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Abstract

This thesis explores the application of photorefractive materials in two distinct areas: the
hoiographjc data storage and the dynamic nonlinear optical interactions. First, we have
established that partial ferroelectric domain reversal in certain ferroelectric materials can be
used to permanently fix the dynamic holographic gratings, and analyzed the interaction
between the fixed and the dynamic components of a hologram. A comprehensive analysis
of the storage temporal dynarrﬁcs in photorefractive materials is further developed for the
case of thermal ionic fixing. An experimental study of holographic storage dynamics in
photorefractive lithium niobate revealed new features related to the ionic conductivity in this
and similar materials. We established and developed techniques for long-lifetime and high-
efficiency hologfam fixing in the holographic data storage applications. We further analyze
theoretically the impact of the recording response properties of different storage media
(including photorefractive materials and photopolymers) and optical detection noise on the

ultimate storage capacity of holographic memories.

Second, the transverse properties of the photorefractive double phase conjugate mirror
(DPCM) havé been studied. We have established that the DPCM exhibits a sharp
conjugation fidelity gain threshold which increases with image resolution, while the
reflectivity is a smoothly varying function of nonlinear gain. The conjugation fidelity was
found to degrade dramatically for unequal intensities ratio. The DPCM exhibits critical

slowing down in the vicinity of the oscillation threshold. A two-dimensional coupled-
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modes perturbation analysis of the DPCM is introduced and its basic predictions are in a

good qualitative agreement with the results of the experimental study.

~ Finally, we analyze the nonlinear optical second harmonic generation in materials with
strong photorefractivity. In the presence of strong self-phase modulation the phase
matching conditions are modified and we found that in some cases this leads to a unique
effect, nan;ely, the nonlinear self-phase matching of optical nonlinear interaction. Strong
photorefractive response manifests itself in two characteristic and very apparent manners; a
large change in the conversion efficiency and self-defocusing of the generated second
harmonic beam. We introduced a two-dimensional model of photorefractive effect and
found its predictions to be in a good qualitative agreement with the observed transverse

dynamics.
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Chapter One

Introduction to Photorefractive Nonlinear Optics
and Applications |

1.1 Introduction

Photofefractive effect is defined as a nonlinear change of the index of refraction of the
medium in the presence of light. Most photorefractive materials are electrooptic crystals in
which refractive indices are changed by photoinduced space charge fields via the
electrooptic effect. The possibility of obtaining high optical nonlinearities at milliwatt power
levels makes these materials particularly attractive for applications in dynamic holography,

phase conjugation, and holographic data storage.

Thé photdrefractive effect has been discovered in a large variety of electrooptic
materials including LiNbO, [1, 2], LiTaO,, BaTiO, [3], KNbO, [4], Ba,_Sr,Nb,0, [5],
Bi,,Si0,, and Bi,,GeO,, [6], GaAs, InP [7] and other compound semiconductors, and,
‘therefore, can be considered as a general property of electrooptic materials. Depending on

the band gap of the material and the energy levels of the donor and acceptor levels of the



ifnpurity ions involved, the photorefractive effect may be induced by ultraviolet, visible or

infrared radiation.

_ Since the discovery of the photorefractivé effect, a great deal of effort has been devoted
to identifying the microscopic details of the mechanism in order to optimize materials for
either memory or nonlinear optical applications [8]. These studies have also led to the
discovery of new effects in photorefractive materials, including the bulk photovoltaic effect
[9] and holographic light-induced scattering ("beam fanning") [10]. At present, it is
understood that the photorefractive nonlinearity is produced due to the photoexcitation of
mobile carriers from donor impurities, their diffusion and drift due to internal and
externally applied electric field and photovoltaic current, subsequent retrapping of carriers
on ionized donors, and, finally, the buildup of internal space charge field. The index
perturbation is then produced by linear or biased quadratic electrooptic effects. A
comprehensive model of photorefraction in electrooptic crystals was first proposed by
Kukhtarev [11] and, later, expanded to incorporate both hole and electron conductivity

[12], shallow traps [13], polarization variations [14], and ionic transport [15].

The possibility of using photorefractive materials as a storage media in holographic
memory Systems was first proposéd by Chen et al. [2]. The holographic data storage uses
the concept of storing data in the form of multiplexed holographic gratings distributed
throughout the volume of the recording media [16, 171 and recorded with different
references. The independent retrieval of each of the stored pages of data is allowed due to
the Bragg selectivity provided by the volumetric .interaction [18]. The random access is
‘based on the optical parameters, such as the wavelength of light, incidence angle of the
reference, or its spatial distribution. The dynamic response .makes photorefractive materials

suitable for both read-write (because holograms are optically "erasable"), and read-only



s't'oragei af the gratingsv are‘ quasi-permanently fixed [19]). For certain applications this
versatility makes these materials a more attractive media compared to, €.g., photopolymers
(read-write access is not possible), Ge-doped glass (only UV response is realized), or
photographic emulsion (wet development is necessary). Holographic approach to storing
large volumes of information is attractive due to its highly parallel access to the data, short
access time, and very large theoretical diffraction-limited storage capacity of ~V/A’ bits in a

volume V.

Attempts at 'exploiti‘ng this potential have been made in early 70-s [20, 21], however,
the major progress has not been achieved until recently [22-25], been triggered both by the
advances in the growth and preparation of photorefractive holographic materials and
associated device technologies (e.g., liquid crystal spatial light modulators and detector
arrays), and by the inventions of new multiplexing techniques [26, 27]. Still many issues
associated with material properties, their understanding and control, are of great
importance. These include the dynamic range, photosensitivity, as well as permanent fixing
of holograms for nonvolatile storage, and also efficiency and storage dynamics of fixed

holograms (i.e., the lifetime of holographic memory).

Chapters 3, 4, and 5 of this thesis are devoted to the material research for holographic
data storage application with particular emphasis on the fixing of stored holograms and
their temporal dynanﬁcs and stability. Two distihctly different approaches have been
exploited. One (Chapter 3) uses the variation in spontancous ferroelectric polarization
correlated with the electric field of the hologram, the other involves ionic transport at
kelevated temperature to create an ionic pattern mimicking the initial trapped electrons’
distribution. The first (electrical fixing) approach leads to relatively low fixing efficiencies,

but can be used sequentially, and, therefore, largely defeats the erasure during the



récordirig of multiplexed hoiograms [28]. The other approach (Chapter 4) gives very high
fixing/developing efficiency with long lifetime, although all holograms can be fixed only
after the complete exposure. We established and developed techniques for long-lifetime and
hjghéefﬁciency hologram fixing in lithium niobate (as long as 2 to 10-15 years of projected

lifetime can be realized [29]).

_Other applications of volume holograms (fixed or dynamic) in photorefractive crystals
include holographic interconnects, optical associative memory, and optical neural networks
[30-32]. The ability of semiconductor photorefractive crystals (e.g., GaAs, InP) to convert
efficiently a vibrating speckled interference pattern into a high frequency ac electric signal
(via photo-electro-motive force effect [33]) led recently to a development of all-optical
detection system for ultrasonic waves in metals and similar materials [34, 35]. Strong
optical nonlinearity of photorefractive crystals can also lead to self-trapping of optical

beams in the volume of photorefractive crystal, which was observed recently [36].

Another unique application to photorefractive materials is the dynamic holography,
which involves the interaction of an incident light beam with its own diffracted beam inside
the recording medium [18]. This causes the continuous recording of new gratings which
amplitudés are nonuniform throughout the thickness of the material. The phase shift
between the interference pattern and the recorded grating leads to a dynamic energy
redistribution between the two recording beams [37]. The refractive index change induced
by the radiation gives rise to a phase and intensity redistribution of the interference field and
this, in turn, is reflected in the spatial distribution of the refractive index changes. This
determines the complicated dynamic nature of self-diffraction, including transient effects

and the establishment of a self-consistent stationary state, yielding considerable differences



between dynamic graﬁngs and the static gratings. The beam coupling effect via the dynamic

hologram can be useful for coherent light amplification of weak light beams.

‘Optical phase conjugation of cw laser radiation can be realized via nonlinear four-wave
miking in photorefractive materials. In the simplest case which involves the wave mixing
between a signal and two counterpropagating pumps, the phase conjugate replica is
generated due to the continuous, real-time readout by one of the pumps of the grating
recorded due to the interference between the other pump and the signal. This scheme is
completely analogous to the one of classical holography, but here the recording and
. reconstruction take place simultaneously. If the interaction volume is placed in some kind
of an optical cavity or resonator which provides the feedback of the conjugated signal back
into the nonlinear medium (this can be also, e.g., the internal reflections off the faces of the
crystal) a nonlinear oscillation can buildup. The first photorefractive oscillator [38, 39]
involved a photorefractive BaTiO, crystal externally pumped with a pair of
counterpropagating laser beams. This resulted in the buildup of the oscillation in the form
of another pair of mutually conjugate beams in an external cavity. In the self-pumped phase
conjugation both pump beams originate from a portion of the same input signal, and,
therefore,v no external beams are necessary. The phase conjugation with simultaneous
amplification of weak input signal is impossible with such schemes, however. A large
number of self-pumped and externally pumped »photorefractive oscillators have been
developed [38-44]. One of the most interesting interactions is the double phase conjugate
mirror (DPCM) [44] in which two mutually incoherent input beams create phase conjugate
replicas of each other. Its importance is due to the fact that this basic interaction is involved
1in building more sophisticated schemes of phase conjugation in photorefractive (e.g., total
internal reflection mirror [41] which includes two interconnected DPCMs). The quality of

phase conjugation by such devices was demonstrated by focusing complicated images into



the crystals and observing the faithfulness of reproduction when the image-bearing input

and output beams passed through a phase aberrator.

- One of the applications of phase conjugation is the restoration of distorted optical beams
to fheir original state after a double pass through abberating medium [45-47]. Others
involve, to mention a few, image processing (edge enhancement, feature extraction,
sUbtraction)‘ [48, 49], optical novelty filters [50], multimode-to-singlemode fiber couplers
[51], phasé conjugate interferometry [52], and phase locking of laser diode arrays [53].
The properties of the photorefractive oscillators related to transverse structure of the
conjugated beams are of particular importance to understanding the regimes and basic
limitations of such devices. Chapter 6 is devoted to studies of the transverse effects in the
photorefractive nonlinear oscillators. We investigate how the quality (fidelity) of phase
conjugation depends on the optical parameters of the beams (such as image resolution and
intensities ratio) and the nonlinear holographic gain of the medium. The results of the

experimental study are analyzed using a multiple plane wave two-dimensional model.
1.2 Outline of the Thesis

In Chapter 2 the band transport theory of the photorefractive mechanism is presented.
This is used to derive the coupled-wave equations of two-wave mixing and four-wave
mixing in photorefractive materials. The fundamental concepts of holographic data storage

and holographic fixing are reviewed.

The hologram fixing using ferroelectric microdomain patterns is presented in Chapter 3.
Fixing is achieved via applying a short electric field pulse after a short-term, low optical
intensity recording of each hologram at room temperature. The dynamic screening of fixed

polarization and ionic holograms is analyzed theoretically and confirmed experimentally.



Storage dynamics aﬁd h;)logram fixing via thermally assisted ionic transport is analyzed
in Chapter 4. Holographic gratings which are based on charge redistribution inevitably
decay due to ionic and electronic conduction. A comprehensive model for storage dynamics
in photorefractive materials is presented and relevant decay rates and transient hologram
field expressions are derived. Storage dynamics and ionic fixing are studied experimentally
in Fe-doped lithium niobate. Substantial reduction of hydrogen ion impurity density is
s‘h(’)wn to increase the available storage lifetime dramatically (from 3 to 10+15 years at
room temferature). The residual ionic conductivity is due to the species other than

hydrogen (most likely, due to lithium self-interstitials) and has activation energy of 1.4 eV.

Chapter 5 reviews the effect of finite material dynamic range and noise in optical
detection on the ultimate storage capacity of holographic memory for media with different
recording mechanisms. Photorefractive as well as photochemical materials are considered.
For the bulk volumetric storage in photorefractives and photopolymers the dominant factor
limiting the storage capacity is the dynamic range and detection noise. The origin of these
limitation is shown to lie in the erasure during multiplexed recording for photorefractive

media without fixing and dc-saturation for photochemical materials.

Photorefractive double phase éonjugation is the topic of Chapter 6. The experimental
study demonstrates that the conjugation fidelity exhibits a sharp threshold, while conjugate
reflectivity remains a émoothly varying function of the nonlinear gain. Gain threshold value
increases with increasing image resolution. The conjugation fidelity degrades dramatically
for unbalanced process. A two-dimensional coupled-modes perturbation analysis of the

DPCM is presented and its predictions are compared with the experiments.

Chapter 7 considers optical second harmonic generation in the materials with

photorefractive response. In the presence of strong photorefractive nonlinearity the phase



rhatchirig conditions fof the‘ frequency conversion process are (locally) modified, and in
some cases, this gives rise to a new effect, namely, the nonlinear self-phase matching (of
initially non-phase matched interaction). The latter process is studied experimentally in
phot(jvoltaic lithium niobate. The nonlinear self-phase matching of optical second harmonic
generation manifests itself in a large change in the conversion efficiency and a strong spatial
self-phase modulation (self-defocusing) of generated second harmonic. A two-dimensional
model of photorefractive/photovoltaic response has been developed. The transverse
structure of the index perturbation in the material and the spatial structure of the second

harmonic beam are simulated numerically.
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Chapter Two

Photorefractive Effect and Photorefractive
Nonlinear Optics

2.1 Introduction

Photorefractive effect is generally defined as a light-induced change of the index of
refraction of the material. In the field of photorefractive nonlinear optics, however, this
term refers to a much narrower class of phenomena, namely, the change in the index of
refraction in electrooptic crystals via redistribution of optically excited carriers and buildup
of internal space charge fields. Photorefractive phenomenon was first discovered in
LiNbO, by Ashkin et al. and classified as "optical damage" [1]. Later developments in the
field, de_scribed in Chapter 1 of this thesis, led to a better understanding of the underlying
physics and chemistry of the effect. According to now adopted band transport model of
photorefractivity [2] the photorefractive index change is produced due to the migration of
photoexcited carriers, their trapping on the impurity sites and buildup of spatially varying
internal space charge field. The microscopic mechanism Qf migration includes diffusion,
drift, and asymmetric excitation (photovoltaic current). The resulting index variation is

produced via electrooptic effect.
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2'.2 Band transport theory

. The ﬁlechanism of carrier redistribution and index change is described quantitatively by
the band transport model first proposed by Kﬁkhtarev [2]. The material is assumed to have
extﬁnsic or intrinsic impurities Na (donors), some of them being ionized due to the
acceptor levels N, (Figure 2.1). In the simplest case only non-ionized donors are
photoactive.‘ In order to obtain the lowest Fourier component of the space charge field, we
consider a sinusoidal optical interference pattern in the volume of the photorefractive

material (Figure 2.2):

I(x)=h+Le"“+cc. . 2.1

CONDUCTION BAND

ELECTRON
Energy DONORS ELECTRON

‘ it i |

=

+
Ng & < N
Na
VALENCE BAND DEEP TRAPS (ACCEPTORS)

Figure 2.1. Photorefractive band transport model with one photorefractive donor

species N,. Charge compensation condition implies Ni =N, (in the dark).



= Photoexcned carriers
I Wht interference pattern
: s x
A 24
i <Z=  Charge transport
I /\/\(/chffuswn drift)
L e
;| 24

Osc

| A 24
Bl ] Refractive index distribution
and
An
i S
A 2A

Figure 2.2. Photorefractive mechanism. Two coherent light beams forms interference
pattern. Mobile carriers are excited where the intensity is large, migrate to the
regions of low intensity, and are trapped by ionized donors. The resulting space
charge field induces the refractive index variation through electrooptic effect. ¢ is
the phase shift between the interference pattern and the index grating.
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The donors are not mobile (same holds for acceptors) and the change in their density is
due to the redistribution of electrons. The rate equation for the density of ionized donors in
the presence of optical excitation is given by

% = (o/hvI(x) + BYNs - Ni) - e Ni ne, ”

where the first term describes photo- and thermal ionization of the neutral donors which
density is Ng- N3 and the second term represents the recombination of conduction band

electrons n, on ionized donor traps.

Electrons diffuse, drift due to the internal and externally applied electric fields and

photovoltaic effect, and create a spatially nonuniform current given by

+ kyT one
je( X,t)= KG/hV I(X) (Nd-Nd)-l-uTb-. al)l(

+ epncE; 2.3

where the first, second, and third terms represent photovoltaic current, carrier diffusion,

and drift, respectively. The rate equation for the density of mobile carriers in the conduction

band is
one( x,t R . 13
(X )= ((S/hV I(X)+ B) (Nd-Nd)-'YeneNd+%5%(— ) 2.4

ot

Redistribution of electrons between traps gives rise to an internal, spatially varying
space charge field Es;, which is related to the ionized donors density and density of mobile

electrons via the Gauss law:
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2

OE(xt) e ;.. o

ox a(Nd'ne'Na)’ 2.5
Where we already assumed initial charge neutrality of the crystal. The nonlinear coupled
equations 2.2-2.5 represent the photorefractive band transport theory. An exact analytic
solution of this system of equation can be obtained in the small signal regime (I,/I, << 1)

by lineérizatjon. The amplitude of the fundamental Fourier component E., with spatial

periodicity k, is found to be

. Eq'(Ed - iEp.v.Na/Nd) Il

Bt = By~ By N/Ne 1o 2:6
for the short circuited case with photovoltaic effect and no applied field, and
Eo =i Eq-(Ed+lEo) _I_l 2.7

=1 - ,
51 Eq+ Eq +1iEy I

for the case with no photovoltaic effect (e.g., SBN) and when the crystal is effectively
short-circuited by illumination extending from electrode to another (if E, # 0; otherwise the
result 2.7 applies regardless the spatial extend of the uniform illumination). The
characteristic parameters are defined as follows:

Characteristic photovoltaic field:

Epy = et 2.8
elle
The limiting space charge field:
p,= N Na-Na) 2.9

Seokg Nd
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 The diffusion field:
EdEkg:bT_ 2.10

The internal space charge field as given by equations 2.6 2.7 creates a periodic variation
n, in the index of refraction via electrooptic effect. The magnitude of the index perturbation
largely depends on the orientation of the crystal, the internal space charge field direction,

and electrooptic coefficients of the material. The general formula of electrooptic effect [3] is
1 :
A (—2) = I’ijkEk . 2.11
nj .

Then the fundamental spatial harmonic amplitude of index variation due to internal space

charge field E,., is given by

3
ny=- %El i 2.12

where . is the effective electrooptic coefficient.

2.3 Diffraction from fixed volume gratings

The diffraction efficiency 1 of a refractive index grating which is uniform throughout

the volume of the medium of length L is given by Kbgelnik's formula [4]:

oL ) 2.13

- 2
=smn (lcose

where n, is the amplitude of the sinusoidal index perturbation 6n(x) , i.e.,
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Figure 2.3. Reconstruction of a fixed grating and Bragg conditions.

