
Self-Organized Robotic System Design and

Autonomous Odor Localization

Thesis by

Adam T. Hayes

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

1 8 9 1

C
A

L
IF

O
R

N
IA

 I

N
S T IT U T E O F T

E
C

H
N

O
L

O
G

Y

California Institute of Technology

Pasadena, California

2002

(Defended May 24, 2002)

ii

c© 2002

Adam T. Hayes

All Rights Reserved

iii

Acknowledgements

I would like to thank Richard Murray for allowing me to complete this work, and

Rod Goodman for giving me the opportunity to begin it. Along the way I have

benefited from the insight of Shuki Bruck, Pietro Perona, Joel Burdick, and Christof

Koch, whose comments have helped mold this work into its final form. I owe much to

Owen Holland and Alcherio Martinoli, who introduced me to the study of collective

mobile robotics and guided me toward the interesting problems. Many others in the

Microsystems Lab and Collective Robotics Group played a role in making everything

actually work: Sanza Kazadi, Andrew Lundsten, Jim Pugh, Ladd Van Tol, Robert

Enright, Tiago Wright, Mauricio Cordero, and Ian Kelly. I would like to thank Vin-

cent Koosh for showing me the way of the jaded graduate student when I was first

starting out, and Kjerstin Easton for giving me the opportunity to continue the tradi-

tion. I am forever indebted to my fellow First-Years, without whom I would probably

still be working on 185 problem sets. I also especially thank the Guacamoleans, for

never being tempted to take my “killing time” literally. I thank my family for their

seemingly tireless encouraging support, and for ensuring that I never went hungry.

And lastly I thank Sarah, not only for her mathematical expertise and endless ap-

petite for revision, but also for constantly reminding me that the more important

things do not run on batteries.

iv

Abstract

This thesis presents a methodology for designing self-organized autonomous robotic

systems and demonstrates how this process can be applied to the problem of finding

the source of an airborne odor plume. The design methodology is applicable to other

task domains and the resulting odor localization system extends the state of the art.

The design procedure centers on the ability to define a specific task performance

metric, systematically evaluate performance in a realistic environment, and define

abstract relationships between system parameters and system performance. Once

such relationships have been experimentally validated in a test environment, they

can be used to guide the design of a deployable system. Because this process relies

heavily on evaluative feedback, this work emphasizes the development of tools that

allow the collection of accurate performance data. It presents a reliable multiple robot

test-bed and some task-enabling sensory hardware, as well as validation of the sensory

and kinematic models used in simulation. Also, a reinforcement learning methodology

is described that provides consistent optimization performance while minimizing the

amount of required evaluation.

The design methodology is applied to the task of odor localization. Specifically,

this thesis analyzes a basic collective search task and derives the optimal group size

and expected performance bounds for random and coordinated search. It also inves-

tigates a set of biologically inspired behaviors that permit an agent to traverse an

odor plume to its source and describes the common characteristics of successful algo-

rithms. One of these algorithms is implemented on the real test-bed and in simulation

to verify that plume traversal is taking place and that the use of multiple collaborat-

ing robots can expand the reachable performance space. Collective search and plume

v

traversal are then combined (along with egocentric source declaration) into the full

odor localization task which is optimized in simulation. Then, following the design

methodology, a model is presented which can aid in the prediction of performance

and choice of algorithm parameters in more complex environments. Finally, a flocking

behavior is designed, and the addition of this flocking behavior to the plume tracing

algorithm is shown to produce a more capable system.

vi

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Motivation . 1

1.2 A Design Methodology . 2

1.3 Application: Odor Localization . 3

1.4 Thesis Overview . 4

1.5 Original Contributions . 6

2 Background 7

2.1 Robotics . 7

2.1.1 The Difficulty with Sensing 8

2.1.2 Classes of Control . 8

2.1.3 Designing Self-Organized Systems 11

2.1.4 The Need for Metrics . 15

2.2 Odor Localization . 17

3 A Design Methodology and the Odor Localization Task 18

3.1 A Design Methodology . 18

3.1.1 Phase Zero: Choose a Task 18

3.1.2 Phase One: Parameterize the Control Algorithm 18

3.1.3 Phase Two: Off-Line Machine Learning Optimization 20

vii

3.1.4 Phase Three: Generate an Abstract Model 22

3.1.5 Feedback During the Design Process 22

3.2 The Odor Localization Problem . 23

3.2.1 The Odor Plume . 23

3.2.2 Task Definition . 23

3.2.3 Performance . 24

4 Robots, Sensors, and Simulators 26

4.1 Real Robots . 26

4.2 Robot Arena and Infrastructure . 26

4.3 Odor Sensor . 29

4.4 Wind Sensor . 31

4.5 Sensor-Based Simulation . 32

4.6 Software . 35

5 Collective Search 36

5.1 Background . 36

5.2 Search Task Description . 37

5.2.1 Performance Metric . 37

5.3 Deriving Performance . 38

5.3.1 Random Search . 39

5.3.2 Coordinated Search . 41

5.3.3 Performance Comparison . 42

5.4 Supporting Simulations . 43

5.4.1 Results . 43

5.5 Conclusion . 44

6 Single Agent Plume Traversal Algorithms 46

6.1 Plume Traversal . 46

6.2 The Next-Hit Analysis . 47

6.3 Plume Traversal Algorithms . 48

viii

6.3.1 Biological Inspiration . 48

6.3.2 Algorithm Descriptions . 49

6.4 Algorithm Evaluation . 50

6.4.1 Next-Hit Metric Generation 50

6.4.2 Direct Evaluation . 52

6.5 Results and Discussion . 53

6.5.1 Parameter Search . 53

6.5.2 Optimized Algorithms . 55

6.5.3 Evaluation Comparison . 57

6.6 Conclusion . 60

7 Designing an Odor Localization System 63

7.1 The Spiral Surge Algorithm . 63

7.1.1 Collaborative Spiral Surge . 65

7.2 Plume Traversal Results . 66

7.2.1 Real Robots . 66

7.2.2 Sequential Search Comparison 68

7.2.3 Kinematic Simulations . 70

7.3 The Full Odor Localization Task . 70

7.3.1 Algorithm Optimization . 71

7.3.2 Trends in Optimization . 76

7.3.3 A Model of Performance . 79

7.4 Conclusion . 84

8 Flocking as Improved Collaboration 86

8.1 Background . 86

8.2 The Flocking Task . 87

8.2.1 Task Definition . 87

8.2.2 The Leaderless Distributed Flocking Algorithm 88

8.3 Test Environments . 91

8.3.1 Kinematic Simulation . 91

ix

8.3.2 Real Robots . 91

8.4 Results and Discussion . 92

8.4.1 Optimization with the Kinematic Simulator 92

8.4.2 Real Robots . 95

8.5 Flocking as Collaboration . 95

8.6 Conclusion . 97

9 Conclusion 99

Bibliography 102

x

List of Figures

3.1 Venn diagram depicting the space of algorithms that can solve a partic-

ular task. 19

3.2 A schematic of the design process, beginning with task definition and

ending with application to real problems. Arrows indicate significant

interplay between design phases. 23

3.3 The plume traversal task. The issue is how to define the agent trajectory

based on odor hit and wind direction information such that the agent

approaches the plume source. 24

4.1 (a) A basic Moorebot. (b) A Moorebot equipped with wind, odor, and

proximity sensors, as well as markings for overhead tracking. 27

4.2 (a) Real-robot arena. Plume source visible in upper left. (b) Real-robot

arena as seen from overhead camera. 28

4.3 One bank of 6 recharging stations. Servos underneath each robot make

contact with the metal plates on the ground after the robots are posi-

tioned by the overhead camera system. 28

4.4 Odor sensor closeup. 29

4.5 (a) Power spectral density of the odor sensor output when no stimulus

is present and when the robot is in the distal end of plume. (b) Raw

distal plume data, filtered distal plume data, and filtered baseline data.

The threshold is 4 std above 0. 30

xi

4.6 (a) Total plume hits received by 6 real robots over 1 hour while perform-

ing a random walk behavior. The well defined plume boundary indicates

the plume envelope is stable over time. (b) Plume hits received by 6 in-

dividual real robots over 1 hour while performing a random walk behav-

ior. Similarity between maps suggests there are no significant differences

between robots. 31

4.7 (a) Wind sensor closeup. Sensor circuitry shown on left. (b) Average

wind direction in plume traversal arena as measured by the real robots

(2102 individual samples averaged spatially). Plume source at upper

right. Arrow lengths are proportional to the uniformity of flow direction

at the tail of each arrow. 32

4.8 (a) Webots plume traversal arena with average plume intensity map.

(b) Layout of larger Webot arena. 33

4.9 (a) Georgia Tech plume, taken from a real dye plume in a flume tank.

(b) Caltech plume, generated by simulating particle transport based on

real ocean flow data. In both plumes overall flow moves left to right,

although the flow direction is more variable for the Caltech plume. . . 33

4.10 Plume hits received by 6 simulated robots over 1 hour. 34

5.1 Example task layout in which N = 3. 37

5.2 Simulated and analytical results for this search task. For the simulated

data the lower triangles are above S− .01 of the cost data and the upper

triangles exceed S + .01 of the cost data. Good agreement between

the simulated and analytical results indicates the random search model

assumptions are sound . 45

6.1 Plume traversal algorithms. 49

xii

6.2 (a) Probability of receiving a new odor hit in the space surrounding the

site of a previous odor hit immediately after cessation of that odor hit

at (0,0). Negative y values are closer to the plume source. (b) The hit

probability along the plume axis (i.e., the probability values along x =

0 in part (a)). 52

6.3 Task layout for direct odor localization algorithm evaluation. Agents

receive an initial odor hit within the Agent Start Area and attempt

to progress into the Plume Find Area. The plume outline shown repre-

sents the average odor hit probability generated from 3000 instantaneous

plume images. The Plume Find Area has a radius equal to 10% of the

plume length, and the Agent Start Area encompasses the distal 80% of

the plume. Note the Plume Find Area is sized to eliminate the influence

of noisy plume data near the source. 53

6.4 (a) Odor hit probability for each of the different plume tracing algo-

rithms. (b) Expected time to next odor hit for each of the different

plume tracing algorithms. Note that if the odor hit probability is low

then the expected time of the next odor hit is of little importance. All

error bars represent standard error of the mean. 55

6.5 (a) Expected downstream traversal before next odor hit for each of the

different plume tracing algorithms. Error bars represent standard error

of the mean. (b) Expected cross-stream traversal before next odor hit

for each of the different plume tracing algorithms. Error bars represent

standard error of the mean. 56

6.6 (a) Expected probability of successful source location P
F
for each be-

havior. (b) Expected probability of successful source location P
F
for

each behavior. Note that the algorithms shown are optimized for σ = 0,

so better performance may be achievable at higher wind variances. . . 57

6.7 Expected probability of successful source location PF for each behav-

ior. Note that each point represents optimized performance for that

particular wind variance. 58

xiii

6.8 Comparison of the optimized Step and Straight algorithms under next-

hit (Step, Straight) and direct (Step∗, Straight∗) evaluation. 59

6.9 Comparison of the optimized ZigZag and Spiral algorithms under next-

hit (ZigZag, Spiral) and direct (ZigZag ∗, Spiral∗) evaluation. . . . 60

6.10 Direct evaluation values of all optimal parameter sets across all wind

values compared to the direct performances of the next-hit optimized

parameter sets, for the (a) ZigZag and (b) Spiral algorithms. In gen-

eral the next-hit parameter sets perform well, indicating that the next-

hit optimization can transfer to the real plume plume traversal task for

these algorithms. 61

7.1 Spiral surge odor localization behavior. 64

7.2 (a) Normalized time to finish task across group size for real-robot trials.

Lower values are better. (b) Normalized distance across group size for

real-robot trials. Lower values are better. 68

7.3 Performance P across group size for real-robot trials. Higher values

indicate better performance. 69

7.4 Performance of the best SS algorithm and a basic sequential search for

different group sizes, as the source find radius given to the sequential

algorithm approaches the actual source find radius. Higher values in-

dicate better performance. SS does not explicitly use the source find

radius, so performance does not vary. 70

7.5 Performance of real-robot (RR) and Webots trials across group size.

Higher values indicate better performance. 71

7.6 Performance during each optimization run, first normalized by the max-

imum value of each run and then averaged across all 60 runs. Error bars

indicate standard deviation. 73

7.7 Normalized time (T
TC
) and distance (D

TC
) across group size for (a)

GT0, (b) GT1, (c) GT2, and (d) CT0. Lower values are better.

Error bars represent standard error. 74

xiv

7.8 Performance across group size for (a) GT0, (b) GT1, (c) GT2, and

(d) CT0. Higher values are better. Error bars represent standard error. 75

7.9 (a) The optimization result frequency curve for SpiralGap1, as aver-

aged over all runs, (b) The SpiralGap2 optimization result frequency

curves for each plume type, averaged over group size for None, (c)

Kill, and (d) Attract3. 76

7.10 (a) The SrcDecCount optimization result frequency curves for each

plume type, averaged over group size and across the Kill and At-

tract3 communication types. (b) The SrcDecCount optimization

result frequency curves for each plume type, averaged over group size

for None. 77

7.11 (a) The SrcDecThresh optimization result frequency curves for each

plume type, averaged over group size and across for Kill. (b) The

SrcDecThresh optimization result frequency curves for each plume

type, averaged over group size and across the None and Attract3

communication types. 78

7.12 The SrcDecCount optimization result frequency curves for each group

size, averaged over GT0, GT1, and GT2 for None communication. . 79

7.13 Performance versus group size for the odor localization task in the small

arena as generated by the model, the kinematic simulator, and the real

robots. 80

7.14 Performance across group size for (a) GT0, (b) GT1, (c) GT2, and (d)

CT0 as generated by the model and the kinematic simulator. Higher

values are better. Error bars represent standard error. Note there is

good agreement between the simulator and the model across plumes

and communication types. 83

8.1 Each robot in the flock can sense the range and bearing of up to Q

neighbors within a sensory area defined by a maximum range M . In

this example Q = 3. 89

xv

8.2 A summary of the generation of CoM and ∆CoM 90

8.3 (a) Obs1 and (b) Obs2, seen from above. The start (A) and goal (B)

areas are indicated. The large disks are the obstacles, and the smaller

disks (shown here within the start area) are the agents. 91

8.4 10 Moorebots flocking. 92

8.5 (a) Per-cycle flocking performance for each experimental condition. Higher

values are better. (b) The optimal result frequency curves for Q, the

maximum number of neighbors observed while flocking. 93

8.6 (a) The optimal result frequency curves for J , the attractive power of

the goal area. (b) Flocking performance of a group of 10 real robots

versus Q, the maximum number of visible neighbors. Higher values are

better. 94

8.7 Performance across group size for (a) GT0, (b) GT1, (c) GT2, and

(d) CT0. Higher values are better. Error bars represent standard error. 96

8.8 (a) Inverse of normalized time required for GT2. (b) Inverse of normal-

ized distance required for GT2. Higher values are better. Error bars

represent standard error. 97

xvi

List of Tables

4.1 Wind Field Characterization . 27

5.1 Summary of Parameters and Variables 39

5.2 Task and Cost Parameter Values . 44

6.1 Summary of Evaluation Metrics and Variables 48

6.2 Algorithm Parameter Definitions . 49

6.3 Parameter Evaluation Ranges. Parameter definitions can be found in

Table 6.2 . 53

6.4 Optimal Parameter Values at σ = 0 . 54

6.5 Optimal Zig-Zag Parameter Values versus σ. Parameter definitions can

be found in Table 6.2 . 56

7.1 Spiral Surge Algorithm Parameters . 64

7.2 Plume Traversal Parameter Values . 67

7.3 Searched Parameter Values. Parameter definitions can be found in Table

7.1 . 72

7.4 Full Task Parameter Values (Simulation) 72

7.5 Model Parameter Values . 82

8.1 Leaderless Distributed Flocking Algorithm Parameters 91

1

Chapter 1

Introduction

As suggested by the title, this dissertation contains two principal themes. It presents

a methodology for designing self-organized robotic systems and demonstrates the

application of this procedure on an odor localization task. In the process, it provides

a detailed analysis of the odor localization problem, ranging from a treatment of a

general search task to a discussion of the common qualities of efficient plume traversal

algorithms. Inspiration from biological systems plays a role throughout, reflecting the

belief that the imitation of natural systems, when applied in the proper context, can

be useful to an engineer.

1.1 Motivation

The creation of autonomous robots, machines that sense and act upon the world to

perform useful work without constant human supervision, could free humans from

many repetitive or dangerous tasks and increase productivity immensely. However,

the traditional Sense-Model-Plan-Act approach to artificial intelligence has proven not

to be robust in unknown dynamic environments, and the last fifty years of robotics re-

search has provided little in the way of autonomous systems that can function reliably

in the real world. This shortcoming can largely be traced to the extreme difficulty of

building and maintaining accurate world models when sensor input is uncertain and

the state of the world can change unexpectedly. The problem essentially comes down

to one of sensing, that is, the world cannot be sensed accurately enough to be properly

2

modeled. The prevailing attitude among a large sector of the robotics community is

that, in time, sensing (and communication) technology will improve, and eventually

the level of reliability currently obtained in highly constrained environments (which

is necessary for current control algorithms to function) will be available in the real

world.

Newer behavior-based approaches to robotic controller design emphasize a tighter

coupling between sensation and action. In these systems the importance of maintain-

ing world models is reduced (because planning is generally absent), but the task of

designing a system to achieve a particular goal becomes more difficult because it is

not always obvious what global activity will emerge from a particular set of inter-

acting behaviors. Swarm intelligence, a computational and behavioral metaphor that

draws inspiration from social insects, combines the behavior-based approach with the

redundancy inherent in large numbers of agents. Although systems designed using

this concept can be exceptionally robust to agent failure and environmental distur-

bances (witness the considerable success of the ant, for example), there is even further

distance between the local sensing and action programmed into each agent and the

overall system objective. Previous attempts at training both single and multiple agent

behavior based systems have focused on learning the proper sensory-action mapping

to produce the desired behavior. Some success has been achieved in the laboratory

domain, but it is unlikely that these techniques will scale to more complicated tasks

because the complexity of this learning problem grows exponentially with the number

of states in the system. In order to address real applications, different techniques are

needed.

1.2 A Design Methodology

This thesis presents a design methodology that relies on a balance of engineering

intuition and machine learning to facilitate real system design. The first step in the

process requires an engineer to assess the task and develop a set of parameterized

behaviors that allows a group of agents to solve it. No magic solution is proposed for

3

how this is to be done, although familiarity with systems possessing similar function

(e.g., as observed in biology) is found to be helpful, and feedback from the subsequent

design phases can assist as well. The key point is that this behavioral parameteriza-

tion drastically reduces the size of the algorithmic search space, which then can be

systematically explored both in simulated and real instantiations of the task.

This second phase of design uses a simple reinforcement learning algorithm to

optimize system performance while using only a minimal amount of evaluation. Eval-

uative optimization is required because a priori models of system performance rarely

exist. And because performance evaluation in real or realistic environments is typ-

ically resource-intensive, it is advantageous to minimize the number of samples re-

quired. The results of this optimization procedure not only provide performance levels

achievable by the chosen algorithm parameterization, but they also indicate how the

behavioral parameters influence task performance.

The third design phase involves the definition of abstract relationships between

system parameters and system performance. System parameters encompass both

algorithmic parameters as well as any that describe the task environment. Once

such relationships have been experimentally validated in a test environment, they

can be used to guide the design of a deployable system. If the task resists this

sort of characterization, the evaluative optimization can be performed directly on

the application environment, but it is typically less expensive to experiment with a

scaled-down version of the task.

This design procedure centers on the ability to define a specific task performance

metric, which could be considered design phase zero, as it should occur before any

attempt is made to design the parameterized behaviors. In other words, before one

goes about solving a problem, it is a good idea to know exactly what the problem is.

This idea is rather intuitive, although it raises some interesting questions about the

current practice of robotics research that are further developed in the next chapter.

Also, because this process relies heavily on evaluative feedback, this work emphasizes

the development of tools that allow the collection of accurate performance data. It

presents a reliable multiple robot test-bed and some task-enabling sensory hardware,

4

as well as validation of the sensory and kinematic models used in simulation.

1.3 Application: Odor Localization

The design methodology is applied to the task of odor localization–finding the source

of an odor plume. The goal is to develop an algorithm that enables a group of

relatively simple robots to locate an odor source within an enclosed arena. This

task breaks down into three subtasks: plume finding (coming into contact with the

odor), plume traversal (following the odor plume to its source), and source declaration

(determining from odor acquisition characteristics that the source is in the immediate

vicinity). These subtasks, while not wholly independent, can be studied separately

for the purposes of building intuition about the operation of successful systems.

Plume finding amounts to a search task, with the added complication, due to the

stochastic nature of the plume, that a sequential search is not guaranteed to succeed.

This work examines a simplified search task and analytically derives expressions for

optimal group size and expected cost for both random (suitable for swarm intelligence

implementations) and coordinated search strategies. Coordinated strategies perform

better, but the additional localization and communication capabilities required are

often expensive to implement. The results are encouraging for the random approach,

as they demonstrate that when the probability of target detection is low–which is built

in to the plume task, as the location of the plume is time variant–the performance

benefit of using coordinated search diminishes.

Plume traversal requires more specialized behavior, both to progress in the direc-

tion of the source and to maintain consistent contact with the plume. Single agent

plume traversal is dealt with extensively in the biological literature, as there are many

species whose livelihood relies on their ability to track an odor plume to its source.

Insects are particularly useful in this regard, because they are unlikely to incorporate

information from many modalities or utilize complicated cognitive maps of their envi-

ronment in their search behavior. This work analyzes several simple plume traversal

strategies based on moth behavior and concludes that there is a basic pattern of be-

5

havior that must be followed for an algorithm to be successful. It is worthwhile to

note that the strategies being studied at this level already incorporate restrictions of

what can be implemented in real hardware. This ensures that the results from these

studies will be applicable to the real task.

Nature can only provide a certain degree of guidance, however, because the task

being studied need not have a direct natural corollary. In the odor localization task

being studied the agents should work collectively to locate the odor source, while in

biological systems the individual agents usually compete with each other for use of

the resource at the head of the plume. Thus, the collaboration strategies used in this

work are guided only by simplicity: attraction, repulsion, and no communication at

all. For experimental reasons, attraction is implemented on the real test-bed and in

simulation to verify that plume traversal is taking place and that the use of multiple

collaborating robots can expand the reachable performance space. The performance

impact of the other communication strategies is studied exclusively in simulation.

Source declaration does not necessarily have to be done using odor information, as

typically odor sources can be perceived via another type of sensor from short range,

though it is possible to do so without any extra sensory apparatus. This phase of

the task is not studied extensively because it is likely to be highly dependent on the

properties of the particular task and environment, although a functional solution is

presented. A source declaration behavior is combined with the collective search and

plume traversal algorithms to solve the full plume traversal task, which is optimized

in simulation. Then, following the design methodology, a model is presented which

can aid in the prediction of performance and choice of algorithm parameters in a

larger range of environments.

The design methodology is also applied (in part) to a flocking behavior. A set

of basic behaviors that are conducive to implementation on real robots is presented,

and it is shown that performance can be tuned to different simulated environments

purely evaluatively. No model is presented that describes flocking performance, but it

is suggested that if the evaluative process is extended across many different types of

environments, a model might be constructed empirically. Furthermore, it is demon-

6

strated that this flocking capability can be integrated into the plume tracing behavior

to produce a better odor localization system.

1.4 Thesis Overview

Chapter 2 provides a review of the robotics literature that is relevant to this work. It

briefly surveys the issues surrounding the development of autonomous systems and

describes several previous robotic system design approaches. Finally, background on

the odor localization problem is provided, including a discussion of both biological

and robotic work.

Chapter 3 presents the system design methodology, including the off-line machine

learning algorithm. It also provides a detailed description of the odor localization

problem and the metrics used in performance evaluation.

Chapter 4 describes the tools used to investigate the plume task. It covers the

real-robot platform, the arena and infrastructure developed to carry out systematic

experiments, the odor and wind sensors built to enable real-robot plume traversal,

the sensor-based simulator used to permit more extensive experimentation, and finally

the software architecture that runs the control algorithms.

Chapter 5 presents a quantitative analysis of the tradeoffs between group size and

efficiency in collective search tasks that considers both the time-sensitive nature of

search completion and the system operating cost. First, the search task is defined

and a performance metric is presented that can account for all of the costs associated

with the task. Next, for both random and coordinated search strategies, analyti-

cal expressions are derived that can be used to predict optimal system performance

bounds given a particular task description. Also, the performance benefit of using

coordinated search is shown to be dependent on the relative values of the different

cost components. Finally, a sensor-based computer simulation is used to support the

analytical results, suggesting that the assumptions involved in their derivation are

sound.

Chapter 6 presents an investigation into odor source localization algorithms for

7

turbulent odor plumes. The goal of this chapter is to gain a better understanding

of what makes an algorithm successful in order to build more capable and robust

chemical plume traversal systems. First, the problem of plume traversal is recast as

the task of obtaining the next odor hit, and a set of metrics that provides detailed

information about algorithm function is presented. Then, several odor localization

algorithms are described, and it is demonstrated that algorithm parameters can be

tailored to particular plume characteristics for improved performance. Also, the next-

hit analysis is shown to capture the performance of some types of algorithms more

accurately than others, and it is concluded that this failure stems from intrinsic

shortcomings of some of the algorithms tested. Moreover, based on this analysis, the

general properties required of successful turbulent odor plume traversal algorithms

are described.

Chapter 7 presents an investigation of plume traversal by groups of autonomous

mobile robots and then extends to address the full odor localization task. First, a

distributed algorithm is described by which groups of agents can solve the plume

traversal task. Next, local position, odor, and flow information tightly coupled with

robot behavior is shown to be sufficient to allow a robot to localize the source of an

odor plume. Then, the use of multiple agents is demonstrated to increase the size

of the solution space that can be reached by a particular system, and the swarm

intelligence solution compares well with coordinated search strategies for this task.

In addition, the off-line machine learning algorithm is used to optimize algorithm

performance on the full odor localization task in several different environments, and

it is shown that the optimal system parameters depend on the particular task being

studied. Finally, a model is presented that can be used to relate task parameters to

system performance.

Chapter 8 presents an investigation of flocking by teams of autonomous mobile

robots using principles of swarm intelligence. First, a simple flocking task is pre-

sented. Next, a leaderless distributed flocking algorithm that is more conducive to

implementation on embodied agents than the established algorithms used in computer

animation is described. The design methodology is followed to optimize performance

8

under different conditions, showing that this method can be used not only to improve

performance but also to gain insight into which algorithm components contribute

most to system behavior. Then, it is shown that a group of real robots executing

the algorithm with emulated sensors can successfully flock (even in the presence of

individual agent failure) and that systematic characterization (and therefore opti-

mization) of real-robot flocking performance is achievable. Finally, the integration of

a flocking behavior into the odor localization algorithm is demonstrated to produce

better odor localization performance.

Chapter 9 concludes this dissertation with a summary of the main results and a

discussion of some future directions in autonomous robotics.

1.5 Original Contributions

This thesis contributes to the field of autonomous robotics and advances the study of

odor localization. In particular, it presents:

• A self-organized system design methodology that relies on the formulation and

evaluation of specific task metrics.

• An improved odor localization system that can derive useful information from

the distal part of an odor plume.

• Greater insight into the tradeoffs between sensor reliability, evaluation metrics,

and coverage strategy for collective search problems.

