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Abstract

This thesis describes the effect of transmission through a fiber Bragg grating on
the signal and noise properties of semiconductor laser light. We show that fiber gratings
. can be used to increase the modulation response of a laser, to improve the response of a
laser/fiber system, or to decrease the intensity noise of a continuous-wave laser signal.
The effects are the result of dispersive propagation and frequency discrimination, and
depend on the nature of the grating and the laser dynamic properties. This connection is
developed first by deriving the dynamic properties of semiconductor lasers, including the
direct current modulation response, frequency chirp, and laser noise. The effect of
propagation through an arbitrary medium is derived, with the conclusion that both
dispersion and frequency discrimination result in conversion of frequency modulation
into amplitude modulation and vice versa. These general results are applied to laser
modulation and noise spectra to derive the transfer functions for dispersive optical fiber.
Next we detail the experimental characterization of laser dynamics, from which we can
determine the important laser parameters. We follow this with a discussion of fiber
B;agg gratings and show tﬁat t}le phase of the grating transmittance, which is important in
changing the characteristics of the signals being transmitted, can be inferred numerically
from a measurement of the intensity transmission. Finélly, we unit¢ these topics with the
demonstration of a 7 dB increase in the laser response at frequencies up to 25 GHz in

transmission through a fiber grating. The result is well predicted by a numerical Fourier-
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‘domain analysis of the laser ‘sighal and fiber grating. In addition, we investigate the effect
of a fiber grating on the relative intensity noise (RIN) of a laser, showing that a model of

j ératin‘g as a linear frequency discriminator is sufficient for explaining much of the results.
We sho;,v there exist conditions under which a grating can reduce the RIN, which depend
on the phase relationship between correlated intensity and frequency fluctuations. We
demonstrate a 2 dB reduction in RIN at frequencies up to 15 GHz. The combination of
these effects is used in calculating signal-to-noise ratios for real systems incorporating

gratings, and in showing that gratings can re-narrow pulses broadened by fiber dispersion.
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Chapter 1 -- Introduction

This thesis describes research done for the degree of Doctor of Philosophy in
Physics at the California Institute of Technology. The main theme is the use of fiber
. Bragg gratings to increase the modulation response and decrease the intensity noise of
semiconductor laser light, and the thesis revolves around work published by the author [1,

2]. In this chapter we put the topic in context by giving a brief overview of optical

telecommunications, and then we survey the coming chapters.

1.1  Optical telecommunication

The technical field in which this work was performed is that of optical
teleconununications: generating high-speed optical signals with semiconductor lasers,
transmitting them over long distances along optical fibers, and detecting them with high-
speed phdtodiodes. Common applications include long-distance telephony, cable
television, computer data transmission as in the Internet, and microwave (GHz frequency)
relay links for satellite transmitters and receivers. Data transmission speeds of 2.5 Gbit/s
are common, with advanced systems operating at 10 Gbit/s. An excellent introduction to

optical communication can be found in the textbook by Agrawal [3] and a thorough
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~ survey of the current technolbgiéal issues is found in the recent volumes by Kaminow and
Koch [4,5].

. The semiconductor lasers of choice in today’s systems are made of InGaAsP and
emit ligflt with é wavelength of 1.55 pum, chosen to take advantage of the low-loss
wavelength band of silica optical fiber. The lasers consist of a horizontal active region of

* InGaAsP sandwi;:hed between InP regions above and below, n-doped on one side and p-

doped on the otﬁer. When a cufrent is passed thorough this modified p-n junction,

electrons and holes injected from either side get trapped in the active region, by virtue of
its 1ower bandgép, which serves as a one-dimensional potential well. There they sit until
they either decay spontaneously or interact with photons. The lower bandgap in the
active region is accompanied by a higher index of refraction (compared to the
surrounding InP), which serves as a dielectric waveguide, confining the laser optical
mode. The exact designs of the confining heterostructures vary among manufacturers and
are often not publicly disclosed. Photons travel up and down the laser cavity, reflected at
either end by the semiconductor-air interface,'and stimulate the annihilation of an
electron-hole péir and the generation of a photon. By modulating thé current injected into
the active region, we can modulate the density of electron/hole pairs, and thus change the
bptical gain énd output optical . power. Thus we can convert electrical signals into optical

signals, with efficiencies as high as 90%.

To control the laser wavelength more carefully, high-speed lasers typically employ
distri‘buted feedback (DFB) reflectors. This is a corrugation of the index of refraction

along the cavity which serves as a Bragg reflector, continually coupling forward-going
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photorié_ into the backward-gding' direction and vice versa. Thus the cavity reflectivity is
provided not by mirrors at the cavity ends, but by the Bragg grating along its entire
‘léngth." Such cavities have only two degenerate modes instead of the infinite spectrum for
Fabry-Pérot cavi.ties, and the two can be reduced to one by inserting a quarter-wavelength
spacer in the center of the grating, or by corrugating the optical gain instead of the index

- of refraction. (Néither of these is obvious—see [6] for a good treatment of Bragg
reflectors with optical gain.) DFB lasers are for this reason referred to as single-mode
lasers, as they avoid launching multiple optical modes down the fiber.

The optical fibers are made of silica glass, with a center core typically 6 pm in
diameter and a surrounding cladding 125 pm in diameter. The core has been doped with
germanium, which increases its index of refraction and forms a cylindrical step-index
waveguide. Usually one uses single-mode fiber, which has a core small enough to
support only the lowest order transverse mode at the 1.55 pym wavelength, thereby
preventing modal dispersion (a difference in propagation velocity among the different
excited waveguide modes). Losses at 1.55 um are typically 0.2 dB/km, and when
combined with optical amplifiers, permit communication distances of hundreds of
kilpmeteré.

By an. unfortunate coincidence, the most important technical flaw in
semiconductor lasers happens to reinforce, negatively, the most important flaw in optical
fiber. Optical fiber is dispersive—the group velocity of light traveling down the fiber

depends on the wavelength of that light. This means that the different Fourier



components of a signal will get oﬁt of phase with each other as they propagate, distorting
the signal and, in-the case of digital modulation, broadening the individual pulses until
\th'ey o?errun each other. This is worsened by the fact that diode lasers are chirped:
modulatfon of the injection current modulates not only the output power but also the
lasing frequency. This broadens the spectrum beyond the Fourier-transform-limited

* minimum width, ;md hastens dispersive distortion. The two phenomena in concert
produce a roughly 50 km propagation limit on a laser modulated at 10 GHz. For this
reason, the 10 Gbit/s systems referenced above usually employ external optical
modulators, which have far less chirp.

One of the most important innovations in optical fiber technology in the last
decade is the construction of fiber gratings, which are small periodic perturbations of the
index of refraction of the fiber core along the fiber axis. This forms a Bragg grating
which reflects light with a wavelength of twice the corrugation period, thereby serving as
a very wavelength-sensitive optical filter. Applications include remote sensing, forming
add/drop devices for wavelength division multiplexing, and compensation of fiber

dispersion. These are described more in Chapter 6.

1.2  In this thesis

- In Chapter 2 we develop the theory of the dynamics of semiconductor lasers. The

features of optical gain which lead to laser chirp and non-linear gain are discussed



~ physically, and the laser rate équétions are presented. A small signal expansion of these
equations allows us to derive the AM and FM response to direct current modulation,
wahalyzi.ng them in terms of laser chirp. A Langevin force analysis is used to derive the
intensity.' and fre(juency noise spectra of the lasers and detail the correlations between
them.

In Chapte} 3 we analyze the effect of propagation through an arbitrary medium on
an optical signal. We first present a general formalism for describing signals with both
amplitude modulation and frequency modulation. We analyze the effect of dispersive
propagation and apply it to laser modulation and noise, and then we analyze the effect of
frequency discrimination. The uniting theme is that of FM-to-AM conversion in a
dispersive or discriminating medium. We present an intuitive time-domain model and
finally a Fourier-domain numerical calculation, which is the only way to analyze the most
general combination of the above.

In Chapter 4 we detail the experimental characterization of lasers. The basic
measurements are that of the laser niodulation’ response and the laser intensity noise. We
show the resulté of typical measurements and compare them to the theory presented in
Ch~apter 2. Then we measure the change in the modulation response and intensity noise
due to disperéive fiber, and compare those to the theory presented in Chapter 3. We
discuss how the above measurements can be used in concert to extract many of the
important laser dynamic parameters.

Chapter 5 is devoted to Bragg fiber gratings. We introduce the applications and

fabrication of gratings, and derive the coupled mode theory that is used very successfully
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10 modcl a grating’s optical propérties. We present the properties of analytical solutions
for uniform gratings, and numerical solutions for apodized and chirped gratings. Finally
‘v;)e present a Kramers-Kronig relationship between the magnitude and phase of a gratings
transmiséion spe.ctrum, which allows us to infer the very important phase information of a
grating by measuring only its intensity transmittance.

In Chapte} 6 we report on the use of a fiber grating to improve the modulation
response of a laser/fiber system. We find that the laser response can be increased by over
7 dB at all frequencies up to 25 GHz, as a consequence of converting laser FM into
additional laser AM. When combined with 25 or 50 km of dispersive optical fiber, the
grating produces a system response that is larger, flatter, and has a larger bandwidth. This
is a result of both optical filtering and dispersion compensation. This experiment
combines the themes presented in previous chapters: the observed results are in good
agreement with the numerical calculation of Chapter 3, using the laser parameters which
were fit with the techniques of Chapter 4, and for the most accurate prediction we need
the Kramers-Kronig calculation described in Chapter 5.

Chapter 7 investigates the effect of transmission through a fiber grating on the
int_ensity noise of semiconductor laser light. We show that in many cases the grating acts
as a linear fréquency discriminator, converting laser frequency noise into excess intensity
noise, increasing the latter by as much as 30 dB at low frequencies, with an inverse-
square frequency dependence. We show that there are conditions uhder which the grating
can réduce the intensity noise, and that these are determined by the phase relationship

between the correlated intensity and frequency fluctuations. We demonstrate 2 dB of



noise fcduction and show that thié is fairly well predicted by a numerical calculation that
incorporates the phase of the grating. -

'vChapter 8 combines the ideas of Chapters 6 and 7 to describe when a fiber grating
can bothv' increasé the signal and decrease the noise, or at least increase their ratio.
Requirements for practical use in systems is discussed, including the role played by shot
* noise and amplifi‘er noise in the total signal-to-noise ratio. Then pulsed modulation
schemes are considergd, and we find that a fiber grating can be used to re-narrow pulses
broadened by fiber dispersion, as a consequence of frequency discrimination alone,

independent of grating dispersion.






Chaptef 2 -- Dynamics of Semiconductor Lasers

The important dynamic effects of semiconductor lasers have their roots in the
physics of optical gain. A study of this physics is a thesis in itself and is not the topic of
. this chapter. Instead, in the first section we will merely introduce the phenomena behind
non-linear gain and amplitude-phase coupling, which will turn out to be important in
studying the propagation of laser signals.

By expanding the gain as a function of carrier density and photon density, we will,
in the following sections, write a set of rate equations for those quantities that predict
most laser dynamic effects. For example, we will use these equations to derive the AM
and FM response of the laser, the characteristics of laser chirp, and the spectra of and
correlations between intensity and frequency noise. The results will be the basis for
experimental characterization of the laser, explained in Chapter 5, whose goal is to
measure the laser dynamic parameters. The dynamics also become inextricably linked
with the effect of propagation through dispersive fiber and fiber gratings, explored in the

remainder of the thesis.



2.1 '[Origin of gain in semiconductors

| thical gain in semiconductors results from the stimulated transition of an
electron from the conduction band to the valence band or, equivalently, the stimulated
recombination of an electron-hole pair. The photon momentum involved in the transition
is smail éompared to the carrier momentum, so only transitions between states with the
same wavevector k are allowed by momentum conservation. This means the entire
collection of carriers in the conduction and valence band can be considered as an
ensemble of independent two-level systems, and the total gain is the sum of contributions
from each system. Indexing these two-level systems by the frequency @' of the transition,

and integrating over all the systems, gives the gain at optical frequency o,

G e [pl)f.(@)-f, )] g0 o )do @1

Egop/hi
Here p(®') is the joint density of states of the conduction and valance bands at a
separation energy h®'. The difference of the conduction and valance band occupation
functions f(w)-f,(®') varies between +1 and -1, and produces either gain or absorption,
depending on the quasi-Fermi levels in each band and the separation energy #e'. g(o,
®") is the Lorentzian lineshape function of a two-level system, which gives the response
of the two-level system with resonant frequency @' to the optical field at frequency o.
The width of the Lorentzian is determined by the dephasing time Tz,rwhich is the intra-

band scattering time for carriers, on the order of picoseconds. The constant of



‘ proportionality in (2.1) includes a transition matrix element, which for quantum well
lasers includes a épatial wavefunction {7].

‘The quasi-Fermi levels in the conduction and valence band are determined by the
total number of carriers N, and with no optical power present, the occupation functions
have the usual Fermi-Dirac form. The gain integral (2.1) is a functional of the

. distributions f.(®') and f(®") of those N carriers, that is, it is a function of the occupation
of each two-level system @'. To a good approximation, however, the gain can be written
as a function of the total number of carriers N instead of their distributions. Such
functions are usually determined by evaluating (2.1) for a given total carrier number,
using the details of the band structure and the carrier scattering, repeating for different
values of N, and fitting the results versus N. The change in gain with N at some fixed
point Np is called the differential gain, and is fundamentally important in laser

modulation.

Non-linear gain compression
At high photon densities, the rate of stimulated transitions is large, and the carriers
at ® may be depleted faster than they can be replaced by other carriers scattered in from
different energies. In this case the occupation function is decreased in the vicinity of @',
and we say that a spectral hole has been burned in the occupation function [8, 9]. Density
matrix equations for the semiconductor predict a form of the suppression similar to that

of gain saturation in a 2-level system [10],
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which gives the shape of the spéctral hole. The width of the hole is the same as the width
of the Lorenztian response g(w, ') and the depth depends on the stimulated emission rate
and the scat‘;ering rate. When a spectral hole is burned in the carrier distributions, the
. number of carriers within a resonant width of the optical frequency is decreased, and thus
the gain is decreased. G(w) therefore decreases with optical power, and this spectral hole
burning is the leading candidate explanation for so-called gain suppression or gain
compression. The suppression is usually represented in the form

G(N,P) - G(N)[1-¢€P] (23)
The gain suppression parameter € has an important effect on laser dynamics [11], as we

shall see.

Amplitude/phase coupling and o
Just as each two-level system contributes to the gain of the medium, each also
contributes to the index of refraction. In a single two-level system the refractive index
peﬁurbation An is an odd function of the detuning from the resonant frequency, ® — ®',
and An is zero exactly on resonance, which coincides with the gain peak. In a
semiconductor, the density of states increases with photoh energy, leaving more states
above the resonance than below; and the occupation functions decreése with energy,

leaving fewer carriers per state above the resonance than below. Furthermore, in DFB



lasers and veftical cavjty 1asefs, ih which the optical feedback in the cavity is strongly
peaked about a single wavelength, lasing need not occur at the gain peak. The result of all
\tﬁis is that at the gain peak there may be a net non-zero index perturbation An. This is not
so bad 1n itself, éxcept that An can change with carrier density. Thus the index of
refraction can change along with the optical gain. The proportionality is measured by the
" amplitude-phase ;:oupling factor, also know as the linewidth-enhancement factor or
simply the o parameter:

on_/oN
=t 24
* dn,; /oN 24

For small changes in n, and n;, (2.4) is the same as

ay, /oN
= A 7 2.5
* ay; / oN (2)

where y is the electric susceptibility. (2.5) is sometimes used as the definition of the
parameter. Some authors do not include the minus sign in the definition; the ratio of
derivatives itself is negative for semiconductor lasers, and the minus sign makes a.
positive. To avoid confusion, in this thesis we’ll use lal in formulae, which is easy to
interpret by both camps. This phenomenon is the origin of laser chirp.

Finally, we should note that these phenomena arebmaterial phenomena, and may
be compounded by similar effe:cts related to the laser cavity. For example, in a DFB laser
the photon density is s‘trongly concentrated at the center of the grating. Thus the
stimulated depletion of carriers is fastest there, and may be faster thah the diffusion of

carriers from neighboring regions. This leads to a spatial hole burning, which also lowers
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the total gain‘ at high photon densities. This may also change the local refractive index of
the grating, producing a grating chirp which can change the phase of the output field. So
the material chirp may be complimented by a cavity chirp, and both contribute to the

measured value of the o parameter [12, 13].

2.2 The laser rate equations

The majority of laser dynamic phenomena, including frequency chirp and noise,
can be explained well by using rate equations for the photon density and carrier density in
the laser active region. There is some variety of definition and form among the rate
equations; derivation of the main results can be found in many texts [14] and a thorough
treatment can be found in [15].

We start by writing the time rate of change of photon and carrier density in the

active region of the laser:

PO _ v, pyv,poyr - 20, IO 26)
dt Ton \4

dN(t) _ (1) N(t) (t)
PR - G(N, P) L)+ 2.7)

Here P and N are the number densities in the active region of the laser, with units of cm™.
The first term on the right side of (2.6) describes the stimulated emission of photons into
the lasing mode. G(N,P) is the active region gain, explicitly a function of carrier and

photon density, with units of cm™', and the group velocity vg converts G to a gain per unit




time. T is the confinement factor of the active region, defined as the fraction of the
optical power in the laser mode that is'confined within the active region. 1y, is the photon

lifetimé, describing both mirror and internal losses. For a Fabry-Perot laser,

1 1
TPh = vg[iln(R R ]+(ximenalj (28)
1722

* where L is the cavity length, R, and R; the mirror reflectivities, and jnema is the internal

loss coefficient describing scattering and absorption losses of the waveguide, with a
typical value of 5 cm™. For DFB lasers the photon density is non-uniform along the
cavity and the réﬂectivity is distributed along the cavity length--in this case the photon
lifetime has some effective value which is most often measured experimentally. F(t) and
Fn(t) are Langevin noise forces describing, respectively, the spontaneous emission of
photons into the lasing mode, and the spontaneous decay of carriers, discussed further
below. The first three terms on the right side of (2.7) describe the injection of carriers
due to the driving current I(t), with V the volume of the active region and e the electron
charge; the loss of carriers due to spbntaneous emission and non-radiative carrier decay,
with a carrier lifetime T; and loss of carriers due to stimulated emission. Some fraction
ngp ~ 107 of the spontaneously emitted carriers will by chance enter the laser méde and
also contribut.e to dP/dt. This spontaneous emission factor is mostly important near
threshold and will be ignored here. Note the stimulated gmission term in (2.7) is not
modified by I since all of the electron-hole pairs on resonance with the laser field are

confined to the active region by the heterostructure.



Gain conventions

G(N,P) is a complicated and largely unknown function of N and P, as discussed in
the previous section, and to make the rate equations useful we have to linearize G with
) respéct to N >and P. Itis primarily in this step that treatments of the rate equations differ
in the literature, and it is important because all of the observable dynamic phenomena,
such as relaxation resonance, damping, and chirp, are determined by how G changes with
N and P. The most general expansion of G(N,P) about a continuous wave (CW)

operating point Ny and Py would take the form

3G 3G
AN+ 28] |ap+| 99
No,,,o] * [ 9P NO,,J M (BNBP

The first term on the right side is the total gain at Ny and Py, the second describes the

G(N,P) = G(N,,P,) + (a—G

N ]ANAP+. . (29)

Ng,Pp

differential gain, and the third describes the non-linear gain or gain compression. (Here
AN =N - Ny and AP =P - Py.) For small-signal applications in which AN<<N, and
AP<<Py, the fourth term and all higher order terms are ignored because they involve
products of small quantities. These are all functions of Ny and Py and can be defined

‘G, =G(N,,P,) | (2.10a)

A=AN,,B) =S

2.10b
aN (2-100)

No.Py

1 (ag
s ‘ 2.10
e=¢(N,,Py) G(NO,PO)(aplNo.Po] o



»-

Then the gain used in th¢ ratevequ'ation becomes
G(N,P) =G, (1 -€AP)+ AAN (2.11)

The adilantage of this convention is that it is defined in terms of the physical quantities

that are éétually rﬁeasured in a small signal modulation response or noise measurement--

namely, the differential and nonlinear gain at the operating point used in the experiment.
"It does not presun;e to describe how G varies with N starting from the threshold carrier

density Ny, or how G varies with P starting from P = 0. Rather Gy, A, and ¢ are all

explicitly functions of Ny and Py (and for that matter that t and Tph are t00), and if we

wish to study héw A and ¢ depend on Ny and P, we can repeat a single dynamics

measurement for different laser powers.

Unfortunately (2.11) is not the most common convention for the rate equations.

Most authors use [15]

G(N,P) =[G} + A’ AN|(1-¢’ P) 2.12)
or the equivalent, where the primes denote the conventional use of the variables. This
expansion contains questionable assumptions that (2.11) does not. The first is that the
gain compression (1-€'P) is independent of the operating point Py, that is, the compression
of the gain from P = 0 to P = AP as the same as the compression of the gain from P = P,
to P = Po+ AP. This is not likc;ly to be true, and in general the gain compression
mechanism will have somé higher order dependence on P, which is implied in our first
approach. Second, it assumes the compression (1-¢'P) applies to the differential gain A'

as well. The differential gain is surely compressed by P, and for spectral hole burning it
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may well be that the coefﬁciént 0f compression is the same for Gy' as for A'. Butin a
DFB laser there are many non-linear effects, including longitudinal hole burning and
Eénier'heating effects, that might not be so simply described [9]. Furthermore,
compresgion of the differential gain will not affect the nature of the dynamics but only
how the dynamics change with Py. This is because we will eventually ignore the second-
* order term A'a'AI\} AP in the rate equations, so the term A'(1-¢'P) only defines how A'
changes as Py increases. Since the dynamics at high-powers are affected as much by
temperature and detuning effects as by gain compression [16], it is not clear that it is
helbful to assume a form A'(1-g'Pg).

