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haear viscoelasticity theory is applied to the fatigue problem of solids sensi- 

tive to the deformation rate. A series of experiments have been performed to 

investigate the range of applicability in whch the theory is valid and to examine 

the accuracy of the theory. The experimental results are compared with an 

existing theory. 



Compared to 10 or 20 years ago there are many situations in engineering 

today where polymers are used for structural purposes. This use occurs in the 

civil engineering sector; in water- and gas piping constructed from Polpnyl- 

chloride; in agriculture for irrigation and desalination purposes; in many house- 

hold goods and in particular in the automotive industry. In the transportation 

industry polymers are widely used in automobile tires as well as in automotive 

body components. In the aerospace industry polymers are used to a large extent 

as sealants, as structural bondmg agents, as well as bonding together fibers to 

make composite materials. The composite materials may be either of continu- 

ous, or chopped fiber type. Inasmuch as a very large percentage of engineering 

application of any materials encounters transient or periodic loading, it is 

appropriate that one give attention to the fracture behavior of these types of 

materials in a fatigue-type of environment. 

We associate with the terminology "fatigue" the phenomenon that failure or 

fracture of a component occurs under a cyclic load environment at stress or 

load levels that are significantly lower than those that might have been sus- 

tained by the part if only a steady continuous load had been imposed. In the 

context of time-dependent failure of polymeric material this definition may or 

may not be appropriate. We know, for example, that even when steady loads are 

imposed on a viscoelastic material, fracture will occur in a time-delayed manner 

due to the slow and time-dependent growth of cracks in such a material. This 

phenomenon has often been associated with the term of 'ktatic fatigue". Under 

such circumstances it would be appropriate by the classical definition of fatigue 

to add into that definition some measwe of a comparative time length or  life so 
0 

as to assess whether a cyclic or repetitive loading leads to an acceleration over 

the appropriate steady-state environment to which a part might be subjected. 



By and large the study of fatigue in polymeric materials has been, to date, 

confined essentially to rigid polymers. In this connection fatigue in polymers 

has been treated by virtually the same methods that are normally applied to the 

fatigue of structural metals. Because a detailed understanding of the fatigue 

process in metals and also in the rigid polymers does not exist from a basic 

point of view, one has generally resorted to analyzing crack propagation rates 

under fatigue type loading as a function of the difference between maximum 

and minimum stress intensity factor. The resulting test curves have often come 

to represent essentially the fatigue material behavior instead of the S-N curves 

that were part of standard fatigue analysis only three decades ago. 

From an engineering point of view, this may be quite an acceptable approach 

for dealing with the fatigue problem when the polymer is definitely in the rigid 

state. However. there are many situations, in particular in aerospace applica- 

tions, where the material is exposed to elevated temperatures to such a degree 

that while substantial softening is not achieved the load duration and the 

fatigue environment may last long enough so that it substantial amount of dam- 

age is incurred in this elevated temperature stage. Inasmuch as at elevated tem- 

peratures polymers tend to become significantly viscoelastic, the question arises 

as to how the fatigue process is governed in this kind of environment when 

strong viscoelastic effects are present. 

It appears reasonable to view the fracture behavior or fadure behavior of 

polyrneric materials from the point of view of fracture mechanics, that is, the 

taiiure behavior of these materials in the presence of preexisting cracks. In this 

context, it becomes reasonable therefore to inquire as to how cracks propagate 

in a material when strong viscoelastic material behavior is present and when the 

load history of the component is cyclic in nature. Inasmuch as there is at this 

time only an approximate theory [I] that deals with crack propagation in 



polymers under cyclic conditions of loading it is appropriate to examine this 

problem in some detail and to do so from an experimental point of view. 

