required to shuttle repeat
edly between two cylindrical feeders positioned at opposite 
ends of a flight tunnel during each trial. Depending on 
the magnetic field stimulus present during a trial, this 
response was either rewarded with food or punished with 
a time penalty (Experiment 1) or electric shock (Experi
ment 2) at the end of the trial. 

MATERIALS AND METHODS 

Apparatus 
The present experiments were performed in an elevated flight 

tunnel (interior measurements: 1.07 m wide x 0.89 m high x 
3.40 m long) constructed from wood and nonferrous hardware 
(Figure I). Within the tunnel were located two cylindrical feeders 
(20.3 cm in diameter and 40.6 cm high), also constructed of non
ferrous materials. Atop each feeder was a spring-supported plat
form coupled to three microsWitches wired in series, which allowed 
for the automatic collection of data. Each feeder contained a pneu
matic piston-driven timed-access feeder that delivered split peas 
through a central hole (2 .54 cm in diameter) located at the center 
of each platform and equipped with an infrared photobeam to de
tect feeding. Atop each platform were a set of eight concentric alu
minum rings connected to a remote high-voltage pulse generator 
that could deliver trains of constant power shocks to the feet of the 
pigeons while they stood atop the feeder. The interior of the tunnel 

C 

C 

was illuminated during trials by two lamps powered by a remote 
12-V de supply, providing an average luminance of 1.6 fl.. Ac
cess to the interior of the tunnel was provided through hinged side 
panels, three of which made up each side. 

For magnetic discrimination training, the magnetic field within 
the tunnel was manipulated by three pairs of circular coils, each 
coil consisting of 150 turns of 22-ga wire wound on a 1. 11-m-diam 
styrofoam core (Figure 1). The coils were powered by a custom
designed three-channel current source capable of producing steady 
state magnetic fields with less than ± 11 gamma of noise ( l gamma 
= 10-• G). Using this apparatus, we produced two magnetic field 
conditions for use as stimuli: (l) the ambient magnetic field (AMF) 
due to the local geomagnetic field, and (2) the reduced magnetic 
field (RMF), in which the field produced by the coils reduced the 
vertical component of the local geomagnetic field to approximately 
50% of its normal value. In contrast, the horizontal component of 
the magnetic field for the two conditions differed on the average 
by less than 1 % in magnitude and in direction (see Table 1). Mea
surements of the magnetic field were made with a Develco fluxgate 
magnetometer (Model 9200C) and were accurate to within ±1 % . 

During both magnetic and acoustic discrimination training, white 
noise was used to mask environmental sounds throughout the ses
sions. The white noise was delivered from a speaker centered 
beneath the flight tunnel at an intensity of 75 dB SPL measured 
in the flight tunnel. For acoustic discrimination training, we also 
used a tone with audible harmonic distortion. This tone was produced 
by driving a second speaker centered beneath the flight tunnel with 
a 440-Hz square wave at an intensity of 95 dB SPL measured in 
the flight tunnel. Two acoustic conditions were used as stimuli: 
(l) the ambient sound consisting of the white noise (AS), and (2) the 
altered sound consisting of the white noise and the tone (RS). 

A microcomputer located in a nearby room controlled all aspects 
of the experimental procedure, including the timing of trials and 
intertrial intervals, the sequence of magnetic or acoustic stimuli, 
the delivery of reward and punishment, and the automatic record
ing of behavior. A closed-circuit television camera (Sony A VC-
3260) allowed us to monitor and record the activity of the pigeons 
within the flight tunnel on video cassettes to provide an auxiliary 
record of behavior. 

Figure 1. Perspective view of the flight tunnel used in the present experiments. Por
tions of the side panels have been cut away to reveal the interior. F, cylindrical feeders; 
P, platforms atop feeders with concentric aluminum rings (not shown) for the delivery 
of electric shock; C, coils for the control of magnetic stimufi; L, tunnel lights; and T, 
television camera. See text for details. 
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Table 1 
Mean and Standard Deviation of Magnetic Field Components as a Function of 

Magnetic Field Condition 

Horizontal Component Vertical Component 

Magnetic Magnitude Direction Magnitude 

Field (gamma) (degrees) (gamma) 

Condition Mean SD Mean SD Mean SD 

AMF 20,010 ±2,870 69.2 ±3.11 -40,250 ±1,580 
RMF 19,820 ±2,470 68.9 ±3.51 -19,700 ±2,540 

[AMF-RMFJ 192 ±534 0.35 ±1.63 -20,550 ±1,450 
Note-Means and standard deviations were calculated for 10 measurements taken at equidistant 
locations along the flight path from one feeder to the other under each magnetic field condition 
(AMF and RMF), and for the 10 differences in each measurement between the two conditions 
([AMF-RMF]). Note that I gamma= 10-• G. The direction of the horizontal component is given 
relative to the long axis of the tunnel, as measured counterclockwise from the TV camera end 
when viewed from above. 

Subjects and Experimental Procedure 
The subjects were 8 experimentally naive homing pigeons of the 

gray check and wine check varieties, aged 6 to 24 months. All birds 
had been raised at the local Caltech loft and were given the oppor
tunity for daily flight experience. All birds had demonstrated their 
homing ability in at least three homing trials over distances of at 
least 8 km. 

The subjects were isolated in individual cages, given free access 
to water and grit, and switched from their normal mixed-grain diet 
to limited amounts of split peas. Pretraining began when the birds 
were reduced to about 90% o{ their ad-lib weights. With the flight 
tunnel darkened, each bird was placed upon the feeders, which were 
initially located together at the midpoint of the flight tunnel. When 
the tunnel was illuminated, a few split peas placed near the central 
hole in the feeder platform attracted the attention of the birds to 
the hole. The feeder mechanisms then were operated alternately, 
leading the birds back and forth from one feeder to the other. As 
the distance between the feeders was progressively increased over 
a period of days, the birds rapidly learned first to step, then to hop, 
and finally to fly between the feeders. During this time, the birds 
also learned to mount the feeders from the floor of the tunnel. 

Once each bird had learned to shuttle between the feeders, the 
trial procedure was incorporated into the pretraining. Each daily 
session consisted of 10 trials, each trial beginning with the illumi
nation of the tunnel and the presentation of the magnetic field as
sociated with reinforcement (S+). During each trial, each bird flew 
back and forth between the feeders, with each complete shuttle (i.e., 
leaving one feeder and arriving at the other) being counted as a 
response. At the first response after 90 sec, the bird was given 15 sec 
access to food, after which the trial was terminated, the tunnel lights 
turned off, and the AMF continued or restored for the duration of 
the 210-sec intertrial interval. This procedure continued until each 
bird had completed at least 3 days of pretraining with the feeders 
separated by 229 cm, the distance used during discrimination test
ing. Body weight was maintained at a fixed percentage (±5 g) be
tween 70% and 80% of ad lib for each bird by supplemental feed
ing when necessary after each session. 

