
ON COMPLEXITY AND EFFICIENCY IN ENCODING
AND DECODING ERR,OR-CORRECTING CODES

Thesis by

John Timothy Coffey

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1989

(Submitted May 18, 1989)

- 11 -

© Copyright 1989

John Timothy Coffey

All Rights Reserved

- lll -

Ack-rtowledgements

I wish to thank my advisor, Prof. Rod Goodman, for his encouragement and generous

support throughout my stay at Caltech. He provided an excellent environment for re­

search and allowed me the independence to pursue various (and sometimes tangential)

topics. Sincere thanks must also go to Prof. Paddy Farrell of the University of Manch­

esterfor many creative ideas, and for his hospitality in inviting me to visit Manchester

in the summer of 1987. I wish to thank Prof. Yaser Abu-Mostafa, Prof. Bob McEliece

and Prof. Ed Posner for their great help during my stay at Caltech; I was also fortu­

nate to get to know Dr. Gus Solomon of Hughes Aircraft, who provided much interest

and advice. All the above are also due thanks as members of my thesis committee.

To my many friends and relatives in Los Angeles, who made my four years at

Caltech so enjoyable: thank you!

Most of all, thanks to my father, who first suggested that I should do a postgrad­

uate degree, and to my mother.

- IV -

Abstract

A central paradox of coding theory has been noted for many years, and concerns the

existence and construction of the best codes. Virtually every linear code is "good" in

the sense that it meets the Gilbert-Varshamov bound on distance versus redundancy.

Despite the sophisticated constructions for codes derived over the years, however, no

one has succeeded in demonstrating a constructive procedure which yields such codes

over arbitrary symbol fields. A quarter of a century ago, Wozencraft & Reiffen, in

discussing this problem, stated that "we are tempted to infer that any code of which

we cannot think is good." Using the theory of Kolmogorov complexity, we show

the remarkable fact that this statement holds true in a rigorous mathematical sense:

any linear code which is truly random, in the sense that there is no concise way of

specifying the code, is good. Furthermore, random selection of a code which does

contain some constructive pattern results, with probability bounded away from zero,

in a code which does not meet the Gilbert-Varshamov bound regardless of the block

length of the code. In contrast to the situation for linear codes, we show that there are

effectively random non-linear codes which have no guarantee on distance, and that

over all rates, the average non-linear code has much lower distance than the average

linear code.

These techniques are used to derive original results on the performance of various

classes of codes, including shortened cyclic, generalized Reed-Solomon, and general

non-linear codes, under a variety of decoding strategies involving mixed burst- and

random-error correction.

The second part of the thesis deals with the problem of finding decoding algorithms

for general linear codes. These algorithms are capable of full hard decision decoding

or bounded soft decision decoding, and do not rely on any rare structure for their

effectiveness.

After a brief discussion of some aspects of the theory of NP-completeness as it

relates to coding theory, we propose a simple model of a general decoding algorithm

which is sufficiently powerful to be able to describe most of the known approaches

-v-

to the problem. We provide asymptotic analysis of the complexity of various ap­

proaches to the problem under various decoding strategies (full hard decision decod­

ing and bounded hard- and soft-decision decoding) and show that a generalization

of information set_ decoding gives more efficient algorithms than any other approach

known.

Finally, we propose a new type of algorithm that synthesizes some of the ad­

vantages of information set decoding and other algorithms that exploit the weight

structure of the code, such as the zero neighbours algorithm, and discuss its effective-

ness.

- VI -

Contents

Acknowledgements lll

Abstract IV

List of Figures . IX

List of Tables X

1 Kolmogorov Complexity in Coding Theory 1

1.1 Introduction 1

. 1.2 Kolmogorov Complexity 4

1.3 The Gilbert-Varshamov Bound 10

1.4 Complexity and the Gilbert-Varshamov Bound . 13

1.4.1 All Random Codes Are Good 13

1.4.2 A Probabilistic Converse 16

1.4.3 Discussion 19

1.5 Non-linear Codes 21

1.6 Burst-Error-Correcting Codes 27

1.6.1 Combined Random- and Burst-Error Correction 30

1.6.2 Non-linear Burst-Error-Correcting Codes 32

1.6.3 Discussion . . . 33

1.7 Other Classes of Codes 34

1.7.1 Shortened Cyclic Codes 35

1.7.2 Quasi-Cyclic Codes . . . 36

1.7.3 Generalized Reed-Solomon Codes 37

1.8 Conclusions 38

- Vll -

2 Complexity of Decoding General Linear Codes

2.1 Introduction

2.2 NP-Completeness in Coding

2.2.1 Introduction

2.2.2 Background and Terminology

2.2.3 The Complete Decoding Problem

2.2.4 Random Algorithms

2.2.5 Other NP-Completeness Results .

2.3 General Decoding Methods

2.3.1 Model of General Decoding Algorithm

2.4 Progressive Algorithms

2.4.1 Projecting Set Decoding

2.4.2 Zero Neighbours Algorithm

2.5 Information Set Algorithms . . .

2.5.1 A Geometric Construction

2.6 Comparisons

2. 7 Other Members of the Information Set Decoding Family

2.7.1 Systematic Coset Search

2.7.2 Covering polynomials .

2.8 Other Algorithms

2.8.1 Threshold and Majority Logic Decoding

2.8.2 Boolean Linear Programming

2.9 Continued Division Algorithms . . .

2.9.1 Division by the Generator of a Cyclic Subcode .

2.9.2 Dividing by a 'Non-Cyclic' Codeword

2.9.3 Continued Division for General Linear Codes .

2.10 Application to Convolutional Codes

2.11 Conclusions

APPENDICES

40

40

45

45

46

46

50

51

52

52

53

53

57

61

73

74

76

76

76

77

77

79

80

82

84

85

88

88

90

- Vlll -

A Weight Distribution of Average Linear Code

B Weight Distribution in Cosets

91

94

- IX -

List of Figures

2.1 Asymptotic Bounds for Projecting Set Decoding 56

2.2 Complexity of the Zero Neighbours Algorithm . 59

2.3 Decoding Complexity for Information Set Decoding 68

2.4 Bounded and Full Decoding using Information Sets 69

2.5 Complexity for Various Symbol Fields. 72

2.6 Geometric Construction of F(R) 73

2.7 Comparison of Complexity of Various Schemes . 75

-x-

List of Tables

1

2

Size of the Projecting Set for Some Codes

Continued Division of the Golay Code . .

55

81

- Xl -

To my father and mother.

-1-

Chapter 1

Kolmogorov Complexity in

Coding Theory

1.1 Introduction

Ever since the pioneering work of Shannon, the existence of good codes for arbitrary

information channels has been known. Shannon's proof relies on the idea of picking

a code at random, and showing that such a code is good with high probability;

unfortunately, this gives us no indication of how such codes are to be constructed. For

the more restricted case where we use Hamming distance to measure the "goodness';

of a code, an early result of Gilbert shows that a certain tradeoff of distance versus

rate is possible with increasing blocklength [1, 2]. Asymptotically, we have

for the best codes over GF(q), where Hq(x) is the q-ary entropy function. Indeed, it

can be shown that virtually every linear code satisfies the Gilbert-Varshamov bound

- a code picked "at random" satisfies the bound with probability asymptotically

approaching one. The work of constructive coding theory starts with this premise

and seeks to synthesize the codes .. However, the task seems extraordinarily difficult.

Although it is possible to construct infinite families of codes which have both rate

and relative distance bounded away from zero, there has until relatively recently

-2-

been no known constructive procedure for obtaining codes which meet the Gilbert­

Varshamov bound over any symbol field. The recent breakthrough in codes obtained

from algebraic geometry has given such constructions for relatively large symbol fields

(q ~ 49) but so far there has been no corresponding progress for smaller symbol

fields. This phenomenon has often been noted as a paradox of coding theory. Writing

a quarter of a century ago, Wozencraft & Reiffen summed up the attitude of many

information and coding theorists [3):

"It is unfortunately true that the search for good codes with large ISi has thus

far been unrewarding. However, as we have seen, almost all codes are good. Thus we

are tempted to infer that any code of which we cannot think is good."

In this chapter, we demonstrate the remarkable fact that the last statement can be

shown to be true in a strict formal sense in the case of linear codes. Using the theory

of Kolmogorov complexity, we show that those codes which are truly "random," in

the sense that there is no method for specifying the code that is significantly more

concise than simply writing out the symbols of the generator matrix, must meet the

Gilbert-Varshamov bound. It follows that virtually all linear codes meet the bound,

because virtually all such codes are effectively patternless. Sometimes a code may

contain a 'pattern' that cannot be exploited in constructing the code; to deal with

this, we discuss the time-bounded Kolmogorov complexity. We show that any code

that is random in the wider sense of having no efficiently computable pattern must

meet the Gilbert-Varshamov bound.

Another consequence of this result concerns the probability of picking a bad code.

(Henceforth a code is "good" if it meets the Gilbert-Varshamov bound and "bad"

otherwise). If we pick a code at random, the probability of picking a bad code goes to

zero exponentially. If we insist that the code·has some minimum amount of structure,

and then make a random selection from such codes, the probability of picking a bad

code is much greater than in the case of random selection from all codes. This is

because we have excluded very many (in fact, virtually all) codes which are good,

without excluding any bad codes. We show that the probability of picking a bad

code, given a random selection from the set of codes which have some minimum

-3-

amount of structure, is bounded away from zero regardless of the block length. Thus

random selection from the codes we are most likely to think of is 'quite likely' to

produce a bad code. These results also hold when we add the condition that the code

be recoverable from its compressed specification in polynomial time.

A natural asymptotic form of the encoding problem is to synthesize an infinite

family of good codes using some fixed procedure: we should be able to specify some

fixed list of instructions, which, together with an integer m, would be sufficient to

generate the mth code in the infinite sequence. We will say that any such family

of codes is computable. If the procedure is executed in a time upper-bounded by a

polynomial in m, we will say that the family of codes is practically computable. It is

a consequence of our results that although virtually all infinite families of codes are

good, virtually all are also uncomputable in the above sense. In addition, there is no

reason to believe that any infinite family of good codes is practically computable.

The general problem of deciding the complexity of producing the best of various

classes of c _;_es (using various other measures of complexity) has attracted much

interest [22-25] - indeed, Bassalygo et al. [23] assert that these "can now rightly

be regarded as pivotal problems in the theory of correcting codes." We feel that the

application of the techniques of Kolmogorov complexity opens up a new avenue of

inquiry into the encoding problem. In addition, the techniques provide a novel and

intuitively appealing way of analysing the typical behaviour of classes of codes.

In Section 1.2, we discuss the basic axioms of complexity theory. In Section

1.3, we outline the conventional proofs of the Gilbert-Varshamov bound and discuss

some basic related results. In Section 1.4, the main results are obtained in which the

distance and randomness properties of a code are shown to be related. It is shown that

for linear codes, all effectively random codes must meet the Gilbert-Varshamov bound,

and that a weaker converse also holds. In Section 1.5, we discuss the case of general

non-linear codes, and show that the result does not apply to this class: there are

effectively random non-linear codes which have no guarantee on distance. In Section

1.6, we show how some aspects ~f the typical behaviour of classes of codes can be

derived from a characterization of codes in terms of their complexity. In Section 1. 7,

-4-

we discuss and contrast corresponding results for different error-correction strategies,

such as burst-error and combined random- and burst-error correction.

Summary of Original Contributions

The main results, those of Section 1.4, are entirely original. The idea of using Kol­

mogorov complexity to analyse the average properties of various classes of codes is

also original. Various results exist for the average properties of codes using other tech­

niques (these results have been cited where appropriate); however, the results here

have been derived independently, and many are new: combined burst- and random­

error correction for linear codes, shortened cyclic codes and generalized Reed-Solomon

codes, and burst- and random-error correction for the average non-linear code.

1.2 Kolmogorov Complexity

The discussion here is based on material from [105], which should be consulted for

further details. We begin by discussing a general model of computation [4, 5]. Infor­

mally, a Turing Machine (TM) consists of a finite state machine, a read-write head,

and a two-way infinite tape. The tape is ruled into cells, and each cell is occupied by

a symbol from a fixed alphabet ~ = { a-1 , ... , O"K} or else the cell is blank. We denote

the blank by a-0 • The fixed control performs one of the following actions: it can erase

the current symbol on the tape; it can overprint a new symbol; or it can move right

or move left one cell. The states of the finite control are { q0 , q1 , ... , qp}, and two

states are distinguished: q0 is the starting state, and qp is the halting state. The

computation continues until the state qp is reached. Then the computation is over

and the output is whatever is written on the tape. The action of the Turing Machine

is specified by its 'next move' function which specifies, given a state and a symbol,

what state the finite control moves to and what action it takes. More formally, a

Turing Machine is defined to be a triple M = (P, K, 8) where P and K are positive

integers and 8 is a function

-5-

We characterize the current status of a Turing Machine by its 'instantaneous

description.'

Definition 1.1 The instantaneous description (ID) of a Turing Machine is a quadru­

ple (qP1' u, O"k1' v).

Informally, the machine is in state qpi, the symbol under the read-write head is

O"k1 , the string u is on the tape to the left of the read-write head, and the string v is

to the right of the read-write head. (The string u is taken to begin at the leftmost

non-blank symbol on the tape; the string vis taken to end at the rightmost non-blank

symbol).

Given a certain instantaneous description I D1 , the next-move function of the

Turing Machine determines uniquely what the next instantaneous description I D2

will be. We write

We define the relation --+k on the set of IDs for t E z+ recursively: I D1 --+JJ1 I D2

for t > 1 iff there is an ID such that I D1 --+ M ID and ID --+k I D2.

Informally, I D1 --+k I D2 if we go from I D1 to I D2 int steps on the machine M.

The relation --+ M is defined on IDs as I D1 --+ M I D2 iff there exists t E z+ such that

f Di --+k f D2.

The importance of Turing Machines is evident from Church's Thesis: Any algo­

rithm can be rendered as a Turing Machine. Although this statement is unprovable,

relating as it does a mathematical concept to the non-mathematical concept of 'com­

putability,' it is virtually universally accepted as a de facto definition of computability.

Definition 1.2 A function f : :Ei --+ :E; is said to be computable iff there exists

a Turing Machine M = (P, K, 8) such that :E1 U :E2 ~ { o-0 , ••• , O"K} and for every

x E :Ei) we have (qo,A,o-o,x) --+M (qp,A,o-o,Y) where y = f(x) and A is the null

string.

A Universal Turing Machine (UTM) is, informally, a general purpose Turing Ma­

chine. It takes as input a string x = p(M)p(w) where p(M) is an encoding of a

-6-

Turing machine M, and p(w) is an encoding of the input to that Turing Machine,

and simulates the action of M on w. More exactly, the UTM takes the input string,

checks to see if it is of the form p(M)p(w), (if not, it goes into an' infinite loop),

simulates the action of M on w, and if M would halt with output y, then U also

halts with the same output.

For convenience, we fix a Universal Turing Machine which accepts inputs in an

alphabet of size q, and which has the lowest possible number of states in the finite

control. Clearly, p(M) must have a certain structure if it is to represent a Turing

Machine. The q-ary input p(w) needs no such structure, however, so p(w) = w in

this formulation.

Suppose that on a given input x, the UTM halts, leaving the string v to the

right of the read-write head. We say that v is computed by U on x. We define the

I<olmogorov (or I<olmogorov-Chaitin) complexity [6, 7] of a strings to be the length of

the shortest input to the Universal Turing Machine U such that U accepts the input

string and eventually halts leaving s on the tape to the right of the read-write head.

This quantity is also called the algorithmic information content of s [50].

Definition 1.3 The I<olmogorov (or I<olmogorov-Chaitin) complexity of a string s is

a function K: {O, 1, ... , q - 1}* - Z defined by

· K(s) = min {IPll(qo,A,ao,P) -u (qp,,\,ao,s)}.

The following theorem summarizes the main properties of this function.

Theorem 1.1 (i) There exists a constant Co such that K(s) ~ n + c0 for any s

and n = Isl.

(ii) The fraction of n-tuples s with I<(s) < n - c1 is less than q-ci.

(iii) The I<olmogorov complexity of a string is, in general, uncomputable.

(iv) Ifs has length n and weight An, then K(s) ~ nHq(,\) + o(n) for large n, where

Hq(x) is the q-ary entropy function -x logqx - (1- x) logq(l - x) + x logg(q-1)

for O < x < 1.

-7-

(v) The running time of the shortest program for an arbitrary string is not bounded

by any computable function of the length of the string.

Proof: (i) Consider the everhalting machine E which goes directly from the starting

state to the halting state. Let lp(E)I = C. Then the input p(E)s to the UTM

produces the output s, so K(s) s; Isl+ C.

(ii) Consider the q-ary strings of length less than n - c1 . For every string of length n

that has Kolmogorov complexity less than n - c1 , there is by definition at least one

corresponding q-ary string of length less than n - c1 associated with it. The number

of programs of length less than n - c1 cannot be greater than the total number of

q-ary strings with less than this length, and that total is (qn-ci - 1)/(q - 1). Thus

less than qn-ci strings of length n can have such a low complexity.

(iii) Let L be an arbitrary natural number. Consider the following program that

generates a string SL of Kolmogorov complexity K(sL) > L using the algorithm for

computing the Kolmogorov complexity:

Generate all strings lexicographically: 0, 1, ... , q - 1, 00,

Compute the Kolmogorov complexity of each.

Stop when the first string SL with complexity greater than Lis found.

Report s and halt.

The length of this program is B + log L for some constant B = lp(M)I. For large

L, B + log L < L, so for large L, the string can be computed by a valid program of

length less than L, which contradicts the condition that K(s) > L.

(iv) Take n and >.n and generate lexicographically all strings of length n with weight

>.n. Specify which one of these is the string s. This program takes

symbols. Using Stirling's formula for n! we can derive

-8-

and so this quantity represents an upper bound on the complexity of any sequence of

length n and weight An, as claimed.

(v) Suppose this is false, and that there exists a computable function T(n) such

that the shortest program for a string of length n halts in at most T(n) steps on

the Universal Turing Machine. We have the following program for computing K(s),

contradicting (iii):

Takes, find n, and compute T(n).

Generate all programs lexicographically: 0, 1, ... , q - 1, 00,

Simulate the Universal Turing Machine on each program for T(n) steps.

Find the first program that halts within T(n) steps leavings on the tape.

Find and report the length of the program, and halt.

►

Following Kolmogorov and Chaitin [6-9], we say that a string is random if its

complexity is at least equal to its length. If this is so, there is no concise way of

specifying the string - no procedure is much better than simply writing out all the

symbols. A sequence which contains a pattern or obeys some law, on the other hand,

can be expressed by a relatively short sequence of instructions to a Universal Turing

Machine. The shorter the program, the less random is the string. The crucial point is

that, as shown above, virtually all strings of a given length are almost totally random

(where the meaning of the terms "virtually all" and "almost totally" are obvious from

property (ii)). By discussing the properties of sequences of high complexity, we are in

effect discussing the properties of typical sequences, and it is this fact we will exploit

later.

In speaking of the class of "low complexity" strings of a given length, we do not

mean that the complexity of such strings is insignificant compared with that of the

most random strings. Rather, we. imply that the number of strings with such a low

complexity is insignificant compared to the total number of strings. We also note that

property (iii) above implies that, in general, we can only acquire upper bounds on

-9-

the Kolmogorov complexity of a string. Thus if a string of length n is shown to have

a valid computing program of length n - c1 for reasonably large c1 , we can definitely

say that it has lower complexity than all but a tiny minority of strings. However, it

may or may not have a complexity which is insignificant with respect to n.

Note also that in this formulation we are not concerned with the running time

of the shortest program. Indeed, the running time can be arbitrarily large. We

wish to allow only programs which run efficiently, and so we concentrate on the

time-bounde.d Kolmogorov complexity, defined to be the shortest program which will

run on the Un ~rsal Turing Machine, halting within r(n) steps, leaving the desired

output string on the tape. The above properties (i), (ii) and (iv) still apply (the time

bounded Kolmogorov complexity is computable if the function r(n) is computable).

Typically, the function r(n) is set to some polynomial function of n. The effect of

introducing the time bound is to declare some strings that are non-random to be

random given a certain computing time budget. The following result holds:

Theorem 1.2 Let r(n) be a computable function. Then for any m, there is a string

s of some length N such that

and

I< (s) < log log ... log N .

m times

Proof: Consider the following program that takes n as a parameter:

- Compute

Compute T = r(N).

Simulate all programs of length < N for T steps each.

Keep track .of those strings of length N that were generated in this simulation.

Determine the first string s of length N that has not been generated.

- 10 -

Report .the string and halt.

Now I<r(n)(s) ~ N by our construction. The program length is .:S C + log n =

C + log(lolm) N) < log(m) N for large enough N. So

I< (s) < log log ... log N .

m times

1.3 The Gilbert-Varshamov Bound

We begin by discussing the basic statement of the bound, with some related facts.

Our treatment follows that of MacWilliams & Sloane [10].

Theorem 1.3 There exists a linear (n, k) code over GF(q) with minimum distance

at least d, where d is the greatest integer satisfying

(n - 1) (n - 1) d 2 n k 1+ 1 (q-1)+···+ d-2 (q-1)- <q-.

Proof: Given the (n - k) x n parity check matrix H with entries from GF(q), the

code is defined as all those n-tuples x for which HxT = 0. If all combinations of

d - 1 or fewer columns of H are linearly independent, no non-zero vector of weight

less than d can satisfy this, so the minimum distance is at least d. Thus it suffices to

show that we can build an (n - k) x n parity check matrix with this property provided

d is as given in the theorem. Suppose we have chosen i columns with the property

that no combinations of d - 1 or fewer of them are linearly dependent. There are at

most ~j:5 G) (q - 1)j distinct linear combinations of these i columns taken d - 2 or

fewer at a time. Provided this number is less than qn-k we can add another column

and still maintain the property that any d - 1 or fewer columns of the new matrix

are independent. We can keep adding columns as long as i is such that

Z Z d2 nk (') (.) 1.+ 1 (q-l)+···+ d-2 (q-l)- <q-'

i.e., as long as i :Sn - 1. ►

- 11 -

Henceforth, we concentrate exclusively on the asymptotic version of the bound

given above, which is

where

for O < x < 1. (This assumes that d/n :::::; (q - 1)/q; the Plotkin bound [10] implies

that this holds for the codes we are interested in.)

