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Abstract

This thesis describes the modeling and characterization of mode-locked semiconductor
lasers. An enhanced dynamic model is developed to describe the startup and steady-
state behavior of mode-locked lasers. Two new applications for mode-locked lasers
are given and their potential is discussed. A new technique to characterize the optical
pulses emitted from a mode-locked laser is analyzed and demonstrated.

A combined time and frequency-domain dynamic model is introduced for semi-
conductor mode-locked lasers. The model includes both linear mode-coupling effects
through carrier density modulation at harmonics of the mode-spacing as well as non-
linear effects like gain saturation and additional mode-coupling through four wave
mixing. The model is used to study the behavior of a 2 mm long mode-locked semi-
conductor laser with a gain section of 1900 ym and an absorber section of 100 um.
Without the inclusion of spontaneous emission, steady state mode-locking is achieved
after a few tens of nanoseconds producing chirped picosecond pulses. The inclu-
sion of spontaneous emission disturbs the steady state mode-locking solution into a
quasi-steady state which causes timing and amplitude jitter of the pulse train.

The potential of a semiconductor mode-locked laser with a dense mode spacing
(~ 25 GHz) as an optical source for wavelength division multiplexing is studied. One
of the‘ locked modes is filtered out by a narrow band fiber Bragg grating and its use
as a single wavelength source is examined. The bit error rate (BER) performance
of the source is measured but no “error free” transmission is achieved due to mode
competition noise. The laser is next used in an external feedback configuration where
the feedback is provided by a fiber Bragg grating. Lasing only occurs when the fiber

Bragg grating is tuned to one of the monolithic cavity modes leading to a discretely
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"“tunable single 'W'avelen‘gth‘source whose channel spacing is deterrﬁined by the mode
Sbacing of the semiconductor laser. Single mode operation of the laser with more
than 40 dB side mode suppression is obtained. The BER performance of several
channels is examined by stretching the fiber Bragg grating. “Error free” performance
is obtained for all channels.

As another new application, the use of semiconductor mode-locked lasers in a
photonic analog to digital (A/D) converter is proposed. The method uses wavelength
multiplicity to increase the sampling rate of A /D converters. The optical output of a
number of semiconductor lasers each mode-locked at a different center wavelength is
spectrally stitched and time-interleaved into a high repetition rate multi-wavelength
sampling pulse train (MW-SPT) which can be used in a photonic A/D converter to
sample a high-end microwave signal. The amplitude modulated high repetition rate
MW-SPT is next wavelength demultiplexed into parallel pulse streams with a lower
sampling rate which can be processed by conventional electronic state-of-the-art A/D
converters in a parallel fashion.

Finally, a new method for the characterization of ultrashort pulses called time
resolved optical gating based on dispersive propagation (DP-TROG) is introduced
and demonstrated. The DP-TROG technique is a new non-interferometric method
for characterizing ultra-short optical pulses in amplitude and phase without the need
for a short optical gating puise. An algorithm is developed for the reconstruction of
the pulse amplitude and phase from the measurements. The pulse train emitted from
a mode-locked semiconductor laser at 1.5um is characterized using this new technique

and excellent pulse retrieval is achieved.
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CHAPTER 1

Introduction to the thesis

1.1 Historical background

The technique of laser mode-locking has been around for more than 35 years. The first
~ mode-locking was demonstrated in 1964 [1] and has since then developed into a very
active research area. Mode-locking theory was first described by DiDomenico [2] and
by Yariv [3]. In a mode-locked laser many equally-spaced longitudinal modes oscillate
simultaneously. Their phases are locked to each other by an intra-cavity gain, loss or
phase element resulting in an ultra-short pulsed optical output. A recent simplified
but very intuitive description and explanation of the process of mode-locking is given
in [4]. Over the years many models have emerged to explain the mode-locking process
varying from time-domain [5, 6] and frequency-domain models [7] to traveling wave [8]
and transmission line models [9]. This work develops an enhanced combined time and
frequency-domain model [10, 11] for semiconductor mode-locked which can describe
the mode—iocking process in detail.

There are various ways to achieve mode-locking in semiconductor lasers. In active
mode-locking, the gain section of the laser is modulated with electrical pulses that
have a repetition period equal to the round-trip time of an optical pulse in the laser
cavity. Only during the peak of the electrical pulse, the gain section provides enough
gain to overcome the lesses in the cavity. During this short period of positive net gain,
an optical pulse will be generated. Short optical pulses have been generated at various
repetition rates with different pulse durations [12-15]. Passive mode-locking provides

an alternative approach to generating ultra-short pulses which is more easily achieved
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4"th‘an active mi)dé—lOcking as it needs no electrical pulses to mode-léck the laser. This
type of mode-locking is, however, more difficult to control, particularly if one wishes
to obtain stable and reliable mode-locked operation [16,17]. Passive mode-locking
techniques are used in many laser systems to generate short optical pulses. The key
component necessary for passive mode-locking is a saturable absorber, which locks the
longitudinal cavity modes in phase, leading to a short optical pulse [18,19]. In contrast
to active mode-locking, passive mode-locking provides no synchronization between
the generated optical pulses and electrical signals but mode-locking at ultra-high
repetition rates can be achieved [20]. Hybrid mode-locking combines the advantages
of passive mode-locking together with the electrical synchronization of the optical
pulses in active mode-locking [21-23]. Note that for active and hybrid mode-locking
electrical restrictions remain present.

Mode-locked lasers are now used in many science areas. Most importantly of
course in the optical communications field but they are also widely used in other fields
like femtosecond chemistry, high speed photonics, solid-state physics and spectroscopy
[24]. Some applications use the frequency-domain properties of a mode-locked laser,
i.e., they make use of the fact that a mode-locked laser emits multiple equally spaced
oscillating modes [25, 26]. Most other applications use the time-domain properties of
the laser [27], i.e., the fact that it emits an optical pulse train.

For most time-domain api)lications it is important that the optical pulses can be
characterized in amplitude and phase. Characterization methods have been developed
for this purpose over the course of years as well. Most of the early methods are
limited. They assume a certain pulse shape in order to give an estimate for the pulse
duratioﬁ. These methods do not provide any insight in the phase characteristics of
the pulse. As a rising need for these phase characteristics has occurred in over the
years, especially in today’s age of optical fiber communication, a steep increase in
pulse characterization methods has been noticed over the last decade. All of these
newly developed methods are able to fully characterize the optical pulse in amplitude
and phase by combining measurements of both time-domain and frequency-domain

properties of the pulse [28, 29].



1.2 Thesis outline

This thesis describes the modeling and characterization of semiconductor mode-locked
lasers. Irtl‘ahdditi'on a number of new applications for mode-locked lasers and their
pdtential in the field of optical communications and the photonics area is discussed
as v;'/ell. '

Ih Chapter 2 a multi-mode semiconductor laser model is introduced that covers
both the dynamic as well as the spectral properties of a semiconductor laser. The
first half of Chapter 2 analyzes the spectral dependence of the complex susceptibility.
The dependence of the sﬁsceptibility on frequency and carrier density is calculated
and both the linear and nonlinear part of the susceptibility is considered. The second
- half of Chapter 2 devélops a dynamic multi-mode laser model. This model com-
bines both a time and frequency-domain approach. The dynamic properties of the
model express themselves through a set of coupled time-dependent mode equations
which describe how the amplitude and phase of each mode develop in time. The
spectral properties enter the picture through the spectral dependence of the complex
susceptibility which is present in each of the modal rate equations. The linear sus-
ceptibility provides both linear gain and index change for each mode but can also
provide mode coupling through carrier modulation caused by the beating of modes or
by modulation of the injection current. The nonlinear susceptibility causes saturation
of the linear gain and index and also causes nounlinear gain and index change due to
four wave mixing (FWM). This FWM process provides additional coupling between
the oscillating modes. The complete dynamic model is applied to a semiconductor
mode-locked laser and the startup and steady-stéte behavior is analyzed. Chapter 2
concludes with the inclusion of spontaneous emission into each mode equation, and
the influence of spontaneous emission on the mode-locking process is studied.

Chapter 3 discusses two new applications of mode-locked lasers. The first half
covers a new frequency-domain application and studies the potential of a mode-locked
laser as an optical source for wavelength division multiplexing (WDM). The second

half of Chapter 3 discusses a new time-domain application for mode-locked lasers.
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A theor_efical ”\s’cﬁe'me is introduced for a photonic analog to digital (A/D) converter
utilizing a multi-wavelength sampling pulse train (MW-SPT) generated by a number
of mode-locked lasers and an optical modulator that is driven by the microwave signal
to be digitized. This scheme is able to enhance the maximum achievable sampling rate
in an A /D converter from the low gigahertz range to the high gigahertz range so that
it becomes possible to sample microwave signals. The potential of this application
and its advantages compared with other photonic A/D converter technologies are
discussed. Recommendations are given for pulse properties like pulse width, pulse
spacing and methods for pulse synchronization and equalization.

The second part of this thesis specializes in the area of characterization of ultra-
short optical pulses emitted by mode-locked lasers. Chapter 4 reviews a number of
basic and commonly used measurement setups for characterizing optical pulses. The
basic principles of the recently-introduced method of frequency resolved optical gating
(FROG) are discussed in detail as this method has been the inspiration for the devel-
opment of its time-domain counterpart time resolved optical gating (TROG) which
is introduced in the first half of Chapter 5. A new measurement setup for TROG
based on dispersive propagation (DP-TROG) is next introduced and theoretically an-
alyzed. An algorithm is developed to reconstruct the pulse amplitude and phase from
the measurements taken. Chapter 6 concludes with the experimental demonstration
of the DP-TROG technique and characterizes a picosecond optical pulse train emitted
from a mode-locked semiconductor laser. General guidelines for the measurement are
provided. The pulse reconstruction process is applied and noise reduction techniques

- for additive measurement noise are discussed.
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CHAPTER 2

A dynamic multi-mode semiconductor laser
model

2.1 Introduction

“In this chapter we develop a multi-mode laser model which can be used to calculate
the transient dynamic behavior of multi-mode semiconductor lasers like Fabry-Pérot
(FP) lasers and mode-locked lasers. The model considers a number of longitudinal
cavity modes and calculates their time-dependence by simultaneously integrating a
set of modal rate equations and carrier density equations. Each modal rafe equation is
driven by a complex polarization term which takes into account both linear and non-
linear effects of the laser medium. Linear effects include both linear gain and linear
index changes in the medium and non-linear effects include mode-coupling through
carrier modulation, self and cross-gain saturation and mode coupling through four
wave mixing. The mode-competition and phase locking process during start-up is
analyzed and the effects of spontaneous emission on the dynamic and steady-state

_ behavior of the laser are investigated.

2.2 Complex susceptibility of a semiconductor laser material

2.2.1 Linear part of the complex susceptibility

In order to calculate the linear gain in the semiconductor laser material it is neces-
sary to find an expression for the complex linear susceptibility of the semiconductor

material. In this chapter we consider an InGaAsP semiconductor bulk material at
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" an emission Wavél‘e’ngth of 1.5um With a complex Lorentzian lineshape. We assume
a three band model consisting of one conduction band and two valence bands (heavy
and light holes). The bands are assumed to be parabolic. Two different transitions
can occur in the semiconductor: a transition from the conduction band to the heavy
hole band, indicated by c¢—hh, and a transition from the conduction band to the
light hole band, indicated by c—1lh. Using the density-matrix formalism [1] we can
calculate the linear part of the complex susceptibility of the semiconductor material.
The linear susceptibility x“(En, N) for a longitudinal mode m induced at an optical

energy &, for a given carrier density N is given by

X = X (Emo N) = 27r2lsoh / Enm ~f¢(€§/f3V)— /T, 9 (24)

9

where &, is the bandgap of the semiconductor material, 75 is the polarization relax-

ation time and f(€, N) is defined as

fe.N) = me o mome ) - e, (e - e/

+ Mth{ff—”h(é’, N) — Feolb(eg, N)}, [(E—E)/R (2.2)

Here M is the transition matrix element and F. and F, are the Fermi functions for
the conduction and valence band respectively for a certain transition. The Fermi-
levels are calculated from the quasi-equilibrium of the carriers in the semiconductor

material. The transition matrix elements are given by

-3/2
Mc—»hh — <2m§:hh> |,uc—>hhi2 (2.3&)

2 c—1h
Mc—)lh — ( m, ) |Mc—->lh|2 (23b)
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~where m, is the reduced mass and p is the dipole matrix element for a certain tran-

sition (c—hh or ¢—1lh). The reduced masses for each transition are given by

1 1 1
—-—mg—>hh = ~T—n—c -+ —mhh (243)

1 1 1 .
= 4 (2.4b)

mg—)lh Me m,

The linear gain g~ and refractive index change Anl,/ny for a mode m with energy

& can be calculated from the susceptibility through the following relations:

gt = g"(Em, N)

Em !

SR (2.5a)

En [ 1Ty

- N

27T2€0n%h2 / (Em — 5)2/h2 + 1/T22f(57 )dg
&g
o o No

_ Xt

g (2.5b)

! Em—E ,
= Toegi? / G _epmiyn ©N e
&

where y%E and xI! indicate the real and imaginary part of the linear susceptibility
respectively. It is noted that in order to calculate the linear refractive index change,

the function f(€, N) has been replaced by f'(£, N) defined by

FI(EN) = Mc*hh{f-ﬁhh(s, N) = FE,N) + 1} € —&)/h

+ Mth{}‘g*lh(S, N) - F&R(E,N) + 1}@ (26)

The factor F. — F, + 1 in (2.6) instead of F. — F, in (2.2) avoids the problem that
the integral does not converge due to the simple Lorentzian lineshape and due to the

limitations of the assumed parabolic band structure [1]. If other complex factors enter
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o { Symbot l o Name Value | Units \
T ‘temperature 300 K
0 refractive index 3.5 -
£, | bandgap | 0.782 eV
T, | polarization relaxation time 120 fs
T, electron relaxation time 300 fs
T, hole relaxation time 70 fs
mg | free electron mass 9.11-1073' | kg
Me conduction band electron mass 0.0455 - myg kg

mpy | valence band heavy hole mass 0.4566 - my | kg
my, valence band light hole mass 0.0951 - myg kg
pe=hh 1 dipole matrix element c—hh 1.04-10728 | Cm
pe | dipole matrix element c—lh 1.04-1072 | Cm

. Table 2.1: Material parameters used in the gain and index calculations for the In-
GaAsP material.

the integral in (2.1), which is for example the case when we include gain saturation,
then the factor F, — F, must be kept in order to avoid that the real and imaginary
parts get mixed up.

The various material parameters that have been used in the calculation of the
linear gain and refractive index change are shown in Table 2.1. In Fig. 2.1 and Fig. 2.2
we have shown the linear gain and index change as a function of the photon energy
with the carrier density as a parameter. In Fig. 2.3 and Fig. 2.4 we have shown the
same quantities but now as a function of the carrier density with the photon energy
as a parameter.

The photon energy range has been chosen such that the corresponding wavelength
range covers the 1520-1560 nm region. This range is used for the dynamic multi-mode
simulations later on in this chapter. Calculations of the gain have been performed

in the carrier density range from 1.0 - 10 m73 to 2.5 - 102 m=3.

We have also
performed calculations for carrier densities for which the medium is absorbing. The
absorption and index change for that case has been calculated in the carrier density
range from 1.0 - 10?2 m~3 to 1.0 - 10** m~3. Besides the calculation of the linear gain

and linear index change for the given carrier density ranges we have also calculated
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\ ' N=25-10%m-3

Linear gain gL x 1012 (s~!)
S

N=10-10*m3

—6 . ‘ :
0.795 0.800 0.805 0.810 0.815
Photon energy &, (eV)

Figure 2.1: Linear gain g as a function of the photon energy &, with the carrier
density N as a parameter. N linearly increases from 1.0 - 1024 m=3to 2.5 - 10?* m~3
in steps of 3.0 - 10 m™3.
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N=25-10*m?

—98 ' : :
0.795 0.800 0.805 0.810 0.815
Photon energy &, (eV)

Figure 2.2: Linear index change An'/ng as a function of the photon energy &, with
the carrier density N as a parameter. N linearly increases from 1.0 - 10%* m™3 to
2.5-10%* m~3 in steps of 3.0 - 102 m3.
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En = 0.815 eV
o4t
l(f)
S
=
X
4, Em = 0.795 eV
o)
= 0f
a0
=
[<b]
k=
- =27 i
4 - : : :
1 1.3 1.6 1.9 2.2 2.5

Carrier density N x 10%* (m~3)

Figure 2.3: Linear gain g“ as a function of the carrier density N with the photbn
energy &, as a parameter. &, linearly increases from 0.795 eV to 0.815 eV in steps
of 0.004 eV.
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Figure 2.4: Linear index change Anl/ng as a function of the carrier density N with
the photon energy &,, as a parameter. &, linearly increases from 0.795 eV to 0.815 eV
in steps of 0.004 eV.
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“the spontanedus emission as a function of the photon energy and carrier density. The
spontaneous emission rate Wy, (&, N) at a certain photon energy &, and for a given

carrier density N is given by

-
AWsp(gmalV) - 27’(’25077%712 / (gm —5)2/77/2‘{’ 1/T22f

&g

", N)dE (2.7)

Here the function f”(£, N) is defined by

f"(€,N) = M“_’hh{}f"hh(s, N) [1— F7™(E, N)] } (& —&)/n

+ MH‘h{fg*lh(S, N [1 = Fh(E, N)] }\ﬂs—_sg)/% (28)

We can further calculate the spontaneous carrier recombination rate using (2.7) as

Ryp(N) = cgﬂh?, / E*W,(E,N)dE (2.9)

&
2.2.2 Nonlinear part of the complex susceptibility

In a semiconductor the gain spectrum and gain dynamics are affected by intensity
dependent non-linear effects- due to a finite intraband relaxation time of both the
conduction and valence band. Gain nonlinearities have been studied extensively in
the past [2-5]. In order to calculate the gain nonlinearities we follow Herzog’s density

matrix approach [2]. The nonlinear susceptibility is given by

1 [ JEN
NL ) NL . ;
W =X 808N = g [ et

&y

LT, 1T,
.{(5p—8)/h—i/T2 B (gq_g)/h+i/T2}
{(5 - &)/h—i/T. +( £)/h— Z/Tv}dg (2.10)
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“where the barid l;elaxationT is given by
T=T.+T, (2.11)

where T, and T, are the conduction and valence band relaxation time respectively.

NL

For mode m we define the nonlinear gain g, .

and the nonlinear index change

AnNL  /ng induced by the mixing of three modes by

m’p)r

g LI ’
g'rl\rIL?p,q = NL(ETTH gpv 5117 N) = % L;:;_l:’i (212&)
0
NL,R
AnTl\’I’I’JP"I = AR (Emy Ep, €q N) _ Xpgmig—p (2.12b)
no o 2n3

We have calculated the nonlinear gain and index change over the same range of carrier
densities and the same range of photon energies as we have done in the previous section
for the linear case. We have shown the nonlinear gain and index change in Fig. 2.5
and Fig. 2.6 as a function of the photon energies £, and £, where we have chosen
the carrier density as N = 1.0 - 10** m~2 and the energy of the mode of interest as
En = 0.805 V. In these figures we have also drawn a number of contour lines in the
bottom planes. From Fig. 2.5 it can be easily seen that the most influence of gain
saturation occurs around the line for which &, = £,. Maximum saturation occurs at
the point where &, = £, = £. Also, the dispersive lineshape for the refractive index

of the semiconductor medium can be easily recognized in Fig. 2.6.
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respectively.
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2.3 Derivation of the dynamic multi-mode laser model

In \this section we derive the dynamic equations for a semiconductor laser starting
from Makwéll’s equations. The derived equations are valid for any semiconductor
laser but we specifically focus on the dynamics of a mode-locked laser in which the
electric field not only responds to a DC susceptibility but also to an AC susceptibility
that ‘varies at harmonics of the mode-spacing frequency. In order to find out how the

electric field is affected by the polarization we start from Maxwell’s equations

VX E(r,1) = - (2.13a)
V x H(r 1) = J(r,t) + aDg’t) (2.13b)
J(r,t) = 0E(r,1) (2.13¢)
D(r,t) = cE(r,t) + P(r,1) (2.13d)
B(r,t) = poH(r,1) (2.13¢)
V-D(r,t)=0 (2.13f)
V-B(r,t)=0 (2.13g)

where

is the électric field

is the magnetic field

(r, )
(r, )

J(r,t) is the current density
(r,t) is the magnetic ﬂux
(r,t) 1is the displacement field
(r,t) is the polarization

o is the conductivity

¢ is the permittivity

to is the permeability of vacuum
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" The noné'resi&enf part éf the susceptibility which accounts for the background index of
refraction of the semiconductor is included in the permittivity ¢ via & = ggn3 where
ng is the background index of refraction and ey is the vacuum permittivity. The
resonant component of the susceptibility gives the gain and carrier-induced refractive
index change induced by carriers interacting with the electric field.

Taking the curl of (2.13a) and substituting into (2.13b) together with (2.13c¢)—
(2.13f) gives

9 2
FE(rt) o0EmY) 1 gape - 10°P0 (2.14)

ot? e Ot £ 1o e Ot?

