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Abstract 

In the past ten years, polymerizeable amphiphiles have been recognized as an 

important class of synthetic phospholipids due to their ability to modify the mechanical 

and chemical stability of membranes. The motivation behind studies of polymerizeable 

phospholipids is based on the potential importance of stable membranes in a wide 

variety of applications including reactivity control, encapsulation technologies and drug 

delivery. However, compared to nonpolymerizeable lipids, there is a relative paucity of 

information correlating membrane physical properties with the structure of the 

polymeric lipid. The present investigation involves the synthesis of a series of disulfide 

polymerizeable phosphatidylcholines, the characterization of the physical properties of 

membranes formed from these lipids, and an investigation of the biodistributions, 

vascular clearance rates and degradation rates of these liposomes in vivo. 

The structures of the lipids under investigation are analogous to saturated 

phosphayitdylcholines but with a thiol either alpha to the carbonyl of the acyl chain (a

THIOL) or at the chain terminus (CO-THIOL). It is found that the presence and position 

of the polymerizeable moiety drastically alters the physical characteristics of the 

membranes. A variety of physical techniques have been utilized to understand both the 

bulk properties of the lipids such as morphology and permeability, as well as the 

molecular details of the lipid conformation and dynamics. On the basis of such studies 

including Raman, FT-IR and DSC, it appears that the presence of the polymerizeable 

group at the interfacial region ( a-THIOLS ) causes a reduction in the lipid packing and 

an increase in chain disorder compared to nonpolymerizeable analogs. For the 

monomeric form of the a-THIOLS, the decreased interlipid interaction may be ascribed 

to the presence of an additional hydrophilic pendant group at the interface that interferes 
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with tight crystalline packing, most likely by a combination of steric and hydration 

effects. In contrast to the general expectations for polymerized versus nonpolymerized 

phospholipids, upon polymerization, the membrane disorder is augmented even 

further. We believe this to be a consequence of the conformational restrictions of 

polymerization which inhibit the ability of the polymeric lipids to adopt a highly ordered 

and uniform packing state. Instead it is suspected that the reduced conformational 

freedom of polymerized lipids promotes the formation of surface defects between 

unlinked polymer chains. As a morphological consequence, the polymeric a-

THIOLS tend to form smaller and largely unilamellar vesicles on dispersion in water. 

Furthermore because of the disorder in the hydrocarbon chain region, they are quite 

permeable to entrapped solutes and when administered in vivo, are cleared rapidly from 

the circulatory system. The latter effect is likely the result of facilitated absorption of 

opsonizing proteins into the disordered membrane surface which subsequently 

accelerates vascular clearance and uptake by the cells of the reticuloendothelial system 

(RES). 

On the basis 3lp NMR relaxation measurements, it was observed that the motion of 

the headgroups in polymeric a-THIOLS was reduced relative to nonpolymerizeable 

analogs. Furthermore a reduced chemical shift anisotropy of polymeric a-THIOLS in 

the liquid-crystalline state relative to nonpolymerizeable lipids was observed and 

suggests an alteration in the average orientation of the headgroup for the polymer. 

Because the headgroup of phosphatidylcholines is zwitterionic, changes in the average 

orientation can have marked effects on the electrostatic properties of the membrane 

surface, which in turn can affect membrane morphology and interactions with cell

surfaces and proteins. 

For ro-THIOLS, a distinctly different behavior was observed compared to the a

THIOLS. For the monomers and especially the polymers, results from vibrational 
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spectroscopy and DSC suggest that the membrane conformational order and rigidity 

is increased relative to nonpolymerizeable phosphatidylcholine analogues. However, 

in contrast to the a-THIOLS that form normal self-sealed liposomal structures in both 

the monomeric and polymeric state, polymerization induces the transformation of ro

THIOLS into bilayer fragments lacking an internal aqueous compartment. The most 

likely explanation for this was derived from 13C NMR relaxation experiments, which 

indicated that the mobility at the bilayer midplane of polymeric ro-THIOLS is as 

restricted as the interfacial region. This contrasts to nonpolymerizeable phospholipids 

and a-THIOLS, which have the bilayer interior as the most fluid portion of the 

membrane. The rigidity at the midplane may prohibit the ability of the polymeric ro

THIOLS to form curved or continuous multilamellar sheets or to respond to transient 

defects in the membrane without fragmentation. 

An interesting and unexpected result concerning the ro-THIOLS was retention of a 

phase transition after polymerization. For most polymeric lipids that have the 

polymerizeable moiety at the chain terminus, polymerization has resulted in the 

disappearance of the transition due to crosslinking of the hydrocarbon chains. The 

presence of the transition in polymerized ro-THIOLS may be evidence for the fact that 

polymerization results in a predominance of intra- rather than inter-leaflet coupled 

chains. 
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Chapter I 

Since the original discovery in the 1960s that certain phospholipids when dispersed 

in water, form concentric bilayers separated by aqueous compartments (liposomes or 

vesicles) there has been a tremendous effort directed toward membrane research. In the 

biological sciences, the similarity between liposomes and cell membranes have led to 

their use as simplified model membranes for studies of various processes including 

membrane fusion (1-4), protein structure and function (5,6), and cellular recognition 

(7,8). Also, the compartmentalized nature of liposomes has been particularly attractive 

for biophysical studies of reconstituted membrane proteins involved in vectorial 

processes such as proton pumping and molecular transport (9,10). 

In addition to purely academic studies, many technological applications have been 

envisioned. These include liposomes for reactivity control (11-13), solar energy 

conversion (11), as semiconductors (14,15), and as erythrocyte substitutes for oxygen 

transport (16-18). Perhaps, however, the most interesting and promising potential of 

liposomes is in drug delivery (see references 19-23 for reviews). Several therapeutic 

and diagnostic delivery strategies have in fact been conceived and developed including: 

(i) targeted delivery to designated tissues via liposomes modified with specific 

recognition elements such as antibodies, carbohydrates and peptides (the most coveted 

and complicated delivery scheme) (24-30) (ii) passive delivery of liposomes to highly 

metabolic (i.e. tumors) or anatomically accessible cells (31) and (iii) slow release of 
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drugs and other materials from liposomes circulating in the blood and lymph, or 

resident in particular tissues (32,33). In addition to the obvious advantages inherent in 

the various delivery schemes, additional benefits of liposomal delivery include the fact 

that many types of materials (drugs, enzymes, immunomodulators, e.g. lymphokines) 

may be entrapped in a single type of liposome and transported into cells via liposomal 

endocytosis, thereby circumventing the pharmacokinetics of the encapsulant and 

alleviating any difficulty the unentrapped material might otherwise have in crossing the 

cell membrane. Secondly, because the liposomes prevent entrapped material from 

ubiquitous uptake by all cell types, diseased or healthy, drug toxicity is often reduced 

as is the required dose for efficacy. Finally, encapsulation of the drug inhibits 

enzymatic degradation. Given the possibility of using such simple delivery systems to 

home in on diseased cells such as malignant and aids-infected cells, or to deliver 

activating factors to the immune system in an effort to stimulate the body's own defense 

mechanisms, it is easy to understand the interest in implementing liposome technology. 

This area is in fact a major theme of the research efforts of the Baldeschwieler group, 

and an underlying motivation for the studies presented in this thesis. 

Unfortunately, the simplicity of the ideas are equalled by the complexity of their 

implementation. Whether for pure biophysical studies or drug delivery applications, a 

major caveat of liposomes which has prevented their widespread application has been 

their general instability with regard to leakage of entrapped material, chemical 

degradation, membrane fusion, and suceptibility to mechanical stress. Fundamental 

studies on the correlation between liposome composition and the above properties have 

demonstrated that the most stable liposomes are promoted by saturated gel-state 

phospholipids and cholesterol (34). In synthetic efforts to achieve greater chemical 

stability, the susceptible ester linkage of phospholipids has been replaced by ether, 

carbamyl, and alkyl linkages with the desired results (35-38). More recently, the 
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concept of polymerizeable phospholipids has been introduced in an attempt to 

circumvent all of the above obstacles. Since their initial conception, many different 

types of polymeric lipids have been designed (for a review see reference 62) using a 

variety of polymerizeable moieties (diacetylene, butadiene, methacrylate, amide and 

thiol groups) positioned at various locations along the lipid chain or in the headgroup 

(39-62). A schematic drawing of representative polymerizeable lipids is shown in 

Figure 1. In many cases, polymerized liposomes have shown superior resistance to 

chemical and mechanical degradation, solubilization by organic solvents, and fusion, 

than have non-polymerized liposomes. This would be expected particularly for highly 

cross-linked lipid matrices. Liposome permeabilities have also been generally reduced 

for polymeric liposomes compared to their monomeric counterparts. On the other 

hand, while few studies have made direct comparisons with nonpolymerizeable 

liposomes, it appears that relative to nonpolymerizeable liposomes, permeabilities are 

rather structure dependent - sometimes worse, sometimes better. Nonetheless, the use 

of polymerizeable lipids as surrogate membranes seems a promising approach to 

obviating the difficulties encountered with nonpolymerizeable liposomes. 

Unfortunately, there is at present a huge number of polymeric lipids which have been 

synthesized and a relative paucity of data concerning the relationship between lipid 

structure and the membrane physical properties, thus making difficult a priori 

prediction of what types of lipids will yield the desired characteristics. 

For this reason, the main objective of the work described in this thesis was to 

examine systematically and in detail, the physical properties of a particular class of 

polymerizeable phospholipids. Since our long range goals include the use of liposomes 

as drug delivery systems, their in vitro behavior was also studied. The class of 

polymeric lipids we have chosen to evaluate were thiol-containing lipids shown in 

Figure 2 (A and B). These lipids (where N=l 1,16 for A and N=l6 for B) were 
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originally synthesized and studied in the Regen group (49,51) and have been extended 

here to include a wide range of chain lengths. In addition, we have also prepared mixed 

chain dimerizeable phosphatidylcholines as shown in Figure 2 (C and D). Our reasons 

for choosing to study this particular type of lipid was based on the considerations 

summarized below. 

(i} The nature of the polymerization is such that lipids with widely varying 

chain lengths may be readily synthesized. This offers many possibilities for systematic 

studies of structure-property relationships, and the ability to manipulate the lipid 

physical state. Not only can one alter the thermal properties of the lipids (such as the gel 

to liquid-crystalline phase transition temperature) but different aggregate morphologies 

may also be formed by appropriate choice of chain length. Saturated lecithins with 

chain lengths N=l2 to 16, for example, are known to form bilayers with gel to liquid

crystalline transition temperatures ranging from -1.80 (N=12) to 54.70 (N = 18) (63). 

For acyl chain lengths N = 6 to 8, micelles are formed above a critical micelle 

concentration (64,65). If similar trends are exhibited by polymerizeable lipids, it should 

be possible to prepare both polymeric liposomes and polymeric micelles. Micelles, due 

to their (i) generally smaller size and (ii) ability to solubilize hydrophobic solutes, 

could conceivably provide interesting alternatives to liposomal drug delivery systems 

for the transport of hydrophobic drugs and other water-insoluble materials to target 

tissue. In this regard polymeric micelles should be much more stable than 

nonpolymerized micelles due to the fact that they do not possess a critical micelle 

concentration below which only monomers are obtained. 

(iij The ability to alter the position of the polymerizeable group may provide 

an additional "handle" with which to manipulate and study the physical properties of the 

membrane. As an example, for lipid B (referred to as a-THIOL or a-N where N is the 

length of the acyl chain), polymerization may occur only within a given leaflet of the 
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Figure 1 

Schematic representation of some polymerizeable lipid structures which have been 

described in the literature. 
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Figure 2 

Structure of the disulfide polymerizeable phosphatidylcholines studied in this 

thesis: A. 1,2-di(N-mercaptoacyl)-L-a-phosphatidylcholine (ro-THIOL); B. 1,2-di(2-

mercaptoacyl)-L-a-phosphatidylcholine (a-THIOL); C. 1-(N-acyl)-2-(N-mercapto

acyl)-L-a-phosphatidylcholine (mixed-chain ro-THIOL); and D. 1-(N-acyl)-2-(2-

mercaptoacyl)-L-a-phosphatidylcholine (mixed-chain a-THIOL). N refers to the 

number of carbons in the acyl chains. Throughout the thesis, the notation for the ro

THIOLS and a-THIOLS is ro-N and a-N, respectively, to denote both the position of 

the polymerizeable moiety and the length of the acyl chains. 
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Figure 3 

Schematic of polymerized liposomes and micelles of a-THIOLS and ro-THIOLS: 

A. polymerized ro-THIOL liposome; B. polymerized a-THIOL liposome; C. 

polymerized ro-THIOL micelle; and D. polymerized a-THIOL "micelle". 
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bilayer. By contrast, for lipid A (referred to as ro-THIOL or ro-N) there is a 

possibility for polymerization across the two leaflets as well. This is depicted in Figure 

3, which shows what one might envision for polymeric micelles and liposomes 

composed of these two lipid types. To consider the potential consequences of this, one 

should contrast these lipids with conventional nonpolymerizeable lipids. In the case of 

the a-THIOLS, an interesting analogy with nonpolymerizeable lipids is the fact that 

the disulfide group is positioned near the interfacial region, which is the most rigid part 

of a normal bilayer (66,67). Thus one might expect the a-THIOLS to retain the fluidity 

gradient observed for most phospholipid membranes. By contrast, the ro-THIOLS 

should have restricted motion by virtue of polymerization at the bilayer midplane, 

which is generally the most fluid portion of biomembranes. In that respect, ro-THIOLS 

are similar to some methacrylate-based lipids that also have polymerizeable groups at 

the chain terminus. The effects of such alterations of chain length and position of the 

polymerizeable group on morphology, membrane fluidity, chain mobility and 

permeability will be addressed in subsequent chapters. 

(iii) Finally, the disulfide linkage is biodegradable, which is an important 

consideration for in vivo use. Diacetylene, butadiene, and methacrylate-based 

liposomes may not be degradable by the cellular machinery of the body, with potential 

toxic consequences. Furthermore, given a liposome that is stable under the conditions 

of an in vivo experiment (i.e. 37°C, in serum), once inside the target cell, some type 

of mechanism is necessary to release entrapped material. In the absence of passive 

leakage (which is undesirable because that implies release of entrapped solutes will be 

continuous prior to localization in the target tissue) it is not clear what mechanisms 

would bring about degradation of such liposomal matrices to release the contents. 

Ringsdorf et al. have devised a clever "corked liposome" composed of a phase 

separated mixture of fluorinated butadiene lipids and disulfide-linked single chain 
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amphiphiles (68). Treatment of the liposomes with reducing agents such as dithionite 

cleaves the disulfides into water soluble lysolipids, which are leached out of the 

membrane, leaving behind "holes". Presumably, in an in vivo experiment, once inside 

the target tissue, similar mechanisms would be operative to dispense the entrapped 

material. As an alternative, a purely disulfide based liposome should be completely 

degradable once inside the reductive environment of a tumor or subject to the high 

concentrations of reductases known to be present in the lysosmal compartments of most 

cells. Thus we chose to study the lipids illustrated in Figure 2. The thesis is divided 

into several chapters, which address the following issues: 

Cfiapter II: In chapter II, we examine the mophology of the polymeric lipids to confirm 

formation of their expected lamellar or rnicellar structures and to evaluate their sizes. 

Expectations are based on the known morphologies of nonpolymerizeable analogs and 

the initial reports of Regen et al. for a-16, C0-11 and ffi-16. In actuality, however, a 

variety of aggregate structures may be formed by arnphiphiles depending on the details 

of their molecular structure such as head group size, charge and hydration, as well as 

chain length and degree of unsaturation (69). Useful theories have been developed that 

allow prediction of the morphologies formed by lipids and lipid mixtures based 

essentially on these features but which have been generalized into less precise 

designations of molecular geometry (i.e. headgroup area, chain length and volume) (69-

71). Morphologies that are pertinent to this thesis are illustrated in Figure 4. The basic 

unit of lamellar structures (Figure 4, A and B) is the bilayer that consists of two 

opposed sheets of lipid where the hydrocarbon tails are sequestered toward the 

membrane interior away from water, and the hydrophilic headgroups exposed to the 

aqueous medium (see insert). Typically, upon dispersion in water, long chain 

phosphatidylcholines (N=12-18) form large ( 5 to 20 µm) self-sealed concentric 

lamellae separated by aqueous compartments, structures commonly referred to as 
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Figure 4 

Schematic diagram of the types of lipid morphologies that may be formed on 

dispersion of phospholipids in water. A. Multilamellar vesicles (ML Vs) B. Small 

unilamellar vesicles (SUVs) C. Hexagonal phase tubules; and D. Micelles. 
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multilamellar vesicles or ML Vs (Figure 4A). Sonication, pressurized filtration (72), 

reverse evaporation from organic solvent {73)and other methods {74,75)can be utilized 

to reduce the ML Vs to unilamellar vesicles consisting of small or large single bilayers 

( SUVs and LUVs, respectively) enclosing an aqueous compartment (Figure 4B). 

Certain lipids and lipid mixtures have also been found to promote spontaneous 

formation of unilamallar vesicles (76,77). By contrast, short chain lipids (N = 6-8) or 

single chain amphiphiles with bulky or charged headgroups form spherical or 

ellipsoidal micelles on solubilization in water (Figure 4D). These structures are 

characterized by a generally smaller size (20-lOOA ), a lack of an internal aqueous 

compartment, and are considered to be in dynamic equilibrium with the monomeric 

species on a much faster time scale than lipids in lamellar phases. The third most 

commonly encountered morphology is that of the hexagonal II phase or reversed 

micelles shown in Figure 4C. While important structures, particularly in regard to 

membrane fusion, these will not be discussed. Throughout this thesis, we will be 

concerned primarily with lamellar structures and to a lesser extent, micelles. 

A variety of techniques were used to discriminate among the various macroscopic 

aggregates. Electron microscopy is particularly useful for visualizing both unilamellar 

and multilamellar structures and was a primary tool used in this investigation. Micelles 

are not readily observed by this technique due to their small size, fragility, and less 

well-defined morphology. Therefore, encapsulation of aqueous solutes was also used 

to distinguish between lamellar and micellar structures via the presence or absence of an 

aqueous compartment. Quasi-elastic light scattering, which measures the Brownian 

motion of the particles, was a useful adjunct to electron microscopy for particle sizing. 

Finally, 3lp NMR spectra of lipid dispersions was used to identify the presence of 

morphological or size changes in lipid dispersions. This is possible due to the fact that 

lipid dispersions generally give rise to assymetric powder patterns or broadened 
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symmetrical peaks due to incomplete motional averaging of the chemical shift tensors 

and dipolar interactions. The shape of the powder spectra is generally diagnostic of the 

presence of lamellar, hexagonal and micellar phases, but is also sensitive to aggregate 

size, head group motion, and head group orientation with respect to axis of motional 

averaging (78·80). 

Cfiapter III: In chapter III, the phase transition behavior of the polymeric liposomes is 

described. The significance of the information derived from these studies will be more 

apparent after a brief introduction to the nature of the molecular reorganizations that 

occur during the so-called gel to liquid-crystalline transition: 

For a typical phosphatidylcholine in the gel state (Figure 5), the lipids are packed in 

well-ordered crystalline arrays characterized by an extended all-trans configuration of 

the chains* . As the temperature is raised, at some point an endothermic phase transition 

occurs during which the chains become highly disordered by a lateral expansion of the 

lipids, a decrease in the bilayer thickness, and the introduction of trans-gauche 

rotational isomers in the chain (81). The temperature at which the gel to liquid

crystalline phase transition (Tm) occurs and the enthalpy (~H) associated with it has 

been extensively studied and demonstrated to depend on the details of the molecular 

structure of the lipid (chain length, degree of unsaturation, head group size and charge) 

and to reflect the intermolecular interactions of the lipids in the bilayer. In general, for 

phosphatidylcholines such as those used in this study, increasing the chain length 

increases the transition temperature and enthalpy as would be expected for increased 

van der Waals interactions between the chains. Unsaturation of the chains which 

increases the effective molecular volume of the chains and reduces the intermolecular 

*For simplicity, we ignore the poorly understood pretransition, which has been associated with the 
change of the chains from a tilted (all-trans) orientation with respect to the bilayer normal to a 
perpendicular orientation. The pretransition is a lower enthalpy transition than the nmainn or gel to 
liquid-crystalline transition. 
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Figure 5 

Schematic representation of the change in bilayer dimensions and lipid 

conformation on passing between the gel and liquid-crystalline phases. 
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interactions via the introduction of gauche-gauche bends, drastically decreases the Tm 

and LUI. As an example, DSPC, an 18-carbon saturated phosphatidylcholine (PC), has 

a Tm and a LUI of 54.9 °C and 10.7 kcal/mole, respectively, while DOPC, a 

monounsaturated 18-carbon analogue has corresponding values of -22 °C and 7.6 

kcal/mole. 

The morphology of the lipid (SUVs, LUVs or ML Vs) has also been found to affect 

the thermal properties. For example, multilamellar vesicles give rise to transitions that 

are sharper and elevated by~ 5 degrees relative to SUVs due to the disorder in the 

latter, which is thought to arise from the packing constraints imposed by the small 

radius of curvature (81,82). Clearly evaluation of the parameters and characteristics 

associated with the gel to liquid-crystalline phase transition can provide abundant 

information concerning the molecular organization of the lipids in the bilayer and how it 

is affected by modifications of the lipid structure. In this study we were particularly 

interested in the effect on the thermal properties of the addition of the sulfhydryl groups 

in the monomeric lipids compared to nonpolymerizeable phosphatidylcholine 

analogues, and the effect of subsequent polymerization. Furthermore, the position of 

the polymerizeable group should have a marked effect not only on the temperature of 

the phase transition, but on its presence or absence as well. One might expect to 

observe a phase transition for the a-THIOLS whereas polymerization of the ro

THIOLS could conceivably result in restricted chain motion such that no transition is 

observed. 

The wealth of structural information one can derive from analysis of the thermal 

properties is not the only motivation for these studies. Knowledge of the position of the 

temperature of the phase transition is critical for encapsulation technologies since it is 

well known that release of entrapped material as well as vulnerability to lipoproteins, 

and lipases is maximal at the phase transition (34}. This is thought to arise from the fact 
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that at the transition temperature, 50% of the lipids are in the gel state and 50% are 

liquid-crystalline. It is believed that the boundaries between the two domains give rise 

to poorly organized regions of the bilayer that are highly susceptible to disruption and 

through which rapid leakage can occur. Consequently, it is important to know if the 

position of the transition coincides with temperatures the liposomes will be subject to 

for particular applications (i.e. room temperature and 37°C for in vivo use). 

Several methods were were used to study the thermal properties of the 

polymerizeable lipids. While many provide similar data (i.e. Tm), all contain 

complimentary information. The most straightforward way to examine the thermal 

transitions is by differential scanning calorimetry (DSC), a technique that monitors the 

excess heat absorbed by a system as it goes through a transition. The information one 

can derive from such studies includes the position and breadth of the phase transition, 

the enthalpy, and the cooperativity, all of which are useful in understanding the 

structure and organization of membranes, polymeric or not. Fluorescence polarization 

as a function of temperature is also a common method for determining the phase 

transition temperature (82). In addition, steady-state polarization of fluorescent probes 

(i.e. diphenyhexatriene (DPH)) embedded in the bilayer can be used to examine the 

"fluidity" and fluorescence order parameters of membranes as a function of 

composition, and to detect membrane perturbations induced by the addition of other 

components such as cholesterol (83). 

Cfi.apter I'll. Having established some of the general properties of the polymerizeable 

lipids shown in Figure 2, one can begin to ask more direct questions concerning the 

molecular rather than bulk properties of these iipids. In Chapter IV, Raman and Fr

IR were utilized to examine the chain packing and conformation of the acyl chains in 

monomeric and polymeric a- and ro-THIOLS compared to model membranes. The 

information derived from these studies (are the lipids ordered or disordered and what 



22 

happens on polymerization?) are then evaluated in light of the investigations of Chapter 

II concerning the thermal and release properties of these lipids. 

Cftaper o/ and 'VI. In Chapers V and VI, the dynamic properties of the polymeric 

membranes are studied. Chapter V describes spin-lattice relaxation and linewidth 

studies by Be and lH NMR, which are intended primarily to (i)examine the effect of 

polymerization on the motions of the acyl chains and the regions of the membrane 

surrounding the polymerizeable moiety and (ii) to examine if the polymeric lipids 

possess a mobility gradient from the glycerol backbone to the acyl chains. The latter is 

a characteristic feature of most natural and synthetic biomembranes and may be largely 

correlated to the gross morphological features of the polymerized lipid aggregates 

investigated in Chapter II. 

In Chapter VI, the dynamics (and conformation) of the headgroup are examined. 

Our particular interest in the properties of the headgroup stem from the fact that it is at 

the membrane interface where interactions with proteins, cell surfaces and other 

biological materials initially take place. Furthermore, from a more fundamental 

viewpoint, we were curious as to the effect of polymerization, on the motions and 

conformation of the headgroup. Are we just modifying the hydrocarbon interior or are 

remote portions of the membrane affected? A number of studies have suggested that the 

spin-lattice relaxation of the headgroup phosphate moiety can be accounted for by a 

single correlation time on the order of nanoseconds for reorientation about the P-0 

bond adjacent to the glycerol backbone (84). Based on these results, one might not 

expect a major effect on the mobility of the choline headgroup due to polymerization at 

either the interface (as in the a-THIOLS) or in a distant position such as at the chain 

terminus in the co-THIOLS. In Chapter VI, these questions are addressed by a variety 

of experiments including: 
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(i}The temperature dependence of the 3lp spin-lattice relaxation time to find the 

minimum in the Ti profile. This enables a direct determination of the effective 

rotational correlation time ('tc) of the headgroup because at the minimum, 'tc is on the 

order of the inverse of the larmor frequency. 

(ii} Evaluation of 31 P NMR powder spectra of unsonicated dispersions of the 

polymerized lipids versus nonpolymerizeable analogues to examine conformation and 

mobility at various temperatures. 

(iii} The cross polarization time ('tpH) for transfer of magnetization from 

vicinal protons to the phosphorous of the headgroup. As in (i}, 'tpH reflects the 

dynamics of the headgroup. Thus we can examine differences in the cross polarization 

rates for polymeric versus monomeric phospholipids. 

Cfiapter o/II. In Chapter VII is a description of the in vivo experiments which were 

carried out to examine the potential of these lipid systems as drug delivery vehicles in 

laboratory animals. In particular, Perturbed Angular Correlation Spectroscopy (PAC) 

was used to examine the blood clearance rate, the biodistribution and the intracellular 

degradation rates of intraveneously injected polymerized versus nonpolymerized SUVs. 

The motivation behind these experiments was to see if polymerization might extend the 

lifetime of liposomes in the blood and thereby enhance passive targeting of liposomes 

to extravascular tissues other than the liver and spleen. In addition, polymerized 

multilamellar vesicles were also prepared to investigate their utility as slow release 

systems since polymerization would be expected to slow the rate degradation and 

release of entrapped solutes relative to nonpolymerizeable analogues. The latter 

experiments therefore included investigations of the tissue distributions, clearance rates 

and most importantly, intracellular degradation rates of polymeric and nonpolymeric 
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ML Vs. The results of these experiments are discussed in light of what has been learned 

from the investigations described in chapters II through VI. 

Cliapter o/II!. The work in Chapters II through VII was exciting and extremely 

educational. Chapter VIII describes the painful synthesis and polymerization of the 

compounds under study. 
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Chapter II 

MorplioCogica{ Properties of .Ytqueous 'Dispersions of 'Disulfiae Po{ymerizea 

Pliospliatitfy{clio{ines 

INTRODUCTION 

Attempts to stabilize synthetic phospholipid membranes via polymerization has 

resulted in a tremendous library of synthetic polymerizeable lipids (1-12). Some of 

these include methacryl, diacetylene, butadiene and vinyl-based lipids, polymerizeable 

in the acyl chain. Typical structures were shown in Figure 1 (Chapter I). In most 

reported cases, polymerization of the monomeric liposomes proceeded with retention of 

the original lipid morphology. With chain-terminating polymerizeable groups such as in 

Figure lA (Chapter 1), this is quite surprising since the resulting structure would seem 

to defy an elementary feature of basic bilayers or micelles that have the bilayer midplane 

as the most mobile portion of the membrane. Despite retention of the bilayer structure, 

however, imposition of the polymerizeable moieties in the hydrocarbon region 

modifies the membrane interior to some extent as has been shown by reduction or loss 

of the phase transition and restricted motion of the chains (13-15). For some 



32 

applications this may be advantageous. For example, it is known that leakage of 

entrapped materials and susceptibility to lipases and lipoproteins is maximal at the phase 

transition and generally greater for fluid versus well-packed crystalline bilayers (16-20). 

Thus for in vivo use, an immobilized hydrocarbon region might be desirable. On the 

other hand, for reconstitution of proteins, a fluid bilayer interior may be critical to the 

proper functioning of the protein. 

To achieve the benefits of polymerization without compromising rudimentary 

aspects of conventional bilayers, lipids have been introduced with the polymerizeable 

moiety in the headgroup to allow decoupling of the polymerizeable group from the 

hydrocarbon chain (Figure lD, Chapter I). For some lipids containing methacryl 

headgroups separated from the glycerol backbone via ethylene oxide spacers or with 

amino acid headgroups, this was sufficiently successful such that liposomes could be 

prepared from prepolymerized lipids rather than by the usual route of polymerizing 

preformed vesicles (21-22). 

Our interest in biodegradable phospholipids for in vivo applications has prompted 

us to concentrate on the thiol-containing lipids originally synthesized by Regen et al. 

(Figure 2, Chapter I) (23-24). These lipids, which have the polymerizeable moiety either 

at the chain terminus (ro-THIOLs) or adjacent to the carbonyl (a-THIOL) are useful for 

further examinations of the effect of the position of the polymerizeable group on the 

morphology and other membrane physical properties. In the case of the ro-THIOLS, 

polymerization via oxidative disulfide formation should rigidify the bilayer interior 

(normally the most fluid part of the membrane) as do chain-terminating methacrylates. 

l nus, loss of the phase transition and immobilization of the chains might be anticipated. 

Furthermore, polymerization may occur both within a given leaflet as well as across the 

two leaflets of a bilayer . In the case of the a-THIOLS, the polymerizeable moiety is 

near the interfacial region, which in conventional bilayers is the most rigid portion (25). 
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Therefore the motions of the chains and headgroup may be relatively unaffected on 

disulfide formation. In contrast to the ro-THIOLS, polymerization of these lipids is 

restricted to intra-leaflet coupling. An illustration of what might be envisioned for 

polymerized bilayers and micelles was shown in Figure 3 of Chapter I. 

The structure of these lipids is conducive to modification of the chain length and we 

have therefore synthesized a reasonably sized homologous series for both types. This 

should allow a systematic study of the effect of both chain length and position of the 

polymerizeable group on the properties of the disulfide-polymerized membranes. In this 

chapter, we extend (and reevaluate) the initial investigations by Regen et al. on the 

morphological behavior of these thiol based phospholipids. Questions we wished to 

address in this study include: 

(i) Can we form liposomes from intermediate and long chain lipids and are 

the morphologies of the unpolymerized aggregates retained upon polymerization? In the 

case of the ro-THIOLS, we can test the importance of chain mobility at the bilayer 

midplane on the ability of polymeric lipids to maintain closed bilayer structures. 

(ii) Are micelles formed from short chain lipids in analogy to 

nonpolymerizeable phosphatidylcholines with N = 6-8? These types of structures may 

be of some utility for solubilization of hydrophobic materials within very small 

matrices or for reactivity control where interfacial activation is required but not 

compartmentalization (i.e. as for phospholipase activity (26}). 

(iii) Since the a-THIOLS have the polymerizeable group in the region of the 

membrane that is motionaliy restricted even in nonpolymerized biiayers, is their 

sufficient chain moblity such that liposomes may be formed from prepolymerized 

lipids? 
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(iv) What is the effect of "dilution" of the polymerizeable group on the 

membrane morphology? For these studies, dimer-forming mixed-chain lipids with the 

polymerizeable moiety only in the sn-2 chain and a saturated fatty acid in the sn-1 chain 

were synthesized. In addition, mixtures of the polymerizeable phospholipids and 

cholesterol were prepared and polymerized with the expectation that smaller oligomers 

would be formed in such mixtures than in bilayers of the polymerizeable lipids alone. 

A variety of standard techniques have been used to evaluate the morphology of the 

aggregates formed on dispersion of these lipids in water. These include electron 

microscopy, encapsulation experiments, gel permeation chromatography and dynamic 

light scattering. In addition, lH and 3lp NMR are utilized because the line shapes and 

widths are sensitive to the aggregate size and motions of the lipid components and 

therefore may be diagnostic of the presence of micellar, lamellar, and hexagonal phase 

structures or useful in assessing changes in the morphology of these structures with 

temperature, polymerization, or the addition of other components (27-31). 

MATERIALS and METHODS 

The synthesis of the thiol-containing liposomes is as described in Chapter VIII. L

a-dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and 

Dioctanoylphosphatidylcholine (D8PC) were purchased from Avanti Polar Lipids. 

Cholesterol (>99% purity) was obtained from Sigma. 3H-uridine was obtained from 

Amersham. Carboxyfluorescein was purchased from Eastman Kodak and purified by 

the method outiined in reference 32. Embedding reagents for thin section eiectron 

microscopy were purchased from Bioscience. All other reagents were of analytical 

grade and used without purification. 
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Sonicated vesicles were routinely prepared by hydration of the lipids in buffer (10 

mM Tris or HEPES, 135 mM NaCl, pH 7.4 or lOm M Borate, 135 mM NaCl, pH 8.5) 

above the phase transition. For monomeric lipids, the buffer was flushed with argon. 

This was followed by bath sonication with a Laboratory Supplies bath sonicator or 

Heat Systems 350W probe sonicator (depending on lipid type). During sonication, 

samples were placed under nitrogen and in a large room-temperature water bath to 

avoid excessive heating. Titanium particles and large liposomes were removed from the 

SUVs by centrifugation at 12000 x g for 5 min in an eppendorf centrifuge. 

Multilamellar vesicles or liposome dispersions were prepared by hydration of the lipids 

above the phase transition with intermittant vortexing for approximately 30 minutes. 

:Pof.~1merizat.ion o I Li;poso111.e.s. 

!Metfwd .9L. Polymerization of the thiol-containing phospholipid was carried out by 

the protocol outlined by Regen et al. with small modifications of temperature and 

concentration (23,24). Briefly, 5 mg/ml of samples were prepared by dispersion or 

sonication in borate buffer containing 20 equivalents of H102, pH 8.5. The samples 

were allowed to polymerize for 4-8 hours above the phase transition. a-THIOLS were 

polymerized 4 hours at 4ooc, 50°C and 60°C (a-16, a-18 and a-20, respectively). ro

THIOLS were polymerized at 4ooc (N=8-10), 45oc (N=ll), 55oc (N=l5) and 60°C 

(N=16). Some variations in temperature and length of polymerization have been utilized 

but are noted in the text. This method of polymerization was used unless mentioned 

otherwise. 

!Metliod 'B. Samples were prepared as dispersions in borate buffer (pH 7.4) 

containing 20 equivalents of H102. To this was added µliter amounts of a 0.025M 

Cu+22f-o-Phenanthroline solution until a slight pinkish tint was detected indicating the 
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presence of Cu+1(33). The solution was subsequently stirred at room temperature until 

it was a slight green tint and the pH began to drop, or the sample was thiol-negative as 

detected with Ellman's reagent. At this point O.lM EDTA (in 10 mM Tris, pH 7.4) 

was added to quench the reaction. The samples were dialyzed exhaustively with an 

Amicon dialysis chamber (YMlO filters), first with O.lM EDTA to remove copper ions 

and subsequently with H10/ MEOH to remove o-phenanthroline. The proton spectra 

of polymeric ro-11 in CDCL3fMEOH appeared similar to that of an H102-polymerized 

sample. Samples rehydrated after polymerization by this method seemed to produce 

smaller aggregate structures than samples prepared by method A, however. This was 

shown by preliminary gel permeation chromatography using calibrated columns and 

by lH NMR. Whether this is due to the polymerization or dialysis with organic solvent 

is not known. 

:Em::apsufatt..on of A.qtu?.ot.1-s Softi.tc..s. 

For studies involving entrapment of uridine, samples were prepared and 

polymerized as described above (Method A) except that the borate buffer contained 1 

mM uridine spiked with 10 µCi of 3H-uridine per 0.5mls of sample. Control 

monomeric liposomes were prepared in an analogous fashion with the exception that 

the hydrating buffer was HEPES (pH 7.4) containing 1 mM uridine and 10 µCi 3H-

uridine (no H102). Following polymerization, samples were dialyzed against an 

isotonic Hepes buffer for 24 h. The contents of each dialysis bag was then diluted to 

constant volume and aliquots taken for measurement of associated radioactivity. 

Carboxyfluorescein (CF) entrapment was attempted exclusively with 

prepolymerized liposomes. In general, 2.5 mg of lipid was hydrated with 0.5 ml 50 

mM carboxyfluorescein in Hepes buffer. Samples were warmed and intermittently 

vortexed above the phase transition temperature. For SUV s, hydration was followed by 
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bath or probe sonication. Unentrappd carboxyfluorescein was removed either by (i) 

dialysis against an isotonic buffer, (ii)pelleting the lipid 3-5 times from isotonic buffer 

by centrifugation or (iii)passage over sephadex G-25-50 spin columns (see Chapter 

VII for details of spin columns). Entrapped carboxyfluorescein was detected by the 

dequenching of fluorescence upon addition of 10% Triton-X 100. The fluorescence 

intensity was monitored on an SLM 4000 spectrofluorimeter with excitation and 

emmision wavelenghts of 470 and 520 nm, respectively. 

:Electron 11..i.croscovu. 

g..(g,gative Stain. Samples were prepared by applying a drop of lipid solution to freshly 

coated glow-discharged carbon grids. After ~ 30 sec, the excess was wisked away 

with filter paper and the samples allowed to dry 3-5 min. The grids were subsequently 

stained with 1 % uranyl acetate, ammonium molybdate, or phosphotungstic acid for 30-

60 s, blotted with filter paper and allowed to dry thoroughly. 

'.Freeze '.Fracture. Freeze fracture electron microscopy was done exclusively with 

prepolymerized samples. Lipids were hydrated at a concentration of approximately 10 

mg/ml in H20 above the phase transition for 15-30 minutes. The liposomes were then 

pelleted by centrifugation. For DPPC, centrifugation at 2000 rpm (swinging bucket 

rotors, IEC Centra-8 centrifuge) was sufficient to pellet the lipid. For a-THIOLS, 

which form smaller liposomes, ultracentrifugation (40000 rpm, SW50 rotors) was 

necessary. For ro-THIOLS, the samples were simply hydrated above the phase 

transition with a slight excess of H20 (i.e. as a paste). In order to prevent ice 

crystallization, 15-20% ethylene glycol was added to the samples immediately prior to 

freezing. Approximately 10 µls was then sandwiched between copper "hats" prepared 

from oxygen-free high conductivity copper. The samples were rapidly frozen in freon 

and transferred to the sample stage of a Balzers apparatus. The samples were 
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subsequently cracked, etched and shadowed with platinum and carbon. Additional 

carbon was applied for extra support as the samples warmed to room temperature. 

Replicas were separated from copper hats by dipping in DMSO. After thoroughly 

dissolving away organics and rinsing the replicas by flotation on distilled water, the 

replicas were transferred to formvar-coated grids. 

'I!iinSection. Samples for thin section were polymerized as described above. The lipid 

(C0-16) was spun down into a pellet in 1 ml eppendorf vials (12000 x g) and hydrated 

with 1 % Os04 (in isotonic HEPES) for 20 hat 8°C. The Os04 supernatant was then 

removed and the pellet washed in buffer and recentrifuged. 2% freshly prepared 

aqueous uranyl acetate was added and the pellets allowed to shake for 1 day at room 

temperaure. The uranyl acetate was subsequently removed and the pellets washed with 

water and recentrifuged. The samples were then dehydrated with a series of ethanol 

stocks (50,70,80,95 % (xl) and 100% (x4)) for 5 min each. Propylene oxide was 

added, shaken for 15 min and removed (x2). This was followed by the addition of 

50:50 epon /propylene oxide overnight. After replacing the epon/propylene oxide with 

fresh epon, the samples were left open to the air for several hours and subsequently 

hardened at 35 oc (overnight), 45 oc (8-12 h) and 60 oc (overnight). The bullets were 

were sectioned with glass knives and stained with 2% uranyl acetate (15 min) followed 

by lead citrate (15 min). 

All samples were visualized and photographed using a Phillips EM 201C 

transmission electron microscope. 

Determination of particle sizes was accomplished via dynamic light scattering using 

a Malvern 4700 light scattering system equipped with a goniometer, a 128 channel 

correlator and a 3 W Spectra Physics argon ion laser. 488 nm incident laser light was 
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used with the detector placed at 90 degrees relative to the incoming beam. Calculations 

of the particle size were based on the Stokes-Einstein equation using monomodal 

analysis with the software supplied by Malvern. Measurements are the average of three 

determinations. For certain very large particles (> 2000 nm), due to the polydispersity 

of the samples and the sizes outside the range of the instruments, sizes are simply 

denoted as > 2000 nm. 

For proton NMR, samples (=5 mg/ml) were hydrated with D10 (pH 6.8) or 

D10/.1M NaCL. In some cases, NaAc was included as an internal standard for 

integration purposes. Samples for 31p NMR were prepared in 10 mM Tris buffer 

containing 0.2mM EDTA. lH and 3lp NMR spectra were recorded on a Bruker AM-

500 at 500 and 202 MHz, respectively. 

For the proton spectra, a 45° excitation pulse (= 3 µs) and a 2.5 s repetition rate 

were used. When necessary, the HOD resonance was pre saturated. For experiments 

involving relaxation (Mn+2) or shift (Pf+3) reagents, µliter amounts of lOmM stocks 

of MnCl2 and Pr(N03)3 were titrated into 0.3-0.5 ml samples. Samples at room 

temperature were referenced to HOD at 4.63 ppm. At higher temperatures, the position 

of the choline resonance was assumed to remain constant and set to 3.1 ppm. 

Phosphorous spectra were acquired with inverse gated decoupling using a 90° pulse 

(=23 µs) and a 4 s recycle delay. During acquisition, 30-40W of continuous or broad 

band proton decoupling was employed. 

RESULTS 

tt.orphoC091J of a-TJf1.0L8. 
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The preparation conditions, sizes and entrapment characteristics of polymeric and 

monomeric a -THIOLS (N = 16-20) are summarized in Table I. Monomeric a-

THIOLS (N= 16-20) formed turbid solutions on dispersion in buffer and opalescent 

small unilamellar vesicles after bath (N=16) or probe (N=18,20) sonication as indicated 

by their sizes and ability to encapsulate aqueous solutes. Consistent with reports by 

Regen et al. for a-16, the sizes of all three vesicle types was retained after oxidation of 

the thiol groups. This is shown by the similarity in the chromatographic profiles 

(Figure 1) and electron micrographs (Figure 2) of monomeric and polymeric a-16 

SUVs as well as the negligible differences in the light scattering data for a-20 SUVs 

before and after polymerization (Table I). The electron micrgraphs in Figure 3 of 

monomeric a-10 SUV s show that even very short chain lipids can form liposomes. 

Liposomes prepared from prepo{ymerized a·'I!JffOLS. Ringsdorf et al. have shown that if 

one can minimize the interference of polymerization with the ordering of the lipid 

chains, in some cases it may be possible to produce liposomes from prepolymerized 

lipids (21,22). The results of the experiments described above and the fact that the phase 

transitions of the a-THIOLS are only slightly shifted and broadened upon 

polymerization (shown in Chapter III), suggested minimal perturbation of the chain 

packing. Therefore, attempts were made to prepare liposomes from a-THIOLS which 

had first been oxidized as multilamellar dispersions and lyophilized. From aqueous 

dispersions of the lyophilized powders liposomes were indeed produced. Interestingly, 

the unsonicated dispersions were routinely more optically clear and obviously smaller 

(according to light scattering data) than the dimensions of monomeric a-THIOLS and 

particularly compared to nonpolymerizeable phosphatidylcholine dispersions (Table 
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Table 1 

Summary of the sizes and entrapment characteristics of monomeric and polymeric 

a-THIOLS . The polymerized a-20 SUVs were sonicated prior to polymerization. 

Polymerized ML Vs were samples that had been polymerized, lyophilized and 

redispersed. 



Lipid PrepllJ1lti()n Size (nm) Entrapment of CF 

a-20 (M) SUV's Before Polymerization 71.5 ± 2.0 + 

a-20 (P) SUV's After Polymerization 81.4± 1.0 + 

a-20 (M) MLV'sa 838 ± 15 
+>-

+ N 

a-20 (P) MLV'sa Prepolymerized 363 ± 3 + 

a-18 (P) ML V'sa Prepolymerized 249±5 + 

a-16 (P) ML V'sa Prepol ymerized 468 ± 17 + 
DPPCMLV'sa >2000 + 
asamples were 1.25 mg/ml in .15 NaCL 
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Figure 1 

Elution profile of a-16 SUVs on a sepharose 4BCL column: A. before 

polymerization; B. after polymerization. Peaks below 30 ml correspond to that of the 

lipid while peaks above 30 ml are from the buffer. The separation was carried out on a 

30 x 1.2 cm Sepharose 4BC1 column to which was added 0.5-1.0 mls of a liposome 

solution. The presence of lipid in the column was monitored using a UV detector (A-

280 nm). 
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Figure 2 

Negative stain electron rnicrographs of: A. Unpolyrnerized a-16 and B. Polymerized 

a-16. 
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Figure 3 

Negative stain electron micrographs of monomeric a-10 SUVs. 
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I)*. Furthermore on sonication of prepolymerized dispersions, small vesicles were 

formed even more readily than vesicles sonicated from the respective monomers. The 

electron micrographs in Figure 4 show a-20 SUVs prepared by (A) sonication 

followed by polymerization of the monomeric lipid and (B) sonication of the . 

prepolymerized lipid. Smaller vesicles were clearly obtained more quickly from the 

prepolymerized lipids. For this reason, in the work described in subsequent chapters, 

samples were prepared almost exclusively from lyophilized polymers. 

To evaluate more carefully the apparently smaller sizes of prepolymerized a-THIOL 

ML Vs compared to nonpolymerizeable phosphatidylcholines, the lH spectra of the 

dispersions were examined because the linewidths are sensitive to the tumbling rate 

and therefore the size of the liposomes (34,35). As an example, Figure 5 shows a 

typical 1 H spectra of DPPC SUV s above and below the phase transition, and ML Vs 

above the phase transition, illustrating the dependence of linewidth on the overall 

vesicle tumbling. By comparison, Figure 6 shows ML Vs of polymeric cx-THIOLS in 

the liquid-crystalline state. As can be seen, the resonances are narrower and there is a 

much greater contribution of the proton resonances from the a-THIOL ML Vs than the 

DPPC ML Vs, despite the fact that lateral diffusion and rotation of the polymeric lipids 

must be slower. Using NaAc as an internal standard and integrating the resonances of 

the choline group, it was found that~ 30% of the protons contribute to the spectra. 

This suggests that a substantial fraction of liposomes formed by the a-THIOL 

dispersions are small enough to be sufficiently motionally averaged by the tumbling of 

the vesicle to be visualized by NMR (27,34). Titration of MnCl2 into dispersions of a-

16 to a-20 to broaden away the external choline resonances caused a limiting reduction 

in the intensity of the choline resonance relative to bulk methylene 

* It should be noted that the value for DPPC is only an illustration of the disparity in the sizes. The 
value is probably quite inaccurate due to the polydispersity of the multilamellar samples as well as the 
fact the sizes above ~ 2000 nm are outside the range of the instrument. 
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Figure 4 

Negative stain electron micrographs of: A. a-20 SUVs sonicated prior to 

polymerization and B. a-20 SUVs sonicated from the lyophilized powder of the 

prepolymerized lipid. 
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Figure 5 

lH NMR spectra of A. DPPC SUVs at 25 oc; B. DPPC SUVs at 50 oc; C. 

DPPC MLVs at 47 oc. 
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Figure 6 

./ 

lH NMR spectra of A. a-16 MLVs at 32 °C; B. a-18 MLVs at 47 °C. The 

sharp spike in the spectrum of polymeric cx-18 is NaAC. 
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and methyl groups by ~ 55 +/- 15%. Under the very reasonable assumption that the 

alkyl chain protons are unaffected by the relaxation reagent , these data also suggest that 

the NMR-visible liposomes are unilamellar. 

To better visualize the relative sizes and lamellarity of the a-THIOL dispersions, 

freeze fracture replicas were prepared. Figure 7 and 8 show typical multilamellar 

structures observed for DPPC and for monomeric a-16 MLVs. By contrast, from a 

preparation of prepolymerized a-20 liposomes, much smaller and largely unilamellar 

vesicles were observed both by freeze fracture (Figure 9) as well as negative stain 
' 

electron microscopy (Figure 10 ). Qualitatively, similar results were obtained for a-16 

and a-18 dispersions. 

It should be noted that the data presented here are typical data. The sizes produced 

by simple dispersion of the a-THIOL polymers is somewhat dependent on 

concentration as well as the length and temperature of hydration. As an example, Figure 

11 shows 31p NMR powder spectra of a-16 at 50 mg/ml after a hydration period of 

one hour at 37oc. After maintaining the sample at 45oc for 12 hours, a large isotropic 

component grew, indicative of the formation of smaller vesicles tumbling rapidly with 

respect to the NMR time scale. The size of the isotropic component increased further 

with prolonged incubation at 60°C (higher temperature). Similar treatment of DPPC 

ML Vs does not result in the production of an isotropic component. 

!llggregation 'Tendency. As a final point, it was found that SUV s of polymeric a-

THIOLS were much more resistant to aggregation than nonpolymerizeable analogues. 

Even polymeric a-20, which at room temperature is well below the phase transition 

temperature ( ~ 50 °C), remained unaltered in size for several weeks as determined by 

light scattering. By comparison, DPPC SUVs aggregated much more rapidly despite 

the fact that this lipid has a much shorter chain length. This is shown in Figure 12. 
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Figure 7 

Freeze fracture electron micrographs of DPPC multilamellar dispersions. 
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Figure 8 

Freeze fracture electron micrographs of monomeric a-16 multilamellar dispersions. 

The corrugation on the surface is the well-known ripple structure often observed for 

samples incubated between the pretransition and main gel to liquid-crystalline phase 

transition (26). This sample was prepared at room-temperature, which is just below the 

Tm of the lipid(~ 25.6 oc). 
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Figure 9 

Freeze fracture electron micrographs of polymeric a-20 dispersions. The samples 

were prepared from a lyophilized powder of the prepolymerized polymer. 
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Figure 10 

Negative stain electron micrographs of polymeric a-20 dispersions. The samples 

were prepared from a lyophilized powder of the prepolymerized polymer. 
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Figure 11 

31 P NMR spectra of polymerized cx-16, which had been incubated at A. 37oc for 

(1 h); B. 45 oc (12 h). 
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Figure 12 

Comparison of the aggregation of polymeric a-20 SUVs versus DPPC SUVs. 

Samples were maintained at ambient temperature throughout the duration of the 

experiment and the ref ore both lipids were in the gel state. The sizes were measured by 

dynamic light scattering at angle of 900. 
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Table II shows a summary of light scattering and entrapment data for monomeric 

and polymeric co-THIOLS. For the monomeric co-THIOLS (N = 11, 15, 16), entrapment 

of carboxyfluorescein and uridine was positive, indicating the formation of sealed 

liposomes. Similar encapsulation experiments were not carried out for N = 9 and 10 

but turbid solutions were obtained consistent with the formation of bilayers. 

Preliminary freeze fracture and negative stain micrographs of monomeric C0-9 and C0-

10 also suggested the presence of liposomes. For N = 8, optically clear solutions were 

obtained similar to that observed for micelle-forming phosphatidylcholines. To confirm 

this, the fluorescence intensity of 2-p-toluidinylnapthalene 6-sulfonate (TNS), which is 

enhanced upon adsorption to membrane interlaces, was used to detect the presence of a 

critical micelle concentration (37). Figure 13 shows a comparison of the changes in 

fluorescence intensity with lipid concentration for DOPC, which forms liposomes; 

D8PC, which forms micelles; and monomeric C0-8. The abrupt break in the curve at ::= 

0.1 mg/ml indicates the onset of micelle formation for C0-8, similar to that exhibited 

by D8PC. 

