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ABSTRACT

Linear viscoelasticity theory is applied to the fatigue problem of solids sensi-
tive to the deformation rate. A series of experiments have been performed to
investigate the range of applicability in which the theory is valid and to examine
the accuracy of the theory. The experimental results are compared with an

existing theory.



1. INTRODUCTION

Compared to 10 oz; R0 years ago there are many situations in ehgineering
vtoday where polymers are used for structural purposes. This use occurs in the
civil engineering sector; in water- and gas piping constructed from Polyvinyl-
chloride; in agriculture for irrigation and desalination purposes; in many house-
hold goods and.iri particular in the automotive industry. In the transportation
industry polymers are widely used in automobile tires as well as in automotive
body components. In the aerospace industry polymers are used to a large extent
as sealants, as structural bonding agents, as well as bonding together fibers to
make 6omposite materials. The composite materials may be either of continu-
ous, or chopped fiber type. Inasmuch as a very large percentage of engineering
application of any materials encounters transient or periodic loading, it is
~ appropriate that one give attention to the fracture behavior of these types of

- materials in a fatigue-type of environment.

We associate with the terminology 'fatigue’” the phenomenon that failure or
Afracture of a component occurs under a cyclic load environment at vstress or
load levels thai are significantly lower than those that might have been sus-
tained by the part if only a steady continuous load had been imposed, In the
cbntext of time-dependent failure of polymeric material this definition may or
may not be appropriate. We know, for example, that even when steady loads are
imposed on a viscoelastic material, fracture will occur in a time-delayed manner
due to the slow and time-dependent growth of cracks in such a material. This
phenbmenqn has oftén beén associated with the term of 'static fatigue” Under
such circumstances it would be apéropriate by the classical definition of fatigue
to add into that deﬁnitiot; éome measure of a comparative time length or life so
'As to asséss whether a ;:yclic of repetitive loading leads to an acceleration over

th_e appropriaté steady-state environment to which a part might be subjected.



By and lai-ge the study of fatigue in polymeficmaterials has been, to date,
cbnﬁned'essentially to rigid polymers. In this connection fatigue in polymérs
ﬁas been treéted by‘ virtually the same methods that are normally applied to the
fatigue of structural metals. Because a detailed understanding of the fatigue
process in metals and also in the rigid polymers does not exist from a basic
point of view, one has generally resorted to analyzing crack propagation rates
under fatigue type loading as a function of the difference between maximum
and rmmmum stress intensity factor. The resulting test curves have often come
to represent essentially the fatigue material behavior instead of the S-N curves

that were part of standard fatigue analysis only three decades ago.

From an engineering point of view, this may be quite an acceptable approach
for dealing with t.he fatigue problem when the polymer is definitely in the rigid
state. However, there are many situations, in particular in aerospace applica-
tions, where the material is exposed to elevated temperatures to such a degree
that while substantial softening is not achieved the load duration and the
fatigue environment may last long enough so tha't, a substantial amount of dam-
age is incurred in this elevated temperature stage. Inasmuch as at elevated tem-
peratures polymers tend to become significantly viscoelastic, the question arises
as to how the fatigue process is governed in this kind of environment when

strong viscoelastic effects are present.

It appears reasonable to view the fracture behavior or failure behavior of
polymeric maf.erials from the point of view of fracture mechanics, that is, the
failur;e‘ behavior of these materials in the presence of preexisting cracks. In this
context, it becomes reaso:_lable thérefore to inquire as to how cracks propagate
ina rﬁaterial when strong‘ﬁscoelastic material behavior is present and when the
‘load history of the componenf is cyelic in nature. Inasmuch as there is at this

time’ only an approximate theury [1] that deals with crack propagation in
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polymers under cyclic conditions of loading it is appropriate to examine this

problem in some detail and to do so from an experimental poini; of view.