1 _-i(kgr+4) + &ei(kg-n %)

Sn(x) = %e : , 2.14

and it is assumed that the incident wave is completely phase matched with the index grating
(Figure 2.3). If the optical field consists of two plane wave components A,(z) and Az)

whose wavevectors are k; and k,, the phase matching condition is
k1-k2_=kg. ‘ ' 215

If only one of the Bragg matched components is incident on the medium (i.e., A,(0) = 0),

the diffraction efficiency defines the intensity of the diffracted signal, i.e.,

L(L
n I, (0) . 2.16

Nt
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" The volumetric interaction provides selectivity, i.e., the diffraction efficiency decreases
dramatically, as the Bragg-condition 2.15 is violated. For a transmission grating this

dependence is given by

n(Ak) En(0)°sincz(AkL/2), 2.17
where bAk =|K1- Kz - Kg|.
2.4 Introduction to holographic data storage

Holographic data storage [5] exploits the selectivity provided by the volumetric
interaction to store multiplexed holograms which can be retrieved independently (Figure
2.4). Multiple holograms can be recorded in a material by changing either the reference
beam angle [6], the recording wavelength [7], or by phase coding the reference beam [8].
The basic principle of holographic storage is as follows (Figure 2.5). During the recording
stage the index perturbation dn, is created in the material due to the interference between the

signal, information carrying beam S, and its reference beam R;. dn, can be written as
&n; =~ RiS: +R:S; ). ‘ 2.18

The total index perturbation on is a sum over the index perturbations due to individual

multiplexed holograms:
dn~3X (RSi+RS; ). 219

The retrieval of a page i is achieved by shining the corresponding reference signal R,
into the medium with recorded index variation 2.19. The interaction of the optical wave R,

with dn gives rise to a polarization wave P;:
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Figure 2.4. Simplified diagram of a holographic data storage system.
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Figure 2.5. Basic principle of holographic storage, mﬁltiplexing, and retrieval of

stored data.
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.

P+ c.c. o« 80 Ry 4c.c. o« Si{RZ|+ T (RS + RsS; )R +c.c. . 2.20

The first 'ternm corresponds to reéonstruction of the initial information page S,, while the
second term (the sum) represents the non—phase matched contributions, i.e., cross-talk.
Thé amplitude of the reconstructed wave is then obtained by integrating 2.20 throughout
the volume of the crystal. Bragg-selectivity (equation 2.17) provided by volume interaction
leads to preferential growth of the phase matched component (i.e., stored information)
compared to the cross-talk. Cross-talk and its limitations on the signal-to-noise ratio and
storage capacity have been studied extensively. Comprehensive discussions of various
. sources of cross-talk in different multiplexing schemes may be found in references [9-12].
Other limitations on storage capacity arise from the noise in optical detection and finite

dynamic range of the media. These are discussed in Chapter 5 and references therein.
2.5 Hologram fixing in photorefractive materials

Photorefractive index gratings decay upon continuous readout (or under uniform
illumination) due to the same mechanism which is responsible for their creation - electronic
transport. Hologram fixing techniques involve reproduction of the original electronic
pattern into the form in which the species responsible for the formation of the hologram are
not optically inactive. Two of such techniques involve thermally assisted ionic

compensation and spontaneous polarization modulation.

Complete fixing of holograms can be achieved by transforming the electronic space
charge pattern into an optically inactive quasi—perménent ionic charge pattern. For the first
time this has been demonstrated in LiNbO, [13]. The ionic conductivity obeys the

Arrhenius-type dependence on the temperature T:
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N ,

o; = empoexp( - E/koT). 2.21
At elevated temperature ( T > ~70°C in lithium niobate) the ionic conductivity prevails over
the dark electronic conductivity and the ionic motion relaxes the electronic space charge.
When the crystal is cooled back to room temperature and illuminated, the electronic grating
is pértially erased, leaving behind the ionic charge field which now represents an ionic
fixed hologram (Figure 2.6). The ionic hologram is quasi-stabilized due to partial
corhpensation by electronic grating. The shelf lifetime of the fixed grating depends largely
on the ionic impurity contents (n, in equation 2.21) and degree of electronic compensation.
The lifetimes of uncompensated ionic gratings can range from a few months (in as-grown
LiNbO,) to 2-3 years in dehydrated lithium niobate. Strongly compensated gratings with
low reconstruction efficiency may possess a lifetime of 10 years and more (see Chapter 4,

discussions and references therein).

Tllumination I(x),
recording
I(x) +
e + + N
1=0 ti
n, (t=0 o (t=0) grating
“ponassnct ——- — ey [P e .

& Elevated Temp.,

Nds{tmo) - Ionic Transport

nig %
Ng, Ionic Compensation

“Fixing”

n:
it >O%< Low T, Readout
N"; (Developing)

Figure 2.6. Mechanism of hologram fixing via thermally assisted ionic drift.
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* Fixing of photoinduéed 'grating can also be achieved by means of partial polarization
reversal in regions of high depoling space charge fields. This was accomplished both in
ferroelectrics with "diffused" phase transition, such as Sr;,Ba;,Nb,O, [15], and in
"classical" ferroelectrics with sharp phase transition point, such as BaTiO, [14]. Typical
fixing scheme involves application of an external depoling field below the coersive field for
bulk ferroelectric switching (Figure 2.7). The microscopic mechanisms responsible for
polarization‘switching [16, 17] include antiparallel microdomain nucleation and their
subsequenf lateral and sidewise expansion. The domain nucleation probability p(x), which

is given by [16]
p(x)e<exp(-o/E(x)), 2.22

is maximal in the regions of large depoling fields ( E(x) = E_(x) + E; o in equation 2.22 is
a temperature dependent parameter). The antiparallel domain nucleation can be largely
enhanced by externally applied voltage E, which negatively biases the internal space charge
(Figure 2.6). The nucleated microdomains typically have spike-shape form oriented along
the c—vaxis, because such geometry decreases the depolarization energy [17]. The nucleation
is followed by domain growth. The latter leads both to stronger compensation of the
electronic space charge and to partial depbling of the crystal as a whole. The microdomains
formation is correlated with the spatial profile of the internal space charge field through
both the nucleation probability (equation 2.22) and the growth rate, which depends on the
local field amplitude [16]. Spatial variation of the spbntaneous polarization P, is, therefore,
also correlated with the space charge field E_ (x). The first fundamental Fourier harmonic
P, of the perturbed spontaneous polarization represents the fixed polarization hologram.
The magnitude of the space charge variation p, of the polarization grating is given by
p, = -VP,,. The correlated portion of the polarization variation is quite small, typically of

the order of 10 to 10 compared to the total P,. Upon reconstruction the P;; grating is
P s “P g
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-E0+ESC(X)

Figure 2.7. Ferroelectric domain fixing schematic. Antiparallel microdomains are
nucleated most intensely in the regions of most negative electric field. They
continue to grow leading both to a partial compensation of the hologram space
charge and to depoling of the crystal (reduction of effective electrooptic
coefficient). External depoling electric field can be applied (during or after the
recording) in order to enhance microdomain nucleation and growth.
Microdomains distribution spatially correlated with space charge field constitutes
the fixed polarization hologram.

compensated by dynamic photorefractive space charge. The ferroelectric domain fixing is

discussed in more detail in Chapter 3.
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2.6 Wave-mixing ahd coupled waves theory

: Photérefractive mechanism ailows dynamic interaction of the incident light beam with
its own diffracted component and the inducedk refractive index pattern inside the volume of
the vrecording medium [4]. The refractive index change gives rise to a phase and intensity
redistribution of the interference pattern of interacting waves, this, in turn, is reflected in
the spatial profile of the index variation. In this section we review the basic results of two-
beam coupling caused by ‘a phase between the light interference pattern and the index
grating in photorefractive crystals (equation 2.12). The optical electric field of two plane
- waves interacting within the volume of photorefractive material (Figure 2.8) can be written

as

E;= Afr)exp (i(kyr- o) +cc., j=1,2 2.23

— --L_>Z

Figure 2.8. A schematic diagram of two-wave mixing in photorefractive materials.
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" The two coherent beams write an interference pattern which gives rise to a refractive

mdex perturbation due to photorefractive effect:

* . *A*A
2exp (- i(k - ko)) + m i 2

Io 0

1A

on=mn exp (i(k: - ko)), 2.24

where 1, = I, + 1, is the total intensity, and the index grating amplitude is given by
equations 2.12, 2.6, and 2.7 (with term I,/I, omitted in 2.6 and 2.7). Substituting the index
variation into the scalar wave equation and invoking the slowly varying amplitude

approximation one arrives to the following coupled waves equations [3]:

dAr Y, - o

T (AlAz)Az-EAI,- 2.25
dA, Y (,- o |

=1 (ATAL) A, - 5 Az, 2.26

where s =z/cos0 and coupling constant y is given by

i(DIl]

= - 2.27
For the case of two incident beams the boundary conditions can be written as
Ay(z=0)= ﬁ exp (ip( z=0)), » | 2.28
Ay(z=0)=/T; exp (ig,(z=0)). 2.29
The solution of the coupled waves equations 2.25 aﬁd 2.26 is then given by [3]
I{0) exp( - s ) 230

H08)= T30 O] exp(Ts)
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_ 1,(0) expf - s )
) = T im0y /o) exp(-T5) 2.31
- _ . T 1 +(1,(0) / 1(0))
@i s)=@(0)-T's + 0| 1) 710 exp( Ts )] : 2.32
_ . T [ 1+(10)/1(0)
Os)= @ 0)-Ts + | ) T1{G) exp( TS i 2.33

where T'= 2Re[y] and T =Im[y]. Equations 2.30 and 2,31 describe the coherent
holographic amplification (gain), while equations 2.32 and 2.33 describe phase coupling
- between interacting waves. Optical gain without phase coupling is realized when the
coupling constant 7y is purely real. This is the case when the index variation is /2 phase
shifted with respect to the interference pattern (i.e., pure diffusion response without
externally applied field or photovoltaic effect). Phase coupling leads to the, so called,
"hologram bending" in, €.g., lithium niobate crystals where the photorefractive response is
primarily due to the photovoltaic effect and corresponding phase shift between the index

change and the interference pattern is close to zero.
2.7 Introduction to four-wave mixing and phase conjugation

The phase conjugate replica of a monochromatic field is a field of the same frequency,
whose wavefronts take the same shape throughout space, but propagate in the opposite

direction at every poinf [3]. A wave traveling in the positive z direction can be written as
E(rt)=A(r)exp(ikz - wt)). ‘ 2.34

The phase conjugate field is obtained by taking a complex conjugate of the spatial part in

equation 2.34:
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Figure 2.9. A schematic diagram of four-wave mixing in photorefractive materials.

Er(1,t) = A'(r)exp(i(kz + wot)) . 2.35

Four-wave mixing (Figure 2.9) is a process of interaction of four optical waves in
nonlinear medium. In the simplest case it involves two couhtemropagaﬁng pump beams
and an input signal beam. The result of four-wave mixing interaction is the buildup of the
fourth beam - the phase conjugate replica of the signal - due to the diffraction of one of the

pumps off the grating recorded between the signal and the other pump.

The electric field amplitudes of the beams in Figure 2.9 are given by the expressions,

similar to the ones for the two-wave mixing case:
E(rt)=Ajr)exp(ik;r-ot)+cc., j=1,..,4 2.36

For the most general case there are four different possible sets of index gratings [18] whose

grating vectors are given by:
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k1=k4-k1 =k2‘— k‘3 5 237
kn=k1-k3=k4—k2, 238
. km=ki -k, | 2.39

kKiv=Kk;4- k} . 2.40

The photoinduced photorefractive index variation is given by a superposition of these four

gratings (I, =X L):

Nn A1A; + A;A4
2 Ip

E_IXA;A4
2 Iy

mATAL+ AsA%

2 To

+ n_mAlAZ
2 Ip

on =

exp (ikrr) +

exp ( ikpr)
2.41

exp ( ikmrr) + exp (ikivr)+c.c..

The general expression for the coupled waves equation in four-wave mixing problem can
be obtained by substituting 2.41 and 2.36 into the scalar wave equation [18]. A complete
analytic solution for general case is not presently available. Note also that gratings k;, ky;,
and k;, are the reflection gratings (in the conditions of Figure 2.9), while k; is a
transmission grating. The predominance of one grating is common in most experimental
situations due to the directions, polarizations, crystal orientation, and coherence
~ relationships of the four beams. For the most typical case when the transmission grating k,
dominates the coupled waves equations for the slowly varying amplitude A, of the four
interacting waves can be written as [18]:

dA; TN AjAg+ AdAs

o
coso dz =-1 }" Io A4-5A1, 2.42
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dA, . mm ATA4 +A2A§

' o

cosO 5 =i T i A3+§A2, 2.43

2 dAs  Tm AAL+HANA;

cqg@ I .—1 0 L A2+§A3, 2.44
dA, . mm AtAs+ ALAS o

cosO e T A1-§A4. 2.45

The solution of coupled-waves equations 2.42-2.45 and, e.g., oscillation threshold
values, are determined by the boundary conditions, which are given by the corresponding
geometry of the speciﬁé four-wave mixing configuration. The specific case of a double
phase conjugate mirror, which has only two input beams (say A, and A,, or A, and A,) is

considered in Chapter 6.

2.8 Summary

Photorefractive effect is produced by photoinduced redistribution of charges in the
volume of the crystal and electrooptic effect. Quantitatively, the photorefractive effect is
described by the band transport model which includes the rate equations for ionized donors
and free conduction band electrons and Gauss law. Photorefractive holograms can be fixed
using thermally assisted ionic transport or spontaneous ferroelectric polarization variation.
; Applications of fixed 'photorefractive gratings include the volumetric three-dimensional
storage of information with theoretical diffraction limit of V/A’ bits in a volume V.
Nonlinear wave-mixing via dynamic photorefractive gratings gives rise to coherent

amplification and phase conjugation of optical beams.
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Chapter Three

Electrical Ferroelectric Domain Fixing in
Photorefractive Strontium - Barium Niobate

3.1 Introduction

Volume holograms recorded in photorefractive materials can find important applications
in optical memories and optical computing systems. However, the photorefractive
holograms are normally erased by the readout light. Nondestructive readout can be
achieved by hologram fixing, and several fixing methods have been reported. Fixing of
holograms' via thermally activated ionic transport was demonstrated in LiNbO, [1],
Bi1,,510,, [2], KNbO, [3], and BaTiO, [4], where a compensating ionic charge grating
" (which cannot be erased optically) is formed at an elevated crystal temperature. The
hologram fixing has been demonstrated in Sr,,;Ba,,sNb,O4 [5,6] ( SBN:75 ) and BaTiO,
[7] through the creation of a ferroelectric domain pattern by applying an external field at
room temperature. Hologram fixing in SBN:75 was also achieved by cooling the exposed
crystal through the ferroelectric phase transition [8], by prolonged high intensity recording
[9,10], and with the use of screening of externally applied voltage [11]. Leyva et al.

demonstrated hologram fixing in KTa, Nb,O, by cooling the exposed crystal under an
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applied field through thé feﬁoelectﬁc phase transition [12]. In general, electrical fixing is
preferable from the practical point of view because of its relative simplicity. Besides, it
allows fast ( < 1 second ) fixing without a change in the temperature of the recording
crystal, what is particularly important in highly multiplexed storage of high-bandwidth

holograms [13].
3.2, Ferroelectric domain fixing in SBN:75

In this Section we report the results of our investigation on electrical fixing of
photorefractive holograms recorded in SBN:75. We were able to reproduce some of the
effects thatvMicheron and Bismuth reported in Ref. [5], but our observations are different
in several important respects. In addition, we established two novel ways of electrically
fixing holograms in SBN:75 that give improved performance and demonstrated that

holograms of images can be fixed and faithfully reproduced.

The crystal sample used in the experiment was grown and poled at Rockwell
International Science Center. It has dimensions of 6 mm X 6 mm X 6 mm, with its c-axis
parallel to the edges. An external electric field can be applied along the c-axis, and it is
called positive (negative) if its direction is the same as (the opposite of) that of the initial
poling filed. In our experimental setup (Fig. 3.1), an ordinary-polarized plane wave from
- an argon laser (A = 488 nm) is split into three beams, two of which are used for recording
a grating in the crystal, with the third used as a non-Bragg-matched erasing beam. The
grating vectors are approximately parallel to the c axis and the total recording intensity is 10
mW/cm®. The diffraction efficiency 1 is monitored with a low-intensity, extraordinary-
polarized He-Ne laser beam incident at the Bragg angle. The diffraction efficiency is
calculated by subtracting the background noise level from the measured diffracted light and

dividing the difference by the transmitted light power.
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Figure 3.1. Optical setup.

In the first experiment, a holographic grating with a grating spacing A = 11.6 pm was
) recorded in the completely poled crystal without any applied field. After thé diffraction
efﬁciency n reached its saturation value (n = 11%), the recording beams were blocked,
and a negative-voltage pulse with amplitude V = -1 kV and duration of t = 0.5 s was
applied to the crystal, which caused m to fall rapidly. After the voltage was removed, 1
recovered a portion of its initial value before the pulse. Then the crystal was illuminated
with the non-Bragg-matched erasing beam, and M decreased further until it reached a

steady-state value of 1 = 0.06%. This fixed grating could not be erased by the erasing
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_ beam. Then the erasing beam was blocked, and a positive-voltage pulse, with amplitude V
= +2 kV and duration of a few seconds, was applied to the crystal. During the positive-
voltage pulse, 1 = 1.8%, and after the pulse a grating with 1} = 0.4% was revealed. This
revealed grating can be optically erased. The experimental results of recording, fixing,
revealing, and erasing are shown in Fig. 3.2, where the diffracted signal is plotted as a

function of time during the different stages of the experiment.

Comparing the results in Fig. 3.2 with Ref. 5, we see that we were able to achieve
electrical fixing, but the fixed grating obtained in our experiment is much weaker than that
- in Ref. 5. Another important difference is our observation of a revealed grating on
application of a strong positive voltage across the crystal at relatively large grating

spacings.

We have found that in general the strengths of the fixed grating and the revealed grating
can be greatly enhanced by applying a constant negative voltage during recording. With an
applied voltage of V =-500 V, we recorded a grating with A = 11.6 um, using an exposure
time of 50 s. Then the recording beams were blocked, the applied voltage was removed,
and the grating was aliowed to settle down to a steady level. Upon illumination of the
crystal with the erasing beam, 1 decreased first and then rose back to a steady state,-
indicating a fixed grating of n = 0.8%. Finally, a positive-voltage pulse, the same as the
~ one used in the previoué experiment, was applied, which revealed a grating of 1 = 0.5%.

This experimental result is shown in Fig. 3.3.
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Figure 3.2. Diffracted light as a function of time for fixing with a negative-voltage
pulse (A = 11.6 um). The transmitted light power in the absence of the grating is
1.1 yW. A, Hologram recording beginé. B, Negative pulse is applied. C, End of
negative pulse. D, Optical erasure begins. E, Erasing beam is blocked and
positive voltage pulse is applied. F, End of positive pulse. G, Optical erasure

begins.
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Figure 3.3. Diffracted light as a function of time for fixing with a constant negative
voltage during recording (A = 11.6 pm). The transmitted light power in the
absence of the grating is 1.1 uW. A, Hologram recording begins and negative
voltage is applied. B, Negative voltage is removed and recording beams are
blocked. C, Optical erasure begins. D, Positive-voltage pulse is applied (probe
beam is blocked). E, Optical erasure begins.

The experiment described above was repeated for several different grating spacings,
and the results are summarized in Fig. 3.4. Under our experimental conditions, the
maximum diffraction efficiency of the fixed grating is found to be 0.8% at A = 11.6 um.
The revealed grating is observed only for relatively large A, and its strength increases

drastically with A, achieving approximately 17% diffraction efficiency at A =29 pm.
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Figure 3.4. Diffraction efficiency as a function of grating spacing for (a) the fixed
grating and (b) the revealed grating.
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k Finally, an image waé recorded in the crystal as an image plane hologram, and Figure
3.5(a) shows the reconstruction of the initial hologram. Figure 3.5(b) shows the
reconstruction of the fixed hologram. The fixed hologram did not show any sign of

degradation under illumination with the non-Bragg-matched erasing beam for 2.5 hours.

Figure 3.5. (a) Reconstruction of the recorded hologram and (b) reconstruction of the
fixed hologram.
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“The ﬁxing—and—revealing brocess that we described was not observed when a positive
rather than a negative fixing voltage was applied. If we assume that the mechanism
responsible for fixing involves compensating ions, then we have no obvious explanation
for the asymmetry regarding the polarity of the fixing voltage. Similarly, if the mechanism
involved two types of photOrefractive species [14], the effect would not be sensitive to the
polarity of the fixing voltage. The fact that the fixed grating can be electrically erased nearly
inStantaneou;Iy (less than 0.1 s) in the dark (i.e., without redistribution of charge carriers
among the trap sites) also indicates that the effect does not involve two types of trap site
that compensate fbr each other. Therefore we conclude that the mechanism responsible for

this effect is the polarization grating formation suggested in [5].