We expand the’electric field in terms of the cold cavity modes

E(r,t) =) en(t)tn(r) (2.15)
where u,,(r) are the cold cavity modes satisfying

Viun(r) + B un(r) =0 (2.16)

with the wave number 3, defined by

o Qun
Sy — (2.17)
c
such that the cold cavity mode resonances are given by
wc
Q. = 2.18
" m’l’LoLc ( )

where m is the mode number, L. is the length of the cavity, and ¢ =1 /+/Eotio is the

speed of light in vacuum. The cold cavity mode solutions to (2.16) are given by

U (1) = Un(z,y, 2) = v(x, y)upn(2) (2.19)
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‘Where A

Um (2) = V2sin(B,2) (2.20)

and where the transverse mode structure v(z,y) is considered to be mode indepen-
dent. We assume that v(z,y) can be approximated by a Gaussian in both the lateral

and transverse directions, i.e.,

'U(ZL‘, y) = _\}_-—7? eXp( 2/QI)mode) exp(—yZ/QWr?lode) (221)

where Dy ode and Wioge are the mode field diameter in the lateral and transverse
direction respectively. The longitudinal and transverse mode structure are normalized

according to

mOde // lo(z,y)|*dzdy =1 (2.22a)

mode

— /up 2)dz = dpm | (2.22b)

where Apode = DmodeWmode leading to the cold cavity mode normalization

Vinode / / / lf” &r =6, (2.23)

mode

where Vipode = Amodelic 1S the volume occupied by the mode. We define the following

confinement factors in the transverse direction

_ A;de // |v(x,g)|2dmdy (2.24a)

Aact

= ! - // |v(z, y)|* dz dy (2.24b)

A&Ct

where A, = wd is the area of the active region where w and d are the width and

the thickness of the active region respectively. Using (2.21) we can calculate the
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" confinement factors as ,

I' = erf(d/2Dmoge) erf(w/2Wiode) (2.25a)

I = % erf(d/v2Dmoge) erf (w/vV2Winoge) (2.25b)

Usihg the typical values [3] of d/Dpode = 0.4 and w/Wiodge = 3 we find I' = 0.22 and

I = 0.05. For future reference we also define the following overlap factors:

‘ 1 krz |
Ekpm = L'kpm Copm = i / cos (L—) up(2)uy, (2) dz (2.26a)
/ 1 * *
Eparm = 1 Cpgrm Cp.grim = I, / up(z)uq(z)ur(z)um(z) dz (2.26b)
Lact

Substituting (2.15) in (2.14), dot multiplying by u,(r), integrating over the mode

volume and using the orthonormality condition (2.23) gives

d?e,, (t) 1 den(t)

. 1 d2p,(t)
dt? Tpm di

Q) = ———
mem(?) gong  dt?

(2.27)

where the driving polarization for mode m is given by

pon(t) = — / / / P(r t)u, (r) dr (2.28)

Vmode
Vmode

and where the photon lifetime for mode m has been introduced as
Tpm = —— (2.29)

where n,, is the index of refraction for mode m. As a solution to (2.27) we take

em(t) = Ep(t) e?¥mt (2.30a)
Pm(t) = Pu(t) e?m! (2.30b)

where E,,(t) and P, (t) are the slowly varying complex amplitudes of the electric



" field and the i)oia‘r‘ization respectively. Assuming that both E,(¢) and P,,(t) vary

adiabatically, i.e.,

d’E,,(t) dE,,(t)
TI N 1 - (2.31a)
and
dP,(t
‘ é”t( )) <L Wi | Pr(1)] (2.31D)
and that the photon lifetime is much longer than an optical cycle
<1 (2.31c)
WmTp,m
the dynamic mode equation (2.27) can be rewritten as
dE,(t) . 1 . W
= j(Qn — W) — E.(t) — j——=Pux(t 2.32
20 = 1O — ) — | Balt) i Pelt) (23
where we have used
Q2 —w?
M Q — Wi 2.
S w (2.33)

The first term on the right-hand side of (2.32) describes the pulling of the oscillating
mode from its cold cavity resonance, the second term represents the cavity loss and
the third term represents the driving force for mode m. This third term both provides
) the complex gain for mode m as well as coupling between different modes.

The polarization is related to the electric field by

P(r,t) = gox(r,t)E(r, ) (2.34)

The polarization can be split up into a linear and a non-linear part

P(r,t) = PY(r,t) + PY"(r,1) (2.35)



Using (2.15) a*n’d‘ (2.30a) we can rewrite the linear part of the susceptibility as

Lir,t) = Z X (r t) e7“7t (1) (2.36a)
and. the nonlinear part as

P ) = 2 505 S e BB 00 ()

(2..36b)

where the linear susceptibility Xp and the non-linear susceptibility Xp g are defined
according to (2.1) and (2.10). The field saturation intensity is given by [3]

h?

a 2.37

s =

where p is the dipole matrix element. The susceptibility depends on ¢ and r only
through the carrier density N(r,t). Although (2.34) and (2.36) might look suspi-
cious since a convolution would be expected in the time-domain to account for dipole
memory, x is considered a frequency-domain variable and has effectively a vanishing
memory on the time-scale on which E(¢) and N(r,t) vary.

Without loss of generality we now consider a mode-locked laser and assume a
uniform carrier distribution in the lateral and transverse direction of the active region.
For a mode-locked laser the photon density inside the cavity is modulated due to the
) beating of equally spaced modes. In addition to an average DC photon density, part
of the photon density varies with a time dependence at the fundamental and higher

harmonics of the cavity mode spacing. The photon density inside the laser cavity is

given by
S(eit) = 22085z, )P
_ —Q;Z)no S S EWE ) SOy (2)us(z) (2.38)
C P q

k
— SO) + Z [S)(t) cos (kAwt) + S (¢) sin (kAwt)] cos ( zz)
k>0 ¢
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“where w, is the frequency of the central mode and Aw = w, — w,_; is the mode

spacing. Defining the photon density for mode p as

2
2e9my

Sp(t) = T, |Ep(t)|2

the DC photon density S©(t) is given by
SOt Z St

and the photon density at the first harmonic is given by

S(l Zsp lp ) + Sp1(0)

S(l) Z Sp 1 p st>+1,p(t)

where

Spa(t) = 4/ Sp(t)Sg(t) cos {p(t) — 4 (1)}

S;J,q(t) = 1/ Sp(t)Sy(t) sin {‘Pp(t) — pq(8)}

and where we have expanded the electric field for mode p as

Ep(t) = |Ep(t)| eXp{j‘Pp(t)}

(2.39)

(2.40a)

(2.40b)

(2.40¢)

(2.41a)

(2.41b)

(2.42)

The photon density succeedingly modulates the carrier density. Accordingly, the time

dependent part of the carrier density N(t) is written as

N(t) = Z N®) (1) cos [kAwt + ¥ (8)] |

k>0

= NO@) Z N® () cos (kAwt) + NP (¢t) sin (kAwt)]

k>0

~ NO(@#) + [NO(t) cos (Awt) + NI (¢) sin (Awt)]

(2.43)
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o Here we havedefined the amphtude of the modulation of the carrier density at the

itk harmonlc N®)(t) by

w0 =[] + V] (240

Its phase angle go(’“) (t), i.e., its lag with respect to the optical modulation, is given by
7\7(1‘3) (t)
®) = —gin~ ! | =~

@\ (t) = —sin (N(k) O (2.45)

In the last step of (2.43), we have made the approximation that only the first harmonic
of the carrier density is considered. It is noted that the carriers in the semiconductor
can only respond to the optical pulsations caused by the beating of two modes when
the beating frequency is low enough for the carriers to respond. This means that it
is usually sufficient to limit the summation in (2.43) to the fundamental harmonic,
i.e., we only consider nearest neighbor mode beating, i.e., k = 1. |

Similarly, the rate equation for the carrier density N(t) contains both a de part
and an AC part

dN(t) I N(t)

dt Vet - RY(t) — Ry (t) cos(Awt) — RV (¢)sin(Awt) (2.46)

where the dc stimulated emission rate R(°)(¢) is given by
FZ g\ go,,,, (1) (2.47a)

The AC stimulated emission rates are given by

r ' L .
RO() = 5 3 (0 + 920 o155 1+ (00 + G0 Y aoppiisyor,  (247D)
p
I 0),L s 0)
R-gl)(t) ) 2(9(0) gk 91(1 )1 )Sop-1p5p-1,0 — (gz()o) + 9;)+1 )Cop+1p5p41,  (2.47)

p
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sting” (2.43)‘a‘nd (2.46) we can derive the following rate equations for N ©(t),
N(#) and N (2)

dNO@) 1 NO(@)

_ _ — RO )
dt qVact T () (2:452)
AN NO(@
dt( ) _ ____T( ) _ AwND () — RO (1) (2.48b)
AND (¢ Wy
dt( ) __ T( ) 4 AwND () — RO(1) (2.48c¢)

where q is the electron charge.
In its turn the carrier density drives the linear susceptibility which is thus also
modulated at the fundamental and higher harmonics of the mode spacing. We there-

- fore expand the susceptibility in (2.36) as

1 .
X;_; (Z’ t) — 5 Z(l + 6k)X;k),L(t) e]{kAwt‘*’SD(k)(t)} coS (ng) (2_49)

k C

where the summation now is performed over both positive and negative k£ and where
X = —x3® and o) (t) = —p®(t). Using (2.28), (2.30b) and (2.49) we can

write the slowly varying polarization for mode m as

i{o!
= —50 Z Z 1 + (Sk p+k mXék) L( )Ep(t) eJ{cp )t p,m ()} fk,p,m (2.5()&)

_€ . ‘
PNL - Z Z Z 619 q+r, mXp q,7 )E (t)E (t) E’r (t) e]wp,q,r,m(t) fp,qJ«,m (250b)
- where &, m and &, 4,.m are defined according to (2.26) and

Prpm(t) = kAw + (wp — wp )1 (2.51a)

wp,q,r,m(t) = (wp - wq + Wy — wm)t (251b)

It is noted that in (2.26) the integration is performed over the active region, i.e., the
region where the resonant susceptibility is non-zero.

We again limit the summation in (2.50) to the fundamental harmonics -1 < k <1,
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i.e., we only consider nearest neighbor mode beating and mode coupling. The linear

polarization term can then be rewritten as

PL() = eox O () B (£)0,mm

1 |
+ ZEoxm (1) V0 By (D& 1 m1m (2.52)

1 i)
+ 250X7(7?+ ) e YO B ()€1 mi1m

The linear susceptibility """ at the first harmonic is approximated from the ampli-
tude N of the carrier density modulation around its average value N ©) according
to

Xt = ; [t (NO 4+ NO) — 5O (VO — ND)] (2.59)

The non-linear polarization term (2.50b) can be split up into the following terms

£o

PA(t) = 7.2 XL (&) Ep(t)? B (£)p pmm (2.54a)
€
Pt =7 Z Xonsga () B ()| Bq(0) &m0 (2.54b)
gFm
6 *®
PSLWM - Z ZXP,q,meq -p ( )E ( )Em+q~P(t)§p,q,m+q—p,m (2-54C)
p#m a#p

The polarization term PSAT

represents. the saturation (SAT) of the complex gain due
to static hole burning (both spatially and spectrally). The self-saturation term is
given for p = m while the cross-saturation term are given for p # m. The term PLY
represents the saturation due to population pulsations (PP) caused by the beating of
two modes. The‘term-PEWM is due to four-wave rhixing (FWM) and causes additional

coupling between the modes.

Using (2.5), (2.12) and (2.42) and substituting into (2.32) gives the rate equations
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~for the mode amplitudes

dEn [ g0t 1
— = "= mem i m
dt { 5 Com, 2T 2

r g If An(l)’I{
+§ m2 coS(P4+1,m—1,m) + Wm—1 n’g_ Sin(d41,m—1,m) | Cr1m—1,m|Em—1]

0% | (WL
+ 3 77’;1 coS(P—1m+1,m) + Wt n0+1 Sln(¢—1,m+1,m)):' C1mt1,m| Bmia|
: NL 9 NL )
g 9, E g E
+r Z méppcp’p’m’ml—-ffl_lEm‘ + 1 Z ﬂétnﬁcmaq,qm) i | Eml
| ’ ’ gFm
ghL AnNt 5
+I Z Z [ 4 c08(¢p.g,rm) T Win Op’q Sln(‘ﬁp,q,r,m)} Cp,q,r,m, py ] |E,|
PEM q#p s

(2.55)

where 7 =m +q —p, (bk:,p,m = Qp(k) + Yp— Pm and ¢p,q,r,m = ¢Pp— Pgt Pr— Pm- The

rate equations for the phases of the modes are given by

d Ank
(pm Q - me S CO,'m,m
L)
F AnL
t3 { S (@ 41,m— lm) W1 = €08(¢41,m—1,m) | C1m—1,m|Brm—1]
P m .An,(i)’]‘
2 { +1 Sin(¢_1,m+1 m) Wm+1 n0+1 cos(d—1.m+1,m)) | C=1mt1.m|Ema1]
E M E,?
~I Z Wm ’p’pCpp,mml | -I Z Wi qu L Y ml Iq|
q#m s
— | 9n, . AnXE BB, |E,
+ I Z Z m,p,_q sin(@p g.rm) — W S (N Cp,q,r,m| ol Eql | Ex|
pEM q#£p 2 T I, |Em|

(2.56)

It is useful to write the mode equations in terms of photon densities using (2.39). We



" can then "rewrite‘ (2.55) as

dSpm ' 1
Y, . |:Egyl;zc0,m,m A Sm

dit

p,m

Ang) L
Sln(¢+l m— 1,m) C+I,m—1,m V Sm—lsm

no

An&i)’L ) v
= Sln(¢—1,m+1,m)) C—1mt1,mV Smt+15m

o

+ gr(rlz)’l COS(¢+1,m—1,m) + 2wm~1

)e COS(¢—1,m—I—1,m) =+ 2Wm—l—l

+ Im1

R e

/ S ! S
+F ngppCpp,mmSpS +F ngmqgmqqmsqs

aFm

AnNE ,/55
Img COS(Bp,g.rm) + 2w —24 sm(qﬁpqrm)] CparamYat/5, 5

(2.57)

Yy

pFm qF£p

Here the photon saturation density is given by

) 2
=07 (2.58)

hwe

Ss = I,

The rate equations for the phases of the modes (2.56) can be rewritten as
d Ank
M e O — i — WD

o

dt »
(1).L (,L
g An, "
{ m-l ml COS(¢+1,m—l,m\):| C—l—l,m—l,m Sm—ISm

CO,m,m

Sln(¢+1,m—1,m) — Wm-1
g

(l)aL An(l)’li‘
s COS(¢~1,m+l,m)) C—l,m—|—1,m\/ Sm+ISm

._|_

zotl sm(qﬁ 1,m+1, m) Wm+1

+
2 Ny

I o)

Anﬁf M S
- FI Z w A <p7pam m PI Z wm 4 Cmaq q,m S(:

g#m

+T' Z Z [ =P gin ¢P q, Tm) - W, D, —bd COS(wp q,7, m)] Cp,q,r,m V

(2.59)

pFM qFD

Summarizing, the complete dynamic behavior of the laser is described by the

modal rate equations (2.57) and (2.59) and the carrier density rate equations (2.48).
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“In the following sections these rate equations are numerically integrated using a
fourth-order Runge-Kutta integration algorithm with adaptive stepsize [6]. On each

integration step the frequehcies. of the modes are adjusted according to

dom,

k+1 k
w =w,. 4+

m

(2.60)

where k indicates the time-step. The mode-spacing Aw for the next step is calculated

from a'weig‘hted average according to

1 Sm
AwFtt = 3 > (whth - wﬁ:r—ll)m (2.61)

m

- On each iteration the mode index n, is calculated according to

| .
M = 0 (1 + :m) (2.62)
0

and the photon lifetime for mode m is calculated from

1 c [1 1

where R is the facet power reflectivity and a. is the cavity loss.

2.4 Mode competition in mode-locked lasers

In this section we will consider a mode-locked semiconductor laser with a total cavity
~ length L, = 2000 pm. The laser cavity consists of a gain section and an absorber
section. The length of the gain section is L, = 1900 pm and covers the area where
0 < z < L,;. The absorber section has a length of L, = 100 pm and covers the area
where L, — L, < z < L. |

Using (2.26), the overlap factor for the gain section (f ., and the overlap factor
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~“for the absorber section (g, ,, are given by

Lg
9 L
Bmm = T / sin? (erz) dz~ 7%= 0.95 (2.64a)
C C C
0
2 f L '
G = 1 / sin? (mLm) dz~ 7% = 0.05 (2.64b)
) C C [
Le—Lg

where in the last approximation we have assumed that the mode number m is large
(for our laser the m ~ 9000). It is noted that the integrals (2.26) can actually be
solved analytically. In our simulations later on we use the exact values calculated
from (2.26) and not the approximated ones as given in (2.64).

The overlap factors ¢%) ,_1.m>C1mi1m> Chrm—1m a0d (24 iy, for the gain and
absorber section respectively can be calculéted analytically as well. For large m they

are approximately equal to

1L 1 . (2«xL
CGrm1m ~ Cimsim = EL_Z + ap o ( Cg) ~ 0.45 (2.65a)
a o 1L 1 . (2nL
C+1,m—1,m ~ C—l,m-H,m = 532‘ - Z’f—(’ sm ( ch> ~ 0.05 (265b)

The overlap factors {7 ., . for the FWM process are given by (2.26b). A plot
of the FWM overlap factor for the gain section as a function of the mode numbers
p and ¢ for a central mode m = 9000 is shown in Fig. 2.7. Looking at Fig. 2.5,
Fig. 2.6 and Fig. 2.7 it can be seen that most of the nonlinear contributions in the
] modél rate equations (2.57) and (2.59) come from the summation terms for which
g = p (saturation terms) and ¢ = p + 1 (mixing of nearest neighbor modes). In our
simulations we have limited the summations to these terms as we only consider nearest
neighbor mode coupling. It is noted that higher order coupling between modes can
be easily included as well. In this case the modulation of the carrier density at higher
harmonics also needs to be taken into account.
We have next simulated our laser by integrating the modal amplitude and phase

rate equations (2.57) and (2.59) and the carrier rate equations (2.48a)—(2.48c) for both
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» Figure 2.7: Overlap factor (s gmtq—pm fOr the gain section as a function of the mode
number p and the mode number ¢ for a central mode number m = 9000.



34

| Symbot - ~ Name Value | Units ‘

ng | refractive index 3.5 —
Q. cavity loss 5.0 cm!
'R mirror power feﬂectivity 0.3 —
S, | photon saturation density 3.9-10%2 | m™3
AQ | cold cavity mode spacing 134.6 - 10° st
Tq carrier lifetime in gain section 1.0 ns
Ta carrier lifetime in absorber section 0.1 ns
L. cavity length 2000 pm
L; gain section length 1900 pm
L, absorber section length 100 pm
w width of the active region 3.0 pm
d thickness of the active region 0.1 pm
r confinement factor 0.22 —
I’ confinement factor 0.05 —
I, gain current 250 mA
1, absorber current 5 mA
M number of modes 75 —
M, central mode number 9004 —

Table 2.2: Parameters used in the simulations.

the gain section and absorber section. The total number of equations to be integrated
equals 2M +6 where M is the number of modes that is being considered. In Table 2.2
we have summarized the various parameters that are used in the simulations in this
and the next section.

The typical startup behaviour of the laser in the first 4 nanoseconds is shown
~in Flg 2.8. The gain section is pumped at I, = 250 mA, the absorber section is
pumped at I, = 5 mA and the currents are turned on at t = 0. The carrier density
in the gain section increases slowly and the photon density starts to build up. The
increasing number of photons in the laser cavity start to saturate the gain causing
the well-known relaxation oscillation behavior. The relaxation oscillation is clearly
visible in Fig. 2.8 and is a result of the out-of-phase interaction between the carriers
in the gain section and the photons. The relaxation frequency is approximately equal

to f, = 4.1 GHz. The relaxation oscillation is eventually damped out when the gain
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Figure 2.8: Time evolution of the DC photon density S, the DC carrier density in
the gain section Ng(o) and in the absorber section Nao), and the refractive index, n,,,
and energy, £n, for the central mode m = M..
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Figure 2.9: Time evolution of the photon densities S, and the phases ¢, for modal
numbers M, — 10 < m < M, + 10 with M, = 9004.

of the laser medium is clamped at its steady-state value. Due to the fact that the
absorber section is biased below transparency, its carrier density is in-phase with the
photon-density, i.e., the photons create carriers in the absorber section.

As aresult of the change in carrier density, mainly in the gain section, the refractive
index of the semiconductor material decreases over time as well. This causes detuning
of the energies of the modes from their cold cavity resonant energies (see Fig. 2.8) and
detuning of the mode-spacing from the cold cavity mode-spacing. It can be seen that
the total photon density S(©, the DC gain carrier density N!SO) and absorber carrier
density-NéO), the modal refractive index N andenergy &, reach their steady states
within a few nanoseconds. As we will see next this is not true for the photon density
and phase of each individual mode. The individual modes compete with each other
on a longer time scale, typically up to a hundred nanoseconds.

