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Abstract

In the present study, Direct Numerical Simulations (DNS) of the fully compressible, three-
dimensional Navier-Stokes equations are used to generate an axisymmetric vortex ring to
which three-dimensional stochastic disturbances are added. The radiated acoustic field
is computed directly in the near field, and by solving the wave equation in a spherical
coordinate system in the far field.

At high Reynolds number, a vortex ring will undergo an instability to azimuthal waves.
The instability produces higher azimuthal modes and induces nonlinear interaction between
the modes, and will cause the vortex ring to break down and transition to turbulence. The
early stages of the simulation agree well with the linear instability theory. Nonlinear stage
of instability, transition, formation of axial flow and streamwise vorticity are analyzed and
compared with experimental results. After turbulent transition, the evolution of statistical
quantities becomes independent of viscosity and the initial geometry, and the flow become
self-similar. The temporal evolution of quantities including total circulation, axial velocity
profile, vortex ring displacement and vorticity profile agrees well with the self-similarity
law. Turbulent energy spectrum, Reynolds stresses and turbulence production are also
presented.

The unsteady vorticity field generates acoustic waves with higher azimuthal modes, each
mode with a distinctive spectrum and directivity. The ensemble averaged peak frequency,
bandwidth, and the sound pressure level agrees qualitatively with reported experimental
results. The directivity of each azimuthal mode is compared with predictions of vortex
sound theory. The sound generation consists of three stages. The first is a deterministic
stage when linear instability waves emerge and grow and generate relatively weak sound.
The second stage is nonlinear interaction and vortex breakdown; at this stage the sound
pressure level reaches a peak value. The third stage is the turbulent asymptotic decay of

the acoustic field. Based on the self-similar decay of the turbulent near field, the self-similar



v
decay of the sound field is investigated. Connection between the acoustic field and the vortex
ring oscillations is also studied with vortex sound theory. Finally, we note some similarities
between the sound radiated by a train of de-correlated vortex rings and turbulent jet noise.
The sound pressure level, spectrum, and directivity of the train of vortex rings is similar to

the sound field from a jet with similar Reynolds number and Mach number.
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Chapter 1

Introduction

1.1 Motivation

The vortex ring is the among the simplest three-dimensional vortical structures, and is a
well know and popular object of theoretical and experimental investigations. Vortex rings
are common in nature (e.g. Rogers 1958, Rayfield & Reif 1963, Lugt 1983, Lundgren &
Mansour 1991) and in engineering applications (e.g. Chahine & Genoux 1983, Akhmetov
1980, Lundgren, Yao & Mansour 1992, Krueger & Gharib 2003). Investigations of vortex
rings began in the 19th century when Lord Kelvin considered them as a model of the
vortex theory of atoms (Kelvin 18674), and later extended to many areas of fluid dynamics.
Saffman (1981) said “Their formation is a problem of vortex sheet dynamics, the steady state
is a problem of existence, their duration is a problem of stability, and if there are several
we have a problem of vortex interactions.” Shariff & Leonard (1992) gave an extensive
review of major features of vortex ring dynamics, including the formation, steady state
and azimuthal instability of vortex rings. However, some important issues related to the
later stage of turbulent transition and the turbulent stage remain unresolved, which is a
motivation of this study.

In addition, vortex rings have been studied for the generation of sound. In low Mach
number flows, the sound field can be expressed directly in terms of vorticity unsteadiness
(Mdhring 1978), which led Miiller & Obermeier (1988) to make the statement that vortices
should also be called the “voice of the flow”, adding to the statement that vortices are
the “muscles and sinews” of fluid motion from Kiichemann (1965). Kambe and coworkers
used vortex ring as a subject for aeroacoustics experiments. They were able to successfully

identify sound sources associated with collisions of rings, and the measured sound field
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agreed well with theoretical modeling. (e.g. Kambe & Minota 1981, Kambe & Minota 1983).
In these investigations, the vorticity unsteadiness arises from interactions between vortex
rings or interaction between a vortex ring and a solid boundary. However, when a single
vortex ring becomes unstable and transitions to turbulence, it also generates sound as has
been investigated by Zaitsev, Kopiev, Munin & Potokin (1990). Compared with more
complicated flow such as jet flow, the vorticity field of a vortex ring is relatively compact,
which make it amenable to treatment with vortex sound theory. Thus another motivation of
this study is to investigate the acoustic field associated with the vortex ring, and to explore

the connections between vortex ring instabilities and its sound generation.

1.2 Dynamics of a turbulent vortex ring

A vortex ring can be generated in the laboratory by the motion of a piston pushing a column
of fluid through an orifice or nozzle. Glezer (1988) categorized the generating conditions
for vortex rings and classifies the conditions under which a given vortex generator produces
either an initially laminar or turbulent ring. A transition map is constructed, which is based
on two parameters: Re = I'/v, where Re is the Reynolds number, I" is total circulation of the
flow and v is the kinetic viscosity; and stroke ratio L/D, where L is the stroke length of the
piston and D is the diameter of the cylinder. For a moderate stroke number L/D = 1, the
critical Reynolds number is about 10*. With moderate Reynolds number, a laminar vortex
ring can be generated initially, but the vortex ring is unstable to azimuthal disturbance,
and will break down into a turbulent vortex ring.

The transition from laminar to turbulent flow in a vortex ring begins with azimuthal
instabilities in the form of bending mode. Experiments discovered that well-formed vortex
ring could undergo an instability to azimuthal waves (Maxworthy 1972, Widnall & Sullivan
1973, Maxworthy 1974, Maxworthy 1977). The growth and breakdown of the waves proceeds
the transition of the vortex ring. Widnall et al. (Widnall & Sullivan 1973, Widnall, Bliss &
Tsai 1974, Widnall & Tsai 1977) proposed an inviscid model for a thin ring with a core of
constant vorticity. When oscillations are imposed with a strain field due to the curvature
of the ring, certain azimuthal modes with a specific radial structure become unstable. The
most linearly amplified mode, the growth rate, and the radial structure can be obtained

from the model. Saffman (1978) used a vortex sheet roll-up model for ring formation and
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also considered viscous diffusion of the core, which gave more realistic vorticity profiles
in the stability calculation. The number of waves is found to be dependent on Reynolds
number, and the prediction agreed well with the experiments.

In addition to theoretical and experimental studies of the azimuthal instability, there
are several numerical studies. Knio & Ghoniem (1990) constructed a 3-D vortex method
for simulation of inviscid incompressible flow, and calculated linear growth of azimuthal
instability waves. The mode frequency and growth rate are in agreement with theory
of Widnall et al. They observed generation of small scales in the form of hair-pin vortex
structures at the edge of the core, and the shape of the turbulent vortex ring is in qualitative
agreement with experimental observations (Lugt 1983, Dyke 1982). Shariff, Verzicco &
Orlandi (1994) used finite-difference calculations to study the instability of viscous vortex
ring with a thicker core, with Reynolds number as high as 5500. Random and single-
mode perturbations were added to the vortex ring, and multiple bands of wave numbers
are amplified, each band having a distinct radial structure. Temporal evolution of kinetic
energy associated with each azimuthal mode was calculated. They also found a viscous
correction factor to the peak inviscid growth rate. The computation was carried on to the
nonlinear growth stage before it run out of resolution. A wake structure with many layers
of the hairpin vortices was formed, which showed some characters of turbulent vortex ring.
However, due to the complexity of the problem, detailed study of the vorticity dynamics
during the transition process was not attempted, and quantitative study of the turbulent
stage was not available.

At the late nonlinear stage, Maxworthy (1977) observed a single wave propagating along
the vortex ring, which induces a flow in the azimuthal direction. It is conjectured that this
is a result of the nonuniform breaking of instability waves. He also discovered that for low
Reynolds number flow, the azimuthal flow is very weak, the core structure breaks down
much more rapidly and the ring grows much faster than vortex ring with high Reynolds
number. Many researchers suggest that this azimuthal flow has the effect of stabilizing the
turbulent vortex ring. For example, Yuan (1973) has shown that for long waves, axial flow
reduce growth rate of unstable disturbances on a two dimensional vortex column. Moore
& Saffman (1975) suggested the same effect for short waves which are observed on a vortex
ring. The theory shows that the necessary condition for instability is that the dispersion

equation for infinitesimal waves on an isolated vortex is degenerate, i.e. two waves, with
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different angular dependence around the core but the same axial wave length, have the
same speed. If there is no axial velocity along the core, the waves will degenerate due to
symmetry, therefore become unstable. However, with axial flow, the steady disturbance is
not necessarily degenerate and may not give rise to instability.

Among experimental studies of the turbulent vortex ring, Glezer & Coles (1990) investi-
gated the self similar properties of the ensemble averaged flow. When the flow is turbulent,
there will be dispersion in the trajectories of individual rings, and ensemble averages must be
carefully implemented. Profiles of axial mean velocity, radial mean velocity, and Reynolds
stress were measured. Weigand & Gharib (1994) and Auerbach (1990) observed periodic
shedding of vorticity from the vortex ring to the wake, which resulted in the reduction of

circulation and Reynolds number.