• An understanding of the general properties required of successful turbulent odor

plume traversal algorithms.

• A flocking algorithm that is well suited to implementation on real hardware.

9

Chapter 2

Background

This chapter provides a review of the robotics literature that is relevant to this work.

It briefly surveys the issues surrounding the development of autonomous systems and

describes several previous robotic system design approaches. Finally, background on

the odor localization problem is provided, including a discussion of both biological

and robotic work.

2.1 Robotics

A robot is defined as “a device that automatically performs complicated and often

repetitive tasks” [74]. Its purpose in this sense is to increase human productivity,

particularly when the work involved is dull, dirty, or dangerous [110]. Robots have

been rather successful in this regard. As of 2001, there were over 750,000 robots in use

in industry worldwide, and their share of the workload will likely increase in the future

[30]. Robots have made forays into the entertainment industry, from animatronic

exhibits at amusement parks to the Sony AIBO and other, simpler toy robots. Service

robots abound in professional settings such as medicine and demolition, and they

promise to arrive for home use as lawn mowers and vacuum cleaners in the near

future [61].

Much progress has been made over the last fifty years since Grey Walter built his

robot turtles [100] and George Devol and Joseph Engelberger constructed the first

industrial robotic arms [27]. However, many of the dreams of the robotics age, as

10

exemplified by The Jetsons, 2001: A Space Odyssey, and Star Wars, have yet to be

realized. This is due in part to the fact that most of the tasks (such as household

chores) originally designated for robots can be done quite cheaply by humans [17], so

there is little financial incentive to make the necessary investment in development.

But there are other reasons behind this shortcoming, as thus far robots have excelled

at performing specific tasks in controlled environments, while there are few examples

of robots that can function in dynamic sensory-rich settings.

2.1.1 The Difficulty with Sensing

Why have robots been so slow to move out into the real world? When asked what is

missing from the field of robotics in a recent interview, Engelberger, who is commonly

known as the father of industrial robotics, put it simply:

The thing that makes the big difference is sensory perception. There isn’t
any amount of software that can take junk and make it really work in an
application. First of all, you need magnificent physical execution. After
you have the physical execution, you need great sensory perception. If
you have all of that–vision, tactile sense–then you can use software. [17]

This observation argues for continuing to improve sensors and sensory processing

systems, and most of this work occurs outside the field of robotics. However, even

highly evolved biological sensory systems such as the human visual system cannot be

relied upon to accurately report the state of the outside world all of the time [91],

so it is reasonable that proper robotics design should be able to account for sensory

inconsistencies. According to Sebastian Thrun, a leading robotics researcher, “Robots

are inherently uncertain about the state of their environments. Uncertainty arises

from sensor limitations, noise, and the fact that the most interesting environments

are–to a certain degree–unpredictable” [95]. The question of how to produce reliable

performance in the presence of sensory noise is dealt with differently by the different

schools of control that have developed within the robotics field.

11

2.1.2 Classes of Control

Robotics control can be broken into four divisions: deliberative, reactive, hybrid, and

behavior-based [71], [2]. The differences between these approaches stem principally

from disagreements over the nature of intelligence–whether it stems from extensive

cognitive reasoning or from highly tuned and tightly coupled interactions with the

environment.

Most of the early work in robotics grew out of the early work in artificial intel-

ligence, which assumed a deliberative view of intelligence. Ronald Arkin, a leading

robotics researcher, explains this link well:

In the original proposal [for what was to become the first conference on
artificial intelligence] [73], Marvin Minsky indicates that an intelligent
machine “would tend to build up within itself an abstract model of the
environment in which it is placed. If it were given a problem it could
first explore solutions within the internal abstract model of the environ-
ment and then attempt external experiments.” This approach dominated
robotics research for the next thirty years, during which time AI research
developed a strong dependence on the use of representational knowledge
and deliberative reasoning methods for robotic planning. [2]

The deliberative approach has proven effective when it is possible to implement, i.e.,

when an accurate “internal abstract model” can be constructed. This is the case

when the sensory burden is low because the environment can be highly controlled

(e.g., within a factory) or does not exist physically at all–computers have become

quite proficient at the game of chess [90]. However, once the external world departs

from the internal construction (in an unknown way), no amount of reasoning is going

to reliably produce reasonable actions.

The reactive paradigm takes an entirely different view of the nature of intelligence.

It tightly couples the sensory and motor systems, so rather than performing experi-

ments using internal models, robots built in this paradigm function through constant

interaction with their environment in a stimulus-response manner. These principles

were present in Walter’s early work, although they subsequently disappeared for sev-

eral decades. Valentino Braitenberg revived them in the mid-1980’s [14], although

Rodney Brooks was responsible for inducing the robotics community to take notice

12

[16]. Taken to its extreme, robots using reactive control contain no models of the

world at all. The problem of maintaining models then disappears, and sensor noise

becomes less of an issue because it can be averaged over many actions [35]. However,

purely reactive robots also contain no state that might allow them to learn over time,

and this inability to adapt has been cited as one of the main shortcomings of this

type of control [71].

The purely deliberative and purely reactive strategies represent opposing ends

of the control spectrum, and most current work in robotics takes place somewhere

in between. One such method, hybrid control, “attempts to combine the real-time

response of reactivity with the rationality and optimality of deliberation” [71]. A

typical mobile robot under hybrid control might use a reactive controller to attend

to immediate problems (such as obstacle avoidance) while relying on a deliberative

mechanism to maintain goal-oriented behavior. The key to designing these systems is

in the interface module that allows these two systems to communicate effectively [71].

Recently the most successful hybrid systems have assumed a probabilistic approach

to world modeling:

When “guessing” a quantity from sensor data, the probabilistic approach
computes a probability distribution over what might be the case in the
world, instead of generating a single “best guess” only. As a result, a
probabilistic robot can gracefully recover from errors, handle ambiguities,
and integrate sensor data in a consistent way. [95]

Probabilistic hybrid robots are nearing the point where they can reliably tackle real-

world tasks [18], but there are problems with this approach. The computational

cost of dealing with a large number of probability distributions is significant, and

even though much current research is devoted to devising computationally efficient

methods of dealing with these structures [95], this problem will only intensify as tasks

become more complex. Also, there may be a limit to how much sensor noise these

systems can handle, as thus far the systems deployed have been dependent on highly

accurate (and expensive) sensors to function [96].

Another approach that resides more toward the reactive end of the control spec-

trum is behavior-based control. It draws much inspiration from biology, dividing up

13

robot control into sets of interacting behaviors. Behaviors are mappings from sensor

input to actuator output, and they may include state (i.e., memory), which enables

a wider range of capabilities (including adaptation and planning) than is possible

in purely reactive systems [2]. However, typically much less of the environment is

represented internally than in a hybrid system, and there is little emphasis on ex-

plicit modeling of sensor uncertainty. Instead, proper function is obtained through

carefully tuning how each behavior interacts with the rest of the system (both inter-

nally and through the environment), and controller design tends to be a difficult and

environment-dependent process.

Behavior-based control has been commonly applied to multi-agent systems, per-

haps because its limited use of world models scales well to dynamic environments

(which are inherent to the multi-agent case) [69]. Another research thread that en-

compasses a subset of these ideas has grown into the field of Swarm Intelligence,

which draws its inspiration from multi-agent biological examples provided by social

insects [8]. In most biological cases studied so far, robust and capable biological group

behavior has been found to be mediated by nothing more than a small set of simple

interactions among individuals and between individuals and the environment [12].

The application of swarm intelligence principles to autonomous collective robotics

aims to develop robust task solving by minimizing the complexity of individual units,

emphasizing parallelism, and exploiting direct or indirect local interactions. These

principles favor the design of behavior-based robotic systems, which emphasize tight

coupling between sensation and action, avoidance of representational knowledge, and

action decomposition into contextually meaningful units [2]. There are three main ad-

vantages of the swarm intelligence approach: first, scalability from a few to thousands

of units, second, flexibility, as units can be dynamically added or removed without

explicit reorganization, and third, increased system robustness, not only through unit

redundancy but also through the design of minimalist units. Several examples of col-

lective robotics tasks solved with swarm intelligence principles can be found in the

literature: aggregation [67] and segregation [43], beacon localization [39], stick pulling

[45], and collective transportation [56].

14

To summarize, there are currently two leading approaches to control that can ad-

dress the problem of imperfect sensing and may yield robotic systems that function

well in dynamic environments. One is hybrid control, which attempts to explicitly

account for sensory uncertainty and behave optimally with respect to as much infor-

mation as is computationally feasible. Hybrid systems contain explicit world models,

so the design interface is straightforward, although computational issues of scaling up

to more complex tasks and more noisy sensing have yet to be fully addressed. On the

other side is behavior-based control, particularly of multi-agent systems (in the swarm

intelligence sense). This control method can take advantage of the inherent paral-

lelism and robustness of many agents without much additional complexity because

precise world models and peer-to-peer communication are not used. The problem

with behavior-based systems is that their function is determined implicitly through

interactions with the environment, so it can be difficult for a designer to determine

the local rules that each agent must follow in order to achieve a particular group

goal. The ultimate answer as to which of these control strategies is more appropriate

is probably task dependent [71]. It is unlikely that swarms of robots will be cleaning

kitchens in the near future, although they could likely be searching for avalanche

victims, mining for coal, or even simply mowing (large) lawns. This work focuses on

advancing the behavior-based multi-agent/swarm intelligence domain because it may

provide a level of robustness for large-scale tasks that is unattainable through other

means.

2.1.3 Designing Self-Organized Systems

Before examining the development of the design process, a note on the terminology:

‘self-organized’ is a term that has grown out of the biological literature [19] that

simply represents the decentralized operation that is desired in swarm intelligence

based robotic systems. It is often accompanied by the term “emergent”, (as in “this

function is an emergent property of this self-organized system”), which can be defined

as occurring when the “global behavior of a system is not evident from the local

15

behavior of its elements” [53]. Unfortunately, emergence has become synonymous

with the word “magic” in some circles. There is in fact nothing magic about emergent

properties or self-organized systems–these words simply mean that the function of a

system depends on the interaction of a number of parallel processes and may be

difficult to explain in a serial, hierarchical manner.

The initial work into the design of behavior-based systems focused on single agents,

which can be considered self-organized if one views the individual behaviors as dif-

ferent interacting processes. The difficulty of designing behavior-based systems was

recognized early on, and there was interest in building systems that could essentially

design their own solutions to a particular task. As Mahadevan and Connell stated:

“If new behaviors could be learned, it would... free the designer from needing a deep

understanding of the interactions between a particular robot and its application en-

vironment” [64]. In 1991, they studied how to get a behavior-based robot to learn to

push a box to the edge of a room. In order to achieve this, they discretized the state

and action spaces (18 bits and 5 actions, respectively), and attempted to automat-

ically generate a functional state-action mapping by allowing the robot to interact

with its environment. They examined learning performance using two types of re-

ward signals, monolithic and behavior-based. In the former they rewarded the robot

only when it was pushing the box, and in the latter they divided the task into three

behaviors which were rewarded separately: box finding, box pushing, and unwedging

(recovering after bumping into an immovable object). Their methods are notable be-

cause they used both a real and a simulated robot to study their algorithms, and they

incorporated hand-coded and random controls for performance comparison. However,

they did not perform enough trials to generate any statistical analysis of their find-

ings. Overall, they determined that learning was possible and that the behavior-based

learning methods were the more effective. These results make intuitive sense because

more detailed reward functions provide the learner with more instructive feedback

about its progress. However, better performance required more work from the de-

signer, and perhaps even a “detailed understanding” of the task: “it took us several

iterations to write reward functions that generated good performance figures” [64].

16

They foresaw the following challenges:

Based on our experience with using reinforcement learning on real robots,
we think the hard subproblems in reinforcement learning have to do with
dealing with large sensory state spaces, long action sequences, and initial
task specification [i.e., specification of the reward signal]. [64]

It is difficult to evaluate many states in a reasonable amount of time, and providing

detailed reward functions (which are more informative to the learner) requires more

knowledge on the part of the designer.

In 1996 Colombetti, Dorigo, and Borghi introduced what they termed “a method-

ology for behavior engineering” [24], in an effort to bring the tools used in more

established disciplines, like software engineering, to bear on the problem of designing

robots. Learning played a central role in their system:

The real world is so complex and unpredictable that directly programming
a robot’s controller soon becomes an almost impossible job. Recently,
machine learning techniques have emerged as an interesting attempt to
overcome this difficulty; however, it is not at all clear how machine learning
should be integrated with more traditional design methodologies. [24]

They formalized a design process, which began with a mathematical description of

the application: “a complete specification of the target behavior should include a

formal, quantitative component” [24]. Then the designer would determine the sensors

and actuators necessary to complete the task, as well as a training strategy that

specified the reward function and how it would be applied (as above, upon task

completion or as a progress estimator). The robot would then be trained possibly

first in simulation and then on the real environment, learning a state-action mapping

that produced a functional system. They demonstrated their methodology on several

simple tasks and found it to be successful. They even performed enough real robot

trials to generate statistics about their results, although they did not always perform

control experiments with hand-coded or random controllers, so they could only draw

limited conclusions about the utility of their methodology. It is also unclear whether

their methods would extend to harder problems: “A first extension will have to be

in the direction of more complex behaviors. This will require a larger amount of

17

input information to be processed, and therefore will call for more powerful learning

mechanisms” [24]. In their implementations they used a combination of classifier

systems [13] and genetic algorithms [42], which, due to the implicit manner in which

they utilize reward values, require a substantial amount of data to function. These

learning techniques are acceptable when continuous feedback about task progress is

available, the state spaces being searched are relatively small, and evaluation can be

sped up via the use of simulation, but they break down when any of these conditions

are not met. Nevertheless, the systematic and quantitative analysis of behavior is an

important concept that was advanced by this work.

Around the same time researchers were advancing into techniques for automated

controller design in the multi-robot domain. In 1995 Maja Mataric proposed that

complex group behavior could be created by appropriate combinations of more simple

“basis behaviors” [68] [69]. These simple behaviors, such as avoidance and following,

were inspired by biology and could be combined to create more complicated behaviors

such as flocking and foraging. These results were demonstrated on groups of real

robots, which was an impressive achievement, although quantitative metrics were not

assigned for the particular tasks so a statistical characterization of performance could

not be performed. In 1997 Mataric applied techniques similar to those of Mahadevan

and Connell to learn the task of multi-robot foraging [70]. Mataric split the robot

sensory space into a set of four binary conditions and the action space into four low-

level behaviors, and aimed to automatically generate a functional mapping between

the two. The efficacy of different reward methods was investigated.

We propose shaped reinforcement as a means of taking advantage of as
much information as is available to the robot at any point. Shaping is
based on principled embedding of domain knowledge in order to convert
intermittent feedback into a more continuous error signal. [70]

A more continuous error signal (rather than a single value upon success) should make

learning easier because the problem of propagating reward across states temporally

is minimized. Results of the learning process were obtained with a group of four

real robots, and they revealed that the more detailed reward functions produced a

18

statistically significant learning increase. However, the learning was measured by

similarity of the learned policy to a designated “optimal” hand-coded policy rather

than via actual performance of the robots on the foraging task, as again no task metric

was ever stated. Also, the process of shaping the reinforcement function itself heavily

biases the control policy to develop in a particular way and requires much task-specific

knowledge from the designer. Still, it is significant that learning was demonstrated in

the group robot domain, as the state space is inherently larger (since multiple agents

are learning at the same time), and the dynamic nature of the environment (because

the agents interact) renders the reward values more variable.

In 1999 Alcherio Martinoli proposed a twofold approach to distributed controller

design that included probabilistic modeling of system performance as well as auto-

matic creation of control algorithms through the use of genetic algorithms [65]. The

modeling work incorporated analysis of algorithm flowcharts and simple geometric

considerations to generate system performance measures, and this methodology has

been used to analyze aggregation and cooperative object transport experiments [67],

[11], [45]. These results demonstrate that probabilistic modeling is a useful tool

for building intuition about system function because its minimalist essence allows the

designer to identify the system characteristics that most influence performance. How-

ever, thus far, quantitative agreement with other modes of evaluation (i.e., real-robot

results) has required the use of free parameters, so the predictive utility of this ap-

proach is unclear. Also, the modeling methodology has been found to be inapplicable

when spatial location plays a significant role in task performance [39]. Separate from

the modeling, the design aspect of the work investigated different methods of using

genetic algorithms to design controllers in simulation. Rather than trying to con-

struct a state-action mapping, the control algorithms were parameterized and good

combinations of parameters were searched for via a genetic algorithm. Different re-

ward structures (individual and group) and controller structures (private and public)

were studied, and the best combination was determined to be task dependent. It is

not clear that this design method will scale to many control parameters, as then the

search spaces can become unreasonably large. As described earlier, genetic algorithms

19

require much performance data to function, and even though other investigators have

interleaved simulated and real-world performance evaluation with some success [29],

[60], accurate simulation is required to produce working controllers (which becomes

more difficult as task complexity increases). Also, control heterogeneity was permit-

ted in all cases, which meant that public policies suffered severely from the state-space

size problem, as parameter values for each individual controller had to be determined

within the same search space.

A different approach to multi-robot learning was presented by Lynne Parker in

2000 [82]. She introduced a method for allowing a heterogeneous group of robots

to adapt their actions to changing environmental conditions over time. The initial

algorithm design was left up to a designer, as the motivation behind this approach

was to make real-robot teams more robust to dynamic environments. This was done

by giving each member of the team a “desire” to accomplish particular parts of a

task, which enabled each team member to specialize on a particular subtask during

normal system operation. When an unexpected event occurred, such as the failure of

a robot or an increase in task difficulty, other agents could compensate by switching

from their preferred task to the task that was not being properly accomplished, while

a robot that found itself not properly completing its subtask could allow others the

opportunity to address it. This dynamic task allocation mechanism was demonstrated

with real robots on a box pushing task, but no task metric was defined so the analysis

was not quantitative. This work showed that dynamic cooperation between groups of

heterogeneous robots can be achieved, although it imposed fairly heavy restrictions.

The subtasks being performed must be independent to ensure that robots never work

against each other, each of the robots has to be able to accurately determine its

progress on its selected subtask, and all of the robots in the system must have access

to the state of all the subtasks in the system for proper work distribution to take place.

In the experiments presented this global knowledge was achieved through extensive

communication among the team members, a solution that renders this control method

more suitable for small teams of cooperating robots rather than larger robot systems

(where the overhead of constant global communication becomes significant).

20

The approaches described above are representative of previous research into the

design of self-organized systems, but this review is by no means complete. A large

amount of work has been done in this area, e.g., [78] [59], [109], [37], [4], [51], [94],

[89]. However, the main principles, particularly those that have been applied to real

robots, have been addressed. These include the idea of directly learning state-action

mappings, using either reinforcement learning or genetic algorithm techniques. The

main problem these techniques run up against is that the size of the state space grows

exponentially with the number of states an agent can perceive. Structured behav-

iors have been used to reduce the size of the state and action spaces that must be

searched. Likewise, detailed reward functions that incorporate much domain-specific

knowledge (describing how a task should be solved) have been used to facilitate learn-

ing, although this solution mitigates much of the benefit of using learning controllers

because it requires the designer to have an intimate familiarity with the task. Au-

tomatic tuning of control parameters has been investigated as an alternative to the

state-action approach, as its complexity is determined by the number of plastic pa-

rameters rather than the overall complexity of the task. Optimization techniques that

have proven effective on more traditional engineering problems (such as Taguchi’s ro-

bust design method [83, 49]) may enhance the performance of this approach. However,

even when the space being searched is small, noisy evaluation due to stochasticity in

the environment or unpredictable agent interaction can cause problems for any opti-

mization algorithm.

2.1.4 The Need for Metrics

In the previous section, it was touched upon that in order to properly use evaluative

learning techniques, there needs to be some definitive task and some quantitative way

of evaluating performance on that task. This idea is rather intuitive, although not all

researchers have defined a concrete task metric when studying learning, e.g., [70], [82].

In fact, throughout the field of robotics, there is a general tendency to shy away from

defining specific task performance metrics, particularly as tasks become complex.

21

Although attempts have been made to introduce uniform quantitative metrics to

specific subfields (e.g., [107]), this type of analysis has not taken hold, particularly in

the field of autonomous mobile robotics. This observation is evident from the number

of papers that use a diagram showing the path that their robot(s) took on a particular

trial (i.e., “validation”) as proof that their algorithm works, e.g., [5], [22], [69], [23],

[96] compared to those that support their claims with statistically valid experimental

data, e.g., [55].

There are two underlying reasons that the culture of “proof by demonstration”

has enveloped the field. One is technological–it is difficult to build systems that can

generate systematic data, although recent developments in wireless networking and

computer vision have made this task easier. The other reason is more philosophical–

by defining a specific metric and studying only a specific task, the results obtained

appear more difficult to generalize. The study of an algorithm that applies whenever

a particular set of conditions is met is deemed more worthwhile. The fallacy behind

this approach is that design without a specific task in mind often assumes best-

case sensory and actuation scenarios. So, rather than developing general solutions,

researchers end up with algorithms that function reliably only in the perfect (possibly

Gaussian) worlds they construct inside their computers. They end up with solutions

that are brittle when exposed to the harsh sensory realities of the real world, and this

may be why there are so few fielded autonomous robotic systems.

Of course, purely evaluative design is not a perfect process, as the designation of

a metric that captures all important aspects of a task can be difficult, and exhaustive

testing of every situation that a system may encounter while in an unconstrained ap-

plication environment is by definition impossible. There is much to be said for study-

ing algorithms themselves and investigating what sort of systems could be created if

certain sensor and actuator characteristics could be guaranteed. An understanding

of the fundamental properties of a system and the ways in which they interact can

greatly simplify the design process, and at the very least this sort of investigation

can be used to inform the sensor community about what capabilities would be most

useful. However, robotic algorithm design that relies on realistically unsatisfiable as-

22

sumptions (perfect localization and communication are common examples) does little

to advance the creation of functional robotic systems.

The designation of a specific task performance metric and the systematic, sta-

tistical verification that desired performance levels can be achieved is the only way

to uncover the precise nature of the unavoidable imperfections of the real world and

demonstrate that a robotic system can account for them. Such work can be done

with the help of simulation, as long as the sensor and actuator models used are well

grounded in reality. The use of real robots to verify that sensors are accurately cap-

tured by simulation models has been shown to be useful [44], although eventually

actual real-robot experimentation is necessary (again in a systematic, possibly more

limited way) to ensure all of the relevant nuances have been captured. “There are

many facets of the real world that are very difficult to simulate effectively–for exam-

ple, how far does a sonar reflect off a metal file cabinet?” [64]. A recognition of the

need for experimentation exists in the literature, although it is rarely acted upon.

Experimental studies might become more rigorous and thorough, e.g., via
standard benchmark problems and algorithms. This is challenging in mo-
bile robotics, given the noisy, system-specific nature of the field. Neverthe-
less, it is necessary for claims about “robustness” and “near-optimality”
to be appropriately quantified, and for dependencies on various control
parameters to be better understood. [20]

Only after rigorous testing becomes standard in the robotics community, and the

difficulties associated with using real sensors and actuators are embraced, will designs

emerge that prove to be robust in the real world.

2.2 Odor Localization

Recent advances have been made in understanding biological odor localization and

tracking as developed in moths [21], [7] and rats [10] in the air, and lobsters [3] and

stomatopods [106] in water. Biology utilizes olfaction for a wide variety of tasks

including finding others of the same species, communication, behavior modification,

avoiding predators, and searching for food. Animals use a combination of “hardware”

23

(frequency of receptor adaptation, perhaps), “software” (temporal integration and/or

spatial integration), and behavioral search strategies (both intrinsic and landmark-

based) to locate odor sources. Odor localization is in essence a behavioral problem

that varies from animal to animal. While some animals exploit fluid information at

different layers (lobster) or different residues on the ground (ants), others can track

odors in the air (moths) or use a combination of information (dogs).

From an engineering standpoint there are advantages to combining odor track-

ing with mobile robots, such as in the detection of chemical leaks and the chemical

mapping of hazardous waste sites [87]. A necessary initial step is to develop robotic

systems that use odor tracking algorithms, multiple sensory modalities (e.g., odome-

try, anemometry, olfaction), and sensory fusion to search out and identify sources of

odor. Such systems have been built by various research groups [81], [88], [57], [36],

[51], [40], although performance thus far has been limited by the reliability, temporal

response characteristics, and sensitivity of available odor transduction mechanisms

[80]. The essential problem is that the available odor sensors lack the combination of

speed and sensitivity necessary to perceive the complex and dynamic structure of a

turbulent odor plume. The approach of moving slowly and continually sampling odor

and flow data to reduce environmental noise is used in nature (starfish) and has been

applied to robotic systems [81], [51], but environmental and behavioral constraints

(e.g., significant plume sparseness or meander, time critical performance) can render

these systems ineffective [47]. However, as odor sensory technology improves [47], de-

signers of artificial odor localization systems will be able to focus on algorithm design

to achieve better system performance.

Previous robotic odor localization research that derived concentration gradient

information from multiple sensors [46], [81] was restricted to operation in the proximal

region of the plume (within 2 m of the source) and had to move slowly (.01-.03

m/s) so that concentration gradient information could be extracted with reasonable

accuracy. Although these efforts were successful in demonstrating the feasibility of

odor localization with mobile robots, it is not clear that any method that involves

spatial concentration extraction will extend to more sparse plumes (i.e., longer plume

24

tracking distances), since as odor information becomes less frequent, concentration

integration times will increase, decreasing system performance accordingly [47]. More

capable sensors and different plume tracking behaviors may be necessary to efficiently

track more complex plumes.

25

Chapter 3

A Design Methodology and the

Odor Localization Task

The reasons why one might want to construct a self-organized robotic system to

perform a particular task were laid out in the previous chapter. The difficulties

involved in designing this type of system have been described as well. This chapter

presents a way to design self-organized systems, including an off-line machine learning

algorithm that can be used when evaluation is expensive. It also provides a detailed

description of the odor localization task studied in this work and the metrics used in

performance evaluation.

3.1 A Design Methodology

3.1.1 Phase Zero: Choose a Task

Before one begins the design process, the task to be accomplished must be specified

exactly. This description should be in the form of a quantitative performance metric.

A “total system cost” is useful in this regard, because it is often the only way to reduce

different task components (e.g., initialization costs, energy used, time-to-completion)

to comparable units. Cost metrics are used throughout this work. Some costs may

be difficult to specify exactly–e.g., what is the cost of one more minute of exposure

to a chemical weapon? Estimates can always be made, however, and their accuracy

will play a significant role in determining the ultimate performance level achieved.

26

3.1.2 Phase One: Parameterize the Control Algorithm

The first step for specifying the control algorithm is to determine what sensors and

actuators are necessary (and cost-effective) for task completion. Systems using differ-

ent sensor and actuator sets may be constructed and compared, but the initial design

effort for each set should proceed independently. As others have done previously,

this design methodology uses the notion of “behaviors” to partition the sensory and

action space of each individual agent. However, rather than choosing a behavior set

and using machine learning to derive a sense-action mapping, the designer instead

specifies a set of parameterized behaviors that allows a group of agents to solve the

given task. The designer determines when each behavior is active, and only a small

set of control parameters are left to be searched. This design methodology does not

attempt to guide the designer in the process of determining the proper behaviors or

specifying which parameters should be free, although familiarity with systems pos-

sessing similar function (e.g., as observed in biology) have been found to be helpful,

and feedback from the subsequent design phases can assist as well.