In Fig. 2.9 we have plotted the time evolution of the amplitude and phase of each
of the modes. As we can see from Fig. 2.9, the amplitudes and phases of the modes

follow the relaxation oscillation behaviour during the first few nanoseconds. The
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phases of the ‘modes afe locked to each other in these first few naﬁoseconds as well.
The corﬁpetition between the modes, however, takes place over a much longer time.
Even after 20 nanoseconds the individual mode amplitudes still have not reached their
steady-state values. Although the modes are locked in phase to each other, they are
still competing for the gain medium. Clearly visible is the fact that the modes on
one side of the main mode are anti-correlated with the modes on the other side of the
main mode. All modes exchange power between each other through nearest neighbor
mode coupling. The total photon density in the cavity remains constant throughout
this process of mode-competition, which means that some modes grow in amplitude
at the cost of others. This process of energy exchange between all of the competing
modes continues until finally a steady-state is reached where the amount of energy
" that a mode obtains from its neighbors is equal to the amount of energy that mode
gives to its neighbors. For our simulations a steady-state is reached after about 100
nanoseconds.

The detuning 6(t) of the mode-spacing from the cold cavity mode spacing in
steady-state is

§(t) = Aw(t) — AQ = —3.47-10° s~ (2.66)

This detuning is caused by the dispersion of the material expressed through the change
of the refractive index caused by the real part of the linear susceptibility, see (2.5b).

The mode-locked spectrum in steady-state is shown in Fig. 2.10. About 25 modes
are locked together. In Fig. 2.10 we have also plotted the spectral phase of the modes
resulting from the simulation. The phase curvature indicates that the mode-locked
pulse contains a non-linear spectral chirp. In order to determine the chirp values of
the pulse, we fit the spectral phase around the center mode with frequency w, to a
4*" order polynomial according to

dy 1d2%p 1d%p

p(w) = p(we) + d—w(w —we) + 55w - we)? + 8&73(‘” —w)P+...  (2:67)

This fitting gives a linear spectral chirp d2¢/ dw? ~ —5.3 ps? and a nonlinear spectral

chirp d3p/ dw® = —1.5 ps® and d*p/ dw* ~ 8.8 ps*.
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Figure 2.10: Photon density S, and phase ¢, for each mode in steady state.
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Figure 2.11: Temporal intensity |S(¢)| and phase o(t) of the pulse in steady state.
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The c“ompfexvp‘ulse shape in the time-domain can be calculated according to

2

S(t) = S = )" /S (t) exp{j(wm — we)t + jom(t)} (2.68)

The_result is shown in Fig. 2.11. In this figure we have also shown the temporal
phaée ©(t) of the pulse which has a roughly parabolic shape. The mode-locked pulse
is asymmetric in time. The pulse width is At, ~ 7 ps. The instantaneous frequency
of the pulse’is given by

w(t) =we+ ——= (2.69)

The phase over the pulse varies approximately quadratically in time. This means that
the pulse contains an approximately linear temporal up-chirp, i.e., the red components
are present in the leading edge of the pulse while the blue components are present in

the trailing edge.

2.5 Spontaneous emission and its cause of timing and amplitude
jitter

In this section we examine the influence of spontaneous emission on the steady state
mode-lock behavior. The spontaneous emission rate has been calculated according
to (2.7) in Section 2.2. The spontanebus emission causes an additional term in the
photon dénsity rate equation given by (2.57). This spontaneous emission term is

given by
dSy,
dt

4 sp
= 2.70
Vmode ( )

sp

Spontaneous emission contributions come from both the gain and the absorber sec-
tion but at different rates as these sections are being pumped differently. The total

spontaneous emission contributions are given by

ds w§g we

—2 =T mm—r + ¢ 2 2.71

dt CO,m,m va + gO,m,m Va ( )
sp
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Figure 2.12: Time evolution of the photon densities .S, and the phases ¢, for modal
numbers M, — 10 < m < M, + 10 with M, = 9004 when spontaneous emission is
included.

It is noted that the contributions from the absorber are negligible compared to the
gain medium as the absorber section is biased below transparency. In our simulations
these contributions are however included for completeness.

We have next integrated the mode equations with the spontaneous emission terms
included. The typical startup behavior is shown in Fig. 2.12. The initial mode-
competition process occurs within the first few tens of nanoseconds. After this time,
the mode-locked laser is in a quasi-steady state. This quasi-steady state fluctuates
- around the steady state calculated in the previous section due to spontaneous emis-
sion eVeAnts inﬁo the lasing modes. The explanation for this is as follows: in order to
maintain the steady state calculated in the previous section, the laser needs to main-
tain a certain amplitude and phase for each mode. For the modes at the outer ends
of the spectrum, this amplitude is small. When spontaneous emission is included,
the amplitude of these modes rise above the value that is needed to keep the laser in
steady state due to the additional spontaneous emission terms (2.71) in (2.57). As

a result the phases of these modes are also perturbed from their steady state values
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Figure 2.13: Photon density‘Sm and phase ¢, for each mode when spontaneous
emission is included (error bars). The photon density and phase without the inclusion
of spontaneous emission is shown by the solid lines.

through (2.59). Due to the fact that all modes are coupled together, the perturbation
of the modes at the outer ends of the spectrum couples to all the other lasing modes
as can be seen in Fig. 2.12. In Fig. 2.13 we have shown the typical fluctuations of
the amplitudes and phases of the modes. The error-bars indicate the ranges in which
the amplitudes and phases fluctuate when the laser is in its quasi-steady state. From
Fig. 2.13 it can be seen that the phase disturbance does not couple very far into the
center of the spectrum. The oscillations in the modal phases is mainly visible in the
modes at the outer ends of the spectrum (the size of the error-bars decreases towards
the centér of the spectrum). However, the amplitude fluctuations that are caused by
the spontaneous emission into the outer modes manifest themselves over the complete
spectrum as can be seen from Fig. 2.13 (see the error-bars for the photon densities). It
is noted again that although all modes are fluctuating in amplitude, the total photon
density in the laser cavity is constant in this quasi-steady state due to the previously
discussed anti-correlation of the modes.

If we consider the mode-locked laser from a time-domain point of view, the laser is
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Figure 2.14: Temporal intensity |S(t)| and phase ¢(t) of the pulse when spontaneous
emission is included (dots). The pulse intensity and phase without the inclusion of
spontaneous emission is shown by the solid lines.

not perfectly mode-locked due to spontaneous emission events. The phase fluctuations
of the modes cause timing jitter of the pulse, while the amplitude fluctuations of the
modes cause amplitude fluctuations in the pulse. In Fig. 2.14 we have plotted the
fluctuations of the pulse over a time period of 100 ns. For comparison we have also
plotted the steady-state pulsé intensity and phase calculated in the previous section.
Clearly visible are the timing jitter and the amplitude jitter in the intensity of the
pulse. From Fig. 2.14 the relative timing jitter AT/T and amplitude jitter AE/E of

the pulse is estimated to be

AT AT  05ps
T  2n/Aw 479 ps
AE  0.25-10%

=1.0% (2.72a)
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CHAPTER 3

Applications of mode-locked lasers

3.1 Introduction

In this chapter We discuss the potential of two new applications for mode—locked lasers
- in the field of optical communications and in the high-speed photonics area. The first
application uses the frequency-domain characteristics of a mode-locked laser: each of
the mode-locked modes can potentially be used as a single wavelength source in an
optical communication system after the appropriate spectral filtering. A mode-locked
laser with a dense mode-spacing is studied for this purpose. The second application
uses the time-domain or pulse characteristics of a mode-locked laser. A photonic
scheme is proposed that is able to increase the sampling speed of analog to digital
(A/D) converters. The pulse trains of a number of mode-locked lasers are combined
into a multi-wavelength sampling pulse train which can be used as the sampling
source in an A/D converter. The combination of optics and electronics in this ap-
proach makes it possible to cross over the electronic boundaries for the sampling speed
of conventional A/D converters. The photonic A/D converter combines wavelength
multiplicity and optiéal short pulse generation in such a way that it becomes pos-
sible to digitize high-end microwave signals with conventional state-of-the-art A/D

converters in a parallel fashion.

3.2 An optical source for wavelength division multiplexing (WDM)

Wavelength division multiplexing (WDM) is becoming increasingly important in cur-

rent optical communication systems. WDM systems utilize the large bandwidth of
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Can optical fibér \'/e‘r‘y eﬁiciently by launching multiple closely spacéd optical channels
into a single fiber, each modulated at high bit-rates. In order to have accurate control
over the wavelength of every channel simultaneously, it is advantageous to generate
all of the wavelengths at one central node in the network and provide the capability
to modulat_e them at each network node [1]. As a result, one of the key components
of a WDM system is a stable and controllable multi-wavelength laser source.

One of the earliest designs for a WDM multi-wavelength source uses a discrete
DFB laser for every channel [2]. However, this type of setup is highly cost ineffi-
cient and channel spacing control is poor. Every DFB lasers needs to be accurately
temperature stabilized in order to keep its absolute wavelength within specifications.
Monolithically integrated multi-wavelength lasers have better potential as a stable
~ and controllable source. A multi-frequency laser with a waveguide grating router as
an intra-cavity element to lock all wavelengths at a specifically determined channel
spacing of 200 GHz has been demonstrated [3].

As an alternative to using an array of external or monolithic lasers, spectral slicing
of devices with a broad optical emission spectrum, for example light emitting diodes
[4] or semiconductor optical amplifiers [5], has been proposed. Also, amplification of
the spontaneous emission from a Fabry-Pérot (FP) laser biased below threshold has
been demonstrated [6]. The emission spectrum of this type of device consists of a
large number of modes Whosé spacing is constant and determined by the FP cavity
length. After amplification of the spectrum, every mode can be used as a separate
WDM channel. Stabilization or adjustment of the channel-spacing without modifying
the center wavelength of the laser is complicated however. Multiple wavelengths can
also be‘generated using super-continuum (SC) generation in optical fibers [7]. The
SC pulse generator outputs spectrally super-broadened, short optical pulses. A very
large number of WDM channels can be sliced out of this extremely broad spectrum.

Another promising design of a multi-wavelength source incorporates a mode-locked
semicbnductor laser [8,9]. In analogy to the FP laser below threshold, the light output
of a mode-locked laser consists of many optical modes whose spacing is determined by

the cavity length. In contrast to the FP laser, the modes are locked by an intra-cavity
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Saturable“ absérbér an('lv do not need pfe—ampliﬁcation. Applying an RF signal to the
Safurable absorber section of the laser makes the channel spacing temperature inde-
pendent and very stable. Absolute wavelength control can be achieved by temperature
tuning or incorporation of Bragg reflectors inside the cavity [10,11]. Fine-tuning of
the v__channel spacing can be achieved by slightly detuning the RF modulation fre-
quency from the cavity repetition rate. Simultaneous demultiplexing of all channels
using an arrayed waveguide grating filter with a channel spacing of 100 GHz has been
demonstratéd [9]. In the next section we examine the potential of a mode-locked laser

with a dense mode spacing (~ 25 GHz) as a WDM source.

3.2.1 WDM mode-locked laser source

A schematic drawing of our mode-locked semiconductor laser is shown in Fig. 3.1.
The active layer consists of four quantum wells, grown by metal organic chemical
vapor deposition (MOCVD). The device is a buried heterostructure using reverse
biased junctions as current confining layers, grown by liquid phase epitaxy (LPE).
The cavity is split up into two sections. The length of the absorber section is 110 pm
long while the length of the gain section is approximately 1900 pm. The total device
length is 2010 pm while the isolation region between the gain and absorber section
is approximately 15 ym. Electrical isolation between the two sections is 1.5 kf2. No
coatings are applied to the end facets of the laser.

In order to make the absorber section suitable for high frequency modulation, the
parasitic capacitance of this section needs to be minimized. This can be done by
insulating blocking layers around the active regibn [12], and isolation channels with
a thick polyimide deposition [13]. We use a different method. An isolated narrow
mesa is formed by etching a pair of channels along the active region. This reduces the
capacitance caused by‘the reverse-biased blocking layers. A standard SiO layer is
deposited on top to isolate the contact. An air-bridge contact configuration has been
used to provide the electrical contact to the absorber section [14]. This further reduces

the parasitic capacitance caused by the metal/SiO,/semiconductor interface. The air-
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Figure 3.1: Schematic view of the mode-locked laser, showing the isolated mesa,
air-bridge and gain and absorber sections.

bridge contact has been fabricated using the standard photolithographic process and
thick gold metallization.

The complete laser structure has been mounted on a custom high frequency mount
consisting of a K-connector and 50 Q micro-strip. This mount allows RF' modulation
frequencies up to 35 GHz. The laser is not impedance matched to the micro-strip.
The threshold current for the laser with both the gain and absorber section forward
biased by a current source is 35 mA. In Fig. 3.2 we have shown a few typical LI-
curves as a function of the gain current with the absorber voltage as a parameter.
The absorber voltage ranges from 1 V to —1 V in steps of 200 mV. The modulation
response (see Fig. 3.3) is measured using a high-speed photo-detector and a network
analyzer. The absorber is biased at V, = —0.26 V and the gain section is pumped
at I, = 130 mA for this measurement. The mode-lock frequency or cavity resonance
peak occurs around 21.7 GHz.

We next examine the dependence of the mode-lock frequency on biasing condi-

tions. The laser is passively mode-locked for this purpose and its cavity resonance
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Figure 3.2: Output power of the mode-locked laser as a function of the gain current
I, with the absorber voltage V, as a parameter. The absorber voltage is changed from
1V to—1YV in steps of 200 mV.
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Figure 3.3: Modulation response of the air-bridge type mode-locked laser. The cavity
resonance peak occurs around 21.7 GHz.
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Figure 3.4: Cavity resonance frequency as a function of the gain current I, and the

absorber voltage V.

-detector and an electrical spectrum analyzer

is measured using a high-speed photo

(ESA). The gain current I, is varied from 75 mA to 250 mA in steps of 5 mA. The

absorber voltage V, is varied from 0.0 V to -0.3 V in steps of 10 mV. The results are

shown in Fig. 3.4. We have also drawn a number of contour lines in this plot. From

Fig. 3.4-we can see that we can change the mode-lock frequency continuously from

21.6 GHz to 21.8 GHz by changing the gain current and the absorber voltage. This

tuned over a range

means that the channel spacing of our WDM source can be fine-

of approximately 200 MHz by changing biasing conditions.

The laser is next actively mode-locked by applying an RF signal to the absorber
section. The gain current is set to I, = 250 mA and the absorber voltage to V, =

—0.22 V. The mode-lock frequency for these settings equals f,, = 21.669 GHz. We
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Figure 3.5: Spectrum of the mode-locked laser source. The flat-top spectrum contains
62 modes within its 3 dB spectral width.

next adjust the power level of the RF source such that we get a flat-top and broad
spectrum of locked modes. The spectrum is measured with an optical spectrum
analyzer (OSA) with a resolution bandwidth of 0.08 nm. The result is shown in
Fig. 3.5. Under the given biasing conditions a nice broad and flat-top spectrum of
our laser is obtained. The 3 dB width of the spectrum is approximately 10.5 nm and
contains 62 locked modes.

We next examine whether the mode-locked modes are suitable for high-speed data
transmission. In order to do this we need to separate one of the modes from the total
mode-locked spectrurh shown in Fig. 3.5. In Fig; 3.6 we have shown the wavelength
“dropping” method to split off one of the modes from the mode-locked laser. The
light from the laser is coupled into a fiber, passes through a circulator and then hits
a fiber Bragg grating. The WDM channel of interest that needs to be dropped is
reflected off the Bragg grating back to the circulator where it is “dropped” from the
fiber. All of the other WDM channels are available at the output of the fiber Bragg

grating and can succeedingly be dropped in a similar way. Note that the circulator
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Figure 3.6: The WDM single wavelength setup incorporating a multi-wavelength
mode-locked laser source and a fiber Bragg grating/circulator based drop filter.

introduces a loss of around 1 dB for each of the channels that are not dropped and
" an additional loss of 1 dB for the dropped channel. This loss may be avoided by
replacing the combination of the circulator and the fiber Bragg grating by a lossless
add/drop filter such as the filter described in [15]. The transmission characteristics
of the fiber Bragg grating are shown in Fig. 3.7. The center wavelength of the fiber
Bragg grating is around 1536 nm, the peak reflectivity is 80% and the full width at
half maximum (FWHM) of the grating is 0.5 A (~ 7 GHz). The total length of the
grating is 21 mm.

In order to have the wavelength of one of the channels coincide with the center
wavelength of the Bragg grating, we physically stretch the grating so that its reflec-
tion peak is tuned to one of the channels. With the grating tuned to the selected
channel, we measure the spectral characteristics of the dropped WDM channel. The
result is shown in Fig. 3.8. Trace (a) shows the complete mode-locked spectrum (all
channels). Trace (b) shows the dropped channel and trace (c) shows the spectrum
of the remaining modes after dropping (exiting the grating). The inset shows the
spectrum of the dropped channel taken by an OSA with a resolution bandwidth of
0.01 nm. The side-mode suppression of the nearest neighboring modes is 19 dB. From
trace (c) one can see that the channel is not fully dropped due to the fact that the
peak reflectivity of the grating is only 80%. A stronger grating can improve this at

the cost of a wider passband and thus less side-mode suppression, assuming that the
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Figure 3.7: Transmission characteristics of the fiber Bragg grating used in the setup
of Fig. 3.6.
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Figure 3.8: Spectrum of the WDM mode-locked laser source: complete mode-locked
spectrum (a), a single channel filtered out by a fiber Bragg grating (b) and the
remaining channels (c). The inset shows a higher resolution trace of the dropped
channel.
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grating can not be ‘made any longer than 21 mm.

) We have next examined the transmission capabilities of the dropped channel. The
setup for the measurement of a bit error rate (BER) for the channel is given in Fig. 3.9.
The dropped channel is boosted by an erbium doped fiber amplifier (EDFA) and next
modulated with real-time date by an external electro-optic modulator (EOM) driven
by the BER pattern generator. At the receiver 10% of the signal is tapped off for
monitoring purpose on an OSA and the remaining 90% of the signal can be variably
attenuated.The attenuated signal is bandpass filtered by a tunable FP filter with a
0.5 nm FWHM bandwidth and is next amplified by a low-noise EDFA. The resulting
amplified signal is then again bandpass filtered by a 0.5 nm FP filter to limit the
spontaneous emission from the EDFA. The signal is next detected by a high-speed
| photo-detector, electrically amplified and filtered and fed back to the BER tester for
determination of the error rate as a function of the received optical power.

Even though the side mode suppression for the WDM channel is 19 dB, which
should be more than sufficient for “error free” data transmission, we have not been
able to achieve “error free” data transmission, even without fiber in the transmission
path. “Error free” data transmission here means that a bit error rate smaller than
10! can be achieved. In order to find out what the reason is for this poor perfor-
mance, we ha‘ve performed a noise analysis of our device. In the next section we both
examine the noise properties 6f the multi-wavelength mode-locked laser source as well

as of the single channel WDM source.

3.2.2 Noise properties

We start this section by examining the stability of the pulse train. For this purpose we
detect the pulse train with a high-speed photo-detector. The signal from the photo-
detector is amplified by an electrical amplifier énd succeedingly spectrally analyzed
with an ESA. The measured power spectrum consists of a number of carriers at
harmonics of the pulse repetition rate (~ 21.7 GHz). Due to the limited response of

the photo-detector and electrical amplifier only the fundamental and second harmonic
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Figure 3.10: SSB power spectrum of the pulse train around the fundamental harmonic
carrier (n = 1, solid line) and the second harmonic carrier (n = 2, dashed line).

(although close to the measurement background noise level) can be detected. Around
this fundamental carrier the phase and amplitude noise bands appear corresponding
to timing and amplitude jitter respectively. We have measured the single-sideband
(SSB) noise for an evaluation of the timing jitter. Fig. 3.10 shows the SSB noise
versus the frequency offset f from the fundamental 21.669 GHz carrier frequency
(solid curve) and the second harmonié 43.338 GHz carrier frequency (dashed line).
The laser ‘biasing conditions are chosen as I, = 250 mA and V, = —0.22 V. The
SSB noise power is measured over the frequency offset range 10 Hz < f < 100 MHz.
) According to [16,17] the root mean square (RMS) timing jitter AT over a frequency
band fain < f < fmax is given by

AT 1 Jmax
o= 2—7;5\/2 [ separ (31)

where T is the pulse repetition time, n is the harmonic number of the carrier that is

being measured and Sp(f) is the ratio of the SSB phase noise power spectral density
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" to the carrier pos)ver. The RMS pulse energy fluctuation A€ can be found similarly

A fmax
5 =4/2 / (3.2)

Where £ is the pulse energy and S4(f) is the ratio of the SSB amplitude noise power

from

spectral den51ty to the carrier power.

