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- Abstract

Semiconductor light-emitting devices in the near-infrared (1.55 pm) based on mi-
crofabricdted photonic crystal structures are demonstrated. The photonic structures
consist of two-dimensional arrays of air holes patterned into an optically thin, air-
suspended. InGaAsP slab by high-resolution electron beam lithography and various
dry etching techniques.

Two types of microcavities are examined. The first are larger hexagonally shaped
cavities in the range of 10 to 20 um in size and bounded by the photonic crystal
structure. Cavity mode spontaneous emission at room temperature under optical
pumping is used to demonstrate mode confinement due to the in-plane bandgap. No
. cavity mode peaks in the emission spectrum are seen if the in-plane bandgap is not
spectrally aligned with the material emission. Pulsed lasing is also demonstrated with
the lasing threshold at 66 mW peak incident optical pump power at a duty cycle of
less than 1% in order to minimize membrane heating. Changes in the pump geometry
is shown to result in controllable lasing mode switching. This behaviour is explained
in terms of mode Q, lasing threshold and enhanced spontaneous emission into the
mode. | '

The second type of microcavity consists of a single point defect into photonic
lattice with a modal volume of 2.5 (\/ 2n)3 ~ 0.03um3. Cavity quality factors up
to 250 are demonstrated and suppressed spontaneous emission due to the bandgap
except at the mode frequency is shown. Pulsed lasing at 143 K under optical pumping
is demonstrated.

The fundamental modification of the spontaneous emission rate due to the in-plane
bandgap in a photonic crystal slab structure with no microcavity is experimentally
and numérically examined. Incomplete bandgaps are theoretically shown to be able
to strongly inhibit spontaneous emission. High density of states points in the band-

structure are seen to greatly enhance the spontaneous emission rate. Measurements



vi
using phase_sensitive spectroscopy of the spontaneous emission rate from quantum
wells in the photonic crystal slab show a greater than 10 times inhibition of the emis-
sion rate in the in-plane bandgap. Experimentél evidence for saturation of the surface

recombination at relatively low pumping levels is found.
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"Chapter 1 Introduction

1.1 Background and a brief history of photonic

crystals

Periodic structures in photonics have long been used to modify the behaviour of
photons, if the periodicity is cbmparable to the wavelength. In particular, one-
dimensional periodic structures have found broad applications [1]. These one-dimensional
periodic structures have, until recent years, not been typically discussed in terms of
bandstructure and photon bandgaps and include such commonly used structures as
Bragg mirrors, gratings, the distributed feedback (DFB) laser {2, 3], the vertical cav-
| ity surface emitting laser (VCSEL) [4], and the less common anti-resonant reflecting
opticalwavegui‘de (ARROW) [5] and the Bragg waveguide [6]. A simple extension
of these one-dimensionally periodic devices are structures with periodicity in mul-
tiple directions. This was suggested in 1987 independently by E. Yablonovitch [7]
and S. John [8]. In these works, three-dimensionally periodic dielectric structures
were suggested that would exhibit a complete three-dimensional bandgap for pho-
tons. The similarity between the vector wave equation gnd electromagnetic waves
with semiconductor crystals and Schrodinger waves naturally led towards drawing
analogies between electromagnetism and solid state physics. However, whereas the
crystal structures and atomic potentials in solid state physics are determined by na-
ture, photonic crystals are man-made and provide a means on a microscopic scale, to
_engineer the materidl response to eleCtromagnetic radiation.
Integration ‘of photonic bandgap structures into light emitting semiconductor ma-
terial has been predicted to provide a means to control radiation processes in the
semiconductors [9] and to form high-Q microcavities as defects of the periodic struc-

ture [10]. A schematic of this type of process is shown in Fig. 1.1. Radiative transi-
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Figure 1.1: Dispersion relation of electrons in a semiconductor crystal and photons
in a photonic bandgap crystal after Yablonovitch [9].

" tions can occur between electrons and holes in the electronic band structure (shown
on the left of Fig. 1.1), emitting a photon whose energy depends on the electronic
energy’bandgap. If the photon energy lies in the photonic bandgap frequency range,
the electron-hole recombination process can be inhibited since there are no electro-
magnetic modes into which the an emitted photon could radiate. This means that
the photonic bandgap crystal can be used either to inhibit internal radiation or to re-
flect radiation (essentiélly, inhibiting external radiation). This has primarily been the
point of view pursued to date in the photonic bandgap crsfstal field (for a review, see
[11] and [12]). However, interesting behaviour can occur even when the recombination
energy is not aligned with the photonic bandgap, since the periodic structure modi-
fies the dispersion relation at all frequencies including those away from the bandgap.
Indeed, even structures with no photonic bandgap can exhibit diffractive effects due
to the periodici‘ty. Drawing on the analogy between solid state physics and photonic
crystals, it seems clear that focusing on the bandgap overlooks the full richness of
solid state physics in which the complexity of behaviour frequently lies not in the

electronic bahdg,ap itself, but rather in the band and sub-band structure.
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1.1.1 From 1D to 3D and back

Thé development of the photonic bandgap (PBG) crystal field histprically has pro-
gressed from one-dimensional structures used in a wide variety of photonic devices
for many years, to’th'e more recent extension of these ideas to 2- and 3-dimensional
periodicities in pursuit of complete three-dimensional bandgaps. The underlying prin-
ciple is that schematically shown in Fig. 1.1, that complete control of the radiation
requires a complete bandgap. However, there has been a recent shift in interest back
towards lower-dimensional periodicities in which ideas that manifested due to the
treatment of photonics and optics in the language of solid state physics have been
reduced to lower-dimensional cases exhibiting novel behaviour. Due to its complex
geometry, there has been limited experimental success with three-dimensional pho-
tonic crystals. Two-dimensionally periodic structures, however, have flourished due
in part to the easier fabrication for two-dimensional geometries and also to the eas-
*ier manipulation of the photonic lattice to increase functionality (such as point and
line defects as microcavities and waveguides, respectively). In fact, this trend has
extended all the way “back” to one-dimensionally periodic structures, which have
been found to be able to exhibit full photonic bandgaps and to completely control

spontaneous emission [13].

1.1.2 The Jphotbnic crystal lattice

The analogy of electromagnetism with solid state physics is a transcendent theme in
all discussions of PBG crystals. The periodicity in the dielectric constant in Maxwell’s
equations plays the same role as the periodic electron potential does in Schrédinger’s
equation. Following the trend towards lower-dimensional periodic structures, the
work in this thesis has been primarily focused on two-dimensional photonic crystals.
An example, of particular interest to this work is the triangular array of photonic
“atoms” shown in Fig. 1.2 at circles of high dielectric material. In this case high
dielectric constant “atoms” play the role of atomic electron potential wells. Since

many of the bandstructure properties can be derived purely from symmetry consid-
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erations, we can also have inverse atoms where the circles in Fig. 1.2 may represent
low dielectric constant regions in a high dielectric background. Whereas solid state
physics is limited by gifts from nature determining the electron potential wells and the
. symmefries of the crystal, since PBG crystals are man-made, the possible structures
and photonic “atoms” are limited by imagination as well as skill and technology to
realize the structures. In following with the solid state physics analogy, the reciprocal

lattice for this periodic structure is shown in Fig. 1.3.

1.2 Modified spontaneous emission

It has long been known that the spontaneous emission rate for an electronic transition
can be enhanced [14] or inhibited [15] by the local electromagnetic environment.
Controlled spontaneous emission in semiconductor and other solid state systems has
been of great interest in recent years both for light emitting device applications as
well as fundamental quantum electrodynamic studies. The vertical cavity surface
emitting laser (VCSEL) structure has been the semiconductor microcavity of choice
since modern epitaxial techniques provide means to make extremely high quality
microcavities. Recent years have also seen the advent of the microdisk laser [16,
17, 18, 19]. This type of microcavity also shows promise for modified spontaneous
emission due to the relatively small modal volumes possible, high mode quality factors,
and strong mode coupling (S-factor) [20, 21]. To date, the highest magnitude Purcell
effect enhancement on a solid state emitter has been demonstrated in 1999 by Gerard
et al. [22, 23, 24]. In this work, Purcell enhancement factors of x5 for narrow pillar
VCSEL-like structures and x15 for microdisks were demonstrated from quantum dots
at low temperature 8K. Weaker enhancement of x2.3 (although not yet optimized)
has been shown in oxide apertured VCSEL structures also with quantum dot emitters
at 10K [25, 26].

From their conception, photonics crystals have been suggested as a means towards
modified spontaneous emission [7]. In theory, a three-dimensional photonic bandgap

should be able to completely inhibit spontaneous emission. Also, the small modal
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g
Figure 1.2: Schematic diagram of two-dimensional triangular photonic bandgap lat-

tice. a; and as are the primitive lattice vectors and I'J and I'X indicate high sym-
metry directions of interest in the lattice.

Figure 1.3: Schematic diagram of two-dimensional triangular photonic bandgap lat-
tice Brillouin zone in reciprocal space. The shaded region indicates the first Brillouin
zone with primitive lattice vectors b, and bs. I', X, and J are high symmetry points
in the reciprocal lattice
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volumes“ possible by photonic crystal defect microcavities [27, 28, 29] make these
types of structures promising for the enhancement of spontaneous emission. Inhibited
" spontaneous emission in photonic crystals has been previously dembnst‘rated in the

,micfowave regime of the electromagnetic spectrum. Yablonovitch and Gmitter [30]
~ demonstrated photon bands in the microwave region of the spectrum in a period struc-
ture‘comp’osed of low-loss dielectric material. A photonic band gap is achieved when
the dielectric contrast between the scattering centers and the surrounding medium
exceeds a britical value of €, > 10 although the exact critical value depends on the
precise geometry and symmetry used. Although the dielectric constant is weaker than
this criteria (e, = 1.45), Martorell and Lawandy [31] observed inhibited spontaneous
emission in an ordered aqueous suspension of polystyrene spheres that self-assembled
into a periodic array. More recently, Petrov et al. [32, 33] as well as Gaponenko
et al. [34] have observed slightly inhibited spontaneous spectra and decay kinetics
~ of dye molecules in an artificial opal photonic crystal. However, the small dielectric
contrast in these structures limited the effect, since the structure did not support a
complete bandgap. Romanov et al. have attempted to increase the dielectric con-
trast by depositing a high index material (MOCVD grown GaP) into the artificial
opal structure [35, 36] however, the bandgap in this work was still incomplete. It has
also been shown that a complete bandgap cover 47 steradians can be created using
only a one-dimensional periodic structure [13]. Spontaneous emission inhibition and
high spontaneous emission coupling (3 = 0.96) have been predicted for this relatively

simple structure.

1.3 Motivation

- The beauty in the use of photonic crystals in optics and for photonic devices is in
some sense also the most fulsome part. The complex geometries drawn from solid
state physics provide a multitude of ways for the so-called band engineer to design a
structure to satisfy a particular need or application. However, this brings with it the

difficult problem of dealing with the same complex geometries in order to predict and
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optimizé the behavieur. Two-dimensionally periodic structures lie in a potentially
useful medial point between the simplicity of well known 1D periodic structures and
devices and the complexity and richness of 3D crystals. _

Experimental measurementé on optical frequency photonic crystals are of interest
~ in and of themselves because of the lack of experimental confirmation, until recent
years, of the many numerical and theoretical predictions for photonic bandgap crystal
structures. Two-dimensional PBG structures can be used in the typical “bandgap”
view to form microcavity devices which confine photons due to the inability of the
photons to propagate outside because of the bandgap. These types of micro- or nano-
cavity laser devices are interesting because extremely small modal volume cavities
are possible and the cavity confinement is geometrically determined instead of being
material dependent (e.g., Fresnel reflection from the dielectric interface). However,
light emitting diodes (LEDs) may be the applicétion with the greatest impact in the
~near term. In fact, in 1998, the U.S. Academy of Sciences [37] cited LEDs as having
a major impact on the economy for the next century.

The interest in light emitting diodes stems from the inherent inefliciency of these
devices. Although modern crystal growth techniques have resulted in materials with
internal quantum efficiencies of 90% or greater, typically only 3-20% of the light ac-
tually escapes with the remainder being reabsorbed and lost as heat. In addition
to improx}ements to the external efficiency, photonic crystals, either through Purcell
enhancement in microcavities, (the “bandgap” view) or. directly through modified
emission in the photonic crystal states themselves, may exhibit accelerated sponta-
neous emission rates. A fundamental limit to the modulation speed of a light emitting
diode is the spontaneous emission rate, which means that this provides a means to-
wards high efficiency, high modulation speed light emitting diodes. High efficiency
LEDs have many potential lighting and illumination applications, which makes their
development an economically important goal. High modulation speed LEDs may

provide a cheap incoherent light source useful for telecommunication applications.
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1.4 Summary of this thesis

This thesis discusses the theory and application of photonic crystal structures to ac-
tive light emitting devices. This includes their uses in the design of small modal vol-
' ume miérocavity devices as well és the fundamental emission properties of the crystal
themselves. Chapter 2 briefly outlines some of the theory and numerical techniques
used to characterize the photonic crystal structures and microcavities. The two-
.dimensional plane wave expansion technique and the finite-difference time-domain
(FDTD) algorithm are described. The use of the FDTD technique for classical elec-
tromagnetism to calculate the spontaneous emission rate, a fundamentally quantum
mechanical process, will be briefly mentioned. This is not meant as a comprehensive
examination but rather a brief overview of some points that may be a useful prelude
to the remaining chapters.

Chapter 3 examines the quantum mechanical modification of spontaneous emission
" in greater detail. The general case of modified spontaneous emission in a microcavity
including transition broadening and cavity mode linewidth is derived. The complex
interpléy between enhanced spontaneous emission into a mode, the lasing threshold,
and stimulated einission are briefly discussed, showing possibly novel behaviour that
may be possible with photonic crystal based microcavities. The modified spontaneous
emission results for a microcavity mode will be compared with the traditional Purcell
enhancement factor [14] and generalized to the case of bands of states.

Chapter 4 presents some of the first results from phé)tonic crystal based micro-
cavities in the near-infrared. The spontaneous emission behaviour showing bandgap
confinement will be shown and lasing in the hexagonal disk laser is demonstrated.
Mode switching and the relation between lasing modes and spontaneous emission are

discussed in relation to the results of chapter 3.
| Chapter 5 includes the results from the first demonstration of an isolated photonic
crystal defect mode in the near-infrared. These cavities are similar to those described
in chapter 4 but support only one or two modes which simplifies the interpretation

of the results. Spontaneous emission measurements for these tiny “nanocavities”
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are presented showing lithographic tuning of the mode frequency. Low temperature
pulsed lasing results are presented with lasing in a truly single mode cavity with
modal volume of 2.5 x (A/2n)* ~ 0.03pm®. |

Chépter 6 presents some numerical calculations on the spontaneous emission rate
from a two-dimensionally patterns photonic crystal slab structure. Using the concept
of IQcalizéd density of states (LDOS), complete control of the transition dynamics is
possible even in structures with incomplete bandgaps. The numerical results predict
that both.strong inhibition or enhancement of the spontaneous emission rate are
possible.

Chapter 7 includes some of the first experimental evidence of strong inhibition of
the spontaneous emission rate over the entire material transition bandwidth. Sponta-
neous emission in the bandgap are inhibited by nearly an order of magnitude (6—10x)
as compared to the out-of-gap emission. Measﬁrements from these structures also
~ show the evidence of the enhanced extraction efficiency for emission into the pho-

tonic conduction band modes as predicted in chapter 6.
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Chapter 2 Simulations of photonic

: crystals

2.1 Theoretical approach to photonic crystals

Photonic crystals in general have relatively complex geometry. Particularly for higher
dimensionality, this results in some difficulty for theoretical treatments. For infinitely
periodic structures, it is natural to look to frequency domain techniques to determine
dispersion properties such as plane wave expansion. If the periodicity of the structure
is essentially one [1] or two dimensional [38, 39| this problem is solved relatively eas-
_ily. For the three-dimensional case, the problem becomes quickly becomes intractable
due to the cubic relation of the required computation to the problem size. In ad-
dition, -if the medium is not perfectly or infinitely periodic, such frequency domain
techniques have difficulty converging because of high frequency terms introduced by
the discontinuities. However, for one- or two-dimensional problems (or problems that
can be effectively reduced to one or two dimensions), the speed and simplicity of the
plane wave expansion method to determine frequency domain information such as

the dispersion relation can be very useful if used judiciously.
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2.1.1 Plahe wave expansion

Foliowing the method of Plihal and Maradudin [40], we begin from Maxwell’s equa-

tions [41] in the simplest case where the medium of interest is linear and source-free.

— a —
V x H &
V-B = 0
L (21)
V X E = "‘E
vV-D = 0
with the constitutive relations
B=puH D=¢E (2.2)

Assume that the magnetic permeability, 1 not a function of position. The six equa-
- tions in Eq. (2.1) and Eq. (2.2) can be summarized in a set of two equations known

as the vector wave equations for the magnetic and electric field.

V x —1—V xH) = — 22-—1? (2.3)
() - e '
. 9 -
VxVxE = —,LLG(T)@E : (2.4)

For the case of a photonic crystal, the spatial dependence of the dielectric constant,
e(7) as well as the magnetic and electric fields are period}c. We can therefore apply

Bloch’s theorem [42, 43] so that these functions can be written as

—

eF) = Y ecqexp(iG-7) (2.5)

, é
H(Ft) = Z exp(iwt)He o exp (z (E(w) + é) . f’) (2.6)
Gw

I

E(Ft) = Zexp(iwt)ﬁg,wexp (z(

Gw

() + c?) : f) (2.7)
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where the electric and magnetic fields have also been expanded as sums of plane

waves. Substituting Eq. (2.5), Eq. (2.6) and Eq. (2.7) into the vector wave equations
Eq. (2.3) and Eq. (2.4) we then have | ‘

(l: + é) X ZnGIG (I: + C_j) x Ho | + WiHg = 0 (2.8)
a
(l: + é) X [(l—: + é) X EG/] + w? Z EGG/EGI = 0 (2.9)

For notational simplicity, we have defined the following parameters

1

@ = %ng exp(iG - 7) (2.10)
Gt = € — € ’ (211)
Nea = Ne — N (2-12)

and ¢¢ is defined by Eq. (2.5). These equations form an eigenvalue problem that can
be solved for the dispersion relation for any periodic structure. It should be noted
that both vector wave equations Eq. (2.3) and Eq. (2.4) can be solved independently
for the dispersion information since, in this form, the electric and magnetic fields have
been separated. The magnetic field wave equation tends to be easier to solve because

the operator in Eq. (2.3) is Hermitian [44, 45].

2.1.2 Bandstructures in 2 dimensions

We now consider the specific case of a purely two-dimensional structure. We must
consider two polarizations that are possible. The transverse magnetic (TM) polariza-

tion has solutions to Maxwell’s equations with the form

H(7,t) = (0,0, Hs(z1, 9, w)) exp(iwt) (2.13)

EFt) = (Ei(x1,39,0), Ba(z1,22,w), 0) exp(iwt) (2.14)
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In this case, it is easiest to work with the vector wave equation Eq. (2.8) for the

magnetic field, which reduces to
> (;5“ + @1) g (k] + th) nereHey +w’Hey =0 (2.15)
ay

In the case of the transverse electric (TE) polarization, the solutions will have the

form

EFt) = (0,0, Es(zy,z0,w)) exp(iwt) (2.16)

HF ) = (Hi(zy,20,w), Ha(wy, 79,w),0) exp(iwt) (2.17)
and the wave equation Eq. (2.9) can be written as

- >\ 2
Z (kn + Gh) ?7(;/@E'q| + sz(;“ =0 (2.18)
Gy’

Dielectric function

The Fourier decdmposition of the dielectric function represented by the parameters
ne is central to the solution of the eigenvalue problem. In the case of a structure
compdsed of only two distinct dielectric regions, a,b, the parameters g can be de-
termined by the follovﬁng method. First, the inverse of the dielectric function in

Eq. (2.10) is written as

e(}m) - =+ [;1_ - Eﬂ ;5 (7 = 7i(n)) (2.19)

Ea
where

1 for | eR
S () = o (2.20)
0 for rj¢ R
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and R r'épresents the region with dielectric constant €,. The Fourier components 7¢

are then given by the integral

1 111 1 S ey
ey = »e’b‘sGﬁu,o* L—- - —} /dru exp(iG) - 1) (7)) (2:21)

€p | Qeell

where the integration is over the entire 7 plane. Given that the function S(7j) can

only have the values 0 and 1, this simplifies to

L+ G-
NGy = 1 101 - P - ol (2.22)
[5'5] an Jrdrjexp(iGy - )SE) . G 70

We have introduced the filling fraction for the structure f, which is defined as the

fraction of the total area a occupied by dielectric material.

The triangular lattice of holes

This geometry is of particular interest since all subsequent sections and chapters will
deal primarily with this lattice symmetry. This structure consists of a triangular
lattice of air holes (n, = 1.0) in a dielectric material (ﬁb) schematically shown in
Fig. 1.2.

Taking the geometric function defined by the lattice of interest in Fig. 1.2, the

integration in Eq. (2.22) can be solved to give

ney = [ (223}

where J; is the first order Bessel function.

2.1.3 Effective index approximation for PBG slabs

In microfabricated optical structures, the purely two-dimensional approximation is
not accurate because of the difficulty in fabricating structures such as the two-

dimensional triangular lattice of holes where the third dimension is large compared
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to the v&}avel_ength. In this case significant effects are expected due to the finite extent

of the structure in the third dimension.
In this case where the structure is essentially two-dimensional but not infinite in
- the 'thifd dimension, some approximations can be made to reduce the problem to an
effectively twofdimen_sional one that is then tractable using the plane wave expansion
techniquev. One possible method is to solve the one-dimensional infinite dielectric
slab problem to find the modal index for the slab modes [27]. In most cases we are
particulaﬂy interested in the single mode case, so the modal index for the fundamental
slab mode is used. This can then be used in the two-dimensional approximation in
place of the actual material index (air is still modeled at ny;, = 1). Other approximate
techniques are possible to reduce the three-dimensional finite structure problem to a

two-dimensional one (see for example [46, 47, 48]).

2.2 The finite difference time-domain technique

The finite difference time domain (FDTD) algorithm was first applied to numerically
solve Maxwell’s equations in 1966 by Yee [49]. The finite difference time domain tech-
nique (FDTD) has evolved into a very convenient method for solving electromagnetic
field problems. Although not considered to be a computationally efficient numerical
technique, the rapidly increasing speed of current computing technology has made
this method of solution tractable in some cases. The advantage of this relatively sim-
ple technique derives from its ability to easily deal with any problem describable by
the vectorial Maxwell equations limited only by computational resources. Fundamen-
tally, as implied by the name, FDTD is a time domain technique; however, frequency
domain problems can also be solved by using Fourier transformation methods while
_incurring only a small manageable computational penalty [50].