SUVs were easily formed from intermediate chain (N=l 1,12) CO-THIOLS on bath 

sonication. Typical sizes of ro-11 ranged from 200-800 A depending on the length of 

sonication. For co-15 and C0-16, optical clearing of solutions was obtained by probe 

sonication but aggregation and precipitation occurred after sonication was discontinued, 

consistent with the observations of Regen et al. This behavior is similar to that 

occasionally observed for conventional phosphatidylcholines with high transition 

temperatures (i.e. DSPC) and may be due to the high transition temperature and 
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Table II 

Summary of the sizes and entrapment characteristics of monomeric and polymeric 

co-THIOLS . The polymerized C0-11 SUV s were sonicated prior to polymerization. 

Polymerized ML Vs were samples dispersed in buffer prior to polymerization. The 

important points to note are: (i)the increase in size of C0-11 SUVs on polymerization; 

(ii) retention of the size of C0-11 SUVs on polymerization when cholesterol is present 

in the membrane (mole ratio = 2: 1 co-11 :Chol); (iii) the ability of monomeric but not 

polymeric co-THIOLS to entrap aqueous solutes. 



Entrapment 

Lipid __ n___ __ _ preparation Size (nm) Uridine CF 

ro-11 SUV's Before Polymerization 79.2± l.2a 0.13% 

C0-11 SUV's 2 h After Polymerization 462 ± 6la 

co-11 SUV's After Polymerization/Dialysis >20()()b 0.017% 
......J 
N 

C0-11/Chol SUV's Before Polymerization 56.7 ± 1.0 

ro-11/Chol SUV's After Polymerization 68.5 ± 2.0 

ro-15 ML V's Before Polymerization 1.3% + 

ro-15 MLV's After Polymerization 0.004% 

ro-16 MLV's Before Polymerization 1.0% + 

ro-16 MLV's After Polymerization 0.006% + 
asamples were 5 mg/ml. hsarnples were 2.2 mg/ml. 
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Figure 13 

Change in the fluorescence intensity of 2-p-toluidinylnapthalene-6-sulfonate (TNS) 

with increasing concentration of lipid (DOPC, D8PC, monomeric C0-8, and polymeric 

ro-8). The breaks in the curves of D8PC and monomeric C0-8 denote the cmc. 

Measurements were carried out as in (37). The symbols are assigned in the legend of the 

figure. 
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strong cohesive forces of these lipids (Tm ~ 49 oc and 52 °c, for N= 15 and 16, 

respectively ; see Chapter III) . In subsequent experiments, these lipids were therefore 

not sonicated but rather prepared as ML Vs by simple vortex mixing above the phase 

transition temperature. Electron micrographs of monomeric C0-11 SUV s and C0-16 . 

MLVs are shown in Figure 14 and 15. An interesting point to note about the C0-16 

ML Vs is the formation of long tubules frequently seen in both freeze fracture replicas 

and by Nemarski optics. The reason for their formation is unclear. Whether they are 

also present in other co-THIOL dispersions or are simply an artifact of a small but 

unavoidable amount of polymer is also unknown. However, they do form closed 

structures. This was confirmed by observation via fluorescence microscopy of their 

ability to entrap carboxyfluorescein. 

POL'YM'E~IZ'E/D co .C£J{JOLS 

O~aative Po{ymerization of CO-Pl-{IO£S. In contrast to a-THIOLS, oxidative (H202) 

polymerization of the co-THIOLS appears to greatly perturb the membrane organization 

for all lipids examined. Polymerization of C0-11 SUVs resulted in a large increase in the 

apparent particle size. For C0-11 SUV s, polymerization was generally carried out for 4 

hours at 45°C. Typically, during the incubation period, no change in the optical clarity 

was noted. However, on standing at room temperature, the turbidity of the sample 

gradually increased over the course of approximately an hour, in contrast to the 

monomeric SUV s which remained optically clear and unchanged. While this could be 

due to reversible aggregation, in most cases on vortexing the sample or after prolonged 

incubation at 45oc, the solution was transformed into a completely translucent and 

viscous gel. In Table II, the sizes of C0-11 SUV s measured before and after 

polymerization are shown. It is interesting to note that despite the complete clarity of the 

sample used in these experiments, the apparent size is obviously very large at this 

concentration. Gel permeation chromatography of a separate preparation of 
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Figure 14 

Negative stain electron micro graphs of monomeric bath sonicated C0-11 SUV s. 
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Figure 15 

Freeze fracture electron micrographs of monomeric C0-16 multilamellar dispersions. 
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C0-11 SUV s before and after polymerization corroborate the increase in particle size. 

(Figure 16). Similar observations were made for polymerized C0-10 and C0-9 SUVs. 

For C0-8, the sample stayed optically clear but the characteristic cmc was lost as 

expected for the formation of "polymeric micelles." This is demonstrated in Figure 13, 

which shows the lack of an abrupt break in the plot of fluorescence intensity versus 

concentration for polymeric co-8, similar to that for the DOPC SUVs. At high 

concentrations, polymeric co-8 dispersions became very viscous and large as 

determined by light scattering suggesting some similarity in the morphology of these 

non-vesicular structures and structures formed by polymeric co-THIOLS with N= 9 to 

11. 

Concerning the tendency of these samples to aggregate and form viscous gels, it 

should be stressed that the apparent size, viscosity and clarity of the samples are 

concentration and temperature dependent. To illustrate the effects of concentration and 

temperature on the short chain co-THIOLS, Figure 17 shows the "apparent" size of 

polymeric co-10 (lyophilized and rehydrated) as a function of concentration and 

temperature. Similar data is shown for C0-8 polymeric micelles and DOPC SUVs. The 

extreme aggregation tendency of the co-THIOLS is reminiscent of micellar growth or 

micelle-lamellar transitions but is likely due to extensive aggregation of the fragments 

( 41-43). By comparison, for DOPC SUVs, a relatively small dependence is observed as 

expected for liposomes. The large size of polymeric C0-15 and C0-16 aggregates 

precluded detection of changes in size by light scattering. 

Because C0-15 and C0-16 were routinely prepared as ML Vs, changes in particle size 

were difficult to quantify. Optically, the samples remained turbid although the turbidity 

seemed to decrease and the dispersions became more gelatinous and "sticky." 
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Figure 16 

Elution profile of C0-11 SUVs on a sepharose 4BCL column: A. before 

polymerization ; B. after polymerization. Peaks below 30 ml correspond to that of the 

lipid while peaks above 30 ml are from the buffer. The separation was carried out on a 

30 x 1.2 cm Sepharose 4BC1 column to which was added 0.5-1.0 mls of a liposome 

solution. The presence of lipid in the column was monitored using a UV detector (A,-

280 nm). One can clearly see that in the case of the monomeric lipid (A), most of the 

sample elutes in the fractionation range of the column, whereas in the case of the 

polymer (B), the sample elutes. in the void volume illustrating the polymerization

induced increase in particle size. 
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Figure 17 

Concentration and temperature dependence of "the apparent size" of A. polymeric 

ro-10; B. polymeric co-8; and C. DOPC SUVs. The polymeric samples had been 

polymerized, lyophilized and rehydrated for these experiments. However, as has been 

demonstrated, samples not been lyophilized display similar aggregation phenomena. 

This contrasts to SUVs, whose particle size is relatively concentration and 

temperature insensitive. 
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Cu+2 /Plienantfiro{ine Po(ymerization. An alternate polymerization protocol was evaluated 

to examine if the clearing and gelation of the short-chain co-THIOLS was due to 

degradation of· the sample by lysolipid formation or hydrolysis of the choline group. 

The Cu+2JPhenanthroline method is gentler in that the polymerization is carried out at 

room temperature, pH 7 .4 and for 30 minutes or less. The caveat of this method is the 

addition of extraneous and possibly perturbing components, and for this reason it was 

rarely used. Nonetheless, the results were even more dramatic. Figure 18 illustrates 

the gradual clarification of a vortex-mixed dispersion of ro-11 during the course of 

polymerization. By contrast, similar treatment of cx-16 ML Vs resulted in no apparent 

change of turbidity (Figure 18). Analysis of the presence of thiol groups using 

Ellman's reagent demonstrated conversion of the thiol group to the disulfide. The 

proton spectra of a chloroform/methanol solution of polymeric ro-11 indicated the 

products of the Cu+2JPhenanthroline and H202 polymerization were similar* .. 

'Encapsu{ation of .Plqueous So{utes in Po[ymerizea ro-T!J-{IOLS. For polymeric ro-

THIOLS, attempts to entrap aqueous solutes were rather unsuccessful. This is shown 

by the comparison of the percentage of uridine entrapped for monomeric versus 

polymeric C0-11, C0-15 and C0-16 (Table II). Attempts to entrap carboxyfluorescein 

was successful in the case of the monomers but not in the case of the polymers. The 

encapsulation. data as well as the physical differences between monomeric and 

polymeric co-THIOLS suggest that polymerization may transform monomeric 

liposomes into non-vesicular structures. In the case of uridine encapsulation, the fact 

that a small but measurable amount of uridine is detected with the lipids could in fact be 

due to a small percentage of residual sealed liposomes. 

* With the exception of the experiments just described all polymers described in this study were 
prepared by simple H202 oxidation. 
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Figure 18 

Demonstration of the morphological changes that occur in C0-11 lipid dispersions 

but not in a-16 dispersions on polymerization by the Cu+22/Phenanthroline 

polymerization method. A. Monomeric C0-11 before polymerization; B. ro-11 after 

polymerization(~ 20-30 min); C. monomeric a-16 before polymerization and D. cx-16 

after polymerization. 
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'E[ectron Microscopy of Po[ymerized CO-'I!J{IOLS. Using negative stain electron 

microscopy, visualization of the structures formed from polymeric ro-THIOLS was not 

as straightforward as for the monomeric and polymeric a-THIOLS or conventional 

liposomes. Generally, for polymeric ro-11, C0-15 and C0-16~ aggregated masses of 

material were observed without convincing resemblance to liposomes. Occasionally 

less aggregated strUctures were visible as shown in Figure 19 for polymeric co-15 

MLVs and ro-11 SUVs. The structures appear at low resolution as networks and at 

higher resolution as unsealed or crushed bilayers. Figure 19 D, which shows 

micrographs prepared from polymeric C0-11 "SUVs" is similar to those shown for C0-

15 "ML Vs" in the lack of distinctive liposomes. 

In order to better visualize the morphology of the polymeric ro-THIOLS, samples 

were prepared by thin section rather than negative stain. Figure 20 shows micrographs 

of polymeric C0-16 prepared in this way. Bilayers are clearly visible but self-sealed 

liposomes were not observed. It appears that upon polymerization, fragmentation of the 

lamellae occurs. This may be a general phenomena of all the ro-THIOLS examined*. In 

the case of the shorter chain lipids (N=9-l 1), however, the greater hydrophilicity may 

promote formation of smaller fragments, perhaps with characteristics somewhat similar 

to those of micelles. Such structures would be consistent with the susceptibility of these 

lipids to aggregation and gelation. In all cases, fragmentation would account for the low 

entrapment of aqueous solutes. 

Preparation qf 0) .. <J'!J{JOL 'Dispersions from Lyoplii{izetf Prepo{ymerizecf Lipids. 

As for the a-THIOLS, samples of the co-THIOLS were also dialyzed and 

lyophilized after polymerization. The general behavior of the rehydrated samples 

* Similar EM experiments have not yet been carried out for other chain lengths. 
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Figure 19 

Negative stain electron micrographs of: A - C. C0-15 dispersions following 

polymerization and dialysis; D. C0-11 SUVs after polymerization and dialysis. 
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Figure 20 

Electron micrographs of polymerized C0-16 prepared by thin section. 
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seemed quite similar to that of samples that had not been dehydrated.· Sample 

clarification and gelation were generally observed for the rehydrated ro-THIOLS 

(N=l0-12) depending on the temperature and concentration of the sample. Turbid 

solutions were obtained for polymeric C0-15 and co-16. In no case was entrapment of 
~ 

aqueous solutes possible either by hydration of the lyophilized polymers above the Tm 

in buffer containing carboxyfluorescein or by freezing and thawing. Also, DSC profile 

for polymeric C0-15 samples with and without lyophilization were identical (data not 

shown). These data suggest that similar bilayer fragments are formed both by samples 

that have been lyophilized and those which have not. 

To further establish the formation of bilayer fragments from hydrated polymers, 

samples were examined by electron microscopy. Using negative stain techniques, 

structures were observed, which were consistent with bilayer fragments and similar to 

that obtained for non-lyophilized samples. However, freeze fracture micrographs of 

polymeric co-15 ML Vs show more definitively the onset of fragmentation (Figure 21). 

Whether the sizes of the fragments are similar in both lyophilized and non-lyophilized 

samples is not known. It is likely that fragment size or propensity for fragmentation 

may depend on a numberof variables (i.e. concentration, temperature, sample history, 

polymerization conditions), in a way that has not yet been systematically characterized. 

At this point, some consideration must be given for the inconsistencies between the 

data we report here for polymeric co-THIOLS and that reported by Regen in the 

original publication on the disulfide-polymerizeable phosphatidylcholines. First, it 

should be noted that we have obtained identical-looking polymerized vesicles to that 

depicted in reference 23 by UV polymerization of ro-THIOLS SUVs. However, both 

groups are now cognizant of the fact that the chemistry that occurs on 

photopolymerization is more complicated than disulfide formation. Proton NMR in fact 
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Figure 21 

Freeze fracture electron micrographs of C0-15 dispersions that had been polymerized, 

lyophilized and rehydrated. 
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indicated substantial loss of both thiol and disulfide groups. Most data from both 

groups, however, involved oxidatively polymerized lipids and it is here where the 

differences arise. Whereas Regen et al. report retention of morphology after 

polymerization of the ro-THIOLS, our data is most consistent with structural 
~ 

reorganization. There are several possible explanations for our differing conclusions. 

The most likely; however, is differences in the polymerization conditions. We routinely 

polymerize at a 5-fold higher concentration (5 mg/ml vs 1 mg/ml). For reasons that are 

not clear, the morphological changes that we observe may not occur at 1 mg/ml. We 

have not investigated this point due to the greater amounts of material necessitated by 

most of our experiments. On the other hand, if the changes described in the text do 

occur even at 1 mg/ml, visually and by absorbance spectroscopy, they may go 

undetected at this low concentration. In this regard, the light scattering experiments 

described in this report were extremely useful in identifying the large size of the 

deceptively translucent polymeric C0-11 "SUVS". 

ttorphotogy of i.v -Tli'lOL/Cfl.o[,esterot M,tx.tt.tres a.nc{. :Dtm.er

:Form.tng 'M1-TH1~0L8. 

Cholesterol was incorporated into monomeric co-THIOLS liposomes to examine the 

morphology of polymeric membranes "diluted" with a nonpolymerizeable component. 

For these experiments, bath sonicated C0-11/Chol SUVs were prepared and 

polymerized under the same conditions as the pure ro-THIOLS. As shown in Table II, 

the turbidity of C0-11/Chol SUV s was relatively unchanged before and after 

polymerization. Electron micrographs of polymerized C0-11/Chol SUV s suspensions 

confirmed the presence of sealed liposomes (Figure 22). It is not clear whether the 

addition of cholesterol to prepolymerized lipid has the same effect. 
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Figure 22 

Negative stain electron micrographs of polymerized 2: 1 C0-11/CHOL SUV s 
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Figure 23 

Negative stain electron micrographs of dimerized C016-DPL dispersions. 
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Several possible explanations may explain the effects of cholesterol on the 

maintenance of sealed liposomes. First, it is very likely that cholesterol limits the size of 

the oligorner chains formed during polymerization. Smaller chains, if produced in the 

mixtures with cholesterol, may be able to organize more favorably into bilayer 

structures. Secondly, the presence of the mobile side chain on the steroid may provide 

enough mobility to the bilayer midplane to accomodate transient defects and thereby 

prevent fragmentation. For these reasons, mixed chain lipids were prepared, which 

have the thiol-containing fatty acid in the sn-2 chain and a nonpolymerizeable saturated 

fatty acid the sn-1 chain. (The notation used is sn2-snl; i.e. ro16-DPL refers to 1-

(hexadecanoyl)-2-( 16-mercaptohexadecanoyl)-L-a-phosphatidylcholine and al 8-DSL 

refers to 1-( octadecanoyl)-1-(2-mercaptooctadecanoyl)-L-a-phosphatidylcholine ). 

These lipids are capable of forming dimers only. Furthermore, the nonpolymerizeable 

fatty acid should contribute a fluid component to the hydrocarbon region of the bilayer. 

Various combinations of chain lengths were used to optimize the different depths of 

penetration of the two fatty acyl chains into the bilayer, known to occur for 

conventional phosphatidylcholines (38,39). In all cases, it was possible to entrap 

carboxyfluorescein from dispersions prepared from predirnerized lipids. The presence 

of liposomes was also confirmed by negative stain electron microscopy (Figure 23), 

consistent with the work of Runquist, who showed liposome formation for DPL-ro16 

(which has the polymerizeable moiety was in the sn-1 chain) (40). 

DISCUSSION 

The results described in this chapter have shown drastically different behavior for 

thiol-containing phospholipids depending on the position of the polymerizeable group. 

For monomeric a-THIOLS (N=16-20), both multilamellar and small unilamellar 
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vesicles were readily formed. Consistent with earlier reports on a-16, the gross 

morphology of SUVs was retained on polymerization, signifying a stable arrangement 

and minimal distortion of the lipid chains. It was also demonstrated that if the lipids 

were prepolymerized as multilamellar dispersions and subsequently lyophilized, they 

could be redispersed to form large liposomes or sonicated into SUV s. As shown in 

separate studies, this is likely due to the fact that the molecular structure of the polymer 

has internal motions that parallel those of nonpolymerizeable phosphatidylcholines 

(mobile chains, a freely rotating headgroup and a rigid interfacial region). According to 

the work of Ringsdorf et al. on self-assembling polymeric lipids, the crucial element 

here is chain mobility (21,22). The short oligomeric chains estimated for the polymeric 

lipids are also likely to enhance the ease with which the lipids assemble into stable 

bilayers or can be reorganized by sonication into smaller structures. 

It is interesting to note that formation of SUVs from the a-THIOLS (both 

monomeric and polymeric, N=l6-20) proceeds much more readily than 

nonpolymerizeable analogues. Furthermore, they are much less subject to aggregation 

with time on standing at temperatures below the phase transition. By contrast, DSPC 

SUV s have been found difficult to make due to rapid flocculation, and diarachidoyl 

(N=20) SUVs have never been reported, to our knowledge. This seems to imply that 

the headgroups are slightly more hydrated, and the chains, less crystalline, at least in 

the gel state. Reduction in the temperature and enthalpy of the phase transition for the 

a-THIOLS compared to conventional phosphatidylcholine analogues corroborates this 

interpretation (shown in the next chapter). Thus the presence of the sulfhydryl in the 

monomer and the disulfide in the polymer appears to reduce the packing density relative 

to phosphatidylcholine analogues. Several structural possibilities may be invoked to 

explain this, including (i) steric bulk of the sulfur atoms, (ii) increased hydration as a 

consequence of additional interfacial polarity, and/or (iii) a slightly different orientation 
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of the chains, which exposes the sulfhydryl/disulfide moiety more to the aqueous media 

and thereby increases the cross-sectional area per lipid molecule. 

Contrary to a priori expectations, it was also noted that unsonicated dispersions 

prepared from prepolymerized a-THIOLS were in general, smaller and more 

unilamellar than equivalent preparations of monomeric and particularly 

nonpolymerizeable phosphatidylcholines." One way to rationalize this is to invoke the 

theoretical analysis of Israelachvilli and others, which emphasizes the importance of 

molecular geometry (and entropy) on the morphology assumed by various amphiphiles 

(41-43). Without going into detail, it is sufficient to note that the fact that smaller 

liposomes are formed from polymeric a-THIOLS suggests that the average headgroup 

area is larger than that for monomeric a-THIOLS or nonpolymerizeable 

phosphatidylcholines. In light of the above discussion on the effect of the presence of 

the sulfhydryl/disulfide moiety on chain packing, this is easy to comprehend for 

polymeric a-THIOLS, compared to nonpolymerizeable phosphatidylcholines. 

However, a larger headgroup area for polymeric versus monomeric a-THIOLS is not 

intuitive unless it is assumed that the organization of the lipids in the membrane is 

somewhat different. In the case of monomeric a-THIOLS, the lipids are free to pack in 

an energetically favorable manner. In the polymer, this must be restricted to some 

degree. Thus it is likely that while covalently-linked lipids are closely opposed, their 

conformational freedom to tightly pack with uncoupled neighboring lipids from a 

distant part of the same oligomer chain or from a different chain, will be inhibited. The 

net result of this should be formation of a corrugated or inhomogeneous interface with 

coupled lipids in tight juxtaposition but sequestered from other non bonded lipids via 

surface defects. It is likely that in such defects, water can penetrate further into the 

interface. If this is the case, on average, the area per headgroup (including hydration) 

" Whether this reorganization to smaller sizes occurs during the polymerization or as a consequence of 
lyophilization and rehydration, is not yet known. 
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may be slightly larger than that of monomeric a-THIOLS. Furthermore, this would 

account for their smaller size and facile hydration. Similar conclusions concerning the 

introduction of defects into the membrane interface as a consequence of polymerization 

have been described by Reed et al. (44). 

In support of the above discussion, it has been determined from x-ray data (45)that 

the thickness of polymeric a-16 bilayers is less than that reported for DPPC. This 

could arise from (i) chain tilting (ii) disordered chains or (iii) partial interdigitation of 

the chains, all of which may be the consequence of an increased headgroup area (41). 

W-'I'J-{IOLS. Completely different properties were exhibited by the ro-THIOLS where 

the sulfhydryl or disulfide is at the chain terminus. Monomeric ro-THIOLS clearly 

formed liposomes as was shown by electron microscopy and entrapment of aqueous 

solutes. Surprisingly, bilayers were stable down to chain lengths of at least 11 carbons, 

and from preliminary data, it appeared that ro-9 and ro-10 could also form liposornes. 

This suggests that the polarity of the sulfhydryl group does not disrupt the packing of 

the chains. On the contrary, the sulfhydryl group appears to stabilize bilayers of even 

very short chain ro-THIOLS. The basis for the stabilizing effect is not known but 

could be due to H-bonding between the sulfhydryls. Alternatively, by virtue of its 

higher molecular weight relative to the terminal methyl group, the "heavy" sulfhydryl 

could slow the frequency of off-axis excursions and internal motions of the chains, 

which tend to reduce intermolecular van der Waals attraction and thereby destabilize 

bilayer formation. Such a mechanism has been postulated for phosphatidylcholines 

with halogens substituted at the chain terminus (46). 

On polymerization of the ro-THIOLS, drastic alterations in the morphology of the 

unpolymerized liposomes take place. Short-chain ro-THIOLS (N=9(?),10,11) that 

have been sonicated into SUV s form clear to opalescent viscous gels upon 
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polymerization at concentrations as low as 5 mg/ml. The clarity, viscosity and apparent 

size is concentration dependent in a manner inconsistent with retention of the SUV 

structure. MLVs of longer chain ffi-THIOLS (N=15,16) remain turbid, but the 

"texture" changes from opaque, nonviscous dispersions to more translucent but 

gelatinous particles, in many ways similar to the short-chain analogues. Whereas 

monomeric ffi-11 to ffi-16 encapsulated aqueous solutes, polymeric ffi-THIOLS did 

not. Taken together, these data suggest formation of nonliposomal structures as was 

corroborated by the observation of bilayer fragments in the electron micrographs of ffi-

15 and ffi-16. In the limit of very short chains, (i.e. N=8,9), polymeric micelles or 

small fragments are likely formed. 

The physical basis for the fragmentation of polymeric ffi-THIOLS is not yet 

understood. However, it seems very likely to be related to the fact that the bilayer 

midplane is rigidified, a physical state that may be detrimental to the ability of the lipids 

to respond to transient defects. normal bilayers, a fluidity gradient extends from the 

interface to the membrane interior such that the chain terminus is the most fluid portion 

(25,47). Potential "voids" that might arise in a given region of the bilayer as a 

consequence of either small temporal chain fluctuations or gross changes brought 

about by passage through the phase transition can therefore be obviated by lateral 

expansion or segmental isomerization of the chains. If the mobility is considerably 

reduced by polymerization, there may be insufficient elasticity to compensate for the 

defects, thereby leading to fragmentation. In this regard, it is important to note that in a 

separate chapter, it is shown by 13c NMR relaxation and other techniques, that the 

polymeric a-THIOLS that maintain a closed bilayer structure have a mobility profile 

similar to that of nonpolymerizeable phosphatidylcholines. By contrast, similar 

experiments with polymeric ffi-THIOLS verify the absence of a mobility gradient. 
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The presence of cholesterol in the membrane prior to polymerization was shown to 

inhibit the transformation from closed liposomes to bilayer fragments. There are several 

possibile explanations for this behavior. If we assume for the present that the above 

explanation provides a reasonable basis for fragmentation of the ro-THIOL bilayers, 

then: (i) it is possible that at the mole ratios used (2: 1 ffi-11/Chol), the steroid alkyl 

chain adds sufficient mobility to the bilayer interior to allow for adjustments in the 

hydrocarbon organization to take place without fragmentation. (ii) Secondly and 

perhaps more importantly, it is well recognized that the phase transition is abolished in 

2: l mixtures of PC/Chol (i.e.DPPC/Chol) due to the interaction of the steroid with the 

PC component (58). Thus the extensive reorganizations of the bilayer that normally 

occur at the phase transition are inhibited. While this might be anticipated as an 

irrelevant point concerning polymeric ro-THIOLS (since to date no chain-terminating 

polymeric lipids have been reported that retain their phase transition) it is shown in a 

later chapter that ro-THIOLS in both the polymeric and monomeric states have gel to 

liquid-crystailline phase transitions. Thus the presence of cholesterol in the case of 

polymeric ro-THIOLS may preserve the original liposome morphology by minimizing 

the temperature dependent fluctuations in the bilayer organization which, as described 

above, could conceivably lead to fragmentation in a rigid system. (iii) A final 

possibility is that the presence of the cholesterol restricts the degree of polymerization to 

even smaller values than the reported 10-30 units/chain for bilayers composed 

exclusively of disulfide phosphatidylcholines. Small fragments may, in fact, be able to 

organize more efficiently than large oligomers since the required motions would 

necessitate cooperativity among fewer coupled lipids. 

In consideration of (i) and (iii) above, mixed-chain dimerizeable lipids were also 

prepared. These lipids were able to form liposomes from a predimerized state. Whether 
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this is due to the unrestricted motion of 50% of the alkyl chains, the short oligomer 

size (DP=2), or both is unclear. 

Having proposed some type of mechanism for the fragmentation, it is necessary to 

reconcile our observations on the ro-THIOLS with that reported for other chain

terminating polymerizeable phospholipids. As was mentioned in the introduction, 

several types of polymerizeable phospholipids with the polymerizeable moiety at the 

chain terminus have been synthesized and studied. These include methacryl, sorbyl and 

vinyl-based lipids. In all reported cases, liposomes were formed from the monomers 

and the original structures were retained on polymerization. To rationalize the 

differences bewteen these lipids and the polymeric ro-THIOLS, we must consider 

structural characteristics of the polymeric membranes that might distinguish liposome

forming from fragment-forming lipids. The double chain (ro-DPL) and single chain 

((a-MA) and (ro-MA)) methacroyl-based phosphatidylcholines are useful as a point of 

comparison because their properties have been thoroughly examined (1-4,9,13). Figure 

23 depicts the structures of a-MA and ro-MA and how polymerization is envisioned to 

occur for these lipids. ro-DPL is similar to ro-MA except that both chains contain 

polymerizeable moieties. 

First, it has been demonstrated that a high degree of polymerization (DP) can be 

achieved by methacroyl phospholipids. For poly(a-MA) and poly(ro-MA) that have 

the polymerizeable moiety in a single chain or the headgroup, the DP was estimated as 

approximately 500 units per chain (9). For the double chain lipid (ro-DPL) the DP 

would be expected to be at least as high. Furthermore, membranes resulting from 

polymerization of these lipids may be highly crosslinked networks. By contrast, thiol

based phosphatidylcholines form short oligomers (DP=l0-30) (24) and have the 

potential for forming linear polymer chains only. Intuitively, one would anticipate that 

for high molecular weight and certainly crosslinked polymeric membranes, it would be 
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energetically prohibitive for the chains to reorganize into alternate morphologies 

following polymerization. By contrast, short uncrosslinked chains should be able to 

adopt different structures more readily. 

A second difference between ro-DPL and the ffi-THIOLS is that for ro-DPL, the 

phase transition is abolished by polymerization (13). In the case of the ffi-THIOLS, it is 

retained and shifted to higher temperature (as described in Chapter III). Consequently, 

as a function of temperature, reorganizations of the chains within the ro-DPL bilayer 

may be minimal so that temperature-induced defects are not created. By contrast, for 

ffi-THIOLS, membrane damage could be induced either at high temperature where the 

lipid chains are in a relatively disordered state, or by passage from high to low 

temperature where the chain rigidity may "freeze in" defects created in the liquid

crystalline state. 

Finally, both ro-DPL and the ffi-THIOLS have the potential for intra- as well as 

inter- leaflet coupling (13,24). All other things being equal, it would seem that 

fragmentation would be less probable if both halves of the bilayer were coupled. An 

appropriate model for fragmentation of bilayers polymerized by inter- and intra-leaflet 

coupling is hard to conceive. Thus if we asssume that ro-DPL is polymerized in both 

ways but the ffi-THIOLS are polymerized predominantly or exclusively within a given 

half of the bilayer, the susceptibility of ffi-THIOLS to fragmentation could be further 

rationalized on the basis of the coupling patterns. While we certainly have no proof of 

the polymerization patterns in either case, it would seem that the presence of a phase 

transition in polymeric ffi-THIOLS would argue for intra-leaflet coupling, at least if we 

assume that the changes that occur in the packing of the lipids at the Tm is similar to 

that of nonpolymerizeable phosphatidylcholines. In such a case, we imagine the not so 

inconceivable possibility, that two linked chains from adjacent lipids would isomerize 

in some way as a coupled unit. Similar changes in chain packing that would lead to a 
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Figure 23 

Schematic representation of the methacryloyl lipids a-MA and ro-MA in a bilayer 

arrangement before and after polymerization. Taken from reference (8). 
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a-MA Poly-a-MA 

w·MA Poly-w-MA 
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substantial phase transition are difficult to envision for lipids polymerized across the 

bilayer. 
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Chapter III 

Investigation of tlie Pliase 'Transition Properties of 'DisulfUle Po{ymerizea6[e 

Pliospliaticfy[cliofine 'Bilayers 6y 'DSC :J'T-I'l\,ancf :J[uorescence Polarization 

INTRODUCTION 

In the previous chapter, we described the morphological behavior of two 

homologous series of thiol-containing phospholipids, the a-THIOLS and the ro

THIOLS. It was shown, for example, that the a-THIOLS could be readily dispersed 

or sonicated into liposomes even from a prepolymerized state and for lipids with 

surprisingly long chain lengths (up to N==20) relative to saturated nonpolymerizeable 

phosphatidylcholine analogues. Furthermore, polymeric a-THIOL SUVs had a much 

lower tendency to aggregate (weeks) than nonpolymerizeable analogues. By contrast, 

ro-THIOLS with a wide range of chain lengths formed liposomes in the monomeric 

state but only short chain monomeric ro-THIOLS (N= 10,11) could be sonicated into 

opalescent solutions of SUVs; sonicated long-chain ro-THIOLS (N=15,16) 

aggregated rapidly. Furthermore, on polymerization, the ro-THIOLS form what appear 
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to be bilayer fragments (or in the very least, highly aggregating, extremely leaky 

liposomes) rather than self-sealed liposomes. The disparity in the behavior of these two 

liposome types suggests major differences in the cohesive forces between the lipids in 

the bilayers composed of a-THIOLS versus ffi-THIOLS. 

To understand the structural details of such bilayers and the interactions between the 

constituent lipids, we have undertaken an investigation of their phase transition 

properties by DSC, FT-IR and fluorescence polarization. In particular, we were 

interested in the effect of the polymerizeable moiety, the chain length, and whether the 

lipids are polymerized or not on the temperature and enthalpy of the phase transition, 

as well as the structural reorganizations that occur at the transition temperature at 

various depths within the bilayer. In addition, the temperature dependence of the release 

of an aqueous soluble fluorescent dye was monitored to examine whether the presence 

of thermal transitions in these polymerizeable liposomes caused an abrupt increase in 

leakage rates as has been observed for nonpolymerizeable phosphatidylcholines (L2). 

MATERIALS AND METHODS 

:MA 'J'.£'.R. 1ALS. 

Lipids were synthesized with minor modifications of the procedure established by 

Regen et al. (3,4) as described in Chapter VIII. Polymerization of monomeric 

phosphatidylcholines to the corresponding disulfide polymers was accomplished by the 

oxidation (20 equivalents H202) of an aqueous dispersion of monomer (5 mg/ml in 

borate buffer, pH 8.5) for 4-8 h above the monomer phase transition as detailed in 

Chapter VIII. Polymeric dispersions were subsequently dialyzed, lyophilized and 

stored as dry powders until use. Carboxyfluorescein was purchased from Eastman 

Kodak and purified according to the protocol outlined in reference 5. 
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Diphenylhexatriene (DPH) was obtained from Aldrich. 2-(9-anthroyloxy)stearic acid 

(2-AS), 12-(9-anthroyloxy)stearic acid (12-AS) and 16-(9-anthroyloxy)palmitic acid 

(16-AP) were purchased from Molecular Probes and utilized without further 

purification. All other reagents were of analytical grade or better. 

Methods. 

'Di{ferentia{ Scanning CaCorimetry ('DS(). Calorimetric measurements were made on 

either a Microcal MC-2 or a Perkin Elmer scanning calorimeter at heating rates of 

20°C/h and 30°C/h, respectively. Samples for measurements on the Microcal DSC 

were prepared by dispersing 2-5 mg of lipid in 2 ml Tris buffer (10 mM Tris, 150 mM 

NaCl, 0.2mM EDTA; pH 7.4) and equilibrating above the Tm for 15-30 min. For 

measurements with the Perkin Elmer calorimeter, :::::: 2-4 mg of lipid was placed in pans 

and hydrated in H20 for 30 min at 80 oc. 

f'I-l'R. Lipid samples were hydrated in D20 for 30 min at 80 °C. Samples were then 

placed between CaF2 windows and transferred to a rigorously thermostatted(+/- .1 °C) 

FT-IR mount containing Peltier thermoelectric modules (6). Automated data acquisition 

as a function of temperature was accomplished on a Mattson Sirius 100 FT-IR 

spectrometer under UNIX-based computer control. 

'Huorescence Stuaies. Fluorescence measurements were carried out on an SLM-4000 

spectrofluorimeter. For polarization measurements, the fluorimeter was configured in 

the T-format (7)with the monochromator in the path of the parallel-detected light and an 

appropriate band pass filter in the path of the perpendicularly polarized light. Excitation 

and emission wavelengths were 357 and 430 for DPH and 366 and 440 for the anthroyl 

probes, respectively. Samples were prepared by dispersing 3 µmoles lipid in Tris 

buffer, to which was added 3 µl of a 2 mM solution of DPH in tetrahydrofuran or 2 

µls of a 7.5 mM methanolic solution of 2-AS, 12-AS or 16-AP (the final lipid to dye 
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ratio was 750 for DPH and 150 for the anthroyl probes). Samples were warmed for 2 

hat 5-10°C above the phase transition of the lipid and subsequently cooled to room-

temperature. Polarization was calculated according to the equation: 

(1) 

where I11 and lj_ are the emission intensities of the light parallel and perpendicular to 

the polarization direction of the excitation beam, respectively. The contribution of 

scattered light to I11 and lj_ was checked routinely and found to be negligible. 

CarGo?(JJ.ffuorescein 1?.eCease. For carboxyfluorescein leakage experiments, 5 mg of lipid 

was hydrated with 1 ml of 50 mM carboxyfluorescein (in HEPES buffer) for 15 min 

above the phase transition temperature. SUVs were prepared by bath (a-16) or probe 

(a-18, a-20) sonication with a Laboratory Supplies bath sonicator or a Heat Systems 

350 W probe sonicator, respectively. During sonication, samples were placed under 

nitrogen and in a large room-temperature water bath to avoid excessive heating. In the 

case of ML Vs, unentrapped carboxyfluorescein was removed by pelleting the lipid 3-5 

times from isotonic buffer by centrifugation at 2000 rpm (swinging buket rotors, IEC 

Centra-8 centrifuge). SUVs were separated from unentrapped solute by passage over 

G-25-50 spin columns (0.5-ml per 3-ml spin column). Due to the leakiness of a-16 

SUV s at ambient temperatures, aliquots were passed over spin columns immediately 

prior to each measurement at a new temperature. Typically, 50 µl ofliposomes were 

added to 2 ml of HEPES buffer equilibrated at a designated temperature in a 

thermostatted cell. Fluorescence intensity was monitored continuously for 15 min at 

excitation and emission wavelengths of 470 and 520 nm, respectively. The total amount 

of entrapped carboxyfluorescein was determined by the addition of 100 µl 10% Triton 

X-100. Percent release was calculated as: 
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(2) 

where 110 is the intensity after 10 minutes, Io is the initial intensity and ly is the final 

intensity after the addition of Triton X-100. No correction was made for the 

temperature dependence of the carboxyfluorescein quantum yield. 

RESULTS 

flt ff e,n:..nti.af Scannin.g CoforhnctrtJ. 

In studies of artificial and natural biomembranes, DSC has provided a wealth of 

information concerning the organization and interactions between the constituents of 

lipid bilayers (for reviews, see references 9-11). This is due to the fact that the 

thermodynamic parameters, which may be derived from calorimetric measurements 

(Tm, MI and cooperative units) are highly sensitive to the molecular structure of the 

lipids, the aggregate morphology and the addition of nonphospholipid components (i.e. 

cholesterol, proteins). Single component phospholipid membranes have been 

particularly well characterized as model membranes in terms of the effect of lipid 

structure on the Tm and ~H. For example, increasing the length of the acyl chains or 

decreasing the headgroup size (i.e PC versus PE) in saturated phospholipids causes an 

elevation in both the Tm and MI for the gel to liquid crystalline phase transition. 

Unsaturated chains and bulky headgroups drastically decrease these parameters by 

reducing the ability of the chains to effectively pack in a tight crystalline array. These 

trends serve as a good reference point for understanding the effects of the 

polymerizeable moiety and polymerization itself on the packing of the lipids in a-

THIOL and ffi-THIOLS bilayers. 

Figure 1 shows typical DSC profiles for monomeric and polymeric a-16 and ffi-

16. As is generally observed for polymerized lipids, the transitions for both polymeric 
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a-16 and C0-16 are severely broadened relative to the monomer, due to a reduction in 

the cooperativity of the lipids in the bilayer. The transitions corresponding to the 

polymers are also multicomponent, indicating a more complex behavior than that of the 

monomers or nonpolymerizeable analogs. Relative to the 16-carbon saturated 

phosphatidylcholine DPPC, which has a phase transition of 41.7°C, the Tm is reduced 

in the case of monomeric and polymeric a-16, and increased for C0-16. 

Table I summarizes the calorimetrically determined ~H and Tm data for the 

homologous series of a- and co-THIOLS. It should be noted that for all polymeric 

lipids other than a-16 and C0-16, the main transitions are broadened but single 

component. The Tm and m for nonpolymerizeable phosphatidylcholine analogues are 

tabulated in Table II for comparison. As can be seen, for all a-THIOLS, monomeric 

and polymeric, the Tm (and m for polymeric a-THIOLS) are reduced relative to that 

for the corresponding nonpolymerizeable analogues. The depression in the Tm and m 
may be due to the additional bulkiness, polarity, and/or hydration at the interfacial 

region for these lipids. Compared to the monomeric a-THIOLS, the Tm for the 

polymers are relatively broad and unshifted while them is reduced. One possible 

explanation for the latter is a decreased interaction between the chains in the polymer 

relative to the monomer. 

For monomeric co-THIOLS, the Tm is increased relative to the nonpolymerizeable 

phosphatidylcholines indicating the terminal sulfhydryl has a stabilizing effect on 

membrane formation. This is somewhat surprising since these lipids have a polar group 

positioned in the low dielectric environment at the bilayer interior. However, the 

potential perturbation caused by this misplaced polarity may be completely offset by H

bonding interactions between sulfhydryls or the stabilizing affect of having a "heavy" 
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Figure 1 

DSC profiles of polymeric and monomeric a-16 and C0-16. 
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Table I 

Summary of the phase transition temperatures (Tm) and enthalpies (~H) for 

monomeric and polymeric a.-THIOLS and W-THIOLS as determined by DSC. The 

designations (M) and (P) refer to the monomer and polymer, respectively. 
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Lipid Tm (OC) Ml (kcal/mole) 

a.~THIOLS 

CX-16 (M) 25.9 ± 0.5 7.8 ± 0.9 

CX-16 (P) 22.9 ± 3.oa 5.6 ± 0.7 

CX-18 (M) 40.6 ± 0.3 11.7 ± 0.7 

CX-18 (P) 36.9 ± 0.9 8.7 ± 1.0 

CX-20 (M) 54.7 12.1 

CX-20 (P) 52.4 ± 0.5 10.2 ±0.7 

ro-THIOLS 

ro-10 (M) < 5.0 

ro-10 (P) 19.5 ± 0.3 3.0 

ro-11 (M) < 5.0 

ro-11 (P) 33.6 ± 1.0 5.15 ± 0.4 

ro-12 (M) 15.2 ± 0.3 5.0 ± 1.4 

ro-12 (P) 38.9 

ro-15 (M) 49.6 ± 0.2 10.9 

ro-15 (P) 60.3 ± 0.9 12.6 ± 2.0 

ro-16 (M) 52.0 ± 3.0 10.1± 0.8 

ro-16 (P) 64.5 ± 13.@ 13.9±2.1 

aMean of the high and low temperature components. 
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Table II 

Summary of the phase transition temperatures (Tm) and enthalpies (L'iH) for 

nonpolymerizeable phosphatidylcholines as determined by DSC. 
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# CARBONS (NAME) Tm (OC)a MI (kcal/mole )a 

12 (DLPC) -1.8 1.70 

14 (DMPC) 23.9 5.44 

16 (DPPC) 41.4 8.74 

18 (DSPC) 54.9 10.6 
li'f aken from reference 11. 
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atom at the chain terminus.Regarding the latter postulate, it has been demonstrated that 

the presence of halogens at the chain terminus lead to a stabilization of the membrane 

(12). In any case, the increase in the Tm is consistent with the ability of short chain ro-

THIOLS (N=lO and possibly 9) to form stable bilayers as described in Chapter II. 

Polymerization of the ro-THIOLS results in a further increase in the Tm indicating an 

enhancement of the interlipid interactions relative to both the monomer and 

nonpolymerizeable species. In fact, while no transition is detected above soc for ro-10 

and ro-11 monomeric dispersions, polymerization greatly increases the Tm to 20 and 

38°C, respectively. The presence of the phase transition further confirms the fact that 

bilayers are formed down to even very short chain lengths (N=lO and possibly 9). For 

all ro-THIOLS, the enthalpy follows the same trend as the Tm (polymer> monomer> 

nonpolymerizeable PC). 

In the above studies, our data concerning a-16 dispersions is in agreement with 

reports by Regen on a-16 SUVs (4). The slightly lower Tm (23° C) detected by this 

group is in keeping with the general reduction in the transition temperatures observed 

for SUVs compared to MLVs or LUVs (13,14,15). In the same study, however, no 

transition was detected for ro-11 or ro-16 monomers or polymers. This is presumably 

due to the low sensitivity of the technique used to detect the transition (absorbance 

spectrophotometry) and the fact that in the case of ro-16 dispersions, an inadequate 

temperature range was scanned. Furthermore, it is not surprising that transitions for 

polymeric ro-THIOLS would be overlooked because to date, all reports of chain 

terminating polymerizeable lipids where the polymerizeable moiety is in both chains, 

have indicated that polymerization abolishes the phase transition (reference 16 and 17 

for reviews; also see 18 and 19). This is due to the general inhibitory effect of 

polymerization on the ability of the chain segments to undergo trans-gauche 

isomerizations. Thus, the results of the polymeric ro-THIOLS were extremely 
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surprising.* To clarify that the thermal measurements weren't due to some other 

process unrelated to the gel to liquid-crystalline (or other) phase transition, the 

temperature-dependent behavior was also investigated by FT-IR and fluorescence 

polarization, both of which allow us to probe more directly alterations occuring within 

the hydrocarbon region of the bilayers. 

f'I-'1R. 

Fourier transform infrared spectroscopy has proven extremely useful in studies of 

synthetic and natural membranes because the tractable parameters (peak positions and 

bandwidths) are extremely sensitivity to environmental changes, conformation, 

hydration and mobility (6,20-24). Furthermore, one can selectively monitor various 

positions within the bilayer by appropriate choice of the vibrational mode (methylene 

stretches for the hydrocarbon area, carbonyl stretches for the interfacial region, and the 

phosphate stretches for the headgroup). In this study, we were particularly interested in 

monitoring the behavior of the hydrocarbon region. In phospholipids, the CH2 

symmetric stretch is particularly informative in this regard as the peak position and 

bandwidth increase abruptly at the phase transition due to the increase in gauche 

conformations and mobility, respectively, in the chains. 

Figure 2 shows typical temperature-dependent profiles of peak position of the CH2 

symmetric stretch of polymeric and monomeric a-16 and C0-16. DPPC is included for 

reference. Both a-16 and C0-16 clearly show the presence of the Tm· For the most part 

the data is consistent with that obtained from DSC measurements with the 

* It is important to note that the transitions are not due to residual monomer. Regen has reported 

greater than 95% conversion of C0-11 and C0-16 liposomes under slightly milder polymerizing 

conditions than used here. By NMR, we have found essentially complete oxidation of co-10 and C0-11, 

and greater than 94% for C0-15. The associated enthalpies are much too large to be due to a small 
percent of unpolymerized chains and therefore must correspond to structural changes associated with the 
polymers. 
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Figure 2 

Peak position of the methylene symmetric stretching mode as a function of 

temperature for: A. monomeric ffi-16, polymeric ffi-16 and DPPC; B. monomeric a-

16, polymeric a-16 and DPPC. The symbols are assigned in the figure legends. 
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exception that for polymeric ro-16, the major component of the complex DSC trace that 

is sensed by the acyl chains is the high temperature component. The exact meaning of 

the initial component is therefore unclear but may be some sort of pretransition, perhaps 

largely involved with a headgroup reorientation. Clearly, however, the transitions are 

of a magnitude as least as great as that for DPPC and have the same characteristic trends 

confirming that this is truly a phase transition involving hydrocarbon disorder. Table III 

summarizes the Tm obtained from the midpoint in the break of the the plots of peak 

position versus temperature for the series of a-THIOLS and ro-THIOLS. Also 

included is the empirical parameter MP (change in peak position between the gel and 

liquid crystalline state), which describes the magnitude of the change. 

!J{uorescence PoCarization of 'lJP:J-l In addition to the above techniques, fluorescence 

polarization of dyes imbedded bilayers has also been a common method used for 

determining phase transitions as well as "fluidities" and apparent microviscosities 

(14,25-28). This is due to the fact that the polarization is sensitive to the dynamics and 

structural organization of the matrices in which the probe is solubilized. 

Diphenylhexatriene has been one of the most commonly used probes in this regard. 

Due to the hydrophobicity and rigid rod-like shape of this molecule, it is solubilized 

completely in the hydrocarbon region of the membrane and predominantly oriented with 

its long axis parallel to the lipid chains, at least in the gel state.* Consequently, it is 

sensitive to the reorganizations and mobility of the chains averaged over the entire 

hydrocarbon region, making it ideal for reporting on phase transitions. 

We also anticipated extracting information concerning membrane "fluidity" from the 

polarization data. However, the routine interpretation of steady state polarization in 

terms of fluidities and microviscosities has recently been called into question and 

* However, since it is not anchored to the membrane surface by a polar group, it can adopt other 
orientations such as parallel to the bilayer surface at the midplane of the membrane. 
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Table III 

Summary of the phase transition temperatures (Tm) and the magnitude of the 

change in the peak position between the gel and liquid-crystalline state (~PPTM) for 

monomeric and polymeric a-THIOLS and ro-THIOLS. Measurements are based on 

the peak position of the methylene symmetric stretching mode in the infrared spectrum 

of the lipids. The designations (M) and (P) refer to the monomer and polymer, 

respectively. ~T (Gel-LC) is the temperature range over which ~PPTM was 

determined. 
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Lipid Tm (oC) L\T (Gel-LC) L\.PPTM 

0t=THIOLS 

CX-16 (M) 25.5 5-40 3.25 

CX-16 (P) 24.0 5-40 2.65 

CX-18 (M) 39.0 15-50 2.75 

a-18 (P) 38.5 15-40 2.95 

a-20 (M) 53.5 30-70 2.88 

a-20 (P) 51.5 30-70 3.22 

OO·THIOLS 

C0-11 (M) -4.0 -11-10 2.80 

00-11 (P) 33.5 4-44 1.64 

C0-12 (M) 15.5 5-45 2.86 

00-12 (P) 39.0 5-55 2.50 

C0-15 (M) 48.5 30-65 2.60 

00-15 (P) 61.0 30-75 2.50 

C0-16 (M) 56.0 30-70 3.30 

00-16 (P) 69.0 30-90 2.3 
ante midpoint of the entire transition 
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shown potentially misleading (29-32). This is due to the fact that that the simple 

extrapolations from polarization to microviscosity are founded on the inappropriate 

assumptions of isotropic reorientation of the probes within an anisotropic matrix. 

Blitterswijk et al. have developed empirical relationships so that the contributions of 

chain ordering and motion may be extracted from these data without the need for time 

resolved experiments (29,30). Despite the value of such treatments for deriving "order 

parameters," one must always remember that the absolute value of the polarization may 

inaccurately reflect relative ordering from one system to another due to the differential 

perturbing effects of the probe on its rnicroenvironment, the fact that the probe may 

reveal predominantly its own restricted motion rather than that of the membranes and 

the fact that the average location of certain probes may vary from one bilayer to another 

(33). For example, inconsistensies between results suggested by steady state 

polarization and NMR data have been reported by Seelig et al. concerning the effect of 

protein on lipid fluidity (34). Other spectroscopic data for corroborating interpretations 

made on the basis of fluorescence polarization are consequently useful. We therefore 

defer discussion of the absolute values of the polarization to a later chapter where they 

can be presented in light of data from other nonperturbing spectroscopic techniques. In 

the following results we consider only the information concerning the position of the 

phase transition and the extent of the change sensed by the probe on passing through 

the transition. 

In Figure 3, typical plots of the the fluorescence polarization of DPH as a function 

of temperature is shown for several monomeric and polymeric a-THIOLS and (J)-

THIOLS. In general, data corroborate the DSC and FT-IR results in the presence and 

position of an order-disorder transition. In Table IV, the Tm and the extent of the 

change in polarization on passing through the transition (~POLTM) is summarized for 

several a- and W-THIOLS. It is interesting to note that as in the FT-IR detected 
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Figure 3 

Typical plots of the fluorescence polarization of DPH as a function of temperature in 

various lipid bilayers: A. DPPC; B. monomeric and polymeric a-16; C.monomeric 

and polymeric a-18; D. monomeric and polymeric a-20; E. monomeric and polymeric 

U>-15; F. monomeric and polymeric ro-16. Heating and cooling scans for DPH in 

bilayers of: G. DPPC; polymeric a-16; I. polymeric U>-11; J. polymeric U>-15. 

All measurements (AaF) were made with heating scans. GaJ demonstrate the 

hysteresis observed in the heating versus cooling scans of the ro-THIOLS and the lack 

of hysteresis for DPPC and polymeric a-16. 
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Table IV 

Summary of the phase transition temperatures (Tm) and the magnitude of the 

change the flourescence polarization between the gel and liquid-crystalline state 

(~POLTM) for monomeric and polymeric a-THIOLS and ro-THIOLS and DPPC. 