In the end, only the quantities (2.10) are observable in a modulation response or

noise measurement, and these quantities relate to those in (2.12) by

G, =G} (1-¢'P,) 2.132)
8,

1-¢'P, ( )

A=A'(l-¢P) (2.13¢)

which we find By equating the first-order “small” terms of (2.11) and (2.12). If we
analyze the dynamics using the primed variables, we will only be doing more algebra than
necessary--e. g., evefywhere ¢ would appear we will instead have €'/(1-¢'Py). For these
reasons we shall describe the gain by (2.11).

Putting (2.11) into (2.6) and (2.7), assuming F(t) = Fn(t) = 0, and setting the time

derivatives to zero, we get the steady-state conditions at Ny, P, and I,



G,I'v, = 1 (2.14)
ph
I N
e—:/- =G,v,P, + —T& (2.15)

The first of these is the “gain equals loss” condition, and the second says the rate at which
carriers are injected into the active region equals the rate at which they are removed,

either thfough stimulated emission or non-radiative or spontaneous decay.

Small signal equations

The small-signal laser dynamics are determined by putting

N(t) = No + AN(©) (2.16a)
P(t) = Py + AP(t) ' (2.16b)
I(t) = Ip + AL(t) (2.16¢)

into the rate equations and neglecting any products of small quantities (second order in

A’s), which gives us

P
9 AP=Tv AP, AN - o pp . THO 2.17)
dt 8 Ton

: 1—¢P F(t
A AN=AL AN | ap AN =120 pp B ®) (2.18)
i ev 1 ® It v

rh
where we used the steady-state conditions to simplify the result.
The final rate equation we need describes how the lasing frequency ® changes

with carrier density N. We use the chain rule to write



do _ do dn, dn; dG

—_—— (2.19)
dN dn, dn; dG dN
The physics is contained only in the dn,/dn; term, through the o parameter,
on_/oN
=——r 2.20
on, / oN (2.20)

! time dependence, the

and the rest are purely mathematical conversions. With an e
imaginafy part of the refractive index is related to material intensity gain G by

0 = GAu /41 (2.21)
A change in the real part of the effective mode refractive index nmoger Will change the
resonant frequency of the laser by A® / @ = -Anpeder / Dmoder- However, o describes the
index change in the active region only, and the optical mode is not entirely confined in
the active region. The mode index nyeg.; (Which is what the mode frequency ® responds
to) will change less than the material index n,, and the correct weighting factor is the
same confinement factor I" as in the rate equations. (This can be shown rigorously by
applying perturbation theory to the mode condition [17].) Thus

Ao =-An T ©/ Dpoder (2.21)
Finally, dG/dN is just the differential gain A. Combining all of this, (2.19) becomes

do -T'w A
o (n j(—a)(z;)A @.22)

mode,r

Recognizing that the group velocity is vy = o A, / 2MNmode s WE arrive at the frequency

deviation rate equation



- Ao(t) = g—t—A(b(t) = %I‘AVgAN(t) +F, (t) (2.23)

We have tacked on another Langevin noise term describing spontaneous emission into the
lasing mode. The relation of Aw to d(A¢)/dt is the definition of instantaneous frequency.
The small-signal dynanﬁc equations (2.17), (2.18) aﬂd (2.23) are the basis for
_deriving _the ﬁodulation response and noise properties. They are not valid for large-signal
(e.g., digital) modulation because of the assumptions (2.16). In general, digital
modulation dynamicsvmust be analyzed by numerically integrating the rate equations with

some model of how G(N,P) depends on large changes in N and P [18].

2.3 Direct modulation

In many applications the laser injection current I(t) is modulated with the desired
signal. Then the driving term of the rate equatjons is Al, and we derive the frequency
response by assuming a harmonic time dependence, Al = ie'™, AP = pe'™®, AN = ne'™, and
Ap = Beim7 We can solve the rate equations for any variable of interest, and since we will

postpone the discussion of noise to the next section, we’ll take Fy(t) = Fy(t) = 0 here.



AM response

Putting these into (2.17) and (2.18) and eliminating n gives the photon density
response p,

p | Avgl"Po
(i/eV) —-Q+iQy+Q,>

(2.24)

The output power response is related to the photon density by the mirror losses (in later
chapters P will refer to output power itself instead of photon density). The modulation
response is measured by a detector photocurrent, and the laser response is usually taken to

be the detector electrical power normalized to the DC (Q=0) response:

. 2 4
R(Q) = | (p /- Dg | - Q02 (2.25)
0/ Dass| (@7 -0,2) +Q%?
Here € is the resonant frequency (also called the relaxation oscillation resonant
frequency), given by
v_AP P
g=leo, & (2.26)
Ton TonT
and the y is the damping frequency, given by
P
Y E-l—+ v, AP, + &0 (2.27)
T Ton

Note that these frequencies are in radians per second, not Hz.
The AM response is flat at low frequencies, then has a resonance at Q = Q,

typically several GHz. Above Qg the response falls off dramatically, by 40 dB per



P

decade. The damping frequehcy, ‘also several GHz, widens the resonance and lower its
peak. Thus y flattens the response and makes it more desirable for transmitting
brbadband signals without distortion. Both Q and y increase with Py, and in

, communibation systems the lasers are usually run at high bias for optimum high-speed

performance. This is discussed more in Chapter 4.

I - Lihreshold 20 mA
fiber coupled 3 mW
optical power

Qo/ 21 7.7 GHz
v/ 2n 2.4 GHz
|ot] 4.1
Tph 5ps
T 0.4 ns
ePo / ton2m 1.6 GHz
vy AP 1.2x 10" 1/s
ePy 0.05

Table 2.1. Typical values of laser parameters measured as described in
Chapter 5 for a DFB laser at fairly low bias. The gain compression (last
value) is only 5%.

Typicail values bf these constants are given in Table 2.1, measured as described in

Chapter 5. We see from them that it is a good approximation to neglect the second term

of (2.26) and use

(2.28)




FM response

The FM response, A®, can be gotten by noting that for Fy(t) = 0 we can solve

(2.17) for AN and substitute into (2.23), giving [19]

A(o=M —(-i—AP+£—P°—AP (2.29)
2P, { dt Ton

Using the harmonic time dependence and the solution (2.24) for p/i, we get the FM

response,

Aw
(i/eV)

2 Q* +(eP, /1,,)
= (jojAv,I'/2) —°
(QZ _QOZ) +,YZQ2

(2.30)

This is also resonant at Q and damped by y, but at high frequencies it rolls off at 20 dB

per decade, less quickly than the AM response.

Adiabatic and transient chirp
The result (2.29) gives us more insight into the frequency response of the laser
than (2.30) ar_ld is an oft-quoted result, valid without the harmonic assumption of (2.30).
We see the laser chirp A is ditectly proportional to the a parameter, as advertised. The
contribution of the first term is referred to as transient chirp and is important when AP(t)

changes quickly, for example in digital modulation schemes where P(t) has a sharp



P

square;wave turn on. The second term is the adiabatic chirp contribution, more often

important in analeg or linear systems such as cable television.

oam/2

AO? transient

adiabatic

Q

Figure 2.1. Optical frequency chirp A® versus modulation frequency (2,
showing the adiabatic regime, in which Aw is constant, and the transient
regime, in which it is linear, and the characteristic frequency k = &Py / Tph
separating them.

For a sinusoidal modulation of the form P(t) = Po(1 + APe'™) we can write
BQ =Aw = %m(iﬂ +K) (2.31)
where m = AP/Py is the optical power modulation index, or AM index, and B is defined as
the phase modulation index. Here x = €Pg / Ty, is a characteristic frequency separating the

transient and chirp regimes, typically a few GHz, and is linear with Py. The magnitude of

frequency deviations goes as vQ? +x* , shown in Figure 2.1, and the phase of the FM

with respect to the AM is



By — 0,y =tan™ (9) (2.32)
K

as shown in Figure 2.2. This phase will become important when discussing dispersive
propagation. Note that both the adiabatic and transient chirp are directly proportional to

the output power modulation index m.

eFM _eAM

72 S e R I IR 20

adiabatic transient
723 B ;

Q
Figure 2.2. Phase by which the FM leads the AM, versus modulation
frequency, for direct current modulation. In the adiabatic regime they are
in phase; in the transient regime they approach 90° degrees out of phase.
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2.4  Laser noise -

The small-signal rate equations can also be used to derive the intensity and
- frequency noise spectra of the laser. In this section we shall use a semi-classical model in

which noise is driven by spontaneous emission [20, 21].

Langevin force analysis

We return to the rate equations and examine the Langevin noise terms. Fn(t) is
associated with the random decay of carriers, due to spontaneous emission and non-
radiative decay. Fy(t) and F,(t) are associated with spontaneous emission into the laser
optical mode. F(t) is the component of the spontaneous emission field that is in phase
with the laser field, perturbing only the laser intensity. F,(t) is the other quadrature of the
spontaneous emission field, perturbing only the laser phase. In a phasor diagram, Fy(t)
and F, (t) are the spontaneous emission phasor projections parallel to and perpendicular to
the laser field phasor. In the Markovian approximation, spontaneous emission is a

“memoryless” process, in the sense that the spontaneous noise term Fy(t) has an

autocorrelation function
Crr, (0 = (R (DF, (t+1)*), =S 8(7) (2.33)
where the number Sg is the correlation strength, and similarly for F(t). Spontaneous

emission is assumed to be both stationary and ergodic, which means that the time average



_ is the same as an ensemble average. The spectral density is the Fourier transform of

(2.32), and is “white,”
Sk (2) = Sg, () = J Chr, (e dr = Srg (2.34)

Note we suﬁpress the double subscript identifying S when we are talking about
autocorrelations. For the shot noise model of noise, which simplifies the quantum
mechanical description of laser noise, a correlation strength is equal to twice the average
rate of the events it describes, in number per unit time.

Despite the fact that both spontaneous emission projections come from the same

physical events, they are uncorrelated, in the sense that
Cr, (1) = (F(OF, (t+ 1) *), = Sgp 8(1) (2.35)

This is a weaker statement than statistical independence between the two, but is sufficient
for treating them separately as driving terms of the rate equations.

The noise term Fn(t) represents spontaneous decay of carriers, both by radiative
and non-radiative means, and includes spontaneous emission into the lasing mode. Thus
Fn(t) is correlated with F(t) and we cannot treat them as independent noise sources. The
simplest solution is to write explicitly the part of Fi(t) that does not involve spontaneous
emission into the lasing mode.. We define this Langevin force to be F'n(t), in terms of

which Fy(t) becomes

Fy (t) ==F,(t) + Fy (1) (2.36)
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' The. minus sign in front of F||(f) isl because the carrier density decreases by the same
number the photon density increases due to these events. Now F'\(t), Fy(t), and F, (t) are

explicitly mutually uncorrelated, and equation (2.18) becomes

| | 1- “F, '
_CE.AN=£_§AE_V AP,AN — eP, AP + 1 () + Fy (1)
dt eV < 8 I't Vv

(2.37)

ph
To derive the response of the laser to any of one of these sources at frequency Q,
we can take the other two to be zero and use (2.17), (2.23), and (2.37) as our rate

equations. For example, since F'n(t) acts just like current modulation in the rate

equétions, it produces an intensity noise spectral density SN, (Q) and frequency noise
spectral density SE(;) (€2) with the same form as the AM response (2.25) and FM response

(2.30). It turns out that F'n(t) is not the dominant source of intensity or frequency noise in

semiconductor lasers and can usually be ignored.

Spontaneous emission F),
The response due to Fy(t) is gotten by setting Al = Fn(t) = Fy(t) = 0, assuming the
same harmonic dependence as above, and eliminating AN from (2.17) and (2.37). The
res1;lt is the spectral dehsity éf ‘the photon density fluctuations due to F,

2 2 2
S\ (Q) = S, (g)r_2 Q° + 12/ T
V (92 _902) +,YZQZ

(2.38)

The spectral density of the source is just a constant,
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S (@)= L =8Kwg (P,V/T) (2.39)

Ton
where ngp is the spontaneous emission factor, K is the Petermann enhancement factor of
DFB lasers, and wsr is the Schawlow-Townes linewidth [22, 23]. The noise spectrum has
a resonance at o, damped by v, and is the same form as the FM response, reflecting the
fact that the ﬁuctu‘ations in photon density are coupled into carrier fluctuations by the
dynamics of the rate equations. These carrier fluctuations chirp the laser frequency
through (2.23), and we can find the chirp relation by returning to (2.37) and (2.17) and

eliminating Fy(t), then using (2.23) to replace AN to get

-d

Ao+ %Aa),. (t) = -'—‘;-'ngLit AP, (t) + TLAP,, (t)} (2.40)

ph
This is the equivalent of (2.29) but for variations in frequency and photon density driven

by Fy(t) rather than by AI(t). For a harmonic time dependence it reduces to

o [iQ+1/1,
Aw, = ——v Al —— |AP, (2.41)
2 2 iQ+1/1

From this it follows that the spectral density of the frequency fluctuations caused by Fy is

S (@)= (Ialﬂoz )2[ (T, Q)7 +1

I
2P,Q | | (1/1Q)° +1}SA"(Q) 242

where we used (2.28) for Q to simplify it. Aw(t) leads AP\(t) at frequency Q by a phase

(2.43)

n _1((1/19)+¢th)

0' =—+tan
2 1-(t, /1)
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Note Tﬁh << T, so the dcnomin'ator‘ is nearly 1. Note that (2.43) implies that Aw(t) and
APy(t) are perfectly correlated. This is true because both are driven by the single noise

source Fy(t).

Spontaneous emission F
The second noise term F, (t) produces no intensity fluctuations because it only
perturbs the phase of the laser field. Thus
Sp(Q)=0 (2.44)

It produces frequency fluctuations given by

SL(Q)=S, (Q)= K ke (2.45)
Aw —YF, - PO(V/F)TPh - ST .

These are uncorrelated with the fluctuations caused by F.

The intensity noise of the laser is usually specified by the relative intensity noise

(RIN), defined as

2
0

S (Q
RIN =10 log,, (;‘1‘;—(—)-) (2.46)
and measured in dB per unit frequency. We use photon density as the variable because its
ratio AP/P, or SAP/P02 has the same value as for output power or optical intensity. The
noise terms as constructed are uncorrelated, so we can add their spectral densities,

S p () = S (Q) + S} (Q) + S5, (Q) (2.47)

Since the first of these terms is negligible and the last is zero, (2.46) becomes



2
0

o "
RIN =10 1oglo(§‘1§—(@) (2.48)

The shape of the RIN spectrum is shown in Figure 2.3, based on (2.38) and (2.39).

RIN (db /Hz)

-20 dB/decade

1/t Qo log frequency

Figure 2.3. Shape of RIN spectrum, with peak at Qg and damped by ¥.

In the next chapter we will see how propagation through dispersive or frequency
discriminating media can change the characteristics of semiconductor laser signals. In
Chaipter 4 we will show how‘measuring the modulation reSponse and noise of a laser, and
the change of those quantities in dispersive optical fiber, can let us determine the laser

parameters.



'Chapter 3 -- Propagation Effects

In this chapter we consider the effect on a general optical signal of propagation
through a fnedium whose properties depend on the optical frequency. In some uses of the
. word, any pﬁysical property that depends on frequency is said to be “dispersive.” In this
thesis, dispersion refers only to group velocity dispersion, or an optical wavevector B(w)
which depends at least quadratically on the optical frequency. We refer to an optical loss
that depénds on frequency as “discrimination,” in the sense that a frequency discriminator
transmits optical signals of different frequencies preferentially, rather than as “dispersive
loss.”

In some sense, propagation through arbitrary media is a solved problem--we can
relate the input and output optical field Fourier transforms by a complex transfer function
which describes the medium. In the case of semiconductor lasers and fiber gratings,
however, this is unwieldy and lacks insight. The concept of FM-to-AM conversion in
fibers and gratings gives us useful heuristics that predict the properties of laser/grating

systems without resorting to Fourier transforms.



3.1 Representing AM and FM signals

We start by writing the general form of an optical signal that is both amplitude
- and frequency modulated:

E(t) = Eo[1+ msin(Qt +8 )] ¢!t Peos(@+om) (3.1)
Th¢ bracketed quantity represents the AM and the exponential the FM. Ej is chosen to
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have units of (optical power) '“ so that the intensity is

P(t) =E*E =E,*(1+ msin(Qt +6 )
=P, + APsin(Qt +8,,,,) (3.2)
where Q2 is the modulation frequency and m = AP / Py is the AM modulation index for
intensity or optical power (as opposed to for the optical field, which for small signals is
m/2, or the detected electrical power, which is 2m). The instantaneous optical phase is
O(t) = w,t —Pcos(Qt+0.,) 3.3)

where B is the phase modulation index. The instantaneous optical frequency is

()= 51%?—) =, +PQsin(Qt +6,,,) (3.4)

where ay is the center optical frequency. We see that a modulation of the optical phase
implies a modulation of the optical frequency, and vice versa. The optical frequency

deviation (one half peak-to-peak) is clearly



Ao = BQ (3.5)
which is an important basic relation.
'GAM and Oy are the phase by which the AM and FM modulation lead some
, reference", for exémple, a sinusoidal modulation of the laser injection current. The form
of the phase modulation (3.1) differs among authors but this form has the advantage that
*when Oaym = Opm tile power and frequency are in phase, e.g., for Oam = O?M = 0 both go as

+sin(Qt).

General formulae

The signal (3.1) contains discrete frequency components, or harmonics, at

intervals of Q from w,

E(t)=E, Y C e (3.6)

q:—oo
The harmonics are often referred to as sidebands. In propagation through some medium

with a complex transmittance t(®) = |t(w)|e*, the q™ harmonic picks up a factor

t(wo+ q€2). To analyze the problem analytically, we thus need to find the sideband
coefficients C, for (3.1). We will develop the technique here in order to show why other
techniques are necessary.

The AM portion can be written with the Taylor expansion

oo n n-1

(1+x)"=1+Y =[a/2-p) 3.7)

pruril 1§ ety



3

- which can be reworked into

(1+x)"” =) a,x" (3.8)
n=0
. . _ n-1 — !
with a, =1, a,=1/2, a,,=CD (@n-3) (3.9)
27 14 (n-2)!

for x<1. For our signal x = m sin(Qt + 8am), and x" is evaluated by writing the sine in
complex Vexponential form. For compactness we define the argument of the sine to be

¢ = Qt + Oam, giving

m g, m _,) (m)< ; n!
msin@)" = —_e“"——.e’“”) =(—) (-DPe 2P (3.10)
(msin) (21 2i 2i pzo pl(n-p)!

where for (¢'*-e"?)" we used the binomial expansion,

n !
A+B)" =Y Arepr 3.11
(A+B) p}% T (3.11)

Combining (3.8) and (3.10) we get the complete analytic expansion for the AM term,

oa n g 1
1+msine)”’ =Y a (ﬂ) (~peiem2m ___1° (3.12)
( 9 =25 ) & pln—p)!

The FM term can be written using the Jacobi-Anger expansion [24],

e PeEIng = N (i)"Y, (B)e I G.13)

where J,(x) is the n™ Bessel function of the first kind.
The advantage of the formula (3.13) for the FM sidebands is that it gives
g
explicitly the coefficient Crv g of the qth harmonic e'%*, whereas the AM formula (3.12)

does not. We can deduce the coefficient Canq of the qth AM harmonic from (3.12), but
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- each Camq is an infinite sum of a, in (3.9). Furthermore, a signal with both AM and FM
is the product of (3.12) and (3.13), the q‘h harmonic of which is an infinite sum of Cpp;
éuid CFM,j. And to find how dispersive fiber affects the detected signal, for example, we
~ would mﬁltiply each sideband by t(we+Qq), take P(t)=IE(t)I* and find the part of P(t)
which goes as sin(Qt).

It should be clear at this point that an analytic treatment is intractable. There are
two alternatives. One is to determine the coefficients Cq of (3.1) with a numerical Fourier
transform, and analyze the problem completely numerically, as discussed in Section 3.4.

The other is to use the small-signal approximation.

Small signal approximation

If we assume m<<1 and B<<1 the expansion simplifies. This is often a good
approximation, because to avoid non-linearities in a laser response or optical modulator,
the signal is often kept small. Then we can expand the square root and exponential in
(3.1) and write the cosine and sine as complex exponentials. If we define

M = me (3.14)
g = | (3.15)

and remember that 65y and Oy represent phase leads in time, we arrive at

E(t) = E e [1 +et {"71(%+ z’)} +e {%(7’;* -2 *)H (3.16)
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"This gives the complex arhplitude of the upper and lower optical sidebands of E(t)
in terms of the size and phase of the AM and FM signals.

‘Before applying this formula in the next sections, we present a powerful phasor
represenfation of the small signal approximation which can be used to understand the
effect of dispersion or discrimination. Suppose we have a generic signal

E(t) = E,e'™[1+c,e"™ +c,e™] (3.17)
in which ¢; and c; are gotten from (3.16). We can draw the amplitudes of the three
frequency components as phasors in the complex plane, as in Figure 3.1. As time

+ .
+iOt time

evolves, the phasors ¢, and c; rotate in opposite directions because of their e
dependence (we consider the carrier wave phasor, amplitude 1, to be the fixed reference
phase). Note the abscissa in Figure 3.1 serves double duty--it represents the imaginary
projection of the phasor and also the frequency axis.

At

Re

Cy €

i Jf Y it

®

©-Q W, W +Q
Figure 3.1. Representation of upper and lower sidebands in the complex
plane. The sidebands rotate in opposite direction as time progresses, due

to the e*™ time dependence. This c; and ¢, represent pure AM
modulation.



The total electric field is the vector sum of these three phasors. We can see that
fdr the ¢ 1,¢2 in Figure 3.1 the horizontal components of the sidebands will always cancel
- each othér, and the time evolution only perturbs the amplitude of total phasor along the
real axis. This amounts to pure AM modulation, since the center carrier wave phasor gets

. sinusoidally longer and shorter with the addition of the rotating sidebands, but doesn’t
change phase. One half-period later both sidebands point straight down; this
configuration also represents AM modulation, but with an AM phase 180° from the
original.

Suppose instead the phase of ¢, is opposite ¢, depicted in Figure 3.2. Then as
time evolves the real components cancel, and only the imaginary part of the total phasor
is perturbed.‘ Assuming Icyl << 1, Ic,l << 1, the phasor length is unchanged. This
represents pure phase modulation, and hence pure FM. Sidebands that both point left or

both point right are also pure FM, but with a different FM phase.
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Figure 3.2. Phasor diagram showing pure phase modulation. As the
sidebands rotate with time, the real projection cancels and only the phase
of the vector sum is perturbed.