Experiment 1. During discrimination training, each bird was 
given 20 trials in each daily session, IO with the reinforced stimu
lus (S+) and IO with the nonreinforced stimulus (S-). Stimuli were 
presented in a balanced, quasi-random order (Gellermann, 1933). 
Training was balanced for stimuli, with 2 birds receiving AMF as 
S+ and RMF as S- and 2 birds receiving RMF as S+ and AMF 
as S- . On S+ trials, at the first response after 90 sec, the bird was 
given 15 sec access to food, after which the trial was terminated. 
For S- trials, the bird was given a time penalty whose duration 
was determined by a timer that was reset by subsequent responses 
either until the bird ceased responding for 15 sec, thus terminating 

the trial, or until a total of 180 sec of penalty time had accrued, 
at which time the trial was terminated. During the intertrial inter
val, whose duration was varied pseudorandomly from 30 to 90 sec 
with a mean of 60 sec, the tunnel lights were out and the AMF 
was present. 

Experiment 2. Discrimination training of 4 additional birds 
proceeded as in Experiment 1 except for the substitution of elec
tric shock for the time penalty during S- trials. For these trials, 
responses after 90 sec resulted in an electric shock to the bird for 
15 sec or for as long as it remained atop the conductive rings on 
either feeder platform, after which the trial was terminated. Alter
natively, no shock was given if no responses occurred between 90 
and 105 sec, at which time the trial was terminated. 

At least IO sessions (200 trials) of magnetic field discrimination 
training were followed by at least IO sessions (200 trials) of acous
tic discrimination training as a control for both Experiment I and 
Experiment 2. The procedures used for acoustic discrimination train
ing were identical to those used for magnetic discrimination train
ing, except that the magnetic stimuli were replaced by the acoustic 
stimuli (AS replaced AMF and RS replaced RMF). The AMF was 
present in the tunnel throughout these control experiments. 

We chose this stimulus order ( first magnetic, then acoustic) in 
order to avoid the possibility that experience with the ambient mag
netic field during both S+ and S- acoustic discrimination trials 
might interfere with subsequent magnetic discrimination training 
had the alternative stimulus order been chosen. Since the acoustic 
discrimination training was performed only as a test of the effec
tiveness of our procedures, we did not attempt to balance the order 
of the two stimulus types, but chose instead to optimize the condi
tions for magnetic discrimination. Although this resulted in a con
founding of the stimulus type (magnetic or acoustic) with the stimu
lus order (first or second), we considered it extremely unlikely that 
discrimination would depend on the order of the stimuli rather than 
on the type of stimulus used. 

RESULTS 

Experiment 1 
Data consisted of the number of responses within the 

first 90 sec of each trial during the last 10 sessions of mag
netic discrimination training and the last 10 sessions of 
acoustic discrimination training for each subject. Using 
these data, we calculated the mean and standard error for 
both the S+ and the S- trials of each session (Figure 2). 
These data were also used in an analysis of variance 
(BMDP8V ANOV A, equal cell size and mixed models, 
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Figure 2. Mean and standard error of the number of responses 
for S+ trials (squares and solid error bars) and S- trials, (circles 
and dashed error bars) for the 4 subjects given a time penalty as 
punishment on S- (Experiment 1). Each point represents the mean 
of l@ trials from a single daily session for each of 4 subjects. Ses
sion 0: last day of pretraining (using S+ alone). Sessions 1 to 10: 
magnetic discrimination training. Sessions 11 to 20: acoustic dis
crimination training. 

BMDP Statistical Software, Inc., Los Angeles, CA 
90025) in order to examine the main effects and inter
actions of various factors in our experimental design 
(Table 2). 

No bird demonstrated discrimination of the magnetic 
stimuli (Figure 2, Sessions 1 to 10). This is confirmed 
in the analysis of variance by the absence of a significant 
main effect of reinforcement and the absence of a signifi
cant interaction of reinforcement with sessions (ex
perience), which would be expected if subjects had dis
criminated the stimuli and learned their association with 
reinforcement or nonreinforcement (Table 2, sources R 
and R X Se). The. only significant effect found for mag-

Table 2 
Results of ANOVA for Experiment l 

Magnetic Stimuli Acoustic Stimuli 

Source df F p F p 

R I l.'.ID 0.3718 9.30 0.0928 
St I o.m 0.9298 0.08 0.8010 
Se 9 2.58 110413* 1.06 0.4319 
RXSt I 0.01 0.9452 0.08 0.8070 
RxSe 9 0.56 0.8117 3.37 0.0136* 
StXSe 9 1.73 0.1550 0.66 0.7351 
RxStxSe 9 0.39 0.9247 1.56 0.2008 

Note-Key to source: R = main effect of reinforcement (reward or 
punishment); St = main effect of stimuli (AMF or RMF; AS or RS); 
Se= main effect of sessions (experience); Rx St= interaction ofrein
forcement with stimuli; RX Se = interaction of stimuli with sessions 
(learning); St x Se = interaction of stimuli with sessions; Rx St x Se = 
interaction of reinforcement with stimuli and sessions (interaction of 
stimulus conditions and learning). *Probabilities less than the .05 cri
terion value, indicating significant main effects or interactions. 

netic discrimination training was a steady increase in the 
rate of responses to both magnetic stimuli during the 
course of training (Table 2, source Se). Such an effect 
would be expected if the birds had not reached their maxi
mum rates of response by the beginning of discrimina
tion training . 

In contrast, comparison of the number of responses for 
S+ and S- trials over the course of acoustic discrimina
tion training shows a progressive separation of the 
response rates to the two acoustic stimulus conditions 
(Figure 2, Sessions 11 to 20). Although the analysis of 
variance of these data revealed no significant main effect 
of reinforcement, there is a significant interaction of rein
forcement with sessions (experience) (Table 2, sources 
R and R X Se). This result would be expected in the case 
of discrimination that is acquired partway through the 
course of training. 

Experiment 2 
As was observed in Experiment 1, no bird in Experi

ment 2 demonstrated discrimination of the magnetic field 
stimuli (Figure 3, Sessions 1 to 10). In contrast, however, 
we observed a decline in the rate of response to both mag
netic stimulus conditions during training. We attributed 
this decline in response rate to an avoidance of the feeders 
due to the experience of shock. However, neither this 
decline in rate nor any other effect proved statistically sig
nificant in the analysis of variance (Table 3). 

Separation of the response rates to the reinforced and 
punished acoustic stimulus conditions as well as a partial 
recovery of response rates were observed in the second 
half of Experiment 2 (Figure 3, Sessions 11 to 20). Two 
of the birds (those given AS as S+ and RS as S-) achieved 
and maintained discrimination of the acoustic stimuli to 
the end of training. The remaining 2 birds (those given 
RS as S+ and AS as S-) initially achieved discrimina
tion, but failed to maintain this discrimination due to a 
feeder malfunction, during Session 17, which prevented 
the delivery of the reinforcement under S+. The effect 
of this malfunction can be observed in the mean of the 
rates of response of all 4 birds (Figure 3, Session 17). 
Although this malfunction occurred for only one session, 
it resulted in a markedly reduced separation of the 
response rates under the two acoustic stimulus conditions 
for the remainder of the sessions for these 2 birds. 