Many classes of codes have been shown to be asymptotically good in the sense that

they meet the Gilbert-Varshamov bound. These include linear codes, alternant codes

[11], generalized BCH codes [12], Goppa codes [13], double circulant (quasi-cyclic)

codes [14], shortened cyclic codes [15], and self dual codes (16].

In many cases, the following result (10] suffices to show that most members of a

class of codes meet the Gilbert-Varshamov bound:

Theorem 1.4 Let~={ <1> 1 , <1> 2 , .•• } be an infinite family of linear codes over GF(q),

where <I> i is a set of (ni, ki) codes such that (i) kd ni > R and (ii) each non-zero vector

of length ni belongs to the same number of codes in <Pi. Then there are codes in this

family which asymptotically meet the Gilbert- Varshamov bound.

Proof: Let N 0 be the total number of codes in <Pi, and let N1 be the number which

contain a given non-zero vector. If we write out all the non-zero words in all codes

in the class and count them in two different ways, we get (qk - 1)No = (qn - 1)N1 .

The number of non-zero vectors of weight d or less is I:,f=1 (:) (q - 1)i and so the

number of codes with minimum distance d or less is at most N1 r,f=1 (7) (q - 1)i and

the fraction of codes for which this is true is at most

N1 t, (7 }q - l)' / No = [t, (7) (q- 1)'] {q' - 1)/{qn - 1)

n [Hq(d/n)-(1-R)] +o(n)
q

and this fraction goes to zero exp~nentially as n --too if Hq(d/n) < 1 - R. ►

- 12 -

For the case of linear systematic codes, we can modify this procedure to consider

only sequences which are non-zero in the first k symbols. We find that the fraction

of such codes with minimum distanced or less is at most

t, [(7) _ (n ~ k)] { q _) /q-n(l-R) = q +,(d/n)-(1-R)l +o(n),

so again we conclude that for large n, virtually all linear systematic codes lie on or

above the Gilbert-Varshamov bound.

We show in Appendix A that virtually no linear codes over any symbol field lie

significantly above the bound, in the sense that the fraction of codes with Hq(d/n) ;::::

1 - R + E tends to zero for any E > 0. The bound is thus important as an indicator of

the average behaviour of codes. It is still not known if the bound is tight: in the binary

case there exists a sizeable gap between the best upper bound on the asymptotic size

of a code (the McEliece-Rodemich-Rumsey-Welch linear programming bound [18])

and the Gilbert-Varshamov bound. The resolution of this discrepancy is perhaps the

most basic theoretical open problem in coding theory. It has long been conjectured

that the Gilbert-Varshamov bound is in fact tight for binary codes (though it is now

known to be loose for some larger symbol fields [19]).

To put all this in an information theory context, the bound represents a bound on

the reliability function for the binary symmetric channel. Following Berlekamp [20],

we let Pe(N, M) denote the probability of error of the best code having M codewords

of block length N for a given channel. For convenience, we define the rate in natural

units as Re = (In M) / N, and the reliability function as

E(Re) = lim _ Nl ln Pe(N, [exp ReN])
N---+oo

assuming that the limit exists. (This is a special case of the more general reliability

functio_n E(Re, L) which takes advantage of list decoding, with L = 1). We define the

average guaranteed error correcting power as

(R)
_

1
. d(n, [exp Ren])

e e - Im
2 n---+oo n

where d(n, M) is the greatest possible minimum distance in a binary code of length n

with M codewords (as before, we assume the limit exists). Now E(Re) depends im-

- 13 -

plicitly on the channel. For the binary symmetric channel with crossover probability

p, we define the reliability function for the BSC, E(Re; p). Then we have (20]

(R)
_

1
. -E(Re;p)

e e - 1m l .
p->O n p

As p goes to zero, the "expurgated" lower bound on - E (Re; p) /ln p becomes the

Gilbert-Varshamov bound on e(Re). The conjecture that the Gilbert-Varshamov

bound is tight is equivalent to the conjecture that E(Re) coincides with the expurgated

bound for the binary symmetric channel.

1.4 Complexity and the Gilbert-Varshamov Bound

1.4.1 All Random Codes Are Good

It is well known that every linear code is equivalent to a systematic code (21]. Instead

~f picking the entries of a generator matrix at random, we pick a systematic code

according to the following rules: the generator matrix G is assumed to be of the form

(JJP), where I is the k x k identity matrix, and Pis an arbitrary k x (n - k) matrix.

We will call P the parity matrix.1 There are qk(n-k) possible choices for P; each

specifies exactly one code. Suppose we know R (= k / n) exactly. Then to specify

the code, we can write out the parity matrix Prow by row, to get a string of length

k(n - k) = n2 R(l - R) symbols. If R is known exactly, such a string can represent

exactly one code. Thus the string specifies the code, and to specify the code it is

necessary and sufficient that we specify the corresponding binary string.

Definition 1.4 The defining string of a linear systematic code C over GF(q) is the

string

where Pi = {P;,i, ... , P;,j, . .. , Pi,n-k}, · and where the generator matrix of the code has

the form G = (IJP).

1 We apologize for any confusion between the parity matrix P and the parity check matrix H.
Also the distinction between the entropy function Hq(x) and the parity check matrix H should be
dear from co.ntext.

- 14 -

In a slight abuse of notation, we say that the Kolmogorov complexity of a code is

the Kolmogorov complexity of the string which defines the code.

Note that we have assumed a fixed R in this. There are two ways pf dealing with

this: either the fixed R is assumed to be known always, or we place some unambiguous

encoding of the rate before the string of length n 2 R(l - R) to specify the code. The

second method adds some fixed constant to the complexity; as we will see later, this

is not important. We could also regard the length of the string as given, and speak

of the conditional Kolmogorov complexity of the string. Once again, our conclusions

would not be altered by adopting this convention.

Theorem 1.5 Let • be an infinite sequence of codes over some fixed symbol field

GF(q) all of which have rate exactly R. Let the jth code have length n, minimum

distance d1 and defining string Sj. Then there exists a constant C0 such that

for all j.

Proof: We outline a program for a Universal Turing Machine which calculates the

defining string of the code. The parity matrix P consists of k rows, each containing

n-k symbols. We label the ith row of the generator matrix ri. The code has minimum

distance d; suppose we are given any codeword of weight d. The first k symbols of this

n-tuple represent an information sequence i, while the last n-k symbols represent the

parity check sequence p. Let the support of the information vector i be { o:1 , ... , O:m},

where mis the number of non-zero symbols in the information sequence. Clearly, the

specified codeword is of the form c = I:~1 Sjrc,j, where Sj E GF(q). In other words, c

is a sum of m rows of the generator matrix; which m rows these are can be determined

from the first k symbols. Suppose we are given c (the codeword of weight d) and all

the rows of the parity matrix except one - that one being the last row involved in the

sum which represents c (i.e., row O:m in the notation given above). Then it is a simple

matter to recover r c,m by calculating r c,m = c - I:~11 s j r c, ,- Hence the defining string

of the code is calculable from the given information. We have only to calculate the

- 15 -

length of the program, We need an encoding of the Turing Machine which performs

the calculations, a specification of the low weight word, and specification of all rows of

the parity matrix except one. The encoding of the machine takes a constant number

of symbols; the rows of the parity matrix take (k - l)(n - k) symbols, and for the

low weight word, we give the value of d (taking pogqdl symbols) and then say which

word of weight d the low weight word is (taking flogq ((;) (q - l)d) l symbols2 Using

the rela,tion (tn}(q - l),\n ~ qnHq(,\)+o(n) we find that the program has length at most

where C1 is the length of the encoding of the Turing Machine, and this is then an

upper bound for the Kolmogorov complexity of the code string, as claimed. ►

Equivalently, we could use the fact that the parity check matrix H has the form

H = (-PTIJ) [21], where pT is an (n - k) x k matrix and J is the (n - k) x (n - k)

identity matrix. Given a codeword, we know that the corresponding columns of H

sum to 0. We can thus omit one column of H, saving n - k symbols, deriving it from

the given codeword.

Corollary 1.6 Virtually all long systematic linear codes satisfy the Gilbert- Varshamov

bound. More precisely, for any a > 0, the fraction of systematic linear codes over

GF(q) for which Hq(d/n) ~ 1 - R - a is less than q-nu+Clogqn for some constant C

and for all n.

Proof: From property (ii) of Kolmogorov complexity, the fraction of codes with

complexity n 2 R(l - R)- n(l -R) + nHq(d/n) + O(logqn) is less than

and if Hq(d/n) < l - R, this fraction goes to zero exponentially with increasing n.

►

The result above also implies the following interesting and important observation:

2 Note that we can recover the word .of weight d from its specification in polynomial time. We
interpret the flogqdl symbols as a number; the first symbol must be zero if the number is less than
(n~ 1)(q - l)d, and so on. Then there is an obvious recursion for the other symbols. This will be
important later.

- 16 -

Theorem 1. 7 For any positive constant C0 there exists a constant n0 such that the

following statement holds true: any linear code of block length n > n0 and rate R over

GF(q) which has I<olmogorov complexity (or polynomial-time-bound~d I<olmogorov

complexity) no less than n 2 R(l - R) - C0 symbols must have minimum distance d

satisfying Hq(d/n) 2: 1 - R + o(l), i.e., must satisfy the Gilbert- Varshamov bound.

The term "random coding" is particularly apt: random selection is virtually certain

to produce a good code; however, it is also virtually certain to produce a 'random'

code! The two classes turn out to be correlated. In the spirit of Wozencraft & Reiffen,

we assert that "any code which is sufficiently random is good."

Comparing our derivation to the standard one given in Section 1.3, we see that

we have effectively followed the same method: the pigeonhole principle guarantees

that most codes are good. Now, however, we have simultaneously classified the codes

according to complexity, and have found that it is precisely the set of high complexity

codes which provides the guaranteed good codes.

The standard for a code being patternless is that a factor linear in the block length

cannot be saved. This corresponds, for example, to saying that there is no row in the

parity matrix, no diagonal, no column, which can be compressed down to any given

percentage of its length. Our standard for "randomness" is thus in some ways quite

generous: we allow the random selection of all but a linear number of symbols, then

insist only that the remaining linear number should allow compression to a percentage

of its length.

1.4.2 A Probabilistic Converse

We need to ask about the converse of the above result: given a code of low complexity,

what is the probability that the code is bad?

We consider a modified random coding argument. We are given some budget B,

a constant which is arbitrary but fixed, with which we are to design a procedure for

constructing a code. A procedure is judged to be within budget if the shortest encod­

ing p(lvf) of a Turing Machine M which will carry out the procedure has length no

- 17 -

greater than the budget. To compensate for the extra overhead involved in specifying

the Turing Machine, the procedure must be able to save at least a linear amount of

complexity in the specification of the code, i.e., we must be able to generate a code

string of length n 2 R(l - R) given no more than n 2 R(l - R) - na symbols, for some

constant a; we will take a to be at most 1-R. We randomly select a procedure which

obeys these rules (we avoid the halting problem by either randomly selecting from

those programs which halt inside some given computation time or use an "oracle" to

decide which programs halt leaving a valid codestring on the tape) and refer to the

result as a random C (B, a) code. We have the following result.

Theorem 1.8 For sufficiently high budgets, random selection of a C(B, a) code re­

sults with probability p > q-(B+i) > 0 in a code which has minimum distance d

satisfying

regardless of the block length n.

Proof: The restrictions on the codes imply that each code string has complexity

I<(s) ::; B + n 2 R(l - R) - na symbols. The number of codes with this complexity

is certainly less than qB+n
2
R(l-R)-nu by the pigeonhole principle. We now count the

number of bad codes w' :ch have sufficiently low complexity. For a given n, pick d*

to be the largest integer such that

From our previous arguments, a code with a minimum distance ::; d* can be calculated

by giving an encoding of a Turing Machine M (containing the values of both R and

a), the specification of the lowest weight word (taking logq 'L,{:1 (7) (q - 1)i symbols)

and the remaining words of the parity matrix P. (Note that the values of n and d*

are implicit from the length of the input and the values of R and a). The program

thus takes

- 18 -

We take the "sufficiently large" condition on the budget B to mean that B 2 C0 •

Now every code with minimum distance less than d* is representable by a program

meeting the requirements set out in the statement of the theorem.' The familiar

argument given in Section i:·3 yields an upper bound on the number of codes with

distance less than the Gilbert-Varshamov bound. We seek a lower bound on the

number of such codes.

Let Ni(n, d*) be the number of "valid" distinct choices of i distinct non-zero

n-tuples of weight d* or less, where a choice is valid if there is any systematic linear

code which contains that set of codewords.3 Let Si(n) be the number of systematic

linear codes containing a given valid set of i non-zero codewords, averaged over all

valid sets of i non-zero codewords. Let T(n, d*) be the number of codes with minimum

distance d* or less. By the principle of inclusion and exclusion, we have

where the sum is overestimated by taking an odd number of terms and underestimated

by taking an even number of terms. We need only N1, N2, S1, and S2 •

We have

and

N,(n, d·) = c=1:, ((j) - ~·:;:')) (q - l)i) I (q - 1)' - E,(n, d·),

where E2 (n, d*) represents the number of unordered pairs of non-zero codewords each

of weight :s; d* which have the same non-zero sequence in their first k symbols. We

also have S1 (n) = q(k-I)(n-k) and S2(n) = q(k-2)(n-k). Thus

T(n, d*) > N1(n, d*)S1(n) - N2(n, d*)S2(n)

> t, [{ (7) _ (n ~ k) }(q _ l)}(k-l)(n-k)-1

-Ht.W)- (n ~ k)}(q- 1r]\1•-2)(n-k)-2

3 A codeword c has the same weight as AC for any non-zero A E GF(q). To avoid counting multiple
copies of the same code, we normalize each of the i distinct non-zero n-tuples to have 1 as the first
component.·

- 19 -

T(n,d*) > qn2R(l-R)-na(1 + o(l))

> n2 R(l-R)-no--1 q .

Thus picking a C(B, a) code at random gives a probability of at least q-B-l of picking

a bad code. ►

1.4.3 Discussion

Of course, there are codes of low Kolmogorov complexity which do meet the Gilbert­

Varshamov bound. The simplest example is the code produced by the following

program: for a given n and k, generate all codes lexicographically; for each code,

determine the minimum distance; stop when we find the first code which meets the

bound, report that code and halt. The problem, however, is that the running time of

this program is exponential in the block length. There are more efficient algorithms

[2] based on the same idea, but none with sub-exponential running time. Our result

above shows that even with unconstrained running time, random selection of a low

complexity code has a certain minimum likelihood of producing a bad code. More

importantly, taking the time-bounded Kolmogorov complexity mentioned earlier, and

setting r(n) equal to an appropriate polynomial function, we have the same lower

bound on the probability of selecting a bad code (because our described procedure

for bad codes runs in polynomial time) while we have now no reason to believe that

the upper bound for this probability is less than one.

It is possible to reverse our argument, and thus to derive many of the same conclu­

sions in a different way. From Section 1.3, we know that the fraction of linear codes

over GF(q) with Hq(d/n) :::; 1 - R - a is at most q-na+o(n)_ Thus it is possible to

write a program that indicates that the string to be specified represents a bad code,

and then say which of the strings representing bad codes is the one to be specified.

- 20 -

As there are no more than qn
2
R(l-R)-no-+o(n) systematic linear codes over G F(q) sat­

isfying Hq(d/n) :S 1 - R- a, the Kolmogorov complexity of the defining string of any

such code is upper-bounded by

K(C) :S n2 R(l - R) - na + o(n).

Thus, again, any code which is effectively random must satisfy the Gilbert-Varshamov

bound. Conversely, assume that the fraction of codes with Hq(d/n) :S 1 - R - a is

exactly q-g(n,R,a') where g(n, R, a) is defined appropriately. Any such bad code can

then be represented by a program of length :S C0 +n2 R(l-R)- I g(n, R, a)l symbols,

where C0 is the length of the formal description of the Turing Machine. Then suppose

we have a budget B > C0 as before, and that we select codes at random from the set

of codes with Kolmogorov complexity at most B + n 2 R(l - R)- f g(n, R, a)l symbols.

There are at most qB+n
2
R(l-R)-r9 (n,R,a)l strings of the required complexity, and there

are exactly qn
2
R(l-R)-9 (n,R,a) bad codes among them. Thus the probability of picking

a bad code is at least q-(B+l) as before.

Although this argument is briefer than the one already given, it obscures some

points we want to make. First, we wish to show that many of the main characteristics

of a class of codes can be derived in a simple and intuitive way from the consideration

of the Kolmogorov complexity of the defining strings of the codes (where the defin­

ing strings are defined in a way appropriate for the class). We illustrate the point

in Section 1. 7, and in Chapter 2, Section 2.5, we use the same idea to analyse the

complexity of a decoding procedure for general linear codes. Second, we wish to show

that in the random selection from relatively low complexity codes, the "badness"

of a fraction of the resulting codes is proportional to the amount of complexity we

save, in the sense given in Theorem 1.8. Third, we recall that our main concern lies

in discovering the polynomial-time-bounded Kolmogorov complexity of codes. Com­

paring the two arguments given, we note that in the first case, our Turing Machine

program runs in polynomial time, whereas in the second case, there is no reason to

believe that the program does so .. This means that in the results in Section 1.4, we

can substitute "polynomial-time-bounded" Kolmogorov complexity for unrestricted

- 21 -

Kolmogorov complexity without altering the validity of the results.

It may appear that our suggested program for calculating the code string of a bad

code is quite a loose upper bound, but in fact this is not so: our upper_ bound for

the complexity of a bad code is tight for virtually all such codes. By an elementary

application of the pigeonhole principle, we see that the fraction of codes for which

K(s) < Ku(s) - (Co+ 1) - C1 is less than q-01 for any constant C1, where Ku(s)

is the upper bound and the constant Co is the length of the encoding of the Turing

Machine M already described.

The following result is now obvious: most codes which have any non-zero vector

of weight less than the Gilbert-Varshamov bound have exactly one such vector. This

follows from the way T(n, d*) is derived, but also because a code with two words of

weight less than nH;1 (1 - R - a) for any a > 0 can be represented by a program of

length

~ n2 R(l - R) - 2n(l - R) + 2nHq(d/n) + o(n) = n2 R(l - R) - 2na + o(n)

and is thus of significantly lower complexity than even the average code which does

not meet the bound.

It is also clear from the discussion of Theorem 1.5 that the diameter, r, of virtually

all linear codes over GF(q) satisfies Hq(r/n) 2:: 1 - R + o(l), where the diameter of

a code is defined [lo] as the maximum distance between any two codewords.

1.5 Non-linear Codes

In the case of non-linear codes, we find that a new formulation is needed to represent

the codes. The lack of structure also manifests itself in the much higher Kolmogorov

complexity of most of these codes. Once again, when we speak of 'high-' or 'low­

complexity' codes, we are implicitly using these terms in a relative way. Although the

average behaviour of random non-linear codes has been studied extensively [21, 61],

there are no results on the average distance of such codes known to us. We shall

derive results dealing with this problem in this section.

- 22 -

We have the following argument. An [n, M] non-linear code over GF(q) is a

collection of M distinct q-ary n-tuples. Let the function f(n, M), for arbitrary but

fixed q, be such that the number of [n,M] non-linear codes over GF(q) is qf(n,M)_

Then If (n, M) l q-ary symbols is the minimum amount required in order to be able to

specify any of the codes. The complexity of the code is defined to be the complexity

of the string of I f(n, M)l symbols which specifies it. Let d be the minimum distance

of the code C. Then there are two codewords w 1 and w 2 which are such that wt(w1 -

w 2) = d. We can specify the code using the following procedure: specify the [n, M -1]

code obtained by deleting w 2 from C, specify which word in the expurgated code is

w 1 , give then-tuple w 1 +w2 of weight d, and reconstruct w 2 from that information.

We need lf(n, M - 1)1 symbols to specify the expurgated code, flogqMl symbols

to specify which codeword is w 1 , and at most nHq(d/n) + o(n) symbols to give the

n-tuple of weight d. This must be close to f(n, M). So

nHq(d/n) + nR + o(n) 2:: f(n, M) - f(n, M - 1)

for most codes. Now f(n,M) = logq(;;), so

J(n, M) - f(n, M - 1)
(;;)

logq (qn)
M-I

logq((qn - M + 1)/M)

n(l - R)(l + o(l))

and we find that

for most non-linear codes.

Alternatively, we can specify the code by writing out each codeword in turn to get

a string of length nM symbols. If we view the order in which we place the codewords

as significant, any string of length nM symbols represents a non-linear code with at

most M codewords. If code C has. minimum distance d, there are two codewords c1

and c2 which are separated by an n-tuple of weight d. To compute the code string,

it is sufficient to do the following: specify the code string corresponding to the code

- 23 -

C1 obtained by removing word C2 from C. Specify which word in this subcode is c1 ,

give then-tuple of weight d which is c1 - c2 , then say where c2 is located in the code

string for C. We have

n(M - 1) + k + nHq(d/n) + k + o(n) ~ nM

for most codes (where k = nR = logqM), or Hq(d/n) ~ 1 - 2R + o(l) as before.

In contrast to the situation for linear codes, the Gilbert-Varshamov bound does

not seem from this argument to be met automatically by high complexity codes -

indeed, for R > 1/2, we have no guarantee of distance at all.

Of course, we have merely derived a lower bound on distance for most codes, and

we should ask how tight this bound is. This question can be interpreted two ways: (i)

are there really binary non-linear codes which are almost totally random which have

Hq(d/n) :=::: 1- 2R for R < 1/2 and d-+ 0 for R ~ 1/2? (ii) is the average behaviour

of non-linear codes really below the Gilbert-Varshamov bound? The answer to both

questions is yes.

For the first question, we apply the pigeonhole principle again. Assume that this

is false for all high complexity [n, M -1] codes, i.e., Hq(d/n) = 1-2R+e: for R < 1/2,

and Hq(d/n) = E for R ~ 1/2, for some E > 0.