The phasor picture is sufficient for representing any arbitrary AM and FM signal
in the small-signal approximation. The real and imaginary components of ¢ and ¢
amount to four parameters, adequate‘ for representing m, 3, Oam and Oy If c;=0, for
example, we have only one sideband which perturbs both the length and phase of the
carrier wave, producing a signal with equal amounts of AM and FM (in that = m/2). If
lcyI>Ic,l we have both AM and FM but in differing amounts--e.g., we could have a mostly
AM signal with a slight attendant FM. If Ic,|=lc,! and both have a phase of /4 relative to
the real axis, we have equal amounts of AM and FM but lwith a different relative phase

Orm-6aM between them than if ¢, = 0.
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"The power of this model is that is lets us see immediately the effect of
propagation. For éxample, if a fiber grating blocks the upper sideband and transmits only
£hé carrier wave and lower sideband, we know immediately this will produce an output
- optical signal with equal amount of AM and FM regardless of whether the input signal

was AM or FM modulated or both. A dispersive medium that adds the same phase ¢ to
- both sidebands but not the carrier wave (which is essentially what standard optical fiber

does) will mix AM and FM components, converting a purely AM input into a purely FM

output when ¢ = n/2. Both of these phenomena will be demonstrated experimentally in |

subsequent chapters.

3.2 Dispersive propagation

The frequency components of (3.16) are multiplied by t(w) in transmission
through a medium and knowing t(w) we can determine the AM and FM properties of the
resulting signal. First we will consider dispersive propagation, by which we mean one in

which only the phase of the components is affected, i.e., t(®) = 1@

General formulae

Suppose the upper and lower sidebands acquire a phase factor e ™ and e ™

respectively, with respect to the carrier wave. The resulting signal is, copying (3.16),
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E(t) = E,e™" [1 et (71)(1;{— + z’s’)e“‘”‘ +e 7 (—;-)(—77; -7 *)e‘""z ] (3.18)

Note we assigned no phase to the carrier wave. In general the center frequency picks up a

phase but it is only the relative phase between it and the sidebands that matters. We can

| easily pullyout an overall phase e *“* so that ¢; = Pp(we+Q)-Pp(wo) and ¢ = P(w-Q)-

_$(o). The AM and FM of this output signal can be determined by comparing the
complex amplitudes of the sidebands in (3.18) with the canonical form (3.16). If we let

7 and &’ represent the AM and FM after the fiber, we see by comparison that

o e (%Jr g)e‘”’l (3.19)
2 2
= * ,
and , 7”2 -8* = (7’; -2 *)e““’z (3.20)

Taking the real and imaginary parts of these gives us four equations, from which we can

solve for m', B', 0am’' and Oy’ after the fiber. The solution can be expressed succinctly as

W =M coso, - 2iBsing, Je ™ (3.21)
2= [z«;coscpa —%%sinq)a]e’i“"’ (3.22)
where
0, = (@, +0,)/ 2= 6@, + Q)+ (00, — Q) - 26(0,) (3.23)
0, =(¢, —9,)/2 =0¢(w, +Q)— (o, "»Q) (3.24)

The interpretation of this is that AM and FM get converted into each other by ¢,,

or any accumulation of phase that is symmetric about the carrier wave. Any anti-
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symmetric accumulation of phase; ¢v, only serves to add an extra time lag to both the AM
and FM phases. - The fact that the dispersive effects can be separated into symmetric and

anti-symmetric effects follows from our earlier intuitive phasor representation.

Standard optical fiber

For example, in standard single-mode telecommunications fiber, the phase
accumulated in traveling a length L is Bgpe L, Where Bgpe(®) is the wavenumber of the

optical mode. It is often Taylor expanded about the center optical frequency:
) l 11 2 1 tee 3 1 ey 4
Brcde (@ +A®) =B, + B Aw +EB (Am)? + -6-[5 A® +§B A*+... (3.25)

Here Bo= Bmode(tdo) and the primes denote derivatives of f(w) evaluated at @y. (Note this
Bmode is unrelated to the phase modulation index B--we use the awkward subscript
“mode” to avoid confusion.) From (3.16) it is obvious that B¢ produces an
inconsequential overall phase, and ' produces an extra phase that is linear with
frequency, equivalent to a time lag. The second derivative B" predicts a frequency

dependence of the group velocity v,, defined by

LB _pip A, (3.26)
Vg 510

v, is the speed at which a field envelope propagates along the fiber. (For non-dispersive
media, Bo =0 and vy = 1/B'.) B" is often measured by the difference in time taken to |

travel a length of fiber L for two different wavelengths of light, measured in picoseconds
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* of time difference per kilometer of fiber traveled, per nm of wavelength difference. This

is the common dispersion parameter

B (3.27)

At the low-loss wavelength of standard optical fiber, around 1550 nm (in air), D has a
typical value of 17 ps / nm km (B"<0 in this region), and the blue components travel faster
than the fed components. D reaches zero at around 1330 nm and is negative (B">0, red
components faster) at wavelengths below this.

Including only B", ¢, becomes the mixing angle 8(Q) = B"Q*L/2 commonly used
for dispersive optical fiber. The root mean square detected electrical power at frequency
Q is, from (3.2), proportional to m?. After the fiber, we see (by taking the magnitude of
(3.25) and some algebra) this becomes

(m')? = m? cos® 0+ 4B sin” 6 + 4mPsin O cos Osin(Bpy, — 0 ,y,) (3.28)

(Our conventions differ from some authors: for us "<0 and 6(€2)<O0 for standard fiber at
1550 nm.) This is the general formula for the change in an AM signal due to dispersive
fiber. The first term describes conversion of the initial AM into FM (and thus represents
a decrease of detected 51gnal) and the second the conversion of initial FM into detected
AM. The last term is a correctlon depending on the relative AM-FM phase. The AM
phase of the signal, am, Will also be changed by the fiber given the complex nature of
(3.21), and this can be measuréd by a network analyzer aé easily as m' can.

| All of the even-order terms, like B" and B"", contribute to ¢, or 6 in the same way,

and they mix the AM and FM nature of a signal as it propagates. The odd-order
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dispe‘rsi‘qn terms like 3™ only deléy the AM or FM signal. However, we note that just

because ¢y, adds a time delay to AM and FM signals without inter-converting them, this

cioésn’t mean a broadband signal is not distorted by ™. A broadband or analog signal

. must be ;iewed aS a superposition of AM and FM components with different frequencies
Q. Each component picks up a phase lag ¢ = p"Q’L/6 that depends on Q, and the
"components get O;Jt of phase with respect to each other, which is sufficient to cause
distortion. This can be made rigorously correct for a small broadband signal E(t) = Eg[1 +
f(t)], where | f | << 1, by expanding f(t) into AM and FM components of different
freqﬁency, and using (3.25) and (3.26) for each component 72°(Q2) and £'(Q2). Ina

modulation response experiment, though, we measure (m')> and 8y for only a single Q

at a time, and (3.21) is appropriate.

Laser modulation

In the previous chapter we derived the phase modulation index B and the FM
phase for direct current modulation of the laser. Using the complex B from (2.31) in

(3.21), we get the transfer function for AM laser modulation,
- A . L
H oy (Q) == cosb(@) + |or|sin 6(Q) — 1|oc|h—sm 6(Q) (3:29)

where k = gPg / tpn. The first term on the right side of (3:29) represents the decrease in
the initial laser AM as it gets converted into FM by the fiber. The second term represents

the creation of new AM from transient chirp FM. But since 6 < 0, this term is negative at
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low frequencies, and so it serves to cancel the original AM. The third term represents
new AM created from adiabatic chirp FM, and it is /2 out of phase with both other terms

and addé AM power in quadrature,

- O initial AM
20¢ + adiabatic term
15} ¥ fransient term

—ry
o O

=10}

change in AM (dB)
o

-15} ;

20}/ . N

o5}l - I

Y . - - - |
0 5 10 15 20 25 30 35 40

Frequency (GHz)

Figure 3.2c. Magnitude of the three terms of equation (3.29).<The thick
solid line is the total transfer function, and the three component terms are
labeled by the symbols.

Figure 3.2¢ shows the magnitude of these three components for 13.3 km of fiber,
witl} laser parameters lal = 4',1 and k / 21 = 4.6 GHz. (These parameters were taken from
areal measurément, déscribed in Chapter 4, Figure 4.6.) The initial AM term is labeled
by the open circles, and shows the zeroes in the AM produced by total conversion into
FM when cos(0) = 0. At low frequencies the transient term is smaller than the adiabatic

term, because the low-) expansion of sin(0) goes as Q?, whereas the adiabatic term goes
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“as Q. Thé adiabatic and transient terms are equal at Q =x =4.6 GHz. The maximum
transient contribution (the height of the “bumps” in Figure 3.2c, when sin(0) = 1) is larger
t\h’én the‘ initial AM by a factor of laf* = 12.3 dB. Thus the two together can increase the

~ signal by"a2+1. The maximum adiabatic contribution depends on x and decreases with
frequency due to the 1/Q dependence in (3.29). The thick solid line is the total transfer

"function,’

12
o (@) = TH:F = cos” B(Q) +|of 1+ (x/ Q) ]sin® 6(Q) +2|o| cosB(Q) 5in O(Q)
(3:30)

Note in Figure 3.2c that at about 7 GHz the initial AM and the transient term have equal

magnitudes and thus cancel each other out exactly, and the total transfer function is equal

to the adiabatic component. The depth of this first dip (thick solid line) is determined by

the non-linear gain term k. Fitting (3.30) to an experimental measurement is a good

methéd of measuring the laser parameters ePo/Tp, and o, as illustrated in the next chapter:
In short, dispersive fiber can increase the AM signal by more than a factor of

lo® + 1 at some frequencies, and decrease it by several tens of dB at others. It is therefore

a major source of distortion in analog signals.

Laser noise

To analyze the change in laser noise with propagation, we need to relate the

spectral densities Sxp(Q2) and S,,(Q) which characterize noise to modulation indices m
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“and B which we’ve used to analyze propagation effects. We make an association between

mean squared quantities; for the AM index we use get

2 .
m? = (ﬁ) - Su(@ (331
PO l:,0

and for phase modulation we have

2
P (5] e 63

Note that in (3.1), m and P refer only to the single-frequency signal at Q, and in general
can be thought of as functions of frequency just like the spectral densities, which is
implied in (3.31) and (3.32).

As remarked in Chapter 2, the relationship between intensity and frequency noise
caused by spontaneous carrier decay Fy'(t) is the same as that for direct modulation, and
thus the intensity noise SZ', (Q) is modified by the same transfer function (3.30) in
propagating through dispersive fiber. Thus

S (e = [Ha (SN () (33)

The noisé driven by F(t) at frequency Q produces a phase modulation index

gotten from (2.41),

M. )?+11"
of 1€ [( ) } (3.34)

"l _|__
b = (1/1Q)* +1

2 Q°
[
m' = /SAP(ZQ) (3.35)
PO

where
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" 1s the effcctive noise modulation index. Using this and Opm-04y; from (2.42) we get, from

(3.21) with much algebra, the transfer function for noise driven by F,

: w C1+iQT, Y
H,, Q)= P = cos0(Q) + |0L| @9 sin 6(Q) (3.36)
for which
I
|H|| (gz)l2 = S"AP (Q)after fiber (337)
SAP (Q) before fiber

The third noise term F; produces only a frequency noise, so the initial effective

modulation index m™ is zero, and the phase modulation index is, from (2.45),

@ [Ke,
Q Q

(3.38)

Using (3.28) we get

Sil’ (Q)afterﬁber = 4(2K0)ST )sm G(Q) (339)
P, Q?

Combining all three of these noise terms, the RIN after the fiber is, by comparison

to (2.46) and (2.47),
: &

2 sg‘,, 2 sg,, 8K

RIN ter fiber =10 l0g,4 (IHAM (Q)l IHII(Q)l Q? —-sin G(Q)) (3.40)

0
The first term is still hegligiblq, but we see that the fiber produces a new source of
intensity noise--the FM-to-AM conversion phenomenon of dispersion also converts

frequency noise into excess amplitude noise [25]. Using the form of S',(Q) from the

previous chapter, and ignoring the first term above, we get
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g ; ‘ Qz +1/ ’Cz 2
RIN fer fer = 1010891 8Ky [(92 _Q 2)2 +y2Q? J'Hu(g)l +
S -Q,

sin” 0@ B (3.41)
Thefirst term is the usual RIN spectrum modified by the transfer function H, for
“parallel”‘ spontaneous emission, that is, those events whose field is in phase with the
laser field. The second term, sin®0 / Qz, is the conversion of frequency noise from the
“‘perpendicular” events into excess amplitude noise. These components are plotted in
Figure 3.5 for 8.8 km of fiber and laser parameters taken from experimental data (Chapter

7). We see the fiber reduces the RIN by over 10 dB at low frequencies, and is due mostly
to the S, (Q) term. When Hy(Q) is small the S},(Q) term determines the RIN, and the
two alternate (due to their cosine and sine behavior) at higher frequencies. Like the

modulation response, the change in RIN due to fiber can be positive or negative

depending on the frequency, fiber length, and laser parameters.
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Figure 3.5. RIN before and after 8.8 km of fiber, with the two components
of Equation (3.41). The “parallel” line refers to S"AP (Q2) and the

“perpendicular” to Sy, (Q).

3.3 Frequency discrimination

In this section we let the propagation medium have a frequency-dependent loss, so
%’M
that t(@)=It()le'*®. If the magnitude It(w)l is not constant, the medium acts as a

frequency discriminator by selectively transmitting some wavelengths more than others.
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Single sideband analysis
We can extend our single-sideband analysis to include complex transmittances

that are more than just phase factors. Following our previous derivation, the output field

“becomes

E(t)'='Eoei‘j’°‘t(m0 )[1 +et ("7‘)(% + ?)tl +e7% G)(% " g *)tz] (3.42)

2
where we have factored out the transmittance of the center wave, so t; = t(w+Q)/t(wy)

and t; = t(mo-C2)/t(wp). The signal (3.42) is equal to the canonical form (3.16) if we use

the new AM and FM parameters

W = %—l:%(t, F1,%)+28(1, — t,%) ] (3.43)

3’:%[?«, +t2*)+%(t1 —t2*)] (3.44)

These reduce to (3.21) and (3.22) if t; and t; are purely phase factors. Note that (3.43)
predicts the new AM modulation index, which is the optical power at €2 divided by the
DC optical power. Because of the t(wg) outside the brackets in (3.39), both the
component at Q and DC power will be reduced by It(wo)l* because of the loss.

For a fiber grating, t(w) is a complicated function and (3.43) and (3.44) re
actually hard to handle analytically. A simple exception is when It(w)! is linear and non-
dispersive over the bandwidth of interest, in which case the signal can be more intuitively

handled in the time domain.



Time domain model
Suppose we replace our signal (3.1) with one of the form
E(t) = {/P(t)e' (3.45)

which has instantaneous power P(t) and an instantaneous frequency

, 4oV

o(t) =0, dt

(3.46)

Now suppose this signal is incident on a frequency discriminator with a transmittance
T(w) that responds instantaneously to «(t). In this case the transmitted optical power
would simply be

P anaminea (1) = P(OT(e(1)) (3.47)
The problem with this model is that no frequency discriminator responds instantaneously
to a change in optical frequency. Indeed, a frequency difference of Aw between two
signals cannot be resolved by any measurement until the signals have gotten out of phase
by one cycle, which takes an amount of time on the order of 1/Aw. If the characteristic
time scale on which P(t) or @(t) changes is much longer than the response timemof the
discriminator, then (3.47) is a reasonable approximation. But if the response tilhe of the
discriminator or filter is compallrable to the signal bandwidth, we must include the
response time in our calculation. This finite response time is manifest as a complex

phase of the frequency response of the filter. When the signal bandwidth is comparable
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to the filter bandwidth, we must use the Fourier-domain transfer function of the filter to
model these phase effects correctly.
'Nevertheless, (3.47) offers a simple intuitive explanation of the consequences of
‘ frequency discrimination, and is sufficient for explaining many experimental results. For
example, consider a directly modulated laser signal Pj(t) = Py, + APy, sin(Qt) incident
-on a linear freque;lcy discriminator, with a linear transmission T(®) = T + T’ A®, where
T = T(op) is the transmission at the center frequency and T’ = dT/dw is the slope of the
transmittance versus frequency. For low frequencies Q << k the frequency deviation of

the laser is Aw = lalAP;, k / 2Py, from (2.31), and the FM and AM are in phase. Then,

using (3.47),
P, (1) = T[P,, + AP, sin(Qt)]+ AP, T jofx / 2 (3.48)

where we ignored the sin? term. The new output signal at Q is related to the initial one by

AP0 =T+Tlalx/2 (3.49)

in

The first term is the initial modulation attenuated by the filter, and the second is new
modulated creatéd from the FM by the filter.

The significance of this is two-fold. First, if T" is positive and large enéugh, the
ratio can be gfeater thaﬁ 1, meaning the total AM signal is increased in going through the
filter. We will see this realized in Chapter 6, with a 14 dB increase in a directly

modulated laser signal in transmission through a fiber grating. On the other hand, if T” is
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‘negative, the new AM will cancel some of the original. We will see this in the context of

laser noise in Chapter 7, in which a fiber grating reduces the laser RIN by 2 dB.

3.4 Fourier-domain analysis of arbitrary media

Because of the difficulty in calculating the Fourier coefficients of (3.1) outlined in
Section 3.1, we were forced to include only the first two sidebands in our analysis. The
other alternative is to calculate these coefficients numerically, and treat the entire
propagation problem numerically in the Fourier domain.

Figure 3.3 shows a schematic of this approach. For any of the driving terms in the
rate equations we can calculate at any frequency Q the AM and FM signal parameters m,

B, and Opm-6amM as in Chapter 2. Then from E(t) in (3.1) we calculate the Fourier
spectrum E(w) before and after the optical device, using the complex transmittance t(w).

The transfer function is the ratio of the output to input detector power at the modulation
frequency Q. This routine can also be used to calculate the change in 2 digital signal in

the time domain, using a square wave for E;y(t) and comparing to E,(t).
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Figure 3.3. Schematic of routine used to numerically calculate the transfer
function H(Q) of an optical system with transmittance t(w). FFT

represents a numerical fast Fourier transform and IFFT the inverse
transform.

A numerical analysis is the only practical way to analyze fiber gratings, for which
the transmittance t(w) is either analytically intractable or only available numerically, as
we shall see in Chapter 5. In addition, it is valid, when the small signal approximation is

not, for signals with large AM or FM modulations, m ~ 1 or § ~ 1.

A listing of a routine for performing this calculation is given in Appendix A.



Chapter 4 -~ Characterization of Semiconductor Lasers

We saw in the previous chapter that the laser dynamic parameters o, k = ePo/Tpn,
2y and 7y all play arole in the effect of propagation on the laser signals. Thus we need to
.know these parameters in order to predict the effect of a fiber grating, and in fact
measuring the change in noise or modulation response due to a fiber of known length and
dispersion can let us measure them. In this chapter we detail the experimental
characterization of semiconductor lasers, with the goal of determining these dynamic

parameters.

4.1 Experimental setup

- A schematic of the experimental setup is shown in Figure 4.1. The laser rests on a
home-built probe station that features a two—stagé temperature controller, built from plans
presented in [26] and modified for our setup, which stabilizes the laser temperature and
can be used to temperature-tune the laser wévelength. The DC current is supplied by a
low-noise constant current sou}ce, built from plans given in [27] and modified for our
use, and is delivered to the laser chip via two needle-like DC probes. The output is
collimated, sent through an optical isolator, and focused into a fiber pigtail, from which it

can be sent through various lengths of standard single-mode telecommunication fiber
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(Cornin'g SMF-28) and/or a fiber grating, and into a detector. Often we use a fiber
coupler to send same of the light to an optical spectrum analyzer (HP 70950A) to monitor

the laser wavelength or measure the grating transmission spectrum.

Network
Analyzer

y A

g:ow-noise fiber
current source
p-wave ‘
probe
Taser isolator
I and fiber

= pigtail

™ Computer [=&

% amp |—| ESA

detector

OSA

Figure 4.1. Experimental setup. The network analyzer measures the laser
modulation response, and the electronic spectrum analyzer measures the
intensity noise power.

For a modulation response measurement, the high-frequency signal is provided by
an electronic network analyzer (HP 8722C) and delivered to the laser via a custom-
ordered microwave probe (Microtech Inc.) with a microstrip contact geometry. This has
three planar contact lines, the inner carrying the signal and the two outer ones, separated
by 125 pm, serving as grounds. The signal is detected with a high-speed photodiode
(Ortel 2516A) with a 20 GHz r.esponse. The network analyzer compares the received
signal to the sent signal at swept frequencies from 50 MHz to as high as 40 GHz.

For an intensity noise measurements, we provide no high-speed signal and simply

bias the laser at some CW operating point. We use a high-power photodiode
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‘ (Oﬁel 2518A) capable of ‘15 mW of fiber-coupled optical power, and send the high-
frequency component (which is by definition all noise) through an electronic amplifier
éﬁd into an electronic spectrum analyzer (HP 8565E). The network analyzer, electronic

’ spectrurri"analyzef, and an ammeter that measures the detector photocurrent (not shown in
Figure 4.1) are connected to a personal computer programmed to control the data

-collection.

4.2 Modulation response

Figure 4.2 shows the results of a typical modulation response measurement. The
detected signal is more than 40 dB below the sent signal because of electronic losses,
which would have to be removed in an imbedded system. The response is shown for six
bias points, where I - Ipyeshola iS the injection current minus the threshold current. Each
curve exhibits an RC rolloff and marked electronic ringing due to electronic reflections at

the connectors--the ringing frequencies can be matched to the cable lengths used.
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Figure 4.2. Modulation response of the laser at six different bias currents
I-I,. The largest response was for the lowest current, as indicated in the
figure. The electronic ringing and parasitics are obvious.