Measurements are based on flourescence polarization of DPH. The designations (M) 

and (P) refer to the monomer and polymer, respectively. ~T (Gel-LC) is the 

temperature range over which MOLTM was determined. 
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Lipid Tm (OC) ~T (Gel-LC) Af>OLTM 

a.=THIOLS 

a-16 (M) 25.5 ± 1.4 15-40 0.146 ± .020 

a-16 (P) 22.4 ± l.4a 12.5-40 0.241 ± .020 

a-18 (M) 39.0 25-40 0.209 

Cl-18 (P) 36.5 ± 0.5 25-40 . 0.217 ±.020 

a-20 (M) 52.0 ±1.0 35-60 0.195 ±.020 

a-20 (P) 50.1 ± 1.3 35-60 0.292 ± .020 

romTHIOLS 

ro-11 (P) 35.0 20-40 0.128 ±.040 

ro-15 (M) 47.0 ± 0.2 30-55 0.213 ± .020 

ro-15 (P) 60.3 ± 0.4 40-70 0.297 ±.020 

ro-16 (M) 53.0 ± 0.3 40-60 0.352 ±.010 

ro-16 (P) 65.3 ± i.sa 35-80 0.271 ± .020 

NONPOLYMERIZEABLE 

DPPC 41.0 25-50 0.250 
aThe midpoint of the entire transition 
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transition for polymeric m-16, the restructuring that occurs at the first transition is not 

detected by polarization changes nearly as well as the second component. Thus it 

appears that the "main transition" of polymeric T-16 occurs at temperatures 

substantially higher than the monomer and DPPC. Furthermore, ~POLTM is also 

much larger for ffi-16, paralleling the relative enthalpies of these lipids. This reconfirms 

the unexpected result that despite polymerization at the chain terminus, membranes of 

polymeric ffi-THIOLS can undergo transitions involving major disordering of the 

hydrocarbon region. However, since steady state polarization is sensitive to both 

dynamic (mobility) and structural (packing) features of the membrane (29,35), it is not 

possible to determine the extent to which the Tm-induced reduction in polarization is 

due to structural disorder or increased chain motion. In the case of polymeric ffi

THIOLS, one could imagine, for example, a highly disorganized hydrocarbon interior 

that is nonetheless quite rigid compared to nonpolymerized lipids. 

The average value of the Tm determined from DSC, FT-IR and fluorescence 

polarization is plotted as a function of carbon number in Figure 4. Similar plots of the 

enthalpy versus carbon number are shown in Figure 5. Data from nonpolymerizeable 

phosphatidylcholines are included in these figures for comparison. Relative to 

nonpolymerizeable phosphatidylcholines, the Tm for a-THIOLS is reduced by= 16 

oc per CH2 group while it is increased by =15 oc and =25 oc for monomeric and 

polymeric m-THIOLS, repectively. Similar trends are exhibited by the enthalpies with 

the exception that the ~H for the monomeric a-THIOLS is not substantially different 

from the nonpolymerizeable lipids. To summarize, the data presented thus far suggests 

the following: 

Concerning the a-THIOLS: 
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Figure 4 

The average transition temperature (Tm) determined from DSC, FT-IR and 

flourescence polarization as a function of the number of carbons in the acyl chains of 

A. monomeric and polymeric a-THIOLS and nonpolymerizeable L-a

phosphatidylcholines (NONPOL.PC); B. monomeric and polymeric ffi-THIOLS and 

non pol ymerizeable L-a-phosphatidy lcholines. 
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Figure 5 

The enthalpy (.6.H) determined from DSC as a function of the number of carbons in 

the acyl chains of A. monomeric and polymeric a-THIOLS and nonpolymerizeable L

a-phosphatidylcholines (NONPOL.PC); B. monomeric and polymeric co-THIOLS 

and nonpolymerizeable L-a-phosphatidylcholines. 



151 

14 

12 

-(I) 

0 10 
E --(ti 
u 8 
~ 

ll 

>- Ill D.. 6 
..J 
< PC :c 
I- 4 z 
w 

2 

0 
1 0 1 2 14 1 6 18 20 22 

#CARBONS 

14 

12 

-CD 
0 10 
E -a:! c MONOMER 
u 8 .lll: - 11 POLYMER 
>-
D.. 6 
..J 
< NONPOL PC 
:c 
I- 4 z 
w 

2 

0 
8 1 0 1 2 14 1 6 1 8 20 

#CARBONS 



152 

(i) Based on the Tm data, the interactions between the a-THIOLS are 

reduced relative to nonpolymerizeable lipids. As mentioned earlier, this is likely due to 

the increased bulk and polarity as a consequence of the sulfhydryl or disulfide. 

(ii) Polymerization results in a reduction of the enthalpy, which could be due 

to (a) increased chain disorder (as in the case of SUVs where a reduction in enthalpy 

and broadening of the transition is due to the disorder imposed by the packing 

constraints of a strongly curved bilayer (15}) and/or (b) fewer carbon chain segments 

that contribute fully to the transition. Regarding (a), we show in a later chapter by 

vibrational spectroscopy that in fact the hydrocarbon region of a-THIOLS is more 

disordered than the monomeric lipids and nonpolymerizeable analogues. Regarding 

(b), it seems quite probable that the first C-C segment close to the polymerizeable 

moiety may be restricted in the extent to which reorientation can occur. 

(iii) Polymerization results in an increased ~POLTM for polymeric a-THIOLS 

compared to the monomers and nonpolymerizeable phosphatidylcholines. This may 

have some implications in terms of the physical structure of the bilayer, which is 

discussed in the last section. The important point to note is that polymerization does not 

inhibit major restructuring of the bilayer as might have been anticipated. 

For the ro-THIOLS: 

(i) ro-THIOLS in both the monomeric and the polymeric state undergo gel to 

liquid-crystalline phase transitions. The retention of a phase transition for polymeric T

THIOLS is unexpected and may have potential implications in terms of the structure of 

these membranes. This is discussed in the last section. 

(ii) Both the Tm and m data suggest an increasing interaction between the 

chains in the order: polymer > monomer > nonpolymerizeable analogue. As a 

consequence, bilayers are stabilized for even short-chain T-THIOLS. 
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(iii) As for the a-THIOLS, LWOLTM is surprisingly greater for the polymeric 

lipids than for the monomers. 

:J[uorescence Pofarization of '1Jeptfi-'1Jeperufent Ylntfiroy[ pro6es. To further delineate if any 

gradients of reorganization occur through the phase transition as for conventional 

phosphatidylcholines, N-anthroyloxy fatty acid probes were used to examine the 

temperature dependance of the polarization at graded depths throughout the bilayer. 

These probes contain an anthroyl moiety at various positions along a stearic or palmitic 

acid chain (Figure 6). The polar carboxylate moiety tethers the probes to the membrane 

surface, therefore defining the position of the anthroyl moiety with respect to the bilayer 

interface. The correlation between depth of penetration into the bilayer and attachment 

position has been confirmed by quenching and resonance energy transfer experiments 

(35-37). This contrasts to DPH, which can adopt various positions and orientations 

(38). 

Figure 7 shows typical polarization results for 2-AS, 12-AS and 16-AP as a 

function of temperature for various monomeric and polymeric matrices. Generally, in 

the gel state, the absolute polarization values do not follow the trend expected for a 

fluidity gradient (2-AS > 12-AS > 16-AP) (33). However, these values may reflect 

more the hindrance to depolarizing motions of the entire probe due to a portion of the 

membrane other than the microenvironment of the fluorophore. In the liquid-crystalline 

state, the expected order is observed suggesting a fluidity gradient extending from the 

bilayer interface to the membrane interior. Again it should be reiterated that the concept 

of fluidity encompasses both mobility and acyl chain packing (29,35). Thus the 

gradient may reflect a gradient of disordered packing in the bilayer, a gradient of 

motion, or both. In the case of the a-THIOLS, both increased lipid chain mobility and 

decreased packing at the membrane interior would be expected to lead to a lower value 
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Figure 6 

The orientation of n-anthroyloxy flourescent probes in membranes. From reference 

(43). 
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Figure 7 

Gradients of "fluidity" as shown by typical plots of the fluorescence polarization 

of 2-AS, 12-AS and 16-AP as a function of temperature in various lipid bilayers: A. 

monomeric a-16; B. polymeric a-16; C. polymeric a-20; D. monomeric a-20; E. 

monomeric ro-15; F. polymeric ro-15; G. monomeric ro-16; H. polymeric ro-16; I. 

DPPC; J. polymeric a-18. All measurements were made with heating scans. The 

symbols are assigned in the legends. 
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of the polarization for 16-AP compared to 12-AS and 2-AS. In the case of the 

polymerized ro-THIOLS, the situation may be quite different ,as is discussed below. 

Table IV contains a summary of polarization values of the anthroyl probes 

solubilized in various monomeric and polymeric membranes in the liquid-crystalline 

state. Also included is the "apparent gradient" calculated as the difference in polarization 

between 2-AS and 16-AP (at temperatures above the Tm of each lipid). For the a-

THIOLS , it is interesting to note that the difference in polarization between 2-AS and 

16-AP (the "apparent gradient") is greater for polymeric a-THIOLS than for the 

monomers indicating that a similar "fluidity " profile is present in the polymeric 

membranes as in conventional bilyers. It is most likely the effect of the interfacial 

polymerization on the restricted motions of 2-AS that enhances the difference in the 

polarization between 2-AS and 16-AP for the polymeric membranes compared to the 

monomers. As with DPH, the changes in polarization of the anthroyl probes on passing 

through the phase transition (ti.POLTM) is also greatest for the polymeric a-THIOLS 

(see Figure 7). 

For the ro-THIOLS, the extent of phase transition-induced changes in polarization, 

ti.POLTM, were not as distinctly different between the monomers and polymers (Figure 

7). More importantly, in contrast to the greater "gradient" of polymeric a-THIOLS 

compared to the a-THIOL monomers, the gradient for polymeric ro-THIOLS was 

approximately half that of the corresponding monomers (Table IV). However, one 

would not expect as large a gradient for the polymeric ro-THIOLS due to the 

conformational and dynamic restrictions imposed by the terminal disulfide on the 

chains. In fact, we were initially surprised by the observation of any gradient at all. 

There are two possible explanations for the observation of even a small gradient: 
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Table V 

Summary of the values of the flourescence polarization of 2-AS, 12-AS, and 16-AP 

in the liquid-crystalline state of various monomeric and polymeric a-THIOLS and co

THIOLS. The "gradient," defined as the difference in the polarization of 2-AS and 16-

AP, is also tabulated in the fourth column. The temperature in parenthesis is the 

temperature at which the polarization values were recorded and where the polarization 

becomes relatively constant with temperature. (M) and (P) refer to the monomeric and 

polymeric form of the lipid. 
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POLARIZATION 

Lipid 2-AS 12-AS 16-AP Gradient (T oC) 

a-IHIOLS 

a-16 (M) 0.133 0.072 0.042 0.091 (40) 

a-16 (P) 0.219 0.122 0.073 0.160 (40) 

a-18 (P) 0.214 0.131 0.150 (45) 

a-20 (M) 0.124 0.033 0.091 (60) 

a-20 (P) 0.208 0.078 0.043 0.165 (60) 

ro-IHIOLS 

ffi-15 (M) 0.114 0.415 0.076 (55) 

co-15 (P) 0.105 0.071 0.034 (70) 

ro-16 (M) 0.127 0.067 0.042 0.085 (60) 

co-16 (P) 0.106 0.059 0.065 0.041 (75) 
aThe midpoint of the entire transition 
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(i)The mobility of 16-AP is inherently higher than that of 2-AS. This is due to 

the attachment position at the chain terminus of the fatty acid, which provides greater 

motional freedom of the fluorophore compared to 2-AS and 12-AS. The latter two are 

motionally restricted by steric hindrance from the rest of the acyl chain. Thus the small 

gradient that is observed could be attributed exclusively to the inherent differences in 

the probe motions, without the need to assume any gradient is present in the bilayers of 

the polymeric ro-THIOLS. 

(ii) The gradient represents a small degree of disorder, which increases toward 

the bilayer interior. In this regard, it should be reiterated that the polarization values 

reflect both a combination of structural and dynamic characteristics of the membranes. 

Since polymerization decreases not only the translational and rotational mobility of the 

lipids as a whole, but in the case of the ro-THIOLS, also the segmental motions, it is 

likely that whatever small gradient of disorder does exist is one of structural disorder 

and not due to increased motion and "fluidity" as is the conventional interpretation. In 

Chapter V, we show by 13C spin-lattice relaxation measurements (T1) that the 

relaxation rates of the carbons along the acyl chains of a polymeric ro-THIOL are 

almost identical illustrating the lack of a mobility gradient. By contrast, a mobility 

gradient is observed for nonpolymerizeable phosphatidylcholines and polymerized a

THIOLS as indicated by the increase in the value of Ti from the a-methylene to the 

chain terminus. Therefore if a gradient does exist, it is likely to be one of structural 

disorder only. 

Car6o;r_yf[uorescein q\e{ease. Thus far, we have shown that these polymerizeable 

membranes, monomeric and polymeric alike, undergo phase transitions involving 

major reorganizations of the membrane. In addition to the implications these data have 
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in terms of the membrane structure, knowledge of the phase transition is important for 

encapsulation technologies. For nonpolymerizeable lipids, it has been shown that 

coincident with the phase transition is a maximal rate or abrupt increase in the leakage 

of entrapped solutes (1,2). To investigate whether similar phenomena occur for the 

THIOL phosphatidylcholines, carboxyfluorescein release was examined as a function 

of temperature. 

Figure 8 shows the release curves of sonicated dispersions of monomeric and 

polymeric a.-16 to a.-20. By comparison with the phase transition data, it is clear that 

for a.-18 and a.-20, maximal or increased leakage of carboxyfluorescein does in fact 

occur at the phase transition. For polymeric a.-16, maximal release occurs at the first 

component of the transition. This is demonstrated by the superposition of the DPH 

polarization curves with the carboxyfluorescein release profile in Figure 8 D. While the 

DPH is most sensitive to the second portion of the transition, 16-AP was found to be 

sensitive almost exclusively to the first portion (see Figure 7), which is also the part of 

the transition leading to carboxyfluorescein release. This suggests a reorganization 

predominantly localized to the bilayer midplane is responsible for the phase transition

induced leakage in polymeric a.-16. As a final point, it seems quite obvious that the 

increase in release at the Tm from polymeric a.-THIOLS exceeds that of the 

monomers.* The physical basis for this is not clear but is consistent with the fact that 

the changes in membrane organization that occur on passing through the phase 

transition (as reflected by .1POLTM in Table III) are generally greater for polymeric a-

THIOLS compared to their monomeric analogues. Furthermore, in the next chapter it 

is shown that the polymeric a.-THIOLS are more disordered than the monomers and 

nonpolymerizeable analogues that would likely lead to enhanced solute release. 

* Some variation from run to run is observed but the trend of increased leakage for the polymers was 
reproducible. 
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Figure 8 

Percent release of carboxyfluorescein as a function of temperature for monomeric 

and polymeric: A. a-16 SUVs; B. a-18 SUVs; C. a-20 SUVs. The percent release 

was based on measurements of the carboxyfluorescein fluorescence after 10 min of 

incubation of the samples at the indicated temperatures. D. Superposition of the 

carboxyfluorescein release curve and DPH polarization curve of polymeric a-16 SUV s 

to demonstrate the position of the maximum release rate with respect to the phase 

transition. 
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Polymeric ro-THIOLS were not examined due to the fact that they appear to form 

bilayer fragments as described in Chapter II. Attempts to entrap carboxyfluorescein by 

hydration of lyophilized powders was predictably unsuccessful. 

DISCUSSION 

In this study, we have examined the phase transition behavior of two series of 

polymerizeable phosphatidylcholines in order to understand the molecular organization 

of the bilayer and how it is related to the molecular structure of the constituent lipids. 

Based on Tm and ~H data, it was concluded that the presence of the sulfhydryl or 

disulfide group at the interface (a-THIOLS) reduces the packing density relative to 

phosphatidylcholine analogues lacking this pendant group. A combination of steric 

bulk, polarity and hydration most likely lead to a larger effective headgroup area and a 

reduced van der Waals interaction between the chains. Such structural features are 

consistent with the phenomenological observations described in Chapter II that these 

liposomes are readily hydrated and sonicated into SUV s. Using depth-dependant 

anthroyl probes, a gradient of structural disorder and/or increased motion extending 

from the interface to the bilayer midplane, was demonstrated for both polymeric and 

monomeric a-THIOLS. In fact, it was even larger for polymeric a-THIOLS than the 

monomers. This suggests retention of basic features of normal bilayers by 

polymerizing at a region of the bilayer normally quite rigid in nonpolymerizeable 

membranes. 

An unexpected result, however, was the fact that the differences in polarization 

between the gel and liquid crystalline state for all fluorescent probes was greater for 

polymeric than monomeric membranes. While somewhat speculative, this could be 

due to (i) increased immobilization of the probe in the gel state and/or (ii) increased 
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mobility of the probe in the liquid crystalline state, relative to nonpolymerized lipids. 

Results from vibrational spectroscopy described in the next chapter suggest that the 

lipid chains of polymeric a-THIOLS are actually more disordered in the gel state than 

that of the nonpolymerized lipids. Therefore, while counterintuitive, we favor the 

argument that the mobility of the probes in the liquid-crystalline state is actually quite 

high, despite polymerization of the matrix. A possible mechanism for this could be the 

creation of interfacial defects between unlinked polymer segments or different polymer 

chains where the probe may be preferentially admitted. The available space within such 

defects for depolarizing motions should be greater than that within homogeneously

packed monomeric membranes. Similar reports of "cleft" formation have been 

described by Fendler et al. based on the greater mobility of spin probes in certain 

polymerized membranes, compared to their monomeric analogues (39). Finally, such a 

mechanism provides a rational physical basis for several other experimental 

observations pertaining to these lipids including morphology (Chapter II), the 

vibrational spectra (Chapter IV) and the in vivo clearance rates (Chapter VII). 

As a final point concerning the a-THIOLS, carboxyfluorescein release experiments 

revealed that leakage was greatly enhanced at the phase transition. In consideration of 

the thermal data, the implications of this are that long-chain (N=20) a-THIOLS are 

necessary to optimize encapsulation efficiencies since the transition temperatures are 

such that polymeric a-16 has a maximal leakage rate near room-temperature and 

polymeric a-18, at 37°C (physiological temperature). 

ro-THIOLS show very different behavior than the a-THIOLS. For monomeric 

lipids, the Tm and ~H was increased relative to phosphatidylcholines of the same chain 

but lacking the sulfhydryl. The increased interaction between the lipids implied by these 

data is consistent with their morphological behavior: very short chain ro-THIOLS 

(N=lO and possibly 9) form stable bilayers and long chain ro-THIOLS have a high 
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propensity for aggregation. On polymerization, the enthalpy and transition temperature 

are increased even further. Using anthroyl probes, only small gradients of "fluidity" 

reflecting depth-dependent changes in mobility and/or structural disorder were detected 

in polymeric ro-THIOLS compared to monomeric or nonpolymerizeable analogues. 

The decreased magnitude of the gradient in the polymers is a consequence of the 

restricted motion imposed by the chain terminal polymerizeable moiety. Furthermore, 

whatever gradient may be present is most likely a reflection of increased structural 

disorder from the interface to the bilayer midplane and not to increased mobility. 

Finally, it should be pointed out that polarity and fluidity gradients have also been 

reported for methacroyl-based phosphatidylcholines using ESR depth-dependent 

nitroxide spin labels, even for chain-terminating cross-linkable methacrylates (18). It is 

possible that the "fluidity gradients" detected in these experiments are predominantly 

gradients of structural disorder rather than segmental mobility of the chains. 

The most surprising of the above results concerning the polymeric ro-THIOLS was 

the retention of the phase transition. For all reported double-chain phospholipids 

polymerizeable at the chain terminus, no transitions were detected subsequent to 

polymerization. We believe the presence of a substantial phase transition in these lipids 

may therefore have structural implications concerning whether polymerization is strictly 

intraleaflet, interleaflet or a combination of both. The two extreme possibilities are 

illustrated in Figure 9. 

It seems quite unlikely that transbilayer crosslinking would lead to a thermal 

transition at all, since this would have to involve a major cooperative compression of 

the bilayer thickness. Furthermore, gauche conformations in a chain on one side of the 

bilayer would tend to oppose gauche conformations in the chain to which it is linked on 

the other side of the bilayer. Runquist has in fact shown by phospholipase 

susceptibility experiments, that a dimerizeable lipid, DPL-rol6 (sn2-snl) containing 
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Figure 9 

Possible modes of polymerization of ro-THIOLS in lipid bilayers: A. Pure 

intraleaflet coupling; B. Inter - and Intra-leaflet coupling. 
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co-16 in the sn-2 chain and DPL in the sn-1 chain, is crosslinked almost exclusively 

within a single leaflet of the bilayer (40). If we now consider the established orientation 

of the two acyl chains of DPPC in bilayers, we can further argue for predominantly 

intraleaflet coupling for the polymeric co-THIOLS. From NMR and X-ray studies it 

has been shown that the first few segments of the two chains have different 

conformations (41,42). The sn-1 chain is perpendicular to the bilayer along its entire 

length while the first two carbons of the sn-2 chain run parallel to the bilayer surface 

and the rest of the chain runs parallel to the sn-1 chain. The net result is a difference in 

the penetration lengths of the two chains into the bilayer as shown in Figure 10. The 

2.5A displacement of the sn-2 chain from the bilayer center should favor intraleaflet 

coupling. The sn-1 chain, on the other hand, may be more disposed to interleaflet 

coupling but as shown by Runquist, this is not the case. It is also important to note that 

polymerization of these lipids was carried out in the liquid crystalline state of the 

monomer where chain disorder should tend to promote intraleaflet coupling. If, on the 

other hand, the lipids had been polymerized in the gel state where the chains are highly 

trans in orientation, trans bilayer polymerization might be more likely to occur. Finally, 

in the reports by Runquist, an enthalpy of 13 KCal/mole was measured for DPL-C016 

which is interesting since it is slightly higher than the enthalpy of DPPC (8.7 

kCal/mole) due to 1 intraleaflet coupled chain, and slightly less than the enthalpy of 

polymeric C0-16, perhaps because C0-16 has predominantly two intraleaflet coupled 

chains. Based on the presence of the phase transitions described in this chapter and the 

argument presented above, we believe that predominantly intraleaflet coupling is 

occurring in the CO-THIOLS. A phase transition similar to that of nonpolymerizeable 

lipids is then easily envisioned by two intraleaflet-coupled chains acting in concert. 

Disordering in one would promote cooperative disorder in the other. 
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Figure 10 

Orientation of lecithins in bilayers. The dotted line represents the membrane surface 

and the chains are labeled as sn-1 and sn-2. It is clear from the figure that the sn-1 chain 

penetrates the bilayer to a greater extent than the sn-2 chain. From reference (42). 
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Chapter IV 

Investigations of tlie Ylcy[ Cliain Conformations ancf Mem6rane Pacl(j,ng 

Cliaracteristics of 'Disu[jicfe Po{ymerizea6[e Pliospfio{ipicfs 6y 

1?__aman ancf :F'I-I1?__S pectroscopy. 

Introduction 

To date, the majority of polymerizeable lipids synthesized and described have the 

bilayer as their primary level of organization. This is in many cases due to the desire to 

imitate the compartmentalized nature of the cell for encapsulation technologies, or to 

prepare matrices conducive to reconstitution of functional proteins. To optimize the 

desirable membrane characteristics of such polymerized bilayers and establish 

structure-property relationships, a wide variety of physical studies have been carried 

out on a large library of polymeric lipids. For example, confirmation of the lamellar 

phase has been achieved primarily by freeze fracture and transmission electron 

microscopy (for a review of polymerized liposomes, see ref. 1 and 2; also see 3-5 for 

examples). The gel to liquid-crystalline phase transition, which reflects interactions 

between the components of the bilayer, is routinely measured for polymeric lipids by 

DSC. Finally, monolayer (6-n permeability (8-12), fluidity (13), and diffusion studies 

(14)have also been carried out on a number of polymeric systems and compared to 
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similar studies of monomeric or nonpolymerizeable analogues. As yet, however, there 

have only been a few studies concerned with the conformation of polymeric lipids on a 

molecular level (15). This is an important area for investigation since the physical 

properties of the bilayers are governed in large part by the conformation and packing of 

the constituent biomolecules. 

In Chapters II and III, we examined the morphological and thermal properties of 

two classes of disulfide-polymerizeable phospholipids. These studies revealed 

structural information pertaining to the macroscopic features of lipid aggregates and 

provided some insight into the nature of the packing of the lipids within the bilayer. In 

the present study, we examine more directly and on a molecular level, the 

conformational properties of the individual lipids and how they are organized within the 

bilayer. In particular, Ff-IR and Raman spectroscopies are used to monitor vibrational 

modes sensitive to chain conformation, packing, and mobility. These include the C-H 

stretching vibrations in the IR and Raman spectra as well as the C-H bending and 

skeletal optical C-C stretching vibrations in Raman spectra. Changes in vibrational 

features as a function of chain length and position of the polymerizeable moiety are 

used to establish general correlations between lipid structure and membrane 

organization for these two classes of polymerizeable lipids. These data are further 

correlated to the macroscopic (bulk) physical properties of these lipids including 

morphology, leakage, and in vivo blood clearance, which are described in separate 

chapters. 

MATERIALS AND METHODS 

:T"tnt.erials. 

The synthesis and polymerization of the disulfide polymerizeable 

phosphatidylcholines was as described in Chapter VIII. Routinely the polymerized 
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form of the lipid was stored at 4°C until use. L-a-distearoylphosphatidylcholine 

(DSPC) and L-a-dipalrnitoylphosphatidylcholine (DPPC) were purchased from A van ti 

Polar Lipids. All other reagents were of analytical grade and used without further 

purification. 

net.hods. 

f'T-I:R. Lipid samples were hydrated in D10 for 30 min at 80 oc. Samples were then 

placed between CaF2 windows and transferred to a rigorously thermostated ( +/- .1 °C) 

FT-IR mount containing Peltier thermoelectric modules (6). Automated data acquisition 

as a function of temperature was accomplished on a Mattson Sirius 100 FT-IR 

spectrometer under UNIX-based computer control. 

{Raman Spectroscopy. For hydrated samples, lipids were dispersed for 15-30 min 

above the phase transition and pelleted into 1 mm O.D. quartz capillaries. Dry samples 

were equilibrated for several hours at room temperature and placed in the capillaries as a 

plug. Data was recorded on a SPEX Raman spectrometer equipped with a Scamp 

microcomputer and a Spectra Physics 170 Argon ion laser using 500 mW of the 488-

nm laser line. The slit width of the monochromator was set such that the accuracy of the 

band frequencies was± (3-4 cm-1.). Data was transferred from the Scamp to the VAX 

mainframe computer where the data was baseline corrected using a least squares fit of a 

polynomial of up to order 15. A polymomial of 2 was generally sufficient to reproduce 

the baseline. 

RESULTS and DISCUSSION 

Both FT-IR and Raman are nonperturbing techniques ideally suited for 

investigations of lipid conformation. This is due to the fact that many Raman- and 
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infrared-active modes characteristic of lipid molecules are extremely sensitive to 

changes in conformation and packing of the lipids, and may therefore be used to 

monitor even subtle changes in membrane organization induced by alteration of the lipid 

structure, temperature or the addition of non-phospholipid components (for a review, 

see 16-19; also see 20-28). Because of the dispersion of useful absorptions, one may 

also examine spectral features associated exclusively with the headgroup (P04- and C

N stretching modes), the interfacial region (C=O stretching mode) and the acyl chains 

(skeletal C-C stretching and C-H stretching, twisting and deformation modes). Finally, 

because of the time scale of the experiment(::::: lQ-12 s) most molecular motions are 

effectively frozen out, and therefore the interpretation of the data is not complicated 

by anisotropic motional averaging (17). 

In the present study we have restricted ourselves to investigations of vibrational 

modes associated with the hydrocarbon region of polymerizeable phospholipids, and 

for comparison, nonpolymerizeable lipids. Data obtained from the C-H stretching 

region of the infrared spectrum are first described, followed by observations obtained 

from the Raman C-H stretching and skeletal C-C stretching vibrations. 

:f'T-T:R.. 

As a preface to describing the results of the present study, it is useful to summarize 

salient features concerning the infrared spectra of nonpolymerizeable saturated 

phosphatidylcholines that already been described in great detail. Figure 1 shows the C

H stretching region of DPPC as a function of temperature. The bands at 2850 and 2970 

cm-1 correspond to the C-H symmetric and asymmetric stretching modes, which are the 

strongest bands in the infrared spectra, while the less intense bands at 2956 and 2870 

cm-1 correspond to the asymmetric and symmetric stretches of the terminal methyl 

group (16,17). The frequencies and bandwidths of these modes are extremely sensitive 

to chain conformation and the amount of chain disorder, respectively. In 
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Figure 1 

A. Temperature dependent changes in the C-H stretching region of DPPC bilayers; B. 

Changes in the peak position of the symmetric C-H stretching mode; C. Changes in the 

bandwidth of the symmetric methylene stretching mode. 
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particular, the introduction of gauche conformers in the chains and the onset of chain 

mobility causes an increase in the peak positions and bandwidth as shown in Figure 1 

for the C-H symmetric stretching vibrations.* 

The change in peak position of""' 2 cm-1 at the Tm corresponds to the introduction 

of approximately 5 gauche conformers in the acyl chains of DPPC (16,29). 

Unfortunately, the relationship between frequency and/or change in frequency at Tm, 

and the number of gauche conformers is only semiquantitative (16). Bandwidths and 

the degree of chain disorder, on the other hand, have been reported to be more 

quantitatively related but this is complicated by the difficulty in establishing an accurate 

baseline from which to calculate bandwidths at a fractional peak height (16). 

Nonetheless, the general correlation of (i) decreased frequency and increased trans 

conformation and (ii) increased bandwidth and increased chain disorder are useful 

starting points for qualitatively describing the nature of membranes formed by 

polymerizeable phospholipids. 

The C-H stretching region for monomeric and polymeric 16-carbon a- and ro-

THIOLS is shown in Figure 2. The most obvious difference between the spectra of 

the two classes of lipids is the absence of the methyl stretching modes at 2965 and 

2870 cm-1 in the case of the ro-16. However, it is also apparent that at a given 

temperature above or below the Tm , the bandwidths of the C0-16 are more narrow 

than that of the a-16. Furthermore, the bandwidth of the ro-16 decreases on 

polymerization while that of a-16 increases, suggesting polymerization decreases the 

conformational disorder of ro-16 bilayers, while it is increased on polymerization of a-

16. This also suggests that the ro-16 bilayers as a class of lipids are more rigid and/or 

ordered than those of a-16. These trends are better visualized in Figure 3, which 

* The symmetric stretching vibration is generally monitored in lieu of the more intense and sensitive 
asymmetric stretching mode, due to the fact that it is less overlapped by other vibrational modes. 
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Figure 2 

Temperature dependent changes in the C-H stretching region of: A. a-16 monomeric 

and polymeric bilayers; B. ro-16 monomeric and polymeric bilayers. 
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Figure 3 

The peak position of the methylene symmetric stretching mode as a function of 

temperature for: A. monomeric and polymeric ro-16 and DPPC bilayers; B. 

monomeric and polymeric a-16 and DPPC bilayers. The half-height bandwidth of the 

methylene symmetric stretching mode as a function of temperature for: C. monomeric 

and polymeric ro-16 and DPPC bilayers; D. monomeric and polymeric a-16 and 

DPPC bilayers. 



193 

A 
I& DPPC _...,. 
e w-16M ••• ... ... 111 w-16P 

2852 • • 
-

1!11 Ill Ill II Ill II II 
I • E 
u Ill 

c: 
Ill 0 2851 

:'!:::: • (/) 

0 
Cl.. • 1111 
..:.:: ·" 0 
Q) •••••••• Ill 

Cl.. 2850 

I 
20 60 70 80 90 

T(°C) 

B 
A DPPC II 

II 111111111 11111 111111 11111 2853 e a-16M 1111 Ill • Ill 
111 a-16P 1111 Ill 

••• . "'! ...... -
11111 --

I . -· E 2852 
~ 1111111•_..-
c A 0 

Ill 
(/) 

II 0 2851 Cl.. 11111 •• • A 
.JtJ:. .. -· .. Ill 
0 II Ill J CJ 

Cl.. 
A I& Ae.I& I& I& I& A A 

2850 , 
~--·-

10 20 30 40 50 

T(°C) 



c 8.0 

..c:. --0 

3 
-0 
c 
0 
al 

D 

7. 5 

7.0 

6.5 

6.0 

5.5 

5.0 

9.0 

8.5 

& OPPC 
e w-16M 
11w-16P 

20 30 

194 

40 50 

--;-E 8.0 1......-• .-a,1•"•.• 
u 

7.5 

7.0 

6.5 

6.0 

5 5 

5.0 

& DPPC 
e a-16M 
11a-16P 

10 20 

60 

30 

T(°C) 

70 

II II 
II 

80 

40 

90 

50 



195 

shows the half-height bandwidth versus temperature profiles for monomeric and 

polymeric C0-16 and a-16, as well as DPPC. 

The plots of the frequency change as a function of temperature for C0-16 and a-16 

bilayers are also shown in Figure 3. DPPC is again included for reference. The general 

reduction in the frequency of polymeric C0-16 bilayers relative to the monomeric 

bilayers suggests a slightly higher trans-orientation of the chains. The difference 

between polymeric and monomeric a-THIOLS is even greater but in the opposite 

direction: polymerization seems to increase the number of gauche conformers per chain. 

Similar effects of polymerization on band frequency are exhibited by a- and co-

THIOLS with different chain lengths as shown in Figure 4. In all cases, polymerization 

of CO-THIOLS shifts the frequency of the CH2 symmetric stretch to lower 

wavenumbers, while it shifts that for the a-THIOLS to higher wavenumbers. * While 

the results concerning the co-THIOLS are what is intuitively expected for polymeric 

versus monomeric lipids, the disordering effect of polymerization on the a-THIOLS is 

not. 

As for C0-16, bandwidths for all co-THIOLS in the gel state are reduced on 

polymerization (Figure 4). Less consistent trends are shown for the a-THIOLS 

(although it is not clear if this is simply the consequence of the establishment of a poor 

baseline) (Figure 4). However, in general, the bandwidths of the a-THIOLS are 

noteably higher than those of the CO-THIOLS, particularly considering the fact that the 

a-THIOLS have much longer chain lengths than the majority of co-THIOLS. *" Table 

I summarizes these data in terms of the peak position and bandwidth of the methylene 

" The exception to this is co-11. The reason for the anomalous band frequencies is not clear but may be 
the consequence of the morphological change exhibited by co-THIOLS on polymerization. For 
monomeric co-11, liposomes are formed on dispersion in water. In the case of the polymers, bilayer 
fragments/micelles are formed as described in chapter IL 
"*Short chain lipids tend to be more disordered than long chain lipids, and therefore, the bandwidths 
shift to higher values. 
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Figure 4 

The peak position of the methylene symmetric stretching mode as a function of 

temperature for: A. monomeric and polymeric co-THIOLS; B. monomeric and 

polymeric a-THIOLS. The half-height bandwidth of the methylene symmetric 

stretching mode as a function of temperature for: C. monomeric and polymeric co

THIOLS; D. monomeric and polymeric a-THIOLS. 
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Table I 

A. Summary of the peak positions of the symmetric C-H stretching mode for 

polymeric and monomeric a-THIOLS and co-THIOLS in the gel (PPGEL) and liquid

crystalline (PPLc) state. Also included is the magnitude of the change AflP and the 

temperatures at which the values for PP were extrapolated from the curve. B. 

Summary of the bandwidths of the symmetric C-H stretching mode for polymeric and 

monomeric a-THIOLS and co-THIOLS in the gel (BWGEL) and liquid-crystalline 

(BWLc) state. Also included is the magnitude of the change LIBW and the temperatures 

at which the values for BW were extrapolated from the curve. 
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A 
TemperarnreJ.QQ_ Peak Position (cm:l 

Lipid Gel-LC PPaELa PPI£'1 AfJpa 

a-THIOLS 

a-16 (M) 5-40 2849.2 2852.5 3.3 

a-16 (P) 5-40 2850.5 2853.2 2.7 

a-18 (M) 15-50 2849.5 2852.3 2.8 

a-18 (P) 15-50 2850.0 2853.0 3.0 

a-20 (M) 30-70 2849.3 2852.1 2.9 

a-20 (P) 30-70 2845.0 2853.2 3.2 

co-THIOLS 

C0-11 (M) -11.5-10 2848.6 2851.4 2.8 

C0-11 (P) 4-44 2850.3 2852.0 1.7 

C0-12 (M) 5-45 2850.1 2853.0 1.9 

C0-12 (P) 5-55 2850.0 2852.5 2.5 

C0-15 (M) 30-65 2849.5 2852.1 2.6 

C0-15 (P) 30-75 2849.3 2851.8 2.5 

C0-16 (M) 30-70 2849.3 2852.6 3.3 

C0-16 (P) 30-90 2849.2 2851.5 2.3 

LECITHIN 

DPPC 20-50 2850.1 2852.4 2.3 
a Errors in the peak position are estimated to be ::::: ± 0.1 cm·l. 
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B 
Temperature_i.QC) Bandwidths Ccm.:.l 

Lipid Gel-LC BWoELa BWLC'1 .1Bwa 

a-THIOLS 

a-16 (M) 5-40 7.9 8.4 0.5 

a-16 (P) 5-40 9.0 8.8 -0.2 

a-18 (M) 15-50 7.3 8.3 1.0 

a-18 (P) 15-50 5.0 7.0 2.0 

a-20 (M) 30-70 6.8 9.9 3.1 

a-20 (P) 30-70 6.0 7.3 1.3 

oo-THIOLS 

ID-11 (M) -11.5-10 8.3 9.6 1.3 

00-11 (P) 4-44 5.3 7.9 2.6 

ID-12 (M) 5-45 5.9 7.6 1.7 

00-12 (P) 5-55 5.2 7.5 2.3 

ID-15 (M) 30-65 6.4 7.8 1.4 

00-15 (P) 30-75 5.9 8.9 3.0 

ID-16 (M) 30-70 7.8 8.0 0.2 

00-16 (P) 30-90 4.8 7.7 2.9 

LECITHIN 

DPPC 20-50 5.0 6.8 1.8 
a Errors in the bandwidth are estimated to be less than± 0.2 cm-1. 
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symmetric stretch for the bilayers in the gel and liquid-crystalline states and the Fr-IR 

determined phase transition. 

:RA:M.-A.N. 

The Raman spectra of phospholipids is similar in many respects to the infrared 

spectra in that the modes of the hydrocarbon chains are the dominate features. Based on 

the analysis of the Raman spectra of polyethylene, long chain alkanes, and fatty acids, 

bands attributable to the hydrocarbon region of phospholipids have been readily 

assigned and evaluated in terms of their relationship to lipid acyl chain conformation 

and packing (18,19,23,30). 

Particularly informative are the skeletal optical modes which appear between 1000-

1200 cm-1. Although this region is vibrationally congested with C-C stretching modes 

of the acyl chains, the glycerol backbone, and the choline headgroup, three vibrations 

attributable to the acyl chains are the most intense features (23). The 1130 and 1065 

cm-1 vibrations are the in-phase and out-of-phase stretching modes for an ordered 

nearly all-trans chain conformation (21). The former is chain length and temperature 

sensitive while the latter is not (23). The 1090 cm-1 vibration is diagnostic of C-C 

stretching modes of gauche rotamers (18,19,21,23). Thus as chain disorder increases by 

increasing the temperature, the intensity of the 1090 cm-1 band increases while the band 

at 1130 cm-1 decreases in intensity and shifts to lower frequency (21). This is illustrated 

in Figure 5, which shows the change in the skeletal optical mode region of DPPC with 

temperature from below to above the phase transition. The spectral features are often 

expressed in terms of the ratio of intensities of the 1090 to 1130 bands (I 1090/I 1130). 

While there is no simple quantitative relationship between this ratio or the intensity of 

the 1130 cm-I vibration and the exact number of trans conformers in the chain (18)they 

do offer useful qualitative information concerning the lipid chain conformation. 
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Figure 5 

The C-C stretching region for DPPC bilayers at: A. 25 °C and B. 56°C. 
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Figure 6 shows the 1100-1200 C-C stretching region for a variety of hydrated 

dispersions in the gel state. Corresponding I109ofl1130 ratios and spectral frequencies 

are included on the graphs. From a cursory examination of the spectra and the ratios, it 

is clear that the 16- and 18-carbon saturated phosphatidylcholines (DPL and DSL, 

respectively) have a greater proportion of trans to gauche conformers than the 

corresponding 18- and 16-carbon a-THIOLS in either the monomeric or polymeric 

state. Furthermore, a comparison of monomeric a-16 to polymeric a-16 suggests that 

polymerization has a disordering effect. (Similar conclusions were arrived at on the 

basis of FT-IR spectra.) In Figure 7, similar data are shown for powders of DSL, 

DPL, and polymeric a-THIOLS. These samples were simply equilibrated at ambient 

humidity and therefore hydrated to some extent but not in excess. Bush et al. has 

shown that after four molecules of water are added to DPPC, spectral features do not 

change in either the acyl chain or headgroup region with further hydration (23). 

Furthermore, at a hydration level of two to four molecules of H20 per lipid, the 

carbonyl vibration collapses from two vibrational modes at 1720 and 1738 cm-1 

corresponding to the sn-2 and the sn-1 chain, respectively, to a single broad vibration 

centered at 1738 cm-1. Powder samples of DPL showed only a single unsplit vibration 

at 1738 cm-1 as did all other powder samples with the exception of DSL. Thus the 

differences observed in the I 1090/I 1130 ratios between powder and dispersed samples of 

DPL and the fact that the carbonyl mode is singular indicates that between two and four 

water molecules are associated with the powders. While some samples may differ in 

the amount of associated water due to differences in the hygroscopic nature of the 

lipid, the data shows the same trends in that the nonpolymerizeable 

phosphatidylcholines are more highly ordered than the polymeric systems. The very 
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Figure 6 

The C-C stretching region for hydrated bilayers of: A. DPPC (25 OC); B. 

monomeric a-16 (10 OC); C. polymeric a-16 (8.5 °C); D. DSPC (30.5 oc); E. 

polymeric a-18 (19 °C). I109o/I1130 ratios are included above the figures. 
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Figure 7 

The C-C stretching region for unhydrated bilayers of: A. DSPC; B. polymeric a-

20; C. polymeric a-18; D. DPPC; E. polymeric a-16. l1090/Ii130 ratios are included 

above the figures. Measurements were made at 23 oc. 
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Figure 8 

The C-C stretching region for hydrated bilayers of: A. DPPC (25 OC); B. 

monomeric ro-16 (20 °C); C. polymeric ro-16 (20 oc); D. dimeric ro16-DPL (20 OC); 

E. polymeric ro-12 (26 °C). I1090/I1130 ratios are included above the figures. 
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high I109ofI1130 of polymeric a-16 is due to the room temperature phase transition of 

the hydrated form of this lipid. 

The C-C stretching regions of several 00-THIOLS are shown in Figure 8 along 

with DPPC for comparison. I1090/In30 ratios and frequencies are included in the 

graphs. In contrast to the a-THIOLS, the 1090 cm-1 band diagnostic of gauche 

conformations is very low in intensity compared to DPPC for all 00-THIOLS, even 

those with short 12-carbon acyl chains (however, the 1090 cm-1 band in polymeric 00-

12 may be somewhat obscured). This would seem to indicate that the chains of the 00-

THIOLS are highly ordered and mostly trans. A second noteworthy feature of the 00-

THIOL spectra is the fact that the frequencies of the 1130 cm-1 are shifted to lower 

wavenumber. This is the general trend observed for increased disorder and shorter 

chain lengths, but such an analysis of the data would be inconsistent with the low 

intensity of the 1090 cm-I band. Furthermore, the high relative intensity of the "1130 

cm-1" band is greatly increased, which would imply an increased trans orientation. An 

alternative explanation compatible with a highly ordered chain conformation is that the 

acyl chains of 00-THIOLS do not have only one "fixed end" as for fatty acids and 

lipids, but rather two, due to the presence of the disulfide linkage or the sulfhydryl 

group. Early work by Lippert and Peticolas have in fact attempted to address the 

question of what effects end groups have on carbon skeletal vibrations. An alteration of 

the band frequency is predicted theoretically (32). 

In order to test this, a mixed chain oo-THIOL was prepared that has a 16-carbon 

polymerizeable acyl chain in the sn-2 position and a nonpolymerizeable 16-carbon 

saturated fatty acid in the sn-1 position (0016-DPL). On oxidation of this lipid, only 

dimers are formed by crosslinking adjacent sn-2 chains. Figure 8D shows the C-C 

stretching region for oxidized 0016-DPL. Four vibrational modes are visible: (i) the 

1065 cm-1 band which, being temperature and chain length insensitive, is unsplit (ii) 
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the 1090 cm-1 band indicative of gauche conformations (iii) 1117 cm-I band 

attributable to the acyl chains of the dimer in a trans conformation (a two fixed-end 

vibration) and (iv) the 1131 cm-1 band corresponding to trans conformations of the sn-

1 nonpolymerizeable (one fixed-end) chain. Whether or not the 1090 cm-1 band arises 

from gauche conformers in the sn-1 chain, the sn-2 chain, or both is unclear. However, 

these data corroborate the conclusion that the spectra of monomeric and polymeric ro

THIOLS correspond to that of carbon chains which are highly trans in orientation. 

Figure 9 shows spectra of "powders" of DPPC, polymeric ro-15 and dimeric rol6-

DPL, further confirming the highly ordered state of polymeric ro-THIOLS compared to 

nonpolymerizeable analogs. 

It would be expected that the C-C stretching region of the a-THIOLS would change 

with temperature in a manner similar to DPPC since the polymerizeable moiety is 

restricted to the rigid bilayer interface. On the other hand, it is not so obvious what 

would happen for the ro-THIOLS. Figure 10 shows the change in the C-C stretching 

region for polymeric ro-12 as a function of temperature. The area between the two 

trans-marker vibrations (1065 and 1107 cm-1) does fill in as the temperature is elevated, 

indicating the induction of conformational disorder. Nonetheless, the spectra differ 

from that of DPL or polymeric a-THIOLS in that a single distinctive broad vibration at 

1090 cm-1 is absent. The physical basis for this is unclear but may be related to the 

restriction at the chain terminus in the nature of gauche conformers formed or a 

different distribution of gauche kinks along the chain. (For nonpolymerizeable and 

polymeric a-THIOLS, gauche rotamers are formed predominantly toward the chain 

terminus). 

'1{.aman C-:J-{ Stretcliing 1\f,gion. In addition to the C-C stretching vibrations, other 

interesting and informative spectral features for phospholipid molecules are the C-H 
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Figure 9 

The C-C stretching region for unhydrated bilayers of: A. DPPC ; B. polymeric ffi-15; 

C. dimeric ffil6-DPL. 11090/11130 ratios are included above the figures. Measurements 

were made at 23 oc. 
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Figure 10 

Effect of temperature on the C-C stretching region of polymeric ro-12 bilayers: 

A. 260C; B 36 oc; C. 41 oc; D. 44.5 oc; E. 50 oc; F. 54 oc. 



220 



221 

stretching vibrations between 2800 and 3100 cm-1. The vibrational modes in this region 

are sensitive to both lateral packing characteristics of the bilayer as well as 

intramolecular disorder (18,19,21,23,31). Figure 11 demonstrates the temperature-

induced changes in the C-H stretching region of DPPC. On increasing the temperature, 

the intensity of the methylene C-H symmetric stretching mode (2850 cm-1) increases 

while that of the C-H asymmetric stretching mode (2885 cm-1) decreases. Thus the 

ratio of the methylene C-H symmetric stretching mode to the asymmetric stretching 

mode (I2ss5/I2350) provides a qualitative measure of the packing density of the lipid 

chains and their conformational disorder. 

Representative spectra for DPL, DSL and several monomeric and polymeric a

THIOLS are displayed in Figure 12. As expected based on the conclusions drawn from 

the C-C stretching region, the data suggests the lipid chain lateral packing and 

conformational order is reduced for hydrated polymeric a-THIOLS relative to both the 

monomeric a-THIOLS and nonpolymerizeable analogues. Similar trends are shown 

by the powder samples in Figure 13. These points are best illustrated by comparison of 

lipids with similar chain lengths (i.e., DSL versus polymeric a-18, DPL and 

monomeric a-16 versus polymeric a-16, and monomeric a-20 versus polymeric a-

20). 

For the ffi-THIOLS, somewhat opposite trends were observed as shown in Figure 

14 and 15 for hydrated and powder samples, respectively. By comparison to fully 

hydrated DPPC, the I23so/I2sso ratio of monomeric and polymeric ffi-16 and dimeric 

ffil6-DPL are slightly greater. In the powder samples, polymeric ffi-15 also has a 

slightly higher ratio and that of polymeric ffi-12 is only slightly less, despite the much 

shorter carbon chain of this lipid. Finally, it is interesting to note that the I2sso/I2sso 

ratio for polymeric ffi-12 (hydrated, Figure 14) is approximately the same as that for 

polymeric a-20 (hydrated, Figure 12) despite the large difference in chain lengths 
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Figure 11 

Raman C-H stretching region for DPPC bilayers at A. 25 oc and B. 56 oc. 
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Figure 12 

Raman C-H stretching region for hydrated bilayers of: A. DSPC (20.5); B. 

polymeric a-18 (19 OC); C monomeric a-20 (25 OC); D. polymeric a-20 (22 OC); E. 

DPPC (25 °C); F. monomeric a-16 (10 °C); G. polymeric a-16 (8.5 °C). hsso/!isso 

ratios are included above the figures. 
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Figure 13 

Raman C-H stretching region for unhydrated bilayers of : A. DSPC ; B. polymeric 

a-18; C. DPPC; D. polymeric a-16. hsso/I2sso ratios are included above the figures. 

Measurements were made at 23 °C. 
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Figure 14 

Raman C-H stretching region for hydrated bilayers of: A. DPPC (25.0 °C) ; B. 

monomeric ro-16 (21 oc); C polymeric ro-16 (20 oc); D. polymeric ro-12 (26 °C); 

E. co16-DPL (20 °C). I2sso/hsso ratios are included above the figures. 
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Figure 15 

The Raman C-H stretching region for unhydrated bilayers of: A. DPPC; B. 

polymeric ro-15; C. polymeric ro-12. I2sso/I2sso ratios are included above the figures. 

Measurements were made at 23 °C. 
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between these two lipid types. Thus, the data is in agreement with conclusions drawn 

from the C-C stretching region in that the ro-THIOLS appear to be fairly ordered. 

CONCLUSION 

The results described in this chapter have demonstrated that the position of the 

polymerizeable moiety in disulfide polymerizeable phosphatidylcholines has a marked 

effect on the conformational order and packing of these lipids in a bilayer. In the gel 

state, the acyl chains of monomeric ro-THIOLS appears to be highly trans and fairly 

rigid as demonstrated by the bandwidth and peak positions of the symmetric C-H 

stretching modes in the infrared spectra and the intensity of trans versus gauche 

vibrational modes in the Raman C-C stretching region. The nature of the Raman C-H 

stretching region also implies that the ro-THIOLS have a lateral packing similar to that 

of nonpolymerizeable phosphatidylcholines. Thus the presence of a polar sulfhydryl 

group in the low dielectric medium at the bilayer midplane does not disrupt the bilayer 

organization. The results are in agreement with previous studies (Chapter III) of the 

position of the phase transition by DSC, FT-IR, and fluorescence polarization, which 

suggested that in fact the sulfhydryl group has a stabilizing effect. On polymerization, 

these trends are enhanced even further in the direction of greater ordering and chain 

immobilization. 

The presence of a thiol or disulfide at the interfacial region of phosphatidylcholines 

has markedly different effects on the structural properties of the bilayer. In contrast to 

ro-THIOLS, monomeric a-THIOLS have a more disordered hydrocarbon interior than 

that of phosphatidylcholine analogues. This is not surprising due to the added bulk and 

hydration of the sulfhydryl group at the interface, which should increase the average 

area per molecule and therefore decrease the intermolecular chain-chain interactions. 

The consequences of polymerization of the a-THIOLS is rather unintuitive, however. 
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Generally, when one thinks of polymerized lipids, the connotation is that of a rigid, 

stabilized bilayer. However, the FT-IR and Raman studies indicated quite clearly that 

the interfacial disulfide linkage actually increased the average number of gauche 

conformers in the chain and reduced the intramolecular packing. In fact, the I1sso/I2sso 

ratio of gel state polymeric a.-20 was similar to that of a polymerized 12-carbon ro

THIOL, indicating a rather disordered bilayer for such a long chain lipid. It seems 

unlikely that the intramolecular interactions between adjacent covalently-linked lipids 

would be severely compromised (especially in comparison to monomeric analogues) 

since the presence of the disulfide bond should should force the lipid chains together 

and restrict the extent to which they can move apart. However, the reduced 

conformational freedom of polymerized lipids must inhibit their ability to optimally 

pack with lipids to which they are not directly bonded, thus creating defects in the 

membranes between polymer chain segments. Disorder most likely arises within these 

regions of the bilayer. 