We take a high complexity non-linear [n, M - 1] code over GF(q), a word from

that code, and another n-tuple at distanced*~ d from the selected codeword. The

total number of results is

Each result can arise in at most two ways from the above constructions, because

d* ~ d, so the total number of [n, M] codes we get is

If R ~ 1/2, we find that the number of distinct [n, M] codes over GF(q) is greater

than qf(n,M)+n(2R-I), contradicting the definition of the function f(n, M). Similarly,

for R < 1 /2, if Hq(d/ n) = 1- 2R + E for all high complexity codes, we would find that

- 24 -

the number of[n, M] c·odes over .GF(q) is greater than qf(n,M)+m+o(n), a contradiction

for positive E.

We should now suspect that this bound is tight for a significant fraction of non­

linear codes. Indeed, suppose that the fraction of codes over GF(q) for which this

is tight is a(n, R). Then, as Martin-Lo£ has pointed out [27], we can save at least

logqa(n, R) + 0(1) symbols in the specification of any code for which the bound is

tight. If a(n, R) tends to zero with increasing n, then the bound cannot be tight for

any random code, contradicting (i) above. Thus we conclude that the bound is tight

for a fraction of non-linear codes that is bounded away from zero.

It is possible to obtain a stronger result:

Theorem 1.9 The fraction of non-linear [n, qnR] codes over GF(q) satisfying

for any a > 0 is less than q-na+o(n).

Proof: First note that if this is true for R = 1/2, it is trivially true for R > 1/2. So

we take R ::S: 1/2. Select M codewords at random from all qn possible sequences, and

let X be a random variable denoting the number of unordered pairs of codewords at

distance ::S: d from each other. We can find E(X) and E(X2
) and hence can bound

Pr(X = 0) using Chebyshev's inequality.

Let Xij be a random variable which takes the value 1 if the ith and jth codewords

are at distance ::S: d from each other, and 0 otherwise. Then X = Li<j Xij, and so by

linearity of expectation (28]

Also

We find that

E(X2
) = I: xijxkl•

i,j,k,l
i<j
k<l

- 25 -

where the first term represents the products XijXkt where i, j, k, and l are all different,

the second term represents the products where #(i,j, k, l) = 3, and the final term

represents products where (i,j) = (k, l). Then o-2(X) = E(X2) - E2(X)

~M2p(l + O(M-1
) + O(p)) + p20(q-n)O(M4

)

~M2p(l + o(l))

where p = "E.,f=I (7) (q-1)1 /(qn- 1). Thus o-2(X) = o(E(X)). Chebyshev's inequality

then gives
o-2(X) -1

Pr(X = 0) ::; µZ(X) = O(E (X)).

Finally,

and the theorem follows. ►

Thus most non-linear codes do not satisfy the Gilbert-Varshamov bound. This

raises the question of how many codewords are at a low distance from the rest of the

code. A simple modification of the proof of Theorem 1.8 gives us:

Theorem 1.10 Let w and R be such that l - 2R < Hq(w) < l - R. The number of

codewords at distance at most nw from another codeword is then

qn[Hq(w)-(I-2R)]+c2y'n+O(logn)

for some C < 1 for a fraction of at least 1- q-fo+o(n) of all non-linear [n, M = r qnR7 l
codes. The fraction of codewords at distance ::; nw from another codeword is

for some c < 1 for at least the same fraction of [n, M] codes.

- 26 -

Thus deleting an asymptotically insignificant fraction of the codewords results in a

code meeting the Gilbert-Varshamov bound. The result above shows exactly what

this fraction is in most cases. Note that Shannon's original proof of the channel

coding theorem (104] used random non-linear codes without expurgation; to achieve

a low probability of error for every codeword, rather than a low average probability

of error over all codewords, requires the appropriate amount of expurgation.

It is intuitively surprising that, despite the use of random non-linear codes in the

proof of the channel coding theorem, these codes should have low minimum distance

on average; it is even more surprising that they should have lower minimum distance

than random linear codes.

To highlight the contrast between the two classes of codes, consider an interme­

diate type of code consisting of qnRi linear codes, each containing qnR2 codewords.

We label such a code an (n, R1 , R2) ULS 4 code. This class, non-linear with con­

straints in general, ranges from linear codes (R1 = 0) to unconstrained non-linear

codes (R2 = 0). An example of the intermediate case is provided by the family of

Kerdock codes K(m), which consist of the first-order Reed-Muller code R(l, m) and

2m-l -1 cosets of R(l,m) in the second-order Reed-Muller code R(2,m) [10].

We have the following guarantee on distance, generalizing the results for linear

and non-linear codes:

Theorem 1.11 Virtually all [n, R1 , R2] ULS codes over GF(q) satisfy

Proof: Take the order m which the linear subcodes are arranged as important.

Then the (ordered) ULS code has Kolmogorov complexity approximately equal to

qnR1 n2 R2 (1 - R2) in most cases. Given two codewords at distance d, we can save

n(l - R 2) symbols in the specification of one of the subcodes by specifying which

subcode the two codewords lie in (taking nR1 symbols each) and giving the difference

4 Union of linear subcodes.

- 27 -

between them (taking nHq(d/n) + o(n) symbols). Then in most cases, Hq(d/n) >

1 - R2 - 2R1 + o(l) == 1 - R - R1 + o(l). ►

Thus with this notation, there is a linear transition between the properties of random

linear and non-linear codes.

We conclude by showing that the probability that a randomly selected code will

be significantly better than the Gilbert-Varshamov bound (i.e., Hq(d/n) = 1 - R + <J'

for some <J' > 0) is upper bounded by a function that goes to zero as a double

exponential. A necessary condition for the code to have minimum distance d is that

any given codeword should have no other codeword within distance d - 1. We pick

an initial codeword at random, and then complete the code by selecting the other

M - 1 codewords. The event that there is no codeword within distanced of the first

codeword will have probability

as n becomes large.

1.6 Burst-Error-Correcting Codes

Although our discussion so far has concentrated on the classic case where errors occur

randomly and independently throughout the codeword, it should be clear that more

general results should be possible using the same techniques. In this section, we derive

the performance of linear and non-linear codes in burst-error-correcting and mixed

random- and burst-error-correcting schemes; we show that the results generalize in a

natural way.

Taking the pure burst-error-correction scheme first, we define a burst of length l

to be a vector whose only non-zero components are among l successive components,

- 28 -

the first and last of which are non-zero5
• We shall regard the first position as being

the successor of the last position; the results are not significantly different if the

alternative convention is adopted. An old result, analogous to the Singleton bound

for random-error-correcting codes, gives an upper bound on the rate of a linear block

code in terms of its burst-error-correcting capability:

Theorem 1.12 (Reiger 1960) A linear (n, k) code that corrects all error patterns

of length b or less must have 2b :S: n - k.

Proof: The code cannot contain any codeword of length 2b or less; otherwise we

could bisect the codeword to get two bursts, each of length at most b, that would be

in the same coset. But any two patterns that have all their non-zero components in

the first 2b symbols must then be in different cosets, because their sum is a burst of

length at most 2b. There are q2b words that are zero except in their first 2b symbols,

and hence at least 2b parity check symbols. ►

Many researchers have generalized the Gilbert construction to the case of burst­

error-correction with various constraints [59, 60, 62]. We derive most of these prop­

erties, and many more, using Kolmogorov complexity. First we show that the Reiger

bound is tight for most linear systematic codes, and that, as for the random-error­

correction case, any sufficiently random burst-error-correcting code is good.

Theorem 1.13 Any linear systematic (n, nR) code over GF(q) that does not correct

at least one burst of weight b has a Kolmogorov complexity upper bounded by

n2 R(l - R) + 2b- n(l - R) + 2log n + C0loglog n + C1

symbols (where logarithms are base q). Thus a fraction of at least 1 - q-na+o(n) of all

linear systematic (n, nR) codes over G F(q) have a burst-correction power b satisfying

2b > n (1 - R - a) + o(n).

5This is the usual definition - see [57], for example; an alternative definition given by Chien &
Tang [71] is that a burst of length b is a set of b consecutive symbols the first of which is non-zero
(the last can be zero). Bridwell & Wolf [62] extend this to multiple burst correction. Our results
still apply under this convention.

- 29 -

Proof: A burr,t of length b that is not corrected must be in the same coset as a burst

of length s; b. The difference between the two bursts is a codeword. Thus we can

specify the code by giving all rows but one of the parity matrix, the b~rst that is not
..

corrected, .and the leader of the coset in which the uncorrectable burst lies. To specify

a burst of length b, we need to give the location of the beginning of the burst, the

value of b, and the burst itself. The burst itself takes b symbols to specify, we need

flogqnl symbols to specify the value of n and, as 2b is usually n(I - R) - O(logqn),6

we need O(loglog n) symbols to specify b. All rows but one of the parity matrix

can be specified in (k - I)(n - k) symbols, so the program length is as given in the

theorem. The other claims are obvious consequences. ►

This claim is not as sharp as that obtained by Peterson [57]: he shows that there

exists an (n, nR) linear code correcting bursts of length b or less with

2b 2: n(I - R) - logq[(q - I)(n - 2b - I)+ 1],

whereas our version is that for 8 > 0 and fixed rate R, the fraction of (n, nR) linear

systematic codes with

2b < n(l - R) - 2logq n - 8logq n

is less than n-S(l+o(l)).

Theorem 1.10 has the following corollary, analogous to the random-error-correcting

case:

Corollary 1.14 For any positive constant C0 there exists a constant n0 such that the

following statement holds true: any linear code of block length n > n0 and rate R over

GF(q) which has Kolmogorov complexity (or polynomial-time-bounded Kolmogorov

complexity) no less than n 2 R(l - R) - Co symbols must have burst correction power

b satisfying 2b ?::'. n(l - R) + o(l), i.e., must be arbitrarily close to the Reiger bound.

We shall discuss this result in Section 1.7.3.
6 We would get this result even by taking flogq n l symbols to specify b, and could then run through

the argument again; thus we are not begging the question.

- 30 -

1.6.1 Combined Random- and Burst-Error Correction

The permutations possible are almost endless. We summarize some of the main

results. The results in this section are, to the best of our knowledge, original.

Theorem 1.15 Virtually all linear (n, nR) codes correct all error patterns which

have weight up to nr or burst length up to n/3 if /3 and T satisfy

The fraction of codes for which this bound is tight approaches 1 asymptotically.

Proof: If the stated correction is not achieved, there must be an error pattern meeting

the requirements that is miscorrected. The cases where a burst error is miscorrected

to a burst error and where a random error is miscorrected to a random error have been

dealt with before. If a burst error pattern is miscorrected to a random error pattern or

vice versa, we can specify a non-zero codeword with n/3 +n(l-/3)Hq(T /(1-/3)) +o(n)

symbols: we need n/3+o(n) symbols for the burst of length n/3, and then the remaining

n(l - /3) symbols of the codeword contain at most nr + o(n) non-zero symbols. Thus

by the familiar argument, if /3 + (1 - /3)Hq(r/(1 - /3)):::::; 1 - R + o(l) and the code

miscorrects a burst pattern to a random pattern or vice versa, then the code has

significantly lower complexity than a random one.

It is not clear at first glance that the centre term on the left hand side above can

ever be the maximum. To show that it can be, note that we can choose /3 and T so

that /3 is less by an arbitrarily small amount than (1- /3)Hq(r/(1 - /3)), so that the

centre term is greater than the first term. The difference between the central term

and the last term is then

T
2(1 - /3)Hq(

1
_ /3) - E - Hq(2r)

2((1 - /3)Hq(l ~ /3) -~Hq(2r)] - E

> 0

because by the convexity of the entropy function, aHq(,) < Hq(a,) for a< 1.

- 31 -

The fact that the bound is tight if the first term is the maximum follows from

the Reiger bound, and if the last term is the maximum, the result follows from the

tightness of the Gilbert-Varshamov bound for most linear codes - s~e Theorem A-

2 in Appendix A. In the case where the central term is the maximum, we use the

following argument. (Let (1 - /3)Hq(r/(l - /3)) + /3- (1 - R) = t: > 0.) Suppose we

have already selected the first k - l rows of the generator matrix. We determine the

number of choices for the last row that will result in a code having in the same coset

a burst of length n/3 or less and a random pattern of weight nr or less confined to the

positions outside the burst, with the difference between the two patterns involving

the last row of the generator. We let the random variable X denote the number of

such pairs in a code. We have

EX = (n(ln~ /3)) (q - 1rT qn/3q-n(I-R)

qn[(I-/3)Hq((T /(1-/3))+/3-(1-R)]+o(n)

Thus if (1- f3)Hq ((r / (1- /3)) + /3 > 1-R, we expect on average to have many miscor­

rections per code. To estimate the deviation from the mean, index each potentially

miscorrectable pair with index i, 1 :s; i :::; M for appropriate M, and let Xi be 1 if

that pair is miscorrected and 0 otherwise. Then EX2 = E(I:i Xi)+ E(I:i Lj Xi Xi) <

nEX + E2X, so o-2 (X) < nEX. We have used the fact that EXiEX1 = E2Xi if the

ith and jth pair add up to different words. For each pair, the maximum number of

other pairs that add up to the same word is n - l (there are n - 1 other positions in

which to start the burst), so EI: Li:jXiX1 :'.'S (n -1)E Li Xi = (n - l)EX, where the

notation i = j means that the ith and jth pairs give the same codeword. Chebyshev's

inequality then gives

Pr(X ~ 0) < q-nt:+o(n),

so virtually all codes do have miscorrection if (1 - f3)Hq((r/(l - /3)) + /3 > 1 - R.

►

- 32 -

Theorem 1.16 7 Virtually every linear (n, nR) code corrects all bursts of length up

to b that have weight up tow if2bHq(w/b):::; 1 - R + o(l), where Hq(x) = Hq(x) if

x < (q - 1)/q, and is 1 otherwise.

Proof: If we do not achieve the correction, there are two bursts of length at most

b and weight at most w in the same coset. Specifying each takes bHq (w / b) + o(n)

symbols, and by specifying both we save n(l - R) + o(n) symbols in the specification

of the code string. ►

Theorem 1. 17 Virtually every linear code corrects all patterns of f (n) bursts of

errors of length bi,0:::; i:::; f(n) if f(n) = o(n/logn) and 2Libi < n(l -R) + o(n).

Proof: Specifying the bi's takes O(f(n) log n) symbols; then specifying the bursts

takes Li bi symbols. Thus we need 2(Li bi + O(f (n) log n)) = 2 Li bi + o(n) symbols

to specify a non-zero codeword. ►

1.6.2 Non-linear Burst-Error-Correcting Codes

Recall that in Section 1.5, we defined f(n, M) (for arbitrary but fixed q) to be such

that the number of [n, M] non-linear codes over GF(q) is qf(n,M)_ Then, as before,

ff(n, M)l q-ary symbols are necessary to be able to specify any code in the ensemble.

7The reader might like to compare the expression to that given by Dass [59]:
Theorem (Dass 1975) Given positive integers w and b such that w :S b, there exists an (n, k)
linear code that corrects all bursts of length b or less with weight w or less satisfying the inequality

n-k <
q -

0 :S r1 :S w - 2, 1 :S r2 :S 2w - 2, 0 :S r3 :S w - l,

r2 + r3 2:': w, r1 + 1'2 + r3 :S 2w - 2,

where [1 + x]Cm,r) denotes the incomplete binomial expansion of (l + xr up to the term xr in
ascending powers of x.

Dass uses an adaptation of the construction given in Section 1.3 for random-error correction; we
conjecture that, as for the case of random-error correction, an asymptotic version will be no stronger
than our result.

- 33 -

Suppose the code corrects bursts of length up to b - 1, but miscorrects at least one

burst of length b. Then there are two codewords w 1 and w 2 such that the word w 1-w2

consists of the sum of two bursts of length at most b. We can specify the code by

using the following procedure: specify the [n, M - 1] code obtained by deleting w 2

from C, specify w 1 and w 1 - w 2 , and recover C from that information. The program

length cannot be much shorter than f(n, M) symbols in most circumstances. We

have

2n/3 + nR + o(n) 2: f(n, M) - f(n, M -1) = n(l - R)(l + o(l))

and so

2/3 2: 1 - 2R + o(1)

for most non-linear codes. We find a loss in error-correcting power analogous to that

found in the random-error-correcting case.

Tightness follows from another application of Chebyshev's inequality. Select M

codewords over GF(q) at random, and let X be the number of codewords at distance

at most 2n/3 apart. vVe have EX = (~)EXij, where Xij is the event that two

randomly chosen words are within distance 2n/3, so EX = qn[2.6-(1- 2R)]+o(n)_ As in

the random-error-correcting case, o-2 (X) = O(E-1 (X)). Thus if 2/3 > 1 - 2R + o(l),

virtually all [n, qnR] non-linear codes over GF(q) fail to correct all bursts of length

up to 2n/3.

1.6.3 Discussion

In Section 1.4, we showed that any code that is sufficiently random must meet the

Gilbert-Varshamov bound, and that conversely, random selection from those codes

that have some pattern results, with probability bounded away from zero, in a code

that does not meet the bound. We suggested that this is an explanation for the fact

that no construction is known for arbitrary symbol fields that yields codes lying on

the bound. In Section 1.6.1, we showed that the same results hold for burst-error­

correcting codes. For this case, however, it is trivial to construct codes that meet

the best known bound: we can interleave m copies of a given (n, nR) linear code

- 34 -

that corrects bursts of length b or less to get an (nm, nmR) linear code that corrects

bursts of length mb or less. For any rate R, we can search exhaustively to find a

'seed' code that meets the bound, and then interleave to get arbitrarily long codes of

the same rate that also meet 'the bound [21]. This demonstrates an important point:

our argument in the random-error-correcting case should not be construed as a claim

that no polynomial time construction can exist for good codes. Rather, it shows that

the fact that virtually every code is good has no bearing whatsoever on the problem

of determining whether such a construction exists. There is no known way of showing

that a construction does not exist, whereas to show that a construction does exist,

we need only demonstrate it and prove that it works; the fact that a construction

exists for the burst-correction case and for the random-error-correction case over

large symbol fields, does not help us in the general random-error-correcting case.

An analogy is the decoding problem: for virtually every burst-error-correcting code,

error trapping produces the nearest codeword to any received vector in polynomial

time, but this does not mean that the complete decoding problem with random-error

correction is easy.

1. 7 Other Classes of Codes

We feel that the ideas in Kolmogorov complexity provide a useful and intuitively

appealing tool for analysing various properties of codes. By writing a Turing Machine

program to calculate the defining string of a code, and by observing that the length of

this program cannot be significantly less than the logarithm of the number of codes in

the class in most cases, we obtain a simple inequality yielding the typical behaviour

of the class of codes. We restrict ourselves here to a few examples to illustrate the

idea. Alternative proofs of the results on distance given below can be found elsewhere

[29, 30].

- 35 -

1. 7 .1 Shortened Cyclic Codes

Consider the class of shortened cyclic codes over GF(2). An (n, k) s~ortened cyclic

code is defined by a generato~r polynomial g(x) of degree n - k, and the code consists

of all n-tuples c which in polynomial representation are of the form i(x)g(x), where

deg i(x) < k. If we assume that g(x) is a monic polynomial, the code is uniquely

representable (given n and R) by the string (gn-k-l, ... , g0). This is a binary string

of length n(l - R); virtually all such binary strings have Kolmogorov complexity

close to n(l - R) bits. Suppose the code has minimum distance d. Then we can

specify g(x) by giving a codeword of weight d, and then specifying which factor of the

codeword is g(x). Piret has shown [29] that a polynomial of degree n over GF(2) can

have at most 2(n/log2n)(1+o(l)) distinct factors, so we need 0(n/log n) bits to specify

the generator given a codeword. Overall, to specify the value of d, the codeword of

weight d, and the particular factor of the codeword, requires a program of length

nH2 (d/n) + O(n/log n) bits. Now the Kolmogorov complexity of a shortened cyclic

code is at least n(l - R) - C for all but a fraction of at most 2-c of all such codes.

Thus the fraction of codes for which H2 (d/n) :s; 1 - R - a-+ o(l) for a- > 0 is

less than 2-no-+a(n) for all n. Therefore virtually all shortened cyclic codes meet the

Gilbert-Varshamov bound.

Note that modified forms of Theorems 1. 7 and 1.8 apply here also. Bad codes (with

H2 (d/n) :s; 1-R-o- for a-> 0) have Kolmogorov complexity at most n(1-R-a-+o(l))

bits; conversely, random selection from codes with Kolmogorov complexity at most

n (1 - R - a-+ o(l)) bits results with non-zero probability in a code with H2 (d/n) :s;

1 - R - a-. This does not show, however, that the same holds for polynomial-time­

bounded Kolmogorov complexity.

Clearly, the same arguments can be extended to the cases of burst correction and

combined burst- and random-error correction. Overall, we have the following result:

Theorem 1.18 Virtually every shortened cyclic code over GF(2) satisfies all the

following conditions:

- Meets the Gilbert-Varshamov bound.

- 36 -

Meets the Reiger bound.

Corrects all error patterns of burst length n/3 or less that have we}ght nw or less

provided 2nf3H2 (w/f3) <; 1 - R + o(l).

Corrects all error patterns that are either a burst of length less than n/3 or a pat­

tern of weightless thannr provided that max [2,B,/3+H2 (r/(l-f3)),Hq(2r)] <

1 - R + o(l).

By using shortened cyclic codes, we demonstrate the existence of good codes that

have polynomial-time-bounded Kolmogorov complexity at most n(l - R) bits. This

is considerably less than the complexity of random general linear codes, and is the

lowest polynomial-time-bounded Kolmogorov complexity known to us to be sufficient

to give good codes. We offer the following challenge: show that for arbitrarily large

blocklengths, there are codes with polynomial-time-bounded Kolmogorov complexity

no greater than n(l - R- a), for positive a, that meet the Gilbert-Varshamov bound.

We are tempted to conjecture that there are no such codes; it seems impossible to

prove this, however, while it might be disproved, and so we merely suggest it as a

possibility.