At this time our foundation for understanding the propagation of cracks in
viscoelastic material is based on linear viscoelastic material response. For the
case of Iinearly.\?iscoelastic behavior this foundation is outlined essentially in
(2], while similar developments based on special material representation are
covered in [3] and [4]. These developments are documented specifically for pro-
pagation theory at constant velocities, where the underlying assumption is that
the crack propagation is applicable instantaneously in situations where the
stresses at the tip of the crack change continuously with time. It turns out that
for many situatioqs this underlying assumption is not a serious restriction at
all. However, it appears questionable to what extent these relations are applica-
" ble when the stresses change rather rapidly at the tip of the moving crack. As
has been pointed out in [5], if the crack-tip stresses change rapidly compared to
a lengtfi parameter characterizing a thin zone of fracturing material along the
crack path, then these approximations involving constant rates of crack propa-
gation may no 16nger be applicable. The fully analytical exploration of this ques-
tion seems too cumbersome at this time. Rather, one would feel that it is more
appropriate to‘ examine this problem initially experimentally. Subsequent to
such an experimental investigation one would then find more justiﬁcation or
motivation to explore pafticular ranges of material behavior where perhaps

more suitable é.pproximation are appropriate.



2. REVIEW OF EXISTING LINEAR FRACTURE THEORY

. 'We shall sﬁmmarize here briefly the developments in [2]. Consider the tip of
a crack moving through a (linearly) viscoelastic material. This tip is character-
ized by a damage or process zone in which the material behaves non-linearly. If
this zone is sufficiently small, one may make use of the linearized theory of
viscoelasticity along with a line model for the process zone according to Prandtl,
Barenblatt or Dugdale. The process zone needs to be incorporated to provide a
length scale parameter that couples the material viscosity to a crack propaga-
tion speed. In Ref. 2 two criteria of fracture were explored: a crack-opening dis-

placement and an energy criterion. Both gave essentially identical results. It

suffices, therefore, to consider only one, the energy criterion.

The energy criterion states that the rate of work done by the unloading trac-
tions on the displacements in the (line) plastic zone equals the rate of fracture
energy absorption, which, in the simplest form, may be considered to be a con-
stant I" times the crack speed ¢. Under the assumption of constant crack propa-

gation speed that criterion leads to the relation (for Poisson's ratio v = 1/2)

Ke[2]=%gT (1)
¢ 3 : .
where
K . = stress intensity factor
o = lengih of (line) cohesive or process zone
r = rate independent fracture energy
¢ = rate of crack growth
ot +
EL= o0& -p) ] -00) E argp=p @
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In this context we note that eqn. (1) holds rigorously for ¢ = const. and approxi-

mately for ¢ const. provided (see Ref. 2)

|K(t) | 2(t)
ORRN 2ca(t) : (3)

This question of describing crack growth analytically by an equation like (1)
was addressed in a previous analysis which was based on crack growth by small
but finite increfnents [1] but which did not limit itself to the cases allowed by
[2]. The net result of that analysis was that if viscoelastic transients become
important (i.e. if the equation (3) above is violated) then crack propagation per
cycle should occur more rapidly than if only the quasi-steady relations (1) is
involved {¢é = const.). Inasmuch as equation (1) is much easier to apply than the
work in Ref. 1 one may raise the question whether the deficiency associated with
violation of {3) is really important: After all, a problem may exist only near ¢=0,
so that the total amount of crack growth accumulated near the ‘crack growth
boundary'” is very small to begin with and thus possibly an important contribu-
tion to the totalv crack length. The constraint (3) is always violated when a crack
tip experiences loading that passes through the limit for possible crack propa-
gation: Below and at this limit ¢ = 0 but K{t) # 0; the same is true for conditions
above this limit where both K and & exceed zero, but still close enough to the
propagation limit so that the order relation is violated. The question arises thus
to what extent equation (1) can represent crack growth under conditions when
the pfopagation boundary is passed, particularly passed repeatedly as in a
cyclic history. It is possible that eéuation (1) would be more powerful than the

analytical estimates would indicate. It appears, however, reasonable to expect

" 1. Crack growth is not possible if the stress intensity is below a certain value say K* above K* crack
‘growth cccurs, We call K* the crack growth boundary.



that the range of validity of (1) is somehow limited by the inequality (2) and that
the a,rgurnént of "small crack growth contribution" means that the propagation

boundary may only extend the range of validity for (1) somewhat.

In view of this situation it is appropriate to examine the crack growth
behavior under transient rather than steady loading conditions experimentally.
The results of such an investigation would then provide further input to analyti-
cal formulations that elucidaté the behavior of crack growth under rather arbi-
trary transient loading histories. Because of its technical importance as well as
the ease with which small crack growth can be accumulated over many cycles
into a readily measurablé quantity, cyclic deformation histories seem to be well

suited to this study.

For later reference it should be pointed out that evaluation of crack growth
under transient load histories, if governed by equation (1), was carried out in
' considerable detail in [6]; this study will serve as a guide and reference against

which the experimental results can be compared.