The results presented in this study provide a physical basis for a variety of 

quantitative and phenomenological results observed in studies described in the other 

chapters. For example, in the case of the ro-THIOLS, the high degree of order 

bestowed by the presence of the polymerizeable moiety causes an increase in the 

transition temperature relative to the nonpolymerizeable analogues, and promotes stable 

bilayer formation for even short chain (N < 12) lipids. On the other hand, it was 

shown in Chapter II that polymerization of ro-THIOLS transforms them from 

liposomes to bilayer fragments. Thus the degree of order and rigidity in the case of 

polymeric ro-THIOLS may be incompatible with their ability to form curved, self-

sealed bilayer structures, or to respond to transient defects created, on passing through 

the phase transition, for example. 
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Concerning the a-THIOLS, it was shown in the previous chapter that the polymeric 

lipids have a reduced enthalpy relative to monomeric analogues and that they are prone 

to leakage of entrapped materials. Furthermore, polymeric a-THIOLS readily disperse 

into relatively small liposomes (200-300 nm) or sonicate into SUVs even in the gel state 

and from the prepolymerized form of the lipids, consistent with a disordered 

hydrocarbon interior. Finally, in Chapter 7, in vivo studies are described, which 

illustrate the rapid blood clearance and degradation of polymeric SUV s. This is likely a 

reflection of the rapid adsorption of opsonizing and degradative proteins onto the 

liposome surface as a consequence of the fact that the hydrocarbon region is disordered 

and corrugated with surface defects. 
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APPENDIX 

In this chapter, data has been presented that clearly illustrates in a qualitative manner 

the ordering of the lipid chains in monomeric and polymeric a- and ffi-THIOLS. 

Steady state fluorescence anisotropy rs (or polarization Ps) measurements have also 
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been widely used as indicators of membrane organization (1,2). Therefore it is now 

useful to recall the fluorescence anisotropy results of the previous chapter to evaluate 

their meaning in light of the conclusions drawn from the vibrational spectroscopy. It 

was shown using DPH as a fluorescent probe that upon polymerization of both lipid 

types, the anisotropy values uniformly increased at all temperatures and for all chain 

lengths evaluated. The temperature dependence of the DPH anisotropies for monomeric 

and polymeric a-16 and co-16 is shown in Figure 3 of Chapter III. 

Steady state anisotropies (rs) or polarization (P8) are based on the components of the 

emitted light perpendicular and parallel to the direction of excitation according to: 

(1) 
111 - I l. p = -"---

s 111+/l. 

(see 1 and 2 for reviews as we{{ as 3). Depolarization occurs if a reorientation (i.e. 

wobbling or rotational diffusion) of the fluorophore takes place during its fluorescence 

lifetime such that the emitting dipoles are randomly oriented relative to the initial 

direction of polarization (1-3). Thus, steady-state anisotropies should yield information 

concerning membrane structure and dynamics. In the past the steady state anisotropies 

have been routinely interpreted in terms of membrane fluidities and microviscosities 

whereby an increasing anisotropy was correlated with a decrease in membrane fluidity 

(1-4). Quantitatively, the Perrin equation was used to convert anisotropies into apparent 

microviscosities. However, more recently, such a simplified analysis has been called 

into question and shown inappropriate (3,5-7). This is due to the fact that the 

extrapolations of anisotropy to microviscosity were founded on the incorrect 

assumptions of isotropic reorientation of the probe within an anisotropic lipid matrix. 

Time resolved anisotropy measurements have revealed that the decay curve can be 

resolved into (i) an infinitely slowly decaying (static) part roo which depends on the 

degree to which the fluorophore depolarizing rotations are restricted by molecular 
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packing and other interferences and (ii) a fast decaying (dynamic) factor rf, which 

depends on the rate of probe rotation (5,6). (Analysis via the Perrin equation assumes 

only the latter contribution (3}). The decay curve can be expressed as: 

-t 

(2) r(t)=(f0 -r~)e0 +r~ 

where r0 is the fluorescence anisotropy in the absence of depolarizing rotational motion 

(0.4 for DPH), roo is the static component representing the hindered motion of the 

probe, 0 is the rotational correlation time for rotation about the long molecular axis of 

DPH and rs is the measured steady state anisotropy.* Assuming a simple exponential 

decay of the total fluorescence intensity, the following expression is obtained, which 

resolves the steady state anisotropy into dynamic and static components (3): 

(3) ro- '~ r = + r s 1+..!. ~ 
0 

r, + '~ 

where 't is the lifetime of the fluorescent probe. Based on experimental data from steady 

state fluorescence anisotropy experiments (rs) and the limiting anisotropy (roo) obtained 

from time-resolved experiments, Blitterswijk et al. have derived empirical relationships 

from which one can estimate the value of roo directly from rs (3). The conversion 

between rs and roo is given by the equation: 

(4) 4 
'~ = 3rs -.10 for .13< rs <.28 

(5) r "" r f 0 r rs >. 3 ~ s 

* Alternative expressions have been applied to fit the decay curve. Eqn. (2) is based on a model for 
hindered motion. Lakowicz has also shown that the anisotropy decay of DPH can be fit by a model 
for an anisotropic rotator with two correlation times perhaps slightly better than the model for 
hindered motion {8,9}. In the case of the two correlation time rotator model, the appropriate equation is: 

r(t)=r (g e~ +g e;~J 
0 1 2 

where 0 1 and 02 are the two correlation times and 91 + 92 = 1. 
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It is noteworthy that these relations betweeen roo and rs were shown to be in good 

agreement with theoretical predictions based on the rotational dynamics in liquid 

crystals. The significance of this relation is that from rs, the limiting anisotropy roo can 

be determined without the need for time-resolved experiments, and from roo a 

fluorescence order parameter can be calculated according to (1,3,5,6}: 

(6) ~- 2 
f - 5oPH 

0 

The order parameter describes the average static distribution of the probe orientation 

averaged over the length of the entire molecule and therefore reflects in some way 

restrictions to probe motion and therefore features of the bilayer structure {1,3). It is, 

however, not quantitatively comparable to order parameters obtained by for example 

2H-NMR, which are dependent on the particular segment of the acyl chain which is 

deuterated. As one example of the meaning of the order parameter SnPH, Kinosoti has 

adopted a cone model that assumes that the relevant motion executed by the rigid rod 

DPH structure is that of a wobble within an opening angle 0 where (10}: 

(7) S = ~ cos0(1 + cos0) 

While this model offers a visual description of the meaning of the order parameter it 

may or may not be an accurate description of the origin of roo from one system to 

another. However, it must reflect in some way restrictions to probe motion such as 

those imposed by the addition of cholesterol, proteins or due to polymerization. By 

comparison of calculated order parameters obtained from fluorescence data in the 

previous chapter with the results obtained from the vibrational spectroscopy in this 

chapter, it may be possible to sort out what are the important structural and motional 

features of the polymeric bilayers that lead to the observed anisotropies. 
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Using the approach of Blitterswijk, we have calculated the order parameters and 0 

for polymeric/monomeric a- and ro-THIOLS, and DPPC. These are tabulated in Table 

II for a variety of chain lengths at temperatures below the Tm. As can be seen, in all 

cases of a- and ro-THIOLS, the value of SnPH is increased on polymerization (values 

range between 0 and 1.0 where 1.0 is complete ordering) and the "cone angle" 0 is 

decreased. Similar increases in SnPH have been observed with increasing cholesterol or 

sphingomyelin content in biological membranes and correlated with increasing 

structural order in the membranes or the formation of rigid domains where DPH is 

preferentially solubilized (3). For ro-THIOLS, the data confirmed conclusions drawn 

from DSC and vibrational spectroscopy that polymerization increases the membrane 

order. For the a-THIOLS, however, while it would seem intuitive that polymerization 

would increase the order parameter, these data are inconsistent with all other results, 

particularly the vibrational spectroscopy in this chapter, which clearly suggested that 

polymerization had a disordering effect. 

There are several possible explanations for the apparent disagreement between the 

fluorescence anisotropy and vibrational spectroscopy data for monomeric versus 

polymeric a-THIOLS. Variations in the lifetime of the fluorescent probe between 

different membrane types may be excluded as a potential source of the discrepancy 

since the lifetimes are taken into account due to the empirical nature of the relationship. 

However it is possible that the position of the probe in the bilayer might lead to to 

misleading conclusions (11). If, for example, DPH were solubilized more toward the 

bilayer midplane, the order parameter would be predictably lower due to the increased 

fluidity of the lipids toward the acyl chain methyl group as demonstrated by NMR and 

EPR results (12-14). This appears to be the case when one compares the SnPH for 

monomeric (or polymeric) a-20 versus a-18 versus a-16 dispersions; the lower SnPH 

for monomeric a-20 compared to a-16 is inconsistent with the greater structural 
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Table II 

Calculation of the fluorescence order parameter SnPH and the cone angle for 

wobbling diffusion e according to the empirical relations of Blitterswijk (Eqns. 4-7) 

for various polymeric and monomeric a-THIOLS and ro-THIOLS. 
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Lipid Temperature (oC)a rs SnpHb 0 

a-THIOLS 

a-16 (M) 15 0.286 0.85 ± .04 26.7 

a-16 (P) 12.5 0.310 0.87 ± .02 19.8 

a-18 (M) 25 0.256 0.78 ± .05 32.5 

a-18 (P) 25 0.310 0.87 ±.02 24.2 

a-20 (M) 35 0.226 0.71 ±.07 37.7 

a-20 (P) 35 0.321 0.89 ±.02 22.2 

ro-THIOLS 

ffi-15 (M) 30 0.247 0.76 ± .06 34.0 

ffi-15 (P) 40 0.330 0.90 ± .02 21.0 

©-16 (M) 40 0.266 0.80 ± .05 30.7 

ffi-16 (P) 35 0.314 0.88 ± .02 23.5 

LECITHIN 

DPPC 25 0.264 0.79 ± .05 31.5 
a Anisotropies are taken at temperatures where the value of the anisotropy varies little with 
temperature. b Errors in SnpH are estimated from the following equation (3): 

2 

Error= so(1- ~r •) % 
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order of the long chain lipid a-20 as demonstrated by DSC, Raman and FT-IR. This 

therefore suggests that the DPH is solubilized deeper into the bilayer and is less affected 

by the rigid interfacial region as the length of the acyl chain is increased. The effect of 

chain length and the consequence of a close proximity of DPH to the interface is also 

reflected in the relatively high order parameter of polymeric C0-11. However, for 

polymeric versus monomeric a-THIOLS of the same chain length (i.e. polymeric 

versus monomeric a-16), the results would suggest that the DPH is buried deeper in 

the membranes of the monomeric lipids. While we cannot exclude this as the basis for 

the apparent increased structural order of polymeric versus monomeric a-THIOLS, 

intuitively, one would anticipate the opposite behavior --- the polymerized membranes 

should force the probe into deeper solubilization sites due to the steric hindrance of the 

disulfide group. 

An alternate and perhaps more likely explanation for the relative order parameters of 

monomeric versus polymeric a-THIOLS invokes different modes of motion of the 

lipids within the membrane, which may be important to depolarizing rotations of DPH. 

While the order parameter describes the average static distribution of the orientation of 

the probe and not the probe dynamics, the motions of the bilayer must in some way 

contribute to the the motional freedom of the fluorophore. In particular, the relevant 

fluctuations must be those with time scales longer than the fluorescent lifetime of DPH 

(> 1-10 ns) such that they effectively produce an average static distribution of the 

fluorophores within the bilayer. Lakowicz has in fact shown by multifrequency phase

modulation fluorometry that the anisotropy of DPH in DPPC multilayers is best 

modelled by two correlation times where one correlation time is much longer (50-200 

ns) than the other (1-5 ns) (8). 

The correlation times of lipids in multilayers have been assessed primarily via NMR 

and ESR experiments. On the basis of lH and 2H NMR spin lattice relaxation studies, 
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it has been shown shown that the time scale for chain isomerization and rotational 

reorientation in lecithin multilayers are approximately 10-10 to 10-11 s and 10-7 s, 

respectively {15-18). Segmental isomerizations would not be expected to greatly 

contribute to roo due to (1) the short correlation time and (2) the fact that DPH is 

probably too rigid to respond to these motions. Rotational reorientation, off-axis 

wobbling and even slower motions such as cooperative fluctuations perpendicular to 

the bilayer normal (i.e. lateral wave-like motions) and translational diffusion may, 

however, be important. If we now consider the motional differences in the 

nonpolymerizeable or monomeric multilayers versus polymerized multilayers, potential 

sources for the elevated order parameters and decreased cone angles in polymeric 

bilayers become apparent. Clearly the rotational and translational diffusion of the 

polymeric lipids will be much slower than that of nonpolymerized analogues. In 

addition, whereas monomeric lipids may undergo lateral wave motions or wobbling 

rotational diffusion thereby "creating space" or a larger cone angle for similar motions 

by the probe, the polymeric lipids most likely vibrate only with rapid small amplitude 

motions that do not appreciably change the available space of the probe. Thus, despite 

the structural disorder and fast segmental isomerizations (see Chapter V) of the alkyl 

chains of polymeric a.-THIOLS, the slower collective motions of the polymeric lipids 

may be inhibited or slowed substantially such that they are effectively a rigid wall to the 

depolarizing motions of the probe. 

In summary, the fluorescence polarization results show an increase in the order 

parameters for polymeric versus monomeric a- and co-THIOLS. In light of 

calorimetric and vibrational spectroscopic data concerning the chain conformation and 

packing of co-THIOLS, this was anticipated. In the case of a.-THIOLS, however, 

since Raman, Ff-IR and DSC experiments indicated polymeric a.-THIOLS membranes 

were characterized by a disordered hydrocarbon region and loose packing density, a 
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decrease in the order parameter was expected. Assuming that the position of DPH is 

similar in monomeric versus polymeric a-THIOLS, the best explanation for these 

results is that the slow motions (>>fluorescent lifetime of DPH) of the bilayers are the 

important determinants in the value of roo and therefore the fluorescence order 

parameter. In other words, motions such as translational/rotational diffusion and off

axis wobbling of the lipids in monomeric and nonpolymerizeable membranes are more 

rapid than in nnonpolymerizeable membranes. This results in a larger angular 

distribution of fluorescent probes and therefore a .lower anisotropy /order parameter in 

the nonpolymerizeable membranes, despite the fact the polymeric a-THIOL 

membranes are disordered.* 

The same types of arguments may be applicable to the increased steady state 

anisotropy of DPH observed for reconstituted sarcoplasmic membrane vesicles 

compared to analogous pure lipid vesicles as observed by Seelig et al. (20). These 

results were contradictory to 2H and 31 P NMR studies on the same systems, which 

indicated that the addition of protein had a disordering effect (the chemical shift 

anisotropy, ~cr, and the quadrupole splitting, ~V, were 10-20% smaller in the protein

containing vesicles). The authors concluded that the fast internal modes of motion of a 

phospholipid are less influenced by protein than translocation and reorientation of the 

entire molecule. Thus by comparison, it seems that similar mechanisms (reduction in 

translational, rotational and gross cooperative motions) are operative in increasing 

SoPH for both protein-containing vesicles and polymeric membranes. Finally, in 

agreement Seelig et al., the present study illustrates the caveats of steady state 

polarization measurements and how, in the absence of other spectroscopic data, steady 

state fluorescence measurements may be ambiguous and misleading. In the absence of 

the vibrational data, we might have concluded from the the polarization experiments that 

* Motion and order are not necessarily correlated. 
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the hydrocarbon chains of polymeric a-THIOLS had a high degree of structural order 

and therefore were probably highly trans in conformation. 
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Chapter V 

Investigations of tfie 'Dynamic Properties of Po{ymerizecf PfiospfiaticfyfcfioCines 6y 

13 C ancf 1 Ji !J{']v['I{, 

INTRODUCTION 

Numerous studies on phospholipid membranes of both synthetic and natural origin 

have revealed a close correlation between the molecular mobility of the constituent 

phospholipids and a variety of physical and biological properties {for reviews, see 1-5). 

This has prompted investigation of the effects of lipid structure (headgroup size and 

charge, chain length and degree of unsaturation) on lipid mobility as well as the 

motional and structural consequences of the addition of cholesterol, anaesthetics, 

proteins and carbohydrates (6-17). Polymeric lipid aggregates have been recently 

recognized as a new and important class of synthetic membranes due to their potential 

as diagnostic or therapeutic drug delivery systems, for reactivity control, and in a wide 

variety of other applications (18-22). However, relatively few studies have been 

directed toward delineating their motional behavior and correlating these motions with 

their physical properties (23,24). In the last several chapters, polymerizeable a.- and ro

THIOLS have been shown to have drastically different thermal and morphological 
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properties as a consequence of the difference in the position of the polymerizeable 

moiety (at the chain terminus (ro-THIOLS) or at the methylene alpha to the carbonyl 

(a-THIOLS )). Whereas a-THIOLS have a behavior resembling most closely that of 

conventional phospholipid bilayers, ro-THIOLS, by contrast, exhibit unusual behavior 

including fragmentation, elevated thermal properties and a propensity for extensive 

aggregation. Thus a detailed study of the motional properties may shed some light on 

the interrelationship between lipid structure, lipid mobility, and membrane function. 

NMR has been a particularly useful technique for delineating the motional properties 

of lipids due to the dependence of various parameters (such as spin-lattice relaxation 

times and linewidths) on the correlation times of the molecular motion. In this chapter, 

we use lH and 13C NMR to evaluate the presence or absence of a mobility gradient 

(which is characteristic of most synthetic and biological membranes) and the extent of 

motional restriction imposed by the polymerizeable moieties. Furthermore, in the 

polymeric systems, the dynamical contraints introduced via polymerization are useful 

for further examination of theories concerning the relevant motions that determine the 

relaxation behavior in membranes. For example 13C spin-lattice relaxation times (T1) in 

micelles and liposomes have been shown to be informative in studying motions of the 

alkyl chains because the spin-lattice relaxation time is sensitive to both fast segmental 

isomerizations ('tc"" 10-11 s) about carbon-carbon bonds in the chains as well as to 

slow and/or cooperative fluctuations ('tc > ro0 -I where ro0 is the larmor frequency) 

(25-31). The latter may be "rigid body" motions of the entire phospholipid 

(translational or collective wave-like motions of the whole molecule) or cooperative 

motions of the acyl chains alone decoupled from the backbone and headgroup (26). In 

the case of a-THIOLS where the polymeric moiety is at the rigid interfacial region, the 

construction of the polymerized bilayer is such that the translational and rotational 

motions of the lipids as a whole will be severely hindered whereas the fast segmental 
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motions and low frequency motions of the acyl chains may be relatively unaffected. 

By contrast, one might expect that for ro-THIOLS, the polymerizeable moiety at the 

chain terminus should drastically alter the rate and nature of the fast segmental and 

slow hydrocarbon chain fluctuations in addition to the rotational and translational 

diffusion of entire phospholipid units. Thus, investigations of the spin-lattice relaxation 

times of the polymeric lipids and comparison to nonpolymerizeable analogs may help to 

further delineate the motions sensed by the relaxation rates and to elucidate the motional 

state of polymerized bilayers and how it is correlated to the physical properties of these 

artificial membranes. 

While the bulk of the investigation to be described concerns high resolution studies 

of sonicated vesicles and micelles, Be solid state magic angle spinning is also 

employed to examine the spectra and relaxation properties of unsonicated lipid 

dispersions. The following study therefore covers three topics: 

(i) High resolution 13C NMR spectra and spin-lattice relaxation 

investigations of (a) polymeric a-16 versus DMPC SUVs and (b) polymeric ro-8 

versus D8PC micelles. The reason for using the short chain lipids in (b) is that long

chain ro-THIOLS form bilayer fragments that aggregate extensively and cannot be 

sonicated into particles small enough to be visible by NMR without resorting to magic 

angle spinning techniques. Nonetheless, they serve as useful models of the motional 

behavior expected from the long chain analogues. 

(ii) 1H NMR of sonicated and unsonicated lipid dispersions. 

(iii) 13C MASS spectra and relaxation properties of a variety of 

nonpolymerizeable and polymeric lipids. Since these experiments are as yet 

incomplete, they are only briefly discussed at the end. 
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MATERIALS AND METHODS 

The synthesis and polymerization of the disulfide polymerizeable 

phosphatidylcholines was as described in Chapter VIII. Routinely the polymerized 

form of the lipid was stored at 4°C until use. L-a-dipalmitoylphosphatidylcholine 

(DPPC), L-a-dimyristoylphosphatidylcholine (DMPC), egg phosphatidylcholine 

(EPC) and L-a-dioctanoylphosphatidylcholine (D8PC) were purchased from Avanti 

Polar Lipids. All other reagents were of analytical grade and used without further 

purification. 

Liposome Preparation. For high resolution Be NMR studies, small unilamellar vesicles 

(30-75 mg/ml) were prepared by hydrating nonpolymerizeable phosphatidylcholines or 

prepolymerized a-THIOLS in phosphate buffer (10 mM sodium phosphate, 5 mM 

EDTA; pH 7.4) above the phase transition for"" 15 min. Sonication was subsequently 

carried out using a Heat Systems 350 W probe sonicator until a constant level of 

optical clarity was achieved. During sonication, the samples were placed under a stream 

of nitrogen and in a room temperature water bath to avoid lipid degradation. Titanium 

particles and large liposomes were removed from the SUVs by centrifugation at 12000 

xg for 5 minutes in an eppendorf centrifuge. For micelle-forming D8PC and polymeric 

ro-8 lipids, samples were hydrated in phospate buffer and warmed at 45°C for"" 15 to 

30 minutes with intermittant vortexing. In the case of D8PC micelles, 0.2M KSCN was 

added to the buffer to stabilize the micellar phase (40). Sample concentrations were 50-

75 mg/ml (above cmc) and 35-75 mg/ml for D8PC and polymeric C0-8, respectively. 
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For Be MASS studies, lipids were hydrated with excess H20 or D20 containing .2 

mM EDT A to form a paste. These were centrifuged into ultra-high spinning keflar 

rotors and sealed with o-ring-containing macor caps (Doty Scientific). 

For high resolution lH NMR studies, lipid dispersions were prepared by hydrating 

the lipids with D20 or D20/.15NaCl (pH 6.8) above the phase transition for 

approximately 30 min. Sonicated samples were prepared in an analogous fashion but 

subsequently probe sonicated until translucent solutions were obtained (as described 

above). Sample concentrations were generally 5 mg/ml. In some cases sodium acetate 

(0.625 µmoles) was added as an internal standard. 

'lfM'R 9vfeasurements. High resolution Be and Be MASS spectra were acquired at 125 

MHz with a Bruker AM-500. Chemical shifts are reported with respect to the choline 

methyl peak assumed to resonate at 54.3 ppm (40). All high resolution and MASS 

spectra are processed with 20 Hz (liposomes) and 2 Hz (micelles) linebroadening. 

Spin-lattice relaxation times were measured using the inversion recovery sequence 

(180 - 't - 90) (32), a 90 degree pulse width of 16-18 µsand a recycle delay of at least 

3-5 times T1 for all carbons with the exception of the terminal methyl groups. Spectra 

were recorded with the nuclear Overhauser enhancement (NOE). Composite pulse 

decoupling was used at 3050C to minimize sample heating. Bilevel decoupling (1 and 

lOW for NOE and complete proton decoupling during aquisition, respectively) was 

used at 320°C and 335oc. For MASS samples, Ti measurements were made in an 

analogous fashion but with 10 W decoupling (no NOE), a 90 degree pulse width of 4.5 

µsand at ambient temperature. For all measurements, Ti values were determined by a 

least squares fit to the three parameter equation using standard Bruker software: 

(1) S(t) =A+ Bex~-~r) 
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where A, B, and Ti are adjustable parameters. Figure 1 shows a typical fit of the data. 

The utility of the three parameter fit compared to the two parameter equation is that Eqn. 

1 is less sensitive to systematic errors including misset pulse angles, the frequency 

offset between the carrier and resonance line in question and truncated waiting periods 

(33). At least two long 1' values (longer than Ti) were included in the data set so the 

inaccuracy of the methyl Ti's should be quite small as shown by Kowalewski et al. 

The exception to this is for the chain methyls in experiments run at 335°C. Reported 

values are the average of 2-4 measurements. 

NOE factors were measured using gated broadband proton decoupling. 

Approximately 10 W decoupling power was used during spectral aquisition. For 

spectra recorded with the NOE, samples were irradiated with 1 W decoupling power 

during the 10 s (3050C) or 15 s (32QOC) recycle delay. Calculation of the NOE was 

made by comparison of the intensities of samples recorded with and without irradiation 

during the recycle delay. 

High resolution lH spectra were recorded at 500 MHz using a 45° excitation pulse 

(;:::: 3 µs) and a 2.5 s repetition rate. When necessary, the HOD resonance was 

pre saturated. 

Determination of particle sizes and diffusion coefficients was accomplished via 

dynamic light scattering using a Malvern 4700 light scattering system equipped with a 

goniometer, a 128 channel correlator and a 3 W Spectra Physics argon ion laser. 488 

nm incident laser light was used with the detector placed at 90 degrees relative to the 

incoming beam. Calculations of the particle size were based on the Stokes-Einstein 
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Figure 1 

Representative fit of the relaxation data to Eqn. (1). 
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equation using monomodal analysis with the software supplied by Malvern. 

Measurements are the average of three determinations on the samples whose linewidths 

are tabulated in Table Il. 

BACKGROUND 

In this chapter is decribed 13C and lH NMR studies of polymerizeable phospholipid 

liposomes as a first step in an investigation to analyze the dynamic nature of these 

bilayers. While our experiments are restricted to a single spectrometer frequency which 

limits to a small extent the conclusions which may be extracted from the Be relaxation 

data, consideration of the treatments and results of others who have carried out 

measurements at up to seven spectrometer frequencies provides some basic principles 

useful in understanding our results. Thus as a preface to a discussion of the data, in the 

present section we summarize some of the basic concepts concerning 13C NMR 

relaxation and the dynamics of phospholipid bilayers, and general approaches and 

results that have been described in the literature to analyze Be relaxation in lipid 

aggregates, in terms of their motional properties. 

The lH NMR studies described here involve analysis of the linewidths in terms of 

the motional state of the lipids.* For simplicity, we therefore postpone discussion of 

the origin of the lH NMR linewidths until the results and discussion section. 

1'tot.ions in :Bif,a.ye.rs. 

First it is necessary to consider the wide variety of motions that characterize the 

phospholipid bilayer and contribute to the spectra and relaxation properties of various 

* 1 H NMR spin lattice relaxation measurements were not carried out for the lipid systems under study 
due to the well-recognized complications in the interpretation of the data. These complications arise 
from the difficulty in separating intramolecular versus intermolecular dipolar interactions and the 
presence of spin diffusion along the acyl chains. Furthermore, the spectra contain much less detail than 
13c spectra, even at the high (11.7 Tesla) magnetic fields used in the present study. 
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nuclei. These motions include the overall tumbling of the liposome, lateral diffusion 

over the surf ace of the liposome, rotational diffusion of the phospholipid about the 

long molecular axis, trans-gauche isomerizations of the acyl chain segments and slow 

cooperative fluctuations of domains of phospholipids in a direction perpendicular to the 

bilayer normal (L25). The time scales of these motions encompass a wide range and are 

important determinants in their effective contribution to the relaxation properties (1-5). 

For example, the overall tumbling of a vesicle is calculated according to: 

(2) 
4 nr17 

't = 3kT 

where r is the radius of the liposome, 11 is the viscosity of the suspending medium and 

Tis the temperature. Thus for ML Vs 5µm in size, 'tv is on the order of 16 s whereas 

for 250 A SUVs, it is 2 xl0-6 s. The lateral diffusion coefficient (DLo) of 

phospholipids in the plane of liquid-crystalline bilayers has been estimated to be = 10-8 

cm2/s. This makes the time for complete traversal over the surface of a 5 µm and 250 

A liposome to be= 1.5 sand 4 x 10-s s, respectively, as given by the equation (1). 

(3) 
r2 

1:LD = 40 
lD 

The effective correlation time ('te) for the diffusion of a phospholipid over the surface 

of a liposome of radius r is then given by (29); 

(4) 

which for 5 µm sized ML Vs and 250 A SUV s would be 1.4 s and 2 x 10-6 s, 

respectively. Thus the particle size can greatly influence certain motional time scales. 

In addition to these intermediate to slow global motions of the individual 

phospholipids, slow cooperative motions of collective groups of molecules have been 
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modelled by a continuous distribution of timescales less than ro0 -l (where (1)0 is the 

larmor frequency and is in the range of MHz) (25-27,34,35). Finally, fast local motions 

such as trans-gauche isomerizations of the lipid chains have been reported to fluctuate 

on a time scale of approximately 10-10 to 10-11 s, similar to that measured for liquid 

paraffins (25-27,34-36). 

All of the above motions are in reference to nonpolymerizeable phospholipids in the 

liquid-crystalline state. Lowering the temperature below the phase transition markedly 

increases the correlation times and decreases the amplitude of most or all of these 

motions (5). For example, the lateral diffusion coefficient for a gel state phospholipid is 

on the order of 10-10 to 10-11 cm2/s. Relatively few dynamic studies, however, have 

been devoted to determining the dynamic behavior of gel state phospholipids. 

Polymerization of phospholipids should also greatly reduce the motions to an extent 

depending on the position of the polymerizeable moiety and the degree of 

polymerization. For all polymerizeable lipids described in this thesis, the rotational and 

lateral diffusion of the lipids will obviously be slowed, while the effect on cooperative 

fluctuations is less predictable. Segmental motions should be greatly hindered in the 

case of the ro-THIOLS whereas in the case of the a-THIOLS, one might anticipate that 

they are unaltered or only modulated in amplitude relative to nonpolymerizeable 

analogues. 

Relaxation and in particular, the spin-lattice relaxation can provide much insight into 

the dynamic nature of the molecules in question. It is therefore useful to consider what 

is being measured in a relaxation experiment. The spin-lattice relaxation rate (T 1-l) of a 

given nucleus is a measurement of the return of the z magnetization to its equilibrium 

value following perturbation by a radiofrequency pulse (37). In the case of the spin-
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spin relaxation rate (T2-l) that governs the homogeneous part of the linewidth, one 

measures the return of x,y magnetization (perpendicular to the field direction) to its 

equilibrium value of zero (37). For 13C and lH nuclei, the rates are dominated by 

modulation of the 13C-1H and lH-lH dipolar interactions, respectively, due to 

molecular reorientation (26-29,38). This is the link between the relaxation rate and 

molecular motion. 

13C NMR is especially useful for measurements of spin-lattice relaxation times due 

to (i) the large chemical shift range and subsequent dispersion of the resonances, (ii) 

the fact that the 13C-1H dipolar interactions are purely intramolecular and because (iii) 

13C-13C coupling can be ignored due to the intermediate (::::: 1 % ) natural abundance of 

the 13C nucleus (26). Nonetheless, as should be clear from the above description of the 

possible motions of phospholipids in membranes, the motional state is anisotropic and 

highly complex. Since the experimental relaxation rates are dependent not only on the 

time scales of the motion but on their amplitudes as well, the interpretation of the 

measured relaxation rates is nontrivial. Despite these difficulties much insight has been 

gained by studies attempting to unify the relaxation behavior of various nuclei, their 

temperature and frequency dependence, and their dependence on membrane ordering. 

The following represents some basic concepts necessary for understanding 13C_ l H 

NMR relaxation and some of the approaches taken to model the dynamic behavior of 

micelles, microemulsions and phospholipids. This provides a useful basis from which 

to interpret the results of the experiments presented in this chapter . 

.1Qc Rd.axa.tion. 

The spin-lattice relaxation of 13C nuclei is due predominantly to fluctuations in the 

13C-1H dipolar interaction as expressed by the equation (39j. 
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(5) 

which, in the extreme narrowing limit reduces to (26}. 

(6) 

The corresponding equations for the spin-spin relaxation rate R1 = T1-l is given by 

(39)'. 

(7) 

where the presence of spectral density at zero frequency, denoted by J(O), accounts for 

the greater sensitivity to slow motions of T1-l relative to Ti-1 (37). The nuclear 

Overhauser enhancement (NOE= 1 +llcH) is given by (39}. 

(8) 

In the above equations, ffiH and ffic are the !armor frequencies of proton and 

carbon-13 nuclei, respectively where ffii = YtB 0 , YH and Ye are the magnetogyric 

ratios of proton and carbon nuclei, rcH is the carbon proton internuclear distance (1.09 

A) and 'tc is the correlation time. J(w) is the spectral density function given as the 

fourier inverse of the autocorrelation function G('t) (37}. 

where J(w) describes the frequency distribution and magnitude of fluctuations in the 

Hamiltonian (in this case the dipolar Hamiltonian) being modulated by the motion. The 



265 

autocorrelation function G('t) describes the time scale for the decay of the motional 

order between time t = 0 and t = 't and is therefore given as : 

where H1oc is the local (dipolar) fluctuating field (37). Thus to properly interpret 

relaxation data, one must derive appropriate expressions for the autocorrelation function 

based on various motional models. These are then used to calculated spectral densities 

and on substitution into equations (5), (7) and (8) allow calculation of 13C relaxation 

rates and NOEs. 

For isotropically reorienting systems with one effective correlation time ("Cc) in the 

extreme narrowing limit, the single exponentially decaying autocorrelation function 

(37(. 

-t 

(i i) G( r) = ( ~oc ( 0)) e ~ 
0 

leads to spectral densities of the form (28j. 

(i 2) 

(i 3) 

(i 4) 

Substitution of the spectral density expressions into Eqn. (5)leads to : 
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(i 5) 

Eqn. (15) has been used extensively in the past for the analysis of micelles and 

phospholipid dynamic behavior, where T1 is thus ascribed soley to the effect of fast 

local motions in the extreme narrowing regime (26,40}. However, it has become clear in 

the last several years that the assumption of isotropic reorientation and a single effective 

correlation time is a major oversimplification of phospholipid motions in micelles and 

membranes. If fast motions (correlation time < c:o0 -I) were the only contribution to 

Ti-1, than one would expect (i) an increase in T1 with temperature and (ii) the 

invariance of Ti with magnetic field strength (25,26). The increase of T1 with 

temperature has been clearly demonstrated for both micelles and phospholipid vesicles 

(25-27,40}. Brown, however, has conducted an extensive investigation of Be spin-

lattice relaxation times of liquid-crystalline DPPe SUV s and has shown that despite the 

temperature dependence that would seem to imply fast correlation regime behavior, 

there is also a substantial frequency dependence (26,27). Quantitatively Ti varies by 

greater than a factor of two over the range of field strengths from 1.4 to 11.7 Tesla 

suggesting, by contrast, the applicability of the slow motion regime. Frequency 

dependencies have also been observed in Be Tel studies of micelles and 

microemulsions (28-31). 

In order to resolve the apparent dilemma it has been hypothesized that in addition to 

fast local segmental motions that would account for the temperature dependence, slow 

motions ('tc > c:o0 -l) must also be invoked to explain the frequency dependence (25-27). 
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For micelles, microemulsions and vesicles, this has been treated as described in the 

following two sections. 

'.M.iccl!es and '.M.icroetnu.fsions. 

In the case of micelles and microemulsions, the frequency dependence has been 

taken into account by assuming that slow global motions (the isotropic tumbling of the 

entire particle and the diffusion of monomers over the surface of the sphere) contribute 

to the relaxation in addition to fast segmental motions. To incorporate slow motions 

into the relaxation expression for microemulsions, Tricot et al. assumed a distribution 

of correlation times expressed by a suitable probability function instead of a unique 

value of 'tc (28). The spectral density for the distribution was expressed by: 

(1 6) 

where H( 'tc) is a normalized probability density function characterized by a width of 

correlation times and ffii stands for (ffiH - ffie), roe, or (roe + ffiH). In doing so, an 

upper limit to the correlation times to be considered was set by the correlation time for 

rotation of the microsphere as calculated by the Stokes Einstein equation (Eqn. 2). 

As an alternative to the above approach, a number of groups have developed a two

step model to interpret the relaxation data of micelles (29-31). In these studies, two 

correlation times, each described by a single exponential decay, are considered in 

deriving the autocorrelation function: one corresponds to fast segmental motions and 

the other corresponds to slow tumbling and translational diffusion of the monomers 

over the surface of the sphere. Due to the disparity in the approximate time scales for 

each motion, these motions are assumed to be uncorrelated. In the work of Soderman, 
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the final form of the spectral density function for the two-step model was given as 

(30,31(. 

where: 

(i 8) 

In these equations, 'tcf,s and Jf,s are the correlation times or spectral densities, 

respectively, for fast (f) slightly anisotropic motion or a slow (s) isotropic motion, 

ScH is the order parameter averaged over the fast motions: 

and 8 is the angle between the C-H vector and the director axis. 

Qualitatively, similar results were obtained from both the model involving a 

distribution of correlation times and from the two-step model (28,30,31). Furthermore, 

the results unequivocally demonstrated the contribution of slow motions to the 

relaxation rate and illustrated that the assumption of a single exponential correlation in 

the extreme narrowing regime results in the underestimation of the rate of segmental 

motions of the constituent surfactants (28). 

Ve.sides . 

In the case of 13C relaxation in vesicles, Brown and co-workers have carried out an 

extensive study at seven different field strengths and examined several motional models 

(26,27). These included: 
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(i) A single correlation time model based on the assumption of fast restricted 

rotational diffusion. This model is essentially that used to describe segmental motions 

in simple fluids but modified to include the presence of an ordering potential. 

(ii) Two correlation time models involving a fast motion of limited amplitude 

as in (i) superimposed on a slower motion. The fast and slow motions are considered 

to be statistically independent such that: 

(20) 1 1 1 -=-+-
~ ~f ~s 

where Tu-I and T1 8-l are the relaxation times for the fast and slow motions, 

respectively. In regards to the slow component, two paradigms were envisioned: a 

noncollective process involving a single correlation time or a collective process 

described by a continuous distribution of correlation times in analogy to models applied 

to the relaxation behavior of smectic and nematic liquid crystals. 

In the work by Brown, it was demonstrated that the relaxation behavior of liquid

crystalline DPPC was not at all consistent with the restricted anisotropic diffusional 

model (i). In particular, even assuming highly ordered and extremely anisotropic 

systems, Ti -1 was predicted to be frequency independent in contrast to the experimental 

results. On the other hand, introduction of a slow component (the noncollective or 

collective model (ii) ) allowed for an accurate description of the data. The T1 

expressions for the slow component of the collective and noncollective models are 

given as follows (26j. 
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Collective: 

2 -1 

x (eta ( /]' .. ; t ) ) Cm~ 

g,{pncoffec ti ve: 

where < >n111 denotes that the relaxation rate is averaged over all orientations of the 

bilayer with respect to the field direction, dpn(~) are the Wigner rotation elements 

describing the bilayer orientation, ~ is a generalized Euler angle and <cloo(~" "; t)> = 
(ScH)n· is the order parameter averaged over the fast motions. The above equations for 

the collective model can be more simply written as : 

(23) 

where Bis a collection of constants. The full expression for Ti-1 is then: 

(24) 



271 

For the noncollective model, analogous expressions are: 

(2 5) 1 c·,..:;. -2 r= ~Q-l(J)C 
1s 

and 

(26) 1_ = Ar + C~ m-2 
T t a-1 c 

1 

The first term in the expressions for Ti-1 (Eqn. 24 and 26) represent the T1 due to fast 

local motons in the extreme narrowing regime such as trans-gauche segment 

isomerizations. The correlation time for these fast motions can be abstracted from the 

Ti-1 data by extrapolation to infinite frequency. The second term that is proportional to 

(ScH)2 is due to the contribution from the slow motions. Unfortunately, because the 

coefficient of the frequency dependent (slow) term is the product of several parameters, 

it is not possible to estimate the order parameter. Nonetheless, one may still evaluate the 

relative importance of fast diffusive versus slow collective/noncollective motions. 

For the noncollective versus collective model, the distinguishing features are the 

coc-2 versus COc-1/2 frequency dependence (26). Although based on the available data it 

was not possible to completely rule out either model, it was tentatively concluded that 

the results were most consistent with a collective model. Regardless, the important 

point was that as with micelles and microemulsions, the slow motions, albeit of a 

different nature, make a substantial contribution to Ti-1 in vesisles. The differences in 

the origin of the slow motions of vesicles versus micelles and microemulsions arises 

from the differences in the sizes and construction of these two types of aggregates. In 

the case of the micelles/microemulsions, the sizes are sufficiently small that the effective 

diffusion time of the individual phospholipids (Eqn.4) is shorter than that of vesicles 

and therefore its overall effect on Ti-1 may be more substantial. On the other hand, the 
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micellar dimensions may be too small to support sizeable collective-like motions 

envisioned for the bilayers. 

'Dependence ef 'Il.:1 on Order Parameters and 'Temperature in o/esides. To further test the 

type of motional model most completely representing the relaxation data in vesicles, the 

empirical dependence of the 13C Ti-I rates on the order parameter Seo (see Eqn. 24 and 

26) were examined by Brown using a power law of the form (26). 

(27) 

In this equation, Yi are adjustable parameters and Seo ( =SeH) is the deuterium order 

parameter obtained from 2tt NMR studies. Within experimental error, a value of Y2 = 2 

was obtained, reemphasizing the importance of slow motions that characteristically 

show a (Seo)2 dependence of T 1-l. An additional observation was that the temperature 

dependence of T1 and (Seo)2 were correlated; for all temperatures above the phase 

transition of DPPC, the (NHT1)-l versus (Scn)2 data were superimposable on a single 

straight line. In the past, measurements of the temperature dependence of Ti-I have 

been evaluated by Arrhenius-type expressions and interpreted in terms of activation 

energies (contained in the A term of Eqn. 24 and 26) for effective motions of the lipid 

chain segments or headgroups (41-43). Because of the proportionality between Ti-I 

and (Sco)2, an alternative explanation has been offered, which suggests that Ti-1 could 

be influenced, in addition or exclusively, by the temperature dependence of the order 

parameter through the B and C term in Eqn. 24 and Eqn. 26 (26). 

Physically, the temperature dependence of Seo has been ascribed to the coefficient 

of thermal expansion or elastic constant of the bilayer (26A1,44,45). One could imagine 

that these equilibrium properties might be somewhat different for polymerizeable versus 

nonpolymerizeable phospholipids. In the case of polymeric membranes, intervening 
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covalent linkages should inhibit expansion along the direction of the polymer chain (but 

not between unlinked segments) whereas the thermal expansion and elasticity of 

nonpolymerizeable membranes are determined exclusively from thermodynamic 

properties. This idea will be reiterated in the discussion section of the temperature 

dependence of Ti -1 for the lipid systems under consideration. 

Ca(cu(ation of tfie '}.[O'E. On the basis of the spectral densities derived for the 

collective, noncollective, and anisotropic diffusion models, values for the NOE have 

been calculated in the work by Brown (26). For all three models, the anisotropic 

diffusion model, the collective model and the noncollective model, the NOE could be 

much less than the maximum value calculated from Eqn. (27) : 

(28) 

which is the well-known equation for the calculation of the maximum NOE for 

isotropically reorienting molecules in the extreme narrowing regime. The point is that a 

reduction in the NOE from the maximal value is not necessarily an indication that other 

competing relaxation mechanisms (i.e. chemical shift anisotropy) contribute to the 

relaxation rate but may be a consequence of the fact that the motional state of the 

bilayer does not fulfill extreme narrowing, isotropically reorienting conditions; 

ordering and slow motion may be important. 

As described in the last few sections, the most complete analysis of relaxation data 

requires measurements at several spectrometer frequencies in order to delineate the 

relative contribution of fast and slow motions. However, this is sometimes not 

possible due to the fact that it is extremely time consuming and presupposes sufficient 

access to a number of spectrometers at a variety of field strengths. This is generally not 
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the case and therefore most analyses are carried out at a single frequency. To alleviate 

this difficulty, Soderman and Stilbs have demonstrated that one can obtain the order 

parameter ScH for a given surfactant system from measurements of the 13C T1 and 

nuclear Overhauser enhancements at a single magnetic field strength (46). The 

derivation involves insertion of the two-step spectral density equation (Eqn. 17) into 

equations for Ti-I and 1lcH (written under the assumption of broad-band decoupling) 

and subtracting them. The resulting equation is then: 

(29) 

where f(J(co)) is a function of the various spectral densities in the equations for Ti-I and 

11 CH· The square root of the left hand side of the equation then gives the order 

parameter to within a constant of proportionality and is independent of the form of 

J(co)s chosen to evaluate the system (46). Thus one can determine the relative internal 

ordering of the carbons within the system under study.* 

In the following section is a description of the Be spin-lattice relaxation rates and 

NOE data for the polymeric and nonpolymerizeable lipid systems described in the 

introduction. Although we do not have the necessary frequency dependence of Ti-I to 

be able to evaluate the relative contribution of fast and slow motions, the above 

discussion should provide a basis for qualitatively interpreting the data nonetheless. 

Furthermore, we can examine (i) the presence or absence of a mobility gradient in the 

polymeric systems, (ii) use the simplified methodology of SOlderman and Stilbs 

(expressed in Eqn. 28) to examine the relative ordering of the lipid systems in question, 

and (iii) evaluate the temperature dependence of the relaxation data. The 13C data is 

*In this regard, however, it should be noted that for phospholipid bilayers, the I3c Ti-1and2H order 
parameters Sen have been found to exhibit similar profiles with distance along the lipid chains (25). 
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followed by a presentation of the lH spectra for polymeric versus nonpolymerizeable 

lipids. 

RESULTS and DISCUSSION 

1Qc :NT't'.R of SU.Vs ond tt;i.ceUcs. 

Linewidtli and 1\esonance .9/ssipnments of '1JAf PC and a-16 S'Uo/s. In this first section, we 

describe the 13C NMR spectra and relaxation behavior of a variety of liposome types. 

Figure II shows the spectra of (A) DMPC and (B) polymeric a-16 at 3050C. 

Assignments are tabulated in Table I and are based on those previously reported for 

phosphatidylcholine liposomes and micelles (40) as well as on the spectra of fatty acids 

and the relaxation behavior of the resonances in question. DMPC was chosen for 

comparison to a-16 rather than the 16 carbon analogue (DPPC) due to the similarities 

between the phase transition temperatures of these two lipids ( = 23 °C). The most 

obvious difference between the spectra of the two liposome types is the broadness of 

some of the resonances in the polymeric SUV s. In some cases, the spin-spin relaxation 

rate appears to be sufficiently fast that certain spectral resonances apparent in the spectra 

of DMPC are absent in that of the polymeric a-16. These include the barely detectable 

single carbon resonances belonging to the glycerol backbone at 62-64 ppm and 70 

ppm. The carbonyl resonance apparent in the spectra of DMPC at =174 ppm, is also 

completely missing in the spectra of a-16 (region not shown). As anticipated, due to 

the rigidification by attachment to the polymerizeable disulfide moiety, the a-carbon 

expected to arise at= 53 ppm is not visible.* Finally, the~- carbon is broadened and 

shifted from= 25 ppm (as in the spectra of DMPC) to = 27 ppm due to the deshielding 

affects of the disulfide. 

* Based on the resonance position of the a-methylene in the protected fatty acid (CHSS). It is possible, 
however, that it is buried underneath the choline resonance. 
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Figure II 

13C Spectra (125 MHz) of: A. DMPC SUVs and B. Polymeric a.-16 SUVs. 

Spectra were recorded at 305°K and apodized with 20 Hz line broadening prior to 

fourier transformation. 
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Table I 

Resonance Assignments, spin-lattice relaxation times (T1) and NOEs for: A. DMPC 

SUVs and B. Polymeric a-16 SUVs. Chemical shifts are reported in ppm relative to 

the choline methyls at 54.3 ppm. Numbers in parentheses denote the temperature of the 

experiment. 



A Carbon Atom Chel!lic;'11. Shift ____I!_(3Q~ OK) TL{~~Q OK) Tl (335 OK) NOE (305 OK) 

Backbone 

CH20 70.9 .26 ± .02 .28 ± .01 .22 ± .04 1.57 

CH20P 63.9 .15 ± .02 .21 ± .03 1.02 

CH20 63.3 .13 ± .01 .17 ± .01 .15 ± .03 1.03 

Head group 
N 

CH2N 66.2 .42 ± .03 .65 ± .02 .78 ± .15 2.69 ~ 

CH20P 59.7 .41 ± .05 .58 ± .01 .73 ± .04 2.17 

N(CH3)3 54.3 .56 ± .05 .87 ± .08 1.35 ± .08 2.70 

Acyl chains 

a 34.2 .38 ± .04 .46 ± .01 .583 ± .04 2.06 

p 25.1 .48 ± .05 .60 ± .02 .86 ± .05 2.14 

Bulk CH2 30.1 .72 ± .05 .911 ± .05 1.23 ± .03 2.39 

£ 32.2 1.23 ± .03 1.78 ± .10 2.05 ± .15 2.37 

00-1 22.8 1.86 ± .23 2.59 ± .05 3.89 ± .16 2.37 

ro-CH3 13.9 3.17 ± .23 4.86 ± .05 7.43 ± .49 2.58 



B Carbon Atom Chemical Shift Tl (305 OK) Tl (320 OK) Tl (335 OK) NOE (305 °.K} -
Backbone 

CH20 

CH20P 

CH20 

Head group 
N CH2N 66.23 .41 ± .02 .44 ± .08 .44 ± .03 2.34 ± .44 00 -CH20P 59.65 .46 ± .04 .45 ± .20 .58 ± .04 1.68 ± .21 

N(CH3)3 54.30 .52 ± .02 .65 ± .02 1.10 ± .16 2.61 ± .10 

Acyl chains 

a 

~ 27.00 .435 ± .04 
Bulle CH2 30.20 .61 ±.01 .71 ± .06 .84 ± .06 2.26 ± .01 
e 32.15 1.12±.15 1.09 ± .05 1.27 ± .03 2.36 ± .11 
C0-1 22.76 1.66 ±.09 L86 ± .22 2.96 ± .65 2.59 ± .11 
co-CH3 13.9 3.20 ± .10 3.90 ±.56 5.62 2.45 ± .28 
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Table II 

Estimated linewidths at half height for: DMPC SUVs, polymeric a.-16 SUVs, 

D8PC micelles and ro-8 "micelles." Values are reported in Hz (±5). 
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LINE WIDTH 

Carbon Atom DMPC Cl-16 D8PC ro-8 

Backbone 

CH20 14 58 

Head group 

CH2N 45 49 14 26 
CH20P 12 23 

N(CH3)3 45 38 19 28 

Acyl chains 

ro-1 75 74 
ro-CH3 45 55 
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By contrast to the broadened resonances described above, a number of other 

resonances do not have significantly different linewidths. These include, for example, 

the headgroup methylenes, the choline methyls, the ro-1 methylene and the terminal 

methyl. The estimated half height linewidths of these groups are tabulated in Table II. 

No conclusion concerning the breadth of the resonance corresponding to the bulk 

methylenes can be drawn due to the differences in the chemical shifts of the carbons 

contributing to the envelope. 

The Be linewidths are sensitive not only to fast motions, but also to slow motions 

with 'tc > ro0 -1 (5). The importance of slow motions is predicted in Eqn. (7)by the 

dependence of T1-l on the spectral density at zero frequency (J(O)) {37). These slow 

motions can include isotropic tumbling of the vesicles, lateral diffusion and slow 

cooperative motions. To examine whether differences in particle size might be the 

exclusive source of the spectral broadening in the case of a-16 SUV s , the particle sizes 

were measured by dynamic light scattering. The similarity of the sizes as shown in 

Table III indicates that different vesicle tumbling rates does not contribute to the 

linebroadening. If it did, one would expect a uniform increase in the linewidths rather 

than the selective broadening observed in the spectra of the a-16 SUVs. One would 

also expect all resonances to broaden if the slowed rotational and lateral diffusion of 

the a-16 phospholipids as a whole had a substantial effect. Thus the disappearance or 

broadening of certain spectral features encompassing the glycerol backbone and 

polymerizeable moiety reflects the selective rigidification of that portion of the 

membrane. 

Linewidtfi and 2\esonance !ll.ssipnments of 'D8PC and Po[ymeric ro-8 Aficeffes. In Figure III 

Be spectra are shown for D8Pe micelles and polymeric ro-8 "micelles." Linewidth 
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Table III 

Z average particle sizes as measured by dynamic light scattering for the lipid 

preparations whose linewidths are reported in Table II. Measurements are the average 

of three determinations. Errors are reported as the standard deviation from the mean of 

triplicate measurements and do not represent the polydispersity. 
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LIPID 

DMPC SUV's 

a-16 SUV's 

D8PC micelles 

(l}-8 "micelles" 

SIZE (nm) 

37±1 

36± 1 

< 10 

192±2 
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Figure HI 

13C Spectra (125 MHz) of: A. DSPC micelles and B. Polymeric ro-8 "micelles." 