Specifically, our observations can be explained as follows. With the aid of the negative
external field, the electronic space-charge field established during the holographic recording
causes a spatial modulation of the ferroelectric polarization. In the areas where the space-
charge field is negative, the local polarization is modified (which corresponds to local
depoling or possible repoling in the opposite direction). This causes the decrease of both
the mean linear electrooptic coefficient and the amplitude of the space-charge field
modulation. As a result, the amplitude of the refractive-index modulation decreases on
application of a negative voltage pulse, causing the drop in the monitored diffraction

efficiency. Under the illumination of the erasing beam, the electronic grating is erased
further, until a balance between the polarization grating and the electronic grating is
reached. The fixed grating observed is attributed to the polarization grating for which the
electronic grating partially compensates. Finally, a strong positive voltage applied to the
crystal erases the polarization grating (i.e., the ferroelectric domains are realigned),
revealing the compensating electronic grating [15], which of course can be erased optically.

The enhancement of the diffraction efficiency of the revealed grating during the positive
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vdltage pulse (see Fig. 2) is due to the nonlinear electrooptic effect in SBN:75 [16]. A
physical model that describes the electronic compensation and revealing process will be
introduce in the next section. The predicted dependence of the diffraction efficiencies on the

grating spacing closely matches our experimental observations [15].
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Figure 3.6. Cyclic fixing and revealing of the stored hologram (A = 20.2 um), with the
erasing beam off during the entire process. A, Positive (revealing) pulse is
applied with V = + 1 kV. B, Negative (fixing) pulse is applied, with V =- 1 kV.
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The above experimehts sﬁggest two modes of hologram fixing in SBN:75 crystals: the
fixed polarization grating and the revealed electronic grating. Although the revealing
process is destructive to the polarization grating, it is possible to recreate this polarization
grating by applying a negative-voltage pulse after the electronic grating is revealed. These
revealing/fixing cycles were repeatedly performed (shown in Fig. 3.6), and the diffraction
efficiency of the revealed grating (and thus the polarization grating) remained unchanged. A
similar procedure was used successfully to record and high efficiency multiplexed
holograms in SBN:75. In the multiple-cycle exposure technique [13] the entire exposure
(i.e., recording of 1000 holograms) was divided into multiple cycles, and the electrical
revealing and fixing pulses were applied at the end of each cycle. The individual diffraction
efficiency of multiplexed fixed holograms was found to be much larger than that using a
single-cycle exposure. First, the previously fixed holograms don’t decay much during the
recording of new holograms and, second, multiplexed holograms of larger diffraction
efficiency can be fixed in a crystal, which was partially depoled by a prior fixing negative
voltage pulse [17]. In general, the fixed holograms with smaller spatial period are less
stable and are subject to stronger decay [18]. The equilibrium (or quasi-equilibrium with a
long lifetime) value of fixed hologram efficiency is largely dictated by the microdomains
thermodynamic stability and dynamics, as well as the degree of polarization of the crystal
[17]. Studies [19] revealed the effect of the threshold and saturation in fixed HDE with
. respeét to the fixing pulse amplitude. If the amplitude of the negative voltage pulse exceeds
the coeréive field of the sample, the fixed holograms are very weak due to the strong
depolarization of the ferroelectric crystal. However, at the same time the strength of the

revealed grating is almost equal to the magnitude of the initial electronic hologram.
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3.3 Dynamic photorefractive compensation of fixed polarization and ionic

holograms . (theory)

In this section we introduce a model that describes the formation of a photorefractive
grating in the presence of photorefractively inactive space-charge (e.g., ionic) or
ferroelectric polarization modulation. In general, fixing methods demonstrated in different
photorefracti;/e crystals [1-12] create an optically unerasable charge or polarization
distribution. The model predicts how the fixed grating affects the formation of the ordinary
photorefractive grating and also leads to a spatially nonuniform mobile and trapped charge
distributions even in the presence of a homogeneous illumination. The predictions of the
model are further applied to the interpretation of the experimental resuits [6,15] on electrical

fixing of holograms in Sr,,.Ba, ,;Nb,0;.

The dynamic behavior of the photorefractive effect is described by the following set of
nonlinear coupled equations [20]. We neglect the contribution of the photovoltaic effect and

assume that only one type of carrier is involved:

OND + +
3t = (OtIo+B)(ND-ND)-YeneN D, 3.1
je = euncE + kpTuVne | 3.2
a* o ‘e 3.3
V(PS+SEOE) =e(NB-ne-NA+E?), 3.4

+ . . . . .
where Np is ionized donors concentration, n, the free electron concentration, N, the

acceptor concentration, [l the carrier mobility, Yy, the recombination constant, P, the
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spbntaneous polarization, and E the electric field. We consider a sinusoidal fixed charge

distribution:
Prix = Piix; Xp(iKx}, 3.5

and spatially uniform light illumination I,. Following the usual linearization procedure and
assuming that p; << eN,, the quantities ND, n_, E, and j, can be approximated by a
sinusoidal form: F(x)=F, +F,exp(iKx). Assuming that P is uniform, the steady state
solution of the Egs. 3.1-3.4 for the space-charge field or and the ionized donors density

modulation is given by

_ Pfix, Ed4-iEo
1= iKegg Eq+Eq-iEo’ 3.6
Pfix, Eq

3.7

Nb, =- e EBq+Eq-iEo’

where E =Kk, T/e - diffusion field, E,= N e/eg K is the limiting space-charge field, and E,
the externally applied field. The time constant with which the field E, is formed is equal to
the conventional grating formation time constant with the same average intensity and spatial
frequency, formed in the absence of the fixed grating [21]. This is because the fixed grating
acts as an inhomogeneous term for the system of linearized Eqs. 3.1-3.4 replacing the
sinusoidal intensity i]lﬁmination; the coefficients of the set of linear equation remain

unchanged, and hence the time constant is the same.

The total space-charge field [Eq. 3.6] may be decomposed into a sum of a field

Pfix: /iKee, induced by fixed, nonphotorefractive charges and a compensating field E{*™"

formed by redistributed charge carriers described by Np,. Namely,
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Ecémp= eNBl . Pfix, Eq
' TiKeey  iKeey Bq+Eq-iFo 3.8

Note that due to the finite dark conductivity, compensation of the fixed grating by dynamic

electronic space-charge takes place even without any external illumination.

_ Ourdescr_iption so far assumed a fixed grating due to an ionic grating. Similar analysis
may» be applied to the case where the fixed grating is produced by a spatial variation of the
ferroelectric spontaneous polarization. A spatial variation of spontaneous polarization is
formally equivalent to a fixed space-charge [22] according to: p,,,= - VP,. Then, assuming

a sinusoidal modulation of spontaneous polarization:

P = P, + P, exp(iKx) , 3.9

equation 3.4 takes the form

aE c + 1 aPs

o -a(ND'“fNA'?a;’ >10
or, in linearized form, for the caSe E=0:

. e iK

iKE; =EE—O(NBI-nel-?PSI), 3.11

where € is the mean value of dc dielectric constant. The value of the total space-charge field
E, and of the compensating electronic component E{*"F are given by
PS 1 Ed PS] 1

Ei=-—t =,
€€¢ Ed+Eq €€y 1+(A/Ae)2 3.12
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. ‘ ‘ 2
ESomP & Eq — Ps, (A/ Ae)
" egg Eq+Eq &g | 2’ 3.13
0 Ea+Eq €0 1 +(A/A,)

where A=21/K is the grating spacing and A. =2n \/ €gokpT / e’Ng is the Debye length.

The perturbation of the refractive index arises through the ordinary linear electrooptic
effect dﬁe to the total space-charge field E,. Even though it is more correct to describe the
refréctive index variation in terms of polarization rather than electric field [23], both
approaches lead to the same result and, in this sense, are equivalent. The modulation in
spontaneous polarization also causes spatial variations of the linear electrooptic coefficient
and the dc dielectric constant. However, for the case of zero applied field considered here
these terms contribute only to the higher spatial orders of the index of refraction variation.
Therefore, they do not affect the fundamental K-space harmonic of the electric field that is

responsible for the formation of the hologram.

In the case of fixing via ionic compensation the amplitude of the compensating
electronic grating is difficult to measure independently, since the thermal erasure of the
ionic grating also perturbs the electronic pattern. Electrical fixing that involves ferroelectric
polarization, on the other hand, enables one to perform direct observations and
measurements of the dynamic compensating grating, since the polarization pattern can be
- erased simply by applying a strong positive electric field along the direction of spontaneous
polarization of fhe photorefractive crystal [5,6]. The latter process does not affect the

comp -
i p

compensating field E , whose strength can then be determined by measuring the

diffraction efficiency of the residual revealed hologram.
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5.4 Dynamic photorefractive compensation of fixed polarization (domain)

holograms in SBN:75 (experiment)

We studied experimentally the process of fixing and compensation of phase holograms
mn photorefractive Sr, ,sBa,,sNb,Oy. Electrical fixing was achieved by applying a negative
voltage pulse along the crystal c-axis after recording a space-charge grating with two input
beams. To avoid beam coupling during recording and reconstruction, the ordinarily
polarized beams were used and the holographic diffraction efficiency (HDE) was monitored
by an extraordinarily polarized low-power He-Ne laser beam Bragg matched to the initial

“hologram (Fig. 3.1). Low intensity ( 4 mW/cm® ) recording beams were used in order to
avoid the photoassisted domain reversal during the recording stage [9,10] and the effects
associated with the light-induced absorption in photorefractive SBN [24]. Low intensity
recording also minimizes the heating of the sample by the writing beams and, therefore,
reduceé substantially the pyroelectric and thermal gratings [25] in the volume of the crystal.
After each fixing experiment the crystal is poled by applying positive voltage (~5 kV/cm)
along the c-axis for 20-30 minutes at room temperature. A typical cycle of recording,
fixation, optical and electrical erasure is‘shown on Fig. 3.7. After the fixed hologram
reaches steady state under illumination by a non-Bragg-matched erasing beam, a strong
positive voltage pulse is applied erasing the polarization grating. The residual revealed

) hologram corresponds to the electronic compensating grating, which is measured by

recording the poWer of light diffracted off it. Figure 3.8 shows the dependence of the
steady-state values of the fixed HDE and the compensating revealed grating HDE on the
grating spacing A. In agreement with the model proposed the amplitude of the electronic

compensating grating [Eq. 3.13] dramatically increases with the grating spacing.
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Figure 3.7. Diffracted signal as a function of time during the fixing experiment. Fixing
pulse amplitude is -1650 V/cm and its duration 0.5 s. Total intensity of the
recording beams is 4 mW/cm?, A=488 nm, intensities ratio m=1. The transmitted
probe light power without the grating is 2.3 pUW. A: Recording begins.
B: Writing beams are blocked and a negative voltage pulse is applied. C: Optical
erasure with a noh-Bragg-matched beam (I = 8 mW/cm?) begins. D: The transient
dip due to 180° phase shift between the polarization and the electronic gratings.
E: Peak in HDE of the fixed grating; slow decay of fixed grating begins.
F: Steady state of the fixed grating. G: Positive voltage pulse (E=4.2 kV/cm,
duration 2 s) is applied (erasing beam is blocked). H: Revealed compensating

grating. I: Optical erasure.
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Figure 3.8. Diffraction efficiencies of fixed (steady state) and electrically revealed
compensating gratings as a function of A. The same experimental parameters

were used as in Figure 3.7.

Since in our experiments the effects associated with beam coupling (i.e., longitudinal
change of the modulation index of the hologram, self-depletion, or self-enhancement) were
carefully eliminated, the diffraction efficiency, in the limit of negligible absorption and

small index variation, may be expressed as

in

nd‘An1|2 2 2
(KCOSG) o< TeffE , 3.14
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where d is the crystal thicknéss, 0 is the Bragg angle inside the crystal, r; is the effective
linear electrooptic coefficient, and E, is the internal space-charge field variation. Then,
according to Eqgs. 3.12 and 3.13, independent of the actual value of the polarization
modulation, the ratio of HDEs of the fixed and compensating (or "revealed") gratings

should obey the following relationship:

comp) * A 0
ln(n = )=4ln(r)+21n(f'i£), 3.15
n- e Teff

where ot is the effective electrooptic coefficient of the partially depoled crystal after a

negative depoling voltage is applied. The strong positive pulse that is applied to erase the
polarization grating and to reveal the compensating grating also poles the crystal and,
consequently, the electrooptic coefficient takes its original value ros. The experimental data
shown in Figure 3.9 indicate a linear relationship between In (n°®®®m™) and In(A) with
slope 4.240.2 which is in a good agreement with the value 4, predicted by the theory [Eq.
3.15]. We should point out that since we do not know the dependence of Ps, with A, the
fact that the ratio plotted in Fig. 3.9 is independent of Ps, makes possible the comparison
between theory and experiment. The ratio of the HDEs of the compensating and fixed
gratings is the same for both an ionic or a polarization fixed grating. However, the fact that
we could observe an optically erasable revealed compensation grating by electrically erasing
~ the fixed grating strongly supports the hypothesis that the fixing was due to polarization
switching in the Sr,,Ba,,;Nb,O, fixing experiment [5,6]. The maximum modulation
depth of the spontaneous polarization, corresponding to the maximum fixed grating HDE,
was evaluated to be equal to AP, = 10* P, wheré P, = 8.1 puC/cm’ is the spontaneous
polarization of the completely poled Sr,,Ba,,;Nb,O; crystal at room temperature [5]. This

small modulation depth is responsible for the low HDE of the fixed holograms.



53

1.5 - 1 T T
SBN:75
0.5 | ]
: A experiment
Fa — linear fit
i
&
~
E- -0.5
£
3
-1.5 |
__,,,2.5 l ) l X ! : ).
1.6 1.8 2.0 2.2 2.4

InA , { grating spacing A -~ in um )

Figure 3.9. Log-log plot of the ratio of holographic diffraction efficiencies of the
revealed compensating grating and the fixed grating vs. grating spacing. Points
obtained for A < 5.5 um are not included since the diffracted signal off the
revealed holograms was less than the noise level. The linear fit has the slope
4.240.2 which is in a good agreement with the theoretically predicted value 4.0.
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3.5 Summary.

. Photofefr;lctive holograms stdred in Sr,,Ba,,.Nb,O, are electrically fixed at room
temperature. The fixed holograms can be read out directly or after a positive poling voltage
pulsé is applied that can dramatically enhance the diffraction efficiency. The latter process
destroys the polarization component of the hologram, but it can be restored later via
subsequent application of the negative electric field pulse. Single gratings as well as images

are recorded, fixed, and faithfully reproduced.

Fixed polarization or ionic gratings are screening upon readout by dynamic
photorefracﬁve space charge of trapped electrons. The degree of electronic screening
depends dramatically on the spatial frequency of the fixed hologram. We introduced a
model for the formation of photorefractive grating in the presence of optically inactive,
fixed charge, or polarization modulation. Application of this model to electrical fixing in
Sr, ,:Ba, ,sNb,0O, gives good agreement between experimental observations and theoretical

predictions.
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Chapter Four

Holographic Storage Dynamics in Lithium Niobate:
Theory and Experiment

4.1 Introduction

Holographic data storage in photorefractive crystals is a topic of intense current interest
[1-3]. It is driven by the prospects of the large storage capacity ~ V/A’ bits in a volume V.
Two of the important concerns in this field involve the lifetimes of fixed and developed
holograms and their strength. The volume phase holograms in photorefractive materials are
produced by the redistribution of photoexcited carriers (e.g., electrons) in the presence of
light. To avoid fast erasure of the holograms upon readout several techniques have been
* developed in the past [4 - 7]. In general the efficient ionic fixing is based on the great
disparity between the dark electronic conductivity at elevated temperatures and the ionic
conductivity. At elevated temperature the ionic conductivity is dominant and ions readily
compensate the holographic electric field pattern .created by photoexcited electrons by
mimicking their spatial distribution. At low temperature the ionic conductivity is very low

enabling the quasi-permanent storage of the ionic replica of the initial electronic hologram.



58

i | |
Exposure-fixing | Developing | Decay
[ g gt

E(O) I |
i o | oam |

(IV)

1,70

| Space Charge Fieldl

T
\

[y

—
— —
— — —
—

Figure 4.1. A typical life history of a hologram in photorefractive materials.

The residual ionic conductivity at low temperature thus determines the lifetime of the fixed

hologram.

A typical history of a hologram is sketched in Figure 4.1. In phase I an electronic
grating, previously recorded, is heated up to cause ionic transport. This leads to a
- compensated grating which is represented by the net space charge field amplitude) E(ll) . In
phase II’ the gfating is left in the dark or is exposed to infrared light which is not
photoactive. This stage corresponds to a slow dark decay of both the electronic grating and
the ionic compensating grating which adiabatiéally follows the former. In many
applications, however, the hologram is exposed to a "reading" light as in phase III. This

light causes a partial redistribution of the trapped electrons culminating in a quasi-stable
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field EP . This field will ‘proc(:eed to decay to zero under illumination due to ionic transport

(phase IV).

The problem of grating dynamics has béen considered extensively [8-14]. What
différentiates our work is the fact that, by taking advantage of the great disparity between
the transport time constants which are involved in typical crystals, especially LiINbO,, we
are able to obtain simple analytic expressions [9] for the time dependent field in each of the

above defined phases under realistic scenarios.
4.2 Two-species conduction formulation

In the model we consider both the conduction of the optically excited electrons and the
ionic transport, as well as the thermally activated dark electronic conductivity. Free
conduction band electrons can be excited optically or thermally from a single-donor level,
while ionic species are subject to drift due to the internal space charge fields and diffusion
due to their own density gradients. We fully account for the photovoltaic currents, both dc

and spatially inhomogeneous.

The dynamic variables are the mobile electron density ne, the ion density nj and the
trapped charge (ionized donor) density N§. The complete set of transport equations first

 formulated by Kukhtarev [15] is

oONJ

—o =(0mvIo+ BfNa- N&) -y Nine, 4.1
one oNg 1 0 one R

—_—_—— —— - _ 42
S =3 * 5 3| ¢ Hele E+eDe— +10 To(Ng - Ni) .
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2

onj 1 d o

"ét”"'éé}(e”i“‘E'eDﬁ{)’ 4.3
- oE

geg5 - =¢ (N&L -Na + nj - njp - ne) . 4.4

In the equations 4.1-4.4 1, is the average optical intensity, oNJ is the optical intensity
absorption coefficient, B is the thermal excitation rate, and v, is the recombination constant
for electrons. |, and p, are the mobilities of the electrons and ions respectively and we
assumed D/u = k, T/e, where k, is the Boltzman constant. x is the photovoltaic coefficient.
| The density of neutral donors is N{. Total donor density is Ng= N3+ Ng, and Ngo=N,
is the densify of deep traps. The total current is equal to the sum of the ionic and electronic

currents and that is due to the photovoltaic effect.

The equations 4.1-4.4 are linearized by approximating the dynamic variables in terms

of (time and space) averages and small signal time varying amplitudes, i.e.,

Ne = Neg + (nele"KX + c.c.) , 4.5
Ni=Na+(Nfe™ +ce.), 4.6
nj =njp + (nﬂe'IKX + c.c.) , 4.7

where ne] << neg, etc., K is the spatial frequency of the grating and x is the spatial

coordinate. A dependent variable is the space charge field
E=FEo+(Eie™®+cc.). - 4.8

Using the above definitions the transport equations 4.1-4.4 can be reduced to the

following linearized form
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(C/h vip+ B) Ndl Ye Nanei , 4.9

a'I'lel

Ng Menene  kcIoK) |
5 ( (G/hVIg+[3)N— =i S )Ndl
to e Mo e 4.10
—(YeNa"' ° +DeK2+iueKEo)ne1+ eg nii ,
on; i Njp € i NjoE
atll =_(M1 810 +DiK2+il.LiKEo)rlil+ul ° (nel—Nfil), 4.11
ie
: E1=——(N?1Ll+nil—ne1), 4.12

eK
with the last equation following from the Gauss law.