In the finite difference time domain method, a space-time mesh is applied to the
problem and Maxwell’s equations are replaced by a system of difference equations

discretized on the mesh. Following Yee [49], a space grid is introduced to discretize
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Figure 2.1: The position of field components in the FDTD lattice for grid point
- (4,7,k). The components of the dipole moment are placed in the same position as
the electric field components and are not shown.

the différential equations with the grid points denoted as -
(2,7, k) = (idz, 3oy, kdz) ‘ (2.24)
and any fﬁnctioh of space and time as
F™(i,j, k) = F(idz, joy, kdz,ndt) (2.25)

where dz, dy, and 6z are the space increments in z, y, z directions, &t is the time
increment, and the notation F™(3, j, k) denotes the (i, j, k,n) space-time mesh point.
The necessary difference equations can be derived using only two of the time

dependent form of Maxwell’s equations' following the method of Yee [49] and gener-

tAlthough only two of Maxwell’s equations are used, the resulting solutions can be shown to
satisfy all four of Maxwell’s equations for the source-free Maxwell equations [49] or with non-zero
electric polarization P [20]
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alizing to include a non-zero electric polarization:

OH o
- ‘ .2
,LLO- p VxFE | (2.26)
OE L 9P

The electromagnetic field and the dipole moment are discretized on the space grid as
in Fig. 2.1. Applying the finite difference approximation to the equations results in a
set of finite difference equations for the electromagnetic field. For the z-components

of the electric field E, and magnetic field H, the difference equations take the form

1 1
EMTNi g k+2) = EXi g k+3)

2 2
n+% . 1 - 1. 1 TH'% . 1 1
At Hy ,(Z+§,],]w+§)—Hy (Z“'jv]ak—’_ﬁ)
SR,
G(Za]7k+§) Az
Hg+§(zv]+%ak+%)_Hg+§(l’]—%’k—i_%)
Ay
s ’I"L-I—l .. 1
_(Pz) 3 (’l,], k+ 5) (228)
H Gt ie ) = B i 4=k
LA B4 it LR - BNt 500 k)
Ho Ay
N {1 N 1 A N, A 1 2
_Ey(’l,—{—l,] + 572 ——Ey(Z,j + i’k) (229)
X

Note that the E, and the H, fields are evaluated on different time grids separated by
a half-time step. Since the E and H fields are spatially displaced as seen in Fig. 2.1
(they are evaluated on different space meshes), they can also be evaluated on different
“time meshes resulting in a reduction of the required computational resources. The
complete set of finite difference equations have been derived by Yee and given in
reference [49]. These equations are then used to evolve the E and H field in the time
domain at alternate half-time stéps.

In section 2.3, a method for calculating the spontaneous emission rate from a
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dipole sburc,e represented by an electric polarization P will be derived where the
polarization is assumed to have a J-function spatial distribution. In the numerical
" calculation, however, such an idealization is difficult to realize due to the space dis-
. cretizaﬁon. d-function spatial distributions will be approximated as being distributed
* uniformly in a unit cube. For example, for a z-polarized electric polarization located
at grid pdint (i,7,k +1/2), only P,(4,7,k + 1/2) is non-zero, all P, P, and other P,

are zero.

2.2.1 Boundary conditions

One difﬁcﬁlty with the FDTD algorithm is the need to terminate the computational
mesh in space. From Eq. (2.28) and Eq. (2.29), it can be seen that our time step-
ping difference equations at any point in space (i, 7, k) depend only on the nearest
neighbour points of the other field mesh (E — H and vice versa). Borrowing a
* concept from finite difference techniques in computational fluid mechanics, this is
shown schematically in Fig. 2.2 and is referred to as the computational molecule for
the discretization. At any grid point (4,7, k) the total vector field (H or E) will
depend on the six nearest neighbour grid points. To solve the problem, the compu-
tational molecule must be applied at all grid points. Clearly, if the grid point lies
on the boundary of the computational domain, all the nearest neighbours will not
be available. Thereforé, special boundary conditions are necessary to terminate the
computational domain.

If the domain of interest is finite, the boundary conditions may be relatively
simple. For example, a perfect metallic boundary will require the field to go to zero,
which alleviates the need for the nearest neighbour points to determine the boundary
points. For calculating infinitely periodic structures (such as an infinite photonic
crystal lattice), Bloch boundary conditions can be used where the nearest neighbour
points for one boundary are taken as the points on the opposing boundary with some
phase factor. This is sixhply a numerical version of the Bloch theorem from solid

state physics [42] applied to the electromagnetic equations. A much more difficult
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Figure 2.2: Computational molecule for the discrete time stepping of H,. The updated
(in time) H, depends only on the previous time step for I, and the nearest neighbours
in E, and E,. The shaded box indicates the updated parameter.

problem occurs in trying to simulate unbounded domains, which will be discussed in

the following section.

2.2.2 The perfectly matched boundary condition

- One problem of performing calculations for microcavities or other finite structures, is
the need to simulate an unbounded spatial domain. This is typically done by applying
an absorbing boundary condition such that all incident radiation at the boundary is
absorbed with negligible reflection (essentially a radiation condition). A commonly
used and relatively simple boundary condition was proposed by Mur [51]. However,
this bbundary condition is known to show small reflection and high absorption only for
incident radiation normal to the boundary. This requires that the boundary be placed
at least several wavelengths away from any structure of interest thereby increasing
the required computational resources. -

An improved boundary condition is the perfectly matched layer [52] (PML) which
is capable of absorbing an electromagnetic wave incident at any angle without reflec-
tion. Some properties of the PML mediﬁm will be discussed briefly. For a more
detailed description consult the work of Berenger [52] and Gedney [53].
 The perfectly matched layer can be viewed as a lossy uniaxial medium [53], char-

acterized by parameters' (04,04,0,). Following Gedney [53], in the PML region
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Maxwell’s equations-(Eq. (2.27)) can be written as

. OE
Vx H = e-— ‘ 2.30
X ee— | (2.30)
L OH
VxE = (—— 2.31
X Fol=oy ( )
where we define
SySz/ Sz 0 0
E=p = 0 $282/ Sy 0 (2.32)
0 0 SpSy/S:
Sy = e
T 1WEg
Ty
sy = 1+- (2.33)
Wweg
s, = 1+ 7z
Wwep

Note that setting (0,,0,,0,) = (0,0,0) in Eq. (2.32) and Eq. (2.33), then € and
are equal to the identity matrix and Eq. (2.30) is reduced to the regular Maxwell’s
equations (Eq. (2.27)). A dielectric medium can thus be regarded as a special case of
a PML medium in which (0., 0,,0,) = (0,0,0). The PML medium is then discretized
in the same way as Eq. (2.28) and Eq. (2.29) according to Fig. 2.1. Note that this does
not solve the prbblem of the boundary points since the discretization of Eq. (2.30) also
involves the nearest neighbour dependence. The PML medium is therefore terminated
using a perfect metal boundary condition following the method proposed/ by Berenger
[54].

In the PML medium, if we restrict o.(z,y, z) = 0,(z) and similarly for o, and o,
the electromagnetic wave propagating in the PML medium will undergo absorption
" with no reflection [52]. In this case, any electromagnetic wave will not encounter any
reflections at the interface of the PML medium except at the perfect metal outer
boundary. However, the PML parameters (o(y,,) and medium thickness) can be

chosen such that the majority of the electromagnetic energy is absorbed on propaga-
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tion thrbugh_ the PML medium and the field energy incident on the perfect metal is
negligible. Even though in theory PML does not reflect any incident electromagnetic
* waves, it has been shown [52] that if 0., 0, and o, are constant within the PML
regién in the above computatiohal domain, significant reflection may occur because
- of the discrete approximation at the interface between the computational domain of
interest and the PML region. Therefore a spatial variation is required subject to the
previous restriction. Following reference [53|, o can be varied along the normal axis
of the PML interface to minimize the numerical reflection. For example, for the 2

normal interface region, the following form for o, is used

0.(2) = %_““‘.%m_id_ (2.34)

where zg is the position of the PML interface, d is the PML layer thickness and m
is an arbitrary parameter. Similar spatial dependencies for o, (z) and o,(y) for the
. respective interface directions are used with the same 0,,4,. The parameters 0,4, d,
and m are chosen to minimize reflection from the PML boundary for the particular

problem.

2.3 Calculation of spontaneous emission

In principle, spontaneous emission lifetime should be determined through quantum
electrodynamics?. However, it can be shown that the sanie result can be determined
from classical electrodynamics [55]. In a classical picture, the dipole radiation field
acts on an oscillating dipole and causes the dipole moment to decay, which accounts
for the spontaneous emission. Following the methods outlined in section 2.2 for
solving Maxwell’s equations, the classical approach to spontaneous emission can be
| implemented numerically with relative ease providing a means to determine the spon-
taneous emission rate in any arbitrary dielectric structure describable by the finite

difference time-domain method. Since determination of the spontaneous emission

2The quantum mechanical view of spontaneous emission will be considered in chapter 3
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rate is an open radiation problem, the PML absorbing boundary condition proposed

by Berenger [52] and briefly described in section 2.2.2, will be used.

2.3.1  Classical analysis of spontaneous emission

It is well known that although the phenomenon of spontaneous emission 18 quantum
mechanical in nature, it can be understood within a classical framework [56]. In this
section, it will be briefly shown that the quantum mechanical spontaneous emission
rate can be determined from the rate of energy transfer from a classical radiating
dipole to the electrpmagnetic field described by Maxwell’s equations, Eq. (2.1) and
Eq. (2.2). '/

The electric field of an oscillating dipole can be separated [41] into a longitudinal
or irrotational part that has V x Elong = 0 and a transverse or solenoidal part that
has V - Etmn = (. In the coulomb gauge, it can be shown that the transverse
* radiation field is given by the vector potential alone and that the wave equation for
the vector potential can be expressed entirely in terms of the transverse current®. The
longitudinal electric field is the unretarded Coulomb field due to the dipole source and
the surrounding dielectric environment and does not contribute to the dipole radiation
power [41]. In the following, the longitudinal field will be neglected and the subscripts
tran and long will be dropped. The transverse electric field of an oscillating dipole in
an inhomogeneous Chérge—free medium must satisfy the generalized transverse field

condition [57]:

V. (e(F)E(F, t)) ~0 (2.35)
and the transverse electric field wave equation can be written as

OPE(F 1) N 2 P(F, t) N dJ(7,1)
oz T TRy

3This is the origin of the alternate names, “radiation gauge” or “transverse gauge” for this choice
of gauge.

V x V x E(7,1) + e(P) o =0 (2.36)
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where e(f’) is the spatially dependent dielectric constant. The inhomogeneous medium
will be assumed to be a linear, lossless dielectric such that €(7) can be assumed to
" be a real number. However, these results can be easily generalized to account for
.medium. loss or amplification (cvomplex ¢(7)). The electric polarization in Eq. (2.36)
~ represents a point dipole source which is assumed to oscillate in time with magnitude

d(t) at 7= 0-
P(7, tj =d(t)dé(r — 7o) (2.37)

where d is the polarization of the oscillating dipole. For convenience, a dissipation
current .J(7,t) proportional to the electric field and with magnitude -, has been

included in Eq. (2.36):

- —

J(7,t) = ve(F)E(7 1) (2.38)

The proportionality constant ~ will later be set to zero in the case of a lossless
dielectric medium. The radiation electric field is now expanded in terms of a complete
set of orthonormal transverse modes { F,,(7)} with mode frequencies {w,}, as defined

in reference [57]
E(Ft) = an(t)Fu(7) (2.39)
satisfying the eigenmode equation |
V X V x Fo () = (P o Fo(F) - (2.40)

~and the orthonormality condition

—

[ #reDE ) Ful) = b (2.41)

Substituting ,thé electric polarization due to the dipole Eq. (2.37), the dissipation
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current Eq. (2.38) and the modal expansion Eq. (2.39) into the transverse field wave
equation Eq. (2.36), we have

e S [am +da(t) + 2400 w] Fol7) = —puod(t) d3(7— 7o) (2.42)

and then using the eigenmode equation Eq. (2.40) and the orthonormality condition

Eq. (2.41), the equation of motion for the mode amplitude a, (t) is,

Gon(£) + (1) + wPan(t) = (1) |d - F ()] (2.43)

Assuming a perfect harmonic dipole oscillation d(t) = pexp (—iwot), the modal equa-

tion of motion, Eq. (2.43), can be solved for the mode amplitude time dependence:

2
Wo

an(t) = d(t)

[d ~ ﬁ;(ﬁ))] (2.44)

w2 — wE — iwyy

The dipole emission power is given by the integral [41]

~1 IP*(F1) =
Pclassical = —Q_Re {/ dsrg—agriz ' E(’Fv t)} (245)

Substitute the mode expansion Eq. (2.39) and Eq. (2.44) into the above equation, the

result for the classical spontaneous emission power is

2 /2
(wn — wo)? + 72/4

d - Fo(70)

1
Pclassical = ZWSMZ Z (246)

Under the previous assumption of a lossless medium, the classical radiation power is
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given in the limit of 4 — 0 as %

Peassical = 77,“ Wy Z ‘d F

6wy —wo) (2.47)

Compare the above result with that for the spontaneous emission power derived

from cavity quantum electrodynamics considerations [55, 57|
Pquantum - hwegRsp = szgﬂgg Z lcz ’ F’;I,(FO)‘Q(;(WTL - Weg) (248)
n

where w,, is the transition frequency from the excited state to the ground state, p.4
is the dipole matrix element between the excited state and the ground state and
R, is the spontaneous emission rate given by Fermi’s golden rule. It should be
noted that this is the same result as we will find in chapter 3, Eq. (3.37), when the
different mode normalization conventions are taken into account. If we identify p
“and wy in Eq. (2.47) with g, and w.y in Eq. (2.48), respectively, the two expressions
only differ by a factor of 4. This constant proportionality allows us to calculate the
spontaneous emission rate using the classical dipole radiation power Fyggsicai- For the

bulk

spontaneous emission lifetime 700" = 1/ Rgglk in bulk material and the spontaneous

emission lifetime Tgpon, = 1/ Rspon 10 some arbitrary inhomogeneous dielectric medium

of interest, after dividing Eq. (2.48) by Eq. (2.47),

bulk
7—spon . Rsp o Pclassical ' (2 49)
T pbulk ~ pbulk :
Tspon R_sp P classical

where Passicai 15 the classical radiation power for a dipole in the structure of interest,
and Pouk. . is the classical dipole emission power in a bulk dielectric material.
This relation, Eq. (2.49), therefore provides a method to calculate the quantum

mechanical modification of the spontaneous emission rate (as described in chapter

4The Lorentzian lineshape function in this limit becomes a delta function:

lim 1/2
b o w02+ 72/

= mo(wp — wp)
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3) through the classical Maxwell’s equations. First, the classical radiation field for
a dipole in the structure is calculated using the finite-difference technique of section
2.2 and the radiated power is determined by integration of the Poyriting vector over
a surfaée enclosing the dipole source. Comparison with radiation power of the same
~ dipoleina homogeneous medium (bulk), according to Eq. (2.49) will give the quantum
mechaniozﬂ modification of the spontaneous emission lifetime. An example of this
calculation for a dielectric slab waveguide is shown in Fig. 2.3 for a discretized slab
thickness 6f 10 cells. Since the source dipole is centered in the slab, primarily the
even modes are excited as seen by the enhanced peak in the spontaneous emission rate
near the cutoff for the second TE mode. Weaker peaks in the spontaneous emission
rate are seen for the odd modes (TE; and TE3) because of the discretization error
approximating the dipole source as uniformly distributed across the computational

unit cell, which allows some coupling with the odd modes.

5 .
4 |
3 s
3 ;
— :
= ;
2 ............................. ...............................
o IS S D HRSURURS 0 TSP S j
TE1 TE2 TE3
O ! 1 1 i 1
0 0.1 0.2 0.3 0.4 0.5 0.6
3 d/A

Figure 2.3: Calculated spontaneous emission rate from a dielectric slab for transverse
electric(TE) modes using a three-dimensional finite difference algorithm. The vertical
lines indicate the cutoff frequencies for different TE modes. The horizontal dashed
line indicates the expected bulk rate enhancement (I' &= nl'fr.. ).
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Chapter 3 Modified spontaneous

- emission

3.1 Introduction

The interaction of an electromagnetic field with an atom is commonly discussed in
terms of Fermi’s Golden Rule, a well known relation that describes the transition prob-
ability between electronic states in the presence of an electromagnetic field. Given
an electronic system, the spontaneous emission rate can then be calculated. How-
ever, blind application of this relation can lead to the belief that the spontaneous
~ emission rate is a fixed property of the electronic or atomic system. In 1946, E.M.
Purcell predicted [14] that if the electronic system was coupled to a resonator, the
spontaneous emission rate could be strongly modified due to the properties of the
resonator. Additionally, the spontaneous emission rate is also modified when the
emitter is embedded in a dielectric host where the rate is scaled by the real part of
the refractive index at the transition frequency [58, 59, 60, 61]. This and related
effects have been extensively studied in the field of cavity quantum electrodynamics.
However, the basis of Purcell’s prediction extends beyond resonators. The sponta-
neous emission is dependent on the local electromagnetic environment in addition
to the electronic structure. The interaction of an atomic or any general electronic
system with a complex electromagnetic environment must be considered carefully.
Microcavities formed using photonic bandgap crystals have been frequently sug-
. gested for light emitting devices exhibiting strongly modified spontaneous emission
[7, 62]. Due to the possibility of strong photonic crystal reflectivity over a relatively
large spectreﬂ bandwidth and solid angle, such structures are promising candidates
for significantly modified spontaneous emission behavior. Spontaneous emission from

semiconductor microcavities of various geometries based on photonic crystal struc-
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tures has been experimentally examined [11, 63, 64, 65]. In fact, lasing in these
photonic bandgap microcavities has been reported [66]. Lasing in similar but smaller

" microcavities will be discussed in chapter 5 and have been reported in (67, 68].

3.2 Quantized electromagnetic field

The quantization of the electromagnetic field in a medium with a non-uniform di-
electric constant ¢ is similar to the method used for a uniform dielectric constant
system except that the eigenmodes are no longer plane waves [57]. Beginning with

the classical Maxwell equations (in MKS units) assuming no free charges or currents

- oD

H = — .1
V x pm (3.1)
V-B =0 (3.2)

. OB
VxE = —— 3.3
% ot (33)
vV-D =0 (3.4)

with the constitutive relations

B=uH , D =c¢E ‘ (3.5)

we introduce the vector potential /_f, which is related to the electric and magnetic

fields.

. dA
E = —— (3.6)
B = Vx4 (3.7)

P

Substituting the vector potential in Maxwell’s equations yields a vector wave equation

of the form -

2

, ) 5
VxVxA= ueﬁA (3.8)
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In the c‘ase of uniform dielectric constant, the solutions to this vector wave equation
Eq. (3.8) takes the form of plane waves. For arbitrary ¢ = €(7), we will assume that
the solutions of Eq. (3.8) form a complete set of orthogonal modes. In this case, the
. canoniéal quantization procedure can be applied by the introduction of the photon
creation and annihilation operators, a' and a. Then, the operator of the vector

potential can be written as a sum over the normal modes for the system [69]

N
Z 2V,e( F)w ( A o(F)ett — aTcA»Z(ﬂeui%t) (3.9)

where the mode function has been normalized to satisfy

[eorgs Al #r= [

for each mode and the integration extends over the quantization volume. In Eq. (3.9)

—

E hw,.

Pr =
"=

(3.10)

A.(7) describes the spatial distribution of the classical eigenmode c at a frequency we.
The operators for the electric and magnetic fields are simply derived using Eq. (3.6)
and Eq. (3.7).

BE(Ft) = —i; 23‘;’( 5 (acﬁc(mew—c.o.) (3.11)
: N
BFt) = Y VxA(F) (3.12)

is
Hom = — d%(EET - (3.13)

+
1
= > hw <agac+§> (3.14)
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Figure 3.1: Transition of a two-level electronic system (left) coupled to a quantized
electromagnetic field (right).

3.3 Thedipole approximation in semiconductor quan-

tum wells

In this section the dipole approximation in a semiconductor quantum well is briefly
considered, within the context of arbitrary electromagnetic field solutions of section
~ 3.2. The classical electromagnetic fields will be used; however, the results are easily
extended for quantized field solutions.

Thé interaction Hamiltonian of a single electron in a quantum well with an elec-
tromagnetic field within a single band, effective mass model for the semiconductor is
given by [69]

1

H(F, 1) = 5 (P = gA(F, 2+ gV + Hem (3.15)

where m* is the effective mass, V' is the unperturbed quantum well potential function,
and H., 1s the electromagnetic field portion of the Hamiltonian. The single band
effective mass model for the semiconductor quantum well simplifies the problem to
one similar to a simple two-level electroniic system coupled to the electromagnetic
field as shown in Fig. 3.1. The details of the electronic wavefunction within this

approximation will not be considered. The Hamiltonian can be separated into the
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unperturbed quantum well contribution:

P2

w=—"=+V ‘ 3.16
Ha 2m* + _ ( )
- the ‘atom’-field interaction contribution
q v 7 @
=~ P-A(rt A*t-P) —— A*(7,t 1
H 2m* ( (T’ )+ AlF ) * 2m* (7:%) (3-17)

and the unperturbed field portion given in Eq. (3.14). As discussed in section 3.2, the
vector potential in a domain with an inhomogeneous dielectric constant has a normal
mode expansion given by Eq. (3.9). We will consider a single mode, and dropping

the ¢ subscripts for notational simplicity, the vector potential is given as

-

A7 t) = A(F)e™ + c.c. (3.18)

3.3.1 The linear term

It can be easily verified that the commutator of PP and A is given by
[P, Z(F,t)] — iV - A(F,1) (3.19)

The term V- A is simply determined by the choice of gauge. P and A commute in the
case of the Coulomb gauge [41], in which V- A = 0. In this case, the linear interaction

term can be written as

;mear = - 4 P A(Fv t) (320)

The matrix elements of this interaction term of the Hamiltonian will have the form

M, = —;lq; <z’ ‘P-Zf(ﬁ t)‘j> (3.21)
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Typicaﬂy for optical frequencies, the variation in the photon field (represented by
A(7 1)) is slow compared to either the atomic wavefunctions or the inter-atomic
spacing. In this case, over the electron wavefunction |7), the vector potential can
“be taken as a constant at the atomic position R so that A(7,¢) = A(Ry,t) can be
taken outside the inner product (the dipole approximation [70]). This simplifies the

matrix element to be

/ q9 25 . .
Hi; = T A(Ro,t) - (¢ |P]J) (3.22)

where we have used commutation of A and P. From the definition of the vector
potential in Eq. (3.6) and the form of the vector potential modes in Eq. (3.9),

iq
wm*

My = ———E(Ro,t) - (i |P| 5) (3.23)

Using the operator equivalence [71] the matrix element of the momentum operator

between two states 4, can be written as’

th

*

P

([ 1151 = (i

j> | (3.24)

Inserting this relation into the interaction matrix element and introducing the energy

difference between the two electronic states (which is also equal to the photon energy

w) w = (E; — E;) /h this gives [72]

*

m

“UBR 4. wh " i1) (3.25)

wm*

! _—

This gives the traditional simple dipole interaction term 2

Hl,z'near = —L]E(’/_’: t) ' 'Fij (326)

IThis can be shown using the definitions [p,7] = ih and Hy, = p*/2m*.
2This interaction term can also be derived from the multipolar form for the Hamiltonian by a
unitary transformation of the P - A form (the minimal coupling form). See [73].
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The derivation of Eq. (3.26) shows that the dipole approximation and the electric
dipole form of the interaction (E -7} is not dependent on the assumption of plane-wave
" solution for the electromagnetic field. The dipole approximation is valid for arbitrary
.ﬁeld solutions under the assumpt-ions that the intensity is low (neglect the A? term
~ as shown in the following section) and that the spatial variations of the field are slow

compared to the electronic wavefunctions.

3.3.2 The A? term

Using the electromagnetic mode described by Eq. (3.18) and the interaction Hamil-
tonian H’ from Eq. (3.17), the matrix element for the A? interaction term between

two states ¥; and ¥ becomes

¢ |A(r)|

Wy = ( Uy |——[1 4 cos (2wt)]| ¥; (3.27)
m*

Under the dipole approximation, the vector potential is assumed to vary slowly as

compared to the spatial extent of the electronic wavefunctions at location ro. Consider

a Taylor expansion of the vector potential

AF+ry) = A(R)+7VAR) + I va( o)+ O (717 %) (3.28)

2

Ar+7)| = JAGD) + 27 VA >A<fo>+e

|7 ([VA 70 ] + A7) V%Z(rz)) +O (I (3.29)

The matrix element then becomes

;Z .
q* (1 4 cos (2wt))

Wy = 1\

4 m*(z) ><< /

2

+

177 [V + A0 7240 ) + 0 (1)

A(r)|? + 27 - VA(12)- A1) +

\p> (3.30)

Due to orthogonality, the first term of this matrix element is zero since the two elec-
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~ tronic states, ¥; and ¥, are different. The second term is non-zero and is dependent

on
A7) VAR T O (3.31)

where 7; is the dipole matrix element between the two electronic states. We saw
in the previous section that A(r3) has a magnitude proportional to E (r5) (also see
Eq. (3.6)).  The factor involving VA'(FO) is small by assumption that over the extent
of the electronic wavefunctions, the vector potential is slowly varying. If the vector
potential is nearly constant, then the gradient must also be small. Clearly, therefore,
the term containing Eq. (3.31) is small compared to the dipole term from Eq. (3.26).