These results are reflected in the analysis of variance 
of the data, which showed neither a stimulus main effect 
nor a learning interaction (Table 3, sources R and R x 
Se). There was, however, a significant interaction of rein
forcement, stimuli, and experience (Table 3, source R x 
St x Se). Although this interaction could be interpreted 
as an effect of the pairing of stimuli with reinforcement 
upon learning during training, it probably represents con
tamination of a learning effect by the decreased perfor
mance of the 2 birds that experienced the feeder malfunc
tion, both of which were given the same pairing of stimuli 
and reinforcement. 
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Figure 3. Mean and standard error of the number of responses 
for S+ trials (squares and solid error bars) and S- trials (circles 
and dashed error bars) for the 4 subjects given an electric shock 
as punishment on S- (Experiment 2). Each point represents the 
mean of 10 trials from a single daily session for each of 4 subjects. 
Session 0: last day or pretraining (using S+ alone). Sessions 1 to 10: 
magnetic discrimination training. Sessions 11 to 20: acoustic dis
crimination training. 

DISCUSSION 

A successful demonstration of sensory discrimination 
depends on the simultaneous satisfaction of a number of 
prerequisites, including (1) the use ofa species suspected 
of possessing the sensory modality in question, (2) the 
selection of sensory stimuli thought to be discriminable 
to the animal, (3) the determination of a conditioned re
sponse that the animal is capable of associating with such 
stimuli, and (4) the design of experimental apparatus and 
procedures that allow both for the detection of stimuli and 
for their association to the conditioned behavioral re
sponse. The failure to demonstrate discrimination of mag
netic field stimuli in the present experiments could be due 
to one or more of these prerequisites' not having been 
satisfied, a possibility for which there are precedents in 
other sensory modalities of the pigeon (Kreithen, 1978; 
Ossenkopp & Barbeito, 1978). The results of our control 

Table 3 
Results of ANOVA for Experiment 2 

Magnetic Stimuli Acoustic Stimuli 

Source df F p F p 

R I 1.02 0.4183 6.67 0.1229 
St I o.oi 0.9217 0.11 0.7749 
Se 9 0.96 0.4995 1.08 0.4201 
RXSt I 0.13 0.7546 0.18 0.7152 
RxSe 9 0.93 0.5244 1.50 0.2207 
StXSe 9 0.45 0.8899 1.13 0.3895 
RxStxSe 9 1.09 0.4191 3.05 0.0212* 

Note-See Table 2 for key to source. 

experiments, which used diffuse acoustic stimuli, suggest 
that our design of apparatus and our procedures were ade
quate for demonstrating discrimination within one of the 
more challenging modalities for such experiments. Never
theless, allowing pigeons to "flutter" or training them 
to fly back and forth through different magnetic fields was 
not sufficient to permit discrimination of magnetic stimuli, 
as had been previously suggested (Bookman, 1977; 
Kreithen & Keeton, 1974). 

The two magnetic fields we used as stimuli were chosen 
for their similarity to those used by Bookman (1977), in 
that they differed mostly in their vertical intensity (see 
Table 1). Despite considerable care taken in the position
ing of the flight tunnel within the laboratory space so as 
to obtain the most uniform ambient magnetic field within 
the tunnel, there was a residual spatial variation or gra
dient of magnetic field intensity that was similar under 
the two stimulus conditions. The average difference be
tween the two magnetic field stimuli was 10 times larger 
than the variation within each stimulus due to this gra
dient. However, it is possible that this gradient may have 
prevented discrimination of the two stimuli, either because 
the spatial pattern of magnetic field intensity common to 
the two stimuli may have been more salient to the animal 
than the difference in mean vertical intensity between the 
stimuli or because the resultant variation interfered with 
a magnetic sense. Support for this interpretation comes 
from reports of disorientation of pigeons released at mag
netic anomalies exhibiting comparable variation in mag
netic intensity over much larger distances (Frei & Wagner, 
1976; Wagner, 1983; Walcott, 1978). Thus, the use of 
magnetic field stimuli that have either different spatial gra
dients and equal mean intensities or no gradients and 
different mean intensities might yield discrimination in 
future experiments. 

The isolation and control of stimulus variables that can 
be achieved in the laboratory would be difficult, if not 
impossible, to duplicate in the field. However, such 
laboratory experiments may not adequately simulate the 
behavioral context of homing to be useful in exploring 
all the sensory mechanisms used in navigation. By hold
ing other stimuli constant and restricting the range of be
havior during magnetic field discrimination training, we 
present the animal with an impoverished environment that 
may not adequately approximate that encountered by the 
homing pigeon released at an unfamiliar site to motivate 
or permit the use of a navigational magnetic sense. Such 
use of magnetic cues in the field and their nonuse in the 
laboratory could be more a matter of unconscious reflex 
than of conscious choice on the part of the animal. If this 
were the case, it might be very difficult, if not impossi
ble, for the animal to form associations between magnetic 
stimuli and arbitrary behaviors under laboratory condi
tions, a circumstance that also has its precedents 
(LoLordo, 1979). This interpretation suggests that it 
would not be possible to demonstrate discrimination un
der laboratory conditions, not because the animal could 
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not sense magnetic fields, but rather because its use of 
magnetic information was restricted to navigational 
contexts. 

If a magnetic sense exists in these animals, then our 
experiments either serve to constrain the conditions un
der which magnetic sensitivity can be demonstrated or 
suggest that such laboratory experiments may fail for rea
sons beyond experimental control. Although the failure 
to demonstrate discrimination of magnetic fields does not 
prove that a magnetic sense does not exist, our findings 
are also consistent with the absence of magnetic sensitiv
ity in homing pigeons. There now are numerous reports 
of failure to demonstrate magnetic discrimination, whereas 
the only two claims of magnetic discrimination (Book
man, 1977; Reille, 1968) have not withstood replication. 
Regardless of whether or not these animals possess a mag
netic sense, these results make it less likely that magnetic 
discrimination by these animals will be demonstrated un
der laboratory conditions. Therefore, it may be more ap
propriate to attempt to replicate and extend the field studies 
that suggested the existence of a magnetic sensitivity in 
homing pigeons in the first place. 
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In vivo functional localization of the human visual cortex 
using positron _emission tomography and magnetic 

resonance imaging 
Bassem N. Mora, George J. Carman and John M. Allman 

Positron emission tomography (Pm and magnetic resonance 
imaging (MRI) are two recently developed methods for imaging the 
human brain in vivo. One application of PfT measures stimulus
evoked changes in cerebral blood flow while MRI provides a def.ailed 
anatomical map of the brain. Here we report the combined 
application of these two techniques in the same human subject. 
Subtracted PET scans of a brain receiving visual stimulation were 
superimposed upon MRI images of the same brain. The PfT scans 
were converted into the MRI coordinate space before superposition, 
which allowed for a more predse correlation between MRI anatomical 
data and PET physiological data. Responses were localized in striate 
and extrastriate visual areas as well as in the posterior thalamus. 