All algorithms

Possible algorithms given
sensory/action domain

RL optimum

Possible algorithms
after parameterization

Figure 3.1: Venn diagram depicting the space of algorithms that can solve a particular task.

Venn diagram depicting the space of algorithms that can solve a particular task.

The key point of this phase of the design is that the behavioral parameterization

27

drastically reduces the size of the algorithmic search space, which then can be sys-

tematically explored both in simulated and real instantiations of the task. Figure

3.1 provides an abstract representation of the design space. Within the set of all

algorithms that can perform a particular task lies a subset restricted by a particular

sense-action domain. This subset of algorithms can be large for complicated tasks,

so this design methodology calls for the system designer to further restrict the space

of possible algorithms by parameterizing the behaviors that perform the sense-action

mapping. Within this more limited domain, reinforcement learning techniques can be

used to determine the algorithm parameter sets that produce the best performance.

3.1.3 Phase Two: Off-Line Machine Learning Optimization

Once the behaviors and the control parameters have been chosen, the system must

be implemented for testing. Simulation is useful in the initial design stages to permit

rapid prototyping of behaviors, although testing on real hardware must take place to

verify that the simulations accurately model the agent interactions with the environ-

ment. If the simulated and real results agree over a test domain, the speed of the

simulation can be exploited during the optimization phase. Maximizing system per-

formance involves solving a global optimization problem in the algorithm parameter

space. Because self-organized systems depend heavily on sensitive agent-to-agent and

agent-to-environment interactions, performance is often stochastic, hence evaluative,

rather than gradient based, search methods are appropriate. This type of control

optimization has been extensively studied for the case of a single agent [93, 29, 111],

as well as for multiple agents [82, 70].

This design methodology assumes that all agents follow the same control policy

and that the only metric used for system evaluation is the global task metric. The

use of homogeneous controllers with a global reward signal provides a way of address-

ing the credit assignment problem [76], which represents the difficulty in distributing

credit for success among the many decisions that may have played a role in producing

it. Credit assignment is a central problem in reinforcement learning [93]. By making

28

the learning agent operate in the space of algorithm parameters and providing only

measures of group performance (rather than feedback from individual actions), there

effectively becomes one agent and one action per reward signal, and the credit assign-

ment problem no longer applies [98]. This solution may be an extreme simplification

of the reinforcement learning problem, but it does allow performance improvements

to be realized on reasonably complex tasks. Note that even though all agents are

required to have the same control policy, differentiation is still possible. Each agent

could alter control parameters according to experience, or agents could randomly

choose one of a fixed number of different policies when the task begins (in the limit

of many agents, the number of agents of each type will be stable).

Even if the number of control parameters is small, however, a full dimensional

search of the parameter space is not always feasible. In this work, to reduce the size

of the search space, sequential 1-D optimizations are performed, with each parame-

ter optimized while the others remain fixed. This restriction may make finding the

optimal parameter set difficult in some search domains. However, in the case studies

examined in this work, the parameters can be grouped so that each set is effectively

independent, and the 1-D search allows performance improvements to be achieved

in a reasonable amount of time. In this work the selection of design points (i.e.,

specific parameter values over which to optimize) is done a priori, although there are

techniques for selecting them adaptively [111, 54] which may be utilized in further

studies. Each parameter space is bounded and discretized to include a range of im-

portant values, as determined by preliminary experiments. At the beginning of each

optimization run the variable values are randomly initialized.

The idea behind the optimization procedure itself is rather simple: repeatedly

evaluate a set of parameter values until it can be said with some degree of certainty

that none of the parameter values performs significantly better than the current es-

timated “best” value. This optimization algorithm is defined by the initial design

choice method and three parameters: η, κ, and ε. η defines the margin around the

best point in which it is not cost effective to further optimize (e.g., if η = .1 and all

remaining design points are determined to be less than 10% greater than the maxi-

29

mum, the optimization stops). κ defines the desired level of certainty of achievement

of the margin defined by η. ε sets the minimum number of trials necessary so that the

group comparison procedure is accurate. This work uses a parametric test, Tukey’s

HSD multiple comparison procedure [84], and while the assumptions underlying its

operation (namely normality of data) are not fully met, it performs well enough to

demonstrate the utility of this optimization procedure. For real applications, the

multiple comparison procedure should be tuned to the underlying distribution of the

performance data.

The following describes the details of the algorithm. For each parameter, once the

design points χi (i = 1...ψρ, where ψρ is the total number of points for parameter ρ),

are selected, the optimization is performed as follows:

1. Initialize the set of active points B to include all χi.

2. At each iteration j, simulate a trial at each χi in B, storing the result υ
j
i = P in

Υi. The system performance P (e.g., as described in equation (3.4)) represents

the task metric that is to be maximized and is assumed to be positive.

3. If j > ε, first, using Tukey’s HSD multiple comparison procedure, determine

the critical difference d (to significance κ) which must be equalled or exceeded

by the difference of two means in the set for that difference to be declared

significant. Next, let

E(Υmax) = max
i
E(Υi). (3.1)

For each χi ∈ B, if

(1 + η)E(Υmax)− E(Υi) > d (3.2)

and i 6= max, remove χi from B. E(x) represents the expected value of x.

4. If more than one χi remains in B, go to Step 2.

At the end of the process, the remaining point χmax in B represents the best guess

at the optimum value for the parameter currently being optimized given the other

30

fixed parameter values. After each cycle through all parameters (in either a fixed or

random order), the resulting parameter set is evaluated and then used as the input

set for the next cycle. In this work we set the number of cycles per optimization run

to 10.

This reinforcement learning algorithm optimizes system performance while using

only a minimal amount of evaluation. Because performance evaluation in real or

realistic environments is typically resource-intensive, it is advantageous to minimize

the number of samples required. The results of this optimization procedure not only

reveal the performance levels achievable by the chosen algorithm parameterization,

but they also indicate how the behavioral parameters influence task performance. For

example, parameters that do not converge to a particular set of values can be fixed

to any value and omitted from subsequent optimization runs, as this nonspecificity

indicates that the designer chose to parameterize a value that was not critical to task

performance. Also, optimizing across a set of environments and analyzing how the

optimal parameter values change with environmental characteristics can facilitate

the construction of abstract relationships between environmental and algorithmic

parameters.

3.1.4 Phase Three: Generate an Abstract Model

The third design phase involves the definition of abstract relationships between system

parameters and system performance. System parameters encompass both algorith-

mic and environmental parameters. Once such relationships have been experimentally

validated in a test environment, they can be used to guide the design of a deployable

system, as they will allow the designer to predict system performance in a wider range

of environments than have been explicitly examined experimentally. Examples of this

procedure are given in Chapters 5 and 7. If the task resists abstract characterization,

extensive evaluative optimization can be performed directly on the application envi-

ronment, but it is typically less expensive to experiment with a scaled-down version

of the task. Some amount of experimentation will be necessary in the application

31

environment regardless, to verify that the system performs as expected, but the use

of models to guide the choice of control algorithm parameters can eliminate the need

for extensive experimental parameter search.

3.1.5 Feedback During the Design Process

The design methodology has been described as a sequential process, although in prac-

tice there should be substantial feedback among the different design phases. Behaviors

and control parameterizations will be modified after performance has been observed

in simulation. Real-world implementation will constrain the interaction models used

in simulation. The experimental axis of the design will impact the model generation

procedure, and insights from the modeling work may suggest new behaviors. Once a

model has been generated that can predict the performance values found by the learn-

ing system, real-world problems may be approached with some degree of confidence.

A schematic of the design process and the interactions between its components can

be seen in Figure 3.2.

Define Quantitative Task Metric

Generate Basic Behaviors

 Implement in Simulation Generate a Model

Implement in the Real World

 Learn Optimal Parameters Derive Optimal Parameters

Verify Model

Apply to Real Problems

Figure 3.2: A schematic of the design process, beginning with task definition and ending with
application to real problems. Arrows indicate significant interplay between design phases.

32

3.2 The Odor Localization Problem

The following section provides a detailed description of the odor localization task that

is the principle application examined in this work.

3.2.1 The Odor Plume

As an odor source dissolves into a fluid medium, an odor plume is formed. The

turbulent nature of fluid flow typically breaks the plume into isolated packets, areas

of relative high concentration surrounded by fluid that contains no odor [48, 79]. This

work focuses on turbulent plumes because the application environments for artificial

systems will likely be dominated by turbulent dispersion. Given the packet-like nature

of odor plumes and the current (and projected) limitations of odor sensing technology,

it is assumed that only binary odor information generated from a single plume sensor

is available to odor localizing agents.

3.2.2 Task Definition

The general odor localization task addressed in this paper is as follows: find the source

of a single turbulent odor plume in an enclosed 2-D area as efficiently as possible. This

can be broken down into three subtasks: plume finding (coming into contact with the

odor), plume traversal (following the odor plume to its source), and source declaration

(determining from odor acquisition characteristics that the source is in the immediate

vicinity). Plume finding amounts to a search task, with the added complication, due

to the stochastic nature of the plume, that a simple sequential search is not guaranteed

to succeed. Plume traversal requires more specialized behavior, both to progress in

the direction of the source and to maintain consistent contact with the plume. Figure

3.3 illustrates this phase of the task. Source declaration does not necessarily have

to be done using odor information, as typically odor sources can be perceived via

another type of sensor from short range, but it is possible to do so without any extra

sensory apparatus [88, 40].

33

Plume Source

Odor Packet

Average Wind Direction

Agent Trajectory

Odor Hit

Figure 3.3: The plume traversal task. The issue is how to define the agent trajectory based on odor
hit and wind direction information such that the agent approaches the plume source.

3.2.3 Performance

To study odor localization, one or multiple agents are placed inside an enclosed arena

containing an odor plume, and over repeated trials the time and distance traveled by

the whole group until an individual completes the task are measured. This work as-

sumes that in the case of multiple agents, all are deployed within a minimal distance

of a single deployment point. Task completion can be defined in a number of ways:

an agent comes within a given radius of the plume source (allocentric determination–

useful to emulate a non-odor related target sensor that each robot might carry),

an agent declares the plume source found (egocentric determination, no additional

sensor necessary), or any combination and extension thereof (i.e., multiple declara-

tions required within a given radius). For the purposes of performance evaluation

it is assumed that some measures of time and group energy (which can be consid-

ered proportional to the sum of the individual distances traveled) necessary for task

completion exist.

Efficiency for the odor localization task cannot be defined in the general case.

34

Instead, one can combine the time and energy measures of task performance in an

application specific manner. Since these measures are physically independent, a com-

posite metric incorporating a particular weighting of these two basic factors can be

considered:

C = αT
TC
+ βD

TC
. (3.3)

T
TC
is the time needed for task completion, and D

TC
represents the total distance

traveled by all agents during the task. α is taken to be the cost per unit time of not

completing the task, and β is the cost per unit distance of running the system. C

represents the total cost incurred before the task is completed. To facilitate perfor-

mance comparison across different environments, it is useful to normalize C by the

minimum completion cost of a particular system. This measure is then inverted to

generate a more intuitive (and presentable) performance metric:

P =
αT

MIN
+ βD

MIN

C
. (3.4)

T
MIN

and D
MIN
, the optimum values for the given task, are determined from the

average distance between starting location and target location as well as maximum

agent speed. The numerator of P thus represents the minimal completion cost–

obtainable only by a system that has prior knowledge of the source location. The

form of P ensures that for any α and β greater than 0, the optimal system will achieve

a performance of 1, and any system that requires more time or distance (averaged

over many initial conditions) will have a performance less than 1. By choosing specific

values for α and β, the appropriate relationship between time required and energy

used (which typically vary inversely) can be generated for evaluating any particular

application.

35

Chapter 4

Robots, Sensors, and Simulators

The design methodology described in the previous chapter emphasizes the generation

of systematic performance data in real and realistic environments. This chapter

describes the tools used to investigate the plume task [41]. It covers the real-robot

platform, the arena and infrastructure developed to carry out systematic experiments,

the odor and wind sensors built to enable real-robot plume traversal, the sensor-

based simulator used to permit more extensive experimentation, and the software

architecture that runs the control algorithms.

4.1 Real Robots

This work uses Moorebots, as shown in Figure 4.1a, which were originally designed by

Owen Holland at the University of West England, Bristol, U.K. Each 24 cm diameter

robot is equipped with two DC motor-driven wheels, a castor wheel, a 2 Mbit wireless

LAN transceiver, and 12-bit A/D and D/A converters. See [108] for a more detailed

robot description. To perform plume traversal, this basic configuration was supple-

mented with 4 infrared range sensors for collision avoidance, a single odor sensor, a

hot wire anemometer, and a set of markings to assist in overhead tracking. A fully

equipped plume-traversing Moorebot is shown in Figure 4.1b, and in this configura-

tion each robot has an energetic autonomy of 1.5 hours. On-board high-level control

is provided by a PC104 based Intel 386 processor running Linux. Low level control

such as motor speed regulation is executed by dedicated hardware interfaced to the

36

PC104 bus. Groups of 1 to 6 robots are used to study the plume task, and a group

of 10 robots is used to demonstrate a flocking behavior (see Chapter 8).

Marker for
Overhead
Camera

Proximity Sensors

Polymer
Odor
Sensor

Directional
Wind
Sensor

(a) (b)

Figure 4.1: (a) A basic Moorebot. (b) A Moorebot equipped with wind, odor, and proximity sensors,
as well as markings for overhead tracking.

4.2 Robot Arena and Infrastructure

Due to physical space constraints, only one of the three odor localization subtasks,

plume traversal, is studied on the real robots. A plume of significant length fills a

large part of the arena, so the plume search phase is trivial in the real arena, and

technical and space constraints make the source declaration phase experimentally

difficult to study as well. However, much of the plume-related complexity of the odor

localization task is captured by the traversal phase.

The plume traversal arena is 6.7 by 6.7 m. The odor plume is created by a 23 cm

square hot water pan and a bank of 5 fans 30 cm in diameter (see Figure 4.2a), and

it extends diagonally from one corner of the arena toward the opposite corner. Flow

characteristics based on data taken along the plume axis 15 cm above the floor are

summarized in Table 4.1. The coefficient of variation is a measure of the intensity

of the flow turbulence. It represents the ratio of the standard deviation of the wind

37

velocity to the mean wind velocity, and 20% is a value typically measured outdoors

[46].

Table 4.1: Wind Field Characterization

Distance from source [m] 1 4 8
Mean wind speed [m/s] 1.13 1.01 .34
Coefficient of variation [%] 15.4 21.2 52.0

The robot start area is located in the corner opposite the plume source. An over-

head camera tracking system, combined with a radio LAN among the robots and an

external workstation, is used to log position data during the trials, determine trial

completion, reposition the robots between trials, and emulate inter-robot communi-

cation signals. These signals require each robot to have access to the local range

and bearing of the signaling robot, and since hardware to provide this information is

not available, virtual sensors are used. The arena layout, as seen from the overhead

camera, is shown in Figure 4.2b.

Plume Source

Recharging Stations

Start Area

Wind Flow

Robot

(a) (b)

Figure 4.2: (a) Real-robot arena. Plume source visible in upper left. (b) Real-robot arena as seen
from overhead camera.

Trials of different group size are interleaved, and inactive robots are automati-

cally positioned at recharging stations. Intermittent charging enables experimental

38

sessions to run for over 4 hours nonstop. A bank of recharging stations is shown in

Figure 4.3. Each robot is equipped with a pair of servos underneath its chassis that

make contact with the metal plates on the floor when instructed to do so by the cam-

era system. Automation of the inter-trial repositioning and recharging procedures

greatly increases the rate at which experiments can be run and reduces wear on the

robots from human handling. These two factors are instrumental in the extraction of

systematic data from a multiple robotics test-bed.

Figure 4.3: One bank of 6 recharging stations. Servos underneath each robot make contact with the
metal plates on the ground after the robots are positioned by the overhead camera system.

4.3 Odor Sensor

While many types of odor sensing technology currently exist [80], a good combination

of ease of transduction, reversibility, reproducibility, tunability, ease of production, ro-

bustness across environments, miniaturization, and speed is offered by carbon-doped

polymer sensors [62]. This odor sensor detects the presence of an airborne substance

through a change in the electrical resistance of a chemically sensitive carbon-doped

polymer film [32]. While this type of sensor can lack baseline stability, it is very

fast (response times < .1 s [51]), and signal processing techniques can be used to

39

counteract its baseline drift. Carbon-doped polymer sensors are used in this work.

Sensors are fabricated from solutions consisting of 20% carbon black and 80%

polymer (poly-vinylpyrrolidone) dissolved in dichlormethane, using methods as de-

scribed in [26]. The conducting polymer solution is spray coated [72] onto a surface

mount universal board so that the sensor film closes the circuit between two mount-

ing pads. Polymer solution is applied until sensor resistance nears 100 kOhm, and

baseline resistances typically settle to a value between 30 and 300 kOhm after a 24

hour drying period. A sensor closeup can be seen in Figure 4.4.

Figure 4.4: Odor sensor closeup.

The interface circuitry applies an input bias voltage across a multiplexer selectable

range resistor to generate a current through the sensor via a Wilson current source.

The output voltage across the sensor is then filtered to remove high frequency noise

and buffered for reading. The variable bias voltage and selectable range resistor allow

a wide range of sensor baseline resistances (10 kOhm to 10 MOhm) and automatic

calibration, an important feature because polymer sensors are difficult to fabricate

precisely and their baselines drift over time. The calibration procedure consists of

switching through all range resistors with the bias voltage centered (and no stimulus

present), choosing the resistor that results in an output closest to the desired output,

40

and then adjusting the bias voltage until the desired baseline output is achieved. The

resistor and bias values are then stored for later use. The desired output value is 25%

of the ADC’s range, as the sensor values are more likely to drift up than down.

0 1 2 3 4 5
−10

−5

0

5

10

15

20

Frequency [Hz]

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 [d

B
/H

z]

No Plume
Plume

4000 4100 4200 4300 4400 4500 4600 4700 4800
−5

0

5

10

15

20

25

30

Samples @ 85 Hz

O
do

r
S

en
so

r
O

ut
pu

t [
m

V
]

Raw Signal Distal Plume
Filtered Signal Distal Plume
Filtered Signal No Stimulus
Odor Detection Threshold

(a) (b)

Figure 4.5: (a) Power spectral density of the odor sensor output when no stimulus is present and
when the robot is in the distal end of plume. (b) Raw distal plume data, filtered distal plume data,
and filtered baseline data. The threshold is 4 std above 0.

Previous versions of the interface circuit used a local analog feedback loop to

maintain the output voltage at a constant level. However, this low-pass hardware

filtering attenuated not only the sensor drift but the signal as well, reducing sensor

sensitivity. Sensitivity is crucial for the study of plume tracing, because the agents

must be able to sense a meaningful plume structure, not simply respond when very

close to the odor source. In our indoor experimental set-up, room ventilation is

limited, so enhancement of the plume signal is not an option. Thus, instead of using

analog feedback, the output signal is digitally filtered and an odor hit is recorded

whenever the filtered signal rises above some threshold. A sixth order Butterworth

bandpass filter is used, and the filter parameters are set by comparing the power

spectral density given no stimulus with the power spectral density when the robot

is stationary in the distal part of the plume. Given that a frequency range that

provides the highest possible signal to noise ratio is desired, bandpass cutoff values

of .3 to 1.8 Hz were chosen based on the data shown in Figure 4.5a. Although the

41

sensors can respond at higher frequencies, no information is available above 2 Hz given

the transduction circuitry and experimental conditions. The amplitude threshold

for odor detection is set at 4 times the baseline standard deviation (recorded from

10,000 samples taken at an average rate of 85 Hz following calibration) to render false

positives improbable.

-3

0

3
-3

0

3

0

20

40

60

[m][m]

H
its

(a) (b)

Figure 4.6: (a) Total plume hits received by 6 real robots over 1 hour while performing a random
walk behavior. The well defined plume boundary indicates the plume envelope is stable over time.
(b) Plume hits received by 6 individual real robots over 1 hour while performing a random walk
behavior. Similarity between maps suggests there are no significant differences between robots.

When executing the odor localization algorithm, the odor sensor polling rate av-

erages 85 Hz. Because the robot CPU is performing the polling, the filtering, and

handling all other tasks the robot requires (e.g., communications, high-level motor

control, and memory management), the sensor polling rate is not precise, and we

do not use a real-time Linux kernel (which could provide reliable, although slower,

polling rates) due to the overhead it requires. This timing imprecision is not taken

into account by the digital filter, and treatment of the polling jitter, through, for ex-

ample, the use of a dedicated microcontroller to take sensor readings, could increase

sensitivity. However, the combination of the calibration procedure and digital filter-

ing produces a robust binary odor detection sensor. Figure 4.5b compares raw and

filtered data from the distal end of the plume against filtered baseline data from the

42

same sensor. The detection threshold is plotted 4 std above 0, and the raw data has

been DC shifted about -3 V for ease of presentation. The presence of odor hits 8 m

from the plume source shows that a significant plume stimulus exists to be tracked,

even in the distal plume region where odor information is intermittent. Mapping the

plume using a random walk behavior indicates that the plume is stable over time and

across robots (see Figure 4.6a and Figure 4.6b).

4.4 Wind Sensor

-3 0 3

-3

0

3

[m]

[m
]

(a) (b)

Figure 4.7: (a) Wind sensor closeup. Sensor circuitry shown on left. (b) Average wind direction in
plume traversal arena as measured by the real robots (2102 individual samples averaged spatially).
Plume source at upper right. Arrow lengths are proportional to the uniformity of flow direction at
the tail of each arrow.

The anemometer (shown in Figure 4.7a) is a Shibaura F6201-1 air flow sensor. It

has previously been used to study odor localization [46], and it can sense wind flow

down to .05 m/s. It is enclosed in a tube to provide unidirectional sensitivity, which,

combined with a scanning behavior, allows the robot to measure wind direction.

When wind direction information is required, the robot first rotates 90 degrees, then

43

rotates slowly 360 degrees while reading the wind sensor output, and finally rotates

back to the heading corresponding to the highest sensor value. The robot takes the

shortest path back to the desired heading, and either over or under rotates to the tar-

get to account for the 1 s time delay of the internal anemometer processing circuitry.

The initial rotation reduces the probability that the robot begins facing upwind, in

which case the discontinuity in the scanning behavior can degrade the resulting wind

direction value. Wind sensor performance has not been fully characterized due to the

requirements of a suitable testing environment (flow must be laminar), although the

data from the odor localization experiments suggests it is sufficient for the given task.

A wind map of 2102 individual samples averaged spatially is shown in Figure 4.7b.

4.5 Sensor-Based Simulation

Plume Source

5x Longer Arena Length

Start Area

Mean Wind Flow

(a) (b)

Figure 4.8: (a) Webots plume traversal arena with average plume intensity map. (b) Layout of
larger Webot arena.

Simulation models can provide a significantly decreased performance evaluation

time, which enables a more complete investigation of the system parameter space.

Models also allow treatment of environmental conditions which (due to some technical

44

limitation) cannot be implemented physically. In this work, the use of a sensor-based

simulation, which explicitly embeds models of both the agent’s sensors and the sensed

environment into the simulation, permits the enlargement of the plume search arena

and the examination of agent performance on the full odor localization problem.

Because the source declaration phase of the task can lead to elevated agent densities

around the source, and thus is very sensitive to inter-agent repulsion parameters,

point simulations, which can only approximate such interactions, are not able to

provide faithful results. Thus, Webots [75], a 3-D sensor-based, kinematic simulator,

originally developed for Khepera robots [77], is employed to systematically investigate

odor localization performance in simulation. This kinematic simulator has previously

been shown to generate data that closely matches real Khepera [45], [67], [66] and

Moorebot [39] experiments, so there is reason to believe that real-robot behavior can

be accurately captured.

Source

Source

(a) (b)

Figure 4.9: (a) Georgia Tech plume, taken from a real dye plume in a flume tank. (b) Caltech
plume, generated by simulating particle transport based on real ocean flow data. In both plumes
overall flow moves left to right, although the flow direction is more variable for the Caltech plume.

Initial simulations are performed in an arena modeled after the physical arena, as

shown in Figure 4.8a, to verify that the simulator produces accurate results. These

results are presented in Chapter 7. In addition, a 25 times larger (area) arena is

used to study the full odor localization problem (see Figure 4.8b). The agent behav-

ioral algorithms correspond exactly to those used by the real robots. To properly

capture the plume stimulus, a series of 3000 leaky source 2-D Planar Laser-Induced

45

Fluorescence plume images generated in a water flume by Donald Webster and Philip

Roberts at Georgia Tech [105] [103] are incorporated into the simulation. An instan-

taneous image of this plume is shown in Figure 4.9a. Such “plume movies,” even

though they do not capture the influence of the agents on plume dynamics, offer a

good approximation to the discretized (packet-like) nature of odor stimulus received

in real environments.

-3

0

3
-3

0

3

0

20

40

60

80

100

[m][m]

H
its

Figure 4.10: Plume hits received by 6 simulated robots over 1 hour.

The Georgia Tech plume data is scaled to imitate the average speed and envelope

of the real plume data (compare Figure 4.10 and Figure 4.6a), and the odor sensi-

tivity threshold is tuned (higher threshold leads to less odor information) based on

performance observed in our real arena. In the small arena the sensor threshold is

.8826 µg/L. The increased odor hit frequency observed in the simulated plume (com-

pared to the real plume) is due to the fact that for efficiency the simulated sensors

are bandwidth limited only by the update rate of the plume data (10 Hz) rather than

by a bandpass filter like the one used on the real robots (.3-1.8 Hz). For the smaller

arena, flow information is taken directly from the real-robot data (as shown in Figure

4.7). In the experiments performed in the larger arena, the Georgia Tech plume data

46

is increased in size by a factor of 2 (to make the plume traversal phase more relevant

to the overall task). To create more sparse plumes, two other sensor thresholds are

investigated: 3.678 µg/L (resulting in a plume with 1
5
the density of the original),

and 7.061µg/L (resulting in a plume with 1
10
the density of the original). In an effort

to emulate more open flow patterns, wind information is generated by adding ±10%

white noise to a constant direction parallel to the main plume axis.

Also, in the larger arena, a set of experiments incorporates another set of plume

data provided by Francois Lekien and Chad Coulliette at Caltech. This plume data

(1000 frames) was generated via a detailed simulation model that traced the trajec-

tories of virtual particles as they are dropped into a simulated moving fluid. The

flow data is based on readings of ocean currents off of the eastern Florida coast, and

it generates a more complex plume than can be observed in the relatively narrow

Georgia Tech flume tank. An instantaneous image of the Caltech plume is shown

in Figure 4.9b. This plume data is scaled to be the same size as the Georgia Tech

plume, and the frame update rate is scaled to render the average velocity of the two

plumes equivalent.

4.6 Software

Although robot software architectures are a heavily researched area [2], there are

many methods of achieving equivalent function, and particular design choices are

typically not important. Therefore, the software developed to control the robots is

described only briefly. The control code is written in C. A set of driver functions

was developed to enable simplified access to the robot sensor and motor ports. Each

controller process is divided into a number of different threads. Sensors that are

polled constantly (such as the collision sensors) have a dedicated thread to handle

the polling, and the sensor data is stored in memory. Incoming communication from

the camera system (via a TCP/IP socket) is also handled by a separate thread. A

control thread reads in the communication and sensor data from memory, performs

the control logic, and issues commands to the motors. The same control code runs

47

on the real and simulated robots, as an interface library was developed to translate

Moorebot functions into Webots function calls.