At this time our foundation for understanding the propagation of cracks in 

viscoelastic material is based on linear viscoelastic material response. For the 

case of linearly viscoelastic behavior this foundation is outlined essentially in 

[2], while similar developments based on special material representation are 

covered in [3] and [4]. These developments are documented specifically tor pro- 

pagation theory at constant velocities, where the underlying assumption is that 

the crack propagation is applicable instantaneously in situations where the 

stresses at the tip of the crack change continuously with time. I t  turns out that 

for many situations t h s  underlying assumption is not a serious restriction at 

all. However, it appears questionable to what extent these relations are applica- 

ble when the stresses change rather rapidly at the tip of the moving crack. As 

has been pointed out in [5] .  if the crack-tip stresses change rapidly compared to 

a length parameter characterizing a t b n  zone of fracturing material along the * 

crack path, then these approximations involving constant rates of crack propa- 

gation may no longer be applicable. The fully analytical exploration at this ques- 

tion seems too cumbersome at this time. Rather, one would feel that it is more 

appropriate to examine this problem initially experimentally. Subsequent to 

such an experimental investigation one would then find more justification or 

motivation to explore particular ranges of material behavior where perhaps 

more suitable approximation are appropriate. 



We shall summarize here briefly the developments in [2]. Consider the tip of 

a crack moving through a (linearly) viscoelastic material. This tip is character- 

ized by a damage or process zone in which the material behaves non-linearly. If 

this zone is sufficiently small, one may make use of the linearized theory of 

viscoelasticity along with a line model for the process zone according to Prandtl, 

Barenblatt or Dugdale. The process zone needs to be incorporated to provide a 

length scale parameter that couples the material viscosity to a crack propaga- 

tion speed. In Ref. 2 two criteria of fracture were explored: a crack-opening dis- 

placement and an energy criterion. Both gave essentially identical results. It 

suffices, therefore, to consider only one, the energy criterion. 

The energy criterion states that the rate of work done by the unloading trac- 

tions on the displacements in the (line) plastic zone equals the rate of fracture 

energy absorption, which, in the simplest form, may be considered to be a con- 

stant I' times the crack speed c. Under the assumption of constant crack propa- 

gation speed that criterion leads to the relation (for Poisson's ratio u = 1 /2) 

where 

K = stress intensity factor 

01 = length of (line) cohesive or process zone 

r = rate independent fracture energy 

C! = rate of crack growth 

D(t) = uniaxial creep compliance 



In this context we note that eqn. (1) holds rigorously for c = const. and approxi- 

mately for 6 const. pnmicisd (see Ref. 2) 

This question of describing crack growth analytically by an equation like (1) 

was addressed in a previous analysis which was based on crack growth by small 

but k i t e  increments [I] but which did not limit itself to the cases allowed by 

[2]. The net result of that analysis was that if viscoelastic transients become 

important (i.e. if the equation (3) above is violated) then crack propagation per 

cycle should occur more rapidly than if only the quasi-steady relations (1) is 

involved (ti = const.). Inasmuch as equation (1) is much easier to apply than the 

work in Ref. 1 one may raise the question whether the deficiency associated with 

violation of (3) is really important: Attar all, a problem may exist only near c=O, 

so that the total amount of crack growth accumulated near the "crack growth 

boundary"' is very small tb begin with and thus possibly an important contribu- 

tion to the total crack length. The constraint (3) is always violated when a crack 

tip experiences loading that passes through the limit for possible crack propa- 

gation: Below and at this limit 6 = 0 but ~ ( t )  # 0; the same is true for conditions 

above this limit where both K and i: exceed zero, but still close enough to the 

propagation limit so that the order relation is violated. The question arises thus 

to what extent equation (1) can represent crack growth under conditions when 

the propagation boundary is passed, particularly passed repeatedly as in a 

cyclic history. I t  is possible that equation (1) would be more powerful than the 

analytical estimates would indicate. I t  appears, however, reasonable to expect 

1 Crack growth is not possible if the stress intensity is below a certain value say K*; above K* crack 
@ o a  occurs. We call K* the crack growth boundary. 



that the range of validity of (1) is somehow limited by the inequality (2) and that 

the argument of "small crack growth contribution" means that the propagation 

boundary may only extend the range of validity for (1) somewhat. 

In view of this situation it is appropriate to examine the crack growth 

behavior under transient rather than steady loading conditions experimentally. 

The results of such an investigation would then provide further input to analyti- 

cal formulations that elucidate the behavior of crack growth under rather arbi- 

trary transient loading histories. Because of its technical importance as well as 

the ease with which small crack growth can be accumulated over many cycles 

into a readily measurable quantity, cyclic deformation histories seem to be well 

suited to this study. 