It is easy to verify that Theorem 1. 7 applies to binary shortened cyclic codes;

because the Kolmogorov complexity of these codes is linear in n, the result can be

restated as follows: for sufficiently high budgets, random selection of a binary short­

ened cyclic code which can be produced by a Turing Machine M with Jp(M)J acting

on input of length at most 1 (1 - R) with 1 < 1 results with probability at least

2-(B+i) in a code with H 2 (d/n) ::; 1 (1 - R) + o(l). Thus the binary entropy of the

distance to length ratio is equal to the complexity in a significant fraction of cases.

1. 7.2 Quasi-Cyclic Codes

A quasi-cyclic code is one having the property that a cyclic shift of m places applied to

any codeword results in a codeword. We show that there are quasi-cyclic linear codes

that meet the Gilbert-Varshamov bound. Consider a code of length 2r and rate 1/2

- 37 -

that is invariant under a cyclic shift of 2 positions. This is equivalent to (and hence

has the same minimum distance as) a circulant code, i.e. 1 one with generator matrix

G = (IIP); where P is a circulant matrix. Any non-zero codeword' is of the form

i(x)lf(x), where f(x) = i(x)p(x) mod xr - 1. Two codes contain the same codeword

only if there is some non-zero i(x) for which i(x)p1(x) = i(x)p2(x) mod xr - 1, i.e. 1

if p1 (x) - p2(x)lxr -1. Now if q is a primitive element modulo r, then (xr -1)/(x -

1) is irreducible over GF(q), and a non-zero codeword can occur in only q codes.

Thus given a non-zero codeword plus one extra symbol, we can recover the code.

Assume that for a given q, there are infinitely many primes for which q is a primitive

element. Defining the Kolmogorov complexity of the code to be the Kolmogorov

complexity of the polynomial p(x), we have a complexity of close tor symbols for

most codes, and so Hq(d/n) ~ 1/2 + o(l) asymptotically, so the class of codes meets

the Gilbert-Varshamov bound. Assuming the Artin Conjecture or the Generalized

Riemann Hypothesis, there are infinitely many primes for which 2 is a primitive

element, so in this case the bound holds for binary codes; even without assuming

either hypothesis, it is known that for at least one of 2, 3 or 5, the conjecture holds,

so there is an infinite class of codes meeting the Gilbert-Varshamov bound over one

of these fields.

1. 7 .3 Generalized Reed-Solomon Codes

Now consider the class of linear concatenated codes with Reed-Solomon outer codes

and varying non-systematic inner codes. We show that there are codes in this class

that meet the Gilbert-Varshamov bound. Let the outer code have block length N

and rate R, and let the inner codes have rate r = 1. Thus to encode, we form the

Reed-Solomon codeword in the usual manner to get (Co, ... , CN-i) where the c/s are .,

elements from GF(2n), and then apply a 'template' (r0 , ••• , rN-i) where the r/s are

also from GF(2n) to get the resulting codeword (Coro, ... , CN-irN-i). Finally, we

interpret each symbol from GF(2n) as a string of n bits. Clearly, the code has length

N n and rate R. Our choice of template decides the code. \Ve show that virtually any

- 38 -

choice yields a code meeting the Gilbert-Varshamov bound.

Clearly, given n and N, the template can be represented by a string of length

Nn bits, and any string of this length represents exactly one template. Most such

templates have Kolmogorov complexity close to N n bits. Now if we are given a

codeword of weight d, and the first N nR bits of the template, we can recover the

remaining bits: we are given (eoro, ... , CN-ITN-i) and (r0, ... , TNR-i), from which

we calculate (co, ... , CNR-1), then (CNR ... , CN-i) and finally (rNR, ... , rN_i). Thus

by the familiar argument, NnH2 (d/Nn) + NnR + o(Nn) 2: Nn - C for all but a

fraction of at most 2-c of all such codes, i.e., H2 (d/Nn) 2: 1 - R - o(l) for most

such codes. Once again, suitably modified versions of Theorems 1.5 and 1.8 apply, as

do the results in Section 1. 7 .1.

1.8 Conclusions

We have seen that the fact that most linear codes meet the Gilbert-Varshamov bound

is a consequence of the fact that most of these codes are effectively random. Thus

the common complaint given by Wozencraft & Jacobs is no mere accident, but a

fundamental principle of coding theory. We have also demonstrated that a converse

holds: codes which are not effectively random have a certain non-zero probability of

lying below the Gilbert-Varshamov bound. Furthermore, in a certain sense, the less

random is the code, the further away from the bound it is likely to be.

The most interesting convention is to regard a code as random unless it can be

recovered from a significantly compressed specification in polynomial time; even with

this interpretation, the above results hold.

The behaviour of non-linear codes contrasts sharply with that of the linear codes,

and the statement of Wozencraft & Reiffen cannot be said to apply to them. In both

cases, the behaviour of any effectively random string is used to bound the distance of

"most" codes in the class. In the case of linear codes, the bound obtained happens

to coincide with the best known lower bound for the best codes.

The results are shown to carry over to burst-error-correcting codes and combined

- 39 -

random- and burst-error-correcting codes, and to other classes of codes, such as short­

ened cyclic and generalized Reed-Solomon codes.

In addition to shedding light on a celebrated paradox of information and coding

theory, the techniques used provide a novel and intuitively appealing way of determin­

ing the properties of many classes of codes under different error-correction strategies.

- 40 -

Chapter 2

Complexity of Decoding General

Linear Codes

2.1 Introduction

Shannon's original method of proof of the channel coding theorem has not one funda­

mental drawback, but two: one a problem for the transmitter of the information, and

one a problem for the receiver. In Chapter 1, we discussed the difficulty in encoding

the data for transmission across a noisy channel. The corresponding difficulty at the

receiving end is that of decoding the code; the coding theorem states merely that it

is possible. The most general decoding method is to compare a received sequence

with every possible transmitted sequence and to choose the sequence that is likeliest

to have been transmitted. This method has prohibitive complexity for large block­

lengths; as a solution to the problem, it is analogous to the solution to the problem of

finding a good code of searching through all codes and selecting the best. Ideally, we

would like a polynomial time decoding algorithm that works for general linear codes. 1

No one has succeeded in developing such an algorithm, however, and results from the

theory of NP-completeness (see Section 2.2) suggest that no such algorithm exists.

1 Of course, the original coding theorem specified non-linear codes. It is clear that most of these
require decoding complexity that is exponential in the blocklength. The case of linear codes is more
interesting, so we concentrate oil that.

- 41 -

Despite these difficulties, we seek to develop efficient general algorithms for de­

coding all or virtually all linear codes. The algorithms will deal with codes as com­

binatorial structures rather than as structures for which an algebraic' representation

is required, and will be dete~'.ministic rather than probabilistic. These points rule out

many approaches to the decoding problem [52,91,92].

Before discussing some of the non-algebraic methods, we should outline some

drawbacks to algebraic decoding. First, algebraic decoding is available only for codes

with a very specialized structure. Second, the algebraic decoding algorithms decode

no further than (and often not as far as) bounded distance and use hard decision

only.

As a practical matter, the penalty in using hard decision decoding of binary data

transmitted over a channel with additive white Gaussian noise is high - 2-3dB

coding gain at operating points of interest. Even when communicating over the

binary symmetric channel, there is a penalty in bounded distance decoding: we cannot

transmit at such a high rate that the expected number of errors is greater than the

bounded distance, or we will (by the strong law of large numbers) almost never be

able to decode correctly for large blocklengths. The capacity of the binary symmetric

channel with crossover probability p is 1 - H2 (p); communicating at this rate, the

expected number of errors is nH2
1 (1 - R), which is asymptotically the same as the

Goblick bound on covering radius (see Appendix B). Thus to achieve capacity using

the average linear code, we need to decode out to the covering radius of the code. As

the bounded error-correction capability of the code cannot be this high asymptotically

[10], bounded distance decoding can never achieve capacity. In fact, for most linear

codes, we cannot communicate reliably at a higher rate than R = 1 - H2 (2p) for

p ~ 1/4, or at any positive rate with 1/4 ~ p ~ 1/2, with bounded distance decoding.

Thus we require non-algebraic methods in general to communicate at the rate

guaranteed by the channel coding theorem for the average linear code. As we have

noted, however, the decoding complexity of the full search procedure is prohibitive,

and there is good reason to believe that any general algorithm must have exponential

complexity. It has become customary to refer to problems for which a polynomial

- 42 -

time algorithm exists as 'tractable,' while those for which there is no such algo­

rithm are termed 'intractable.' The reasons for this are usually given in texts on

NP-completeness [75). There is, therefore, a need to justify our investigation of ex­

ponential algorithms for decoding. A simple justification that is often used for this

situation [75) is that in practice we are interested in solving relatively short instances

of the problem - i.e., in decoding, we are interested in decoding codes of short to

medium block lengths. Although the complexity will rise prohibitively for large block­

lengths, decoding of medium blocklength codes may still be practicable. An example

is given by the case of Viterbi decoding of convolutional codes. The algorithm is cer­

tainly 'intractable' for large enough constraint lengths, but the coding gain obtainable

from short convolutional codes is large enough to make implementation worthwhile.

Although this explanation gives an adequate indication of our goal in examining

these algorithms - that of deriving algorithms for medium length block codes - it

does not give an adequate explanation of why this is sufficient for our purposes. The

decoding problem is fundamentally different from many other NP-complete problems

in that the utility of the problem does not vary polynomially with the instance size.

In the Travelling Salesman problem [75), we should expect the value of a tour to be

linearly proportional to the number of cities on the tour. Given this assumption,

an exponential increase in complexity with number of cities is unacceptable. In the

decoding problem; however, we are concerned with decoder error probability, and this

decays exponentially with the block length for a wide class of channels of interest.

Without examining the exact decoding complexity, we cannot say whether or not

decoding is impractical: it may be that when the block length is so high that the

complexity of decoding is beyond our means, the decoder error probability is beyond

our requirements. A similar argument holds if we define utility in terms of coding

gain: the rate of change of coding gain declines exponentially with increase in block

length; thus in decoding, we quickly reach the point of diminishing returns, and so a

block code of medium length is usually adequate.

The question of whether to use block or convolutional codes for a given appli­

cation is one for which a general objective answer is probably impossible to give.

- 43 -

A rough comparison is given by McEliece [21] to show that medium length block

codes give results comparable to medium constraint length convolutional codes; in

this chapter, we shall show that decoding complexity is also comparable or better for

block codes in many cases. nBlock codes have an additional advantage for schemes

involvingtransrriission of relatively short packets of data, for which they can be used

without penalty, while convolutional codes involve the extra overhead of flushing out

the encoder, with consequent lowering in rate and loss of performance.

We analyse various decoding schemes in terms of both full minimum distance

hard decision decoding and bounded soft decision decoding. In practice, we are more

interested in bounded soft decision decoding, but complete hard decision decoding

is both interesting in theory and easier to analyse. For the schemes we discuss, the

complexity for each strategy is the same, though for different reasons for different

algorithms; we discuss the point later.

Our results will also be applicable to the McEliece public key cryptosystem [76].

For parameters n, k and t, the cryptosystem has as private key a k x n generator

matrix G' for a t-error-correcting Goppa code, an n x n permutation matrix P, and

a k x k non-singular matrix S. The public key is the k x n matrix G = PG' S.

The messages are k-dimensional vectors over GF(2). To encrypt a message m, we

form c = mG + e, where e is a randomly chosen n-dimensional vector over GF(2)

with weight at most t. To decode, we form c' = cP-1
, apply the algebraic decoding

algorithm for the Goppa code to find m' such that d(m'G, c') :::;; t, and then we have

m = m' s-1
• To crack the system, we apparently have to use a procedure capable of

bounded distance decoding for any linear code, and so more efficient ways of doing this

are of interest. Note, however, that in cryptanalysis the demands are less stringent:

we need only show a probabilistic algorithm that works a significant fraction of the

time to say that the cryptosystem is broken, and this fact makes matters much easier.

Indeed, such versions of the information set decoding result given in Section 2.5 are

already known for the McEliece cryptosystem [77].

In Section 2.2, we discuss and summarize some results from the application of

the theory of NP-completeness to coding. In Section 2.3, we discuss non-algebraic

- 44 -

decoding methods; we use a simple unified structure to compare and contrast the

ideas behind the various methods. We analyse the asymptotic performance of some

of these algorithms and suggest a way of combining some of the advantages of two

different types of algorithms.~ Finally, application ,)f these methods to convolutional

codes is discussed.

Summary of Original Contributions

This chapter contains much discussion of previous approaches to the general decoding

problem. Where we are aware of prior work by other researchers, we have given the

appropriate citations. Anything not so cited should be taken as original.

In particular, the derivation of the complexity of the information set decoding

algorithm is original and central. The derivations of the complexity of the other

algorithms is original in most cases; the bounds for the zero neighbours algorithm and

the systematic coset search in the case of binary hard decision decoding existed as

estimates in the original papers. The results on complexity for bounded soft decision

decoding and for decoding over higher symbols fields are original. So also are two

results used in the derivation of these bounds that are of independent interest: the

result in Appendix A on the weight distribution of most linear codes, and the result

in Theorem 2.10 that virtually no linear (n, k) codes contain any k-tuple with column

rank significantly less than k.

The section on the Continued Division approach is original in its entirety.

In addition, we have provided a framework in which the various algorithms can

be combined and in which the relative merits of each can be compared, and we have

contributed some elementary results in NP-completeness.

- 45 -

2.2 NP-Completeness in Coding

2.2.1 Introduction

The result of Berlekamp, McEliece and van Tilborg [31] that the complete decoding

problem for linear codes is NP-complete has been influential in shaping attitudes

to the problem. Many have interpreted the result to mean that the only general

algorithm is exhaustive search: Berlekamp et al. state that "the discovery of an

algorithm that runs significantly faster than this would be an important achievement;"

Bassalygo et al. give the same interpretation [22]. In our discussion later, we will see

that a great reduction in complexity is possible, though no polynomial time algorithm

is known; thus it all depends on how we interpret the word "significantly" in this

context.

In this section, we discuss and interpret related results from the theory of NP­

completeness. Most of the section is a summary of known (tho~gh perhaps not

widely known) results and discussion of how the results fit into the current state of

knowledge about complexity classes, but there are some new observations here. One

is that the optimization problem for general linear codes is no harder than the decision

problem: a solution to the decision problem can be converted into a solution to the

optimization problem in polynomial time. The transformation is in fact just the step­

by-step decoding algorithm first suggested by Prange around 1960 [57]. Another result

is that bounded distance decoding - hard or soft decision -· is almost certainly not

NP-complete provided we already know the guaranteed error-correcting power of the

code. Also, we show that there is almost certainly no algorithm to verify that a word

is a:· coset leader, and that similarly, there is almost certainly no general procedure

whose correctness is verifiable in polynomial time that allows decoding in polynomial

time.

- 46 -

2.2.2 Background and Terminology

A precise development of the theory of NP-completeness is given by Garey & Johnson

[75]. Here we give a basic heuristic interpretation of the main points. The class P
'

is the set of computational decision problems which can be solved by an algorithm

whose running time is upper bounded by a polynomial in the length of the input.

The class NP consists of those decision problems which can be solved by a non­

deterministic algorithm in polynomial time. A non-deterministic algorithm is said to

solve a decision problem if, when the answer is "yes," there is a guess which when

appended to the input causes the algorithm to halt and report "yes," while if the

answer is "no," there is no guess that will cause the algorithm to do this. For the

class co-NP, we take the same definition as for NP and reverse the roles of "yes" and

"no."

Many problems in NP can be shown [75] to have the property that if a polynomial

time algorithm exists for them, a polynomial time algorithm exists for every problem
/

in NP. These problems are thus as 'hard' as any problem in NP, and are called the

NP-complete problems. As a large amount of effort has been expended in trying

to find polynomial time solutions to many problems in NP without success, showing

that a problem is NP-complete is taken as strong evidence that there is no polynomial

time algorithm for it.

This last statement is equivalent to the statement that P -:/ NP, a famous con­

jecture that, although almost universally believed, seems unlikely to be proved in

the near future. Another such conjecture is that NP # co - NP. It is known that

P ~ NP n co - NP, but the question of whether the inclusion is proper is another

difficult open question.

2.2.3 The Complete Decoding Problem

The original paper by Berlekamp et al. showed that the following decision problem is

NP-complete:

Input: A binary matrix A, a binary vector y, and a non-negative integer w.

- 47 -

Property: There exists a vector x of Hamming weight :S w such that xA = y.

This corresponds to the problem of determining whether the coset leader has weight

:S w given the syndrome and the parity check matrix. The corresponding optimization

problem is: given A and y, find the vector x of minimum weight such that xA = y.

Clearly a polynomial time solution to this problem implies a polynomial time solution

to the decision problem: we can find x, compute its weight, and compare to w.

Thus the optimization problem cannot be easier than the decision problem. It is

perhaps not obvious that it cannot be harder either. However, an algorithm to solve

the decision problem can be converted in polynomial time into an algorithm solving

the optimization problem via a technique called step-by-step decoding developed by

Prange around 1960 [57].

Step-by-step decoding works as follows. (We take the binary case; the generaliza­

tion to G F(q) is straightforward.) We order the n-tuples lexicographically: (a1 ••• an)

precedes (b1 , ••. bn) if aj = 1 and bj = 0 and the two words agree up to location j -1.

We are assumed to have a table that, given any n-tuple, can provide the weight of the

coset leader of the coset in which the n-tuple lies. Given the received word, we find

the weight of the coset leader. We change the first component and find the weight of

the new coset leader. If we obtain a lower weight, we accept the change. We apply the

same procedure to the second, third, and all components until a word results that is

in the code. Step-by-step decoding always results in a codeword, and the correspond­

ing error pattern has minimum weight in its coset and precedes all other minimum

weight words in its coset. The reason for this is simple: if the coset leader has its first

non-zero element in position j, we cannot accept any change before positicn j (or else

we could find a minimum weight error pattern preceding the coset leader) and we do

accept a change at j; the proof then follows by induction. The table is not required

as we can by the previous assumption solve the decision problem in polynomial time.

The next best thing to a polynomial time algorithm for solving the complete

decoding problem would be an algorithm that could be derived for a given code with

a certain (possibly large) amount of preprocessing, which would then allow us to

decode any syndrome with that code in polynomial time. In our later discussion, we

- 48 -

implicitly assume that. this type of algorithm is being used. We have the following

result:

Theorem 2.1 Linear codes fo not in general have a polynomial-time verifiable de­

coding witness that allows complete decoding unless NP = co - NP.

Proof: Suppose there is such a witness. Then given the general decoding algorithm,

we could guess the decoding witness, verify it in polynomial time, and answer the

decision question whatever the answer. This would mean that the general decoding

problem would be in co-NP; however, it is well known [75] that if any NP-complete

problem is in co-NP, then NP= co - NP. ►

A much stronger result has been obtained recently by Bruck [106]: complete

decoding with preprocessing cannot be done in polynomial time in general unless the

polynomial hierarchy PH collapses to I::f = NPNP [75], which is thought to be very

unlikely. (However, note that the proviso is different to that of Theorem 2.1.)

Along the same lines as Theorem 2.1, we have the following elementary result:

Theorem 2.2 Given a binary matrix G and a binary vector w, there is no polynomial

time algorithm to verify that w is a coset leader in the code generated by G unless

NP= co-NP.

Proof: Given such an algorithm we can answer the complete decoding problem in

polynomial time using a non-deterministic algorithm, regardless of the answer. The

appropriate guess is the coset leader; we verify in polynomial time that it is the coset

leader, take its weight and compare with w, reporting "yes" or "no" as appropriate.

Then the complete decoding problem would be NP-complete and in co-NP, which

would imply that NP = co - NP. ►

Decoding strategies can be divided into four main categories, formed from com­

binations of full or bounded distance decoding with hard or soft decision. We know

from [31] that full hard decision decoding is NP-complete. This is a special case of full

soft decision decoding, so it follows,that that problem is also NP-complete. 2 However,

2 A more complete discussion of this point is given by Fang et al. [72].

- 49 -

bounded distance decoding, hard or soft, is different. In this case, we assume that we

know the guaranteed error-correcting power of the code and will decode only to this

limit. We find that the bounded distance decoding problems are in NP n co - NP.

Theorem 2.3 The following problems are in NP n co - NP: Input: Integers t and

w with w ::=; t 1 a binary matrix G such that the code C generated by G has minimum

distance at least 2t + 11 a binary n-tuple y such that y is hard (resp. soft) distance at

most t from some codeword.

Property: There exists an n-tuple x of weight at most w such that x - y E C.

Proof: An appropriate guess for the non-deterministic algorithm is the least weight

word x in the same coset as y. It is easy to check that x - y E C in polynomial time.

We are guaranteed that x has weight at most t; we are also guaranteed that C has

minimum distance at least 2t + 1, so x is guaranteed to be a coset leader. We then

take the weight of x, compare tow, and report "yes" or "no" as appropriate. ►

The fact that a decision problem is in NP n co - NP is taken as strong evidence that

it is not NP-complete. It does not follow that it is in P: in fact, it is known [75]

that if P=rfNP, then there are problems in NP that are neither NP-complete nor in

P. We have also mentioned that P ~ NP n co - NP, and the question of whether the

inclusion is proper is a famous open problem.

Note, however, that i.f the bounded distance decoding problem is in P, then the

modified problem in which we are not guaranteed that y is at distance at most t from

a codeword is also in P. It is not sufficient to use the original algorithm: if y is at

distance greater than t from the code, the answer should always be "no," but it is

possible for the algorithm to give a false positive or to go into a continuous loop. Let

p(n) be the polynomial that bounds the running time of our original algorithm. We

write a •new algorithm that simulates the original algorithm for p(n) steps. If y is at

distance more than t from the nearest codeword, then after p(n) steps, the original

algorithm has either halted giving the wrong answer, or is still running. If it is still

running after p(n) steps, we conclude that y must be at distance greater than t (hence

greater than w) from the code. If it has halted in less than p(n) steps, we can check

- 50 -

the answer given using the step-by-step decoding algorithm; if it is incorrect, we can

again assume that y is at distance greater than t from the code.

2.2.4 Random Algorithms

Many results have been developed relating to randomized algorithms. We discuss the

implications for the existence of randomized algorithms of a proof that a problem is

NP-complete. Our discussion follows that of Johnson [80].