1.3 Aeroacoustic theory and jet noise

Acoustic waves can be associated with the pressure fluctuations in unsteady flow, partic-
ularly turbulent flow. Lighthill (1952) rearranged the equations of fluid motions into a

quadrupole-driven wave equation,

2 2
% —CV = aii?;j’ (L.1)
where p is the density, ¢ is the ambient sound speed, and T;; = pviv; + (p — pa’;)di; — 7ij
is the Lighthill tensor, v;, p, and 7;; are the velocity, pressure, and viscous stresses. ¢;; is
the Kronecker delta. The right-hand side of the equation are regarded as equivalent sound
sources that would act in an otherwise quiescent medium. If we assume that the small
eddies in turbulent flow are the quadrupole sources, a noise scaling law can be derived
with dimensional analysis. Lighthill demonstrated that the acoustic power radiated by a
jet should vary as the eighth power of the jet velocity. In addition, the eddies are convected
downstream by the mean flow, and tend to radiate more noise in the direction of motion. The
convection of acoustic source has significant effect on the directivity of jet noise (Lighthill
1954, FfowcsWilliams 1963).
In the seventies, it was discovered that turbulence in jets and free shear layers consist of
large-scale turbulent structures as well as fine-scale turbulence (Crow & Champagne 1971,

Brown & Roshko 1974, Winant & Broward 1974). The large scale structures are more
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deterministic than the fine-scale motion. It has been suggested that turbulent mixing noise
from high-speed jets consists of two essentially independent components - the noise from
large turbulent structures in the form of Mach wave radiation and fine-scale turbulent noise
(Tam & Chen 1994, Seiner & Krejsa 1989, Tam 1995, Tam, Golebiowski & Seiner 1996).
The first part of the noise is highly directional and dominant in downstream direction, the
second part is nearly uniform and dominant in the sideline and upstream directions. For
the first part, linear stability theories have been used to calculate the Mach wave radiation
from high Mach number jet, whereas for the second part, there is no satisfactory theory or
computational result available to describe the sound field. Tam & Auriault (1999) developed
a semi-empirical theory for the prediction of the fine-scale turbulence noise from high-speed
jet, where the turbulence information is supplied by the & — ¢ model.

For cold subsonic jets, many researchers attempted to relate jet noise to large scale
vortex structure interactions (Moore 1977, Kibens 1979, Laufer & Yen 1983, Bridges &
Hussain 1992). Mankdabi & Liu (1984) attempted to incorporate the dynamics of large scale
structures in the form of linear instability waves into sound source models and produced
results that agrees qualitatively with experiments. Laufer & Yen (1983) observed that the
far-field sound of a forced subsonic round jet was highly directive with a strong dependence
on the angle from jets axis. The sound wave propagating near the axis is refracted to larger
polar angles by the mean flow velocity, therefore the sound pressure level dropped near the
jet axis. Bridges & Hussain (1992) used a M'=0.08 cold jet and obtained relatively complete
knowledge of the flow field. They employed vortex sound theory to predict the sound field.
The measured sound field directivity of vortex ring pairing in circular jets was very similar to
that predicted with theory: a stationary, axisymmetric, lateral quadrupole. The difference
of directivity with unforced jets suggested that pairing of purely axisymmetric coherent
structure was not the dominant sound source in low-Mach-number jets and that vortex
asymmetry must be an essential aspect of vortex motions which produces noise in such
jets. They suggested that the breakdown of large-scale vortical structures and turbulent
transition towards the close of potential core can be important source of sound generation.

In numerical simulations, Colonius, Lele & Moin (1997) used direct numerical simulation
(DNS) to study the sound generated by vortex pairing in a mixing layers. The acoustic
field was found to be highly directive, the amplitude of the waves being greatest at shallow

angles to the downstream axis of the layer, similar to jet noise experiments of Laufer & Yen
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(1983). The directivity at the pairing frequencies also agreed well with a heuristic model
for superdirective acoustic sources (Crighton & Huerre 1990). Mitchell, Lele & Moin (1999)
computed the sound generated by vortex pairing in an axisymmetric jet. In order to induce
the roll-up and pairing of vortex rings, the flow was perturbed with the jet fundamental
frequency (the frequency at which disturbances acquire the largest spatial amplification
rate) and its first few subharmonics. At low Mach numbers, the far-field sound had angle of
extinction in the range of 60° to 70° from the jet’s downstream axis, as observed in Bridges
& Hussain (1992). The first DNS study of turbulent jet noise was conducted by Freund
(2001) on a jet with Mach number 0.9 and Reynolds number 3600. The results showed
agreement with experimental data for both mean flow development and the radiated sound.
The Lighthill source was computed and analyzed.

As a summary of these previous studies, the sound field of a turbulent jet results from
many components and their interactions, therefore very complicated. The jet forms an
annular mixing layer at the exit of the nozzle, whereas near the centerline, the flow remain
laminar and is usually referred as the potential core. The jet velocity profile leads to
instability and roll-up of vortices in the mixing layer. The roll-up and interactions of these
vortices radiate sound with a peak frequency which is related to the most unstable mode
of the jet, and the sound radiation dominates at lower angles. Further downstream, these
vortical structures break down and transition to turbulence towards the close of potential
core, which is another mechanism that radiates sound. After turbulent transition, the fine
scale turbulence radiates sound with relatively higher frequency, and dominates at higher
polar angles. In addition, the sound waves propogating near the axis is bent away from
the downstream flow direction by the mean jet velocity. On the other hand, a vortex ring
is the simplest model of large coherent structure with relative compact vorticity field. It
enables us to separate the sound generation by large-scale structures from effects of vortex
interactions and mean flow refraction, and use vortex sound theory to model the sound
generation. A turbulent vortex ring is also comprised of two components, i.e. large-scale
vorticity structure and finer-scale turbulence. In the core region, many families of unstable
modes can be excited. The lower order modes are found to be more efficient in radiating
sound. In outer region and wake, fine turbulence exists and radiates sound with different

frequency and directivity.



1.4 Vortex sound

In some cases, it is advantageous to rewrite Lighthill’s quadrupole source Tj; in a form
which emphasizes the contribution of local vorticity. One reason is that vortical regions of
the flow are often more compact than the region over which Tj; is nonzero. In addition, the
dynamics of the vorticity field is easier to be described than the turbulent velocity field.
Crow (1970) used the method of matched asymptotic expansions to investigate the
sound generated by a turbulent eddy. To lowest order in the Mach number, he wrote the
acoustic source in the form of p082fui'uj /0z;0z; , where v, the velocity field in a hypothetical

incompressible flow, can be described by

v = curl/ m (1.2)

4|z — y|’
with w being the vorticity vector.
The Green function of the wave equation is then used to calculate the density perturbation

generated by the source,

821)ifuj dt—7—|z—yl|/c)
po 0y;0y; Arc? |z — y|

olx,t) = d3ydr. (1.3)

Howe (1975) rearranged the equation to demonstrate the dependence of the acoustic
field on the vorticity. In the far field, the leading term in the density perturbation has the
form

po O ||

Pt =~ / (2 y)@-w x o)y, — )y, (1.4)

Thus w x v is the source term, which enables the acoustic field to be found by integration
only over regions where vorticity is nonzero.

Mohring (1978) presented the acoustic density perturbation in a form that does not
contain the flow velocity, and depends linearly on the vorticity field. This enables the
contribution from several vortices to add up linearly. However, it relies on the existence of
a vector Green function, which is only possible with low Mach number. Mohring’s equation

has the form
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plat) = iiemgs [(@ vy @x oy, (1.5)

This formula was used to calculate the sound pressure generated by a circular vortex ring
of radius R centered at a position a, with circulation I'. The far field pressure perturbation

1s:

P (@) = Llcg’lilpg—; [FRQ{(w-a)(w-n) - %|az\2a-n}] , (1.6)

where n is a unit vector normal to the ring. If the ring moves in the direction of n, a = zn,

the formula simplifies,

p(x,t) = w0 I'R?z (w-n)Q—l\w\z : (1.7)
AP ERTE 3

thus the sound field of axisymmetric vortex rings has the directivity of that produced by a
lateral quadrupole and an isotropic quadrupole.

Obermeier (1985) and Kambe (1986) gave vortex sound theory rigorous treatment by us-
ing matched asymptotic expansions and singular perturbation methods. Kambe presented
a general solution for vortex-induced sound in the presence of a solid surface by matching
a multipole expansion of the far-field pressure Pr from wave equation with a near field P,
of the vortex field. Mohring’s formula was recovered for vortex flow without solid bound-
ary interaction. For a series of co-axial axisymmetric vortex rings, the far-field pressure

perturbation is given by

Pt = o (cox— 3 ) Ut - fal /o) (19)

where Q(t) = —2T'R22(t) and yx is the polar angle of the observer. Eq. (1.8) reveals two
important facts about sound generation of axisymmetric vortex systems: the magnitude of
p' scales on poUj Ry/c?|z|, where Uj is the initial speed of the ring. The directivity of a
series of axisymmetric vortex rings is (cos?y — %), and there is an angle of distinction at
X = cos_1(3*%) = 54.7°. Both amplitude and directivity were confirmed in the experiments

of Kambe et al.
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1.5 The sound field of a turbulent vortex ring

The first experimental investigation of sound generated by a turbulent vortex ring in an
anechoic chamber was reported by Zaitsev et al. (1990). The vortex ring has initial Reynolds
number Re = VyD/v = 6.8 x 10*. Over the period of acoustic sampling, the vortex ring has
a core-to-ring radius ratio of about p = 0.12. Acoustic signal shows a peak of the spectrum
in a narrow frequency band of Af = 300H z, with the maximum frequency fo =~ 1200H z.
When the peak frequency is scaled with the initial vortex ring velocity and diameter of the
orifice, it has a Strouhal number of St = fD/U = 2.0. On the other hand, when the peak
frequency is scaled with vortex ring parameters over the period of acoustic sampling, the
Strouhal number is around 8.4. As the vortex ring moved downstream, the peak frequency
drifted to lower frequency. In a more recent experiment, Zaitsev, Kopiev & Kotova (2001)
used a circular array of microphones in order to extract quadrupole components from the
total noise. Average contributions of different azimuthal components were studied, and
their directivity was compared with prediction from vortex sound theory (Mohring 1978).
However, since the microphone array was placed in one circular plane, instantaneous polar
distribution of acoustic signal could not be measured, and had to be obtained from the
analysis of the time evolution of different harmonics. The non-stationary character of the
mean flow complicated the analysis.

To study the sound generation mechanism, Kopiev & Chernyshev (1997) modeled the
vortex ring as an oscillating system with an infinite number of degrees of freedom. There
are two family of vortex ring oscillations, one is short-wave oscillations in azimuthal direc-
tion, which are the bending mode discussed in Section 1.2. Another family is long-wave
oscillations, which are related to core oscillations. The oscillations are characterized by 3
numbers: a discrete frequency wy,, which is scaled with ©/2 and Q is the uniform vorticity
in the core; n , azimuthal number, which is the number of waves along the ring; and j, a
radial number that represents the radial structure of the mode in the core section.