The application of physiological and anatomical 
techniques 1- 3 has led to the discovery in non
human primates of a large number of cortical visual 
areas, some of which have definite functional 
specializations. Knowledge of the organization of 
human visual cortex has been mainly limited to the 
inferences gained from the observation of patients 
afflicted by brain injuries-. However, the advent 
of new brain imaging techniques has made. it 
possible to study experimentally the organization of 
human visual cortex. Stimulus-evoked changes in 
regional cerebral blood flow (rCBF) monitored with 
positron emission tomography (Pm can be used to 
investigate the physiological responses of the brain. 
The anatomical structure of the brain can be 
obtained by proton nuclear magnetic resonance 
imaging {MRI). In this study, we have sought to 
combine the physiological-localizing ability of PET 
with the anatomical-resolving power of MRI in 
parallel observations made in the brain of the same 
subject. 

PET measures local concentrations of positron
emitting compounds injected into living tissue. 
Cortical blood flow is measured by monitoring 
changes in the concentration of water labeled with 
oxygen-15 (H2

150) in the brain. Increases in neural 
activity within a brain region lead to increases 
in rCBF in that region7

- 9• Recently, the retino
topic organization of primary visual cortex has 
been mapped in normal human volunteers using 

stimulus-evoked changes in rCBF10
. This was 

accomplished by first obtaining a control PET scan, 
where the subject is looking at a small fixation point 
on a computer screen. This control scan measures 
background brain activity. The presentation of 
different stimuli on the computer screen then 
activates cortical areas, which leads to increased 
rCBF, which is detected by PET. The stimulus PET 
scan therefore contains background brain activity in 
addition to cortical activity due to the stimulus. 
Subtraction of the control from the stimulus PET 
scans results in a map of cortical activity due to the 
visual stimulus 11

. 

The PET scans used in this study were performed 
at Washington University School of Medicine, Ml, 
USA, by Raichle, Fox, Miezin, Allman and co
workers. The PETT VI system was used, which 
simultaneously acquires seven parallel horizontal 
brain slices 12. Each horizontal slice consisted of 
a 100 x 100 matrix of measurements (2.7 mm x 
2.7 mm) with an interslice center-to-center distance 
of 14.4 mm. The effects of global CBF fluctuations 
on each of the seven horizontal PET scans were 
minimized by normalizing the images such that the 
total brain blood flow was 50 ml per 100 g per min, 
as described elsewhere11

•
13

. 

After performing the fixation-point control PET 
scan, a stimulus was presented on the computer 
screen, and the stimulus scan was taken. This 
sequence of control/stimulus scans was repeated 
four times, once for each of the four stimuli that 
were used. All stimuli consisted of a red and black 
checkerboard annulus with a central fixating point 
and varying eccentricities. The red and black checks 
alternated at a frequency of 10 Hz in order to 
maximize the induced CBF responses8• The stimuli 
were: a macular annulus, extending radially from 
o. 1 • to 1.5°, with a radial check size of 0.5°; a peri
macular annulus, ranging from 1.5° to 5.5°, with a 
radial check size of 1.0°; and peripheral hemi-annuli, 
extending from 5.5° to 15.5°, one upper-field and 
the other lower-field, with a radial check size of 2.0°. 

MRI is a technique developed during the past 
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decade to provide high-resolution anatomical 
images of living tissue by recording the mobility of 
protons. It provides a high level of contrast between 
gray and white matter. The MRI images used in this 
study, taken of the same subject at an earlier date, 
were obtained using a Diasonics 0.35 T scanner at 
the Huntington Medical Research Institutes, CA, 
USA. The images were obtained in the coronal and 
parasagittal planes using the spin-echo technique 
with a relaxation time, T,, of 3 s and an echo time, 
r. of 100 ms 14

. The parasagittal images were used 
for PET-MRI superpositioning, with an in-plane 
resolution of 0.95 mm and a slice thickness of 2.7 
mm. After transfer to a Masscomp 5700 computer, 
each 256 x 256 pixel MRI image was expanded by 
linear interpolation in each of two 
orthogonal directions in the 
image plane to yield a 768 x 768 
pixel image. 
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echniques 
immediately anterior to the macular stimulus 
(center-right panel). The lower-field peripheral 
stimulus produced a response centered in the upper 
bank of the calcarine sulcus {lower-left panel), while 
the upper-field peripheral stimulus produced a 
response centered in the lower bank of the calcarine 
sulcus {lower-right panel). Changing the portion of 
the visual field being stimulated therefore shifts the 
PET response locales in visual cortex. The visuotopic 
organization thus revealed closely matches that 
inferred from visual-field defects produced by 
restricted visual-cortex lesions in humans-. 

Figure 2 shows the net responses to macular 
stimulation obtained from the extrastriate cortex 
and posterior thalamus in the same subject. The 

The alignment of the PET slices 
with respect to cranial features 
was determined from a lateral 
X-ray radiograph taken at the 
time of the PET scan with the 
subject's head held in a fixed 
position relative to the scanner. 
The radiograph in the upper-left 
panel of Fig. 1 shows the outline 
of the skull in the mid-sagittal 
plane with the centers of the 
seven horizontal PET slices. The 
radiograph was superimposed on 
the mid-sagittal MRI to align the 
PET and MRI coordinate systems. 
This resulted in the PET-MRI 
superpositions shown in Fig. 1, 
with the PET scans displayed as a 
transparent overlay in register 
with the MRI images. The scale 
used in the displays is illustrated 
at the top of Fig. 1, with MRI 
image intensity increasing to the 
right, and PET image intensity 
increasing to the bottom. Maxi
mum PET response is in red to 
allow easier localization of the 
response focus. The upper-right 
panel of Fig. 1 depicts the cortical 
response to macular stimulation 
without subtraction of the 
fixation-point control scan. The 
bottom four panels of Fig. 1 
illustrate the net responses to 
macular, perimacular, lower- and 
upper-field stimulation after the 
subtraction of the matching 
fixation-point control scans. They 
are all displayed using the same 
intensity scale. In the center-left 
panel, the macular stimulus pro
duced a focal response at the 
posterior tip of the calcarine sul
cus. The perimacular stimulus 
produced a response centered 