It can be shown [70, 73] that for all weak or moderately intense fields at optical

[1’2

frequencies, the term resulting from

is small and can be neglected. Only at
extremely high intensities, where multi-photon processes dominate, will it become
‘ necessary to include this term. The contribution due to this term will be ignored

hereafter.

3.4 Spontaneous transition rate

In general, the electric field for an arbitrary dielectric structure (e.g. € = ¢(7)) can be

written as an expansion over the normal modes of the system. Following Eq. (3.11),

=2 23(':3) (Al FE(7) - ac) o) (3.32)

c=0

where a/, and a,. are the raising and lowering operators for photons into mode c.

Assume now that the interaction Hamiltonian can be approximated as

H = —qE(F,1) -7 (3.33)
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We can ‘write the transition probability as
27 712 .
Rfi = % |H ' 5(Einitial - Eﬁnal) ’ (334)

- For an electrorﬁagnétic system described by Eq. (3.32), this is

9 2

- e hw, 1 .
Rfi(’r, I/) = _hTZ 2V <1 Ne -+ 1 6(7?) (aTF (7") - ac (F)) 2, nc> X
4 (l/mitial ~ Vfinal) (3.35)

Assume that the electric field can be taken as constant over the size of the atom.
This is equivalent to saying that the electric field is slowly varying compared to the
electronic wavefunctions |n). Also assume that the dielectric constant €(7) is slowly
varying compared to the wavefunction. The electric field terms can then be taken

outside the inner product. We also note that for spontaneous emission, we are only
interested in the transition by which the mode photon number is increased by one

quanta. Introducing the local field polarization for a mode &, = F, /

, and the

c

atom position in the lab frame of reference, R, the transition rate for emission is

_, 2
_ 2 T, |Fe(R . |
Rfi(R_a v) = - Z;{; = <17nc+1‘(éc'f)al.Q,nc>‘25(Vinitia1—Vﬁnal)
e(R)

(3.36)

In order to simplify this expression, we introduce the dipole matrix element 75 =
{(1|7]12). The photon creation operator a! has eigenvalue ny, + 1, where the ny term
gives rise to stimulated emission and spontaneous emission. Then, the spontaneous

emission rate is

o |2

F(R)

—:—|ec'7"12| 6 (Vinitial = Vfinal) (3.37)
e(R)

. e hw,
RSP(R7 ]/) = ;-1/_2- 2V




36
3.5 'Spontaneous emission in a microcavity

- Following the procedure in the previous section, assume that the electromagnetic

field expansion is given by Eq. (3.32) and that the transition probability is given as

: .Eq. (334) Then, for a harmonic perturbation in time, the transition rate between
two states can be expressed by Fermi’s Golden Rule.

1 2 By — Iy

Ry(v)=—= Hy| 0| ——>—v 3.38

) = g 8 (B (338

Therefore, we can write the transition rate between two states f and ¢ where the

atomic system goes from state 2 to state 1 and the photon number in the mode

increases by 1 using Eq. (3.34) and Eq. (3.33).
2,nc>

2
1,n.+1
c
where the energy difference between the two electronic states has been taken as

S0 R T
C C

=7 = S(vg —v) (3.39)

e? hw,
Ri) =322 5y,

E;—E; = 2nhve. Eq. (3.39) can be separated into two terms which represent the stim-
ulated and spontaneous emission rates. We can simplify this expression by writing

only the spontaneous rate into a particular mode of interest, ¢

Seail

The electromagnetic spatial function as well as the spatially dependent permittivity,

eFH(7) - T

C

e(7)

We

= 9nV,

R.(v) §(ve —v) (3.40)

¢(7) are assumed to vary slowly compared to the atomic wavefunctions, [1) and |2).
If this is the case then the mode and permittivity spatial functions can be taken out

of the wavefunction inner product.

<1 e
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where ﬁ is the position of the atomic nucleus. This is essentially a repetition of
the dipole approximation shown in Eq. (3.37). To specialize to the case of high-Q
" cavities, we must take into account both the finite lifetime of the atomic transition

,(characferized by the homogeneous lineshape function g,(v — v¢) for a transition
- centered at frequency ve), the homogeneous broadening, as well as the lineshape g,
which results from the cavity photon lifetime. The inclusion of the atomic transition
center frequency, which can be different than that for the cavity lineshape function,
accounts fbr the cavity and the transition to be misaligned. If we consider first a
transition where there is some uncertainty in the final state energy, we can introduce
the atomic lineshape function g,(v — v¢), which represents the normalized lineshape
due to homogeneous broadening of the transition centered around a frequency v¢. In

this case, the transition rate becomes

ree ) = ol [5 (B v )= d(5%) Ga2)
= ;;l”'i\ /5(V£—V')gh(u—l/’) dv' (3.43)

Lo
= o Ml (v = w) (3.44)

To calculate the total spontaneous emission rate, we also need to take into account
the inhomogeneous broadening, the distribution in energy of the electron-hole pairs,
and then average over spatial positions. Take the inhomogeneous lineshape function as
9i(ve — Vg, ), which is understood as being a distribution of transition center frequencies
ve centered around vg,. The spatial averaging can be taken by integrating over the
active region. The total spontaneous transition rate (transitions per second) can then
be calcuvlated by integrating over transition center frequencies, vg, and then over all

frequencies will give the total transition rate into a mode c.

2

// / / T :6)(]%)12 X (345)

gc(u — ) gn(v — VYNi(R)gs(ve — v, )8(ve — V') dvduedy/'d*R
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where N; is the density of excited state atoms such that N;g;(ve — vg,) is the net
excited state distribution. Define the average cavity dielectric permittivity using the

property that the energy in the electric field for the mode with no photons is hw/2.

emg[E%fr (/Zﬁzx/%% %% (3.46)

This differs slightly from the normalization given by Eq. (3.10) to take into account
the general situation of arbitrary €(7). We can also define the mode filling factor I,

[74], which measures the alignment between the active region and the cavity mode.

-, 2
* 1 Fx(
/ N;i(R F F) d*r / ‘ (3.47)
cavity ‘
where we have defined the total number of excited atoms in the cavity:
E:/M@WR (3.48)
Then, the total spontaneous emission rate reduces to
wel’ rﬂ12
R, = i ——=N; / / 9.V — Vo) gn{v — ve)gi(ve — vg, ) dvdue (3.49)
v 6avg

where we have introduced a factor of 2 for averaging over dipole polarizations. For
emission from a semiconductor quantum well, electron;heavy hole transitions are
assumed to dominate which chresponds to restricting the dipole polarization to the
plane of the quantum well. Typically in a uniform medium, it is assumed in averaging
over the dipole polarizations </J%2,x> = <M%2,y> = <IJ€2’Z> so that the average over all
possible orientatioﬂs is p2,/3. For dipoles confined to the two-dimensional plane of
the quantum well, this orientation average becomes (B2 4) = (pfy,) = p3y/2 and
{p3,,) = 0. To take this into account, we will use the notation I3, = piy/x where x
can be either 1 or 2.

The total spontaneous emission rate given by Eq. (3.49) depends on three spec-
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tral effe‘éts: . the homogeneous, inhomogeneous, and cavity lineshapes. These can
be broadly characterized as being the contributions of the transition itself (homoge-
neous) the distribution of transitions (inhomogeneous), and a resonator Q contribu-

tion ( cav1ty lineshape).

3.5.1 Case I: Inhomogeneous broadening dominated

Assume that the linewidths satisfy the relation:
Avy, Av, <€ Ay, (3.50)

This case is of particular interest in semiconductor materials where the inhomogeneous
linewidth is due to the distribution of electron states in the bands and the Fermi
distribution of electrons. At room temperaturé, this results in a relatively broad
~ inhomogeneous linewidth.

Using the relation between the linewidths, the integrations in Eq. (3.49) can then
be performed by approximating the homogeneous and cavity lineshape functions as

delta functions.

w1 .

R o= RN b= vt = v e (3.51)
w i3y [N 2 T g
—_—= = ——="N;Q; 3.52
2hequg <Aui Fegug Q (3.52)

where we have defined an effective Q for the inhomogeneous broadening Q; = v/Ay;.
This means that if we have significant inhomogeneous broadening of the transition,
there will not be any enhancement of the spontaneous emission rate regardless of the
linewidth of the cavity. In fact, the relation between the homogeneous linewidth and
the cavity resonance linewidth does not come into play if inhomogeneous linewidth is
Signiﬁcantly larger.

In general, following a procedure similar to that used to derive Eq. (3.52), the

lineshape function with the largest linewidth will dominate the spontaneous emission.
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3.5.2  Case II: Cavity dominated

Thé case where thevinhomo’geneous linewidth is negligible can be prgctically impor-
| tant. This can occur in cases such as atomic transitions and isolated three-dimensional
‘quantum confinement (e.g., singlé quantum dots or single quantum boxes). If the in-
homogeneous broadening is neglected, assume that the cavity lineshape dominates
over the homogeneous linewidth. In this case, the following relation holds between

the linewidths:
Ay, <€ Ay, < A, (3.53)

Following the same argument as in the previous section, the spontaneous emission

rate Eq. (3.49) reduces to

7" = ,21—‘7._2 _
R, ~ ZerHiz s 7 / gelv (v — ve,) dv =~ 2T, (3.54)

2h€avg hecwg

This is the case of greatest practical interest because, as can be seen from Eq. (3.54),
the spontaneous emission rate is now dependent on the cavity quality factor (Q) in
addition to the material determined quantities. This provides an avenue for the mod-

ification of the fundamental spontaneous emission rate through cavity design.

3.5.3 Case III: Homogeneous broadening dominated

If the inhomogeneous linewidth is negligible, the homogeneous lineshape can dominate
over the cavity. This case is included for completeness although it is of less practical
interest than the previous two cases.

Assume that the linewidths satisfy the relation
Av; € Av, < Ay, (3.55)

In this instance, following the same procedure as before, the total spontaneous emis-
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sion rate becomes.

wlyjig— [ : e i,
R~ ——ﬂNi/ Gl = v ) gn(v — ve,) dv = Ly, (3.56)
3 2hequg 0 _ Réaug ,

Simiiar to Eq. (3.52), this spontaneous emission rate is dependent solely on ma-
terial parameters. This can be used to describe the situation of atomic decay in free
space. By definition, a single isolated atom undergoing a single particle transition can
not have inhomogeneous broadening. Free space can be considered as a limiting case
where the cavity linewidth goes to zero and the “cavity” modes become a continuum
of closely spaced modes. Then, the total free space emission rate is taken as the
sum of modes using Eq. (3.56), which becomes an integral over the continuum with

a mode density function.

3.6 Stimulated emission and laser threshold

Following Eq. (3.49) we can write the total stimulated emission rate into a mode ¢

with a photon number of n, as

n.R, = wel THIQ n.N; / / ge(v — ve)gn(v — ve)gi(ve — ve,) dvdue (3.57)
2N qug

At the lasing threshold, the induced transition rate (per second) must equal the

loss rate of photons from the cavity. Therefore, we can write a threshold condition

1 We

R oo = —
¢ Tph.c Qc

(3.58)

The total pumping rate is characterized by the overlap function I, which measures
“how well the mode overlaps the active material. Assuming that the active material
spatial distribution is determined by the pump configuration, then the required pump-

ing level to reach threshold can be characterized by the T', parameter. At threshold
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using Eq. (3.57) and Eq. (3.58),

nC%CC. — QR;Z;Q neN; / / ge(v —ve)gn(v — ve)gi(ve 1/50_) dvduf3.59)
2h€p0 1
_'62 ! — = TI,\N; / / 9e(v — ve)gn(v — ve)gi(ve — vg,) dvduye (3.60)
fiy Qe ‘ 0 0

where the parameter I', N; characterizes the effective pumping for the mode.

3.6.1 Case I: Inhomogeneous broadening dominated

Following the method used in calculating the spontaneous emission rate, assume that
Al/h, AI/C K Al/i (361)

To apply this to the spontaneous emission rate at the lasing threshold for the

- mode, the lineshape integrals in Eq. (3.60) can be approximated as

1
/ / 9e(V = ve)gn(v — ve)gi(ve — vg,) dvdye ~ = Q; (3.62)

The pumping at threshold then reduces to:

— 2he 1
N, = — (w9> 3.63
( /1’%2 QcQz ( )

3.6.2 Case II: Cavity dominated

If the cavity linewidth is the dominating linewidth (Awv, is the largest), then the

linewidths are assumed to be
Av; < Ay, < Av, (3.64)

as was done for the same case with the spontaneous emission rate into the mode. Fol-

lowing the same procedure as before, from Eq. (3.60), the lineshape function integrals
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. reduce to

/ / ge(v — ve)gn(v — ve)gi(ve — vg,) dvdye N Q. (3.65)
: 0 0 . Ve .
' ‘Andv the' effective pumping at the lasing threshold becomés
— 2he 1
LN, = —_——9) — (3.66)
( il Q2

3.7 Fluorescence of two modes

Consider two modes where mode 1 has a lower lasing threshold defined by Eq. (3.63)
for case I (Ay; dominates). Then the effective pumping at threshold is given by
Eq. (3.63):

(2w, 1
Tt (N7), =< - 9) ) (3.67)

—2
K2

The effective pumping at threshold for mode 2 is given by a similar equation. From
Eq. (3.67) it can be seen that the only cavity dependent part on the right hand side
of Eq. (3.67) comes from the cavity Q-factor. Therefore, in assuming that mode 1

has a lower lasing threshold is equivalent to assuming that the Q of mode 1 is larger

than the Q of mode 2 (Q1 > Q2).

(Wi)th,l _ Fr,2 QCQ
(M)ya Dt Qe

(3.68)

Now, consider the spontaneous emission for the two modes. Again, assuming case I
(Av; dominates), the total rate of spontaneous emission into a mode of interest, k is
‘given by Eq. (3.52).

Fr,k ,H’%27r_

Ry = ——=—N;Q; (3.69)

Ti€qug
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So, the total spontaneous emission into mode 1 near the lasing threshold defined by

Eq. (3.67) is

Qi ~ ‘
Rl‘ - .%‘q— Fr,l (Ni)th (370)

=2

RETEN (A2 (2h€avg) 1

= — 3.71
heavg /’L%2 chQi ( )
2

- le (3.72)

The spontaneous emission into mode 2 at the same pumping level can be similarly

derived to be

. 2 FT’Q
ch Fr,l

R, (3.73)

The ratio of spontaneous emission into these two modes of interest can be determined

- at the lasing threshold for mode 1.

Emission into mode 1 Ry Ty

== = 3.74
Emission into mode 2~ Ry L9 ( )

This means that the spontaneous emission into each modes depends only on the
relative filling factors between the modes. In other words, for equal total pumping,
the mode that has the greatest overlap with the pumping region emits the most.
Assume now that (T',.;/T;2) < 1, which means that the overlap between the pump
and mode 2 is greater than that with mode 1. In this case, Eq. (3.74) indicates that
the spontaneous emission into mode 2 will dominate. However, consider the relative
excited atomic density at threshold given by Eq. (3.68). Mode 1 can reach threshold

before mode 2 (even though there is more emission into mode 2), provided that

(Vi) s
(Ni)th,Q

Using Eq. (3.68) and the assumeéd relation between the Q of the modes, this can be
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rewritten as the following condition:

c Fr
Qu _ Luz
QCQ Pr,l

> 1 ~ (3.76)

3.8 Purcell enhancement factor

To consider only the cavity contribution to the spontaneous emission rate, we be-
gin with the pfeviously derived homogeneously dominated case for the spontaneous

emission rate Eq. (3.54).

wel’ r.ulz Frﬂ 2T =7
C— N C - d — N ma 377
R S [ g - vt — v v = SN Qe (370

where we have used @y, for the material @ which in fact, may be homogeneous or

inhomogeneous since both results have the same form. For a single particle transition,

The regular unenhanced spontaneous emission rate is given by [75]
w
Rfree = 2 f (378)

The Purcell enhancement factor is given by the ratio of the enhanced cavity emission

to the free-space emission rate.

T, ji? ’
R _ 3Qmals Y, € ( A > (3.79)

2
Rfree ™ H12 €avg 2n

From the definitions of ', and €,,, we can define an effective volume, since I'; has
units of inverse volume. Also taking the quantum well case where if, = uf,/2, this

can be recast as the Purcell enhancement factor F

_ 3Cgmat A ’
27V <2n> (3.80)

This expression differs slightly from that derived originally by Purcell [14] by a factor
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of 7/4 which follows simply from the lineshape approximation and the polarization

averaging of the dipole.

3.8.1 = Purcell enhancement into band states

All the previous discussions in this chapter have dealt with emission into individual
optical modes. However, consider the analogy with solid state physics and photonic
crystals. In a periodic array of atoms, the individual atomic states interact and com-
bine to form closely spaced states which become a near continuum for large numbers
of atoms. Analogously, a period array of dielectric structures can combine to form
continuous bands of states from the individual discrete states of the isolated dielec-
tric structures (the dielectric ‘atoms’). Spontaneous emission in this situation may
be modified from the free-space solution in a similar manner as the modification of
the emission rate in a microcavity. The band states can have a strongly modified
- spatial distribution since they have as their basis the localized states of the dielectric
‘atoms.’

Since we wish to consider a continuous distribution of optical states within a so
called photonic band, it will be assumed that the spectral width of the band is large
compared to the homogeneous linewidth of the emitting species. The band width
may also be large compared to the inhomogeneous linewidth however, this restriction
will not be used at thié point.

Begin by considering the previously derived spontaneous emission rate into a mode

¢ given by Eq. (3.49).

Rc o T/LIZ —/ / (-chc c)gh(V - yg)gi(yg — I/EO) d]/dl/g (381)
| 2Nhequg

In this case, the lineshape function for the cavity is replaced by a density of optical
states p(v). This can be easily seen by considering the sum over the spontaneous
emission into all the modes R = > R, and then taking the limit for a near continuum

of modes Y, — [dv. Assume that the homogeneous linewidth is narrow such that
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the spontaneous emission rate becomes

EaS) R -
Ryona = / ade Nip(v)gi(v — vg,) dv ” (3.82)
0 )

2Nequg

To see the effects of the optical band independent of the transition details, take the
inhomogeneous linewidth to be narrow and the average excited state density N; = 1.

Then the spontaneous emission rate spectrum can be written as

Wl i?
Rband(y) = Eﬁe—lzp(y) (383)
avg

It is clear that in comparison with the uniform space emission rate from Eq. (3.78),

the equivalent band-enhanced Purcell factor is now

3rhicle  wel ity

F band

p(v) (3.84)
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Micro- or nano-cavities are not necessary to achieve modified spontaneous emis-
sion behavior. The idea introduced by Purcell of modified spontaneous emission in
a resonator can be extended to consider these photonic bands. Clearly, within a
photonic band gap the spontaneous emission could be strongly suppressed since, by
definition, the band gap is a spectral region with a density of states p(v) — 0. This
was predicted by Yablonovitch in 1987 [7]. This band—eﬁhanced Purcell factor also
shows that enhanced spontaneous emission can occur at points of high density of
states. The difference between this viewpoint and section 3.8 is in some sense merely
a conceptual one, since the cavity mode lineshape peaks can also be considered as

enhancements in the density of states. However, these two cases do differ in that
| the cavity modes are spatially localized to the cavity whereas the band states are
distributed modes. In addition to the density of states dependence, Eq. (3.85) also
includes a 1/Veg del‘)endence7 which describes an enhancement to the spontaneous

emission rate due to the spatial mode distribution. The Purcell enhancement can
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therefore be conceptually divided into a spectral (p(v)), related to the local electro-
magnetic density of states, and a spatial (1/Vey) part. This will be discussed through

numerical simulations in chapter 6.
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"Chapter 4 Photonic crystals for

microcavity emitters

4.1 Introduction

High Q optical cavities are considered to be useful for high efficiency, low power light
sources. Photonic crystal based structures have been suggested as a means towards
such devices [11]. One-dimensional photonic structures have been used successfully
in light emitting diodes (LED) to enhance efficiency and spontaneous emission [76).
Recently, two-dimensional structures have attracted a great deal of attention [77,
78, 79] due to the simpler geometry, in terms of both fabrication complexity and
device design as compared to three-dimensional structures. Such structures have
been considered as a means of controlling in-plane spontaneous emission, a significant
loss mechanism in vertical-emitting structures [77]. However, experimental evidence
[78, 80] has indicated that finite hole depth and waveguide geometry can lead to strong
scattering of light into the substrate, which would limit the confinement possible with
a 2D photonic crystal due to scattering out of the photonic crystal plane. One solution
to this is the use of high index contrast cladding layers abgve and below the photonic
crystal plane [81]. Scattering out of the photonic crystal plane can also be limited
by extending the two-dimensional photonic crystal structure well into a lower index
cladding layer [48, 64, 81].

Passive reflection, diffraction, and transmission measurements have recently been
carried out in two-dimensional photohic crystal structures [82]. Berggren et al. [83]
have also made active devices by including a low index contrast two-dimensional pe-
riodicity that did not have a complete bandgap. Borodistky et al. [84] have demon-
strated photonic crystal microcavities where the photonic structure is used for output

coupling.in thin slab structures. Slab confined modes are scattered into free space
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Etched air holes

Microcavity <— Total internal reflection
<— Bragg reflection

Actie layer

Figure 4.1: Schematic diagram of 2D triangular photonic bandgap structure. Light
is confined in the slab plane by reflection from the photonic crystal and out of the
plane by total internal reflection at the air interface. The slab thickness d ~ A\/2n.

radiation modes with a net external efficiency estimated at ~ 70%.

Using the high index contrast between semiconductor and air for vertical con-
finement, two-dimensional photonic crystals can be successfully used to create well
confined optical microcavity thin film-like structures [65, 66, 85]. In this chapter, the
fabrication of such photonic crystal defined thin-film optical microcavities is discussed
in section 4.2 and has been discussed in [85]. Spontaneous emission characteristics of
hexagonally shaped microcavities [65] are presented in section 4.3. Room tempera-
ture pulsed lasing [66] under optical pumping is discussed in section 4.4 with respect

to the predicted modal behaviour described in section 3.7.

4.2 Microcavity design and fabrication

A schematic of the photonic crystal based microcavity is shown in Fig. 4.1. Pho-
tons generated within the d &~ A/2n high-index semiconductor slab are confined in

the vertical direction by total internal reflection at the semiconductor-air interface.
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The phbtonic crystal lattice then confines the light in the slab plane through Bragg
scattering, which gives rise to an in-plane band gap. The slab membrane consists of
6 unstrained InGaAs quantum wells as an active layer with InGaAsP barriers grown
by mefalorganjc chemical vapor deposition (MOCVD) on an IﬁP substrate with a
total waveguide thickness of 150 nm. The material epitaxial structure is shown in Ta-
ble 4.1. The InGaAsP system was chosen for its relatively low surface recombination
velocity [86] because of the high surface to volume ratio of these microcavities. The
photonic érystal structure requires etching of holes through the slab membrane with
a relatively high poroéity‘resulting in a large free surface area with corresponding sur-
face fecombination. In most semiconductors, the ambipolar carrier diffusion length
is on the order of microns that, for microcavities in the micron size scale, the sur-
face of the cavity are within one or several diffusion lengths of all points in the cavity.
Therefore, surface recombination can be a significant concern in active semiconductor
~ microcavities. For the slab membrane structure, the surfaces in the z-direction (see
Fig. 4.1) are not a significant concern because of the vertical confinement provided
by the epitaxial quantum wells.