The overhead camera software is written in C++ to take advantage of library

functions that were provided with the camera hardware. This software tracks the

robots in the arena during experiments, repositions the robots between trials, and

augments the sensory information available to the robots. Because all of the robots

appear the same to the camera system, an initialization procedure is used to differ-

entiate between robots. At the beginning of an experiment, the camera system runs

through each robot IP address sequentially and issues a command to move a slight

amount. The camera system can then pair each moving robot with an IP address, and

it maintains this pairing by tracking the robots throughout the experiment. Tracking

failures (in which the camera system confuses the IP addresses of the robots, due

to the robots moving too fast or the camera updating too slowly) can be detected

during repositioning between trials, and recovery is performed via a re-initialization

procedure. A high level of software stability is required to generate systematic data

from a multiple robot system.

48

Chapter 5

Collective Search

Before investigating the full odor localization problem, two of its subtasks will be

examined separately, beginning with the search phase. The system design issues are

addressed at a high level, and the results described in this chapter will form the ba-

sis of the abstract model of odor localization performance presented in Chapter 7.

This chapter presents a quantitative analysis of the tradeoffs between group size and

efficiency in collective search tasks that considers both the time-sensitive nature of

search completion and the system operating cost. First, the search task is defined

and a performance metric is presented that can account for all of the costs associated

with the task. Next, for both random and coordinated search strategies, analyti-

cal expressions are derived that can be used to predict optimal system performance

bounds given a particular task description. Also, the performance benefit of using

coordinated search is shown to be dependent on the relative values of the different

cost components. Finally, a sensor-based computer simulation is used to support the

analytical results, suggesting that the assumptions involved in their derivation are

sound [38].

5.1 Background

Search tasks, because they submit well to parallelization, are an ideal application

for multi-agent systems. Search is a well-studied problem (for a review, see [9]),

and there has been a significant amount of investigation into the efficiency tradeoffs

49

between random and coordinated search strategies [33]. However, how to assess the

performance of multi-agent search systems is still an open problem. Some researchers

take into account only energy used [33], while others consider only the time required

until completion [6] when analyzing the performance of multi-agent systems on similar

search tasks. Clearly, the performance metric used must be appropriate for the task

being studied, but there is reason to believe that a more complete cost metric might

offer further insight into the design tradeoffs present and aid in the comparison of

results across research groups.

5.2 Search Task Description

The search task examined in this chapter can be described as follows: a group of N

agents each having a sensor radius r must locate a single target contained within an

enclosed 2-D arena. For simplicity, consider this arena to be a square of length L,

with LÀ r so that the agents are likely to disperse throughout the arena before the

target is found. To ensure that the agents do not begin with full coverage of the arena

(thus driving the search time to 0), initial agent deployment must be within a single

deployment area of radius R. It is assumed that L À R, although the deployment

area may be located anywhere within the arena. Figure 5.1 shows a schematic of an

example task layout.

5.2.1 Performance Metric

Performance on this search task can be measured in terms of T
S
, the time elapsed

before an agent detects the target, and D
S
, the sum of the distances traveled by each

of the agents. D
S
then correlates to the amount of energy needed for system operation.

There are also setup costs that need to be considered in a complete system evaluation.

Since these measures are physically independent, a composite metric incorporating a

task-specific weighting of these basic factors can be considered. For N agents,

C = αT
S
+ βD

S
+ γN. (5.1)

50

L
R

Deployment Area

Sensor Range r
Agent

Target

Figure 5.1: Example task layout in which N = 3.

There are three basic cost components. α is taken to be the cost per unit time of not

completing the task, β is the cost per unit distance of running the system, and γ is

the initialization cost per agent. C represents the total cost incurred before the task

is completed. By choosing specific values for α, β, and γ the appropriate relationship

between time required, energy used, and initial cost can be generated for evaluating

any particular application.

To simplify the analysis, if the control algorithm used maintains an average speed

v across time, the total distance traveled can be approximated by the time required

to complete the task:

D
S
= T

S
Nv. (5.2)

Substituting into equation (5.1) above,

C = αT
S
+ βT

S
Nv + γN. (5.3)

Thus, for any given group size, the system cost can be obtained directly from the

51

time required. Although C is the metric used in the analysis section of this paper,

in order to facilitate comparison across environments, it can be normalized by the

minimum completion cost in order to generate a unitless performance metric P . The

minimum cost is based on the optimum values for the given task (T
MIN
, D

MIN
) for

a single agent with prior knowledge of the source location, as determined from the

average distance between starting location and target location as well as maximum

agent speed:

P =
αT

MIN
+ βD

MIN
+ γ

C
. (5.4)

This form of P ensures that for any cost α, β, or γ greater than 0, the optimal system

will achieve a performance of 1, and any that requires more time, distance, or agents

will have a performance less than 1.

5.3 Deriving Performance

The stochastic nature of real systems (e.g., from sensor noise, agent movement, or de-

ployment and target location variation) means that for each trial the cost to complete

a search task is drawn from some distribution. For some applications the designer is

interested in minimizing the average cost of system operation, and for other tasks the

value of interest is a composite of the average cost and its variation. This work focuses

on bounding the cost of a given percentage of trials, that is, determining the cost C

which exceeds the cost of some fraction S of all trials in that particular environment.

Expressions for the optimal cost of random and coordinated search strategies are

derived in the following sections. For clarity, a summary of the variables used is

provided in Table 5.1.

5.3.1 Random Search

In a system performing random search, the agents move randomly while searching for

the target without any explicit attempt to partition the space amongst agents or avoid

52

Table 5.1: Summary of Parameters and Variables

N Number of agents r Sensor radius
L Arena length R Deployment area radius
T
S
Time to complete task D

S
Total distance to complete task

α Cost of not finishing β Cost of operation
γ Initialization cost per agent C Total system cost
v Average agent velocity P System performance measure
S Desired performance bound g Probability of system finding target
t Time interval k Minimum dispersion time
η Sensor detect probability p Probability of agent finding target
x? Optimal value for variable x Z Single agent trial search time

searching the same area multiple times. Given that a system has some probability

g of finding the target during a time interval t, the probability of finding the target

during a particular interval is simply g multiplied by the probability of not finding

the target in all previous intervals. Thus the probability S that the target is found

before some time T
S
can be expressed as the sum of a geometric series:

S =

T
S∑

t=1

g(1− g)t−1. (5.5)

To solve for T
S
, the series can be simplified as follows:

S − (1− g)S = g − g(1− g)TS (5.6)

T
S
=
log(1− S)

log(1− g)
. (5.7)

The above equation describes the time to complete the task based on search success

probability and desired performance bounds. To be more accurate, however, a term

needs to be added to account for the fact that the agents cannot begin the task with

full coverage of the entire search area (because all agents start within the deployment

area):

T
S
=
log(1− S)

log(1− g)
+ k. (5.8)

53

The factor k represents the time required to cover the distance between the deploy-

ment area and target, and serves as a lower bound of the time needed to perform the

task (i.e., k = T
MIN
).

The probability g can be decomposed in terms of the number of individual agents

N performing the task, and the probability p of a single agent scanning the target per

time period t. In turn, p can be approximated using the ratio of the area scanned per

time t to the total area of the arena L2. A sensor detection probability η, modeled

here as the probability of target detection given that the target enters the sensor

range, factors in as well:

p =
2rvη

L2
. (5.9)

Assuming that the probability of each agent succeeding is fully independent, given

p and a group size of N agents, the probability g of the system locating the target

during a time period t can be calculated to be

g = 1− (1− p)N . (5.10)

Plugging this value into equation (5.8):

T
S
=
log(1− S)

N log(1− p)
+ k. (5.11)

Now the optimum number of robots, the optimum time, and the optimal cost for

a given task can be derived. Let

Z =
log(1− S)

log(1− p)
. (5.12)

Z represents the length of time necessary for S percent of trials using a single agent

to locate the target (after the initial dispersion period k). Substituting into equation

(5.11):

54

T
S
=
Z

N
+ k. (5.13)

Substituting this value into equation (5.3), another form of the total system cost is

derived:

C =
αZ

N
+ αk + βvZ + βNvk + γN. (5.14)

Assuming that all the parameters in the system are fixed except N , determining

the critical points leads to an expression for the optimal number of robots N ?. Taking

the derivative of C, setting it equal to 0, and then solving for N ?:

δC

δN
= −

αZ

N2
+ βvk + γ = 0 (5.15)

N? =

√
αZ

βvk + γ
. (5.16)

The positive root is taken because the number of agents must be positive, and the

second derivative δ2C
δN2 is positive so N

? occurs at a minimum value of C. Plugging

this value into equation (5.13) produces the optimal search time T ?
S
:

T ?
S
=

√
Z(βvk + γ)

α
+ k. (5.17)

Equations (5.14) and (5.16) can be combined to arrive at the optimal cost C? for

searching a particular environment using random search:

C? = αk + 2
√
(βvk + γ)αZ + βvZ. (5.18)

C? breaks down into essentially three terms. The first, αk, represents the mini-

mum cost of having to disperse throughout the arena before finding the target. Gen-

erally, however, because the sensor radius is assumed to be small compared to the

arena size, Z À k so this term will not have a substantial influence on the overall

cost. The second term in equation (5.18) represents the cost of not finishing the task

accrued while performing the task (e.g., the damage done by the target before it can

55

be located and neutralized). This term will dominate when α is the dominant cost

component. The coefficients β and γ play a role in this term as well because they

influence the optimal number of agents and thus the speed at which the task can be

accomplished. The third term represents the cost of searching the required area to

complete the task. It will dominate when β is the dominant cost component. It has a

relatively simple form because the number of agents in the system does not influence

the size of the area that must be searched. Substituting back in for Z, the optimal

random search cost can be specified in terms of the component costs and basic task

parameters:

C? = αk + 2

√√√√(βvk + γ)α
log(1− S)

log(1− 2rvη
L2)

+ βv
log(1− S)

log(1− 2rvη
L2)

. (5.19)

5.3.2 Coordinated Search

The performance of coordinated search algorithms has been well studied [9]. In terms

of the variables described in this paper, the results are as follows. Coordinated search

for N agents requires breaking the search space into N equal partitions, and assigning

a single agent to sequentially search each one. The total amount of time TPass required

for each agent to make a single pass over its entire partition can be stated in terms

of the arena size L, agent speed v, and sensor range r:

TPass =
L2

2Nrv
. (5.20)

Given a sensor detect probability η, the total number of passes M each robot must

make can be expressed similarly to equation (5.7) above:

M =
log(1− S)

log(1− η)
. (5.21)

Thus the total time required for the optimal system to search the arena is as follows:

T
S
= TPassM + k =

log(1− S)L2

log(1− η)2Nrv
+ k. (5.22)

56

Where k represents the time required for the robots to move from the deployment

area to their respective partitions. If Zcor is defined as follows:

Zcor =
log(1− S)L2

log(1− η)2rv
. (5.23)

Equation (5.13) is again reached:

T
S
=
Zcor
N
+ k. (5.24)

All of the optimal value derivations in the previous section now apply.

5.3.3 Performance Comparison

Comparing the optimal costs of different search algorithms can provide insight into

the conditions under which each type might be more suitable. This can be done by

looking at the ratio of the optimal cost of random search C?
rnd to the optimal cost

of coordinated search C?
cor. The choice of algorithm influences only the value Z, and

Zrnd (equation (5.12)) and Zcor (equation (5.23)) are defined above. As shown in [34],

the ratio Zrnd to Zcor simplifies as follows:

Zrnd
Zcor

=

log(1−S)

log(1− 2rvη

L2)

log(1−S)L2

log(1−η)2rv

≈
− log(1− η)

η
. (5.25)

The approximation holds when rvη

L2 is close to 0, as is typical when the search arena

is large. This equation indicates that as the sensor reliability decreases, the perfor-

mance gap between random and optimal search strategies closes. However, the cost

components play a role as well.

As stated in Section 5.3.1, when α is the dominant cost component, the second

term in the cost function (equation (5.18)) will dominate, so assuming all cost com-

ponents remain constant across the different algorithms:

C?
rnd

C?
cor

=

√
−
log(1− η)

η
. (5.26)

57

Likewise, when β dominates, the third term in the cost function is the most important,

thus:

C?
rnd

C?
cor

=
− log(1− η)

η
. (5.27)

Therefore, aside from sensor detect probability, tasks for which there is considerable

time pressure will be more suited to random search strategies than tasks that empha-

size economy of effort. This is not an unexpected finding, but this analysis formalizes

the tradeoffs involved. Because the cost γ of building and maintaining different types

of robots suitable for each algorithm is difficult to deal with abstractly, it is not con-

sidered here. However, it is worthwhile to note that robots capable of the coordinated

action will likely cost more than robots suitable for random search.

5.4 Supporting Simulations

Formulation of the optimal search cost is straightforward, but the analysis of the

random search algorithm required assumptions about the independence of the success

probability over sequential time periods for a single agent as well as across agents.

To verify that these assumptions are valid for this type of task, the search task was

implemented in Webots and the time and distance required for groups of various

sizes to succeed was recorded. To implement the random search behavior, the agents

moved forward at a constant speed, making random turns (between π
4
and 3π

4
rad)

away from obstacles (walls and other agents) when necessary.

5.4.1 Results

The random algorithm was simulated 1000 times for group sizes from 1 to 80 agents,

and the time and group distance required to complete the task were measured. The

deployment area was always placed in the arena center, and the target was placed

randomly throughout the arena for each trial. The dispersal time k was calculated

from the arena length and the agent speed. The task and cost parameter values

58

Table 5.2: Task and Cost Parameter Values
Agent radius .5 [m]
Sensor radius r .5 [m]
Arena length L 100 [m]
Deployment area radius R 10 [m]
Average agent velocity v 2.9 [m/s]
Minimum dispersion time k 17 [s]
Desired performance bound S .95
Sensor detect probability η .5
Cost of not finishing α 10 [$/s]
Cost of operation β .0055 [$/m]
Initialization cost γ 82 [$/agent]

selected are shown in Table 5.2. Note here η is significantly less than one and αÀ β,

so the random algorithm is expected to perform similarly to the coordinated search.

Figure 5.2 shows the results of calculating the costs in this system analytically

compared to the costs derived experimentally. There is good quantitative agreement

between the analytical and simulated results for the random algorithm, suggesting

that for this task the assumptions of independence hold and the analytical results are

valid. Also, it is worthwhile to note that the optimal group size for both algorithms

is well above 1 (so the interest in multiple agents completing this task is warranted),

and the optimal cost of the random algorithm is fairly close to that of the optimal

system. This suggests that if the increased cost of adding coordination and fault

tolerance into the optimal system is significant, the random system (which has fault

tolerance built in because all of the agents perform the same actions) may be the

most efficient.

5.5 Conclusion

This chapter presented a quantitative analysis of the tradeoffs between group size and

efficiency in collective search tasks that considers both the time-sensitive nature of

search completion and the system operating cost. First, the search task was defined

and a performance metric was presented that can account for all of the costs associated

59

0 10 20 30 40 50 60 70 80
8.5

9

9.5

10

10.5

11

11.5

12

12.5

Number of Agents

Lo
g

S
ea

rc
h

C
os

t

Analytical Random
Simulated Random S+.01
Simulated Random S−.01
Analytical Coordinated

Figure 5.2: Simulated and analytical results for this search task. For the simulated data the lower
triangles are above S − .01 of the cost data and the upper triangles exceed S + .01 of the cost data.
Good agreement between the simulated and analytical results indicates the random search model
assumptions are sound

with the task. Note that computation of the cost parameters may not be simple, but

estimates are feasible. Also, while the costs used in this paper were linear functions of

the task metrics, any differentiable function can be used in this framework. Next, for

both random and coordinated search strategies, analytical expressions were derived

that can be used to predict optimal system performance bounds given a particular

task description. This analysis also allowed the prediction of the optimal number

of agents required to complete a task most efficiently. In addition, the performance

benefit of using coordinated search was shown to be dependent on the relative values

of the different cost components, with coordinated search being less favored when

the cost of not completing the task significantly outweighs the cost of operating the

search system. Finally, a kinematic computer simulation was used to support the

analytical results, suggesting that the assumptions involved in their derivation are

sound. These assumptions, which include minimal interference between agents and

uniform coverage of the given arena, will not hold in all environments, but they will

60

be approximately correct for many difficult applications where the area to be searched

is much larger than the agent extent.

61

Chapter 6

Single Agent Plume Traversal

Algorithms

This chapter presents an investigation into the second phase of the odor localization

problem, plume traversal. A better understanding of what makes a plume traversal

algorithm successful and how effective algorithms differ across environments can guide

the creation and parameterization of plume traversal behaviors. First, the problem

of plume traversal is recast as the task of obtaining the next odor hit, and a set

of metrics that provides detailed information about algorithm function is presented.

Then, several odor localization algorithms are described, and it is demonstrated that

algorithm parameters can be tailored to particular plume characteristics for improved

performance. Also, the next-hit analysis is shown to capture the performance of

some types of algorithms more accurately than others, and it is concluded that this

failure stems from intrinsic shortcomings of some of the algorithms tested. Moreover,

based on this analysis, general properties required of successful turbulent odor plume

traversal algorithms are described.

6.1 Plume Traversal

The initial search procedure is essentially a coverage problem that depends largely on

the characteristics of the search area (as examined in the previous chapter), and the

source declaration procedure is likely to be highly specialized for each task. Therefore,

the aspect of odor localization that depends most heavily on plume characteristics is

62

that of plume traversal, or following the trail of odor packets upstream to the source.

This observation suggests that for the purposes of tailoring system parameters to

plume characteristics, it is most useful to focus only on the plume traversal phase.

The first step in this process is to define an efficient way in which to quantify algo-

rithm performance so that many plume-algorithm pairs can be analyzed. Eventually,

these comparisons should generate a high-level mapping between desirable algorithm

properties and the characteristics of the plume stimuli being tracked. Such a map-

ping will facilitate the matching of system parameters to the application environment

(yielding higher efficiency [101]) and will aid in the development of deployable sys-

tems. Also, a better grasp of the relationship between plume stimuli and tracking

algorithms should enable new avenues of investigation into the function of biological

systems.

6.2 The Next-Hit Analysis

In the distal plume region, where plume information is intermittent, sensors must

be able to respond quickly to derive information from individual plume packets as

they pass (see Figure 3.3 for a diagram of the plume traversal task). As discussed in

Chapter 4, the currently available odor sensors that possess the required sub-hertz

sample times are noisy, so binary odor information is all they can reliably provide.

There may be information encoded within the fine structure in the distal part of

the plume [47, 102]. However, due to the highly stochastic nature of turbulent fluid

flow and the odor-packet nature of the plume, it is unclear that complex sensing

(via graded intensity information or larger fixed sensor arrays) would benefit an odor

localizing agent when flow information is available through other means.

Assuming only binary odor information from a single sensor is available, it becomes

possible to restate the problem: given that an agent has just received an odor hit, what

strategy will maximize the appropriate combination of likelihood, distance, and speed

of receiving another odor hit in the upstream direction (i.e., closer to the source)?

This formulation necessitates another set of performance metrics: P
H
, the probability

63

of getting another plume hit in the short term (i.e., before it becomes more efficient

to revert to the plume search procedure), T the expected time until the next plume

hit, and X, Y , respectively the expected next-hit locations in the down-stream and

cross-stream directions. Assuming that these metrics approximate the actual range of

values encountered along the length of the plume, they can be combined to produce

the probability P
F
that an initial plume hit from the search phase will result in a

successful approach of the source:

P
F
= P

L
X
H
. (6.1)

L is the expected necessary plume traversal distance. As above, P
H
is the probability

of getting another plume hit in the short term and X is the expected next-hit location

in the down-stream direction. Thus, P
F
is the probability that an agent will receive

the required number (L
X
) of consecutive odor hits to traverse the expected plume

length, resulting in a successful approach of the source.

Table 6.1: Summary of Evaluation Metrics and Variables

P
H

Next-hit probability during plume traversal
T Expected time of next odor hit
X,Y Down and cross stream expected next-hit locations
P
F

Probability of approaching plume source
L Expected plume traversal distance
P
SR

Probability of an odor hit during search phase

There are tradeoffs among these metrics: for fastest plume traversal, a low search

time T combined with a high inter-hit upstream traversal X is ideal, but because

odor information is typically most dense in the direct vicinity of the most recent

odor hit, this combination generally calls for a lower probability of approaching the

plume source P
F
. This decrease in P

F
is due to the fact that when the expected

plume traversal distance is much greater than the average inter-hit upstream traversal

(L À X), P
F
is more sensitive to decreases in the probability of receiving the next

hit P
H
than increases in X. In order to optimize the full odor localization task in a

64

given environment, the expected cost of losing contact with the plume (i.e., the cost

of an additional search phase, which depends upon the probability per unit time of

finding the plume in the search phase of the task P
SR
) must be weighed against the

expected plume traversal performance decrease necessitated by increasing P
F
. For the

purposes of this chapter we will assume that P
SR
is very low (i.e., there is a high cost

of losing the plume) and thus P
F
should be maximized for best system performance.

6.3 Plume Traversal Algorithms

6.3.1 Biological Inspiration

It is not obvious how to generate a good plume tracking algorithm. Upon sensing an

odor signal, a reasonable policy is to move directly upwind, because a good immediate

local indication of source direction under such circumstances is the instantaneous

direction of flow [25]. When the odor is no longer present, a good strategy is to

perform a local search (known as casting in the biological literature) until an odor

packet is reacquired, as the location of the previous packet encounter provides the best

immediate estimate of where the next will occur. This type of surge-cast behavior has

been observed in both in flying [99, 1] and walking [50] moths and its performance

has been studied in simulation [7].

The previous work on the surge-cast category of odor localization algorithms [7]

was aimed at studying biology, which limited the sensory and behavioral time scales

investigated. When applying these ideas to artificial systems, however, the separation

between control algorithm and underlying hardware is much more clear, and it no

longer makes sense to constrain behavior strictly by sensory response characteristics.

Therefore, key aspects of the search behavior, such as surge duration and casting

locality, can be parameterized and subsequently optimized for each plume type.

65

6.3.2 Algorithm Descriptions

The agent is assumed to have access to binary odor information, flow direction, dis-

tance of travel, and time passage. Let A be an algorithm that defines how an agent’s

location (x(t), y(t)) evolves over time t between odor hits. Upon each odor hit, an

agent samples the flow direction and proceeds according to A until the next odor

hit, at which time the process repeats. Four simple algorithm types are explored:

Straight, Step, Zig-Zag, and Spiral. Straight proceeds upwind at a fixed ve-

locity for a fixed amount of time. Step proceeds upwind for a fixed distance at a

fixed speed and then waits at that location for a fixed amount of time until declar-

ing the plume lost and reverting to a plume search behavior. Zig-Zag performs a

counter-turning procedure of a given angle, step length, and speed for a fixed amount

of time. Spiral begins with a step upwind at a fixed speed and then moves outward

in a constant spiral for a fixed amount of time. The traversal speed in the spiral

increases toward a maximum as the agent gets farther from the center, as this type of

movement can be implemented on two-wheeled vehicles (and has been used in previ-

ous work [40]). Diagrams showing these behaviors can be seen in Figure 6.1 and the

corresponding parameters can be seen in Table 6.2.

Table 6.2: Algorithm Parameter Definitions

V Agent Velocity
U Time until failure declared
D Length of step/cast
b Heading angle from upwind
g Spiral gap distance

6.4 Algorithm Evaluation

In order to adequately investigate the parameter space and acquire a relationship be-

tween algorithm parameters and plume characteristics, methods of evaluating traver-

sal performance metrics must be available. Evaluation could be accomplished by ac-

66

U*V

Straight Step

D

Zig-Zag

D

b

Spiral

D

g

Perceived Wind Axis

Odor
Hit

Figure 6.1: Plume traversal algorithms.

tually executing many plume traversal runs in the real world on different plume types

using different tracking algorithms, but this method is likely to require too much

time to be feasible. In this chapter, two different methods of metric evaluation based

on simulated plume input are used. The next-hit analysis allows a detailed view of

algorithm function, while direct evaluation provides more accurate performance data.

6.4.1 Next-Hit Metric Generation

Recall that A is an algorithm that defines how an agent’s location (x(t), y(t)) evolves

between odor hits. Let K(A, t) be an instantaneous odor hit probability function

which defines the probability of receiving the next odor hit while following a particular

algorithm subsequent to the cessation of a previous odor hit (i.e., a “post hit’s eye

view” of the next-hit landscape averaged over all possible odor hits). For the purposes

of this analysis K(A, t) is assumed to be monotonically decreasing at large t, either

because the agent has moved away from the plume or vice versa. For a particular

environment, given a particular A, K(A, t), and P
SR
, the plume traversal metrics can

be computed as follows:

t
S
= min t : K(A, t) < P

SR
, tÀ 0 (6.2)

67

M(t) = K(A, t)(1−
t−1∑

t′=0

M(t′)) :M(0) = 0 (6.3)

P
H
=

t
S∑

t=0

M(t) (6.4)

T =

t
S∑

t=0

tM(t) (6.5)

X =

t
S∑

t=0

x(t)M(t) (6.6)

Y =

t
S∑

t=0

y(t)M(t). (6.7)

The time t
S
represents the point at which continuing to search for the plume

results in a lower probability of getting an odor hit than transitioning to the search

phase behavior, and M(t) represents the probability density function of getting a hit

at each instant of time t. Time is considered to be discrete. Note that because A

and therefore K(A, t) are arbitrary, M(t) will be an arbitrary summed series and will

not have a closed form. This is acceptable because the total number of calculations

needed to generate all the metrics scales linearly with t
S
when K(A, t) is known.

Using M(t), the calculations of P
H
, T , X, and Y are straightforward.

The algorithm A is simple to specify, but K turns out to be more elusive. Ideally

we could leverage the extensive work done involving plume models, such as the stan-

dard Gaussian [79] or one of the more recent dispersion or finite difference models

[86, 92]. However, these models were developed to predict time averaged or peak ob-

served concentration profiles, and they do not capture the specific inter-odor packet

spatial and temporal relationships that are necessary to generate instantaneous odor

hit probabilities. Also, because fine plume structure is not considered, using these

models it is not possible to generate accurate conditional hit probabilities necessary

to reliably calculate accurate next-hit statistics (representing the concept that odor

packets may be clustered within the plume, and not receiving an odor hit for a par-

ticular length of time can decrease the probability of getting a future hit).

As one might expect, all of the plume detail needed to generate K is contained in

68

the instantaneous concentration fields generated by planar laser-induced fluorescence

(PLIF) techniques [104]. Using the Georgia Tech plume data as described in Chapter

4, K was calculated for each algorithm directly, by first thresholding the concentration

values to generate binary odor hits (at a threshold of .8826 µg/L) and then imple-

menting A starting at each on/off transition that occurred in the distal half of the

plume until reaching another odor hit. Only hits in the distal half were used to avoid

the need for a plume find area. Time and location of the first hit for each instance

were recorded in a set of frames, and the results were summed over all hits to generate

the K’s used for each experiment. Estimating L to be 0.5 m for the plume being stud-

ied, P
F
can be calculated (see equation (6.1)) using the X and P

H
values generated

in equations (6.2)-(6.7). The simulated binary odor sensor does not contain noise,

but the wind sensor returns values distributed in a Gaussian manner around the true

upwind direction with standard deviation σ. To approximate P
F
(σ) over a range of σ,

we determine P
F
at a set of discrete heading offsets in ±[1.22, .87, .52, .35, .17, .087, 0]

[rad] and then combine those values weighted according to the value of σ selected.

This weighting is performed by discretizing the selected Gaussian probability density

function onto the heading offsets that were explicitly calculated. The heading offset

values chosen for calculation were selected to permit an approximate determination

of P
F
while reducing computation times, although the degree of accuracy achieved

has not been explored.