Eigen-oscillations are defined by a displacement field €(r, t) to the boundary, which is in

the form

e(r,t) = €(0, 1h)exp(ind — iwt). (1.9)

0,1 are coordinates fixed on the core. A system of equations with boundary conditions can
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be derived for e(r,t). Solving the system can give eigen-frequency w, and the forms of eigen-
oscillation. After all the modes are obtained, the acoustic field is calculated with formula of
Mohring. It is found that the most efficient sound radiating modes have azimuthal number
n = 0,1,2, and frequency w,, = 1. They include one axisymmetric mode (1,0,0), 2 isolated
modes of (1,1,0) and (1,2,0), and infinite number of Bessel modes (1,1,5),(1,2,7). The sound
pressure level and directivity associated with each mode can be obtained.

The theory was derived for vortex ring with uniform vorticity distribution and thin
core, but it is valid for any vortex ring with steady vorticity distribution differing from
uniform by O(u?). The theory reproduced some of the experimental observations: the peak
frequency corresponds to modes with w,,, = 1, which includes several families of oscillations
and expand in the interval Aw/w = (—4p,4u), where y = o/R is the core-ring ratio.
With the experimental parameters of the vortex ring, the predicted peak frequency and
bandwidth agreed well with experiments.

Other researchers have tried to explain the measured acoustic signal to aspects of vor-
tex ring dynamics. Shariff, Leonard & Ferziger (1989) tried to fit the frequency to lower
azimuthal mode (n = 2 mode) and Moore’s axisymmetric elliptic core ring (Moore 1980).
They found that the second mechanism agrees better with the experiment. The non-circular
core structure caused oscillation in both aspect ratio and orientation angle. Using vortex
sound theory, the acoustic signal was found to be sinusoidal at twice the frequency of the
core rotation. However, the elliptic core ring is an ideal case. When a vortex ring is gener-
ated in laboratory, it goes through a relaxation process to the steadily translational stage
close to the Norbury family of vortex rings (Norbury 1973), and the axisymmetric oscilla-
tion can only be sustained for several eddy turnover times, therefore the elliptic mode alone
can not be the sound generation mechanism after the vortex ring formation. The problem
was also studied using contour dynamics (Tang & Ko 2000, Tang & Ko 2003), and it is
found that the two basic vortex sound generation mechanisms are vortex core deformation
and the vorticity centroid dynamics, and are independent of the specific vortex system.
Rivoalen, Huberson & Knio (2003) used an axisymmetric vortex particle method to study
the sound production by isolated vortex rings for both nominally steady and unsteady cores.
The acoustic signals reveal a dominant period that is approximately half the eddy turnover
time. In addition, the amplitude of the radiated sound from unsteady cores is substantially

higher than that of similar steady rings. In addition to core oscillations, Weigand & Gharib
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(1994) and Auerbach (1990) found that a turbulent vortex ring will periodically eject hair-
pin vortices into the wake, and speculated that the vortex shedding was the source of the
sound generation.
In the present study, the acoustic field of the vortex ring is calculated directly. The
spectrum and sound pressure level is compared with experimental data and the theoretical

models. Possible sound generation mechanism by the vortex ring is discussed.

1.6 Accomplishments

In this section we review the progress we have made in meeting the objectives set out in

Section 1.1.

e It is the first DNS study of a turbulent vortex ring with its sound field. Detailed infor-
mation on instability, turbulent transition and decay is obtained. The simulated flow
field shows good agreement with theories and experimental data on linear instability

and turbulent self-similar decay.

e DNS provides detailed information on acoustic sources not available in experiments.
Because the flow field is non-stationary, large number of realizations are computed to
get accurate ensemble average. It increases the amount of computation by an order
of amplitude than previous numerical simulations, and also increases the complexity

in data process.

e The spectrum and sound pressure level agree well with experiments, and the simula-
tion results confirms the scaling of peak frequency and bandwidth proposed by the
model of Kopiev & Chernyshev (1997).

e We analyzed the temporal evolution of sound pressure level and directivity associated
with each azimuthal modes, which are not available from previous experiments. The
peak sound radiation occurs during late transition stage and turbulent breakdown.
The acoustic field then decays with self-similarity. The directivity of each azimuthal

mode, after corrected with Doppler factor, agrees well with vortex sound theory.

e The sound radiation by a train of de-correlated vortex rings is compared with turbulent

jet noise. The sound pressure level, spectrum, and directivity of the train of vortex
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rings is similar to the sound field from a jet with similar Reynolds number and Mach
number. It confirms that the vortex ring is a good model for sound generated by

large-scale coherent structures in turbulent jet.

1.7 Organization of this thesis

In Chapter 2, the numerical schemes to solve three-dimensional compressible Navier-Stokes
equations are presented, and spatial and time discretization, boundary condition and cen-
terline treatment are discussed. The solution is extended to the far field by solving a wave
equation utilizing spherical harmonics. The method of generating a vortex ring and adding
three dimensional stochastic perturbation to the ring is introduced. A further comparison
between this method and the piston/cylinder mechanism in laboratory can be found in
Appendix A.

In Chapter 3, we study the turbulent transition process, including the early linear az-
imuthal instability, nonlinear amplification of the higher azimuthal modes, breaking of the
azimuthal waves, and the instantaneous vortical structure of the turbulent vortex ring. The
numerical results are compared with linear instability theories, experiments, and previous
numerical simulations. Self-similarity of the turbulent flow is evaluated by averaging an
ensemble of simulations.

In Chapter 4, we investigate the acoustic field generated by the vortex motion, with
focus on frequency spectrum, sound pressure level, and directivity of the acoustic signal
with different azimuthal numbers. The result is compared with experimental data of Zaitsev
et al. (1990) and theoretical model of Kopiev & Chernyshev (1997). Comparison with vortex
sound theory is also discussed. In addition, the sound field of a train of de-correlated vortex
rings is studied and compared with the sound field of turbulent jets with similar Mach
number and Reynolds number.

Conclusions and future extension of the study are discussed in Chapter 5.
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Chapter 2

Numerical Techniques

2.1 Compressible Navier-Stokes equations

The flow field of a turbulent vortex ring and its acoustic field are both governed by the
compressible Navier-Stokes equations. In the numerical simulations, the physical quantities
are nondimensionalized based on the initial vortex ring radius, Ry, ambient density, pso,

and ambient sound speed, ay,. Therefore,

z* r* uk ¥ vy t*a
T = — r=— Uy = 2 vy = — vp = & ==
Ry Ry (27%) (023%) (279%) Ry
p* p* T*Cp e*
p=— p=y T="5 =
pOO pOOa‘oo aoo pOOa’oo

where the superscript ()* denotes a dimensional quantity, and e is the total energy per unit

volume. In the cylindrical coordinate system (z,r,0), the mass conservation equation is

op 0 10 10
-7 - - 2.1
ot g Pue) + g (o) + 255 (pve) =0, (2.1)

and the equations of momentum conservation in the axial, radial and azimuthal directions

are
0 0 10 10 _ Op
a(puz) + %(puzuw) + ;E(Tpuwvr) + ;%(puﬂ)&) = T oz + Vi, (2.2)
0 0 10 10 pPUg Op
ot (por) + Oz (pvriz) + r or (rpvror) + r 00 (pvrv) o Ve, (2:3)
2 (ov0) + o (pvoua) + - (rpugni) + o (o) + 20 = 1Py (o)
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respectively, where V,, V,., and Vy are the viscous terms that are defined later. The energy

equation is

de 0 10 190
a1 T ggluale + 0+ —o-[rvr(e +p)] + —2plvs(e + )] = (2.5)
_8qm_18( )_}%_}_ Ve + 0.V +vgVp+ @ |
or ror " r 00 ta Ve T Ve T UOY0 ’

where @ is the irreversible viscous dissipation and ¢;, ¢, and gg are the heat fluxes. The
viscous dissipation and the heat fluxes are defined later. The sum of the internal and kinetic

energy, e , is given by
p P 2 2 2
e= ﬁ—{_E(um—{_vr—i_Ue)’ (2.6)

where the ratio of specific heats, v , is taken to be 1.4. From the ideal gas law, the

nondimensional temperature is given by

The viscous terms appearing in the momentum equations are

_ Omgg 1077y 10749
Vi = G Y i e e (2.8)

_ Omgr  10rTye 1079 1

Vi = S i ar trae ™ (29)
_ Omgp [ 10rmy, 10799 1

Vo= G Yo e Trae Tr (2.10)

The viscous dissipation term @ is

Ouy ov, dvg

Q=T+ Tur 7 + Teo

or or or
Oug ov, ov
+7-er +Trrﬁ +7-7'¢98—T0 (2'11)
4 Tab OUa | Tro OUr | Top OV | UrTog _ VTro
r 00 r 00 r 00 T ro

We assume a Newtonian fluid. Since the Mach number is less than 0.3, temperature

variations are small; hence, we assume the viscosity is constant throughout the flow field.
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With these assumptions, the viscous stresses in cylindrical coordinates are

ReaTps = 2% - ge + “739, (2.12)
ReaTer = % + a(;:ﬂ z (2.13)
Reara = 20 4 -0, (214)
ReaTyy = 288?: - ge + “7’3@, (2.15)
ReaTrg = % + %%’9’" - 1;—9 (2.16)
ReaTgs = 2(%% + %) - %@ + “739, (2.17)
where O is dilatation of the velocity field, given by

ot L 10 oy

and Re, is the Reynolds number based on the speed of sound:
Re, = %“’RO. (2.19)

In the simulations, it is assumed that the bulk viscosity is related to the shear viscosity by
a constant ratio of pp/p = 0.6, which is the value given for air by Thompson (1991).

The heat fluxes in the energy equation are given by Fourier’s Law:

-1 0T -1 oT -1 10T

- - % - % 2.2
RePr 0z’ U = RePr or’ % = RePrr 00’ (2.20)

9z

where the Prandtl number Pr = ¢,u/k = 0.7 .