The quantum well emission was designed to be centered around a wavelength of
1.55 pum (~0.8 eV) with a barrier band gap energy of 1.1 eV corresponding with
a wavelength of approximately 1.1 pm. The fabrication process for the membrane
structure'is shown in Fig. 4.2. The two-dimensional triangular photonic lattice is pat-
terned using direct write electron-beam lithography into.a poly-methylmethacrylate
(PMMA) electron beam resist. The triangular lattice of air holes was chosen because
it results in a relatively large in-plane bandgap [44] for electromagnetic modes with
the electric field transverse (TE) to the slab (magnetic field H normal to the slab
plane). The unstrained quantum wells emit primarily into TE modes since the elec-
.~ tric dipole can be consider to be confined to the quantum well plane. The pattern in
the PMMA resist is transferred into a multi-level intermediate mask layer composed
of a thermally evaporated thin gold layer on top of a SisN4 or SiO, layer by argon ion
milling (for the Au layer) and reactive ion etching (for the silicon containing layer).

The multiple mask layers are necessary because the InGaAsP etching is performed
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200 A InGaAsP end cap
100 A Tngs3GagarAs QW
100 A InGaAsP barrier
100 A Tngs3GagarAs QW
100 A InGaAsP barrier
100 A Ings3GagarAs QW
150 nm ¢ 100 A InGaAsP barrier
100 A Ing 53GagarAs QW
100 A InGaAsP barrier
100 A Ing 53 GagarAs QW
100 A InGaAsP barrier (Eg=1.1 pm)
100 A Ings3GagarAs QW (Eg=1.72 pm)
200 A InGaAsP end cap (Eg=1.1 pm)
InP substrate

Table 4.1: Undoped InGaAsP epitaxy for air suspended slab photonic crystal struc-
* tures grown by Ortel Corporation. All layers are lattice matched to the InP substrate

at an elevated temperature, which is incompatible with the PMMA resist. The In-
GaAsP waveguide layer is then patterned using a Cl, chemically assisted ion-beam
etch (CAIBE). The patterned waveguide layer is then separated from the substrate to
leave a free standing membrane by using a selective wet etch solution (4:1 HCI:H,0)
which renﬁoves the InP below the waveguide layer. This final wet etch is performed
at low temperature (7' ~ 1°C) to reduce the etching speed to avoid the collapse of
the membrane structure.

" An oblique view scanning electron micrograph of a typical structure is shown in
Fig. 4.3, which shows a hexagonal shaped microcavity surrounded by the triangular
lattice photonic crystal. Clearly, other microcavity geometries are possible limited
only by the discrete triangular lattice hole spacing. The smallest such cavity, formed
by the removal of only a single hole will be referred to as a “defect” cavity and
will be discuésed in greater detail in chapter 5. Fig. 4.4 shows an oblique view of a
cross-section through a typical patterned membrane structure showing the suspended

structure. In this case an etch stop quaternary InGaAsP layer was included to stop
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——— PMMA resist layer
: Au mask layer

s Si, N, Mask layer
\ waveguide structure

substrate

Electron beam lithography
to define structure

Ton milling and Reactive
Ion Etching (RIE) to transfer
pattern to mask layers

Cl,/Ar Chemically Asssisted
Ion Beam Etch (CAIBE)
at 150°C

Undercut using selective
wet chemical etch of dilute

HCI/H, 0 solution at (° C

Figure 4.2: Process flow for fabrication of free standing membrane photonic crystal
‘structures. ‘
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the undér—cutting. wet selective etch leaving a smooth bottom surface.

| A typical in—planevband structure plot for this photonic lattice patterned into a
" thin slab calculated using the effective two~dimensional plane wave expansion de-
Scrilvoedv in section 2.1 and an effective index of n.g ~ 2.65 is shown in Fig. 4.5. A
band gap for TE modes is evident in the frequency range a/A = 0.29 to 0.40 with no
band gap for TM modes [27, 77, 87]. This can be compared with the bandstructure
calculated using a three-dimensional finite difference time-domain (FDTD) technique,
is shown on the left in Fig. 4.6. The trapezoidal upper boundary in the plot repre-
sents the light line and only confined modes below the light line have been shown.
The two-dimensional approximation and the fully three dimensional band structures
are similar showing bands with qualitatively the same shape and position. There is
a significant difference in the precise bandgap position and width by approximately
20%. However, the similarities allow the use of the speed and efficiency of the two-
~ dimensional approximation to be used as a first approximation design tool. It has
been previously shown [27] that the finite extent of the photonic crystal in the ver-
tical direction modifies the bandgap location and width as compared to an infinite
two-dimensional approximation. Therefore, a full three dimensional bandstructure
calculation is necessary for accurate design and comparison with experimental re-
sults. TFig. 4.6 was calculated for a structure with the ratio of the hole radius to
the lattice parameter, r/a = 0.35 and the ratio of the waveguide thickness to lattice

parameter, d/a = 0.33. This results in an in-plane bandgap in normalized frequency

units between 0.348 and 0.465.

4.3 Hexagonal cavity spontaneous emission

. We have designed and fabricated two;dimensional photonic crystals in a thin semicon-
ductor membrane bounded above and below by air. The optical cavity consists of an
approximately A/2n thick dielectric slab waveguide suspended in air. The membrane
is patterned with a triangular two-dimensional array of air holes. A number of holes

can be omitted to form hexagonally shaped cavities, providing in-plane localization as
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Figure 4.3: Oblique angle SEM image of typical two-dimensional photonic crystal
cavity fabricated in an InGaAsP semiconductor slab. Each face of the microcavity is
~ 2.2 pm.

Figure 4.4: Cross-section through the patterned membrane structure. The InGaAsP
slab in the measured devices is approximately 150 nm thick and the air gap under-
neath membrane can be seen.
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r X J r

Figure 4.5: Bandstructure for triangular lattice of air holes using a two-dimensional
effective index plane wave expansion method calculation using an effective index of
neg = 2.65 and 441 plane waves. The dotted line trapezoid is the light line and the
solid and dashed lines are the TE and TM modes respectively. The TE bandgap is
from 0.29 to 0.40.
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Figure 4.6: Full three-dimensional FDTD bandstructure showing only the slab con-
fined modes below the light line for d/a = 0.33 and r/a = 0.35.
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shown iﬁ Fig. 4.3 and Fig. 4.7. The cavities were designed with the photonic bandgap
centered around the peak emission wavelength at a normalized frequency of approxi-
mately a/\ = 0.32 (laftice spacing of a = 500 nm for A = 1550 nm). This normalized
frequency is close to the bandgap center of a/A ~ 0.35 from the two-dimensional
approximate band structure in Fig. 4.5. Subsequent calculations with the full three-
dimensional band structure in Fig. 4.6 have shown that this design parameter, may
lie slightly below the lower band edge. The results in the following sections refer to
cavities that have sides of the hexagonal cavity, 11 photonic lattice periods in length,
which results is a Cavity (at a = 500 nm) approximately 9.5 pm across (face to face,
vertex to vertex is 11 pm). Because of the large size of the cavity compared to the
wavelength (A\/n ~ 456 nm) this cavity would be expected to support a relatively
large number of modes. The number of modes can be roughly estimated since for
a two-dimensional rectangular cavity, the number of modes per unit area per unit

~ frequency interval is [8§]

S

So for the above 9.5 um hexagon (with area of 78.6 um?), at a wavelength of 1.55 pm
that corresponds to a bandgap of Av ~ 69 THz for a gap from 0.348 to 0.465, this sets
the approximate number of confined modes at 293 within the bandgap bandwidth Av.
A scanning electron micrograph of an 11-period per face device is shown in Fig. 4.7.
A variety of devices were fabricated with lattice spacings from 300 nm to 1 pm while
maintaining r/a = 0.32, thereby lithographically tuning the bandgap [89] across the
emission spectrum. These devices are similar to microdisk lasers [16] but bounded by
PBG material so that the total internal reflection of the microdisk is replaced by Bragg
reflection from the photonic crystal. A finite difference time domain calculation [27] of
| the resonant mode in this structure (Fig. 4.8) is reminiscent of a microdisk whispering
gallery mode even though the cavity is hexagonal rather than circular. Other types
of modes also exist 1n this structure in addition to the whispering gallery-like modes.

These are primarily modes that reflect between opposing faces of the hexagon. In
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these dévices, it is possible to design the cavity modes by engineering the photonic
barnd gap energy and by controlling the cavity shape.

The membrane micvro‘cavity was optically pumped by 200 nsec pulses from a semi-
‘conductor laser (Ortel 1911A-050 A = 980 nm) as shown in Flg 4.10 and focused
to a spot size of approximately 8 yum. Photoluminescence from the quantum wells
at A = 1.55 um was collected normal to the membrane (Fig. 4.11). Fig. 4.12 shows
the spectrum from unpatterned material and from a cavity showing strong reso-
nances superimposed on the broader quantum well emission. The emission peak from
the hexagonal cavity has been red shifted approximately 70nm as well as noticeably
broadened due to heating of the membrane by the pump light, corresponding to a
membrane temperature of approximately 375 K [90]. This heating is a result of the
high peak pumping density (~ 10 kW/cm?) as well as the poor thermal conduction.
With the membrane thickness being only 150 nm and being air suspended, there
_is a relatively narrow thermal conduction path to remove heat from the membrane.
Although there will also be some conduction as well as convection in the air sur-
rounding the membrane, this has been seen to be insignificant by comparing these
measurements with similar measurement made by placing the devices in a chamber
evacuated to approximately 5 x 107> torr. All devices were fabricated in close prox-
imity on the same wafer in order to minimize temperature variations between the
measurements. The emission peak red shift was used to estimate the active layer
temperature. Negligible differences were observed between devices at a given pump-
ing level. This is an important consideration since heating can account for significant
shift in the refractive index as well as change the internal quantum efficiency of the
active layer materi‘alﬁ The peak emission power from the hexagonal cavity has been
enhanced by approximately 2.0x as compared to the unpatterned material as shown
-in Fig. 4.12. This enhancement is largely due to the fact that these structures are
undercut leaving an air gap beneath the membrane. This agrees quite well with a
predicted normal direction emission power enhancement of 1.81x for dipole emission
in this slab waveguide structure suspended in air as compared to the same waveg-

uide on-an InP substrate even though this measurement only gives the enhancement
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Figure 4.7: Scanning electron micrograph (top view) of a hexagonal membrane cavity
bounded by 2D photonic bandgap crystal.

Figure 4.8: Calculated field distribution for a possible whispering gallery-like mode
in a hexagonal photonic crystal cavity similar to that shown in Fig. 4.7.



Figure 4.9: Calculated electric field amplitude distribution for a cavity mode that
appears to reflect between opposing faces of the hexagon.

into the collection cone defined by the optics (numerical aperture NA = 0.6). This
spontaneous emission enhancement calculation has been described in [20] and in [91].

The emission spectra from various hexagonal membrane cavities is shown in
Fig. 4.14. Fig. 4.14a corresponds to a relatively large lattice spacing of a = 760
nm and is very similar to measured emission from unpatterned material. The peak in
the spectrum at approximately A = 1440 nm is due to the n=2 transition in the quan-
tum well (second quantized state). The n=1 transition appears as the shoulder/peak
in the emission at approximately A = 1570 nm. Cavity resonances can be seen in
Fig. 4.14b at a lattice spacing a ~ 682 nm and at a =~ 617 nm (Fig. 4.14c). For larger
lattice spacings (Fig. 4.14a, a & 760 nm) no cavity resonances are evident. For shorter
lattice spacings the resonances are barely visible at a =~ 563 nm (Fig. 4.14d) and then
disappear for subsequent lattice sizes (Fig. 4.14e-g). This result is consistent with a
cavity resonance reflecting from the photonic band gap crystal. If the reflection were
a simple Fresnel reflection from the air interface or an effective index-type Fresnel

reflection, the cavity resonance spacing would be seen to tune only with the cavity



62

optical
fibre

To detectidn system GRIN leﬁs

IR sensitive
camera

white light
@' source
microscope
objective l/

]

pump laser

optical

device under test
chopper

Figure 4.10: Micro-photoluminescence pumping setup.

Vertical emission | =
(detected) .

scattered light

S f 17

b In-plane emission

Figure 4.11: Power extraction and pumping geometry from photonic crystal thin-film
devices.
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Figure 4.12: Spectrum showing enhanced emission from hexagonal membrane cavity
measured with a 10 nm bandwidth. Peak power from the membrane device shows a
- 2.0x enhancement.
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Figure 4.13: Temperature dependence of the transition wavelength for lattice matched
Ing 53GagrAs on InP including estimated shift due to carrier confinement in the
quantum wells after Landolt [90].



64
size (prbpor,tional to a) and resonances would be expected for all lattice sizes.

The cavity resonances in Fig. 4.14b (a = 682 nm) appear with a spacing of A\ &
26.4 nm. Using a simple Fabry-Pérot approximation and a material index of n=3.4,
. this gixfes an effective cavity lehgth of d=15.4 pm. This corresponds well with the
hexagon size (vertex-to-vertex) measured by scanning electron micrograph (Fig. 4.7)
of approximately 15 pym. This suggests that the spontaneous emission peaks in
Fig. 4.12 and Fig. 4.14 may be associated with Fabry-Pérot-like modes that cross
the hexagbn as opposed to whispering gallery-like modes such as shown in Fig. 4.8.
This is not surprising since the pump beam has a Gaussian profile centered near the
center of the hexagon. As shown in section 3.7, Eq. (3.74), the relative spontaneous
emission into various modes is proportional to the overlap between the mode and the
pumping profile. For the devices with strong cavity resonances, the normalized emit-
ted power can also be seen to be larger than for detuned bandgaps (e.g. Fig. 4.14a
and ¢). The cavity resonances in Fig. 4.14 are seen to be strongest near a hole spacing
of a = 682 nm as compared to the calculated bandgap center for this structure for a
whole spacing of 500 nm as mentioned previously. However, due to strong heating in
the device, the emission peak was red shifted significantly as compared to the origi-
nal 1550 nm emission wavelength. Also because of the dramatic temperature change
the material index and structure size (due to thermal expansion) are also slightly
shifted, Which could account for the difference between the calculated design and the
measured resonances.

Fig. 4.15a-d show variations in the cavity resonances as the photonic crystal hole
size is increased with a constant lattice spacing, thereby varying r/a around the design
value 7/a = 0.31. Fig. 4.15¢ corresponds to the same device as shown in Fig. 4.14b.
As the value of 7/a is increased, a shift of the bandgap towards higher frequencies
. (shorter wavelength) is expected [44]. This shift can be seen in Fig. 4.15 where the
peak at A &~ 1650 nm in Fig. 4.15a gradually shifts to a shorter wavelength of A =~
1635 nm in Fig. 4.15d. However, Fig. 4.15 shows that the strongest peak appears
to jump to a longer wavelength from [ig. 4.15b to Fig. 4.15c. These are difficult to

interpret because of the strong heating effects and the discrete number of r/a values.
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Figure 4.14: Vertical spontaneous emission spectra from hexagonal membrane cavi-
ties. The lattice parameter for each spectrum is shown (in nm) to the left of each
curve decreasing from (a) to (g). The resonances only appear for lattice parameters
- where the emission is tuned to the photonic bandgap.
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Figure 4.15: Spectra for cavities with the same nominal lattice spacing but varying
the hole radius r/a. These devices correspond to a &~ 682 nm showing the strongest
resonances in Fig. 4.14. (¢) corresponds to Fig. 4.14b.
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4.4 The hexagonal disk laser

- Since their introduction in 1992 [17], microdisk lasers have attracted significant at-
tention as high-Q light sources with very strong optical confinement and small modal
| sizes. Their lasing moides approximate whispering gallery fnodes, which depend on to-
tal internal reflection at the curved boundary of the semiconductor disk. This concept
can be extended to a photonic bandgap confined structure to create a qualitatively
similar whispering gallery-like mode as shown in Fig. 4.8. One advantage in the use
of a photonic bandgap structure lies in the ability to arbitrarily reduce the cavity size
subject to the photonic lattice translation symmetry. For modes confined by total
internal reflection, the radiation loss scales approximately as the inverse of the radius
of curvature. In other words, the loss can increase rapidly as the structure size is
reduced. However, using a photonic bandgap, since modes within the bandgap are
disallowed, the loss is not directly related to the cavity size (ignoring for the moment
* the loss in the vertical direction). Therefore, the lateral confinement and the device
size can, to some extent, be decoupled.

The microcavities were optically pumped normal to the membrane using an In-
GaAs laser emittring at 980 nm focused to a spot size of approximately 15 um. The
pump laser was pulsed with 10 nsec pulses at a duty cycle of 0.3% to 0.5%. The
low duty cycle was used in order to minimize heating of the membrane, which lacks
a good thermal conduction path for heat dissipation. Note that as compared with
section 4.3, the pumping area has been increased and the !pulse width and duty cycle
significantly reduced. Luminescence from the quantum wells at A ~ 1.55 ym was
collected normal to the membrane, in the same direction as the pump in the same
way as in section 4.3 as shown in Fig. 4.11. Hexagonal photonic crystal disks similar
to the device in Fig. 4.7 showed a lasing spectrum at room temperature as shown

‘in Fig. 4.16. The lasing spectrum was centered at A ~ 1645 nm with a linewidth
measured to be less than ~ 2A(limited by the spectrometer resolution). The lasing
wavelength was signiﬁcantly red-shifted from the designed quantum well emission

peak of A = 1550 nm because of heating of the active layer by the pump laser, which
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shifted ihe gain peak towards longer wavelengths. These lasers were fabricated with
a lattice spacing of a = 640 nm. For a lasing wavelength of 1645 nm, this corresponds
to a normalized frequency of 0.389, within the photonic band gap showr_l in Fig. 4.6,
- near the bandgap center frequén’cy of 0.406. Fig. 4.16 also shows a number of side
modes, spaced by ~ 30 nm with full-width half-maximum (FWHM) linewidths of 20
nm, corresponding to a cavity quality factor Q ~ 80. However, the large number
of modes predicted for this cavity would suggest that these spectral peaks probably
correspond tb a large number of closely spaced modes that cannot be resolved because
of the spectral resolution in this measurement. It is likely that the Q of the modes
are actually much higher, but due to the large size of this cavity, are not spectrally
resolvable.

The light output versus pump power response for the laser is shown in the inset
of Fig. 4.17. Lasing threshold occurred at a peak pumping power of 66 mW. The
~ relatively high threshold required is due to the mismatch between the pumping profile
and the lasing mode, the possibly low Q and the spectral mismatch of the mode and
the gain peak for this non-optimized structure. For a whispering gallery-like mode as
shown in Fig. 4.8, the majority of the field intensity lies around the perimeter of the
cavity. However, optically pumping the device with a Gaussian beam concentrates the
peak pumping power at the center of the cavity. This poor pump to mode overlap was
experimehtally verified. Lasing occurred with a pump spot size of 15 pm; however,
when the pump spot was focused to smaller sizes (2 - 10 um), it was not possible to
reach lasing threshold even with peak pump powers up to approximately 150 mW.
The lasing mode in Fig. 4.16 does not correspond to one of the prominent equispaced
(AX = 30 nm) modal peaks but occurs between two such resonances. Below threshold,
only these regularly spaced side modes are visible with very little emission occurring
- at the lasing wavelength. This indicates that these side modes have a strong overlap
with the pump profile, giving strong spontaneous emission, but low Q so that the
lasing threshbld is not reached. This type of mode can be seen in Fig. 4.9. From the
electron micrograph Fig. 4.7, it can be seen that the two corners of the hexagon lie

‘only 4 lattice Spécings from the boundary of the patterned area (at the far left and
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far righf of the structure). At these points, a mode such as the one shown in Fig. 4.9
can suffer significant field tunneling through the thin photonic crystal region resulting
" in a reduced mode Q. This behaviour can be seen qualitatively in Fig. 4.9 at the far
left and far right corners of the hexagon. The lasing mode is a much higher Q mode,
which lowers the lasing threshold but has a relatively poor overlap with the pump.
T hese regularly spaced modes have been discussed in the previous section and in [65].

Finite difference time domain calculations have shown that the relatively large
hexagonal cavities exhibit an extremely complex modal structure including whispering
gallery-like modes (Fig. 4.8), as well as more plane-wave like modes reflecting between
opposing faces of the hexagon (Fig. 4.9). However, because the photonic crystal
has a very wide bandgap (and is thus highly reflective over a wide range), these
can all be relatively high Q modes. This suggests the possibility of using pumping
geometry to select the lasing mode (and therefore also the lasing wavelength) due
_to the differences in spatial field distribution between the modes. By adjusting the
pump beam alignment with the laser cavity, we have been able to observe an abrupt
shift of the lasing wavelength to A = 1660 nm corresponding to one of the previously
mentioned regularly spaced modes. The sub-threshold spectrum and spectra for the
same device lasing at two different wavelengths is shown in Fig. 4.18.

The narrow peaks visible in Fig. 4.18¢c appear due to a combination of the higher
spectral resolution used in this measurement and the change in pumping geometry.
As discussed in section 3.7, the relative spontaneous emission depends only on the
differences in overlap between the pumping region and the mode profile. Conceptu-
ally, the mode switching demonstrated in Fig. 4.18 may be explained schematically
aé shown in Fig. 4.19. The original lasing mode of Fig. 4.16 and Fig. 4.17 (the
same mode as Fig. 4.18b) did not appear in the sub-threshold spontaneous emission
(Fig. 4.18a). As shown in section 3.7, this is possible if the mode-pump overlap is
small but the modal Q) correspondingly high. This case is shown schematically on the
right in Fig. 4.19. The modes appearing in the spontaneous emission spectrum may
be qualitatively more like the case shown schematically on the left in Fig. 4.19. By

adjustment of the pumping area, the relative balance between overlap and () between
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Figure 4.18: Spectra from hexagonal microcavity above and below threshold showing
mode selection by changing the pump geometry. (a) Below threshold spectrum show-
ing broad peaks regularly spaced by approximately 30nm. (b) Above threshold lasing
spectrum with lasing peak appearing exactly at a minimum in the spontaneous spec-
trum. (c) Above threshold lasing spectrum after pump geometry adjustment showing
shift to lasing at a peak in the spontaneous emission spectrum. The fine structure
appears because of the higher spectral resolution used for this measurement.
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Figﬁre 4.19: Schematic of different modes and their overlap with a circular pump
region in a hexagonal planar microcavity. The light pseudo-elliptical regions represent
the field energy peaks for the modes. The dark circle represents the circular pumping
region.

the modes changes and lasing can change modes. Since the lasing mode in Fig. 4.18¢c
corresponds with a peak of the sub-threshold spontaneous emission spectra, it is likely
that this mode may have a strong overlap with the pumping area but a lower () than
the lasing mode in Fig. 4.18b. It should be noted, however, that the complexity and
- large number of the modes in this cavity preclude any conclusive discussion regarding
the relative effects of enhanced spontaneous emission into the modes and mode-pump

overlap.

4.5 Summary

In summary, we have demonstrated planar hexagonal disk lasers based on a two-
dimensional photonic band gap structure in the InP material system. Mode peaks
in the sub-threshold spontaneous emission spectra were observed only in the cases
where the photonic bandgap was tuned to overlap with the semiconductor quantum
well emission band. Lasing occurred at room temperature under pulsed pumping
conditions in spite of the poor thermal conduction path for heat removal. Different
- lasing modes in the disk were selected by adjusting the pump alignment. A relatively
high'lasing threshold was observed due to the poor overlap between the pump and
the lasing mode and the relatively high membrane temperature. Heat dissipation
could be improved by including a supporting post similar to that found in microdisk

lasers of by mounting the membrane onto a low index substrate to conserve the index
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contrasf confinement but provide a heat conduction path.

The relative effects of enhanced spontaneous emission into a mode and the lasing
threshold were seen through lasing mode switching and the subthfeshold emission
spectrﬁm. However, the interprétation of the results is difficult due to the large num-
ber of modes supported by this microcavity. Reduction of the microcavity size would
reduce the number of supported modes and may allow a more definitive interpretation

of lasing results.
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Chapter 5 Photonic bandgap defect

mode cavities

5.1 Introduction

Localized electromagnetic modes can be achieved by introducing defects within the

photonic crystal lattice. These so-called photonic crystal “defect” cavities can be con-

sidered simply as a limit in the size reduction (with correspondingly fewer modes) of

the hexagonal photonic bandgap disk microcavity discussed in chapter 4. Particularly

in the microwave regime, these have attracted considerable interest since their first

~ observation in 1991 by Yablonovitch et al. [10] and by McCall et al. [92]. However,
experimental work on optical frequency range photonic crystal defects has been hin-
dered until recently by difficulties in fabrication of such small scale structures. Optical
photonic crystal defect cavities can potentially provide a means towards very com-
pact microcavity light sources, which are necessary components for the construction
of high density integrated optical circuits [11]. The use of photonic crystals inherently
provides the flexibility to lithographically control the defect mode radiation pattern
[27] and emission wavelength through geometry.