As will become clear later on, the phase noise in Fig. 3.10 is much stronger than
the amplitugle noise for frequencies up to 25 MHz. Integration of the SSB phase
noise power in Fig. 3.10 for 10 Hz < f < 25 MHz gives the timing jitter AT/T.
Integration for the first harmonic curve gives AT /T = 1.56% and integration of the
second harmonic curve gives AT/T = 1.77%. Both values agree very well with each
other. It is noted that the noise power for the second harmonic fails to drop off for
frequencies higher than 25 MHz. This is due to the fact that this measurement is
made close to the measurement background noise level. As a result the timing jitter
value resulting from this measurement is estimated to be on the high side. It is noted
that the frequency range in Fig. 3.10 does not extend far enough to get an estimate
for the amplitude jitter AE/E using (3.2). We will use a different method to estimate
this amplitude jitter later on.

First, in order to confirm the results above we have made a few more measurements
of the jitter as described next. Following [16] the pulse timing jitter and amplitude
jitter are related to the ratio of their respective noise band powers P; and P4 to the

carrier peak power P of the n*t harmonic by

AT 1 P\ Afs
T = om ( )nAfres (8:32)
AE Py Afa
8 \/(PC)n 0 Afres (33b)

where Afs, Af; and Af.s are the amplitude noise bandwidth, the timing jitter
bandwidth and the resolution bandwidth for the measurement respectively.

For the measurement of the timing jitter, the RF power spectrum of the funda-
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Figure 3.11: RF power spectrum of the pulse train around the fundamental harmonic -
(n = 1) carrier at a span of 200 MHz and a resolution bandwidth of 300 kHz.

mental harmonic (n = 1) is shown in Fig. 3.11. We have used a span and resolution
bandwidth of 200 MHz and 300 kHz respectively. With P;/Pc = 8.2-107° (—40.8 dB)
and Af; = 25 MHz we find AT/T = 1.32%. We have also measured the RF power
spectrum of the second harmonic (n = 2), as shown in Fig. 3.12. The span and
resolution bandwidth are set to 100 MHz and 300 kHz respectively for this case. With
P;/Po = 4.3-107* (-33.7 dB) and Af; = 24 MHz we find AT/T = 1.48%. Both
values are in close agreement with each other and also with the result obtained from
the integration of the SSB noise power of Fig. 3.10. Averaging all four calculated
; values gives an averagé timing jitter of AT /T = 1.53%. With a pulse round-trip time
of T = 46 ps this gives an average timing jitter of AT = 700 fs.

When the timing jitter is assumed to be small (which is the case for our laser),

the energy fluctuation can be approximated by [18]

AE (P Afa
G \/(’P‘> = 0
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Figure 3.12: RF power spectrum of the pulse train around the second harmonic
(n = 2) carrier at a span of 100 MHz and a resolution bandwidth of 300 kHz.
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Figure 3.13: RF power spectrum of the pulse train around the fundamental harmonic
(n = 1) carrier at a span of 3 GHz and a resolution bandwidth of 2 MHz.
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Figure 3.14: RIN spectrum of the actively mode-locked laser for V, = —0.2 V with
the gain current I, as a variable.

In order to estimate the amplitude jitter of the laser, we have measured the RF
power speétrum of the fundamental harmonic (n = 1) on a wider span. The result
is shown in Fig. 3.13. The span and the resolution bandwidth for this measurement
are set to 3 GHz and 2 MHz respectively. With Ps/Pc = 3.8 -107° (—44.2 dB) and
Af4 = 370 MHz we obtain AE/E = 8.4%. This value is very high and indicates that
even though the timing jitter is small, t‘he amplitude variations are not. This means
that there are large fluctuations in the photon density of each mode over time. In
order to investigate how bad these fluctuations are, we have measured the relative
» intensity noise (RIN)- of the mode-locked laser. The RIN spectrum as a function
of the gain current for an absorber voltage V, = —0.2 V is shown in Fig. 3.14. The
relaxation oscillation frequency can be clearly distinguished in Fig. 3.14 as well as two
noise bands around f = 0 Hz and f = 21.7 GHz. The noise band around f = 0 Hz
represents the amount of pulse amplitude jitter and the noise band around 21.7 GHz
contains both amplitude and timing jitter contributions.

The RIN spectrum as a function of the absorber voltage for a gain current of
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Figure 3.15: RIN spectrum of the actively mode-locked laser for I, = 75 mA with the
absorber voltage V, as a variable.

I, = 75 mA is shown in Fig. 3.15.

The dependence of the RIN on absorber voltage is only significant for low gain
currents. For gain currents greater than 150 mA the RIN dependence on absorber
voltage becomes indistinguishable. It is noted that the RIN increases when the sat-
urable loss increases (more negative absorber voltage). This is in agreement with
the theoretical predictions made in [19]. For a detailed discussion on the influence of
nonlinear gain and absorption on the intensity noise of a multi-mode semiconductor
laser the reader is referred to [19]. It is noted that the measured levels of RIN are
low enough to perfornﬁ an “error free” BER measurement.

We next measure the RIN spectrum of the single wavelength WDM channel after
dropping it from the total mode-locked laser output with the setup of Iig. 3.6. The
result is shown in Fig. 3.16. For comparison we have displayed the RIN spectrum of
the actively mode-locked laser (all modes) in this plot as well. The biasing conditions
for this measurement are I, = 200 mA and V, = 0.0 V. We notice a very large increase

in the RIN indicating that the amount of amplitude jitter has increased enormously.
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Figure 3.16: RIN spectrum of the actively mode-locked laser (all modes) and of a
single WDM channel (dropped channel). The biasing conditions are I, = 200 mA
and V, =0 V.

This large amount of amplitude jitter in the amplitude of the single WDM channel
makes it impossible to obtain an “error free” BER measurement.

The increase in noise can be explained as follows. The RIN for the mode-locked
laser containing all modes is made up of the total of contributions from each mode. In
Chapter 2 we have found that the fluctuations in the the mode-amplitudes are coupled
due to the ongoing mode-competition in the presence of spontaneous emission. If the
amplitude in the main mode increases, then the total amplitude of all the other modes
- decreases. This is also called anti-correlation of the mode-partition noise [19]. Adding
up these anti-éorrelated noise powers for all modes results in a total noise power for
the total intensity which is lower than the noise power for a single mode. Or in
other words, the mdde-partition noise of one mode is perfectly anti-correlated with
the mode-partition noise in the collection of the rest of the modes. Therefore, the
mode-partition noise is canceled in the total intensity noise. By filtering one mode
out of the spectrum, the near perfect anti-correlation in the noise is destroyed and

the measured RIN is significantly increased as shown in Fig. 3.16. For our laser this
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“increase is very lerge dﬁe to the fact that our laser has a dense mode-spacing and thus
many modes (> 62) are competing and constantly exchanging power between each
other, i.e., the laser is in a quasi-steady state. For more details on this quasi-steady

state and its cause, the reader is referred to the simulations carried out in Section 2.5.

3.2.3 Discretely tunable single mode operation through external feedback

As we have seen in the previous sections, we have not managed to use the mode-locked
laser as a ml‘llti—wavelength WDM source due to high mode-amplitude fluctuations. In
this section we will use the mode-locked laser in an external feedback configuration
and examine its potential as a discretely tunable single wavelength WDM source.
- The feedback is provided by the same grating used in the previous section. The
measurement setup is shown in Fig. 3.17. The narrow band fiber Bragg grating
(~ 7 GHz) reflects 80% of the laser light at its Bragg wavelength. The remaining
20% is coupled out of the compound cavity and is used as an output. The fiber
Bragg grating is placed on a mechanical stretcher so that it is possible to adjust the
Bragg wa{felength. For this measurement we bias the gain section of the laser at
I, = 200 mA and the absorber section at V, = 0.9 V. We apply an RF signal at a
frequency f,, = 21.722 GHz to the absorber section of the laser. We next measure
the RF power spectrum of the laser without feedback with the RF signal turned off
and on respectively. The results are shown in Fig. 3.18. From Fig. 3.18 we see that
the spacing between the modes of the laser is locked to the frequency of the RF
modulation signal when this signal is turned on. When the RF signal is turned off,
the laser runs freely and the cavity resonance frequency is determined by the cavity
length. The RF modulation frequency is detuned by about 3 MHz from the cavity
resonance of the free running laser.

Without the proper tuning of the fiber Bregg grating to one of the monolithic
cavity modes, a multi-mode spectrum is obtained. By tuning of the grating such that
its Bragg wavelength coincides with one of the modes of the monolithic cavity, single

mode lasing operation is achieved at the particular mode the grating is tuned to. The



WDM
laser

source

Bragg
grating

Figure 3.17: Measurement setup for the discretely tunable single wavelength WDM

source.

~10
= 20}
m

=

g _30f
—t

£

<]

e

2

@]

o,

= 50}

A |

— - no RF
— with RF

—-60
21.697

21.707

21.717

21.727  21.737  21.747

Frequency (GHz)

Figure 3.18: RF power spectrum of the laser without feedback when the RF modula-
tion signal is turned off (dashed line) and when the RF modulation signal is turned

on (solid line).



64

channel 1 2 34 5

1534 1535 1536 1537 1538
Wavelength (nm)

Figure 3.19: Optical spectra measured for four different WDM channels selected by -
the appropriate tuning of the fiber Bragg grating.

spectrum for single mode lasing operation at a wavelength of 1535.656 nm (channel 1)
is shown in Fig. 3.19. The side mode suppression ratio (SMSR) is greater than 35 dB.
By stretching the grating the single mode lasing action can be discretely tuned to
neighboring modes. We have shown the lasing spectrum for four neighboring channels
in Fig. 3.19 as well. The spacing between two adjacent channels is determined by the
cavity length of the monolithic semiconductor laser. As we have seen before, this
spacing can be locked to an external RF reference signal. Locking of the mode-
spacing when there is no external feedback has been shown in Fig. 3.18. It is unclear
~ whether this locking is maintained when external feedback by the fiber Bragg grating
is applied. Equal lasing power and a SMSR > 35 dB is obtained for all channels.
We have next performed a BER measurement for each of the channels. As a first
step we have measured the eye-diagram of eaéh of the channels. An eye-diagram
is obtained by synchronously writing a sequence of the réceived random bits to a
sampling oscilloscoop. The resulting shape resembles a human eye (see Fig. 3.20) and

is widely known as the eye-pattern of the system. Eye-patterns are often used for
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Figure 3.20: Eye-diagram for WDM channel 3 (1536.000 nm). The bit-rate for this
measurement is 10 Gbits/s.

monitoring the performance of communication systems. The best time to sample the
received Waveform at the receiver end occurs when the eye-opening is largest. The
larger the eye-opening is the more immune the system is to noise.

For channel 3 we have measured the eye-pattern after transmission over a fiber
length of 25 km and its result is shown in Fig. 3.20. From Fig. 3.20 we see that
the eye is wide open which means that there is good signal recovery. The exact
BER can, however, not be estimated from the eye-diagram. We perform a real BER
test for this channel and for the other four channels in order to determine the exact
" BER. The exact wavélengths of each of the measured channels and the results of
the BER measurements are given in Fig. 3.21. For this measurement each channel
is modulated with a pseudo-random bit-sequence (PRBS) of 231 — 1 bits generated
by the BER pattern generator. After transmission over 25 km of fiber, the BER is
measured as a function of the received power (before amplification) at the receiver
end (see Fig. 3.21). “Error free” transmission over the link is achieved for all channels

and all channels perform equally well, indicating that our discretely tunable WDM
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Figure 3.21: BER as a function of the received optical power for channels 1-5.

laser can be used in a WDM system.
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3.3 ' A phetonic Analog/dig’ital (A/D) converter

3.3.1 Stéte—oﬁfhe—art A/D converter technology

The increasing demand in military systems, and soon civilian, for real-time data over
a wide range of signal frequencies has created a need for high speed A/D converters.
Current state-of-the art electronic A/D converters operate at a sampling rate of about
10 Giga samples per second (Gsps) with a resolution of about 4-bits per sample. Such
a sampling rate, while sufficient for low-end microwave signals, is not sufficient for
sampling, for example, high-end microwave signals. To attempt to perform the task of
sampling at a rate of, for example, 100 Gsps would require electronic circuitry with
uniform frequency responses up to 200-300 GHz. This technology is not available
today, and even if selected components can be found to operate at these speeds,
the resulting circuit requiremehts such as parasitic inductances and capacitances and
broadband impedance matching are not guaranteed to be solvable in the immediate
future, so new approaches need to be considered. Since we are stretching the limits of
electronics technology, we need to look to a new direction for solutions. Optics has no
problem in handling the bandwidths needed in this application, so it is a reasonable
assumption to look in the optics area for solutions. A realizable approach would be
one where state-of-the-art electronic components are combined with opto-electronic
ones, and this concept is described in the remainder of this chapter.

Recent progress in photonic téchnology has made high-speed A /D conversion fea-
sible. Under the scheme we are about to introduce [20], analog waveforms are sampled
" at a rate of up to 100 Gsps, with a minimum resolution of 4-bit per sample. This
improflement, over tenfold, in performance is possible because of a number of rea-
sons. First of all, semiconductor mode-locked lasers are capable of generating stable,
10 GHz-range (repetitiOn frequency) pulse trains with relatively little noise. This al-
lows multiple pulse trains with different center wavelengths to be interleaved together
to create a multi-wavelength sampling pulse train (MW-SPT) with an even higher
repetition frequency (e.g., 100 GHz). Besides that, low-loss fiber add/drop filters are
now available for WDM purposes [15]. Thus, multiplexing and demultiplexing of mul-
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“‘tiple pulse trains with ‘different center wavelengths can be performéd with little loss,
resulting in all-fiber systems which is a prerequisite for compact ruggedness. Finally,
the photo-detectors operating over 10 GHz are commercially available today. Hence,
converting an optical signal to the electric domain does not constitute a bottle-neck

in photonic A/D converter designs.

3.3.2 An ultra high speed multi-wavelength sampling pulse train (MW-
SPT)

As in conventional A /D converters, the most crucial part of a photonic A/D converter
is the quality df the sampling pulse train. In order to improve on current A/D
- converter technology, pulse sampling rates have to be in the range of 10-100 Gsps
and sampling pulses should have low timing-jitter and amplitude fluctuations. In
addition, the optical sampling pulse train has to be generated in such a way that
(after the actual sampling of a signal) it can be easily processed (A /D conversion and
word encoding) by conventional electronics.

In the next section we introduce a scheme to generate a train of optical sampling
pulses that has all of the above properties, by combining ultra short pulse generation
in semiconductor lasers with wavelength diversity. The main advantage of this scheme
is that it uses wavelength multiplicity to increase the sampling rate of A/D converters.
This approach has been made practical by recent developments in WDM filters and
semiconductor mode-locked lasers as described in the previous section. The scheme

makes use of a multi-wavelength sampling pulse train (MW-SPT). This pulse train
consists of ultra shorf optical pulses with different wavelengths. To be specific, the
wavelength of each pulse in the train is different from the wavelength of its neighbors,
in a repeating fashion; see Fig. 3.22.

If the goal, for example, is to sample an analog signal at a rate of f; = 100 Gsps,
the temporal spacing between two adjacent sampling pulses is Ty = 1/f; = 10 ps. As
depicted in Fig. 3.22, neighboring pulses in the pulse train have a different wavelength

AL ... Ay, where N is the number of wavelengths used. In our example we use N = 10.
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Figure 3.22:, A multi-wavelength ultra short pulse train with ten different wavelengths.
T, is the sampling period and 7, is the period for pulses with the same wavelength.

The optical pulse train is thus made up of a repeating sequence of pulses with 10
different wavelengths within each sequence. The temporal spacing between pulses of
~ the same wavelength is T,, = NT, = 100 ps, i.e., the sampling rate for pulses at a
particular wavelength is f,, = f,/N = 10 Gsps.

The MW-SPT in our example possesses a pulse repetition rate of 100 Gsps, i.e.,
10'" samples per second. The inter-pulse spacing is thus 107!* s. The individual
optical pulse widths thus need to be of the order of 7, <2 —3-1072 s. To generate
this pulse width by mode-locking requires lasers with a gain linewidth exceeding
Av ~1/7, ~ 3 —5-10" Hz. The gain linewidth of semiconductor lasers is in excess
of 10'® Hz and thus easily meets our criterion.

Another important consideration is the resolution of the optical filters which are
used to assemble the MW-SPT and to demultiplex them following the sampling.

This situation is depicted in Fig. 3.23. We are free to choose the set of wavelengths

A A | Ato

~<— T, =10 ps —=

-
time

Figure 3.23: Temporal view of the MW-SPT and typical orders of magnitude for
pulse duration 7, and sampling time 7.
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A1... Ajo subject to two requiremerits:
1. The wavelengths have to be such that mode-locked semiconductor lasers can be

made to possess them.

9. The total span Ap ... Ay has to fall within the gain bandwidth of erbium doped
fiber amplifiers (EDFA) so that the required power levels can be obtained. Using
typical EDFA linewidths of 30 nm, we can use an inter-pulse wavelength separa-
tion AX = A=A = Ay — A1 of 30 nm/10 = 3 nm or a corresponding frequency
: separation of Av = A)de¢/)? = 300 GHz. The linewidth of the optical filters which
are used to multiplex and, after sampling the analog signal, to demultiplex the
wavelengths A; ... Ajp must be smaller than Av. This is well within the capability
of fiber Bragg gratings [21] which in commercial applications are already used to
handle (multiplex, demult_iplex) optical signals separated by Av < 30 GHz, i.e.,

ten times smaller than our system requirements.

The last requirement is that of the optical detectors used to detect, separately, each
of the ten parallel optical pulse trains. These detectors are not required to respond to
each individual pulse but can be integrated over the whole inter-pulse period which
in our example is 1071% 5. Such detectors are now routinely commercially available.

In order to qualify as a good clock source for A/D conversion, the pulses in the

sampling train should exhibit the following properties:

1. Pulse-to-pulse fluctuations should be small, i.e., amplitude fluctuations, pulse
width fluctuations and timing-jitter fluctuations should be small. Active (or
hybrid) mode-locking of monolithic semiconductor lasers with a high quality radio

frequency (RF) source can provide such pulsés.

2. The pulse width 7, of an individual pulse should be small compared to the sam-
pling time T, so that an individual pulse behaves essentially as a delta function
when sampling the microwave signal. Mode-locking can generate such ultra short
pulses [22]. In our design, the sampling time is T, = 10 ps and the pulse width
should be on the order of 2-3 ps or less.

3. Pulses of a given width should preferably contain no chirp so that their spectral
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~width is vrh’in‘imized and the nu'mb‘er of usable wavelengths is maximized within
the 1530-1560 nm band of optical fibers and erbium doped amplifiers. Note that
the minimum spectral width for a Gaussian pulse with a temporal width of 1 ps

" pulse is about 2.4 nm.

4. Average timing-jitter between any two arbitrary pulses in the sampling train
should be bounded in time, so that no so-called “clock wandering” will occur
over long periods of time. Clock wandering is inherently avoided in actively

‘mode-locked lasers in contrast to passively mode-locked lasers [23].

3.3.3 A photonic A/D converter using a MW-SPT

- A schematic view of our photonic A/D converter incorporating this MW-SPT is shown
in Fig. 3.24 and Fig. 3.25. The MW-SPT is used to sample the analog signal V' (¢)
by feeding it as the optical input to an electro-optic modulator. The modulator is '
driven by the microwave signal to be sampled; see Fig. 3.24.

The train of optical pulses at the output of the modulator is thus multiplied by
the analog signal V (¢). An optical high resolution wavelength demultiplexer (“drop”
filters) are then used to separate the ten wavelengths resulting in ten individual
parallel optical pulse trains with a relatively low sampling rate f,,. Each of these
pulse trains can now be detected by a photo-detector and converted into a digital
signal by available state-of-the-art A/D converters; see Fig. 3.25.

The net result is thus ten parallel electronic bit-streams that contain the sampled
information of the analog signal V' (¢) in a parallel and interleaved fashion.

The- main »advahtége of this scheme is that it transfers the focus of providing
the bandwidth necessary for ultra-high speed sampling (bandwidth > 100 GHz in
our example) from electronics, where the limits are about to be reached, to lasers
and optics where the bandwidth is available and can be handled without problems.
The use of multi-wavelength optical sampling enables us to convert the final high
repetition rate data stream to a number of parallel data streams each with a fraction

of the sampling rate. This final data rate is chosen to be low enough so that it can
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Figure 3.24: A MW-SPT samples a microwave signal at 100 Gsps.
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Figure 3.25: The stream of samples at 100 Gsps is wavelength demultiplexed (WDM)
into ten parallel 10 Gsps streams which are detected by photo-detectors (PD) and
processed by electronic A/D converters.
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“be handled by 'st‘ate—of—‘thejart conventional electronic A/D conversion.

3.3.4 A scheme for the generation of the MW-SPT

The most crucial part in the photonic A/D converter is the MW-SPT. Pulse to
pulse fluctuations, i.e., amplitude-, pulse width and timing-jitter, should be small in
order to avoid distortion. Hybridly mode-locked semiconductor lasers are capable of
generating stable high repetition rate ultra short pulse trains with relatively little
amplitude aind timing jitter [24]. Recently low-loss add/drop filters have become
available for WDM [15], so that multiple pulse trains from lasers mode-locked at
different center wavelengths can be multiplexed with low loss into a higher repetition
rate MW-SPT suitable for A/D conversion. Our scheme to generate the MW-SPT is
depicted in Fig. 3.26.