2.2 Numerical method

Equations 2.1 to 2.20 were solved using high-order-accurate methods in order to simulate

both fine-scale turbulent flow and the acoustic field.

Axial and radial discretization

In the axial and radial directions, a sixth-order Padé scheme (Lele 1992) was applied.
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The first derivative of a function f at the ith grid point, f;, was calculated implicitly with

_ Tfimn—fin 1 fia = fioo

, b 2.21

where As is the grid spacing of a uniform mesh.

At the end-points of the domain, lower-order compact schemes were used. At the 2nd
point next to the boundary (i = 2 and N — 1), we used a fourth-order central-differencing
scheme:

fivagse =3t (2:22)

SN — N2
f]IV—2+4f]IV—1+f]IV:3T- (2.23)

At the boundary point (i = 1 and N), a one-sided third-order scheme was applied:

afy+2f = =0 +Aif2 —Is (2.24)
Afy_y 2l = 20N 4f2;1 v, (2.25)

These differencing scheme lead to a tridiagonal system that was solved with the Thomas
algorithm to get the derivatives at each point. Second derivatives were calculated with
compact difference schemes of the same order as the first derivatives. Specifically, at the

inner points, a sixth-order Padé scheme was applied:

fisr =2fi + fimr | 3 fivn = 2fi + fivo

n n "o
2f;i 1 H11f7 +2f; 1 =12 As 1 As2 (2.26)
The points at 2 = 2 and N — 1 were solved with a fourth-order compact scheme:
12f3 —24fo + 12f;
3 +10f) + fi' = f 2 : (2.27)
12fn —24fn_1+12fn—
N +10fN_y + fyo = I fgszl I ’, (2.28)

and the second derivatives at points ¢ = 1 and N were solved with a third-order one-sided
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scheme:

13f1 —27fa + 15f3 — fa

n n __
1+ 11f2 = o2 , (2.29)
13fy — 27Fn— 15fn_o — fn—
" = In In IA-I;Q fn—o—fn 3 (2.30)

Azimuthal discretization

Since the azimuthal grid is periodic, a Fourier spectral method was used in this direction.
Flow quantities were transformed into the Fourier space, and azimuthal derivatives were
calculated with multiplication by iky for the first derivative, and by —kg for the second
derivative.

The maximum allowable time step for convective problems is usually determined by the
Courant-Friedrichs-Lewy (CFL) number. When explicit time advancement is used, the time
step will depend on the minimum mesh spacing in any of the three coordinate directions.
In cylindrical coordinates, the very fine azimuthal mesh spacing near r = 0 imposes a severe
time step limitation. However, the fine mesh is unnecessary because no fine scales needs
to be resolved near the centerline. Therefore, we can alleviate this constraint by explicitly
filtering the results in the 6 direction. When taking derivatives, a sharp spectral filter was
used to filter out the azimuthal modes that were higher than a cut off wave number Ny, (r;)
at the first several circles around r = 0. By choosing the appropriate cut off wave numbers,
the time step can be the same order of Ar, not ArAf. A detailed description of the filtering
was presented by Mohseni & Colonius (2000). However, energy in the discarded wave num-
bers can slowly grow due to nonlinear products from lower wave numbers. This energy is
not dissipated nor convected, therefore needs to be removed numerically. For this purpose,
the conservative variables were filtered at the end of every time step using the same cut off

wave numbers.

Computational Grid

The computational domain is shown schematically in Figure 2.1. A nonuniform mesh
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is used in both the axial and radial directions. In the axial direction, grid spacing is nearly
uniform over the region from —5Ry to 5Ry, where high resolution is needed to resolve the
turbulent structure of the vortex ring. In the far field, only the acoustic waves need to be
resolved, a coarser grid can be used. In the radial direction, the fine grid extends from 0
to 3Ry, and was most compressed around the region of r = Ry, where the vortex ring core
was located.

To determine the optimal grid stretching scheme, we require estimates for the size of the
computation domain and the grid resolution that is necessary. The computational domain
needs to be large enough to include at least one wave length of the sound wave. From the
experimental results of Zaitsev et al. (1990), a vortex ring will generate sound with a peak
Strouhal number around St = 2fR/u = 2.0, where u is the translational velocity. Thus,
the corresponding wavelength is A/R = a/u = 1/M, where M is the translational Mach
number. The domain needs to be very large when the Mach number is small. In the present
study, the vortex rings had the maximum translational Mach number between 0.14 to 0.28,
therefore, the characteristic wavelength varied from 3.6 Ry to 7.1Ry. This gives the estimate
of the domain size as well as the largest grid spacing in the far field.

On the other hand, the grid must be fine enough to resolve the smallest turbulent scale.
The Kolmogorov length scale, | = (v3/ €)'/*, has been used as a measure for the smallest
scale, where v is the kinematic viscosity, € is the energy dissipation. [ decreases with an

—3/4 A initially laminar vortex

increased Reynolds number, with the relationship I ~ Re
will become turbulent at a Reynolds number higher than 2000, which provides a lower limit
to the simulations. In practice, the fine grid width has to be determined by convergence
study at different Reynolds numbers (see section 2.6).

Once the extent and grid spacing are determined, grid stretching is accomplished by
mapping the axial and radial mesh onto a uniform mesh with smooth functions xz = g(s)
and 7 = h(s). The differentiation with respect to z and r are related to derivatives on the
uniform grid with the mapping function. For example,

of _1of  &#f _19f g¢"0f

92 — g 0s' 017 47052 g5 0s (2.31)

Q

The forms of ¢’ and h' are specified first because they are directly proportional to the

grid spacing. In the axial direction, the uniform grid s extends from -1 to 1, and ¢'(s) is
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d(s) = Azg [1 +gmax(1 -I—erf(s - 1) +1- erf(s + 1))] (2.32)
As Og Ox

where As = % is the grid width in s, Axg is the mapped grid width in the middle of the

given by

domain, where the grid is nearly uniform. The maximum grid spacing near the boundary
is given by Azg(l + gmax).- 0z controls the extent of the region with nearly uniform grid.
In the present simulations, we chose Azy = 0.03, gmax = 30.0, and o, = 0.1.

Once equation( 2.32) is given, the mapping functions g(s) and its second derivative g”(s)
can be calculated. With 320 grid points, the computation domain extended to —12Ry and
12Ry, with a nearly uniform grid from —4R, to 4Ry.

In the radial direction, similar mapping function was used, but the uniform grid extends
from 0 to 1, and the r grid points should be most compressed near the region r = 1.0Ry.

Therefore, h' takes the form:

A ~1 -
B (s) = A_’"O[1 +gmax<1+erf(s )) +gmin<1—erf(s Tm))] (2.33)
S Or1l Or2

where the constant r,, was determined iteratively so that the minimum grid width was

achieved around r = 1.0Ry. The value used in the simulations was r,, = —0.3, and the
values of the other constants were gmax = 20.0, gmin = 3.0, 0,1 = 00 = 0.2. With 160 grid
points, the computation domain extended to about 15Ry, and minimum grid spacing was

located between 0.5Ry and 2.5Ry.

Centerline treatment

In cylindrical coordinates, some terms in the Navier-Stokes equations are geometrically
singular at 7 = 0. A variety of numerical methods have been proposed to deal with this prob-
lem. These include developing pole conditions (Huang & Sloan 1993), changing variables to
avoid singularity (Verzicco, Orlandi, Eisenga, van Heijst & Carnevale 1996), or solving the
equations in Cartesian coordinates at the singular point(Thompson 1987, Mitchell, Lele &
Moin 1995, Freund, Lele & Moin 1997).

In the present study, the approach by Mohseni & Colonius (2000) was adopted. New ra-
dial coordinates are defined over both positive radius (where the azimuthal angle is between

0 and 7) and negative radius (where the azimuthal angle is between 7 and 27); the first
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Figure 2.1: Schematic diagram of computational domain for the vortex ring.
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Figure 2.2: Grid stretching in axial and radial direction.
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two radial points were placed in 7y = Ar/2 and r_y = —Ar/2, which avoids the singularity;
in addition, scalar and vector quantities must be transformed appropriately across the cen-
terline. This approach is easy to implement and resulted in negligible reflection from the
centerline. Constantinescu & Lele (2002) proposed a numerical method with nonstaggered
grids, and governing equations for the flow at the polar axis are derived using series expan-
sions near r = 0. Flow variables and their radial derivatives are needed to calculate the

coefficients in these equations, and the derivatives are calculated using a similar mapping

of the flow domain from (0, R) x (0,27) to (=R, R) x (0, 7).
Time advancement scheme

The N-S equations were explicitly advanced in time with a standard fourth-order Runge-
Kutta scheme. Although it requires more CPU time per step and memory than other
schemes, it significantly reduces the phase and amplitude errors related to wave propaga-
tion, and also gives a larger stable time step and good overall efficiencies. Combining the
compact difference scheme and the fourth-order Runge-Kutta time advancement, the time

step restriction for a model one-dimensional convection equation is

cAt
FL=—<14 2.34
C A, <143, (2.34)

and for a one-dimensional diffusion equation is

(VAAS;Q < .422. (2.35)

In the present simulations, we used a time step of cAt/Ry = .012, which corresponds to a

maximum CFL of 0.4, in order to satisfy both stability and accuracy requirements.

Nonreflecting boundary condition

The acoustic disturbances generated by the turbulent flow will propagate to infinity;

however, the computation domain must be truncated within a finite length. Numeri-

cal boundary conditions must be designed to minimize the reflection from this artificial
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boundary. Various nonreflecting boundary conditions have been reviewed in Givoli (1991),
Tsynkov (1998), and Colonius (2004). For linear problems or for problems that can be lin-
earized with specified accuracy near the boundary, boundary conditions can be derived from
mathematical analysis (Engquist & Majda 1979, Bayliss & Turkel 1982, Giles 1990, Tam &
Webb 1993, Rowley & Colonius 2000). On the other hand, when nonlinear effects are sig-
nificant near the boundary, there is no rigorous mathematical theory to guide the design of
nonreflecting boundary conditions, and various absorbing layer techniques have been used
with improved accuracy (Colonius, Lele & Moin 1993, Hu 1996, Freund 1997, Colonius &
Ran 2002). There are a set of parameters associated with the absorbing layer that can be
tuned to minimize reflection into the domain.