To illustrate the plume dynamics captured in this manner, the instantaneous odor

hit probability map immediately post odor hit is shown in Figure 6.2a, along with

a streamwise cross-section in Figure 6.2b. The observed concentration peaks would

not be seen if a time-averaged map were used to produce these graphs, and these

spatio-temporal dynamics could play a role in algorithm performance. The plume is

1 m long and its envelope extends to 0.2 m in the cross-stream direction.

69

D
is

ta
nc

e
A

lo
ng

 P
lu

m
e

A
xi

s
[m

]

Distance Across Plume Axis [m]
−0.1 −0.05 0 0.05 0.1

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

O
do

r
H

it
P

ro
ba

bi
lit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.1 −0.05 0 0.05 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance Along Plume Axis [m]

O
do

r
H

it
P

ro
ba

bi
lit

y

(a) (b)

Figure 6.2: (a) Probability of receiving a new odor hit in the space surrounding the site of a previous
odor hit immediately after cessation of that odor hit at (0,0). Negative y values are closer to the
plume source. (b) The hit probability along the plume axis (i.e., the probability values along x = 0
in part (a)).

6.4.2 Direct Evaluation

To verify that the assumptions involved in the next-hit metric analysis are valid,

performance measurements are compared with those from an odor localization test-

bed that simulates the full plume traversal behavior. The Georgia Tech plume data is

again used. The task layout is shown in Figure 6.3. At the start of each trial, an agent

is positioned randomly within the Agent Start Area. The agent remains motionless

until it receives an odor hit, and if no odor hit is received within a particular time

period (1 s) it is moved to a new random location. This method of commencing each

trial is meant to mimic the transition from plume finding to plume traversal that

occurs in a full plume tracing task so that the distribution of agent initial locations

within the plume is accurate. Upon receiving an initial odor hit, the agent follows

a given algorithm until it either enters the Plume Find Area (success) or exceeds

its inter-hit time out value (failure). The plume image is updated after every 0.1 s

of simulated time, and after all 3000 images have been used the first is used again.

Note that the size and layout of the Start and Find areas are arbitrary, and they

70

have a significant influence on the performance values of each algorithm. Therefore,

quantitative agreement between this direct and the next-hit evaluation procedures is

not expected. However, as long as relative algorithm performance values are accurate,

it is likely that the next-hit analysis is capturing the important aspects of the plume

traversal task.

Distance Along Plume Axis [m]

D
is

ta
nc

e
A

cr
os

s
P

lu
m

e
A

xi
s

[m
]

Agent Start Area

Plume Find Area

0 0.2 0.4 0.6 0.8 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 H
it

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.3: Task layout for direct odor localization algorithm evaluation. Agents receive an initial
odor hit within the Agent Start Area and attempt to progress into the Plume Find Area. The plume
outline shown represents the average odor hit probability generated from 3000 instantaneous plume
images. The Plume Find Area has a radius equal to 10% of the plume length, and the Agent Start
Area encompasses the distal 80% of the plume. Note the Plume Find Area is sized to eliminate the
influence of noisy plume data near the source.

6.5 Results and Discussion

6.5.1 Parameter Search

To maximize P
F
on the selected plume data, the next-hit procedure was used to ex-

amine a range of parameter values across all algorithm types. In all, 7 Straight,

49 Step, 94 Zig-Zag, and 48 Spiral algorithms were evaluated. The parameter

ranges searched are shown in Table 6.3. These values were selected to cover a sub-

71

stantial region of the parameter space but do not represent an exhaustive search.

To reduce simulation requirements and simplify evaluation procedures, the maximum

agent speed V was limited to twice the average flow speed in the plume, and the search

time-out value U was fixed to 50 seconds for all algorithms.

Table 6.3: Parameter Evaluation Ranges. Parameter definitions can be found in Table 6.2

Behavior V [cm/s] U [s] D [cm] b [rad] G [cm]
Straight 0.1-10 50 - - -

Step 0.1-10 50 1-30 - -
Zig-Zag 1-10 50 2-30 π/2.1 - π/5 -
Spiral 2-10 50 5-20 - 2-20

To illustrate the evaluative process, data is presented from the best algorithm of

each type at σ = 0. These algorithms are referred to as Straight, Step, Zig-Zag, and

Spiral respectively, and their parameters are shown in Table 6.4.

Table 6.4: Optimal Parameter Values at σ = 0

Algorithm V [cm/s] U [s] D [cm] b [rad] G [cm]
Straight 2 50 - - -
Step 10 50 20 - -

Zig-Zag 5 50 10 π/2.5 -
Spiral 10 50 20 - 5

For the subsequent graphs, the plume data set was split into 10 sections of 250

frames. The metrics (P
H
, T,X, Y, P

F
) were calculated at every 10th frame, pooled

within each section, and then compared across sections so standard error information

could be generated. In sample tests this procedure was shown to produce results that

were not significantly different from data generated from 25 sections of 100 frames

each in which all frames were evaluated, and reducing the number of evaluated frames

offers a substantial savings in evaluation time. An evaluation of a single algorithm

using the reduced data sampling takes 190 minutes on a 1 GHz Pentium III.

Figure 6.4a shows the probability of receiving the next odor hit P
H
versus wind

error. Note that as the wind direction error becomes larger, the probability of receiv-

72

ing another plume hit decreases across all of the algorithms, although by different

amounts. Step has the lowest off-axis performance because it moves quickly out of

the plume. Straight takes the same trajectory but a lower velocity allows more time

within the plume envelope to receive an odor hit. Zig-Zag and Spiral are more ef-

fective at maintaining contact with the plume. Performance is not symmetric with

respect to the wind error because the algorithms are not symmetric with respect to

the plume axis. However, alternating the orientation of the behaviors after each hit

will average out the differences, so the absolute value of the wind error is the critical

value.

−1.5 −1 −0.5 0 0.5 1 1.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wind Direction Error [rad]

P
ro

ba
bi

lit
y

of
 R

ec
ei

vi
ng

 N
ex

t P
lu

m
e

H
it

Straight
Step
Zig−Zag
Spiral

−1.5 −1 −0.5 0 0.5 1 1.5
0

2

4

6

8

10

12

14

16

18

Wind Direction Error [rad]

E
xp

ec
te

d
T

im
e

of
 N

ex
t P

lu
m

e
H

it
[s

]

Straight
Step
Zig−Zag
Spiral

(a) (b)

Figure 6.4: (a) Odor hit probability for each of the different plume tracing algorithms. (b) Expected
time to next odor hit for each of the different plume tracing algorithms. Note that if the odor hit
probability is low then the expected time of the next odor hit is of little importance. All error bars
represent standard error of the mean.

Figure 6.4b shows the expected time T of receiving the next odor hit versus wind

error. Note that since lower times are better, Straight can be said to be performing the

best of all the behaviors, although this is largely correlated with its low hit probability

and therefore is not a useful feature. The large times shown for Spiral suggest that

for some wind error values it is able to regain plume contact after initially exiting the

plume envelope.

Figure 6.5a shows the expected upstream location X of receiving the next odor

73

hit for all of the behaviors versus wind error. Larger metric values are better because

they indicate that fewer hits are necessary to traverse the plume, so Spiral is the

performance leader in this category. Straight suffers due to its low velocity, because

even though it has a higher probability of getting a hit than Step, it also requires

more consecutive hits to reach the plume source.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Wind Direction Error [rad]

E
xp

ec
te

d
X

 L
oc

at
io

n
of

 N
ex

t P
lu

m
e

H
it

[m
] Straight

Step
Zig−Zag
Spiral

−1.5 −1 −0.5 0 0.5 1 1.5
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Wind Direction Error [rad]

E
xp

ec
te

d
Y

 L
oc

at
io

n
of

 N
ex

t P
lu

m
e

H
it

[m
] Straight

Step
Zig−Zag
Spiral

(a) (b)

Figure 6.5: (a) Expected downstream traversal before next odor hit for each of the different plume
tracing algorithms. Error bars represent standard error of the mean. (b) Expected cross-stream
traversal before next odor hit for each of the different plume tracing algorithms. Error bars represent
standard error of the mean.

Figure 6.5b shows the expected cross-stream location Y of receiving the next odor

hit for all of the behaviors versus wind error. The cross-stream movement of Spiral

and ZigZag renders their curves asymmetric, although the behaviors can be mirrored

after each hit so the net cross-plume travel tends toward 0.

Figure 6.6a shows that for this plume with 0 wind noise Zig-Zag performs the best

of this group of algorithms, and its near-perfect performance is not surprising given

the rather simple structure of the plume being tracked. Spiral does almost as well,

but the simpler algorithms do significantly worse. A tougher test of an algorithm’s

capability comes when wind information is not perfect. The algorithms shown are

not the best found for larger wind direction errors, but they demonstrate the relevant

trends. As the wind information degrades, performance falls as well, suggesting that

investing in the development of a good wind sensor is critical. Also, more complex

74

plumes in which large-scale meander separates the plume axis from the wind axis may

be difficult to track effectively.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wind Direction Error [rad]

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
lu

m
e

T
ra

ve
rs

al

Straight
Step
Zig−Zag
Spiral

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SD of Wind Direction [rad]

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
lu

m
e

T
ra

ve
rs

al

Straight
Step
Zig−Zag
Spiral

(a) (b)

Figure 6.6: (a) Expected probability of successful source location P
F
for each behavior. (b) Expected

probability of successful source location P
F
for each behavior. Note that the algorithms shown are

optimized for σ = 0, so better performance may be achievable at higher wind variances.

Combining the above data according to the expected heading error frequency

for a given wind sensor error standard deviation σ leads to the data seen in Figure

6.6b. This graph directly relates sensor error to algorithm performance, although the

relationships between the individual algorithms as the wind error grows are not par-

ticularly relevant because these are only the optimal algorithms for σ = 0. However,

as one might expect, the trend of decreasing performance with increasing wind error

holds across all algorithms.

6.5.2 Optimized Algorithms

The above data represents the best performing algorithm of each type at σ = 0.

Figure 6.7 shows the performance of the best algorithms of each type for each value

of σ plotted. As one can see, Zig-Zag performs the best over the range of σ examined,

followed closely by Spiral, with Step and Straight performing significantly worse.

Although the correlation is approximate, the efficiency of the Zig-Zag behavior is not

surprising because this type of casting behavior is widely seen in biological systems.

75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SD of Wind Direction [rad]

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
lu

m
e

T
ra

ve
rs

al

Straight
Step
Zig−Zag
Spiral

Figure 6.7: Expected probability of successful source location PF for each behavior. Note that each
point represents optimized performance for that particular wind variance.

One of the main goals of this chapter is to illustrate the creation of a mapping

between algorithm parameters and plume characteristics, in order to simplify the

design of efficient plume tracing algorithms. While the wind sensor noise present in

the system is not technically a plume characteristic, it can be treated in a similar way

to demonstrate the principles involved. Table 6.5 shows how the parameters of the

best performing Zig-Zag algorithms evolve as σ increases.

Table 6.5: Optimal Zig-Zag Parameter Values versus σ. Parameter definitions can be found in
Table 6.2

σ [rad] 0 .085 .175 .262 .349 .524 .698

V [cm/s] 5 10 10 10 10 10 10
D [cm] 10 15 20 15 20 20 30
b [rad] 1.26 1.37 1.37 1.50 1.50 1.50 1.50

As the wind error increases, the casting angles b become more shallow and the

agent speed V increases, with casting distances D increasing within each casting angle.

These findings suggest that increasing the agent speed might increase performance

76

at higher levels of wind error. Also, it might be possible to create a mapping from

wind error and plume envelope to optimal casting angle and distance, at least when

the plume envelope is well defined during the search period.

6.5.3 Evaluation Comparison

The next-hit analysis relies on two assumptions: first, the success of a plume traversal

algorithm is dependent on its ability to acquire odor hits, and second, the use of a

single probability P
H
for receiving future plume hits is a reasonable approximation

to the actual plume traversal case. To investigate these assumptions, the next-hit

optimized algorithms of each type were examined on the direct evaluation test-bed

described in Section 6.4.2. Ten sets of 1000 individual trials of each algorithm were

run, and the means of each set were averaged to produce the performance values.

Each algorithm evaluation took 245 minutes on a 1 GHz Pentium III. All error bars

represent standard error.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
lu

m
e

T
ra

ve
rs

al

SD of Wind Direction [rad]

Straight
Straight*
Step
Step*

Figure 6.8: Comparison of the optimized Step and Straight algorithms under next-hit (Step,
Straight) and direct (Step∗, Straight∗) evaluation.

Figure 6.8 shows a comparison of the algorithm performances of the Step and

77

Straight algorithm types as evaluated by the next-hit analysis (Step, Straight)

and by the direct test-bed (Step∗, Straight∗). Quantitative correspondence is not

expected, because the next-hit analysis does not factor in some task parameters like

the size of the Source Find Area, but the relative performance of the two algorithms

does not agree either. This suggests that the assumptions required for the next-hit

analysis are not accurate for these particular algorithms.

Straight∗ significantly outperforms Step∗ because in the direct test-bed the

Plume Find Area spans the entire plume width (see Figure 6.3). Because the best

Straight algorithm at 0 wind noise moves straight ahead at 0.02 m/s for 50 s (i.e.,

1 m), this algorithm will always enter the source found area, even though it may not

always receive a second odor hit. Step does not receive a performance enhancement

because it must receive multiple plume hits before reaching the source found area (i.e.,

getting one initial hit on the plume periphery will likely lead to a failure, because the

plume becomes more narrow as it approaches the source). This performance advan-

tage (which is heavily dependent upon the particular geometry chosen for the direct

test-bed) extends across all wind direction variances and can explain why Straight∗

consistently performs better than Step∗. Thus the assumption that acquiring plume

hits is related to performance is violated, and one cannot expect the next-hit analysis

to properly evaluate Straight.

The fact that the performances on the direct test-bed decrease much more quickly

at higher wind direction variances than those predicted by the next-hit analysis sug-

gests that the single-probability assumption of the next-hit analysis does not hold

either. That is, these two algorithm types do not compose well, because their next-hit

probabilities change significantly with each new odor hit. It is unclear how to model

this effect so that the next-hit analysis can accurately capture the performance of

these algorithms, and it is also largely unnecessary. Algorithms can be evaluated via

the direct method at little extra computational cost, and the primary contribution

of the next-hit analysis is that its limitations uncover an inherent weakness in these

algorithms.

If the initial plume search process covers the area containing the plume uniformly,

78

the location of the initial odor hit is dependent on average plume concentration, which

can be modeled by a Gaussian type plume equation. Because there is no mechanism

for moving laterally within the plume in these algorithms, the agent movement is

entirely determined by a Gaussian wind reading. Therefore the second-hit sampling

distribution is generated by a convolution of the initial Gaussian agent distribution

with a Gaussian distributed movement, which will result in a broader agent distri-

bution than the initial. The location of the second odor hit can at best mimic the

sampling distribution, which can be achieved if the plume is perfectly Gaussian and

the agent is allowed to sample indefinitely. However, in real situations the plume sim-

ply does not extend beyond some distance from its axis. Some portion of the agents

will spread outside the plume boundary and will not be able to reacquire the plume.

Moreover, because the spatial distribution of agents spreads with each iteration, the

percentage of active agents near the plume boundary will grow with each odor hit.

Thus a greater percentage of agents will fail to receive each subsequent odor hit–P
H

will decrease.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
lu

m
e

T
ra

ve
rs

al

SD of Wind Direction [rad]

ZigZag
ZigZag*
Spiral
Spiral*

Figure 6.9: Comparison of the optimized ZigZag and Spiral algorithms under next-hit (ZigZag,
Spiral) and direct (ZigZag ∗, Spiral∗) evaluation.

79

Not all algorithms suffer from this limitation. Figure 6.9 shows a comparison

of the algorithm performances of the ZigZag and Spiral algorithm types as evalu-

ated by the next-hit analysis (ZigZag, Spiral) and by the direct test-bed (ZigZag∗,

Spiral∗). Qualitative comparison holds across evaluation types, suggesting that these

algorithms are better modeled by the next-hit analysis. Neither algorithm has non-

local aspects that allow it to take advantage of the particular task description chosen

for the direct test-bed, so no performance anomalies are observed. Likewise, both

algorithms are able to move across the plume axis as part of their search, so the

above analysis of the next-hit location as the composition of two Gaussians does not

hold. Instead, the broad sampling of each algorithm allows the next-hit location to

follow the plume concentration map itself, so there is no systematic spread of the

next-hit location distribution and decline in P
H
. Instead, the hit probabilities will

likely increase as the agent traverses up the plume (because the plume becomes more

dense), and this nonstationarity (which is not accounted for in the next-hit analysis,

where the agent is essentially solving the original “difficult” initial problem repeat-

edly) could explain the fact that the direct performance levels consistently exceed the

next-hit levels.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SD of Wind Direction [rad]

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
lu

m
e

T
ra

ve
rs

al

ZigZag Next−Hit Optimized Values
ZigZag Individual Parameter Sets

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SD of Wind Direction [rad]

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l P
lu

m
e

T
ra

ve
rs

al

Spiral Next−Hit Optimized Values
Spiral Individual Parameter Sets

(a) (b)

Figure 6.10: Direct evaluation values of all optimal parameter sets across all wind values compared
to the direct performances of the next-hit optimized parameter sets, for the (a) ZigZag and (b)
Spiral algorithms. In general the next-hit parameter sets perform well, indicating that the next-hit
optimization can transfer to the real plume plume traversal task for these algorithms.

80

It is worthwhile to note that even though the next-hit evaluation procedure is

not quantitatively accurate, it can still be useful as an optimization procedure when

its assumptions are met. Recall that several different parameter sets (6 ZigZag, 4

Spiral) are employed across wind variances. All of these algorithms were evaluated

across all wind variances using the direct procedure and compared with the direct

performances of the next-hit optimized values. Figure 6.10 shows that the next-hit

optimization generally found the best parameter values as evaluated by the direct

evaluation procedure (at least in this parameter subset). In the two cases that the

direct procedure evaluated a different parameter set as performing significantly better

than the next-hit optimized set (ANOVA, p = .05), the absolute performance differ-

ence was less than 0.6 %. Note that these differences are not visible at the scale of

the plots.

6.6 Conclusion

This chapter presented an investigation into plume traversal algorithms for turbulent

odor plumes. A better understanding of what characteristics make an algorithm

successful will enable the construction of more capable and robust chemical plume

tracing systems. Restricting the sensory capabilities of the robots allows a reduction

of the problem to the task of acquiring the next odor hit, which provides a detailed

way to evaluate algorithm performance. Several odor localization algorithms were

described in detail, and it was shown that performance characterization is possible

and that algorithm parameters can be tailored to particular plume characteristics.

The next-hit analysis captures the performance of some types of algorithms more

accurately than others, and this stems from intrinsic shortcomings of some of the

algorithms tested. The next-hit analysis requires that the probability of getting the

next odor hit remains approximately the same as an agent traverses the plume. This

condition cannot hold for agents that do not actively cast across the perceived wind

axis, because as the agent distribution spreads, a larger percentage of agents will fail

to get each subsequent plume hit even when the plume is stable and the inter-hit time

81

is not limited. Based on this analysis, it can be concluded that strategies that actively

cast across the plume will tend to be better than those that do not, and the problem

of optimizing the tradeoff between upwind travel distance and probability of receiving

the next hit can be addressed as a search over particular algorithm parameters.

However, evaluating plume traversal algorithms based on experimental data, while

accurate, has two significant drawbacks. First, because the evaluation values are valid

only for the type of plume originally filmed, in order to be able to test a broad cross

section of plume types, many plume experiments will need to be run. An instan-

taneous plume computer model (in which meander parameters could be adjusted

freely) could potentially be used [28], although a substantial amount of validation

(i.e., comparison to experimental data) would need to be performed to ensure that

the pertinent plume structure has been properly captured. The second drawback

to these methods of evaluating traversal performance is that each plume-algorithm

pair requires a substantial amount of data analysis and a correspondingly significant

amount of time, limiting the extent to which the algorithm parameter space can be

explored. However, continuing advances in computer technology should alleviate this

problem in the near future.

The results shown in this chapter should extend to larger time and length scales

due to self-similarity in turbulent plume structure. But because plume tracing really

becomes difficult only as odor packets become more sparse (due to source intermit-

tency and diffusion below detectable levels) and more dispersed spatially (due to flow

meander), the conditions most likely to be faced when fielding real odor localization

systems have yet to be investigated. Plume data sets incorporating large scale mean-

der (i.e., 3-10 times instantaneous plume width) would be very useful for analyzing

whether it is possible to track such plumes. The Caltech plume, as described in

Chapter 4, while not representing actual plume data, may capture a greater degree

of flow complexity, and it is investigated in the context of the full odor localization

task in the next chapter.

82

Chapter 7

Designing an Odor Localization

System

The previous two chapters examined individual phases of the odor localization prob-

lem in detail, generating a deeper understanding of the design issues involved. Now,

this knowledge guides the application of the design methodology described in Chap-

ter 3 to the full multi-agent odor localization problem. A quantitative performance

metric for this task has already been defined in Chapter 3. To begin this chapter,

a distributed algorithm–a set of parameterized behaviors– is described by which a

group of agents can solve the full odor localization task. Next, because experimental

constraints allow only the plume traversal phase to be investigated on real robots (as

discussed in Chapter 4), it is shown that local position, odor, and flow information

tightly coupled with robot behavior enable a robot to traverse a real odor plume. The

use of multiple agents is demonstrated to increase the size of the solution space that

can be reached by a particular system, and the swarm intelligence solution compares

well with a sequential search strategy for this task. Also, the kinematic simulator de-

scribed in Chapter 4 is validated against the real-robot data. In addition, the off-line

machine learning algorithm is used to optimize system performance on the full odor

localization task in several different simulated environments, and it is shown both

that performance can be enhanced and that the optimal system parameters depend

on the particular task being studied. Finally, a model is presented that can be used

to relate task parameters to system performance.

83

7.1 The Spiral Surge Algorithm

The basic odor localization algorithm used in this study, Spiral Surge (SS), is shown

in Figure 7.1. It consists of different behaviors related to the three different subtasks.

x

Plume

Source

Robot�s Path

Odor Hit

SpiralGap1

SpiralGap2

StepSize

Figure 7.1: Spiral surge odor localization behavior.

Table 7.1: Spiral Surge Algorithm Parameters

SpiralGap1 Initial spiral gap width
SpiralGap2 Plume reacquisition spiral gap width
StepSize Surge distance post odor hit
CastTime Length of time before reverting from

reacquisition to initial search spiral
SrcDecThresh Significance threshold between

consecutive separate odor hits
SrcDecCount Number of significant differences

before source declaration

Plume finding is performed by an initial outward spiral search pattern with a

constant inter-cycle distance (SpiralGap1). This allows for thorough coverage of the

local space if the total search area is large and initial information can be provided by

the deployment point (an external “best guess” as to source location). Alternatively,

if no a priori knowledge is available, a spiral with a gap much greater than the arena

84

size (producing essentially straight line search paths) provides an effective search

procedure, as shown in Chapter 5.

Plume traversal is performed using a type of upwind surge algorithm. When an

odor packet is encountered during spiraling, the robot samples the wind direction

and moves upwind for a set distance (StepSize). If during the surge another odor

packet is encountered, the robot resets the surge distance but does not resample

the wind direction. After the surge distance has been reached, the robot begins a

spiral casting behavior, looking for another plume hit. Even though zig-zag casting

performed marginally better in the single-agent plume traversal analysis presented in

Chapter 6, a spiral cast procedure is used because it allows a simple integration of a

source declaration behavior. The casting spiral (SpiralGap2) can be tighter than

the plume finding spiral, as post-surge the robot has information about local packet

density and a thorough local search is a good strategy. If the robot subsequently re-

encounters the plume, it will repeat the surging behavior, but if there is no additional

plume information for a set amount of time (CastTime), the robot will declare the

plume lost and return to the plume finding behavior (with a wider, less local, spiral

gap parameter).

Source declaration can be accomplished using the fact that a robot performing the

plume traversal behavior at the head of a plume will tend to surge into an area where

there is no plume information, and then spiral back to the origin of the surge before

receiving another odor hit. If the robot keeps track internally of the post spiral inter-

hit distances (using odometry, for example, which is sufficient because information

must be accurate only locally), a series of small differences can indicate that the robot

has ceased progress up the plume, and must therefore be at the source. However,

because small inter-hit distances can occur in all parts of the plume, this method is

not foolproof, and tuning of the difference threshold (SrcDecThresh), as well as

the number of observed occurrences before source declaration (SrcDecCount), is

required to obtain a particular performance within a given plume. See Table 7.1 for

a summary of individual SS parameters.

SS uses only binary odor information generated from a single plume sensor because

85

this is the most simple and reliable type of information that can be obtained from real

hardware in the temporal operating regime of interest. There may be information

encoded in distal fine plume structure [102], however, due to the highly stochastic

nature of turbulent fluid flow and the odor-packet nature of the plume, it is unclear

that more complex sensing (via graded intensity information or larger fixed sensor

arrays) would benefit an odor localizing agent when flow information is available

through other means.

7.1.1 Collaborative Spiral Surge

While more complex odor sensing may be beneficial to the odor localization task,

another possible route to greater efficiency is physical distribution of the odor sensing

elements, which in principle could improve system speed and robustness via par-

allelization of the search procedure. This performance benefit can be achieved by

constructing an arbitrarily large and complex single robot or, perhaps more conve-

niently, distributing a number of sensors throughout a group of smaller, more simple

communicating robots. With a suitable command and control interface, this collec-

tive can be viewed as an ‘odor localization sensor’ in much the same way a single

larger robot, or more generally device, could. One way to increase the performance

of such a robot swarm is collaboration between individual nodes. In particular, if

collaboration is obtained with simple explicit communication schemes such as bi-

nary signaling, the team performance can be enhanced without losing autonomy or

significantly increasing complexity at the individual level.

Several simple types of communication can be integrated into basic SS. This chap-

ter examines the performance impact of three types of communication: no communi-

cation (None), a “come here” signal emitted by upwind surging robots that causes

all robots downwind or with no plume information to surge in the direction of the

calling robot (Attract), and a “stop” signal emitted by the first robot to receive

odor information that causes all other robots to surge away from the signaling robot

and then enter a power save mode from which they cannot be awakened (Kill).

86

To enhance the performance of Attract, an extension of this communication type,

Attract3, is studied which includes a “stop” signal sent to all additional agents

after three have entered the plume. The influence of these types of communication is

analyzed across group size to determine their impact on system efficiency.

7.2 Plume Traversal Results

7.2.1 Real Robots

The real-robot experiments focus on the plume traversal subtask because it contains

most of the plume related complexity present in the full odor localization task, and

due to experimental limitations, it is currently not feasible to study all phases with

real robots. To justify the high density of agents in the plume (which would be

unlikely given that in the general problem the plume area is a small percentage of

the total search area), Attract communication is employed between the agents to

hold the group together as it traverses the plume. Since source declaration is not

being studied, a trial is defined to be complete when a robot reaches a given distance,

the Source Fnd Radius, from the plume source. Task performance is described by

equations (3.3) and (3.4), combined here for convenience:

P =
αT

MIN
+ βD

MIN

αT
TC
+ βD

TC

. (7.1)

Again, T
TC
is the time needed for task completion, and D

TC
represents the total

distance traveled by all agents during the task. α is taken to be the cost per unit

time of not completing the task, and β is the cost per unit distance of running the

system. The optimum values for the task (TMIN , DMIN) are calculated from an

agent executing the optimal behavior (a straight line path from start to goal areas

at maximum speed). Maximum speed, which determines the relationship between

the time and distance values, is the maximum safe operating speed of the agent in

the given environment. In this example α and β are set so that the time and energy

components of the task factor equally into the minimum cost, so α
β
= DMIN

TMIN
.