Spectra were recorded at 305°K and apodized with 2 Hz line broadening prior to 

fourier transformation. 
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differences are not obvious from the spectra but as shown in Table II, the linewidths 

of polymeric C0-8 are measurably larger than that for D8PC micelles. In the case of the 

D8PC micelles, the linewidths are sharp enough that it is possible to detect splitting of 

certain resonances (the a, Band ro-1 carbons) as a consequence of the nonequivalence 

of the sn-1 and sn-2 chains. 

The basis of the broadness of the lines in polymeric C0-8 micelles is most likely due 

to the extremely large effective aggregate size as measured by dynamic light scattering 

(Table III). At the concentrations used for acquisition of the spectra in Figure III ("" 60-

75 mg/ml) the solutions of polymeric C0-8 are extremely viscous, which is a 

characteristic of all the short chain co-THIOLS. The large size is due to the general 

tendency of the co-THIOLS to form bilayer fragments and to aggregate extensively. In 

fact, the term "micelle" is used loosely here since a detailed picture of the shape and 

size of polymeric C0-8 dispersions is unknown with the exception that (i) it is non

vesicular and (ii)the effective size is highly concentration dependent (see chapter II). 

Considering the differences in the effective size for these gelatinous "micelles" 

compared to the D8PC micelles, DMPC SUVs and polymeric a-16 SUVs, one might 

expect the linewidths to be much broader. The fact that they are comparable to that 

measured for a-16 and DMPC liposomes suggests the fact that the measured sizes are 

due to simple aggregation and that there may be a high degree of disorder or a 

dynamical nature to the gross morphology of these polymeric aggregates. 

Resonance assignments of polymeric C0-8 and D8PC micelles are tabulated in Table 

III. In contrast to the polymeric a-16 SUVs, all carbon resonances are visible including 

those of the rigid glycerol backbone and the carbonyl (not shown). This is despite the 

fact that the size of the a-16 SUV s are smaller than that of the polymeric C0-8 

"micelles." The differences between the spectra of D8PC and polymeric C0-8 are due to 

chemically-induced shifts of certain carbon segments on account of the deshielding 
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effect of the disulfide. The y, o, E, and ro-1 resonances are shifted into a broad envelope 

at "" 29 ppm. The CH2S-S, which in the monomeric state (£H2-SH) is superimposed 

on the a-methylene, is shifted to 34 ppm on oxidation. Thus the resonance at 14 ppm 

in D8PC corresponding to the ro-carbon is absent. 

Spin-(attice $.eCaxation and 'J{O'E :Measurements of 'lJ:MPC and a 16 S'U'lls. Table I 

summarizes the spin-lattice relaxation and NOE data for the resolvable carbons of 

DMPC and polymeric a-16 SUV s at various temperatures. Examination of the data at 

305°C indicates that the Tis are only slightly smaller for the polymer but by no more 

than 10%, which is just above the accuracy of the T1 determination. This would seem 

to suggest that the motional properties that dominate the relaxation behavior of the 

visible resonances are similar in both cases. We cannot resolve sufficiently the a- and 

!)-methylene carbons of the a-16 acyl chains in order to accurately assess the effect of 

polymerization near the interface. However, it is clear from the complete absence of the 

a-methylene that it must be fairly rigid. With increasing distance from the 

polymerizeable moiety, however, the relaxation behavior of the carbon segments are 

less distinguishable from those of DMPC and therefore the fast local motions of the 

acyl chains become less affected by the polymerization. Apparently the presence of the 

polymerizeable moiety only significantly restricts the fast segmental motions of the 

carbons in the vicinity of the disulfide group. Thus a motional gradient extending from 

the backbone to the terminal methyl group is retained similar to that observed in 

nonpolymerizeable phospholipids (26,27,40). This is shown in Figure 4. Although the 

individual carbons contributing to the bulk methylene resonance at :::::29 ppm are not 

resolved, the value of T1 across the envelope was found to be relatively constant and 

therefore we assume for the time being that, as for DPPC, a plateau of relatively 

constant values of Tel exist in the center of the acyl chain followed by an increase 
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Table IV 

Resonance Assignments, spin-lattice relaxation times (Ti) and NO Es for : A. D8PC 

micelles and B. Polymeric ro-8 micelles. Chemical shifts are reported in ppm relative 

to the choline methyls at 54.3 ppm. Numbers in parentheses denote the temperature of 

the experiment. 



Carbon Atom Chemical Shift Tl (305 OK) Tl (3200K) NOE (305 OK} 

Backbone 

CH20 70.8 .32 ± .04 .43 ± .03 1.75 ± .13 
CH20P 63.9 .20 ± .01 .28 ± .02 2.08 ± .25 
CH20 63.2 .17 ± .01 .23 ± .01 1.7 ± .21 

Head group 

CH2N 66.3 .64 ± .02 .96 ± .05 2.51 ± .28 N 

'° CH20P 59.7 .63 ± .02 .90 ± .03 2.33 ± .08 w 

N(CH3)3 54.3 .82 ± .02 1.2 ± .04 2.7 ± .02 

Acyl chains 

a 34.3 .50 ± .01 .60 ± .01 2.23 ± .13 
p 25.1 .70 ± .03 .86 ± .02 2.36 ± .16 
"{and B 29.3 .90 ± .01 1.19 ± .01 2.45 ± .12 
€ 32.0 1.31 ± .03 1.80 ± .04 2.53 ± .22 
ro-1 22.7 1.96 ± .05 2.46 ± .09 2.63 ± .02 
ro-CH3 13.9 3.76 ± .66 4.48 ± .26 2.84 ± .23 



Carbon Atom Chemical Shift Tl (305 OK) Tl (320 OK) NOE (305 OK} 

Backbone 

CH20 70.8 .27 ± .01 .38 ± .04 1.25 

CH20P 63.9 .19±.01 .15 ± .05 1.63 

CH20 63. l .17±.07 

Head group 

CH2N 66.2 .67 ± .03 .87 ± .07 2.04 N 
\0 

CH20P 59.7 .60 ± .01 .82 ± .18 22.28 
.j::>. 

N(CH3)3 54.3 .77 ± .03 1.11 ± .07 2.75 

Acyl chains 

a 34.3 .36 ± .03 .48 ± .12 2.10 

~ 25.1 .39 ± .02 .55 ± .14 2.53 

Bulk CH2 29.4 .38 ± .01 .52 ± .08 2.12 

ffi-CH2SS 39.3 .292 ± .02 .44 ± .15 2.26 
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Figure 4. 

Be spin-lattice relaxation times for the acyl chain carbons of: A. DMPC and B. 

Polymeric a-16 SUVs. The data are taken from Table I and plotted as NHT1, where NH 

denotes the number of directly bonded lH nuclei. The flat plateau region corresponds to 

the bulk methylene protons, which have a fairly uniform T1 across the broad methylene 

envelope. However, in reality, it is expected that the plateau region should have some 

slope. 
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toward the center of the bilayer. (For DPPC, the plateau extends from "" C-4 to ""C-12 

(26,27). 

The values of the NOE at 305°C (Table I) were also only slightly smaller for 

polymeric a.-16 compared to DMPC SUV s. Of the resolvable resonances, the only one 

with a significant (""23%) difference was that of the headgroup CH20P, which may 

reflect either (i) slower motion of this moiety due to its proximity to the disulfide and 

glycerol backbone or possibly (ii) a different orientation of the headgroup. 

The value of the NOE is often interpreted in terms of the percentage of the relaxation 

due to the dipolar interaction. For an isotropically reorienting system in the extreme 

narrowing regime, an NOE of 2.99 would indicate the C-H dipolar interaction is the 

exclusive mechanism for relaxation (26,37,40). Interpreted in this way, with the 

exception of carbons associated with the glycerol backbone (and carbonyl carbon), one 

can conclude that the C-H dipolar interaction is the primary pathway for relaxation. In 

fact, the values are not substantially lower than the average values of 2.6 ± .2 reported 

for micelles at approximately half the field strength (40). Therefore, since the competing 

relaxation mechanism (chemical shift anisotropy) increases with the square of the field 

strength, it cannot have a substantial contribution. This is in agreement with the 

contention of others that chemical shift anisotropy has little effect on the relaxation of 

protonated Be nuclei, even at the field strength employed in these experiments {26,33). 

The question then arises as to why the NOE is not the full value of 2.99. This is 

most likely due to the fact that the motions in liposomes do not fulfill the assumption of 

extreme narrowing rates and isotropic reorientation necessary for application of Eqn. 

(28). As was discussed in the background section, Brown has shown that for motions 

characterized by rotational diffusion in the presence of an ordering potential (extreme 

narrowing regime) or by models involving both fast (< 000 -1) and slow (> ffio-1) 
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motional components, the NOE for pure dipolar interactions can be much less than 2.99 

(26). 

Based on the similarities of Ti-1 and NOE data for the two lipid systems described 

above, we conclude that, at least at 305°C Gust above the phase transition of DMPC 

and polymeric a.-16) the motions in the bilayers ofDMPC and a.-16 that contribute to 

Tel may not be that different. In particular, fast segmental motions and slow 

cooperative fluctuations of the acyl chains may have similar magnitudes. The exception 

to this is that the rotational and lateral diffusion of the lipids as a whole in a.-16 SUV s 

must be much slower than in DMPC, but these motions may have little bearing on 

Tel. 

'Temperature 'lJepen.cfence of tfie Spin-Lattice :Re;a;ration. :Rates for '])'};[PC an.cf Po{ymeric a-16 

S1lo/s. Differences in the relaxation behavior of a.-16 compared to DPPC SUV s start 

to become more apparent as the temperature is raised. In both cases, an increase in 

temperature results in an increase in T1 as shown in Table I. However, the ratio of the 

Tis at 320°C versus 3050C (T1 320/305) and 335°C versus 305°C (T1 335/305) range 

from 1.3 to 1.5 (T1 320/305) and 1.1- 2.4 (T1 335/305) for DMPC compared to .98 -

1.3 (T1 320/305) and 1.1 - 2.0 (T1 335/305) for a.-16. Thus the presence of the 

polymerizeable moiety inhibits the temperature dependent changes in the rates or 

amplitudes of the motions sensed by the spin-lattice relaxation. The enhancement 

factors (T1 320/305 and Ti 335/305) are tabulated in Table V and indicate that the 

enhancement is greatest for the choline headgroup and for the carbons associated with 

the chain terminus. 

In the past, the increase in T 1 with temperature was taken as evidence that extreme 

narrowing conditions apply and thus that the T 1 reflects predominantly the fast 

segmental motions of the chains. Arrhenius-type expressions were consequently 
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Table V 

Summary of the ratio of the spin-lattice relaxation rates at 320 OK and 335 °K 

relative to the rates at 305 OK (T1 320/305 and Ti 335/305) (taken from Table I). Also 

included are the relative order parameters Srel calculated according to Eqn. (29). In 

these calculations 11 CH at 305 °K was used since within experimental error, little 

difference in 11CH was observed for DMPC and DSPC at 320 °K versus 305 OK. The 

numbers in parentheses denote the temperature (°K) of the relaxation experiment. A. 

Values for DMPC SUVs and B. Values for polymeric a-16 SUVs. 



A Carbon Atom Tl (320/305) - Tl (335/305) Srel (305) Sret(320) Sret(335) 

Backbone 

CHO 1.09 .87 1.82 1.74 1.95 

CH20P 1.42 1.85 1.55 

CH20 1.42 1.51 1.96 1.66 1.81 

Head group 

CH2N 1.55 1.85 .42 .34 .31 

CH20P 1.42 1.79 .71 .72 .53 w 
0 

N(CH3)3 1.56 2.41 .29 .24 .19 
0 

Acyl chains 

a 1.21 1.55 .79 .77 .63 

~ 1.26 1.78 .67 .60 .50 

Bulk CH2 1.27 1.78 .46 .41 .35 

£ 1.45 1.67 .35 .30 .28 

{1)-1 1.39 2.09 .29 .26 .20 

ro-CH3 1.53 2.34 .16 .13 .11 



B Carbon Atom Tl (320/305) Tl (335/305) Srel (305) ~ref(3~Q} . Sre1(335) 
... 

Backbone 

CHO 

CH20P 

CH20 

Head group 

CH2N 1.09 1.07 .61 .61 .61 

CH20P .987 1.27 .85 .85 .75 w 
0 

N(CH3)3 1.26 1.96 .31 .31 .25 
..... 

Acyl chains 

a 

~ 
Bulk CH2 1.18 1.39 .62 .62 .57 

E .98 1.13 .38 .38 .35 
0)-1 1.12 1.78 .32 .31 .25 

ffi-CH3 1.22 1.76 .15 .15 .13 
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utilized to yield activation energies for these fast local motions. As described in the 

background section, however, it is now clear from the observed frequency 

dependences of T 1 that slow motions also contribute to the relaxation and thus that the 

dynamic behavior of phospholipids is best described as the sum of a frequency

independent fast motion term and frequency-dependent and order parameter-dependent 

slow motion term. Using these models, an alternative interpretation for the temperature 

dependence of Ti -1 was proposed: it was shown that the temperature dependence of 

Ti -1 could in fact be due to the temperature dependence of the order parameter , which 

is in turn related to the coefficient of thermal expansion and bilayer elasticity (26,41). 

We should consider both of the above explanations for the temperature dependence 

ofT1-lto explain the data, which shows that Ti-1 (a-16) changes less with temperature 

than Ti -1 (D:MPC): 

(i) Based on Arrhenius behavior alone, the data suggests that the activation 

energy for the fast segmental motions of polymeric a-16 is less than that of DMPC in 

the liquid-crystalline state. The lower value for polymeric a-16 is somewhat 

counterintuitive, however. One would expect, by contrast, that polymerization would 

actually effect a greater barrier to fast segmental motions thus leading to a higher 

activation energy than that for a nonpolymerized lipid. Using the Arrhenius model, 

however, the data implies that indeed the fast segmental motions are less hindered in the 

polymer. We know by FT-IR and Raman studies that at least in the the gel state, the 

hydrocarbon region of the a-THIOLS is more disordered and less densely packed than 

polymerizeable analogues and thus a lower activation energy for the polymer would 

seem reasonable (see Chapter IV). Whether or not this is true for polymeric a-16 in the 

liquid -crystalline state is unclear. If it is true, it is likely that the polymeric lipids will 

be more disordered than the nonpolymerizeable analogues only up to a certain 

temperature since the presence of intrachain covalent linkages should put a limit on the 
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lateral expansion of the bilayer. Faster segmental motions for a-16 compared to DMPC 

in the liquid-crystalline state does not seem like a satisfying conclusion, however. 

(ii) If we assume as an alternative, that the temperature dependence of Ti-1 

could in fact be related to the order parameter, the relaxation rates for DMPC versus a-

16 make more intuitive sense. The order parameter is defined as the ensemble time 

average of Eqn. (19). Thus it provides a quantitative description of the degree of 

organization in the bilayer via the time average of the angular (8) fluctuations of a given 

coordinate axis (i.e., a C-D or C-H bond segment) with respect to the director axis." 

For phospholipid membranes, the director axis is the normal to the bilayer surface. 

Values of Seo ( =ScH) equal to 1 and 0 reflect completely ordered and disordered 

bilayers, respectively (4). 

Physically, what the temperature dependence of the order parameter reflects is the 

elasticity of the bilayer and the change in the thermal expansion coefficient (a) defined 

by (44): 

(3 0) Ad 
a= dAT 

where d is the bilayer thickness. Seelig et al. has shown that a segmental expansion 

coefficient ( CXi) can be written in terms of the molecular order parameter ~Smol as 

follows (44): 

(3 1) L1Smol 
q = 2.25AT 

In this equation, Smol = 2Sco (4,44}. Thus these equations reflect the fact that a 

relatively small change in the order parameter with temperature reflects a reduced value 

of the thermal expansion coefficient. The temperature dependence of Ti and the 

* It should be noted , however, that the order parameter does not provide insight into the rates of 
motion. 
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enhancement ratios in Tables I and V therefore imply that DMPC has a higher thermal 

expansion coefficient than a-16. This is also shown by the temperature dependence of 

the relative order parameters (SreI) (Table V), which allow one to very roughly 

estimate that ai(DMPC) is greater than ai( a-16) by a factor of 2 based on the Srel for 

the bulk methylene and terminal methyl group.* It should be noted that the relative 

order parameters in Table V are those described in the background section as calculated 

according to the method of Solderman Eqn. (29) (46). 

From a physical and structural standpoint, a reduction in the thermal expansion 

coefficient of the bilayer upon interfacial polymerization is actually quite appealing. As 

shown by Eqn. (30), this implies that the bilayer thickness ~d changes little with 

temperature. For nonpolymerizeable lipids, it has been demonstrated that a reduction in 

~d upon increasing the temperature, is by necessity compensated by a decrease in the 

lateral packing density of the lipids. These dimensional alterations are the consequence 

of introduction of chain disorder via the introduction of gauche conformers. For 

polymerized a-THIOLS , the presence of the disulfide linkage between adjacent lipids 

within a polymer chain should put an upper limit on the degree of lateral expansion, 

which can occur along the direction of the polymer chain and therefore the extent to 

which the bilayer thickness can change. As described in earlier chapters, only between 

unlinked lipids is there the possibility for unrestricted lateral expansion. The net effect, 

however, should be that the thermal expansion coefficient of the bilayer is reduced in 

polymerized a-16 compared to DMPC, which is consistent with the data. (Preliminary 

* Since Srel is not equivalent to Smol and also may not be strictly comparable for DMPC versus a-16, 
the ratio of the segmental thermal expansion coefficients for DMPC versus a-16 is only a crude and 
perhaps empirical approximation estimated as : 

t.S 
-'-'' (DMPC) 

UDMPC .1T a __ ,. = _t._S ___ _ 

-'-''(a - 1 6) 
t.T 
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x-ray diffraction studies have in fact suggested that there is not a great change in the 

bilayer thickness with temperature) (49). 

Spin-Cattice 'R,e{qxation and ;J{O'E :Measurements qf ro-8 and '1J8PC AficeC{es. The data for 

polymeric ro-8 micelles compared to D8PC micelles shows some distinctly different 

behavior. Examination of the relaxation data and calculated relative order parameters in 

Tables IV and VI indicates that while the T1 's associated with the backbone and 

headgroup are only slightly reduced compared to those of the nonpolymerized micelles, 

the TI 's associated with the chains are much smaller. This is not the consequence of the 

differences in the sizes of the two lecithin species: It has been clearly demonstrated that 

while the spin-spin relaxation rate (which contributes to the linewidth of the 

resonances) is dependent on aggregate size and morphology, the spin-lattice relaxation 

rate is not (29). Furthermore an effect of aggregate size would cause a uniform Ti 

decrease in all carbons of ro-8 whereas the data shows it is predominantly the chain 

methylenes that are influenced by the polymerization. 

The simplest and most logical interpretation of the data is that polymerization 

restricts the rate and/or amplitude of the fast segmental motions. Since we do not have 

the appropriate frequency dependence of T 1-l to extrapolate out the correlation times 

for the fast motions, we can calculate an effective correlation time according to Eqn. 

(15). As was described in the background section, this analysis has been widely used 

in the past and although strictly valid only for isotropic motion, is useful for 

qualitatively comparing the motions of the same carbons in different lipid systems (40). 

The effective correlation times calculated for the acyl chains of polymeric ro-8 and 

D8PC micelles at 3050C (Table VII) indicate a substantial reduction in the motion of the 

chain methylenes for the polymeric ro-8 relative to D8PC and that the difference 

between the two lipid systems is most noteable towards the chain terminus. 
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Table VI 

Summary of the ratio of the spin-lattice relaxation rates at 320 °K relative to the rates 

at 305 °K (T1 320/305) (taken from Table IV). Also included are the relative order 

parameters Srel calculated according to Eqn. (29). In these calculations 11cH at 305 °K 

was used because within experimental error, little difference in 11cH was observed for 

DMPC and D8PC at 320 °K versus 305 °K. The numbers in parentheses denote the 

temperature (OK) of the relaxation experiment. A. Values for D8PC micelles and B. 

Values for polymeric ID-8 micelles. 
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D8PC 

A Carbon Atom Tl (320/305) Sre1 (305) SreJ(320) 

Backbone 

CHO 1.34 1.40 .75 

CH20P 1.44 1.28 .7 

CHiQ 1.32 1.15 1.0 

Head group 

CH2N 1.49 .43 .35 

CH20P 1.43 .51 .43 

N(CH3)3 1.46 .24 .20 

Acyl chains 

a 1.19 .62 .57 

~ 1.23 .47 .43 
"{and 0 1.32 .39 .34 

£ 1.37 .30 .25 
(l)-1 1.26 .21 .19 

CO-CH3 1.28 .08 .07 
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Polymeric ffi-8 

B Carbon Atom Tl (320/305) Srel (305) Sre1(320) 

.Backbone 

CHO 1.43 1.81 1.51 
CH20P 1.26 1.36 1.52 
CH20 

Head group 

CH2N 1.29 .60 .52 
CH20P 1.38 1.36 1.52 
N(CH3)3 1.44 .23 .19 

Acy I chains 

a 1.33 .77 .68 

~ 1.42 .55 .46 
Bulk CH2 1.36 .76 .65 
ro-CHSS 1.49 .80 .67 
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Table VII 

Effective correlation times for the resolvable carbons of the acyl chains in D8PC 

and polymeric ro-8 micelles calculated according to equation 15. Values are given in 

picoseconds. 



Carbon Atom 

Acyl Chains 

a 
~ 
Bulk CH2 

ro-CH3 I ro-SS 

310 

Effective Correlation Time (ps) 

D8PC 

48 

34 

28 
4 

ro-8 

65 

66 

63 

81 
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Figure 5 illustrates an additional interesting distinction between the motional 

behavior of polymeric ro-8 compared to D8PC. In the case of the nonpolymerized 

lipid, there is a motional gradient (indicated by the increasing values of NT1), which 

increases from the glycerol backbone towards the chain terminus with a plateau region 

of relatively constant Ti's in the center of the chain. This is similar to Ti profiles for 

liposomal-forming lecithins as shown in Figure 4 for polymeric a-16 and DMPC, and 

is in aggreement with work reported from other groups (40). By contrast, Figure 5 also 

illustrates the apparent lack of a mobility gradient in polymeric C0-8 due to the disulfide 

coupling at the chain terminus. In fact there appears to be a slight elevation in the T 1 's 

of the carbons in the middle of the chain rather than the typical increase towards the end 

of the chain exhibited by D8PC and most phospholipid bilayers. These effects hold 

true at both 305°C and 320°C and suggest that polymerization at the chain terminus 

greatly reduces the rates and/or amplitudes of the fast segmental motions of the chains. 

It is interesting to note that in Chapter IV what is usuually referred to as a "fluidity 

gradient" was detected for liquid-crystalline polymeric ro-15 and ro-16 using depth-

dependent fluorescent probes. It was pointed out that this gradient could reflect 

increasing motion or structural disorder with depth within the bilayer. If the lack of a 

motional gradient exhibited by the 13C Ti results for polymeric ro-8 micelles can be 

extrapolated to long 15- or 16-carbon chain analogues, then it appears that the 

fluorescence-detected gradient is one of structural disorder only. 

'Temperature 'Dependence of tfie Spin· Lattice 'Re[axation ']\ates for 'D8PC and Po[ymeric CO -8 

Aficeffes .. Upon raising the temperature, the Ti increases for both D8PC and polymeric 

ro-8 micelles.* However, in contrast to the reduced temperature dependence of Ti for 

* In the simplest interpretation of such data, this would imply that extreme narrowing conditions 
apply. However as already described, this is an oversimplification of the data. 
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Figure 5 

13C spin-lattice relaxation times for the acyl chain carbons of: A. D8PC micelles 

and B. Polymeric ro-8 micelles. The data are taken from Table IV (305 °K) and 

plotted as NHT1 where NH denotes the number of directly bonded lH nuclei. The 

nonresolvable carbons of ro-8 and D8PC, which contribute to the bulk methylene 

envelope were arbitrarily given the same value. 
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the Ti's of polymeric a-16 SUVs compared to DMPC, the enhancements are similar 

for ro-8 and D8PC micelles (Tl 320/305 = 1.3-1.5) at least over the temperature range 

investigated* (Table IV and Table VI). This is a surprising result. If we once again 

consider the Arrhenius treatment of the relaxation data, this would imply a similar 

activation energy for segmental isomerization in both systems. Such a conclusion is 

difficult to imagine since gauche conformers are known to concentrate and propagate at 

the chain terminus (2,25). If the chain terminus is coupled by polymerization, however, 

the distribution of the gauche conformers as well as the rates and amplitudes of these 

isomerizations should decrease. If we consider the data in terms of the temperature 

dependence of the order parameter (relative order paramteres are tabulated in Table VI) 

we find that the change in Srel with temperature (.6.Sre1/,1.T) is at least as great for ro-8 as 

for D8PC (in fact it is larger). These results suggest that: 

(i) The thermal expansion coefficient of the two systems is not measurably 

different over the temperature range examined. This is in contrast to the a-THIOLS 

and implies that polymerization at the chain terminus does not inhibit the temperature-

induced lateral expansion of the lipid bilayer to the extent that interfacial polymerization 

does. It should be noted, however, that if the lipids were highly crosslinked, the results 

might be quite different. 

(ii) Despite polymerization at the chain terminus and the lack of a mobility 

gradient, the hydrocarbon region of these lipids can become quite disordered in the 

liquid-crystalline state. If this were not the case, the Ti would not be expected to 

change much with temperature.** 

1H N:M.:R.. 

*It is possible that at hgher temperatures, greater differences would be observed. 
**It should be reiterated that disorder and mobility can be, but are not necessarily concomitant. 
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lH NMR serves as an informative adjunct to 13C NMR data for determining the 

motional state of lipids in bilayers. As with 13C NMR, the lH spectra and relaxation 

properties of phospholipids are sensitive to the anisotropic motions of the individual 

molecules and the isotropic motion of the liposome as a whole. For large unsonicated 

dispersions of most lecithins, the proton spectra consists of very broad unresolved 

features. The tumbling rate of these dispersions and the lateral diffusion of lipids in the 

plane of the bilayer is on the order of seconds and therefore is much too long to average 

the dipolar interactions (1,2). For large ( ,,,,5 µm) liposomal particles, therefore, any 

motional averaging that occurs must be the consequence of local motions of the 

phospholipids (1,2). Figure 6A shows a "high resolution" lH spectra of an unsonicated 

DPPC dispersion at 47oc (above Tm). Very little is visible under the acquisition 

conditions used with the exception of minor contributions from the choline methyls ( "" 

3.1 ppm) and the methylene/methyls (1.2 ppm). This is due to the slow motions of the 

bilayer, which promotes effective spin-spin relaxation. 

Figure 6 B also shows an analogous spectrum (same concentration of lipid and 

NaAc) for polymeric a-18 at 47°C. In contrast to DPPC, which shows very little 

intensity, approximately 30% of the total protons are observed in the spectra based on 

an analysis of absolute intensities using NaAc as an internal standard. (The exact 

percentage is dependent on the length and temperature of the hydration conditions of the 

lipid in a manner that has not yet been systematically characterized.) Since both lipids 

have similar phase transition temperatures (41.70 and 37°C, respectively) the 

differences in the spectra are not the consequences of differences in the reduced 

temperatures at which the spectra were taken. The spin-spin relaxation (T2), which 

contributes to the linewidth, is caused by both rapid molecular motions and by motions 

near zero frequency. Thus, both the overall motion of the vesicles and local segmental 

fluctuations can contribute to spectral narrowing (1,2,7,48-50). The more highly 
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Figure 6 

lH NMR spectra of A. DPPC and B. a-18 MLVs at 47 °C. Both samples contain 

5.6 µmoles lipid and .31 µmoles NaAc. 
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resolved features of the a-18 dispersion can therefore arise from several sources: (i) 

faster lateral diffusion of the lipids over the surface of the liposome, (ii) a faster rate or 

amplitude of local motions such as chain tilting, chain reorientation, or segmental 

motions or (iii) a smaller liposome size or a heterogeneous population of liposomes in 

which the small components can tumble rapidly enough to partially average the 

interproton dipolar interactions. Each of these reasons should be considered: 

(i)Because the lipids in a-18 are polymerized, a faster lateral diffusion (i)can 

be excluded. For monomers, this is estimated to be on the order of 4 x 1 o-5 s for 250 

A vesicles but seconds for 5 µm ML Vs. For oligomers diffusing over the surface of 

even 200-300 nm liposomes, the lateral diffusion rate should be several orders of 

magnitude larger than 10-s and insufficient to average the motion.* 

(ii)Local chain fluctuations (ii) may possibly contribute to the spectral features 

since these are much faster motions. However, since the motions of the lipid as a whole 

(rotational diffusion and perhaps cooperative tilting or swaying) will be hindered by 

polymerization, only reorientation and off axis excursions of the acyl chains (from the 

director axis) could possibly be viable sources of local motional averaging. However 

the Be relaxation results showed that in the liquid-crystalline state, the relaxation time 

of polymeric a-16 was shorter than that of DMPC, which could suggest (a) more 

effective slow motions or (b) reduced rates and amplitudes of fast motions for the 

polymer. Consequently, while it cannot be ruled out, faster local motions of the chains 

of liquid-crystalline polymeric a-18 are unlikely to contribute to spectral narrowing. 

(iii) The primary reason for the enhanced resolution of a-18 dispersions is 

likely to arise from isotropic vesicle tumbling. Many studies have demonstrated the 

*For monomeric lipids the 't'LD would be 3-6 msecs for 200-300nm liposomes. Oligomers should 
have a much longer correlation time. 
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tremendous sensitivity of lH linewidths to vesicle tumbing rates (1,2,51,52). Thus it is 

useful to recall the results of Chapter II where it was shown by EM and light scattering 

that prepolymerized a-THIOLS form a polydisperse and generally smaller distribution 

of liposomes than their nonpolymerizeable analogues. Furthermore, addition of MnCl2 

to relax externally oriented cholines indicated that the lH NMR-visible liposomes were 

unilamellar. 

Even in the gel state, a-TIIIOLS tend to be more highly resolved than DPPC in the 

liquid-crystalline state. This is demonstrated quite clearly by the spectra of gel and 

liquid-crystalline polymeric a-16 and a-20 MLVs in Figures 7 and 8. For liquid

crystalline a-16 and a-20, the generally smaller size and faster vesicle tumbling rates of 

= 30% of the liposomes is the major source of motional averaging. However, for the 

gel state dispersions, faster local motions may also be important. Conceptually one 

would not expect a polymerized lipid to give rise to greater segmental motion than a 

nonpolymerized analogue. However, in Chapter IV it was shown by vibrational 

spectroscopy that in fact polymeric a-THIOLS are more disordered in the gel state than 

the corresponding monomers or nonpolymerizeable analogues. Although this does not 

necessarily confirm that the local motions are faster for gel state a-TIIIOLS, it cannot 

be ruled out (more disordered systems do often exhibit faster motions). 

S'llo/s. Sonication of the vesicles into 250-500 A sized particles results in a significant 

transformation of the lH spectra. Figure 9 shows the high resolution features of DPPC 

SUV s at various temperatures. Above the phase transition temperature (Figure 8 A), the 

choline methyls ( = 3.lppm), the bulk methylenes ( = 1.2 ppm), the terminal methyls ( 

= .85 ppm), the headgroup methylenes ( = 3.75 and 4.35 ppm) and even the a

carbonyl methylene (2.5 ppm) are extremely well resolved. This is due to the fact that 

reduction of the particle size to 250-500 A is accompanied by a 
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Figure 7 

lH NMR spectra of polymeric a-16 ML Vs in D20 at A. 7°C and B. 32 °C 
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Figure 8 

lH NMR spectra of polymeric a-20 ML Vs in D20 at A. 25oc and B. 45 oc and 

c. 60 oc 
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Figure 9 

lH NMR spectra of DPPC SUVs in D20 at A. 2soc and B. 30 oc and C. 50 oc 
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concomitant decrease in the tumbling rate 'tv of the liposomes to"" 2 xlQ-6 (for 250 A 

vesicles) as given by Eqn. (1). Furthermore, lateral diffusion 'tLD of the lipids over the 

surface of the liposomes is on the order of 4 x 10 -5 s as calculated by Eqn. (2). The 

effective averaging time scale of 10-6 s is sufficient to partially average the dipolar 

interaction, and thus the spectra of SUVs are more highly resolved than that of ML Vs 

(1,2). Seiter and Chan and Horwitz et al. (1,49,53) have argued, however, that this 

degree of motional averaging is not fast enough to account for the degree to which the 

1 H spectra of SUV s are narrowed and that additional sources of motion must be 

invoked. Thus it has been concluded and shown by the insensitivity of the linewidth of 

SUV s to viscosity, that below a certain size, l H line widths are independent of the 

vesicle tumbling rate (54). The additional modes of motion that contribute to spectral 

narrowing have been attributed to the local fluctuations of the phospholipid molecule 

including chain reorientation (55). 

In the liquid-crystalline spectra of DPPC SUV s it is also possible to distinguish the 

inward (high field shoulder) and outward facing choline-methyls (low field shoulder). 

Shuh et al. have shown that for even smaller vesicles, all visible resonances with the 

exception of the a-carbonyl methylene are split into those belonging to the inward and 

outward facing leaflets (56). These effects have been ascribed to the differences in 

packing constraints between the two halves of the bilayer imposed by the small radius 

of curvature. 

As the temperature is lowered through the phase transition, all resonances are 

broadened considerably due to the crystallization of the lipids, the slowing of local 

chain fluctuations, lateral diffusion (and perhaps reduction in the tumbling rate due to 

aggregation). A proportionately larger contribution of the choline methyls are retained 

(Chan et al. have reported 100% of the intensity to be visible) relative to the fatty acids, 
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which are almost undetected at 298°C. This indicates a relatively higher mobility for the 

headgroup relative to the chains. 

Figure 10 shows the lH NMR spectra of sonicated a-16 and a-18 liposomes in 

the gel and liquid-crystalline state. In contrast to liquid-crystalline ML Vs, which show 

more highly resolved spectra compared to DPPC ML Vs, the liquid-crystalline SUVs 

are less well resolved. In particular there is no distinction between the inside and 

outside choline resonances despite the fact that these vesicles were found to be 

approximately the same size in repeated preparations. The increase in breadth is due to 

the restricted bilayer expansion and subsequent restricted rates of lateral diffusion and 

local motions (rotational diffusion, chain tilting) relative to nonpolymerizeable lipids in 

the liquid-crystalline state. In the gel state, by contrast, there appears to be at least as 

much or a greater contribution from the chains despite the motional constraints imposed 

by polymerization on the motions of the lipids as a whole. These results are consistent 

with the analysis of the I H line widths in the ML Vs. We therefore suggest that 

polymerization inhibits crystalline chain packing in the gel state to the extent achieved 

by nonpolymerizeable analogues and that the increased volume available allows for 

greater rates or amplitudes of local fluctuations in the hydrocarbon portion of the chain. 

Furthermore, these fast local motions must more than compensate for the necessarily 

slow rotational and lateral diffusion of the polymerized phospholipids such that the 

effective motion of the polymeric acyl chains is greater than that of the 

nonpolymerizeable analogues. This is not an intuitive result. 

lH NMR of ro-THIOLS. For completeness, Figure 11 shows the lH NMR of bath

sonicated polymeric ro-16 at 25°C and 66°C. Bath sonication was used in lieu of 

probe sonication since the latter results in immediate precipitation of the bilayers. 

Successful sample preparation is more the exception than the rule. The difficulty in 

preparing NMR-visible particles is due to the fact that the ro-THIOLS form bilayer 
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Figure 10 

lH NMR of a-16 SUVs in D20 at: A. 7 °C, B. 32 °C and a-18 SUVs in D20 at 

C. 29 oc; D. 50 °C 
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Figure 11 

1 H NMR of bath sonicated C0-16 bilayer fragments in D20 at A. 60°C and B. 25 °C 
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fragments, not closed liposomes. Therefore the bath sonication most likely temporarily 

disaggregates or reduces the size of the fragments. The spectra, which were taken 

immediately after sample preparation, broadened very quickly with time due to 

aggregation. Nonetheless, it is clear that upon raising the temperature the acyl chains 

acquire greater mobility despite the fact that they are polymerized at the chain terminus.* 

On the other hand, compared to the a-THIOLS or nonpolymerizeable analogues, the 

contribution of chain protons relative to the choline headgroup is relatively small, 

indicating restricted motion. 

CONCLUSIONS 

In this study, Be spin-lattice relaxation and lH NMR experiments were carried out 

to evaluate the dynamic behavior of polymerized a- and ro-THIOLS. In particular, we 

were interested in (i) making a comparison of polymerizeable versus 

nonpolymerizeable lipids and (ii) in elucidating the effect of the position of the 

polymerizeable moiety on the motional state of the bilayer. The following is a precis of 

the major conclusions: 

a-16 ve.rsti.S D:M..:PC Ltposomcs. 

(i) Comparison of the spectral feautures of DMPC liposomes to polymerized 

a-16 liposomes indicated that the polymerization-induced rigidification of the 

membrane is primarily localized to the interfacial region including the glycerol 

backbone and the first few segments of the acyl chains. With progressive distance 

towards the methyl terminus of the acyl chains, the effect of the disulfide linkage is less 

obvious; spectral linewidths and Tel become less distinguishable between the 

polymerized versus nonpolymerized aggregates, at least at temperatures just above the 

'" An alternative possibility which cannot be completely ruled out is that the temperature causes 
disruption of the bilayer fragments into smaller particles. The faster tumbling rate of the smaller 
fragments could then lead to more effective motional averaging of the dipolar interactions. 
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phase transition temperature. In fact, based on spin-lattice relaxation times, polymerized 

a-THIOLS were shown to maintain one of the characteristic features of conventional 

phospholipid bilayers - that of a mobility (or fluidity ) gradient. This is due to the fact 

that the position of the polymerizeable moiety is at the interfacial region, which is the 

most rigid portion of a normal bilayer. 

(ii) The temperature dependences of the Be relaxation rates in polymeric a-16 

SUVs were less pronounced than those of DMPC. Based on current theories, this can 

be interpreted in one of two ways: (A) that the activation energies for segmental 

isomerization is less for polymeric a-THIOLS (Arrhenius model) or (B) that the 

temperature dependence of the order parameter (and therefore the bilayer expansion 

coefficient) is less. 

A is difficult to rationalize. One would expect that segmental isomerizations would 

be more difficult for the polymer, which is not what the data implies based on an 

Arrhenius interpretation. While we have no data to suggest one explanation is better 

than the other, a reduction of the temperature dependence of the order parameter (fil 

implying a lower thermal expansion coefficient is conceptually appealing. The 

intervening covalent linkages between phospholipids should inhibit (i) the lateral 

expansion of the bilayer along the direction of the polymer chains and (ii) the extent to 

which the rates of rotational diffusion, off axis wobbling and a number of other 

motions can increase with temperature. In other words, with increasing temperature in 

the liquid-crystalline state, polymerized a-THIOLS cannot achieve the degree of 

disorder attained by nonpolymerizeable lipids. 

(iii) 1 H NMR studies of poymerized a-THIOL ML Vs reconfirm the fact that 

the a-THIOLS tend to form a heterogeneous but generally smaller distribution of 

liposomes. However, spectra of SUVs in the liquid-crystalline state are much broader 
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than those of nonpolymerizeable analogues. This is most likely due to the restricted 

rotational diffusion and other local motions of the polymerized lipids, which have been 

shown to be importatnt determinants of the proton linewidth (5,49,52). By contrast, it 

appears that certain local motions (segmental isomerization or reorientation of the acyl 

chains ) may be more rapid or of greater amplitude in gel state polymeric SUV s and 

ML Vs than gel state nonpolymerizeable analogues. The latter is consistent with Raman 

and FT-IR studies, which show that the hydrocarbon region of polymeric a-THIOLS 

are more disordered than in the monomers or nonpolymerizeable lipids. 

(iv} In conclusion, the 13C and lH NMR studies suggest that in the gel state, 

the hydrocarbon chains of polymeric a-THIOLS are more disordered and have faster 

local motions. This is because polymerization adds steric bulk and reduces the 

conformational freedom of the lipids to pack into tight crystalline arrays. By contrast, in 

the liquid-crystalline state, the extent to which the membranes can become disordered is 

limited by the reduced rotational and lateral diffusion of the phospholipids as a whole, 

as well as the reduced thermal expansion coefficient of the bilayer. 

(i} In contrast to a-16 SUV s, all resonances of polymeric ro-8 "micelles" were 

resolvable. Based on the effective sizes as measured by dynamic light scattering, this 

was actually contradictory to what would have been anticipated since the spin-spin 

relaxation rates are sensitive to the slow motions of the lipid aggregates (i.e., vesicle 

and micelle tumbling). Since the size of polymeric ro-8 was substantially greater than 

that of a-16 liposomes, much broader spectral features were expected. However, the 

light scattering measurement is sensitive to macroscopic viscosity of the sample and 

not to the microscopic viscosity. It therefore seems quite likely that the spectral 

narrowing stems from the fact that there is a high dynamic nature to the gross 
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aggregate structure and that the particles are effectively tumbling at a much more rapid 

rate than that expected for a thick gelatinous suspension. 

(ii) Be spin-lattice relaxation measurements of polymeric ro-8 relative to 

D8PC micelles indicated substantially reduced motions in the acyl chains of the polymer 

whereas the effect on the headgroup carbons was less pronounced. This suggests that 

the motions sensed by the relaxation measurements are primarily fast segmental 

motions. Rotational and lateral diffusion of the individual phospholipids in the polymer 

must be slowed, but these motions should uniformly affect all the carbons in the 

phospholipid. 

(iii) Since the poymerized C0-8 lipids are effectively tethered by the polar 

group at the interface as well as by the disulfide group at the chain terminus, no 

mobility gradient was observed along the acyl chains. This contrasts sharply to the 

poymeric a-16 SUVs as well as nonpolymerizeable phospholipid aggregates, which 

have mobility gradients, and illustrates the importance of the position of the 

polymerizeable moiety in determining the dynamic properties of micelles and bilayers. 

Furthermore, this implies that the gradients observed in ro-THIOLS using depth 

dependent anthroyloxy probes (Chapter III) are gradients of structural disorder, not 

mobility. 

(iv) Although only two temperatures were examined, the similarity in the 

temperature dependence of Ti-1 for D8PC and C0-8 micelles suggests that the lateral 

expansion coefficient of the aggregates are more comparable than that of a-16 versus 

DMPC. Furthermore, despite the disulfide linkage at the chain terminus of ro-8, the 

hydrocarbon region can become quite disordered. This is most easily visualized if 
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intraleaflet coupling* is assumed, as discussed in Chapters II and III, since that 

construction should allow a greater amount of gauche conformers to be introduced into 

the chain segments. 

As has been described in the last several chapters , the physical properties of 

polymeric a-THIOLS, especially with respect to morphology, more nearly resemble 

those of nonpolymerizeable phospholipids than the ro-THIOLS. a-THIOLS have been 

shown to retain a liposomal structure upon polymerization and even to form self-sealed 

bilayers from a prepolymerized state. By contrast, the ro-THIOLS form liposomes in 

the unpolymerized state, but upon polymerization, these closed structures break up into 

bilayer fragments with no identifiable aqueous compartment. The basis of this behavior 

may be due to the dynamic properties of the two types of phospholipids. In the case of 

polymeric a-THIOLS, a fluidity/mobility gradient is retained, and thus defects that are 

formed in the hydrocarbon region by, e.g., thermal alterations, can be compensated for 

by a rearrangement of the chain conformation, similar to what occurs in 

nonpolymerizeable phospholipids. In the case of ro-THIOLS, however, no mobilty 

gradient was detected and therefore the introduction of membrane defects or structural 

disorder may be more difficult to amend, thereby causing fragmentation. On the basis 

of fluorescence polarization experiments, it now seems quite clear that there is indeed a 

gradient of structural disorder introduced in the liquid-crystalline state of these lipids 

which may ultimately lead to loss of liposomal integrity. 

* Intraleaflet coupling is not a strictly valid term for a micelle (although these may actually be small 
bilayer fragments). In any case, the implication is that polymerization occurs between neighboring 
lipids whose chains and headgroups are oriented essentially in the same direction. 
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Based on the discussion presented in the background and theory section, it would 

clearly be interesting to examine the frequency dependence of the spin-lattice relaxation 

rates of the lipids described in this chapter in order to abstract the correlation times of 

the fast motions, the relative contribtuion of fast and slow motions to Tel, and 

whether or not the cooperative (collective) slow motions demonstrated for DPPC 

liposomes are maintained in polymerized membranes. Furthermore, since 

polymerization undoubtedly reduces certain slow motions of the lipid as a whole (i.e., 

rotational and lateral diffusion), rotating-frame spin-lattice relaxation experiments, 

which are sensitive to slow motions inte1mediate between T1 and T1, should provide 

substantial insight into the modulation of the dynamic behavior of phospholipids as a 

consequence of poymerization (5, 26). Finally, solid state magic angle sample spinning 

(MASS) techniques could be employed to carry out such experiments without the 

necessity of sonication or the need for the samples to be in the liquid-crystalline state. 

In the studies reported in this chapter, it was not possible to examine the relaxation 

behaior of long chain polymeric ro-THIOLS due to the fact that they aggregate and 

form fragments that cannot be sonicated into particles small enough to be visible by 

conventional high resolution techniques. However, using solid state techniques these 

systems should be amenable to study. The following briefly describes our initial 

results and the potential utility of solid state MASS for studying liposomes: 

Prefiminazy Sofie{ State MAfS Spectra We have already initiated some solid state 13C 

MASS experiments and although they are not complete, some results are included here 

to demonstrate the utility of the approach. Figure 11 shows spectra of a variety of 

unsonicated lipid dispersions taken at room temperature with magic angle sample 
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spinning (the spinning frequencies are noted in the spectra and legend). The differences 

in the resolution from sample to sample is a function primarily of the phase transition 

temperatures of the lipids: EPC is in the liquid-crystalline state at room temperature; 

polymeric a-16 is neither completely in the gel state or completely in the liquid-

crystalline state as it has a broad transition with a maximum approximately at room 

temperature; DPPC has a transition slightly above room-temperature (41.70C) and 

polymeric ro-15 has a phase transition well above 50°C. The greatest resolution is 

therefore achieved for EPC, which has a fair degree of mobility due to its phase state, 

whereas polymeric ro-15 and a-20 have much less resolution of the acyl chains. With 

higher spinning rates it should be possible to obtain a comparable degree of resolution 

as was obtained for EPC using lipids that have transition temperatures well above 

room temperature. This, however, raises one of the current difficulties that was 

encountered in these exploratory studies: the difficulty in achieving rapid, 

homogeneous spinning rates. The speed and stability that could be obtained varied 

from sample to sample and while it seems to be due to problems with the rotor design, 

it is clearly not an insurmountable problem. Given improved rotors, higher rates should 

be easily achieved (dry samples depending on their density may be currently spun at 14 

kHz). Furthermore, thermal control will allow examination of samples in both the gel 

state as well as in the liquid-crystalline state.* 

* Studies of sonicated liposomes using high resolution techniques have been predominantly devoted to 
lipids in the liquid crystalline state due to the relatively featureless spectra obtained for sonicated gel 
state lipids. Oldfield et al. have shown that one can even observe cholesterol in lipid dispersions using 
MASS. Thus these experiments should greatly increase the variety of lipid systems that can be 
examined and the conditions under which the experiments can be carried out. 
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Figure 11 

13C MASS spectra of lipid dispersions in H20 containing .5 mM EDTA. 

Measurements were made at ambient temperature and at the spinning frequencies 

indicated in the spectra: A. EPC; B. Polymeric a-16 C. DPPC; D. Polymeric ro-15. 
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Chapter VI 

Investigations of tfte 'Dynamics ana Confonnation of tfie :J{eacfgroup of 
Po{ymerizea PfiospfiofipUf 9vfem6ranes 6y Jlp 'J{']v[']{_ 

Introduction 

The effects of polymerization on the bulk properties of disulfide polymerized 

phospholipids was examined in Chapter II (morphological properties) and Chapter III 

(thermal properties). In Chapters IV and V, vibrational spectroscopy and 13C NMR 

was employed to examine the conformation and dynamics of the hydrocarbon region of 

the bilayer. Equally important as the hydrocarbon region, however, is the lipid 

headgroup. Many studies have demonstrated the importance of headgroup size, charge 

and the addition of ions on the thermal properties of the lipids as well as the 

macroscopic morphologies they assume (1-5). For example, phosphatidylethanolamine 

(PE) and phosphatidylserine (PS) are lipids well known for their propensity to form 

hexagonal phase tubules upon lowering the pH (PE) or upon addition of Ca+2 (PS) (6). 

Secondly, it is the headgroup region that first comes into contact with the components 

of the surrounding medium such as serum proteins and cell surfaces. From the 

standpoint of in vivo uses of liposomes, the interfacial properties may largely be 
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involved with the subsequent fate of the phospholipid membrane. As an example, 

Scherphof and others have demonstrated the effect of headgroup charge on their 

clearance rates of liposomes from the circulatory system (7). 

3lp NMR has proven a useful technique for studying the behavior of phospholipid 

headgroups in pure lipid systems, in membranes reconstituted with proteins and for 

studies of the interactions of phospholipids with cholesterol, proteins and ions (8·10). 

In this chapter is described an investigation of the effect of polymerization on the 

dynamics and conformational properties of phosphatidylcholine membranes. In 

particular, we were interested in whether immobilization of the lipid molecules at the 

interfacial region or chain terminus of the phospholipids had an effect on the 

conformational and motional properties of the headgroup. Studies in the past have 

demonstrated that the headgroup reorientation rate is on the order of nanoseconds and 

largely uncorrelated with the dynamics of the rest of the lipid molecule (11). Based on 

these data, one might expect that polymerization in either fashion would leave the 

interfacial properties of the membrane unaltered. On the other hand, in previous 

chapters we have shown that the packing of the lipids in the membrane is modified by 

polymerization, which may in turn cause changes in the orientation and motional 

properties of the headgroup. To examine these possibilites, 3Ip spin-lattice relaxation 

times (T1) and cross polarization measurements were carried out to examine the 

dynamic behavior of polymerized versus unpolymerized membranes. To obtain 

information concerning the conformational properties of the headgroup, the chemical 

shift anisotropy and its temperature dependence are also evaluated. 

MATERIALS AND METHODS 

1'lnte.ria.f.s . 
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The synthesis and polymerization of the disulfide polymerizeable 

phosphatidylcholines was as described in Chapter VIII. Routinely the polymerized 

form of the lipid was stored at 4°C until used. L-a-dipalmitoylphosphatidylcholine 

(DPPC) and L-a-dimyristoylphosphatidylcholine (DMPC), were purchased from 

A vanti Polar Lipids. All other reagents were of analytical grade and used without 

further purification. 

'.1"1.ethocls . 

Liposome Preparation. For 31p spin-lattice relaxation studies, small unilamellar vesicles 

(30-75 mg/ml) were prepared by hydrating nonpolymerizeable phosphatidylcholines or 

prepolymerized a-THIOLS in Tris buffer (10 mM Tris, 0.2 mM EDTA; pH 7.4) 

above the phase transition for""' 15 min. Sonication was subsequently carried out using 

a Heat Systems 350 W probe sonicator until a constant level of optical clarity was 

achieved. During sonication, the samples were placed under a stream of nitrogen and in 

a room temperature water bath to avoid lipid degradation. Titanium particles and large 

liposomes were removed from the SUVs by centrifugation at 12000 x g for 5 minutes 

in an eppendorf centrifuge. 

For CSA studies of unsonicated bilayers, lipids were hydrated in Tris buffer (10 

mM Tris, 0.2 mM EDTA; pH 7.4) for 15-30 minutes above the phase transition 

temperature. Samples for cross polarization experiments were hydrated with excess 

H10 containing 0.2 mM EDT A to form a paste. These were centrifuged into ultra-high 

spinning keflar rotors and sealed with o-ring-containing macor caps (Doty Scientific). 

7iAf'R Measurements. 31p MASS spectra were acquired at 202 MHz with a Bruker 

AM-500. 3lp NMR CSA and relaxation measurements were aquired on either a Bruker 

AM-500 or a Varian XL200 at frequencies of 202mHz and 80 MHz, respectively. 