Fig. 1. PET-MR/ superimposed images from the same subject, showing cortical responses due to 
visual cortex stimulation. Top left: X-ray radiograph of the subject's head in the mid-sagittal plane 
with the centers of the seven horizontal PET planes delineated, plane 1 being the top-most plane 
and plane 7 the bottom-most plane. The remaining images are PET-MRI superimposed images 
localizing physiology on to anatomy. Shown to the left of each PET-MRI subtracted image is the 
stimulus used to activate the corresponding cortical structures. Shown at the top is the two
dimensional linear scale used in the display of the images: the horizontal axis is used to represent 
the MRI data, with MRI image intensity increasing horizontally to the right; the vertical axis is used 
to represent the PET data, with PET image intensity increasing vertically downwards. Thus, points in 
the superimposed images that have maximal PET activity and maximal MRI signal are represented 
in the bottom-right of the scale. The red in the PET scale allows easier localization of the peak PET 
responses in the images. Top right: cortical response to macular stimulation without subtraction of 
the control scan. Center left: subtracted response to macular stimulation following subtraction of 
the control scan. Center right: subtracted response to perimacular stimulation. Bottom left: 
subtracted response to peripheral lower-field hemi-annulus stimulation. Bottom right: subtracted 
response to peripheral upper-field hemi-annulus stimulation. 
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Fig. 2. Subtracted responses to macular stimulation in extrastriate cortex and 
posterior thalamus in the same subject. Top panel: Conventional display of the 
subtracted response from horizontal PET plane 6. Bottom panel: parasagittal 
PET-MRI images illustrating subtracted cortical response at 2 cm from the 
midline. Right and left panels correspond to the right and left hemispheres of 
the brain, respectively. Note the activation of extrastriate visual cortex and the 
posterior region of the thalamus, which are more clearly observed using 
PET-MRI superpositioning (bottom) compared with a conventional PET display 
(top). The scale used in this display was different from that used in Fig. 1. 
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upper portion is the response from horizontal PET 
plane six showing a peak centered on the midline, 
which intersects with the peak illustrated in the 
center-left panel of Fig. 1. The lower panels of Fig. 2 
are parasagittal images, 2 cm to the left and right of 
the midline, which contain approximately sym
metrical responses in the extrastriate visual cortex. 
These lateral extrastriate zones probably include the 
temporal-occipital-parietal pit (TOPP), which in 
other subjects was found to respond to fast
flickering and low-contrast, moving dot patterns 
and may correspond to area MT15-17. There are also 
responses in the posterior thalamus, which may arise 
in part from the lateral geniculate nucleus but 
appear to be centered more dorsally in the pulvinar 
complex. In monkeys, the pulvinar contains several 
maps of the visual field, in a manner analogous to 
the visual areas in extrastriate cortex18

•
19

. 

PET-MRI superposition permits the observation 
of physiological responses displayed in register with 
brain structures from the same individual. This 

contrasts with the standard localization method 
used in PET studies in which averaged data from 
different subjects are referred to coordinates in 
a stereotactic atlas 13 . This method of referring 
PET data to a standard atlas is valuable but suffers 
from the difficulties presented by the substantial 
inter-subject variability among human subjects2

0--
22

. 

This problem of variability may be particularly acute 
in extrastriate cortex where the responses are lower 
in amplitude and the size of the constituent areas 
may be smaller than in primary visual cortex. 
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Abstract 

Spatial relationships among Purkinje cell lineages have been examined in 

the cerebellar cortex of aggregation mouse chimeras. B-glucuronidase was used 

as an independent cell marker to allow computer assisted microscopic 

reconstruction of large areas of Purkinje cell genotype distributions in specified 

regions of hemispheric folia crus II and the paramedian lobule. Application of a 

c2 statistic to the data reveals a high degree of non-randomness in these 

distributions. The data are discussed in terms of the general questions of cell 

mixing and the role of cell lineage in the development of cortical networks in the 

mammalian CNS. 
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The question of where and how the complex structure of the brain is 

determined is one of the great unsolved mysteries in the life sciences. In recent 

years, developmental neurobiologists have approached the problem using model 

systems in creatures at all points along the phylogenetic scale. In general, work 

from invertebrate systems such as fruit fly and nematode, has led the way in 

uncovering some of the fundamental genetic bases of pattern formation in the 

CNS. These basic mechanisms, however have not as yet been translated in such 

a way that they have helped us to understand the developmental complexities of 

the larger brained animals in the vertebrate phyla. One particularly strong 

example of this is the mammalian cerebral cortex. Distinct organization 

features of cortex run in both the radial direction (along which cell types and 

properties vary giving rise to the system of the six main cortical layers) and in 

the circumferential- or tangential direction (along which the thickness and 

density of the individual layers varies giving rise to the different 

cytoarchitectonic areas). It is not yet known where or how this pattern is 

specified during development. 

Examples from invertebrate systems suggest that early combinations of 

deterministic decisions and cell:cell and cell:chemical interactions lay down the 

basic plan of the CNS. From this has come the realization that cell lineage 

relationships are an important part of understanding the control of CNS 

development in any organism (Herrup,1986; Sanes, 1989; Cepko ). Specifically 

if early differentiative decisions are made by altering a cell's developmental 

genetic makeup then these decisions will be shared by all of the mitotic 

descendants of that progenitor - even if those descendants are widely separated 

in location. (e.g. Wetts & Herrup, 1983). At the same time, even if cell 

lineage does not regulate cell fate, the location of the various lineages in the 

three dimensional space of the brain can serve as a valuable indicator of the 

3 
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presence of restrictions to cell mixing. It is this latter issue that forms the basis 

for this report. 

The possible role of a cell's mitotic lineage in determining its final form 

and function has long intrigued developmental biologists (Wilson, 1898), and 

recent advances in techniques for histologically identifying clonally related cells 

(Weisblat et al., 1978; Price et al .. , 1987; Sanes et al.., 1986) have led to a 

renewed interest in the role of cell lineage in the development of the vertebrate 

central nervous system (Jacobson, 1985; Kimmel and Law, 1985; Kimmel and 

Warga, 1986; Sanes, 1989; Price et al .. , 1987; Wetts and Fraser, 1988; Herrup 

and Crandall, 1989). One outcome of these studies has been to begin to sketch 

the spatial constraints that are placed on cells during their developmental 

migrations. For cerebral cortex, the results indicate that there is a substantial 

radial bias to the migration of clonally related neurons. This result was expected 

given the known radial orientation of glial cells believed to provide a substrate 

for neural migration (Rakic, 1978; Rakic, 1988). An unexpected result, 

however, was that there is also a significant amount of horizontal mixing. How 

the radial and horizontal components of genotype mixing in this system are 

related and what their consequences are for the development of cerebral cortex is 

a topic of current debate 

In contrast to cerebrum, the cerebellar cortex is a remarkably uniform 

anatomical structure with a stereotyped repeating pattern of neuronal types and 

inter-neuronal connectivities. As a result, there is much less area to area 

variation in network structure. The only cortical projection neurons, the 

Purkinje cells, are largely uniform in their anatomical features, further reducing 

the complexities introduced by different subclasses of cerebral cortical cells each 

with different shapes and cortical connection patterns. In addition, detailed 

information is available about the two dimensional distributions of other features 

4 
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of cerebellar cortex including various enzymes and antigens (Wassef and Sotelo, 

1984; Hawkes et al .. , 1985; Chan-Palay et al .. , 1981; Bower et al.,1989 in 

preparation), the spatial patterns of afferent projections (e.g., Armstrong, 1974; 

Brodal, 1940, Bower and Woolston, 1983; Welker, 1987), and the spatial 

distributions of physiological properties of neuronal responses (Sasaki, Bower 

and Llinas, 1989). As one of the ~ltimate objectives of cell lineage studies is to 

determine what influence lineage has on the development of the final form and 

function of neural systems, the opportunity to correlate lineage with anatomical, 

physiological, and biochemical features will presumably be important. The 

cerebellum offers one attractive model system in which to approach this question. 