87

Table 7.2: Plume Traversal Parameter Values

Agent speed .325 m/s
Arena length 6.7 m
Plume length 8 m
Plume speed ∼1 m/s

Source find radius .88 m
Plume:Arena area 1:2.3

Goal:Search perimeter 1:18.0
TMIN 19.0 s
DMIN 6.2 m

α
β

.326 [m/s]

SS1: SpiralGap2 1785 km
SS1: StepSize 9.1 m

SS2: SpiralGap2 .357 m
SS2: StepSize .91 m

Real-robot plume traversal performance was tested using two sets of SS parame-

ters and two control experiments. Only SpiralGap2 and StepSize are considered

because only the plume traversal phase of the task is being studied. The parameter

set SS1 represents a nonlocal search in that its search paths are straight and its surges

extend to the boundaries of the arena. SS2 uses a smaller spiral gap and surge length

to perform a more local exploration of the arena. One control, Random Odor, uses

SS2 parameters, and receives odor hits that are generated from the time sequence of

SS2 odor hits but are not correlated with robot position in the arena. This exper-

iment investigates whether an algorithm incorporating precise odor packet location

information is more efficient than a blind upwind surging behavior. An alternative

experiment could be to decouple the wind source from the odor source by creating a

wind field with an array of fans, but due to practical limitations in our experimental

set-up, the Random Odor case was easier to implement and provided equivalent in-

formation from a proof of concept point of view. The second control, Random Walk,

takes straight line paths and random avoidance turns at boundaries (using no odor

or flow information) to provide a traversal performance baseline. Specific parameters

relating to the real-robot tests are listed in Table 7.2. 15 trials of each group size were

88

run for SS1, SS2 and Random Odor, and 30 trials were run for Random Walk due to the

high variance of performance values. All error bars in the plots represent standard

error unless otherwise specified.

1 2 3 4 5 6
0

5

10

15

Group Size

T
x/

T
m

in
 w

/ s
td

er
r

Tsf − SS1
Tsf − SS2
Tsf − Random Odor
Tsf − Random Walk

1 2 3 4 5 6
0

5

10

15

20

25

30

35

Group Size

D
x/

D
m

in
 w

/ s
td

er
r

Dsf − SS1
Dsf − SS2
Dsf − Random Odor
Dsf − Random Walk

(a) (b)

Figure 7.2: (a) Normalized time to finish task across group size for real-robot trials. Lower values
are better. (b) Normalized distance across group size for real-robot trials. Lower values are better.

Figures 7.2a and 7.2b show that for all conditions studied, traversal time decreases

with group size while group distance traveled increases. This indicates, as expected

for a search task, that as time becomes more important to performance than energy

usage, larger group sizes will be preferred.

Figure 7.3 shows that while single robots are generally most efficient in this arena

(given this particular choice of α and β), SS1 generates the best results for each group

size (significant via Kolmogorov-Smirnov test to p < .01 for group size ∈ {1, 2, 3}),

demonstrating successful real-robot plume traversal. Random Odor performs worse

than SS2 for all group sizes (significant as above for group size ∈ {1, 2, 4, 6}), indicat-

ing that location of odor information is an important aspect of the search algorithm.

This means that SS is actually plume tracing rather than simply localizing the source

of the wind. If only wind localizing were taking place, one would expect Random Odor

to perform exactly the same as SS2. Also, SS2 performs worse than SS1 (significant

as above for all group sizes), suggesting that local search is not a good strategy in

89

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Group Size

P

er
fo

rm
an

ce
 w

/ s
td

er
r

SS1
SS2
Random Odor
Random Walk

Figure 7.3: Performance P across group size for real-robot trials. Higher values indicate better
performance.

this small arena where the goal-to-search perimeter ratio is high (i.e., it is likely to

find the goal by chance). The Random Walk behavior retains relatively constant per-

formance across group size, and at the larger group sizes its performance tends to

approach the optimal observed performance. This suggests that as a search arena

becomes overcrowded, random movement becomes the best strategy.

7.2.2 Sequential Search Comparison

SS can perform better than a random search strategy, but another way of gauging SS

performance is to compare it to a basic sequential search. Since this task is complete

when the agent comes within some distance of the source, the odor plume aspect can

be ignored, reducing the task to a search problem (as examined in Chapter 5). Note

here the source sensor is assumed to be perfect. As shown in equation (5.20), the

total amount of time T
S
required for a single agent to make a single pass over the

entire arena can be estimated in terms of the arena length L, agent speed v, and

source sensor range r:

90

T
S
=

L2

2rv
. (7.2)

Assuming a uniform target distribution throughout the arena and perfect collabo-

ration among team mates, the expected time to find the source for a group of N

agents can be approximated as
T
S

2N
. Note this formulation does not account for all

of the implementation details and may overestimate performance (e.g., sometimes

search overlap is necessary, and groups of agents must spread out from the deploy-

ment area to their designated areas), but it is accurate enough for the purposes of

this comparison.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SFR/SFR
ACT

P
er

fo
rm

an
ce

Best SS
Sequential 1
Sequential 2
Sequential 5
Sequential 10
Sequential 40

Figure 7.4: Performance of the best SS algorithm and a basic sequential search for different group
sizes, as the source find radius given to the sequential algorithm approaches the actual source find
radius. Higher values indicate better performance. SS does not explicitly use the source find radius,
so performance does not vary.

The arena length and agent speed are known quantities, but the sensor range,

here the source find radius, is not necessarily known a priori to the system designer.

Sensor ranges can depend on unknown variables in the environment (such as the

depth of buried mines in a minefield [33]). If the specified range is greater than the

actual range, incomplete coverage will result, so conservative estimates are typically

91

necessary. The above equation for the expected search time can be used to calculate

the expected distance traveled by the sequential search system (see equation (5.2)),

and these values can be used to calculate performance, as in equation (7.1).

In Figure 7.4, system performance P is plotted against the ratio of the programmed

source find radius (SFR) to the actual source find radius (SFR
ACT
). The best average

performance observed by an SS algorithm (which does not depend on a predicted

value of the source find radius) is included for comparison. The sequential search

for a single agent exceeds the SS algorithm only when the programmed source find

radius is within a factor of 2 of the actual value. It may be difficult to reach this

level of accuracy, particularly when the cost of failing to fully cover the search area

is high. For large team sizes, the programmed source find radius must be greater

than 25% of its actual value to exceed the SS performance. Even when the proper

radius is known, the single agent sequential search performance is within a factor of

2 of the SS performance, and the large team performance is within a factor of 4 (and

is overestimated here, as discussed above). Also, the added cost of the localization

mechanism required to perform a sequential search and the communication network

needed for group coordination is not considered.

7.2.3 Kinematic Simulations

The real-robot performance data was successfully reproduced in Webots, as shown

in Figure 7.5. Simulated plume parameters (envelope size and sensor threshold–

see Chapter 4 for details) were tuned to the SS2 data and then fixed for the other

conditions. Data represents 1000 trials per group size. All parameters in Table

7.2 apply to the Webots data as well. Only SS1 for group size of one robot produces

significantly different results (as determined by a two-tailed Kolmogorov-Smirnov test

with p < .01) between Webots and the real robots, and even in this case the error

bars overlap. Because our Webots data closely matches our available real-robot data,

it is reasonable that further simulated experiments will accurately reflect real-world

behavior.

92

1 2 3 4 5 6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Group Size

P

er
fo

rm
an

ce
 w

/ s
td

er
r

SS(1) − RR
SS(2) − RR
Random Odor − RR
Random Walk − RR
SS(1) − Webots
SS(2) − Webots
Random Odor − Webots
Random Walk − Webots

Figure 7.5: Performance of real-robot (RR) and Webots trials across group size. Higher values
indicate better performance.

7.3 The Full Odor Localization Task

The principal limitation of the experiments described thus far is the relatively small

arena available for the real robots. In simulation we can expand the arena size and

move the start area outside the plume extent. This enables the study of all phases of

the odor localization task and calls for a change to the task stopping condition. In

the following experiments the task is declared complete when greater than half of the

source declaration points (from all agents) are within the source find radius of the

plume source. This definition was chosen to avoid any notion of task failure–a bad

source declaration can be overcome–while not explicitly factoring the distance between

the declare point and the source location into the performance measure (which would

require another arbitrary cost value, and would introduce greater variation into the

performance measure).

93

7.3.1 Algorithm Optimization

The performance impact of the three types of communication described earlier, None,

Attract3, and Kill, was investigated across four different plumes. Attract3 was

studied rather than Attract because preliminary tests indicated that the addition

of an energy saving component to the communication algorithm reduced inter-agent

interference and increased system performance. Three of the plumes are variants of

the Georgia Tech plume data: GT0, GT1, and GT2. GT1 and GT2 are 1
5
and

1
10
, respectively, of the density of GT0, which is a 2 times larger (in length) version

of the plume used in the small arena. The fourth plume, CT0, is based on the

Caltech plume data set. It has roughly the same size and density as GT0 but a

much more complicated flow pattern. See Chapter 4 for details on the plume stimuli.

There were a total of 12 plume-communication pairs studied. These are referred to as

“conditions.” Each condition was evaluated across a range of 5 group sizes: 1, 3, 5, 10

and 15 agents. For each condition and group size combination, a single optimization

run, as described in Chapter 3, was executed over the 6 SS parameters (listed in Table

7.1). Two of the parameters, SpiralGap2 and StepSize, were found to be inter-

dependent, so they are combined into a single list of parameter pairs to be searched.

The parameter values were chosen to cover a functionally significant partition of the

parameter space, and they are listed in Table 7.3. Optimization parameter values (as

defined in Section 3.1.3) were as follows: η = .1, κ = .05, and ε = 10. Environmental

and algorithmic parameter values that differ from the real-robot experiments are

shown in Table 7.4.

Table 7.3: Searched Parameter Values. Parameter definitions can be found in Table 7.1

SpiralGap1 {2.83, 35700} m
SpiralGap2, StepSize {(.283, .650), (.357, .910), (.425, .542), (.567, .650),

(.567, .2168), (.708, .902), (.850, .975), (1.42, 2.52)} m
CastTime {48, 96, 192} s

SrcDecThresh {.27, .55, 1.09} m
SrcDecCount {1, 2, 3, 5}

94

Table 7.4: Full Task Parameter Values (Simulation)

Arena length 33.5 m
GT0 Length 16 m

GT0:Arena area 1:14.5
Wind noise ±10%
Agent speed .325 m/s
Plume speed ∼2 m/s

Source find radius 1.6 m
TMIN 72.5 s
DMIN 22.0m

α
β

1.48 [m/s]

Although group size and communication type are technically algorithm parame-

ters, they are evaluated separately, rather than within the optimization procedure,

so that trends across these variables can be analyzed. A total of 60 optimization

runs (4 plumes by 3 communication types by 5 group sizes) were performed. Each

was executed on a 1.5 GHz Athlon XP, and run times ranged from 1 day to 3 weeks.

As detailed in Chapter 3, each optimization run consists of 10 cycles in which each

of the parameters is optimized while the others remain fixed. The initial parameter

selections are random, and the parameters chosen in each cycle serve as the input

set for the subsequent cycle. At the start of the run and after each cycle, the perfor-

mance of the current parameter set is measured by executing the task 50 times and

averaging the observed performance values. By the end of the run there is a set of 11

performance measurements.

To demonstrate that the optimization process succeeds in improving performance,

the performance values of all 60 runs were first normalized by the maximum value

observed during the run and then averaged across all runs. Figure 7.6 shows that

performance increases over the initial cycles, and then plateaus over the remainder of

the run. Note that because the performance evaluation has a stochastic component,

and the optimization process does not consider values that are within 10% of each

other, the mean performance, as analyzed in this manner, is not expected to converge

to 1. Also, from this data, it is not possible to determine that the optimization

95

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle Number

%
 M

ax
im

um
 P

er
fo

rm
an

ce
 w

/ s
td

Figure 7.6: Performance during each optimization run, first normalized by the maximum value of
each run and then averaged across all 60 runs. Error bars indicate standard deviation.

process does not get trapped in local minima. Nevertheless, for the purposes of

further analysis, all runs are assumed to have converged to global optima, and the

output of cycles 3 through 10 are considered optimal performance values.

The time and distance taken for the 8 optimized cycles of each run (cycles 3-

10) are averaged to produce overall values for each run. Figure 7.7 shows the time

and distance necessary for each group of robots to complete the task on each plume.

Note that qualitatively the curves resemble those of Figures 7.2a and 7.2b, with

distance increasing roughly linearly with group size, and time decreasing with group

size. None consistently uses the most energy across all plume types, followed by

Attract3, and then Kill. This indicates that the energy-saving measures built

into Attract3 and Kill are successful. Also, in general, the more sparse plumes

have a greater influence on the distance traveled by the smaller group sizes. The

distance traveled by a single agent increases by almost a factor of three from GT0 to

GT2, while the distance of the groups of 15 agents increases by at most 25%. Kill

requires the largest amount of time across all plume types, indicating that its energy

96

1 3 5 10 15
0

5

10

15

20

25

30

35

40

Group Size

N
or

m
al

iz
ed

 T
im

e
an

d
D

is
ta

nc
e

w
/ s

td
er

r

D
TC

 − None
D

TC
 − Kill

D
TC

 − Attract3
T

TC
 − None

T
TC

 − Kill
T

TC
 − Attract3

1 3 5 10 15
0

5

10

15

20

25

30

35

40

Group Size

N
or

m
al

iz
ed

 T
im

e
an

d
D

is
ta

nc
e

w
/ s

td
er

r

D
TC

 − None
D

TC
 − Kill

D
TC

 − Attract3
T

TC
 − None

T
TC

 − Kill
T

TC
 − Attract3

(a) (b)

1 3 5 10 15
0

5

10

15

20

25

30

35

40

Group Size

N
or

m
al

iz
ed

 T
im

e
an

d
D

is
ta

nc
e

w
/ s

td
er

r

D
TC

 − None
D

TC
 − Kill

D
TC

 − Attract3
T

TC
 − None

T
TC

 − Kill
T

TC
 − Attract3

1 3 5 10 15
0

10

20

30

40

50

60

70

80

Group Size

N
or

m
al

iz
ed

 T
im

e
an

d
D

is
ta

nc
e

w
/ s

td
er

r

D
TC

 − None
D

TC
 − Kill

D
TC

 − Attract3
T

TC
 − None

T
TC

 − Kill
T

TC
 − Attract3

(c) (d)

Figure 7.7: Normalized time (T
T C

) and distance (D
T C

) across group size for (a) GT0, (b) GT1,
(c) GT2, and (d) CT0. Lower values are better. Error bars represent standard error.

savings comes at a cost. However, None and Attract3 do not differ significantly

in time requirements, so Attract3, though its energy savings are not as significant,

does not seem to suffer a time penalty. In addition, the temporal speedup with group

size increases for the more sparse plumes.

Performance for each run is shown in Figure 7.8. On average, a group size of

3 agents performs best on GT0, GT1, and CT0, while a group of 5 agents per-

forms best on GT2. Attract3 performs at or near the best across all plumes, so

communication is beneficial for this task. None performs the worst on GT0, all com-

munication types perform similarly on GT1, and Kill performs the worst on GT2.

97

1 3 5 10 15

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Group Size

P
er

fo
rm

an
ce

 w
/ s

td
er

r

None
Kill
Attract3

1 3 5 10 15

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Group Size

P
er

fo
rm

an
ce

 w
/ s

td
er

r

None
Kill
Attract3

(a) (b)

1 3 5 10 15

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Group Size

P
er

fo
rm

an
ce

 w
/ s

td
er

r

None
Kill
Attract3

1 3 5 10 15

0.06

0.08

0.1

0.12

Group Size

P
er

fo
rm

an
ce

 w
/ s

td
er

r

None
Kill
Attract3

(c) (d)

Figure 7.8: Performance across group size for (a) GT0, (b) GT1, (c) GT2, and (d) CT0. Higher
values are better. Error bars represent standard error.

None and Attract3 share the best performance on CT0, although Attract3

performs better for the larger group sizes.

The above results can be explained in terms of the phases of the odor localization

task that are emphasized by each plume. As the plume becomes more sparse, the

search phase becomes more prominent. It was shown in Chapter 5 that harder search

problems favor larger group sizes, because this phase of the task can be parallelized

quite easily. Therefore, for more sparse plumes, task completion times drop more

drastically for larger group sizes, and the optimal group size increases. Likewise,

the distance required by large group sizes will not increase dramatically when the

98

plume becomes sparse, as a thorough search process is automatic, while the distance

required by small groups does increase significantly because the only way to achieve

better coverage is by increasing the distance traveled by each individual unit.

When the traverse or declare phases are emphasized, however, smaller group sizes

benefit. These tasks can typically be effectively carried out by a small number of

robots, and large groups at best burn extra energy, and at worst cause destructive

interference. Interference can explain the poor performance of None onGT0 andCT0

at large group sizes. Both of these plumes are dense enough to hold many agents,

and the presence of other agents can disturb the casting spirals that are necessary for

plume traversal and (particularly) source declaration. GT1 and GT2 appear to be

sparse enough that too few robots are drawn into the plume before task completion

to cause any problems. In fact, the traverse and declare phases are possibly done best

serially, at least when they are relatively easy. Kill, which uses only one agent for

these subtasks, requires shorter group distances than the other communication types.

However, note that Kill does not fare well when the cost of losing the plume is high

(as for GT2) or the probability of losing the plume is high (as for CT0–note there is

no temporal speedup with group size). These failures reflect the high temporal cost

of plume loss when the parallel plume-reacquisition search capability is lost.

7.3.2 Trends in Optimization

The optimization procedure can do more than improve system performance, because

by looking at the optimized parameter values one can gain insight into the operation

of the algorithm itself. The optimized parameters are analyzed by combining cycle

results 3-10 from each run, and then examining how often each parameter value is

selected (this results in an optimization result frequency curve). A simple example

of this type of data is shown in Figure 7.9a, which shows the optimization result

frequency curve for SpiralGap1 averaged over all runs. Two SpiralGap1 values

are possible (see Table 7.3), and this data indicates that nearly 100% of the optimized

parameter sets contain the larger value. For this task the agent start area is not near

99

0.0003 3.57

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SPIRALGAP1 [m]

O
pt

im
iz

at
io

n
R

es
ul

t F
re

qu
en

cy
 (

%
)

0.28 0.43 0.57 0.71 0.85 1.42
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SPIRALGAP2 [m]

O
pt

im
iz

at
io

n
R

es
ul

t F
re

qu
en

cy
 (

%
)

GT0
GT1
GT2
CT0

(a) (b)

0.28 0.43 0.57 0.71 0.85 1.42
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SPIRALGAP2 [m]

O
pt

im
iz

at
io

n
R

es
ul

t F
re

qu
en

cy
 (

%
)

GT0
GT1
GT2
CT0

0.28 0.43 0.57 0.71 0.85 1.42
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SPIRALGAP2 [m]

O
pt

im
iz

at
io

n
R

es
ul

t F
re

qu
en

cy
 (

%
)

GT0
GT1
GT2
CT0

(c) (d)

Figure 7.9: (a) The optimization result frequency curve for SpiralGap1, as averaged over all runs,
(b) The SpiralGap2 optimization result frequency curves for each plume type, averaged over group
size for None, (c) Kill, and (d) Attract3.

the plume source, and an initial local search wastes time and energy. It is therefore

not surprising that the large SpiralGap1 value is almost always chosen, and the

reliability of its selection suggests that the optimization procedure is functioning

properly.

Other parameters exhibit a greater degree of complexity. Figures 7.9b-d show the

optimization result frequency curves for SpiralGap2. The data is averaged across

group size and plotted for each plume type and communication method. Recall that

SpiralGap2 is actually searched as a pair with StepSize, but only one Spiral-

100

Gap2 value appears in more than one pair (.567 appears twice), and since this value

is rarely selected, analysis of only the SpiralGap2 data captures the relevant fea-

tures. The most obvious result from this data is that CT0 heavily favors a particular

SpiralGap2, regardless of communication type. This supports the idea that source

declaration is the most difficult phase of the CT0 task, and thus the SpiralGap2 -

StepSize pair that is best at that procedure is critical for performance. Also, while

GT0 and GT1 appear to have similar performance landscapes across communication

types, for GT2, which renders traversal most difficult, smaller SpiralGap2 values

become more favored under Kill, and Attract3– when few agents are performing

the traversal. This shift suggests that for this particular plume, smaller SpiralGap2

values reduce the probability of losing the plume once it is acquired.

1 3 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRCDECCOUNT [m]

O
pt

im
iz

at
io

n
R

es
ul

t F
re

qu
en

cy
 (

%
)

GT0
GT1
GT2
CT0

1 3 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRCDECCOUNT [m]

O
pt

im
iz

at
io

n
R

es
ul

t F
re

qu
en

cy
 (

%
)

GT0
GT1
GT2
CT0

(a) (b)

Figure 7.10: (a) The SrcDecCount optimization result frequency curves for each plume type,
averaged over group size and across the Kill and Attract3 communication types. (b) The Sr-

cDecCount optimization result frequency curves for each plume type, averaged over group size for
None.

Similar themes can be observed in other parameters. Figure 7.10a shows the

selected SrcDecCount values across plumes for the Kill and Attract3 commu-

nication types. Smaller values are favored, and there is no difference across plumes.

However, Figure 7.10b shows the same data for None communication, and here the

performance landscape for CT0 is markedly different. For this plume and communi-

101

0.27 0.55 1.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRCDECTHRESH [m]

O
pt

im
iz

at
io

n
R

es
ul

t F
re

qu
en

cy
 (

%
)

GT0
GT1
GT2
CT0

0.27 0.55 1.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRCDECTHRESH [m]

O
pt

im
iz

at
io

n
R

es
ul

t F
re

qu
en

cy
 (

%
)

GT0
GT1
GT2
CT0

(a) (b)

Figure 7.11: (a) The SrcDecThresh optimization result frequency curves for each plume type,
averaged over group size and across for Kill. (b) The SrcDecThresh optimization result fre-
quency curves for each plume type, averaged over group size and across the None and Attract3

communication types.

cation type, larger SrcDecCount values become favored, which indicates that when

there are large numbers of agents traversing the plume (which can only occur under

None), they can interfere with each other and produce spurious source declarations

that inhibit performance. Note this effect is not observed for GT0, which is just as

dense (and can therefore contain just as many agents), but is easier to declare be-

cause its flow patterns are much less complex. Also, it appears that GT2 is difficult

to declare as well, but for a different reason. Figure 7.11a shows the SrcDecThresh

optimization result frequency curves for Kill across plume type. There are no ma-

jor differences across plumes, although perhaps GT2 favors slightly smaller values,

which could be explained by the smaller size of the GT2 plume head. However,

Figure 7.11b shows the same data for the other two communication types, and it

suggests that when there are multiple agents in the plume, GT2 favors larger source

declaration distances. This could be explained by the fact that multiple agents op-

erating concurrently in the same small region of space will interfere with each other,

and the precise declare procedure will not be possible, so looser requirements are

necessary. Likewise, when multiple agents are tracking the plume CT0 favors smaller

102

SrcDecThresh values, which is consistent with the need to limit false declarations

due to the presence of many agents.

1 3 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRCDECCOUNT [m]

O
pt

im
iz

at
io

n
R

es
ul

t F
re

qu
en

cy
 (

%
)

Group Size = 1
Group Size = 3
Group Size = 5
Group Size = 10
Group Size = 15

Figure 7.12: The SrcDecCount optimization result frequency curves for each group size, averaged
over GT0, GT1, and GT2 for None communication.

Finally, observations can be made across group size as well. Figure 7.12 shows

the SrcDecCount optimization result frequency curves for each group size, aver-

aged over GT0, GT1, and GT2 for None communication. The smallest group sizes

favor larger SrcDecCount values, presumably to avoid declaring the plume found

while still traversing the plume, while the largest group size favors small SrcDec-

Count values, perhaps to facilitate declaration when interference from other agents

renders repeated declaration cycles difficult. This analysis is not intended to be con-

clusive, but rather representative of the type of information that can be gleaned from

examining the optimization results.

7.3.3 A Model of Performance

The specification and optimization phases of the design process have been demon-

strated in the previous sections. The third design phase, as discussed in Chapter

103

3, involves the definition of abstract relationships between system parameters and

system performance. Once such relationships have been experimentally validated in

a test environment, they can be used to guide the design of a deployable system,

as they will allow the designer to predict system performance in a wider range of

environments than have been explicitly examined experimentally.

1 2 3 4 5 6
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Group Size

P
er

fo
rm

an
ce

Model
SS1 − Simulated
SS1 − Real

Figure 7.13: Performance versus group size for the odor localization task in the small arena as
generated by the model, the kinematic simulator, and the real robots.

The model for the odor localization task is drawn directly from the analysis of the

coordinated search problem described in Chapter 5. Specifically, if the task is com-

plete when an agent comes within a given range of the source (as in the experiments

in the real arena), the time to find the source can be described as follows:

T
TC
=

1

(1− PN
LC
)NP

SR

+ T
TR
+ k. (7.3)

P
LC
is the probability of an agent losing contact with the plume once it has been

acquired, N is the number of agents, and P
SR
is the probability of a single agent

getting an odor hit during the search phase. The first term of the sum represents

the expected amount of time needed to search for the plume, and it assumes that

104

Attract communication is used. T
TR
is the expected time to traverse the plume,

and k is the minimum required dispersion time throughout the arena. T
TC
represents

the expected time to locate the source. The required distance is then simple to specify:

D
TC
= NvT

TC
, (7.4)

where v is the average robot speed. For the real arena, P
SR
= .0518 is calculated from

the mapping experiments (see Chapter 4), v = .27 m/s is measured directly from the

real robot experiments (collision avoidance and wind scanning reduce actual speed

from maximum speed), and k = 13 is determined from simple geometry. Choosing

reasonable values T
TR
= 30 and P

LC
= .33 results in good agreement between the

real, simulated, and modeled results on this task, as shown in Figure 7.13.

Additions to the model are necessary so that it can capture the source declara-

tion phase of the task as well as different communication strategies. Note that this

model is meant only to capture general performance trends, so not all of the specific

interactions present in the system are modeled. Four additional parameters are used:

T
DE
, the time required to perform the source declaration; D

SU
, the distance travelled

by each inactivated robot to move away from the plume; λ, used to factor in inter-

ference due to inactive robots; and ω, which represents the speedup in declaration

possible when multiple agents are in the plume. Another parameter, φ varies with

the communication type, and it corresponds to the number of agents that are not

inactivated. The time to complete the task is defined in three steps:

T1 =
1

NP
SR

+ k. (7.5)

T1 is the expected time before an agent makes contact with the plume. The search

time necessary after the first contact (and subsequent plume loss) can be expressed

as follows:

T2 =

1

1−P
min(N,φ)
LC

− 1

min(N, φ)P
SR

. (7.6)

105

T2 is the expected time that a system will spend reacquiring a plume. The numerator

is the expected number of times the plume will be lost, and the denominator accounts

for the reacquisition time. For theNone andKill communication types, T3 , the time

to traverse the plume and declare the source is as follows:

T3 = T
TR
+ (N −min(N, φ))λ+

1
1

T
DE

min(N, φ)ω
. (7.7)

The first term in the sum is the traversal time. The second term represents the

interference of inactive agents during source declaration, and the third term represents

the source declaration time (which can decrease with the number of agents, as it can

be done in parallel spatially). For Attract3, T3 , has a greater speedup in traversal

time with group size, reflected in the first term:

T3 =
T
TR

min(N,φ)+1
2

+ (N −min(N, φ))λ+
1

1
T
DE

min(N, φ)ω
. (7.8)

The expected time for task completion is:

T
TC
= T1 + T2 + T3 . (7.9)

Similarly to equation (7.4), the distance traversed can be expressed in terms of the

traversal time, although here it must reflect the fact that robots can be placed in a

low-power mode:

D
TC
= vNT1+v(T2+T3)(min(N, φ)+ζ(N−min(N, φ)))+max(0(N−φ))DSU

. (7.10)

ζ is the relative power savings of an inactive robot compared to an active one. The

first term in the sum represents the distance required for the first plume hit. The

second term represents the distance traveled after the extra group members have

been inactivated. The third term accounts for the distance traveled by the extra

group members after being inactivated but before entering the low-power mode.