A major feature of our analysis is the inequality n,, << Ng§ , n;, so that n  can be
neglected in equations 4.11 and 4.12, but not otherwise. This inequality results from the
fact that the electron trapping rate 'YeN; ~ 107 - 10° s exceeds by many orders of magnitude
any other rate. This causes the electrons to reach an essentially instantaneous (i.€., within t
- €107 s) local equilibrium with N andbnil. The equilibrium value of n,, is obtained by
setting the ieft side of equation 4.10 equal to zero. This enables us to eliminate n,, from the
mathematics (but not from the physics) and rewrite the governing equations of grating

dynamics 4.9-4.12 in terms of two dynamic variables, i.e., n,, and Nd1, only:

(0] Nd 2 . . (¢}
N _ coeyeNa+(—H\710+B)-(DeK - i pe KEo) -iK K Lo YeNa

ot YeNa+De K ‘lueKEO 4.13
®e YeN,
YeNa + De K2 -ipe KEq
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onijy ' L
jatl—=—ni1.(0)i+DiK2+luiKE0) - N o, 4.14
: ie
E1=EK—(NE1+I111), ~ 4.15
where
ette |~ To+ B|(Na—Na)
me_eueneo_ He hVO‘ d 2
e £ YeNa ’ 4.16
" is the dielectric relaxation rate for conduction band electrons, and
_ CUinio

€ 4 4. 1 7
is the dielectric relaxation frequency for conducting ions.

In what follows we consider the solutions of equations 4.13, 4.14 and 4.15 in each of the

phases of Figure 4.1.
4.3 Compensation of electronic space charge by ionic transport (phase I)

In this stage a pre-recorded electronic Ngj grating is compensated in the dark by mobile
ionic spécies. Typically, this takes place at elevated temperature where (e.g., in lithium
niobate) the ionic conductivity is substantially larger than the electronic conduction
associated with thermal detrapping. Therefore, the N modulation can be assumed
essentially constant throughout this stage. The space charge field decays to its equilibrium

value as given by
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A

” ' . 2 L ‘ . - .
E(ll‘)(’t) - E(P)(O) DiK "'ZIKMEO + (’2)1 o (w +DiK? + iKpEo) t . 4.18
o; +D; K“+iKyEo o+ Di K™ + iKp;Eo

where E(lo)(O) is the space charge field of the initially recorded (phase O in Figure 4.1)

electronic gfating. The relaxation time constant describing this phase is
_ : -1
Ty = (o + DK + iKwEo) " . 4.19

Due to the diffusion of jons and their finite density the ionic compensation of the
electronic space charge is never complete, i.e. there remains, in the steady state, a residual
stabilized electric field E(ll) . Equation 4.18 predicts that at the end of phase I the value of

this steady-state stabilized field is

E(ll) _ DiK2 + lKl.llEO E(lo) .

- 2. 4.20
o; + DiK“+ iKW;Ep

in data storage applications the aim of this stage is to culminate in as perfect a compensation
as possible, i.e., nji(t;)=- th(to) or, equivalently E(ll) << E(lo) . For the most practical
case of zero applied field this requires, according to equation 4.20, that , >> DK? or,
| equivalently
njo >> s_kb:l;g . : 4.21

- e
This condition sets the lower boundary for the optimized density of the free ions in a
crystal used for holographic data storage. Further increase of n,, does not improve the
fixing efficiency but decreases the possible storage time since the ionic relaxation frequency
®, is proportional to n,, at any temperature. The minimal dénsity of free ions needed for

perfect compensation in LiNbO, is thus n,, >> 5x10'® cm® (for the grating spacing
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2n/K = 1 um ). Typical H* impurity density in these crystals [16] is about 10 ¢cm™ and
therefore the ionic compensation is always very strong ecven if we assume that the only

ionic species responsible for hologram fixing is hydrogen.

The above results apply in their basic features, also to the case where the recording
phase 0 and the ionic compensation phase I are simultaneous. If the ionic compensation

takes place in the presence of light under open circuit conditions, then E; = -E , =

_KYeNa/ CLL, -
4.4 Electronic decay in the dark (phase II)

This phase consists of a slow decay in the dark of the ionically compensated electronic
grating, the end product of phase I. This decay is due to thermally excited electrons which
proceed to drift and diffuse, thus, reducing the strength of the hologram E(ll) . The ionic
grating adiabatically follows the decaying electronic hologram due to the much faster (at
elevated temperature [4]), adjustment by transport of ions so that at any moment the
dynamic equilibrium between the ionic and the electronic gratings is preserved

njl W;

=- . 4.22
Nj§i o +DiK>

~ This relation follows from equation 4.14 when we take on, /ot = 0 and assume a zero dc
field (E, = 0). By substituting 4.22 into equations 4.13 and 4.15 we find that the total

space charge field (i.e., grating amplitude) decays as

. 2 D2
Wy = 2 (N3 (04 nu(0) = P —2K_ e[y s
E(1 (t) K (Ndl () + ml(t)) E(l o DK € Tipklia ) 4.23
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and
B(Ng-N .
o, = e PNa—Na) 2= Nakle - 4.24
. 8’YeNa Na (Nd—Na) c
where d is the electronic Debye screening length due to ionized donors.
The decéy rate
1) DiK’ 2.2
0) ecay = (De —'—2‘ + K d 4.25
o; + DiK

is proportioﬁal to the electronic dielectric relaxation frequency , ( at I, = 0 ) multiplied by
the ionic screening factor plus a term due to diffusion of electrons. The electronic decay in
the dark, therefore, is slowed down in the presence of large ionic conductivity. The
residual electronic dark decay is primarily due to the diffusion ( term proportional to K*d?
in equation 4.25 ) rather than drift in the hologram electric field, since the letter is strongly
reduced due to the conducting ions (see equations 4.20 and 4.23 ). Furthermore, in the
usual case of strong ionic compensation, the dark decay rate is always proportional to the
- square of the spatial frequency K without saturation at small K. This is different from the
unscreened case when no ions are present and ©,,, — ©, for sufficiently small K,
K’d*<<1. The above results are derived for the most typical case of zero applied field. If
 the electronic dark decay takes place under externally applied field E, the equations 4.23-
4.25 are modified as follows
nji W;

~t 2 . ’ 4.26
Nai o; +DiK" +1KpEp
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@+ DK? #iKwEy
' DiK? +iKWE
0) IeI):ay = e 1 2 Hl 0 +K%d%+ iKpEol, 4.28
: o; + DiK* +iKp;Eo

Experimental data reproduced in Figure 4.2 show the dark decay of holographic
gratings recorded in Fe:LiNbO,; at elevated temperature. Two distinct stages of the process
(fast and slow) can be identified as fast ionic compensation (phase I) and the much slower

thermal decay of the electronic grating screened by the mobile ions (phase II) [9].
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Figure 4.2. Diffraction efficiency vs. time for a hologram recorded and stored in
Fe-doped LiNbO, (partially reduced) at 130°C. The grating spacing is 2rn/K =
1.15 pm. Two stages of the dark decay can be identified as ionic compensation
(fast stage of the decay, phase I) and a much slower decay due to conduction by
the thermally excited electrons ( phase II').
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4.5 Developing or readout (phase III)

This s;téée consists of the déveloping (revealing) of the compensated grating by
continuous illumination (I, # 0), typically at or near room temperature. This phase also
descﬁbes what happens when we read the hologram. This causes an increase in the
electronic conductivity so that it greatly exceeds that of the ions (Ge >>0j). The mobile
electrons diffuse and drift in the electric field induced by semi-permanent ionic charge
distribution. Therefore, even under spatially homogeneous illumination I, the equilibrium
trapped electrons distribution Ng; is not uniform, but rather screens the "fixed" ionic
pattern [9,10]. The degree of this electronic screening is greatly dependent on the amount
of available traps N, the grating spatial frequency K, and the strength of the photovoltaic
effect [9]. The treatment of the photovoltaic effect in this stage makes it necessary to
distinguish two different types of boundary condition imposed on the electron current
density and the total electric space-charge field. Besides, since the electronic conductivity is
dominant in this phase we can consider the ions as stationary and derive the expressions for

the transient hologram electric field upon light read-out.

(a) Short Circuit

Under the short-circuit conditions E; = 0 and we allow for the full dc photovoltaic

current Ko (N, - N,) to flow. The resulting space charge holographic field during the

phase III is
i Eq—-iEpyv. Na/Ng E
g _ ie p . + , —d a(t)] e

4.29

The relaxation rate which describes this stage of the hologram "life-cycle" is
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2 2 . Epv.[Na

where the characteristic electric fields are defined as follows:

Characteristic photovoltaic field:

xo/hvIg{Ng - N KY.
Epv. = oNa-Na) _ teNa 431
LleNed elle

The limiting space charge field

v B eNa(l - NJ/N )
Eq= K 4.32
The diffusion field
B = DK _ KkT
4= L - e 4.33

Equation 4.29 predicts a quasi-stabilized field at the end of phase III in the presence of

illumination whose value is

Eaq~ iEp.v. Na/Ng
Eg+Eq iBpy, NJ/Ng’

EPd ==y (t1) 4.34

eK
independent of the initial trapped charge grating Ngi (t1). This field can approach the
original field E{”) provided
ie

‘nil(tl) ~-Ng1 (to)) and E(12) =~ K ni (t1) . 4.35
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The first condition 4.35 is ‘satisﬁed when the ionic compensation in phase I is nearly
complete which according to equation 4.20 happens, when @, >> D.K?, i.e., the density of
ions is sufficiently large n,, >> (gk, T/e*)K’ (equation 4.21). This condition, in fact, is most
usually satisfied due to the large density of conducting ions at elevated temperature. The
second condition is practically more important and requires that the screening of the "fixed"
ionic space-charge by trapped electrons during the readout is not strong. According to

equation 4.34 this is the case provided
|Ed‘iNa/NdEpV.|>> Eq . 4.36

This condition may be éatisﬁed for high spatial frequencies, namely K >> K_ = 1/d or in
case of strong photovoltaic effect: E,, >> E, . In Fe-doped LiNbO,, high developing
efficiency can be achieved only in strongly oxidized (large photovoltaic field) weakly
(<0.05%wt) Fe-doped crystals, since the limiting space charge field E, largely exceeds the

photovoltaic and diffusion fields otherwise.

(b) Open Circuit

In the open circuit case no spatial-dc current flows through the crystal, but there exists an
~ internally generated (due to the photovoltaic effect) dc field E in the crystal. The solution

for the spatially varying component (i.e., hologram) of the electric space charge field is

B _ ie Eq+iEpy. (Na-Na)/Ng
Eq

nii(t1)

ie
+— [N (tl) +

< nig(tr)| e . 4.37

The characteristic relaxation rate in this case is
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. 2 Epy (NeN

E, Ng 4.38

In LiNbO, the open circuit case in general gives lower diffraction efficiencies [17] during
the iniﬁal recording, hence, we expect a weaker initial hologram magnitude (smaller E{ ).
Besides, since in strongly oxidize lithium niobate Ng - Na << N{, the unscreening of the
ionic hologram due to photovoltaic effect is also reduced, leading to even weaker developed

holograms than in the short-circuited case (compare equations 4.29 and 4.37).
4.6 Ionic grating decay upon readout (phase IV)

(a) Short Circuit

This phase relates directly to the lifetime of the hologram in actual applications. It
involves the decay of the ionic backbone grating due to ion (drift + diffusive) transport. In
phase III we neglected ionic transport and considered the transient behavior of the grating
before the dyﬁamic equilibrium is reached. This was justified since the duration of that
phase is short compared to the ionic decay time (®, + D,K*"'. The dynamic electronic
compensation resulted in a stabilized space charge field (hologram) as given by equation
4.34. This field proceeds to decay to zero because of the ionic transport which erases the
ionic backbone charge n,;. This phase usually takes place under light illumination, when the
_ electronic photoconductivity is much larger than the ionic conductivity. The key physical
assumption here is that the ionic decay process is sufficiently slow so that while it takes
place the faster electronic transport in the presence of light causes the trapped charge
density Ngi(t) to be always in equilibrium with n,,. This equilibrium ratio is obtained from

equations 4.15 and 4.34 for t — oo (i.e., after the relaxation of the transient)
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Na () - Eq 430
With this last condition we obtain from equation 4.14
V Ed - ].Ep.v‘ Na/Nd +D: 2
Vi) = nin(t) ol ) 4.40

for the short-circuit case. We recall that n,(t,) = n,(t;) since phase III is too short for

significant ionic transport.

‘The corresponding grating fields are obtained from equations 4.15 and 4.39 and
| replacing n,(t) by its solution 4.40. The result is that during phase IV the electronically
screened ionic hologram decays to zero due to ionic transport which, however, is slowed

down because of partial electronic compensation

Ed - iAEp.VA Na/Nd

1 Eq—iEpv. Na/Ng — 2
Elv)t =£ p-v. . [y TE N, +D,K]t.
(l () eK Ed+Eq— iEp.v. Na/Ng nll(tl)e (Ed +Eq lEp_.N/Nd) 4.41

(b) Open Circuit

The decay dynamics of the ionic backbone grating in the open circuit case can be found

using a similar procedure. The equilibrium trap density modulation in this case is

N (1) - Eq

== — . } 4.42
ni (t) Eq+Eq+iEpy. (Nd—Na) /Ny

And the total hologram space-charge field of electronically compensated ionic grating decay

is given by

i Eq+iEpv. (Ng-Na)/ N Eq +iEpy. (Na - NaJJ/Ng
E(]IV)(t) - E ( d+ 1Ep.v, ( d a) d P 4.43

. ~en -
T eK Egq+ Eq+ iEp.v_ (N d- Na)/Nd) nll(tl) € (Ed +Eq +iFp(Na - No)/Na

)+DiK2]t
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4.7 General remarks on hologram fixing and ionic conduction in LiNbO,

. The hblbéram thermal ionic ﬁxing in photorefractive lithium niobate has been studied
extensively [4, 9, 11-14, 18-22]. In general; it is agreed that above 70-80°C the ionic
conductivity in this crystal largely prevails over the dark electronic conduction due to Fe**
electron detrapping. At temperatures somewhat below 60°C, however, the conductivity is
predominantly due to electrons and is characterized by a small activation energy (0.1 to 0.4
eV) which is due to small polaron electronic conduction associated with the Nbi} defect
center [23]. This defect (i.e., Nb*> ion occupying a Li" crystal lattice cite) is due to the
_inherent Li-deficiency in congruent lithium niobate and it plays an important role in
considerations of the material dark conductivity at and near room temperature. In the
presence of light, however, the photoconductivity is governed by Fe-impurities in Fe-

doped lithium niobate [ 24 ].

The thermally activated ionic (and, similarly, thermally activated electronic)

conductivity obeys an Arrhenius-type dependence on the absolute temperature T

E/koT

Oj = enjlge” 4.44

where n, is fhe density of ions and E, is the activation energy. At any given temperature the
lifetime of the ionic space-charge is determined by the residual jonic conductivity given by
equations 4.17,4.41, 4.44 and, importantly, is inveréely proportional to the density of the
conducting ions. It is well established [19,25] that the ionic conductivity in as-grown and
hydrogen-doped lithium niobate crystals is predominantly due to the H* ions. Hydrogen is
normally located in the oxygen planes along the O-O bond and its relative contents can be
evaluated, therefore, as the strength (peak or integral) of the OH stretching vibration

absorption line near 2.87 um [26]. Vormann et al. [19] have shown unambiguously that in
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as?growri and H" -doped érysials the ionic conductivity is due to the hydrogen and deduced
the activation energy of E;=1.2 eV for its migration. It was recognized, though, that in as-
grown lithium niobate the residual ionic conductivity gives extrapolated lifetime of an ionic
hologram of only 50-70 day at room temperature, and therefore, a substantial reduction of
the ion density is essential to increase the available storage time [9,27]. The latter is

achieved in our work via substantial dehydration of as-grown crystals.

In what follows, we describe our experimental study on the long-lifetime hologram
fixing and ionic conductivity in Fe-doped congruent and non-congruent lithium niobate

- and, also, present some results on high- and low- temperature electronic dark conductivity.
4.8 Experimental procedure

We investigate hologram fixing and the temperature dependence of the ionic
conductivity in Fe-doped lithium niobate crystals grown by Deltronic Crystal Industries.
An Ar*-ion laser with the wavelength A = 488 nm was used in most of the experiments
(Figure 4.3). The crystal is placed on the heater plate whose temperature is controlled with

0.1°C accuracy. The crystal and the heater are enclosed in a vacuum chamber in order to
avoid the optical phase perturbations during the recording stage which otherwise occur due
to the air density fluctuations in the vicinity of the hot plate. The samples measured 5 mm X
" Smm X 10 mm with the longest edge lying along the optical c-axis, except for the vapor-
transport-equilibrated (VTE) sample which was only about 1 mm thick. The crystals were

short-circuited by conducting electrodes placed over the four facets of the crystal.
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" The holograms are fecofded with two equal intensity ordinarily polarized 488 nm
beams with the grating vector lying along the c-axis direction. The recording beams were
expanded to approximately 1 cm in diameter and covered the whole crystal during the
recording. The total recording (and erasing) optical intensity was about 100 mW/cm’. The
holographic diffraction efficiency was monitored with a weak Bragg-matched
extraordinarily polarized He-Ne laser beam. The diffraction efficiency was sampled at
cdntrollable ‘rate (determined mostly by the temperature of the sample during the
experhnent) to minimize the erasure of the hologram by the probing beam itself. Durihg the
developing stage a non-Bragg-matched 488 nm expanded beam was used to issue an
approximate uniformity of the erasing intensity throughout the volume of the sample. After
each experiment the crystal was heated up to approximately 230°C and soaked for ~30

minutes to achieve uniform distributions of both electrons and ions.

In the fixing experiments (“low-high-low fixing,” Section 4.9) the grating was
recorded at low temperature ( 50°C ), the sample was heated up in the dark to cause fast
ionic transport, and then cooled down to the temperature of recording ( 50°C ). The
resulting electronically compensated ionic grating was revealed (developed) with a non-

Bragg-matched erasing beam.

The dark decay of ionically compensated trapped electron grating is measured as the
‘ decay rate of the weak'hologram ( see Figure 4.2, phase (2) ) left behind after the ionic
compensation was complete. Due to very fast ionic screening and high ion density, a
prolonged (5-30 minutes) recording of the grating at elevated temperature ( T >130°C ) was

required to obtain a measurable diffracted signal during this stage.

The ionic hologram lifetime (Section 4.12) was determined by monitoring the dark

decay (see Figure 4.2, phase (1)) of gratings recorded and stored at different (although
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‘constant throughout each measurement) temperatures. The recording time was kept at a

minimum (until the holographic diffraction efficiency reached 10% to 20% ).
4.9 Hologram fixing via temperature cycling (“low-high-low” fixing)

Very high diffraction efficiencies of the fixed (reflection) holograms can be obtained via
prolongéd reeording at high temperature [28]. In this case, effectively, the hologram is
recorded and ionically compensated many times leading to a substantially higher ionic space
charge perturbation. However, this procedure is not practical for complex image-bearing

‘hologram because of the inevitable degradation of the Bragg-conditions due to thermal
mismatch. Only simple single gratings can be recorded and fixed using this method. In the
holographic data storage it is essential that recording and reconstruction of (fixed)
holograms be performed at the same temperature. We, therefore, investigate the fixing of

holograms by temperature cycling method ( Figures 4.4 and 4.5).