Defects within a two-dimensional photonic bandgap crystal have been demon-
strated [93] in the millimeter range to be able to achieve a cavity-Q on the order of
10%. However, in semiconductor optical photonic crystal structures, finite hole depth
and waveguide geometry have been shown to strongly limit the possible mode con-

finement [48, 78, 80] as compared to an infinite two-dimensional crystal. Recently
Labilloy et al. [63] have observed two dimensional light confinement in a semiconduc-
tor disk structure with a cylindrical symmetry one-dimensional periodicity used for
lateral mode confinement. The spontaneous emission properties of large hexagonal

microcavity structures using two-dimensional photonic bandgap crystals for confine-
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ment héve also been previously studied [64, 65] and discussed in chapter 4. We
have recently demonstrated room temperature lasing in such structures under opti-
cal pumping [66]. Defect modes in two dimeﬁsional photonic bandgap crystals have
“been studied both numerically (éee for example [94, 95]) and experimentally in the mi-
crowave regime [92] however experimental studies of two dimensional photonic crystal
defects in the optical regime have been hampered by the nanometer-scale fabrication
required to generate these structures. However, they are of significant interest be-
cause of the extremely small modal volumes possible [27, 28, 29]. In addition to the
small modal volumes, these two-dimensional defect cavities have been theoretically
predicted [27] to be able to achieve relatively high Q > 10* if the design is prop-
erly optimized. Vuckovic et al. [96] have also shown theoretically that lasers made
in such cavities can exhibit large spontaneous emission couplings (O-factor > 0.7).
Spontaneous emission and defect mode tuning have been presented in [97]. Lasing
_in semiconductor photonic crystal defect microcavities has been demonstrated [67] at
low temperatures and at room temperature [68].

The defect cavities discussed in this chapter are air-suspended membrane struc-
tures patterned with a triangular lattice of air holes and are similar in geometry
to the larger hexagonal microcavities discussed in chapter 4. A schematic of the
air-suspended membrane microcavity structure is shown in Fig. 4.1. Fabrication fol-
lowed a similar procedure that described in section 4.2 and the process flow in shown
in Fig. 4.2. Scanning electron micrographs of a typical defect cavity device are shown
in Fig. 5.1 and Fig. 5.2 with the relevant structural parameters indicated. Similar
to the hexagonal microcavities discussed in chapter 4, the membrane epitaxy for the
defect mode devices in this chapter is shown in Table 4.1 and the photonic crystal
lattice was nominally designed for r/a ~ 0.35. Using a three-dimensional FDTD al-
~gorithm, two-dimensional electric field amplitude distributions in the slab plane and
perpendicular to the slab plane, for a defect cavity mode are shown in Fig. 5.3 (which
will be referred to as the x-mode) and Fig. 5.4 (y-mode). Due to the symmetry of
the cavity, this mode of the cavity is doubly degenerate.



Figure 5.1: Oblique angle SEM image of typical 2-dimensional photonic crystal defect
cavity fabricated in an InGaAsP semiconductor slab.

Figure 5.2: Close-up oblique angle SEM image of the 2-dimensional photonic crys-
tal defect cavity seen in Fig. 5.1. The structural parameters defining the photonic
structure are indicated.
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Figure 5.3: Two-dimensional slice through the slab showing the defect x-mode electric
field magnitude distribution with r/a ~ 0.35. A slice in the x-y plane is shown above
with the corresponding y-z plane slice through the center of the defect, below.

Figure 5.4: T'wo-dimensional slice through the slab showing the defect y-mode electric
field magnitude distribution which is degenerate with the mode in Fig. 5.3. A slice
in the x-y plane is shown above with the corresponding y-z plane slice below.
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5.2 Measurement of defect emission

The membrane microcavity was optically pumped by 10 nsec pulses at a repetition
rate of 100 kHz to 500 kHz from a semiconductor laser (A = 980 nm) focused to a spot
‘ size of approximately. 5 ,um{ Photoluminescence from the rquantum wells at A ~ 1.55
pm was collected normal to the membrane (see Fig. 4.11). The photoluminescence
was passed through a monochromator and then detected using a New Focus fem-
towatt photoreceiver similar to the configuration shown in Fig. 4.10. Fig. 5.5 shows
a comparison of the photoluminescence from a semiconductor membrane patterned
with the photonic crystal lattice (Fig. 5.5, top) and an identical photonic crystal
membrane containing a single defect (Fig. 5.5, bottom). In both cases the photonic
bandgap crystal was fabricated with a lattice spacing of a &= 591 nm and r/a ~ 0.348
measured by a scanning electron microscope. The upper plot in Fig. 5.5 shows that
there is essentially no detectable power emitted by the photonic crystal membrane
" above the noise floor. Given the sensitivity of the detection system, this corresponds
to a collected emission power of less than approximately 0.25 fW/nm. When com-
pared fo the collected emission power from a simple unpatterned membrane, this is
a reduction in the detected spontaneous emission power by more than one order of
magnitude.

The decrease in emission power can be explained by three possible effects. First,
since the photonic bandgap crystal is a relatively high surface-to-volume ratio struc-
ture, significant non-radiative recombination due to free éurfaces would be expected
and could dominate the total carrier recombination rate. The defect within the pho-
tonic crystal has a slightly lower surface-to-volume ratio thereby reducing the con-
tribution of non-radiative surface recombination. This is a serious concern in the
design of an active device since a non-radiative dominated recombination rate could
.lead to very 10%7 device efficiency. This will be discussed further in section 5.3. The
second possible effect could be a change in the spatial distribution of radiation. It is
important to 1’ecognize that this is not a measurement of total emission power, but

rather, the emission poWer into a solid angle defined by the numerical aperture of
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Figure 5.5: Comparison of photoluminescence spectra from a photonic crystal slab
and a slab with a single defect cavity with a lattice spacing of a ~ 591 nm. The
top figure shows that the emission spectrum from the crystal slab has been inhibited
below our measurement sensitivity limit. The lower figure shows the cavity resonance.
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the collection optics: In this measurement, a lens system with a numerical aperture
of NA = 0.6 was used. The perceived changes in the emission power could be the
result of a change in‘the collection efficiency and not necessarily a change in the
. emitted,poweri Theoretical simulations of these types of microcavities [27, 28, 29, 98]
have shown that the cavity mode and the emission pattern are strongly dependent
on the cavity geometry, which could in turn affect the collection efficiency. The third
possible effect contributing to the reduced emission power could be a fundamental
modification of the spontaneous emission rate because the active material emission
linewidth lies completely within the two-dimensional photonic band gap. When a
single defect is introduced into the photonic lattice, a strong emission peak is seen as
shown in the lower plot in Fig. 5.5. When the defect is pumped at a time averaged
power of 250 W, the total integrated power detected is enhanced by a factor of more
than 100x over that for the photonic crystal aloﬁe (with no defect cavity). Given the
_ difference in surface-to-volume ratio between the photonic crystal structure and the
defect microcavity, such a large change in the total integrated emission power is not
expected assuming a constant surface recombination velocity for the two cases. This
suggests that a fundamental modification of the spontaneous emission rate may be
occurring. However, as previously discussed, this could also be partially attributed to
a change in collection efficiency. The modification of the spontaneous emission rate
in the photonic' crystal slab structure (without cavity) is discussed theoretically in
chapter 6 and experimentally in chapter 7.

The defect emission peak shown in Fig. 5.5 is centered around a wavelength of
A = 1455 nm for a lattice size of a &~ 591 nm giving a normalized frequency for the
defect mode of a/A = 0.4062. This defect frequency lies very close to the calculated
bandgap center, a/\ = 0.4065 shown on the left in Fig. 5.6. The bandstructure was
- calculated using a three-dimensional FDTD algorithm similar to the results shown
in Fig. 4.6. The defect emission peak has a full width half maximum linewidth of
approximately 20 nm in Fig. 5.5. This corresponds to a cavity quality factor (Q)
approximated as A/AX s 73, which corresponds very well to a value of Q) ~ 75 from

‘numerical FDTD simulations [27]. For a structure fabricated in active material, it
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Figure 5.6: Left - calculated bandstructure for the 2-dimensional photonic crystal for
the design parameters d/a = 0.33 and r/a ~ 0.35. The band gap lies in the frequency
~ range 0.348 —0.465 with the midgap at =~ 0.4065 Right - fraction of the first Brillouin
zone which lies below the light line.

would be expected that absorption losses should reduce the measured Q as compared
to the value derived from a cold cavity calculation. This means that the spontaneous
emission linewidth in an active device is not necessarily a good measure of the cold
cavity quality factor. The correspondence between the measured values and those
predicted from é passi%/e cavity calculation can be explained by allowing for gain in
the active material. If the structure is pumped strongly enough such that significant
stimulated emission occurs, a condition can be reached where gain due to stimulated
emission helps to compensate the absorption loss. For an active cavity below the

lasing threshold, the emission linewidth can be written as follows [75].

Al/mode = Al/l/g <1 — _Gﬂ) (51)
Go

where Avp,e4e is the measured emission mode linewidth, Avy/, is the cold cavity
linewidth, G0 is a parameter proportional to the population inversion (N — (g2/91) Ni),

which is related to the material gain (or loss) and G is a parameter proportional to
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the cavify losses (w/@). Eq. (5.1) can be interpreted as meaning that for a cavity
with absorption, G0 < 0, and the measured mode linewidth is larger than the cavity
" linewidth. For the case of G,,0 > 0 the lasing fhreshold is reached as Gmo — Go and
the HneWidth narrows. The Cold‘ cavity linewidth is only equal to the measured emis-
sion linewidth when G,,,0 = 0, which implies that the inversion is zero and the active
material exhibits neither net gain nor net loss (transparency). Furthermore, since Gy
is proportional to cavity losses (and thus inversely proportional to Q), the slope of
the linewidth versus pump power (and thus carrier density) curve is proportional to
the cavity Q. If the measured Q ~ A\/AM is small, then the deviation from G, = 0
can be larger and still give a reasonéble estimate of the actual cavity Q. Conversely, if
the Q is large, then the deviation from G,,0 = 0 must be small in order to get a good
measure of cavity Q. In this case, the measured linewidth corresponds to a relatively
low Q of approximately 80 so that a relatively sldw change in linewidth versus carrier
~density is expected. The emission mode linewidth varied by less than & 3 nm around
approximately 20 nm while sweeping the time-averaged pumping power from 200 W
up to 500 pW. This amount of linewidth change is not significant due to the 5 nm
spectral resolution used for this measurement. Stimulated emission in these devices
is discussed further in section 5.3.

The relatively low estimated quality factor from these cavities are the result of
non—optirﬁized device design. Numerical simulations of the defect cavity Q [27] have
shown that the Q depends on the relative position of the bandgap to the light line.
This positioning depends on the photonic crystal r/a parameter as well as a parameter
that can be considered as characterizing the finite extent of the lattice in the third
dimension, d/a (where d is the waveguide thickness). Physically, the dependence of
the Q on the vertical confinement can be understood simply by a careful examination
.of the band structure. For defects within a photonic band gap at higher frequencies, a
larger portion of the first Brillouin zone lies above the light line, as shown qualitatively
in Fig. 5.6 (right). This plot shows the fraction of the first Brillouin zone confined
below the light line for the slab waveguide as a function of normalized frequency.

This can be interpreted as the fraction of solid angle in three dimensions, which
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can be affected by the two dimensional photonic lattice. Only emission into this
affected solid angle can be strongly modified. For defects within a photonic band
gap at lower frequencies, the portion of the first Brillouin zone within the band gap
andv below the light line increases. Therefore, the effective Q can be increased by
moving the defect frequency to lower frequencies. This qualitatively indicates that
for a giveh photonic band gap width, stronger confinement and therefore larger cavity
quality factors would be expected for lower mid-gap frequencies (and hence also defect
frequencieé assuming that the defect remains near the mid-gap position). This type
of relatively simple confinement estimate can be used as a convenient design tool to
optimize the cavity geometric parameters.

This type of behavior agrees qualitatively with the experimentally measured linewidths
for different devices. The position of the bandgap relative to the light line is inversely
related to the parameter d/a as shown in Fig. 5’.7. Therefore, this parameter can be
~used to control the cavity Q. Measurements on defects fabricated with r/a = 0.35 and
d/a = 0.43 result in a bandgap at slightly lower frequencies and, therefore, deeper
below in-plane light line, with a calculated defect frequency of a/\ = 0.34. These de-
vices show narrower linewidths of AXA = 7 nm and therefore a correspondingly larger
Q of ~ 250 in agreement with FDTD numerical simulations. Compare this with the
emission spectrum shown in figure 5.5 where a cavity Q of approximately \/AX = 73
was observed for a normalized defect frequency of a/\ = 0.41. These higher Q defect

microcavities are discussed in greater detail in section 5.5.

5.3 Defect tuning and stimulated emission

Photonic crystal defect cavities provide an inherent flexibility for control of the cav-
ity emission through lithographic changes in the geometry [89]. Figure 5.8 shows the
spontaneous emission spectra for photonic crystal defect cavities fabricated with dif-
ferent lattice spacings from a = 960 nm to a = 512 nm. The dark gray shaded regions
represent the range of 1% around the numerically estimated defect frequency in this

structure of a/\ =~ 0.407. The lighter gray shaded region represents the approximate
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Figure 5.8: Defect cavity spontaneous emission tuning. The normalized spontaneous
‘emission spectrum for defect cavities based on photonic crystals with different lattice
spacings are shown with the lattice spacing ‘a’ given to the left of each plot. The
dark gray bands indicate the FDTD estimated defect frequency a/\ ~ 0.407 £ 1%.
The light gray bands indicate the estimated bandgap edge positions.
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range fdr normalized frequencies where numerical simulations predict a photonic band
gap (from 0.348 to 0.465 for d/a = 0.33 and r/a = 0.35). This particular choice of
parameters is only accurate for one of the devices shown in figure 5.8 Lsincve it has been
. ShOWn fhat for this geometry, there can be a noticeable shift in the bandgap towards
higher frequencies as the lattice spacing a increases relative to the fixed waveguide slab
thickness' d. However, systematic fabrication errors act to negate this bandgap shift
which coincidentally results in the predicted defect frequency being approximately
correct for the resonances shown in Fig. 5.8. The bandgap shift and the source and
type of systematic fabrication errors are discussed in section 5.4.

When' the photonic crystal lattice size is tuned so that the band gap occurs
at longer wavelengths than the spontaneous emission bandwidth of the material
(Fig. 5.8a) a broad spontaneous emission spectrum similar to an unpatterned sample
is seen (compare with the unpatterned material spectrum from Fig. 4.12). Fig. 5.8b-d
~ show cases where the band gap frequency is tuned to longer wavelengths than the
emission bandwidth as in Fig. 5.8a. However, the spectrum is modified from the
smooth spontaneous emission peak characteristic of the unpatterned material. These
spectral features are caused by the modes of the photonic crystal bands (the ‘con-
duction’ band modes) which slightly modify the spontaneous emission. Peaks in the
spectra corresponding to the different individual conduction bands are not clearly
separated in this case because the emission is angle-integrated around the in-plane
k = 0 point over the solid angle defined by the collection optics with a numerical
aperture of 0.60. Angle resolved spontaneous emission spectra from photonic crystal
slabs have been used to experimentally map portions of the photon bandstructure by
Boroditsky et al. [99].

When the photonic band gap and the defect mode frequency are well aligned with
- the emission bandwidth in Fig. 5.8e, a narrow emission peak can be seen at A ~ 1.58
pm with most of the emission at other wavelength being suppressed. The defect mode
frequency can be tuned across the emission bandwidth while maintaining a similar
cavity quality factor as well as emission power. Fig. 5.8f shows a defect mode peak

“tuned to _shortervwavelength at A = 1.46 um. This represents a tuning of over 120 nm
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while niaintaining similar emission power and linewidth. It should be noted that the
apparent higher signal-to-noise in Fig. 5.8f is not due to larger signal power from this
defect as compared to Fig. 5.8e. The signal-td—noise change is due sifnply to a change
_in the Signal bandwidth, Which results in reduced noise. When the defect mode is
further tuned to wavelengths shorter than the emission bandwidth, no significant
spectral features are observed (Fig. 5.8g,h). Emission into the photonic bands below
the band gap (the ‘valence’ band modes) is not observed because these modes lie
completely below the light line and are thus confined within the membrane plane
[28, 29]. The defect mode in Fig. 5.8¢g is also not observed because it lies off the
emission band as seen in Fig. 5.8a.

The light output from the defect microcavity versus pumping power is shown in
Fig. 5.9 for the device whose spontaneous emission spectrum is given in Fig. 5.8e.
The expanded view (Fig. 5.9 inset, lower right) ’shows a gradual but clear change in
~ the slope at an average pump power of approximately 30 yW. This change in slope is
due to a change in the radiative efficiency as the pump power is increased due to the
onset of stimulated emission. At higher pump powers, starting at approximately 750
W, the slope efficiency gradually decreases until 1000 pW where the output power
actually begins to decrease. This reduction in radiative efficiency is attributed to the
changing active layer temperature and carrier density as the pump power is increased.
The highér temperature leads to an increase in point defect and surface non-radiative
recombination due to the increased carrier diffusion coefficient. In addition, and
probably more importantly, the larger carrier density increases the contribution of
Auger recombination, which is significant in long wavelength materials such as InP
and increases as the cube of the carrier density as well as increasing exponentially
with temperature. At high pumping powers, these non-radiative recombination terms
- dominate the total recombination rate resulting in decreasing output power versus
increasing pump power.

This first evidence of stimulated emission at room temperature is significant for
two reasons. As discussed at the beginning of section 5.2, the strong reduction in

spontaneous emission power can be due to both non-radiative processes dominating
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Figure 5.9: Defect cavity light output versus average pump power plot. The inset
figure shows an expanded plot of the light output at low pump powers (bottom). The
light output shows a clear change in slope efficiency indicating the onset of stimulated
emission at approximately P,,, = 30 uW. Above 1 mW, the roll-off in the radiative
efficiency can be seen as the device begins to overheat.
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the total carrier recombination and also a fundamental modification of the sponta-
neous emission rate. The first case would make useful light emitting devices very
difficult because of the low radiative efﬁciency. Fig. 5.9 shows that the non-radiative
_ proéesses, which tend to increase with increasing pumping power, do not dominate
in the defect microcavity until well past the threshold for the onset of stimulated
emission. The observation of stimulated emission is also significant with regards to
the measurement of linewidth and its relation to the cavity Q. Eq. (5.1) showed that
the measured linewidth corresponds to the actual cavity Q, only when the inversion
is zero (no net gain or loss) which occurs at the onset of stimulated emission. This
means that a good estimate of the cavity linewidth can be made by performing the
emission linewidth measurement near the stimulated emission threshold point. Al-
though evidence for stimulated emission was seen, lasing was not achieved with these
devices. This is likely due to the relatively low Q) for these microcavities as well as

~ the expected fast carrier loss to surface recombination.

5.4 Proximity effect in electron beam lithography

As previously mentioned, there is a systematic shift of the bandgap energy due to
the change in the d/a parameter since the slab thickness is constant for all devices,
determined by the material epitaxy. Assuming constant r/a, the bandgap shift versus
d/a is shown in Fig. 5.7 along with the associated shift of the defect frequency.
However, examination of the tuning spectra shown in Fig. 5.8 shows that for Fig. 5.8e
and Fig. 5.8f, the defect mode frequency occurs at the same normalized frequency
whereas from Fig. 5.7 an approximately +3% shift in the normalized frequency would
be expected. For a lattice spacing of 591 nm (Fig. 5.8f) this would result in a 43 nm
~ shift to shorter wavelength. The deviation of the measured emission wavelength from
the prediction of Fig. 5.7 as due to a systematic error in the fabrication process.
Careful examination of the devices by scanning electron microscope reveals that
there is a small but systematic decrease in the parameter r/a with increasing lattice

‘spacing a as shown in Fig. 5.10, which also leads to a shift in the bandgap energy.



90
This océurs during the electron beam lithography process. Since the electron beam
is charged, there can be an electrostatic size-dependent proximity effect during the
electron beam exposure. The charged electron beam interacts with residual charge
left ‘in the photoresist after exposure resulting in size dependent exposure of the resist
for a constant exposure beam current. Size dependent exposure also results from
electron backscattering from the substrate as well as secondary electron emission
which can affect other exposures as far as 50 pm away [100]. This proximity effect
can be corrected during the beam writing process but compensation can become
quite complex depending on the minimum feature size and pattern geometry (see
for example {101, 102, 103, 104]). Correction of the proximity effect can have an
important effect, not only as a function of lattice size as shown in Fig. 5.10, but
also within one device. Holes near the defect cavity experience a different local
environment and therefore a different proximity shift in the lithography than holes
~away from the cavity. Therefore there can be a systematic shift in hole sizes within

one photonic crystal pattern due to the proximity effect. -

5.5 Defect low temperature lasing

As shown in Fig. 5.6, the possible confinement from the thin slab structure increases at
lower normalized frequencies because a larger fraction of the two-dimensional Brillouin
zone falls below the light line. The defect cavity Q can therefore be increased as
discussed in 5.2 by increasing the slab thickness since this results in a shift of the
bandgap to lower frequencies shown in Fig. 5.7. The epitaxial structure used for the
lziser structure is shown in Table 5.1 consisting of 4 slightly compressively strained
quaternary quantum wells with emission designed for 1.55 ym emission. The strained
_quantum wells couple primarily with TE modes (electric field in the plane of the slab)
which corresponds with the defect cavity mode polarization. Fabrication followed
essentially the same procedure as previous devices and is schematically shown in
Fig. 4.2.

A top view scanning electron micrograph of the defect cavity with the nearest
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Figure 5.10: Measured devices parameters for sample Ortel-4 by scanning electron
microscope. Due to electron beam proximity effects during lithography, there is a
increase in the relative hole radius as the hole spacing is decreased (increasing device
number).
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62 nm InGaAsP

9 nm InGaAsP QW
20 nm InGaAsP barrier

9 nm InGaAsP QW
20 nm InGaAsP barrier

9 nm InGaAsP QW
20 nm InGaAsP barrier

(Eg=1.22 um)

9 nm InGaAsP QW
(+.85 % compressive strain)
62 nm InGaAsP

| (Eg=1.22um)
634 nm { 664 nm InP buffer layer

220 nm

20 nm InGaAs etch stop

Table 5.1: Modified InGaAsP epitaxy for higher Q and lasing devices.

neighbour holes in the x-direction enlarged to split the defect mode degeneracy is
shown ’in Fig. 5.11. The defect cavity was formed within a triangular lattice of air
holes photonic crystal with a lattice size of a = 515 nm and r/a ~ 0.35. The measured
hole radius was r = 180 nm and the two enlarged nearest neighbour holes have radii of
' = 240 nm. Three-dimensional FDTD calculations for this geometry [67] assuming
a material index of refraction of n = 3.4, predict a Q of 250 and a normalized defect
mode frequency (for the degeneracy split structure) of a/ A~ 0.34. Following [29] and

[27], the effective modal volume for the defect cavity mode can be defined as

i e R) | B ar

T (cn[E@[)

(5.2)

Using this definition, the degeneracy split defect mode in this microcavity has an effec-
tive modal volume of 2.5 times a cubic half-wavelength in the material [2.5 (\/ 2n)3].

For the lattice size shown in Fig. 5.11 and a mode frequency of 0.34, this corresponds
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Figure 5.11: Top view of defect cavity with the two nearest neighbour holes in the
x-direction enlarged (with radius ') to split the mode degeneracy. The lattice size a
= 515 nm and the hole radius of ~ 180 nm (r/a = 0.35).

to a modal volume of 0.03 pm?.