Recall that φ = N is the number of agents that are not inactivated during a trial.

106

1 3 5 10 15
0.12

0.14

0.16

0.18

0.2

0.22

0.24

Group Size

P
er

fo
rm

an
ce

 w
/ s

td
er

r

None
Kill
Attract
Model − None
Model − Kill
Model − Attract

1 3 5 10 15

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Group Size
P

er
fo

rm
an

ce
 w

/ s
td

er
r

None
Kill
Attract
Model − None
Model − Kill
Model − Attract

(a) (b)

1 3 5 10 15

0.06

0.08

0.1

0.12

0.14

0.16

Group Size

P
er

fo
rm

an
ce

 w
/ s

td
er

r

None
Kill
Attract
Model − None
Model − Kill
Model − Attract

1 3 5 10 15

0.06

0.08

0.1

Group Size

P
er

fo
rm

an
ce

 w
/ s

td
er

r

None
Kill
Attract
Model − None
Model − Kill
Model − Attract

(c) (d)

Figure 7.14: Performance across group size for (a) GT0, (b) GT1, (c) GT2, and (d) CT0 as
generated by the model and the kinematic simulator. Higher values are better. Error bars represent
standard error. Note there is good agreement between the simulator and the model across plumes
and communication types.

107

Table 7.5: Model Parameter Values

GT0 GT1 GT2 CT0

P
SR
[1/s] .00332 .00196 .00110 .00348 Fit

T
TR
[s] 34 34 17 34 Fit

P
LC

.02 .06 .08 .53 Fit
T
DE
[s] 55 55 55 350 Fit

λ [s] 4 4 4 10 Fit
ω .04 .08 .14 .04 Fit

D
SU
[m] 6.5 6.5 6.5 6.5 Fixed
ζ .04 .04 .04 .04 Fixed

k [s] 61.3 61.3 61.3 61.3 Fixed
v [m/s] .31 .31 .31 .31 Fixed

For None, φ = N . For Attract3 and Kill, φ = 3 and φ = 1, respectively. The

other parameters chosen for the model are shown in Table 7.5. Some are fixed by

the algorithm. Some can be calculated directly from the environment. Others have

been tuned to fit the data, although they are based on observable data and an effort

has been made to respect the similarities and differences across the different plumes.

For example, P
SR
for GT0 can be estimated from the small arena, although the

resulting value must be further reduced because the location of odor hits is correlated

in space (so the density does not scale linearly). Likewise, P
SR
decreases with plume

sparseness, and since CT0 has roughly the same plume density as GT0, its P
SR

value is similar. T
TR
stays the same for the three more dense plumes, because they

have roughly the same length. GT2 does not extend as far from the source, so its

T
TR
is smaller. All of these values are small compared to the small arena because the

expected point of first contact with the plume is dependent only on the distribution of

odor (which is more dense near the plume source), while in the small arena the starting

location skews initial contact toward the distal end of the plume. P
LC
increases wth

plume sparseness and is much greater for the more turbulent CT0, and the values

are lower than in the small arena because in the small arena the particular algorithm

used and the presence of arena walls increased the incidence of plume loss. T
DE

remains the same across the GT plumes, and increases drastically for CT0, as the

108

changing wind direction makes declaration much more difficult. The parameter λ

represents that the source declaration process requires a larger area for CT0 (as the

wind direction is more variable), so there is more opportunity for inactive agents to

interfere. Finally, ω reflects the fact that the less dense plumes can benefit more from

parallel declaration because they are less likely to be overcrowded with agents.

Overall, the model is able to fit the data well, as shown in Figure 7.14. Not

every point matches perfectly (e.g. 3 agents for Attract3 in GT1), but this is not

unexpected, as the optimized data averages only 8 values per data point, and may

itself be skewed. Further experimentation could improve these values, although the

current set of data took over 60 processor weeks to obtain, and at this stage more

simulation is unwarranted because the purpose of the model is not to reproduce data

previously generated via other means. The real value of the model–its predictive

power–has yet to be tested because there is no complex real-world plume task being

addressed. However, the above formulation is representative of the type of abstract

model that is intended to be produced by, and later guide, this design process.

7.4 Conclusion

This chapter presented the design of an algorithm for odor localization by groups of

autonomous mobile robots. First, a distributed algorithm was described by which

groups of agents can solve the odor localization task. Because this algorithm is based

upon both odor and flow information, it is not designed to function in environments

in which flow is too weak to detect reliably (typically < 0.05 m/s [47]). Still, there

is a broad range of military and industrial situations that involve stronger flows (in

particular any outdoor environment) for which it does apply.

Next it was demonstrated that simple sensory information tightly coupled with

robot behavior is sufficient to allow a robot to find the source of an odor plume.

This shows the power of integrating actuation into sensory systems, and suggests

that complicated sensory transduction may not be necessary when a behaving sen-

sory mechanism is well tuned to its designated task [101]. In addition, it was shown

109

that integrating the information collected by a group of agents in an elementary

manner can increase the efficiency of the odor localization system performance, an

avenue that has not been previously explored using real robots. If the entire sys-

tem is viewed as an odor localization sensor, the distributed approach opens up a

new axis of optimization (inter-agent communication) not available when only a sin-

gle unit is considered, and the organizational principles of swarm intelligence allow

such distributed systems to remain scalable and require minimal additional complex-

ity. The particular communication types explored in this paper represent the most

basic interactions available, and as the complexity of the task description increases

(more complicated plume types, higher frequencies of false-positive odor hits), corre-

spondingly more complicated interaction schemes (greater number of signals, variable

signaling range) will likely be necessary to yield a performance benefit. However, as

long as these more complex interactions can be reduced to a small set of parameters,

they can be integrated into the algorithm using the design methods presented here.

This chapter demonstrated that key aspects of the design methodology are feasible.

The kinematic simulator can reproduce real data, even when sensory stimuli are

complex. The optimization process can improve system performance and provide

insight into algorithm function. And it is possible to create abstract relationships to

guide further development.

Finally, it may seem contradictory that while the swarm intelligence approach

stressed in this work emphasizes minimalism, the actual robots used in this study

feature general purpose microprocessors and high bandwidth communication. How-

ever, because care was taken to keep system requirements low, the algorithms used in

this study can be ported directly to much less expensive or smaller platforms. Only

when robot swarms can be implemented on a large scale will the robust nature of

these systems be fully exploited. As more advanced sensors become available which

can combine sensitivity, discrimination, and mobility, truly useful real-world odor

localization systems will become feasible.

110

Chapter 8

Flocking as Improved

Collaboration

The previous chapter examined the performance impact of three simple types of

collaboration on the full odor localization task. This chapter describes the design

of a more complex mode of interaction–flocking–and then investigates its influence

on odor localization performance. First, a simple flocking task is presented. Next,

a leaderless distributed flocking algorithm is described that is more conducive to

implementation on embodied agents than the established algorithms used in computer

animation. The design methodology is followed to optimize flocking performance

under different conditions, showing (as in the previous chapter) that this process can

be used not only to improve performance but also to gain insight into which algorithm

components contribute most to system behavior. Then, it is shown that a group of

real robots executing the algorithm with emulated sensors can successfully flock (even

in the presence of individual agent failure) and that systematic characterization (and

therefore optimization) of real-robot flocking performance is achievable. Finally, the

integration of a flocking behavior into the odor localization algorithm is demonstrated

to shorten task completion times for large group sizes, although corresponding gains

in distance traveled offset performance gains for the chosen cost metrics.

111

8.1 Background

Flocking, the formation and maintenance of coherent group movement, has long been

studied in natural systems, and more recently efforts have been made to reproduce

this type of behavior in artificial systems. The first such work appeared in the context

of computer animation [85]. Since then this behavior has been extensively studied in

simulation (e.g., [15]), and less so on real robots [52, 63]. Theoretical treatments of

the stability of flocking behavior have also been presented [97, 112, 58], although these

studies tend to capture only limited aspects of the flocking problem or rely on unreal-

istic agent capabilities (such as perfect global communication). The study of flocking

is distinct from that of formation control (e.g., [6, 31]), because the goal of flocking is

simply to achieve and maintain coherent group movement rather than to govern spe-

cific inter-agent position relationships. Flocking is better suited for implementation

on large groups of agents (hundreds to thousands) where the overhead of extensive

inter-agent communication and unique agent identification renders formation control

inefficient. Also, like formation control, flocking is not an end in itself, but rather

can be used as a component of a larger multi-agent system, perhaps simplifying the

transport of large numbers of agents or organizing the nodes of a distributed sensing

system. The majority of this chapter will focus on the design of a scalable flocking

algorithm, and the last section will explore the performance impact when a flock-

ing behavior is integrated into the odor localization system studied in the previous

chapter.

8.2 The Flocking Task

8.2.1 Task Definition

The flocking task examined in this paper is similar in form to the cooperative move-

ment task studied in [5]. The agents begin each trial at random positions and orien-

tations within an area A located in the corner of a square arena. The agents move

diagonally across the arena through an obstacle field toward an area B in the opposite

112

corner (see Figure 8.3). The trial is declared finished when half of the agents have

entered area B. During traversal, there is a uniform probability θ per time step that

an agent will “fail,” meaning that it stops moving but other agents can still recognize

it as a teammate. Note that some trials will not be able to finish (as failed agents

can obstruct the movement of operational agents), and these trials are declared failed

after some period of time τ . To reduce the number of trials that can never complete

the task, the number of robot failures is capped at half of the total number of agents.

For the purposes of this work system performance is defined to be a combination

of the time required to complete the task T
F
, the sum of the distances traveled by each

of the successful agents D
F
, and the average inter-agent distance between operational

agents I
F
. These factors can be combined to form a cost metric C:

C = αT
F
+ βD

F
+ ϕI

F
. (8.1)

α is taken to be the cost per unit time of not completing the task, β is the cost

per unit distance of running each agent, and ϕ is the cost incurred per unit distance

of inter-agent separation (e.g., if the agents provide mutual protection when grouped

together, looser groups would be associated with less protection and higher costs due

to agent loss). C represents the total cost incurred before the task is completed. By

choosing specific values for α, β, and ϕ, the proper relationship between time required,

energy used, and inter-agent spacing can be generated for evaluating any application.

Failed runs are assigned a cost lower than any successful run could receive.

8.2.2 The Leaderless Distributed Flocking Algorithm

Craig Reynolds [85] identifies three behavior types that lead to simulated flocking:

separation, alignment, and cohesion. However, much of the robotic work on leaderless

flocking ([52, 63]) relies solely on balanced combinations of separation and cohesion

(i.e., flock centering) to produce flocking behavior. It is likely that the inclusion of an

alignment term into robotic flocking algorithms will improve performance, but there is

a cost to making heading information explicitly available within a system. The lead-

113

erless distributed flocking algorithm (LD) described here is essentially an extension

of the flock centering algorithm presented in [15], incorporating an explicit collision

avoidance mechanism (for separation, as they suggest) as well as an implicit velocity

matching behavior (i.e., an alignment term) via the comparison of sequential flock

centering data. Thus, LD should exhibit better flocking performance than previous

robotic algorithms (though comparative data is unavailable) while not significantly

complicating implementation on real robots. Because LD does not explicitly use the

alignment of other group members, individual agents need not be able to sense their

neighbors’ orientation, so range and bearing data suffice.

Specifically, LD is defined as follows. There are two basic behaviors, collision

avoidance and velocity matching flock centering. Collision avoidance is activated

whenever an agent’s collision sensors detect the presence of an obstacle (which may

be either an environmental obstacle or another team member), and it mediates a

turn away from the obstacle. Flock centering is active whenever collision avoidance

is not, and it involves the generation of a target vector and a target difference vector

as well as a mapping from those vectors to wheel speed commands. The details of

this behavior are explained below.

After every sensory input cycle, each agent can utilize information from up to Q

closest neighbors residing in a region surrounding the agent defined by a maximum

range M , as shown in Figure 8.1. Range (‖ni‖) and bearing (−π ≤ n̂i ≤ π) infor-

mation from this set of m neighbors (i = 1...m, 0 ≤ m ≤ Q), along with the desired

cushion distance H between each agent and its neighbors, can be used to generate an

instantaneous center of mass vector CoM for each agent:

CoM =
m∑

i=1

(
‖ni‖ −H

Q
, n̂i

)
+ (J, ̂). (8.2)

CoM is normalized by the maximum number of neighbors to reduce the vector sizes

seen at large values of Q. J is a tunable system parameter that represents the strength

of the attraction to the goal area, and ̂ is the agent centered heading of the goal area

(e.g., supplied by a GPS signal). Because the flocking task being studied not only

114

Robot

Visible
Neighbors ni

Invisible
Neighbors

Maximum
Range

Figure 8.1: Each robot in the flock can sense the range and bearing of up to Q neighbors within a
sensory area defined by a maximum range M . In this example Q = 3.

favors coherent movement with flock neighbors but also directed movement toward

the goal, (J, ̂) is added to CoM to induce movement in the proper direction.

CoM is all that is needed to implement flock cohesion, but alignment requires

information about how that vector is changing over time. This information is repre-

sented by ∆CoM . To generate ∆CoM , the value of CoM generated in the previous

sensory cycle (CoMprev) is transformed into the current agent coordinates and com-

bined with the current CoM . ∆h is the agent’s change in heading between sensory

cycles, and e is the agent’s change in position:

∆CoM = CoM −

[((
CoMprev −

∆h

2

)
− e

)
−
∆h

2

]
. (8.3)

The relationships between the algorithm components are summarized in Figure 8.2.

The agent has access to its desired position with respect to its neighbors (CoM)

as well as how that location is moving with respect to the agent (∆CoM). These

values are used to generate the motor commands. The gain factor Φ allows the

agents to speed up or slow down to approach CoM using a gain parameter K2 and

115

Robot

Neighbors ni

CoM

CoMprev

Target Vectors
 ni-H

Ideal
Separation

H
∆CoM

Negative
Robot

Movement
-e

Figure 8.2: A summary of the generation of CoM and ∆CoM .

the maximum sensor range M :

Φ =
M +K2 ‖CoM‖ cos(ĈoM)

M
. (8.4)

As above, ‖CoM‖ denotes the magnitude and ˆCoM the direction of the vector CoM .

Φ is factored into the motor commands as follows:

LSpeed = (V −K0(̂∆CoM +K1ĈoM))Φ (8.5)

RSpeed = (V +K0(̂∆CoM +K1ĈoM))Φ. (8.6)

The motor speeds are biased at a desired travel speed V . They are changed differ-

entially to rotate toward the heading specified by a weighted sum of the direction

of the desired location and the direction of movement of the desired location. K0 is

a weighting parameter that determines how fast an agent can approach this target

heading. K1 weights the influence of the desired location direction versus the desired

location movement direction. A small K1 (¿ 1) will induce agents to align with

their neighbors (thus minimizing ̂∆CoM) rather than to move toward their desired

116

locations, although once alignment is achieved the agents will gradually steer toward

CoM (provided K1 > 0).

Note that it is not necessary to calculate the optimal movement necessary to reach

the goal position in order to have a functional system. As long as the commanded

wheel speeds bring each agent closer to its desired position during each sensory cycle

(and CoM moves slower than the agent itself), in steady state all agents will approach

their goal positions. Formal stability conditions and proofs are not examined in this

chapter, although stable flocking systems were observed over a broad range of the 8

tunable algorithm parameters. A summary of these parameters is shown in Table 8.1.

Table 8.1: Leaderless Distributed Flocking Algorithm Parameters

V Desired forward speed
Q Maximum number of neighbors
H Desired distance between agents
M Maximum sensor range
K0−2 Motor speed gain parameters
J Target attraction

8.3 Test Environments

8.3.1 Kinematic Simulation

The physical arena was reproduced in Webots to allow comparison with data gener-

ated by the real robots, and two different obstacle fields were studied. The simpler

of the two (Obs1) contained only cylindrical obstacles that were twice as large as

each agent, while the more complex (Obs2) also contained a three-sided barrier that

obstructed the direct path between the start (A) and goal (B) areas. These environ-

ments are shown in Figure 8.3. The timeout value τ was 400 s.

117

B

A

B

A

(a) (b)

Figure 8.3: (a) Obs1 and (b) Obs2, seen from above. The start (A) and goal (B) areas are indicated.
The large disks are the obstacles, and the smaller disks (shown here within the start area) are the
agents.

8.3.2 Real Robots

A group of 10 Moorebots was used to demonstrate flocking in real robots, as shown in

Figure 8.4. The flocking arena is 6.7 by 6.7 m. The layout of the arena is the same as

shown in Figure 8.3a, except in this case a single obstacle was placed in the center of

the arena. In addition to the standard configuration, as described in [108], each robot

is equipped with four Sharp GP2-D02 infrared range sensors for collision avoidance.

The overhead camera tracking system, combined with a radio LAN among the robots

and an external workstation, is used to log position data during the trials, reposition

the robots between trials, and emulate the range and bearing sensor signals.

8.4 Results and Discussion

8.4.1 Optimization with the Kinematic Simulator

The optimization procedure for this flocking task involves the off-line tuning of 8

parameters. Since a full 8-D optimization is not computationally feasible, instead 8

sequential 1-D optimizations are performed, with each parameter optimized while the

118

Figure 8.4: 10 Moorebots flocking.

others remain fixed. While this restriction may make finding the optimal parameter

set difficult in some search domains, it does not do so in the particular case being stud-

ied, and it allows performance improvements to be achieved in a reasonable amount

of time. In this study the selection of design points (i.e., specific parameter values

over which to optimize) is done a priori, although there are techniques for select-

ing them adaptively [111] which may be utilized in further studies. Each parameter

space is bounded and linearly discretized to include a range of important values, as

determined by preliminary experiments. At the beginning of each optimization run

the variable values are randomly initialized. The optimization process is described in

detail in Chapter 3.

Four different conditions were optimized, consisting of 10 runs each: Obs1 and

Obs2, each with (F) and without failures (NF). The F conditions set θ so that there

were ∼2 failures per trial given near-optimal algorithm parameters for the Obs1 envi-

ronment. The cost values were the same for all trials, and they were fixed to balance

the cost components for near-optimal algorithm parameters under the Obs1NF condi-

tion: α = .0033 [$/s], β = .0066 [$/m], and γ = .22 [$/m]. Optimization parameter

119

values were as follows: η = .05, κ = .05, and ε = 10.

Figure 8.5a shows the flocking performance with standard deviation at every cycle

for each of the four conditions. For ease of presentation, Cmin
C
is plotted, where Cmin

represents the lowest cost observed over all trials. Cycle 0 data represents the per-

formance of the initial parameter sets. Obs1NF converges to the highest performance

value, with Obs1F slightly worse, followed by Obs2NF and then Obs2F. This shows that

Obs2 is a more difficult environment than Obs1, and the presence of agent failures

can hurt performance. Under all four conditions the means and standard deviations

stabilize after 4 optimization cycles, showing that optimization does improve perfor-

mance and is complete after a small number of cycles. The fact that all conditions

have a small standard deviation across runs once optimized (after cycle 4) suggests

that even though the optimization algorithm searches only one dimension at a time,

it is performing an effective search of the fitness landscape and is not susceptible to

being trapped in local minima. The standard deviations for the F and Obs2 condi-

tions are larger because in these environments occasional runs fail to complete within

the timeout period, and thus the performance metrics (for individual parameter sets)

have higher variances.

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cycle Number

C
m

in
/C

 w
/s

td
ev

Obs1NF
Obs2NF
Obs1F
Obs2F

1 3 5 7 9
0

0.1

0.2

0.3

0.4

0.5

0.6

O
pt

im
iz

at
io

n
R

es
ul

t F
re

qu
en

cy
 w

/s
td

ev
 (

%
)

Q

Obs1NF
Obs2NF
Obs1F
Obs2F

(a) (b)

Figure 8.5: (a) Per-cycle flocking performance for each experimental condition. Higher values are
better. (b) The optimal result frequency curves for Q, the maximum number of neighbors observed
while flocking.

The optimization procedure can do more than improve system performance, be-

120

cause by looking at the optimized parameter values one can gain insight into the

operation of the algorithm itself. The optimized parameters were analyzed first by

combining cycle results 4-10 from each run, and then averaging the chosen parameter

distributions across the 10 runs for each condition (this results in an optimization re-

sult frequency curve). Figure 8.5b shows that there are optimal values of Q for each

environment and that they are different, with Obs2 preferring smaller neighborhoods.

This is an intuitive result because when an agent is listening to fewer neighbors, it is

less likely to be impeded by a neighbor that is caught behind a barrier (which is more

common in Obs2), while in more open environments larger neighborhoods allow for

tighter flocks and thus a higher performance level. Using pointwise one-way ANOVA

comparisons (p < .01) and a threshold of > 1 significant difference, it was determined

that the Q optimization result frequency curves for the Obs1 conditions differ from

those of Obs2, while they remain the same within each simulated environment across

failure rates. In fact, for the Obs1 conditions the result frequency curves did not differ

for any parameter, indicating that the best solution in that environment remained

the same even in the presence of agent failure. This makes sense because a failed

agent simply becomes another circular obstacle. It might have been expected that

the presence of failed agents would favor a reduced agent neighborhood (so failed

agents do not impede the progress of those still active), but Figure 8.5b clearly shows

that there is no preference for smaller Q in Obs1F as compared to Obs1NF.

In the Obs2 environment, the optimal parameter values are influenced by the

presence of agent failure, as shown in Figure 8.6a. In the absence of agent failure,

a low value of J is optimal, so that the attractive force of the goal does not break

groups apart as they move around the barrier. When agents can fail, however, the task

becomes so difficult (because failed agents can trap others within the barrier) that

the best solution is to move as individuals toward the goal whenever the opportunity

presents itself (so a high J is best). Note that for the Obs1 conditions, there is a broad

region of the parameter space over which the performance landscape is effectively flat.

This type of finding suggests that in some cases the size of the parameter space being

searched may be reduced, resulting in faster optimization runs without a loss of

121

0.01 0.07 0.13 0.19 0.25 0.31 0.37
0

0.1

0.2

0.3

0.4

0.5

0.6

O
pt

im
iz

at
io

n
R

es
ul

t F
re

qu
en

cy
 w

/s
td

er
r

(%
)

J

Obs1NF
Obs2NF
Obs1F
Obs2F

0 2 4
0.5

0.55

0.6

0.65

0.7

0.75

Q

1/
C

 w
/s

td
er

r

NF
F

(a) (b)

Figure 8.6: (a) The optimal result frequency curves for J , the attractive power of the goal area.
(b) Flocking performance of a group of 10 real robots versus Q, the maximum number of visible
neighbors. Higher values are better.

performance.

8.4.2 Real Robots

Because local range and bearing hardware has not been completed, the Moorebots

must rely on emulated sensory information from the overhead camera system to per-

form LD. The processing burden thus placed on the camera system limits the maxi-

mum speed of the robots, as the camera system must be able to track the robots from

frame to frame by position only. This restriction, along with the fact that control is

not truly distributed, renders extensive experimental effort unwarranted. However,

to demonstrate that the capability to quantitatively characterize real-robot flocking

performance (and thus in principle can reproduce the simulated optimization exper-

iments presented above in the real world), a set of reasonable flocking parameter

values was chosen and the influence of varying Q on the performance of a group of

10 real robots was examined.

For each value of Q, 10 trials were run under both the F and NF conditions, and

the resulting performance values are shown in Figure 8.6b. The average number

of failures over all F trials was 2.46. LD at Q = 0 represents a baseline traversal

behavior (because there is no cooperation among agents). The data demonstrates

122

that LD does enable this group of robots to flock, as flocking performance is greater

at Q = 4 than Q = 0 (significant via ANOVA to p < .01), while agent failure does

not significantly influence performance (via ANOVA to p < .01– although it is likely

that larger sample sizes would uncover a significant difference). Because the specifics

of these results are likely to be highly dependent on the particular parameter values

chosen (most of which are arbitrary rather than optimized), detailed comparison with

the simulation results is not meaningful.

8.5 Flocking as Collaboration

Flocking is integrated into the odor localization as a more complex Attract behav-

ior. Rather than simply surging toward the location of the most recent odor hit by any

agent, agents performing the search behavior fix the most recent hit location as the

target destination (i.e., the center of area B) and move toward it while flocking with

other agents. Flocking parameters are based on an optimized set from the Obs1NF

condition, and the desired inter-agent spacing is increased to minimize interference

within the plume. So as not to interrupt the source declare behavior, agents not in

the search phase do not flock (although they are visible to flocking agents). Also,

to make the influence of flocking clear, once three agents have received plume hits,

the rest of the agents are inactivated, as in Attract3. The odor localization with

flocking system is termed Flock3.

The same optimization process performed on the other collaboration methods

was run in simulation on Flock3 (see Section 7.3.1 for a full description), and the

performance results are shown in Figure 8.7. Overall, there is little difference between

the performance of Attract3 and Flock3. This could indicate that flocking simply

does not influence odor localization, or it may be due to the fact that the flocking

phase lasts only briefly, because as soon as three agents receive odor hits the two

communication types become identical.

The plume that is most likely to show a difference between these two communi-

cation types is GT2, as it is least dense and the period of time between the first

123

1 3 5 10 15

0.15

0.2

0.25

Group Size

P
er

fo
rm

an
ce

 w
/ s

td
er

r

Attract3
Flock3

1 3 5 10 15
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Group Size

P
er

fo
rm

an
ce

 w
/ s

td
er

r

Attract3
Flock3

(a) (b)

1 3 5 10 15
0.05

0.1

0.15

Group Size

P
er

fo
rm

an
ce

 w
/ s

td
er

r

Attract3
Flock3

1 3 5 10 15

0.06

0.08

0.1

0.12

Group Size

P
er

fo
rm

an
ce

 w
/ s

td
er

r

Attract3
Flock3

(c) (d)

Figure 8.7: Performance across group size for (a) GT0, (b) GT1, (c) GT2, and (d) CT0. Higher
values are better. Error bars represent standard error.

and third agents receiving odor hits is the greatest. The time and distance required

for task completion (first normalized by the minimum values and then inverted for

ease of presentation) are shown in Figure 8.8. It can be seen from this data that at

larger group sizes, Flock3 requires less time than Attract3 (significant for group

sizes 10 and 15 via ANOVA to p < .05–2 runs were performed for the case of 15

agents, so each average consists of 16 data points rather than 8). However, this speed

benefit is offset by the larger distance traveled by the Attract3 system, presumably

because the flocking agents are spending less time interfering with each other (thus

moving at a higher average speed). Therefore, the incorporation of flocking into the

124

1 3 5 10 15
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Group Size

In
ve

rs
e

N
or

m
al

iz
ed

 T
im

e
w

/ s
td

er
r

Attract3
Flock3

1 3 5 10 15
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

Group Size

In
ve

rs
e

N
or

m
al

iz
ed

 D
is

ta
nc

e
w

/ s
td

er
r

Attract3
Flock3

(a) (b)

Figure 8.8: (a) Inverse of normalized time required for GT2. (b) Inverse of normalized distance
required for GT2. Higher values are better. Error bars represent standard error.

odor localization behavior can extend the performance space of the system, and if

time were a much larger factor in performance than energy used (a tradeoff that can

only be determined for a specific application), it could increase system performance.