In the present study, the inflow/outflow boundary conditions proposed by Freund (1997)
was adopted. Convection terms U(z) and U(r) were added to the momentum and energy
equations in the absorbing layer to accelerate the flow to supersonic. Therefore, all the
characteristics at a boundary are incoming or outgoing, and simple boundary condition can
be used. In addition, damping terms o(z) and o(r) are added to the equations to damp

the disturbances in the layer. Thus the equations in the entire domain have the form

) 0Q OE 0Q OF 108G
a—?+U(w)a—§+%+U(r)a—?+E+;W+H:I—(o(ac)+o(r))(Q—Q0), (2.36)

where the target state Q, is the state of zero perturbation. A form with compact support

in the buffer zone is chosen for U(z), U(r), and o:

U(z) = Ui[l+ tanh(—wi(x — Xmin))] + Uy [1 + tanh (wr(x — xmax))],  (2.37)
U(r) = U1+ tanh (w(r — Imax))], (2.38)
o(z) = o[l +tanh (—wi(x — Xmin))] + o7 [1 + tanh (we(x — xmax))],  (2-39)
o(r) = o1[1+ tanh (We(r — Imax))] , (2.40)

where the subscripts [, 7 and ¢ denote values at left, right, and top boundaries, respectively.
U;, U, and U; are the maximum artificial convection velocities in the absorbing layers, and
o7, or and oy are the maximum damping coefficients. w;, w, and w; control the width of
the layer.

The corresponding coefficients used in the present study are given in table 2.1.
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U/as | =15 | Up/ax | 1.5 | Ui/as | 1.0
oy 1.5 or 1.5 ot 1.5
wy 0.4 Wy 0.4 Wy 0.4

Table 2.1: Parameters for absorbing layer.

2.3 The far field solution

The solution is extended to far field by solving a wave equation in a spherical coordinate
system (|z|, x, 0), where |z| is the radial distance to the vortex ring, x is the polar angle,
and 0 is the azimuthal angle. The DNS solution on a sphere of radius 10R is decomposed
into spherical harmonics, and a one-dimensional wave equation in the radial direction is

solved for each spherical harmonic on a domain 10R < |z| < 90R. The wave equation is

0p
where
p:p("ﬂ,Xae)’ (2'42)

which is solved with inner boundary condition

p(ro,t) = pns(rost), (2.43)

where pns(ro,t) is the solution of the Navier Stokes equations on the circle |z| = 79; and
non-reflecting boundary condition at the outer boundary.

In spherical coordinates, the solution can be written as

[e%s) !
p=>3" R(zl,HY"(x.0), (2.44)
=0 m=—1
where
20+1 (1 —m)! .
Y™ (x,0) = - 721 n m;!PIm(msx)e 3 (2.45)

are the spherical harmonics, and P;™ is the associated Legendre polynomial. m and [ are

azimuthal number and polar number, respectively.
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The coefficient R} (|z|,t) is solved with a one-dimensional wave equation

?’R 1 0%(|z|R) 1
R — —l(l+1 = 2.4
o Tal ol | pl TVE=0 (2.46)

and on the inner boundary, the DNS solution on a sphere of radius 10R is decomposed into

spherical harmonics

2T s
R0 = [ [ pnslro, 0 (v, O)sindas (2.47)
0 0

The spatial discretization and time marching scheme are the same as the Navier-Stokes
equation solver. However, since the relevant sound wave has much larger wavelength than
the near field fine scale, larger grid spacing and time step can be used. In the present study,

we use a grid size of 0.2Ry and time step of 0.1Ry/ax.

2.4 Generation of a vortex ring

There are several ways to model the vortex generation process. A given vorticity distri-
bution and its corresponding velocity field may be used as the initial condition (Stanaway
& Cantwell 1988). A vortex sheet model was implemented by Nitsche & Kransy (1994) to
reproduce vortex generation experiments by Didden (1979) for small stroke ratios. James &
Madnia (1996) used numerical solutions of the low Mach number Navier-Stokes equations
for small stroke ratios. Another method is to prescribe an axial velocity profile Uz(r) at an
inlet, in an attempt to model the injection of fluid through the nozzle of the experimental
apparatus (Verzicco et al. 1996).

An alternative method of numerically generating vortex rings is to apply a non-conservative
force directly in the equations of motion. We view this as a “generic” vortex ring genera-
tor, independent of any particular geometry, but note that in the laboratory, such a force
could in principle be generated by imposing currents in the fluid with a magnetic field.
This method has previously been used, for impulsive forces, in order to generate vortex
rings with certain desired properties (McCormack & Crane 1973, Swearingen, Crouch &
Handler 1995), This is the method adopted in the present study. The same method was

used by Mohseni, Ran & Colonius (2001) to study vortex ring pinch-off.
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2.4.1 Generation of vortex rings with non-conservative body force

The body force is aligned with the axial coordinate of a cylindrical-polar coordinate system
(z,7) and has the form:

fe(r,z,t) = C F(t) G(z) H(r), (2.48)

where C' is an amplitude constant with units of circulation, and F, G are functions with
units of inverse time and inverse length, respectively, and H is nondimensional function.
For the temporal profile, we use a regularized step function for F’:

F(t) = —% (tanh[oy(to — t)] + tanh[a(t — to — T))), (2.49)

where T is the duration of the force and o4 is a time scale which controls the smoothness
in turning on and off the force. When «; is too large, a strong dipolar acoustic wave will
be generated and contaminate the acoustic field of the vortex ring. We have experimented
with different values of ay, and the results presented below use oy = 0.4R?/C, where R is
the radial extent of the forcing region.

The functions G and H control the spatial variation of the flow generated by the force.

For the radial distribution, we use:

r—R

(678

H(r) = % erfc(va )s (2.50)

where « is a nondimensional constant discussed below. This a smoothed “top-hat” function.
a, is analogous to the boundary layer thickness at the exit of the nozzle in experiments. It
controls the shear layer thickness of the resulting flow, therefore the thickness of the vortex

ring core. For the axial distribution, we again use a regularized delta function:

G(z) = e o), (2.51)
/T
where «, controls the axial extent over which the force is smeared. The axial, radial and
temporal profile of the forcing function is shown in figure 2.3.

With a short forcing duration, the azimuthal vorticity field generated by the force is
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given, to leading order (e.g., Saffman 1992), by:

wy(z,r) = —W. (2.52)

Thus for an impulsive force, the vorticity field is an approximately Gaussian distribution

(for o < R):

oy — o (R HE)) (2.53)

Ty
which is the rationale for the specific functional dependence chosen for H and G given
above. Weigand & Gharib (1997) showed that vortex rings generated by a piston/cylinder
arrangement also possess an approximately Gaussian vorticity distribution in their core.
Note that the constant factor o = 1.25643--- is used so that the maximum tangential
velocity in the core is located at » = R £+ a, when «, < R. With nonimpulsive force, the
elongated vortex layer will later roll up into a thicker vortex ring, and its properties are
independent of «; and «;.

To relate the parameters in vortex ring generation with a non-conservative force and the
cylinder-piston mechanism, we can calculate the equivalent L/D number from the forcing

with specific amplitude C' and duration 7. The total impulse generated by the forcing is

T
I= /0 F(t)dt - / Fal,)dv. (2.54)

fz(z,7) is integrated within the volume where the force is applied. On the other hand,
the total impulse produced by pushing a slug of fluid in a cylinder with piston velocity U,

during time 7' is,

I = nR*LU, = nR*L?/T, (2.55)

where R is the radius of the cylinder, U, = L/T. Plugging Eq. (2.48) and (2.54) into
Eq. (2.55), we obtain

L _ L _ Teyy g
£==3 \/ : / G(z) H(r)dv, (2.56)

where Tog = fOT F(t)dt. The equivalent piston velocity U, is given by
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Figure 2.3: Forcing function, a) axial profile; b)radial profile; c) temporal profile.

Uy = 7= = \/ / (2.57)

With the same forcing profile G(z) and H(r), the piston velocity varies linearly with
v/C and the equivalent L/D is determined by Tugv/C.

In what follows, we characterize the ring by its properties upon completion of the for-
mation stage. There are four nondimensional parameters that control the formed ring: the
ratio of core to ring radius, o/R; the circulation of the formed vortex ring, I'T/R2, which
can be mapped to a specific L/D in the cylinder/piston mechanism; the circulation-based
Reynolds number, I'/v (where v is the constant kinematic viscosity), and a Mach number,
for example I'/Raq,. For convenience, we define a nominal translation Mach number M
that is based on the estimated average translation speed of the ring. With the chosen forc-
ing parameters in the current studies, the corresponding stroke length is about L/D = 1.5,
and the nominal translational Mach number of the vortex ring is varied from 0.14 to 0.28.
Once formed, the laminar vortex ring has an initial Reynolds number I'/v that varies from
1260 to 4500, and a core thickness around o/R = 0.34. Unless otherwise noted, quantities
are made nondimensional with circulation I' and vortex ring radius R. For example, the

nondimensional time is defined as ¢ = tI'/R? .

2.4.2 Introduction of azimuthal disturbances

In the present study, azimuthal instability was excited by adding azimuthal perturbations to
the spatial distribution of the forcing function. We imposed a random radial displacement on
the toroidal radius of the ring 7/(6) = 7o [1 + €(6)]. It should be noted that the disturbance

field was divergence free in order to minimize the sound generated by the force.
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Figure 2.4: Temporal evolution of turbulent energy for different initial disturbance, scaled
with mean kinetic energy. ¢ = ( ) 0.05, (----) 0.02, (—-—) 0.01. For case 3, 5, 6 in
Table 3.1

When ¢ is too large, nonlinear effects appear right after vortex ring formation. In Fig-
ure 2.4 we plot the evolution of turbulent kinetic energy, scaled with mean kinetic energy.
We found that when ¢ is less than 0.02, the growth rate of the linear instability is indepen-
dent of the perturbation level, the difference in initial perturbation levels only leads to a
time shift in the saturation of turbulent energy. In the simulations presented below, we use
e = 0.01.