The laser cavity was optically pumped using a similar configuration used previ-
ously and shown in Fig. 4.10. The sample was mounted in a continuous flow helium
cryostat allowing the substrate temperature to be controlled down to approximately
4 K. The complete microcavity device consisted of eight periods of the photonic lat-
tice surrounding the defect region in a hexagonal domain similar to that shown in
Fig. 5.1. A pump wavelength of 830 nm was used, focused to a spot size of ~ 3 pm.
The pump was pulsed at a frequency of 4 MHz with a pulse length of 10 nsec. The
emission spectrum for this defect cavity is shown in Fig. 5.12. Above threshold. the
lasing spectrum, centered at 1504 nm, has a linewidth of less than 2 A, limited by

the spectral resolution of the measurement. This lasing wavelength corresponds very
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well with the FDTD predictions (a/\ = 0.34, a = 515 nm — X ~ 1515 nm). The
spontaneous emission spectrum below threshold in Fig. 5.12 (inset) shows a narrow
 small peak corresponding to the defect emission superimposed on a wider, shorter
,'Waveleﬁgth peak centered at 1460 nm. This wider peak corresponds to the material
emission peak (blue-shifted from the design wavelength of 1550 nm due to the lowered
sample teinperature T = 143 K) and comes from the unprocessed areas surrounding
the photonic structure and excited by the tails of the pump beam. This behaviour
was not observed previously in Fig. 5.5 and Fig. 5.8. This occurs because the total
patterned region in the lasing cavities covers 8 lattice periods around the defect region
corresponding to a total area approximately 8 pm in diameter, which is only slightly
larger than the 3 mum pump spot size. In the previous case, the pump was focused
to a similar 5 pm pump spot, however the total patterned region covered a square
area approximately 20 pum across. The complete pump beam was therefore contained
~ within the patterned area so that no excitation of unpatterned material occurred.

The light output versus incident pump light (L-L) is shown in Fig. 5.13. The
collected light power at the lasing wavelength was measured and shows the lasing
threshold at an incident pump power of 6.75 mW. The relatively large threshold
pump power is due to a relatively low Q (although significantly increased over the
previous devices) as well as the poor pumping efficiency. For the 3 pm pump spot, the
total pumping atea is greater than 30 times larger than the defect mode. The detailed
structure in the L-L plot near the threshold point has not been conclusively explained
but may be due to the combined effects of changing surface and Auger recombination
as the pump power is increased (increasing the membrane temperature) along with

the changing radiative emission rate due to stimulated emission.

5.6 Summary

The promise of photonic integrated circuits will require the development of very com-
pact, efficient and versatile light' sources. Defects within a photonic bandgap crystal

have frequently been suggested as a possible solution. Narrow linewidth emission
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Figure 5.12: Emission spectrum from the degeneracy split defect cavity lasing at 1504
. nm with a linewidth < 2 A(resolution limited). The inset figure shows the emission
spectrum well below threshold. .
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Figure 5.13: Light butput versus pumping power at the laser wavelength for the
degeneracy split defect cavity. The sample was cooled to 143 K and pumped with 10
nsec pulses. '
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from an isolated defect in a two-dimensional photonic band gap crystal in the InP
material system. This type of cavity has a small modal volume [27] of ~ 2.5 (%)3
The effect of the photonic crystal defect resiﬂts in a narrow sponténe(_)us emission
peak corresponding to the cavity response. Stimulated emission into the defect mode
is demonstrated at room temperature under pulsed optical pumping conditions and
the mode 4frequency is tuned lithographically across the material emission bandwidth.
The fundamental defect mode degeneracy can be split by adjusting the cavity geom-
etry, leaviﬁg a truly single mode microcavity. The cavity Q can also be adjusted by
moving the defect mode to lower frequencies. Pulsed lasing under optical pumping
at low temperature (143 K) has been demonstrated. Room temperature continuous
lasing will require a higher Q cavity design as well as improved heat sinking providing

a thermal conduction path for heat removal [16] from the microcavity.
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Chapter 6 Spontaneous emission from

2D photon_ic cryStal slabs

6.1 Introduction

Spontaneous emission from a radiating system can be significantly increased [14] or
inhibited [15] in a resonant cavity. Photonic band gap (PBG) structures in light-
emitting materials have been predicted to be able to exhibit enhanced or inhibited
spontaneous emission [7, 8]. The possibility of control over the fundamental sponta-
neous emission properties has resulted in a great deal of recent interest. One possible

application of photonic crystals is the light emitting diode (LED). The external effi-
ciency of LEDs is typically relatively low, primarily due to low extraction efliciency of
the spontaneously emitted radiation due to total internal reflection. Many approaéhes
have been proposed to increase this extraction efficiency by enlarging the photon es-
cape cone or using photon recycling [105]. The fundamental spontaneous emission
properties of the device can also be modified, for example by use of a Fabry-Pérot
microcavity [106]. However, these resonant cavity light-emitting diodes only modify
the emission in a narrow spectral range.

In this chapter we show that the in-plane bandgap for a finite two-dimensional
photonic crystal slab can be used to achieve an inhibition in the spontaneous emission
rate by an order of magnitude even though it lacks a complete photonic bandgap.
The effect of dipole position in the photonic lattice on the emission rate is briefly
_considered. The cdmbination of changes in the emission pattern and the emission

rate can result in an enhancement or inhibition of the external quantum efficiency.
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Figure 6.1: Schematic of the air-suspended triangular lattice photonic crystal slab
structure.

6.2 Modified spontaneous emission results

6.2.1 Dipole position dependence

Recently [77], a new approach to modify the spontaneous emission and significantly
increase the extraction efficiency in LEDs over a wide frequency range by using a thin
slab of two-dimensional photonic crystal was proposed as shown in Fig. 6.1. However,
only the modification to the emission pattern was considered. In a light emitting
structure with residual non-radiative recombination, it is also necessary to consider
the radiation rate. In the case where the extraction efficiency is strongly enhanced,
if the radiation rate is correspondingly inhibited, the resulting net extracted power
may be enhanced or reduced depending on the associated non-radiative recombination
rate. It is in fact possible for the net extracted/detected power to be unchanged if
the extraction efficiency change is balanced by the change in the radiative efficiency.

Spontaneous emission in a two-dimensional photonic bandgap structure has been
theoretically examined for a honeycomb structure [47] as well as the 2D triangular
array of holes [46]. However, these previous analysis of emission rate suppression
in photonic crystals only estimate the fraction of solid angle that can be affected
by the photonic crystal. Essentially, the spontaneous emission rate modification

was estimated using an essentially two-dimensional approximation. Clearly, accu-
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rate modeling of the spontaneous emission rate must take into account the fully
three-dimensional nature of the problem. A more precise evaluation requires a self-
" consistent analysis that takes into account the interaction between the light source
.andrthé,photonic bands as well as finite size of the crystal in the third dimension.
Photonic bandgap materials can completely suppress spontaneous emission within
the gap région [7]. However, the radiation dynamics depend on the local density of
states within the region containing radiating species rather than the total free space
density of states outside the crystal. In essence, the spatial alignment between the
optical states and the radiating species must be taken into account. Typically, Purcell
enhancement factors are calculated assuming that the radiating species is spatially
located at the maximum field point (see for example [99]). For the case of a micro-
cavity, this may be a good approximation since the microcavity localizes the field to
a small volume where the radiating species is located. However, using the spatial
~alignment of the modes with the radiators provides a means to completely control
the radiation (inhibited or enhanced) within a finite photonic structure [107], which,
being finite, cannot have a complete bandgap.

A finite-difference time-domain method for direct calculation of the spontaneous
emission rate in an arbitrary dielectric structure has been proposed and demonstrated
[20]. This method depends on the correlation between the fully quantum mechanical
spontanedus emission rate calculation and a classically radiating dipole as described
in section 2.3 and in [108]. Recently, Hwang et al. [109] have independently developed
similar calculations of spontaneous emission rate in various photonic crystal struc-
tures using a similar finite-difference time-domain method. Although this method is
génerally useful in being able to deal with arbitrary structures and inherently includes
all localized, guided, and extended modes, careful consideration must be given to the

-position dependence of the emission rate on the dipole source location. It is clear
that the choice of regions for the calculation of the local density of states can have
a significant effect on the resulting calculated radiation rate due to the non-uniform
spatial distribution of the photonic crystal band modes [44]. Therefore, the single

point dinIe method used by Hwang et al. [109] to calculate the spontaneous emis-
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Figure 6.2: Schematic indicating the calculated dipole locations in the triangular lat-
tice. Points “a” and “c” are high symmetry points in the dielectric region (dielectric-
like). Point “b” is a high symmetry air-like point.

0 ’ 0.2 0.4 0.6 0.8
a/\

Figure 6.3: Position dependence of the spontaneous emission rate using a single
point dipole at different locations in the photonic crystal structure. Spontaneous
emission rate spectrum relative to the free space rate for the different dipole locations
corresponding to Fig. 6.2
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sion rate will depend on the choice of dipole position. To overcome this difficulty,
an average over possible dipole positions is necessary to determine the spontaneous
" emission properties of the structure as a whole.

Fig.’ 6.3 shows an example of single dipole calculated spontaneous emission rates
at various dipole positions for a triangular lattice of holes with r/a = 0.32 in a slab
with thickness d/a = 0.375. Fig. 6.2 shows a schematic of the structure with three
dipole locations indicated which correspond to the three spectra shown in Fig. 6.3.
As expectéd, the emission rate spectrum can clearly be changed dramatically by the
choice of dipole position within the photonic lattice. In all three cases, the bandgap
region can be seen approximately in the frequency range 0.27 to 0.36. The strong
coupling to the upper band edge seen in Fig. 6.3b demonstrates the nature of this
band, which is spatially located primarily in the air regions [44] where the dipole
(Fig. 6.2) is located (hence the terminology “air band”). Fig. 6.3 shows that the
_structure could exhibit strongly (> 10x) enhancement of the spontaneous emission
rate at certain frequencies, however, the radiator location must be considered. For
example, Fig. 6.3a shows no peaks above 5x enhancement.

It has been shown previously in section 2.3 and in [20, 7108, 21] that the classical
dipole radiation power in a finite-difference time-domain calculation can be used to

determine the quantum mechanical spontaneous lifetime as

[ Pcav

cav
] _ [P } _ Teac
vac VAC ;
P quantum P classical Teav

where “cav” denotes values for the cavity structure and “vac” denotes values calcu-
lated for a vacuum. We use a fully vectorial three-dimensional calculation with a
perfectly matched layer (PML) absorbing boundary conditions [52] to directly solve
the vector Maxwell’é equations (Eq. (2.27)). A large number of point dipoles (typi-
cally 1000 - 6000 dipoles were used) with random polarization, Lorentzian lineshape
and Poisson distributed in time are used as radiation sources in order to average out
dependencies on pol_aﬂzation and position within the lattice. Only dipoles polarized

in the plane of the slab are considered since this corresponds to emission from semi-
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" Figure 6.4: Calculated in-plane bandstructure with d/a = 0.33 and r/a = 0.35 for
TE-like modes. The shaded region corresponds to the unguided (extended) modes.

conductor quantum wells (primarily TE-like). The dipole sources are also limited to
the regions of high dielectric constant so that there are no radiation sources in the
air regions. The single dipole calculations used broadband Gaussian pulsé excitation
analyzed by discrete Fourier transformation, which has been shown to be more com-
putationally efﬁcient in an FDTD algorithm [50] than the fast Fourier transform. The
multiple dipole-averaged simulations used narrow band Lorentzian lineshape dipoles
and the total time-averaged power flow. This is equivalent to averaging the frequency
résponse over the dipole homogeneous linewidth modeled as the Lorentzian linewidth
of the dipole sources.

Due to computational time restrictions, a small 6 x 6 photonic crystal unit cell
domain was used. For comparison, an 8 x 8 cell domain was calculated and these
results were not qualitatively different from the smaller calculations. The structure
studied here is shown schematically in Fig. 6.1. We define the extraction efficiency,

Nest, a5 the ratio of power through the top surface of the computational domain (+z)



103
to the ‘ﬁotal_ power. - We also introduce a detection efficiency, 7g.;, to characterize
the power, which might be practically collected normal to the slab. This is defined
as the power emitted through a square surface parallel to the slab‘where the sides
of the Square subtend a half-angle of ~ 52° (a collection cone with this half-angle

corresponds to a numerical aperture of NA ~ 0.8).

6.2.2 Fixed d/a structure

We first consider a photonic crystal slab structure with fixed waveguide thickness
to lattice parameter ratio d/a. This is the case that is normally considered experi-
mentally, for example, in reference [99]. Since dimensions in Maxwell’s equations are
scalable [44], this is the computationally simplest case since the structure geometric
parameters have constant relative sizes. The bandstructure for in-plane wavevectors
for a structure with a slab thickness of d/a = 0.33 and hole radii of r/a = 0.35,
* is shown in Fig. 6.4 using a finite-difference time-domain method similar to that of
Painter et al. [27]. Fig. Fig. 6.5 shows the correspondiné spontaneous emission cal-
culation results. The left plot shows the spontaneous emission rate (T'y,) relative to
the value in free space. At low frequencies (a/A < 0.2), the spontaneous emission rate
is similar to the free-space value (I'y,/T'g ~ 1). Since the wavelength is much larger
than the lattice spacing, an effective index approximation can be used, which implies
that the emission rate will scale roughly as the effective index. This means that the
effective medium for emitters is approximately the spatial average of the index of
refraction. Since the membrane is thin and relatively porous on a scale much smaller
than the wavelength, this spatial average will be close to the index of refraction for
air (ngy = 1). The emission rate within the in-plane band gap (a/\ = 0.3 — 0.4)
shows avsuppression’ by up to 3 times. Note that this inhibition may be limited by
‘the small size of the calculation (6 lattice period domain). Above the upper band
edge, there is a strong enhancement of the emission rate up to 8 times the free space
rate, corresponding to efnission into the photonic conduction bands. Broad peaks

in the spontaneous ‘emission rate in the frequency range 0.42 — 0.57 and centered
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" Figure 6.5: Spontaneous emission from a photonic crystal slab with d/a constant.
Left - spontaneous emission rate normalized to the free space rate (logarithmic scale).
Center- extraction (o) and detection (A) efficiencies as defined in the text. The values
for an unpatterned slab are indicated by the dotted lines. Right - Detection (A) and
extraction (o) rates (logarithmic scale) from a photonic crystal slab normalized to the
rate for free space.

around 0.65 Correspond respectively to the first two guided modes of the conduction
band in Fig. 6.4 and the band that lies just below the light line in the XJ direction
in Fig. 6.4. Compared with the single dipole cases shown in Fig. 6.3, the enhanced
emission into the conduction bands exhibits a broad and relatively uniform enhance-
ment over all conduction band frequencies shown in Fig. 6.5. This demonstrates the
spatial averaging effect in the local density of states when all possible lattice positions
are considered.

The extraction and detection efficiencies et and 7ge; are shown in Fig. 6.5 (center).
The total extraction efficiency rises to nearly 50% (complete extraction since the
extraction efficiency was deﬁned in only the positive z-direction) in the bandgap

region along with an increase in the detection efficiency (~ 41%). This agrees quite
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well Wiﬁh the results of Fan et al. [77] and is attributed to the photonic crystal
inhibiting guided modes within ’the slab. The relatively high detection efficiency
indicates that the vertical emission is primarily in the normal direction as opposed to
at a.ucut’e, angles with the slab plane. However, for frequencies above the band edge,
both the extraction and detection efficiencies are significantly lower (at approximately
a/\ = 0.5, n = 25% and 10% respectively). An increase in the extraction efficiency
also occurs for frequencies above ~ 0.65 corresponding to crossing the light line to
the unguided modes.

Although there are regions of nearly complete light extraction (e.g., within the
bandgap region), in practice, this is not necessarily useful because of the greatly re-
duced emission rate at these frequencies. In a medium with finite non-radiative decay
processes, the reduced emission rate can result in a corresponding reduction in the
internal quantum (radiative) efficiency (9yaa = Iraa/ (T'raa + Inr)). If, for example a
~ material has a 7,q¢ = 90% in bulk form, the 3x reduction in the spontaneous emis-

sion rate results in 7,49 being reduced to about 75% asstuming a fixed non-radiative
rate. The loss of radiative efficiency increases rapidly with decreasing spontaneous
emission rate as well as with decreasing unmodified efﬁcienéy as shown in Fig. 6.6. A
better comparison may be made by considering the emission rate through a surface
of interest, the “extraction rate’ ey for the infinite x-y plane in the 4z direction or
the “detection rate’ [4e; for the previously defined detection surface. This is shown
in Fig. 6.5 (right) normalized to the corresponding rates for free space. The extrac-
tion and detection rate curves are very similar owing to the similarity in 7., and
Naet- Above the bandgap, the emission rate is enhanced enough to compensate for
the lower extraction efficiency resulting in an up to ~ 10x enhancement of I'.;; and
Lget at a/A ~ 0.53 and at a/A ~ 0.68. In the bandgap frequency region and below,
- the extraction rate is much smaller than the free space rate. In the bandgap region,
although the n..; is high, the corresponding emission rate I'y, is low. The extrac-
tion rate at the bandgap center (a/A\ ~ 0.35) shows that nearly perfect extraction
efficiency is balanced by the inhibited emission rate such that the extraction rate

remains nearly equal to the value calculated for free space radiation.
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Figure 6.6: Effective radiative efficiency 7,44 versus origiﬁal bulk radiative efficiency
n®,4 for different inhibition factors (indicated in the figure) showing a rapid drop in
efficiency when the radiation is inhibited.
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Figure 6.7: Variation in band-edge frequencies as a function of waveguide thickness
d/a for a triangular lattice of holes with for constant r/a = 0.35 calculated using a
three dimensional finite-difference time-domain method. The solid lines and circles are

the calculated band edges. The dashed line represents the line of constant wavelength
with d/A = 0.1

6.2.3 Fixed d/\ structure

A structure consisting of a slab of photonic crystal in which the emission wavelength
(\) and slab thickness (d) are fixed and the lattice spacing (a) is varied is of interest
due to the ease with which the lattice spacing can be easily varied lithographically
[89] to tune the photonic crystal response. In this case for increasing normalized
frequency (a/)\), the waveguide thickness d/a decreases. This results in a shift of
the bandgap towards higher frequencies [27] as shown in Fig. 6.7. Since experimen-
tal measurements [85, 99, 110] are typically under conditions of constant thickness
(d/)) the calculations [77, 109] for constant d/a from the previous section cannot
be directly compared. The emission rate, extraction and detection efficiencies, and

‘the detection rate for the constant d/ ) thickness are shown in Fig. 6.8. In this case
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the emission rates have been normalized to the corresponding slab waveguide rate
instead of the free space rate. The strong suppression of the spontaneous emission
rate by approximately 10x in the bandgap frequency range is again seen with the

corresp’onding sharp increase in both the extraction and detection efficiencies such

that nearly all emitted photons are extracted normal to the slab. However, above the

bandgap i‘egion, there is no dramatic enhancement of I';, and for a/A > 0.5, ', is in
fact inhibited by approximately 2x. Since the waveguide to wavelength ratio (d/\) is

fixed, the aforementioned bandgap shift upwards in frequency results in the conduc-

tion bands moving towards the light line. The vertical field confinement is thereby
reduced, decreasing the enhancement of I'y, (Fig. 6.8 left). Also, the reduced vertical

confinement by the slab index guiding result in a slightly higher extraction and detec-

tion efficiency into the conduction bands (Fig. 6.8 (center) ~ 40% and ~ 15% versus
25% and 10% in the previous case). In this case, although the extraction efficiency

~ into the conduction bands is relatively high, the corresponding detection efficiency is
approximately the same at the infinite slab efficiency. This implies that in the con-
duction bands, the radiation that is extracted in the half-plane (+z direction) occurs
primarily at acute angles with the slab plane. T hereforeb, this emission cannot be
usefully collected from the slab-normal direction (detection efficiency).

The extraction rate for d/)\ fixed is shown in Fig. 6.8 (right). Below the upper
band edgé, I'.z¢ Temains similar to the slab extraction rate. This suggests that the
inhibition that occurs within the bandgap is mostly due to the fraction of solid angle
affected by the photonic structure. This is not surprising since away from the band
edge, the lower band in Fig. 6.4 is only slightly modified from the infinite slab dis-
pérsion (represented by the light line). I'y;; is directly related to the coupling of the
dipoles to the unguided radiation modes so that the inhibition of guided modes does

.not strongly affect the extraction rate. Above the bandgap, there is a combination of
enhanced extraction efficiency and only slight inhibition of I'y, resulting in a ~ 5x
enhancement of the extraction rate. For a medium with non-radiative decay, similar
behavior would be expected from a measurement of emitted power with increased

power output above the upper band edge in the +z direction. Previously, sponta-



109

0.7

0.6

0.5

0.4

a/?»O

0.3

0.2

0.1 ............... 01t 1 0.1 ..............

ext 0

Figure 6.8: Power extraction from a photonic crystal slab with d/X constant. Left
- spontaneous emission rate (logarithmic scale) normalized to the value in a slab
waveguide. Center - extraction (o) and detection (A) efficiencies. The corresponding
values for an unpatterned slab are indicated by dotted lines. Right - Extraction
rate (logarithmic scale) from a photonic crystal slab normalized to the rate for an
unpatterned slab with the same thickness d/\.



110
neous emission power measurements from similar triangular lattice photonic crystal
slabs have been presented [85, 99] that showed strongly enhanced power extraction
(~ 10x) above the upper band edge. This qualitative behavior for a triangular lat-
“tice of air holes corresponds well with Fig. 6.8 (right), Which’shows a large power
enhancement for frequencies above the bandgap over those below or within the gap
region. Strong enhancement of the extraction efficiency from a hexagonal lattice of
semiconductor microcolumns has also been observed by Baba et al. [110] but without
a correspo.nding enhancement of the power extraction. For this geometry, there was
no measurable Changé in the spontaneous lifetime [110]. However, the power extrac-
tion in the presence of non-radiative recombination mechanisms depends on both the
spontaneous emission rate as well as the extraction efficiency. A detailed discussion
of power extraction and lifetime measurements in a photonic crystal slab structure is

given in chapter 7.

6.3 The triangular lattice of air holes

6.3.1 Local density of states maps

From the calculation for the enhanced spontaneous emission rate for single point
dipoles and for the case of constant geometfical parameters (d/a constant), there are
clearly points where the spontaneous emission experiences strong enhancement. The
case calculated for constant slab thickness (d/A constant)‘ showed no enhancement of
the spontaneous emission rate at any frequency below the light line. However, for
inhibition of the spontaneous emission rate, the constant geometry structure showed
only weak inhibition (3% ), whereas much stronger inhibition was seen for the constant
thickneés structure '(10><). In order to optimize these parameters, it is necessary to
| examine the variation in the local density of states (for slab confined modes) over
a wide range of parameters. The enhancement of the spontaneous emission rate
is proportional to the local density of states. Henceforth, the enhancement of the

spontaneous emission rate and the enhancement of the local density of states will be
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used interchangeably for the purposes of these results.

Fig. 6.9 shows a two-dimensional map of the local density of states (LDOS) for the
* photonic crystal slab structure with constant geometry and a slab thickness d/a =
0'33' nofmalized to thé free space value. They resemble the bandgap maps commonly
used to show the bandgap position versus parameter space [44]. However, additional
inforvmatioyn in the form of the local density of states is represented by the map color
(blue for low density to red for high density). These figures were calculated using the
multiple dfpole three-dimensional FDTD algorithm. In these calculations 3860 dipoles
were used, distributed throughout one photonic crystal unit cell, Poisson distributed
in time with Gaussian lineshapes. A Gaussian instead of Lorentzian lineshape was
used because of discretization error in the time domain. The rapid variation on the
leading edge of the Lorentzian time pulse requires a smaller time discretization for
convergence than the more gradual variation in a Gaussian pulse. The randomly
“located dipoles were distributed throughout the photonic crystal unit cell (including
in the air regions) to give the total slab-localized density of'states (the previous section
showed slab and high-index localized density of states).