We use ten monolithically mode-locked semiconductor lasers to generate ten pulse
streams with different wavelengths A, ...A1;g. The wavelength of each laser can be
controlled by changing its temperature. A more elegant way of wavelength control
could be obtained by incorporating Bragg reflectors inside the laser cavity. This would
lead to an increase of pulse power by confining the gain to a specific wavelength region
[10] as well as improve the locking bandwidth of the device for hybrid mode-locking
[11].

All lasers are hybridly mode-locked by the same high quality, low timing-jitter
electronic bRF oscillator at a modulation frequency of f,, = 10 GHz. Another impor-
tant issue is the fine tuning of the position of the optical pulses in the multiplexed
~ MW-SPT (see Fig. 3.22). The delay between pulse streams is controlled electronically
by variable phase delays to the RF driving signal. This is achieved by simple insertion
of microwave variable phase delay units in-between the mode-locked lasers and the
RF driving source. A variation of A¢ = 360° of fhe RF driving signal to a given laser
shifts the pulse at the corresponding wavelength by the ihter—pulse separation T,
(10~ for our example). Simple sub-picosecond pulse position control is thus feasible

without the need for any variable optical delay lines.
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- Low-loss aﬁd‘ﬁ‘lters”arel next used fo interleave all ten pulse tréins into the MW-
SPT of Fig. 3.22. For our example of T, = 100 Gsps, pulse widths would be of
the order of a few picoseconds while wavelength spacing would be around AA =
An — An—1 = 3 nm. These values can be easily achieved with present mode-locked

semiconductor lasers [25].

3.3.5 Advantages of the proposed scheme

In this secti:)n we describe a number of advantages that are inherent to our proposed
scheme for the generation of the MW-SPT. First of all our scheme provides for com-
pactness and eased assembly. A monolithic semiconductor laser has the important
advantage that it is a very compact device. No external bulk optical parts (lenses,
gratings, polarizers, etc.) are needed in order to mode-lock the laser. The mode-
locking process takes place in a cavity of only a few millimeters. This in contrast to
externally mode-locked lasers and mode-locked fiber lasers which take a much larger
amount of space and also use a fair number of bulk optical parts. Also, long term
cavity stability problems, alignment difficulties, and scaling problems associated with
multiple lasers are avoided in our approach. Monolithic cavity mode-locked lasers can
be as easily packaged and fiber-coupled as any other DFB laser. Therefore, they are
very robust and can be easily incorporated with other all-fiber components.
Another important advantage is that the use of multiple lasers provides wave-
length dependent power control which facilitates pulse amplitude equalization. It
also provides the ability of an easy temporal delay of each pulse train of a partic-
~ ular wavelength. As known from various papers in literature [6,7,26], pulses with
different wavelengths can also be generated from a single laser using spectral slicing
or the super-continuum in optical fibers. In our approach, we have explicitly cho-
sen to create our MW-‘SPT from separate laseré. The most important advantage is
that wavelength dependent losses in the rest of the systemr can be compensated by
changing the gain of the laser that provides that particular wavelength. When using

a single laser, this is impossible because changing the gain will change the gain for all
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~waveléngths ax the‘sarﬁe time. A majdr system advantage of using multiple lasers is
that the delay between pulse trains of different wavelengths can be easily controlled
electronically by phase delays of the RF drives to the individual lasers. A single
laser would require very accurate picosecond optical delay units which are difficult to
engineer.

By using mode-locked lasers the pulse repetition rate can be easily adjusted to
the region of interest. The repetition rate of pulses for each of the mode-locked lasers
will need to be adjusted to the highest sampling rate that can still be processed by
conventional state-of-the-art electronics (around 10 Gsps). In mode-locked lasers,
this repetition rate is determined by the cavity length and a pulse repetition rate of
around 10 GHz means a cavity length of a few millimeters. When using monolithic
semiconductor lasers such a cavity can be easily obtained by cleaving the semicon-
ductor wafer to this desired length. Externally mode-locked semiconductor and fiber
lasers usually have cavity lengths up to a couple of meters, meaning that the pulse
repetition rate will be extremely low (in the order of a few hundred MHz). This means
that additional temporal multiplexing and/or other tricks will have to be applied in
order to get the pulse repetition rate up into the GHz range. One way to do this
is by harmonically mode-locking a laser. This has been demonstrated in fiber lasers
up to 1 GHz [27], but it requires a significant number of additional optical and RF

components in the setup.
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CHAPTER 4

‘Review of methods to characterize optical

pulses

4.1 Introduction

The number of methods to characterize optical pulses has increased extensively over
the last decade. There are various ways to characterize an optical pulse. In this
chapter we review a number of important pulse characterization methods and discuss
their practical value. In order to maintain a uniform mathematical description for
all methods that are described, we start with a section on the notational conventions
that will be used throughout the rest of this thesis. Most characterization methods
use the measurement of some kind of correlation function as their basis and we there-
fore describe the most commonly used correlation techniques first. Although there
are both interferometric and non-interferometric characterization methods, we focus
our attention on the non-interferometric methods as these have usually less stringent
experimental requirements. One recent and very powerfull method to fully character-
- ize an optical pulse is-frequency-resolved optical gating (FROG). The basics of this
method are dis.cussed in detail as this method is the inspiration for the development
in this work of its time-domain variant time-resolved optical gating (TROG). This
last new method is t>he‘ topic of discussion in the next chapter. Another important
characterization method which is strongly connected to both FROG and TROG is
frequency-domain phase measurement (FDPM) and the basics of this method are

discussed as well.
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' 4.2 Notational conventions

In this section we introduce the mathematical description which will be used through-
out the rest of this thesis for notational consistency. Note that this notation can be
different from the symbols introduced in the previous chapters.

The electric field representing an ultra-short optical pulse can be described in the

time-domain as

E(t) = A(t) exp(+j27 fot) (4.1)

where f, is the optical carrier frequency and A(t) is the “slowly” varying complex
envelope of the field representing the amplitude and phase of the pulse. A(t) is
normalized in such a way that |A(t)|* represents the intensity of the pulse. One can

“also represent the electric field in the frequency-domain by Fourier transforming it

E(f) = A(f — fo) (4.2)

where E(f) and A(f ) represent the Fourier transform of E(t) and A(t) respectively.

Throughout the remaining chapters the following Fourier transform pairs are used:

() = / X (t) exp(—j2r ft) dt (4.32)
X(t) = / X(f) exp(+j2r ft) df (4.3b)

and all integrals are assumed to be from —oo to +o0c0 unless otherwise noted. Frequency-
domain variables are indicated by a tilde.

To demonstrate the features of certain characterization methods in the following
sections and chapters, we introduce a pulse shape in this section which is used in
examples and simulations later on. The pulse is a non-linearly chirped double pulse

which can be mathematically represented by

A(t) = |A(t)| exp{jo(t)} (4.4)
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~where the amp'li{;ude of the pulse is

"|A(t‘)[ — exp {—a (t t_od>2} +bexp {—c (t ;6)2} (4.50)

and the phase of the pulse is

o(t) mx(%) 6<%>2+7(%>3+5<%)4+5(%)5 (4.5b)

The pulse parameters are chosen to be

o = —0.058
a=0.75 to =1 ps 5 =-0.41
b=050 d=-10% = —0.00044 (4.6)
¢ = 2.00 e =20t § = —0.0007
e = —0.00003

The amplitude parameters have been chosen to obtain a double pulse in the time-
domain and the chirp parameters are taken from [1], except for the fact that § has
been adapted to obtain a double peaked intensity spectrum. The amplitude (solid
lines) and phase (dashed lines) of the pulse in the time and frequency-domain are
shown in Fig. 4.1 and Fig. 4.2 respectively. The pulse contains a non-linear down-
chirp, i.e., the blue components are present in the leading edge of the pulse and the
red components in the trailing edge. This particular pulse description has been chosen
" in order to demonstrate that the methods we are about to describe work not only on
simple pulse shapes but also on complex pulses with non-linear phase variations like

this one.
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Figure 4.1: Amplitude and phase of the non-linearly chirped double pulse represented
in the time-domain.
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Figure 4.2: Amplitude and phase of the non-linearly chirped double pulse represented
in the frequency-domain.
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4.3 Autocorrelation traces

Wé will start with the description of two often used correlation methods. Although
correlatidn measurements by themselves often can not fully characterize an optical
pﬁlse,‘ they are useful to obtain certain estimates about pulse quantities like the pulse
duration for example. They also form an important part in the measurement setup of
mo‘stv methods that are able to fully characterize an optical pulse. We will therefore

shortly discuss these methods and their limitations in this section.

4.3.1 Background free autocorrelator

One of the most popular ways of getting information about an optical pulse is to
 measure its intensity (or background-free) autocorrelation trace by mixing the pulse
with a delayed version of itself in a second harmonic generating (SHG) crystal [2, 3].
The experimental setup for the measurement of a background free autocorrelation

trace is shown in Fig. 4.3. The input pulse A(t) is split up into two replicas by a

input
pulse
AlD) ADA( = T)
( Rpr(T)
detector
fixed \/
corner be'am '
mirtor splitter lens SHG pin

crystal hole

movable
corner
mirror

Figure 4.3: Experimental setup for the measurement of a background free autocorre-
lation trace.
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beamsplitter. * The tw§ replicas are spatially separated by cornef mirrors and one
re'plica is delayed by a time T. The two beams that contain the orignal pulse and
its delayed version are then focused onto a SHG crystal. Only in the case where
the pulses in both beams are overlapping in time, the resulting SHG signal can pass
through the pinhole and reach the detector. If the pulses are non-overlapping, their
corresponding SHG signal is blocked by either side of the pinhole. This kind of
autocorrelation measurement is therefore called a “background free” measurement.
The SHG signal that passes through the pinhole is measured with an integrating
photodetector. The detected background free autocorrelation signal Rgr(T) is given
by

Run(T) = [ 1A@)PIA( - T)P (47)

Due to the nature of the measurement all phase information is lost during the
measurement and complete characterization of the pulse in amplitude and phase is
impossible. One can get an estimate of the pulse duration by assuming a certain
pulse shape and fitting its autocorrelation trace to the measured one. Although
temporal decorrelation of the autocorrelation trace of a laser pulse has recently been
demonstrated theoretically [4], the method does not always reconstruct the intensity
of the pulse correctly as the problem does not have a unique solution. Besides— the
method does not work well for experimentally measured autocorrelation traces due

to additive noise.

4.3.2  Interferometric autocorrelator

An often used variant to the measurement of the background-free autocorrelation
trace is a measurement of the interferometric (or fringe-resolved) autocorrelation trace
[6]. The experimental setup for the measurement of an interferometric autocorrela-
tion trace is shown in Fig. 4.4. The input pulse A(t) is split-up into two replicas by a
beamsplitter. The two replicas are in this case not spatially separated. One replica is
delayed by a time T and both replicas are next colinearly focused onto a SHG crystal.

After filtering out the fundamental frequency, the SHG signal is measured with an in-
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Figure 4.4: Experimental setup for the measurement of an interferometric autocorre-
lation trace.

tegrating photodetector. The detected interferometric autocorrelation signal Ryp(T)
is given by

Ryp(T) = / A(t) + A(t — T) e 0T gy (4.8)

Although the interferometric trace gives some information regarding the chirp im-
posed on the pulse, complete reconstruction of the phase and amplitude as a function
of time or frequency is very complicated. An accurate measurement of the fringes is
needed and this is not always possible especially for pulses in the picosecond range.
~ In addition a careful deconvolution method has to be used [6,7]. Also, the direction
of time for the pulse can not be directly inferred from the measurement as all auto-
correlation traces are symmetric in the time-axis. Another disadvantage is that the
deconvolution method is very sensitive to measurement noise introduced, for example,

by mechanical fluctuations of the autocorrelator.



' 4.4  Frequency-resolved optical gating (FROG)

There are a number of non-interferometric methods which can fully characterize a
pulse. A VerSf powerful method — frequency-resolved optical gating (FROG) — has
recently been introduced by Kane and Trebino [1,8-12]. In this method, the pulse to
be characterized is cross-correlated Wifh a delayed gating pulse in a non-linear crystal
to geherate a higher harmonic light output. The spectrum of this higher harmonic is
measured as a function of the delay of the gating pulse. The gating pulse can take
on many shapes depending on the measurement setup (also called geometry) that is
used [13] and a few examples will be given later on. The measured spectra make up
a two-dimensiohal FROG trace also called spectogram of the pulse. The amplitude
~and phase of the pulse can be reconstructed from this measured FROG trace by an

iterative algorithm based on generalized projections (GP) [14-17].

4.4.1 Basics of FROG

A schematic diagram for the measurement of a FROG trace is given in Fig. 4.5. The
pulse A(t) is filtered in the time-domain by a gating function Grrog(t,T), where T
is a variable time-delay. The signal field at the output of the time-gate is given by

SFRog(t, T) = A(t)GFROG (t, T) (49)

The signal field is subsequently spectrally filtered and detected by a square-law and
integrating detector. The signal at the output of the detector can be found by applying

Srroa(t,T)

Srroc (f, T)

Figure 4.5: Schematic diagram for the FROG measurement setup consisting of a
temporal filter followed by a spectral filter and an integrating photo-detector (PD).
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’v“Straight‘fdrward linear system analysis and is given by

. ' 2
TFROG(F,T) Z/’EfFROG(f, F)IQ ‘/A(t)GFROG(t,T) exp(—j2rft)dt| df (4.10)

Aé the measﬁred signal is a frequency-resolved quantity, we have indicated it with a
tilde. |

In most of the experimental setups (also called geometries) that are available for
FROG, a sp‘ectrométer is used to perform the task of spectral filtering and detection.
If the resolution of the spectrometer is much smaller than the spectrum of the pulse,

the spectral transfer function behaves as a delta-function
|Hrroa(f, F)* = 6(f — F) (4.11)

and the detected signal is given by

Tenos(F,T) = { [ At)Grmoatt, ) exp(-i2Ft) (4.12)

This quantity is called the FROG trace or spectrogram of the input pulse; it is the
set of spectra of different temporal components of the pulse.

As we have mentioned in the introduction, different measurement geometries are
available for FROG and each of them has its own characteristic gating function. To
date six FROG geometries have been proposed: second harmonic generation (SHG-
FROG) [16,18,19], third harmonic generation (THG-FROG) [20], polarization gate
- (PG-FROG) [8,10,15,21], self diffraction (SD-FROG) [1,22], cross-phase modula-
tion (XPM—FROG) [23,24] and self-phase modulation (SPM-FROG) [25] with the
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e “following gating fun‘ctions respectively

GSHG (t, T) A( ) ) (4.13&)

Grua(t,T) = A(H)A(t - T) | (4.13b)

 Gpa(t,T) = At - T)? (4.13¢)

Gsp(t,T) = A(t)A*(t - T) (4.13d)
9 nzL

GXPM(ta T) = exp {]27Tf0 (2|A (t — )l ) T} (4136)

where |A,(t)|? is the pump intensity causing the XPM, ny is the non-linear refractive
index, L is the interaction length over which the phase modulation takes place, ¢ is
the speed of light and 7 is a small proportionality constant. All geometries have been
demonstrated experimentally.

It is noted that Franco and Lange [23,24] do not recognize XPM as a FROG
geometry and use a different phase retrieval algorithm for pulse reconstruction. Pulse
reconstruction is however possible with the FROG algorithm, which is discussed in
the next section. The pulse reconstruction procedure has been shown theoretically
for the SPM geometry in [25]. A note with respect to the SPM geometry is in place
here. For this geometry, the pulse is phase modulated by a delayed version of itself
while propagating in an optical fiber. It is noted that a long length of fiber and high
pulse intensity are needed to obtain a useful amount of SPM for the reconstruction
_ algorithm to work. Fiber dispersion is usually not negligible for these lengths of fiber.
It will change the shape and phase of the pulse while propagating and this is not taken
into account in the SPM gating function. This method only works experimentally
if a non-linear medium is available with a small enough dispersion. The technique
has been recently demonstrated experimentally [26] and is also referred to as Fiber-
FROG. More guidelines regarding what non-linear fiber should be used are given in

[26].
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Figure 4.6: Diagram of the pulse reconstruction algorithm for FROG.

Stroa(t, T)

4.4.2 Pulse reconstruction algorithm for FROG

The FROG trace or spectogram of a pulse as given by (4.12) contains enough infor-
mation to reconstruct its pulse shape and amplitude. This reconstruction is however
not straightforward; an iterative reconstruction method needs to be applied with ad-
ditional constraints. The diagram of the pulse reconstruction algorithm for FROG
is shown in Fig. 4.6. The algorithm is started from an initial arbitrary guess for the
complex pulse envelope A®(¢). On the k' iteration, the signal field Sg}gOG(t, T) is
calculated according to (4.9) from A®)(¢). It is next Fourier transformed with respect
to t to give §§’30G(F, T). At this point, the following frequency-domain constraint is

) appliéd giving a new signal field

57ggOG (F’ T)

Stroc(F,T) = \/ Irroa(F, T) =
|S¥h0c (F,T)]

(4.14)
by replacing the magnitude of the signal field §1(;QOG(F, T) by the square root of
the measured FROG trace TFROG(F, T). This signal field is then inverse Fourier
transformed with respect to F' to give the signal function Sgrog(f, ). The following

time-domain constraint is next applied to give a new guess for the pulse envelope



i AL (¢) by minim‘izing the signal field error defined by

~(k k
e = (Stnoat Tp), AXV (1) Ghidk(t:, 7)) (4.15)

with respect to A®¥+D(t;), where the root mean squared (rms) error is defined by

' N N 1/2
o(Xij, Yij) = {% Z Z | X5 — K-j|2} (4.16)

It is noted that Gl (¢;, T;) in (4.9) depends on A®+1(¢;) implicitly according to
(4.13). This process is iterated until convergence is reached. We have assumed here
that the measured FROG trace is given on a N x N grid, where the time separation
" between two time points equals AT =T, — T,.

A good criterion for convergence of the algorithm is given’by the error between

the measured and reconstructed FROG trace

fi«“k})toe =g (TFROG(FiaE)v a®) gl(rlgoe’(ﬂ,Tj)

2) (4.17)

where o(¥) is a scaling parameter that minimizes the error on each iteration {12]. We
note that the frequency separation between two frequency points AF = F, 1 — F,, is

related to AT by
1

AF =TT

(4.18)

An error epgroc on the order of 1072 or smaller usually indicates good pulse recon-
© struction. A schematic diagram of how the pulse reconstruction algorithm converges
is show in Fig. 4.7. We start with a random guess which is usually neither a physical
solution of the problem nor does it satisfy the frequency-domain constraint. Applying
the steps (1)—(3) indicated in Fig. 4.6 to this initial guess, the guess is projected onto
the set of solutions that satisfy the frequency-domain constraint; this projection does
however not necessarily have to be a physical solution. After applying the steps (4)-
(5) indicated in Fig. 4.6, we try and find the physical solution which is the closest to

our projection, i.e., we project our new guess which exists in the set of solutions that
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Figure 4.7: Diagram of the-convergence of the pulse reconstruction algorithm for
FROG. ‘

satisfy the frequency—domainiconstraint onto the set of physical realizable solutions.
This process is then repeated until we reach a solution that satisfies the frequency-
domain constraint and that as well is physically realizable. In Fig. 4.7 this solution
is indicated by the intersection point between the set of solutions that satisfy the
frequenéy—dombain constraint and the set of solutions that are physically realizable.
For more information on this method of generalized projections (GP) the reader is
referred to [14-17]. The GP method has recently been improved and has resulted
in the principal component generalized projections algorithm (PCGPA) [27] which is

fast enough to allow real-time inversion of FROG spectrograms [28].
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The most commbnl'y used geometry for FROG utilizes a second harmonic generating
crystal as its gating element. The setup for the measurement of a SHG-FROG trace
is 'Shown in Fig. 4.8. The gating function for this SHG-FROG geometry is given
by (4.13a). In the measurement setup the gating function is performed by the SHG
crystal in the autocorrelator. The resulting SHG signal is subsequently spectrally
analyzed in a spectrometer. The schematic diagram for the SHG-FROG setup is
giVen in Fig.‘4.9. Substituting (4.13a) into (4.12) gives the spectogram for this specific

t
setup )

Fancsmoa(F,T) = | [ AW A= T) expl—i2mFy (4.19)
Here we have assumed that the resolution of the spectrometer is much smaller than
the spectrum of the pulse, i.e., we have made a delta-function approach for the transfer
function of the spectrometer. It is noted that experimentally it is a difficult task to
try to resolve the spectrum of the SHG signal, especially if the energy of the pulses
is limited. Usually a cooled array of photodetectors is needed or the pulses need to
be amplified to an appropriate energy level.

Using (4.19) and the definition of our double pulse (4.5), we can calculate the
corresponding SHG-FROG trace. The trace has been calculated on a N x N grid
with N = 128. The time-step taken is AT = 0.2ty where ¢y is given by (4.6) and
the frequency step is given by (4.18). In Fig. 4.10 we have plotted a two-dimensional
contour plot of the trace. In order to show the low amplitude features of the trace,
_ we have plotted its square root. The contour lines drawn are at the amplitude levels
1-1073, 5102 and 0.1 through 1.0 in steps of 0.1. In all of the remaining contour
plots in this thesis these levels are used.