In all of the experiments on "low-high-low" fixing the holograms were initially
recorded at 50°C. The ionic compensation is very slow at this temperature and the dark
decay time (exponential) of the holograms was more than 100 hours in the samples used.
After the recording the writing beams were blocked and the sample with the hologram was
heated up to ~120°C in order to cause fast ionic transport. Once the hologram is
~ compensated, the temperature is returned to the initial value corresponding to the recording
stage. When the sample temperature is stabilized at 50°C, a non-Bragg-matched expanded
beam is shined directly on the crystal to develop (reveal) the fixed holograms. Both crystals
used in these experiments have very low hydrogeﬁ impurity content (see Section 4.12
below); the magnitude of the OH' stretching absorption band was < 0.01 cm’ (i.e., below
the resolution limit of the spectrometer) and 0.035 cm™ in O.,OS% Fe and 0.01% Fe-doped

samples respectively.
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Figure 4.4. Ionic fixing in oxidized dehydrated lithium niobate crystals with (a) 0.01%
Fe and (b) 0.05% Fe-doping. Initial diffraction efficiencies are ~25% and the
grating spacing is 21/K = 1 um in both cases.
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"\In the experiments, showh in Figures 4.4 (a,b) the holograms were recorded for short
periods of time until they reach the same magnitude (~25%). This low value of diffraction
efficiency is chosen in order to avoid the saturation effects due to the sin® dependence of
diffraction efficiency on the index perturbation, and, thus, to be able to compare directly the
relative fixing / development efficiencies. In agreement with theoretical predictiohs (see
Section 4.5) the fixing / development efficiency depends strongly on Fe-doping and the
oxidation sta{e of the crystal. In Fe-doped lithium niobate the limiting space-charge field E,
is proportioﬁal to Fe®* density (see equation 4.32):

e [Fe3+] [Fez+] e [Fez+]

Eg = ~ . 4.45
17k ([Fe3+] + [Fez+]) eK

The limiting space charge field E, determines the degree of electronic screening of fixed
ionic hologram (equation 4.34) and the fixing / developing efficiency is decreased with
increasing [Fe**] ( Figure 4.4 (b)). At the same time, almost 70% reconstruction efficiency
(i.e., weak screening ) is realizable in weakly Fe-doped crystals as shown in Figure 4.4(a).
This observation also demonstrates that the electronic detrapping from Fe**-sites can be
avoided even in lithium niobate with largely reduced ionic conductivity (i.e., low hydrogen

Impurity content).

Shown in Figures 4.5 (a), (b) are the fixing experiments in which the recording was
performed until the peﬁurbation in the index reaches its steady state. The maximal index
perturbation which can be induced in oxidized lithium niobate is larger the higher the Fe-
doping. However, the developing efficiency decreases with Fe-doping as well. The net
result is that the fixed holograms have almost the same efficiencies in the crystals with
different iron dopant concentration (see Figures 4.5 (a,b)) when the "low-high-low" fixing

technique is used.
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Figure 4.5. Ionic fixing in oxidized dehydrated lithium niobate crystals with (a) 0.01%
Fe and (b) 0.05% Fe-doping. The holograms were recorded for approximately
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(b) are due to the sin® dependence of 1 on index perturbation 8n. The grating

spacing is 27/K = 1 pm in both cases.
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. 4.10 Dark electronic decay at elevated temperature

A hologram recorded at elevated temperature and left in the dark experiences fast ionic
" compensation (Figure 4.2, phase (1)), which, of course, also takes place during recording
if the ionic conductivity is larger or comparable to the electronic photoconductivity. Fast
ionic decay is further followed by a much slower electronic grating decay which is due to
electron detrapping from Fe* sites (Figure 4.2, phase (2)). The ionic compensation is very
strong due to the relatively high density ( > 10'® c¢cm™ ) of compensating ions and,
therefore, the residual weak index grating may have both tile electrooptic (that due to the

remaining electric field as given by equation 4.20) and the photochromic contributions
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[29]. Arrhenius plot of dark ‘electronic decay time in 0.15% Fe-doped congruent lithium
niobate for different grating spacings is shown in Figure 4.6. The corresponding ionic
lifetimes are also shown as a reference. In agreement with theory the dark electronic grating
lifetime strongly depends on the grating spacing (equation 4.25). At the same time, ionic
decay time (fast stage of the decay) is almost independent of the grating spacing. We also
observe that if the erasing light is shined on the crystal during the phase (2) of Figure 4.2,
the weak res‘idual grating decays rapidly to zero at a rate which is close to that of the
recording stage. Thus, the slow decay can be enhanced by light and, therefore, is indeed
electronic. It is worth emphasizing that above ~90°C, even in heavily Fe-doped oxidized
lithium niobate crystals, the ionic conductivity is higher than the dark electronic conduction

(due to both thermal Fe-detrapping and the small polaron Nb! shallow trap defect).
4.11 Ionic hologram decay upon readout.

Tonic transport is the mechanism which is responsible both for the ionic compensation
in the dark (Figure 4.1, phase I) and for the decay of the fixed ionic grating during the
readout (Figure 4.1, phase IV). The latter, however, can be slowed down to a certain
amount due to the compensatioﬁ effect of the electronic grating. Figures 4.7 (a,b) show the
evolution of two holograms which were recorded, fixed, and reconstructed at 90°C
(temperature was kept constant throughout the experiments) in the dehydrated lithium
- crystals with different iron dopant concentration. In the crystal with low Fe-doping (0.01%
Fe, small E) the rate of ionic decay during the readout is very close to the dark
compensation rate. This is not surprising since the electronic screening is weak in this
crystal (Figure 4.4 (a)). The higher doped crystal exhibits substantial electronic screening
(Figure 4.7 (b)), and, consequently, the decay upon development is slower (approximately

by a factor of 5 in the conditions of Figure 4.7 (b)) than that during the ionic compensation.
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Figure 4.7. Recording, ionic compensation, developing, and final decay of the
holograms in oxidized dehydrated lithium niobate crystals with (a) 0.01% Fe and
(b) 0.05% Fe-doping. In (b) the fixed grating decay is ~5 times slower than the
ionic compensation (ionic dark decay) due to stronger electronic screening, while
in (a) they are almost equal. The ratio between the decay rate in the dark and the
decay rate of the fixed ionic grating upon readout is preserved, as long as the
ionic conductivity is much smaller than the electronic photoconductivity (i.e., for

T £~100°C). The grating spacing is 2/K = 1 jum in both cases.
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At the same time, the recdnstfuction efficiency (in this case, the ratio between the maximal
value of reconstructed signal and the initially recorded signal) is substantially lower than in
the case of weak electronic compensation (see also Figure 4.4 (b)). It can be concluded,
therefore, that for a given residual ionic conductivity and a given storage temperature, an
increase in the lifetime of an electronically compensated fixed ionic hologram can be

achieved only at the proportionate expense of its reconstruction efficiency.
4.12 Lifetime of the fixed ionic hologram

The lifetime of a fixed ionic grating is determined mainly by the conductivity 6j of ionic
species at given temperature T, i.e. T o< €€¢/0;, where G, is given by equation 4.44. In
order to determine the ionic conductivity and the corresponding activation energies we
measure the dark decay time ( Figure 4.2, phase (1) ) of the holograms recorded and stored
at different ( although, constant throughout each experiment ) temperatures. We find, that
in as-grown congruent lithium niobate crystals with fairly high hydrogen content (measured
as the strength of the OH™ absorption near 2.87 pum ) the ionic conductivity exhibits a ~1.2
eV activation energy and is relatively high (Figure 4.8, sample (a)). This activation energy
- is characteristic for hydrogen éonductivity [19, 25]. The lifetime extrapolated to room
temperaturé (24 °C) is about 50 days, which is too short for the majority of applications
[27]. Partial electronic screening under illumination slows down the ionic decay but at the
~ same time decreases the grating strength ( see Section 4.11 ahd equation 4.41). Therefore,
the most feasible mechanism for increasing the fixed hologram lifetime is the decrease in
the ionic conductivity, which can be achieved by reducing the total density of conducting
ions. The high temperature (~950°C) post growth processing in dry oxygen atmosphere
results in a substantial reduction up to 100 times compared to as-grown of OH density in

the crystal and leads to a significant increase in the ionic hologram lifetime. However, we
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find (Figure 4.8 (b.c)) that after substantial hydrogen removal, the ionic conductivity is
determined »b.y a species other than hydrogen. The ionic conductivity in dehydrated crystals
does not depend on the hydrogen density as opposed to the linear dependence of G, on
[OH] found in as-grown and hydrogen doped samples [19,25]. The activation energy also
differs from that typical for the H" impurity transport and is equal to ~1.4 eV. The fixed
ionic hologram lifetime in dehydrated samples at room temperature (24°C) can be

extrapolated to be about 2 years.
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Figure 4.8. Arrhenius plot of the ionic hologram lifetime in (a) as-grown (E, = 1.2 eV)
crystal, (b,c) samples with low hydrogen impurity content and different Fe-
doping (E, = 1.4 V), (d) Li,0 equilibrated (VTE processed ) crystal. The fall-off
in the hologram lifetime in the low temperature range-(i.e., when T < 70°C ) is
due to the shallow trap (Nb‘fir small polaron defect ) electronic decay in

nonstoicheometric lithium niobate.
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" Tn order to investigaté the(inﬂuence of lithium vacancies on the ionic conductivity [30],

a more stoicheometric sample was prepared using vapor transport equilibration ( VIE )
technique [31, 32]. The processing temperature was 1080°C, and the processing time was
400 hours for a 1 mm thick a -cut lithium niobate crystal. The Li,O content in this sample
was estimated to be at least 49.5% (congruent lithium niobate contains 48.6% Li,0 [33])
from the phase-matching angle measurements for the second harmonic generation at 1.064
um [34]. In the temperature range studied in our experiments the ionic conductivity in the
VTE sampie also exhibits a ~1.4 eV activation energy (Figure 4.8, sample (d)) and is
nearly the same as the one in congruent dehydrated lithium niobate. This may rule out the
“mechanisms of ionic conduction which involve a substantial role of lithium vacancies /
lithium deficiency. The nature of ionic conducting species in the dehydrated lithium niobate
crystals is yet to be determined. Migration of lithium self-interstitials [32] may be a possible

mechanism responsible for the ionic conductivity with activation energy of 1.4 eV.

It should be noted that the ionic conductivity with the 1.4 eV activation energy and the
substantially increased ionic hologram lifetimes at room temperature can be found only in
fully oxidized lithium niobate crystals with very low hydrogen impurity content ( [OH] <
© 5x10" cm®, that is for OH absorption at 2.87 pm less than 0.05 cm™ ). In the samples
with higher hydrogen contents the dark decay time constant may exhibit activation energies
) which are ranging widely from 0.9 eV to 1.4 eV, depending on the density of H" impurity,
range of the températures used in the experiments, and the oxidation state and density of the

iron dopant [20-22, 35].
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4.13 Silmmary

’ Hologfaphic gratings which are based on charge redistribution inevitably decay due to
ionic and electronic conduction. Relevant decay rates and transient hologram field
expréssions are derived. lonic gratings are partially screened by trapped electrons upon
readout. The lifetimes of fixed ionic holograms are limited by the finite ionic conductivity
at low (i.e., }oom) temperature. A significant increase in fixed ionic hologram lifetime is
realized in lithium niobate with low hydrogen impurity content. The residual ionic
conductivity (decay time constant) in these samples exhibits ~1.4 eV activation energy and

-is not due to protonic conduction. Fixed hologram lifetimes of about 2 years at room

temperature are projected in dehydrated lithium niobate crystals.

There is a good agreement between the experimental results on hologram fixing in Fe-
doped photorefractive lithium niobate and the prediction of the theory. Experimental study
reveals some new features in the holographic ionic fixing and related low temperature ionic

conductivity in lithium niobate. A few main conclusions are worth emphasizing:

(a) At elevated temperaturei( T> ~60°C for lithium niobate ) the initial decay of the
recorded grating is due to ionic compensation (phase I). Under dark storage conditions, the
(phase II) decay as described by equation 4.23 is due to the thermal electronic transport

" slowed down by ionic screening.

(b) A near perfect development and fixing (i.e., E,(t,) = E,(t,) in Figure 4.1) can be

obtained provided that the screening of the residual ionic grating by electronic grating is
weak upon read-out. According to equation 4.34, this happens when

Eq - iNaJ/NGE,v. | >> Ec. This condition is realized in weakiy iron doped oxidized lithium
P q
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niobate ci‘ystals with strong photovoltaic response. The fixing efficiency can be close to

100% in such crystals.

(c) Under illumination (phase IV) the hologram is quasi-stabilized. The residual decay
is dué to the transport of the ionic charge backbone (equation 4.41). Major reduction of the
ionic conductivity at the operating temperature is necessary to bring this decay rate to the
acceptable raflge of lifetimes > 10 years. An increase of the fixed hologram lifetime can be
also achieved due to strong electronic compensation, but only at the expense of its

reconstruction efficiency (equation 4.41).

(d) Substanﬁal increase in the fixed (ionic hologram) lifetime can be realized in lithium
niobate crystals with low hydrogen content. The residual ionic conductivity (and associated
hologram decay time constant) exhibits a ~1.4 eV activation energy and is not due to
protonic conduction. Fixed hologram lifetimes at room temperature of about 2 years are

projected in dehydrated crystals.
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Chapter Five

Material Response, Noise in Optical Detection,
and Holographic Storage Capacity |

5.1 Introduction

Holographic data storage initially proposed during the 1960s [1-3] uses the concept of
storing data in the form of multiplexed holographic gratings distributed through the volume
of the recording media. Bragg selectivity provided by the volume interaction allows
- independent retrieval of each of the pages of data stored in the common volume on the basis
of the optical parameters such as the wavelength of light (wavelength multiplexing [4]),
incidence angle of the reference (angular multiplexing [5]), or the spatial distribution of
* reference light (phase-encoding [6, 7], shift multiplexing [8]). The attractiveness of this
storage architecture [9, 10] is due to its highly parallel access to the stored data, very short
access time (< 100 ps), as well as potentially . large theoretical capacity given by,
essentially, the diffraction limit of ~V/\’ bits in a volume V. The actual amount of
information which can be stored in the volumetric storage media may differ significantly

due to a number of reasons which include the interpage and interpixel cross-talk present in
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anji leltiplexing technique [11-14], optical scattering noise of the material [15], as well as

the optical detection noise and finite material dynamic range {16, 17].

Due to the finite dynamic range of the media (i.e., the finite maximum index
perturbation 6n,__, which can be induced) the amplitude of the sinusoidal index perturbation
representing an individual bit is smaller the larger the total number of bits recorded.
Therefore, the diffracted signal which represents an individual bit of data decreases with the
number of bits. The minimal signal which can be detected is limited by the optical detection
noise: thermal and 1/f noise of the detector, and more fundamentally, the quantum shot
noise. Given the source optical power, readout rate, and optical frequency, the requirement
of a given signal-to-noise ratio (SNR) upon detection and, ultimately, the quantum shot

noise set the upper limit on the number of bits which can be stored.

In this chapter we present an estimate of the number of bits, sharing the same volume
of the recording material, which can be stored and faithfully retrieved with acceptable bit-
error-rate. This estimate limits the storage capacity of a single volume; further increase can

be achieved by spatial multiplexing, i.e., the use of spatially non-overlapping volumnes.
5.2 Diffraction efficiency per bit

We assume that each individual bit n is stored in the form of a sinusoidal index grating

dn,(r) with the grating vector k, and a constant (real) amplitude for each bit dn,;

Sny - A
8nn(r)=5n0+__6§e-1(kn-r+9n]+ ‘Ezl_l_(.@l(knl'+en) ’ 51

where 8n, is the dc term in the index perturbation, and 6, is the phase of the n-th grating.

The 8n,(r) is given by equation 5.1 if the corresponding bit is 1 and dn,(r) = 0 otherwise.
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The.diffréctio_n efficiency m,; due to the index perturbation 5.1 is given by the Kogelnik’s

formula [18] and, in the limit of weak index perturbation considered here, is

L 81'1k 2
) 52

Mbit = (—A——
where L is the length of the crystal and A is the wavelength of light. For maximal storage
capacity the diffraction efficiencies for all “1” bits should be the same, since the noise
spectrum is uniform [19] (the noise is determined by the detection system and, thus, does

not depend on the bit number n or the grating vector K ).

The On, can be considered as the magnitude of the index perturbation due to individual
bit of information in the k-space. In the real space the total index perturbation dn(r) is the

sum over on (r) given in 5.1:

on(r) = 2531‘( dng + %e'i(k“" o), %ei(k“"‘ +6) ), 5.3
where N, is the total number of bits stored in the single storage volume. The finite

- dynamic range of the material lirhits the maximal index perturbation in the real space dn(r),

i.e., both first and second moments of the dn(r) must satisfy the following conditions:

(8n(r)) < Sma » | | 5.4

((5n(r) %) < 82 , 5.5

where ( ) denotes the statistical expectation value (w.r.t. random phases 0,). Therefore,

given the maximal index perturbation on

max?

the maximal On, can be calculated using
equations 5.3-5.5. The minimal reliably detectable 1, is determined by the optical detection

noise and acceptable SNR.
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5.3 Optical detection noise and minimal diffraction efficiency

~ One of the most fundamental sources of noise in the optical detection system is the shot
noise. Other_ sources include Johnson thermai noise, 1/f noise, relative intensity noise of
the source laser, etc. The quantum shot noise gives the lowest possible (fundamental) limit
to the noise power in the detection system (unless quantum squeezing is introduced, what
is not relevant to the topic considered here - the low diffraction efficiency would reduce the
degree of squeezing dramatically and the diffracted light incident on the detector would

have the usual Poissonian statistics anyway).

The power diffracted due to a single bit in a page is P n,;,, where P is the source laser
power. The average signal current generated by a photodetector with unity quantum

efficiency is

- ~ PoNpi
is=eN=¢ " t 5.6

The mean-square noise current amplitude due to the shot noise is [20]
i% = 2eLAf = 2elyt, | - 5.7

where T is the readout time. The (amplitude) signal-to-noise ratio SNR is then given by

SNR =

i_s_ _'_(PoﬂbitT)l/z. 58

\/E_ 2 hv

For a given specified readout bit-error-rate the SNR is a given number and, thus, equation
5.8 places the lower limit on the minimal diffraction efficiency per bit (Mvit)min for the

system in which the dominant noise source is the shot noise in the optical detection system:
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2hv( SNR >

Pot 5.9

 (Mibit )min =
" For the typical parameters of P, = 100 mW, T = 100 us, hv = 5.10" J, and SNR = 20
(~26 dB), the estimate 5.9 gives (Mbit)min = 107", which translates into the minimal power

per bit of ~10™"! Watt (or, 2(SNR)* = 800 received optical quanta per bit per readout).