We have approached the question of the clonal origin of cells and the 

mixing of cell lineages during the establishment of cortical structures in 

cerebellum. We began with this model since the cerebellum represents a system 

in which only the horizontal dimension is relevant to questions of mixing. 

Further, relatively simple statistical techniques are accessible to quantify the 

significance of the two dimensional distributions of cell lineage. We illustrate 

here the construction of Purkinje cell linage maps through the use of mouse 

aggregation chimeras. The spatial distribution of the lineages we have 

determined reveal a high degree of non-randomness. The implications of this 

finding are discussed in terms of two models of cerebellar (cortical) 

development. 

5 
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Materials and Methods 

Animals 

Inbred mouse strains were purchased from the Jackson Laboratories in Bar 

Harbor, ME. Random bred, CD-1 females were purchased from Charles River 

Lab, Kingston. All mice were m~intained on a 14/10 hour light/dark cycle with 

food and water ad lihitum. Animals used for this study were sacrificed between 3 

and 12 months of age. 

Chimeras were produced by standard protocols (Mintz, 1962; Mintz, 1965; 

Tarkowski, 1961; Mullen & Whitten, 1971). One embryo of each chimera was 

C57BL/6 in background; the other was C3H/HeJ. This combination insures that 

each successful chimera was a mosaic of cells with intrinsically high (C57BL/6 -

Gush/Gush) or low (C3H/HeJ -G-ush/Gush B-glucuronidase activity. 

Histology 

Animals were sacrificed by transcardial perfusion under deep A vertin 

anesthesia. The fixative used was ice-cold 4% phosphate buffered 

paraformaldehyde. The protocols used have been described previously (Mullen, 

1977). Immediately prior to wax (polyethylene glycol distearate 400) 

embedding, the brains were bissected on the midline. Serial sagittal sections were 

collected through each hemi-cerebellum. Beginning at the vermis/hemisphere 

junction (approximately 1 mm from the midline) every second, or in some cases 

every third, section was stained for B-glucuronidase activity by the method 

described in Mullen (Mullen, 1977). The substrate used was naphthol-AS-BI-B

D-glucuronide. 

Lineage distributions across the two-dimensional Purkinje cell layer were 

reconstructed using computer assisted acquisition, display, and analyses of data. 

6 
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Histological sections were scored using a Leitz Orthoplan microscope equipped 

with a Stahl 5 l 7MF micropositioning stage used to determine the x,y coordinates 

of each Purkinje cell soma. These data were recorded along with the genotype 

(Gushh or Gush) of that cell. The z coordinate was calculated as the basis of the 

number of the µm section. since Purkinje cells have a diameter of approximately 

20 µm in our material, sections ~ere scored at intervals of 24 µm on average to 

assure that each Purkinje cell was recorded only once. Once recorded, these data 

were transferred to a Silicon Graphics Iris 2400 graphics workstation to align the 

various sections and reconstruct a full three-dimensional model of each folium. 

Lineage maps of the two-dimensional Purkinje cell layer were obtained by color

coding the cells according to genotype (Fig. 1D). Such maps were obtained for 

the dorsal regions of two mouse cerebellar folia, ems II (ell) and the paramedian 

lobule (pml). Eight lineage maps of ell and eleven maps of pml were obtained 

from a total of nine different Gush/Gushb chimeras. On average, the maps 

included 750 Purkinje cells and covered an area of 1000 µm x 700 µm. These 

lineage mapswere projected onto a plane osculating the dorsal surface of the folia 

(Fig. IE). In order to render these results in a more easily visualizable form, a 6 

x5 grid was superimposed on the resconstruction. For each grid square, the 

difference between the ratios of the observed to the expected number of cells was 

calculated. 
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Results 

Twenty mouse chimeras were constructed using standard protocols for the 

aggregation of pre-implantation embryos at the eight cell stage of embryogenesis 

(Tarkowski, 1961; Mintz, 1962; Mintz, 1965). With this technique, the mouse 

that is eventually born to the host mother is a mix of the cells descended from 

each of the two original embryos .. If the genotypes of the embryos are chosen 

such that one embryo carries a marker genetic locus, then cells from the different 

genotypes can be distinguished in the adult chimeric mouse. In this study, each 

chimera was constructed from embryos that differed in the structural gene of the 

enzyme B-glucuronidase (gene symbol: Gus). One allele of the B-glucuronidase 

gene, Gush, causes a cell autonomous reduction in enzyme activity throughout the 

brain. The normal activity allele is denoted Gush. Chimeras were made from 

one C57BL/6 embryo (Gush/Gush) and one C3H/HeJ embryo (Gush/Gush). 

Following histological preparation (Mullen, 1977), Purkinje cells with Gush/Gush 

genotype, and hence normal glucuronidase activity appeared distinctly red (Fig. 

lA) while cells with Gush/Gush genotype appeared unstained (Fig lB). As 

reported previously, the genotype related staining differences are retained in the 

mosaic cerebellar cortex (Fig. lC). A set of serial !Oum sagittal sections was 

collected from half-cerebellar. For the analysis reported here the dorsal surface 

of the paramedian lobule and Crus I in the cerebellar hemispheres were 

reconstructed as described in the methods section briefly. A c.omputer readable 

microscope stage was used to digitize the position and genotype of each Purkinje 

cell. Subsequently, sections were aligned (Fig. 1D) and rotated to produce a view 

perpendicular to a plane tangential to the cerebellar surface (Fig. lE). This view 

of cerebellar cortex is, in essence a lineage map. 

Inspection of the 19 reconstructed lineage maps reveals clear intermixing 

of the two lineages throughout the dorsal surface of the hemispheres. In no part 
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of any map is one or another lineage found exclusively. However, examination 

of the reconstructions reveals striking regional variations in the relative 

occurrence of the two genotypes across the folia (Figure lE). Such spatial 

variation would be expected if the clones (or polyclones) or ventricular zone 

cells remain at least partially segregated during the development. In order to test 

for the significance of this perceh'.ed mixing, a x2 analysis was computed for each 

lineage map as follows. For each map, the "global" ratios for the number of cells 

of each genotype to the total number of cells was determined. The lineage map 

was then subdivided into a 6 x 6 grid of quadrats (average sizel 75 µm x 120 µm) 

and the number of cells of each of the two genotypes counted within each 

quadrat. The expected number of Gush cells was calculated for each quadrat by 

multiplying the global ratio forGush by the total number of cells in each quadrat. 