Looking at the trace, one can immediately see that the trace is symmetric in the
T = 0 axis. This brings us to one of the limitations that the measurement of a SHG-
FROG trace has. The direction of time for a pulse can not be determined by only
measuring the SHG-FROG trace of the pulse. An additional measurement is needed

to eliminate this ambuigity in the direction of time. SHG-FROG traces have more
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Autocorrelator

Figure 4.8: SHG-FROG measurement setup consisting of an autocorrelator and a
spectrometer.



Figure 4.9: Schematic diagram for the SHG-FROG measurement setup consisting of
an autocorrelator and a spectrometer.
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Figure 4.10: Spectrogram JEHG_FROG(F, T) generated from (4.19) for N = 128 and
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"ambigﬂiti’és than just é{n ambiguity' invtime. These are discussed ih Appendix A. In
this Appendix it is shown that the reconstruction algorithm can return two possible
solutions.A(¢) and A*(—t). These two solutions both satisfy (4.19), i.e., they have the
same SHG-FROG trace. One can, however, not determine which of the two solutions
has been returned by the algorithm and therefore it is not possible to distinguish the
direction of time for the pulse. A possible way to overcome this problem is to add
a known amount of dispersion to the pulse (in either the time or frequency-domain)

and measuré a second SHG-FROG trace.

4.5 Frequency-domain phase measurement (FDPM)

- Another non-interferometric characterization method — frequency-domain phase mea-
surement (FDPM) — was proposed by Chilla and Martinez [29-31]. In this method,
a slice of the spectrum of the pulse is selected by a grating and a slit and this spec-
trally sliced pulse is cross-correlated with the original pulse in a SHG crystal. Cross-
correlation traces are then measured for different spectral slices of the pulse. The
measurement setup for this method is shown in Fig. 4.11.

This method is similar to the method of frequency-resolved optical gating (FROG)
as described in the previous section, except that the role of frequency and time are
interchanged: the pulse is first filtered in the frequency domain and then cross-
correlation traces of this filtered pulse with the original unfiltered pulse are mea-
sured instead of spectra. For FDPM the actual measurements are resolved in the
] time-domain and it would therefore be more appropriate to put this method in a
more general category which we will call time-resolved optical gating (TROG). The
method of time-resolved optical gating will be discussed in detail in Chapter 5. In
that chapter we show that FDPM can be seen as a measurement setup or geometry
for TROG. As we will see in Chapter 5, for the FDPM geometry, the measured traces
make up a two-dimensional TROG trace from which the phase and amplitude of the
pulse can be retrieved using an iterative algorithm similar to the one that is used for

FROG. It is noted that Chilla and Martinez did not use the reconstruction algorithm
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Figure 4.11: FDPM measurement setup consisting of a spectrometer and a crosscor-
relator.
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f‘as-ivt ‘was not ﬁnv‘en‘ted“yet:‘ it would tvake two more years before Kane and Trebino
es;tablished the method [1]. Instead Chilla and Martinez measured the temporal lo-
cations of the centers (or delay) of the cross-correlation traces as a function of the
center frequency F' of the slit. The measured delay is equivalent to the derivative of
the .,spectral phase, and thus the spectral phase can be obtained by integration of the
measured delay as a function of frequency. More details of the FDPM method in the
light of TROG are discussed in Chapter 5.



99

"References*

1]

D. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using

freqﬁehéy—resolved optical gating,” IEEE J. Quantum Electron., vol. 29, no. 2,

~ pp. 571-579, 1993.

[2] A. Yariv, Optical Electronics in Modern Communications. New York: Oxford

[5]

[9]

University Press, 1997.

‘K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of

picosecond laser pulses,” IEEE J. Quantum Electron., vol. 16, no. 9, pp. 990-996,
1980.

J. Peatross and A. Rundquist, “Temporal decorrelation of short laser pulses,” J.

Opt. Soc. Amer. B, vol. 15, no. 1, pp. 216-222, 1998.

J. Diels, J. Fontaine, I. McMichael, and F. Simoni, “Control and measurement
of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,”

Appl. Opt., vol. 24, no. 9, pp. 1270-1282, 1985.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light-
pulse chirp measurement,” IEEE J. Quantum FElectron., vol. 25, no. 6, pp. 1225—
1233, 1989.

C. Yan and J. Diels, “Amplitude and phase recording of ultrashort pulses,” J.
Opt. Soc. Amer. B, vol. 8, no. 6, pp. 1259-1263, 1991.

D. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of
an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt.

Lett., vol. 18, no. 10, pp. 823-825, 1993.

K. DeLong and R. Trebino, “Improved ultrashort pulse-retrieval algorithm for
frequency-resolved optical gating,” J. Opt. Soc. Amer. A, vol. 11, no. 9, pp. 2429—
2437, 1994.



. ,'ff“v[l.(i)]‘

100

D. KaneﬁA: Taylér, R. Trebino, and K. DeLong, “Single-shot measurement of

- the intensity and phase of a femtosecond UV laser-pulse with frequency-resolved

1]

optical gating,” Opt. Lett., vol. 19, no. 14, pp. 1061-1063, 1994.

D. Fittinghoff, K. DeLong, R. Trebino, and C. Ladera, “Noise sensitivity in

-frequency-resolved optical-gating measurements of ultrashort pulses,” J. Opt.

[14]

[15]

[16]

[17]

[18]

Soc. Amer. B, vol. 12, no. 10, pp. 1955-1967, 1995.

K. Delrong, D. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-
pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum

Electron., vol. 32, no. 7, pp. 1253-1264, 1996.

K. DeLong, R. Trebino, and D. Kane, “Comparison of ultrashort-pulse frequency-
resolved-optical-gating traces for 3 common beam geometries,” J. Opt. Soc.

Amer. B, vol. 11, no. 9, pp. 1595-1608, 1994.

J. Fienup, “Phase retrieval algorithms - a comparison,” Appl. Opt., vol. 21,

no. 15, pp. 2758-2769, 1982.

R. Trebino and D. Kane, “Using phase retrieval to measure the intensity and
phase of ultrashort pulses - frequency-resolved optical gating,” J. Opt. Soc. Amer.
A, vol. 10, no. 5, pp. 1101-1111, 1993.

K. DeLong, R. Trebino, J. Hunter, and W. White, “Frequency-resolved opti-
cal gating with the use of second-harmonic generation,” J. Opt. Soc. Amer. B,

vol. 11, no. 11, pp. 2206-2215, 1994.

K. DeLong, D. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, “Pulse re-
trieval in frequency-resolved optical gating based on the method of generalized

projections,” Opt. Lett., vol. 19, no. 24, pp. 2152-2154, 1994,

J. Paye, M. Ramaswamy, J. Fujimoto, and E. Ippen, “Measurement of the am-
plitude and phase of ultrashort light-pulses from spectrally resolved autocorre-

lation,” Opt. Lett., vol. 18, no. 22, pp. 1946-1948, 1993.



| ”.’.“*['1.9]-

101

J. Péye,- *How to measure the amplitude and phase of an ultrashort light-pulse

- with an autocorrelator and a spectrometer,” IEEFE J. Quantum Electron., vol. 30,

[20]

[21]

[22]

[23]

[26]

no. 11,.pp. 2693-2697, 1994.

T. Tsang, M. Krumbugel, K. DeLong, D. Fittinghoff, and R. Trebino,

- “Frequency-resolved optical-gating measurements of ultrashort pulses using sur-

face third-harmonic generation,” Opt. Lett., vol. 21, no. 17, pp. 1381-1383, 1996.

B. Kohler, V. Yakoviev, K. Wilson, J. Squier, K. DeLoong, and R. Trebino, “Phase
and intensity characterization of femtosecond pulses from a chirped-pulse ampli-
fier by frequency-resolved optical gating,” Opt. Lett., vol. 20, no. 5, pp. 483-485,
1995.

T. Clement, A. Taylor, and D. Kane, “Single-shot measurement of the amplitude
and phase of ultrashort laser-pulses in the violet,” Opt. Lett., vol. 20, no. 1,
pp. 70-72, 1995.

M. Franco, H. Lange, J. Ripoche, B. Prade, and A. Mysyrowicz, “Characteriza-
tion of ultra-short pulses by cross-phase modulation,” Opt. Commun., vol. 140,

no. 4-6, pp. 331-340, 1997.

H. Lange, M. Franco, J. Ripoche, B. Prade, P. Rousseau, and A. Mysyrow-
icz, “Reconstruction of the time profile of femtosecond laser pulses through
Cross;pha,se modulation,” IEEFE J. Selec. Top. Quantum Electron., vol. 4, no. 2,
pp. 295-300, 1998.

M. Thomson, J. Dudley, L. Barry, and J. Harvey, “Complete pulse characteriza-
tion at 1.5 um using the Kerr nonlinearity in optical fibers,” in Conference on

Lasers and Electro-Optics, 1998.

J. Dudley, L. Barry, J. Harvey, M. Thomson, B. Thomsen, P. Bollond,
and R. Leonhardt, “Complete characterization of ultrashort pulse sources at

1550 nm,” IEEE J. Quantum Electron., vol. 35, no. 4, pp. 441-450, 1999.



3 [27]

102

D. Kane,%G.‘ Rodriguez, A. Taylor, and T. Clement, “Simultaneous measurement

- of two ultrashort laser pulses from a single spectrogram in a single shot,” J. Opt.

28]

[29]

[30]

[31]

Soc.. Amer. B, vol. 14, no. 4, pp. 935-943, 1997.

D. Kane, “Real-time measurement of ultrashort laser pulses using principal com-

~ponent generalized projections,” IEEE J. Selec. Top. Quantum Electron., vol. 4,
no. 2, pp. 278-284, 1998.

J. Chilta and O. Martinez, “Direct determination of the amplitude and the phase
of femtosecond light-pulses,” Opt. Lett., vol. 16, no. 1, pp. 39-41, 1991.

J. Chilla and O. Martinez, “Analysis of a method of phase measurement of
ultrashort pulses in the frequency-domain,” IEEE J. Quantum Electron., vol. 27,
no. 5, pp. 1228-1235, 1991.

J. Chilla and O. Martinez, “Frequency-domain phase measurement, of ultrashort

light-pulses - effect of noise,” Opt. Commun., vol. 89, no. 5-6, pp. 434-440, 1992.



103

CHAPTER 5

Time-resolved optical gating based on
dispersive propagation:
theory

5.1 Introduction

In this chapter we introduce the technique of time resolved optical gating (TROG), a
new non-interferometric method for characterizing ultra-short optical pulses in ampli-
tude and phase. TROG is similar to the method of frequency-resolved optical gating
(FROG) described in Chapter 4 except that the role of time and frequency is inter-
changed. We show that frequency-domain phase measurement (FDPM) is a specific
measurement setup (also called geometry) for TROG. We introduce a completely new
geometry for TROG based on dispersive propagation (DP). This technique can fully
characterize an optical pulse in amplitude and phase without the need for a short
optical gating pulse. For the DP-TROG geometry we show that measurements of the
autocorrelation trace of a pulse after propagation through a medium with variable
dispersion together with a single measurement of its intensity spectrum constitute a
DP-TROG trace that contains sufficient information to reconstruct the pulse shape
in amplitude and phase. The pulse is reconstructed from the measured DP-TROG
trace by an iterative algorithm based on generalized projections (GP). The pulse re-
construction for the DP-TROG geometry works very well even for the case of the
non-linearly chirped double pulse described in Chapter 4. The DP-TROG geometry

makes use of a second order non-linearity that can fully characterize a pulse without
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“introducing ait ambiguity in the direction of time for the pulse. Due to its simplicity
and improved sensitivity, DP-TROG is very useful in characterizing low-energy pulses

in the 1.3 — 1.5 ym wavelength region.

5.2 Time-resolved optical gating (TROG)

521 | Basics of TROG

We now introduce the basics of TROG in a similar fashion as we have done for
FROG in Chapter 4. The development of the method of TROG has been inspired
by comparing the method of FDPM introduced by Chilla and Martinez [1-3] and
the method of FROG introduced by Kane and Trebino [4-9]. If we compare Fig. 4.8
and Fig. 4.11 of Chapter 4 with each other, we see that for the FDPM setup the
arrangement of the correlator and the spectrometer is reversed compared to the SHG-
FROG setup, i.e., in the FDPM setup we first have a spectral filter (spectrometer)
followed by a temporal filter (correlator) while in the FROG setup we have a temporal
filter (correlator) followed by a spectral filter (spectrometer); see Fig. 4.5.

In Chapter 4 we have seen that there are various geometries available for FROG;
see (4.13). For all these geometries the measurements are performed in the frequency-
domain using a spectrometer, hence the name frequency resolved optical gating. Look-
ing at the FDPM arrangement, the seQuence of the time and frequency elements in
the measufement setup is reversed compared to the SHG-FROG setup and the mea-
surements are resolved in the time-domain using a correlator. It thus makes sense to
" consider the FDPM setup as a specific geometry for a more general category which
we will call #ime resolved optical gating. Applying the exchange of the time and
frequency elements to Fig. 4.5 gives us the schematic diagram for the measurement
of a TROG trace. This schematic diagram is shown in Fig. 5.1.

The first part of the measurement setup is a frequency' filter, which can be, for
example, a tunable spectral filter or a medium with adjustable dispersion. When
the pulse A(t) passes through this element, the complex spectrum of the pulse /I( f)

is filtered in the frequency-domain with its filter function I:TTROG( f, F), giving the
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Stroc (8, T)

Srroa(f, T)

F igure 5.1: Schematic diagram for the TROG measurement setup consisting of a
spectral filter followed by a temporal filter and an integrating photo-detector (PD).

signal field at the output of the spectral filter

S'TRoe(f, F) = A(f)Hrroa(f, F) (5.1)

The signal field is next filtered in the time-domain and detected by a square-law and

integrating detector. The signal at the output of the detector is given by

Itgoa(T, F) :/|GTR0G(i,T)|2ISTROG(t,T)|2 dt
o CES
= / |GTROG(t,T)|2| / A(f)Hrroa(f, F) exp(j52n ft)df| dt

If the temporal filter acts as a time-gate, i.e., we apply the delta-function approach
IGTROG(t, T’)l2 — 5(t — T) (53)

(5.2) can be simplified into

2

Itroe(T, F) = l / A(f)Hrroa(f, F) exp(j2n fT) df (5.4)

This qUéntity is called the TROG trace or sonogram of the input pulse; if the spec-
tral filter function is narrow enough, it measures the temporal intensity of different
spectral components of the pulse. We note the time-frequency duality of (5.1), (5.2)
and (5.4) with (4.9), (4.10) and (4.12) respectively. In all these equations the role of

time and frequency is exchanged, i.e., t «— f and T +— F.
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Figure 5.2: Diagram of the pulse reconstruction algorithm for TROG.
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5.2.2 Pulse reconstruction algorithm for TROG

Using the fact that TROG is the time-domain counterpart of FROG, we can design
an algorithm which can retrieve the pulse shape and phase from a TROG trace or
sonogram similar to the algorithm that FROG uses. A diagram of this new pulse
reconstruction algorithm for TROG is shown in Fig. 5.2. This algorithm is derived
from the FROG algorithm shown in Fig. 4.6 by applying the time-frequency duality
between TROG and FROG. This translates into the following. The algorithm is
started from an initial random guess for the complex spectrum of the pulse AO()
instead of the complex pulse shape A(®(t). On the k'! iteration, the signal field
) ~"(rkp)boe( [, F) is calculated according to (5.1) from A®(f). Tt is next inverse Fourier

transformed with respect to f to give S%%OG(T ,F). At this point, the following

time-domain constraint is applied giving a new signal field

S’(l“klf)(OG (Ta F)

Stroc(Ty F) = \/Itroc(T, F)
1S80c(T, F))|

(5.5)

by replacing the magnitude of the signal field S(TkP)LOG (T, F') by the square root of the
measured TROG trace Itrog(T, F). This signal field is then Fourier transformed
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- “with respect to T to give the signal function §’II‘ROG( f, F). The following frequency-
domain constraint is next applied to give a new guess for the pulse envelope Alk+1) (f)

by minimizing the signal field error defined by
A r ot > (k
Boa =0 (Srmoc i F5), AV () 0L (Fis Fy)) (5.6)

with respect to A®+D(f;). This process is iterated until convergence is reached. A
good criteripn for convergence of the algorithm is given by the error between the

measured and reconstructed TROG trace
2
o =7 (o (Ti B),0® [T 1)) 5.7

An error efROG on the order of 102 or smaller usually indicates good pulse recon-
struction.

A schematic diagram of how the pulse reconstruction algorithm for TROG con-
verges is shown in Fig. 5.3. It is noted that this diagram is similar to the diagram
shown in Fig. 4.7, but note that the solution sets for the time and frequency-domain
have been exchanged. We start again from a random guess which is usually not a
physical solution of the problem. It usually does not satisfy the time-domain con-
straint either. Applying the steps (1)—(3) indicated in Fig. 5.2 to this initial guess, the
guess is projected onto the set of solutions that satisfy the time-domain constraint;
this projecﬁon does not necessarily have to be a physical solution. After applying
the steps (4)—(5) indicated in Fig. 5.2, we try to find the physical solution which is
~ the closest to our projection, i.e., we project our new guess which exists in the set of
solutions that satisfy the time-domain constraint onto the set of physical realizable
solutions which exist in the frequency-domain. This process is then repeated until we
reach a solution that satisfies the time-domain coﬁstraint and that as well is physically
realizable. In Fig. 5.3 this solution is indicated by the intersection point between the
set of solutions that satisfy the time-domain constraint and the set of solutions that

are physically realizable.
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Figure 5.3: Diagram of the convergence of the pulse reconstruction algorithm for
TROG.

5.2.3 FDPM as a measurement geometry for TROG

To date ohly one TROG geometry has been demonstrated: frequency-domain phase
measurement (FPDM). Its name might be misleading and imply that it is a frequency-
resolved measurement, but as explained in the previous section it is actually a time-
resolved measurement (correlation traces are measured). In this section we look back
on the method of FDPM which has been described in Section 4.5. FDPM can be
classified as a specific geometry for TROG. In order to clarify this a bit further, we
have drawn a schematic measurement diagram in Fig. 5.4. In the experiment of Chilla
and Martinez (see Fig. 4.11), the frequency gating is performed by a grating and a

slit [1,2]. An exact transfer function of this grating/slit pair, taking into account the
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| : Spectrometer Crosscorrelator

Figure 5.4: Schematic diagram for the FDPM-TROG measurement setup consisting
of a spectrometer and a crosscorrelator.

spatial variation of the optical beam, is given in [2]. For a slit size larger than the

beam size, this transfer function can be simplified to a rectangle function

_ 1 for |f—F| < 3Fy
Hrppmtroc(f, F) = (5.8)
0 for|f — F| > LFp

where Fj is the frequency passband of the slit. The pulse at the output of the slit
is crosscorrelated with the original pulse in a SHG crystal. If the width of the slit
is small enough so that the duration of the resulting pulse that exits the spectral
filter is much longer than the original input pulse A(t), the original pulse A(t) can be
considered as a delta-function in comparison to the pulse that exits the spectral filter.
In that case the temporal transfer function of the temporal filter (the crosscorrelator)
will approach a delta-function, |Grppm.TroG(t, T)|? — 8(t — T'), and the detected
- signal is given by

2

IvpprtroG(T, F) = l/ ;{(f)ﬁFDPM—TROG(fa F)exp(j2rfT)df (5-9)

where I:TFDPM_TROG is defined according to (5.8). The time-frequency duality of (5.9)
and (4.12) is noted again.

Now that we have shown that FDPM can be classified as a TROG geometry,
we will refer to FDPM as FDPM-TROG in the rest of this thesis. Using (5.9) and
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Figure 5.5: Sonogram +/Ipppm.troc(T, F') trace generated from (5.9) for N = 128
and AT = 0.2ty and F() = 10AF.

the definition of our double pulse (4.5), we can calculate the corresponding FDPM-
TROG trace or sonogram of the pulse. The trace has been calculated on a N x N
grid with N = 128. The time-step taken is AT = 0.2¢, where t, is given by (4.6)
and the frequency step AF is given by (4.18). The result is shown in Fig. 5.5.
For this particular example we have given the rectangle function of (5.8) a width of
Fy = 10AF. 1t is noted that the FDPM-TROG tracé does not contain any symmetry
properties. The pulse reconstruction algorithm can only return the solution A(t) and
has therefore no ambiguities in the direction of time.

Some.remarks with respect to the FDPM-TROG measurement setup are in place
here. Although Chilla and Martinez state that better spectral resolution and phase
reconstruction is obtained with a narrower slit, it can be shown that this is not
necessary if the pulse reconstruction algorithm usés the entire detected signal of (5.9)
instead of just the temporal locations of the centers of ther crosscorrelation traces.
There is an upper limit to the slit width though: the spectrally filtered pulse needs

to be much longer in duration than the original pulse in order for the original pulse
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" to act as a dei*ta;fu‘nction. It is also noted that the slit size can‘not be infinitely
Small. In that case the spectral gating function would behave as a delta-function,
ﬁFDpM_TRog( f, F) — 6(f—F) and the TROG trace would yield the spectral intensity
of the pulse.