The top figure in Fig. 6.9 shows the reduced density of states region corresponding
to the in-plane bandgap with a maximum bandgap width at approximately r/a = 0.38.
Maximum points in the LDOS occur near this point along the upper band gap edge.
However, from the single dipole emission in Fig. 6.3, it is known that the upper band
edge points are primarily coupled to the air regions. No significant change in the
LDOS within the bandgap is visible in this figure except for r/a > 0.4 where the
LDOS can be seen to gradually rise such that at r/a = 0.5 the LDOS is essentially
uﬁiform for all frequencies (remembering that this is normalized to the free space
DOS). An enhanced view of LDOS is shown in the lower figure in Fig. 6.9. This
shows that there are other enhanced emission points in the LDOS map that are in
the range of 4x to 7x larger than the free-space value. At r/a ~ 0.38, peaks up to
approximately 6x in the L.DOS are visible on the lower band edge. In the parameter
range r/a ~ 0.2 to 0.3, several ~ 6x enhanced bands are visible in the conduction

band region. This shows that this structure is capable of significant enhancement
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Figure 6.9: Slab-localized density of states with thickness d/a = 0.353. Lower plot is
a scaled version of the upper plot to show the density of states band structure.
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Figure 6.10: Slab-localized DOS with dipoles located only in high dielectric regions.
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Figure 6.11: Slab-localized density of states versus slab thickness for r/a = 0.32
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of the spontaneous emission rate even for structure which do not show an in-plane
bandgap.

The localized density of states for the same structure as that shown in Fig. 6.9 is
shoWn 1n Fig. 6.10 where the dipole sources have been restricted to the high dielectric
regions. This is a more realistic case for emission from this type of structure and
highl_ights the dielectric-coupled bands in the LDOS band map. A comparison of the
total slab-localized DOS (Fig. 6.9 lower figure) and the slab and dielectric localized
DOS (Fig. v6.10) shows that the some higher lying photonic conduction bands that
showed LDOS peaks also show strong enhancement (> 10x) when the dipoles are
confined to the high dielectric regions. Clearly the upper band edge shows very weak
enhancement of the density of states since these are known to be primarily located in
the air regions. However, there are still enhanced peaks by greater than an order of
magnitude, particularly at r/a ~ 0.4 (a/\ &~ 0.47) and at r/a ~ 0.29 (a/\ =~ 0.46).

The variation of the LDOS with slab thickness for fixed r/a = 0.32 is shown in
Fig. 6.11. It is important to note that due to discretization of the structure, only 6
evenly space values of d/a were calculated. This means any structure in the LDOS
narrower than A(d/a) ~ 0.1 similar to the infinite slab enhanced emission structure
shown in Fig. 2.3 may not appear. Fig. 6.11 clearly shows that the slab thickness
primarily results in a shift of the in-plane bandgap to lower frequencies. However,
there does not appear to be any significant change in the LDOS and therefore slab
thickness appears to play only a small role in the enhancement or inhibition of the

spontaneous emission rate.

6.‘3.2 ‘Electric field distributions

The spatial distribution of the electric field magnitude can be critical since enhance-
ment of modes primarily located in the air regions may not be useful since in practice,
radiating species are located in the higher dielectric constant material. The field dis-
tributions at different frequencies for the structure discussed in the previous section

are shown in Fig. 6.12 for r/a = 0.32 and a waveguide thickness of d/a = 0.353.
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Figure 6.12: Electric field distribution cross-sections in the x-y plane and the y-z

plane at six different frequency points for the triangular lattice slab under excitation
from multiple random dipoles.
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Since these have been calculated using multiple random dipoles as sources, these do
not represent individual modes since the field wavevector is not specified. However,
some general behaviour at particular frequencies is visible. In Fig. L6.12_b the dipole
. freciuehcy lies approximately in the middle of the bandgap region and the field dis-
tribution is localized to the dipole source positions with no radiation in the plane
of the slab. In Fig. 6.12a, slightly below the gap, the field radiates slightly into the
photonic crystal. The frequency at the upper band edge shown in Fig. 6.12¢ clearly
shows thaf, as previously mentioned, this band is primarily located in the air regions.
It should be noted that the dipole sources in this calculation are confined to the di-
electric regions. Fig. 6.12d-f show various points in the photonic conduction band in

which the radiation penetrates well into the photonic crystal.

6.3.3 Size of the photonic crystal lattice

- Tt was previously mentioned that the size of the computational domain did not result
in any qualitative changes in the calculated modified sp(;ntaneous emission spectra.
The LDOS spectra for computational domains with 2n layers of photonic crystal in
each direction (x and y) is shown in Fig. 6.13 for n = 2 to 6. Although the spectrum is
relatively complicated with many peaks in the conduction band region (a/A > 0.37, it
can be seen that most of the features in the spectrum occur for all calculated domain
sizes. This implies that the band formation occurs relatively quickly such that for all
computational domains considered here, the smallest being ~ 4x PBG unit cells, the
qualitative behaviour of the LDOS is essentially unchanged. This allows the use of
relatively small domains for these calculations without suffering significant changes
in the behaviour due to the finiteness of the calculation. It should also be noted that
the low—density of states band corresponding to the bandgap frequency region is well
" established even for small crystals with only 4 x 4 unit cells (indicated as 2 layers in
Fig. 6.13)¢

Fig. 6.14 shows an éxpanded view of the LDOS dependence on the number of

PBG layers for the bandgap region, which shows some notable features dependent
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on the PBG crystal size. The first thing of note is the shift in the lower band edge
as the number of PBG layers is increased. The band edge transition from high to
~ low density of states becomes steeper as the number of layers is incréase_d. However,
the shift in the band edge is relatively small and is likely insignificant compared to
the discretization error of the structure. The more significant change as a function of
cryst_;al size occurs within the bandgap region. Clearly in Fig. 6.14, the “depth” of the
gap increases significantly as the PBG crystal size is increased. From 2 layers up to 6
layers, the inhibition factor I'sp/T decreases by approximately one order of magnitude
at the low frequency end of the bandgap (a/\ ~ 0.2—0.29). This corresponds well with
defecf cavity Q calculations [27], which have shown that the Q increases exponentially
up to 7 layers of photonic crystal. The bandgap depth at the high frequency end of the
gap region does not show as dramatic a change with crystal size and is also inhibited
significantly less, by nearly 2 orders of magnitude for large numbers of layers. This
~occurs because the higher frequency points in the bandstructure in Fig. 6.4 occur
closer to the light line implying lower confinement within the slab. Alternatively, at
higher frequencies, a smaller portion of the Brillouin zone is contained below the light
line resulting in a smaller fraction of 47 steradians, which is inhibited by the in-plane

bandgap.

6.4 Modified square lattice

Although the triangular lattice of air holes has been the primary structure of interest
in these calculations, other lattices must also be considered. In terms of inhibited
sponta.neous emission, it is likely that the triangular lattice of air holes may be a
good choice since it exhibits the largest bandgap for TE-like modes among several
_symmetry choices [44]. However, Flg 6.9 shows that enhanced emission points can
occur without the presence of a bandgap due to the distributed band states of the
photonic crystal, We consider here the modified-symmetry square lattice as a possible
example.

The modification of the spontaneous emission rate due to the local properties of
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Figure 6.13: Slab-localized DOS dependence on the number of PBG layers with
r/a=0.32 and d/a = 0.353.
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Figure 6.14: Expanded view of the LDOS in Fig. 6.13 versus number of PBG layers.
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the field modes at the position of the emitter has been shown to obey a sum rule

[111, 112] such that the transverse field emission rates with transition frequency w,

- satisfy

oo Lo wa) = Tolwa) '
/0 dw, To(n) =0 (6.1)

where T'g(w,) is the spontaneous emission rate in free space and 'y (7, w,) is the
emission rate at position 7 as modified by the local electromagnetic environment.
This sum rule assumes that the size of the emitter is negligible and that the dielectric
function conforms to the typical causality and asymptotic requirements (e.g., a perfect
reflector for all frequencies will violate this sum rule but is also non-physical). This
leads to the simple rule of thumb that any reduction or inhibition of the spontaneous
emission rate over some range of frequencies w, must be accompanied by an associated
increase over some other range or ranges of frequencies.

It is well known [58, 59, 60, 61] that for an emitter embedded in a dielectric host,
the emission rate is scaled by the real part of the refractive index. Therefore using
the sum rule of Eq. (6.1), we conclude that to find structures that show the strongest
enhancement of the emission rate, we should focus our attention on materials with
large real parts of their refractive indices and photonic structures with large bandgaps.
Symmetry reduction [113, 114] through the introduction of a two-point basis set has
been shown to be effective producing larger photonic band gaps in two-dimensional
crystals. A two-point basis set has also been used to redﬁce the face-centered-cubic
three-dimensional symmetry to a diamond structure to obtain a full three-dimensional
photonic bandgap [45].

An example of symmetry reduction is shown schematically in Fig. 6.15 which
‘shows a two—dimenéional square lattice of air holes of radius r, with added holes
with a differenti radius 1. This is referred to as the reduced-symmetry square lattice
[113]. In a normal square lattice of air holes with a slab index of n = 3.4 and r/a
= 0.45, the infinite tWo-dimensional photonic crystal has only a narrow bandgap for

TE modes [44, 113]. Therefore, we would expect that a finite thin slab square lattice
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Figure 6.15: Schematic drawing of a reduced-symmetry square lattice photonic crys-
tal.

Figure 6.16: Slab-localized density of states for the reduced-symmetry square lattice
for secondary hole radii t' = 0.30 and r/a = 0.45.
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photonic crystal would have no in-plane bandgap for TE modes due to the effectively
reduced index contrast. The reduced-symmetry square lattice has been shown to
have expanded gaps [114]. The calculated Sp‘ontaneous emission rate enhancements
~for fhe reduced-symmetry square lattice with r/a = 0.45 and secondary hole radius 1’
= (.30, is shown in Fig. 6.16. This shows an example of a structure with no apparent

bandgap but which exhibits points with relatively large enhancements.

6.5 Summary

The results in this chapter have shown that the spontaneous emission rate in the two-
dimensional photonic bandgap slab structure can be suppressed by greater than an
order of magnitude even without optimizing the device design. This occurs in spite
of the fact that this structure does not exhibit a complete bandgap and is due to the
~ coupling of the modes with the dipole source position in space. We have shown that
a two-dimensional triangular lattice photonic bandgap structure in a thin slab can
strongly suppress or enhance the spontaneous emission rate by about one order of
magnitude even though this structure lacks a complete three-dimensional band gap.
The large enhancement rates at the band edges predicted in single dipole calculations
are strongly dependent on the choice of dipole position so that spatial averaging is
necessary to estimate the general emission properties of the photonic structure as a
whole. The bandgap structure can also be used to enhance the vertical extraction
efficiency. Emission into the conduction bands can be enhanced while still maintaining
relatively large extraction efficiency. In the presence of non-radiative processes, this

could result in a structure with enhanced internal and external quantum efficiencies.
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Chapter 7 Measurement of modified

spontaneous emission

7.1 Introduction

Photonic crystals have long been suggested as a system that should exhibit strongly
modified spontaneous emission; however, measurements in the optical regime have
mostly been limited to low-index contrast structures that do not have a complete
bandgap. Although the two-dimensional photonic crystal slab also does not have a
complete bandgap, calculations (see chapter 6 and reference [91]) have shown that
~ very strong inhibition, greater than one order of magnitude may be possible because
the high index contrast and strong vertical confinement due to total internal reflection
extends the bandgap over a significant portion of 47 steradians. Enhanced spoﬁta—
neous emission may also be possible from the distributed states of the photonic crystal
without the need for a microcavity to enhance the local density of states. This could
provide a means to engineer large area devices with strongly enhanced spontaneous
emission. Previously, although microcavity devices have demonstrated enhancement
of the emission rate, these have been in relatively small devices (e.g., pillar-like VC-
SEL structure with diameters < 1 pm). Therefore, a practical device with useful
output power would require a large, dense array of devices. Boroditsky et al. [99]
héve measured and estimated the extraction efficiency from photonic crystal slabs
consisting of a triangular lattice of holes, showing enhanced extraction efficiency due
. to the microstructuring; however, no attempt was made to measure any enhancement
of the emission rate. Angle-resolved measurements of emission into the conduction
photonic bands have provided a means to experimentally map a portion of the band
structure. Baba et al. [110] have also examined the spontaneous emission from a two-

dimensional array of microcolumns (forming essentially, the inverse structure from the
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Figure 7.1: Schematic of triangular lattice photonic crystal slab structure for modified
spontaneous emission measurements.

triangular array of air holes) in a hexagonal lattice. In [110], an attempt was made to
measure the spontaneous lifetime modification due to the photonic structure. How-
ever, it was found to be completely dominated by the surface recombination and any

modification of the spontaneous emission rate was not detectable.

7.2 Device design and fabrication

The photonic crystal slab structure is shown schematically in Fig. 7.1 and is similar to
that examined through numerical simulations in chapter 6 and shown in Fig. 6.1. The
slab structure consisted of 6 nominally unstrained Ings3Gag7As quantum wells in a
d = 150 nm thick InGaAsP slab identical to the epitaxial structure shown previously
in Table 4.1. The fabrication followed essentially the same process as described in
Fig. 4.2. A series of devices were fabricated in close proximity on the same wafer
with lattice sizes from a = 960 nm to 300 nm with a nominal r/a = 0.35. Fabrication
random and systematic errors are the same as described in section 5.4 and shown in

Fig. 5.10.
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7.3 Phase sensitive spectroscopy

The phase sensitive spectroscopy technique was first proposed by Henry and Nassau
in 1970 [115]. Advances in modern electronics and lock-in amplifier technology has
reduced the complexity of this type of measurement and eliminated the need for the
complex electronics consisting of RF amplifiers, a balanced mixer, and a variable
delay line, originally used by Henry and Nassau. A block diagram of the setup used
for these measurements is shown in Fig. 7.2. The laser pumping source consisted of
a Coherent Miré 900 Ti-Sapphire laser (S2) pumped by an argon ion laser (S1) and
mode-locked at approximately 76 MHz. A reference signal was obtained by sampling
a small portion of the beam (BS1) detected by a high-speed photodetector (D1). The
pump pulse train was then passed through an acousto-optic modulator (AOM). The
acousto-optic modulator RF driver signal was passed through an RF switch connected
to a pulse generator synchronized with a frequency divider triggered by the 76 MHz
" reference signal. This provided a means to rapidly switch the pulse train on and off.
Unfortunately, the AOM had insufficient bandwidth to switch individual Ti-Sapphire
pulses,’ however packets of 20-30 pulses was possible. A 30-pulse packet corresponds
to a total packeﬁ time of approximately 400 nsec. By switching packets with a low
duty cycle, the heating of the membrane device (thermal response time on the order
of microseconds) can be limited while maintraining the high peak pulse power and the
76 MHz fundamental modulation frequency.

According to Henry and Nassau [115], if the signal—to—ﬁoise of the measured signal
is (S/N), then the accuracy of the phase delay ¢ = wT measurement is approximately
(S/N)~'. Therefore, the error in the lifetime 7 will be At ~ (S/N) 'w™!. For
the Stanford Research SR844 lock-in amplifier used as the phase sensitive detector,
the signal-to-noise can be roughly estimated. For typical amplifier settings and an
integration tin'lye constant of 3 sec, the equivalent noise bandwidth is 5/(641") =
0.026 Hz [116]. For typical experimental conditions, the signal-to-noise ratio with
an equivalent noise bandwidth ‘as described above was approximately between 30

and 100 at a modulation frequency of 76.5 MHz and the measurement accuracy is
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Figure 7.2: Phase sensitive spectroscopy measurement setup. Sl=Argon ion
laser, S2=Ti-sapphire modelocked laser, S3=xenon lamp, M1-4=mirrors, BSI1-
4=beamsplitters, Fl=variable neutral density filter, F2=Wavelength selective filter,
L1-2=lenses, O=Infrared apochromatic objective, C=imaging camera, D1-2=high
“gpeed detectors, A¢=phase detection electronics, R=Joule-Thomson refrigeration
chamber.
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AT = 21—70 psec. One of the advantages of such techniques is the ability to measure

processes on the order of 50 psec with a detector system with a bandwidth < 1/(50
" psec) = 20 GHz. v '

7.3.1 Non-exponential decay processes

The phase sensitive spectroscopy technique, as originally described by Henry and
Nassau [115], fundamentally assumes an exponential decay process so that lifetimes
can be calculated from the phase delay information. However, in optically pumped
intrinsic semiconductors, this is not an accurate assumption; however, experimen-
tal data ih section 7.5 will be interpreted under the exponential decay assumption.
This is necessary because the complex interaction between the different processes
(surface, binomial, and Auger recombination) and the difficulty in accurately deter-
mining the carrier density in the active layer precludes correcting the exponential
“decay assumption for these other effects. However, it will be shown that these ef-
fects are not significant in some cases. In addition, the ;qualitative results are not
altered and this assumption can be used as a lower limit for the relative change in
spontaneous emission rate. In other words, the estimated emission rate change from
using the exponential approximation and ignoring the possible contribution of Auger
recombination will be smaller than or equal to the actual rate change.

In general, the decay of carriers in semiconductor is not an exponential process

and can be described by the rate equation [117]

% = —An — Bn® — Cn® (7.1)

where A is the point and surface recombination coefficient, B represents the binomial
recombination process and C is related to the various Auger recombination processes.
Consider a generalized decay process in which the time derivative of the carrier density

is proportional to some power of the carrier density (k-1). For this general case, the
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free decay rate equation can be solved as

dn
dt
— (logn) = —Cexp(klogn) (7.3)

n(t) = {/kCt+ng* (7.4)

where ng is the carrier density at time t = 0. In the InGaAsP material system,

= —Cn*t! ~ (7.2)

Auger recombination is typically a significant loss factor. However, this only becomes
significant for relatively large carrier densities [118] compared with estimated carrier
densities generated in these experiments and given typical material decay coefficients.
Additionally, these experiments involve the impulse response decay since the mode-
locked laser generates 150 fsec pulses. Auger recombination will dominate at higher
carrier densities however, the tail of the decay process will be dominated by the lower
- order processes. For high carrier densities, the fast initial decay due to Auger recom-
bination may not be apparent due to the finite response ti}ne of the detector. In these
experiments, a detector/amplifier system with a response time of approximately 200

- 300 psec was used. This will be discussed in greater detail in the following sections.

Binomial decay

Consider a binomial decay process such that k = 1 and the decay constant is the

binomial recombination constant C = B. In this case, the time decay is

nit) = | moow 1o t==0 (7.5)
0 for t <0
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Figure 7.3: Phase delay for the binomial decay process versus peak carrier density
~and binomial decay constant (B) at a frequency of 76.36 MHz. The solid lines are
for different B-coeflicients as indicated to the right. The dotted lines the exponential
decay phase delay curves for 1/7 = Bny.

By some simple transformations, the Fourier transform of n(t) can be expressed in

terms of the exponential integral [119] as

® ng exp (—iwt)dt
Fin) = [ b (76)
1 e jw \
= —e Bng —
ST by ( Bno> (7.7)

where the exponential integral is defined as Ej(z) = fzoo dte™*/t. The phase response
of this decay process in the frequency domain is a function of both the initial carrier
density ng and the bdecay constant B. This is shown in Fig. 7.3 for a modulation
‘frequency of 76.36 MHz (a typical value for these experiments) where the binomial
decay constant B has been varied by one order of magnitude around a typical value
of 1 x 1071% cm3/s fdr this material system [120]. The phase delay from a modelled

exponential decay process where the decay constant is approximated as 1 /T = Bny
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is shown for comparison. In the region of low initial carrier density, the deviation
from the simple exponential decay phase delay and the binomial decay phase delay is
" minimal. At higher carrier densities, the longér tail of the binomial deca_y compared
to the éxponential decay results in a larger phase delay. The means that if the
decay process is binomial, then the measured phase will be larger than the expected
value from-an exponential decay model. However, the sensitivity limit of a real
detection system will mitigate this somewhat. When the decay tail drops below the
minimum detectable power of the measurement system, defined by the dark current
of the detector and the leakage currents in the electronics, the resulting phase shift
is reduced compared to the infinite sensitivity model. In the measured results in the
following sections, the exponential decay model will be used since the binomial decay
is not an analytically invertible function. It is important to note that even though
the binomial and the exponential decay functions result in different measured phase
_shifts, they are both monotonically increasing with the carrier density and therefore,

larger phase shift in either case corresponds with a slower decay process.

Auger recombination

The actual rate equation for the decay process (Eq. (7.1)) includes both the binomial
recombination as well as the Auger process. It was previously argﬁed that the Auger
rate can be ignofed. Fig. 7.4 shows a theoretical calculation of the effect on the phase
delay of including the Auger recombination term versus the peak carrier density
for binomial idecay constants from 1 x 107! to 1 x 107 cm3/sec and assuming an
Auger recombination constant of C = 7.5 x 107* cm®/sec [118, 120]. For a larger
binomial decay constant (B =1 x 107 cm?*/sec, highest curve), there is essentially
no significant phase shift by including the Auger process. For lower decay constants,
the Auger process can introduce a significant reduction in the measured phase delay
at high carrier densities. However, as in the previous section, this has the effect
of reducing the measured phase delay range for the same change in the binomial
recombination coefficient: This means that larger phase delays still imply slower

binomial recombination and that the measured phase delays will give a smaller change
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Figure 7.4: Phase delays including Auger recombination. The curves for respectively
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The solid lines are the binomial decay only curves and the dotted lines include Auger
recombination.
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in the decay rate by ignoring the Auger recombination contribution than the actual
change.

The decrease in phase shift due to the Auger recombination shovvn in Fig. 74
is reduced (a reduced decrease = increased phase delay). due to the finite response
time of the detector. system used. For a detector response time of approximately
250 _psec,’ the fast initial decay characteristic of the (n®) Auger process is smeared
by the detector. This results in an increase in the effective measured phase delay
so that thé measured phase including the Auger process will more closely match the
Auger-free phase delays. The effect of the binomial decay process (compared to the
exponential approximation) results in faster decay (B larger) giving a larger than
expected phase delay. The effect of adding Auger recombination results in the slower
decay (B smaller) to give a smaller than expected phase delay. The net result is
the compression of the phase delay range for a given change in the binomial decay
~ constant which results in a underestimation of the modification to the spontaneous

emission rate.

7.3.2 Double lock-in measurement

Measurements of inhibited spontaneous emission suffer from the inherent difficulty
that a reduced spontaneous emission rate also leads to low radiative efficiency. The
radiative efficiency 7,44 can be written as

F?"a
Trad = 77— (7.8)

rad + Fnr

where T, is the radiative emission rate and Iy, is the total transition rate due to all
non-radiative processes. Clearly, assruming a constant non-radiative transition rate,
- any inhibition of the spontaneous emission rate leads to a corresponding reduction of
the radiative lifetime. The photonic crystal slab structures inherently have a relatively
low radiative efficiency because of the large non-radiative surface recombination rate.
If the spontaneous emission rate is reduced due to inhibited spontaneous emission, a

high-sensitivity measurement technique is necessary.
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Figure 7.5: Schematic of high-sensitivity dual-modulated measurement technique.

Radio frequency electrical signals can suffer significant radiation and coupling if
not properly shielded. Even with good shielding, extremely sensitive measurements
may be limited by the RF pick-up in the detector system. In this case, a lock-in
measurement at the modulation frequency (76 MHz) may detect the RF radiation
rather than the desired signal. One solution for this is to use a dual-modulated tech-
nique. In this case, in the apparatus shown in Fig. 7.2, the acousto-optic modulator

is replaced by a optical chopper, which modulates the pump beam at a relatively
| low frequency (100 Hz). The dual-modulated technique is shown schematically is
Fig. 7.5. The modulated signal is detected by an RF lock-in amplifier to filter bnly
the high-frequency modulated signal (76 MHz) with a bandwidth larger than the low-
frequency modulation. The low-frequency modulation can then be detected using a
second lock-in amplifier to ensure that the high-frequency radiation is eliminated from

the measurement since it will not contain the low-frequency modulation component.