A similar calculation was performed for Gush cells. The numbers of cells of each 

genotype were then compared against the expected values by calculation of the x2 
across the two genotypes and all quadrats. Quadrats for which the expected 

number of cells of either genotype was less than five were omitted from the 

analysis. Probability (p) values were determined for the x2 using df = (Number 

of quadrats -1) either by reference to standard statistical tables when df <= 30, or 

by conversion to the alpha point on the normal distribution when df > 30 (Selby, 

1971). Since the size and alignment of the quadrats on the lineage map will in 

general affect the value of the X 2 obtained, this analysis was performed for 

several different grid sizes (not shown). In addition, offsets for each of the maps 

in increments of one-third grid square in both X and Y direction were done. 

The results of these analyses are summarized in Table 1. The value of x2 
will underestimate the true spatial variability according to the mismatch between 

the location and scale of quadrats and any "genotypic domains". Therefore, for 

any given grid size (scale), we may select the location of the grid of quadrats 
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which yields the largest x2 as our best estimate of the degree of variability for 

that scale. Accordingly, the probabilities that such distributions could arise by 

chance were computed based on the largest x2 obtained for various locations of a 

fixed grid size. Of the 19 lineage maps, all but 3 showed significant (p< 0.05) 

nonrandom variation in the distribution of Purkinje cell genotypes across the 

maps. Significant spatial variatio~ was observed for all grid offsets tested for 12 

of the lineage maps, while the remainder of the maps had significant variation for 

at least some grid sizes or offsets. In several cases, the probability of the 

genotypic distributions arising by chance was vanishingly small -- less than or 

equal to zero to four decimal places. As a demonstration that our analysis was 

sensitive to the spatial distribution of genotypes, and not to either the spatial 

locations of cells or to the genotypes of cells alone, we modified maps by 

randomization of either the positions or the genotypes of cells in one of the 

lineage maps previously found to be highly significant. As expected, no 

significant variation was found in either of these randomized maps at any grid 

size or off set tested. 

In order to obtain a visualization of the spatial variation detected by the x2, 
we constructed two dimensional plots of the relative deviation of the observed 

from the expected number of cells for the two genotypes. For each quadrat, the 

difference between the ratios of the observed to the expected number of cells for 

the two genotypes was calculated. dbh = (nob - neh)/neh - (nob-neb)neb-

= (noh/neh) - (noblneb) 

where nob and nob are the observed numbers of cells for Gush/Gush 

and GusblGusb, respectively, and neh and neb are the numbers of cells 

expected under the null hypothesis of complete mixing for Gush/Gush 

and GusblGusb, respectively. This quantity is equivalent to the 

difference between the deviation X, relative to the values expected under 
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the null hypothesis, and was selected to provide a measure of spatial 

variation detected by the x2. Values of dbh will be either negative, zero, 

or positive depending on whether the number of cells observed relative 

to the number expected for Gusb/Gusb was less than, equal to, or greater 

than that of Gush/Gush • These values are then bilinearly interpolated in 

the plane of the quadrats, and displayed using a color scale in which 

negative values are shown as shades of red, while positive values are 

shown as shades of green. 

Since the value of dbh will be either negative or positive according 

to the relative contributions of Gusb/Gusb or Gush/Gush to each quadrat, 

the red and green patches observed in these plots may be interpreted as 

genotypic domains in which one or the other genotype is present in 

numbers in excess of that expected on the basis of complete mixing of 

the two genotypes. Regions shaded red represent the genotypic domains 

of G usb JG usb, while shaded green represent the genotypic domains of 

Gush/Gush A plot of raw data in Fig. lE is shown in Fig. lF. In this case, 

each grid square contains an average of approximately 26 Purkinje cells. 
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Discussion 

The results our study demonstrate that the spatial distribution of Purkinje 

cell lineages in mouse cerebellar cortex is highly non-random. Cell lineage was 

revealed by B-glucuronidase staining of sections from Gush/Gush Gusb/Gusb 

chimeras followed by computer assisted reconstructions of approximately lmm2 

areas of the dorsal surfaces of two hemispheric folia from several different 

animals. Non-randomness was determined by application of a c2 statistic to the 

reconstructions. 

Statistical considerations 

The detection of significant variation in the spatial distribution of the two 

genotypes in the Purkinje cell layer can be approached in several ways.Our 

choice of the x2 analysis was based on several factors. First, it is sufficient to 

reveal significant spatial variation in the genotypic distributions. Second, other 

authors have made use of methods similar to ours in that they were based on a 

measure which assumed the x2 distribution (e.g. Schmidt et al. 1985). Third, 

while the x2 statistic may be of limited power, this could only result in a failure 

to detect significant spatial variation in some cases where it actually existed 

(failure to reject the null hypothesis when false, or beta error), and does not 

detract from findings of significant spatial variation in those cases where it is 

found to exist. Fourth, since our lineage maps were based on incomplete 

reconstructions of the Purkinje cell layer, (some cells located primarily in 

unstained sections are likely to have been missed) it was not possible to make use 

of other methods, such as the Grieg-Smith ANOVA (Grieg-Smith,1952; Mead, 

1974) or other nearest-neighbor methods (Ripley, 1981; Diggle, 1983) to search 

for significant variation at different spatial scales. All factors considered, we 

believe our application of the x2 offers a quantitative, objective evaluation of the 
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spatial variation in the distribution of the two genotypes which provides a 

conservative measure of the probability that such variation occurred by chance. 

In analyzing the data, calculations were repeated after the position of the 

grid relative to the data set was varied in both X and Y directions by 1/3 of a grid 

square (9 different locations). We believe that it is appropriate to select the 

location of the grid that yields the largest X as the most appropriate descriptor of 

the data set. The reason for this is best appreciated if one considers performing 

such an exercise with a checkerboard composed of squares of monolithic 

Gush/Gush or Gush/Gush cells. If a grid is placed on this data set such that it is 

offset by half of a grid square in each direction, then the genotype ratio of each 

grid square would be equal, yet no one would argue that the overall spatial 

distribution of cells was random. 

Relationship to previous studies in cerebellum 

Previous authors (Mullen, 1978; Mullen, 1977; Oster-Granite and 

Gearhart, 1981) have examined the organization of the Purkinje cell lineages in 

cerebellar cortex. Most of these studies have focussed on whether or not there 

are large homogeneous patches of lineage-related Purkinje cells. Tuey, as we, 

have found no evidence for this sort of lineage distribution across the two 

dimensions of the Purkinje cell layer. Oster-Granite and Gearhart (1981) have 

suggested, based on a linear analysis of Gpi-Ja /Gpi-Ja HGpi-JbJGpi-Jb 

chimeras, that there is a tendency for clones of 4 to 8 cells to remain spatially 

coherent in a small clonal patch. Mullen (1978; 1977) has argued that there is a 

near random dispersion of the Purkinje cell lineages. Tue latter analysis was of 

both single sections from Gush/Gush Gush/Gush chimeras and qualitative 

examination of a reconstruction of a 1.1 mm2 region from the vermis of a single 
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pcd/pcd wild type chimera. No tendency for clonally related Purkinje cells to 

remain contiguous was reported. 