Irppavtroc(T, F) = |E(F)|2 (5.10)

Pulse reconstruction is impossible in that case. For this case diffraction effects of the

slit can not be neglected either.

5.3 Time-resolved optical gating based on dispersive propagation

(DP-TROG)

5.3.1 Dispersive propagation: a new TROG geometry (DP-TROG)

We propose a new measurement setup for TROG. The method makes use of dispersive
propagation (DP). A schematic diagram of the DP-TROG geometry is pictured in
Fig. 5.6. The setup consists of a spectral filter (the disperser), also called a phase
stationary (PS) filter, followed by a temporal filter (the autocorrelator), also called
an amplitude non-stationary (ANS) filter, and a square-law integrating detector.

A few comments with respect to previous work are in place here. A linear filter

analysis of both interferometric and non-interferometric methods for ultra-short pulse

Disperser

| Autocorrelator -

Figure 5.6: Schematic diagram of the measurement setup for DP-TROG consisting
of a disperser followed by an autocorrelator and an integrating photo-detector (PD).

The functions ﬁ( f, D) and A'(t, D) are defined by (5.11) and (5.18) respectively.
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" “measurenient. has b‘eenques‘cribed extensively by Wong and Walméley [10-13]. The
key result of their analysis for non-interferometric methods is that a measurement
setup with a square-law integrating detector needs to consist of at least one time
stationary and one time non-stationary filter in order to reconstruct the pulse shape.
In [12] four minimum-filter measurement techniques are described and these devices
are indicated with Roman numerals I-IV. Adopting this notation, most FROG ge-
ometries are classified as type I devices while the FDPM-TROG geometry is classified
as a type II device. According to Wong and Walmsley, our new DP-TROG geometry
would fall in the category of type IV (PS-ANS) devices [12]. Wong and Walmsley
state that type IV devices require a short time-gate duration in order to be able
to reconstruct the pulse with help of the inverse Radon transform (IRT) [12]. The
'DP-TROG geometry contradicts this requirement, however, as it measures a set of
autocorrelation traces A'(t, D)A'(t—T, D) of the dispersed pulse instead of crosscorre-
lation traces of the pulse with a short gating pulse. It also uses the TROG algorithm
for reconstruction instead of the IRT algorithm.

In the measurement setup of Fig. 5.6, the spectral filter is a medium with variable
dispersion. Variable dispersive propagation could, for example, be accomplished by
a grating pair disperser [14], a set of prisms [15], or a number of normal/anomalous
dispersive fibers each with a different length. Without loss of generality, we will
consider the case where the dispersive propagation takes place in a set of fibers each
with a different amount of dispefsion. The spectral transfer function for a piece of

dispersive fiber is given by [16]
h(f, D) = exp(jn f2D) (5.11)

where D = —27(3,L is the total dispersion of the fiber with length L and with
a dispersion parameter (B2 that is (f82) negative for regular fiber and positive for
dispersion compensating fiber. The autocorrelator measures the autocorrelation trace

of the dispersed pulse A'(t, D). The output of the photodetector (PD) is the integral



“of the intensity |A’ (t, D)A'(t, D)|? at its input and is given by [16,17]

R(D,T) = / (¢, DY2|A(t — T, D) dt (5.12)

where T is the delay of the autocorrelator. The Fourier transform of R(D,T) with

resp.éct to T can be written as

R(D, F) / |A'(¢, D)|2|A'(t — T, D)|* exp(—j2r FT) dt dT (5.13)
Substituting 7 =t — T gives

R(D, F) = / |A'(t, D)|? exp(—j2n Ft) dt/ |A'(r, D)|? exp(j2n F'7) d7

2

_ l / A'(t, D)|? exp(—j2n Ft) dt (5.14)

2
= ‘/A'(t, D)A™(t, D) exp(—j2nF't)dt

Using the convolution theorem for Fourier transforms this can be rewritten as

R(D,F) = ‘/Z’(f, D)A™(f — F,D)df (5.15)
Using
A'(f,D) = A(f)h(f, D)
_ (5.16)
= A(f) exp(jn f*D)
we can rewrite (5.15) as
RD,P) =| [ () expin D) (f = F) expl—ia(] = YD) af

) (5.17)

— ‘/;{(f);{*(f — F)exp(j2rfFD)df

We note that the pulse shape that exits the spectral filter is given by inverse
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" TFourier transformation of (5.16)

A(t,D) = / A(f) exp(im f2D) exp(j2n ft) df (5.18)

Comparing (5.17) with (5.9) we see that the Fourier transform of the autocorrelation

trace"E(D, F ) is a scaled version of a DP-TROG trace defined by

_ 2
Ipptroc(T, F) = ’/Z(f)f[DP-TROG(fa F)exp(j2n fT)df (5.19)

For
Hpp-troa(f, F) = A*(f — F) (5.20)

and T = F'D, the scaling is given by
Inprroc(T, F) = R(T/F, F) (5.21)

It is noted that our new method does not measure the DP-TROG trace directly. In-
stead it measures the set of autocorrelation traces R(D,T) which can be transformed
into the DP-TROG trace defined by (5.19)—(5.20) according to (5.21). Mathemati-
cally this transformation entails Fourier transforming the measured set of autocorre-
lation traces R(D,T) with respect to T to give E(D, F) and next interpolating this
trace at points (T;/Fj, F;) such that AT and AF are related by (4.18).

It is noted that interpolation of the trace with F' =0

2
Iparoa(T, 0) = | [ 1A P expliznsm)af
, (5.22)

- } [ TpyexotiensTyaf

is not possible. From (5.22) it can however easily be seen that this trace is obtained
by measuring the intensity spectrum I (f) of the original pulse, inverse Fourier trans-
forming it with respect to f and finally taking the norm squared.

The pulse shape can next be retrieved from the TROG trace of (5.21) by the
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iterative TROG élg‘orifhm (depicted' in Fig. 5.2. It can thus be concluded that mea-
surement of the autocorrelation traces of dispersed versions of the original pulse in-
tensity together with the spectrum of the original pulse provide enough information
to reconstruct the pulse in amplitude and phase. In the next section, we will show
how. well the pulse reconstruction works in the case of a test pulse which we choose

as a non-linearly chirped double pulse.

5.3.2 Pulse reconstruction algorithm for DP-TROG

In this section we demonstrate how the pulse reconstruction works for our double
pulse introduced in Chapter 4. As a first step, the DP-TROG trace is calculated
‘theoretically according to (5.19) and (5.20) on a N x N grid with N = 128. The time
step taken is AT = 0.2t and the frequency step AF is given by (4.18). The number
of points N and the time step AT need to be taken such that the total frequency
range covered is large enough to contain the spectrum of the pulse and the total time
range covered is large enough to contain the pulse shape. In our case N = 128 is
sufficient. The calculated DP-TROG trace is shown in Fig. 5.7. In order to show
the low amplitude features of the trace, we have plotted its square root. Although
the DP-TROG trace has certain ambiguities (see Appendix B), it does not have an
ambiguity in the direction of time in contrast to SHG-FROG where the direction of
time for the pulse can not be distinguished; see [4] and Appendix A. The sign of
the chirp is therefore directly revealed by the orientation of the trace in Fig. 5.7: the
frequency decreases for increasing time, i.e., the pulse contains a down-chirp. The
; algorithm used to reconstruct the pulse from the DP-TROG trace has been discussed
in Section 5.3.2. We have both implemented the reconstruction algorithm that is
based on the basic method of GP [18-21] as well as the faster PCGPA [22]. For the
basic GP algorithm, on each iteration the algorithm finds a new guess for the next
iteration by minimizing (5.6) with respect to the real and imaginary parts of E( f)-
The minimization method used is a 2/N-dimensional conjugate gradient method. We

apply the standard Fletcher-Reeves minimization method [23], which involves a num-
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Figure 5.7: Sonogram /Ipp.troc (T, F) generated from (5.19) and (5.20) for N = 128
and AT = 0.2t

ber of one-dimensional minimizations along directions that are selected with help of
the gradient of £rrog defined in (5.6). Although the gradient with respect to the real
and imaginary parts of ;[( f) can be calculated numerically, the algorithm is sped up
considerably by calculating an analytical expression for this gradient in a manner sim-
ilar as presented in [6]. We note that this analytical expression depends on the form
of the signal field Stroc(f, F) defined in (5.1) and needs to be calculated individually
for a given measurement geometry. When one uses the PCGPA the calculation of the
analytical expression for the gradient can be avoided. The algorithm uses a singular
~ value decomposition instead. Typically one iteration takes approximately a second
on a 500 MHz Pentium computer.

For the theoretically calculated TROG trace, the algorithm converges to the exact
pulse shape (see the trizingles in Fig. 5.8 and Fig.' 5.9) with a very small residual error
£troc on the order of 1075 (see the solid line in Fig. 5.10). For the initial guess,
a random amplitude uniformly distributed on [0,1] and a random phase uniformly

distributed on [—, 7] are chosen in the frequency-domain.
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Figure 5.8: Amplitude and phase of the non-linearly chirped double pulse represented
in the time-domain: actual pulse (solid line) and reconstructed pulse (triangles) using

the sonogram of Fig. 5.7.
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Figure 5.9: Amplitude and phase of the non-linearly chirped double pulse represented
in the frequency-domain: actual pulse (solid line) and reconstructed pulse (triangles)

using the sonogram of Fig. 5.7.
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Figure 5.10: The evolution of the convergence error defined in (5.7): the solid line
shows the error when the theoretically calculated sonogram of Fig. 5.7 is used as
input, the dashed line shows the error when the sonogram of Fig. 5.13 is used, and
the dotted-dash line, when the sonogram of Fig. 5.14 is used.

It is noted that the retrieved pulse can be a time-shifted version of the actual pulse
as the TROG trace is invariant to time-shifts. A shift in time of At adds a linear
phase 7,5( f) = —2nAtf to the pulse in the frequency-domain. If the retrieved pulse
needs to be shifted to coincide with the actual pulse in the time-domain (as is done
in Fig. 5.8), the linear phase 1:[;( f) needs to be subtracted in the frequency-domain in
order to obtain the correct phase of the pulse.

As a next step we have constructed the TROG trace from the autocorrelation
traces and the intensity spectrum of the dispersed pulse. The autocorrelation trace
is calculated from (5.12) for different lengths of fiber. The dispersion parameter for
regular fiber is taken as 8y = —22.6 ps?’km ™" while the step size in fiber length equals
AL = 2 m. The total dispersion is calculated according to D = —275,L. Negative
total dispersion (D < 0) can be experimentally obtained by using dispersion compen-

sating fiber (8, > 0). A two-dimensional view of the resulting set of autocorrelation

traces is shown in Fig. 5.11. As expected, the pulse can be compressed with dispersion
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‘ 4‘Compensafingv fiber due to its down-chirp. A minimum pulse width is achieved after
propagation through L = 12 m of fiber. The spectrum R(D, F) of the autocorrelation

trace is obtained by Fourier transformation of the trace of Fig. 5.11 with respect to

- T. Tts result is shown in Fig. 5.12.

The DP-TROG trace is now obtained by scaling the trace in Fig. 5.12 according
to (5.21). We have accomplished this by doing N — 1 one-dimensional interpolations
in the T-direction. As stated before, the trace with F' = 0 can not be interpolated
in this way but is replaced with the trace obtained by calculating (5.22). The result
of this scaling is shown in Fig. 5.13.  Looking at Fig. 5.13, there appears to be
data missing in the TROG trace around F' = 0. This is due to the limited range
of the dispersion D over which the autocorrelation trace is calculated. The area
of missing data can be decreased by increasing this dispersion range. This might
however be impractical in some experimental situations, especially if the range over
which the dispersion can be varied is limited. This TROG trace is next used as input
to the reconstruction algorithm. The time-domain constraint (5.5) is applied only
on the areas of the TROG trace where data are present. The pulse reconstruction
results are shown in Fig. 5.15 and Fig. 5.16 by the triangles. The final convergence
error is about etrog ~ 4 x 1072 (see dashed line in Fig. 5.10). It can be seen from
Fig. 5.16 (triangles) that although there is a slight deviation in the intensity spectrum
of the pulse, the algorithm recbnstructs'the spectral phase accurately. The mismatch
in the intensity spectrum is caused by the limited dispersion range over which the
autocorrelation traces are calculated. Running the algorithm on various dispersion
- ranges, it is found that the spectral phase is retrieved correctly while the mismatch in
the inteﬁsity spectrum decreases if the dispersion range is increased. The dispersion
range over which measurements should be made depends on the characteristics of the
pulse that is being measured, but a good rule of thumb is as follows: find the amount
of dispersion that compresses the pulse to its minimum autocorrelation width, then
keep increasing the dispersion range around this dispersion amount until the measured
autocorrelation trace has dropped its peak value to about one-tenth of the peak value

that would occur when the pulse is at its minimum autocorrelation width.
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Figure 5.11: Two-dimensional view of the set of autocorrelation traces \/R(D,T),
theoretically calculated from (5.12).
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Figure 5.12: Autocorrelation spectrum +/R(D, F) obtained by Fourier transformation
of the autocorrelation traces of Fig. 5.11 with respect to 7.
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Figure 5.13: Sonogram obtained by interpolating the autocorrelation spectrum of
Fig. 5.12 in the T-direction according to (5.21) for F' # 0. The trace for F' = 0 is
obtained from (5.22).
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Figure 5.14: Sonogram obtained by interpolating the sonogram of Fig. 5.13 in the
F-direction.



122

Time-domain

1 N -, j O
. -__l‘ = .
[ ]
[ J
p e
_08R [
= FANN N
5 actual 5
S 4 reconstructed|| (5 2
= 0. reconstructed ®
< ENE
[ y A4 S
2 04} VN E
Z
0.2 2
, 30
—8 -4 0 4 8
Time ¢ (ps)

Figure 5.15: Amplitude and phase of the non-linearly chirped double pulse represented
in the time-domain: actual pulse (solid line), reconstructed pulse using the sonogram

of Fig. 5.13 (triangles) and Fig. 5.14 (dots).
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Figure 5.16: Amplitude and phase of the non-linearly chirped double pulse repre-
sented in the frequency-domain: actual pulse (solid line), reconstructed pulse using
the sonogram of Fig. 5.13 (triangles) and Fig. 5.14 (dots).
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It is noted that a TROG trace contains redundant information: it is made up of
N x N data points while the pulse shape is only determined by 2N points. One might
thus try and.exploit the two dimensions F' and T of the trace to try to obtain TROG
data around F = 0: we fill in the gaps of the TROG trace of Fig. 5.13 by doing N
one-dimensional interpolations in the F-direction. The resulting interpolated TROG
trace is shown in Fig. 5.14. Comparing this trace with the trace in Fig. 5.7 shows
that the interpolation works very well. In order to find out how much the two traces
actually differ, the error between the two traces has been computed. A maximum
relative error of a few percent is found for all the points on the N x N grid.

In order to find out the effects of this interpolation on the pulse reconstruction,
we have run the algorithm on the TROG trace of Fig. 5.14. Its convergence is shown
in Fig. 5.10 (dotted-dash line) and the amplitude and phase of the retrieved pulse
in the time and frequency-domain are shown in Fig. 5.15 and Fig. 5.16 respectively
by the dots. Excellent pulse retrieval is accomplished. Convergence occurs within
fifty iterations and the final error is approximately etrog = 7 - 107%. Comparing the
dash and dotted-dash line in Fig. 5.10, it is found that the algorithm convergence is
approximately sped up by a factor of two. The ability of the algorithm to retrieve
the correct spectral phase is not affected (see Fig. 5.16). The ability to retrieve the
correct spectral intensity is however strongly improved. It is noted that an accurate
time-domain representation of the pulse can be obtained by using the spectral phase
retrieved by the algorithm together with the measured intensity spectrum instead of
the intensity spectrum retrieved by the algorithm. As an alternative, one can also
- add an additional intensity spectrum constraint to the algorithm on each iteration by
replacihg the spectral amplitude A'( f) with the square root of the measured intensity

spectrum I(f), i.e.,

Al T Z(k)(f)
A = —_—
D =VID T 5

As a final step we have further tested the algorithm for the addition of multiplica-

(5.23)

tive and additive noise to the autocorrelation trace. As TROG is similar to FROG

except for the fact that the roles of time and frequency are interchanged, noise reduc-
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tion teéhniques*th.atare available for FROG [8] can also be used for TROG. For more
details on these and other noise reduction procedures, the reader is referred to [8]. In

Chapter 6. we discuss issues regarding noise and noise-filtering and the application of

" - this technique to an experimentally obtained DP-TROG trace in detail.

5.4  Remarks about DP-TROG and comparison with SHG-FROG

In this chapt@r we have introduced the TROG technique and shown its time-frequency
duality with FROG. A new TROG geometry has been introduced based on dispersive
propagation. It has been shown that measurements of the autocorrelation traces of
dispersed versions of the pulse together with a measurement of its spectrum are
sufficient to recover phase and amplitude information. One of the advantages of
the DP-TROG geometry is that it is simple to realize: it makes use of a dispersive
medium and an autocorrelator. This equipment is usually already present in an
optics laboratory. The only restriction of the autocorrelator is that its nonlinear
crystal needs to be suited to the wavelength of the pulse, i.e., it needs to be able to
generate a SHG signal from the pulse. SHG crystals are usually available for most
wavelengths at which pulses are generated nowadays. For a pulse with a wavelength
in the optical communication band (1.5 pm), one usually uses a lithium niobate
crystal. Although we use a set of fibers as the dispersive medium in our analysis,
this might not be very practical in experiments as a large number of fibers is needed
and their length will vary from experiment to experiment depending on the temporal
] width and chirp of the pulse. A grating or prism pulse stretcher /compressor is more
appropriate as long as its dispersion can be adjusted below and above the value for
which minimum pulse width (i.e., maximum pulse compression) occurs and as long its
optical loss is acceptable. In the experiments of Chapter 6, a dual grating telescope
pulse compressor/stretcher is used as the dispersive medium.

The DP-TROG geometry is a sensitive technique as it uses a second-order non-
linearity instead of a higher order one as is for example the case for THG-FROG. It will

work for any low energy pulse that contains enough energy for the autocorrelation



125
trace to be measured. We have also shown that this technique does not require a
short gate pulse as is the case with FDPM-TROG. This is in contradiction with the

statement. of Wong and Walmsley that a short gate pulse is a requirement for a type

- IV.(PS-ANS) device.

The advantage of DP-TROG over SHG-FROG is two-fold. First, more sensitivity
is obtained as there is no need to measure the spectrum of the SHG signal. In
order to spectrally resolve the SHG-FROG signal, an additional grating would be
needed which would introduce more losses in this already weak signal. Secondly, the
ambiguity in the direction of time which is inherent in SHG-FROG is not present in
DP-TROG (see Appendix B).

We have shown that the TROG reconstruction algorithm works extremely well
even for the case of a non-linearly chirped double pulse. Although best reconstruction
is accomplished if the autocorrelation traces are measured over a large dispersion
range, the two-dimensional interpolation of the measured traces into the TROG trace
allows for a smaller dispersion range over which measurements need to be made. Due
to the fact that the SHG signal does not need to be spectrally resolved, the DP-TROG
method is useful for characterizing low energy pulses in the 1.3 — 1.5 pm wavelength

range.
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CHAPTER 6

Time-resolved optical gating based on
dispersive propagation:
experiment

6.1 Introduction

In this chapter we demonstrate the use of time resolved optical gating based on dis-
persive propagation (DP-TROG) to characterize a semiconductor mode-locked laser
emitting picosecond pulses at a wavelength of 1.5 ym. DP-TROG is a new non-
interferométric method for characterizing ultra-short optical pulses in amplitude and
phase without the need for a short optical gating pulse. We describe the experimental
setup and in particular the dual grating telescope pulse stretcher/compressor that is
used as the dispersive medium. The linear dispersion as well as higher order disper-
sion for this dual grating telescope are calculated. The setup is used to characterize
the optical pulses emitted by a semiconductor mode-locked laser. In the experiment
we measure a number of autocorrelation traces of dispersed versions of the pulse
and its intensity specfrum. One can derive the sohogram or DP-TROG trace for the
pulse from these measurements and we make recommendations for this procedure and
for the reconstruction of the pulse properties from the sonogram. Issues of additive

measurement noise and noise reduction and filtering techniques are discussed as well.
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) 62 ‘The dual grating telescope disperser

The DP-TROG geometry makes use of a medium which has an adjustable amount of
dispersion'. Although one could use a number of optical fibers with different lengths
as the dispersive medium, this is not very practical. Instead we have chosen a dual
gratihg telescope disperser (see Fig. 6.1). The incoming pulse first hits the right
gratiﬁg of the disperser. The grating spatially separates the pulse into its wavelength
components which then pass through the telescope and hit the second grating which
is placed at the same angle with respect to the telescope axis as the first grating. In
order to avbid spatial displacement of the beam, a mirror has been added after the
second grating of the telescope so that the pulse is reflected back into the telescope
again. This both ensures that the pulse gets spatially reflected back onto itself and
it also doubles the amount of dispersion added to the pulse by the disperser.