We proceed next to a description of the experimental set-up and analysis of
the experimental technique (caustics). Following these developments we turn to

the recording and then analysis of the experimental results.



3. EXPERIMENTAL PROCEDURES

_ For méasuring the stress intensity factor K(t) and the crack length c(t) in the
same time frame, the method of caustics is adopted. This method, also called
"shadow spot method", or 'the method of shadow pattern, was recognized by
Schardin and ‘analyzed by Mannog in 1959. Through the works of Theocaris,
Kalthoff and others (Knauss, Rosakis, Kim, Ravi-Chandar) this method is not

only useful for elastic materials, but also for viscoelastic ones [7].
3.1 Physical Description of the Method of Caustics

When a beam of parallel light is incident normally on a stress free plate of
transparent material, the beam of light just passes through. However, if there is
a crack in the plate, say under Mode-1 loading, the light rays will be deflected,
particularly in the crack tip region. Due to the stress field in the material the
index of refraction of the material will change. Also, around the crack tip the
shape of the plate surface is altered. Both effects will cause the transmitted
light to deviate from the original straight path. By the Maxwell-Neumann elasto-
optical law f.he, refraction index is decreased; this fact plus that of the non-
homogeneous surface defofmation makes the crack tip act like a divergent
lense (cf. Figure 3.1). The light around the crack tip is deﬁected outward so that
on an image plane the area around the crack tip is devoid of light and a dark

spot is formed. A photograph of a test situation is shown in Figure 3.2.
3.2 Mathematical Description

Consider thé optical arrangement in Figure 3.3 of a cracked plate
representegi by the object plane and a viewing plane or image plane IP is located
at a distance z, from and barallel to the object plane. Let a light ray be incident
- 8t point P on the object plane with coordinates P = P(r, ¢). 1f the light were not

deflected, it would intersect the image plane at the point P'. Actually the ray will
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be deflected to intersect the image plane at the point P". By the geome‘tryL in Fig-

ure 3.3, we héve then
I =7+ #(r.e) (1)
where #(r.g) is a deviation vector. Applying the theory of the eikonal one has

W(r.g) =2,V (As(r.¢)) (2)

where As(r.g) is the total change in light path orientation as the ray passes
through the material. By the Maxwell-Neumann stress optic law and Hooke's law

one has for As
As=h-'A[(o,+02) + (0, —03) P] (3)

where the following deflnitions hold

A+ g v
—2 ~e-by

Al - Az
AL+ A —2(n—1) %
h = thickness of the plate

A=

p:

A1 Az = stress optical constants
0,03 = principal stfesses
= modulus of elasticity
v = Poisson's ratio

n = index of refraction

It A\; # Az the material is called optically anisotropic, or birefringent. The
consequence is that p # 0 and therefore A_é has two values. Therefore there will
be two vectors W, i.e. there will be two caustics. It turns out, practically speak-
ing, that Solithane 113 (50/50) is optically isotropic, i.e. A; =X, and p = 0, so

that only one caustic is observed. For optically isotropc materials )



-12-

As=h'Ao, +03) .

(4)

For ViscoelaStic and opticf—illy isotropic materials the corresponding relation is in

the form of a cbnvolution‘_namely

As=hAN = ¢

(5)

where the star (*) notation signifies the Stieltje’s Integral. Thus, the optical

path change within the material is a function of the stress and deformation his-

tory. Recall that in linear elasticity the stresses near the crack tip (in the object

plane) are
Ox = 5‘2(;_)!. cosg—(l —sin%sin-ség-) +
gz = SIE(?E\:)? cos%(l +sin%sin%2—) +
Txy = 5;(% cos%—sin‘g—cos%&. PR

It follows that the stress invariant O1+0z2=0gx+0y;=0is
_ k(v e -
= —rﬁ-ﬁ 2cos 5
Therefore equation (1) becomes, with the help of Equations (5) and (8)

F=tedaM) + K1) (\/Ecosd

which, in Cartesian components is equivalent to

: : -3
X' = recosg — dzg[ )}(t) » Kift) ] v‘é‘ﬁ r 2 cos%tp
y = rsinso —dzo[ M(t) * Kit) ] \é? r ? sing .