31Chemical shifts are reported with respect to 85% phosphoric acid. All powder spectra 
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were apodized with 200Hz linebroadening prior to fourier transformation. Spectra were 

recorded with inverse gated decoupling. During the aquisition time, 10 W broad band 

or 40 W CW decoupling was applied for sonicated and unsonicated samples, 

respectively. Spin-lattice relaxation times were measured using the inversion recovery 

sequence (180 - 't - 90) , a 90 degree pulse width of 23 µs and a recycle delay of at 

least 3-5 times Ti. For all measurements, T1 values were determined by a least squares 

fit to the three parameter Eqn. (1) as described in Chapter V: 

(1) S(t)=A+Bex~-~r) 

Cross polarization magic angle spinning (CP MASS) was used to determine the rate of 

l H-31 P cross polarization (TpH)-1 and the return to equilibrium of the proton 

magnetization (T1p)-l. The intensity of the phosphorous siganl as a function of contact 

time was fit to a double exponential rise and decay similar to that used for studies of 

13C CP experiments (12}. 

(2) I= Aexf T,:m I1- exfT~m )] 
where A is a constant , I is the intensity of the phophorous signal and tm is the contact 

time. 

RESULTS 

Spin Lattice R.e[:.a.xa.tion ttea.su.-rements 

'Bacforountf. In this first section, we describe the results of spin-lattice relaxation -

measurements (T1) of polymeric and nonpolymerizeable phospholipid membranes. Ti 

measurements provide information concerning the rate and amplitudes motions. As 

described in the last chapter, however, quantitative analysis of the relaxation times to 
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derive correlation times for molecular reorientation can be quite complicated in 

anisotropic systems. Interpretation of the data can be further aggravated if the nucleus 

under study can relax by more than one relaxation mechanism. In the case of 2H and 

13C NMR, the relaxation rates are governed by the quadropolar and dipolar 

interactions, respectively. However, in the case of 31p NMR, relaxation can occur by a 

combination of both dipolar and chemical shift anisotropy (CSA) such that: 

(3) 1 1 1 -=-+--
Ii T 10 IiCS4 

where Tin and T1csA are the relaxation times due to the dipolar and CSA, 

respectively. The relative contribution of either mechanism depends on the field 

strength: the contribution from chemical shift anisotropy increases with field strength 

while the dipolar contribution decreases. Milburn and Jeffrey have evaluated the 

relative contribution of the two mechanisms at various field strengths and have 

demonstrated the predominance of CSA at 145 MHz (11). Consequently, at the 

magnetic field strengths employed in this study (202 MHz), the CSA should be the 

exclusive relaxation pathway. 

For isotropically reorienting systems, the relaxation rate due to chemical shift 

anisotropy is given by the expression (12}. 

(4) 1 

where COp is the larmor frequency, ~CJ is the chemical shielding anisotropy that is 

averaged by the molecular motion, 'tc is the correlation and a is an empirical constant. 

This equation is based on the spectral density J(co) for a single effective correlation 

time and has been used by a number of investigators to abstract correlation times and 

activation energies for the phosphate group reorientation (11,13). Whether or not this is 
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a correct model is, however, controversial. In the last chapter we summarized the 

current approach for modeling 13C relaxation rates in terms of a two correlation time 

model. Nonetheless, without invoking a model or even having any knowledge about 

the relative contribution of the chemical shift anisotropy versus dipolar relaxation 

pathways, one can still obtain useful semi-quantitative information from the temperature 

dependence of the Tl if a minimum in the relaxation time can be observed. This is due 

to the fact that at the T 1 minimum, the correlation time is equal to the reciprocal of the 

!armor frequency of the phosphorous nucleus (i.e., rop-1 '""''tc) (12). This is the 

approach we have taken in this study. 

'11ie o/afiditJJ o{Stucfyinp Sonicatecf Liposomes. Before presenting the data, a few points 

should be made concerning the differences in our experimental approach compared to 

that taken by other investigators who have also examined the temperature dependence 

of T1 to obtain the T1 minimum (11,13). In these earlier studies, multilamellar vesicles 

(MLVs) rather than sonicated vesicles (SUVs) have been used in order not to 

complicate the interpretation of the data by the possible contribution of the motion due 

to the vesicle tumbling. Using the Stokes-Einstein relation, for 500 A SUVs the 

tumbling rate can be calculated to be 1.6 x 10-6 s compared to 1.5 s for a 5 µm MLV. 

However, the observation of the T1 minimum is a result of selecting for motion of the 

phosphate group at ro 0 -1 which is 5 x 10 -9 s at the operating frequency of the 

experiments described here, and much shorter than the vesicle tumbling rate even for 

the SUVs. Consequently, vesicle tumbling of SUVs should not affect the T1 minimum. 

On the other hand, use of multilamellar dispersions which give rise to powder spectra 

due to the orientational dependence of the chemical shielding effect, may be 

complicated by the orientational dependence of Ti.* In the experiments carried out by 

Milburn (11), Seelig (14) and Ghosh (13), the lipids under study were unsaturated and 

*A typical powder spectra for an unsonicated ML V is shown in Figure 7. 
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in the liquid-crystalline state throughout the temperature range of the study. It was 

shown that there was no orientational dependence to the relaxation rate: all portions of 

the powder spectra recovered with the same time constant presumably due to the rapid 

diffusion of the phospholipids over the surface of the liposome. In the present study, 

however, the lipids under investigation are (i)in the gel state and (ii)polymerized in 

some cases. Regarding (iij. Comparison of the data obtained from polymerized versus 

nonpolymerized MLVs might be complicated by the slow diffusion rates of the 

polymers in the plane of the bilayer relative to the diffusion of nonpolymerized 

liposomes. Regarding (if. We examined the temperature dependence of DMPC 

multilamellar vesicles and found that in the gel state, there was an orientational 

dependence. The T 1 was highest for the low field "foot" of the powder spectra and 

decreased in value across the powder pattern towards the high field edge. For these 

reasons as well as limitations in the quantity of the polymerizeable lipids, experiments 

in this study were carried out using sonicated vesicles. 

Figure 1 shows a T1 versus temperature profile for DMPC multilamellar vesicles 

versus sonicated vesicles. As can be seen, the position of the Ti minimum is almost 

identical in the two preparations. The minimum for the SUV s occurs at approximately 

33 oc whereas for the ML Vs, it occurs at 36.5 oc. This slight shifting to lower 

temperature for the SUV s is indicative of a slightly faster rate of reorientation of the 

phosphate segment. This is expected on the basis of the greater disorder in sonicated 

versus unsonicated lipsomes due to the packing constraints imposed by the small radius 

of curvature. The major difference arises in the absolute value of the T 1: the values of 

the SUVs are elevated with respect to the MLVs. The Tis for the MLVs, however, 

were based on the relaxation rate of the "peak" at the high field edge of the spectra. As 

mentioned above, we consistently found that this point of the powder spectra gave the 

lowest values of T 1. At the point where the isotropic signal should arise (1/3 of the way 
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Figure 1 

31p spin-lattice relaxation time (202 MHz) as a function of temperature for DMPC 

ML Vs and SUV s. The symbols are assigned in the legend. 
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between the left and right edge of the spectra), the T 1 s were higher, and higher still at 

the low field foot. Consequently, we suspect that the differences in the absolute value 

of the T 1 for SUV s versus ML Vs is a reflection of the orientational dependence in the 

ML Vs. Nonetheless, the important point is that the position of the T 1 minimum, which 

is the parameter of interest, can be accurately determined using either sonicated or 

unsonicated liposomes. 

'Temperature 'lJependence of tfte 'I1; tfte Position of tfte 'Ti :Minimum . Figure 2 shows 

plots of the T1 (202 MHz) versus temperature for SUVs prepared from the 

nonpolymerizeable lipids : (1) DPPC and (2) DMPC as well as the polymerized lipids: 

(3) a-16, and (4) a-20. In all cases, a minimum in the T1 was observed. For DPPC, 

this occured at:::::: 40 °C. While it may be initially tempting to conclude that this is due to 

the effect of the phase transition, which occurs at :::::: 40 °C for this lipid, other liposome 

types did not show a minimum at their respective phase transition temperatures. 

Furthermore, if the transition was the source of the minimum, we would expect to see a 

similar break at 40 oc regardless of the field strength of the measurement. However, at 

80 MHz, the minimum appears close to room temperature. Consequently we can 

conclude that the presence of the minimum near the Tm of DPPC is purely 

coincidental. 

For DMPC, the Ti minimum occurs at:::::: 30 °C, which is 7 °C above the phase 

transition of the lipid. The shift of the T1 minimum to lower temperature for DMPC 

versus DPPC indicates that the rate of head group reorientation is slightly faster. This is 

what is expected due to the shorter chain length (14 carbons) of DMPC compared to 

DPPC (16 carbons). By contrast, the Ti for the two polymeric a-THIOLS are shifted 

to very high temperatures. For a-16, which has a Tm near that ofDMPC (:::::: 23 °C), the 

minimum occurs at 57 oc. This indicates that the rate and/or amplitude of the motion of 

the phosphate segment in the polymeric lipid is slower than that of the 
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Figure 2 

31p spin-lattice relaxation times (202 MHz) as a function of temperture for SUVs 

prepared from: A. DMPC; B.DPPC; C. a-16; D. a-20. 



358 

0.4 

a 
0.3 

0.2 

- 0.1 .... 
I-- -0.0 
z 
..J 

-0.1 

-0.2 

1111 111111 

-0.3 

-0.4 
3.0 3.2 3.4 3.6 

1000 * 1fT (K) 

3.6 



359 

0.6 

c 
0.5 

0.4 

0.3 
..... 
I-- 0.2 
z 
....I 

0.1 

0.0 111111 
1111 

1111 

-0.1 

-0.2 
3.0 3.2 3.4 3.6 

1000 * 1fT (K) 

0.5 

d 
0.4 

1111 

0.3 
Ill 

0.2 -... 
I-- 0.1 
z 

1111 ....I II 
0.0 II 

-0.1 

-0.2 

-0.3 
3.0 3.2 3.4 3.6 

1000 * 1fT (K) 



360 

nonpolymerizeable liposome. Interestingly, the minimum for polymeric a-20 is = 60 

°C which is virtually the same as that for a-16 within experimental error. This is 

despite the fact that a-20 has a 20 carbon chain length and a gel to liquid-crystalline 

phase transition, which occurs at = 51 °C. This suggests that the presence of the 

disulfide moiety fixes the distance between adjacent phospholipid and reduces the 

effects of chain length on headgroup packing. (Assuming both polymeric a-THIOLS 

adopt the same headgroup conformation, one would then expect the same headgroup 

packing to give rise to similar reorientation rates in both lipid types). 

Apriori, we did not expect to see a reduction in the rate of headgroup motion for the 

polymers compared to the nonpolymerizeable phospholipid. The basis for our 

expectations is that it is generally believed that the effective correlation time determined 

from the phosphorous data does not describe the motion of the molecule as a whole, 

but rather the motion of the phosphate group relative to the glycerol backbone. More 

specifically, it has in fact been suggested that the reorientation occurs predominantly 

about the P-0 bond adjacent to the glycerol backbone (11). Therefore we expected that 

the lipid packing would largely determine the relaxation rates. As described in the 

previous chapter, we believe the polymeric a-THIOLS to be more disordered and less 

tightly packed (in the gel state) than nonpolymerizeable phospholipids. Consequently, 

a faster rate of motion was anticipated but this is clearly not what the data show. 

The question then arises as to why the correlation time of the phosphate moiety is 

actually slower. There are several possible explanations including: 

(i)The slower rotational motion of the polymerized phospholipid molecule as a 

whole contributes somewhat to the relaxation rate. 

(ii) The headgroup has a slightly different conformation, which induces a 

slower motion or a reduction in the amplitude of the fluctuations. 
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To investigate whether the reorientation of the lipid as a whole might be influential, T 1 

measurements were carried out on a polymeric ro-THIOL ( ro-10) which has a 10-

carbon acyl chain and the polymerizeable moiety at the chain terminus. The ro-THIOLS 

cannot be sonicated into SUV s due to the fact that they form bilayer fragments and 

therefore the linewidths of the spectra were much broader. However, this does not 

preclude the determination of the temperature of the T 1 minimum. Furthermore, as 

shown by a comparison ofDMPC Tis for MLVs versus SUVs, the gross morphology 

should also not influence the position of the minimum to a large extent. 

As shown in Figure 3, the temperature of the minimum corresponds to 

approximately 30 °C, which is slightly less than that for DMPC. The transition 

temperature for ro-10 is "" 19 oc, also slightly less than that of DMPC. Thus, by 

comparison to a-16, (Tm "" 23 °C), the correlation time does not seem to be affected 

significantly by polymerization. In agreement with other studies, this further suggests 

that the rotational reorientation of the lipid as a whole does not largely influence the Ti. 

We therefore suspect that in the case of polymeric a-THIOLS , a conformational 

change of the headgroup may be at least partially responsible for the slower motion of 

the phosphate moiety. 

As a final point, Figure 4 shows the linewidths of a-20 versus DMPC SUVs at 80 

MHz as a function of temperture. Consistent with the slower motion described above 

for the polymeric a-THIOLS, the linewidths are broader reflecting a faster spin-spin 

relaxation rate. In contrast to the Ti measurements, which are sensitive to fast motions 

on the order of the larmor frequency, however, the spin-spin relaxation rates are 

sensitive to slow motions. The increased linewidths for the polymeric lipids is therefore 

likely a consequence of the reduced translational and rotational diffusion of the lipids as 

a whole, rather than the segmental motions associated with the headgroup. 
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Figure 3 

3lp spin-lattice relaxation times (202 MHz) as a function of temperture for bilayer 

fragments prepared from polymeric ro-10. 
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Figure 4 

Linewidths (80 MHz) of SUVs prepared from a-20 SUVs versus DPPC SUVs. 

Symbols are assigned in the legend. Dec and undec refer to decoupled and undecoupled 

spectra. 
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'Temperature 'lJepencfence qf tfie 'Il; tfie 'Breacftfi of tfie :Minimum ancf SCope of tfie Profi{e. 

In addition to the position of the T 1 minimum, the magnitude of the change in T 1 over a 

given temperature range and the breadth of the T1 minimum are quite different for the 

polymeric versus the monomeric lipids. For both a-20 and a-16, the minimum is quite 

broad suggesting perhaps a distribution of correlation times rather than a single 

effective correlation time as has been assumed in studies to model the Ti data. 

Secondly, the slopes of the T 1 plots are much more shallow in the case of the polymeric 

lipids than the monomeric lipids. This is particularly evident in the Ti profiles for a-16 

versus DPPC SUVs at 80 MHz (Figure 5 ).* In previous studies, the slopes have been 

evaluated in terms of activation energies for headgroup reorientation (11). In the work 

by Milburn and Jeffrey, for example, the T1 data was fit using combined expressions 

for dipolar and chemical shift anisotropy rates, into which was substituted a spectral 

density equation appropriate for a single effective correlation time. The correlation time 

was then modelled by an Arrhenius relationship to derive the activation energy: 

where 't0 is the correlation time at infinite temperature and Ea is the activation energy. 

If we assume that the slopes of the plots are related to the activation energy for 

reorientation of the phosphate segment, the data would imply that the activation energy 

for the a-THIOLS is lower than that for the nonpolymerizeable phospholipids, even 

though the headgroup reorientation is slower. Whether this is the case or not is 

unknown but would be consistent with our initial expectations that the lipids are not as 

* The position of the minimum is shifted to lower temperatures in both cases since the larmor 
frequency is lower. Thus the T1 selects for motions with 'tc = 10-8 s. 
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tightly packed as nonpolymerizeable lipids, at least in the gel state and perhaps for 

temperatures slightly above the Tm. An alternative explanation has been suggested by 

Brown, however, to describe the temperature dependence of the relaxation rates of 13C 

and 2H nuclei. As discussed in the last chapter, it has been suggested that the 

temperature dependence of the T 1 reflects the temperature dependence of the order 

parameter rather than the activation energy for the motion. If we assume that this is also 

a viable explanation for the 3lp NMR data presented here, then qualitatively, the data 

suggests that while the motion of the headgroup is generally slower, the reorientation 

rate does not change with temperature to the extent that occurs in nonpolymerizeable 

lipids. This is due to the fact that the phospholipids in polymerized membranes are 

limited in the rate of motions that can be achieved and the extent to which the bilayer 

can become disordered on account of the intervening covalent linkages between the 

phospholipids. 

11{ -fil.:P Cross :Po[a.riznton :Expe.ri111cn.ts. 

To further investigate the motional properties of the membranes, the rate of transfer 

of magnetization from vicinal protons to the phosphorous nuclei was measured by CP 

MASS. In contrast to the spin-lattice relaxation rates, the parameters derived from these 

experiments, Tip and TpH, are sensitive to slow motions of the bilayer (12). Because 

we have a very limited data set for these experiments, further discussion of the 

theoretical background will not be given. 

Table I summarizes the data obtained for polymeric a-16 compared to DPPC. The 

shorter values of both TpH and Tip for a-16 is indicative of the slower motions of the 

polymeric lipid relative to DPPC. This is despite the fact that the temperature of the 

measurement was room temperature or perhaps slightly higher due to sample 
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Figure 5 

3lp spin-lattice relaxation times (80 MHz) as a function of temperature for bilayer 

fragments prepared from A. DPPC SUVs and B. polymeric a-16 SUVs. 
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Table I 

Summary of TpH and Tip values for DPPC and a-16 as determined by cross 

polarization magic angle sample spinning (CP MASS) experiments. 



Lipid 

a-16 (P) 

C0-15 (P) 

DPPC 

14.2 ± 4.0 

22.4 

27.7 ± 5.7 

371 

0.63 ± .10 

1.29 

1.67 ± .27 
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heating. Consequently, a-16 is in the liquid-crystalline state while DPPC is in the gel 

state at the measuring temperature. If the temperature of the measurement was such that 

a.-16 was also in the gel state, the disparity in the relaxation times would be even 

greater. These data confirm the results of the spin-lattice relaxation rates, which show a 

slowing of the motion for a.-16 relative to the nonpolymerizeable phospholipids. 

By contrast, the Tip and TpH for polymeric ro-15 is only slightly lower than that of 

DPPC. The reduction may be due to some degree of motional restriction due to the 

polymerization. Alternatively, it could be argued that the reduction in the relaxation 

times is due to the fact that ro-15 is at a lower reduced temperature at the temperature of 

the experiment on account of the the high phase transition of this lipid. 

'lnvcsth3a.tion of t.fi.e .. Chetnica[. Shift Ati.i.sotro;p13 and .. Line.shapes of 

'.Po[~Jnw .. riz.cd.. ve .. rsus N on;poL~:rn1e .. rized .. '.Phos;phoU .. ;pid.. '.Dis;pe .. rsions. 

In the above two sections, the dynamic behavior of the polymeric and 

nonpolymerizeable lipids was described. The present section is concerned with 

investigations of the chemical shift anisotropy, which provides information concerning 

both the motion as well as the average orientation of the phosphate segment. As a 

preface to the data, a brief introduction to the theory is first described: 

For dry phospholipid samples, the 31 P NMR spectra are very broad as a 

consequence of the incomplete motional averaging of the chemical shift and dipolar 

terms of the spin Hamiltonian (14). It is possible to remove the dipolar broadening by 

high power proton decoupling or cross polarization in which case the resulting powder 

spectra give information concerning the residual chemical shift anisotropy (CSA). For a 

given spin i, the observed chemical shift is related to the principle components of the 

chemical shift tensor by: 
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(6) 

where the As are the direction cosines of the principle axes of the chemical shift tensors 

O"ii with respect to the magnetic field direction (16). In powder samples, the random 

orientation of the nuclei combined with the dependence of the chemical shift on the 

orientation with respect to the magnetic field results in broad axially asymmetric spectra 

as shown in Figure 6A (15). Upon hydration, the onset of continuous uniaxial motion 

about the long molecular axis of the lipid results in a narrowing of the powder spectra, 

the breadth of which is related to the static chemical shielding tensors by (3j. 

where: 

Here, the Sii are order parameters, which essentially describe the averaging motion and 

8ii are the angles between the molecular reorientation axis and the shielding directions 

of the tensors. Two order parameters are necessary to decribe the spectrum because of 

the nonaxiality of the static chemical shielding tensors. The effect of such axial motion 

on the appearance of the spectrum is illustrated in Figure 6B and Figure 7. Figure 7 

shows a typical axially symmetric powder spectrum for phosphatidylcholine in the 

liquid-crystalline state. The residual chemical shift anisotropy .iicr can also be expressed 

as (3): 

This quantity is experimentally measured as the splitting between the two edges of the 

spectrum at the half-height of the low frequency foot. 
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Figure 6 

Illustration of the various possible motional states of the phosphodiester moiety of a 

membrane phospholipid and the resulting 3lp NMR spectra : A. static, anhydrous 

phospholipid; B ordered, hydrated phospholipid; C disordered hydrated 

phospholipid. Taken from reference (15). 
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Figure 7 

A typical powder spectra for a phosphatidylcholine. The spectra in this case is a-16 

at 313 °C. The spectra was acquired at 202 MHz with 10 W BB decoupling. 
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From the chemical shift anisotropy, one can derive information concerning the 

motions and orientation of the headgroup. Figure 6C illustrates how increased disorder 

and motion in the headgoup of a phospholipid might lead to a further reduction in the 

~a. As an example of the reduction in ~cr with increased motion, the powder spectra 

of hydrated lipid dispersions are drastically altered upon passing through the gel to 

liquid-crystalline phase transition. This is illustrated by the spectra in Figure 8 for 

DMPC at various temperatures. The increased breadth of the spectra at low 

temperatures is due to a reduction in the rate of motion of the phospholipid headgroup. 

In addition to the rate of motion, it has also been shown that the value of ~a is 

strongly dependent on the tilt angles of the headgroup (16). The tilt angles are the 

angles that relate the chemical shift tensor to the axis of motional averaging and are 

contained in the order parameters of Eqns. (7) and (8). Thus by examination of the 

chemical shift anisotropy it is possible to abstract information concerning the mobility 

and order parameters of the headgroup. While separation of the conformational 

information contained in the order parameter from the dynamic properties of the 

headgroup are difficult, combined with the motional information derived from the spin

lattice relaxation studies described earlier we should be able to make reasonable 

interpretations of changes associated with ~cr. 

'Ifie 'Iemperature 'lJepencfence of tfie CS5t for Po{ymerizecf and Nonpo{ymerizea6{e 

Pfiosp/ioCipicfs . The spectra for D MPC ML Vs as a function of temperature was shown in 

Figure 8. Analogous spectra are shown in Figure 9 for DPPC, polymeric a-16, and 

polymeric a-20. The spectral changes in DPPC are similar to those for DMPC. For the 

polymeric lipids, the spectra in the liquid-crystalline state resemble those of the 

nonpolymerizeable lipids in the presence of an axially symmetric powder spectrum. 
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Figure 8 

Temperature dependent changes in the powder spectrum of DMPC. Spectra were 

recorded at 202 MHz with 10 W BB decoupling: A 290 °K; B 295 °K; C.300 OK; D. 

310 °K. 
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Figure 9 

Temperature dependent changes in the powder spectrum of A. DPPC (300 °K, 

308 OK, 316 OK and 321 OK); B polymeric a-16 (297 OK, 300 oK, 304 OK and 315 

OK); C. polymeric a-20 (298 OK, 330 OK). Spectra were recorded at 202 MHz with 

10 W BB decoupling. Temperatures are given in the order of spectra from bottom to 

top. 
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However, upon reduction of the temperature to just below the phase transition, the 

spectra of both a-16 and a-20 are no longer axially symmetric but have the 

characteristics associated with a slowing of the headgroup reorientation. This is 

consistent with the fact that the spin-lattice relaxation rates indicated a slower motion of 

the polymeric a-THIOLS. It cannot be ruled out, however, that the observed features 

are due to a conformational change of the headgroup. 

By contrast to the polymeric a-THIOLS, polymeric ro-16 which is polymerized at 

the chain terminus and has a much higher phase transition temperature than either of the 

a-THIOLS, has spectral features above and below the phase transition temperature 

similar to that of the nonpolymerizeable phospholipids (Figure 10). This was a 

surprising result since the higher transition temperature of this lipid compared to the a

THIOLS implies an increased interaction between the lipid chains, which should 

reduce the available space for the headgroup motion. However, these results are 

consistent with the fact that the effective correlation time determined for another 

polymeric ro -THIOL, ro -10, was not unusually different than that of the 

nonpolymerizeable phosphatidylcholines. 

The change in the CSA can be observed more quantitatively by a plot of ~a versus 

temperature. This is shown in Figure 11 for DPPC, DMPC and a-16. For both the 

nonpolymerizeable phospholipids, the value of ~a is similar in the liquid-crystalline 

state ( = 50 ppm). On the other hand, the ~a of the polymeric a-THIOL is = 7-10 ppm 

smaller than that of the nonpolymerizeable lipids in the liquid-crystalline state. This 

is shown more clearly by a comparison of an enlarged spectrum of DMPC versus 

polymeric a-16 in Figure 12. 

Generally the reduction in ~cr has been associated with increased disorder and 

motion in the headgroup as was illustrated in Figure 6C (15). However, spectral 
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Figure 10 

Temperature dependent changes in the powder spectrum of ffi-16. Spectra were 

recorded at 202 MHz with 10 W BB decoupling: A 298 OK; B 340 OK. 
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Figure 11 

Plot of the CSA versus temperature forDMPC, DPPC and a-16 MLVs. Symbols 

are assigned in the figure legend. 
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simulations carried out by Banerjee et al. have shown that changes in ~cr is sensitive 

primarily to the orientation of the phospholipid headgroups with respect to the axis of 

motional averaging (16). By contrast, changes in the rate of axial rotation was shown 

to be much less influential on value ~cr as was T1-l.* If we consider the CSA data in 

light of the T1 and cross polarization data we can fairly confidently rule out increased 

motion as the source of the reduction in the value of ~cr for the polymeric a-THIOLS. 

Both the T 1 and cross polarization results indicated that the motions of the headgroup 

were in fact slowed relative to the nonpolymerizeable membranes. Any change in ~cr 

due to motion for the a-THIOLS relative to DPPC and DMPC should have resulted in 

an increased value of ~cr. Thus we conclude that the headgroup orientation of the a

THIOLS is perturbed as a consequence of polymerization at the interfacial region. Such 

a conformational change may in fact be the basis for the reduced rates and/or amplitudes 

of the motions relative to the nonpolymerizeable lipids. Simulations are currently in 

progress to substantiate this even further. 

Conclusions 

In this study the dynamic and conformational properties of polymeric and 

nonpolymerizeable lipids were examined by a combination of relaxation measurements 

and the analysis of the residual chemical shift anisotropy. The results once again 

illustrate the very different properties of polymerizeable lipids depending on whether 

the polymerizeable moiety is at the chain terminus or the interfacial region. In the case 

of the ro-THIOLS, the relaxation properties and CSA were not substantially different in 

comparison to nonpolymerizeable phosphatidylcholines. In the case of the a-THIOLS, 

relaxation measurements indicated that the reorientation rate of the headgroup was 

slowed relative to nonpolymerizeable analogs. This is despite the fact that at least in the 

* T2-lis determined by the residual 1H_31p dipolar interaction. 
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gel state, the hydrocarbon chains of the a-THIOLS are more disordered. The basis for 

the slower effective correlation time is not clear. However, analysis of the chemical 

shift anisotropy as a function of temperature in the polymeric a-THIOLS was most 

consistent with the assumption of a head group conformational change relative to 

nonpolymerizeable phospholipids. This could result in a lower correlation time either 

sterically or as a consequence of a decreased amplitude of the headgroup fluctuations. 

It is interesting to note that the phenomenological properties of the a-THIOLS also 

suggest a headgroup conformational change. Hydration of these lipids proceeds very 

readily even in the gel state of long 20-carbon chain phospholipids. Furthermore, as 

shown in Chapter II, SUVs prepared from polymeric a-THIOLS are stable for 

extended periods below the phase transition temperature, in contrast to 

nonpolymerizeable analogues, which aggregate rapidly in the gel state. Since these 

lipids are zwitterionic, small changes in the orientation of the headgroup could modulate 

the electrostatic properties of the membrane surface. It would seem on the basis of the 

phenomenological data that the charge of the headgroup is not as effectively screened 

by interaction with neighboring lipids. Alteration of the headgroup conformation and 

effective surface charge could also result in a different behvior of these lipids in vivo 

compared to their nonpolymerizeable analogues. This is in fact shown to be the case in 

the next section. 

References 

1. Mabrey-Gaud, S. in : Liposomes from Physical Structure to Therapeutic 

Applications; Knight, C.G. (Ed.); Elsevier: North Holland Biomedical Press, 

1981; 105. 

2. Cullis, P.R., and De Kruiff, B. (1978) Biochim. Biophys. Acta. 513, 31-42. 

3. Seelig, J. (1978) Biochim. Biophys. Acta. 515, 105-140. 



392 

4. Seelig, J. and Seelig, A. (1980) Quat. Rev. Biophys. 13, 19-61. 

5. Gruner, S. M., Cullis, P.R., Hope, M. J. and Tilcock, C. P. S. (1985) Ann. 

Rev. Biophys Biophys Chem. 14, 211-238. 

6. Pahapadjoupolous, D., Portis, A. and Pangborn, W. Annals New York Acad. 

Sci. 50, 308 

7. Dijkstra, J., Van Galen, M., and Scherphof, G. L. (1985) Biochim. Biophys. 

Acta 813, 287-297. 

8. Boulanger, Y., Schreier, S. and Smith, I. (1981) Biochemistry 20, 6824-

6830. 

9. Yaegle, P., Hutton, W.C., Huang, C., and Martin, R.B. (1977) Biochemistry 

16, 4344-4349. 

10. Ellena, J., Pates, R., and Brown, M. (1986) Biochemistry 25, 3742-3748. 

11. Milburn, M. and Jeffrey, K. (1987) Biophys. J. 52, 791-799. 

12. Cornell, B.A., Davenport, J.B. and Separovic, F. (1982) Biochim. Biophys. 

Acta. 689, 337-345. 

13. Ghosh, R. (1988) Biochemistry 27, 7750-7758. 

14. Seelig, J. , Lukas, T., Hymel, L. and Fleischer, S. (1981) Biochemistry 

20,3922-3932. 

15. Smith, I. and Eikel, I.H. in: Phosphorous -31 NMR; ; Academic Press; 

1984, 447-475. 

16. Griffin, R. (1981) Methods in Enzymology 72, 109-175. 



393 

Chapter VII 

In 'Vitro and In 'Vivo Investigations of tfie Sta6ifity, 13food Cfearance 1\{ltes 

and 13iocfistri6utions of 'Disulfide Po{ymerized Pliospliaticfy[cfio{ine Liposomes 

INTRODUCTION 

The interest in phospholipid vesicles as potential drug delivery systems has inspired 

a large research effort over the past several years to demonstrate the viability of this 

concept. Several stategies with diagnostic or therapeutic implications have been 

envisioned and include (i) passive delivery via unmodified liposomes, particularly to 

malignant tissue (1) (ii) targeted delivery via liposomes modified with specific 

recognizable determinants on their surface (i.e., carbohydrates, antibodies, and 

peptides) (2-8) and (iii) slow release systems either residing in a particular organ such 

as the liver, or circulating in the blood (9,10). In all cases, one or all of the following 

have presented frustrating impediments to the practical implementation of these ideas : 

(i) liposome stability (solute leakage and lipid degradation) in the presence of serum 

and cellular components such as phospholipases and HDL (ii) rapid accumulation in the 

reticuloendothelial system (RES, i.e., liver and spleen) and (iii) difficulty in exiting the 

microcirculation to reach extravascular tissue (11-24). 

Serum induced leakage of aqueous solutes has been adequately resolved primarily 

with lipid mixtures containing cholesterol to "solidify" the membrane, inhibit protein 

and HDL interaction, and abolish the phase transition (18,19,22-24). Chemical stability 
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with respect to phospholipases and other enzymes in serum or cells has also been 

improved by the addition of cholesterol (16) as well as by the synthesis of more 

chemically inert lipids such as those containing carbamyl, ether or alkyl linkages (10, 

25-29 ). Construction of liposomes with a prolonged residence in the blood (slow RES 

accumulation) and the capacity to exit the microcirculation is a more complex problem 

than membrane stability, however. A long circulation time is a demonstrated 

prerequisite for extravascular tissue accumulation, and has been shown to be promoted 

by liposomes which are small, neutral and solid* (1,19,20,30). The requirement for a 

small size and neutral surface charge is due to the fact that large and/or negatively 

charged liposomes are more rapidly endocytosed than small neutral liposomes, 

particularly via phagocytic Kupffer cells in the case of large particles (16,32,35). The 

necessity for very solid, well-packed liposomes is more subtle but appears to be related 

to the reduced capacity of certain plasma proteins such as macroglobulin to penetrate the 

membrane interface and accelerate RES uptake in a process referred to as opsonization 

(24,26). 

Consideration of the strict requirements outlined above for the use of liposomes for 

in vivo (and other) applications has prompted several groups to investigate the use of 

polymerizeable lipids as membrane substitutes (37-52). Conceptually, one might expect 

that certain polymeric membranes could meet the criterion described above and surpass 

the chemical stability, permeability, and impenetrability of nonpolymerizeable 

liposomes. In reality, however, just as for nonpolymerizeable lipids, the success of 

polymeric lipids has turned out to be very structure dependent. Certain polymeric lipids 

have been shown to be very mechanically stable, resistant to dissolution by organic 

solvents and detergents, and impermeable, while others are not . With the 

accumulating knowledge of the interrelationships between lipid structure and 

"' "Solid " refers to liposomes containing iipids, which have a high gel to liquid crystailine phase 
transition temperature (T nJ and/or cholesterol. 
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membrane physical properties, however, polymeric membranes with desirable 

characteristics are becoming much more predictable. The behavior of polymeric 

membranes in vivo will also eventually reach the current level of understanding of 

nonpolymerizeable liposomes. But to date, few in vivo studies have been reported. In 

this chapter we therefore describe in vitro and in vivo investigations of liposomes 

prepared from the disulfide-polymerized lipids discussed in the previous chapters. This 

class of polymerizeable lipids was in fact originally chosen because of their 

biodegradable linkages and potential utilization for in vivo applications. Furthermore, 

we hoped that by crosslinking the membrane via disulfide groups, we would create 

liposomes that were very stable and solid and therefore had the potential for slow 

degradation and a long half life in the blood. 

In this study, Perturbed Angular Correlation Spectroscopy (PAC) has been utilized 

to: 
(l)Examine the serum induced leakage of solutes (111 In+3) entrapped in ML Vs 

and SUVs. 

(2) Determine the tissue distribution and blood clearance rate, primarily of 
SUV s for passive targetting applications. 

(3) Determine the degradation rate in the liver and spleen, primarily of ML Vs 
for slow release systems. 

The data is analyzed in terms of what we know about the physical properties of these 

polymeric lipids (i.e., phase transition behavior, lipid packing, hydrocarbon order, and 

morphology). For certain applications such as slow release, the data suggests 

polymeric lipids have great promise. For other applications, while the studies do not 

demonstrate the impressive results initially envisioned for polymerized liposomes, 

taken in combination with the physical characterization described in earlier chapters 

they allow us to suggest how we must modify the polymerized membranes in order to 

achieve the desired results. 
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Materials and Methods 

The synthesis and polymerization of the disulfide polymerized phosphatidylcholine 

was as described in Chapter VIII. Routinely, the polymerized form of the 

phosphatidylcholine was stored at 4°C as a lyophilized powder until use. L-a-

distearoylphosphatidylcholine (DSPC), L-a-dipalmitoylphosphatidylcholine (DPPC), 

egg phosphatidylcholine (EPC), and bovine brain phosphatidyl serine (BPS) (>99% 

purity) were purchased from Avanti Polar Lipids. Cholesterol (> 99% purity) was 

obtained from Sigma. Carrier free 111In+3 (chloride form in .lM HCL) was obtained 

from Amersham. A23187 was obtained from Calbiochem. Defined fetal calf serum was 

obtained from HyClone, aliquoted and frozen in 1 ml volumes and used within 24 

hours of thawing.* All other reagents were of analytical grade and used without 

further purification. 

Preparation and. Loading oJ Li;posomes 

A.. suvs : 
(i) Preparation of Sonicated 'Vesides. Sonicated vesicles were routinely prepared 

by cosolubilization of the the lipids in chloroform, evaporation of the chloroform under 

nitrogen to form a thin film, and vacuum drying overnight to remove residual solvent. 

The lipids were then hydrated with HEPES buffer (10 mM HEPES, 135 rnM NaCl; pH 

7.4) containing 1 or 10 rnM nitrilotriacetic acid (NT A) above the phase transition and 

subsequently probe sonicated for 10-20 min under nitrogen with a Heat Systems 350 

W sonicator. During sonication, the solutions were placed in a room temperature water 

bath to avoid excessive sample heating. Titanium particles and large liposomes were 

* Aged serum or repeated freezing and thawing of the serum apparently denatures the binding proteins 
as reduced chelation of 111In+3 is often observed under these circumstances. 
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removed from the SUVs by centrifugation at 12000 x g for 5 min in an eppendorf 

centrifuge. 

(ii) 'Encapsulation of 111 Jn+3 . The protocol utilized to load 111 Jn+3 into the 

SUVs is a modification of the procedure developed by K. Hwang et al. (53). This 

procedure, which utilizes acetylacetone (ACAC) as the carrier, was employed in lieu of 

other methods that involve the ionophore A23187, hydroxyquinoline, or oxine, as 

unpredictable amounts of these materials may be left in the bilayer after chomatography* 

(54,55) . More importantly, this method does not require the elevated temperatures 

necessary for loading by A23187 and therefore minimizes heat induced lipid 

degradation. 

Liposomes (12.5 µmoles in 2 ml Hepes containing NTA) prepared as in (i) were 

passed over Sephadex G-25-50 spin columns equilibrated with HEPES buffer to 

remove unentrapped NTA. Typically, 0.5 ml were applied per 3 ml spin column and 

spun at 500 rpm (swinging bucket rotors) (10 min) to load the column and allow 

permeation of the resin by the chelate, followed by 2000 rpm (3min) to spin out the 

liposomes. A freshly prepared 111 Jn+3 loading solution (0.25 ml, see (iii) below) was 

then added to lml of the liposome solution and incubated for 1 hour at 5-10° below 

the lipid phase transition temperature . The sample was then passed over G-25-50 spin 

columns as described above to remove unentrapped 111 Jn+3 and ACAC. The 

liposomes were then diluted to 5 ml with HEPES buffer plus the remaining 1 ml of 

liposomes. The final lipid concentration was 2 uM assuming a 25% loss on the spin 

columns. 

(iii) Preparation of t!U foatfing sofution. The loading solution described above 

was prepared as follows: 3 mCi 111 Jn+3 was aliquoted into plastic eppendorf vials and 

dried under an IR lamp. Immediately prior to incubation with the liposomes, the dried 

* Most or all of the ACAC appears to be removed according to UV spectra of the liposomes before and 
after size exclusion chromatography (Gero Decher, unpublished results). 
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111 fo+3 was solubilized first with 10-µl 3mM HCl followed by addition of 0.25 ml 

Tris Buffer (10 mM Tris, 135 mM NaCl; pH 7.8 ) and 3-4 µl ACAC. 

:B. :M..LVS. For the preparation and loading of multilamellar vesicles, three separate 

protocols were evaluated in an attempt to load the individual lamellae as completely as 

possible. Two involved loading via carriers (1) ACAC and (2) A23187 using slight 

modifications of the procedure described above. The third employed no carrier and 

involved freezing and thawing (FAT) of a very concentrated liposome suspension 

following the procedures outlined by Mayer et al. (56). In order to keep the liposomes 

as structurally similar as possible, regardless of the loading procedure, freezing and 

thawing were always used in the preparation of all MLVs. In this regard, it is 

recognized that the extrusion procedure used by Scherphof and others results (32,63)in 

more homogeneous and reproducibly sized liposomes, but this was not a viable 

addition or alternative to freezing and thawing for complete loading of all the lamellae 

of ML Vs. 

In the results section , it should be noted that in the ML V serum stability studies, all 

three loading protocols were utilized as is designated in the figures. In most cases 

where a given liposome type was loaded by more than one method, little difference 

was observed, presumably because little degradation occurred during the course of the 

experiment . * For the in vivo animal studies, however, ML Vs were loaded almost 

exclusively via the carrier-free FAT method because the time scale for complete 

intracellular release of 111 rn+3 is much shorter than in serum and therefore should 

depend very strongly on the distribution 111 Jn+3 thoughout the lamellae. The 

* In some cases where stability was dependent on the loading protocol (Fig. 15 ), those loaded by the 
FAT method were found to be more stable as would be expected if the lll1n+3 was more completely 
distributed among the lamellae. Loading by A23187 resulted in the least stable liposomes, presumably 
because of all three protocols, the A23187 is least efficient in loading 111 In+3 beyond the first 
lamellae. This is not surprising because very high temperatures are normally required to load liposomes 
by the A23187 protocol. 
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limitations of carrier-loading procedures (ACAC or A23187) for obtaining complete 

loading of 111Jn+3 thoughout the lamellae is that the 111Jn+3 (and the carrier for the 

ACAC method) is added externally to the liposomes. Since the affinity of NT A for the 

111 Jn+3 is higher than that of the carrier, it is not likely that much 111 Jn+3 would be 

loaded beyond the first or second lamellae because this would likely involve several 

transfers of 111Jn+3 between carrier and the chelate where the rate of back-transfer 

from the chelate to the carrier is predictably slow. It has been shown by NMR 

experiments, however, that Mn+2 can be effectively entrapped thoughout the lamellae 

of ML Vs by successive freeze-thaw cycles, making this the method of choice (56). 

(i) Loading of :ML'lls witli carriers Jl.23187 or .9LC.9LC. The general methodology 

for the preparation and loading (via ACAC or A23187) of MLVs was as follows: 

Lipids were cosolubilized in chloroform (in the case of A23187 loading, .025 µmoles 

of A23187 was cosolubilized in chloroform with the lipid; ratio of lipid to A23187 = 

500), the chloroform was evaporated with a stream of nitrogen to form a thin film, and 

the residual solvent was removed under vacuum overnight. The lipid ( 12.5 µmoles) 

was then hydrated with 1 ml of HEPES buffer containing 10 mM NTA and hydrated 

above the lipid phase transition 1 min followed by vortexing 30 s. The heat/ vortex 

cycle was repeated 10 times. The sample was then frozen in liquid nitrogen and 

allowed to thaw at room temperature; the cycle was repeated 10 times. Unentrapped 

NTA was removed by pelleting the lipid at 12000 x g for 5 min., hydrating the pellet 

with HEPES and repeating the procedure a total of three times. To 1 ml of resuspended 

ML Vs, 0.25 ml of loading buff er was added. The loading buffer was prepared as 

described above for ACAC loading of SUVs, except without ACAC when A23187 

was being utilized as the carrier. For ACAC loading, the liposomes were incubated 2 

hours 5-10 degrees below the lipid phase transition temperature. The incubation 

conditions were 2 hours 5-10 degrees above the transition temperature for loading with 
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A23187. Unentrapped 111 Jn+3 was removed by successively pelleting and 

resuspending the liposomes in HEPES containing 10 mM EDTA (3 times) followed by 

pelleting from HEPES (no EDTA) twice at 2000 rpm for 5-10 min. The sample was 

then hydrated to 5 ml for a final concentration of 2 µM (assuming 25% loss during the 

centrifugation). Measurement of the value of 022( oo) of the liposomes before and after 

addition of calf serum confirmed complete removal of unentrapped 111Jn+3. 

(ii) Loacfing of ML'lls 6y freezing ancf tliawing. Using MnCI2 as a relaxation 

agent to relax the phosphorous nuclei of phosphatidy lcholine ML Vs and monitoring 

the 3lp NMR spectra, it has been shown that one can entrap a solute thoughout the 

lamellae of ML Vs by several cycles of freezing and thawing (56). The freeze-thaw 

method (FAT) was therefore utilized as a carrier-free loading procedure as follows: A 

chloroform solution of the lipids was added to a dried aliquot of 111Jn+3 (in glass test 

tubes) and the solvent removed under nitrogen followed by vacuum drying overnight. 

The lipid (12.5 µmoles) was hydrated with a minimum (50 µl) of HEPES buffer 

containing 10 mM NT A and hydrated above the phase transition temperature for 15 min 

with intermittent vortexing. Freezing and thawing of the sample followed by removal of 

unentrapped 111 fo+3 was as described above in (i). The sample was diluted to 5 ml 

with HEPES ( 2 µM final concentration assuming 25% loss of lipid). 

A.nima.[ '.Expe.rime.nts. Se.rum :Stn.f:d.JittJ. a.nd :PA.C 

tleasu.rc.me.nt.s. 

(i) Serum Sta6ifity. The serum stability of the liposomes was assessed by 

incubating a small aliquot (50-100 µl) of a liposome suspension in a 50:50 mixture of 

serum and HEPES buffer to which was added a few µl of gentomycin. Samples (0.5 

ml total volume) were placed in 4 ml omni vials, incubated at 23°C or 37°C, and 

periodically measured for the value of 022( oo) over the course of several days. Only 

those liposome compositions found to have reasonable stabilities (:2: 80% intact over a 
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24 hour period at 37oc in serum) were utilized in the animal experiments. The stability 

data presented in the results section are the combined results of at least two separate 

experiments. 

(ii) .9Lnimaf 'Ezyeriments. For each experiment, sixteen to twenty Balb/c mice 

(18-22gms) were injected via tail vein with 0.2ml of a 2 µM suspension of liposomes 

(.4 µmoles per 20 gm body weight). At various times post injection, the mice were 

lightly anaesthetized with ether and sacrificed via cardiac puncture. Organs were 

excised, fragmented, and rinsed thoroughly with phosphate buffered saline (PBS) to 

remove residual blood. For the PAC measurements, tissue and blood samples (maximal 

volume ,,,;,75 ml) were placed in 4 ml plastic omni vials. Coincidence counting rates of 

the liver, spleen, and blood were measured immediately although it was found that the 

G21( oo) samples remained unchanged for several hours after their removal. 

Measurement of the total radioactivity associated with the samples was measured using 

the absolute mode of the spectrometer and generally postponed until the end of the 

experiment to normalize for the decay of 111 In+3. In initial experiments, due to the 

rapid clearance of lipososomes from the blood, no account was made for the decay of 

111Jn+3. Each time point represents the average of two mice. Preliminary experiments 

(data not included) were consistent with those presented here. 

(iii) 'lJata .9Lnalys-is. The percentage of intact liposomes in serum or tissues was 

calculated according to Eqn. 11. In these calculations, the G12( oo) for 111 Jn+3 -NT A 

entrapped inside the liposomes (Ge) was measured prior to each experiment and ranged 

between .5 and .71, depending on the liposome composition. Gb, the G21(00) for 

111Jn+3 in bovine serum, was measured regularly and found to be .2 ± .02. In these 

calculations, Ge and Gb were assumed to represent 100% and 0% intact liposomes, 

respectively. 

Calculation of the percentage of the injected dose of liposomes associated with 

each tissue was made assuming the sum of the recovered dose in the tissues excised in 
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the SUV experiments (liver, blood, spleen, heart, lung, kidney, intestines and 

stomach) represents 85% of the injected dose. For the ML V studies, only the spleen, 

liver and blood were removed and assumed to account for 75% of the injected dose.* 

This was done in order to normalize for variations in the amount injected, and was 

found to agree fairly well with the calculated values of the % injected dose at early time 

points ( < 8 hours). Furthermore, we were primarily concerned with the clearance rate 

of the SUV s from the blood rather than their absolute distribution in other tissues 

because for healthy animals, the ultimate distributions do not have a strong dependence 

on liposome composition (with the exceptions mentioned in the text). 

(iv) Perturbed .9lngufar Correfation Spectrometer. The instrument used for the 

PAC measurements was a home-built four detector slow coincidence spectrometer 

similar to that previously described. The basic set up involved (4) 5x 5 cm Nal(Tl) 

crystal detectors placed in a square array with opposing crystals A vs Band C vs Data 

distance of approximately 7 .5 cm. Four combination single channel analyzer/amplifier 

units were obtained from Ortec, each of which was set via approximately 2V windows 

to select for the high energy gamma (C and D) or the low energy (A and B) gamma 

rays. Distances between the detectors and the window settings were optimized to match 

the scalar counts of A to B and C to D. A coincidence interface unit was used to 

determine the total counts (absolute mode) as well as the rate at which the detection of 

a low energy gamma ray was followed within 600 nsecs, by the detection of a high 

energy gamma ray (coincidence mode). Thus, two measurements of the coincidence 

counting rates at 1800 and 90° are made simultaneous! y and can be related to G22 ( oo) . 

The program for the calculation of G22( oo) and statistics was written by Gero Decher 

based on the thesis of C. Meares (58). 

* These values were based on the complete distribution analysis of sphingomyelin/cholesterol 
liposomes as determined by Hwang et al. (58). 
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Light Sca.trering 11-msu.retnents. Determination of liposome size (SUVs) was 

accomplished via dynamic light scattering using a Malvern 4700 light scattering system 

equipped with a goniometer, a 128 channel correlator and a 3 W Spectra Physics argon 

ion laser. 488 nm incident light was used with the detector placed at 90 degrees relative 

to the incoming beam. Calculations of the particle size were based on the Stokes

Einstein equation using the software supplied by Malvern. Measurements are the 

average of three determinations. 

Perturbed Angular Correlation Spectroscopy ; Background and Theory 

In this study, perturbed angular correlation spectroscopy (PAC) was the technique 

utilized to study the biodistribution and stability of liposomes both in vitro and in 

vivo. The ability to apply PAC in these investigations arises from the fact that one can 

monitor the rotational reorientation of molecules to which is bound a radioactive 

nucleus undergoing nuclear relaxation by emission of a gamma-ray cascade. Among the 

laboratories employing this technique, 111Jn+3 has been most frequently utilized as the 

radioactive "probe" since it emits a 173-247 ke V gamma-ray cascade whose 

intermediate lifetime is appropriate for monitoring changes in the motions of interest. 

Because it is a relatively uncommon spectroscopy, a description of the basic theory 

(summarized from the thesis of C. Meares (58}) and how the technique can be utilized 

in the present investigations of liposomes, is discussed in this section. 

'Theo-ry. When radioactive nuclei decay by emitting two gamma-rays in succession, 

there may be a correlation between the directions of propagation of Y1 and Y2 as a 

consequence of the conservation of angular momentum. The coincidence counting rate 

or probability ro(9,t) that a nucleus will emit a radiation Y2 at an angle 9 with respect to 

the first gamma-ray is given by the equation: 
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where P2 cosS is the second Legendre polynomial (1/2 (3cos2S - 1)) and 8 is the 

angle between the two gamma-rays, 'tn is the mean lifetime of the 247 keV intermediate 

state (1.22 x 10 -7 sec for lllfu +3) and A12 (-0.JS) is a constant dependent on the spin 

and multipolarities of the nucleus. G22(t) is the perturbation factor that completely 

describes the interactions of the nucleus with its environment. This is also the 

experimentally measured quantity determined by the anisotropy of the 1800 and 900 

coincidence counting rates. 

If the lifetime of the intermediate state is so short that the nucleus has no time to 

interact with the environment, a situation corresponding to the "unperturbed" state, then 

G22 = 1. This is not normally the case for 111Jn+3 and the major perturbing influence 

is caused by the interaction of the nuclear quadropole moment with the external electric 

or magnetic field gradients. The consequence of this is an attenuation of the correlated 

gamma emission and G22 < 1. The actual form of G22 depends on the nature of the 

perturbation as well as the tumbling rate of the nucleus. Assuming the predominance of 

the nuclear quadropole interaction, the three important cases corresponding to no 

motion, slow motion, and fast motion are as follows: 

(i) 1{p !Motion : In the static case G22(t) is related to a time dependent Hamiltonian 

describing an axially symmetric field. The resulting equation which relates G22(t) to the 

quadropole interaction is given by : 

Here co0 is the characteristic interaction frequency related to the quadropole frequency 

COQ by: 

(3) 2nel0Vzzl 
(J) ---..,...---.,.-

0 - 4 hI(2I - i) 

where co0 = 3COQ for integral I , COo = 6COQ for half integral I, V zz is the axially 
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symmetric electric field gradient, e is the electric charge, and Q, the quadrapole 

moment. This case would apply for polycrystalline samples. 