The randomized algorithms use the notion of a Probabilistic Turing Machine, de­

fined to be a non-deterministic Turing Machine in which a fork in the tree of possible

computation paths is interpreted as a random choice between two equiprobable al­

ternatives. If the PTM is constrained so that for some fixed E > 0, the proportion of

leaves with the correct answer is always greater than 1/2 + t::, we define the class BPP

(for Bounded Probabilistic Polynomial). Within this class, we can achieve arbitrarily

low error probability with a bounded number of iterations. It is thought that BPP

and NP are incomparable in the sense that neither class contains the other. If the

computation trees are required to have no "yes" leaves when the answer is "no," we

obtain the class R (for Random polynomial time). It does not appear that R=co-R,

and so Rnco-R is probably a proper subset of R. This intersection class corresponds

precisely to the notion of the class of problems solvable by polynomial time Monte

Carlo algorithms. It can also be shown [80] to correspond to the set of problems

solvable with zero probability of error in expected polynomial time for each instance,

a class known as ZPP. In summary, we have

P C ZPP = Rn co-R C R C { NP } - - - BPP

and it is conjectured that all the inclusions are proper.

Now, it is well known that an NP-complete problem cannot be in P unless P =NP,

and cannot be in co-NP unless NP= co - NP; it is also true [80] that an NP-complete

problem cannot be in Runless NP = Rand cannot be in ZPP unless NP = ZPP. None

of these consequences is currently considered likely; in particular, if NP = R, there

are two surprising results. One is that the polynomial time hierarchy PH collapses

- 51 -

into I:~ = NPNP [80]. The other [80, 94] is that if the factoring and discrete logarithm

problems are indeed hard, as is widely believed, then every problem in R is solvable

in time o(2n') for every E > 0, a property that is not expected to hold for NP.

Our conclusion for coding, is that the complete decoding problem almost certainly

cannot be solved with zero probability of error in expected polynomial time, or solv­

able in random polynomial time; it may, however, be in the bounded probabilistic

polynomial time class BPP.

2.2.5 Other NP-Completeness Results

Finally, we state without discussion some other NP-completeness results that have

been derived by various researchers.

The following problems are NP-complete (we are given the generator matrix G of

a linear code C in each case):

1. [31] Given an integer w, is there a codeword of weight win C?

2. [82] Given integers k and w, with k :2: 2, is there a non-zero codeword of weight

not more than w and not a multiple of k? (For k = 2, this is the problem of

finding the minimum odd-weight codeword.)

3. [82] Given a positive integer w, is there a codeword of weight :2: w?

4. [82] Given positive integers w1 and w2 with w1 < w2 , is there a codeword of C

with weight in the range w1 to w2 inclusive?

5. [72] Given integers w and l, is there a non-zero codeword with weight not

greater than w and a non-zero component in location l?

6. [72] Given integers w, p, and j, is there a non-zero codeword with weight not

greater than wand a fraction p/(p + 1) of its non-zero components in the first

I locations?

7. [72] Given a vector y and an integer w, is there a word of weight ::S w in the

same coset as y with non-zero components in the first Lwp/(p + l)j locations?

- 52 -

The last problem implies that the complete decoding problem remains NP-complete

even if a fraction of p / (p + 1) of the errors could be guessed .

.
2.3 General Decoding Methods

2.3.1 Model of General Decoding Algorithm

Before discussing specific algorithms, we suggest a framework into which most of the

algorithms will fit. This provides a way of comparing the various approaches and

suggests a direction for deriving improved algorithms. The algorithm is chosen to be

the simplest one possible while still retaining the power of the algorithms it describes.

The operations involved are all very simple to implement.

In the decoding methods we discuss, we take the received word and store it in

an 'operand' register. The contents of this register are then modified by adding

codewords according to the rules of the particular algorithm. Two rules are allowed

in deciding whether to add a codeword: we can add a codeword to the word in the

operand register if the weight of the new contents is lower than before, and we can

decide whether to add a codeword by examining the symbol in a certain location and

branching on the value.

Most algorithms have one of two basic strategies, each based on a different heuris­

tic. One strategy, used by the majority of currently known algorithms, is to map

directly from the received word to the coset leader. The other attempts to reduce the

weight of the word in the operand register progressively.

Two basic heuristics are used in the algorithms. One type of algorithm, which

we label progressive, works by progressively reducing the weight of the operand word

until it is relatively low. Then the codeword equal to the difference between the

operand word and the coset leader must also have low weight. It is then sufficient

to search systematically through all codewords of low weight. For typical codes, the

codewords have a binomial distribution (see Appendix A) and a search through the

low weight codewords corresponds to a search through the tail of the distribution with,

- 53 -

consequently, a much lower complexity than a full search through all codewords.

The second type of algorithm works by exploiting the redundancy of the code.

Suppose we know all the errors in a set of k independent symbols - an information

set. Then we can construct 'the transmitted codeword, and by comparing with the

received word, we find the coset leader. This holds no matter what pattern of errors

lies outside the information set. Thus knowing the errors in one information set is

sufficient to decode a large number of error patterns, and this is where the procedure

derives its efficiency.

2.4 Progressive Algorithms

2.4.1 Projecting Set Decoding

This algorithm, suggested by Hwang [63], depends in complexity on the number of

codewords m the projecting set of the code. This is defined to be the minimum set of

non-zero codewords Cp such that every non-zero codeword outside Cp can be expressed

as the sum of disjoint codewords from Cp (i.e., codewords with disjoint supports). The

reason why this set of codewords is sufficient is simple: if the operand word is not

the coset leader, then we can add a codeword to get a weight reduction. The weight

change obtained by adding a codeword that is not in the projecting set is equal to

the sum of the weight changes obtained by adding the constituent codewords from

the projecting set. It is thus impossible to achieve a weight reduction by adding

a codeword that is not in the projecting set unless at least one codeword in the

projecting set also causes a weight reduction. Our algorithm is to subtract all the

codewords in the projecting set from the operand word, accepting the operation if it

results in a weight reduction. The algorithm terminates in a coset leader when none

of the words in the projecting set provide a weight reduction.

The following theorem, again due to Hwang [63], shows that the projecting set is

a set of low weight codewords.

Theorem 2A (Hwang) Let C be a binary linear (n, k, d) code. The projecting set

- 54 -

of C contains all codewords of weight 2d-1 or less, and no codeword of weight greater

than n - k + 1.

Proof: The first property holds because a codeword that is not in the projecting set .
is the sum of at least two disjoint codewords, each of weight at least d, and hence must

have weight at least 2d. For the second property, we have the following argument. If

a codeword has weight w, the corresponding w columns of the parity check matrix

must sum to zero. If any subset of these columns sums to zero, then the columns

outside the subset also sum to zero, and the codeword can be expressed as the sum of

two disjoint codewords. Thus if a codeword of weight w is in the projecting set, the

corresponding w columns of the parity check matrix must be such that any subset of

w - 1 or fewer columns must be linearly independent. If w 2: n - k + 2, this means

that a codeword of weight w that is in the projecting set must give sets of at least

w - 1 2: n - k + 1 columns that are linearly independent. The column rank of the

matrix would then be greater than n - k, the row rank, which is impossible. ►

An interesting corollary is that a binary linear code in which 2d - 1 2: n - k + 2

contains no codewords of weight w for n - k + 2 ::::; w ::::; 2d - 1.

More generally, the first part of this theorem holds for non-binary codes also,

though the second does not. The algorithm also extends directly to perform full

(maximum likelihood) soft decision decoding with the same number of codewords. It

remains to be shown that the number of iterations required is bounded by a polyno­

mial inn.

Table 1 [63] gives the number of projecting set codewords for various codes. Only

in one case does it happen that the number codewords is less than the number of

syndromes (it is always less than the total number of codewords); however, the fact

that we achieve full soft decision decoding makes it interesting. (We shall see in

Section 2.10 that full soft decision decoding can always be achieved with complexity

equal to the number of syndromes).

Using our bound on the number of codewords of a given weight in the average linear

code (see Appendix A), we shall now derive the asymptotic bounds on performance:

- 55 -

(n, k, d)
(15,10,4) 385 1024 32
(17,9,5) 340 512 256
(23,12,7) 3335 4096 2048
(23,11,8) 1794 2048 4096
(31,25,4) 23653 33554432 64

Table 1: Size of the Projecting Set for Some Codes

Theorem 2.5 The number of codewords in the projective set, ICsl is bounded by

The lower bound uses Equations A-1 and A-2 of Appendix A to find the number

of codewords of weight less than 2d. For the upper bound, we take the number of

codewords of weight n - k + 1 or less. If R < 1/2, Theorem A-1 of Appendix A

shows that only an asymptotically insignificant proportion of the. codewords have

weight greater than n(l - R) + o(n), so the projecting set consists of almost all the

codewords. If R > 1/2, we have Li:s;n-k+I A(i) = 2n[H2 (I-R)-(I-R)]+o(n) for most codes.

These bounds are plotted in Fig. 2.1. Although the size of the projecting set is

significantly smaller than the number of codewords for R > 1/2, we will see in Section

2.10 that it is possible to achieve full minimum distance soft decision decoding of any

linear block code with complexity q-n(I-R) by using a trellis. Thus the upper bound

in Fig. 2.1 is unsatisfactory, and the algorithm's efficiency is suspect.

Hwang suggests a second algorithm in which a subset of low weight codewords of

the projecting set which contains a basis of the code is used. He gives the results of

simulations of the performance of this suboptimum algorithm, and conjectures that

with the proper choice of the subset, we can achieve a great reduction in complexity

with only a small loss in performance.

In the context of the model in Section 2.3.1, we are using the 'progressive' feature

extensively, while not making any use of the symbol-decision option.

0.6

0.5

a 0.4 .!:a
u

i..::
""" 8
u 0.3 a
I e
0 0.2 u

0.1

0.1 0.2 0.3 0.4

- 56 -

Full Search

Lower Bound

0.5

Rate

0.6 0.7

Upper
Bound

0.8 0.9

Figure 2.1: Asymptotic Bounds for Projecting Set Decoding

1

- 57 -

2.4.2 Zero N eighbour·s Algorithm

The Zero Neighbours algorithm, proposed relatively recently by Levitin and Hart­

mann [32], is a more advanced version of the projecting set algorithm, and is optimal
~

for the pure progressive strategy, in which we form a set of codewords with the prop­

erty that for any n-tuple that is not a coset leader, subtraction of one of the codewords

in the set will produce a word of lower weight.

We need the following notation. For a linear code C, the domain of a codeword c,

denoted D(c), consists of those n-tuples that are at least as close to c as to any other

codeword of C. (We will call any word in the domain of the zero codeword a coset

leader, so some of the cosets will have multiple 'joint' coset leaders.) The domain

frame of C, denoted 9(c), consists of all those n-tuples that, while not contained in

the domain of C, are at distance 1 from at least one n-tuple in the domain. The

set of zero neighbours, denoted N(C), is the smallest cardinality set of codewords so

that every n-tuple in the domain frame of the zero codeword is in the domain of at

least one zero neighbour. Thus the zero neighbours form a minimum covering of the

'border' around the coset leaders.

The crucial result is the following [32]: if w is not a coset leader, then for at least

one c E N(C), the word w - c has lower weight than w. Thus to decode, we need

only the set of zero neighbours, and the procedure is the same as that in the case of

projecting set decoding. As in that case, the number of iterations cannot be greater

than n; the number of codewords required is in general much smaller.

To show that the main property holds, let w be an n-tuple that is not a coset

leader. Consider a chain of descendants of w:

Wo = 0, W1, • • •, Wwt(w)-1, Wwt(w) = W,

such that Wi-l is an immediate descendant of Wi. Now by assumption Wwt(w) is not

in D(O), while w0 is in D(O). There must therefore be two consecutive descendants

Wi and Wi+i such that Wi E D(O) and Wi+i (}_ D(O). Then wi+l is a word that

is at distance 1 from a word in D(O), while not itself in D(O); thus it is in the

domain frame 9(0). It must be in the domain of at least one zero neighbour CN', and

- 58 -

d(0, Wi+i) > d(cN, Wi-t:-1). We then have

d(w,cN) < d(w,xi+1)+d(xi+1,CN)

< d((w, Xi+1) + d(xi+1, 0)

d(w, 0).

So wt(w - CN) < wt(w) for at least one CN as claimed.

(2.1)

(2.2)

(2.3)

The concept of zero neighbours is an exact formulation of the heuristic notion of

'low weight codewords' we discussed in Section 2.3. Some properties of the set are

discussed in [32]; the main two to illustrate the low weight nature of the set are (i)

every minimum non-zero weight codeword is in the set of zero neighbours, and (ii) no

codeword of weight greater than 2re + 1 is a zero neighbour, where re is the covering

radius of the code. Property (ii) holds because a word in the domain frame of the zero

codeword cannot have weight greater than re+ 1, and, if in the domain of CN, cannot

be at distance more than re from CAf". For property (i), let x be a descendant of c of

weight f(wt(c) + 1)/21 (i.e., xis in the domain frame of the zero codeword). Now

for any other non-zero codeword c', we have wt(c) :s; d(c, c') :s; d(c, x) + d(x, c'). So

d(x,c') ~ wt(c)-d(c,x) = wt(x) > d(c,x). Sox is in the domain frame of the zero

codeword and is closer to c than to any other codeword. Thus c is a zero neighbour.

Levitin and Hartmann derive an asymptotic version of the upper bound given by

property (ii), although as they did not have any of the results in the Appendix, their

derivation really provides only an estimate. Their result, which we obtain directly

from the results in the Appendices, is

for virtually all binary linear codes for all R such that 2H2
1 (1- R) < 1/2 (otherwise

virtually all codewords have weight less than twice the covering radius). The upper

bound to the function limn-+oo(l/n) log 1.N(C)I is plotted in Fig. 2.2. As long as the

rate is higher than 0.1887 (the solution to H21
(1-R) = 1 / 4), we achieve a substantial

reduction in the decoding complexity of full minimum distance hard decision decoding.

Note that the upper bound on decoding complexity here has the same asymptotic

0.5

0.45

0.4

... 0.35
i::
,u
u

0.3 ~
8 u

0.25 a
·5 - 0.2 Q.
8
0 u 0.15

0.1

0.05

0.1 0.2

- 59 -

,,
I \

I \
I \

I \
I \

I \
I \

I \

/ \ Full Search , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , '
/ Zero \

,/ Neighbours ~\
, '

, ----- ' , ' , ' , ' , ' , ' , ' , '

0.3 0.4 0.5

Rate

0.6 0.7 0.8 0.9

Figure 2.2: Complexity of the Zero Neighbours Algorithm

1

form as the lower bound for projecting set decoding, because for the average linear

code, the minimum distance is asymptotically about equal to the covering radius.

The result can be extended in two further ways not considered by Levitin &

Hartmann. We have:

Theorem 2.6 The zero neighbours algorithm performs bounded soft decision decod­

ing for virtually all binary linear codes with the same complexity as for the full hard

decision case, i.e., F(R) = H2 (2H2
1 (1 - R)) - (1 - R) (see the plot in Fig. 2.2).

The algorithm is also applicable to decoding over non-binary symbol fields, but the

complexity rises to that of the trivial search algorithms as q becomes large.

Proof: For the soft decision case, it is well known [52] that an error pattern can have

at most d-1 hard errors if it is to be within the guaranteed soft error correcting power

of the code. This is because a hard error can occur if the received bit is further from

the transmitted bit than from the complement of the transmitted bit. Thus we have

- 60 -

a contribution of more than 1/2 in the soft metric for every hard error. Overall, the

bounded soft distanceis t = l(d-1)/2J, and we can have no more than 2t hard errors.

Our strategy is to perform full minimum distance hard decision decoding using the

regular zero neighbours algorithm. For virtually all codes, the coset leader can have

weight at most re and the best bounded soft decision word has at most d - 1 hard

errors. The two words are at distance at most d-l+re apart, so we add all codewords

of weight at most d - 1 +re, taking as the soft decision error pattern the sum with the

lowest soft weight. From our estimates of the covering radius and minimum distance,

we are adding all codewords of weight at most 2nH2
1 (1 - R) + o(n). However, this

is just the set we take as the set of zero neighbours, and so modifying the result from

full hard decision decoding to bounded soft decision decoding takes a subexponential

amount of complexity.

For the case of non-binary symbol fields, we have N(C) ~ qn[Hq(2Hi
1
(t-R))-(I-R)]+a(n).

For the behaviour of the function H;1 (x) as q becomes large, we have

x logq (q - 1) + x logq x + (1 - x) logq (1 - x)

x(l + logq(l -1/q)) + H2(x)/log2q

x(l - (1/q -1/2q2 + · · ·)/ln q) + H2(x)/log2q

x (1 + 0(1/ log2 q))

----+ X as q ----+ oo.

Then by continuity of Hq(x), we must have

lim Hq- 1(x) = x.
q-oo

Assuming that 2H;;1 (1 - R) < (q - 1)/q, we have logq(l/n)N(C) ~ Hq(2(1 - R) +
o(l)) - (1-'-- R) = 2(1-,- R) - (1 - R) + o(l) = 1 - R + o(l), so the complexity of the

zero neighbours algorithm approaches that of a full search. ►

As in the case of projecting set decoding, we are employing the progressive part

of our general scheme extensively (and have an optimal solution for this case). The

burden of having to be able to pro~ide progressive weight reduction from any word in

any coset to the coset leader is quite high, however; in fact, it is so high that we will

- 61 -

see later that the zero. neighbours algorithm is far from being optimal. An algorithm

exploiting the full power of the general model would only have to provide progressive

weight reduction from some word or words of the coset to the coset leader.

2.5 Information Set Algorithms

Information set decoding was first suggested by Prange [33] for decoding cyclic codes

and has been extensively examined and modified by many other researchers [34-47].

As we discussed in Section 2.3.1, the basic idea is that knowing the errors in an

information set is sufficient to find all the errors.

An interesting result is given by Mandelbaum [46].

Theorem 2. 7 (Mandelbaum) For any linear code C and any coset leader or joint

coset leader w of C, there is at least one information set in C that is disjoint from w.

Thus a pure information set algorithm is always sufficient to achieve full minimum

distance decoding.

Proof: Suppose the complement of the support of w contains less than k independent

symbols. We set all these independent symbols to zero; this must mean that all

symbols not in the support of w are zero. Now we must be able to find at least one

symbol in the support of w that is independent of all symbols in the complement of

w by assumption, and we set this symbol to zero. We now have a word in the same

coset as w but with lower weight, contradicting the assumption that w is a coset

leader. ►

Many embellishments of this basic idea exist. In permutation decoding, [34], sets

of k independent positions are obtained by using the automorphism group of the code.

If the code is in systematic form, the first k symbols form an information set, and so

do all valid permutations thereof. This deals with the problem of how the information

sets are to be generated, but an exact analysis of complexity, even for correction of a

very small number oferrors, is very cumbersome [35, 36]. Nevertheless, this method

has been the focus of much attention [34-36, 44].

- 62 -

Another modification of the basic idea is to drop the condition that the informa­

tion set is error-free. We then search systematically through precomputed patterns of

information set errors. These patterns are called "covering polynomials" by Kasami

(37], who applies the method to cyclic codes, using n information sets and concen­

trating the computational effort in the use of covering polynomials. The obvious idea

of using general information sets with covering polynomials has been suggested many

times, for example by Dmitriev (38] and Evseev (39].

The approach we refer to as generalized information set decoding uses k-tuples

which are not necessarily information sets. If the k-tuple has fewer than k independent

symbols, we augment the set by adding more symbols till there are k independent

symbols in the set. All possible patterns in the augmented symbols are then searched.

This approach is equivalent to both "decoding with multipliers" (40] and combined

information set and covering polynomial methods.

Despite the great amount of interest in algorithms based on the information set

idea, no precise estimates of the decoding complexity have been produced. Clark &

Cain (41] discuss some reasons why the problem is difficult. First, it is related to a

long-standing unsolved problem in combinatorics, the (n, k, t) covering problem (42].

Given a set of n objects, we seek the minimum number of subsets of cardinality k,

such that any subset of cardinality t is contained in at least one of the subsets of

cardinality k. To avoid confusing the value of kin the (n, k, t) covering problem with

the dimension of the code, we refer to the problem as the (n, l, t) covering problem. We

refer to the minimum number of subsets required as the (n, l, t) covering coefficient,

denoted by b(n, l, t). In our problem, the subsets of cardinality tare the error patterns,

and the subsets of cardinality l are the sets of parity positions, so that in our notation

l = n - k. A t-tuple which is covered by an (n - k)-tuple is said to be "trapped"

by the corresponding k-tuple. Our problem is thus to find an approximation for

the (n, n - k, t) covering coefficient. However, the problem is more difficult for two

reasons: the k-tuples selected must represent an information set, and (for complete

decoding) we must decode all patterns which are coset leaders, not just all patterns

of a fixed weight or less. Despite these difficulties, we present a solution which is

- 63 -

logarithmically accurate for virtually all linear codes.

First we derive a logarithmically accurate expression for b(n, l, t), the (n, l, t) cov­

.ering coefficient. We have the following result:3

Theorem 2.8 Let R and p be constants such that O < p < 1 - R < 1. Then

lim .!_log b(n, Ln(l - R)J, LnpJ) = H2 (p) - (1- R)H2 (p/(1 - R))
n-oo n

where H2 (x) = ~x log2x- (1-x) log2(1-x) is the binary entropy function.

Proof: A lower bound for b(n, l, t) is easy to obtain. We must "trap" all t-tuples.

Each selected k-tuple can trap (n~k) t-tuples. Even in the most optimistic scenario

where each t-tuple is trapped by exactly one k-tuple, we still need

k-tuples. Using the relation (10]

2nH2(,\)-0(log n) :::; (Ann) :::; 2nH2(,\)

for O <). < 1 we have (n) > 2nH2 (P)-o(n) and (n(I-R)) < 2n(I-R)H2(P/(I-R)) and thus
' pn - np -

(n) I (n(l - R)) n [H2(I-R)-(I-R)H2 (p/(I-R))] +o(n)
b(n,ln(l-R)J,LnpJ)~ · ~2 .