We too find that there are no large clusters of clonally related Purkinje 

cells, but our analysis does not support the idea that cell lineage distributions are 

random. We have found that lineage relationships form a pattern in which 

significant shifts in genotype ratios can occur over distances of less than 100 µm. 

At the same time, areas of common genotype ratios often extend over 8 - 10 

individual grids including hundreds of Purkinje cells. The single section analyses 

of the previous work might not have allowed the authors to discover this result. 

Further, the qualitative nature of the previously reported reconstructions might 

not be sensitive to this finding. 

In his reconstructions of Purkinje cells lineages, Mullen (1978) did call 

attention to significant differences in the lineage ratios of Purkinje cells when 

comparisons were made between entirely different cerebellar folia. Analysis of 

the current data indicates that, of the nine chimeras in which both pml and ell 

were analyzed, three showed marked differences in the global ratio of Gush/Gush 

to Gush/Gush between the two folia. However, our data shows much more 

consistently significant variations in genotype ratios within restricted regions of 

the same folia. Again, the methods used previously would not have detected these 

local patterns. 

Significance for cerebellar development 

Our results confirm the fact that Purkinje cells are not grouped into 

genotypically pure clusters. As suggested by others this rules out the possibility 

that single progenitors give rise to progeny that are completely restricted in their 

mixing potential. That lineage ratios in different regions do not appear to shift in 

quantal increments further suggests that the progenitors for each region are not 
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equivalent to the set of 8 -10 Purkinje cell progenitors established during early 

stages of CNS development (Herrup and Sunter, 1986; Wetts and Herrup, 1982). 

Instead they are most likely polyclones of the later descendants of the original 

progenitors. 

The lineage maps that we have reconstructed from adult chimeras represent 

the end of a process involving d~(ferentiation, mitosis, migration and cortical 

expansion. This suggests that the factors involved in establishing each Purkinje 

cell's final location will evade simple explanation. These are essentially two 

models that we feel could best be used to explain our results. One involves the 

existence of developmental boundaries, the other is a no-boundary model. The 

no boundary model draws on principles currently used to describe the formation 

of the early universe. For example, one could speculate that the non-random 

mixing patterns we observe arise from the slight intermixing of progeny at each 

stage of mitosis. In this case, we could further assume that there is a defined 

physical radius of intermixing that is maintained throughout the development of 

the system. As the real areal extent of the Purkinje cells progenitor population 

became larger, the effective mixing across the population would accordingly 

decrease. Simulations of other systems under similar assumptions have shown 

that inhomogeneties can be traced back to the most initial conditions of the 

system. 

On the other hand, specific mixing boundaries could be established either 

by establishing physical barriers or changing the properties of two groups of cells 

such that mixing is not possible. The process of segmentation in Drosophila 

offers one extreme example of this scheme (Lawrence, 1981; Crick and 

Lawrence, 1975). In the vertebrate, our own results and those of others make 

this version of the model implausible, but a less restrictive variation could be 

entertained. Figure 2 is an illustration of how the appearance of boundaries in 
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development might work to produce the results that we have observed. The two 

"cells" in the lower part of the figure are meant to represent the Purkinje cell 

progenitors as they are selected in the early neuroepithelium(Herrup and Sunter, 

1986; Wetts and Herrup, 1982; Herrup, 1986). Through cell division, probably 

accompanied by a great deal of cell mixing, these cells give rise to descendants 

that are the sole source of the Purldnje cell population. At some stage before 

mitosis of this population is complete, an independent process sets up restrictions 

to mixing that bound off small cohorts of cells (the middle tier of the figure). If 

these restrictions are maintained during the translocation of cells from the 

ventricular zone to the cerebellar cortical plate, then variations in the ratios of 

the founder populations will be retained and produce the non-random 

distributions that we observe in the adult cerebellar Purkinje cell layer (upper 

tier of the figure). Presumably the specific paths of cell migration and pattern of 

formation of the Purkinje cell monolayer will affect the final form of the lineage 

maps. For all these reasons, additional conclusions require a much more detailed 

consideration of the developmental problem. In our view, a complete 

understanding of this process will require, additionally, model based simulations. 

Data, such as those reported here, obtained by actual reconstructions will be 

crucial for this effort. 
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As discussed above, one of the strong motivations for studying cell lineage 

in the developing CNS is the possibility that the clonal relationships may reveal 

several organizing features of CNS development. In order to suggest the idea 

that variations in lineage distribution could have significance for the development 

of cerebellar cortex or any other structure, it will be necessary to demonstrate 

that regions defined by lineage patterns are co-extensive with other significant 

features of the structure such as anatomy, physiology or biochemistry. In this 

regard, comparisons among lineage maps of the same folia in different animals 

suggest certain inter-animal consistencies. For example, we observed that the 

lateral regions of the paramedian lobule in 7 of 11 cases included a large area of 

relatively uniform genotypic ratio (see asterisk in Fig. IF). This raises the 

possibility that different areas of the cortex might have different developmental 

constraints and it is noteworthy that this same region is frequently the site of a 

large receptive field from cutaneous receptors in the lower lip of the mouse 

(Bower, unpublished). The cerebellum represents an excellent model system 

since the spatial mapping of many physiological and biochemical modalities is 

well worked out. Future studies will be aimed at establishing just such 

correlations. 
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Table I 

Chi-square analysis of the Purkinje cell lineage data 

Animal Folium fraction Gush/Gush lowest p value Significance* 
lobal ratio for c2 

2kh ell .757 <.500* 0 
2kh pml .781 <.900* 1 
2ks pml .055 ~ 0 
3kh ell .877 <-.QW 2 
3kh pml .828 ~ 2 
3pp ell .324 <.100* 2 
3pp pml .362 <.750* 1 
4kh pml .756 <.900* 1 
4kh ell .781 <.250* 0 
5ppl pml .341 <.0050 2 
5ppl ell .666 ~ 2 
5ppr pml .339 ~ 3 
6ppl pml .425 ~ 3 
8ppl ell .270 ~ 1 
8ppl pml .556 ~ 3 
8ppr ell .542 ~ 3 
8ppr pml .324- ~ 3 
380r ell .657 <.500* 1 
380r pml .515 ~ 1 

* Data distributions were tested at each of 9 positions of the grid relative to the 
reconstruction data. If a p-value less than 0.05 is taken as significant, then the 
findings can be summarized with the following scale: 

0: Significant at no grid position 
1: Significant at some grid positions 
2: Significant at most grid positions 
3: Highly significant at all grid positions 
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A schematic representation of one model for the developmental processes that 

could lead to the lineage patterns found among the cerebellar Purkinje cells. See 

text for details. 
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