For later veference it should be pointed out that evaluation of crack growth 

under transient load histories, it governed by equation (I), was carried out in 

considerable detail in 161; this study will serve as a guide and reference against 

which the experimental results can be compared. 
/ 

We proceed next to a description of the experimental set-up and analysis of 

the experimental technique (caustics). Following these developments we turn to 

the recording and then analysis of the experimental results. 



For measuring the stress intensity factor K(t) and the crack length c(t) in the 

same time frame, the method of caustics is adopted. This method, also called 

"shadow spot method", or 'the method of shadow pattern", was recognized by 

Schardin and analyzed by Mannog in 1959. Through the works of Theocaris, 

Kalthoff and others (Knauss. Rosakis, Kim, Ravi-Chandar) this method is not 

only useful for elastic materials, but also for viscoelastic ones [7] .  

3.1 Physical Description of the Methiod af Caustics 

When a beam of parallel light is incident normally on a stress free plate of 

transparent material, the beam of light just passes through. However, if there is 

a crack in the plate, say under Mode-l loading, the light rays will be deflected, 

particularly in the crack tip regron. Due to the stress field in the material the 

index of refraction of the material will change. Also, around the crack tip the 

shape of the plate surface is altered. Both effects will cause the transmitted 

light to deviate from the original stralght path. By the Maxwell-Neumann alasto- 

optical law the refraction index is decreased; t b s  fact plus that of the non- 

homogeneous surface deformation makes the crack tip act like a divergent 

lense (cf. Figure 3.1). The light around the crack tip is deflected outward so that 

on an image plane the area around the crack tip is devoid of light and a dark 

spot is formed. A photograph of a test situation is shown in Figure 3.2. 

9.2 M a t h e m a t i c a l  Description 

Consider the optical arrangement in Figure 3.3 of a cracked plate 

represented by the object plane and a viewing plane or image plane IP is located 

at a &stance z. from and parallel to the object plane. kt a light ray be incident 

at point P on the object plane with coordinates P = P(r. (p). If the light Were not 

deflected, it would intersect the image plane at the point P'. Actually the ray will 









be deflected to intersect the image plane at the point P". By the geornetry'in Fig- 

ure 3.3, we have then 

?' = 3 + it(r,p) (1) 

where *(r,(p) is a deviation vector. Applying the theory of the eikonal one has 

+(r,p) = zo 0 ( As(r,p) ) (2) 

where As(r,p) is the total change in hght path orientation as the ray passes 

through the material. By the Maxwell-Neurnann stress optic law and Hooke's law 

one has for As 

where the following definitions hold 

h = thickness of the plate 

Al,& = stress optical constants 

a ,a2 = principal stresses 

E =  modulusof elasticity 

v = Poisson's ratio 

n = index oi refraction 

If At # hp the material is called optically anisotropic, or birefringent. The 

consequence is that p # 0 and therefore As has two values. Therefore there will 

be two vectors 3, i.e. there d l  be two caustics. It turns out, puctically speak- 

ing. that Solithane 113 (50150) is optically isotropic, i.e. = &, and p = 0. so 

that only one caustic is observed. For optically isotropc materials 



For viscoelastic and optically isotropic materials the corresponding relation is in 

the form of a convolution, namely 

where the star (*) notation sigmfies the Stieltje's Integral. Thus, the optical 

path change within the material is a function of the stress and deformation his- 

tory. Recall that in linear elasticity the stresses near the crack tip (in the object 

plane) are 

I t  follows that the stress invariant u1 + 02 = ox + o7 - o is 
Therefore equation (1) becomes, with the help of Equations (5) and (6) 

which, in Cartesian components is equivalent to 

3 
3 x1 = roosp - dzo[ ~ ( t )  r ~ ( t )  1 -& r-7 cos 9 
2 

3 
3 

T/ = rsinp - dzo[ X(t) * KI(t) ] -& r-F sin 7 . 
2 

We next observe that in the image plane, the caustic is the envelope of all singu- 

lar points for equations (9a) and (9b). Thus the caustic can be expressed by the 



singularity condition (J = Jacobian of x', y'with regard to r, p) 

~f we define the curve r(p) in the object plane from which the rays tall on the 

caustic curve in the image plane as r = r.@), then this relation yields that 

a. The radius r, is independent of p; i.e., the curve is a circle with center at the 

crack tip; this curve is called the 'Initial curve." 