In the present numerical studies, we added a uniform flow with speed M, in the direction
opposite to the vortex ring translation that was estimated as the average translation speed of

the ring. In this way the vortex structure was (approximately) centered in the computation

domain.

2.5 Parallel implementation

To implement the numerical method on distributed memory machines, MPI (Message Pass-
ing Interface) was used to accomplish communication between individual processors. The
computational domain was decomposed along the axial direction and the azimuthal direc-

tion. Specifically, with N, processors, the full N, x N, x Ny domain was first decomposed
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into N, parts of N; x N, x Ng/Np, and the axial and radial derivatives were computed
on each processor simultaneously; then the full domain was decomposed into N, parts
of Ny/Np x N, x Ny to calculate azimuthal derivatives. Transposing between these two

decompositions take place twice per Runge-Kutta sub-step.

2.6 Grid convergence

In the present study, the highest Reynolds number is Re = I'/v = 4500. The equations were
discretized with as many as 240 x 120 x 128 mesh points in the axial (z), radial (r), and
azimuthal () directions, respectively. The grid spacing is 35 R in the vortex ring region,
and the time step is 0.012R/ay, where ay is the sound speed. We compared the numerical
results of the fine grid with a reduced grid size of 160 x 80 x 64, and plots in Figure 2.5.
Results from two grid are identical except at time ¢ = 302, when the vortex ring moves
to the stretched grid, and the grid spacing with the reduced grid size become too large to
resolve the fine scales. It shows that at this Reynolds number, the transition and turbulent

stages of the vortex ring are well resolved on the 240 x 120 x 128 mesh.
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Figure 2.5: Density contour p — ps with grids 240 x 120 x 128 (left) and 160 x 80 x 64
(right), and with 20 evenly spaced contour levels. (a) = 43.2, min.= —0.27, max.= 0.06;
(b) £ = 130, min.= —0.13, max.= 0.02; (c) £ = 216, min.= —0.10, max.= 0.01; (d)t = 302,
min.= —0.05, max.= 0.01.
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Chapter 3

Instability, Transition and
Turbulent Decay

In this chapter, we examine results for the near field (hydrodynamic field) evolution during
instability, transition and turbulent decay. Some unresolved issues related to the vortex
ring instability and transition are discussed. During the fully turbulent stage, detailed
information on the mean flow and turbulent statistics is presented. The parameters for all
the cases considered are given in Table 3.1. The cases with smaller domain 6 R x 3R are
used to study the vortex ring instability and transition, whereas cases with larger domain

calculate both near field and far field.

3.1 Choice of Reynolds number

Our choice of Reynolds number is dictated by requiring a high enough value to produce
a turbulent ring, but sufficiently low to keep computational run times reasonably short.
Saffman (1978) has showed that the vortex ring instability is dependent on the Reynolds
number. When the Reynolds number is sufficiently small, the vortex ring will remain lam-
inar (Didden 1979). Previous studies (Maxworthy 1972, Didden 1979, Rosenfeld, Rambod
& Gharib 1998) have shown that the limiting Re for the vortex ring instability is in the
range of 1000 to 1800, depending on the formation conditions. For unstable vortex rings,
Shariff et al. (1994) found a viscous correction factor for the growth rate, 1 — a(o)/Re,
where o is the core thickness. Thus when Re is lower than a critical value, the growth
rate becomes negative and the ring will remain laminar. Since the critical Re depends on

formation conditions, we examine results for Reynolds number Re = I'/v = 1260, 2880 and
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Case T'/v M € N, x N, x Ny L, x L, Neps
1 1260 0.14 0.01 208 x 101 x 128 6R x 3R 1
2 2880 0.14 0.01 208 x 101 x128 6R x 3R 1
3 4500 0.14 0.01 208 x 101 x 128 6R x 3R 1
4t 4500 0.14 0.01 208 x 101 x 32 6R X 3R 1
5 4500 0.14 0.02 208 x 101 x 128 6R x 3R 1
6 4500 0.14 0.05 208 x 101 x 128 6R x 3R 1
7 4500 0.14 0.01 288 x 145 x 128 40R x 20R 5
8 4500 0.28 0.01 240 x 121 x 128 24R x 12R 15
9 4500 0.28 0.01 160 x 81 x 64 24R x 12R 1

10 4500 0.28 0.01 480 x 161 x 128 50R x 16R 1
1, only n = 8 is excited, and computational domain is 7/4 in azimuthal direction.

Table 3.1: Parameters for computations.

4500. Figure 3.1 shows the evolution of kinetic energy associated with azimuthal modes
1, 2, 4, 8 and 16, scaled with total initial kinetic energy Fy of the formed vortex ring,
for each case. The kinetic energy levels reach 10™* after £ = 40, when the vortex ring is
formed. £ is defined by ¢tI'/R%. The energy then evolves at different rates. For case 1, lower
modes remain at this level, while higher modes decay rapidly, and the ring remains laminar
throughout the simulation. At Re = 2880 and 4500, the energy grows and saturates at
a level around 1072, and the rings go unstable and transition to turbulence. The higher
Reynolds number reaches saturation in shorter time. We use Re = 4500 for the rest of the
study.

Next we present the evolution of total circulation for case 8. Circulation is calculated
from line integral of axial velocity along the centerline. Three different realizations, along
with the average of the entire ensemble, are shown in Figure 3.2. The evolution of the vortex
ring can be roughly separated into 4 stages. During stage I, the vortex ring is formed by
application of the non-conservative body force, and the circulation grows linearly. The
forcing also produces a spherically spreading dipolar acoustic wave. By applying the force
slowly on the acoustic timescale, the amplitude of this acoustic transient is minimized.
During stage II, three-dimensional instabilities occur while the overall circulation decays
slightly due to (laminar) viscous diffusion across the centerline. Depending on the rate at
which the body force is applied, there is overlap between stages I and IT with formation and
instabilities occurring simultaneously. The azimuthal vorticity field after ring formation is

plotted in Figure 3.3. Toward the end of stage II, nonlinear interactions of the unstable
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Figure 3.1: Temporal evolution of kinetic energy, scaled with total kinetic energy Ejy, a)
Re = 1260; b) Re = 2880; c¢) Re = 4500. n = (O) 1, (A) 2, (o) 4, (o) 8, (x) 16.
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Figure 3.2: Decaying of total circulation and Reynolds number of 3 vortex ring realizations
of case 8 (----), (—-—), (- ), and the ensemble average ( ). The thicker line is
~ t71/2_ Stage I, II, IIT and IV are described in this section.

modes cause transition to turbulent flow. Until this time there are no significant differences
in circulation amongest the ensemble. During stage ITI, the flow is turbulent and circulation
decays at faster rate due to viscous diffusion and cancellation of opposite-signed vorticity
across the ring axis (brought about by turbulent mixing and the shedding of vorticity from
the ring). The decay approximately follows a ¢~/ law predicted by Glezer & Coles (1990),
and shows dispersion between individual runs. As the circulation of the ring decays, its
translational velocity becomes smaller than the nominal translation velocity and the ring
moves upstream relative to the computational domain. During the final stage IV, part of

the vortex ring exits the computational domain and the circulation decreases rapidly.

3.2 Three-dimensional vortex ring instabilities

Three-dimensional stochastic perturbation is introduced during vortex ring formation, and

leads to different oscillations. Linear oscillations of the vortex ring can be described with
G = q(r, z)exp(ind — i), (3.1)

and are characterized by azimuthal wave number n, a radial mode number, j, which indi-

cates the number of vorticity layers in the radial direction, and rotation rate €. In addition,
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Figure 3.3: Side view of azimuthal vorticity at § = 0 and @ = 7 just after formation, with
20 evenly spaced contours between —2.4 and 2.4, t = 43.2.

the vortex core is strained by the geometry of the ring. If €2 is smaller than the strain rate
€, the mode become unstable. When the flow is viscous, higher radial modes will usually
be damped and the unstable modes with the lowest mode number will be amplified.

To study the instability process and compare with theory, a vortex ring with M=0.14
(case 3) is simulated; the forcing time is made shorter in order to separate the ring formation
(stage I) and the instabilities (stage II). The instability can be visualized with contours of
azimuthal vorticity, shown in Figure 3.4. At earlier times ¢ = 3.7 and 15.0, only the
boundary of the vortex core is distorted, the radial profile of vorticity has only one peak,
and no single azimuthal mode is dominant. However, after time ¢ = 30.0, when the vortex
ring has moved about 2 diameters downstream, the radial profile of vorticity develops two
peaks, illustrating the second radial mode. At one section, the contours in the inner region
of the core are bent toward the ring axis, whereas contours at the outer region are bent
outward. A strong response with n = 7 is evident. This mode is non-rotating, and its
amplitude increase in time. At time # = 71.2, the distortion of the iso-vorticity contours
become comparable with the core radius, and the instability reaches the nonlinear phase.
The peak vorticity level also increases due to intensification by vortex stretching.

Figure 3.5 plot the end view of azimuthal vorticity at time ¢ = 16.5, for azimuthal mode
n = 4 to 7. Six layers of vorticity develop in the radial direction, showing radial modes j =

3. According to the heuristic linear instability model of Widnall & Tsai (1977), a particular
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Figure 3.4: Contours of azimuthal vorticity on a plane across the ring axis. £ = (a) 3.7, (b)
15.0, (c) 30.0, (d) 45.0, (e) 60.0, (f) 71.2, with contour levels in a): max.=0.022, min.=0.001,
increment=0.001; in (b) to (f), max.=0.7, min.=0.02, increment=0.02.

azimuthal number is unstable only for a certain radial mode. For example, n = 5 to 8
should be unstable to a second radial mode (j = 2), n = 9 and 10 should be unstable to
the third radial mode (j = 3). These unstable modes will grow and other modes will be
damped during the linear stage. Figure 3.6 shows an end view of the contours of azimuthal
vorticity and three-dimensional isosurface at ¢ = 71.2, illustrating the radial structure of
each azimuthal mode. The radial profiles of vorticity for each azimuthal modes at 8 = 0
are shown in Figure 3.7. The group n = 5 to 8 has structure with j = 2, and n = 9 to 11
shows higher radial mode. The contour levels show that modes n = 6 and 7 are dominant.