(ii) Sfow :Motion : The case of slow rotational diffusion where 't'c > 't'n would 

be pertinent for very large molecules in solution (such as liposomes or proteins), small 

molecules in viscous solution, and solids in the molten state. The derivation of the 

expression for G22(t) is based on the above expression for the static situation with the 

introduction of time dependence into the transformation between the microcrystal 

principal axis system and the laboratory frame. G22(t) has the same form as in the 

static situation but is multiplied by a decay constant related to the rotational correlation 

time 't'c of the molecule to which 111In+3 is bound. Thus: 

(iii) 1\flpitf :Motion : For the other extreme of rapid rotational reorientation, 't'c 

<< 't'n, the perturbation is caused by fluctuating electric field gradients and time 

dependent perturbation theory is used to derive the expression: 

(5) q/O =exp(- A.t) 

Here A= l!f1 is essentially a relaxation time related to the quadropole interaction and 

rotational correlation time by : 

(6) 

assuming an axially symmetric electric field gradient and I= 5/2. This expression 

would apply for liquid samples in which the rotational correlation time of the molecule 

to which 111 Jn+3 is bound is short compared to 't'n, such as in the case for aqueous 

111 In+3_ chelate complexes. 
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For situations such as in our laboratory where one has an instrumental set up in 

which the resolving time of the coincidence circuitry is longer than the mean lifetime of 

the intermediate nuclear state, one can use the time integrated perturbation factor rather 

than the differential perturbation factor defined as: 

-t 1 ~ -q ( 00) = -f e 'rn q (t )d t 
2 1:n 0 2 

(7) 

The two cases appropriate to the work here are the fast and slow motion situations. For 

the fast motion case, the integrated perturbation factor is given as : 

(8) 

For large quadropole moments, G22( oo) exhibits a strong dependence on 'tc in the fast 

motion regime ('tc = 10-11 to 10-8 sec). Thus one can easily distinguish interactions 

between 111Jn+3 bound to small molecules vs macromolecules. This is the fundamental 

principal upon which the serum stability and tissue degradation studies are based, as 

will be shown . 

For the slow motion region : 

(9) ~ ( 00) - _1_1: [j_ + Ll_( c ) + 1Q( c ) + ( c )~ 
'-2 2 

- 5 n C 7 cf + m~ 7 cf + 4 m~ cf + 9 m~ ~ 

where C = (1/'tn + l/'tc). For quadropole interactions on the order of 109 Hz, which is 

common for metal complexes, this approximation should hold for rotational correlation 
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times> lQ-8 s. Furthermore, if ro0 2 >> (1/'tn + 1/'tc)2, then 022( oo) is independent 

of the quadropole interaction and gives 'tc directly from the relation: 

(1 0) 

This equation should be true for vesicles if one can assume ro0 "" 109 Hz. Based on 

this equation, one would expect a low 022 ("" 0.2) for 111In+3 bound to a vesicle 

where 'tc = lQ-6 to 10-4. Furthermore, one can calculate that if 111In+3 is completely 

immobilized by the vesicle, the 022( oo) should also be relatively insensitive to vesicle 

size. 

Use of :P.:l.C for 8ta&i.U .. ty Stu.di.es of Li.posomes in Serum 

a.mi 1"issue. The way in which this technique can be used to monitor liposome 

stability follows a strategy which has been adopted by several groups and is based on 

the differences in the rotational correlation time (reflected by different values of 

022( oo)) for 111 In+3 bound to small molecules vs macromolecules. For example, if 

111 Jn+3 is bound to a weak chelator such as nitrilotriacetic acid (NT A) inside a 

liposome, it will exhibit a rapid rotational rate and therefore a high 022( oo ). On the 

other hand, if the structural integrity of the liposome is compromised by components 

of the serum in which it is suspended, the 111In+3-chelate complex will be released to 

the external medium and the 111In+3 transferred to the more strongly binding proteins 

(reported to be transferrin). The lower rotational correlation time of 111Jn+3 bound to 

the proteins will be reflected by a low 022( oo ). Upon disruption of a liposome, the 

internal aqueous contents are diluted into a much larger external volume of serum. 

Therefore slow exchange (compared to l/'tn) from the protein-bound form of 1l1In+3 

to chelated 111In+3 can be assumed due to the low concentration and weaker affinity of 

the chelate compared to competing proteins. Under these conditions, two populations 
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of 111Jn+3 exist; a population bound to small chelators inside intact lipsomes, and a 

population bound to serum proteins from disrupted liposomes. One can therefore 

calculate the percentage of intact liposomes in serum or in tissues from the following 

equation: 

Here G0 , the observed G12( oo ), is the weighted average of the values of G12( oo) for 

protein-bound 111Jn+3 (Gb) and chelated 111Jn+3 (Ge). Xb and Xe are the mole 

fractions of 111 Jn+3 bound to protein and bound to chelate, respectively, and 

therefore represent the mole fractions of disrupted (Xb) and intact (Xe) liposomes 

(7,59). This equation was used to calculate the percent of intact liposomes in the 

experiments described later in this chapter. It should be stressed that the most unique 

capability of this technique is that one can make such measurements on fluids (i.e., 

serum), tissue samples, or even whole animals since it is based on the emission of 

gamma-rays. 

Addition.a[ 1..nformation from the Absofute Va[ue of 6.22- The 

absolute value of G12( oo) for 111 Jn+3_chelate complexes encapsulated in liposomes 

does not seem to have been exploited beyond evaluating the stability and permeability 

of the liposomes as was described above. However, it appears that one can derive 

some additional information about the microenvironment at the membrane interface 

from this measurement alone, as it represents the competition for binding to 111Jn+3 

between the chelate and interactive groups of the lipids (such as the phosphate group of 

natural phospholipids). For certain types of liposomes, a given concentration or type 

of chelate may not be completely effective in competing with the membrane lipids for 

the 111In+3, resulting in an intermediate or low value for the measured G12 ( oo), 
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depending on the extent of membrane-immobilization. Similar to Eqn. (11) and for 

binary systems in general, if the exchange rate between the chelate and membrane 

binding sites is slow compared to 1/'t'n, the observed 022( oo) will be a weighted 

average of vesicle-bound and chelated 111 Jn+3: 

Characteristics of the membrane, which could result in additional binding of 111Jn+3, 

include surface charge, hydration, head group packing and orientation, or additional 

binding sites. In the case of the polymerized liposomes, one might anticipate some 

effect from the disulfide or sulfhydryl group on the value of 022( oo) for 111 Jn+3 in the 

liposomes. This is discussed in the next section concerning loading of 111 Jn+3 into 

liposomes. 

RESULTS and DISCUSSION 

This section is divided into five topics: (l)loading of liposomes (2) serum stability 

of SUVs (3) in vivo blood clearance, biodistributions and stability of SUVs (4) 

serum stability of ML Vs and (5) in vivo blood clearance, biodistributions and stability 

of ML Vs. 

Loc:u::f:i:ng of Liposom.c.s . 

The stability of disulfide polymerized liposomes in serum and at physiological 

temperatures has not been established. The initial focus of this study was therefore to 

examine the leakage of various liposome compositions in order to (1) correlate these 

results with the structural investigations described in earlier chapters and (2)determine 

liposome compositions that were stable and therefore worthwhile investigating in terms 

of their biodistribution and in vivo stability. In preparation of these serum stability 
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studies, the conditions for loading 111 Jn+3 into liposomes were investigated with 

some interesting results, which are described in this section. 

Table I lists the values of G22 ( oo) obtained for 111In+3 in various chelated 

environments. The high value obtained for 111Jn+3-NTA is indicative of a rapid 

tumbling rate for 111Jn+3 whereas the low G22( oo) of 111Jn+3 in serum indicates a slow 

correlation time. In the case of 111Jn+3_NTA entrapped in DPPC/Chol vesicles, the 

G22( oo) is similar to that for 111 Jn+3-NTA alone indicating that the NTA effectively 

competes with the lipid headgroups (the phosphates) for complexation to 111Jn+3. For 

pure DPPC liposomes, however, the G22( oo) is slightly lower, due to some 

immobilization of 111Jn+3 at the membrane surf ace. These results are consistent with 

the previously reported work of K. Hwang (7). 

In Table II, values for G22(00) and the percent loading are tabulated for 111Jn+3_ 

NTA encapsulated in monomeric and polymeric a-16 SUVs. In contrast to the 

relatively high G22( oo) values obtained for DPPC and DPPC/Chol (Table I), low 

values are obtained for monomeric a-16 and a-16/Chol SUVs (Table II; A and B) 

consistent with that expected for 111Jn+3 completely immobilized by the liposome. If 

NTA is not removed from the outside of the liposomes prior to the addition of the 

loading buffer, it would be anticipated that there would be no driving force for loading 

of 111 Jn+3 into the liposome interior, and the amount of encapsulated 111 In+3 should 

therefore correspond to the captured volume (0.1-2% for the size and concentration of 

liposomes used). Table II (A and B), however, shows almost complete loading of 

111In+3. This contrasts with the negligible entrapment by DPPC/Chol when external 

NT A is not removed prior to loading (Table II, E). The most probable explanation for 

these results are (i) there is binding of the 111Jn+3 to the thiol groups of the lipid or (ii) 

there is a strong interaction between l 11Jn+3 and the phosphate of the phospholipid 

headgroup. To distinguish between these possibilities, a-16 SUVs were 
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Table I 

022( oo) for l 11Jn+3 in various chelate environments. For all chelates, the 022( oo) 

is high, indicative of a rapid tumbling rate. The addition of 50 % serum results in a 

reduction of 022( oo) due to the immobilization of the 111In+3 by serum proteins. 
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G12(00) for 111In+3 in Various Environments 

Solution Comgosition Reponed G22( co )a 

1 mM NTA lllm+3 

1 mM Citrate lllm+3 

1 mM EDTA - lllm+3 

NTA-lllm+3 in 50% serum 

DPPC/Chol + l mM NTA-111In+3 

DPPC + 1 mM NTA-111In+3 

aTaken from reference (7) 

0.68 

0.71 

0.75 

0.18 

Measured G22(00) 

0.68 

0.86 

0.82 

0.20 

0.67 

0.48 
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Table II 

Encapsulation efficiency and value of 022( oo) for 111 fo+3 entrapped in various 

sonicated liposome preparations. The percentage of entrapment varies depending on the 

loading protocol. However, in all cases the 022( oo) of monomeric a-16 liposomes is 

low while that of polymeric a-16 liposomes is high, even when 10 mM NT A is used. 
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Encapsulation Efficiency and G22(oo) for Various Liposomes 

Lipid 

A. Monomeric a-16; 1 mM NT A 
on the exterior and interior of the 
suva. 
B. Monomeric 2: 1 a-16/Chol 

C. Polymeric a-16 

D. Polymeric a-16; lmM NTA 
on the exterior and interior of the 
suva. 

E. 2:1DPPC/Chol;1 mMNTA 
on the exterior and interior of the 
suva 

0.16 

0.23 

0.54 

PercentEntrarped 

... 100% 

<1% 

<1% 

au nless noted otherwise, NT A is only retained on the internal compartment of the SUV. 
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polymerized.* The 022( oo) values and percentage of encapsulation for polymerized a-

16 SUV s (Table II; C) are consistent with competition but not complete immobilization 

of 111Jn+3-NTA, as was the case for DPPC SUVs. Furthermore, when NTA is not 

removed from the liposome exterior prior to loading, almost no 111Jn+3 is associated 

with the liposomes, as shown in Table II,D. Finally, the elution profiles in Figure 1 

show virtually complete loading for monomeric a-16 and a much smaller percentage 

for the polymeric SUVs. This supports the conclusion that 111Jn+3 is binding to the 

thiol groups in the unpolymerized liposomes. As an alternative explanation of the data, 

it might be argued that in the monomeric a-thiols, the head groups are packed more 

tightly than in DPPC liposomes resulting in a higher surface concentration of 

phosphates and that polymerization somehow negates this affect. Based on the phase 

transition properties of the a-thiols, however, this seems unlikely since the Tms of 

these lipids are considerably lower than their nonpolymerizeable analogs (i.e., Tm = 

23oc for a-16 and 410C for DPPC) and relatively unshifted upon polymerization, 

which would suggest the opposite result : (1) a decreased headgroup interaction for 

the a-thiols relative to DPPC and (2) little difference between monomeric and 

polymeric liposomes. Furthermore, if a headgroup interaction was the cause of the 

binding, an effect of cholesterol (a headgroup spacer) might be expected, but as is 

shown in Table II (A and B ), this is not the case.** 

To further corroborate these effects, the ro-THIOLS were also examined. In Table 

III, the 022( oo) values and percent entrapment are shown for unpolymerized ro-11 

and 2: 1 ro-11/Chol SUV s. As for the unpolymerized a-THIOLS , the 022( oo) is low 

* In these experiments, liposomes were polymerized after sonication in contrast to those used in the 
serum stability and in vivo experiments, which were polymerized prior to liposome formation and 
stored as lyophilized powders. 
** One explanation thaaat cannot be ruled out at this point, however, is a different headgroup 
orientation for monomeric a-thiols, which result in more effective binding of 111 In+3 to the 
phospholipid phosphate or a synergistic effect between the sulfhydryl and phosphate groups. 
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Figure 1 

Elution profiles for a-16 SUVs containing lmM NTA after loading with Illrn+3 by 

the ACAC protocol. A. Unpolymerized a-16 SUVs; B. Polymerized a-16 SUVs. The 

initial peaks eluted from the column correspond to that of the liposomes (solid lines) 

and entrapped ll 1Jn+3 (dotted lines) whereas the later peaks correspond to absorbance 

due to the buffer and ACAC (solid line) and unentrapped 111Jn+3 (dotted lines). The 

separation was carried out on a 30 x 1.2 cm Sepharose 4BC1 column to which was 

added 0.5 -1.0 mis of a liposome solution. The presence of lipid in the fractions eluted 

from the column was monitored using a UV detector (A = 280 nm). Radioactivity 

associated with the fractions was measured using the absolute mode of the PAC 

spectrometer. 
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Table HI 

Encapsulation efficiency and value of 022( oo) for 111 Jn+3 entrapped in sonicated 

ro-11 liposomes containing lmM NT A. Liposomes were loaded by the ACAC loading 

protocol. 
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Encapsulation Efficiency and G22(oo) for ro-11 Liposomes 

Lipid G22(00) 

A. Monomeric ro-11; lmM NTA 0.15 
on the exterior and interior of the 
suva. 

B. Monomeric 2: 1 ro-11/Chol 0.14 

C. Polymeric ro-11 0.22 

PercentEntrapPCd 

=93% 

=100% 

=22% 
auruess noted otherwise, NT A is only retained on the internal compartment of the SUV. 
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and the entrapment virtually complete for unpolymerized C0-11 (Table III; A and B and 

Figure 2A) indicating liposome immobilization of 111Jn+3. Also noteworthy is the 

almost complete loading of 111Jn+3 even when NTA is equally distributed on both sides 

of the membrane prior to loading, and the negligible effects of cholesterol. Upon 

polymerization, the G22( oo) remains relatively low in contrast to the polymerized a

THIOLS but the encapsulation is far less than the 100% observed for monomeric a

THIOLS and ro-THIOLS (Table III C and Figure II B). The reasons for this 

difference may be related to the fact that ro-THIOLS form micelles or bilayer 

fragments upon polymerization (see Chapter II ) and therefore have no aqueous 

compartment for entrapping 111Jn+3-NTA. In this regard it should be reiterated that 

pure DPPC and pure polymerized a-16 SUVs have slightly lower values of G22( oo) 

compared to 111 fo+3-NTA alone, which in the simplest case can be interpreted 

according to Eqn. 12 as resulting from two populations of 111 In+3 : (1) a fraction 

bound to the liposomes and (2) a fraction of encapsulated, NT A-chelated 111 fo+3. 

Since the polymerized co-THIOLS have no internal aqueous space, only population (1) 

will contribute to the observed G22( oo ), which would account for the low value and 

the low encapsulation. Similar results were consistently observed for polymerized ro-

16 and ro-15 bilayer fragments. In all cases, whether or not the liposome binding is 

due to the phosphate groups or the high concentration of disulfides in the membrane 

interior is difficult to assess. However, in preliminary investigations, we have observed 

that the addition of 2-10 mM EDTA to the membranes results in the removal of 111 Jn+3 

from the polymerized ro-THIOLS at a slower rate than from DPPC liposomes (DPPC 

to which no NTA is added so all the 1 llfo+3 is phosphate bound). This would be 

expected if at least some of the 111Jn+3 binding was due to the highly concentrated 

disulfides in the membrane interior. 

While a slight digression from the main objective of the work described in this 

chapter, the above results of 111Jn+3 loading indicated some interesting and possibly 
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Figure 2 

Elution profiles for C0-11 SUV s containing 1 mM NT A after loading with 111In+3 by 

the ACAC protocol. A. Unpolymerized ro-11 SUVs; B. Polymerized ro-11 SUVs. 

The initial peaks eluted from the column correspond to that of the liposomes (solid 

lines) and entrapped 111 Jn+3 (dotted lines) whereas the later peaks correspond to 

absorbance due to the buffer and ACAC (solid line) and unentrapped l 11In+3 (dotted 

line). The separation was carried out on a 30 x 1.2 cm Sepharose 4BC1 column to 

which was added 0.5 -1.0 mls of a iiposome solution. The presence of lipid in the 

fractions eluted from the column was monitored using a UV detector (A = 280 nm). 

Radioactivity associated with the fractions was measured using the absolute mode of 

the PAC spectrometer. It is noteworthy that upon polymerization, the polymerized lipid 

elutes exclusively in the void volume corresponding to a large increase in the particle 

size in comparison to the unpolymerized ro-11 SUV s, which elute almost completely 

within the factionation range of the column. 
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useful peculiarities of the thiol-containing liposomes. Thiol-containing lipid-metal 

binding is in fact currently under study by several groups for various applications. 

From a practical standpoint, however, it presents a technical difficulty in the current 

investigation in that complete immobilization of 111Jn+3 by the monomeric a-

THIOLS and ffi-THIOLS precludes the use of PAC for biodistribution and stability 

studies of these systems. This is due to the fact that it is not possible to entrap 111 Jn+3_ 

NT A in the aqueous interior of these liposomes, even when 10 mM NTA is used to 

compete the 111 Jn+3 off the liposome surface'" . Similarly, for the polymeric ro

THIOLS, PAC cannot be used because the assay relies on the presence of an internal 

compartment.** Therefore, in the remainder of the chapter concerning the serum 

stability, tissue distributions, and degradation of liposomes in the liver, only the 

polymerized a-THIOLS, nonpolymerizeable lipids, and their mixtures with cholesterol 

will be discussed. The exception to this is a mixed chain ro-THIOL composed of a 

polymerizeable chain (N=16) and a nonpolymerizeable chain (N=16) in the sn-1 and 

sn-2 positions, respectively (ro16-DPL). In contrast to the identical chain ro-THIOLS , 

mixed chain thiols were found to form liposomes upon oxidation to dimers, for all 

chain lengths investigated (see Chapter II). A final point to note is that for all remaining 

experiments described in this chapter, 10 mM NT A was utilized as the internal chelate 

concentration in order to eliminate as much as possible 111 In+3-liposome binding, 

elevate the value of Ge (G22 ( oo)), and thereby increase the dynamic range and 

sensitivity of the experiment.*** 

'"The G22(00) is still low with lOmM NTA. 
** Conceptually, biodistribution studies could be done since 111In+3 is associated with the membranes, 
but the results would be complicated by possible dissociation of 111In+3 prior to deposition in target 
tissues. 
***We have observed that at this chelate concentration, 111 In+3 is still readily transferred from NTA 
to serum and cellular proteins. By contrast, EDT A, which has a much higher affinity for 111In+3 than 
NTA, remains bound to 111 In+3 in vivo and therefore cannot be used in these studies. 
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1. suvs 
8:E:R.Urt ST A'.B'tL TJlJ O'.F 8UV8 

Having established the basic loading protocol and determining which lipids could be 

evaluated by the PAC technique, the stabilities of liposomes having various 

compositions were evaluated. In particular, we were interested in the a-THIOLS 

(N=16-20) as we have found they form SUVs very readily, presumably as a 

consequence of their slightly disordered chains, well hydrated headgroups, and the 

tendency to form unilamellar vesicles (see Chapter II). It has already been shown in 

earlier chapters, however, that the a-THIOLS have broad phase transitions centered 

around 23°, 38°, and 52°C for N=16,18,and 20, respectively, and that leakage is 

maximal at these temperatures. This is illustrated in Figure 3 for a-16 SUVs which 

have a Tm at approximately room temperature, and a correspondingly higher leakage 

rate at 23°C than at 37°C. Pure a-16 and especially a-18 liposomes are therefore 

unsuitable for physiological studies as all contents would be released, especially in 

serum, which generally accelerates the leakage. This is similar to the behavior of 

nonpolymerizeable lipids, which are most permeable in the vicinity of the phase 

transition (60). For nonpolymerizeable phospholipids, leakage has been greatly 

minimized by the addition of cholesterol to both condense the bilayer and abolish the 

phase transition temperature (e.g., for DPPC/Chol, SPH/Chol, and EPC/Chol). The 

same strategy was attempted with a-16 and a-18 SUV s, and as illustrated in Figures 4 

and 5, the addition of cholesterol does enhance the stability. For a-16/Chol SUVs, it is 

difficult to say what stochiometry of the two components is most stable as there is a fair 

amount of scatter in the data and there is not an exact correlation between mole fraction 

of cholesterol and stability. Nonetheless, above a 2:1 ratio, the liposomes appear quite 

resistant to leakage of 111Jn+3 ( 80 % on average for"" 100 h in serum). For a-18, 

increasing concentrations of cholesterol in the membrane clearly promote stability, at 

least up to a ratio of 3:2 (a-18:Chol). At physiological temperatures, a-18 
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Figure 3 

Leakage of lllfo+3 from polymerized a-16 SUVs at 23 °C and 37°C in serum. The 

decreased rate of leakage at the higher temperature is due to the room temperature phase 

transition of polymerized a-16. Temperatures are noted in the legend of the figure. 
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Figure 4 

Leakage of 111Jn+3 from polymerized a-16/Chol SUVs at A. 37oc and B. 23 oc 

in serum. The a-16/Chol mole ratios are indicated in the legend of the figures. 
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Figure 5 

Leakage of 111Jn+3 from polymerized a-18/Chol SUVs at A. 37oc and B. 23 oc 

in serum. The a-18/Chol mole ratios are indicated in the legend of the figures. 



430 

A 120---------------1 

Cl - Cl 
0 ~ 

A18/CHOL 
80 

D 
Ill 

,..... 
1:.11 

D 
M -

II 1/1 
I-
0 so 
< 
I- Cl 1.5/1 z -°' 40 11111-

-1 

20 

0 
0 50 100 150 

TIME (HRS) 

B 120 

A18/CHOL 

11 1/1 

c 1/1.5 

0 
0 50 100 150 

TIME (HRS) 



431 

liposomes release contents virtually instantaneously. 

It is interesting to note that these polymeric liposomes can accommodate so much 

cholesterol in the bilayer and still readily form SUVs. For saturated 

phosphatidylcholines, the addition of such large amounts (> 50%) precludes SUV 

formation. In fact equimolar DSPC/Chol liposomes are often difficult to prepare (20). 

The apparent disorder in the polymeric membranes described in Chapters III and N 

indicates that these membranes are not as tightly packed as their saturated 

nonpolymerizeable phosphatidylcholine analogues and the additional "space" may be 

fundamentally important for the cholesterol solubility.* An additional interesting point 

is the fact that a-16/Chol 1: 1 is more stable than a-18/Chol 1: 1 at 37oc in serum, 

despite the longer chain length of the phospholipid in the latter. This may be an effect of 

the phase transition of a-18. Due to the polymeric nature of the lipids, some degree of 

phase separation of the cholesterol and a-THIOL may occur with the result that the 

transition is not completely eliminated. DSC of 2: 1 a-THIOL/Chol mixtures did in fact 

show that the transition was not completely abolished as it is for many 

nonpolymerizeable phospholipids at this stochiometry. Furthermore, the percentage of 

residual transition after cholesterol incorporation (2: 1 a-THIOL/ Chol) increased with 

increasing chain length, consistent with the leakage data. Whether or not there is any 

detectable transition at a 1: 1 ratio has yet to be ascertained. On the other hand, it is not 

known whether phase-separated domains, which give rise to transitions and 

alterations of the membrane sizeable enough to have an effect on serum-induced 

leakage, must have a transition detectable by DSC. 

a-20 was originally synthesized in order to circumvent the phase transition-induced 

leakage exhibited by the other a-THIOLS at the two temperatures most relevant to 

* Partitioning studies of propranolol in cx-16 dispersions also indicates a higher solubility of these 
neuro compared to DPPC (D. Rhodes, unpublished results). 
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these studies (room temperature (a-16) and physiological temperature (a-18)). In 

contrast to a-16 and a-18 (both liquid-crystalline at 370C), a-20 not only has a 

transition well away from these critical temperatures ( =52°C), but it is in the gel state, 

which would be expected to minimize leakage, in analogy to the behavior of 

nonpolymerizeable phospholipids. The stability of SUVs in serum shows that this is 

indeed the case. On average, = 90% of the contents are retained at 150 h at both room 

temperature and 370_ This is shown in Figure 6A. In contrast to a-16 and a-18 

SUVs, however, the addition of cholesterol to a-20 SUVs is destabilizing (Figure 6B). 

It has been shown that for certain lipids (i.e., DPPC), cholesterol increases leakage in 

the gel state by fluidizing the membrane, whereas it decreases leakage in the liquid 

crystalline state by condensing the membrane (61). These data, however, were 

demonstrated for leakage in buffer and the effects of serum proteins on leakage were 

not considered. Furthermore, liposomes prepared from DSPC/Chol 2: 1 (an 18-carbon 

saturated phospholipid) have been found to be extremely stable in serum towards 

leakage of 111 Jn+3 despite the fact that the phospholipid component is a gel state lipid 

(Tm = 57°C) (data not shown). It therefore seems a more likely explanation is 

hydrophobic mismatch between the cholesterol and long 20 carbon chains of a-20, 

which could promote bilayer defects and subsequent solute leakage. This explanation 

would also be consistent with the correspondence between the residual enthalpy with 

chain length for 2: 1 a-THIOL /Chol mixtures described above. 

lN VlVO STU:DTES Of' SU.VS 

'Tissue '1Jistri6utions of S'll'lls. The results from the last section indicated a-20, a-

16/Chol, and a-18/Chol SUVs were reasonably stable in serum (37°C) and therefore 

suitable for studying the in vivo behavior of this class of polymerizeable lipids. The 

tissue distributions of these liposome types was of interest to see if the presence of the 

polymerizeable group near the interface altered the distribution profile in any way. 
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Figure 6 

Leakage of 111Jn+3 from polymerized A. a.-20 SUVs at 37oc and 23 °C in 

serum and B. a-20/Chol SUVs at 37 oc in serum. The a.-20/Chol mole ratios are 

indicated in the legend of the figures. 
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Figure 7 shows a typical distribution following clearance of the a-20 liposomes from 

the blood (2 h). For the most part, the distribution resembles that of many other 

phosphatidylcholine-based liposomes in that the majority go to the liver, and on a gram 

basis, to the spleen (1,10,57). An interesting exception to this in the case of a-20 

liposomes was a small but reproducible 2-4 fold higher percentage (3-4%) associated 

with the heart that could not be accounted for by residual blood. In fact, the percent 

injected dose was higher in the heart than the lung whereas the opposite is generally 

observed in nonpolymerized liposomes. Analysis of the G22( oo) of the heart indicated 

that these liposomes were intact and the degradation rate quite slow relative to the liver 

and spleen (see insert). It seems very likely, considering the endothelial barriers 

between the blood and cardiac cells, that the liposomes are adhering to the vessel walls 

but are not being internalized by the cells. This would also be consistent with the slow 

degradation. 

Radioactivity associated with both the intestines and kidneys is common to all 

liposome types studied, as is a low G22(00) indicating protein-bound 111Jn+3. Since 

the percent injected dose in these tissues increases with time after blood clearance, the 

radioactivity most likely originates from degraded liposomes in the liver (and spleen) 

and is subsequently translocated via macromolecular carriers either back into the blood 

and finally to the kidneys or from the liver into the intestines. In the kidneys, the 

111 Jn+3 is stripped of binding proteins and passed into the urine bound to a small 

chelate as evidenced by extremely high values of the G22( oo ). The latter result is 

consistent with recent observations by Derksen et al. (10). 

'Bfood CCearance of a-20 S'Uo/s. As shown above, a major percentage of intravenously 

injected liposomes ultimately accumulate in the RES, regardless of liposome 
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Figure 7 

Tissue distribution of a-20 SUVs 2 h after intraveneous injection into Balb/c mice. 

The insert shows the intracellular degradation rates for the heart, liver and spleen. 
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composition.* What does depend drastically on composition is the rate of blood 

clearance. Furthermore, as explained in the introduction, a reasonably long circulation 

time is necessary for extravasation of the liposomes from the circulatory system into 

extravascular tissues or tumors. We therefore were interested in the rate of blood 

clearance of polymerized SUVs and how it compares to that of long-circulating 

nonpolymerizeable liposomes. The basic structural question we wished to address with 

these experiments was: Can one mimic the solid membrane surface exhibited by, e.g., 

DSPC/Chol and SPH/Chol liposomes with interfacial disulfide polymerization? 

Because a-20 SUVs were stable without the addition of other constituents, they were 

studied first to examine the effect of polymerization without the complication of added 

cholesterol. 

Figure SA shows the percentage of a-20 SUVs in the blood, liver and spleen with 

time. As can be seen, the liposomes are cleared extremely rapidly ( < 1 hour) with a 

concommittant accumulation in the liver. As a point of reference, similar data is shown 

for DSPC/Chol liposomes in Figure SB. Clearly there is a great disparity in the 

clearance rates. The slow clearance for DSPC/Chol liposomes is however largely due to 

the presence of the cholesterol component as has been shown by Gregoriadis et al., and 

in that sense the comparison is unfair (20). Unfortunately, we have not done similar 

experiments with pure DSPC or more appropriately, DAPC (diararachidoyl

phosphatidylcholine, N = 20)** . However, a longer circulation half life in mice (2.1 

hours) for DSPC SUVs of approximately the same size as the a-20 liposomes has 

been reported. Furthermore, the clearance profile of the DSPC liposomes showed a 

biphasic, gradual removal over the course of hours rather than an immediate 

* In some cases, accumulation in the bone has also been observed for very long circulating liposomes. 
As for the liver and spleen, the bone marrow has fenestrations in the endothelial barrier which can 
allow passage of SUV s. We have not examined the carcass for radioactivity, but considering the 
relatively short life time of the liposomes in the blood, significant accumulation is unlikely. 
** It is not even clear that DAPC SUV's can be formed, due to the extreme crystallinity of bilayers 
formed from these lipids. This contrasts with a-20 SUV's, which are very readily formed. 
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Figure 8 

The percentage of liposomes recovered in the blood, liver and spleen with time 

for: A. Polymeric a-20 liposomes and B. 2:1 DSPC/Chol. The symbol designations 

are indicated in the figure legend. 
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clearance as in the case of a-20 SUVs.* These data indicate polymerization in this 

manner has not had the intended effect of solidifying the interface and retarding protein 

absorption, and in fact, seems to have been detrimental to prolonged blood circulation. 

Intraceffu{ar 'Degradation of a-20 S'Uo/s. It has been shown that for many 

nonpolymerizeable SUV s, there is a correlation between stability in the blood and 

longevity in the blood ; liposomes of low stability tend to be cleared at a rapid rate 

(20). Although it has not been demonstrated, it might be expected that stability of 

liposomes in cells would also have a correlation with the circulation time in the blood. 

The degradation of liposomes in the liver and spleen was therefore examined. Figure 9 

shows the percentage of intact liposomes in these tissues for a-20 and DSPC/Chol 

SUVs. As predicted above, the rapidly cleared a-20 SUVs are also more quickly 

degraded than the DSPC/Chol liposomes in these organs, despite the fact that the initial 

intracellular concentration of a-20 liposomes is higher than that of DSPC/Chol**. It 

should be pointed out, however, that because of the nature of the PAC assay, the 

percent intact refers collectively to the consequences of both (i) liposome leakage and 

(ii) liposome degradation. For SUV s, lipid degradation is not necessary to release all 

contents ; a single "hole" or defect in the bilayer induced by protein penetration is 

sufficient. Therefore, in Figure 9 the more rapid degradation for a-20 SUVs may be 

a consequence of accelerated chemical degradation, mechanical disruption by, e.g., 

protein absorption , or a combination of both. An additional possibility is that the two 

liposome types access different cell populations in the liver. Accumulation of the a-20 

SUVs in the catabolically very active Kupffer cells versus endocytosis of the 

* The biphasic clearance pattern of the DSPC/Chol lipsomes is generally observed for SUV' s and has 
been ascribed to a combination of effects including heterogeneity in the size distribution of the 
liposomes, saturation of the endocytic machinery, and depletion of opsonozing proteins (36). 
* A dependence of the degradation rate of liposomes on the injected dose is well documented and 
indicates a faster rate at lower liposome concentrations and saturation at very high concentrations. In 
these experiments, the injected dose is far below the saturation limit. 
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Figure 9 

Percentage of intact liposomes remaining in the liver, spleen and blood for A. 

Polymeric a-20 SUVs and B. 2:1 DSPC/Chol SUVs at various times following 

intravenous injection in Balb/c mice. Symbol designations are indicated in the figure 

legend. 
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DSPC/Chol liposomes by the more numerous but less active hepatocytes could explain 

the difference. While we cannot distinguish the intrahepatic distribution on the basis of 

our data, one could rationalize Kupffer cell uptake of a-20 SUVs based on what is 

known about the distribution of liposomes between parenchymal and non-parenchymal 

cells. MLVs are known to be rapidly phagocytosed almost exclusively by the Kupffer 

cells while SUVs have additional access to the hepatocytes via the 30-200 nm 

fenestrations in the liver sinusoids (32). Long lived phosphatidylcholine-based SUVs 

have been shown to accumulate primarily in the hapatocytes, but upon addition of 

negative charge (i.e., phosphatidyl serine (PS)), the hepatic distribution is shifted 

towards the Kupffer cells (32). Thus Kupffer cell uptake of a-20 SUVs could occur, 

particularly if these liposomes absorbed proteins that bestowed a net negative charge to 

the membrane surface, as is known to occur for many colloidal systems (36). 

Regardless of the details whereby the a-20 SUVs are rapidly cleared and 

permeabilized, the fundamental reason must arise from the different physical properties 

of the membranes in question. This is discussed next. 

5'lnafysis of '13Cood C{earance and 'lJegradation in 'Terms of tfie Membrane Organization of a-

20 S'll'Vs. Given the characterization of the membrane physical properties described in 

the last several chapters, we are in a position to speculate as to the structural basis for 

the rapid blood clearance and intracellular degradation of the a-20 SUVs. Ample 

evidence has demonstrated that blood clearance and stability can be manipulated by the 

choice of the phospholipid (and proportion of cholesterol) in the membrane (20,24,28). 

Fluid lipids such as EPC are cleared and degraded rapidly due to the susceptibility of 

such membranes to disruption by HDL, phospholipases and the absorption of other 

proteins (16,24). The a-THIOLS as a general class of phospholipids , have been 

shown by a variety of physical techniques to have a more disordered hydrocarbon 

region in the gel state than nonpolymerizeable lipid analogues. In fact, the acyl chains 
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appear to be in a state somewhere intermediate to the gel and liquid-crystalline state of 

nonpolymerizeable lipids. On the other hand, the glycerol backbone and headgroup 

region have been shown by NMR to be more rigid as a consequence of the 

polymerization. This latter fact we hoped implied that these liposomes had an 

effectively solid interface with properties similar to DSPC/Chol and SPH/Chol, despite 

the disorder in the chains. The in vivo data does not support this anticipation, 

however. In retrospect, it is clear that rigidity is not necessarily a reflection of tight 

interfacial packing. In fact, the polymerization-induced rigidity at the interface most 

likely restricts the conformational freedom of the lipids and inhibits their ability to pack 

into well-organized crystalline arrays. Particularly in light of the two-dimensional 

structure of the polymer in question, which is that of a linear chain rather than an 

infinitely crosslinked network. the consequence of this could be the induction of 

interfacial defects and the observed disorder in the lipid chains.* This appears to be the 

most viable explanation for the behavior of a-20 SUVs in vivo ; despite the fact that 

these lipids are in the gel state and polymerized, the membrane is in fact relatively 

disordered and therefore accessible to interaction with serum and cellular proteins. The 

result of this is the observed rapid rate of blood clearance and intracellular degradation. 

In 'Vivo Studies of a-'T:J-fIOL/Cfio{ S'll'Vs. As described above, the clearance and 

degradation rates for a-20 SUVs were unusually rapid, especially considering that the 

lipid is a saturated gel state phospholipid with unusually long hydrocarbon chains. 

However, the rates for SUVs composed exclusively of phospholipids generally tend to 

be rapid, and only upon addition of cholesterol are long half lives obtained. For 

example, Gregoriadis demonstrated a 2.1 hour half life for DSPC SUVs, but upon 

addition of equimolar cholesterol, this was extended to z 7.5 hours (8,20). Likewise, 

Hwang has measured a 16.5 half life for 1:1 SPH/Chol SUVs (58). That for SPH 

* This was also mentioned as a possible explanation for spectroscopic and phenomenological data 
described in earlier chapters. 



446 

alone has not been reported, presumably because the phase transition is 37oc and 

contents would be released immediately upon injection. SPH differs only slightly from 

the structure of a basic phosphatidylcholine by the presence of a rigid linkage in the 

sn-2 position. Nonetheless, this simple modification allows the formation of well 

packed bilayers with equimolar cholesterol, accounting for the exceptionally long blood 

half lives. a-THIOLS are also modified at the interfacial region in a manner 

thatimposes rigidity, and since large quantities of cholesterol are readily accommodated 

in the bilayer, it was of interest to see if upon addition of cholesterol, solid SPH/Chol

like liposomes could be formed. (In this regard, the PAC experiments may be viewed 

as a qualitative assay of the nature of the interface presented by liposomes). Since a-

16/Chol SUV s were found to be more stable in serum than those prepared from either 

a-18/Chol or a-20/Chol , SUVs composed of a-16/Chol in the ratios 2:1, 1:1 and 

1: 1.5 were examined for blood clearance. 

Figure 10 shows the blood clearance of 2:1, 1:1 and 1:1.5 a-16/Chol SUVs. 

Within experimental error (which includes the effect of slight differences in liposome 

size), the rate is notably similar to 2:1 DSPC/Chol. Compared to a-20 SUVs the 

clearance rates are much slower due to the solidifying effect of the sterol. 

Unfortunately, the ability of these liposome types to accomodate so much cholesterol in 

the bilayer does not prolong the blood circulation time beyond a certain point ,which is 

somewhat surprising. From light scattering measurements of the a-16/Chol SUVs, it 

is clear that the lack of additional effects from cholesterol is not due to an increase in the 

average size of the liposomes with increasing cholesterol content; all liposomes were 

found to have approximately the same size (50 ± 5 nm). A more likely explanation 

would therefore seem to be differences in the interaction of the phospholipid and 

cholesterol, possibly due to polymerization-induced restrictions of the orientation of 

cholesterol in the bilayer. 
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Figure 10 

Percentage of liposomes remaining in the blood at various times post-injection 

for polymeric a-16/Chol SUVs with mole ratios: 2:1, 1:1and1:1.5. The figure legend 

indicates the corresponding symbols and mole ratios. 
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'BCoocf C{earance of .Jtc{cfitiona{ a .T.J{JO£- Containing S'll'lls. Several other types of 

SUVs composed of mixtures of polymeric and non-polymeric components were 

examined in an effort to further explore the possibility that the a-THIOLS might 

provide important constituents of SUVs with long blood half-lives. Among these, a18-

DSL/Chol 2: 1 SUV s were studied since the phospholipid component forms dimers 

which should have greater conformational flexibility than polymeric analogues, and 

therefore may be able to pack more favorably in bilayers than the polymers.* This 

expectation is consistent with serum stability data since the leakage of lllfu+3 from 2:1 

a18-DSL/Chol was found to be less than from both 1:1and2:1 a-18/Chol SUVs, 

despite the fact that both a-THIOLS have broad phase transitions encompassing 37°C. 

Unfortunately, the blood clearance rate of a18-DSL/Chol 2:1 SUVs were similar but 

not better than that of a-16/Chol and 2:1 DSPC/Chol (Figure llA ). The effect of 

GM1 as an additional component to polymeric SUVs was also examined since it has 

been shown to dramatically extend the circulation times of LUVs. (depending on the 

other membrane constituents) (9,62). As shown in Figure 1 lB, the addition of 15 mole 

% of GM1 to a-20 SUVs did not retard the blood clearance rate or accumulation in the 

liver. The above results reiterate the fact that because these polymeric lipids disorder 

rather than order the membrane, they do not have the proper interfacial and 

hydrocarbon properties conducive to long circulation times in the blood. Furthermore, 

implicit in their polymeric nature is a restriction of the conformational possibilities of 

the monomeric units compared to nonpolymerizeable phospholipids. This could limit 

the interaction of the polymeric lipids with added amphiphiles (i.e., cholesterol) and 

perhaps induce some degree of phase separation such that the nominally stabilizing 

* a18-DSL consists of a polymerized 18-carbon chain in the sn-1 position and an 18-carbon saturated 
chain in the sn-2 position. 
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Figure 11 

Percentage of liposome recovered in the blood and the liver with time for : A. 

Polymeric a-20 versus polymeric a-20/GM1 (85:15) SUVs and B. 2:1 DSPC/Chol 

versus 2:1 a18-DSL/Chol SUVs. 
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effect of added components might be reduced. Thus, the intracellular degradation and 

blood clearance of this class of polymerizeable lipids is rapid. 

11. HLVS 

:Motivation for Study. The results presented above seem best interpreted in terms of the 

mechanical caveats (i.e., packing constraints) of the a-THIOL polymerizeable 

phospholipids. Unfortunately, one of the predictable advantages of polymerized 

liposomes, chemical stability, could not be explicitly examined in the SUV studies. As 

was mentioned earlier, this is due to the fact that the PAC assay monitors leakage rather 

than lipid degradation, and for SUV s, leakage may be completely independent of 

chemical stability. A single defect in the membrane of an SUV could in fact cause 

complete release of the internal contents. This is not likely the case for ML Vs which 

have 111Jn+3 equally distributed thoughout the lamellae. The outermost lamella would 

be subject to the same mechanisms for solute release as SUVs. However, for the 

release from internal lamellae to occur by anything other than passive leakage, each 

lamellae must be successively degraded and removed, thereby exposing those on the 

MLV interior. This is illustrated in Figure 12. Therefore, if polymeric lipids were 

incorporated into the membrane, one might expect that the rate of lipid degradation 

would be slower than that of nonpolymeric ML Vs. From a technological standpoint, 

one could envision a very useful role of polymeric ML Vs as intracellular slow release 

systems (from the liver and spleen where they tend to rapidly accumulate). Jn vitro 

and in vivo studies of ML Vs containing the a-THIOLS were therefore designed to 

examine these possibilities. 
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Figure 12 

Schematic representation of the degradation process for ML Vs versus SUV s. A. In the 

case of ML Vs, assuming the degradation rate is faster than passive leakage, the first 

lamellae may release contents rapidly (like SUVs) simply as a consequence of protein 

absorption. In order to release 111Jn+3 entrapped in the lamellae more interior to the 

liposome, however, each layer must be successively degraded; B. By contrast, for 

SUVs, all contents may be released if a defect is created in the bilayer by protein 

absorption. No chemical degradation need be invoked. 
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Serum Stabitit-u of 11.LVS. 

As for the studies involving SUVs, it was first necessary to establish what 

compositions of ML Vs are stable in serum. Because the organization of lipids in ML Vs 

and SUV s can be quite different due to variations in the radius of curvature between 

the two liposme types, one cannot assume that lipid compositions, which give rise to 

stable SUVs necessarily produce stable MLVs. This is demonstrated in Figure 13, 

which shows a greater stability for a-20 SUVs compared to ML Vs. In general, 

however, the opposite trend is observed; ML Vs tend to be more stable than SUV s due 

to the curvature of the SUV surface, which induces membrane disorder (16). While the 

relative stabilities of the a-20 MLVs and SUVs are difficult to explain, it should be 

recalled that a-20 phospholipids have a propensity to form largely unilamellar 

structures upon dispersion in water, and these tend to be significantly smaller than 

those of nonpolymerizeable phosphatidylcholines (see Chapter II). Thus, the 

production of larger liposomes by freezing and thawing may in fact cause an 

unfavorable packing of the lipids in the bilayer and a subsequently more permeable 

membrane. a-20 MLVs were therefore not examined with respect to their in vivo 

degradation rates because they were not sufficiently stable. 

The addition of cholesterol to a-20/Chol SUVs (2:1 mole ratio) was not effective in 

increasing the membrane stability as shown in Figure 13. This is consistent with the 

fact that for a-20/Chol SUVs, cholesterol has a destabilizing effect. For MLVs 

containing a-16 or a-18 polymeric lipids, however, cholesterol was a necessary 

addition in order to suppress the phase transition and inhibit rapid leakage at room 

temperature and 37°C, respectively. As shown in Figure 14, 2:1 a-16/Chol MLVs are 

reasonably stable at 37oc, but at room temperature they are quite leaky presumably due 

to the phase transition. At a higher (1:1) mole fraction of cholesterol, leakage at room 

temperature and 37oc is similar, but there is no further increase in the stability 
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Figure 13 

Percentage of 111In+3 retained within liposomes of 2: 1 a-20 ML Vs versus 2: 1 a-

20/Chol ML Vs in 50 % serum at 23 oc and 37 oc. The figure legends indicate the 

temperatures and liposomes used. 
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Figure 14 

Percentage of lllfo+3 retained within liposomes of: A. 2:1 a-16/Chol MLVs and 

B. 1:1 a-18/Chol MLV', in 50 % serum at 23 oc and 37 oc. The figure legends 

indicate the temperatures and loading protocols used. 
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over that observed for 2: 1 a-16/Chol at 37°C. Likewise, for 1: 1 a-18/Chol, leakage is 

predictably greater at 37°C than at room temperature and also greater than that of 2: 1 

a-16/Chol ML Vs despite the lower cholesterol content of the latter. These results are 

consistent with the leakage behavior of a-16/Chol and a-18/Chol SUVs. 

Several other ML V compositions were examined and found to be stable including 

4:5:1 a-18/Chol/PS and ro16P-DPL/Chol (data not shown). The a-18/Chol/PS MLVs 

were chosen for comparison to the stable nonpolymerizeable analogues, EPC/Chol/PS 

and DSPC/Chol/PS, which have been extensively characterized by Scherphof and 

Spanger et al. (32,63). The 2:1 ro16P-DPL/Chol ML Vs were examined in comparison 

to 2: 1 DSPC/Chol ML Vs. 

lN VlVO STU.DTES OF 11.LVS. 

Intrace[[u{ar .Liver 'lJegradation of :M.Lo/s. Based on the results of the serum stability 

studies, in vivo investigations were carried out with polymeric ML Vs composed of a-

16/Chol, ro16P-DPL/Chol and a-18/Chol/PS, and the nonpolymerizeable control 

ML Vs; DSPC/Chol, EPC/Chol/PS and DSPC/Chol/PS. The main objective of the 

studies with the ML Vs was to examine if the incorporation of polymeric components 

retarded the degradation rate of the liposomes in the liver as a consequence of increased 

chemical stability. To do this, an alternate loading strategy (Freeze and Thaw) was 

developed in order to distribute the 111Jn+3 thoughout the lamellae of the ML V. Our 

basic assumption in these experiments is that if the distribution of 111 Jn+3 is uniform 

thoughout the ML V, then the rate of 111Jn+3 release should reflect the liposome 

composition and susceptibility to chemical degradation. (This contrasts to release from 

SUVs or release from the external lamellae of MLVs where degradation may not be 

necessary.) Figure 15 shows a slower 111Jn+3 release rate from FAT-loaded (no 
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Figure 15 

Percentage of intact liposomes in the liver at various times after intravenous 

injection of 2: 1 DSPC/Chol ML Vs loaded by (i) the A23187 loading protocol or (ii) the 

freeze and thaw (FAT) loading protocol. The slower rate of degradation for the FAT (

A23187) liposomes is presumably a consequence of the fact that the internal lamellae of 

the MLV are more completely loaded with 111In+3. 
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A23187) than A23187-loaded 2:1 DSPC/Chol MLVs in the liver. This is consistent 

with (1) loading of FAT ML Vs beyond just the first lamellae and (2) a dependence of 

leakage on lipid degradation for FAT ML Vs. Other liposome types loaded by the FAT 

method were therefore examined. In all thee PS-containing liposomes that were 

studied (4:5:1 EPC/Chol/PS; DSPC/Chol/PS; and a-18/Chol/PS), the 

phosphatidylcholine (PC) component has eighteen-carbon acyl chains.* Thus, the 

intracellular (liver) degradation rates may be analyzed in terms of the effect of having as 

the phosphatidylcholine component, an unsaturated liquid-crystalline 

phosphatidylcholine (EPC), a saturated gel state phosphatidylcholine (DSPC), or a 

polymeric phosphatidylcholine at its phase transition (a-18). Figure 16A shows the 

percentage of intact liposomes at various times post injection in the liver for the three 

compositions. As expected, the most fluid liposomes, EPC/Chol/PS, are degraded very 

rapidly. Substitution of EPC by gel state DSPC results in liposomes that are more 

slowly degraded. The rate is slowed even further when the polymeric a-18 is the PC 

component, despite the fact that the Tm of this lipid is approximately physiological 

temperature. Finally, when the PC component is completely polymeric as in 1:1 a-

16/Chol (i.e.,, still equimolar PC/Chol but no PS) the degradation rate is the slowest of 

the four compositions, despite the fact that the polymer is fluid at 37°C. 

In the above examples, it was noted that the more stable polymer-containing 

liposomes were in the fluid state . The reasons for emphasizing this point is due to the 

fact that in addition to the presence of extra polymeric linkages, which should make the 

lipids more chemically stable, the physical packing of the lipids in the bilayer should 

also influence the rate of lipid degradation. Fluid lipids are known to be more 

susceptible to interaction with enzymes such as phospholipases, as well as to detergent 

and acidic environments such as those found in intracellular lysozomal compartments. 

* EPC has predominantly eighteen carbon unsaturated fatty acyl chains. 
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Figure 16 

Percentage of intact liposomes in the liver at various times after intravenous 

injection of: A. 4:5:1 EPC/Chol/PS, 4:5:1 DSPC/Chol/PS, 4:5:1 a-18/Chol/PS, 1:1 

a-16/Chol and 1.5/1 a-16/Chol MLVs; B. 2:1 DSPC/Chol and 2:1 ro16P-DPL/Chol 

ML Vs. The symbols corresponding to the Ii po some types are indicated in the figure 

legend. 
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Therefore, the fact that the polymeric liposomes composed of fluid lipids (1:1 a-

16/Chol and 4:5:1 a-18/Chol/PS) were more stable than DSPC/Chol/PS containing a 

gel state phosphatidylcholine emphasizes the effectiveness of polymerization. On the 

other hand, equally impressive rates as a-16/Chol can be achieved by the monomeric 

but solid liposomes 2: 1 DSPC/Chol (Figure 16B). Similarly, liposomes composed of 

2:1 T16P-DPL/Chol are also very stable. The latter contain only dimeric rather than 

polymeric phosphatidylcholines but appear to be fairly solid based on the physical 

characterization and serum stability studies. It therefore appears that polymerization 

may enhance the intracellular lifetime of multilamellar vesicles due to the presence of 

extra bonds, which should slow the lipid degradation. However, the lipid packing in 

the membrane is also an important factor in the rate of degradation because this controls 

the access of phospholipases and degrading cellular components to the lipids in the 

membrane. Thus the design of polymeric liposomes, which have additional stable 

chemical linkages and yet retain a tight packing of the lipids, should result in even more 

slowly degraded liposomes than those described here. 

Tissue '1Jistri6utions of :ML'Vs. In contrast to the rate of blood clearance of SUVs, 

which shows a marked dependence on the liposome composition, that for all ML Vs 

studied was very rapid with the majority accumulating in the liver and spleen in 

approximately 2 hours or less. An effect of liposome composition was observed, 

however, in the relative accumulation of ML Vs in the spleen versus the liver. These 

results are summarized in Table IV. For most liposomes, there is more than a 9-fold 

greater accumulation in the liver (similar to that observed for the SUVs studied). For 

other compositions such as the a-18/Chol and a-16/Chol samples, however, a very 

large percentage goes to the spleen, especially when evaluated in terms of the percent 

injected dose per gram of tissue. The reasons for such a large spleen accumulation is 

not known but has been observed by others for certain liposomes containing large 
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Table IV 

Percentage of recovered dose in the liver and spleen 4 h following intravenous 

injection of various multilamellar liposome preparations. Noteworthy is the high (> 9) 

liver to spleen (L/S) ratio for some liposome types and the very low ratio for others. 