b. the radius r, of the initial curve is given by 

The image of that initial curve (circle), i.e., the caustic is given by equation 

(9) together with (11) as 

2 3 X = r,(cos(p + -j- cos p) 

2 3 Y = r,(sin(p + - sin p) 3 

A plot ot equations (12) is given in Figure 3.4 for a particular time when r, is 

some constant. Now define D=2Y", (cf. Fig. 3.4). Then 

2 3 = 2ramax ( sinp + -- sin p ) 3 
= r,f 

where 
2 3 f = 2 Max(sinp + - sin p) 
3 

Use of (13) together with (1 1) renders the convolution relation 





Thus by measuring the "caustic diameters" D(t) as a function of time, the 

corresponding stress intensity factor K can be calculated from (14). 

The determination of K requires the solution of an (convolution) integral 

equation; this is not a trivial matter, in general. For further work here we 

therefore make use of results in [7] which establishes an excellent approxi- 

mation for the test material and load histories used in this investigation. In 

[7 ]  it was established that essentially elastic conditions prevd for times 

longer than 10-I min (cf. Figure 3.5) at a temperature of O°C. It was also 

shown that the time-temperature equivalence principle holds. With this 

information it is possible to determine those conditions on temperature and 

test frequency for which elastic rather than fully vlscoelastic conditions pre- 

vail. With this information one is able to construct a curve of frequency vs. 

temperature that "separates" the elastic from the viscoelastic behavior1 

This relation is shown in Figure 3.6 along with the test conditions (as 

points) used in the later experiments. It is clear from these considerations 

that the caustic data gathered in the subsequent tests can be used to com- 

pute the stress intensity factor from the elastic solution represented by 

equation (15) where the constant h (definition following equation (3)) incor- 

porates the long time or rubbery Young's modulus of the test material. 

- 
* This curve shorn is, of course, a sharp demarcation inatead of the 'tegion" in which viscodastic 

behavior is weak. For this reason the curve is adjoined by a shaded region, in which 
vis@oela&icity behavior is minimal. 
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Kgurs 3.6 C w e  A corresponds t o  10-I minutes in Figure 3.5 



I t  should be mentioned that we shall be interested in a moving crack, while 

the caustic relation (15) corresponds to a stationary crack. However, the crack 

will be moving so slowly that dynamic effects are irrelevant so that the present 

analysis is totally adequate to deal with the later test situations. 

We shall attempt to study crack growth as a function of the ?na,i&rnum stress 

intensity during any cycle. Thus it will be necessary to record the maximal caus- 

tic diameter D during any cycle. This is accomplished in the set-up shorn in Fig- 

ure 3.7. 

A Spectra Physics Model 120 Laser shines light through a spatial Alter and 

beam expander onto the crack tip of a specimen supported in a (servo- 

hydraulic) test machine. The image plane is formed by a translucent piece of 

paper with mm rulings . This arrangement allows virtually continual monitoring 

of the caustic size by means of a video camera and recorder. Data is reduced 

later from the video tapes. 

In order to ,avoid buckling of the specimen, only tension-tension cycling was 

perf orrned such that there was always tension on the specimen. The lowest value 

of the caustic was used to locate the tip of the crack relative to the boundary. it 

turns out that the location of the crack tip is determined relative to the caustic 

by the discussions shown in F'igure 3.8. The computation of these dimensions are 

shown in Appendix B. The diameter of the caustic under maximum load is 

measured (off the video-play back) as a function of crack length in the same 

cycle. I t  will be noted from equation (15) that the stress intensity factor can be 

determined if all the parameters characterizq the material as well as the 

experimental set-up are known. It turned out that some of this informations was 







not available, in particular the stress-optic coefficient for Solithane 1.13. In 

terms of equation (15) this means that the parameter X is not known. The 

determination of the stress-optic coefficient is not a trivial matter. Therefore it 

was deemed more time-emcient to ascertain this parameter X in a separate cali- 

bration process, rather than the stress optic coef3cient. 

3.5 Caustic Calibration 

To thls end a typical specimen (cf. Figure 3.9) is mounted in an Instron test 

machine (screw-type loading device) with a C-type load-cell in the 0-20 lb range. 