According to the inviscid theory, the unstable azimuthal wavelengths are proportional
to core radius o so that ko is a constant k for these waves (k = 2.5 for second radial mode,
4.35 for third radial mode, etc.). If an integer number of these waves will fit on the ring, the
ring will be unstable to that number of waves. For a given core to ring ratio u, n = K/,

therefore the most amplified azimuthal wave number of a second-radial mode is given by

n = 2.51R/o. (3.2)
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Figure 3.5: Mode shape plots for n = 4, 5, 6, 7 at £ = 9.18, with 20 contours between the
Wmax and —Wmax- Wmax =, a) 0.044, b) 0.035, c) 0.037, d) 0.027.

In our case, /R = 0.34, which gives n = 7.4, and agrees with the numerical result.
To demonstrate the dependence of azimuthal wavenumber on core thickness, Figure 3.8 (a)
plots the azimuthal and radial distribution of vorticity at three axial stations at £ = 69.1,
for one run in case 8. At this moment the leading vortex ring is separating from the trailing
vortices. Station I is across the center of the leading vortex, where the core is thick, and
six waves form along the ring. Station II is near the separation point, where the vortex
layer is the thinnest, and about 14 to 15 waves develop. Location III is across the center
of the trailing vortex ring, which is thinner than the leading ring. At this station the wave
number is around 11. Radial vorticity distributions at these three stations are depicted in
Figure 3.8 (b), which show the relative thickness of vortex layers. The local vortex ring
radius is estimated to be the distance from centerline to the outer boundary of vorticity,
which gives R = 1.9R) at station I, 1.1 R at station IT and III. The core radius o is estimated
to be half the distance between maximum tangential velocity across the core (Figure 3.8
(c)), and we obtain o = 0.75Ry, 0.20Ry and 0.28Ry at station I, IT and III, respectively.
From Eq. (3.2), the number of azimuthal waves at the three stations are predicted to be
6, 14, 10, which agrees well with simulation results. In laboratory, the number of waves
developed around the vortex ring can be used to estimate the core thickness using Eq. (3.2)
(Maxworthy 1977). The dependence of unstable wavenumber on ring core thickness also

explain why the vortex ring will stay laminar at low Reynolds number: with higher viscous
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Figure 3.6: Left: mode shape plots of wy at £ = 71.2, with 20 contours between wmay, and
—Wmax €xcept for total vorticity. Total: min.=0.04, max.=0.84, n = 1 to 11: wmax = 0.068,
0.065, 0.028, 0.048, 0.071, 0.13, 0.11, 0.071, 0.015, 0.011, 0.037. Right: three-dimensional

isosurface.
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Figure 3.7: Radial profile of vorticity for different azimuthal modes. a) (——) n =5, (----
)n=206,(——)n="7, (- )n=28.Db) ( yn=29, (----) n =10, (——) n = 11.

diffusion of the core, growth of the core with time could continually keep the ring from
remaining unstable to a given mode long enough to be noticeably amplified (Saffman 1978).

To demonstrate the temporal evolution of the instability waves, the kinetic energy as-
sociated with different azimuthal modes are plotted in Figure 3.9. Up to time ¢ = 75, the
evolution goes through three phases: transient, linear, and early nonlinear. All the modes
have the same initial perturbation level, and oscillate during the early transient stage. How-
ever, after ¢ = 30, linearly growing eigenmodes n= 6, 7 and 8 begin to dominant, whereas
other modes start to decay. The most amplified mode during the linear stage is n=7. These
unstable modes extract energy from the axisymmetric mean flow, and feed into other modes

during the later nonlinear stage.

3.3 Turbulent transition

The nonlinear and transition stages take place at about 6 to 8 ring diameters downstream.
During this stage, several phenomena occur: harmonics of the most linearly amplified waves
(e.g., n =12 to 16, 24 to 32, etc.) are amplified; lower azimuthal modes arise from nonlinear
interactions of adjacent unstable modes; and the three-dimensional disturbance of vorticity
leads to the growth of azimuthal velocity and streamwise vorticity. In experiments, Max-
worthy (1977) found that as the azimuthal waves grow, the initially sinusoidal waves take
on an increasingly sawtoothed form with a typical amplitude to wavelength ratio of up to

1/2. The wave then breaks into a cascade of chaotic vortices and generate intense stirring
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Figure 3.8: a) Azimuthal wave numbers at three axial locations at ¢ = 69.1; b) radial
vorticity distribution at the three axial stations; (c) tangential velocity across the core, (o)
station I, (O) station II, (+) station IIL
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of ambient fluids. He also discovered the growth of lower modes, and suggested that these
low-order modes of the vorticity are most efficient in turbulent mixing because the Biot-
Savart velocity induced by higher order modes decays much faster from the core. These
lower modes of unsteadiness entrain ambient irrotational fluid and detrain weakly vortical
fluid into the wake of the ring.

The process is visualized in Figure 3.10 for case 8 (M = 0.28). After the vortex ring
is formed, some extra vorticity is shed from the leading vortex ring. In the mean time,
unstable bending modes begin to grow, as shown in Figure 3.10 (b), and six waves appears
around the vortex ring. At = 86.4, higher harmonics with n =12 appears due to nonlinear
effect. These modes also have a finer radial structure. The higher radial modes change the
distribution of vorticity inside the core, with one vorticity peak bent inward, and the next
vorticity peak bent outward, and cause the bulging shape in the isosurface contour. The
concentration of vorticity is not evenly distributed around the ring, with the top region of
the vortex ring more intensified and inducing a higher strain on the vorticity around it.
The increased strain field further accelerate the instability at the upper corner and finally
cause the vortex ring to breakdown. In addition, regions with lower vorticity around the
periphery of the vortex ring form hairpin vortices and start to detach from the vortex ring,
as depicted in Figure 3.10 (e) (f).

Figure 3.11 plots contours of vorticity normal to an axial slice of the ring (6 = 0 and
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Figure 3.10: Left, isosurface of vorticity level 0.5 at ¢ = 25.9, 43.2, 86.4, 103.6, 129.6, 172.8.
Right, end view of vorticity with 20 evenly spaced contours between 0 and the maximum
vorticity. wmax =, a) 1.6, b) 1.2, ¢) 1.3, b) 1.6, e) 1.6, f) 2.2.
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Figure 3.11: Side view of the temporal evolution of azimuthal vorticity at § = 0 and 6 = 7,
with 22 evenly spaced contours between —0.5 and 0.5 at £ = a) 43.2, b) 86.4, c) 130, d) 173,

e) 259, f) 346.
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Figure 3.12: Temporal evolution of the modal energy of n = 8 and harmonics. n = 8
(—); 16 (-=--) 16; 32 (——).

6 = m). During the initial stage, the vorticity is symmetric but with opposite sign in the
upper and lower core, and the contour levels decrease smoothly from the center of the core
to the outer region. This indicates that the core structure is laminar and concentrated.
At t =130 and 173, the deformation of the upper and lower core becomes asymmetric,
and shows signs of turbulent breakup, which is indicated by the increased concentration of
vorticity in the periphery of the core region. This vorticity will be later shed into the wake.
At later time, finer structure develops, vorticity continuously shed into the wake region.
The vortex shedding is asymmetric, and causes dispersion in the vortex ring trajectory. In
this realization, the vortex ring tilts upward.

Figure 3.12 plots the azimuthal modes of the kinetic energy for n = 8 and its harmonics
16, 32. Mode n = 8 begins to grow exponentially after £ = 20, n = 16 also increases, but at
lower rate. The harmonic n = 32 decays in the beginning, then begin to grow after ¢ = 80 as
a result of nonlinearity. All the modes saturate around ¢ = 140, when the vortex ring breaks
down and transitions to turbulence. The results indicate that the onset of turbulence in the
core is associated with harmonics of the unstable mode, excited in the form of a discrete
energy cascade. The energy of all the modes begin to decay at ¢ = 200, after the transition
is finished. The turbulent vortex ring has much larger energy dissipation rate than the

laminar rings.
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Figure 3.13: Evolution of azimuthal component of kinetic energy % pvg scaled with total
kinetic energy Eg = %p(v? + v2 + v3), ensemble-averaged with N = 12.

3.4 Azimuthal flow and streamwise vorticity

To study the growth of the azimuthal velocity, Figure 3.13 shows the evolution of azimuthal
component of the kinetic energy pvg /2. The energy starts from zero and grows rapidly after
t = 30, which is the beginning of the instability stage. The energy reaches a maximum value
at ¢ = 140. The azimuthal velocity contours on plane § = 0 and 7 at £ = 173, which is at
the initial stage of vortex breakdown, is plotted in Figure3.14 (a). The velocity is scaled
with U* =T'/R, where I is the total circulation after the ring is formed. The contours show
opposing streams across the ring core, because angular momentum should be conserved. It
also reveals that the azimuthal flow is not limited to the core, but extends into the wake
region. Figure 3.14 (b) plots the front view of the azimuthal velocity contour, the axial
flow is unevenly distributed in the azimuthal direction, as a result of the uneven breakup
of azimuthal wave.