. np np

For the upper bound, we adopt the following argument. We select a large number

f(n, k, t) of k-tuples independently and at random. The probability that a given

t-tuple is not trapped is

because for each choice of k-tuple, there are (n;t) "good" k-tuples, out of a total of

(~) k-tuples. The expected number oft-tuples not trapped is

(;) [i _ (n ~ t) I(~) l f(n,k,t)

3We have recently found a similar, though not identical, result for the non-asymptotic case in
Erdos & Spencer [101]; our results have been derived independently.

- 64 -

Now let
. (;)

f(n, k, t) = (n;;t) g(n, k, t)

for some function g(n, k, t). Then the expected number oft-tuples not trapped is
'

Using the relation

we see that the above expression tends towards

Setting g(n, k, t) > 10~ e[nH2(t/n) + o(n)] now gives an expected number oft-tuples

not trapped less than one. This is possible only if there is at least one set of f(n, k, t)

k-tuples which traps all t-tuples. Thus we need

(~)
f(n, k, t) = (n;t) · en

for any constant c greater than H2 (t/n)/ log2 e. Using the identity (:) (n;t)
(~) (n~k), we have

Thus the upper bound is such that

(n) I (n - k) n [H2(P)-(l-R)H2 (pf(l-R))] +o(n)
b(n,n-k,t):'.Sf(n,k,t)=cn t t =2 ,

which has the same form as the lower bound. ►

To analyse the complete decoding problem for linear codes, it is necessary to have

some knowledge of the covering radius of these codes. The covering radius is the

weight of the highest weight coset leader of the code. The Goblick bound [48] states

that

r 2: nH;;1(1 - R) + o(n)

- 65 -

for all codes, but no general upper bound has been known until recently, when Bli­

novskii [17] and Levit1n [102] showed independently that the Goblick bound is tight

for virtually all linear codes, i.e., that

for all but a fraction of codes that tends to zero as n --t oo. We give Blinovskii's

proof in Appendix B.

We seek the number of k-tuples to be selected such that any coset leader of the

code is disjoint from some k-tuple. This number is given by the following theorem.

Theorem 2.9 For virtually all linear (n, k) codes over GF(q), the minimum number

M(C) of k-tuples required to ensure that each coset leader is disjoint from at least

one k-tuple satisfies

Proof: An upper bound is obtained by considering the number of k-tuples necessary

to trap all patterns of up to r errors, whether the patterns are coset leaders or not.

By the definition of covering radius, this set includes all coset leaders. From Theorem

2.8, we have the upper bound

2
n [H2(r/n)-(l-R)H2(r/n(l-R))] +o(n) =

2
n [H2(Hi 1 (I-R))-(l-R)H2 (H9:~1;R))] +o(n).

For the lower bound, we note that we must trap qn-k coset leaders, and that virtually

all coset leaders have weight greater than nH;;- 1(1-R)-o(n). Each k-tuple can trap

no more than

L (n~k)(q-l)i
p-o(l)ip+o(l) i

such coset leaders. Now qn-k = (:J(q - 1rp · q0 (n) where p = H;;-1 (1 - R), so the

lower bound has the form

and the theorem follows. ►

- 66 -

The only remaining problem is how we deal with the case when a selected k­

tuple does not contain k linearly independent symbols. If a k-tuple has only k - l

independent symbols, we say that the k-tuple is I-defective. We can remedy this

condition by finding l symbols from the remaining n-k in such a way that the (k+l)­

tuple has k linearly independent symbols, and then exhaustively searching through

all possible error patterns in that I-tuple - these are just the covering polynomials

mentioned earlier. This will cause an increase in complexity of ql for that k-tuple.

We need to show that this increase in complexity is subexponential. Given fixed

R and a, with O < R, a < 1, we say that an LnRJ-tuple is seriously a-defective if

the L nRJ-tuple contains less than L nR(1 - a) J independent symbols. We will show

that for any fixed a > 0 and sufficiently large n, there are virtually no linear (n, k)

codes that contain any k-tuple that is seriously a-defective. To do this, we employ

Kolmogorov complexity. We have

Theorem 2.10 For any fixed Rand a satisfying O < a, R < 1, and for all sufficiently

large values of n, virtually all linear (n, L nRJ) codes over any symbol field contain no

LnRJ-tuple with fewer than lnR(l - a)J independent symbols.

Proof: Let G be the k x n generator matrix of a linear code C. With this generator

matrix we associate the string s(G) of length nk obtained by writing G out row by

row. Each generator matrix corresponds to exactly one such string and vice versa

(note that we do not insist that each code be represented by exactly one string; nor

do we insist that dim C = k). From the key lemma on Kolmogorov complexity, the

fraction of these strings with Kolmogorov complexity less than nk - c is less than q-c.

Suppose a code contains a k-tuple that is seriously a-deficient. We can specify the

generator matrix (and hence the full code string) as follows:

- specify the deficient k-tuple (taking logq (~) symbols);

- write out the other n - k columns in full (taking k(n - k) symbols);

write out the k(1 - a) independent columns in the defective k-tuple (taking

k2(1 - a) symbols);

- 67 -

- specify each of the remaining columns in the defective k-tuple by specifying the

linear combination of the independent columns which yields it (taking ka.k(l -

a) symbols).

The total length of this program is

C + logq (:) +k(n - k) + k2(1 - a)+ kak(l - a)

= n2 R - n2 R2 a 2 + o(n2
).

The fraction of such strings is thus less than q-n
2
R

202+0 (n
2
), as required. ►

Putting together the results of Theorems 2.8, 2.9 and 2.10, we have the following

result:

Theorem 2.11 For virtually all linear (n, k) codes C over GF(q), the complexity

M(C) of complete minimum distance decoding using the generalized information set

decoding algorithm satisfies

By the convexity of the entropy function, we have H 2 (xy) > xH2 (y) for O < x, y < 1,

and so the function is always greater than zero, as we would expect.

The behaviour of this function versus R for the case q = 2 can be seen in Fig. 2.3.

Clearly, it represents a huge improvement over exhaustive search procedures for any

fixed rate. For R = 1/2, generalized information set decoding requires less than the

fourth root of the number of computations required by a search through all codewords.

For bounded distance hard decision decoding, we need to decode all error patterns

of weight up tot, where t = l(d - 1)/2J. From Equation 1.1 and Corollary A-2, the

Gilbert-Varshamov bound is tight for virtually all linear codes over any symbol field,

i.e., t = nH;1 (1 - R)/2 + o(n) for most codes.

Theorem 2.12 Bounded distance decoding using generalized information set decod­

ing has, for virtually all linear codes, a complexity M(C) satisfying

0.5

0.45

0.4

..... 0.35
Q

.Q
u

0.3 !:S
B u

0.25 a
~

.£ 0.2 c.. s
0 u 0.15

0.1

0.05

0
0

- 68 -

, ' , ' , ' , ' , \ , \ , \ , \

, ' , \

' ' ' \

/ \ Full Search , \

, ' ' \ , ' ' \ , \

' \ , \ , \

, ' , ' , \ , \

' ' , '
' ' , \

, ' , \

, ' , \

, '
' ' , '

' ' , ' , ' , \ , ' , \

, '
' ' , '

' ' , ' , \

I '

,/ Information Sets \,
' ' , ~------- ' ' ' I '

' ' , \

' ' , \

I '
' ' I '

I ' , '
I ' ' \ ·, \

' \

0.1 0.2 0.3 0.4 0.5

Rate

0.6 0.7 0.8 0.9

Figure 2.3: Decoding Complexity for Information Set Decoding

1

0.14

0.12

0.1
i::: -~ u

i.:::
4-< 0.08 ~
0 u
a
~ 0.06 -s'
0 u

0.04

0.02

.·· 2 x Bounded

0.3 0.4

- 69 -

Full

0.5

Rate

0.6 0.7 0.8 0.9

Figure 2.4: Bounded and Full Decoding using Information Sets

1

Proof: Follows from Theorems 2.8-2.10 with p = nH;1 (1 - R)/2 + o(n). ►

This function is plotted versus rate for the binary case (q = 2) in Fig. 2.4. The

number of computations is far less than for exhaustive search, and is also much

less than for complete minimum distance decoding, requiring slightly less than the

square root of the number of computations required for complete decoding at rate

one-half. This represents a complexity of slightly more than the ninth root of the

number of codewords. We would expect that decoding half as many errors should

require a complexity coefficient that is about half as large; Fig. 2.4 shows that this is

a reasonable approximation.

In Section 2.4, we mentioned that an error pattern can have at most d - 1 hard

errors if it is to be within the guaranteed soft error correcting power of the code.

Conversely, given any set of d -1 locations, we can construct an error pattern within

the guaranteed soft-error-correcting power of the code with hard errors in all those

d - 1 positions. Thus to derive a priori an algorithm which achieves soft decision

- 70 -

decoding up to the guaranteed soft-error-correcting power of the code, it is necessary

and sufficient that we should be able to correct all patterns of up to d - l hard errors.

For most codes, we have d - l = nH;;1 (1 - R) + o(n) ~ p, so the. computational

requirement is as given in Tli.eorem 2.13.

Theorem 2.13 Bounded soft decision decoding using generalized information set de­

coding has, for virtually all binary linear codes, a complexity M(C) satisfying

;;log2M(C) = H2 (H21 (1 - R)) - (1 - R)H2 (H2-:~
1;R)) + o(l)

= (1 - R) [1 - H2 (H;:~1;R))] + o(l).

Again, the complexity is plotted as a function of R in Fig. 2.3 , where the ex­

haustive search procedures involve searching through all codewords (for R :::; 1/2)

or decoding with a trellis [86] (for R > 1/2). In practical applications, bounded

soft decision decoding asymptotically (in SNR) doubles the error-correcting power.

Fig. 2.4 shows that for virtually all codes, it also about doubles the· exponent in the

number of computations, assuming generalized information set decoding is used. In

some applications, we may not wish to decode out to double the guaranteed hard

distance, but rather to three halves the hard distance, or some other multiple 77. In

general, this requires a complexity coefficient. of

Finally, suppose t = nr is quite small. Then we have (
1
2R) t = 2nF'(R)+o(n) from

our results, and so

F'(R) = r log(1 ~ R).

This corresponds exactly to the complexity derived empirically by Omura [103], and

also shows that the complexity coefficient is approximately linear in the number of

errors corrected if that number is low.

Another parameter of interest .is the behaviour of the algorithm when q becomes

very large. We have the following result.

- 71 -

Theorem 2.14 For large q, we have F(q, R)-+ H2 (1 - R)/log 2 q. Thus

lim F(q,R) = 0.
q-,+cx,

Proof: This follows from tlie behaviour of the function H-;; 1 (x) as q becomes large.

From the proof of the complexity of the zero neighbours algorithm for non-binary

fields , we know that Hq(x) = x(l + 0(1/log2 q)) and that limq_,.= H-;; 1 (x) = x. From

Theorem 2.11, we have

H2 (H;1 (l - R)) - (1 - R)H2 (H;;~ ~ R)) + o(l)

H2(l - R - o(l)) - (1 - R)H2 (
1

-
1
R_-;(l)) + o(l)

H2 (1 - R) + o(l) - (1 - R)o(l)

H 2 (1 - R) + o(l)

Thus the computational effort M(C) has the form 2nH2 (l-R)+o(n) for large n, indepen­

dent of q. This is equivalent to q(nH2 (l-R)+o(n))/log2 q' so the complexity coefficient is

H2 (1 - R)/log2 q as claimed. ►

Fig. 2.5 shows the complexity coefficient for complete minimum distance decoding

for many values of q. The fact that the complexity coefficient tends to zero with

increasing q may seem surprising. It corresponds to the fact that it is always possible

to decode by trying every set of k symbols as an information set.

We have mentioned some approaches that have been. taken to the problem of

constructing information sets. Our result suffers from the disadvantage that it is

non-constructive. However, as in the case of the random coding proof of the channel

coding theorem, we have something more than an existence proof. Suppose we accept

a complexity of F(R) + E for small positive c for 'insurance.' The probability that we

do not get a satisfactory selection is then, by our results above, at most e_2n,+o(n). The

double exponential suggests that we can put our trust in a random number generator

to derive the information sets for us.

- 72 -

0.14------.---.-----,---,------,.---.--------,---,---,----,

0.12

0.1

0.04

0.02
Symbol Sizes 2, 8, ... , 32768

In Decreasing Order

o~-~--~-~--~----~-~--~--~-~
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rate

Figure 2.5: Complexity for Various Symbol Fields

- 73 -

1

0.8

0.6

B

0.4

0.2

A ___ ,,,,::•· G' D:
o~--~---~--~~---~--~

0 E

0 0.2 0.4 0.6 0.8 1

Rate

Figure 2.6: Geometric Construction of F(R)

2.5.1 A Geometric Construction

It is enlightening to consider a geometric construction for the complexity coefficient

of generalized information set decoding. (In the light of the discussion in Section

2.1, it might be interesting to compare this construction to Shannon's geometric

construction for E(R) [3].) We show how to construct the complexity function given

the entropy function and the standard draughtsman's equipment. For simplicity, we

demonstrate the construction for the binary case; the generalization to GF(q) should

be clear.

The construction is given in Fig. 2.6. Given R (= 0.55 in the diagram), project

a line right at 45° above the horizontal; this intersects the line y = l at point B.

A horizontal line through B intercepts the entropy function at C = (1 - H21 (1 -

R), l - R), i.e., D is p = H21(l ~ R) from the line y = l. We draw a line through

the origin O parallel to AC; this intersects CE at F. From similar triangles, we

- 74 -

have IAEI = (1 - R)IOEI, so ICEI = (1 - R)IEFI and IDBI= (1 - R)IGEI. Thus

IGEI = p/(1 - R). We need H2(p/(l - R)), which is the length of GH. Connecting

H to E, and labelling the point at which this line intersects CD with the letter I<, we

find that IKEI . (1-R)IHE'I, and so IKDI = (1-R)IHGI = (l-R)H2(p/(l -R)).

As ICDI _:_ 1-R, the complexity coefficient is given by the length of the line segment

KC (marked in bold in the diagram). For comparison purposes, with rate greater

than 1 /2 the trivial algorithm has complexity 1 - R: this is the length of the line

segment CD in the diagram.

2.6 Comparisons

Fig. 2. 7 shows the complexity of four of the decoding methods we have discussed. The

complexity of the zero neighbours algorithm (FzNA(2, R) ::::::: H2 (2H2
1 (1-R))-(1-R)

for R > 0.1887 and for q = 2) is much higher than that for generalized information set

decoding - for example, in the case R = 1 /2, generalized information set decoding

requires less than the square root of the complexity required by the zero neighbours

algorithm. This is even greater than the gain made by the ZNA over exhaustive search

(the ZN A requires marginally more than the square root of the number of codewords

at R = 1/2). In addition to this favourable comparison, generalized information

set decoding has two further major advantages. First, it can be modified easily to

perform bounded hard-decision decoding, with a significant reduction in complexity.

For the ZN A, on the other hand, bounded hard-decision decoding cannot be achieved

with lower complexity. Second, the complexity characteristic for large q is much less

favourable for the ZNA, approaching the complexity required by exhaustive search,

rather than zero.

Previous analysis of algorithms based on the error trapping idea have usually given

the lower bound for bounded distance hard decision decoding [37, 41]. Evseev [39]

discusses an algorithm - "Q-decoding" - which is basically the same as information

set decoding. He shows that with soft decision decoding, the probability of error for

the algorithm is no more than double that for maximum likelihood decoding, with

0.5

0.45

0.4

.... 0.35
= -~ u

0.3 u::: ._
el)
0
u

0.25 0
·5 - 0.2 s'
0
u 0.15

0.1

0.05

0
0 0.1 0.2

- 75 -

Full Search

scs

----------------- ----~

0.3 0.4 0.5

Rate

0.6 0.7

-----

0.8 0.9

Figure 2.7: Comparison of Complexity of Various Schemes

1

- 76 -

complexity coefficient .F(R) :S R(l-R). Clearly, it lies far above our (exact) solution;

it is the same as the complexity coefficient for covering polynomials.

"
2. 7 Other Members of the Information Set De-

coding Family

2.7.1 Systematic Coset Search

This algorithm has been suggested by Montgomery et al. [85] and by Levitin [78].

It involves taking a single information set and searching through all possible error

patterns in that set. We would expect the complexity of this procedure to be very

high; we have the following result:

Theorem 2.15 For virtually all linear (n, k) ~odes over GF(q), we have F(R) =
RHq(H;1 (1 - R)/ R) if R > 1 - Hq(R(q - 1)/q), and F(R) = R otherwise. As q

becomes large, we have F(R)---+ min [R, 1 - R].

Proof: The complexity is I::i::;rc (nf) (q - 1)i, and re is about equal to the Goblick

bound for most codes. If H;1 (1 - R) < R(q - 1)/q, the dominant term is the last

one (otherwise F(R) = R) and qnF(R) = (nHq1~-R))(q - 1rHi
1
(l-R), or F(R)

RHq(H;1 (1 - R)/ R) as required. ►

The result for the binary case is compared with other resu,lts in Fig. 2. 7. Clearly, it

is not an effective algorithm.

2. 7.2 Covering polynomials

Although properly speaking we use covering polynomials in the generalized informa­

tion set decoding algorithm, the method examined here is in essence the same as that

originally suggested by Kasami [37]. We take a relatively small number of information

sets and try sufficiently many error patterns in each so that in at least one of the sets,

the actual error pattern will have been tried. Take then sets of k consecutive (viewed

cyclically) symbols; from Theorem 2.10 the rank of each will be sufficiently close to

- 77 -

k for most codes. The.total number of errors will not exceed nH:;1(1- R) + o(n) for

most codes, and the expected number of errors in a given set of k symbols in this case

is nRH;1 (l - R) + o(n). The number of errors cannot exceed the average in all the

sets, so it is sufficient to try all error patterns of weight up to nRH:;1 (1 - R) + o(n)

for each of the sets. This gives a complexity of

So the complexity coefficient F(R) is R(l -R) for every symbol field. This represents

an intermediate case between the zero neighbours and systematic coset search algo­

rithms, which tend to the complexity of the trivial algorithms as q becomes large, and

the generalized information set decoding algorithm, which tends to zero in complexity

as q becomes large. The function is plotted in Fig. 2. 7. It is more efficient than the

zero neighbours algorithm in the binary case for R < 0.55.

2.8 Other Algorithms

2.8.1 Threshold and Majority Logic Decoding

Majority logic and threshold decoding have a long history and have been examined as

extensively as any of the algorithms we have considered [93, 95, 96, 10]. They involve

selection of codewords from the dual code. Each row of the parity check matrix H

defines a parity check that each codeword must satisfy. Linear combinations of these

rows also provide parity checks. Thus any of the qn-k - l non-zero codewords of the

dual code specify a parity check on a codeword. The basic idea is that a set of dual

codewords containing one location far more than all others will have corresponding

parity checks dominated by that location if the overall number of errors is small.

The details of the procedure are well documented, and we will not discuss them

here. Some main results are, from [10]:

For any linear code over GF(q), the number of errors which can be corrected

by one-step majority logic decoding is at most (n - 1)/2(d.J.. - 1) where d.J.. is

- 78 -

the minimum distance of the dual code.

For any linear code over GF(q), the number of errors which cap be corrected

by L-step majority dec<:ding is at most n / dj_ - 1 /2.

Note that for most codes, n/dj_ tends to a constant for a given rate. Thus asymptot­

ically very few errors can be corrected by these procedures.

On the other hand, it is possible to generalize the decision function and decode

any binary linear code - a result due to Rudolph (96]. His proof expresses the error

pattern as a threshold function of all 2n-k dual codewords; it is not clear how to

improve this, or how to select the dual codewords.

We now show that a special form of majority logic decoding is exactly equivalent to

information set decoding; it follows that all linear codes over any symbol field can be

decoded by this method, and that for most codes, we achieve a reduction in complexity

using the method. The proof is quite simple. Every linear code is equivalent to a

systematic code with generator matrix of the form G = (hlP). The corresponding

parity check matrix (generator of the dual code) is of the form (-PTIIn-k) (21]. Each

of the rows of this matrix is a codeword in the dual code. We perform decoding with

these n - k dual codewords. For the first k symbols, we take the symbol as being

correct. For each of the last n-k symbols, we use one dual codeword - the word with

a one in the appropriate location - and threshold on the result of the corresponding

parity check. This procedure succeeds if and only if the first .k (independent) symbols

are error free; in fact, we have merely reinterpreted the information set decoding

algorithm. The results on information set decoding all apply; in particular, note

that Mandelbaum's result, which implies that there is an information set disjoint

from every coset leader, means that this version of majority logic decoding achieves

complete decoding for any linear code over any symbol field. The number of different

sets of n dual codewords is given by the results in Section 2.5.

The codewords of the dual code have apparently been chosen in a degenerate way.

This suggests that other choices might improve on the information set algorithm,

although we have been unable to find such an improvement so far.

- 79 -

Finally, we note that Bossert & Hergert [89] have proposed an intriguing algorithm

in which the codewords of minimum weight in the dual code are used as parity checks,

and a majority vote taken among them. Although there seems to be ~nly a heuristic

reason for this algorithm, it ·would be interesting to investigate an analogue of the

zero neighbours algorithm, i.e., to find a set of low weight codewords from the dual

code that is sufficient for complete decoding.

2.8.2 Boolean Linear Programming

Omura has examined an algorithm that incorporates some of the features of both the

progressive and the redundancy-type algorithms (88]. The idea is to use a method

analogous to the simplex algorithm for linear programming with the real variables

replaced by Boolean ones.

An account of the mechanics of the simplex algorithm can be found in [90]. Very

roughly, the algorithm involves starting with a matrix and a subset non-singular

basis matrix; we progressively update this basis by taking one column out of the

basis and replacing it with a non-basis column. If we do not have an optimal solution

(and assuming certain non-degeneracy conditions) it is always possible to decrease

the cost by exchanging one pair of columns. Although the simplex algorithm has

in the worst case an exponential running time, its attraction is that in practice it is

extremely efficient.

Omura's approach is to take an information set as the basis, and to clear the bits

in the set to zero. The 'cost' is the weight of the resulting syndrome. We then try

to replace a bit in the information set in such a way that the cost goes down. If this

is impossible, we try to replace a pair of bits in the information set by a pair of bits

outside it to achieve a weight reduction, and so on.