Under a given load the caustic is recorded and the corresponding crack length 

noted. Using the analytical results for this geometry (infinitesimal elasticity 

solution [el), one notes, as tor example from equation (Is), that the 5/2 power 

of the caustic diameter D is linearly proportional to the stress intensity factor. 

6 

Thusl if one plots D' against the theoretically determined stress intensity factor 

one should obtain a straight line. This stress intensity factor would be based on 

the conditions prevailing in the experiment (load and crack length as well as the 

rest of the geometry). As can be seen from Q u r e  3.10, the resulting experimen- 

tally determined points fall very neatly along a straight line. A best straight line 

fit to this data, is then accomplished as shown; this line determines the value of 

hPd in equation (15) and, by deduction, the long-time value of the stress-optic 

coefficient. I t  should be remarked that the experimental points in U u r e  3.10 

are obtained by varying the applied stress as well as by varying the crack leqth  

for computing the 'theoretical" value of the stress intensity factor. 

For purposes of completeness let us record here the pertinent equation for 

this computation. From [0] we have for the stress intensity factor (Mode-I) 



GEOMETRY CONFIGURATION OF THE TESTING SAMPLE 

Rgure 3.9 Geometry configuration of the testing sample. 



HgUR 3.10 Calibration of the caustic parameter A. 



where cr is the average grip stress and (H,b) are as defined in the inset~of Fig- 

H ure 3.11. The function KI /& = 1.1215 F( -) is given in that Bgure for two end 
b 

conditions that do or do not allow for rotation of the grips. In the present exper- 

iments no rotation was allowed; hence only the appropriate interpolated curve 

for h/b = 0.67 shown in Figure 3.11 was used. 

Before propeeding to evaluate the fatigue data it is worth while to mention 

why the photoelastic method was not used. It turns out that with a specimen 

thickness of 2.5 mrn (0.1 inch) the photoelastic method was no more sensitive or 

accurate than the caustic method. In this situation the caustic method is easier 

to use because only a single parameter must be measured (D) while in the pho- 

toelastic method field data needs to be analyzed for a best fit of the crack-tip 

stress field to existing photo-elastic figures [9]. 

A biief note is in order regarding data scatter. It will be noted that there is 

very little data scatter present in all the subsequent measurements. This fact is 

a direct consequence of the care with which the maximum stress intensity was 

determined in each cycle as well as the how the crack length was determined. 

The latter was measured under conditions when the crack was almost closed 

(lowest stress in any cycle). These simple rules produced very consistent data 

subject only to variations in material properties along the crack path, whch 

variations could give rise to data scatter measurements of the crack propaga- 

tion rate. That this did not happen to any sizable degree testifies only to the 

uniformity of test material. 





In order to explore the applicability of the crack propagation equation (1) it 

is necessary to perform tests over a matrix of frequencies and temperature. If 

the material behaves in a thermorheologically simple manner, it would be 

sufacient to perform these tests at only one frequency and several tempera- 

tures, or at one temperature and several frequencies. Although in previous, 

steady-state test the crack propagation behavior followed essentially ther- 

morheologically simple behavior we do not know for certain what the effect of 

cycle frequency is on generating heat at the crack tip and thus infiuence the 

crack growth rate in this secondary manner. For this reason two sets of data 

were taken: in one - let us call it Set I - the temperature varied but the tre- 

quency wasl always 1 Hz while in the second set - for discussion purposes 

denoted by Set ll - the frequency varied and the temperature remained constant 

at 20°C. These test points are shown graphically in the plot of the viscoelastical 

caustic boundary (cf. Figure 3.6). 

For any of these tests one records the length of the crack as a function of the 

number of cycles as well as the corresponding instantaneous stress intensity 

factor. For Set I (varied temperature at 1 Hz) the data are recorded in Figure 

4.1 and 4.2, while for Set I1 (varied frequency at 20') they are shown in Figures 

4.3 and 4.4. Note the relatively small amount of data scatter. The crack length 

data in Rgures 4.1 and 4.3 are then differentiated numerically by the five-point 

Lagrange method [10,11]. Differentiation is accomplished with respect to the 

number of cycles (as a continuous variable), though Set I leads directly to the 

time derivative because the frequency is one Hz; the results of this 

diflerentiation are given in Figures 4.5 and 4.6. 