This kind of disperser has the advantage that both the amount of disperson can
be adjusted by simply moving the gratings and also the sign of the dispersion can be
changed, depending on whether the gratings are within the focal point of the lenses
or outside. The transfer function of the disperser is given by (5.11) where D is the
dispersion parameter which will be calculated in the next section. The dispersion can
be adjusted by changing the position of either or both of the gratings with respect
to the focal point of their respective lenses. The spectrum of the pulse exiting the

telescope is given by (5.16).

6.2.1 Linear dispersion

We can calculate the amount of linear dispersion (quadratic phase) added to the pulse
upon propagation through the telescope by examining the pathlength difference for
rays of different wavelengths. A magnification of the rays hitting the left grating
of the telescope in Fig. 6.1 is given in Fig. 6.2. Here 6;, is the angle between the
incoming beam and the normal to the first grating; this angle is equal to the angle
under which the rays leave the second grating. The angle 8, is the angle between the

normal to the grating and the telescope axis. The angle « is the angle between the
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Figure 6.1: Schematic diagram of the dual grating telescope disperser.

z

Figure 6.2: View of the pathlength difference for two rays of different wavelengths
hitting the second grating of the telescope disperser.
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" rays leaving the first gijating and the felescope axis. This angle d is a function of
the‘.wa,ve‘leng_th X of the ray and can be calculated from the Bragg condition for the
grating

g (6.1)

sin(fy — o) — sin(f;,) = ~

aul >
&

where 1/d is the grating line density, w is the optical frequency of the ray and w, =
27rc/d. Here c is the speed of light. The pathlength as a function of wavelength, or
the angle a, is given by

L(a) = y(a) + z(a) sin(Biy,) (6.2)

where z(a) and y(a) are indicated in Fig. 6.2. We can calculate an effective dispersion
parameter (o for the dual grating telescope analogously to the (85 parameter for an
optical fiber [1] by considering the group delay of the disperser as a function of

wavelength or equivalently as a function of the angle a. The group delay is given by

(6.3)

The factor 2 arises from the fact that the pulse passes through the telescope twice.
The B, parameter for the disperser is defined as the derivative of the group delay with

respect to frequency and is given by

_dry, 2 dL(a)da

=9 _ — A4
T dw  ze da dw (6-4)
Applying straightforward trigonometry to Fig. 6.2 gives the pathlength
cos(8,) + sin(a) sin(6;,)
L(a) = 2 .
(0) =z ( cos(f, — a) (6:5)
and from (6.1) we can calculate
d 1
Y (6.6)

dw ~ w?cos(f, — a)
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-*1 Symbol | = Units ' Example 1 | Exzample 2
Oir, - —5.4° —17.4°
0, - 56.0° 78.0°
A nm 1539 1539
1/d | lines/mm | 600 830
Bo ps?/m —-15 —205
Bs ps®/m 0.13 15

Table 6.1: Typical examples for the linear and non-linear dispersion parameters Sy
and S3 of a telescope grating disperser.

Substitution of (6.5), (6.6) together with (6.1) in (6.4) gives the following value for

the effective dispersion constant of the dual grating disperser

2 f’_;_ cos(f,)

ch ¢ w? cos?(f, — a)
—X* cos(6,)
_ 6.7
nc?d? cos? (0, — «) (6.7)
—)3

&

nc2d? cos?(b,)

where in the last approximation we have assumed that the angular dispersion of the
gratings is limited to a few degrees.

In Table 6.1 we have calculated the linear dispersion coefficient for two typical
grating examples. In order to increase the effective dispersion parameter 8, one
needs to place the gratings at a large angle with respect to the telescope axis and one
needs to maximize the number of lines per mm on the grating. For comparison, the

dispersion parameter for a regular single-mode fiber (SMF-28) is f = —22.6 ps® /km.

6.2.2 Higher order dispersion

In order to find out what the effect is of higher order dispersion introduced by the
telescope disperser, we calculate the nonlinear dispersion similarly as Martinez has

done for a standard dual grating disperser in [2]. We define the first next higher order
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N ‘dispersion parameter B3 as

Using (6.6) and (6.7) we find

2w;  cos(d,) 3 wy sin(f, — a)
py= 2% 0Oy S}y LSBT
cw3 cos?(, — o) w w cos?(0, — )

:_§{1+wg sin(Hg—oz))}ﬁQ

w w cos?(f, — o

(6.9)

For the examples shown in Table 6.1, we have calculated the magnitude of this non-
linear dispersion term. Comparing the values in Table 6.1 we find that the nonlinear
dispersion f33 is around 1-10% of the linear disperser 8; depending on the angle of the
gratings. From simulation results we find that this amount of nonlinear dispersion
does not affect the ability of the pulse reconstruction algorithm to reconstruct the
pulse correctly. It is noted that a TROG trace contains redundant information. The
trace consists of N x N points while the pulse shape is determined by oniy 2N points
(N for the amplitude and N for the phase). The pulse reconstruction algorithm is
therefore very stable against not only measurement noise but also discrepancies be-
tween the dispersion values used and the ones actually present in the measurement
setup. The algorithm uses the data redundancy and is still able to retrieve the cor-
rect amplitude and phase as long as these deviations are within a reasonable range
(typically up to 10-15%). More important for the measurement is the dispersion
_range over which measurements are made as this determines how detailed the TROG
trace is and how much data redundancy there is. We finally want to remark that if
the non-linear dispersion of the telescope disperser becomes too large compared to
the linear term, it is also possible to adjust the amount of the nonlinear terms (3
and 8, = dfs/ dw by changing the azimuth and altitude angles of the gratings. For
more details on how this is done for the standard dual grating disperser, the reader

is referred to [2].
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6.3 ,'Ex'per'rm'ental setup and measurement results

Thié section describes the experimental demonstration of the DP-TROG technique
to characférize a pulse train emitted from a 2 mm long two-section mode-locked
semiconductor laser at a wavelength of 1.5 pm. The absorber section of the laser is
100 um long and is grounded f&hile the gain section is pumped at a current of 170 mA.
The pulses are amplified by an erbium doped fiber amplifier (EDFA) after which they
enter the measurement setup shown in Fig. 6.3. The pulse to be characterized, with
slowly varying complex envelope A(t), first enters a dual grating telescope disperser
[3]. The disperser adds a frequency dependent phase to the Fourier transform of the
pulse which is quadratic in frequency. The Fourier transform of the pulse leaving the
disperser is given by (5.16)

A'(f, D) = A(f) exp(jm f2D) (6.10)

where D(z) = —27m 52 is the amount of dispersion added to the pulse which can be
varied by adjusting the distance z between the grating and the focal point of the
telescope. As calculated in the previous section, the effective dispersion parameter (s

of the dual grating telescope is given by (6.7)

2

-3 ps
N ——— = 267 — 6.11
mc2d? cos? 6, 7 m ( )

Bo
where the following experimental values are used: A = 1539 nm is the center wave-
. length df the pulse, c is the speed of light in vacuum, 1/d = 830 mm™" is the grating
line denéity and f, = 79.5° is the angle between the normal to the grating and the
telescope axis. The total insertion loss of the disperser is approximately 10 dB.

The pulse A’(t) leaving the disperser is a compressed/stretched version of the in-
put pulse A(?) dépending on the amount of dispersion D added. The pulse is dropped
from the incoming fiber with a circulator, and this pulse next enters a background-
free autocorrelator consisting of a LiNbO3 SHG crystal generating an optical second

harmonic field that is proportional to A'(t, D)A'(t — T, D). The corresponding inten-
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Figure 6.3: DP-TROG measurement setup consisting of a dual grating disperser and

a background-free autocorrelator.
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Figure 6.4: Three-dimensional view of the set of measured autocorrelation traces
R(D,T).

sities are integrated for different autocorrelator delays T' by a photodiode resulting in

a set of autocorrelation traces R(D,T) given by

R(D,T) = / |A'(t, D) A'(t — T, D) dt (6.12)

We measure a number of autocorrelation traces around the dispersion point Dy
for which maximum pulse compression occurs (i.e., minimum autocorrelation width).
For each trace the distahce z for each grating is ihcremented by 0.1 mm leading to
a total step size Az = 0.2 mm. The measured traces R(D,T) are normalized to
the same energy and a three-dimensional view of them is shown in Fig. 6.4. A two-

dimensional top view of the autocorrelation trace of Fig. 6.4 is shown in Fig. 6.5. In
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Figure 6.5: Two-dimensional view of the set of measured autocorrelation traces

JR(D,T).

order to enhance the low intensity features we have plotted its square root again. As
can easily be seen from Fig. 6.5, maximum pulse compression occurs at a value of
Dy ~ 16 ps?. In order to make the measured data accessible to our reconstruction
algorithm, the measured autocorrelaﬁon trace R(D,T) of Fig. 6.5 is next mapped
onto an N x N grid with N = 128 and with dispersion step AD = 0.3 ps? and time
step AT = 0.36 ps. The frequency step is again given by (4.18). A two-dimensional
top view of the measured traces R(D’,T) is shown in Fig. 6.6. The dispersion range
D' for the compressed pulse around its maximum compression point Dy is given by
D' = D — Dy. When the pulse reconstruction algorithm is run on the trace R(D',T),
the algorithm Wiﬂ return with the amplitude and phase of the compressed pulse. The
original (uncompressed) pulse can be calculated from the reconstruction results for

the compressed pulse by adding the appropriate amount of dispersion Dy using (6.10)

In addition to the measurement of the autocorrelation trace, the intensity spec-

trum of the pulse is also measured. Its result is shown in Fig. 6.7.
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Figure 6.6: Two-dimensional view of the set of measured autocorrelation traces
VR(D',T) after mapping onto a N x N grid with N = 128 and with AD = 0.3 ps?,
AT = 0.36 ps and Dy = 16 ps?.
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Figure 6.7: Measured intensity spectrum I(f) of the pulse.
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Figure 6.8: Autocorrelation spectrum \/ﬁ(D’ , F') obtained by Fourier transformation
of the autocorrelation trace of Fig. 6.6 with respect to 7.

6.4 Experimental DP-TROG pulse reconstruction

We now follow the pulse reconstruction procedure for the compressed pulse as de-
scribed in Chapter 5. We first calculate R(D', F), the Fourier transform of R(D',T)
with respect to T. The result is shown in Fig. 6.8. In order to enhance the noise
features in this trace we have plotted its square root again. We next transform this

trace into the DP-TROG trace or sonogram of the pulse

2

Iopanog(T, F) = ‘ [ - Fexplizasmyas
- | (6.13)

= R(T/F,F)

by evaluating the trace }~E(D’ , F') at points (T;/Fj, F;). The trace with ' = 0 can not

be evaluated in this way but is given by

IDP-TROG(Ta 0) = l/ T(f) exp(]27rfT) df (614)
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Ie;hd.‘is constructed ‘fr(')m the measured intensity spectrum I (f) of the pulse by inverse
' Fouﬁer transforming it and taking the norm squared. The result is shown in Fig. 6.9
and the resulting DP-TROG trace is shown in Fig. 6.10.

In order to speed up and improve algorithm convergence, we interpolate the re-
sulting trace of Fig. 6.10 in the F-direction as described in Chapter 5. The result is
shown in Fig. 6.11. We next apply a noise reduction technique to the DP-TROG trace
ofv Fig. 6.11 to limit the influence of additive noise during the pulse reconstruction.
Several techniques for noise reduction have been discussed previously [4]. We use a
median threshold filtering technique. In determining whether to keep the value of a
pixel in the trace or set it to zero, we determine the average pixel value over a square
of size 2p + 1 around the pixel of interest. If this average pixel value is smaller than
a certain threshold s, we set the current pixel to zero. Our noise filtering technique
uses the values p =2 and s = 1.5-1073.

The resulting filtered DP-TROG trace is shown in Fig. 6.12. This trace is next
used as input to the pulse reconstruction algorithm described in Section 5.3.2. The
algorithm is started with an initial random guess in the frequency-domain for the am-
plitude uniformly distributed on [0, 1] and an initial random guess for the phase in the
frequency-domain uniformly distributed on [—m, 7). During the pulse reconstruction

process we monitor the following three errors:

me k
ENTF) =0 (ITR((I)SG(TiaFj)aa’gk)l”g“p)tog(Tia Fg)) (6.15a)
ERDIT) =0 (R’““S(Dg, 1), agﬂ)Rg?{OG(Dg, T])) (6.15b)

. Dmeas Sk
) é‘}pi(D’,F) =0 (R ¢ (D;7 Fj)’ a(g)R'(I‘l){OG(D; F})) (615C)

The evolution of each of these errors is shown in Fig. 6.13. The algorithm converges
after about 60 iterations with an error in I(7, F') of .approximately erer,ry = 2.5-1073.
For comparison of the traces I(T, F), R(D',T) and ﬁ(D’ , F') with the measured ones
in Fig. 6.6, Fig. 6.8 and Fig. 6.10, we have plotted them in Fig. 6.14-Fig. 6.16. The
very good agreement between all of the traces is noticed.

The amplitude and phase of the retrieved compressed pulse in the time and
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Figure 6.9: Sonogram +/Ipp.troc (7, 0) calculated from the envelope of the measured
spectrum of Fig. 6.7 according to (6.14).
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Figure 6.10: Sonogram +/Ipp.troc(7, F') for the pulse reconstructed from }~%(D’ ,F)
shown in Fig. 6.8 according to (6.13).
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Figure 6.11: Sonogram +/Ipp.troc (7, F') for the pulse after interpolation of the trace
of Fig. 6.10 in the F-direction.
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Figure 6.12: Sonogram +/Ipp.trog (7, F') for the pulse after noise filtering of the

trace of Fig. 6.11 with a median filtering technique with filtering parameters p = 2
and s = 1.5-1073.
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Figure 6.13: Evolution of the different error measures defined according to (6.15).
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Figure 6.14: Sonogram +/Ipp.-troc(T, F) for the pulse returned by the pulse recon-

struction algorithm.
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Figure 6.15: Autocorrelation trace /R(D,T) for the pulse returned by the pulse
reconstruction algorithm.
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Figure 6.16: Autocorrelation spectrum \/E(D, F) for the pulse returned by the pulse
reconstruction algorithm.
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" ffequencyidoniaiﬁ are s.how(n in Fig. 6.17 and Fig. 6.18 respectively (dots). The ampli-
tude- and phase profile of the original uncompressed pulse can be calculated from the
retrieved compressed pulse by adding the amount of dispersion Dy =~ 16 ps? needed
to. get to the maximum compression point using the inverse of (6.10). Its result can
also. been seen in Fig. 6.17 and Fig. 6;18 and is indicated with the dots. We have
also plotted the measured spectrum \/f (f) in Fig. 6.18. Agreement of the retrieved
spectrum with the measured one is very good. From Fig. 6.18 it can be clearly seen
that the original uncompressed pulse contains a non-linear chirp. The linear part of
the chirp can be compensated by adding an amount of dispersion D,. The resulting
compressed pulse has a residual cubic spectral phase dependence. Upon transforma-
tion to the time-domain this cubic phase causes ringing (phase jumps of 7) on the
| leading edge of the pulse (see Fig. 6.17). This ringing behavior on the leading edge
of a pulse has also been observed in SHG-FROG measurements [5]. The full width
half maximum (FWHM) of the main peak in the compressed pulse is approximately
7, = 1.3 ps.

The sonogram of the original uncompressed pulse can be calculated as well. Its
result is shown in Fig. 6.19. From the orientation of the trace in Fig. 6.19 it can be
easily seen that the original unconipressed pulse contains an almost linear up-chirp.
The amount of linear chirp can be eastimated from the slope of the trace with respect
to the F' = 0 axis and is arouhd 62 GHz/ps which is in agreement with the observed
value Dy ~ 16 ps? that is needed to compress the pulse to its minimum width. It is
finally noted that the aliasing at the top left and bottom right corner of the sonogram
- occurs as the 'number»of points NV = 128 is insufficient to contain the uncompressed
pulse which has a FWHM of 7% = 19 ps.

We finally would like to add a few remarks. As described in Chapter 5 interpo-
lation of the TROG trace is not necessary for correct spectral phase retrieval. This
is also true for 6ur measurements. The spectral phase of the pulse is reconstructed
correctly even if we omit the interpolation of the DP-TROG trace. Without the in-
terpolation there is a larger error between the retrieved spectral amplitude and the

- measured one. This is however of no concern as the exact spectral amplitude is avail-
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Figure 6.17: Amplitude and phase represented in the time-domain: compressed pulse
A'(t, Dy) (triangles) and original uncompressed pulse A(t) (dots).
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Figure 6.18: Amplitude and phase represented in the frequency-domain: compressed
pulse A'(f, Do) (triangles) and original uncompressed pulse A(f) (dots). Also shown

is the measured intensity spectrum of the pulse +/I(f) (dashed line).
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Figure 6.19: Sonogram +/Ipp.troc(7T, F') for the original uncompressed pulse calcu-
lated by the pulse reconstruction algorithm.

able from the measurement, and an accurate time-domain representation of the pulse
can be obtained by using the spectral phase retrieved by the algorithm together with

the measured spectral amplitude.
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APPENDIX A

Ambiguities in SHG-FROG

The SHG-FROG geometry has a number ambiguities. By an ambiguity we mean that
a certain change of the envelope A(t) has no effect on the SHG-TROG trace and the
algorithm could thus converge to this solution. The following ambiguities are present

‘and can be easily verified upon substitution into (4.19).

A phase offset by g
A(t) — A(t) exp(jipo) | (A.1)

A shift in time by t,
At) — A(t —ts) (A.2)

A complex mirror image of A(t)
A(t) — A*(—1) (A.3)

The first two ambiguities are trivial and of no concern in ultra-short pulse mea-
surements as they repfesent a constant phase offéet and a delay in time. The third
ambiguity reverses the direction of time for the pulse and it returns the wrong sign on
the phase of the pulse. Due to the fact that there is no difference in the spectogram,
the pulse reconstruction algorithm can converge to either A(¢) or A*(—t¢). There is
no way to identify this ambiguity, not even by looking at the spectrum of the pulse as
the spectrum that goes with A*(—t) is given by A*(f). Only if one would know the

spectral phase, it would be possible to distinguish whether the pulse reconstruction
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V:‘ algorithm has returned A(t){or A*(—t). This information is however not available
' frorﬁ a measurement of the intensity spectrum I(f) = |A(f)|2. One way to eliminate
this ambiguity in the direction of time and in the sign of the phase is by adding a
" ‘known amount of dispersion to the pulse and remeasuring the SHG-FROG trace.
For completeness, we calculate the FROG trace Iggg prog(F, T) that results from

the transformations

A(t) — A*(¢) (A.4)
and

A(t) — A(-1) (A.5)

The FROG trace for both transformation can be shown to equal

féHG-FROG (F,T) = TSHG-FROG(_F ,T)

_ (A.6)
= Isnc-rroc(—F, —T)

where TSHG_FROG(F, T) is the FROG trace that would be obtained for A(¢). In the
last equality we have used the fact that the SHG-FROG trace is symmetric in T

ISHG.FROG (F,T) = TSHG-FROG(F ,—T) (A7)

which can be easily verified. ,

The transformations of (A.4) and (A.5) thus lead to a TROG trace that is a flipped
version in both the T and F' direction of the TROG trace for A(t). Due to the fact
that these transformations lead to a different TROG trace, the algorithm will never

converge to either A*(t) or A(—t).
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APPENDIX B

Ambiguities in DP-TROG

The DP-TROG geometry has a number ambiguities. By an ambiguity we mean that
a certain change of the envelope A(f) has no effect on the DP-TROG trace and the
algorithm could thus converge to this solution. The following ambiguities are present

and can be easily verified upon substitution together with (5.20) into (5.19).

A phase offset by g

A(f) = A(f) exp(jpo) (B.1)
A shift in frequency by f,
A(f) = Af - 1) (B2)
A mirror image of A(f)
A(f) = A=f) (B3)

The first two ambiguities are trivial and of no concern in ultra-short pulse measure-
ments as they represent a constant phase offset and an effective shift of the carrier
frequency fo. The third ambiguity reverses the direction of time for the pulse upon
inverse Fourier transformation. This ambiguity can however easily be identified by
comparing the reconstructed intensity spectrum with the measured one. If one is the
mirror image of the other, the algorithm retrieved A(—f) and A(—t) and the pulse
would have to be flipped in the time- and frequency-domain to obtain the correct
one. So for the DP-TROG method there is no ambiguity in the direction of time in
contrast to SHG-FROG.
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For completeness, we calculate the TROG trace INp.rroc(T, F) that results from

the transformations

A(f) = A() (B4)

and

A(f) = A (=f) (B.5)
The TROG trace for both transformation can be shown to equal

pp-troc (T, F) = Ipp.troG (=T, F)
= Ipp.troc(T, —F)

(B.6)

where Ipp.rroc(T, F') is the TROG trace that would be obtained for ;(( ). In the
last equality we have used the fact that the DP-TROG trace is centro-symmetric in

T and F
Inp.troc(T, F) = Ipp.troc (=T, —F) (B.7)

which can be easily verified.

The transformations of (B.4) and (B.5) thus lead to a TROG trace that is a flipped
version in either the T or F direction of the TROG trace for A(f). Due to the fact
that these transformations lead to a different TROG trace, the algorithm will never

converge to either Z_* (f) or A*(—f).