Despite the heuristic reasons behind this procedure, it does not seem that it is

better than selecting the information sets at random. Indeed, Clark & Cain [41] draw

this conclusion from simulations. One possible reason is that, unlike the real simplex

algorithm, Boolean LP does not necessarily achieve a reduction in cost by introducing

- 80 -

one new colurnn. We may need to try patterns of large numbers of columns, and this

will dominate the complexity. There is in fact no reason to believe that the algorithm

is effective; however, no proof either way is available, and we include it as an idea
~

that contains both the progressive and the redundancy approaches.

2.9 Continued Division Algorithms

In this secti~n, we investigate a family of algorithms that employs some features of

both the zero neighbours algorithm and of information set and covering polynomial

methods. The method was first suggested by Farrell (43, 54, 56) on empirical grounds;

the analysis here is original. Although the methods can easily be extended to general

linear codes, we shall concentrate on cyclic and shortened cyclic codes; this clarifies

the ideas and simplifies the analysis.

The basic procedure is as follows. We have a received word r(x), and a dividing

codeword c(x). Division by c(x) will produce a remainder r(x) mod c(x). By contin­

ued division, we mean the process of producing xir(x) mod c(x) for O :S i :S M for

some large M. This corresponds to performing longhand division with a large number

of zeros appended to the right of r(x). The remainders in this process are all cyclic

shifts of words in the original coset; it is easy to recover the correct cyclic shift from

any of these. Alternatively, we can view the process as involving continued subtrac­

tions of shifts of c(x) that may "wrap around" the end of the word. Thus we perform

longhand division in the usual way to get r(x) mod c(x). Then we set a 'pointer' to

point to the highest order non-zero symbol in r(x) mod c(x). Let this be the loca­

tion indexed by xi. Then we subtract xi-deg c(x) c(x) mod xn - l (or the appropriate

non-zero multiple thereof in a non-binary code) to set the bit (or symbol) indexed

by the pointer to zero. The pointer location is then multiplied by x-1 mod xn - l

(i.e, shifted right cyclically) until it indexes another non-zero symbol, and then the

procedure is repeated.

As an example of the effect of this procedure, consider the binary (23, 12) Golay

code. We take the syndrome and divide cyclically by a dividing codeword. We take

- 81 -

I Dividing Codeword I Undecoded Syndromes I
- 2047

g(x) 759
(x 2 + x·+ l)g(x) 461
(x 3 +x+l)g(x) 195
(x 4 +x+l)g(x) 41
(x 5 +x+l)g(x) 23

(x 5 + x4 + x3 + x2 + l)g(x) 0

Table 2: Continued Division of the Golay Code

the lowest weight result and divide cyclically by the next dividing codeword, and

so on. The table shows the number of undecoded syndromes after each step (the

number of cycles in this example was chosen arbitrarily to be twenty). So by using

five (minimum weight) codewords plus the generator, we achieve complete decoding.

This is not the most efficient method for decoding the Golay code - see, for example,

[84]. In fact, no particular attempt has been made to achieve minimization, and we

offer it as an illustrative example only.

Our motivation in examining this procedure is derived from a number of sources.

First, the procedure is extremely simple to implement, requiring only the most basic

application of the operations allowed in the model discussed in Section 2.3. Instead

of subtracting map.y different codewords, we are subtracting one repeatedly; instead

of subtracting at scattered locations, we progress from one location to the adjacent

location. Secondly, the procedure allows us to allocate complexity in a more satis­

factory way. In the zero neighbours algorithm and in information set decoding, we

have a very high space complexity and low time complexity. Ideally, we would like

to have the option of trading off space complexity against time complexity; however,

the problem of generating the zero neighbours and the information sets is too dif­

ficult to be done on-line, and so there is no available flexibility in implementation.

In continued division, on the other hand, we are effectively adding large numbers of

codewords that are generated on-line. Thirdly, we note that in the other algorithms

mentioned above, most of the precomputed codewords and information sets are not

- 82 -

useful in decoding any given syndrome. Ideally, we should have an algorithm that

generates words on-line, but with a distribution skewed towards those words that will

be useful.

The main questions regarding this procedure are:

Under what conditions does the procedure produce the coset leader?

For how long should the division process continue?

What is the least number of dividing words necessary?

In addition to answering these questions, we shall suggest a new decoding algorithm

based on the continued division process.

2.9.1 Division by the Generator of a Cyclic Subcode

The simplest case is that of continued division by the generator polynomial g(x). This

is just error trapping [57], i.e., information set decoding in which the information sets

are the n sets of k consecutive bits. The coset leader is found if the error pattern is

trappable, and we need only perform n operations after producing the syndrome, as

then+ 1st result is the syndrome, and we go into a loop; allowing for the operations

necessary to produce the syndrome, we get a maximum of n + k basic operations, or

less than two cycles.4

When dividing by a codeword d(x) = i(x)g(x) other than the generator, we draw

a distinction between the case when d(x) divides xn - 1 and the case when it does

not. If d(x) divides xn - 1, it is itself the generator of a cyclic code of block length

n, a subcode of C. (We label this subcode C'.) Let the received word be of the form

r(x) = C(x) + E(x), where E(x) is the coset leader. Suppose that it happens that

C (x) E C'. Then the situation is exactly as it would have been if we had been using

the code C' and obtained the error pattern E(x). Continued division in this case

corresponds to error trapping in the subcode. Thus the error pattern is detected if

it is trapped in the subcode, and this happens if the burst length is less than the

4 A cycle is defined in the obvious way to consist of n basic operations.

- 83 -

redundancy. As the subcode has higher redundancy than the main code, however, so

far more error patterns can be detected if the transmitted codeword C (x) is in the

subcode.

In general, this will not happen, and the received word will be of the form r(x) =
C(x) + E(x) = C1(x) + E1(x), where C1(x) E C' is the nearest codeword to the

received vector in the subcode, and E1 (x) is in the same coset as E(x). E1 (x) is the

subcode coset leader. Three situations are possible when we begin division of r(x) by

d(x):

r(x) is a coset leader in C'.

r(x) is not a coset leader in C', but no word of lower weight in the same coset

has burst length ::Sn - k + deg i(x).

- r(x) is not a coset leader in C', and there are words of lower weight in the same

coset with burst length ::Sn - k + deg i(x).

In the first case, no weight reduction is possible on division by d(x). In the second

case, no weight reduction will be achieved if deg r(x) < deg d(x); we can only achieve

weight reduction in the exceptional case of a 'bonus' pattern appearing, i.e.) if there

is a word w(x) of lower weight in the coset of burst length ::S n - k + deg i(x) + l
such that r(x) = x1a(x)d(x) + w(x). In the third case, we definitely achieve a weight

reduction.

This suggests the following algorithm, which employs features of both information

set decoding and the zero neighbours algorithm: we take a large number of codewords

ci(x), all of which divide xn - 1. Divide r(x) by each Ci (x) for 2 cycles. Take the

lowest weight resulting word, and start the process again, treating this word as r(x).

Eventually, no further weight reduction will be obtained from any dividing word; we

then apply codewords from an appropriately constructed table to get from the lowest

weight word found to that point to the coset leader. Note that from the weight

reduction mechanism above, we should expect that the first part of the algorithm

halts only when there are very few words of lower weight in the coset, i.e.) when

- 84 -

the lowest weight word found to that point has low weight. Then, as in the zero

neighbours algorithm, only codewords of relatively low weight are required. Note also

that, assuming the burst length of the error pattern is not excessively large, we do .
not need to stor~ any zero neighbour that is contained in one of the cyclic subcodes.

Heuristically, this algorithm seems promising, though exact results for given codes

are difficult to obtain.

2.9.2 Dividing by a 'Non-Cyclic' Codeword

In this case, d(x) does not divide xn - 1, so the 'wrap around' version of d(x), i.e.,

x- 1d(x) mod xn - 1, does not belong to the subcode C'. After one complete cycle,

we have added a codeword, non-zero in general, to the original syndrome, so the

procedure takes longer to go into a loop than in the first case. If S0 (x) is the syndrome,

and 51 (x) is the result after one cycle, we have the relation 51 (x) = xnS0 (x) mod d(x).

In general, after i cycles, we have Si (x) as a result, and have added a codeword /3i(x)

to the original syndrome, where

Si(x)

⇒ So(x) + /3i(x)

⇒ /3i(x)

xin So(x) mod d(x)

xinS0(x) mod d(x)

(xin - l)So(x) mod d(x).

(2.4)

(2.5)

(2.6)

We get repetition when /3i(x) = 0, which occurs at the first i for which d(x) I xin -

1)50 (x). Let gcd(d(x),xn -1) = d'(x). Then we must have d'(x) I xin - 1, which

implies that ord (d'(x)) I in. We need the least i for which this is true, which is given

by 1cm (n,ord (d'(x)))/n. So in general the process of dividing the syndrome S0(x)

continuously by the dividing word d(x) has period p given by

ord (d(x)/ gcd(d(x), S0 (x)))
p­

- gcd(ord (d(x)/gcd(d(x),S0 (x))),n) ·

As an example, consider the binary (23, 12) Golay code. We take the syndrome

and divide continuously by the two codewords (x10 +x3 + l)g(x) and (x 10+x7 + l)g(x).

We assert that the coset leader will be found by this process.

- 85 -

The generator polynomial and the two information polynomials above are irre­

ducible, so in at least one of the cases we have gcd(d(x), S0 (x)) = 1. Both the

information polynomials are primitive, so their order is 210
- 1 = 1023 [58]. Now

the order of the product of two distinct monic irreducible polynomials is the lowest

common multiple of the orders of the polynomials, so ord d(x) = 23.1023 in each case.

The denominator in the equation is gcd ((23.1023), 23) = 23, and so the period is

1023 in each case. Thus all codewords of degree less than 22 except one are added. In

at least one of the first n basic operations (in fact, in most of them) the error pattern

will be 'trapped,' and the appropriate number of cycles later, the correct codeword

has been added and the error pattern appears in the clear. This happens unless the

error pattern or the starting word is a multiple of i(x); it is easy to verify that the

starting word and the error pattern cannot be a multiple of i(x) for both i(x)'s.

Although this procedure is extremely inefficient as a practical algorithm, it serves

as an illustration of the possibility of tradeoff of space versus time complexity. Our

question of how many dividing codewords were necessary is seen to be answered by

'very few,' at least for some codes. 5 The important point is that we can calculate

exactly when repetition occurs, and we can characterize the codewords that are ef­

fectively added during the process. For the most effective results, we should choose

the dividing words so that the added codewords are of low weight, though finding the

words seern:s to be a very difficult task.

2.9.3 Continued Division for General Linear Codes

We turn to a generalization of the continued division procedure to the case of general

linear codes. Although the result we report in this section is negative, we feel that

the greatest prospect for improving on the information set decoding algorithm by an

exponential amount asymptotically lies in a variant of the procedure outlined below,

5 Ideally, we would like to have one dividing word; if we choose i(x) so that it has degree 11 (so
that it can never be a multiple of an error pattern), we find that because 2047 is divisible by 23,
the period of the process is 89, not 2047, and the argument no longer holds. In general, a quadratic
residue code of block length n must always satisfy n I 2(n-l)/2 - 1, as this is a necessary condition
for 2 to be a quadratic residue of n [57]. Thus we must always take i(x) to have degree one less than
the maximum for quadratic residue codes.

- 86 -

and we suggest some promising lines of attack.

For our generalization of the continued division process, we select an information

set of the linear code C and a subset of the information set. The set of codewords

whose non-zero information bits are confined entirely to the subset define a subcode

C' of the code. We clear the bits in the subset to zero; this detects the error pattern if

the added codeword is in the subcode and the error pattern is disjoint from the subset.

We calculate an expression for the probability of decoding in the case where we have

the second lowest weight word in the coset (weight p = np), the coset leader has

weight only slightly less, and the two words intersect in np2 bits. This is the typical

case, and the one that dominates the complexity result, because otherwise we have

easily derivable statistical information about the coset leader from the next lowest

weight word. Suppose there are w errors in the information set, as well as m correct

ones of r(x). We now draw a distinction between two types of errors: ones turned to

zeros (type I) and zeros turned to ones (type II). A necessary condition for decoding

is that the type I errors are in the parity bits: if a type I error is in the cleared subset

of the information set, the error pattern is not trapped, while if it is in the uncleared

part of the information set, the added codewor~ cannot be in the subcode. Thus,

given that we have w errors in the information set, a necessary condition is that all

these errors are type II errors, and this event has probability (7:) / (~). Instead of

explicitly choosing a subset of the information set, we choose an information bit at

random and clear it, then choose another information bit at random and clear that,

and so on. The probability that the errors are trapped is just the probability that

them correct ones are selected before thew incorrect ones, which is (m!w)-1
. (Note

that we are only including an extra weight computation at each step compared to

information set decoding; no new codewords are subtracted. Thus we achieve a higher

probability of decoding essentially free.) Then we must multiply by the probability

that we get w errors and m correct ones in the information set. the probability that

there are w errors in the information set is (;.:::-!) (!) / (;), and the probability that

there are m correct ones given that there are w errors is e:t) (;;~~r::); (P0--=._PP)).

- 87 -

Overall, the probability that we get decoding with a single trial is

Now let m = nµ and w = nw = nep2, with O ~ e ~ 1. The expected number of

decoding operations will be the inverse of the probability above from the argument

used for the information set algorithm. We find that the complexity coefficient F(R)

is given by

F(R) =

where H(x) is the binary entropy function. For a given w, the function is maximized

for a unique µ, obtained by setting the ratio of the probabilities of decoding with m

and m + 1 correct ones in the information set to one. We find that

p(l - p)R- w2

µopt= l + w-p
-w.

Substituting this into the equation and maximizing over the choice of the parameter

e gives us the overall complexity of this algorithm. Unfortunately, numerical sim­

ulations indicate that the expression is maximized at e = 0, which corresponds to

information set decoding. We feel, however, that this result does not rule out the

possibility of a variant of the scheme achieving an exponential reduction in complex­

ity asymptotically. One possibility is to skew the distribution of the information sets

so that ones are more likely to be in the information set than zeros. The rationale is

that we must have all type I errors in the parity bits, whereas we can tolerate some

type II errors in the information set; the skewed distribution may help us achieve this.

An exponential improvement over information set decoding would be of considerable

importance, and the matter is the subject of continuing investigations.

- 88 -

2.10 Application to Convolutional Codes

A number of results in recent years have dealt with the link between block and

convolutional codes [83, 86, 87., 97]. As far as decoding is concerned, the main outcome

is that block codes can be decoded on a trellis [86]. Thus we can achieve full soft­

decision decoding of block codes with complexity bounded by qn-k. In the light of our

results, the reverse application is worth investigating, i.e., that of applying a block

decoding algorithm to a convolutional code.

It is well known [21] that we can view a truncated convolutional code as a block

code: in fact, the Lth truncation [21] of an (n, k) convolutional code is an (n(M +
L), kL) linear block code. Our block decoding algorithm would only be able to decode

the truncated convolutional code, but in practice we truncate the code no matter what

algorithm is being used. Another way to view the problem is to start with a block

code and to transform to a convolutional code. For example, Solomon & van Tilborg

have shown that any rate k/n quasi-cyclic code can be represented as an equivalent

convolutional code [83]. We take such a block code, find its decoding algorithm and

then change to a convolutional code, mapping the decoding codewords over. Assuming

that the necessary results on the average properties of the codes remain valid, we

should find that information set decoding of a rate 1/2 binary convolutional code of

truncated length N has complexity about 2N/9 , by analogy with the block decoding

case. If we ignore the difference between bounded soft decision decoding and full soft

decision decoding, we should find that information set decoding is competitive with

Viterbi decoding as long as the truncated length does not exceed about nine times the

memory. Any enhanced algorithm for block codes would be even more competitive;

we suggest this as a topic for future work.

2.11 Conclusions

Exact solutions for the complexity coefficient for many different types of decoding

algorithm with various decoding strategies (full hard decision decoding, and bounded

- 89 -

hard- and soft-decision decoding) have been given. Generalized information set de­

coding gives results that are significantly better than the best available bounds from

other algorithms, and vastly less than the requirements from the trivial exhaustive

search algorithms. Indeed, for large symbol fields, the gain over the full search algo­

rithms is essentially unlimited.

Comparison of the complexity requirements for the various decoding strategies

yields an insight into the tradeoffs of performance versus complexity that are available.

In particular, bounded soft decision decoding gives a performance asymptotically

twice as good as that for bounded hard decision decoding for the AWGN channel.

Using generalized information set decoding, it requires a complexity coefficient that

is about twice as high.

We have formulated a model in which the ideas behind the various algorithms

can be combined, and have put forward and analysed a new approach (continued

division) that synthesizes the two main heuristics behind most combinatorial decoding

algorithms. This and the other algorithms are expected to be applicable to decoding

convolutional codes.

Finally, some useful results concerning the weight structure of the average linear

code and the absence of sets of k symbols with relatively low rank are given.

- 90 -

APPENDICES

- 91 -

APPENDIX A

Weight Distribution of Average

Linear Code

We derive an important bound on the average behaviour of codes. The result shows

that for most codes, the weight enumerator behaves as a suitably scaled version of

the weight enumerator of the repetition code. In Appendix B, we show that a lower

bound of the same form holds for virtually all codes for the weight enumerator of

every coset.

It is well known and has been noted many times [98, 93, 10] that the expectation of

the number of codewords of weight w of a randomly chosen binary linear code is very

close to (:)2-(n-ic). It is surprising, therefore, that the theorem below is new, and

equally surprising that the general version of the corollary was first stated relatively

recently [17] (the binary version has been known for much longer [65, 66, 51]).

Theorem A.I For any fixed w and R with O < w, R < 1 and for any prime power

q, the fraction of linear (n, nR) codes over GF(q) with A(nw) = qn[Hq(w)-(l-R)]+f(n),

where f (n) = n(log n) is less than q-[IJ(n)l+O((logn)/n)]. Thus

1 1- logq A(nw) - [Hq(w) - (1 - R)]I < civn n .

for a fraction of more than 1 - q-°'
2
../n+O(logn) of all linear (n, nR) codes over G F(q).

Proof: Assume that the components of the generator matrix are chosen at random

from the uniform distribution. (This may result in a code which has rank less than

- 92 -

k; we deal with this point later.) For a given w, define X to be a random variable

denoting the number of non-zero codewords of weight w. There are qk-1 combinations

. of the k rows if at least one row must be taken. Let Xi, 1 ::; i ::; qk _, 1 be a random

variable taking the value 1 if the ith combination gives a codeword of weight w, and

taking the value O otherwise. We have X = I:i Xi, and

where we have used linearity of expectation and the fact that EXi is independent of

i. Thus

EX = qn[Hq(w/n)-(1-R)]+o(n).

For the variance of X, we have

E(X2
) - E 2 (X)

EL xixj - E2(X)
i,j

LEXi + ELXiXi - E2 X
i,j
i~j

EX+ (ELXi)(ELXi) - E2X
j

#i

(1 - 1/(l - 1))Ex.

Now from Chebyshev's inequality, Pr(IX - µI ~ t) < o-2 /t 2
, so

which is of the required form. This is sufficient to prove the result for a generator

matrix selected at random if we do not insist that the resulting matrix has rank k.

To complete the proof of the theorem, we need to deal with the case where we

do insist on this condition. The probability that the matrix will have rank k is lower

bounded by the probability that the k x k matrix formed by taking the first k columns

has rank k. The combinatorial arguments involved were first discussed by Landsberg

in 1893 [74], and run as follows: the first row must be non-zero, which happens with

probability 1 - q-k. The second row must lie outside the one-dimensional subspace

- 93 -

containing 0 and the first row; this happens with probability 1-q-(k-l). The (i + 1)st

row must lie outside the i-dimensional subspace spanned by the first i rows, and this

. happens with probability 1 - q~(k-i). The probability that a randomly chosen k x k

matrix over GF(q) is non-singular is thus TT~J(l - q-(k-i)). For any given k, this

quantity is lowest for q = 2, and in that case, the product converges quickly to about

0.288 [64]. Thus a loose lower bound on the probability that a randomly chosen k x n

matrix over GF(q) has rank k is 0.288 for all but very low values of n. This means

that we can multiply the probability of selecting a non-binomially distributed code

by a constant C < (0.288)-1; we can therefore get an upper bound on the number of

codes not satisfying the relation given in the theorem by multiplying the fraction of

codes for which it is valid by this constant. The constant is absorbed into the o(n)

term in the exponent, which is sufficient to show the theorem. ►

We have the following corollary:

Corollary A.2 The Gilbert- Varshamov bound is tight for virtually all linear codes

over any symbol field. More precisely, the fraction of linear (n, nR) codes over GF(q)

that have minimum distanced satisfying Hq(d/n) ~ 1 - R + u for u > 0 is less than

q-no-+o(n).

- 94 -

APPENDIX B

Weight Distribution in Cosets

We examine the problem of showing that the same binomial distribution holds fo,: all

cosets in most codes. This is a difficult problem; it has as a consequence the fact that

the Goblick bound on the covering radius is tight for virtually all linear codes. 1 This

was unproven until relatively recently despite the efforts of many [.99, 100]; indeed,

Piret and Delsarte, who solve the non-linear case, offer it as a challenge [100]. The

proof is due to Blinovskii [17]; because it is important, relatively complicated, and

recent, we give a version of the theorem and proof here.

Theorem B.1 (Blinovskii) For any fixed R in]O, 1[and for anyw such that Hq(w) >

1 - R, the fraction of codes which have any coset in which

tends to zero faster than q-n
6
(1+o(I)) for any 8 < l. Thus

lim ! logq A'(nw) = Hq(w) - (1 - R)
n-+oo n

holds in every coset in virtually all codes.

Proof: A straightforward application of Chebyshev's inequality is not sufficient:

any given coset has an exponentially low probability of being distributed other than

1The covering radius [10] is the weight of the highest-weight coset leader. A simple sphere-packing
argument shows that we must have p 2'. Hq 1 (1 - R) + o(1); this is known as the Gob lick bound [48].