As the bias level is increased, the bandwidth increases, but the electronic response
obscures the details of the intrinsic laser response. This can be remedied by the frequency
subtraction technique [28]. Each of the curves in Figure 4.2 can be subtracted from any
of the others (subtracted in a dB scale, or dividing on a linear scale), which removes the
common electronic response. The result is shown in Figure 4.3 for the top two curves in
Figilre 4.2. The solid line is va _ﬁt to the quotient of equatién (2.25) for two sets of peak
frequency €y and damping factor y, with the results given in the figure caption. By
pairing each bias level with each of the others, we can obfain several fit values for each

bias level, giving a mean and standard deviation for each one.
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Figure 4.3. The difference of two modulation responses, removing the
electronic response. The I-Iy, = 20 mA line of Figure 4.2 is subtracted
from the I-I, = 30 mA line. The points are experimental data and the solid
line is a fit to the theory. The fit parameters at 20 mA are Qy/2n = 7.2
GHz, y/2n = 3.6 GHz, and at 30 mA are Qy/2n = 8.5 GHz, y/2n = 4.8 GHz.

The resonant frequency increases as the square root of output power according to

equation (2.28), and it is straightforward to show from the rate equations that it is also
proportional to JI_:T; . Figure 4.4 shows the fitted resonant frequencies from the
frei]uency subtraction pairings versus I-Iy,. The coefficient of proportionality between €
and \/I-1, iscalled the mod;11ation efficiency factor, often quoted in GHz per vVmA ,

and is a figure of merit for high-speed lasers.
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“Figure 4.4 clearly shows fhat Qo does not keep up with ,/ I-1I, ,whichis aresult

of differential gain suppression [29, 30]. This is predicted by the power dependence of A
;rﬁplied by the gain convention of (2.12), which is the main advantage of the choice of

- that con\;ention. ‘However, in the experience of the author and his colleagues, Qy falls off
even faster than this prediction, and may be due to a combination of spatial hole burning

" and spectral hole ‘buming effects that do not follow the form of (2.13). A study of Qg vs.
Py might clarify how and why tﬁe differential gain A(N,P) and gain compression factor

¢(N,P) depend on power and temperature.

14
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Figure 4.4. WO vs. I-Ithreshold. The x’s are for the six laser biases for
Figure 4.2, and the solid line is proportional to /I—-I, . The decrease

below the square-root dependence of equation (2.28) is due to differential
gain compression.
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~ The damping factor also increases with output power, and from (2.27) and (2.28)
Wwe can see

eP
Y =1,Q,° + 1% 4.1)
, T T,

The damping thus increases as the square of Q, and as power is increased the damping
. eventually i)ulls the response down so that the 3 dB frequency occurs before the peak
frequency and decreases with further increasing power. Thus the modulation bandwidth
has a maximum value, determined by the slope of the y vs. Q line, also called the K
factor. Had we assumed a form for suppression of the differential gain as in (2.12), the K
factor would be Ty, plus some gain suppression corrections.

Figure 4.5 shows a plot of y vs. Qo, showing the accuracy of the linear relationship
(4.1). Alow K factor means smaller damping and higher maximum bandwidth. Itis a

common figure of merit for lasers intended for high-speed modulation. The intercept of

. R . . 1 &P, .
the linear fit shown in Figure 4.5 can in theory be used to determine —+—2, but in
T T
ph

practice the uncertainty in this number (determined in turn by the standard deviation of

the fit values of Q) and ) makes this an unreliable estimate.
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Figure 4.5. v vs. Qg” for the six laser biases for Figure 4.6. The slope is
the so-called K factor, and is a measure of the maximum 3 dB bandwidth
of the laser.

Fiber transfer function

Measuring the change in modulation response due to dispersive optical fiber can
let us determine other important laser parameters. Figure 4.6 shows the change in the
modulation response for the 6 laser biases of Figure 4.2 due to 13.3 km of fiber (that is,
the figure shows the response £neasured at the end of the fiber minus the response
measured with no fiber). The points are experimental data and the solid lines are fits to

equation (3.30). Doing this for several lasers and bias levels lets us determine the fiber
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dispersion product B"L and remove it from any single fit, leaving o and ePo/t, as fit

parameters [31, 32]. Results are given in the figure caption.
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Figure 4.6. Change in modulation response due to 13.3 km of fiber, for

the six different bias levels I-Iy, of Figure 4.2. The fitted o parameter from

the six lines was 4.1 + 0.3, and «/2n = ePy/1pn27 increased very linearly

with current, from 1.6 GHz at I-I, = 20 mA, to 6.7 GHz at I-I;;, = 70 mA.

The dips in the data at about 6 GHz in Figure 4.6 are caused by a zero in the

transfer function for the transient chirp component [33]. As the characteristic frequency
ePo/tpon incfeases with bias level, the chirp becomes more adiabatic in nature at 6 GHz,
and the dip is lessened. At higher frequencies where the chirp is mostly transient, the
transfer function has another dip that can be seen more clearly with longer fiber. Figure

4.7 shows the change in modulation response due to 25 km of fiber, with the same dip

that depends on output power and a second dip that does not.
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Figure 4.7. Change in modulation response due to 25 km of fiber. The dip
at 17 GHz is where H(Q) of equation (3.30) becomes zero.

4.3 Intensity noise

Measuring the laser relative intensity noise is complicated by the presence of
detector thermal noise and shot noise. This means we have to célibrate for the thermal
noise and shot noise at any frequency and optical power. We can do this by putting an
optical attenuator between tﬁe laser and the detector and rheasuring noise power versus
detector photocurrent for different attenuation. The laser is kept at a constant bias and the
ESA is kept at a single electronic frequency, so only the attenuation of the light changes.
We convert the noise power from dBm into mean squared current fluctuations and use the

following relation for the mean squared value of the noise current in:



<iN2> = G(v)Av[fN (V) +2¢(i) + [RINYi)* ] (4.2)
Here G(v) is the combined electronic gain of the amplifier and the ESA, which amplifies
ali noisé components equally, and Av is the detectdr bandwidth. fy is the combined noise
figure of ihe amplifier and detector, which is treated as a pre-amplifier noise source. The
second term on the right side is the shot noise, where <i> is the mean photocurrent, and is
‘ a basic relation for shot noise [34]. The third follows from the definition of RIN in

(2.46), where we’ve converted optical power to detector current. (Here RIN is measured

not in dB but as an absolute ratio.)
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Figure 4.8. Mean squared current fluctuation (proportional to noise
power) vs. detector photocurrent, at 12.75 GHz. The fit line extracts the
amplifier noise (constant part), shot noise (linear part), and laser noise
(quadratic part) at this frequency.
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‘Figure 4.8 shows the result of such a measurement. From (4.2) we see that the
constant part of. <in*> versus <i> corresponds to the thermal noise, the linear part is the
ghot ndise, and the quadratic part is the laser noise. The measurement and fit in Figure
4.8 is reﬁeated as a function of frequency, and since the shot noise spectrum is white, any
change in the linear coefficient with frequency must be due to the amplifier gain. Having
. a calibration of the noise figure and detector response at each frequency lets us extract the

RIN from any subsequent measurement. For example, if we call the fitting parameters A,
B,and C, as in
. 2 W2 .
(iy’) = A{i)* +B(i)+C (4.3)

then from (4.2),
RIN = %26 “4.4)

For example, Figure 4.9 shows the total noise power in dBm versus frequency for
a diode laser at a single bias level and no optical attenuation, showing several dB of

electronic ringing. Using the results of the
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Frequency (GHz)

Figure 4.9. Total noise power and RIN versus frequency. Note the scales
are different: noise power is measured in dBm, using a 6 MHz resolution
bandwidth; and RIN is in dB/Hz, plus 70. The point is that the calibration
technique removes the thermal noise and electronic response.
above calibration, we can subtract the thermal noise and shot noise at each frequency, and
divide by the electronic response, leaving just the laser RIN, which is a much smoother
spectrum. Note the scales are very different--the point is only that this calibration
removes the electronic contributions very well and leaves a smooth RIN spectrum.

The RIN spectra measured in this way can be fit to the theory of Chapter 2. Using

(2.38), (2.39), and (2.48), we get

2 -2
RIN =10 log,,| 8Kepg ——— 1/ 4.5)

(Qz _ 902)2 + ,Y2Qz
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Figure 4.10 shows the measured RIN spectra of a laser at four bias currents, with the fits
to (4.5). Itis clear that as the bias level increases, the resonant and damping frequencies
Qo and y increase, and the Schawlow-Townes linewidth decreases, as expected. The

other parameter  is fairly constant over this range.
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Figure 4.10. RIN spectra of a laser at four different bias currents. The
points are experimental data and the lines are fits to equation (4.5).

Fiber-transfer function

Finally, we can also measure the change in RIN due to some length of dispersive

optical fiber. We can use the calibration coefficients A, B, and C to determine RIN after
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the fiber by measuring.the phdtocurrent (i) and noise power (iNz) after the fiber, and the

noise power <1N thermal > with no optical source. Then from (4.2) and (4.3),

({in®) = (innema” ) = BYiD 2
B(i)*

The results are shown in Figure 4.11 for four different fiber lengths, with fits to (3.41).

RIN =

4.6)

This lets us measure 1, and o, providing a nice compliment to the modulation response
fiber measurement. For moderate lengths of fiber, the RIN decreases at low frequencies

before increasing. For fiber lengths of tens of km, the RIN can increase by 20 dB [35].

change inRIN (dB/Hz)

Frequency (GHz)

Figure 4.11. Cﬁange in RIN due to four lengths of dispersive optical fiber.
The points are experimental data and the solid lines are fits to (3.41).






Chapter 5 -- Fiber Bragg Gratings

5.1 Introduction to fiber gratings

A fiber Bragg grating (FBG) is a length of optical fiber in which the refractive
index has been periodically modulated, or corrugated, along the length of the fiber. The -
index corrugation produces a Bragg reflector, coupling forward-propagating waves into
the backward-propagating mode whenever the mode wavelength is twice the grating
period, analogous to Bragg diffraction of X-rays from a crystal. Typical FBGs are a few
cm in length and have center reflectivities of over 9% with minimal scattering losses.
FBGs act as very wavelength-sensitive filters, with bandwidths on the order of 1 A, and
have been used in place of mirrors to create entirely fiber-based Fabry-Perot
interferometers and erbium-doped fiber lasers [36].

Fiber gratings are also enabling a new generation of high-speed optical
communication networks, as they are key components in two of the most important
advances in the field in the 1990’s. The first is a technique for dispersion compensation,
in which several-cm-long fiber gratings are used to recompress pulses that have been
broadened by hundreds of kilometers of dispersive optical fiber [37, 38]. The second
advance is in wavelength-division multiplexing (WDM), in which a single optical fiber

carries several different optical signals, each at a different wavelength [39, 40]. In WDM
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- networks, fiber gratings usually form the key components of add-drop devices, which are
responsible for adding and removing individual wavelengths from the fiber [41]. In
éither of these applications, as we shall see in the remaining chapters of this thesis, the
optical pfo’pertiesA of fiber gratings can have a dramatic effect on the behavior of optical

signals that pass through them.

Fabrication

The formation of the refractive index corrugation is accomplished by exposing the
core of a germanium-doped silica fiber to ultraviolet light. The UV light breaks chemical
bonds associated with germanium defects in the crystal; when these bonds are broken,
released electrons are then thought to be trapped at hole-defect sites to form color centers
[42, 43], changing the absorption of the glass in the UV region and thus refractive index
elsewhere. The photosensitivity of the silica can be increased by hydrogen-loading the
- fiber at high temperature or pressure; resulting in typical index of refraction changes of
2x1073. The illuﬁﬁnation is usually accomplished from the side with an eximer laser or
oth?r coherent UV source, with a transmission mask for example being used to form the
periodic intenéity pattern. These masks can have non-linear or “chirped” corrugation
periods, and tapered or “apodized” intensity profiles. There are many fabrication
techniques reported in the technical literature, using holoéraphic masks, interferometric
techniques, point-by-point exposure, and single-pulse exposure, in sum allowing for a

variety of grating functions to be produced [44, 45, 46, 47, 48].
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T he fabrication of a gfatiﬁg with a specific index profile is complicated by the
saturation dynamics of the index of refraction, which can cause distortion of the intended
édrrugation and the appearance of higher spatial harmonics. In addition, increasing the
’ amplitud'e of the index corrugation will increase the average index, thereby changing the
local mode wavelength and pulling the Bragg wavelength. Thus a grating whose
- corrugation profife is tapered, or apodized, will also have a tapered chirp, unless care is
taken to maintain a uniform average index by selectively exposing parts of the grating to
UV light without the periodic corrugation.

For these reasons, and despite the innovations referenced above, fabricating a
mask with a given complicated index profile is still far more difficult than the analysis of
said profile. As we will see below, arbitrary grating profiles are very accurately analyzed
with numerical solutions to the coupled-mode differential equelltions. In this chapter,
we’ll use these equations to calculate the reflection and transmission spectra of fiber
gratings, and to analyze the relationship between the phase and amplitude of these

spectra.

5.2 Coupled mode equations

The most common analysis of Bragg reflectors is with coupled-mode theory,
which describes the coupling of forward-going and backward-going waveguide modes by

the grating. A thorough derivation of the coupled-mode differential equations is
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 presented clearly in [6] and other texts, and we will merely present them and their

solutions.
\ » cladding
B ——————— core
—. |\
: corrugation section .
z=0 z=L

optical »

mode > +z

Figure 5.1. Schematic of fiber waveguide and the forward- and backward-
propagating mode amplitudes B and A.
We represent the forward and backward propagating modes of the fiber, with
wavevectors 13, by the dimensionless envelope functions B(z) and A(z), as shown in
Figure 5.1. The electric field is then A or B times some constant Ey. The coupling

between modes is described by the differential equations

dA(z) _ Ke—iZABzB(Z) (5.1a)
dz :

dB(Z) - * e+i2ABzA(Z) (Slb)
dz

where AP is the difference between the incident wavevector and the resonant wavevector,
AB=B-m/A 5.2)
and A is the spatial period of the corrugation. The coupling strength is given by the

coupling coefficient k,
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. 2
K= _IQT_A_E (5.3)
4Bc” g,

written in terms of the amplitude of the dielectric constant corrugation Ag, or equivalently
the change An in the fiber refractive index (for small An). It is imaginary here, but in
general it is complex, allowing for complex Ag, or corrugation of the loss or gain of the

. waveguide aé in some DFB lasers. In deriving k one only needs to assume the
corrugation is slowly-varying compared to the optical wavelength. To analyze tapered
gratings, k is replaced by a position-dependent function k(z) which gives the local mode
coupling at each point z along the grating, defined by (5.14) in terms of the local

amplitude Ag; of the index corrugation at that point.

Uniform gratings

If x is indeed constant over the entire length of the grating, (5.1a,b) have an
analytical solution, giving the field distributions as a function of z in terms of the initial
conditions at the ends of the fiber. In the most common uses of fiber gratings in optical
communication, the field incident on the grating from the “far” size is zero, A(L) =0, and
we can calculate the quantity of most interest: the electric field reflection and

transmission coefficients at the grating ends:

_ E.:(0) _ (xL)sinh(sL) (5.4)
E 4 (0) —i(ABL)sinh(sL) — (sL.) cosh(sL) '
_iBBmggL
_ Egn(L) -e (sL) (5.5)

E,u(0)  —i(ABL)sinh(sL)—(sL)cosh(sL)



where
s2 =[x - AB? (5.6)
and BBI-;gg=A/TC is the wavevector of the Bragg-matched (on resonance) frequency.
We could‘ add the caveat kL > APBL to the above equations, because when AP

increases beyond k, s becomes imaginary. Yet equations (5.4) and (5.5) are still valid,
provided we recognize s — i/ AB? — [|> for ABL > kL, cosh(isL) = cos(sL), and

sinh(isL) = i sin(sL). In this case the i factors cancel in the expressions for r and t and

they are more clearly written

. (xL)sin(sL)
—i(ABL)sin(jsL]) — |sL|cos(|sL})

ABL>xL  (5.7)

o —e " Prnl g |
—i(ABL)sin(jsL]) — [sL|cos(sL)

ABL>xL  (5.8)

Here we use the complex magnitude IsLI so that the definition of s in (5.6) is still valid.

Properties

The intensity reflection and transmission coefficients are R =|r|* and T = |t|* and

it is straightforward to show that R+T = 1. Figure 5.2 shows reflection spectra for three

values of L.
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Figure 5.2. Grating reflectivity versus ABL for 3 values of kL, from
coupled mode theory, using the squared magnitude of equation (5.4).

To convert ABL into wavelength or frequency, we use (5.2), which can be written

in the useful form

Aragg.ai
ABL = [% - 1]ane, (5.9)

Here L is the length of the grating, A is the spatial period of the grating, Nper = L/A is the
number of periods in the uniforrh grating, and A, is the wavelength of the light in air
assuming Ny, = 1.

At the Bragg condition; AB=0 and R is at its largest, and the reflectivity is
symmetric about the Bragg wavelength. The strength of the grating is specified by kL,
and in fact the functions r(ABL) and t(ABL) are uniquely determined by xL. As kL is

increased, the grating becomes stronger and wider, as Figure 5.2 shows. The reflection
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sidelobes on either side of the reflection band are common and usually undesired. They
increase in size and number as kL increases. Figure 5.3 shows an experimentally

measured transmission spectra for a strong wideband grating, showing several clearly

v discernible sidelobes.
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Figure 5.3. Measured reflection spectrum of a strong, wideband grating
showing several pronounced reflection sidebands.

Two graﬁngs with different lengths but the same coupling-length product kL will
ha\{e the same spectra when plotted versus ABL, but different widths when plotted versus
wavelength. The more periods a grating has, the more narrow the grating bandwidth will
be, as can be deduced from (5.9). So the length of the grating determines the wavelength
or frequency difference corresponding to a given ABL. As remarked above, s becomes

imaginary when IABLI>«L and the fields propagate through the grating instead of being
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A

reﬂected.’_ This sets the width of the reflection band--using (5.9) we can deduce the
forbidden gap width

KA, 2Kc
ANy, =— or Aw,,, =
7n n

(5.10)

mode mode

Where Nmode=PBragghair/ 27 is the effective index of refraction of the guided mode.

Phase spectra
The phase of the reflectance and transmittance are defined by r =|rje’® and

t=|tle” and give the time phase, or lag, of the reflected and transmitted wave. Using

(5.4) and (5.5),
¢, =tan™ m:|=tan“|:_él§£‘ﬂs}_’)_] APL < xL (5.11)
| Re(r) (sL)cosh(sL)
_ o a[Im®)]_ o[ _ ABLsinh(sL)
¢, = tan _Re(t)] = Py L+ tan [ —_(sL) cosh(sL)} ABL < kL (5.12)

with similar expressions using sin and cos instead of sinh and cosh for ABL > kL.



Figure 5.4. Grating transmission (squared magnitude) and phase, versus
ABL for 2 values of kL, from coupled mode theory, using (5.5).

The transmitted phase appears identical to the reflected phase except for the
additive factor of -Bgeg.lL, which is exactly the phase accumulated by an on-resonance
wave traveling to the right through the length of the grating. However, (5.11) and (5.12)
suffer the ambiguity of the arctangent function having a range of -n/2 to /2. To illustrate
this point, imagine that a complex number z with phase ¢, is multiplied by -1. Both the
imaginary and real parts of z change sign, and thus their quotient doesn’t, so according to
the\prescription used in (5.1 i) and (5.12), the phase of -z is still ¢,. Clearly, though,
multiplying z by -1 should change its phase by n. With the arctangent function, this
change of © gets mapped back into the range -1/2 < ¢, < ﬁ/2. - A phase change of m is

physically significant but will not be manifest with this method. It is better instead to use
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: thé fun’qtion arg(z), available on rhany numerical computing programs, which has a range
of -n to m, and ,oniy physically-insignificant changes of 2r get mapped away.

In light of this, the difference in sign between the numerators of r and t in (5.4)
and (5.5): shoW that ¢r and ¢y actually differ by -Bpragl. + 7. Or, ignoring the phase
accumulated in traversing the grating, the transmitted and reflected waves are exactly out

-of phase at any fréquency. Figure 5.4 shows the phase of the transmittance for two values
of kL. The phasé of r or t becomes more perturbed by the grating as kL increases.

The fact that the phase of the transmitted and reflected waves is not linear with
freqﬁency means that the grating has a group velocity dispersion. The second derivative

_ of the phase ¢" = d*¢/dw? plays the role that B"L plays in dispersive fiber. Some of the
literature uses these analytical expressions to analyze the potential for using gratings for
dispersion compensation [52], but for the majority of gratings the phase ¢(w) is
sufficiently non-quadratic over the bandwidth of interest that using only ¢" is a poor
approximation. Tl.le exception is for wide reflection bandwidth chirped gratings used in
reflection, in which case ¢,"(®) is approximately quédratic in the center of the reflection

band.

5.3 Numerical solutions

The analytic coupled-mode solutions in the previous section assumed the coupling

strength is uniform from z = 0 to z = L. This is not only unrealistic for fiber gratings, it is
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often undesirable. By‘apodizing the corrugation we can eliminate the sidelobes that
appear in the spectrum of a uniform grating. In addition, we can broaden the bandwidth
ofa gréting with fixed x and L by chirping the period of the corrugation. A numerical

solution to the cdupled-mode equations is required to analyze these effects.

Apodization
Returning to (5.1) we wish to let the coupling strength be a function of position
along the grating. We define a dimensionless length variable x = z/L, so the grating

extends from x =0 to x = 1, and a dimensionless coupling strength & = «L, to obtain

dA(x) _ é(x)e—n(AﬁL)xB(x) (5.13a)
dx

dl(31(X) —E(x)* g H2AMBLIX A (4 (5.13b)
X

The detuning factor ABL now appears as a constant in the exponential. We can define
&(x) to be any smooth function and integrate these equations numerically from x = 0—1,
then use r = A(0)/B(0) and t = B(1)/B(0). To compare the effect of the apodization‘ with
the uniform grating, we should make sure that the integrated coupling strengths are the

same,

fedx = (5.14)
0
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"In addition, we should,requiré thai the length of the corrugation section stays the same--if,
for example, we let £(x) be a Gaussian.centered at x = 1/2 with a width of ¢ =0.1, the
gfating' has an effective length of 20 = .2 instead of 1. We would calculate a wider

, reﬂectioﬁ band because of this, which has nothing to do with the apodization.