(6a)

(6b)

(")

(9a)

(9b)

We next observe that in the image plane, the caustic is the envelope of all singu-

lar points fqr'equations (9a) and (9b). Thus the caustic can be expressed by the
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singularity condition (J = Jacobian of x', y'with regard to r, ¢)

=9 9y Ox oy _
J Or B¢ B¢ or 0. (10)

If we define the curve r(g) in the object plane from which the rays fall on the

caustic curve in the image plane as r = ry(p), then this relation yields that

a. The radius rg is independent of p; i.e., the curve is a circle with center at the

crack tip; this curve is called the 'initial curve.”

b. the radius rg of the initial curve is given by

2
r.--[%f;;wt) . Km]}“’ (11)

The image of that Initial curve (circle), i.e., the caustic is given by equation

(9) together with (11) as

X' =rg{cosy + g—cos -g—-rp) (12a)
¢ = . 2 . 3
Y =rg(sing + §—sm§-¢) - (12b)

A plot of equations (12) is given in Figure 3.4 for a particular time when r, is

some constant. Now define D=2Y'n,, (cf. Fig. 3.4). Then

D=2 max [ rg( sing + %—sin%ga)]

= 2rgmax ( sing + g—sin%go )
= ref (13)
where

f = 2-Max(sing + g—s‘mg—w)

Use of (13) together with (11) renders the convolution relation
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5
2

3Vem |
3 » (19)
Bfa - h Zo )

K(t) » Alt)=

Thus by measuring the 'caustic diameters” D(t) as a function of time, the

corresponding stress intensity factor K can be calculated from (14).

The determination of K requires the solution of an (convolution) integral
equation; this is not a trivial matter, in general. For further work here we
therefore make use of results in [7] which establishes an excellent approxi-
mation for the test material and load histories used in this investigation. In
[7] it was established that essentially elastic conditions prevail for times
longer than 107! min (cf. Figure 3.5) at a temperature of 0°C. It was also
shown that the time-temperature equivalence principle helds. With this
information it is possible to determine those conditions on temperature and
test frequency for which elastic rather than fully viscoelastic conditions pre-
vail. With this information one is able to construct a curve of frequency vs.

temperature that ”separates” the elastic from the viscoelastic behavior!

This felat,ion is shown in Figure 3.6 along with the test conditions (as
points) used in thé later experiments. It is clear from these considerations
that the caustic data gathered in the subsequent tests can be used to com-
pute the stress intensity factor from the elastic solution represented by
equation (15) where the constant A {definition following equation (3)) incor-

borates the long time or rubbery Young's modulus of the test material.

5
2

Kty = 2RI D (15)

5
32 hzA

L. This curve shown is, of course, & sharp demarcation instead of the 'region” in which viscoelastic
behavior is weak. For this reason the curve is adjoined by a shaded region, in which
Viscoelasticity behavior is minimal.
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Figure 3.6 Curve A corresponds to 107! minutes in Figure 3.5
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It should be mentioned that we shall be interested in a moving crack, while
the caustic relation (15) corresponds to a stationary crack. However, the crack
will be moving so slowly that dynamic effects are irrelevant so that the present

analysis is totally adéquate to deal with the later test situations.
3.3 Experimental Procedure

We shall attempt to study crack growth as a function of the mazimum stress
intensity during any cycle. Thus it will be necessary to record the maximal caus-

tic diameter D during any cycle. This is accomplished in the set-up shown in Fig-

ure 3.7.

A Spectra Physics Model 120 Laser shines light through a spatial filter and
beam expander onto the crack tip of a specimen supported in a {servo-
 hydraulic) test machine. The image plane is formed by a translucent piece of
paper with mm rulings . This arrangement allows virtually continual monitoring
of the caustic size by means of a video camera and recorder. Data is reduced

later from the video tapes.
3.4 Caustic Data Analysis

In order to avoid buckling of the specimen, only tension-tension cycling was
performed such that there was always tension on the specimen. The lowest value
of the caustic was used to locate the tip of the crack relative to the boundary. 1t
turns out that the location of the crack tip is determined relative to the caustic
by the discussions shown in Figure 3.8. The compﬁtation of these dimensions are
shown in Appendix B. The diameter of the caustic under maximum load is
measured (63 the video-play back) as a function of crack length in the same
cycle. It will be noted from "equation (15) that the stress intensity factor can be