The noise properties of the commercial detectors (which are not necessarily determined
by the ultimate quantum shot noise) are usually characterized by the noise equivalent power

(NEP, in W/,/Hz ). The SNR in such a detection system is simply

P . P /T
SNR = 0 Mbit _ oﬂbn\/_ . 510
NEP / Af NEP

And, therefore, the minimal diffraction efficiency per bit is

Nbit Jmin = POﬁ . 5.11

Using the same values of parameters P, T, and SNR, and taking a typical (low) NEP
value of 10™ W/\/Hz , we calculate (Nit )min = 2x10™° and minimum power per bit of
~2x10™" Watt. In what follows we consider the limitations due to the quantum shot noise,
as given by 5.8-5.9, and then give the corresponding formulas for the case when other

- noise sources are dominant (as described by equations 5.10- 5.11).
5.4 Media without erasure and dc saturation

In this (ideal) media each bit (and page of information) can be recorded without erasing

the index grating of the others and there is no dc saturation during the recording, i.e., 6n, =
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0 in the‘equation 5.3. Then, obviously, (dn(r)) = O and condition 5.4 is satisfied

automatically. The calculation of the second moment (equation 5.5) gives

N

(8n’(r)) = ( 62“) (o s (- K+ 0 - ) Krtknlr +{ 00200l ¢ ) =
e ) o Sny)*
_{ 4k) ( Za Zpey 25n,m>=( 2k) Noit. >

The mean-square value of the index perturbation in the real space (8n2(r)> cannot exceed the
maximum squared index perturbation dn2,,. Therefore, the maximal index variation per

each bit on, is equal (equation 5.12)

O max \/5

. 5.13
v/ Nbit

Snk =

The diffraction efficiency per bit (given by equation 5.2) is then equal to

5.14

- and must be more than or equal to the minimal value (M) min Calculated from detection noise
considerations, and which is given ‘by the (shot noise limit) equation 5.9. This gives the
estimate for the maximum number of bits N, which can share the same volume in the
~ material without dc saturation and erasure:

Pot 5 (L)Z
Npit=*| ———— |n —
1t ( hV (SNR)Z ) | max 7\’ | ‘ 5.15

For a cubic storage volume with L/A = 10* (i.e., L = 0.5 cm), 8n_,, = 107 and typical
parameters given in Section 5.3 the estimate 5.15 gives N,; = 5.10" bits, which is far

beyond the diffraction limit of (L/A)* = 10" bits. Therefore, the conclusion can be drawn
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that in a media with no dc saturation and erasure, the diffraction limit can be achieved and

the main limiting factor is the information cross-talk rather than the optical detection noise.
5.5 Photorefractive media

The index gratings in photorefractive materials are produced by the redistribution of
photoexcited- electrons between traps, buildup of the internal space-charge field, and
electrooptic effect. Recording of each subsequent page of information partially erases the
index grating of previously recorded pages. Let the information be arranged in M pages
with page capacity of n, bits/page (the total number of bits is N, = Mn,). For recording of
a single page the results of the previous Section (equation 5.13) for the maximum index

variation per bit apply, and, therefore

Snmax /2
(Snk)l page = % »

5.16

where (Ony) is the index perturbation (in k-space) per bit in a single page. Subsequent

1 page

recording of M-1 pages decreases On,. Since for maximal storage capacity [20] the
magnitude of the index gratings in different pages has to be equal, we consider incremental
recording [21] (i.e., the best case scenario for the uniformity of the page diffraction

efficiencies), in which each page is recorded for a short period of time (AtM<< t__, where

esp?®
"t is the recording response time of the material), sequentially (1-2—..—-M-1—

Tesp

M—1—2...), until the saturation is reached. The change in the index perturbation of an

individual bit per cycle of recording is

ABnK)eyere = 1-AL (n“)ﬂ - M-Ap , | 5.17

resp resp
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Wﬁere thé first term descfibeé the recording of the bit grating due to one page, the second
represents. the erasure (and saturation) due to M pages. We also neglect possible asymmetry
between recording and erasure time constants, which is a correct approximation unless
hologram fixing techniques are employed. In the steady state A(8ny)cyqe = 0 and, therefore,

(also using the expression for (8ny); page » €quation 5.16)

1 ‘ ONmax */_2_ _ SN max Y 2ng

81’11(:M'(_6nk)1 page = M\/Il—o - Nbit . 5.18

The diffraction efficiency (equation 5.2) due to individual bit grating dn, is given by

onZ,. no { L \2
2~3EL3(X), 5.19

Mpit = 27°
' (Nbit)?

and, unlike the case of the material without erasure (equation 5.14) is inversely
proportional to the square of the total number of bits N,;, (and the square of the total
number of holograms M [1, 16]). Comparing the diffraction efficiency 5.19 and the
minimal value (1), ,, Which is given by the (shot noise) detection limit (equation 5.9), one
arrives to the following expression for the maximum number of bits N, which can be

stored in a common location in the volumetric photorefractive media:

Pot ( L ) '
Npit=T7 ————ng| on = | - 5.20
bit \/ (hV (SNR)2 0) max A

The maximum storage capacity of a single storage location grows only as a first power

of the media length L, besides the capacity increases with the information content of an
individual page n, (in agreement with results in [16]). For a cubic storage volume with L/A

= 10* (i.e.,, L = 0.5 cm), 8n__ = 10°, n, = 10° bits/page (1000x1000 pixel per page), and
max 0 p
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typical véllue_s of P, 'c,v SNR, and hv given in Section 5.3, the estimate 5.20 gives
N, = 7.10° bits = 7 Gbit, which is far below the ultimate diffraction limit of (L/A)’ = 10"
bits. Therefore, in the case of holographic storage in thick photorefractive media the optical
detection noise and finite material response (rather then the cross-talk) represent the main

factors limiting the ultimate capacity of an individual storage location [22].
5.6 . Photochemical recording media (photopolymers, doped silica, etc.)

In these media (e.g., photopolymers) the change in the index of refraction is produced
due to the chemical reaction inside the volume of the material [16, 22]. Since the chemical
reaction is strongly irreversible, subsequent exposure does not erase the previously
recorded holograms, as long as the total index change is below its maximum saturation
value dn__. The index change is proportional to the total light exposure and saturates as the
reactive radicals are depleted. The intensity distribution which records a refractive index

grating for an individual bit in a page (equation 5.1) is of the form

) _ I, T iper vy T ior vy 5.21
m m 2 2

where m is the modulation index (m < 1). This intensity distribution produces the index
variation Shn(r)
onk Ok gcr+0,) Ok jk,r+0,) .
8nn(r) = _ITI—I- +_——2—e + "‘2—6 , 5.22
where dn, = SAtl, (S is the current (after depletion due to previous recording)
photosensitivity of the material and At is the exposure time). Equation 5.22 shows that
unlike the photorefractive materials and “ideal” media of Section 5.4, in the materials with

photochemical mechanism of recording, because of the chemical depletion, the creation of

the sinusoidal grating also necessarily leads to the dc terms in the index of refraction
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diétributidn. For the best case of unity modulation index m=1, the average index change in

the material due to N,;, bits (equation 5.3) is

, ong . . onk .
(dn(r)) = <'Z§="‘1‘( dny + —z—ke'l(k“ P, —ike‘(k“ r+6:) ) > = ny Npit - 5.23
The average index perturbation ( dn(r)) cannot exceed the maximum saturation index

change of thé material &n__. Therefore, the maximal index variation per each bit én, is

given by
Onpax
ony = 5.24
X Nuit

The consideration of the second moment <8n2(r)> (equation 5.5) does not change this
estimate significantly (in fact, it gives Ony = Onyax/A/ NZie+Nbit = Onp0/Nbie, 1.6,
essentially the same value of dn, for N, >>1). The diffraction efficiency per bit (as given

by equation 5.2) is then given by

5.25

which has to be more than, or equal to the minimal value (n,,),,, determined by the optical
detection noise (shot noise, equation 5.9). The estimate for the maximum number of bits
- N,;, which can be stored in a common location of a-photochemical storage media is then

given by

Nbic = 10 LZ Snmax(%). 5.26
2hv (SNR) '

For the bulk cubic storage volume with L/A = 10* Gie., L = (.5 cm), typical values of

P,, T, SNR, hv same, as given in Section 5.3, and 8n_, = 0.1 (probably, maximum for
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phétopolymer materials), the estimate 5.26 gives N, = 5. 10® bits = 0.5 Gbit, which is far

below the ultimate diffraction limit of (L/A)’ = 10" bits, and, therefore, the dynamic range

" - of the material and optical detection noise is, indeed, the major limiting factor. In case of

storage in a thin photopolymer film [22] (L/A = 10% ji.e., L = 50 um; and 8n__ =~ 0.01),
the detection noise limit 5.26 is N, = 5.10° bits, while the diffraction limit is (L/A)* = 10°.
The two values are comparable and, therefore, in case of storage in thin photopolymer

films the major capacity limitations may arise from the information cross-talk [22].
5.7 Comparison of different storage media

To summarize, the maximum number of bits N, which can share the same location

volume of the storage material are (equations 5.15, 5.20, and 5.26):

Pot L \2
s hv (SNR)

Pyt L
=7 — 5o Onmax R 5.28
photorefractive hV (SNR)

e /P e () 5.29
2 A
photochemical 2hv (S NR)

These are plotted in Figﬁre 5.1 for typical values of paramcters P,, T, hv, SNR, etc., as a

Nbit

Nbit

Nbit

function of the volume thickness L/A. In case of the bulk volumetric storage (L/A > 10°)
only in the “ideal” media without erasure and dc saturation the storage capacity is limited by
the information cross-talk. The finite dynamic range and optical detection noise is the
dominant factor which limits the storage capacity of holographic memory based on

photorefractive and photochemical materials. The hologram fixing after the recording of
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Figure 5.1. Storage capacity of an individual location for different storage media and
diffraction limit vs. volume size L. The parameters used in calculations: optical
power P, = 0.1 W, hv = 5.10™ J, required signal-to-noise ratio SNR = 20,
readout time T = 100 ps; page capacity n, = 10° bit/page and dn_, = 10" (for
photorefractive media); Snmax = 107 (“ideal” media without erasure and dc

saturation); on__ = 0.1 for photochemical media (photopolymer).

each individual information page in photorefractives could increase the effective dynamic

range and, thus, the ultimate storage capacity.

A substantial increase in the total capacity using currently available materials can also be
achieved by using multiple, independent, spatially non-overlapping storage volumes with

an individual storage unit size of the order of 100 um (see Figure 5.1). In this case
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(rélatively thin storage media, massive spatial multiplexing, i.e., holographic disk [22,23]),
the maximum storage capacity is mainly limited by the k-space information cross-talk, and
with the use of appropriate multiplexing technique [4- 8] the storage capacity may approach

the diffraction limit of V/A’.
5.8 Other noise sources in the optical detection system

So far we have considered the optical detection noise due to the quantum shot noise. It
should be noted that the calculations based on this type of noise give the lowest possible
limit for the diffraction efficiency per bit (equation 5.9), and, therefore, the maximal, most
optimistic \}alues of the maximal storage capacity (equations 5.27- 5.29). The noise
properties of a real detection system may be worse than those of the system limited by the
quantum shot noise (this may be the case particularly for multiple pixel detector arrays).
Other noise sources include the thermal Johnson noise, relative intensity noise of the source
laser, the amplifier noise, as well as the optical scattering noise of the media itself. As
mentioned in section 5.3, the resulting noise characteristic of the whole detection system
(i.e., the optical detector, laser, amplifier, etc.) can be characterized by the noise equivalent
- power (NEP, in W/y/Hz ), which is the power of the input optical signal which produces
the output ﬁns signal equal to the output rms noise of the system (in 1 Hz bandwidth). The
NEP can be calculated given the noise parameters of the detector (en, in, R,,), the noise
figures of the amplifiefs, etc.. In the regime when the NEP dominates over the quantum
shot noise limit, the signal-to-noise ratio is given by equation 5.10, and the minimal
diffraction efficiency per bit is (equation 5.11):

(% = SNRNEP
bit Jmin PO ﬁ . 5.30
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Using this expression in the derivations of the maximal N, instead of the shot noise limit

(equation 5.9), we arrive to the following formulas for the maximal number of bits which

- can be stored in a single location of the storage media for the case when the optical

detection system is limited by the noise sources other than the quantum shot noise:

NEP 2PoyT .o [L)?
S LMY
% e © | NEPSNR | ™| %

NP 2Pp,/T
photorefractive NEP'SNR

NEP PO ﬁ
photochemical =7 (NEPSNR) 8nmax ( X ) ’ 533

Nbit

>l

), 5.32

.

Nbit

5.9 Summary

The storage capacity of holographjc media is limited by the information cross-talk, the
finite material response (dynamic range), and the optical detection noise. The ultimate
lowest level of the latter is given by the quantum shot noise. For the bulk (L/A > 10°)
" volumetric storage media (e.g., photorefractives or photopolymers) the dominant limiting
factor is the dynamic range of the media and the optical detection noise. The volumetric
storage densities close to the diffraction limit of V/?G‘l and high storage capacities (~1 Tbit)
can be achieved only via massive spatial multiplexing (use of multiple independent storage

volumes) in relatively thin materials (L/A = 10%.
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Chapter Six

Double Phase Conjugation in Photorefractive Media

6.1 Introduction

The phase conjugate replica of a monochromatic optical field is a field, of the same
frequency (in the frequency degenerate case considered here), whose wavefronts take the
same shape throughout space, but propagate in the opposite direction at every point [1].
There are several methods of generating optical phase conjugation, such as three- and four-
wave mixing, stimulated Brillouin and Raman scattering. Among them, the four-wave
mixing (Figure 6.1) is a very efficient and low threshold optical technique for the cw phase
conjugate wave generation [1]. For low light intensities the photorefractive materials are
" unique in their abilities to display large nonlinearities ‘over the entire visible, as well as the
near infrared range, what makes them an attractive candidate for demonstration of a variety

of four-wave mixing phase conjugate oscillators.

The first photorefractive oscillator [2,3] involved a photorefractive BaTiO, crystal
externally pumped with a pair of counterpropagating beams. This resulted in the build-up

of the oscillation in the form of another pair of counterpropagating beams in an external
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Figure 6.1. A schematic diagram of a four-wave mixing interaction.

cavity. Subsequently, a large number of self-pumped and externally pumped
photorefractive oscillators has been developed [4-8]. Some of them are depicted in Figure
6.2. One of the most interesting and basic interactions (although discovered in its "pure”
form the latest [8]) is the Double Phase Conjugate Mirror (DPCM) - a photorefractive
device in which two mutually incoherent input beams create phase conjugates of each other
(Fig. 6.2 (g)). The two incoherent beams cannot write stationary gratings in the
photorefractive crystals because of their slow response ( 0.1 Hz to 10 kHz typically), but
the effective interaction between the input beams is produced through the scattering off each
) ‘other's noise holographic gratings. The gratings which are common for both of the beams
experienée strong amplification and if the gain of the medium is large enough, the double
phase conjugate oscillation establishes itself [8]. The result of these oscillations is that the
two beams which don't need to be coherent, produce each others phase conjugate replicas.
The basic properties of DPCM (e.g., oscillation and threshold conditions) can be
understood within the framework of the general mode-coupling formalism of four-wave

mixing in photorefractives [4]. However, a more refined analysis, which accounts for the
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(c) (d)

(e)

Figure 6.2. Photorefractive oscillators. (a) The bidirectional ring oscillator (with beams
2 and 3 present). (b) Linear passive phase conjugate mirror (PPCM).
(c) Semilnear PPCM. (d) Total internal reflection (“"cat") mirror. (¢) Ring
oscillator. (f) Double phase conjugate mirror.
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spéitial stfuctu_re of the intéracﬁng waves, is necessary if one addresses the issues such as
the quality of phase conjugation (phase conjugate fidelity), signal-to-noise ratio in phase
conjugation, and conjugation with amplification of the conjugated signal. These topics are
of particular importance for the understanding of the limitations of particular device
applications, e.g., in image processors [9, 10], multimode-to-singlemode fiber couplers

[11], phase conjugate interferometers [12], and coupled-laser devices [13].

In the past few years a number of two dimensional theoretical models of DPCM has
been proposed which take into account the complex spatial structure of the interacting
optical waves. The modél by Segev et al. [14, 15] invokes the decomposition of the input
beams into a discrete set of eigenmodes of the free space (i.e., plane waves). The
interaction between the individual planewave components is then considered in a fashion
similar to the conventional one-dimensional theory [8]. Another approach used by Shkunov
et al. [16, 17] describes the self-pumped phase conjugation of a speckled beam [18]. The
interacting beams are assumed to consist of a set of interacting angular components which
are located within a wide solid angle and have arbitrary phases. The resulting index
perturbation and wave amplitudes are then obtained via statistical averaging over the
ensemble of realizations of the speckle structure. Yet another theoretical model (by Zozulya
et al. [19-21]) is based on paraxial wave propagation of the interacting waves, which are
~ assumed to have finite extent in the transverse dimension with a slowly varying envelope.
A special emphasize is made on the noncollinearity of the interacting beams. One of the
main conclusions of this formulation is that the DPCM is a convective noise amplifier (like,

e.g., SBS conjugator) rather then a nonlinear optical oscillator [19].
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In this chapter we will present the results of our experimental study [22, 23] of DPCM,
review the basic one-dimensional model, as well as the formulation and basic results of the

- two-dimensional model of double phase conjugation [15].
6.2 Basic coupled-modes analysis of the DPCM

The electric field of each of the interacting optical beams (Figure 6.1) is represented as
E{r, t) = Ajr)exp (i(kjr - @t) ) +c.c., 6.1

‘where Aj(r) is a slowly varying amplitude of the j-s beam. The two pairs of interacting
beams {1, 4} and {2, 3} induce the photorefractive index grating whose grating vector k,

is given by

ke=kg-ki=Kk2-Kk3 . 6.2

The coupled equations for the complex amplitudes A,(z, t) are obtained by substituting

equations 6.1 and the expression for the index perturbation into the wave equation
V?E +(no+An ’k’E=0, 6.3

and are given by [4, 8]

0A1 .

—— =1ikAnAg4, 6.4
0z

0A> .

22 ikAnA, 6.5

0z
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oAz o

——a—zi=xkAnAz,‘ 6.6
0AL .

Tz4’=‘kA“A1’ 6.7

where k = 2m/A is the wave number and An(z) is the perturbation in the refractive index.

These coupled waves equations are supplemented by the equation for the index perturbation

9An (AlAZ + A’5A3) -

T—aT +An=v T

where Ip=X|A;j |2 is the total optical intensity, the response time T is inversely
proportional to I, and y= i@An/c is the nonlinear coupling coefficient which is imaginary
in photorefractive materials without external or photovoltaic field, thus enabling power
exchange between beams. The analysis of the DPCM [8] shows that the intensity of the
phase conjugate output can be greater or less than their corresponding input , depending

upon the strength of the coupling constant for the crystal, and the ratio of the input

intensities. The boundary and initial conditions for the set of equations 6.3-6.8 are

Ax(z=L, t):Azo, 6.9
A4(z=L,t)= Ay, 6.10
 Aq(z=0,t) = As(z=L, 1) =0, | 6.11

An (z,t=0)=0. 6.12

An expression for the symmetric intensity transmission T = I3(0)/I(L) = Iy(L)/140) in the

steady state is given by [8]
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Tza?( [q'1/2v+q1/2]2.-[q'1/2-q”z]z), 6.13

where q =I40)I(L) is the input intensities ratio and a is related to the gain-length product
YL by
¥l
a = tanh|- a— | = tanh|- a-——]. .14
(23 Y °
The DPCM has the lowest oscillation threshold (YL )y=2 for the case of equal input

intensities q=1 (PC reflectivity and transmittivity T both are equal to a® in this case). The

transient solution [24] (for a® << 1) gives the characteristic time T, to reach the steady state

T

Tss™= 77— -
s$ ’YIJ"YLth

6.15
The two properties of DPCM as given by equations 6.14 and 6.15 indicate the self-
oscillation (i.e., T>0 even when no seeding signal is present) and critical slowing down

[23] (ie., T, — o for YL — (YL), )-

sS

6.3 Conjugation fidelity and reflectivity

In this Section we present experimental evidence of a threshold in the conjugation
"~ fidelity of the DPCM. In addition, we observe that the fidelity threshold depends on the
feature size in the conjugated images. The phase conjugate reflectivity, however, is a
smooth function of the gain. We have also modified the input beams' intensity ratio until
one output is well phase conjugated while the other output is masked by the noise. These
results are useful for an understanding of the limitations of particular device applications [9-

13].
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l Ar Laser

Figure 6.3. Experimental setup for the DPCM studies.