7.4 Power emission from a photonic crystal slab

The detected spontaneously emitted power from the photonic crystal slabs at different
lattice sizes is shown in Fig. 7.6 at different time-averaged pumping powers using
the dual—modulated.measurement technique described in section 7.3.2. The devices
used in this méasurement differ slightly from those discussed previously and shown
schematically in Fig. 7.1. In this case, a sapphire layer was attached to the front
surface of the membrane structure to provide a thermal conduction path for heat

removal.
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Figure 7.6: Normalized spontaneous emission power versus lattice spacing. Sequential
plots for increasing pump power are shifted by 0.5 units for clarity. An estimated
“normalized frequency (assuming A = 1550 nm) is indicated above the plot which is
only approximately correct for the lowest pumping level. The band edges can be
seen to shift to larger lattice spacing, which corresponds with a shift of the emission
wavelength with increasing membrane temperature.

At low pumping power of 50 uW, the emission power for structures with large
lattice sizes ( > 700 nm) is relatively high corresponding to emission into the “con-
duction” i)hotoﬁic bands. For smaller lattice sizes, the emission power reduced by
approximately one order of magnitude for all devices with lattice sizes less than 700
nm (in normalized frequency units a / A = 0.45 at A = 1550 nm). This corresponds
with the predicted behaviour shown previously in Fig. 6.8 for a structure with fixed
slab thickness. At higher pumping powers the transition edge from high to low emis-
sion power, which is -attributed to the conduction band edge, shifts slightly to higher
lattice sizes. Since at higher pumping power, the emission wavelength of the mem-
brane shifts to longer wavelengths due to heating of the structure, this corresponds
to essentially constant normalized frequency (a/)).

For larger pumping powers (25 and 5 mW), a rise in the emission power is seen

for small lattice sizes. However, in this regime of the band structure below the band
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gap, significant emission is not expected because the photonic bands lie completely
below the light line (see Fig. 6.4) and should not couple in the vertical direction.
This is due to the presence of the sapphire layer above the structure. Although the
“refractive index of sapphire is relative low, maintaining the vertical total internal
reflection conﬁnement, it results in an asymmetric waveguide (Dsgpphire VErsus air
below the slab). This asymmetry is the likely source of the vertical coupling seen in
the small lattice size devices at high pumping powers. This emission power increase
“was not observed without the sapphire layer. However, these pumping powers >
2.5 mW were not achievable in that case due to catastrophic thermal failure of the

membranes without the thermal conduction path provided by the sapphire.

7.5 Measurement of spontaneous lifetime

. 7.5.1 Unpatterned material lifetimes

Using the phase sensitive spectroscopy method, the effective transition rates for un-
patterned material versus the pumping power is shown in Fig. 7.7, assuming an ex-
ponential decay process. The material was nominally intrinsic such that the recom-

bination process would be expected to obey a binomial decay process

d
an x —Bnp = —Bn?

— (7.9)

where n and p are the electron and hole free carrier densities which are assumed
to be equal. By making an exponential decay assumption, the decay constant from
Eq. (7.9) can be approximated as 1/7 &~ Bn. Measurement of the decay constant
versus carrier density (which is assumed to be proportional to the pumping power) can
‘be used to determine the binomial decay constant B [117]. For low pumping powers
(< -10 dBm), a linear relationship between the inverse lifetime and the pumping
power. By approximating the absorption in the structure and using the pump beam
size to estimate the excited carrier density, this fit gives a binomial recombination

coefficient of approximately B = 1.5 — 1.7 x 1071° cm?/sec. This agrees roughly with,
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- Figure 7.7: Unpatterned material transition rate measured from phase sensitive spec-
troscopy. '

for exafnple7 Coldren et al. B = 1 x 107 cm?®/sec [118] measured for the same
material system ﬁsing a different measurement technique. For higher pumping levels,
the decay lifetime variation with pump power varies similar to the 1/5™ root of the
pumping power. This dependence is showﬁ only as a visual aid to emphasize the
change in slope. From the results of section 7.3.1, this dependence on pumping power

(and therefore carrier density) does not asymptotically ap‘proach a constant slope.

7.5.2 Photonic crystal slab lifetime

A series of photonic crystal slab structures with varying lattice spacing were fabri-
cated in close proximity on the same wafer all with nominal hole radii of r/a = 0.35.
Using the phase sensitive spectroscopy technique, the phase delays of the lumines-
cence from these structures were measured as a function of the device lattice size and
the incident pump power. The emission wavelength shift with pumping power was

measured by comparison with an unpatterned membrane structure and the effective
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pumping was determined by scaling the incident power by the material fill fraction for
the patterned structures. This is only an approximation of the difference in absorbed
power. Since the photonic structure modifies the light extraction efﬁéienqy, clearly by
, timé—inVersion symmetry, the eﬂicieney of pump light entering the structure (related
to the pumping efficiency) may also be altered. However, this difference due to the
changing 1)umping efficiency will be ignored. This resulted in a shift to lower normal-
ized frequency a/\ for each device as a function of pumping power. The complete
data for all devices and lattice sizes are shown in Fig. 7.8 where the approximate
range of normalized fréquencies for each lattice spacing is indicated. The sample sub-
strate was temperature stabilized using a Joule-Thomson microrefrigeration chamber
to within £0.1°C. The phase delay measurements presented in this section were taken
with a substrate temperature of 17.0°C.
Note that a shift of the normalized frequency to lower values corresponds with
~ higher pumping power and therefore longer emission wavelength. A three-dimensional
plot of phase delay versus normalized frequency and pump power is shown in Fig. 7.9
for the same data for comparison. The largest lattice sizes (960 and 857 nm) show
a decrease in the phase delay and therefore the decay coefficient with increasing
pumping power. Although this may be evidence of the binomial decrease of the
spontaneous lifetime due to increased carrier density, this is complicated by the fact
that as the normalized frequency shifts, the emission samples a different portion
of the bandstructure. Therefore this change may be linked to modification of the
spontaneous emission rate. The next two smaller lattice sizes (750 and 698 nm) show
only small variation in the phase delay with pumping power. Because of the complex
iﬁterplay between modified spontaneous emission, the density of states spectrum and
the binomial recombination process, it is difficult to make definitive conclusions from
-these two devices.
For the lowest pumping powers for the first three devices, the phase delays are
approximately -3.2°, -2.5°, and -1.9° for the 960, 857, and 750 nm lattice sizes, re-
spectively. At low carrier densities, it is expected that surface recombination may

dominate due to the large surface-to-volume ratio of these structures. For a modula-
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Figure 7.8: Measured phase delay versus a/ for all pumping power and devices with
different lattice spacings. The lattice spacings for each device is indicated above and
below the data. The error bars represent the phase error measured as the standard
deviation of the measured phase over > 100 time constants of the detection system.
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Figure 7.9: Measured phase delay of signal versus pumping power and lattice size.
The peak wavelength of emission used has been corrected for the shift due to the
heating of the membrane.

tion frequency of 76.4 MHz and assuming exponential decay (which would be correct
for sufface recombination), this corresponds to decay times of approximately 110 psec,
90 psec, and 70 'psec, réspectively. This shortening of the lifetime with shrinking lat-
tice size is consistent with the expected behaviour of surface recombination [110, 121].
However, there is no way to conclusively determine that the decay process is surface
recombination dominated from this data even though, in the limit of small carrier
density, this will be the case.
The variation in the phase delay versus pumping power for the next smaller devices
“with lattice spa’éings of 640 and 591 nm show particularly interesting behaviour. First,
note that the phase delays for these devices exhibit noticeably larger phase delays for
all pumping powers. Also, both devices, and particularly the 591 nm device, show a

dramatic increase in the phase delay as the pumping power increases. In section 7.5.3
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it will be shown that this is due to the saturation of the surface states so that a shift
from the fast surface recombination to a slower spontaneous decay is seen. Therefore
the highest pumping power points (and correspondingly the largest phase delays)
~are points where the phase delay represents the spontaneous decay process with the
surface recombination saturated, assuming that the Auger recombination can still be
ignored. The final three devices with lattice sizes of 549, 512, and 480 nm shown in
Fig. 7.8 and Fig. 7.9 show only small variation in the measured phase delay versus
the pumping power. From Fig. 7.8, it is clear that there appears to be a frequency
range exhibiting larger phase delays, which correspond to a slower decay process, for
frequencies between approximately a/\ = 0.34 and 0.40 and may extend down to 0.32
although data near this frequency show relatively large error bars due to extremely
low signal levels. This is in approximate correspondence with the theoretical predic-
tions for the bandgap location. However, the shift in the relative slab thickness (d/a)
~ for different lattice sizes (a) as discussed in chapter 6 and shown in Fig. 6.7 make a di-
rect comparison with numerically determined band structure difficult. However, this
increased phase delay band has been confirmed through measurements on different
devices with nominally the same range of parameters. These also show the dramat-
ically increased phase delay for devices within a band corresponding approximately
with the predicted bandgap location. |

Assurhing that an exponential decay model can be used, the effective lifetimes
versus pumping power and normalized frequency are shown in Fig. 7.10. Although
the exact numerical values for the decay constant may not be accurate due to the
differences between the exponential decay model and the binomial decay process, the
band gap reductidn'in the spontaneous lifetime is clearly visible at high pumping
powers where the surface recombination is saturated. This represents a greater than
- one order of magnitude increase in the lifetime between the fastest out-of-gap decay
(T =~ 30 psec at a/\ = 0.55 nm) and the slowest point measured in the bandgap (7 ~
330 psec at a/\ = 0.34). From the discussion in section 7.3.1 for a given carrier density
and therefore pumping power, the change in the phase delay versus the binomial

recombination coefficient is reduced compared to the phase delay change if the process
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Figure 7.10: Effective decay constant assuming an exponential decay process versus
pump power and normalized frequency. The same correction to the emission wave-
length as in Fig. 7.9 is used. A long lifetime peak develops for high pumping powers.
This is not visible at low pumping powers due to a fast surface recombination process
which is saturated at higher carrier densities.

was truly exponential as shown in Fig. 7.3. Therefore spontaneous emission inhibition
calculated by the exponential approximation is a lower li_mit and the actual lifetime
ratio may be‘larger. Additionally, Fig. 7.10 also shows that particularly for the
increased lifetime points, the lifetime versus pumping power has not shown any sort
of saturation effect and the lifetime may continue to decrease with increased pumping
power. This indicates that due to the slower radiation process, the carrier density
A required to completély saturate the surface recombination process is raised. However,
due to catastrdphic thermal failure of the membranes, it was not possible to perform
measurements at higher pumping powers.

Assuming that thé higher pumping powers are above the saturation carrier density

for the surface recombination process, these phase delays and corresponding lifetimes
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can be taken as representative of the actual spontaneous decay process. The expo-
nentially approximated lifetimes versus normalized frequency for pump powers from
" 1.8 to 2.0 mW are shown in Fig. 7.11. This clearly shows the reduced spontaneous
emissioh. rate points that may indicate the photonic bandgap spectral position from
a/) = 0.32 to a/\ = 0.4. Since Fig. 7.8 and Fig. 7.10 show that the short lifetime
points at approximately a/A = 0.5 and 0.55 are decreasing in lifetime versus pumping
power and that the long lifetime points near a/\ = 0.35 are increasing in lifetime
Versus purﬁping power, the actual inhibition of the spontaneous emission rate may

actually by significantly larger than the 10x difference shown here.

7.5.83 Surface recombination saturation

Many of the conclusions in the previous section depend on the saturation of the surface
recombination process. The InGaAsP material system was chosen for its relatively
- small surface recombination velocity, which derives from its inherently low surface
state density [122]. This same low surface state densityfresults in a relatively low
carrier density required to saturate these states. The saturation of the surface states
with optical pumping in this material system for dry etched microstructures has been
observed for example, by Maile et al. [121] and by Hiibner et al. [123]. Wet etched
structures and a comparison with dry etched surface state saturation has also been
shown by Jacobs et al. A[124, 125] by photoluminescence measurements. These results
have been confirmed by cathodoluminescence by Evoy et al. [126]. The effect of
surface state passivation by silicon on the surface state saturation has been examined
by Fujikura et al. [127]. All these studies have shown that for a variety of different
etching technologies (which result in different material surface damage), although
the surface recombination velocity and surface state saturation carrier density are
variable, the re(juired optical pumping power density to saturate this decay process
is not very high and seems to vary by less than an order of magnitude (although a
precise comparison of all these different works is difficult because of the variety of

techniques used).
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Figure 7.11: Photonic crystal slab lifetimes for devices from a = 960 nm to a = 480
nm at high pump powers (1.8 mW to 2.0 mW) showing bandgap inhibited sponta-
neous lifetimes. Higher carrier densities at these pump powers saturate the surface
recombination so that a slow radiative rate can be measured. Maximum lifetime
of approximately 350 psec may actually be longer due to incomplete surface state
saturation.
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A parameter proportional to the radiative efficiency can be used to measure the
required pumping power to reach saturation. The ratio of the measured power to the
pumping power is proportional to the radiative efficiency (the proportiona_lity constant

is the detection and collection efficiency). The radiative efficiency dependence on the
pumping power is shown in Fig. 7.12 for the device with a lattice spacing of 857 nm
and in Flg 7.13 for a lattice spacing of 960 nm. The emission wavelength shifts with
pumping power due to the thermal heating of the membrane resulting in a shift in
normalized frequency a/\. This means that the saturation power measured from these
efficiency curves may not be accurate. However, for these devices, which are far away
from the bandgap frequency range, the effect of the bandstructure should be reduced.
In the limit of large lattice sizes, there should essentially be no modification of the
radiation (either decay lifetime or radiation pattern). These efficiency curves also
demonstrate that for these short lifetime points from Fig. 7.10 for pumping powers

~ greater than 1 mW (0 dBm), the surface recombination process is clearly beyond the
saturation point. This means that the contribution to the phase delay measurements
for these devices from surface recombination can be neglected.

From efficiency curves such as those shown in Fig. 7.12 and Fig. 7.13, the satu-
ration pumping power was measured for several points on either side and away from
the bandgap. These are plotted versus the inverse lattice spacing (1/a) in Fig. 7.14.
It has been shown (see for example [110]) that the surface recombination rate scales
as one over the characteristic distance from any point in the structure to the nearest
surface. In this structure, clearly the characteristic distance scales as the lattice size.
This shows that for the relatively fast radiative decay processes above and below the
béndgap, measurements at pumping powers up to 2 mW should be near or beyond
the saturation point where surface recombination need not be considered. However,

. for the points with a reduced radiative recombination rate, the saturation power will
be correspondingly increased such that even at the maximum pumping power, the
smaller lattice spacing devices may still have significant surface recombination. This
result corresponds well with the lifetime behaviour as a function of pumping power

‘discussed in the previous section.



0.95

o9}
3
L 085
®
g
08F -
0.75
07 1 1 1 1 1 .
~10 -8 -6 -4 2 0 2 4
Pump (dBm)

Figure 7.12: Power dependent radiation efficiency from a photonic crystal slab device

- with a = 857 nm. Saturation of the surface states is seen as a peak at ~ —1.5 dBm
pump power. The decrease in efficiency above this is due to detector responsnflty and
reduced internal quantum efficiency and also occurs in unpatterned samples.
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Figure 7.13: Power dependent radiation efficiency from a photonic crystal slab device
with a = 960 nm saturating at ~ —4 dBm.
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Figure 7.14: Projected saturation powers. Saturation powers for a = 960, 857 and
549 nm are taken as the peak of the efficiency curve. Plotting versus 1/a gives an
estimate of the power necessary for surface state saturation for the difference lattice
sizes. The sizes for measured devices are indicated by the dotted vertical lines.
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7.6 Summary

A dramatic inhibition of the spontaneous rate within the photonic bandgap as com-
pared with the out-of-gap emission rate has been experimentally demonstrated. These
measurements have indicated thaf the out-of-gap emission rate may be significantly
accelerated as compared to the unpatterned material emission rate. Although the
non-exponential behaviour of the decay process limits the accuracy with which the
exact numerical decay lifetimes can be considered, it has been shown that this has
the effect of resulting in an under estimation of the relative change. The actual decay
lifetime Variation between the bandgap frequencies and the out-of-gap frequencies
is expected to be larger. Additionally, the photonic structure is expected to alter
the pumping efficiency in the same way as the extraction efliciency can be altered.
This results in an inability to accurately determine the carrier density in the active
layer and therefore also the inability to isolate the contributions of the various non-
" radiative and radiative decay processes. The spontaneous lifetime within the photonic
bandgap has been shown to be greater than one order of magnitude slower than the
conducfion band emission. The prediction shown theoretically in chapter 6, that a
structure lacking ra complete photonic bandgap could have a dramatic effect on the

spontaneous emission, has been demonstrated.
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- Chapter 8 Conclusions

8.1 Summary of results

8.1.1 Hexagonal disk and defect microcavities

The goal of high density photonic integrated circuits requires the development of
compact and efficient light sources and other optical elements. Photonic crystals
have frequently been suggested as a template from which a variety of such devices
may be drawn.

Planar hexagonal disk microcavities based on a two-dimensional photonic bandgap
structure in the InP material system have been examined. Lasing at room tempera-
ture was demonstrated under optical pumping in which the lasing mode was selectable
through adjustment of the pumping geometry to change the relative pump-mode over-
lap of the different cavity modes. The spontaneous emission peaks due to the cavity
modes were observed only in the cases where the photonic bandgap was tuned to
overlap with the semiconductor quantum well emission band demonstrated bandgap-
based optical confinement. A relatively high lasing threshold was observed due to the
poor overlap between the pump and the lasing mode and the relatively high mem-
brane temperature due to poor thermal conduction for heat removal with this cavity
design. Heat dissipation could be imprbved by including a supporting post similar
to that found in microdisk lasers or by mounting the membrane onto a low index
substrate to cohserv_e the index contrast confinement but provide a heat conduction
‘path. |

Defects within a photonic bandgap crystal have frequently been suggested as pos-
sibilities for creating extremely small optical microcavities. Spontaneous emission
spectra from isolated single photonic crystal defects have been presented and are

among the first such measurements. Narrow linewidth emission from a cavity with
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a modal volume [27] similar to 2.5 (\/ 2n)® ~ 0.03um®. When the pumping region
is well localized to the patterned photonic crystal domain, the spontaneous emission
‘ shows a narrow cavity mode peak with little or no background emission corresponding
to the broader intrinsic material response spectrum. The mode frequency is tunable
lithographically across the material emission bandwidth. The defect mode degeneracy
can be split by adjusting the cavity geometry, leaving a truly single mode microcavity.
The cavity Q can also be adjusted by moving the defect mode to lower normalized
frequencieé. Pulsed lasing under optical pumping at low temperature (143 K) has

been demonstrated.

8.1.2 Spontaneous lifetime

The results in this chapter have shown the mildly surprising result that the spon-
taneous emission rate in the two-dimensional photonic bandgap slab structure can
" be suppressed by greater than an order of magnitude even without optimizing the
device design. This occurs in spite of the fact that thisrstructure does not exhibit
a cornplete bandgap and is due to the coupling of the modes with the dipole source
position in space.r We have shown that a two-dimensional triangular lattice photonic
bandgap structure in a thin slab can strongly suppress or enhance the spontaneous
emission rate by about one order of magnitude even though this structure lacks a
complete three—dimensional band gap. The large enhancement rates at the band
edges predicted in single dipole calculations are strongly dependent on the choice of
dipole position so that spatial averaging is necessary to estimate the general emission
properties of the photonic structure as a whole. The bandgap structure can also be
used to enhance the vertical extraction efficiency. Emission into the conduction bands
can be enhanced while still maintaining relatively large extraction efficiency. In the
A presence of non-radiative processes, this could result in a structure with enhanced
internal and external quantum efficiencies.
Experimental me'asurements’ using phase sensitive spectroscopy have provided

among the first evidence of strong inhibition of the spontaneous emission rate in
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a semiconductor photonic crystal slab structure. The ratio of emission rates in the
bandgap to the out-of-gap rate is shown to be greater than one order of magnitude
assuming an exponential decay process. T his‘ has been shown to be a lower bound
to the émission rate ratio due to the binomial nature of the decay process and to the
contribution from Auger recombination. The lifetime measurements have also shown
the practiéally important result that the surface recombination rate can be relatively
easily saturated due to the low surface state density in this material systems. The
power extfacted in the slab-normal direction also demonstrates the expected high
output for conduction band frequencies predicted by numerical simulations that re-
sult from a combination of enhanced extraction efficiency and modified spontaneous

emission rate, which results in a change of the radiative efficiency.

8.2 Future directions

This and similar works in the field of photonic bandgap crystal structures have only
begun to touch upon the wide-ranging possibilities that have been suggested for >this
class of engineered materials. Much of this has been from the “bandgap” point of
view where the photonic crystal to inhibit or block (reflect or diffract) radiation. This
is essentially the point of view taken in chapters 4 and 5 to create microcavity devices
using the photonic bandgap crystal as a means to confine the electromagnetic radi-
ation. This is the same point of view used to consider photonic crystal waveguides
such as those recently demonstrated by Lin et al. [128] and Baba et al. [129]. Al-
though microcavities and photonic crystal defect cavities have been demonstrated as
IASer sources and some of the spontaneous emission properties have been examined,
this can be considered to be only the first step in understanding the use of photonic
. crystals for microcavity devices. Ther work in this thesis has demonstrated the feasi-
bility of designing and fabricating microcavity lasers based on photonic crystals, but
by no means have these designs been optimized for any particular use nor has it been
determined if this is the best choice of geometry or material system.

Clearly, the lasing performance of these devices must be improved. In the larger
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microcavities, the complex mode structure and mode interaction briefly discussed
in chapters 3 and 4 needs to be examined more carefully. Efficient pumping of the
~ microcavities is also a complex problem given fhe small size of the defect cavities and
the critical need for low index of refraction regions above and below the optically
thin membrane. Furthermore, any application using these types of microcavities will
require the coupling of light into and out of the cavity to or from a waveguide or
other free space optics. The efficiency of this process is an issue which has yet to be
consideredv in depth and is not a trivial problem due to the complex emission pattern.
The inhibition of spontaneous emission discussed in chapters 6 and 7 also uses
the photonic crystal bandgap properties, in this case to inhibit internally generated
radiation. However, the band enhancement of the emission is different in that the
existence of a bandgap is not necessary. The symmetry and geometry of the material
on a submicron scale can be designed to modify the local electromagnetic environ-
~ment and thereby change the macroscopic radiation properties. Similar non-bandgap
type behaviours have been used for example, to demonstrated lasing or enhanced
gain at zero group velocity points in the bandstructure [130, 131] and for designable
refraction due to-band curvature, the so-called Superprism effect [132]. The lifetime
measurements of emission from photonic crystal slabs is among the first experimental
evidence to date of greater than an order of magnitude inhibition of the spontaneous
recombination rate over the entire material emission spectrum using a photonic crys-
tal in the near-infrared. However, due to the complexity of the different radiative
and non-radiative processes involved, it is difficult to separate the various effects.
Further work is necessary in order to conclusively settle this issue. Although the air
suspended membrane structure used, in theory provides a very strong spontancous
lifetime change, it may be necessary to modify the structure to avoid the thermal heat-
-ing problems limiting the measurements in chapter 7. However, the large differences
in lifetime between bandgap and out-of-gap frequencies have shown that without sig-
nificant efforts to optimize the structure, significantly modified spontaneous emission
is possible in geometries that lack a complete bandgap but are also much simpler in

‘terms of _fabricatbion.
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The modification: of the spontaneous emission rate due to the changes to the local
electromagnetic field resulting from the photonic crystal structure demonstrates that
electromagnetic properties of a material can bé engineered through hanq and micro-
strﬁctuf.e. This is a very fundamental property and extends beyond spontaneous
emission to all electromagnetic interactions including such properties as resonant
tran_sition’ related behaviour and optical nonlinearities. This work has only begun to
scratch the surface of the rich and diverse possibilities offerred by the possibility of

engineered optical properties.

Figure 8.1: Electron beam lithographically defined pattern etched into silicon by XeF
chemically assisted ion beam etching (CAIBE)
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