.detErmined if all the parameters characterizing the material as well as the

, experiméntal set-up are known. It turned out that some of this informations was
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not available, in particular the stress-optic coefficient for Solithane 113. In
terms of equation (15) this means that the parameter A is not known. The
déterminatioﬁ of thé streés-opt.ic coefficient is not a trivial matter. Therefore it
was deemed more time-efficient to ascertain this parémeter A in a separate cali-

bration process, rather than the stress optic coefficient.
3.5 Caustic Calibration

To this end a typical specimen (cf. Figure 3.9) is mounted in an Instron test
machine (screw-type loading device) with a C-type load-cell in the 0-20 Ib range.
Under a given load the caustic is recorded and the corresponding crack length
noted. Using the analytical results for this geometry (infinitesimal elasticity

solution [B]), one notes, as for example from equation (15), that the 5/2 power

of the caustic diameter D is linearly proportional to the stress intensity factor.

NIG

Thus, if one plots D* against the theoretically determined stress intensity factor
one should obtain a straight line. This stress intensity factor would be based on
the conditions prevailing in the experiment (load and crack length as well as the
rest of the geometry). As can be seen from Figure 73.10, the resulting experimen-
tally determined points fall very neatly along a straight line. A best straight line
fit to this data, is then accomplished as shown; this line determines the value of
M°2 in equation (15) and, by deduction, the lbng-time value of the stress-optic
coefficient. It should be remarked that the experimental points in Figure 3.10
are obtained by varying the applied stress as well as by varying the crack length

for computing the "theoretical” value of the stress intensity factor.

For purposes of completeness let us record here the pertinent equation for

this computation. From [8] we have for the stress intensity factor (Mode-I)

K1 =1.1215¢ vra - F( %)
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where o is the average grip stress and (H,b) are as defined in the inset. of Fig-
ure 3.11.' The function K /K, = 1.1215 - F( %—) is given in that figure for two end

conditions that do or do not allow for rotation of the grips. In the present exper-
iments no rotation was allowed; hence only the appropriate interpolated curve

for h/b = 0.67 shown in Figure 3.11 was used.

Before proreeding to evaluate the fatigue data it is worth while to mention
why the photoelastic method was not used. It turns out that with a specimen
thickness of 2.5 mm (0.1 inch) the photoelastic method was no more sensitive or
accurate than the caustic ;net.hod. In this situation the caustic method is easier
to use because only a single parameter must be measured (D) while in the pho-
toelastic method field data needs to be analyzed for a best fit of the crack-tip

stress field to existing photo-elastic figures [9].
3.6 Data Scatter

A brief note is in order regarding data scatter. It will be noted that there is
very little data scatter present in all the subsequgnt measurements. This fact is
a direct consequence  0[ the care with which the maximum stress intensity was
determined in each cycle as well as the how the crack length was determined.
The latter was measured under conditions when ‘the crack was almost clesed
(lowest stress in any cycle). These simple rules produced very consistent data
subject’only to variations in material properties along the crack path, which
variations could give rise to data scatter measurements of the crack propaga-
tion rate. That this did not happen to any sizable degree testifies only to the

Uniformity of test material.
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4. RESULTS

- In Ordér to explore the applicabili»ty of the crack propagation equation (1) it
is necessary to perform tests over a matrix of frequencies and temperature. If
the material behaves in a thermorheologically simple manner, it would be
sufficient to pez"form these tests at only one frequency and several tempera-
tures, or at one temperat_ure‘ and several frequencies. Although in previous,
steady-state test the crack propagation behavior fo}lowed essentially ther-
morheologically simple behavior we do not know for certain what the effect of
cycle frequency is on generating heat at the crack tip and thus influence the
crack growth rate in this secondary manner. For this reason two sets of data
were téken: in one - let us call it Set I - the temperature varied but the fre-
quericy was always 1 Hz while in the second set - for discussion purposes
denoted by Set II - the frequency varied and the temperature remained constant
at é0°C. These test points are shown graphically in the plot of the viscoelastical

caustic boundary (cf. Figure 3.8).

For any of these tests one records the length of the crack as é function of the
number of cycles as iv'ell as the corresponding instantaneous stress intensity
factor. For Set I (varied temperature at 1 Hz) the data are recorded in Figure
4.1 and 4.2, while for Set II (varied frequency at 20°) they are shown in Figures
4.3 and 4.4. Note the relatively small amount of data scatter. The crack length
data in F‘igureé 4.1 and 4.3 are then differentiated numerically by the five-point
Lagrange method [10.11].' Differentiation is accomplished with respect to the
numﬁer of cycles (as a continuous variable), though Set I leads directly to the
time derivative vbecause the frequency is one Hz, the results of this

differentiation are given m Figures 4.5 and 4.6.