- 95 -

binomially, but the number of cosets is exponentially high. Thus a single application

of Chebyshev's inequality will show only that an exponentially low fraction of cosets

are distributed 'badly,' but this amounts to an exponential number of c~sets. The idea

of the proof is basically to select a code of dimension less than k, apply Chebyshev's

inequality, add an extra basis codeword at random, and then reapply Chebyshev's

inequality.

We begin by selecting an l x n generator matrix at random from the uniform

distribution; the optimum choice for l will be given later. Let Xnit be a random

variable denoting the number of codewords (resulting from taking combinations of

one or more rows) in a sphere of radius t around a given word. We have

where Vnt = I:099 (7)(q- If By Chebyshev's. Inequality, we have

and as in Theorem A-1, we have cr2 = µ(I - (q1 -1)-1
), so

If this relation holds for an n-tuple x and a code, we say that the sphere of radius

t about xis 'bad' with respect to e. Note that although we will be adding codewords

later, the term 'bad sphere' will always mean the same thirig (i.e., we do not replace

l by l + I after the first step).

Let N0 (C, t, e) be a random variable denoting the number of n-tuples x which are

at the centre of bad spheres in the code C. (Henceforth we abbreviate this by N 0 , and

the parameters are understood.) From Equation A-1 above, we have EN0 < qn-2e.

Because N 0 is non-negative for any parameters, the fraction of codes for which N 0

is greater than qt E (NO) is less than q-e. Thus the relation N O < qn-e holds for a

fraction of at least 1 - q-e of all codes.

We now start an iterative procedure in which new codewords are added succes­

sively to the generator matrix, and in which the number of bad spheres in the new

- 96 -

code is bounded as before. In taking averages in what follows, it should be under­

stood that we are talking about averages over the ensemble for which the equation

No < qn-t holds.

Step I: Add a randomly cliosen n-tuple w (/. C to the generator matrix of the code.

The new code consists of words of C U (w + C). Let N 1 denote the number of bad

spheres in the new code, and let Xnit be the event that the ith word from F; is at

the centre of a bad sphere. We have

qn-l

ENo = E(L Xnit) = (qn - l)EXnit•
i=l

A necessary condition for the ith word from Fqn to be at the centre of a bad sphere

is that it is at the centre of a bad sphere for C and for w + C. These two events are

independent (as w is chosen randomly) so EXnit ~ q-t · q-\ and EN0 < qn-2t. As

before, a fraction of less than q->. of the codes can have a number of bad spheres that

is more than q->. times the average; thus

for a fraction of at least (1 - q-€)(1 - q->.) of all codes.

For Step II, we add another codeword, and the same analysis holds, except that

in place of E, we now have 2c - ,\, We find that

for a fraction of at least (1 - q-€)(1 - q->.) 2 of the codes. In general, after the ith

step, we have

for a fraction of (1 - t)(l - q>.)i of all codes.

Now note that if a code has a bacl sphere centred at x, it also has bad spheres

centred at ci+w for all codewords Ci. After step m, we have a code of dimension l+m.

We will terminate the iteration after step m, choosing land m so that l + m = k. At

this iteration, if the code has any· bad spheres, it has at least qk. Choose m so that

- 97 -

ENm < 1. Then Pr{Nm > qk} < Pr{Nm > qk ENm} < q-k. So there are no bad

spheres for a fraction of

of all codes.

We need to find the value of m. The Nm's satisfy the recurrence

with N 0 < qn-t. We find that

Taking m = flog 2 n l and c - ,\ = 1 gives ENm < 1 as required. So l = k - flog 2 n l,
and EXn1t = EXnkt/ n10

g2 q (1 + o(1)), i.e., is less by only a polynomial factor. Thus

a sphere that has exponentially fewer codewords than the average in the (n, k) code

will also be 'bad' in the sense of the relation given in the theorem.

All that remains is to choose€. We want (1 - q-€)(1 - q->.r(l - q-k) to tend to

1 as quickly as possible. Thus we should make ,\ (and hence c) as large as possible.

On the other hand, our definition of a 'bad' sphere is tied to the value of c, so if c is

too large, we cannot be sure that the estimate for the number of words in the sphere

of radius t is logarithmically accurate. To avoid this, we take c to be o(n), say nOi

with a< 1. Then (1 - q-€)(1 - q->-r(l - q-k)-+ q-n"(l+o(l)), i.e., the proportion of

codes for which the result is invalid decays to zero subexponentially. ►

- 98 -

Bibliography

[1] E. N. Gilbert, "A comparison of signalling alphabets," Bell Syst. Tech. J.,

vol. 31, pp. 504-522, 1952.

[2] R.R. Varshamov, "Estimate of the number of signals in error correcting codes,"

Dokl. Akad. Nauk. SSSR, vol. 117, pp. 739-741, 1957.

[3] J. M. Wozencraft and B. Reiffen, Sequential Decoding. Cambridge, MA: MIT

Press, 1961.

[4] M. Davis, Ed., The Undecidable. Hewlett, N.Y.: Raven Press, 1965.

[5] M. Davis, Computability and Unsolvability. New York: McGraw-Hill, 1958.

[6] A. N. Kolmogorov, "Three approaches to the definition of the concept 'quantity

of information," Probl. Peredachi Inform., vol. 1, pp. 3-11, 1965.

[7] G. J. Chaitin, "On the length of programs for computing finite binary se­

quences," J. ACM, vol. 13, pp. 547-569, 1966.

[8] A. N. Kolmogorov, "Logical basis for information theory and probability the­

ory," IEEE Transactions on Information Theory, vol. IT-14, pp. 662-664, 1968.

[9] G. J. Chaitin, "On the difficulty of computations," IEEE Transactions on In­

formation Theory, vol. IT-16, pp. 5-9, 1970.

[10] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.

Amsterdam: North-Holland, 1977.

- 99 -

[11] H.J. Helgert, "Alternant codes," Information 8 Control, vol. 26, pp. 369-380,

1974.

[12] R. T. Chien and D. M. Choy, "Algebraic generalization of BCH-Goppa-Helgert

codes," IEEE Transactions on Information Theory, vol. IT-21, pp. 70-79, 1975.

[13] V. D. Goppa, "A new class of linear error-correcting codes," Prob!. Peredachi

Inform.) vol. 6, pp. 207-212, 1970.

[14] T. Kasami, "A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2,"

IEEE Transactions on Information Theory, vol. IT-20, p. 679, 1974.

[15] T. Kasami, "An upper bound on k/n for affine invariant codes with fixed d/n,"

IEEE Transactions on Information Theory, vol. IT-15, pp. 174-176, 1969.

[16] F. J. MacWilliams, N. J. A. Sloane, and J. G. Thompson, "Good self-dual codes

exist," Discrete Math., vol. 3, pp. 153-162, 1972.

[17] V. M. Blinovskii, "Lower asymptotic bound on the number of linear code words

in a sphere of given radius in Fqn," Prob[. Peredachi Inform., vol. 23, pp. 50-53,

1987.

[18] R. J. McEliece, E. R. Rodemich, H. C. Rumsey, Jr. and L. R. Welch, "New

upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities,"

IEEE Transactions on Information Theory, vol. IT-23, pp. 157-166, 1977.

[19] M. A. Tsfasman, S. G. Vladut, and T. Zink, "Modular curves, Shimura curves,

and Goppa codes better than the Varshamov-Gilbert bound," Mathematische

Nachrichten, vol. 104, pp. 13-28, 1982.

[20] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-hill, 1968.

[21] R. J. McEliece, The Theory of Information and Coding. Reading, MA: Addison­

·wesley, 1977.

- 100 -

[22] L. A. Bassalygo,• "Formalization of the problem of the complexity of code spec­

ification," Probl. Peredachi Inform., vol. 12, pp. 105-106, 1976.

[23] L. A. Bassalygo, V. Y; Zyablov, and M. S. Pinsker, "Problems of complexity

in the theory of correcting codes," Probl. Peredachi Inform., vol. 13, pp. 5-17,

1977.

[24] V. Yu. Krachkovskii, "Complexity of constructing codes with specified correc­

tion properties," Probl. Peredachi Inform., vol. 15, pp. 50-55, 1979.

[25] V. V. Zyablov, "An estimate of the complexity of constructing binary linear

cascade codes," Probl. Peredachi Inform., vol. 7, pp.5-13, 1971.

[26] J. T. Coffey and R. M. F. Goodman, "The complexity of information set de­

coding," submitted to IEEE Transactions on Information Theory.

[27] P. Martin-Lof, "The definition of random sequences," Information & Control,

vol. 9, pp. 602-619, 1966.

[28] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1.

New York: Wiley, 1965.

[29] P. Piret, "On the number of divisors ofa polynomial over GF(2)," Second In­

ternational Conference on Applied Algebra, Algorithmics and Error-Correcting

Codes, Toulouse, France, October 1984.

[30] P. Delsarte, "On subfield subcodes of modified Reed-Solomon codes," IEEE

Transactions on Information Theory, vol. IT-21, pp. 575-576, 1975.

[31] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, "On the inherent

intractability of certain coding problems," IEEE Transactions on Information

Theory, vol. IT-24, pp. 384-386, 1978.

[32] L.B. Levitin and C.R. P. Hartmann, "A new approach to the general minimum

distance decoding problem - the zero neighbors algorithm," IEEE Transac­

tions on Information Theory, vol. IT-31, pp. 378-384, 1985.

- 101 -

[33] E. Prange, "The use of information sets in decoding cyclic codes," IRE Trans.,

vol. IT-8, pp. S5-S9, 1962.

[34] F. J. MacWilliams, , "Permutation decoding of systematic codes," Bell

Syst. Tech. J., vol. 43, pp. 485-505, 1964.

[35] S. G. S. Shiva and K. C. Fung, "Permutation decoding of certain triple-error­

correcting binary codes," IEEE Transactions on Information Theory, vol. IT-

18, pp. 444-446, 1972.

[36] A. Benyamin-Seeyar, S. G. S. Shiva, and V. K. Bhargava, "Capability of error­

trapping technique in decoding cyclic codes," IEEE Transactions on Informa­

tion Theory, vol. IT-32, pp. 166-180, 1986.

(37] T. Kasami, "A decoding procedure for multiple-error-correcting cyclic codes,"

IEEE Transactions on Information Theory, vol. IT-10, pp. 134-138, 1964.

[38] 0. F. Dmitriev, "An algorithm for the correction of independent errors by cyclic

codes," Prob!. Peredachi Inform., vol. 3, pp. 102-104, 1967.

[39] G. S. Evseev, "Complexity of decoding for linear codes," Prob!. Peredachi In­

form., vol. 19, pp. 3-8, 1983.

[40] L. D. Baumert, R. J. McEliece, and G. Solomon, "Decoding with multipliers,"

JPL Deep Space Network Progress Report, 42-34, pp. 42-46, 1976.

[41] G. C. Clark and J. B. Cain, Error-Correcting Coding for Digital Communica­

tions. New York, Plenum Press, 1981.

[42] A. H. Chan and R. A. Games, "(n,k,t)-covering systems and error-trapping

decoding," IEEE Transactions on Information Theory, vol. IT-27, pp. 643-646.

1981.

[43] P. G. Farrell, M. Rice, and F. Taleb, "Minimum weight decoding for cyclic

codes," Proc. IMA Conf. on Cryptography and Coding, Cirencester, 1986.

- 102 -

[44] R. M. F.. Goodman and A. D. Green, "Microprocessor-controlled permutation

decoding of error-correcting codes," Proc. IERE Con£. on Microprocessors in

Automation and Communications, Kent, No. 41, pp. 365-376, 1978.

[45] D. M. Mandelbaum, "On vote-taking and complete decoding of certain error­

correcting codes," Information and Control, vol. 43, pp. 195-197, 1979.

[46] D. M. Mandelbaum, "On complete decoding of linear error-correcting codes,"

Information and Control, vol. 47, pp. 195-200, 1980.

[4 7] V. K. Wei, "An error-trapping decoder for nonbinary cyclic codes," IEEE Trans­

actions on Information Theory, vol. IT-30, pp. 538-541, 1984.

[48] T. J. Goblick, Jr., "Coding for a discrete information source with a distortion

measure," Ph.D. dissertation, Dept. of Elec. Eng., M.I.T., Cambridge, Mass.,

1962.

[49] J. T. Coffey and R. M. F. Goodman, "Any code of which we cannot think is

good," submitted to IEEE Transactions on Information Theory.

[50] G. J. Chaitin, "Information-theoretic computational complexity," IEEE Trans­

actions on Information Theory, vol. IT-20, pp. 10-15, 1974.

[51] J. N. Pierce, "Limit distribution of the minimum distance of random linear

codes," IEEE Transactions on Information Theory, vol. IT-13, pp. 595-599,

1967.

[52] D. Chase, "A class of algorithms for decoding block codes with channel mea­

surement information," IEEE Transactions on Information Theory, vol. IT-18,

pp. 170-182, 1972.

[53] J. K. Wolf, "Efficient maximum likelihood decoding of linear block codes using

a trellis," IEEE Transactions on Information Theory, vol. IT-24, pp. 76-80,

1978.

- 103 -

[54] P. G. Fa;rrell, M. Rice, F. Taleb, "Division algorithms for hard and soft decision

decoders," Proc. Int'l. Conf. on Digital Signal Processing, Florence, Italy, 1987.

[55] W. Godoy, Jr. and D. S, Arantes, "Sub-optimum soft-decision decoding of block

codes using the zero-neighbors algorithm," IEEE Int'l. Symposium on Informa­

tion Theory, Kobe, Japan, 1988.

[56] J. T. Coffey, R. M. F. Goodman, and P. G. Farrell, "Mapping Vector Decoding,"

Proc. Second Conference on Error-Correcting Codes, IBM Research Center,

Almaden, California, 1987.

[57] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes. Cambridge,

MA: MIT Press, 1972.

[58] R. Lidl and H. Niederreiter, Finite Fields. Reading, MA: Addison-Wesley, 1983.

[59] B. K. Dass, "A sufficient bound for codes correcting bursts with weight con­

straints," J. ACM, vol. 22, no. 4, pp. 501-503, 1975.

[60] S. N. Gupta, "On low-density-burst correcting linear codes," Journal of Com­

binatorics, Information and System Sciences, vol. 4, no. 2, pp. 219-226, 1979.

[61] A. D. Wyner, "On coding and information theory," SIAM Review, vol. 11, no. 3,

pp. 317-346, 1969.

[62] J. D. Bridwell and J. K. Wolf, "Burst distance and multiple-burst correction,"

Bell Syst. Tech. J., vol. 49, no. 5, pp. 889-909, 1970.

[63) T.-Y. Hwang, "Decoding linear block codes for minimizing word error rate,"

IEEE Transactions on Information Theory, vol. IT-25, no. 6, pp. 733-737, 1979.

(64] E. R. Berlekamp, "The technology of error-correcting codes," Proc. IEEE,

vol. 68, no. 5, pp. 564-593, 1980.

(65] V. N. Koshelev, "On some properties of random group codes of great length,"

Prob!. Peredachi Inform., vol. 1, no. 4, pp. 35-38, 1965.

- 104 -

[66] M. V. Kozlov, ".The correcting capacities of linear codes," Soviet Physics -

Doklady1 vol. 14, no. 5, pp. 413-415, 1969.

[67] M: Deza, F. Hofmann, :'Some results related to generalized Gilbert-Varshamov

bounds," IEEE Transactions on Information Theory1 vol. IT-23, no. 4, pp. 517-

518, 1977.

[68] R. J. McEliece, "On the symmetry of good nonlinear codes," IEEE Transactions

on Information Theory, vol. IT-16, no. 5, pp. 609-611, 1970.

[69] J. Wolfmann, "A permutation decoding of the (24, 12, 8) Golay code," IEEE

Transactions on Information Theory1 vol. IT-29, no. 5, pp. 748-750, 1983.

[70] K. R. Matis, J. W. Modestino, "Reduced-search soft-decision trellis decoding

of linear block codes," IEEE Transactions on Information Theory1 vol. IT-28,

no. 2, pp. 349-355, 1982.

[71] R. T. Chien and D. T. Tang, "On definitions of a burst," IBM J. Res. Develop. 1

vol. 9, no. 4, pp. 292-293, 1965.

[72] J. Fang, G. Cohen, P. Godlewski, and G. Battail, "On the inherent intractability

of soft decision decoding of linear codes," Proceedings of the 2nd International

Colloquium on Coding Theory and Applications, Cachan-Paris, France, Novem­

ber 1986. Lecture Notes in Computer Science, vol. 311. Berlin: Springer-Verlag,

1987.

[73] D. M. Jones and J. J. Bussgang, "Tree-like structure of block codes," IEEE

Transactions on Information Theory1 vol. IT-8, no. 5, pp. 384-385, 1962.

[74] G. Landsberg, "Uber eine Anzahlbestimmung und eine damit zusam­

menhangende Reihe," J. Reihe Angew. Math. 1 vol. 111, pp. 87-88, 1893.

[75] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness. New York: W. H. Freeman & Co., 1979.

- 105 -

[76] R. J. McEliece, "A public~key cryptosystem based on algebraic coding theory,"

JPL Deep Space Network Progress Report, 42-44, Jet Propulsion Laboratory,

1978.

[77] E. F. Brickell and A. M. Odlyzko, "Cryptanalysis: a survey of recent results,"

Proc. IEEE, vol. 76, no. 5, pp. 578-593, 1988.

[78] L. B. Levitin, "A new minimum distance decoding algorithm for general linear

codes/ IEEE International Symposium on Information Theory, Kobe, Japan,

June 1988.

[79] D. S. Johnson, "The NP-completeness column: an ongoing guide," J. Algo­

rithms, vol. 3, pp. 182-195, 1982.

[80] D. S. Johnson, "The NP-completeness column: an ongoing guide," J. Algo­

rithms, vol. 5, pp. 433-447, 1984.

[81] D. S. Johnson, "The NP-completeness column: an ongoing guide," J. Algo­

rithms, vol. 6, pp. 291-305, 1985.

[82] S. C. Ntafos and S. L. Hakimi, "On the complexity of some coding problems,"

IEEE Transactions on Information Theory, vol. IT-27, no. 6, pp. 794-796,

1981.

[83] G. Solomon and H. C. A. van Tilborg, "A connection between block and con­

volutional codes," SIAM J. Appl. Math., vol. 37, no. 2, pp. 358-369, 1979.

[84] D. M. Gordon, "Minimal permutation sets for decoding the binary Golay

codes," IEEE Transactions on Information Theory, vol. IT-8, no. 3, pp. 541-

543, 1982.

[85] B. L. Montgomery, H. Diamond and B. V. K. Vijaya Kumar, "A general mini­

mum distance decoding procedure for binary linear block codes," IEEE Inter­

national Symposium on Information Theory, Ann Arbor, Michigan, September

1986 ..

- 106 -

[86] J. K. Wolf, "Efficient maximum likelihood decoding of linear block codes using

a trellis," IEEE Transactions on Information Theory, vol. IT-24, no. 1, pp. 76-

80, 1978.

[87] H. Fi:. Ma and J. K. Wolf, "On tail-biting convolutional codes," IEEE Transac­

tions on Communications, vol. COM-34, no. 2, pp. 104-111, 1986.

[88] J. K. Omura, "Iterative decoding of linear codes by a modulo-2 linear program,"

Discrete Math., vol. 3, pp. 193-208, 1972.

[89] M. Bossert and F. Hergert, "Hard- and soft-decision decoding beyond the half

minimum distance - an algorithm for linear codes," IEEE Transactions on

Information Theory, vol. IT-32, no. 5, pp. 709-714, 1986.

[90] J. N. Franklin, Methods of Mathematical Economics. New York: Springer­

Verlag, 1980.

[91] C.R. P. Hartmann and L. D. Rudolph, "An optimum symbol-by-symbol decod­

ing rule for linear codes," IEEE Transactions on Information Theory, vol. IT-

22, pp. 514-517, Sept. 1976.

[92] H. Greenberger, "An iterative algorithm for decoding block codes transmitted

over a memoryless channel," JPL Deep Space Network Progress Report 42-47,

Jet Propulsion Laboratory, 1978.

[93] J. L. Massey, Threshold Decoding. Cambridge Massachusetts: MIT Press, 1963.

[94] A. C. Yao, "Theory and applications of trapdoor functions," in "Proceedings,

23rd Annual Symposium on Foundations of Computer Science," pp. 80-91,

IEEE Computer Society, Los Angeles, 1982.

[95] L. D. Rudolph, " A class of majority-logic decodable codes, IEEE Transactions

on Information Theory, vol. IT-13, pp. 305-307, 1967.

[96] L. D. Rudolph, "Threshold decoding of cyclic codes," IEEE Transactions on

Information Theory, vol. IT-15, pp. 414-418, 1969.

- 107 -

[97] S. M. Reddy and J, P. Robinson, "A construction for convolutional codes using

block codes," Information & Control, vol. 12, 55-70, 1968.

[98] W. W. Peterson, "On ,the weight structure and symmetry of BCH codes,"

Conti-. Rep: AFCRL-65-515, July 1968.

[99] G. D. Cohen, "A nonconstructive upper bound on covering radius," IEEE

Transactions on Information Theory, vol. IT-29, no. 3, pp. 352-353, 1983.

[100] P. Delsarte and P. Piret, "Do most binary linear codes achieve the Goblick

bound on the covering radius?" IEEE Transactions on Information Theory,

vol. IT-32, no. 6, pp. 826-828, 1986.

[101] P. Erdos and J. Spencer, Probabilistic Methods in Combinatorics, New York:

Academic Press, 1974.

[102] L. B. Levitin, "Covering radius of almost all linear codes is asymptotically equal

to the Goblick bound," IEEE International Symposium on Information Theory,

Ann Arbor, Michigan, October 1986.

[103] J. K. Omura, "A probabilistic decoding algorithm for binary group codes,"

IEEE International Symposium on Information Theory, 1969.

[104] C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J.,

vol. 27, pp. 379-423 and 623-656, 1948.

[105] Y. Abu-Mostafa, Information and Complexity, to be published.

[106] J. Bruck and M. Naor, "The hardness of decoding linear codes with preprocess­

ing," preprint, 1988.