Also, integrating the flocking behavior with the source declaration procedure, allow-

ing agents to share information (locally) during the declare process, could lead to

further performance benefits.

8.6 Conclusion

This chapter described the design of a flocking behavior and investigated its influ-

ence on odor localization performance. A simple flocking task was presented and a

leaderless distributed flocking algorithm was described that is more conducive to im-

plementation on robots than the established algorithms used in computer animation.

The key point of this algorithm is that it uses the time derivative of the perceived cen-

ter of the flock to align the robots without explicit knowledge of robot heading. The

design methodology was followed to optimize performance under different conditions,

showing that this method can be used not only to improve performance but also to

gain insight into which algorithm components contribute most to system behavior.

125

An issue for further study is the automation of the selection, or perhaps improvement

of, the parameter ranges and discretization levels that are searched. In addition, us-

ing optimization data it may eventually be possible to construct models that directly

relate environmental characteristics to parameter values. It was also demonstrated

that a group of real robots executing LD with emulated sensors can successfully flock

and that systematic characterization of real-robot flocking parameters is achievable.

Finally, the integration of a flocking behavior into the odor localization algorithm was

demonstrated to speed task completion for large group sizes, although corresponding

gains in distance traveled offset performance gains for the chosen cost metrics.

126

Chapter 9

Conclusion

The creation of autonomous robots, machines that sense and act upon the world to

perform useful work without constant human supervision, could free humans from

many repetitive or dangerous tasks and increase productivity immensely. However,

currently there are very few examples of robotic systems that can operate with any

degree of autonomy in unstructured environments, and there are none that approach

the level of robustness observed in relatively simple biological organisms, such as

ants and termites. Part of the biological advantage is that natural systems possess a

distributed control structure consisting of many parallel local processes (i.e., they are

self-organized) which are not susceptible to single failures and do not rely on perfect

sensing or communication. This thesis presented a methodology for designing self-

organized autonomous robotic systems, and demonstrated how this process can be

applied to the problem of finding the source of an airborne odor plume. The design

methodology is applicable to other task domains and the resulting odor localization

system extends the state of the art.

Specifically, the contributions of this thesis are as follows:

• A self-organized system design methodology that relies on the formulation and

evaluation of specific task metrics.

The design procedure centers on the ability to define a specific task performance

metric, systematically evaluate performance in a realistic environment, and define an

abstract model that relates system parameters and system performance. Once such

127

relationships have been validated in a test environment by comparing experimentally

generated performance distributions with those derived from the model, they can be

used to guide the design of a deployable system. Because this design process relies

heavily on evaluative feedback, this work emphasizes the development of tools that

allow the collection of accurate performance data. Also, a reinforcement learning

methodology is described that provides consistent optimization performance while

minimizing the amount of required evaluation.

• An improved odor localization system that can derive useful information from

the distal part of an odor plume.

The design methodology is applied to the task of odor localization. A plume traversal

algorithm is implemented both on the real test-bed and in simulation to verify that

plume traversal is taking place and that the use of multiple collaborating robots can

expand the reachable performance space. Also, parameter optimization performed

in simulation is shown to produce better performance on the real robot platform.

Systematic experiments on the real odor plume required development of the robot

platform, the arena infrastructure, and the odor and wind sensors. Collective search

and plume traversal are combined (along with ego-centric source declaration) into

the full odor localization task which is optimized in simulation. The odor localiza-

tion algorithm is shown to be functional on both sparse and meandering plumes.

Then, following the design methodology, a model is presented which captures system

performance across algorithms and environments. The real value of the model–its

predictive power–has yet to be tested because there is no complex real-world plume

task being addressed. However, it is representative of the type of abstract model that

is intended to be produced by, and later guide, this design process.

• Greater insight into the tradeoffs between sensor reliability, evaluation metrics,

and coverage strategy for collective search problems.

A quantitative analysis of the tradeoffs between group size and efficiency in collec-

tive search tasks is presented that considers both the time-sensitive nature of search

128

completion and the system operating cost. For both random and coordinated search

strategies, analytical expressions are derived that can be used to predict optimal sys-

tem performance bounds given a particular task description. Also, the performance

benefit of using coordinated search is shown to be dependent on the relative values

of the different cost components. Finally, a sensor-based computer simulation is used

to support the analytical results, suggesting that the assumptions involved in their

derivation are sound.

• An understanding of the the general properties required of successful turbulent

odor plume traversal algorithms.

The problem of plume traversal is recast as the task of obtaining the next odor hit,

and a set of metrics that provides detailed information about algorithm function is

presented. Several odor localization algorithms are described, and it is shown that

algorithm parameters can be tailored to particular plume characteristics for improved

performance. Also, the next-hit analysis is demonstrated to capture the performance

of some types of algorithms more accurately than others, and it is concluded that this

failure stems from intrinsic shortcomings of some of the algorithms tested.

• A flocking algorithm that is well suited to implementation on real hardware.

A leaderless distributed flocking algorithm is described that is more conducive to

implementation on embodied agents than the established algorithms used in computer

animation. The design methodology is followed to optimize flocking performance

under different conditions, showing that this process can be used not only to improve

performance but also to gain insight into which algorithm components contribute most

to system behavior. It is shown that a group of real robots executing the algorithm

with emulated sensors can successfully flock (even in the presence of individual agent

failure) and that systematic characterization (and therefore optimization) of real-

robot flocking performance is achievable.

This thesis has focused on the design of self-organized robotic systems. There

exists skepticism in the robotics community that such systems will ever prove useful,

129

particularly because it is deemed difficult to integrate them into traditional (military)

command structures, and military funding drives most robotic research. There is

understandable concern about deploying robotic systems and relinquishing the ability

to control (or even communicate with) them at all times, but this is necessary when

dealing with large numbers of agents. In order to prove that self-organized systems

are feasible, a successful large scale system must be demonstrated. However, before

this can be done, a suitable task must be found that both benefits from the extreme

parallelism of many agents and warrants the significant investment required to develop

a complete system. Odor localization, because it is essentially a search problem, fulfills

the former requirement, and future circumstances may see it satisfy the latter as well.

130

Bibliography

[1] E. A. Arbas, M. A. Willis, and R. Kanzaki. Organization of goal-oriented loco-

motion: Pheromone-modulated flight behavior of moths. In R. D. Beer, R. E.

Ritzmann, and T. McKenna, editors, Biological Neural Networks in Invertebrate

Neuroethology and Robotics. Academic Press, New York, 1993.

[2] R. C. Arkin. Behavior Based Robotics. MIT Press, Cambridge, MA, 1998.

[3] J. Atema. Eddy chemotaxis and odor landscapes: Exploration of nature with

animal sensors. Biological Bull., 191:129–138, 1996.

[4] T. Balch. Integrating rl and behavior-based control for soccer. In Proc. of the

IJCAI Workshop on RoboCup, Nagoya, Japan, 1997.

[5] T. Balch. Behavioral Diversity in Learning Robot Teams. Ph.D Thesis, College

of Computing, Georgia Institute of Technology, December 1998.

[6] T. Balch and R. C. Arkin. Behavior-based formation control for multi-robot

teams. IEEE Robotics and Automation, 14(6):926–939, December 1998.

[7] J. H. Belanger and M. A. Willis. Adaptive control of odor guided locomotion:

Behavioral flexibility as an antidote to environmental unpredictability. Adaptive

Behavior, 4:217–253, 1996.

[8] G. Beni and J. Wang. Swarm intelligence in cellular robotic systems. In Pro-

ceedings of the NATO Advanced Workshop on Robots and Biological Systems,

Il Ciocco, Tuscany, Italy, 1989.

131

[9] S. Benkowki, M. Monticino, and J. Wiesinger. A survey of the search theory

literature. Naval Research Logisitics, 38(4):469–494, 1991.

[10] U. Bhalla and J. M. Bower. Multi-day recording from olfactory bulb neurons in

awake freely moving rats: Spatial and temporally organized variability in odor-

ant response properties. J. of Computational Neuroscience, 4:221–256, 1997.

[11] A. Billard, A. J. Ijspeert, and A. Martinoli. A multi-robot system for adap-

tive exploration of a fast changing environment: Probabilistic modelling and

experimental study. Connection Science, 11:359–379, 1999.

[12] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural

to Artificial Systems. Oxford University Press, New York, US, 1999.

[13] L. Booker, D. E. Goldberg, and J. H. Holland. Classifier systems and genetic

algorithms. Artificial Intelligence, 40(1-3):235–282, 1989.

[14] V. Braitenberg. Vehicles. Experiments in Synthetic Psychology. MIT Press,

Cambridge, MA, 1984.

[15] D. C. Brogan and J. K. Hodgins. Group behaviors for systems with significant

dynamics. Autonomous Robots, 4:137–153, 1997.

[16] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Robotics

and Automation, RA-2:14–23, March 1986.

[17] L. Bruno. Mister roboto: Pioneer Joseph Engelberger shares his passion for

robotics. Red Herring, August 2000.

[18] W. Burgard, A. B. Cremers, D. Fox, D. Hanel, G. Lakemeyer, D. Schulz,

W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide

robot. Artificial Intelligence, 114(1-2):3–55, 1999.

[19] S. Camazine. Self-organization in biological systems. Princeton University Press,

Princeton, N.J., 2001.

132

[20] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng. Cooperative mobile robotics:

Antecedents and directions. Autonomous Robots, 4:1–23, 1997.

[21] R. T. Carde and A. Mafra-Neto. Effect of pheromone plume structure on moth

orientation to pheromone. In R. T. Carde and A. K. Minks, editors, Perspectives

on Insect Pheromones. New Frontiers, pages 275–290. Chapman and Hall, N.Y.,

1996.

[22] H. Choset. Topological simultaneous localization and mapping (slam): Toward

exact localization without explicit mapping. IEEE Transactions on Robotics

and Automation, 17(2):125–137, April 2001.

[23] H. Choset, J. Burdick, S. Walker, and K. Diamsa-Ard. Sensor based explo-

ration: Incremental construction of the hierarchical generalized Voronoi graph.

International Journal of Robotics Research, 19(2):126–148, February 2000.

[24] M. Colombetti, M. Dorigo, and G. Borghi. Behavior analysis and training: A

methodology for behavior engineering. IEEE Transactions on Systems, Man,

and Cybernetics-Part B, 26(3):365–380, 1996.

[25] C. T. David, J. S. Kennedy, J. S. Ludlow, and J. N. Perry. A re-appraisal of

insect flight towards a point source of wind-borne odor. Journal of Chemical

Ecology, 8:1207–1215, 1982.

[26] B. J. Doleman, M. C. Lonergan, E. J. Severin, Vaid T. P., and Lewis N. S.

Quantitative study of the resolving power of arrays of carbon black-polymer

composites in various vapor-sensing tasks. Anal. Chem., 70:4177–4190, 1998.

[27] J. F. Engelberger. Robotics in practice : management and applications of in-

dustrial robots. AMACOM, New York, 1980.

[28] J. Farrell. Plume tracing simulator. http://www.ee.ucr.edu/farrell/.

133

[29] D. Floreano and Mondada F. Evolution of homing navigation in a real mobile

robot. IEEE Transactions on Systems, Man and Cybernetics, 26:396–407, June

1996.

[30] United Nations Economic Commission for Europe and The International Feder-

ation of Robotics. World Robotics 2001 - Statistics, Market Analysis, Forecasts,

Case Studies and Profitability of Robot Investment. Geneva, 2001.

[31] J. Fredslund and M. J. Mataric. Robot formations using only local sensing and

control. In Proceedings, International Symposium on Computational Intelligence

in Robotics and Automation (IEEE CIRA 2001), Banff, Alberta, Canada, July

2001.

[32] M. S. Freund and N. S. Lewis. A chemically diverse conducting polymer-based

electronic nose. Proceedings of the National Academy of Sciences USA, 92:2652,

1995.

[33] D. W. Gage. Randomized search strategies with imperfect sensors. In Pro-

ceedings of SPIE Mobile Robots VIII, volume 2058, pages 270–279, Boston,

September 1993.

[34] D. W. Gage. Many-robots MCM search systems. In A. Bottoms, J. Eagle, and

H. Bayless, editors, Proceedings of Autonomous Vehicles in Mine Countermea-

sures Symposium, pages 9.55–9.63, Monterey, April 1995.

[35] D. Goldberg and M. J. Mataric. Design and evaluation of robust behavior-based

controllers. In T. Balch and L. E. Parker, editors, Robot Teams: From Diversity

to Polymorphism. AK Peters, Ltd., 2002.

[36] F. W. Grasso, T. R. Consi, D. C. Mountain, and J. Atema. Biomimetic robot

lobster performs chemo-orientation in turbulence using a pair of spatially sep-

arated sensors. Robotics and Autonomous Systems, 30:115–131, 2000.

134

[37] A. R. Graves and C. A. Czarnecki. Design patterns for behaviour-based robotics.

IEEE Transactions on Systems, Man and Cybernetics - Part A:Systems and

Humans, 30(1):36–41, January 2000.

[38] A. T. Hayes. How many robots? Group size and efficiency in collective search

tasks. In Proc. of the sixth Int. Symp. on Distributed Autonomous Robotic

Systems DARS-2002, Fukuoka, Japan, June 2002. Springer Verlag. To appear.

[39] A. T. Hayes, A. Martinoli, and R. M. Goodman. Comparing distributed explo-

ration strategies with simulated and real autonomous robots. In L. E. Parker,

G. Bekey, and J. Barhen, editors, Proc. of the fifth Int. Symp. on Distributed Au-

tonomous Robotic Systems DARS-2000, pages 261–270, Knoxville, Tennessee,

October 2000. Springer Verlag.

[40] A. T. Hayes, A. Martinoli, and R. M. Goodman. Swarm robotic odor local-

ization. In Proc. of the IEEE Conf. on Intelligent Robots and Systems, pages

1073–1078, Wailea, HI, October 2001. IEEE Press.

[41] A. T. Hayes, A. Martinoli, and R. M. Goodman. Distributed odor source

localization. IEEE Sensors, 2002. To appear.

[42] J. H. Holland. Adaptation in natural and artificial systems. The University of

Michigan Press, Ann Arbor, 1975.

[43] O. E. Holland and C. Melhuish. Stigmergy, self-organization, and sorting in

collective robotics. Artificial Life, 5:173–202, 1999.

[44] D. F. Hougen, P. E. Rybski, and M. Gini. Repeatability of real world training

experiments: A case study. Autonomous Robots, 6(3):281–292, 1999.

[45] A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella. Collaboration

through the exploitation of local interactions in autonomous collective robotics:

The stick pulling experiment. Autonomous Robots, 11(2):149–171, 2001.

135

[46] H. Ishida, Y. Kagawa, T. Nakamoto, and T. Moriizumi. Odor-source localiza-

tion in the clean room by an autonomous mobile sensing system. Sensors and

Actuators B, 33:115–121, 1996.

[47] H. Ishida, T. Nakamoto, T. Moriizumi, T. Kikas, and J. Janata. Plume-tracking

robots: A new application of chemical sensors. Biological Bulletin, 200:222–226,

April 2001.

[48] C. D. Jones. On the structure of instantaneous plumes in the atmosphere.

Journal of Hazardous Materials, 7:87–112, 1983.

[49] R. N. Kachar. Off-line quality control, parameter design, and the Taguchi

method. Journal of Quality Technology, 17:176–209, 1985.

[50] R. Kanzaki, N. Sugi, and T. Shibuya. Self-generated zigzag turning of Bombyx

mori males during pheromone-mediated upwind walking. Zoological Science,

9:515–527, 1992.

[51] S. Kazadi, R. Goodman, D. Tsikata, and H. Lin. An autonomous water va-

por plume tracking robot using passive resistive polymer sensors. Autonomous

Robots, 9(2):175–188, 2000.

[52] I. D. Kelly and D. A. Keating. Flocking by the fusion of sonar and active

infrared sensors on physical autonomous mobile robots. In Proc. of the The

Third Int. Conf. on Mechatronics and Machine Vision in Practice, pages 1/1–

1/4, Guimaraes, Portugal, 1996.

[53] J. Kennedy and R. C. Eberhart. Swarm Intelligence. Academic Press, San

Diego, CA, 2001.

[54] J. R. Koehler, A. A. Puhalskii, and B. Simon. Estimating functions evaluated by

simulation: A bayesian/analytic approach. The Annals of Applied Probability,

8(4):1184–1215, 1998.

136

[55] M. J. B. Krieger, J. Billeter, and L. Keller. Ant-like task allocation and recruit-

ment in cooperative robots. Nature, 406:992–995, August 2000.

[56] C. R. Kube and E. Bonabeau. Cooperative transport by ants and robots.

Robotics and Autonomous Systems, 30:85–101, 2000.

[57] Y. Kuwana, I. Shimoyama, Y. Sayama, and H. Miura. Synthesis of pheromone-

oriented emergent behavior of a silkworm moth. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 1722–1729,

1996.

[58] N. E Leonard and E. Fiorelli. Virtual leaders, artificial potentials and coordi-

nated control of groups. In Proceedings of the 40th IEEE Conference on Decision

and Control, pages 2968–2973, 2001.

[59] K. Lerman. Learning real team solutions. In Lecture Notes in Artificial Intel-

ligence (LNAI) 1871. Springer Verlag, Berlin, 2001.

[60] H. Lipson and J. B. Pollack. Automatic design and manufacture of robotic

lifeforms. Nature, 406:974–978, 2000.

[61] C. Loizos. Special feature: Service-sector robotics: Robots are breaking out of

the factory. Red Herring, September 1998.

[62] M. C. Lonergan, E. J. Severin, B. J. Doleman, S. A. Beaber, R. H. Grubbs,

and N. S. Lewis. Array-based vapor sensing using chemically sensitive, carbon

black-polymer resistors. Chem. Mater., 8:2298–2312, 1996.

[63] Mataric M. Interaction and Intelligent Behavior. Ph.D Thesis, MIT, Boston,

May 1994.

[64] S. Mahadevan and J. Connell. Automatic programming of behavior-based

robots using reinforcement learning. Artificial Intelligence, 55(2-3):311–365,

June 1992.

137

[65] A. Martinoli. Swarm Intelligence in Autonomous Collective Robotics: From

Tools to the Analysis and Synthesis of Distributed Control Strategies. Ph.D

Thesis Nr. 2069, EPFL, Lausanne, Switzerland, October 1999.

[66] A. Martinoli, A. J. Ijspeert, and L. G. Gambardella. A probabilistic model for

understanding and comparing collective aggregation mechanisms. In D. Flore-

ano, F. Mondada, and J.-D. Nicoud, editors, Proc. of the Fifth Int. European

Conf. on Artificial Life ECAL-99, Lecture Notes in Computer Science, pages

575–584. Springer Verlag, Lausanne, Switzerland, September 1999.

[67] A. Martinoli, A. J. Ijspeert, and F. Mondada. Understanding collective ag-

gregation mechanisms: From probabilistic modelling to experiments with real

robots. Robotic and Autonomous Systems, 29:51–63, 1999.

[68] M. J. Mataric. Designing and understanding adaptive group behavior. Adaptive

Behavior, 4(1):51–80, December 1995.

[69] M. J. Mataric. Issues and approaches in the design of collective autonomous

agents. Robotics and Autonomous Systems, 16(2-4):321–331, December 1995.

[70] M. J. Mataric. Reinforcement learning in the multi-robot domain. Autonomous

Robots, 4(1):73–83, March 1997.

[71] M. J. Mataric. Learning in behavior-based multi-robot systems: Policies, mod-

els, and other agents. Cognitive Systems Research, special issue on Multi-

disciplinary studies of multi-agent learning, 2(1):81–93, April 2001.

[72] A. J. Matzger, C. E. Lawrence, R. H. Grubbs, and N. S. Lewis. Combinatorial

approaches to the synthesis of vapor detector arrays for use in an electronic

nose. J. Comb. Chem., 2:301–304, 2000.

[73] J. McCarthy, M. Minsky, N. Rochester, and C. Shannon. A Proposal for the

Dartmouth Summer Research Project on Artificial Intelligence. August 1955.

138

[74] Merriam-Webster, editor. Merriam-Webster’s Collegiate Dictionary. Interna-

tional Thomson Publishing, London, 1998.

[75] O. Michel. Webots: Symbiosis between virtual and real mobile robots. In

Proceedings of the First International Conference on Virtual Worlds, VW’98,

pages 254–263, Paris, France, July 1998. Springer Verlag.

[76] M. L. Minsky. Steps toward artificial intelligence. Proceedings of the Institute

of Radio Engineers, 49:8–30, 1961.

[77] F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturization: A tool for

investigation in control algorithms. In T. Yoshikawa and F. Miyazaki, editors,

Proc. of the Third International Symposium on Experimental Robotics ISER-93,

pages 501–513, Kyoto, Japan, 1993. Springer Verlag.

[78] A. Murciano, J. R. Millan, and Z. Zamora. Specialization in multi-agent systems

through learning. Biological Cybernetics, 76:375–382, 1997.

[79] J. Murlis, J. S. Elkington, and R. T. Carde. Odor plumes and how insects use

them. Annu. Rev. Entomol., 37:505–532, 1992.

[80] H. T. Nagle, R. Guitierrez-Osuna, and S. S. Schiffman. The how and why of

electronic noses. IEEE Spectrum, 35(9):22–31, September 1998.

[81] T. Nakamoto, H. Ishida, and T. Moriizumi. A sensing system for odor plumes.

Analytical Chemistry, 71(15):531A–537A, August 1999.

[82] L. E. Parker. Lifelong adaptation in heterogeneous multi-robot teams: Response

to continual variation in individual robot performance. Autonomous Robots,

8(3):239–267, 2000.

[83] M. S. Phadke. Quality Engineering Using Robust Design. Prentice Hall, Engle-

wood Cliffs, NJ, 1989.

139

[84] P.H. Ramsey. Multiple comparisions of independent means. In L. K. Edwards,

editor, Applied analysis of variance in behavioral science, volume XI, pages

25–62. Marcel Dekker, New York, 1993.

[85] C. W. Reynolds. Flocks, herds, and schools: A distibuted behavioral model.

Computer Graphics, 21(1):79–98, 1987.

[86] P. J. W. Roberts. Modeling Mamala Bay outfall plumes. II: Far field. J. of

Hydraulic Engineering, 125(N6):574–583, 1999.

[87] R. A. Russell. Odor detection by mobile robots. World Scientific, Singapore,

1999.

[88] R. A. Russell, D. Thiel, R. Deveza, and A. Mackay-Sim. A robotic system

to locate hazardous chemical leaks. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 556–561, Nagoya, 1995.

[89] J. C. Santamaria and A. Ram. Learning of parameter-adaptive reactive con-

trollers for robotic navigation. In Proceedings of the World Multiconference on

Systemics, Cybernetics, and Informatics, Caracas, Venezuela, July 1997.

[90] H. A. Simon. Kasparov vs. Deep Blue: The aftermath - AI lessons. Communi-

cations of the ACM, 40(8):23–25, August 1997.

[91] D. J. Simons. Current approaches to change blindness. Visual Cognition: Spe-

cial Issue on Change Detection and Visual Memory, 7:1–16, 2000.

[92] M. T. Stacey, E. A. Cowen, T. M. Powell, E. Dobbins, S. G. Monismith, and

J. R. Koseff. Plume dispersion in a stratified, near coastal flow: measurements

and modeling. Continental Shelf Research, 20:637–663, 2000.

[93] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, Cambridge,

MA, 1998.

140

[94] Y. Takahashi and M. Asada. Behavior acquisition by multi-layered reinforce-

ment learning. In Proceedings of the IEEE International Conference on Systems,

Man, and Cybernetics, pages 716–721, 1999.

[95] S. Thrun. Probabilistic algorithms in robotics. AI Magazine, 21(4):93–109,

2000.

[96] S. Thrun. A probabilistic online mapping algorithm for teams of mobile robots.

International Journal of Robotics Research, 20(5):335–363, 2001.

[97] J. Toner and Y. Tu. Flocks, herds, and schools: a quantitative theory of flocking.

Physical Review E, 58(4):4828–4858, 1998.

[98] C. Versino and L. M. Gambardella. Learning real team solutions. In G. Weiss,

editor, DAI Meets Machine Learning, Lectures in Artificial Intelligence, pages

298–311. Springer Verlag, Berlin, 1997.

[99] N. J. Vickers and T. C. Baker. Reiterative responses to single strands of odor

promote sustained upwind flight and odor source location by moths. Proceedings

of the National Academy of Sciences USA, 91:5756–5760, 1994.

[100] G. Walter. The Living Brain. Norton, New York, 1953.

[101] B. Webb. View from the boundary. Biological Bulletin, 200:184–189, April

2001.

[102] D. R. Webster, S. Rahman, and L. P. Dasi. On the usefulness of bilateral com-

parison to tracking turbulent chemical odor plumes. Limnology and Oceanog-

raphy, 46(5):1048–1053, 2001.

[103] D. R. Webster, S. Rahman, and L.P. Dasi. Laser-induced fluorescence mea-

surements of a turbulent plume. ASCE Journal of Engineering Mechanics.

Submitted.

[104] D. R. Webster, P. J. W. Roberts, and L. Ra’ad. Simultaneous dptv/plif mea-

surements of a turbulent jet. Experiments in Fluids, 30:65–72, 2001.

141

[105] D. R. Webster and M. J. Weissburg. Chemosensory guidance cues in a turbulent

chemical odor plume. Limnology and Oceanography, 46(5):1034–1047, 2001.

[106] M. J. Weissburg. From odor trails to vortex streets: Chemo and mechanosensory

orientation in turbulent and laminar flows. In M. Lehrer, editor, Orientation

and Communication in Arthropods, pages 215–246. Birkhauser, Basel, 1997.

[107] L. L. Whitcomb, A. A. Rizzi, and D. E. Koditschek. Comparative experiments

with a new adaptive controller for robot arms. IEEE Transactions on Robotics

and Automation, 9(1):59–70, February 1993.

[108] A.F.T. Winfield and O.E. Holland. The application of wireless local area net-

work technology to the control of mobile robots. Microprocessors and Microsys-

tems, 23:597–607, 2000.

[109] D. Wolpert, K. Wheeler, and K. Tumer. Collective intelligence for control of

distributed dynamical systems. Europhysics Letters, 49(6), March 2000.

[110] D. Wright. Bold new vision for robotics: Improved robotics vision systems bring

us one step closer to next generation manufacturing. Advanced Manufacturing,

March 2001.

[111] S. Yakowitz, P. L’Ecuyer, and F. Vazquez-Abad. Global stochastic optimization

with low-dispersion point sets. Operations Research, 48(6):939–950, November-

December 2000.

[112] H. Yamaguchi and G. Beni. Distributed autonomous formation control of mobile

robot groups by swarm-based pattern generation. In Proc. of the Second Int.

Symp. on Distributed Autonomous Robotic Systems DARS-96, pages 141–155.

Springer Verlag, 1996.