The experimental setup shown in Figure 6.3 consists of an Ar-ion laser, a beam splitter
BS, and two transparencies T followed by beam splitters and CCD cameras located on
opposite sides of a BaTiO, crystal. The multimode 488-nm Ar-ion laser with a 3-cm
coherence length is polarized in the plane of the optical system (extraordinary polarization).
Each beam acquires an image by propagéting through a US Air Force resolution chart.
After passiﬁg through an additional beam splitter and an imaging system, both beams

recombine at the BaTiO, crystal. Care is taken to ensure that the beams are mutually
; incoherent at the crystal f)lane (the optical path differénce between the arms is much larger
than the coherence length). The crystal is placed between the image and the focal planes of
the resolution chart so that the transverse intensity distribution in the crystal is nearly
uniform. To vary the photorefractive coupling coefficient, we uniformly illuminate the
crystal from above with a third, erasure, beam from the Ar-ion laser that is incoherent with

respect to the DPCM beams and has ordinary polarization to eliminate fanning of the erase
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beam. Changing thef intensity of the erase beam varies the visibility of the DPCM

interference patterns and hence the modulation depth of the index gratings or the PR

" coupling coefficient throughout the crystal. We measure the conjugation fidelity and

reﬂectiVity of the DPCM, using the backpropagating reflections from the beam splitters in
both arms. These reflections are magnified and captured by a CCD camera. When the
fidelity of the conjugated images is measured, we use a scanning variable slit across the
magnified image plane and measure the transmitted power in different locations. In this
manner we are able to compare the conjugation fidelity of the bars of a specific resolution
with the original contrast of the resolution chart. The best conjugate image obtained from
‘our DPCM is shown in Figure 6.4 (a). Figure 6.4 (b) shows the magnified central portion
~of the chart. The best resolution in the phase-conjugate image is 40 pm (across the entire
image), limited only by the apertures of our optical components, and the maximum

observed phase-conjugate reflectivity is 35%.

An important issue in the operation of the DPCM is the orientation of the structure
within the input images with respect to the main plane of interaction (defined by the largest
average projection of the gratings and the polarization of the beams). When all the bars in
an image are perpendicular to the plane of interaction, Bragg degeneracy results in the
formation of conical rings (in the general direction of the bars). This effect cannot be
_ accounted for by the two-dimensional theoretical model [15] and requires a full three-
dimensional analySis. We overcome these problems simply by a 45° rotation of the images,
which provides grating distributions that are neither parallel or perpendicular to the main
plane of interaction. In this respect, our current results never suffer from Bragg
degeneracy, and we obtain equal fidelities for bars in both directions. We note another

method for suppression of Bragg degeneracy that uses speckles borne on the input beams

[16].
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(b)

Figure 6.4. PhaSe-conjugate images of (a) the entire resolution chart and (b) the inner

frame of (a).

In the first experiment we measure the conjugation fidelity and the conjugation
reflectivity of a specific group of elements in the image (resolution chart). We concentrated

on element #1, group #2, which consists of three bars at the density of 4.00 line pairs/mm
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(bdr width, 125 pm) in the original image plane. Because in the original image all the bright
bars have equal intensities, it is essential to account for the relative intensities in the

- reconstruction plane. Hence we use a measure for the conjugation fidelity, given by

_ 05 (v1+03) -0y
- maX(\)l,l)g) + V9 ’

6.16

where v, V,, and v, are the optical intensities measured in a sequence of bars that are
bright—dark—bright in the oﬁginal image. For example, if the conjugate image is bright-
dark-bright, F would be 1; if the conjugate image is bright—dark—dark, F = 1/2; if the
'conjugate image is reversed (dark-bright—dark), F = -1; and if the conjugate image is
bright-bright-bright, F = 0. We point out that F does not equal the conjugation fidelity of
[15], although they have similar qualitative behavior (there the fidelity is defined in the
Fourier plane, where phases are crucial; here we compare intensity distribution of the

original and conjugated images; the slit provided averaging along the bright-dark bars).

The normalized conjugation reflectivity is defined as the intensity integrated over the
entire region of the image, v, + v, + V,, divided by its maximal obtainable value (at the
highest available gain). We measure the fidelity and the reflectivity as function of the power
of the erasure beam I.. Since the perturbation in the refractive index is proportional to the
i Visibiiity of the corresponding interference fringes, the coupling coefﬁcieﬁt Y may be

rewritten [4] to incorporate the reduction in the visibility resulting from I, as

Yo :
= 6.17
V(L) 1+(Ie/To)’

where I, = I, + I,, I, and I, are the intensities of the interacting beams and v, is the

coupling constant for I, = 0. The PR gain is defined as coupling coefficient y times the
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Figure 6.5. Phase-conjugation fidelity (circles) and reflectivity (crosses) as a function
the power of the erasure beam. Note the fidelity threshold at erase power of

0.55 a.u. The curves are only a guide to the eye.

interaction length L (in our experiment L = 7 mm). The results shown in Figure 6.5 reveal
a sharp fidelity threshold at I, = 0.55 (in arbitrary units). From the optical power of the
input beams and the beams' cross sections, we estimate the average I to be roughly 0.32 +
0.05 (in arbitrary units of the scale of Figure 6.5). We have measured the average coupling
coefficient in this configuration by a standard small-signal two wave mixing amplification
_ experiment. This measurement provides a value of 8 cm’, which gives roughly a gain-
threshold value of 2.06 (because beam fanning drives down the value of y for these
measurements, we suspect that the true value is somewhat higher). The conjugation
reflectivity, comparedbwith the fidelity, exhibits a smooth behavior. We notice that the
reflectivity does saturate at high gains but does not display a threshold behavior as does the
fidelity. Intuitively, it is clear that conjugation reflectivity cannot provide accurate data for

characterization of the DPCM device, simply because part of this reflection is amplified
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noise (fanning), which may bé distinguished from the reflectivity of the desired image only

by fidelity measurements.
6.4 Conjugation threshold and image resolution

We measure the conjugation fidelity as a function of the resolution (feature size) within
the (;onjﬁgated image. Figure 6.6 shows the conjugation fidelity for two cases: high
resolution, 6.36 line pairs/mm (bar width 78.74 pm; element #5, group #2; solid curve)
and low resolution, 4.00 line pairs/mm (bar width 125 pm; element #1, group #2; dashed
curve). Note that we use the same arbitrary units for I in both Figures 6.5 and 6.6. Figure
6.6 clearly shows that the gain threshold value significantly differs in both cases: the lower
resolution has a lower threshold value. To emphasize this we show Figure 6.7 with both
resolutions conjugated (Figure 6.7(a) maximal gain, I, = 0; Figure 6.7 (b) relatively high

gain, small 1) and only the low resolution conjugated (Figure 6.7 (c) low gain, large I,).

Fidelity, F
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Figure 6.6. Phase-conjugation fidelity as a function the power of the erasure beam for

high (crosses) and low (circles) resolutions. The curves are only a guide to the eye.
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Figure 6.7. Phase—conjugaie images at (a) maximal, (b) high, and (c) low gain for an
input image that contains elements of both resolutions. Note that most of (c) is
below threshold.
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6.5 . Conjugation with unbalanced beams and fidelity degradation

Inthe third experiment we kee§ the gain fixed (at I, = 0) but modify the intensity ratio
of the input beams from unity to 1:5. In this éase we find asymmetry in the conjugation
procéss. Specifically, the stronger beam bleaches the fanning (amplified noise) gratings of
the weak beam and permits relatively high conjugation quality on its input side (i.e., high
fidelity is obtained for the image originally borne on the strong beam and transferred to the
weak beam). The opposite process, however, is inefficient because of the unbalanced
process, and the weak beam is not able to eliminate the appearance of fanning gratings,
which result in a conjugated image embedded in fanning. This is shown in Figure 6.8.
Note the difference between this result on fidelity and the known result [8] (which is
present here as well) of an increase in conjugation reflectivity threshold as a result of

unequal intensities of the input beams.
6.6 Time response and critical slowing down

We now present experimental results that illustrate the critical slowing down in DPCM.
We used the same expeﬁmentalsetup shown in Figure 6.3 with slight modifications: two
half-wave plates and a variable beam splitter were inserted in the optical path. In controlling
the photorefractive gain, we recall (equation 6.17) that additional illumination, incoherent
~ with both interacting beams, reduces the modulation depth of the interference gratings and,
consequently, decreases the resultant perturbation in the refractive index. Since in the
current experiment we measure time response, it is essential to maintain the total
" illumination intensity at a constant value and as uniform as possible across the entire
crystal. Since in BaTiO, the photorefractive coupling is large for the extraordinarily
polarized light and almost negligible for the ordinary polarization, in this experiment we

control the coupling by varying the polarization of the interacting beams. Thus, the
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(b)

Figure 6.8. Phase-conjugate images for unbalanced .input beams of intensity ratio 1:5:
(a) the beam that leaves the face on which the beam of intensity 5 enters (i.e., the
phase conjugate replica of the strong beam). (b) the beam that leaves the face on
which the beam of intensity 1 enters (i.e., the phase conjugate replica of the weak

beam).
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‘ordinarily polarized portion of each beam serves as an erasure beam. Extraordinary

polarization provides the highest gain, and ordinary polarization yields minimal gain. The

~ coefficient Y may be expressed [22, 23] as a function of the polarization angle ¢ of the input

beams
Y Yo
= =~ , 6.18
7@ T+ Toa/Toxt 1+ tanp
where ¢ = 0 corresponds to the maximal gain (extraordinary polarization), and I, and I,

are the sums of the intensities of the extraordinarily and ordinarily polarized beams,
respectively. Note that the ordinarily polarized beams do not interact with each other or
with the extraordinarily polarized beams, while the extraordinarily polarized beams form
the DPCM and transform into each other's phase conjugates. This may result in a different

spatial (x and z ) dependence of I, and I_,. Our choice for the interaction plane and the

ord*®

small angle between the beams minimizes this difference, and ¥ can be well approximated

as a function of ¢ only, as in Equation 6.18.

We concentrate on a specific spatial frequency within the image. We block (using an
aperture) the phase conjugate reflection of the entire image except for that of three bars
( 1.26 line pairs/mm). The phase-conjugate reflectivity (normalized to its maximal value of

-30%) and the response time in minutes as a function of gain are shown by the triangles and
circles in Figure 6.‘9. The response time reaches its maximal value exactly at the critical
point of the reflectivity curve [(YL),, = 2.06]. The ratio between the response times at the
threshold and at the highest gain is about 10. When the aperture is removed and the entire
phase conjugate image is captured, we notice two effects. The first is the shift in the
threshold value (which is also the gain value at the peak of the response time) toward

higher gain levels for the whole phase-conjugate image. This is in accordance with our
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préVious results [22] that ‘sho(w higher gain threshold values for higher spatial frequencies
(section 6.3). The second is the broadening of the response time curve (for the whole
image). This is a consequence of the different resolutions of the features incorporated in the
Air Force resolution chart. Each spatial frequency in the image has a slightly different
threshold, and consequenﬂy the response time averages and results in a slightly broader

curve than in the single-resolution measurement.
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Figure 6.9. Experimental results of the phase-conjugate reflectivity and response time
as a function of inverse gain for a single resolution element (1.26 line pairs/mm)
of the image. The curves are only a guide to the eye.



125

“To- illustrate the chaﬁgc in the angular spectrum when the DPCM goes through its
threshold, we show in Figure 6.10 the experimental results (photographs, right column;
profile, left column) of the far field pattern (i.e., angular spectrum) of one of the output
beams below (upper sections) and above (lower sections) the transition point (threshold). It
is evident that the spectrum narrows practically to a single Fourier component, broadened
only by the pictorial information borne on the input beam. The behavior of the reﬂectivity,
thé response ;ime, and the angular spectrum at the threshold are conclusive experimental
evidence that the DPCM is indeed a nonlinear oscillator which undergoes a phase transition

at its oscillation threshold point ( at YL = (yL),,) [23].

80 o 00 8° Y
0 [deg) 8 [deg]

Figure 6.10. The angular spectrum (the far field, photographs, right; averaged
intensity profiles, left) of one of the output beams below (upper section) and
above (lower section) the transition point (gain threshold). The intensity of the
small features in the upper right photograph is much smaller than the single
(phase conjugate) peak in the lower right photograph.
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3

6.7 Two-dimensional model of the DPCM

In this éection we describe brieﬂy the major results and basic formulation of the two-
dimensional theory of DPCM [14, 15]. The model is based on decomposition of the image
beariﬁg interacting beams into a discrete set of the free space eigenmodes (plane waves) and
perturbation analysis of the mode-coupling arising due to the photorefractive nonlinear

index. perturba‘tion.

The total electric field of the electromagnetic wave in the crystal is decomposed into a
sum of two counterpropagating beams whose slowly varying amplitudes are A(x,z,t) and

B(x,z,t) (A includes the pair {A,, A,} and B includes the pair {A,, A,} of Figure 6.1):
E(x,zt)=1/2 (A(x,z,t)exp(ikz-imt) + B (x,z,t)exp(-ikz-iet) + c.c.) X, 6.19

where X is the unit vector in the transverse direction. The small deviation of the
propagation angle from 180° is accounted for in the slowly varying envelope. The slowly
varying amplitudes A and B are further expanded in the basis of the eigenmodes of the free

space (plane waves) about the nominal propagation direction z:

A(x,2,) = Ty am(z, t) exp{-ikemx - ike’m?2/2) , 6.20
B(x,2t)= Zp bm(z, 1) exp( ikemx + ike’m?z/2) , » 6.21

where € is the small angular difference between the two adjacent plane waves and a_ and b |
are the (complex) expansion coefficients. The (transmission) photorefractive grating
An(x,z,t) can be recorded only due to the mutually coherent copropagating plane wave

components and, therefore, An(x,z,t) can be expanded as
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kS

An(x,z,t) = X (2, f) exp( -ik(m -njex - ike{m? - mz)z/2) . 6.22

The tenipo}al and spatial evolution of the expansion coefficients dn_, is governed by the
standard equations for the grating formation in photorefractive materials [25] and is
described by the following set of coupled nonlinear differential equations

95 ,t . .
Tl —an‘;(‘Z—) + (Io+1g) Snmnz, ©) = I 2m( Dan(@, D +bu(z, Dom(z, D), 623

where Io=2X, amam+bmbm is the total light intensity which is assume to be constant
throughout the crystal volume (energy conservation invariant) and T, and Y,, are the
grating formation time (normalized to the background irradiance I,) and coupling constants,
respectively, for a specific grating spacing due to m's and n's copropagating plane wave
component. The master equations for the amplitude expansion coefficients can be obtained
by inserting the expressions for the field amplitudes (equations 6.20,21) and An(x,z,t)
(equation 6.22) into the wave equation 6.3, invoking the paraxial approximation, and

neglecting the non phase matched terms in the wave equation [14]. These result in [15]

dam(z,t)

P ikan Snmn(z,t) an(z,t) , 6.24
bz, :
R a—rang%i) =- lkzn Snnm(z,t) bn(Z,t) . ‘ 625

The systems of differential equations 6.23, 6.24, and 6.26 constitute the mathematical
model of the DPCM. These are solved numerically [15] using the appropriate initial and
boundary conditions, where the letter includes the two input beams as well as weak time-

independent seeding with random phase and amplitude.
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6.8"_ Basic results and limitations of the two-dimensional perturbation

analysis

The numerical analysis [15] of the model establishes the fact that the conjugation
ﬁdehfy and reflectivity have significantly different dependencies on the gain. These
differences are particularly large near the threshold. Figure 6.11 shows the steady-state
conjugation fidelities for both beams and the conjugate reflectivity as a function of gain.
Here the two beams possess different phase and amplitude information but have equal total
intensities. The model also predicts that the fidelity and reflectivity have largely different
time dependence: well above the threshold the phase conjugate beams reach high fidelity

while their intensities (i.e., reflectivity) continues to grow in time.

The numerical analysis also predicts that for the case of unbalanced input beams (i.e.,
the intensities ratio is not unity) the conjugation becomes asymmetric. At a given gain value
the phase conjugate replica of the weaker beam has lower conjugation fidelity than the
phase conjugate of the stronger beam. Besides, the conjugation fidelity threshold on the

side of the weaker beam is shifted toward higher gain values [15, Figures 11 and 12].

The model characterizes the DPCM as a nonlinear oscillator which exhibits a critical
slowing down in the vicinity of the threshold (Figure 6.12). The critical slowing down
" becomes less pronounced as the amplitude of seeding is increased or the intensities ratio
differs significantly from unity . At the same time the phase conjugate reflectivity does not
depend on the seed amplitude if the nonlinear gain is well above its threshold value.
Moreover, in this case the phase conjugation process is self-sustained if the seeding is

turned off (set to zero) after the oscillation establishes itself.



Figure 6.11.
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Basic predictions of the twé-dimensional theory of the DPCM (the different behavior of
fidelity and reflectivity versus gain, the fidelity degradation for unbalanced beams, and the
- critical slowing down in the vicinity of the threshold) are in a good qualitative agreement
with the' results of the experimental study (sections 6.3-6.6). The limitation of the current
model can be understood if we recall that the theory is essentially based on the rigorous
perturbation analysis of the wave equation 6.3. The eigenfunctions used in the plane wave
expansions 6.é0, 6.21 are the eigenfunctions (plane wave modes) of the homogeneous
wave equation 6.3 with no ‘nonlinear inhomogeneous index perturbation (i.e., when
An(x,z,t) = 0). The nonlinear index change is considered as a weak perturbation, which
leads to the coupling between the initially orthogonal plane wave eigenmodes (as described
by equations 6.24 and 6.25) and, eventually, to the excitation of the phase conjugate
replica. As any perturbation theory approach [26] the approach used for the analysis of the
DPCM is self-consistent only as long as the mode coupling and eigenmodes perturbation
can be considered weak compared to the unperturbed state. The latter translates into the
condition that the expansion coefficients a_ and b, in equations 6.20, 6.21 don't change
much upon the propagation through the crystal (i.e., the coupling between plane wave
eigenmodes is weak). This situation is realized only when the conjugate reflectivities R are
low ( R << 1), i.e., when the DPCM is near or below its threshold. Another limitation
arises from the use of the paraxial approximation what limits the angle between the
interacting beams inside the crystal (as well as their angular extent) to approximately 10-
15°. Undér these éertain and restricted conditions (often realizable in the experiments,
however) the presented theory represents an adequate treatment of the double phase

conjugation in photorefractive materials.
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6.9 Summary .

'The doﬁf)l;a phase conjugate nﬁrror is a photorefractive device in which two mutually
incoherent bems create phase conjugate replicas of each other. The DPCM exhibits a sharp
conjugation fidelity threshold, while the reflectivity is a smoothly increasing function of the
gain. The gain threshold for the conjugation fidelity increases with increasing resolution of
the image. Phase conjugation with amplification is possible in DPCM, but the conjugation
fidelity of the weak beam's conjugate replica degrades dramatically, when the intensity ratio
is increased. The DPCM exhibits critical slowing down (i.e., dramatic increase of the
response time) in the vicinity of the oscillation threshold. The basic predictions of the two-
dimensional coupled-modes perturbation analysis of the DPCM are in a good qualitative

agreement with the results of the experimental study.
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Chapter Seven

Nonlinear Self-Phase Matching of Optical Second
Harmonic Generation in Lithium Niobate

7.1 Introduction

The nonlinear response of the material to excitation by the field of the electromagnetic
waves can give rise to exchange of energy between waves of different frequencies. The
optical second harmonic generation (SHG) is a process in which an optical wave with
frequency ® induces a polarization wave with double that frequency within a nonlinear
optical media. This induced nonlinear polarization radiates an optical wave with frequency
2. The SHG process is most efficient if the polarization wave travels with the same phase
“velocity as the electromagnetic wave of frequency 2w. The latter condition is called the
phase matching, or equivalently, momentum conservation condition. Different techniques
for phase matching the nonlinear interactions of optical beams have been developed
including the birefringent phase matching [1] and quasi-phase matching [2-4] using an
alternating sign optical nonlinearity. This chapter describes how large photorefractive
nonlinearity affects the phase matching conditions for optical SHG and demonstrates that

the large index perturbation due to photovoltaic and photorefractive effects (originally called
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“optjcal damage” [5, 6]) in lithium niobate can promote a new type of phase matching,

namely, the nonlinear self-phase matching of (initially not phase matched) SHG [7].
7.2 Phase matching in nonlinear optical interactions

The nonlinear electromagnetic response of the medium is described by an expansion of

the induced polarization P(t) in powers of the electric field amplitude E [8]:
Pi(t) = SOXijEj + di EEx + 4x513131EJEkE1 +... . 7.1

The term dixE;Ex describes the second-order optical nonlinear effects which include the
second harmonic generation, sum and difference frequency generation, optical rectification,
and electrooptic effect. In the degenerate case of the second harmonic generation the

expansion 7.1 reduces to
P = di""EEX, 7.2

where P/®(z) and E{(z) are corresponding slowly varying amplitudes. The plane wave
coupled waves equation describing the evolution of the second harmonic amplitude as it

passes through the nonlinear medium is given by [8]

aEizm'Z . 0,0,0 17 O ), :
az( )=-10) / %dfjkf “Ej(z)Ex(z) exp(iAk z ), ‘ 7.3

where Ak is the wavevector mismatch which (in collinear case k™ Il k°) is given by

Ak=|k2°’-2k"’|=27m(n2“’-n°’). 7.4

The solution of equation 7.3 for E**(0) = 0 and for a crystal of length L is [1]
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where I’ and I® are the intensities of the second and fundamental harmonics respectively.