Upon cross-plotting the data from Figures 4.2 and 4.5 one eliminates the
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Figure 4.1 Crack length recorded as a function of the number of cycles in

different temperatures.
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cycle number and derives a plot of crack growth rate as a function of t.hé maxi-
inal stress iﬁtensity factor in each cycle (Kmax /Kmin ranges between 3.0 and 3.6
dur’ing the‘se tests); this is shown for Set I in Figure 4.7. Similarly, if one cross
plots Figures 4.4 and 4.6 one arrives at the data in Figure 4.8 for Set II. Thus Fig-
ures 4.7 and 4.8 constitute the starting data for examining the possible effect of

viscoelasticity on crack propagation under transient loading.

6. ANALYSIS OF EXPERIMENTAL RESULTS

We notice ﬁrst. with respect to Figure 4.7, that the overall behavoir of crack
growth as a function of ﬁemperature is a3 expected from the time-temperature
superpbsition behavior. However two deviations are rather obvious: If the data
behaved strictly according to the time-temperaure superposition principle, the
~ curves in Figure 4.7 should all have the same shape. That is clearly not the case
~ at low (maximal) stress intensity and progressively less true as the temperature

increases.

In this connection it must be remembered that stress cycling -occurred
between some fninirnﬁm and maximum value in each cycle. In these tests the
minimum value (2.5 psi) was large enough so that during most of the cycle crack
propagation became possible at the higher temperature. This "anomaly” of the
data in the low-K, high-T region is thus due to an effectively superposed steady
stress intensity factor which makes a significant contribution only when Knay is
small (Kpax / Km,-n -» 3.0) and when the temperature is such as to allow

signiﬁcant crack growth under this low stress condition.

The second "anomaly”’ becomes apparent when one time-temperature shifts
the curves in Figure 4.7 or cross plots them at difference values of the stress
intensity fact‘o;' againét temperature. This plotting is done in Figures 4.9 and

4.10. In‘accbrdance with the time-temperature behavior indicated by the dotted
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ciu've1 in Figure 4.9 the plots in Figure 3.10 should exhibit a monotonic ¢urva-
ture behaﬁof as a function of temperature. The fact that this does not occﬁr
but significant deviation occurs consistently at the lower temperatures indicates
a systematic vériation of the fatigue crack growth from standard time-
temperature superposition behavior. In fact the deviation is such (the dashed
curves in Figure 4.9 correspond to the dotted one in Figure 4.10) that crack pro-
pagation is higher at these low temperatures than normal time-temperature
superposition wbuld predict. We are aware of the normél data scatter in meas-
urements of this type, but believe that the behavior in Figure 4.10 is systematie

at all stress intensities.

It one neglects these finer points, one finds that, grossly speaking the time-
température behavior is well obeyed in these fatigue tests as long as the tem-
perature remains above 20°C at a frequency of 1 Hz. This, more rough com-

| parison is illustrated in Figure 4.11 which shows comparison of the K-¢ relation
computed from equation (1) assuming quasisteady behavior {equation (1) valid
instantaneously; dashed curve for 0°C, see Ref. 6). The experimental data for the
present study (éolid curve) agrees rather well with the computed data at 20°C

(dotted curve).

let us now examine the behavior at 20°C when ‘t.he' cycle frequency is
changed. It is plear from Figure 4.8 that a standard plot of dc /dN against K
- makes the cyclic growth rate strongly dependent on frequency. It is natural to
ask, therefore, ‘whether tbhe characterization on a 'per-cycle” basis is more
appropriate than on a "per-unit-time" basis.? After all, we have seen in Section 2
that the crack growth should, at least approximately, be predictable by a time-

differential equation. Thus, if one converts the ordinate in Figure 3.8 from

1. ‘This figure is an accumnulation of data from different tests on the same material [2-4].
2. Standard fatigue data is presented on a "per cycle” basis.
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Figure 4.11 Compaﬁson of computed and measured crack propagation rate.



40—

dc /dN to dc /dt one finds in Figure 4.12 a much closer agreement, although,
dué primafily to the low data scatter in Figures 4.3 and 4.4, one can distinguiéh
a systematic separation of the curves with increasing frequency. Specifically we
note that hv‘.ghei‘ Jrequencies lsad to faster crack propagation rates than lower
frequencies. For 'low" frequencies the curves all seem to collapse into a simple
mastér curve whilch should be equal to that computed from the quasi-static and

monotonically-based crack propagation equation (1).