Upon cross-plotting the data from Figures 4.2 and 4.5 one eliminates the 



Rgure4.l Crack length recorded as a function of the number of cycles in 
different temperatures. 





Rgure 4.3 Crack length recorded as a function of the number of cycles under 
different loading frequencies. 









cycle number and derives a plot of crack growth rate as a function of the maxi- 

mal stress intensity factor in each cycle (& /& ranges between 3.0 and 3.6 

during these tests); this is shown for Set I in Figure 4.7. Similarly, if one cross 

plots Figures 4.4 and 4.6 one arrives at the data in Wure 4.8 for Set 11. Thus Fig- 

ures 4.7 and 4.8 constitute the starting data tor examining the possible effect of 

viscoelas ticity on crack propagation under transient loading. 

5. ANALYSLS OF' -AL I@SULTS 

We notice first, with respect to Figure 4.7, that the overall behavoir of crack 

growth as a function of temperature is as expected from the time-temperature 

superposition behavior. However two deviations are rather obvious: If the data 

behaved strictly according to the time-temperaure superposition principle, the 

curves in Figure 4.7 should all have the same shape. That is clearly not the case 

at low (maximal) stress intensity and progressively less true as the temperature 

increases. 

In this connection it must be remembered that stress cychg occurred 

between some minimum and maximum value in each cycle. In these tests the 

minimum value (2.5 psi) was large enough so that during most of the cycle crack 

propagation became possible at the hgher temperature. This "anomaly" of the 

data in the low-K, h a - T  region is thus due to an effectively superposed steady 

stress intensity factor which makes a significant contribution only when K- is 

small (K- I&,,, -r 3.0) and when the temperature is such as to allow 

significant crack growth under this low stress condition. 

The second "anomaly" becomes apparent when one time-temperature shifts 

the curves in Figure 4.7 or cross plots them at difference values of the stress 

intensity factor against temperature. This plotting is done in Figures 4.9 and 

4.10. In accbrdanca with the time-temperature behavior indicated by the dotted 



4.7 Crack propagation rate due to change 0% temperature. 



log K (psi +/inch) Sires Intensity Foc tor 

Hgure 4.8 Crack propagation rate due to change of loading frequencies. 
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curve' in Figure 4.9 the plots in Figure 3.10 should exhibit a monotonic burva- 

ture behavior as a function of temperature. The fact that this does not occur 

but signscant deviation occurs consistently at the lower temperatures indicates 

a systematic variation of the fatigue crack growth from standard time- 

temperature superposition behavior. In fact the deviation is such (the dashed 

curves in Figure 4.9 correspond to the dotted one in Figure 4.10) that crack pro- 

pagation is highe~ at these lolw tmpsrat.Cl~es than nonnat time-temperature 

superposition would predict. We are aware of the normal data scatter in meas- 

urements of this type, but believe that the behavior in Figure 4.10 is systematic 

at all stress intensities. 

If one neglects these finer points, one finds that, grossly speaking the time- 

temperature behavior is well obeyed in these fatigue tests as long as the tem- 

perature remains above 20°C at a irequency of 1 Hz. This, more rough com- 

parison is illustrated in Figure 4.1 1 which shows comparison of the K-i! relation 

computed from equation (1) assuming quasisteady behavior (equation (1) valid 

instantaneously; dashed curve for P C ,  see Ref. 6). The experimental data for the 

present study (solid curve) agrees rather well with the computed data at 20°C 

(dotted c w e ) .  

]Let us now examine the behavior at 20°C when the cycle frequency is 

changed. It is clear from Figure 4.8 that a standard plot of dc /dN against K 

makes the cyclic growth rate strongly dependent on frequency, It is natural to 

ask, therefore, whether the characterization on a "per-cycle" basis is more 

appropriate than on a 'per-unit-time" basis2 After all, we have seen in Section 2 

that the crack growth should, at least approximately, be predictable by a time- 

ihfferential equation. Thus, if one cdnverts the ordinate in Figure 3.8 from 

1. This f3guz-e is an accumulation of data from different tests on the same material 12-43. 
2. Standard fatigue data is presented on a 'her cyc1e"basis. 
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Rgure 4,i I CompaFimm of computed and mearnved crack propagation rate. 



dc /dN to dc /dt one finds in Figure 4.12 a much closer agreement, although, 

due primarily to the low data scatter in Figures 4.3 and 4.4, one can distinguish 

a systematic separation of the curves with increasing frequency. Specifically we 

note that higher freqLsndss Lead t o  fmtm crack popagcrf ia  mtes than lower 

frequencies. For 'low" frequencies the curves all seem to collapse into a simple 

master curve which should be equal to that computed from the quasi-static and 

monotonically-based crack propagation equation (1). 