The low values indicate a tremendous accumulation in the spleen on the basis of 

liposome accumulation per gram of tissue. 



.75 * % Recovered Dose.a. 

ML V ComEQsition Loading Protocol LIVER SPLEEN Ratio USb 

2: 1 DSPC/CHOL FAT+A21387 67.9 2.6 26.l 

4:5: 1 DSPC/CHOUPS FAT 68.1 6.9 9.9 
-+>-

4:5:1 a-18/CHOUPS FAT 68.5 6.5 10.5 °' 00 

1.5:1 a-18/CHOL FAT+A21387 52.0 18.1 1.5 

2:1 a-16/CHOL FAT+ACAC 42.2 29.2 2.9 

1:1 a-16/CHOL FAT 35.3 27.9 1.3 
aMeasurements are the average values from two mice. bRatio of the % recovered in the liver versus the spleen. 
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amounts of cholesterol (64). Therefore, the presence of the polymeric component in 

these liposomes may not be the cause of this rather unusual behavior. Regardless of 

the cause, because such a large percent goes to the spleen for these ML Vs, they may 

offer a possible mode for targeting drugs to T-cells, which could potentially be of great 

utility especially in view of the current AIDS crisis. 

CONCLUSION 

In this study we have examined the in vitro and in vivo behavior of disulfide 

polymerized liposomes in regards to tissue distribution, vascular clearance rates, and 

intracellular degradation. SUV s were examined with the anticipation that 

polymerization might slow blood clearance and retard in vivo degradation. The 

opposite results were observed. 

Scherphof et al. have demonstrated that structural irregularities at the interface or 

reduced cohesive forces between lipids have a profound effect on susceptibility to the 

degrading activity of phospholipases and lipoproteins (16). It also seems clear that 

similar features of the membrane surface are conducive to absorption of opsonizing 

proteins, which accelerate endocytosis, particularly by phagocytic Kupffer cells. Thus, 

the extremely rapid clearance of a-20 SUVs from the blood and intracellular release of 

111Jn+3 would seem to confirm that the a-THIOLS are characterized by disturbances 

in the acyl chain packing, consistent with the spectroscopic evidence presented in earlier 

chapters. The interfacial and headgroup regions, on the other hand were found in earlier 

NMR studies to be quite rigid, but on the basis of the in vivo data, it is apparent that 

this does not preclude the presence of a facetted membrane surface. Addition of large 

amounts of cholesterol to "patch up" the defects and solidify the membrane did slow 

clearance, but not to the extent achievable by certain non-polymerizeable phospholipid 

mixtures. 
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In vivo studies have also been carried out on polymerized and nonpolymerized 

SUVs and MLVs of bis{ 12-(methacroyloxy)dodecanoyl-L-a-phosphatidylcholine 

where the polymerizeable moiety is at the chain terminus (65). Similar rapid clearance 

and degradation rates were observed in these systems, and in fact, the polymeric lipids 

were removed from the blood more rapidly than the nonpolymerizeable analogues. The 

explanation offered for these results was (i) differences in the absorption behavior of 

polymerized liposomes for serum and other opsonizing proteins and (ii) the differences 

in the ability of the polymerized liposomes to interact with the reticuloendothelial cells. 

While the physical basis for these results was not discussed, in consideration of the 

lipid structure, which is that of a short 12 carbon chain terminated with a somewhat 

polar methacroyl group, it seems likely that the membrane may in fact be less tightly 

packed than some nonpolymerizeable gel state phospholipids and therefore subject to 

similar clearance mechanisms as the a-THIOLS and fluid lipids in general. This is 

despite the structural framework of these liposomes, which has been shown to be 

extremely resistant to disintegration by organic solvents and detergents due to the fact 

that the membrane can form a crosslinked network (66). An insoluble matrix does not 

necessarily mean it is resistant to protein absorption. 

The structural basis for the membrane disorder of the a-THIOLS has been 

discussed in previous chapters. However, it is instructive to compare these lipids to 

other classes of polymeric lipids and in particular to another class of polymeric lipids 

(amino acid amphiphiles), which have rigid amide linkages in the headgroup. These 

have also been found to be fairly permeable to solutes despite having reasonably long 

16-carbon chain lengths (67). In fact, as in the case of the a-THIOLS studied here, 

permeability (and presumably hydrocarbon chain disorder) is actually increased upon 

polymerization. In these studies leakiness of the membranes was attributed to the short 

polymer chains formed by the condensation mechanism, the lengths (~ 10) of which 
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are similar to those estimated for the a-THIOLS. An alternate or additional reason that 

we put forth to explain the disorder is the mere presence of the the rigid polymer 

linkage which (i)creates additional bulk that sterically inhibits maximal Van der waals 

interactions between the lipids and (ii) reduces the conformational freedom of the lipids 

to form close-packed membranes (especially when they are not crosslinked in three 

dimensional arrays), thereby introducing interfacial defects. To alleviate the disruptive 

effects of the polymerizeable moieties, headgroup polymerization has also been 

investigated where the polymerizeable group has been spaced at various distances from 

the membrane interface (68). In these studies, which involved ethylene oxide chains as 

spacers, effective decoupling of the effect of the polymerized headgroup from the acyl 

chain was in fact observed. As yet, in vivo studies have not been carried out but may 

provide further interesting clues as to what are the necessary structural features for 

creating polymerizeable liposomes that are superior to nonpolymerizeable liposomes 

for in vivo applications. 
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I ain't often right but I've never been wrong. 

it seldom turns out the way it does in the song 

Once in a while you get shown the light. 

in the strangest of places if you look at it right . 

----R. Hunter 
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Chapter VIII 

ttoteri.ofs. 

All reagents used in the synthesis of the thiol-containing phosphatidylcholines were 

obtained from Aldrich with the following exceptions: 8-bromooctanoic acid, 9-

bromooctanoic acid and 10-bromooctanoic acid were obtained from Chemicals 

Procurement Company. 2-bromoarachidic acid was obtained from Maxdem. The 

bromoacid starting materials were pure as determined by NMR (90 MHz ) and TLC 

and therefore were used without further purification. 15-pentadecanolide and 16-

hexadecanolide (purity > 99%) were purchased from Columbia organics . L-a-glycero-

3-phosphorylcholine•cadmium chloride (GPC•CdCb) (purity > 99%) was obtained 

from Sigma. Lysophospholipids (purity >99%) used in the synthesis of the mixed 

chain lipids were purchased from A vanti Polar Lipids. Dithiothreitol was obtained from 

Schwarz/Mann Biotech (Division of ICN) or Calbiochem. 5-5'-dithio-bis(2-

nitrobenzoic acid) (DTNB) was obtained from Aldrich. The silica gel used for flash 

chromatography was purchased from Baker. Kieselgel 60 was purchased from EM 

Science. All other materials were of analytical grade and used without further 

purification. 
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21JMJL. The lH NMR spectra of all final products were recorded on a Bruker AM-

500. Intermediate compounds were also examined at 500 MHz although a 90 MHz 

Jeol and 200 MHz Varian spectrometers were occassionally employed. Relevant 

aquisition parameters for proton spectra (500 MHz) include a 450 excitation pulse("" 3 

µs) and a 3.5 s repetition rate. For aqueous (D20) solutions, the HOD resonance was 

presaturated when necessary. Spectra are referenced with respect to CHCl3 (7.24 ppm) 

or HOD (4.63 ppm). 

High resolution 13C spectra were acquired at 125 MHz on a Bruker AM-500. 

Chemical shifts are reported with respect to the choline methyl peak assumed to 

resonate at 54.3 ppm. Spectra were recorded with the nuclear Overhauser enhancement 

(NOE) using bilevel decoupling (lW and lOW for NOE and complete decoupling, 

respectively). Samples were prepared in either CDCl3, CDCl3/MeOH, or phosphate 

buffer (50 rnM sodium phosphate, .5mM EDTA; pH 7.4). 

'Tfiio[ Jllna[ysis 

The procedure used for detection or quantitative analysis of residual thiol groups 

was identical to that described previously (1-3 ). Briefly, a solution of 

tris(hydroxymethylamino)methane (0.2 M Tris, 1 % EDTA, pH 8.2) was prepared and 

diluted with an equal volume of ethanol. The thiol reagent (referred to as Ellman's 

reagent) was prepared by dissolving 40 mg (0.101 mmol) of 5-5'-dithio-bis(2-

nitrobenzoic acid) (DTNB) in 10 ml of the Tris/EtOH buffer. For quantitative analysis, 

a small aliquot of sample ( < 50 µl) is added to 1.5 ml of Tris/EtOH buffer containing 

0.1 ml of the Ellman's reagent. After 20 min, the concentration of thiols may be 

calculated from the absorbance at 412 nm using a molar extinction coefficient of 1.36 x 

1Q4. To qualitatively detect the presence of thiol or completion of the polymerization, 
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the reagent was used as a TLC spray (.1 % solution of the reagent in Tris/Ethanol 

buffer). 

The general scheme for the synthesis of the monomeric ro-THIOLS (i.e.,, 1,2-

di( 16-mercaptohexadecanoy 1)-L-a-phosphatid y lcholine) and monomeric a-THIOLS 

(i.e.,, 1,2-di(2-mercaptohexadecanoyl)-L-a-phosphatidylcholine) are depicted in 

Figure 1. The reactions were carried out exactly as described by Regen et al. {1,4)with 

the exceptions of the general modifications described below. For each step of the 

synthesis, the compounds were isolated in pure form as monitored by TLC and lH 

NMR. The only exceptions to this were (i)the protected fatty acids (structures 4 and 9 

in Figure 1) and the protected phospholipids (structures 5 and 10 in Figure 1). In the 

case of the protected fatty acids, residual ethanethiosulfinate (ETS; 3) was difficult to 

remove without substantial loss of product recovery, despite a number of solvent 

systems used for chromatographic purification. Similar difficulties have been 

encountered in the Regen group (Bruce Weber, private communications). However, 

no difference in the lH NMR (500 MHz) was found when the protected phospholipids 

were prepared from pure versus slightly impure protected acids as the contaminant 

appears to be unreactive and easily removed in the subsequent purification step. In the 

case of the protected phospholipids, lysolipid was occasionally observed by TLC but 

was removed in the final purification step. 

ro-'I:J{J0£5. For the monomeric ro-THIOLS (Figure lA) all steps in the synthesis 

were similar to the reported procedure with two exceptions: 

(i) A 4-fold excess (versus protected acid) of dicylocarbohexyldiimide (DCC) 

was used to avoid problems with residual water in the reactants and solvent, and 
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Figure 1 

Schematic diagram for the synthesis of: A. The ro-THIOLS and B. The a

THIOLS. 
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therefore to increase the yield. Typically 80-90% yields of compound 5 were obtained. 

(ii) A different deprotection procedure was utilized. Using tributylphosphine 

(TBP) according to the methodology of Regen et al., we consistently found a peak at""' 

.87 ppm in the lH spectrum of the monomeric ro-THIOLS (Figure 1, compound 6) 

corresponding to a terminal methyl group as determined from decoupling experiments 

and comparison to the spectra ofDPPC. Integration of the peak intensities in the spectra 

indicated the amount of CH2-SH to be low by 10-40% consistent with a high 

phosphorous to sulfur ratio. (Phosphorous and sulfur ratios were determined using 

standard procedures (1-3 anti 5).) These results have since been confirmed by the Regen 

group (6). The proton spectra of the protected phospholipid, however, indicated the 

presence of the appropriate material. An example is shown in Figure 2. Consequently, 

it appears that TBP is not entirely selective for the sulfur of the leaving group, and in 

some cases both sulfurs are removed with the ultimate production of a terminal 

methyl group. The result is that a certain percentage of the lipids have one alkyl chain 

terminated with a thiol and one (or both) chain(s) terminated with a methyl group. 

Since the reaction can be viewed essentially as a condensation reaction, small 

amounts of a chain terminating monomer (such as is a phospholipid with only one 

thiol) will severely reduce the theoretical degree of polymerization Xn. Xn is given by 

the following equation: 

(1) - i 
X=-

n 1- p 

where p is the extent of the reaction. It can be calculated that if 10% of the thiols are 

removed in the deprotection step, a maximum degree of polymerization Xn=lO can only 

be obtained assuming 100% reaction of the remaining thiols. 
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Figure 2 

lH NMR spectra of 1,2-di(l6-diethyldithiohexadecanoyl)-L-a-phosphatidylcholine. 



486 

0 
0 

...... 

0 
In -
0 
0 

N 

0 
0 . 
""' 
0 
In . 
""' 
0 
0 . 
In 



487 

In order to alleviate this problem, dithiothreitol (DTT) was used as an alternative 

stategy to deprotect the phospholipids via a disulfide exchange reaction. The driving 

force in this case is cyclization of DTT into a six membered ring. The reaction 

conditions are described below but require optimization. Final products were always 

checked for complete deprotection by NMR (500 MHz) and it was sometimes 

necessary to repeat the exchange reaction. However, as will be demonstrated by 

representative spectra of the final products, it is possible to obtain complete 

deprotection of the lipids without loss of thiol groups by this method. 

a-T.l-{IOI.S. For the synthesis of the a-THIOLS, initially we followed the procedure 

of Regen (1) with the exception that"" a 4-fold excess of DCC was utilized in the 

condenstation step to form the protected phospholipid (Figure 1, compound 10) as had 

been done in the synthesis of the CO-THIOLS. Consistently, however, we obtained 

only a 10-15% yield of (10) compared to the reported value of 91 % (1). Eventually, it 

was determined that utilizing an excess of DCC was the problem and that by using a 

0.8 to 1.2 molar equivalent of DCC (versus the protected fatty acid), yields of 50-60% 

were obtainable. 

The problem with utilizing excess DCC is believed to be a consequence of slower 

reaction kinetics for the formation of either the protected phospholipid or the activated 

ester of the fatty acid due to the large substituent adjacent to the carboxyl group. The 

competing reaction is the formation of dicyclohexylacylurea (DCAU) (7) which 

removes the protected fatty acid from the reactive pool, a reaction that may be driven 

by excess DCC. As described above, it is therefore necessary to employ near 

stochiometric amounts of DCC and therefore to be particularly cautious about 

removing water from the solvent. 



488 

Deprotection of the a-THIOLS was generally carried out using TBP as there 

appears to be no problem with loss of thiol groups. Steric hindrance probably makes 

TBP specific for the sulfur adjacent to the methylene group (S,S.CH2CH3) in the 

protected phospholipid. The DTT exchange reaction was also employed to determine if 

there were any visible differences in the final products. While the reaction does not 

proceed as quickly as with TBP, identical lH NMR spectra and DSC traces were 

obtained for a-16 prepared by both methods. Nonetheless, the original method of 

Regen was generally employed as it is more straightforward and optimal conditions for 

deprotection have been worked out. 

Mixecf-Cliain Pliospfio[ipicfs. The synthesis of the mixed chain ro-THIOLS and a-

THIOLS were carried out in exactly the same manner as depicted in Figure 1 with the 

exception that the fatty acids were condensed with a lysophosphatidylcholine (i.e., 

monopalmitoylphosphatidylcholine) rather than GPC•CdCl2. The final products 

therefore contain a nonpolymerizeable fatty acid of the desired chain length in the sn-1 

position and a thiol containing fatty acid in the sn-2 position as shown in Chapter I. The 

same procedures were used for the deprotection steps depending on whether the lipid 

was a mixed chain ro-THIOL or mixed chain a-THIOL. 

The synthesis of the compounds under study have already been thoroughly 

documented for chain lengths N=ll,16 (CO-THIOLS) and N=16 (a-THIOLS) (1,4). 

For completeness, however, the synthetic procedures are reported below with the 

modifications described in the preceeding section. Lipids with different chain lengths 

were synthesized but the methodology is the same as are the general NMR spectral 

features. Consequently, to avoid redundancy, we report only the synthesis of the 16-

carbon lipids, a-16 ( 1,2-di(2-mercaptohexadecanoy 1)-L-a-phosphatidy lcholine) and 
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ro-16 (1,2-di(16-mercaptohexadecanoyl)-L-a-phosphatidylcholine). In addition, the 

synthesis for a mixed-chain ro-THIOL (1-(hexadecanoyl)-2-(16-mercapto

hexadecanoyl)-L-a-phosphatidylcholine 0016-DPL * ) and a mixed-chain a-THIOL 

( 1-( octadecanoyl)-1-(2-mercaptooctadecanoy 1)-L-a-phosphatidy lcholine ); referred to as 

a18-DSL) are also reported. Again, the syntheses for the mixed-chain lipids having 

other chain lengths is generally the same as the procedures reported below. 

'E.tfiy(etfianetfiiosuffinate (compound 3 } Diethyldisulfide (88 g, 0.721 mol) in 200 ml 

CH2Cli was cooled to -200C in a CC4/dry ice bath. To this, m-chloroperbenzoic acid 

(162 g, 0.93 mol) was added slowly with continous mechanical stirring over the 

course of one hour. The bath was subsequently removed and the reaction mixture 

allowed to stir for 6 h at room temperature. The product was then extracted from the 

solid with CH2Cl2. To the extract, 40 g of solid Na2C03 was added and the mixture 

stirred vigorously for 2 h. The solution was then cooled to :::::4°C and filtered (2X). 

Finally, the filtrate was concentrated and distilled under vacuum at .48 mm (b.p.=730C 

at .48mm) to yield the purified product. 

lH NMR (CDCL3): 8 1.44 (t, 3H, CH3CH2SSO); 8 1.45 (t, 3H, CH3CH2SOS); 8 

3.15 (q, 2H, CH3CH2SSO); 8 3.30 (q, 2H, CH3CH2SOS). 

2-:Mercaptofie;radecanoic .9lcid (compound 8). 8.3 g (24.8 mmol) 2-bromohexadecanoic 

acid and thiourea (2.02 g, 26.5 mmol) in 50 ml EtOH were refluxed 4-6 h. Upon 

cooling the solution, 11 g NaOH (275 mmol) in 50 ml 50:50 EtOH/H20 was added 

and the solution was allowed to reflux for another 48 h. The cooled solution was 

subsequently acidified with 75 ml 4N HCl, which initiated the precipitation of a white 

solid. After filtration of the solid, the solid was stirred in 100 ml boiling water for 10 

*The notation used is sn2-snl; i.e. 0016-DPL refers to 1-(hexadecanoyl)-2-(16-mercaptohexadecanoyl)
L-a-phosphatidylcholine and al 8-DSL refers to 1-( octadecanoyl)-1-(2-mercaptooctadecanoyl)-L-a
phosphatidy !choline). 
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min, cooled and filtered. The later process was repeated 3 to 4 times to purify the fatty 

acid from urea. 

lH NMR (CDCl3): o .87 (t, 3H, CH3); 1.24 (br s, 24H, (CH2)n); 1.71and1.90 (m, 

lH, CfuCHSH); 2.05 (d, lH, SH); 3.31 (q, lH, CHSH); 9.5 (s, lH, COOH). 

2-'Etfiy{c{itliioliexadecanoic .91.cid (compound 9 ). 2-Mercaptohexadecanoic acid ( 1. 85 g, 

6.42 mmol), ethylethanethiosulfinate (1.18 g, 8.55 mmol) and triethylamine (0.72 ml, 

5.2 mmol) were dissolved in 16 ml chloroform and stirred under argon in the dark for 

24 h. After removal of the solvent via rotary evaporation, the mixture was purified by 

passage over a 60 x 3.5 cm silica gel column using chloroform as the eluant. We found 

it difficult to isolate the protected acid in pure form without significant loss of the 

product unless the material was rechromatographed and a very large column was used. 

However, the presence of a small amount of the impurity, which runs ahead of the fatty 

acid on the column, did not seem to affect subsequent reaction steps. 

lH NMR (CDCl3): o .87 (t, 3H, CH3); 1.24 (br s, 27H, (CH2)n and SCH2Cfu); 

1.75 and 1.90 and (m, lH, CH2CHSS); 2.73 (q, 2H, SSCfuCH3) ; 3.31 and 3.34 

(t, lH, CHSS); 10.5 (s, lH, COOR) 

l ,2-'1Ji(2-etfiy{c{itliioliexadecanoy{)-L-a -pliospliatidyfclioCine (compound 1 OJ. GPC•CdCb 

(89.6 mg, 0.196 mmol), 2-ethyldithiohexadecanoic acid (348 mg, 1.0 mmol) and 4-

dimethylaminopyridine (DMAP) (48.0 mg, 0.40 mmol) were dissolved in freshly 

distilled chloroform (distilled over P205) to which was added dicyclohexylcarbodiimide 

(DCC) (165 mg, 0.80 mmol). The mixture was placed under argon and allowed to stir 

in the dark for 2-5 days. To remove DMAP, 7.5-10 g of AG 501-X8 (D) resin and 

sufficient chloroform were added to the mixture to form a thick slurry. The slurry was 

swirled intermittantly for approximately 10 min and subsequently removed by filtration. 

After the filtrate was concentrated under reduced pressure, the residue was purified by 
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passage over a 1.5 inch diameter (24 cm of gel) flash chromatographic column by 

eluting with the following gradient of solvents: CHCl3; 50:50 CHCl3/MeOH; 65:25:2 

CHCl3/MeOH/H20; and 65;25;4 CHCl3/MeOH/H20. 

lH NMR (CDCl3): 8 .86 (t, 6H, CH3); 1.26 (br s, 54H, (CH2)n and SCH2Cfu); 

1.74 and 1.85 (m, 2H, CH2CHSS); 2.69 (q, 4H, SSCH2CH3) ; 3.31 and 3.34 (br s, 

1 lH, CHSS and N(CH3)3); 3.79 (br s, 2H, CfuN); 3.95-4.05 (br s, 2H, CfuOP 

(glycerol backbone)); 4.22 and 4.52 (m, 2H, CfuO (glycerol backbone sn-1 chain)); 

4.35 (s, 2H, CfuOP (headgroup)); 5.24 (s, lH, CH (glycerol backbone, sn-2 chain). 

1,2 ·'1Ji(2-mercaptofie;radecanoy0-L -a -pfiospfiatic{uCcfiofine (compound 11 ). 7 5 mg (0.082 

mmol) 1,2-di(2-ethyldithiohexadecanoyl)-L-a-phosphatidylcholine was suspended in 1 

ml of 50:50 EtOH/H20 to which was added tributylphosphine (0.15 ml, 0.61 mmol). 

The reaction was placed under argon and stirred for 12-18 h in the dark. Subsequently, 

the solvent was removed in vacuo and the remaining residue was purified by flash 

chromatography as described above for 1,2-di(2-ethyldithiohexadecanoyl)-L-a

phosphatidylcholine (compound 10). 

lH NMR (CDCl3): lH NMR (CDCl3): 8 .87 (t, 6H, CH3); 1.24 (br s, 48H, (CH2)n); 

1.65 and 1.85 (m, 2H, CfuCHSH); 2.12 and 2.25 (m and d, respectively, 2H, SH); 

3.29 and 3.36 (br s, 1 lH, CHSH and N(CH3)3); 3.79 (br s, 2H, CfuN); 3.95-4.05 

(br s, 2H, CfuOP (glycerol backbone)); 4.20 and 4.52 ( br m, 2H, CfuO (glycerol 

backbone, sn-1 chain)); 4.35 (s, 2H, CH20P (headgroup)); 5.24 (s, lH, CH (glycerol 

backbone, sn-2 chain). 

16-'Bromofiqadecanoic .91.cid (compound 1) Generally, it was possible to purchase the 

necessary bromoacids to make the mercapto fatty acid. However, in the case of the ro-

16 and ro-15, it was necessary to prepare the bromoacid from the decanolide. 16-

Hexadecanolide (5.4 g, 21.0 mmol) in 48% hydrobromic acid (7 ml, 62 mmol) and 
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glacial acetic acid (70 ml) was refluxed for 4 hrs. Upon cooling to room temperature, 

50 ml H20 was added, which induced precipitation of the product. The white solid was 

filtered, washed several times with water and dried under vacuum. 

lH NMR (CDCl3): o 1.20-1.40 (br s, 22H, (CH2)n); 1.61 (m, 2H, j3-CH2); 1.83 (m, 

2H, ro-1 CH2); 3.39 (t, 2H, CH2Br). 

16-:Mercaptofie;radecanoic 5'1.cid (compound 2) 16-Bromohexadecanoic acid (10.7g, 32 

mmol) and thiourea (2.6 g, 34 mmol) in 26 ml absolute ethanol were refluxed 2-4 h. 

Upon cooling the solution, 3.4 g solid NaOH in 10.6 ml H20 was added and the 

solution was refluxed again for 3-6 h. The reaction mixture was then cooled and 

acidified with 3N HCl (ml-50 for 12.8 mmol) until a white precipitate formed. The 

precipitate was washed several times with 3N HCl followed by distilled water to 

remove urea, and subsequently dried under vacuum. 

lH NMR (CDCl3): o 1.29 (br s, 22H, (CH2)n); 1.60 (m, 4H, j3-CH2 and ro-1 CH2); 

2.33 (t, 2H, CfuCOOH); 2.50 (q, 2H, CfuSH); 11.7 (s, lH, COOH). 

16-'Etfiy{ditfiiofiexadecanoic .fllcid (compound 4). 16-Mercaptohexadecanoic acid (1.85 g. 

6.42), ethylethanethiosulfinate (1.18 g, 8.55 mmol) and triethylamine ( 0.72 ml, 5.22 

mmol) were dissolved in 20 ml chloroform, placed under argon and allowed to stir at 

room temperature in the dark for 24 h. The solvent was then removed and the residue 

purified by passage over a silica gel column as described for 2-ethyldithiohexadecanoic 

acid (compound 9). 

lH NMR (CDCl3): o 1.2-1.4 (br s, 25H, (CH2)nand SSCH2Cfu); 1.63 (m, 4H, j3-

CH2 and ro-1 CH2); 2.33 (t, 2H, CH2COOH); 2.68 (q, 4H, CH2SSCH2CH3); 10.5 

(s, lH, COOH). 
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1,2-tJJi(l 6-etfiy{r{itfiiofie;ratfecanoy(-£-a -pfiospfiatitfyCcfioCine (compountf 5). GPC•CdCli 

(220.8 mg, 0.5 mmol), 16-ethyldithiohexadecanoic acid (695 mg, 2 mmol) and 4-

dimethylaminopyridine (120.0 mg, lmmol) were dissolved in freshly distilled 

chloroform (distilled over P205) to which was added dicyclohexylcarbodiimide (DCC) 

(1.03 g or more, 5 mmol). The mixture was placed under argon and allowed to stir in 

the dark for 2-5 days. To remove DMAP, 7.5-10 g of AG 501-XS (D) resin and 

sufficient chloroform were added to the mixture to form a thick slurry. The slurry was 

intermittantly swirled for approximately 10 min and subsequently removed by filtration. 

After the filtrate was concentrated under reduced pressure, the residue was purified by 

passage over a 1.5 inch diameter (24 cm of gel) flash chromatographic column by 

eluting with the following gradient of solvents: CHCl3; 50:50 CHCl3/MeOH; 65:25:2 

CHCl3/MeOHIH20; and 65:25:4 CHCl3/MeOHIH20. 

lH NMR (CDCl3): 8 1.2-1.40 (br s, 50H, (CH2)n and SCH2Cfu); 1.43 (br s, 4H, 

f3-CH2); 1.63 (m, 4H, ro-1 CH2); 2.26 (m, 4H, CH2COO); 2.67 (m, 8H, 

CfuSSCH2CH3) ; 3.36 (s, 9H, N(Cfu)3); 3.80 (br s, 2H, CfuN); 3.92 (s, 2H, 

CfuOP (glycerol backbone)); (4.11 and 4.37 (m, 2H, CfuO (glycerol backbone, sn-1 

chain)); 4.36 (s, 2H, CH20P (headgroup)); 5.19 (s, lH, CH (glycerol backbone, sn-2 

chain)). 

1,2-tJJi(16-mercaptofie;ratfecanoy0-£-a-pfiospfiatitfy(cfioCine. As described above, this step 

of the reaction requires optimization and therefore it is critical to examine the proton 

NMR of the product to be sure that complete deprotection has taken place. Sometimes 

a second reaction is necessary. Generally, the short chain lipids 1,2-di(

mercaptoundecanoy 1)-L-a-phosphatidylcholine to 1,2-di(l 6-mercaptooctanoyl)-L-a-
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phosphatidylcholine are much more readily deprotected and solubilized* by the excess 

DTI than the long chain compounds. 

Approximately 200 mg ( 0.22 mmol) 1,2-di(16-ethyldithiohexadecanoyl-L-a-phospha

tidylcholine (compound 6) and 1-1.5 g ("" 6.5 mmol) dithiothreitol were solubilized 

in 5 ml EtOH. The reaction mixture was placed under argon and allowed to stir for 2-3 

days in the dark at 40°C. The solvent was subsequently removed by rotary evaporation 

and the final product purified by flash chromatography as described above for 1,2-

di( 16-ethyldithiohexadecanoyl-L-a-phosphatidylcholine (compound 11). 

lH NMR (CDCl3): 8 1.2-1.35 (br s, 44H, (CH2)n); 1.56 (m, 8H, j3-CH2 and ro-1 

CH2); 2.26 (m, 4H, CH2COO); 2.49 (m, 4H, CfuSH) ; 3.36 (s, 9H, N(CH3)3); 

3.79 (br s, 2H, CH2N); 3.92 (m, 2H, CH20P (glycerol backbone)); 4.11 and 4.37 

(m, 2H, CfuO (glycerol backbone, sn-1 chain)); 4.36 (br s, 2H, CH20 P 

(headgroup)); 5.19 (s, lH, CH (glycerol backbone, sn-2 chain)). 

1-liexadecanoy{-2-{16-'Etfiy[cfitliioliexadecanoy[J-L-a -pliospliatitfyCclioCine (0)16 -'DP L). L

a-monohexadecanoy lphosphatidylcholine (lyso-DPL) (250 mg, 0.504 mmol), 16-

ethyldithiohexadecanoic acid (347 mg, 1 mmol) and 4-dimethylaminopyridine (60 mg, 

.49 mmol) were dissolved in freshly distilled chloroform to which was added 

dicyclohexylcarbodiimide (246 mg , 1.26 mmol). The mixture was placed under 

argon and allowed to stir in the dark for 2 days. To remove DMAP, 7.5-10 g of AG 

501-X8 (D) resin and sufficient chloroform were added to the mixture to form a thick 

slurry. The slurry was swirled intermittantly for approximately 10 min and 

subsequently removed by filtration. After the filtrate was concentrated under reduced 

pressure, the residue was purified by passage over a 1.5 inch diameter (24 cm of gel) 

* Solubilization of the lipid was the primary reason for choosing such high concentrations of DTI and 
the elevated reaction temperatures. 



495 

flash chromatographic column by eluting with the following gradient of solvents: 

CHCl3; 50:50 CHCl3/MeOH; 65:25:2 CHCl3/MeOH/H20; and 65:25:4 

CHCl3/MeOH/H20. 

1-(fiexacfecanoy0-2 -(16-mercaptoliexacfecanoyO-L-a -pfiospfiaticfy{cfioCine. Approximately 

200 mg ( 0.24 mmol) 1-hexadecanoyl-2-(16-ethyldithiohexadecanoyl)-L-a-phospha

tidylcholine and 1 g (6.5 mmol) dithiothreitol (DTT) were solubilized in 5 ml EtOH. 

The reaction mixture was placed under argon and allowed to stir for 2-3 days in the 

dark. The solvent was subsequently removed by rotary evaporation and the final 

product purified by flash chromatography as described above for 1,2-di(16-

ethy ldithiohexadecanoy 1-L-a-phosphatidylcholine (compound 6). 

lH NMR (CDCl3): o .85 (t, 3H CH3 sn-1); 1.2-1.35 (br s, 52H, (CH2)0 ); 1.56 (m, 

6H, ~-CH2 (sn-1 and sn-2) and ro-1 CH2 (sn-2)); 2.27 (m, 4H, CH2COO); 2.50 (m, 

4H, CfuSH (sn-2)) ; 3.36 (s, 9H, N(Cfu)3); 3.79 (br s, 2H, CfuN); 3.92 (m, 

2H, CH20P (glycerol backbone)); 4.12 and 4.39 (m, 2H, CfuO (glycerol backbone, 

sn-2 chain)); 4.36 (br s, 2H, CH20P (headgroup)); 5.19 (s, lH, CH (glycerol 

backbone, sn-1 chain)). 

1-octacfecanoy{-2 -(2-etfiy{c{itliiooc tacfecanoy{}-L-a -pliospliaticfyC-cfioCine. L-a-mon oocta

decanoy l p hosp ha tidy lcholine (lyso-DSL) (250 mg, .477 mmol), 16-

ethyldithiohexadecanoic acid (720 mg, 1.91 mmol) and 4-dimethylaminopyridine (60 

mg, .49 mmol) were dissolved in freshly distilled chloroform to which was added 

dicyclohexylcarbodiimide (246 mg , 1.26 mmol). The mixture was placed under argon 

and allowed to stir in the dark for 2 days. To remove DMAP, 7.5-10 g of AG 501-X8 

(D) resin and sufficient chloroform were added to the mixture to form a thick slurry. 

The slurry was swirled intermittantly for approximately 10 min and subsequently 

removed by filtration. After the filtrate was concentrated under reduced pressure, the 



496 

residue was purified by passage over a 1.5 inch diameter (24 cm of gel) flash 

chromatographic column by eluting with the following gradient of solvents: CHCl3; 

50:50 CHCl3/MeOH; 65:25:2 CHCI31MeOHIH20; and 65:25:4 CHCl3/MeOHIH20. 

1-octacfecanoy{-2-(2-Mercaptooctacfecanoy[}-£-a -pliospfiaticfy{cfio{ine (a 18-'lJSL) 1-

octadecanoyl-2-(2-ethyldithiooctadecanoyl)--L-a-phosphatidylcholine (75 mg, .082 

mmol) was suspended in 1 ml of 50:50 EtOH/H20 to which was added 

tributylphosphine (0.15 ml, 0.61 mmol). The reaction was placed under argon and 

stirred for 12 h in the dark. Subsequently, the solvent was removed in vacuo and the 

remaining residue was purified by flash chromatography as described above for 1,2-

di(2-ethyldithiohexadecanoyl)-L-a-phosphatidylcholine (compound #). Alternatively, 

approximately 200 mg 1-(2-ethyldithiooctadecanoyl)-2-octadecanoyl-L-a-phospha

tidylcholine (.24 mmol) and 1 g (::::: 6.5 mmol) dithiothreitol were solubilized in 5 ml 

EtOH. The reaction mixture was placed under argon and allowed to stir for 2-3 days in 

the dark. The solvent was subsequently removed by rotary evaporation and the final 

product purified by flash chromatography as described above for 1,2-di(2-

ethyldithiohexadecanoyl-L-a-phosphatidylcholine. 

1 H NMR (CDCl3): 8 .87 (t, 6H, CH3); 1.24 -1.4 (br s, 56H, (CH2)n) ; 1.56 (br s, 

2H, ~-CH2 (sn-1)); 1.65 and 1.85 (m, 2H, CfuCHSH (sn-2)); 2.15 (d, 2H, SH 

(sn-2).); 2.25 (m, 2H, CH2COO (sn-1)) 3.29 (m, lH, CHSH (sn-2)); 3.36 (br s, 9H, 

N(Cfu)3); 3.80 (br s, 2H, CH2N); 4.0 (br s, 2H, CH20P (glycerol backbone)); 4.13 

and 4.41 ( m, 2H, CfuO (glycerol backbone, sn-2 chain)); 4.36 (s, 2H, CfuOP 

(headgroup)); 5.24 (s, lH, CH (glycerol backbone, sn-1 chain)). 
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Representative spectra of the monomeric a-THIOLS and ro-THIOLS and the 

mixed chain compounds are shown in Figures 3-6. Assignments are similar to those 

described above for the final products. The important features to note are: 

(i). In the case of the W-THIOLS (Fig 3); (i.e.,, 1,2-di(16-

mercaptohexadecanoy 1)-L-a-phosphatid y lcholine, 1,2-di( 15-mercaptopentadecanoy 1)

L-a-phosphatidy lcholine, 1,2-di( 12-mercaptododecanoy 1)-L-a-phosphatidy lcholine 

and 1,2-di(ll-mercaptoundecanoyl)-L-a-phosphatidylcholine) there is no methyl group 

apparent in the spectra at .87 ppm indicating that the disulfide exhange reaction is a 

great improvement over deprotection with TBP. 

(ii). The spectra of monomeric a-THIOLS (Figure 4); (i.e., 1,2-di(2-

mercaptohexadecanoy 1 )-L-a-phosphatidy lcholine, 1,2-di(2-mercaptooctadecanoy 1)-L

a-phosphatidy lcholine and 1,2-di(2-mercaptoarachidoyl)-L-a-phosphatidylcholine) are 

significantly broader than the spectra for the CO-THIOLS. This is most likely due to the 

fact that the products are a mixture of stereoisomers due to the presence of the chiral 

CHSH group. 

(iii). The synthesis of the mixed-chain lipids is known to occur with some 

percentage of acyl chain migration. We did not examine this analytically by GPC. 

However, for a-THIOLS , the SH resonance from the sn-1 chain is distinct from that 

of the sn-2 chain in the lH NMR spectra. The sn-1 SH appears as a downfield doublet 

whereas the SH from the sn-2 chain is shifted slightly upfield and appears as a multiplet 

(see Figure 4 for examples). In the lH spectra of the mixed chain compounds (Figure 

6), only a very small percentage of the SH groups may be assigned to the sn-2 chain, 

indicating only a small amount of acyl chain migration. 
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Figure 3 

Representative lH NMR spectra (500 MHz) of monomeric ro-THIOLS in CDCl3: 

A. 1,2-di(l 6-mercaptohexadecanoy 1)-L-a-phosphatidy !choline; B. 1,2-di( 15-

mercaptopentadecanoyl)-L-a-phosphatidylcholine; C. 1,2-di( 12-mercaptododecanoy 1)

L-a-phosphatid y l-choline and D. 1,2-di(l 1-mercaptoundecanoyl)-L-a-phospha

tidy !choline. 
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Fig-ure 4 

Representative lH NMR spectra (500 MHz) of monomeric a-THIOLS in CDCl3: 

A. 1,2-di(2-mercaptohexadecanoyl)-L-a-phosphatidylcholine; B. 1,2-di(2-mercapto

octadecanoyl)-L-a-phosphatidylcholine; C. 1,2-di(2-mercaptoarachidoy 1)-L-a

phosphatidylcholine. 
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Figure 5 

Representative lH NMR spectra (500 MHz) of mixed-chain ro-THIOLS in CDCl3: 

A. 1-(hexadecanoyl)-2-( 16-mercaptohexadecanoyl)-L-a-phosphatidylcholine; B. 1-

( octadecanoyl)-2-( 16-mercaptohexadecanoyl)-L-a-phosphatidy !choline 
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Figure 6 

Representative lH NMR spectra (500 MHz) of mixed-chain a-THIOLS in CDCI3: 

A. 1-( octadecanoyl)-2-(2-mercaptooctadecanoyl)-L-a-phosphatidylcholine ); B. 1-

( octadecanoy 1)-2-(2-mercaptoarachidoyl)-L-a-phosphatidy le ho line) 
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:Po[~nn.erizntion of Liposotn.e.s. 

Polymerization of the thiol-containing phospholipid was routinely carried out 

immediately following preparation of the mercaptophosphatidylcholines. The 

motivation for doing this was due to the reactivity of the compounds, particularly those 

with short acyl chains. Storage under argon at -20°C was insufficient to prevent some 

oxidation from occurring. Since phospholipid dimers or short oligomers were not 

readily distinguished from degradation products (i.e., lysolipid), we felt it best to store 

the compounds as dry powders in the polymerized form to avoid potential artifacts on 

account of the sample history. As described in the morphology chapter, the polymeric 

cx.-THIOLS form liposomes very readily from the prepolymerized state whereas the CO-

THIOLS appear to form bilayer fragments whether they have been lyophilized or not. 

Afetlioa 5'l ; Peroxiae Po{ymerization. Polymerization of the compounds was carried 

out by the protocol outlined by Regen et al. with small modifications of temperature 

and concentration (1,4 ). Briefly, samples were prepared at a concentration of 5 mg/ml 

by dispersion in borate buffer (10 mM borate, 150 mM NaCl, 2 mM NaN3; pH 8.5) 

containing 20 equivalents of H202, pH 8.5.* The samples were subsequently 

polymerized for 4-8 h above the phase transition temperature of the monomeric lipid. 

cx.-THIOLS were polymerized 4 hat 4ooc, 45-500C and 600C (cx.-16, cx.-18 and cx.-20, 

respectively). T-THIOLS were polymerized as follows: 4ooc, 4 h (N=8-10); 45°C, 4 

h (N=ll-12); 50-55oc, 4 or 8 h (N=15) and 60°C, 4 or 8 h (N=16).** Mixed-chain 

lipids were polymerized at a concentration of 10 mg/ml with 20 equivalents of H202, 

pH 8.5 for 4 h at the following temperatures: 50°C (C015-DPL, C015-DSL); 60°C 

* In some cases the samples were sonicated prior to polymerization as described in the individual 
chapters. Unless specifically mentioned, however, the lipids were simply dispersed in buffer. 

** N refers to the number of carbons in the fatty acyl chains. 
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(rol6-DPL and a18-DSL); 65°C (ro16-DSL). The extent of polymerization was 

monitored (i) by detection of residual thiol groups using Ellman's reagent in a 

colorimetric assay or as a TLC spray and (ii) by the retention of the lipid at the origin 

of TLC plates eluted with 65:25:4 CHCl3/MeOH/H20. Following polymerization, 

samples were dialyzed against deionized water for at least 24 h, lyophilized and stored 

as dry powders at -20°C. Some variations in temperature and length of polymerization 

have been utilized but are noted in the chapters. This method of polymerization was 

used routinely for the experiments described in the preceeding chapters unless noted 

otherwise in the text. 

The consequence of the peroxide induced oxidative polymerization has been 

described by Regen et al. for a-16, ro-11, and ro-16. In their studies, polymerization 

was carried out as described above with the exception that for all three lipid types, 

polymerization was carried out for 4 h at 4ooc. Based on analysis of the residual thiol 

groups, the extent of the reaction and average degree of polymerization (Xn) was 

reported to be 96% (Xn =25), 94% (Xn = 17) and 95% (Xn = 20) for ro-1, ro-16 and 

a-16, respectively. As described above, for the longer chain lipids, (i.e., ro-16, ro-

15) the polymerization conditions were slightly more rigorous (higher temperatures 

were used) in order to polymerize all monomeric lipids above their respective transition 

temperatures.* Thus under the conditions which we have employed we anticipated 95-

100% conversion to the disulfide. 

By TLC, the lipids were all found to be thiol negative subsequent to polymerization. 

NMR was also used to characterize the shorter chain polymerized lipids, which give 

rise to reasonably resolved features. Figure 7 shows the lH NMR spectrum of 

sonicated monomeric ro-11 SUV s in water. The resonance at 4.63 ppm arises from 

* See Chapter III for a discussion of the thermal properties of the lipids. 
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lH NMR Spectrum (500 MHz) of sonicated monomeric ro-11 SUVs in D20. The 

spectrum was apodized with 1 Hz linebroadening. 
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HOD present in the sample. All other resonances between 3.5 and 5.5 ppm are 

assigned to protons from the glycerol backbone and the methylene groups of the 

headgroup, the resonance at 3.1 ppm is from the choline methyls, and the broad 

envelope between .75 and 1.75 ppm is from the bulk methylenes of the acyl chains. 

The assymetric resonance at = 2.4 ppm is due to the overlap between the CfuSH (low 

field peak) and CH2COO (high field shoulder). Upon polymerization, the resonance 

attributable to the CH2SH group is shifted downfield to= 2.65 ppm (CH2SS). As can 

be seen in the spectra in Figure 8 corresponding to polymerized ro-11 and ro-10 in 

D20, the reaction appears to be essentially complete. This is visualized even more 

readily by the spectrum of polymeric C0-11 in MeOH (Figure 8). * 

Similar results are shown by analysis of the 13C spectra. Figure 9A shows the 

carbon spectra of monomeric ro-8 micelles in phosphate buffer.** The detailed 

resonance assignments are as described in Chapter V. Briefly, the peaks between 60 

and 71 ppm arise from the glycerol backbone and headgroup carbons, the peak at 54.3 

is from the choline methyls, and the resonances between 20 and 40 ppm are due to the 

acyl chains.*** The most important features to note are (i) the lack of any resonance at 

= 14 ppm, which would be due to a terminal methyl group and (ii) the peak at 34 ppm, 

which is attributed to the superposition of the carbons from the a-methylene carbon and 

the CH2SH carbon (co-methylene). Upon oxidative polymerization the resonance of the 

ro-methylene is shifted to = 39 ppm as shown in Figure 9B. The lines are also 

broadened as a consequence of the polymerization and the increase in the size of the 

aggregate. Figure 10 shows a spectrum of polymeric C0-11 in MeOH (the resonance at 

* The resonances at "" 3.3 and 4.8 ppm are due to the methanol. 

** The resonance seen at "" 57 ppm is due to EDT A in the sample. 

*** The carbonyl carbon which resonates at approximately 174 ppm was not included in the Figure. 
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Figure 8 

lH NMR Spectrum (500 MHz) of polymerized CO-THIOLS in D20 or MeOH. The 

samples were polymerized by method B (method A yields the same results but the 

samples are less well resolved). The spectra are apodized with 1 Hz (A and B) and .5 

Hz (C) linebroadening: A Polymerized co-10 in D20; B. Polymerized C0-11 in D20 ; 

C. Polymerized C0-1 lin MeOH. 
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Fig-ure 9 

Be spectra (125 MHz) of ro-8 "micelles " in phosphate buffer. The spectra are 

apodized with 10 Hz (A) and 20 Hz (B) linebroadening: A. Monomeric ro-8 and B. 

Polymeric ro-8. The polymerization was carried out by method A. 



523 

0 
N 

0 
LO 

0 
w 



524 

0 
N 

0 
In 



525 

Fhrnre IO 

13C spectra (125 MHz) of polymeric ro-11 in MeOH. The polymerization was 

carried out by method A. The spectrum was apodized with 10 Hz linebroadening. 
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42 ppm is due to the MeOH). As in the case of polymeric ro-8, the CH2S is shifted to 

39 ppm, and there is no sign of any terminal methyl groups. 

The a.-THIOLS are not as easily characterized by lH NMR due to the broadness of 

the resonances, the overlap of the CHS methine by the choline resonance and the fact 

that the SH protons are frequently obscurred by water. Figure 11 demonstates the 

proton spectra of polymerized a.-16 in CDCl3. Clearly all resonances are broadened on 

account of the polymerization. However the extent of the reaction cannot be monitored 

in this fashion as the CHSS and any residual SH protons are not visible.* Be NMR, 

however, provides more detailed information. Figure 12A shows the 13C spectrum of 

monomeric a.-8 in MeOH. The resonance assignments are as was noted above for 

monomeric T-8 with the exception that the resonance appearing at "" 14 ppm is due to 

the terminal methyl group and the resonance at;:,: 42 ppm is due to the CHSH carbon 

(the broad resonance at ;:,:48 ppm is due to MeOH). Upon polymerization, the CHSH 

carbon disappears completely. At this point it is not certain where the resonance 

corresponding to the polymerized CHSS arises but based on the spectrum of the 

protected fatty acid (CHSS resonates at 53 ppm), we suspect that it is buried beneath 

the resonance of the choline carbon or alternatively, broadened away by rapid spin-spin 

relaxation due to the rigidity of that region of the phospholipid. The important point, 

however, is that consistent with the results of Regen et al. (1), and thiol analyses 

thatindicate virtually complete disappearance of residual thiol groups following 

polymerization, the NMR data suggest close to 100% disulfide formation. A reduced 

extent of reaction might be expected for the long chain ro-THIOLS due to the high 

transition temperature of these lipids. However, under conditions that are slightly 

* It should be noted however that these lipids polymerize more readily than the ro-THIOLS due to the 
presence of the thiol group near the membrane interface. 
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Figure H 

lH NMR spectra (500 MHz) of a:-16 in CDCI3 with 1 Hz linebroadening. The 

polymerization was carried out by method A. 
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Figure 12 

13C spectra (125 MHz) of a-8 "micelles " in MeOH (A) or 50:50 MeOH/CDCl3. 

The spectra are apodized with 20 Hz linebroadening: A. Monomeric a-8 and B. 

Polymeric a-8. The polymerization was carried out by method A. 
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milder than what we have used to polymerize ro-16, Regen obtained 94% conversion 

to the disulfide. 

Metfioc{ 'B ; Cu±1.! -o-PfienantfiroCine Cata{yzec{ Po[ymerization For the most 

part, method A was used to polymerize the lipids. However, a Cu+2/o-phenanthroline 

catalyzed polymerization method was also employed in a few experiments described in 

Chapter II. The procedure is a modification of that reported in (7) for sulfhydryl 

oxidation. Briefly, samples were prepared as dispersions in borate buffer (pH 7.4) 

containing 20 equivalents of H102. To this was added µliter amounts of a 0.025M 

Cu+22f-o-Phenanthroline solution until a slight pinkish tint was detected indicating the 

presence of Cu+I(7). The solution was subsequently stirred at room temperature until it 

attained a slight green tint and the pH began to drop, or the sample was thiol-negative 

as detected with Ellman's reagent. At this point .lM EDTA (in 10 mM Tris, pH 7.4) 

was added to quench the reaction. The samples were dialyzed exhaustively with an 

Amicon dialysis chamber (YMlO filters), first with .lm EDTA to remove copper ions 

and subsequently with H10I MEOH to remove o-phenanthroline. The proton spectra 

of polymeric T-11 in CDCL3/MEOH appeared similar to that of an H102-polymerized 

sample. Samples rehydrated after polymerization by this method seemed to produce 

smaller aggregate structures than samples prepared by method A. This was shown by 

preliminary gel permeation chromatography using calibrated columns and by lH 

NMR. Whether this is due to the polymerization or dialysis with organic solvent is not 

known. 

Metfioc{ C; 'lFV Po[ymerization. In the first publication of the lipids under study (4), 

1,2-di(16-mercaptoundecanoyl)-L-a-phosphatidylcholine (ro-11) was reported to be 

polymerizeable by uv irradiation. The polymerization protocol was carried out as 

previously described. Specifically, 1 to 5 mg of lipid (ro-11) was bath sonicated in 1 

ml borate buffer (10 mM borate, 150 mM NaCl, 2 mM NaN3; pH 8.5) and 
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subsequently photolyzed in a cooling bath at 254 nm. The progress of the reaction was 

monitored by the disappearance of thiol groups using Ellman's reagent and retention of 

the lipid at the origin of TLC plates eluted with 65:25:4 CHCl31MeOH/H20. Electron 

micrographs of the polymerized material confirmed the formation and retention of 

SUVs. However, lH NMR indicated that the uv poymerization caused a substantial 

and complete loss of sulfur as indicated by a diminished resonance at 2.4 ppm 

(CfuSH) and 2.65 ppm (CI:i2.SS) Consequently, this polymerization protocol was 

abandoned. 
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Chapter IX 

Conduaing 1\f,mark§ 

Technically, we did not achieve the extremely stable liposomes with prolonged 

vascular half lifes that we had initially envisioned at the conception of this project. 

Needless to say, given our intentions and the implications of liposomal drug delivery, 

the relatively unspectacular in vivo results were perhaps my biggest disappointment 

and the most frustrating part of the research I have done over the course of the last five 

and a half years. That is not to say that the lipids studied in this thesis have no utility. 

There are a variety of other applications of polymerizeable liposomes (even if only for 

immobilization of recognition molecules and enzymes onto membrane surfaces), which 

have less strict requirements on the physical properties of the liposomes than drug 

delivery applications have. But the applications are really only secondary and "icing on 

the cake." Our original expectations of the potential for these lipid types and our 

subsequent experimental results only serve to illustrate our current ignorance of the 

properties of polymerizeable phospholipids. It is hoped that the work described in this 

thesis will contribute to the deficit by (i) offering some insight into the physical 
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properties of a particular class of polymeric lipids (ii) illustrating both their potential 

and their caveats when it comes to in vivo use and (iii)providing some fundamental 

information, which may be of help in the rational design of polymerized membranes 

that possess predetermined properties. 