¥With reference to the previous test series 'Set I" were low temperature pro-
duced crack growth rates that were higher than those predicted by the quasi-
static theory the same is true here for higher frequency. Since higher frequency
has the same effect on viscoelastic behavior as lower temperature. we conclude
that under increased viscoelastic material response in the near-relazed range of
| material behavior crack propagation is accelerated by a cyclic load history. This

behavior is commensurate with the concept of fatigue.

That the curves in Figure 4.13 do not all cellapse onto a single master curve -
thus attributing the separation of the curves possibly to data scatter - is evident
when one cross plots t;ile data in Figure 4.13 for constant frequencies as in Fig-
ure 4.12. If all the curves where essentially statistical variants of each other the
dotted curves in Figure 4.13 should have all zero slope. It is evident that that
would hardly be an appropriate interpretation and that the systematic and pro-
nounced slope is significant, thus demonstrating the systematic variation of the

crack growth rate with frequency.
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Figure 4.12 Crack propagation rate due to change of loading frequencies.
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APPENDICES

APPENDIX A: ENVIRONMENTAL CONTROL

In this Appendix we describe briefly the experimental set-up with regard to
temperature and frequency control. This is appropriate because relatively small
changes in temperature may affect the crack propagation rate measurably and

singificantly. The schematic of the interacting components are shown in Figure

A-1.
THE LOADING SYSTEM

The servo-hydraulic loading device is home built but essentially from com-
ponent that normally makes up MTS equipment employing an MTS frame ratio
~ at 22 klb. However, the maximum load applied was always less than 10 lbs., so

the frame can be treated as rigid body.

A hydraulic power system with servo controler monitors and controls the
loading history through a function generator with a DC offsetting sine wave of
fixed frequehcy and maximum amplitude. Thus the loading system provided
essentially amplitude (sinusoidal) displacement control to the ends of the speci-
men. Because of the limitations on the available cooling system the whole load-
ing system can run continuously for up té 18 hours with steady put. The
environmental chamber (Figure A-2) is a double-wall wooden container with
dimensions that just fit between the MTS' frame. The testing sample, Solithane
113 strip, is located in the chamber in a sfeady temperature environment. With
the help of a fan air circuiates from a conditioning chamber into the environ-
mental chamber_ (F'igure A-2) which by itself is an adjustable temperature
chamber. The temperature capability of this facility is in the range 100°C to

150°C (in the low temperature range cooling is accomplished with the aid of
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Figure A-1 Experimental set-up.
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liquid'Nitroge‘n).

. Two Nicke'l,-Chromium,vs. CoppeENickel thermo couples are placéd on the
surfaces of the Solithane 113 specimen and the temperature, as the output vol-
tages from the thermeo-couples, is recorded continuously on HP 72008, a strip-
chart recorder. For the range of test temperatures, 12°C < T=< 35°C, the tem-
perature control system can maintain temperature fluctuations on the speci-
men surfaces to within + 0.02 mV of the thermocouple voltage, i.e. average tem-
perature error is + 0.3 ~ 0.5°C. This range corresponds to approximately a

variation in temperature of + 0.4°C.
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APPENDIX B: CRACK TIP LOCATION RELATIVE TO THE CAUSTICS

. On the image plane, the caustic curve is:

X' = rg{cosg + %—éos( %v))

y' = re sing + %sin( %‘3"))

D =2¥max -
%;:— = f,( cosy + cos( %ga)) (A1)
&= —ry(sing + Suin(3v)) | (a2)

let %%—:D from (A.1) it is:

g-g: 180°~¢p  for 0< p=< 180°
p =72°

2
%;3;— | yopee = —2.378r, < 0

So it is proved that at ¢ =72° ¥ = ¥'max
x| g=rz0 = 0.103r,
findingy' = 0, i.e.,

sing + %siri(-g—;o) =0 ¢ =0°or 151.05°

X' | 151050 = 133331131,

R

“t,
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the position of crack tip is at g

the caustic from the x-axis, ie. Y = g— oceurs at a distance X from the left of

the caustics (see Figure 3.8).

4

—r, + 0.103r,
i - 3 8 2 _
L= 3, = 0.479

L. And the position of the maximal distance of -