According to equation 7.5, a prerequisite for efficient second harmonic generation is
that Ak = 0, or equivalently n®® = n®. The technique that is used widely [1] takes advantage
of the natural birefringence of anisotropic crystals. In normally dispersive materials, the
index of both the ordinary and the extraordinary waves increase with optical frequency,
which makes it to achieve the index matching if both waves have the same polarizétion.
However, if the birefringence of the crystal is large enough, the phase matching can be
achieved by using two copropagéting waves of different type: one extraordinary and one
ordinary. For the case of a negative (i.e., n, <n ) uniaxial crystal the condition Ak = 0 can

be written as
n2*(0,) =n?, 7.6

where 0, is the phase matching angle (here 0 is defined as the angle between the optical
axis and the polarization direction of the extraordinary wave, i.e., n,(0") =n,, n,(90°) = n,).
If the birefringence of the crystal is not sufficiently large (this is the case, for example, for
second harmonic generation at 1.064 pum in congruent lithium niobate, in which
0.532um _ n‘1’.064 um

e =0.002 [9]), the condition 7.6 can’t be satisfied and one has to resort to,

e.g., quasi-phase matching techniques [2-4].

Another possibility to provide the phase matching (at least, locally ) is to use the optical
nonlinearity to make up for the insufficient natural birefringence, i.e., provide
n.° + dnppe= nd + dnYy , , where 8ny, is the induced nonlinear index change (e.g., due to

the optical Kerr effect, or photorefractive effect). The mechanism of the index change in
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phdtorefractives is.due to vthe redistribution of photoexcited (usually, by the visible light)

electrons between the traps, buildup of the internal space charge field E,(r), and

" - electrooptic effect. Unlike electronic nonlinearities, the photorefractive mechanism is

usuallykvery slow (typical response time is from 1 ms to 100 s), but the index change can
be as large as 107. In the presence of the dc internal space charge electric field the phase

matching condition 7.6 is modified and can be expressed as follows

eff 3 eff 3
n2(r, 6,) = n2%(0,) - = "’2"’“‘* Eur) = n¥r)=n’- 2 ;’n Eu{r), 7.7

where 1" is the effective electrooptic coefficient and it is assumed that 6 is relatively small
(6 = 0°). Due to the spatial dependence of the space charge field the phase matching
conditions can be satisfied (or, at least, improved significantly) only in the vicinity of the
interaction volume of the two optical beams, rather than in the whole volume of the crystal.
Besides, the spatial variations of the indices of refraction 7.7 may give rise to the spatial
self-phase modulation of the beams (e.g., self-defocusing or self-focusing). The schematic
diagram of the nonlinear self-phase matching of second harmonic generation in
photovoltaic lithium niobate is depicted in Figure 7.1. Section 7.3 describes the
experimental study of the effect, and Section 7.4 analyzes the spatial profile of the
nonlinear iﬁdex change and effect of the spatial self-phase modulation on the transverse

structure of the second harmonic beam.
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Figure 7.1. Schematic diagram of nonlinear self-phase matching of optical second

harmonic generation in phdtorefractive/photovoltaic lithium niobate.

~7.3 Experimental study of nonlinear self-phase matching in photorefractive

lithium niobate

The experimental setup is shown in Figure 7.2. As an optical source, we employ a
Q-switched (repetition rate 1 kHz) mode-locked (50 MHz) Nd:YAG laser (A = 1.064 um),
emitting 8-10 mode-locked 100 ps pulses within the Q-switched envelope. The ordinarily

polarized infrared radiation is focused with a 50 mm focal length lens on a lightly Fe-doped
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Figure 7.2. Experimental set-up. L is a lens, PD is a photodetector, CF’s are
appropriate color filters.

2 mm thick LiNbO, crystal, the c-axis of which is in the plane of incidence. The focal spot
size of the infrared beam is ~70 wm. The extraordinarily polarized second harmonic light
(A = 0.532 um) emerging from the far side of the crystal is captured by a CCD camera and

its total CW power is measured with a photodetector.

We observe that for relatively small angles of incidence ( between 0° and approximately
20° ) of the fundamental light the second hérmonic signal increases with time (Figure 7.3)
by a factor ~100 from a few UW to several mW average power (up to 0.1% in conversion
efficiency). The enhancement in the SH power is accompanied by a pattern formation in the
spatial structure of the SH beam (Figure 7.4). The SHi beam first becomes elongated along
the direction of the c-axis of the crystal, has two distinct sidelobes in the intermediate étage
(Figure 7.4(b)), and eventually settles into the pattern of Figure 7.4(c). At the same time,
the ordinarily polaﬁzed infrared beam does not experience substantial phase distortion, as
seen from its far field pattern, which remains roughly a Gaussian. The enhancement in the

SHG can also be induced by the 0.532 um seeding beam alone. If a spot previously
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Figure 7.3. Growth of the second harmonic signal with time (a) for 8 = 16° angle of

incidence, (b) for normal incidence. Optical power at 1.064 pmis 1.5 W.

Figure 7.4. Far-field of the generated SH beam in a 2 mm crystal (a) at the beginning
of exposure, (b) intermediate stage, (c) at saturation (total far-field angle of the

beam in the c-axis plane is ~25°).
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‘ exp(;S'ed to'the externally injected seeding SH light ( focused with the same lens ) is probed
by the infrared light the initially (t=0) generated SH signal is significantly (50-100 times)
B high‘ér and the time for the SH signal to reach the final steady-state intensity is shorter than
in a "fresh" spot. This is in contrast to the self-induced SHG in glass fibers [10] where the
simultaneous presence of the fundamental and SH (either self-induced or injected) light is
required by the nature of the % coherent photovoltaic effect [11]. The photoinduced index
changés persist for prolonged periods of time when the crystal is kept in the dark, but can
be completely erased optically by homogeneous prolonged illumination with visible or UV
light. This, along with the anisotropy of the SH far-field pattern (Figure 7.4) indicaté that
the effect is not of thermal origin ( since thermally induced refractive index changes are
isotropic [12, 13]). Furthermore, the index mismatch for SHG at 1.064 pm increases with
temperature in congruent LiNbO,, thus, temperature increase cannot phase match or

enhance the SHG process.

The origin of the self-phase matching effect is the photovoltaic field induced by the
second harmonic light (initially not phase matched) which via conventional electrooptic
effect locally changes the birefringence of the crystal to provide (or improve significantly)
the index matching, resulting in the increase of the generated SH power. Fe-doped LiNbO,
has very low photosensitivity in the near infrared but exhibits strong photovoltaic response
in the visible range (for A < 0.5 um). The maximal optically induced perturbation
(negative By sign) in the extraordinary index of refraction is typically ~0.001 and is larger
the higher the light intensity [14, 15], which is consistent with the mismatch value [9]

An=n2’ - n® =0.002 for SHG at A = 1.064 pm. The far-field pattern (Figure 7.4(b.c)) is
caused by the spatial self-phase modulation (self-defocusing) owing to the nonlinear index
change induced due to the photovoltaic field by the nonuniform spatial profile of the SH

beam. The pattern differs from the conventional picture of conical rings ( typical for spatial
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self-phase-modulation of isotropic origin {12, 13]) because of the anisotropy of the index
perturbation arising due to photovoltaic effect, which results in preferential scattering of the

" SH beam in the c-axis plane. This is analyzed in more detail in the next Section.
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Figure 7.5. Second harmonic power at steady state (after 2000 sec of exposure) and at
maximum, and the magnitude of the extraordinary index change An, vs. the

incident power of the fundamental beam ( normal incidence, 6=0° ).

The magnitude of extraordinary index change is estimated using an approximate
formula [12] An L = NA, where N is the number of. the orders of diffraction (interference
fringes), observed in the far-field, and L is the length of the crystal (Figure 7.5). From
Figure 7.4(c) we obtain N = 9 and, therefore, An, ~—2.6x1073. The perturbation in the

ordinary index for the fundamental light is much smaller since i3> *"/ 195 " =02 in
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LiNBO3. This explains the absence of patterns in the far-field of the infrared beam. The An,
changes with input power (see Figure 7.5) indicating that in the range of SH intensities
" achieved in the experiments, the photovoltaic field is essentially intensity dependent [14,
15]. Therefore, the extraordinary index change and, thus, the phase matching conditions
are different for different inpﬁt powers. This explains the deviation of the SH power in the
steady state from the expected square law P oc (P® )2 . In general, the temporal evolution
of the SH signal is not a simple exponent (see Figure 7.3, curve (b)), however, the
characteristic response time T of the buildup process, defined as the time required for the
SH signal to reach a half of its maximum value, scales with input powér as

Toc(P® )'2'410'2 , when other parameters are kept the same.

For a particular initial index mismatch the generated photovoltaic fields may be larger
than required to achieve the ideal phase-matching, i.e. in some cases the light-induced
index change over-compensates. This results in the decrease of the SH power after its
initial rapid buildup (Figure 7.3, curve (b)). The SH signal does not return to a near zero
value due to the strong defocusing channel induced in the medium. Part of the non ideally
phase-matched second harmonic leaves the interaction region before being converted back
to the fundamental beam. This is somewhat analogous to the Cherenkov-type SHG in
waveguides [16]. The SHG process can be optimized by adjusting the initial (t=0) index

. mismafch of the interacting waves at any particular input power level. Figure 7.6 shows
such angﬁlar tuning curve for SHG. The optimal angle of incidence (14° in the conditions
of Figure 7.6) may differ for other Fe-doping concentrations, temperatures, and may also
depend on input intensity. Using Sellmeier equation [9] for undoped congruent LiNbO, we
evaluate the maximal “birefringence deficiency” An=n.® - ng which can be chpensated
using photovoltaic nonlinearity to be An = 0.003. This corresponds to the optically induced

electric space charge field of order of ~250 kV/cm.
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Initial Index Mismatch An = n%’(6) - nj, x10™?
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Figure 7.6. Second harmonic power at steady state (after 20 min.) (circles, solid line)
and the buildup time T (squares, dashed line) vs. incidence angle (in air) of the
fundamental beam (optical power 1.5 W, lower scale) and the initial
An=n® - n? calculated using Sellmeier equation (upper scale). The SH power
obtained with a critically phase-matched MgO-doped LiNbO, crystal is 4.2 mW in

the same experimental arrangements.

The characteristic response time T of the phase-matching proceé,s depends significantly
on the initial (t=0) indei mismatch, which can be.controlled by changing the incidence
angle (Figure 7.6). The response time has a maximum in the vicinity of the optimal angle
and decreases otherwise, instead of being a monotonically increasing function of the starting

mismatch n2°(t=0) - n . This behavior resembles the “critical slowing down” phenomenon
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described in Chapter 6 of this thesis. Similarly to the photorefractive nonlinear oscillators,
the self-phase-matched SHG may also-be viewed as a system with (positive or negative)
feedback with the threshold parameter being the difference between the induced index

perturbation and the one required to achieve the ideally phase matched SHG.

The self-phase-matching effect has been found in a large variety of oxidized Fe-doped |
“LiNbOg samples.‘The temporal evolution of the spatial structure of the emerging second
harmonic in a 5 .mm long Fe-doped (0.05%wt) crystal is shown in Figure 7.7. Although
the total power of the éecond harmonic increases dramatically, as the internal space charge
field builds up, strong self—pﬁase modulation due to the spatial dependence of the index of
refraction leads to substantial beam distortion, and for sufficiently large interaction length
can lead to a cdmplete breakup of the second harmonic beam, in which case the far-field
pattern of the generated second harmonic beam eventually evolves into a picture of random

speckles (Figure 7.7(c)), where no large scale structures can be resolved [5, 6].

Figure 7.7. Far-field of the generated SH beam in a 5 mm long crystal (a) intermediate
stage (t= 20 sec after the beginning of exposure), (b) pattern with multiple orders
of diffraction (t = 100 sec) (c) after the speckled structure has developed (t= 400
sec; total far-field angle of the beam in the c-axis plane is ~40°).
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7.4 - Two-dimensional modeling of the photorefractive/photovoltaic effect

‘The asymmetry in the far-field pattern of the generated second harmonic beam (Figure
7.4(b,c)) is due to the anisotropy of the spatial profile of the index perturbation An,. In
lithium niobate the photoreffactive nonlinearity arises mainly due to the photovoltaic effect,
which is highly anisotropic: the photovoltaic currents (and resulting electric field) are
directed along‘ the c-axis. The index profile can be calculated by solving numerically the
nonlinear Kukhtarev’s equations [17] (i.e. rate and continuity equation including
photovoltaic current, and Gauss law) in two transverse dimensions [18] without invoking
the standard linearization procedure (since the light intensity of the beams is localized and

the condition I(r)-I, << I, does not hold). The nonlinear band transport equations are

ONp(r)

== o(I(r) + 1) (Np - Nb) - ynND, 7.8
andr) oNp(r) 1.

3 - o eVl 79
je= xaI(r) (Np - Nb) + H l:’T Vi, + eplend -Vo), 7.10
V2(p=-—z—(N+D-Na), 7.11

" where I, is the effective dark irradiance, k is the photovoltaic tensor (here we neglect small
nondiagonal elements of k, and take ¥ = (x,0,0), i.e., the c-axis is along the x-direction)
and ¢ is the electrostatic potential ( E = -V ). The_ solution of equation 7.8-7.11 can be
significantly simplified, if we neglect the trap saturation [18], ie., assume that
Ni(r) = N, . This approximation is valid if the diameter of the beam is much larger than the
Debye screening length (see Chapter 4 of this thesis) due to ionized donors, which is

typically of the order of 0.1 to 0.5 um in Fe-doped lithium niobate. In the conditions of the
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experiments described here, this is the case. Then the density of free conduction band

electrons n (r) is

of I(r) +La) (No - Na)
YeNa ’

nd{r)= 7.12

and the steady-state value (i.e., when onr)/dt =0 ) of the electrostatic potential @(x,y) can
be found by solving a single partial differential equation for the divergence of the steady-

state current within the x-y plane:

Vi{x,y)=0. 7.13
Note the difference between the two-dimensional case 7.13 and the one-dimensional
formulation:  dj(x)/dx = 0; solutions j(x) = const, E,(x) = E,  IX)/I(x)+L) [19]
Equation 7.13 can be expressed in terms of the unknown electrostatic potential only:

o kT[T 1) (dldp oldg Io ¢ )
EP.V‘ES(.-'-—C_(SX—E-'-E)? -(a—xa"i'gg)'(l"'ld) ¥+—a—;2— =0, 1.14

where E,y =xy.Nuepl. is the characteristic photovoltaic field of the crystal. The equation

7.14 is further transformed and expressed in terms of unitless variables X, ;1, and @

x=xa, 7.15
Cy=ya, - » 7.16
¢ =0E.a, 7.17
kT | |
’Yd_ eEp_v,'a ’ ‘ 718

where 7y, is a small ( < 0.05) parameter which describes the diffusion contribution to the
index perturbation (compared to photovoltaic field). We now assume that the light intensity

distribution has gaussian profile:
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16 5)=oexp (- (x+y* V) = exp (- (£+5)). 7.19

where a is the diameter of the gausSian beam. The projections of the internal space charge

field E(x,y) are given by the spatial derivatives of ¢, i.e., for the ¢ -axis projection E,:

dp do 1

== amy O E=BE 7.20

Finally, the working equation for the (normalized) electrostatic potential ¢ arising due

to the photovoltaic and photorefractive effects in two transverse dimensions is

Alnl+ly) | o [ O _aj)_ (.3 In(1+1) 99 3 In{T+ly) d )( G ):0 7.21

p = = + = =t =
ox I+Id\ ox ay2 gx ox dy 9y ox ay2

which is supplemented by the proper boundary conditions for the electrostatic potential on
the boundaries of the computation region. Externally applied electric field would
correspond to the proportionate difference between the values of ¢ on the opposite
boundaries. For the simplest case of short circuited boundaries, the case used in the current

work, we set

o(-L2,y)=0(L2,y)=0(x,L2)=0¢(x,-L12)=0. 7.22

Equation 7.21 with boundary conditions 7.22° was solved numerically using the
relaxation technique. The perturbation in the extraordinary index of refraction which is
proportional to the c-axis projection of the internal space charge field (i.e., E, = -d@/ox and
Angx,y) = Ex{x,y)rsne/2) is shown in Figure 7.8. Tﬁe An(x,y) is maximal and has nearly
flat profile in the center of the beam, has two sidelobes on its margins, and falls off to zero
value where the light intensity is less than the effective dark irradiance I(r)<<I,. At the same

time, the gradients of An, are the largest along the direction of the c-axis of the crystal. This
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Figure 7.8. Extraordinary index perturbation An, induced by a gaussian beam (dark
regions correspond to negative index change). Beam diameter a is 1/6 of the size
of computation region, I, = 0.05 I(0,0), characteristic diffusion field k T/ea =

0.01E,,, ¥, = 0.01, trap saturation is neglected. The c-axis direction is vertical.

results in preferential scattering of the SH beam in the c-axis plane and large asymmetry of

its far-field pattern.

The far-field pattern can also be calculated from the index distribution if we neglect the
diffraction within the crystal. Then, due to the self-induced photorefractive index
perturbation (such as the one shown in Figure 7.8) the complex amplitude of the gaussian

beam attains the inhomogeneous phase change as given by
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(a) (b)

Figure 7.9. (a) The far-field pattern of a gaussian beam for weak index perturbation
|An (max)| L/A = 3. Diffraction within the crystal is neglected. Note a slight
asymmetry in +/-c direction due to the diffusion field. (b) The far-field of
unperturbed beam (same scale).

% 7.23

(55 40) = Al 5,0 Jenp 2 22V
~ where A(%, ¥, -0 ) is the field amplitude just before the crystal and A(X, y, +0 ) is the field
amplitudé right ‘after the crystal. The intensity distribution in the far-field is then given by
the magnitude squared of the appropriate Fourier transform of equation 7.23, given the
amplitude distribution of the input beam. Figure 7.9 shows that even in the case of a round
gaussian input beam its far-field is strongly and asymmetrically distorted along the c-axis

direction. This is in good qualitative agreement with the experimental results described in

Section 7.3.
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7.5 Summary

~Phase matching of the optical second harmonic generation can be achieved using natural
birefringence, quasi-phase matching, or, in some special cases, the nonlinear index
perturbation. We demonstrated the nonlinear self-phase matching of optical SHG due to
strong photorefractive/photovoltaic effect in lithium niobate. In the presence of strong
photovoltaic ‘effect in LiNbO, the SHG nonlinear interaction manifests itself in two
characteristic and very apparent manners: a large change in the conversion efficiency and
strong self-phase modulation (defocusing) of the generated second harmonic. The spatial
profile of the index of refraction perturbation arising from the photovoltaic effect is very
asymmetric, leading to preferential scattering of the diffracted light in the plane of the
optical c-axis. There is a good qualitative agreement between the experiments and the basic

predictions of the two-dimensional theoretical model of the photorefractive effect.
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