With reference to the previous test series 'Set I" were low temperature pro- 

duced crack growth rates that were higher than those predicted by the quasi- 

static theory the same i s  true here for higher frequency. Since higher frequency 

has the same effect on viscoelastic behavior as lower temperature, we conclude 

that u d a  increused vkcodast ic  mdtedd rsspme in the m u r ~ e l a z s d  m g e  o j  

mrxteTiaL beha& muck papagation is accelerated by a cyclic load history. mhi 
b e h a w  is co- ate with the concept of f a w e .  

That the curves in Figure 4.13 do not all collapse onto a single master c u m  - 
thus attributing the separation of the curves possibly to data scatter - is evident 

when one cross plots the data in Figure 4.13 for constant frequencies as in Fig- 

ure 4.12. If all the curves where essentially statistical variants of each other the 

dotted curves in Figure 4.13 should have all zero slope. It is evident that that 

would hardly be an appropriate interpretation and that the systematic and pro- 

nounced slope is significant, thus demonstrating the systematic variation of the 

crack growth rate with frequency. 
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Rgure 4-12 Crack propagation rate due to change of loading frequencies. 



_..- dc  crack speed = - inch d t  d e c  
dc crack speed = - dN 6 c l e  

Temperature 200 C\ 

Loading Cycle (HZ) 

F@me 4.13 Shifting factor of crack speed due t o  change of loading frequency. 
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In this Appendix we describe briefly the experimental set-up with regard to 

temperature and frequency control. This is appropriate because relatively small 

changes in temperature may affect the crack propagation rate measurably and 

singificantly . The schematic of the interacting components are shown in Figure 

The servo-hydraulic loadmg device is home built but essentially from com- 

ponent that normally makes up MTS equipment employing an MTS frame ratio 

at 22 klb. However, the maximum load applied was always less than 10 lbs., so 

the frame can be treated as rigid body. 

A hydraulic power system with servo controler monitors and controls the 

loading history through a function generator with a DC offsetting sine wave of 

fixed frequency and maximum amplitude. Thus the loading system provided 

essentially amplitude (sinusoidal) displacement control to the ends of the speci- 

men. Because of the limitations on the available cooling system the whole load- 

ing system can run continuously for up to 18 hours with steady put. The 

environmental chamber (Figure A-2) is a double-wall wooden container with 

dimensions that just At  between the MTS' frame. The testing sample, Solithane 

113 strip, is located in the chamber in a steady temperature environment. With 

the help of a fan air circulates from a conditioning chamber into the environ- 

mental chamber (Figure 11-2) which by itseli is an adjustable temperature 

chamber. The temperature capability of this facility is in the range 100°C to 

150°C (in the low temperature range cooling is accomplished with the aid of 



A-1 Experimental set-up. 
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Pigure A Z  Temperature control system. 



liquid Nitrogen). 

Two Nickel-Chromium vs. Copper-Nickel thermo couples are placed on the 

surfaces of the Soiithane 113 specimen and the temperature, as the output v01- 

tages from the them-couples, is recorded continuously on HP 7200B, a strip- 

chart recorder. For the range of test temperatures, lZ°C s T s 35T ,  the tem- 

perature control system can maintain temperature fluctuations on the speci- 

men surfaces to within k 0.02 mV of the thermocouple voltage, i.e. average tem- 

perature error is k 0.3 - 0.5'C. 'Rus range corresponds to approximately a 

variation in temperature of k 0.4'C. 



On the image plane, the caustic curve is: 

let = 0 from (A.1) it is: 
dy~l 

3 p = 180' - p for 0 1 p r 180° 

So it is proved that at p = 72" y' = y',, 



4 the position of crack tip is at -L . And the position of the maximal distance of 
9 

a the caustic from the x-axis, i.e. Y' = - occurs at a distance P from the left of 
2 

the caustics (see Figure 3.8). 