Figure 5.5 shows corrugation profiles &(x) for four different gratings. In each case
" the integrated cou‘pling strength (5.14) is a constant kL = 2.0. In addition, the grating
length, defined by the full-width-at half-maximum (FWHM) of &(x), is 1 for each grating.
Note that gratings (c) and (d) extend beyond x = [0,1]. Here the equations (5.13) have
been integrated along the full length of the function &(x), but the definition of L is still
from x = 0to x = 1. In other words, gratings (c) and (d) are physically longer from end-

to-end but do not have a longer FWHM of the apodization profile.

25

151

05}

Figure 5.5. Coupling strength profiles &(x) for four different gratings.
Each grating has an integrated coupling strength of kL.=2.0 and a FWHM
length of Ax = 1.



Figure 5.6 shows the resulting reflection spectra of these apodized gratings. To
bIot R \}ersus wavelength in air, we use (5.9) and assume Apag; = 1540 nm and the
- number of cofrugation periods from x = 0 to x = 1 is Npe, = 18,000. (If npoge = 1.5 this
corresponds to a grating length of 9.2 mm per unit of x in Figure 5.5.) We see that the
* width of the reﬂe;:tion band varies somewhat between the gratings, but the major effect of
the apodization is to reduce the size of the reflection sidelobes and smooth the spectrum.

Grating (d), with a Gaussian apodization profile three times longer than the FWHM

length, has no discernible sidelobes.
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Figure 5.6. Reflection spectra for the four gratings of Figure 5.5. The
height of the first reflection sidelobe is listed, showing the effect of
apodization. '
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Now suppose we desire to chirp the spatial period of the corrugation. We let the
corrugation period A be a function of x, through the parameter ABL = (B — o)L where Bo
= w/A is the Bragg-matched wavevector. Suppose 3y varies linearly along the grating
(assuming the total variation is small, this means A is also linear). We write

Bo= Bo+ Bo' X, and equations (5.13) become

dA(x) _ é(x)e-iz(AﬁL)x c*i2(5°'L)"2B(x) (5.15a)
dx 4
d](31(x) —E(x)* g H2AABLIx o ~i2(By'L)x* A(x) (5.15b)
X

which retains the same form as (5.13a,b) with the substitution

E(x) — E(x)e?® (5.16)
We see that a linear grating chirp can be treated by adding a quadratic complex phase to
E(x). For a grating with the usual leﬁgth Ax = 1, we can show with (5.9) that the
parameter (BO'L) is related to the total change along the grating of the local Bragg
wavelength 6Apragg air BY

M bragga
—E =N, L (5.17)

B, L= N . x A

Bragg,air

The dimensionless grating profile becomes

E(x) — E(x)e ™" (5.18)
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where f_= OABragg,air/ MBragg,air = SNA is the fractional change from end-to-end of the local
Bragg wavelength or the local corrugation period (assuming f<<1). Here Np,; is the

unchirped number, i.e., the number of periods that would be in the grating if f = 0.
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Figure 5.7. Reflection spectra of chirped gratings. The coupling strength
magnitude 1€(x)I is the same for all four, equal to that of the unapodized

line (a) in Figures 5.5 and 5.6. They differ by the amount of grating chirp
f.

Figure 5.7 shows the effect of chirping the grating. Note that the center
wavelength is shifted and the grating is widened, both byiapproximately OA = f ABrage-
The grating sidebands have als‘o been accentuated to produce a sizable ripple in the
grating spectrum, which is undesirable. This does not occur with well apodized gratings:
Figure 5.8 shows reflection spectra for the same four chirped gratings, but with the

apodization profiles of lines (c) and (d) in Figures 5.5 and 5.6. We see that apodization
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smoothes the spectral features of a chirped grating just as effectively as it does an
unchirped grating. The figure below illustrates the effect of chirping most clearly--

wshifting' the central wavelength and broadening the bandwidth.
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Figure 5.8. Reflection spectra for apodized gratings with different
amounts of chirp. For each value of f, two apodizations profiles IE(x)l are
displayed, corresponding to lines (c) and (d) in Figures 5.5 and 5.6.
The spectra calculated so far have all been symmetric about the peak wavelength,
and this is generally true for symmetric grating profiles. It is also true for gratings with
chirp but no apodization, or apodization but no chirp. Figure 5.9 shows an example of an

asymmetric spectrum, obtained by apodizing only one end of a chirped grating. Lossy

chirped gratings will also have asymmetric spectra.
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Figure 5.9. Example of an asymmetric reflection spectra. This was
formed by apodizing only the long-period side of a uniformly chirped
grating, leaving the short-period side of the grating unapodized.
Apodization and chirp provide two valuable tools in constructing gratings for
fiber optic applications. The absence of sidelobes makes the optical filtering much more
controllable, predictable, and less sensitive to small changes in wavelength. Chirping of
the period lets us increase the grating bandwidth beyond the limitations placed by finite
mask lengths and refractive index saturation.
Appendix B lists numerical routines, written in Matlab, for solving the coupled
mode equatioﬁs 5. 15a,b) for gratings with an arbitrary apodization and chirp.
Finally, we remark that real gratings often have spectra that differ remarkably
from anything calculated by coupled-mode equations. They may show imperfections,

asymmetries, and peaks and dips of unknown origin. If the exact coupling strength
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~ function &(x) were knqwn, the coﬁpled mode equations would presumably give an

accurate prediction, but it is very difficult to know the phase of §(x) and even the

;négnitﬁde IE(x)I can be uncertain without good control of the UV exposure process. In

, applicatisns whefe only the magnitude of the spectrum, R(w) or T(w), is important, we
can simply measure it and not worry about the coupled-mode equations. But as we will

“see in Chapters 6 ;md 7, the phase of the spectrum, ¢(®) or ¢p(w), which is very difficult
to measure directly, can have a major influence on the properties of the reflected or
transmitted signal. The obvious example is in dispersion compensation applications, in
which it is hoped that ¢(®) is quadratic with ® and opposite to the quadratic phase
accumulated by a signal in traversing dispersive fiber. Coupled mode equations allow us
to calculate this phase given £(x), but unfortunately they cannot be “inverted” to let us
deduce g(x ) from the measured R(w) or T(w).

One solution is to use the coupled-mode equations assuming a linear chirp and a
Gaussian apodization, with the chirp parameter f and the apodization FWHM length
chosen so that the calculated T(w) roughly matches the observed spectral width and
sidelobe heights. Then the calculated phase ¢() will hopefully match the real phase

spectrum. A better solution is the subject of the next section.
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5.4 Kramers-Kronig rélationships

| In this section we show that the phase and magnitude of a grating spectrum can be
related via Kramérs—Kronig relations. The mathematical basis for this is the Titchmarsh
theorem, which describes when the relations hold [53, 54]. Here we discuss only the
" condition (5.19) l;elow and refer the reader to the references to see that the other
requirements hold for grating reflection and transmission spectra.
Our theorem is as follows: if a complex-valued function f(w)= f(®) + i fi(w) of

frequency o is square-integrable over the © axis, that is,
[f@)’do=K,  Kfinite (5.19)
0

then the real and imaginary parts of f(w) satisfy the following relations:

PJ-cof((o)

f(0)== do (5.20a)

£ (o) = -——Pj f, (m ) 4 (5.20b)

Here the P in front of the integral denotes the principal value. These relations tell us that
the imaginary part of the grating reflection coefficient r;(®) at any frequency ® can be

written as an integral of the real part (') over all frequencies ®'.



Reflectance

A very important caveat is (5.19), which, if we let f(®) be the reflectivity r(w),
requires that R(®) be integrable. Fortunately this is true--R(®) is bound from 0 to 1 and
thus has no singularities, and the large-frequency behavior can be gotten from an

expansion of (5.7),

|2

L sin®(ABL)

Iy
I ABL—eo ( ABL) 2

(5.21)

Thus R(w) becomes likes a sinc(w) function, tending to zero as 1/Ac02, and the integral
(5.19) converges. We can therefore calculate the real part of r from its imaginary part or
vice versa. Unfortunately the relations are not very useful, since knowledge of the real or

imaginary part of r(w) requires knowledge of the phase. For transmittance the situation is

more favorable.

Transmittance

Expanding (5.8) for large APL shows that T approaches 1 for large Aw. The
integral of T(w) does not converge to a finite value and we cannot apply (5.20) on t(w)

directly. However, note that since t(®) = |t(co)|ei¢‘("’) , we have

In(t(@)) = Injt(w)| + i, (©) (5.22)
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- At large ABL, the real part lnl‘t(co)ll goes to zero and by itself it is square-integrable, which

follows from the fact that R(w) goes to zero as 1/A®?, T=1-R, and

lﬁ(J 1- R) — 1—-R/2 for small R. However, the imaginary part i¢(®) becomes linear--

expanding (5.12) for large ABL we get

(bt __—_)_BBraggL - ABL = _BL (523)

AL
This is eﬁactly the phase accumulated by a wave in propagating a length L of fiber, and
this makes sense--far from resonance the corrugation has no effect on the wave and the
light propagates through the grating unaffected. This phase does not affect the signal
other than to produce the expected time delay nyoq.L/c, and we can factor it out of the
transmittance (for example, by defining t(®) = tyew(®) e L and working only with tpew(w)

hereafter). Ignoring this linear part, the asymptotic behavior of ¢y(w) is determined by the

factors [sL| — J (ABL)? —|KL|* in (5.12), and it is only a matter of algebra to show (c)

is also square-integrable. We can thus apply (5.20) to In(t(®)), getting

0, (@) =—2—mPJ—£ﬁ—dm' (5.24)
T

where we have used +/T =|t|. This very important result tells us that we can calculate the
phase spectrum of the transmittance at any frequency by measuring the transmission
spectrum T(w) and performing a numerical integral. (This cannot be done for the

reflectance, as InfR| becomes infinite.) The limits of integration are 0—»o0, but in practice
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it suffices to measure T(w) out to frequencies away from the resonance, and assume T=1
beyond that. = . .
" This integral can be performed numerically on any T(w) spectrum. If T(w) has a

constant value T over an interval (w,,ms), the contribution to (5.24) from that interval is

—Z—QPT ln(ﬁ) dor = ln(w/'—f) lnl(o)b -0)®, + OJ)I

T Yo'-’ T |0, -e)o, + ) (5.25)

This result holds whether or not the singular point ® is in the interval, by virtue of the
principal value on the left and the absolute value on the right. By splitting the spectrum
T(cﬁ) into many regions, each small enough that T is approximately constant, and adding
up the contributions (5.25) from each, the calculation can be made very accurate.
Appendix C lists a numerical routine for doing this calculation.

Figure 5.10 shows the transmission spectrum T(w) of the grating shown in Figure
5.9, with the phase of the transmittance obtained from the coupled-mode solution, and as
calculated from the transform (5.24) performed on an array of T(m) values.‘ The slight
difference between the two phase spectra is due to the limited number of integration
points used (201 across the width of the figure) and the numerical result approachgs the

exact phase as the number of points is increased.
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Figure 5.10. The transmitted phase of a chirped, apodized grating. The
phase ¢y is obtained from both the coupled mode solutions and a Kramers-

Kronig integral using 201 points of T.

As T—0 the logarithm becomes large and negative and can have a large effect in
the phase spectra. When the transmitted optical power falls below the sensitivity of the
optical spectrum analyzer used in the measurement, the T values become noisy and
fluctuate between 10 and 10™*. This causes noise in phase spectrum, as seen in Figure
5.11. If we smooth the measured T when it falls below the detectable limit, the resulting

Kramers-Kronig phase spectrum is smoothed.
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Figure 5.11. Phase calculated from Kramers-Kronig transform on
measured T of strong grating. The jagged line ¢ results from the noise in
T at low transmitted power. By smoothing T below the detectable limit
(from 1540.1 nm to 1540.2 nm) the calculated phase spectrum is
smoothed.
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Chapter 6 -- Modulation Response Improvement with Fiber

Gratings

We saw in Chapter 3 that propagation of a directly modulated laser signal through
" dispersive fiber w‘ill change the modulation response of the laser-fiber system. The
change in the AM signal results from the laser frequency modulation (FM), attendant on
the AM as a consequence of chirp, being converted into AM and vice versa by dispersive
propagation. Recently, Eggleton et al. [58] demonstrated dispersion compensation with
an unchirped fiber Bragg grating in transmission. In this chapter, we unite the topics of
previous chapters by showing that a fiber grating can convert laser FM into AM, thereby
increasiﬁg the magnitude of the AM signal. When combined with a dispersive fiber, the
grating increases the signal, flattens the frequency response, and increases the system
bandwidth, providing a frequency-domain demonstration of dispersion compensation in
transmission through an unchirped gfating. The frequency-domain analysis of the laser
signal, the dispefsive fiber, and the fiber grating presented in Chapter 3 accurately
predicts the observed results, and allows us to deconstruct the effect into its constituent

phenomena.
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6.1 Experimental Measurement

Network Analyzer PC

i

A v —L—.:> (m |g|1;E|l |11n|gi| V
- TTrrrerast

. fiber

laser  isolator detector

Figure 6.1. Experimental setup used to measure the frequency response of
the laser/fiber/grating system.

The experiment consisted of directly current modulating a 1.54 um commercial
(ORTEL Corp.) distributed feedback semiconductor laser at frequencies up to 25 GHz,
with the output sent through an optical isolator and into a fiber pigtail (Figure 6.1). After
propagation through various lengths of single-mode non-dispersion-shifted fiber and/or
an unchirped fiber grating, the signal was detected with a high-speed photodiode and fed
to an electronic network analyzer. By comparing the system response to that of the stand-
alone laser, we determined the change in the response due solely to the fiber and/or the
graﬁng. The laser wavelength was temperature-tuned and stabilized on the short-

wavelength side of the grating reflection band.
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Figure 6.2. Change in modulation response caused by a fiber grating. The
signal is increased by 7 to 14 dB at all frequencies.

Transmission through the fiber grating increased the laser modulation response by
over 7 dB at all frequencies up to 25 GHz, with a maximum value of 14 dB at low
frequencies (Figure 6.2). The optical intensity transmission of the grating was 38% at this
wavelength, so that the RF signal increase took place in spite of a drop, by 62%, in the
ave;rage received optical poWer. When the laser output wés sent through 25 km of fiber
alone (Figure 6.3, “25 km ﬁber‘”), the AM system response was increased at some
frequencies, and decreased at others, a consequence of fiber dispersion. The addition of
the grating at the end of the fiber produced an increased signal at low‘ frequencies and a

smoothing of the first large “bump” (Figure 6.3, “fiber + grating”). The system
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‘bandwidth was effectively increased too, as the first dip in the system response occurred
near 23 GHz, as opposed to 18 GHz without the grating. The small amplitude

W oscillations, or ringing, in Figure 6.2 at low frequencies was attributed to reflections
between the fiber grating and the laser isolator. When the grating in Figure 6.3 was
placed ahead of the fiber rather than at its end, the oscillations likewise appeared, but the

. response was otherwise unchanged. Similar results were obtained with a second grating

that had a larger bandwidth. An AM signal increase between 3.5 dB and 7 dB at all

frequencies up to 25 GHz was observed. Both gratings were commercially purchased

(Bfagg Photonics, Inc.) and neither was designed for this experiment.

1

25 km fiber

(4]
T

(=]

1
n
T

fiber + grating

" Changein system response (dB)

-25 : - : -
0 5 10 15 20 25
Frequency (GHz)
Figure 6.3. Change in system response after 25 km of fiber, with and
without the grating.
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6.2 Numerical Predictibn

vThe changes in the modulation response of the system produced by the grating can
be predicfed by tﬁe Fourier domain technique of Chapter 3, provided we know the form
of the grating’s optical transmittance function t(w). Unfortunately, the grating used in
‘Figures 6.2 and 6.2” was damaged before it could be characterized, but the results from the
second grating mentioned above are compelling. Figures 6.4 through 6.6 show the
change in the AM response caused by this second grating, with no fiber, 25 km of fiber,
and 50 km of fibver.. We will compare these results to the Fourier-domain prediction and

then extract some physical insight about the phenomenon.

-
o

‘change in system response (dB)
N WA O N ® ©

-
T

o

5 10 15 » 20 25
Modulation Frequency (GHz)

Figure 6.4. Change in system AM response due to a fiber grating. a)
Experimental data. b) Numerical simulation using coupled-mode
equations to model the grating. c) Numerical simulation using the
measured grating transmission spectrum, with the phase of the
transmittance being calculated.with a Kramers-Kronig integral.

o
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" To calculate the effect of the grating on the laser signal, we first specify the signal

exiting the laser as in (3.1),

E,, (1) = Eje " \/1+ m sin(Qf) exp[—ificos(Qt +6 )] (6.1)
. where m = .05 ié the AM modulation index, [ is the phase modulation index, Q is the
modulation frequency, and By is the phase by which the laser FM leads the AM. For a

" directly modulated laser with a linewidth enhancement factor a, we have as previously,

B= l%lm,/l +(%4) (6.22)

and

0, = tan™ (%) (6.2b)

Here x = ¢€P, /T, is the characteristic frequency separating the adiabatic and transient

chirp regimes, where ¢ is the non-linear gain compression factor, Py is the steady-state
photon density in the active region, and 7y is the photon lifetime [19]. k and o were
determined by fitting the change in the modulation response of the laser caused by
dispersive fiber to the transfer function (3.30) for dispersive fiber, following [31, 32].
(The data is shown in Figures 6.5 & 6.6 below.) We obtained lol = 4.32 and x/2n= 8.4
GHz at the laser operating conditions used in the experiment. Knowing these, we used
(6.1) to numerically calculate t’he Fourier transform Ein (®). The output optical field

from the fiber-grating combination is taken as

E,, (@) =E, ) t)exp[-iB" (@-w,)°’L/2] (6.3)
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where f(m) is the complex field transmission function of the grating, B''= 3’f/ dw’ . is

the fiber dispefsion parameter, oy is the center optical frequency, and L is the fiber length.
The detected current L, (t) is obtained from Eoy(t), the inverse Fourier transform of (6.3).
- The AM system transfer function measured in the figures is the component of the ratio of

the output to input signals at the modulation frequency, that is,

Hoa (@) =|L, @/ T, @[ (6.4)

This process is the same outlined in the schematic Figure 3.3.

A crucial step in the above calculation is the model of the fiber grating used to

generate the complex optical transmittance t(®) = It(co)lei""("’) . The magnitude of the

transmittance T(w) can be measured with an optical spectrum analyzer using a below-
threshold laser as a broadband source. The result is shown in Figure 6.4 (solid line).
However, we cannot easily measure the transmittance phase ¢(w). One solution is to
numerically solve the coupled-mode differential equations (5.1a,b) for an unchirped

- grating, with a Gaussian apodized coupling strength profile chosen to produce the same
maximum reﬂecﬁvity (94.5%) and FWHM (1.9 A) as measured from our grating. This
generates the phase and magnitude of t(w) at once, and the resulting spectrum (Figure 6.7,

dotted line) is an approximation of the actual spectrum.
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Figure 6.5. Change in system AM response with 25 km of dispersive
fiber. a) Experimental data for fiber only. b) Experimental data for fiber
and grating. c¢) Numerical simulation with coupled-mode equations. d)
Numerical simulation with Kramers-Kronig integral.

The result of using this coupled-mode transmittance as the optical transfer
function is shown in Figures 6.4 through 6.6 (lines “c””). We see an increase in the AM
signal due to the grating (Figure 6.4), with the same qualitative shape seen
experimentally. For 25 or 50 km of dispersive fiber, we again see a prediction consistent

with experiment (Figures 6.5, 6.6), with a larger and flatter system response, and a higher

frequency at which the first dip occurs.
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Figure 6.6. Change in system AM response with 50 km of dispersive
fiber. a) Experimental data with fiber only. b) Experimental data with
fiber and grating. c) Numerical simulation with coupled-mode equations.
d) Numerical simulation with Kramers-Kronig integral.

An alternative model for the grating is to use the measured transmission spectrum,

with the phase of the transmittance being inferred from its amplitude. Because

In(t(w))=Inlt(w)l + i ¢(®) is square integrable, a Kramers-Kronig integral on the measured

spectrum of In(+/T ) will give us ¢ at any optical frequency. This numerical transform is
consistent with coupled-mode solutions for uniform, chirped, or apodized gratings, as
described in the previous chapter. The transmission spectrum of our grating was
measured at 0.1 A increments, showing an asymmetric spectrum with sidelobes on either

side of the central peak (Figure 6.7). The corresponding phase spectrum was then
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generated numerically, and t(o) values were interpolated for sub-0.1-Angstrom values.
The prediction of the system response resulting from this grating mode] was more

;ctc'curaté than that of the coupled-mode equations (Figures 6.4 through 6.6, dashed lines).

Transmission

- - - - simulated

0.2t measured A

0 L x 1 1 1
1539.7 15398 1539.9 1540 1540.1 15402 1540.3
wavelength (nm)

Figure 6.7. Transmission spectrum of grating used in experiment. The
“simulated” spectrum is from a numerical coupled-mode equation solution
for an apodized grating whose parameters were chosen to match the
observed FWHM = 1.76 A and Ryax = 94.5% of the real grating. The

vertical line marks the laser wavelength A used in the experiment and
simulations.

In all of these plots the predicted system response has been corrected for fiber
attenuation and connector losses, which were measured away from the Bragg wavelength

of the grating. We did not “correct” for the grating transmission at the center wavelength,
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" T(0), which was 38% for Figures 6.2 and 6.3, and 46% for Figures 6.4 through 6.6. This
does reduce the DC and AM signals, and is accounted for automatically in the Fourier

domain calculation.

6.3 Discrimination versus dispersion

The observed changes in the system response are due to a combination of
phenomena. The increase in the AM signal from the grating alone can be understood by
FM-to-AM conversion in the grating. In a directly modulated semiconductor laser, a
frequency modulation (chirp) inevitably accompanies the amplitude modulation [59, 60].
Any frequency discriminator, such as an optical filter or resonant cavity, will convert a
varying optical frequency into a varying transmitted power. Using the slope of the grating
transmission versus wavelength from Figure 6.7, and the known magnitude of the
frequency chirp Aw, we are able to predict an increase in the AM response of about 7 dB
at low frequencies, from equation (3.49).

Secondly, the dips in the AM transfer function of the fiber (without the grating)
are due to ﬁbgr dispersion aﬁd occur at modulation freque‘ncies that depend on the fiber
dispersion-length product DL. The fact that the use of a grating pushes these dips to
higher frequencies is an indication of partial dispersion cbmpensation by the grating, due
to the non-linear phase ¢y(w) of the transmittance. Finally, the decreage in the magnitude

of these dips, seen most clearly in Figures 6.5 and 6.6, is a result of the partial optical
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filtering by the grating of the longer-wavelength sideband [61]. This will also convert
FM to AM and increase the AM response, explained by the phasor argument following
jFigure‘ 32.

The freque\ncy discrimination and optical filtering phenomena are not dependent
on the phase of the transmittance, and the dispersion compensation is dependent only on
- the phase. Therefore, we can deduce the relative important of each by repeating the
simulation for a phaseless version of the grating, replacing t(w) with lt(w)l, and by doing
the opposite, replacing t(w) with t(m) / It(w)l, which has an amplitude of 1 at all
freduencies but retains the non-linea_r phase. Neither of these transmittances are
physically possible--the Kramers-Kronig relations show that a frequency-dependent
transmission produces a frequency dependent phase, and vice versa. But the exercise
allows us to test the intuition above. The results are shown in Figure 6.8 for the grating

without fiber.
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Figure 6.8. Change in laser response due to simulated grating from
coupled-mode equations. The solid line uses the compete complex
transmittance t(w); the dotted line uses the phaseless transmittance It(w)l,
and the dashed line uses the phase-only transmittance t(w) / lt(w)l.

At low frequencies the phaseless prediction is accurate, as expected from the
time-domain frequency discriminator model, which holds only when the signal bandwidth
is much less than the grating bandwidth (equal to just under 2 A, or 25 GHz). At high
frequencies it turns out that the optical filtering alone is not sufficient to explain the
increase in the signal; rather it is the dispersive phase which is converting laser FM into

extra AM to boost the signal. Note the change in the AM signal here is larger than shown

in Figure 6.4 because we are no longer subtracting connector losses.
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Figure 6.9. Change in laser response due to 25 km of fiber and a
simulated grating. The thin solid line is the change due to fiber only; the
thick solid line shows fiber plus the compete complex transmittance t(c).
The dotted line is fiber plus the phaseless transmittance lt(w)l, and the
dashed line is fiber plus the phase-only transmittance t(®) / lt(w)!.

For 25 km of fiber, the phaseless grating predicts most notably the smoothing of
the bumps and dips produced by fiber dispersion. In Figure 6.9, the phaseless prediction
(dotted line) exhibits the smoothed response, and the phase-only grating doesn’t. This
supports our intuition that the partial optical filtering of the upper sideband reduces the
AM-FM conversion produced i)y the dispersive fiber, which is the root of those bumps
and dips. Note that the dip in the dotted line still occurs at the same frequency, 18 GHz,
determined by the fiber dispersion-length product. Thus the phaseless grating does not

compensate for dispersion in the technical sense. The phaseless grating does--the dip in
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the dashed line of Figure 6.9 occurs at the same 22 GHz frequency as the full prediction,
indicating that the phase of the grating alone reduces the quadratic phase of the system. It

does not boost the signal or smooth the response.

6.4 Dependence on laser parameters

The 10 dB intrinsic increase in the AM signal shown by this grating is an
impressive result, and it is worth considering how the result depends on the laser

parameters. In general, we expect a larger lo| parameter will increase the effect because it
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Figure 6.10. AM signal created by the grating from the initial laser signal
and its three constituent components.
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* produces more FM for a giveh modulation AM. But the full result is a combination of
effects on the initial laser AM and the transient and adiabatic components of the FM.

‘Figure 6.10 shows the laser AM transfer function of our simulated grating (no
~ fiber), bfbken down by the components of the initial laser signal. Each is compared to the
initial AM signal exiting the laser--for example, the adiabatic component has a value of
-7.6 dB at 0 GHz; this means that the magnitude of the AM signal produced by the grating
from only the adiabatic chirp FM signal is 7.6 dB larger than the initial amount of AM
signal exiting the laser. The three component lines do not add to the total transfer
funétion only because the individual AM signals have different phases, much like in
equation (3.29)--if we use the complex transfer functions, they do sum to the total transfer
function. We expect this because our system is linear, and with the small modulation
index m = .05, the input electric field E(t) of equation (3.1) can be written as a sum of
three small-signal terms.

The AM component can again be interpreted with the intuition developed in
- Chapter 3. At Q =0, both sidebands and the carrier wave are at the optical frequency and
pick up a factor ‘t((oo) through the grating. There is no AM-FM conversion but they are
atte;nuated‘by the transmission at this frequency, and the AM electrical signal is down by
a factor T(m052 = (0.67)2 =-3.5.dB. As Q increases, the phases of the two sidebands start
differing, converting some of the AM into FM and decrgasing the signal further,

producing the downward sloping line.



o - 115
x

‘At low frequencies, the transient contribution is smaller than the adiabatic because
A®yransient ° €2 and A®agiabaic o (constant). At Q =k = 8.4 GHz the two chirp components
éré equ’zﬂ in magnitude and produce the same size AM contribution (though with different
- phases). ‘If a laser has a smaller non-linear gain parameter g, then, the low-frequency AM

signal after the grating will be smaller, because the adiabatic chirp is résponsible for this
*low-frequency sig}lal increase.
In short, fhe initial AM pIays little role in the final AM, which is produced

primarily by the conversion of transient FM into AM at low frequencies and adiabatic FM

into AM at high vfrequencies.

AM signal produced by grating (dB)

'~ s
-1 0 - / - —~— \ -
| transient '\
-15F] ]
: : J
_20 ' 1 L L i
0 5 10 15 20 25

Frequency (GH2)

Figure 6.1 1. AM signal produced by simulated grating after 25 km of
fiber, for the total laser signal and its individual components. For

reference, the change in response due to the fiber alone is represented by
the thin solid line.
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The same analysis is presented in Figure 6.11 for the change caused by the grating
éfter 25 km of dispersive fiber. Note the dispersion compensation, represented by the
increase 1n the “dip” frequency, is the same for both chirp components. 'Again the initial
AM signal is of little consequence once the grating has been added, as its magnitude is
- small compared to the adiabatic and transient chirp contributions.

The AM system response was found to depend strongly on the detuning of the
optical frequency from the gréting center frequency. When the laser was temperature-
tunéd by only 10% of the grating FWHM, the change in the system response could be
made to increase or decrease monotonically with modulation frequency or be negative.
Likewise, the dips in the system response could be increased or decreased in magnitude
and in the frequencies at which they occurred. In general, as expected, the system
response changes were found experimentally and numerically to be larger for gratings
with smaller bandwidths and larger reflectivities.

To be useful in optical communication systems, the laser wavelength must be
carefully controiled, and optimized with ‘the grating for a given length of fiber. The
advantage of this system is that unchirped gratings are less expensive than chirped
gratings, and the transmission geometry avoids the need for optical circulators. Finally,
we reiterate that the signal increase in Figures 6.2 and 6.4 were accompanied by a
decrease in the average optical power. Since shot noise is proportional to the average
detecfor photocurrent, which was reduced by over 50% due to the gratings, the shot noise

power decreased while the signal power increased. This does not mean that the system
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-~ signal-to-noise ratio (SNR) will increase, though, because the same mechanism that
converts FM into AM will also convert laser frequency noise into excess amplitude noise

t3‘5]. This is the subject of the next chapter.
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Chapter 7 -- Effect of Fiber Gratings on RIN

We saw in Chapter 6 that fiber Bragg gratings can convert frequency modulated
. (FM) semicéndudtor laser signals into amplitude modulated (AM) signals and vice versa.
This is due to the frequency dependence of both the transmitted amplitude (referred to as
frequency discrimination) and the phase (dispersion). The phenomenon is similar in
dispersive fiber, in which, as we saw in Chapter 3, FM-to-AM conversion will also mix
frequency and intensity noise, and can increase or decrease the relative intensity noise
(RIN) of the laser depending on the fiber length and the laser dynamic parameters [35].
The effect relies on intrinsic correlations between intensity noise and frequency noise,
which have been exploited to reduce laser RIN using a Michelson interferometer [63, 64].
In this chapter we investigate the effect of transmission through a fiber grating on
the relative intensity noise of semiconductor laser light, thereby uniting again the topics
of previous chapters. We use our model of the grating as a linear frequency discriminator
to correctly explain observed increases in intensity noise of up to 30 dB at low
fre;luencies, obeying an invérse-square frequency dependénce. We will also show that
there exist conditions under which a grating can reduce intensity noise, and we
demonstrate 2 dB of RIN reduction at frequencies up to 15 GHz. The Fourier-domain
calculation used in the last chapter, which incorporates the phase of the grating

transmittance, correctly predicts these results.
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7.1 _Experimental Measurement

The experimental measﬁrements were performed by biasing a 1.54 ym

) commercial {OR’FEL Corp.) distributed feedback laser with a low-noise constant-current
controller. The laser output was sent into a fiber pigtail and through an optical isolator
(> 60 dB), through a variable optical attenuator and into a high-speed photodiode (Figure

7.1). The detected photocurrent was electronically amplified and fed to an electronic

[Esal—{ pc
Y isolator Y ‘ H - ]

g
cw detector
laser

Figure 7.1. Experimental setup used to measure laser intensity noise. The
ESA is an electronic spectrum analyzer.

spectrum analyzer. From the experimental plots of noise power versus photocurrent we
extracted the thermal noise (constant part), shot noise (linear part), and laser noise
(quadratic part) at each electronic frequency, as in Chapter 4. We then replaced the
attenuator with a fiber grating and compared the RIN with and without the fiber grating to

determine its effect.
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Figure 7.2. Transmission spectrum of grating used in experiments. The
right vertical line marks the laser wavelength used in taking the data of
Figure 7.3; the left one marks the laser wavelength for Figures 7.6 through
7.8.

The laser wavelength was temperature-tuned and stabilized during the experiment
at different parts of the grating transmission spectrum. Figure 7.2 shows the spectrum of
one such grating. First we tuned the laser wavelength to the steep, linear part of the
transmission spectrum on the low-wavelength side of the reflection band, marked by the
right vertical line in the figure. The change in RIN produced by the grating at this
wavelength is shown in Figure 7.3. The dramatic increase in noise, over 20 dB at low

frequencies, is due to the frequency discrimination of the grating, which converts laser

frequency fluctuations into transmitted intensity fluctuations.
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Figure 7.3. Change in RIN due to fiber grating, with the laser tuned to the
steep linear part of the grating transmission spectrum. The points are
experimental data and the line is equation (7.6).

7.2 Time-domain model

To make this more explicit, suppose a constant optical power Pjy is incident on
the grating with an instantaneous frequency deviation Aw(t) = o(t) - @p. The frequency-
de[;endent transnﬁséion produces a transmitted optical poWer deviation of

APrans(t) = Pine T' Ad(t) (7.1)

where T'=dT/ dco|% is the slope of the grating transmission versus frequency at the

center wavelength mo. This model of the grating as a (phaseless) linear frequency

discriminator, discussed in Chapter 3, is sufficient for explaining Figure 7.3 and much of
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~ the observed results, by using (. 1) and specifying the nature of the frequency
fluctuations. The discussion below extracts the essentials of the discussion in Chapter 2.

The dominant source of laser noise is spontaneous emission into the laser mode
~and its sp‘e;ctral density can be derived from the rate equations. We represent the

component Qf the spontaneous emission field that is in phase with the laser field by a

-Langevin force F"Zt), which perturbs the laser intensity; and the other quadrature of the

spontaneous emission field by a Langevin force F, (t), which perturbs the laser phase.
The in-phase or parallel component Fy(t) produces an output power fluctuation APy(t) with
spectral density S, (), and a frequency fluctuation Awy(t) with spectral density (from

2.42)

o1, JZ[ (T, Q)% +1

Sh(Q) =
(&) (2POQ (1/1Q)% +1

}SLP(Q) (7.2)

Here a is the linewidth enhancement factor, Q is the laser resonant frequency, Tpn 1S the
photon lifetime, t is the carrier lifetime, and Py is the optical output power. The intensity
~and frequency ﬂuctuations produced by Fy(t) are correlated, and Awy(t) leads AP(t) by a

phase given in (2.43),

' 1/71Q)+1.. Q)
o' = X 4 tant| L/ EV* T (7.3)
2 l1-(t,,/7)

For the laser conditions used in Figure 7.3, the laser parameters were determined by a fit
to the RIN spectrum (without a grating) and to the change in RIN after a fiber of known

dispersion, as in [35], giving 1/2nt = .39 GHz and 1/2nt,, = 31 GHz. For frequencies in
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 the range 1/1 << Q << /1y, as in this experiment, the quantity in brackets in (7.2) is
nearly 1 and 0" is nearly n/2. Thus the intensity and frequency fluctuations produced by
E;(t) are 90 degrees out of phase, and we can simply add the intensity noise power created
_ by the gréting frdm S'I'm (€2) to the initial intensity noise power Sﬂn, (€2) caused by Fy(t)
directly.

The spontaneous emission term F, (t) produces no initial intensity fluctuations,
but does create frequency ﬂuctuétions that are uncorrelated with Fy(t) and have a spectral
density Sy, (Q) = 2Ky, , where wsr is the Schawlow-Townes linewidth and K is the
Petermann enhancement factor for DFB lasers [23]. This too gets converted by the
grating into an intensity noise power that adds with S, ().

Putting Sjm (€2) and SI,I;m (€2) into (1), we get the intensity noise spectral density

after the grating,

T aQ,’

2
S (@) = S (@) {Tz +( ) ]+ (BT) 2K o

The last term above is independent of frequency and represents a new noise floor created
by the grating from S;,(Q). It is usually smaller than either the initial intensity noise
(attenuated by T?) or that created by the grating from S, (Q). Ignoring it, we arrive at a

simple expression for the change in RIN due to the grating:

" 2 2
ARIN(Q)=1010g10{1+(T;Tg3 ) } (7.5)
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Figure 7.3 shows a plot of this expression (solid line), using the independently
measured values of the grating transmission T and slope T' and the laser parameters Qg
éﬁd a, showing very good agreement with the experimental data.

There is én important lesson in the experiment and theory contained in Figure 7.3.
It is that semiconductor lasers possess an intrinsic frequency noise, caused by

‘ spontaneous enﬁs;ion, which has a 1/Q* behavior not shared by the intensity noise

produced from the same spontanéous emission, and thus is very large at low frequencies.
A frequency discriminator can convert this frequency noise into excess intensity noise
that is orders of fnagnitude larger than the original intensity noise. This is a dramatic
consequence of laser chirp, and surprisingly does not depend on the non-linear gain
parameter g, which is normally associated with adiabatic or low-frequency chirp--see
(2.40), from which (7.2) comes. Also note that this low-Q frequency noise is not brought
out by dispersive fiber, ‘wh/ich also converts frequency noise into amplitude noise. The
reason is that the transfer function H,(Q) of (3.36), which describes this conversion, has a
sin®0(Q2) term whose low-frequency behavior goes as Q and thus cancels the 1/Q?
behavior of the frequency noise source--a fortunate coincidence for fiber optic

communication systems.
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7.3 RIN Reduction

'Equation (7.5) predicts that RIN will always increase with a grating, due to the
phase 8' = /2 between the correlated frequency and intensity noise. This is not always

the case. For frequencies that are low (Q2<<1/7) or high (Q>>1/7;) the frequency

fluctuations S, (Q) are independent of frequency and 7 out of phase with the intensity

fluctuations. Thus a grating for which T increases linearly with ® (e.g., on the
short-wavelength side of the reflection band) will compensate an increased intensity with
a decreased transmission. The intensity noise from F(t) is eliminated completely when
the grating slope is T'/T = 2/(|0dQ021) at low frequencies or T'/T = 2/(|(x|Q()2‘Cph) at high
frequencies.

In addition, ther¢ are other sources of noise that can be eliminated with a linear
frequency discriminator. Carrier fluctuations not involving spontaneous emission into the
lasing mode, including those from pump current noise, produce frequency fluctuations
that are in phase with the intensity fluctuations when Q<<ePy/1pn (in the adiabatic chirp
regime, typically up to several GHz), where ¢ is the nonlinear gain compression factor.
The intensity noise from this source will be removed comi)letely when the grating slope is
T'/T = -21,, /lolePy. For Q>>ePy/tyn , the transient chirp regime, the intensity and
frequency fluctuations are ©/2 out of phase and a frequenéy discriminator can only

increase the intensity noise from this source. We have also neglected mode partition
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| noise, Which is important at ldw frequencies and is affected differently by dispersive
optical elements [65].

".I‘he; discussion thus far has neglected the phase ¢«(w) of the complex grating
transmittzince t(cﬁ), which is a good approximation when the transmittance is linear over
the bandwidth of interest. In all other cases we must include the effect of grating

‘ dispersion on the RIN The phenomenon is the same in principle as in dispersive fiber, in

which AM and FM noise are inter-converted by a mixing angle 6(QQ) = B”L92/2, where
B'=0%p/ 0w’ |wo is the fiber dispersion parameter and L the fiber length. For the case of
a grating, the mixing angle is, from (3.23),

0(Q) =, (0, + Q)+ 0, (wy — Q) —20,(w,)]/2 (7.6)
An expression similar to (7.4) can be derived to include 0(€2), along the lines of equation

(3.43), but an analytic treatment is intractable for fiber gratings, and the numerical

Fourier-domain calculation shown schematically in Figure 3.3 is preferred.

7.4  Numerical predictions: discrimination versus dispersion

The intensity noise after the grating is calculated from E ()= Ein (0)t(w), with

out

Ein (o) obtained from the Fourier-transformed rate equations containing Fy(t) and F, (t)

as sources. Measuring the magnitude of the transmittance spectrum [t(®)| = JT (o) lets
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' us infer the phase‘tbt(co) numerically via a Kramers-Kronig integral as before [1]. This

numerical calculation allows us to treat more narrow spectral features of a grating.
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Figure 7.4. Change in RIN due to fiber grating, with the laser tuned to
three different wavelengths among the weak sidelobes of the reflection
spectrum. The symbols +, 0, and x are experimental data and the solid line
is a typical numerical calculation using the measured grating spectrum.

As an example, Figure 7.4 shows RIN changes from a grating at three different
wavelengths, each arﬁong the weak reflection sidelobes on the long-wavelength side of
the grating spectrum shown in Figure 7.5 and marked by the vertical lines. The RIN
increased at low frequéncies but deviated from the 1/Q? dependence of equation (7.5) and

even decreased at some frequencies (Figure 7.4, circles). The numerical calculation
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* (solid line) in"corp'orating the fneaéured spectrum reflects these effects qualitatively but is
limited by the resolution of our opﬁcal spectrum analyzer (10 GHz), which essentially
éﬁloothés the transmission function used in the calculation and fails to predict the more
frequencsi-sensitiQe features of ARIN(S2). The laser parameters, which affect the change
in RIN due to the grating, were measured as described in Chapter 4 and for the above

‘experiment had tl;e values Qp = 7.0x10'° s}, Yo= 5.3x10'° s'l, lol = 8.0, tpn = 5x102 S, T

=5x10"%s, and Kogr = 4x10° s,

1
0.9 -
0.7} /\ 1
go 6 / 1
8osf MG
3
L 04r 20 GHz i
0.3} :
0.2 +| |o X
0.1
1541 15412 15414 15416 15418 1542

Optical Wavelength (nm) |

Figuré 7.5. Transmission spectrum of the grating that produced the data in
Figure 7.4. The three vertical lines mark the wavelength to which the laser

was tuned for the three sets of data in Figure 7.4, labeled by the symbols +,
o, and x in both figures. ’
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The grating phase plajrs aﬁ important role in changing the RIN and can reduce the

RIN when T' is small. Figure 7.6 shows a RIN reduction of 2 dB obtained with the
gréting' ého_wn in Figure 7.2. The laser was tuned to the low-wavelength side of the
, spectrumi near thé weak sidelobe, as indicated in Figure 7.2. The solid line is the full

numerical calculation incorporating this spectrum and its Kramers-Kronig-generated
“phase. The low-é prediction is somewhat artificial, given the limited resolution of t(w),

and the variations in the data belbw 3 GHz might result from a fine structure in the

grating spectrum that we cannot resolve. The laser parameters used in the simulation

were Yy = 4.8x10'° s'l, Yo =

N w N [$)]
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Figure 7.6. Change in RIN due to the grating of Figure 7.2, showing a
decrease in the laser intensity noise. The points are experimental data and
the solid line is the numerical calculation using the measured grating
spectrum.
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2.4x10 s lal = 4.1, 1 = 5.1x10"2s, = 4.1x10"° s, and Kas = 3.9x10° 5™, Note that
these parameters were not fit to match the simulations in this or any of the previous
figures',. but rather were all measured independently.

"I;he nﬁmérical calculation in Figure 7.6 can be repeated using the a phaseless
version of the grating transmittance, lt(w)l. In this case the predicted RIN is larger than
" both the predictio;l of the full transmittance t(®) and the experimental data (Figure 7.7,
dotted line), demonstrating that the RIN reduction is influenced by the grating phase. But
the phase alone is also inadequate to predict the RIN reduction, as seen from the result of
using the phase;only transmittance t(w)/It(w)l. Figure 7.7 is hardly compelling, and only
serves to justify the conclusion that neither the frequency discrimination of the grating,
represented by the phaseless model, nor the dispersion of the grating, represented by the
phase-only model, are adequate to explain the RIN reduction observed. Instead, the full

complex transmittance is required, involving a combination of the two effects.
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Figure 7.7. Change in RIN caused by the grating of the previous figure,
calculated using the exact transmittance t(w) as well as the phaseless
version lt(w)l and the phase-only version t(w)/It(w)l. Here both frequency
discrimination and dispersion participate in RIN reduction.

The situation is a little more clear if we repeat this analysis using the experiment
of Figure 7.4. We see in Figure 7.8 that the 1/Q? increase in RIN is fully predicted by the
phaseless grating model, justifying our frequency discriminator explanation of this
behavior and the time-domain calculation. And this phaséless prediction fails to dip
below zero like the full predict‘ion (and some experimental data) does. In this case it

appears that the dispersive effect of the grating is responsible for the reduction of RIN.
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Figure 7.8. Change in RIN caused by a grating, using the exact
transmittance t(w) as well as the phaseless version It(w)! and the phase-only
version t()/lt(w)l. The grating and laser parameters are the same as in
Figure 7.4.

7.5 Incorporation of fiber

Aside from being necessary to predict RIN reduction, the numerical calculation is
required if we wish to incorpogate the effects of dispersive fiber, which complicates the
relationship between amplitude and frequency noise and renders the time-domain model
intractable. The reduction of RIN produced by the gratiﬁg of Figure 7.6 is still present
after 8.8 km of fiber, as Figure 7.9 shows. Here the fiber itself reduces the RIN by almost

10 dB at some frequencies, identical to what is discussed in Chapter 4, but the grating
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enhances the phenomenon. Again a numerical calculation incorporating the measured

spectrum adequately models the combined fiber-grating result.
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Figure 7.9. Change in RIN with fiber and fiber plus grating. The laser

parameters and grating used are the same as in Figure 7.4. The open
circles and upper line are experimental data and numerical simulation for
8.8 km fiber; the plus symbols and lower line are data and simulation for
fiber plus the grating.
Unfortunately, the result does not persist with any fiber length, and in fact is
almost gone beyond 25 km of fiber. Figure 7.10 shows the data and simulation for the
effect of the grating after 25 km of fiber. The grating only changes the RIN by about 1

dB either way, close enough to the uncertainty in the simulation that the solid line follows

the experimental data only roughly.
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Figure 7.10. Change in RIN due to grating after 25 km of fiber. The
points are experimental data and the solid line is the numerical calculation.
Here the grating has little effect on the RIN (less than +1 dB).

We cannot conclude that fiber eventually washes out the effect of a grating on the
RIN--only that in it did in the above»example. For a counter-example, we compute the
effect on the RIN of the apodized (“sirnulated’;) grating of Figure 6.7, after 25 km of
fiber, shown below. Not surprisingly, the familiar 1/Q* increase in RIN is concomitant
with the large AM increase this grating produced (Figure 6.4), both being a consequence
of the strong frequeﬁcy discrimination. The fiber has a rapid increase in RIN below 1
GHz characteristic of long fiber lengths, then dips at 20 GHz where Hy(Q) of (3.36) is

near zero. The grating moves the dip to a higher frequency, just like with the modulation
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~ response data, providing a second manifestation of the grating’s dispersion compensation.

With a phaseless version of this grating, the dip frequency is unchanged.
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Figure 7.11. Change in RIN for 25 km of fiber, and fiber plus the

simulated grating of Figure 6.7. Note the 1/Q* RIN increase and the

movement of the dip to higher frequency, the latter a manifestation of

dispersion compensation.

The above sets of figures are presented as case studies in the different ways
gratings can affect laser noise. "It is unfortunate that the effect is a complicated interplay
of laser dynamics and propagation effects which can often only be accurately predicted
with an elaborate Fourier-domain calculation. We have tried to extract some intuition

into the effect where it can be found.
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7.6 Laser parameters and grating design

Designing a grating for RIN reduction requires a good amount of trial and error

_ using the nﬁmerical calculations described above. As guiding principles, first note that
the grating transmission cannot be too large, or else it will create the large intensity noise
increase described by (7.5). A small transmission slope can reduce the RIN if it has the
correct sign, but because of the importance of the grating phase, this time domain analysis
is successful only if the transmission is linear over a bandwidth much larger than the
signal. Finally, one should aim for well-apodized gratings to reduce the reflection
sidelobes in the grating spectrum and the peculiarities they cause, as in Figure 7.4. Our
numerical calculation indicates that this laser should be capable of more than 5 dB of RIN
reduction with an appropriate grating. Reductions of 7 dB have been achieved with a
Michelson interferometer at low frequencies [63], and there is no physical reason why
this result could not be duplicated with a fiber grating.

Unfortunately, there appears to be no simple algorithm for choosing grating
pa;rameters for RIN vreductibn given a set of laser paraméters. It is clear that the design of
a grating will need to take those parameters into consideration, as changing them in the
calculations above changes the RIN curves. We can deduce some of these relationships
from our analytical expressions. In ‘(7.4) the SJ'(co) term creates a new noise floor that

was ignored in (7.5). We can test this assumption with the numerical calculations.



- Figure 7.12 shows the RIN before and after the grating of Figure 7.4 (the difference

between the “before grating” and “after grating” lines in Figure 7.12 equals the calculated
changé in RIN of Figure 7.4). The contribution from the “perpendicular” term S, (®) to

- the RIN after the grating is also shown, and is more than 15 dB smaller than the S', (®)

contribution, which

one, andvfurthermore, the change in the RIN will not be sensitive to the overall noise
constant Kmgr. This can be seen from (7.4). However, the change in RIN is sensitive to

o and the relaxation frequency €y, which change the optimum slope needed to reduce the

RIN (see 7.5).
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Figure 7.12. RIN before and after the grating of Figure 7.3. The
“perpendicular” contribution Sy, () is negligibly important in this case;
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is almost identical to the full RIN. Thus the approximation is a good

Frequency (GHz2)

the RIN after the grating is dominated by S', (Q).
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The situation is the same for the grating of Figure 7.6--the S, (@) contribution

and the total RIN are more than 20 dB larger than the Sjp (w) contribution. However, we

~ are prevented again from drawing a general conclusion by the presence of a counter-

example. Figure 7.13 shows the change in RIN due to 8.8 km of fiber and the grating of
Figure 7.>9, broken down by “parallel” contribution S', (») and “perpendicular”
contribution Sj,, (®) . Both terms contribute to the overall noise strength, and thus the

change in RIN does depend on the value of Kwsr. Note that k = gPg / Tpn does not enter
into (7.4) or our simulations at all, which is somewhat surprising. The dependence of the

change in RIN on output power comes via {0y and not the adiabatic chirp parameter.
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Figure 7.13. The simulation for the fiber + grating line of Figure 7.9,
broken down by components. This is an example of a case in which the

“perpendicular” contribution Sj,(®) is not negligible.
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Chapter 8 — Fiber Gratings in Communication Systems

The previous two chapters have shown that fiber gratings can be used to increase
the AM signals of directly modulated lasers and to decrease their RIN. The natural
.question is whether these can both be done at once. All the investigations of the author
indicate that they cannot. It seems that when a grating increases the AM signal, it also
increases the RIN, although we cannot prove that this is always true. We can show,
though, that in many cases the AM signal can increase by more than the RIN increases,
thereby improving their ratio. The oﬁtlook is further improved when we consider the
ratio that matters the most in real systems, that of signal to total noise, including shot
noise and amplifier noise. We take up these calculations in this chapter.
Another alternative heretofore unconsidered is the use of digital modulation
schemes, or optical pulses. In this context, fiber dispersion is manifested in the temporal
broadening of pulses as they travel along a fiber. We will show in the second half of this

chapter that here too an advantage can be gained by propagation through a fiber grating.

8.1 Signal to RIN ratios

We start with the simplified metric of signal-to-RIN ratios. Does a fiber grating

that increases a laser signal do so by more than it increases the RIN? Or does a grating
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which reduces th§ RIN do so by rhore than it reduces the signal? In many real systems we
need the answer of one of these to be yes for the grating to be of practical use. (Many, but
;16t all; vfor example, if a laser is externally modulated, we might insert a grating after the
laser butabefore the modulator to reduce the RIN, without worrying what the grating
would do to a direct-modulation signal.)

We start l;y looking at the example of the simulated grating of Figure 6.4, chosen
because it produéed an impressive ~10 dB increase in AM signal for the laser with which
it was measured (without subtracting connector losses). Figure 8.1 shows this same result
plus the change in RIN the grating would produce, calculated from the numerical routine
of Chapter 7 with the same laser parameters measured experimentally. The strong
frequency discfimination of the grating that boosts the signal also produces the IIYQ2
increase of noise. However, above 10 GHz, the signal is increased by more than the
RIN-the change in the signal-to-RIN ratio is positive here, reaching a maximum of 6 dB

above 20 GHz.
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Figure 8.1. Change in RIN and AM signal due to the simulated grating of
Chapter 6. The AM signal is boosted by the ~10 dB seen earlier, and the

RIN exhibits a familiar 1/Q? increase. Above 10 GHz, though, the signal
is increased by more than the RIN is.

wn

The above plot is the effect of the grating only, and for optical communication
systems we of course have to include fiber. We saw in Chapter 6 that this grating
smoothes out the dips and peaks of the fiber transfer function, and we saw in Chapter 7
that this grating postpones the dip in RIN that fiber causes and adds a 1/Q% RIN increase

(Figure 7.11). If we combine the two and calculate a signal-to-RIN ratio with and

without fiber, we get Figure 8.2.
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Figure 8.2. Change in signal-to-RIN ratio after 25 km of fiber, with and

without the simulated grating of Chapter 6.

We see the grating hurts the ratio of signal to RIN at low frequencies, because of
the 1/Q° increase in RIN, but it smoothes the dip at 18 GHz. For 50 km of fiber, the
situation is the same--the grating makes the ratio generally worse after fiber, but the big
dips in the ratio, caused by the near-zeroes in Hy(QQ), are removed. This could be of
benefit in intr,aband’ modulation schemes--those in which the signal applied to the laser
contains an electronic carrier V{'ave, in the 10 GHz range for satellite relay links, whose
frequency may fall in a dip produced by dispersive fiber.

Suppose that instead of choosing a grating that increased the éignal (using that of

Figure 6.7) we choose one that lowers the laser noise (like that of Figure 7.2). Below we
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-see thc.AM signal and RIN éftef the grating of Figure 7.6. The RIN is decreased by the
~1.5 dB seen before, and the AM signal is decreased by approximately the same amount
ﬁp to  15 GHz, at which point the signal increases and the signal-to-RIN ratio is benefited
by the | érating. .If we add 10 km of fiber, the RIN is reduced more than the signal is,
making the fiber plus grating combination better than fiber alone. However, the
difference is onl‘y a few dB, and the lesson is that gratings which increase the signal or
decrease the RIN may end up with a better signal-to-RIN ratio than with fiber alone, but

only over a limited frequency range and only by several dB.
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Figure 8.3. Change in signal and RIN due to the grating of Figure 7.4,
which lowered RIN, and the signal too, but not prohibitively. The grating
is useful only above 15 GHz. No fiber is included here.
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8.2 SNR and fiber attenuation

vAvlthouvgh .the ratio of signal to RIN before ahd after the addition of a grating can
- tell us thaf a grating is useful, it cannot always tell us that a grating is not useful. The
reason is that shot noise and amplifier noise may be the dominant portion of the total

‘ system noise, so an increase in RIN caused by the grating might have no impact on the
total noise level. To calculate the total system noise and thus the signal-to-noise ratio
(SNR), we have to quantify the amplifier and detector noise of a system, as described in

Chapter 4. From (4.2),
(in”) = G(VAV[Ey (v) +2e(i) + [RINKi)’ | (8.1)
we see the detected DC photocurrent <i> will affect the magnitude of these noise powers

differently--the amplifier noise is constant with photocurrent, the shot noise linear, and

the laser noise quadratic. In Figure 8.4 we see the result of this calibration done for our

system. The figure shows (i N2> versus <i> for different values of laser RIN.
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Figure 8.4. Mean square current fluctuations versus photocurrent for
different values of the RIN, using the detector and amplifier characteristics
measured for our system.

., At RIN = -120, the total noise is comprised entirely of the laser noise. At -140,
the laser noise dominates except below a current of about 0.3 mA, at which point the
amplifier noise is apparent. At no point is shot noise important for this RIN value. At
RIN = -180, the; limiting noise is from the amplifier at low current, shot noise from 2 mA
to 300 mA, and laser noise above that. A good RIN to calibrate the coefficients of (8.1),
as- explained‘in Section 4.3, would be -160, using photocurrents from 0.1 mA to 10 mA.
This range would cover the amplifier noise, shot noise, and laser noise regimes all pretty
well, and allow a good fit for the constant, linear, and quadratic terms.

Note that the shot noise level can be lowered only by changing G(v)Av in (8.1),

and the other noise terms change by the same amount. The amplifier noise can be
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 lowered with a lower noise figure' amplifier, and one would like the amplifier noise power
to remain smaller-than the shot noise power for as low a photocurrent as possible. We
;vbuld élso prefer as low a RIN as possible, but for a given maximum photocurrent,
~there’s a zminimm‘n RIN below which improvements in RIN make no difference. For
example, in Figure 8.4, if we know our photocurrent will always be less than 100 mA,
*lowering the RIN below -180 dB/Hz will not lower the total noise power, since shot noise
and amplifier noise already dominate.
Figure 8.4 is the characterization of the system that allows us to convert RIN and
AM. signal data into a SNR. Returning to the grating of Figure 8.1, we have measured the
grating by its effect on RIN and AM signal. We convert this into a change in SNR by
assuming a detector photocurrent--the result of three different values is shown in Figure
8.5. Ateach frequency Q, we’ve calculated both the signal and the RIN before and after
the grating, then we use the assumed photocurrent and the RIN ar that frequency to
calculate the total system noise a la Figure 8.4, and then the SNR. The lower the
photocurrent is, the less of the total noise is determined by the laser noise (RIN), so the
less we’re penalized for the 1/Q* increase in RIN the grating produces. If the current is

below 0.5 mA, the SNR is increased by the grating at all frequencies.
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Figure 8.5. Change in RIN, AM signal, and total noise power for different
photocurrents, using the grating and laser parameters of Figure 8.1. Ata
photocurrent of 0.5 mA, the SNR is increased at all frequencies.

Keep in mind that Figure 8.5 only indicates the change in SNR due to the grating.
Though the grating helps the most at low photocurrents, it does not mean we should
artificially lower the photocurrent when we have a grating. If the optical intensity
transmission of a medium is T (where T < 1 corresponds to attenuation), the electrical
povber of the AM signal carriéd by the light is lowered by .a factor T? in traversing the
medium. This has been included in all of the grating/AM signal calculations so far. The
RIN of the light is unchanged by the attenuation, since it measures noise relative to the
DC intensity--we can see from (8.1) if <i> is lowered by a factor T, and RIN is

unchanged, the laser noise power is lowered by T2. Thus in the regime where laser noise
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' detemﬁnes the system noise, vatte(nuating the beam has no effect on the SNR, since both
signal and noise decrease by T>. But since shot noise is lowered by T and amplifier noise
\n'ot at all in these regimes the signal power is attenuated by more than the noise power.
Thus it r;ever heips the SNR to attenuate the beam, and it mostly hurts; Figure 8.5 merely

shows that in these low-photocurrent regimes, a grating can be useful.
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Figure 8.6. Change in SNR at 1 GHz, versus fiber length, with and
without the grating of Chapter 6.

The final step in assessing the benefit of the grating is to include the effect of
fiber. The fiber changes both the signal and the RIN because of dispersion, and we can

use our previous studies to quantify this. In addition, the fiber attenuates the beam,
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Atypica'lly by -0.2 dB per kilofnetér at 1550 nm, changing the received photocurrent and
thus the calculation of SNR. Figure 8.6 shows the change in SNR versus fiber length at 1
| GHz (fypical cable TV application) for the same laser and grating used in Figure 8.5. We
have aséumed an initial optical power adequate to produce 10 mA of detector
photocurrent with no fiber; this then attenuates by -0.2 dB per km of fiber, or -0.4 dB/km
* for the electrical‘signal power. With fiber only, the laser is mostly limited by amplifier
noise at 1 GHz, and the SNR drbps quickly with fiber length. The small ripples in the
fiber curve are caused by the AM-FM conversion of both the signal and the RIN. For the
fibér plus the gfating, the SNR is immediately much worse, because of the huge increase
in RIN at 1 GHz caused by the grating. Since the system is now limited by laser noise,
the SNR is constant as the beam is attenuated. At about 50 km, the total noise drops
down to the shot noise level, and we start to reap the benefit of the 10 dB increase in the
signal. Beyond this distance of fiber, we are better off using the fiber grating.

To decide whether to use a fiber grating in a real system, then, one needs to know
the laser characteristics (noise, modulation response, chirp), the fiber length needed, the
optical power fo be used, and the noise characteristics of the amplifier. Given this, one
can use the above numerical techniques to calculate the change in the SNR due to
dispersive ﬁber, and compare that to fiber plus a grating. For the above example, the
grating helps--and keep in mind that the simulations above were for an off-the-shelf
grating purchased without this purpose in mind. It is very likely that by trial-and-error
design of the grating, one can achieve significant (more than 5 dB) improvement in SNR

with an inexpensive grating.
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8.3 Pulse broadening and re-narrowing

Wé will conclude this chapter, and this thesis, with a look at an as yet unexamined
_method of oétical*communication, in which information is transmitted not via analog AM
signals but in discreet pulses. In this context fiber dispersion manifests itself though the
temporal broadening of narrow optical pulses. If the initial pulse has a Gaussian intensity

profile (a common simplifying assumption) of the form

C —t?
I(t) = 8.2
(t) p— eXP(ZGZ] (8.2)

where 6 >> 1/mwy measures the pulse width and C is the integrated energy of the pulse,

then the width after a length L of fiber with dispersion constant D is given by [49]

DLA2 In2 Y’
cyaftc-:r fiber = G\/l + (—2) (8'3)

nco

The more narrow a pulse is originally, the more quickly it broadens as a function of fiber

length.
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Figure 8.7. Gaussian pulses after various lengths of dispersive fiber. The
integrated intensities of each pulse are the same.

Figure 8.7 illustrates this for a train of pulses with initial width of 2c = 49 ps and
a repetition rate of 2 GHz. As the length of fiber is increased, the pulses become broader,
and begin to overrun each other, producing ripples that are minor at 200 km and all that
remain at 400 km. The integrated intensity of each pulse is the same, because energy is
coiaserved as the pulse broacieqs. These pulses were calcﬁlated using the numerical
Fourier-transform technique depicted in Figure 3.3, using an input electric field E(t)
consisting of a carrier wave ahd an envelope function whose square (the intensity I(t)) is

of the form (8.2) above. Unlike the previous analysis, there are no laser dynamics that go
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 into this--we can imagine the pulses are created by a chirp-free external optical

modulator.

'The effect of transmission through a grating is calculated in the familiar way,
~ using the‘t grating Atransmittance t(w) to calculate the Fourier-transformed output field
E,, (®). We will use for comparison’s sake the same grating of the previous chapters:

" that of Figure 6.7 (dotted line, the coupled-mode solution), with the laser center

wavelength as indicated in the Figure 6.7. Figure 8.8 shows the result for an input pulse

1 T '
0.9 initial pulse ]
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07} 1
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=
é 0.5} 1
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0.4} 1
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- ~
- - . ey -
O ' 015
0o 0.05 0.1 0.15 02

) time (ns)
Figure 8.8. Gaussian pulse after 25 km of fiber and after 25 km of fiber
plus a fiber grating. For comparison, the grating is identical to the

simulated grating of Chapter 6. Note the trailing red edge of the pulse is
clipped more than the leading blue edge.
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‘train with a 5 GHz repetition rate. ‘The pulse is broadened after 25 km of fiber, but has
the same integrated intensity. If we put a grating after the fiber, the pulse is re-narrowed,
rﬁdstly By a loss of intensity in the trailing half of the pulse.

Tﬁc intégré.ted intensity of the pulse after the fiber grating is 60% of its initial
value, reflecting the grating loss. (The optical transmission at the carrier frequency is
T(wg) = 0.68, but tile transmission is not linear and the average across the pulse
bandwidth is 0.66.) The smaller pulse energy can be remedied with an optical amplifier--
it’s easier to increase the energy of a pulse than to narrow its width. If we re-scale each
pulse by its maximum value to simulate this amplification, we see more clearly the
narrowing of the pulse by the grating, as shown in Figure 8.9.

Note that the pulse shape is distorted somewhat by the grating--there is a satellite
peak following the main pulse, though in this case it looks negligible. The pulse is
clearly attenuated in the back edge more than the front. This is because the dispersive
fiber not only broadens the pulse but gives it a linear frequency chirp [49]. Recall from
the discussion following (3.27) that in standard fiber blue components of a signal travel
faster than the red components (where D > 0). Thus the leading edge of the fiber-
broadened pulse in Figure 8.9 has a more blue instantaneous frequency than the trailing
edge. We see from the grating. spectrum in Figure 6.7 that the blue components are
preferentially transmitted and the red reflected; thus this frequency discriminator narrows

the pulse by shaving off the trailing red edge.
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Figure 8.9. The three pulses of Figure 8.8 scaled to have the same

maximum value. The grating clearly re-narrows the dispersion-broadened
pulse somewhat.

The grating does not produce a uniformly more narrow pulse after any length of
fiber; in fact, with no fiber, the grating widens the pulse, because the initial pulse is
unchirped (and thus can’t be narrowed by our frequency discriminator) and the grating’s
own dispersion only broadens the pulse. Figure 8.10 shows the pulse width versus fiber
lengfh with and without this gfating; we see that below 7.1 >km, we are better off not using

the grating. The repetition rate is 5 GHz.
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Figure 8.10. Pulse width (full width at one-third max) versus fiber length.
The dotted line is for fiber only; the solid line is for fiber followed by a
grating.

As the pulse widens, it accumulates ripples in its leading and trailing edge that
grow in size with fiber length. Eventually they become a sizable fraction of the pulse
height and musf be considered as contributing to the pulse width (for a clear example of
these ripples, look ahead to Figure 8.13). The width by which the pulse is measured in
Figure 8.10 is the fuil width at-1/3 of the maximum intensity. We cannot use the
Gaussian width o because, after the distortion of the grating, the pulse is no longer
Gaussian. We could use the full width at half-max, but we chose a more conservative

estimate which is more sensitive to the ripples and satellite peaks created by the grating.
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As the pulse broadens, the sizé of the secondary bump in Figure 8.9 produced by the
grating becomes larger compared to the main peak. Eventually it reaches 1/3 of the
;Iléximﬁm pulse intensity and the width measured by this yardstick will leap upward. The
bumps 1n the width vs. fiber length plot of Figure 8.10 are caused by successive ripples in
the pulse reaching 1/3-max height. (For a Gaussian pulse, the full width at 1/3-max is

“2.965). -

8.4  Chirped pulses and frequency discrimination

Because the blue components of a signal travel faster in standard fiber, the front
edge Qf the pulse is more blue than the trailing edge, and the instantaneous frequency
decreases linearly with time as the pulse passes. If the pulse is initially pre-chirped in the
opposite direction, so that the leading edge is more red and the blue components are
launched last, the pulse will first be narrowed by the dispersion before broadening again.
In this case, the grating turns out to be almost uniformly better than no grating--now even
with no fiber the pulse has a linear chirp, and the frequency discriminator can selectively
traﬁsnﬁt one half of the pulsé. Figure 8.11 shows the pulée width of a pre-chirped pulse
whose initial instantaneous wavelength decreases linearly at a rate of 1 A per full-width
(20 =49 ps) of the pulse. We see the fiber first narrows the pulse before rebroadening it,

and the grating only helps matters. At the minimum pulse width occurring at about 16
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km of fiber, the grating makés no difference, because at this point the fiber has removed

the frequency. chirp and the grating frequency discrimination is not beneficial.
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Figure 8.11. Pulse width at one-third maximum versus fiber length for an
initially blue-chirped pulse, with and without the grating. The grating

narrows the pulse but produces satellite peaks which can become
unacceptable. ’

The only problem with the grating is the satellite peak it produces. Figure 8.12
shows this in the time domain for 8 km of fiber--that is, the data plotted at 8 km in Figure
8.11 are exactly the full width at 1/3-max of the pulses shown in Figure 8.12. We see the
satellite peak on the leading edge of the pulse, and for fiber lengths between about 8 and
13 km, its height is more than 1/3 the maximum pulse intensity, cauéing the discontinuity

in the “fiber + grating” line of Figure 8.11. The 1/3-max criteria is arbitrary, but it is
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clear that some measure of the contributions of the secondary peaks to the pulse width
must be used to demonstrate the disadvantage of the grating. Despite this, for a broad

rahge of fiber lengths, the grating can be useful to combat dispersion broadening.
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Figure 8.12. Pulse shapes after 8 km of fiber, with and without the
grating, for initially blue-chirped pulse. The satellite peak on the front of
the pulse, formed by the grating, serves to widen the pulse.

Note that the “fiber + grating” pulse in Figure 8.11 has less intensity in the leading
edge than the training edge, compared to the fiber-broadened version. This is the

opposite of the previous example--this pulse has been initially blue-chirped (meaning the
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instantaneous Wavelength gets niore blue with time), so the leading edge is red at 0 km.
The grating at O km narrows the pulse by shaving (reflecting) the leading red edge. This
\is‘ still the situation after 8 km of fiber. After 13 km, the minimum width distance, the
blue—chii‘p Is gorie and the fiber has created a red-chirp, and the grating now blocks the
trailing red edge. Figure 8.13 shows the same pulse after 70 km of fiber, demonstrating

- the loss of the red trailing edge. Here the satellite peaks have been replaced by ripples.
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35¢f initial pulse \![ \
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Figure 8.13. .Pulse width after 70 km fiber, with and without grating, for
* initially blue-chirped pulse, now red-chirped by the fiber.

We have been assuming a pulse train thus far, and the ripples we see in the -

leading edge of Figure 8.13 are a consequence of this--they are caused by the overlap of
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this pulse with its peighbor. This is a real phenomenon and will occur if the adjacent
pulse is coherent with the first, which will happen when the laser coherence time is longer
fhzin the.repetition rate. Since a typical DFB laser linewidth is tens of MHz and the
repetitioﬁ' rate is GHz, this is true by a wide margin. We can recalculate the time-domain
evolution for a much slower repetition rate to remove those ripples.

Figure 8.14 shows the same two pulses as Figure 8.13--initially blue-chirped, after
70 km of fiber and fiber plus the grating--without the effect of neighboring pulses. The
ripples are gone, and the grating distortion is manifested in a trailing satellite peak, which
mayv be of concern if it is large enough. The pulse is decidedly more narrow, and it will
depend on the particular detection and decoding scheme whether the satellite peak is less
desirable than the narrower pulse. In the case of this pulse, the secondary peak has a
maximum intensity that is 10.02% of the global maximum, and contains 7.23% of the
entire pulse’s integrated intensity. It is probably negligible, or at worst removable with an
electronic discriminator after the detector.

Figure 8.14 also shows the pﬁlses that would result from a phaseless and phase-
only version of ohr grating. We see the pulse narrowing is due to the frequency
disc_rimination of lt(w)l--the phase of the grating has a rather small effect on the final pulse
shape. This cdnfirms the claim made so far that the narrowing is due to the frequency
discrimination of the grating, rather than dispersion compensation, which we would

attribute to the non-linear grating phase.
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Figure 8.14. A close-up of Figure 8.13: the thin solid line is the pulse after
70 km of fiber, and the thick solid line is after fiber plus the grating. The
dotted and dashed lines show the result of the simulation using a phaseless
grating transmittance It(m)| and a phase-only transmittance t(w) / lt(w)!.

The frequency discrimination of It(w)l clips the red trailing edge.

The preceding pulses have all be chirpless or with an initial linear frequency up-
chirp. In a directly modulated laser, we are not so lucky, as the chirp is determined by the
adiabatic and Fransient chirp phenomena of the laser. For large signal modulation
schemes, which pulsed system necessarily are, the small-signal rate equations we used to
derive the nature of that chirp no longer hold. We can get a feel for the complications
introduced by the lasef chirp by making some crude approximations and interpreting the

results only qualitatively. We assume our laser has a CW output power of Py and a
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’ ‘fsmall-éi_gnal” pulsed output AP(t) that goes from O to Py and back to 0. We used (2.29)

to calculate the instantaneous optical phase perturbation accompanying this direct

modulation pulse.
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Figure 8.15. Evolution of a pulse from a directly modulated laser,
showing (crudely) the complications of adiabatic and transient chirp. The
intensity is measured by AP(t) / Py and we’ve taken lo| = 4.32 and k = 8.4
GHz. It is not clear that the grating helps matters.

Figure 8.15 shows the result. The pulse is of course no longer linearly chirped,
either before or after the fiber, and the effect of the grating is not intuitive. Although the
grating gives the pulse a larger maximum intensity after 70 km of fiber, and the leading

bump may be negligible, it is far from clear that the grating-produced pulse is preferable
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to the fiber-broadened pulse. The point is that a grating is most advantageous for re-
narrowing pulses whose frequency chirp is a result of dispersive fiber; in direct
modulation schemes with large-signal laser chirp, it is unlikely we can derive the same

~advantage.

8.5 Summary of system applications

We conclude with a summary of where fiber gratings would be useful in real
optical communication systems, incorporating the lessons of the previous three chapters.
All of the applications we’ve analyzed involve gratings in a transmission geometry,
which avoids the need for optical circulators (couplers and isolators), conserving optical
power, and can remain entirely fiber-based.

A grating can increase the size of an AM laser signal by converting laser chirp
into excess AM signal power. This allows one to increase the optical modulation depth
of a signal without increasing the electrical (injection current) modulation index--for
example, to avoid laser non-linearities and stay in the small-signal regime. Combined
with fiber, the-grating can ﬂaften the dispersion-distorted frequency response of the
system, smoothing out the maxima and nulls the fiber produces. For an intraband
modulation scheme in which the electronic carrier wave frequency falls at a null of the
fiber transfer function, adding a grating to boost the system response at this frequency

may be cheaper than adding more fiber to change the dip frequency.
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Gratings can redu¢e the RIN of a laser. If the optical signal is generated with an
external modulator, the change in the directly-modulated AM signal this grating would
c:(uise is'irrelevant, and the RIN reduction is useful outright. The RIN can be lowered
after a ﬁxéd length of fiber also, and the peaks and dips in the RIN curve after a length of |
fiber can be adjusted with a grating.

The signal-'to-noise ratio of a directly modulated laser and fiber system can be
improved with a grating, either in certain frequency ranges and/or in systems which are
limited by amplifier or shot noise. This may reasonably include systems with fiber
lengths in the tens of kilometers.

A grating can compensate for dispersion by virtue of its dispersive transmittance
phase, or, more markedly in the case of dispersion-broadened pulses, by virtue of their
frequency discrimination. This is most useful with low-chirp external modulators, which
is the preferred method of digital modulation, rather than with direct modulation. An
optical amplifier may be necessary to recover power removed by the grating.

Incorporation of gratings into ﬁseful systems will require grating design aided by a
numerical calculaﬁon and trial and error, but guided by intuition into the roles of
freqpency discrimination and'dispersion, AM/FM inter-convers.ion, and the dynamics of

laser modulation, chirp, and noise.
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Ap'pendix A -- Nﬁmerical Propagation Routine

In this appendix we give a listing of a routine which performs the numerical
calculaﬁon described in Figure 3.3. The result is the transfer function for a fiber grating
. that describes the change in a directly modulated laser signal. The routine is written for
the Matlab mathematics software package, and makes use of a function t_gauss which

calculates the complex transmittance of a grating, described in Appendix B.

% gratCALC.M

lairB = 1540.00e-9; % Bragg lambda in air
lairopt = 1539.898e-9; % optical lambda in air

% [this is used if lairopt is swept]
$HglGHz = [}];
$lairopt_arr
%$for lairopt

[1;
1539.70e-9 : .0le-9 : 1540.0e-9 ;

N = 2710; . % elements in FFT arrays
Nper = 22500; % periods in Bragg grating

c = 3e8;
wB = c*2*pi/lairB; % Bragg (optical) freqg
wopt = c*2*pi/lairopt; % center optical freq of carrier wave

n=1[1:N1;

Hg = [1; - % AM transfer functions
Hf25 = [];

HEf50 = [];

Hf100 [1;

Hf25g [1;:

Hf50g [1;

Hf100g = [];

Omega_arr [1;
for Omega = 0.2e9 : 0.2e9 : 25e9; % modulation freq

Omega/le9 % to display while working
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alpha = 4.32; v % laser parameters
BL = 1.9641le-20;
kappa = 8.4e9;

m = 0.50; % AM index...FM index
beta = alpha/2*m*sqgrt(l + (kappa/Omega)"2);

theta_FM = atan(Omega/kappa); % FM phase lead

Et = sqgrt(l + m*sin(2*pi*n/N)).*...
exp(-i*beta*cos(2*pi*n/N + theta_FM));
It= abs(Et)."2;

.

fft (Et);
ffe(It);

Ef
if

% Fiber Field Transfer Function:

% positive sign in exponent should intrisically

% be negative, but I use BL>0 above...

% for fiber, BL<0 physically, so it's okay
Hopt_£fib25 = exp(i*1/2*BL*( (n-N/2-1)*Omega) .”2);
Hopt_fib50 = exp(i*1/2*2*BL*( (n-N/2-1)*Omega)."2);
Hopt_fibl00 = exp(i*1/2*4*BL*( (n-N/2-1)*Omega) .”2);

Note: the nth element of Ef is the size of
freq. component of Et with (n-1) periods in
the Et array.

e.g. n=1 is DC, n=2 is the fundemental
"harmonic" with one period across the array.
After the fftshift, the nth element of
fftshift (Ef) is the component with (n-N/2-1)
periods. Hence the above factor in Hopt.
This way we correctly account for negative
sidebands (left side of the carrier wave).

dC 0P o AP o° AP P dP o of

clear Hopt_gra;
Hopt_gra(N) = 0;
for § = N/2-7 : N/2+9;

(3 - N/2 -1) % to display while working
dBL = (wopt - wB + 2*pi*(j-N/2-1)*Omega)*...
(lairB*Nper/2/c);
Hopt_gra(j) = t_gauss (dBL);
end; :
% GRATING .
Efdisp_g = fftshift( Hopt_gra.*fftshift (Ef) );
Etdisp_g = ifft(Efdisp_g);
Itdisp_g = abs(Etdisp_g)."2;
Ifdisp_g = fft(Itdisp_g);
Hg = [Hg, 10*logl0( ( abs(Ifdisp_g(2)/If(2)) )*2 ) };
% FIBER
Efdisp_£f = fftshift( Hopt_fib25.*fftshift(Ef) );
Etdisp_£f = ifft(Efdisp_f);
Itdisp_f = abs(Etdisp_f)."2;
Ifdisp f = fft(Itdisp_ f);

Hf25 = [Hf25, 10*loglO( ( abs(Ifdisp_f(2)/If(2)) )*2 )

1;
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Efdisp_f = fftshift( Hopt_fib50.*fftshift(Ef) );

Etdisp_f = ifft(Efdisp_f£f);

Itdisp_f = abs(Etdisp_£f)."2;

Ifdisp_f = £ft(Itdisp_f£);

HEf50 = [Hf50, 10*logl0( ( abs(Ifdisp_£f(2)/If(2)) )*2 ) 1;

Efdisp_f = fftshift( Hopt_£fibl00.*fftshift(Ef) );

Etdisp_f = ifft(Efdisp_f£f};

Itdisp_f = abs(Etdisp_f)."2;

Ifdisp_f = fft(Itdisp_f);

Hf100 = [Hf100, 10*loglO( ( abs(Ifdisp_£(2)/If(2)) )*2 ) 1;
. % GRATING + FIBER

Efdisp_fg = fftshift( Hopt_fib25.*Hopt_gra.*fftshift (Ef) );

Etdisp_fg = ifft(Efdisp_~£fg):

Itdisp_fg = abs(Etdisp_£fg)."2;

Ifdisp_fg = fft(Itdisp_£fqg);

Hf25g = [Hf25g, 10*loglO( ( abs(Ifdisp_£fg(2)/If(2)) )2 ) 1;

Efdisp_fg = fftshift( Hopt_f£fib50.*Hopt_gra.*fftshift (Ef) );
Etdisp_fg = ifft(Efdisp_f£fg);

Itdisp_fg = abs(Etdisp_£g) ."2;

Ifdisp_fg = fft(Itdisp_£fg);

Hf50g = [HEf50g, 10*loglO( ( abs(Ifdisp_£fg(2)/I£(2)) )2 ) 1;

Efdisp_fg = fftshift( Hopt_fibl00.*Hopt_gra.*fftshift(Ef) );
Etdisp_fg = ifft(Efdisp_fg);

Itdisp_fg = abs(Etdisp_f£fg)."2;

Ifdisp_fg = fft(Itdisp_£fqg);

Hf100g = [Hf100g, 10*loglO{ ( abs(Ifdisp_£fg(2)/If(2)) Y2 ) 1;

Omega_arr = {[Omega_arr, Omegal] ;
end;
% [following lines are for lairopt sweep]
$HglGHz = [HglGHz,Hg{(1)];

%lairopt_arr = [lairopt_arr,lairopt*1e9-1500];
gend; % of lairopt sweep

%[for lairopt sweep]
g$plot(lairopt_arr,HglGHz)

figmake2
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Appendix B -- Numerical Coupled Mode Routine

This Appendix shows a listing of a numerical routine used for solving the coupled
mode equations (5.33a,b) with an arbitrary apodization and chirp function. The routine,
. written for the mathematics software package Matlab, is a function that returns the
complex field reﬂectivity r, with the detuning parameter ABL passed in when the function

is called. The dimensionless coupling strength function &(x) of Chapter 5 is represented

as the array Q.

function r = r_gauss (dBL)

% r_gauss (dBL) returns the complex field reflection r of a

% gaussian (or other) apodized grating by numerically solving

% coupled mode DEs. Grating parameters are set inside below.
N_steps = 1000; ‘ % number of integration steps along grating
KL_tot = 2.00; % total integrated coupling constant kappa*L
Xx_start = 0; % integration starting point

x_stop = 1; % integration ending point

f = -0/1540; % the chirp parameter-- see section 6.4

Nper = 18000;" % needed only to translate f into a quadratic phase
dx = (x_stop-x_start)/N_steps; % distance b/t integration points
X = [x_start : dx : x_stop 1; % creates an array of x values
sigma = 0.5/sqrt(2*log(2)); % width (length) of grating apodization

% dimensionless coupling'strength array

% first part gives gaussian apodization

% second part adds phase for chirp

Q = exp( —-(x-.5).72 ./ (2*(sigma)*2) ).*exp(2*pi*i*Nper*f*x."2);

_norm = sum{ abs{ Q(1:N_steps) )*dx ); % normalization factor of Q(x)
Q = Q*KIL_tot/Q norm; % rescale so integrated coupling is KL_tot

% integrate DE's to generate field strength arrays

% A(Jj) and B(j) are field amplitudes at point x(j) travelling
% in positive and negative direction. x=0 is left side of grating
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% we integrate backwards, from far end of grating x=1 to near side x=0.

A(N_steps+l)
B(N_steps+l)

0; %creates and initializes array
1; :

for j = (N_steps) : -1 : 1;
% integrate coupled mode DE's for one step
A(j) = A(j+1) ~ ...
dAx*Q(j+1) *B(j+1) *exp (-1i*2*dBL*j*dx) ;
B(j) = B(j+1) - ...
dx*conj (Q(j+1))*A(j+1) *exp (i*2*dBL*]*dx) ;
end;

% return compléx reflectivity

r = A(l)/B(l) ; % for t we return 1/B(1)
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Appe‘ndiX C -- Numerical Kramers-Kronig Routine

Below is a numerical routine that calculates the Kramers-Kronig integral (5.20b)
by adding up contributions (5.25). It is intended for calculating the phase of a grating
field transmittance as in (5.24) and the variable names reflect this. An array of
frequencies and a corresponding array of In(\'T) are passed in when the function is called,
along with the single frequency at which the phase ¢, is desired. If no single frequency is
passéd in, the routine calculates an array of phases corresponding to the array of In(NT).
The routine is further complicated by the capacity to handle an unevenly spaced
frequency array, which often results when the frequency array is converted from a
wavelength array as part of an experimental measurement. It is written for the Matlab

mathematics software package.

function impart = kkre2im(freq,repart,w0)
" $KKRE2IM converts real values to imag via Kramers-Kronig
returns - impart = kkre2im(freq,repart,w0)
freq is an array of frequencies, in radians/sec
repart is an array of real parts that corresponds to fregq
impart is the imaginary part at w0
if w0 is not passed in, impart is an array corresponding to freq

o df of of of

if ~all(size(freq)==size(repart)) error ('freq and repart wrong sizes');
end; ’ ‘

if ~(min(size(freq))==1) error('freq and repart wrong sizes');

end;

N = max(size(freq)) ; ,
dw = (freq(N) - freqg(l)) / (N-1); % approx...we don't assume constant
spacing below

if (nargin==3)
impart = 0;
% determine which element in freq is closest to w0
if (w0 < freq(l) ) error('w0 is below range of freq array');
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‘elseif (freq(N) < wO) error('w0 is above range of freq array');

elseif

end; % of if (freq{(l)...)

j=1;

while (freg(j) < w0) j=j+1; end;

if (freq(j)==w0) % use exact w0
for m=1:N;

% set wl and w2, bounds of sub-integral...
% assumes freq(j) may not be evenly spaced....
if ( m==1 | m==N)

wl = freq(m)-dw/2;
w2 = freg(m)+dw/2;
else
wl = (freqg(m)+freq(m-1))/2;
* w2 = (freq(m+l)+freqg(m))/2;

end; % of if-else;
% calculate contribution from this sub-integral
impart = impart + repart(m)*...
log(abs( (w2-w0)*{wl+w0)/ ((wl-w0)* (w2+w0)) ))/pi;
end; % of m loop
else % extrapolate between two closest freg values "a" and "b"
wla = freqg(j-1);
imparta = 0;
for m=1:N;
% set wl and w2, bounds of sub-integral...
assumes freq(j) may
% not be evenly spaced....
if ( m==1 | m==N)

wl = freqg{(m)-dw/2;
w2 = freg(m)+dw/2;
else
wl = (freq(m)+freq(m-1))/2;
w2 = (freq(m+l)+freq(m))/2;

end; % of if-else;
% calculate contribution from this sub- 1ntegral
imparta = imparta + repart{m)*.
log(abs( (w2-w0a)* (wl+wla)/{(wl-wla)* (w2+wla)) ))/pi;
end; % of m loop
wlb = freq(j):;
impartb = 0;
for m=1:N;
% set wl and w2, bounds of sub-integral.
% assumes freqg(j) may
% not be evenly spaced....
if ( m==1 | m==N)

-wl = freqg(m)-dw/2;
w2 = freqg(m)+dw/2;
else
wl = (freqg(m)+freq(m-1))/2;
w2 = (freqg(m+l)+freq(m))/2;

end; % of if-else;
% calculate contribution from this sub-integral
impartb = impartb + repart(m)*...
log(abs( (w2-w0b)* (wl+wOb) /{ (wl-wOb) * (w2+w0b)) ))/pi;
end; % of m loop
impart = imparta + ({impartb-imparta)*(w0-w0a)/{(wOb-w0a);
end; % of if (freq(j)==w0)

(nargin==2) %...1.e. in this case return an array
for n=1:N;



. 175

n .
w0. = freq(n);

impart(n) = 0;

% for limited calculation
% if( (n > N/2-20) & (n < N/2+20))

for m=1:N;
% set wl and w2, bounds of sub-integral...
% assumes freq(j) may
% not be evenly spaced....
if ( m==1 | m==N)

wl = freg(m)-dw/2;
“ w2 = freq(m)+dw/2;
else
wl = (freg(m)+freq(m-1))/2;
w2 = (freg(m+l)+freq(m))/2;

end; % of if-else;

% calculate contribution from this sub-integral

impart(n) = impart(n) + repart{m)...

*log(abs( (w2-w0)* (wl+w0) / ((wl-w0)* (w2+w0)) ))/pi;
end; % of m loop

% for limited calculation
% end; % of if (n>N/2+...) loop

end; % of n loop
else error('wrong number of argin’);

end; % of if-elseif-else
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