Another effect caused by the three-dimensional vortex ring instability is the growth of

streamwise vorticity,

10 1 Ov,

The equation shows that the growth of azimuthal velocity will create the streamwise vor-

ticity. The temporal evolution of the streamwise vorticity is shown in Figure 3.15. The
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Figure 3.14: (a) Contour plot of axial velocity vg/U* at £ =173. (——), in the direction of
mean azimuthal vorticity, (------- ), opposite to the mean azimuthal vorticity, min= —0.078,
max=0.039, increment=0.0056. (b)Azimuthal distribution of axial velocity, min= —0.033,
max=0.033, increment=0.0028.
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vorticity grows in time as the azimuthal instability develops. The streamwise filaments are
elongated by the high field strain and are pulled outward from the axis of the ring, and then
shed into the wake. Periodic shedding of hairpin vortices was observed in previous experi-
ments (Glezer & Coles 1990, Auerbach 1990) and numerical simulations (Shariff et al. 1994)
of turbulent vortex ring. Shedding of vorticity reduces the circulation of the vortex ring,
and sometime cause the ring to relaminarize (Weigand & Gharib 1994). On the other hand,
from Figure 3.11, the azimuthal vorticity is confined in the core region during the transi-
tion stage. Figure 3.16 plots the three-dimensional isosurface and contours of streamwise
vorticity w, in an axial slice of the ring (# = 0 and 7), at £ = 151. The streamwise vorticity
has alternating signs in the radial and azimuthal directions. Near the centerline, filaments

are stretched and are pulled outward from the core.

3.5 Mean flow and turbulence statistics

Two types of averages are used to separate turbulent fluctuations from the mean flow.
The first is designated with an overbar, e.g., f , and is a Reynolds average taken over
the homogeneous flow direction 6. In case 8, there are 15 realizations with the same flow
parameters but different initial perturbations, and the azimuthal averaged quantities are
further ensemble averaged to increase the statistical sample size. The ensemble average is

denoted with <> and is defined as

1 Nens

N > f (3.4)

=1

< f>=

Averaging the flow equation in this manner generates terms involving density and velocity
correlations such as M However, since the maximum Mach number studied is less than
0.3, the maximum density fluctuation p'/p is found to be less than 5 percent. In addition,
we do not study the balance of turbulent energy budget; therefore we assume constant
density when computing quantities such as Reynolds stresses.

To confirm the convergence of the ensemble average, total circulation in the compu-
tational domain is computed for each run, and 4 runs are plotted in Figure 3.2. During
the formation and laminar translation stage, there is no dispersion of circulation among

the realizations, but as the vortex ring become turbulent, the circulation will vary between
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Figure 3.15: Temporal evolution of the streamwise vorticity w,. a) £ =102; b) £ =127; c)
t =154; d) ¢ =180. Max.=0.8, min.=-0.8, increment=0.1.
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Figure 3.16: a) Iso-surface of streamwise vorticity w, at ¢ = 180, level=-0.15, 0.15; b)
contours of w, in the plane § = 0 and w, with 20 evenly spaced contours between -0.6 and
0.6. ( ) positive, (----) negative.

different realizations due to irregular shedding and cancellation of vorticity. The average of
the circulation during turbulent stage is computed with number of ensembles from 1 to 7
and is plotted in Figure 3.17. The circulation is scaled with I'yay, the maximum circulation
after ring formation. The average circulation converge to the mean sequence with more
than 6 realizations. For other quantities such as energy spectrum and Reynolds stresses,
more realizations are needed to achieve accurate averages.

Figure 3.18 plots the ensemble-averaged one-dimensional energy spectra in the azimuthal
direction. In the initial stage, only wave numbers from 1 to 32 are excited, and higher wave
numbers have zero initial energy. During the transition stage the spectra are dominated
by the low azimuthal modes, and all the energy components increase rapidly as energy is
extracted from the mean flow. At later stage of the instability, higher modes are excited by
nonlinear interactions between lower modes, and the spectra broaden as turbulence energy
cascade is established. The spectrum achieves a quasi-steady state after £ = 110. Although
the flow is not statistically stationary, the slope of the spectrum is invariant and decays
slowly due to turbulent dissipation.

To compute the circulation of the vortex ring alone (i.e without the wake), we set the
vorticity to zero outside of a closed iso-contour of vorticity around the leading vortex core, at

which point the vorticity is 2 % of the maximum vorticity in the core right after formation.
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Figure 3.17: Averaged circulations with number of ensembles from 1 to 7.
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Figure 3.18: One-dimensional energy spectra in § direction. (a) laminar stage, (0 ) # =
8.6; (A) £ = 43.2; (0) £ = 86.4; (b) turbulent stage, () £ = 130; (A) # = 216; (o) £ = 302.
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Figure 3.19: Decay of vortex ring Reynolds number I';;,4/v, one run in case 8.

The circulation within the contour is computed with

Lring = /wdxdr. (3.5)

which is integrated numerically with a 4th-order accurate quadrature scheme. Figure 3.19
plots the decay of Reynolds number of the vortex ring I'y;,4/v. Unlike total circulation
in Figure 3.2, which decays as t~2 during the turbulent stage, decay of the vortex ring
circulation can be approximated as a linear function of time, similar to the experimental
observation of Weigand & Gharib (1994).

Once formed, the vortex ring translates downstream with self-induced velocity. Fig-
ure 3.20 (a) plots the ensemble-averaged trajectory of the vortex rings. The vortex ring

centroid is calculated with (Saffman 1978)

B f wzridzdr

X=c .
[ wridzdr

(3.6)

Translational velocity of the vortex ring is depicted in Figure 3.20 (b), and is compared with
the velocity of a viscous laminar vortex ring (Saffman 1970) with the same flow parameters,
i.e. Reynolds number, circulation, core radius, etc. Unlike the smooth decay of the laminar
ring, decay of velocity of the turbulent vortex ring follows a stair-like fashion, similar to that
reported by Weigand & Gharib (1994). It is caused by the periodic shedding of vorticity

from the vortex ring into the wake. Decay of the translation velocity in the turbulent stage
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Figure 3.20: (a) Trajectory of the centroid of the vortex ring in case 8, ensemble-averaged
with N = 12. (b) (O) ensemble-averaged translational velocity of the turbulent vortex ring,
(—-—) of a laminar vortex ring with the same ring properties.

is much faster than the laminar vortex ring.

The instability waves extract energy from the mean flow, and feed energy into smaller
scales, the energy cascade is established with Reynolds stresses. In Figure 3.21, we plot
the radial profile of the ensemble-averaged axial velocity, and two components of Reynolds
stresses across the center of the vortex ring, all scaled with U* = UR/T". Because of the
dispersion among trajectories of vortex rings, the centroid of each vortex ring has to be
computed individually, and the radial profiles are measured at that location. After the
formation of the vortex ring, the peak value of the mean axial flow decreases due to viscous
diffusion. The Reynolds stresses are negligible during the linear instability stage. However,
during the nonlinear stage, both Reynolds stresses rise rapidly and reach maximum values
at { = 173, suggesting the end of turbulence transition. The saturation value for the
component < u/u! > is 0.047Uj2, which is about same value with the numerical simulation

of a turbulent jet with similar Reynolds number (Freund 2001). Glezer & Coles (1990)

measured the distribution of Reynolds stresses < ulu/ >, < ulul > and < ulu! >, as well
as the turbulence production terms. However, the azimuthal Reynolds stress < m > was
not measured, therefore the turbulence production terms are incomplete. They estimated
the upper bound of the term to be the sum of the other two Reynolds normal stresses. In the

present study, we use as many as 15 runs to obtain ensemble-averaged mean velocity and all
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major components of Reynolds stresses, which are plotted in Figure 3.22 to 3.26. The radial
and azimuthal components of the Reynolds stresses have about the same amplitude, and
the axial component is about twice of the amplitude. The amplitude of the shearing stress
< wlu! > is about 50 percent of the normal stress. We observe that both the radial and
azimuthal normal stresses have a wake region, which confirm the existence of streamwise
vorticity discussed in the previous section.

To investigate how turbulence is produced by the vortex ring. We compute the incom-

pressible turbulent kinetic energy balance

dk

<E>:<P>+<T>_<€>’ (3.7)
where
1——
<k>=< §ugug > (3.8)
is the total turbulence energy, and
——0u —(0u ou.
<P> = <71-VU>=< —ulu, a; >—<u§cu’,<8:+ 8;) > (3.9)
——0u, —— U,
< ulul ar’" > - < ug,u;,?’” >, (3.10)
is the turbulence production term,
T >— I 4
<T>=<V|u- (Euiui + ;) > (3.11)
is mean flow transport term, and
<e>=<vS;S); > (3.12)

is viscous dissipation. We concentrate on the turbulent production terms. Eq. 3.9 differs
from the corresponding equation for plane flow only in the last term. The term w,/r
represents stretching or contracting of circular vortex lines due to mean radial motion, and
m represents the contribution from the azimuthal flow studied in the previous section.
Figure 3.27 plot the distribution of the 4 terms of P at £ = 173, when the Reynolds

stresses reach the maximum value, and Figure 3.28 plot the sum P. At this moment, the
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Figure 3.21: (a) Radial distribution of ensemble-averaged axial velocity < ,/U* > at =
43.2, 86.4, 130, 173, 216, 259, 302. (b) Reynolds stress component < ulul/U*? >, (c)
Reynolds stress component < u/u! /U*? >.
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Figure 3.22: (a) Contour plot of ensemble-averaged axial velocity u;/U* (N = 15, case 8),
min.=0.0056, max.=0.13, increment=0.0056; (b) ensemble-averaged radial velocity wu,/U*,
min.=—0.03, max.=0.03, increment=0.0028.
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Figure 3.23: Contour plot of ensemble-averaged Reynolds stress < u/u!,/U*? >, min.=7.7 x
107%, max.=1.5 x 103, increment="7.7 x 10~°.
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Figure 3.24: Contour plot of ensemble-averaged Reynolds stress < w/.u!./U*? >, min.=3.9 x
1075, max.=7.7 x 10~4, increment=3.9 x 1075.
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Figure 3.25: Contour plot of ensemble-averaged Reynolds stress < uju}/U*? >, min.=3.9 x
10~%, max.=9.3 x 10~*, increment=3.9 x 107°.

’I'/R()

JI/RO

Figure 3.26: Contour plot of ensemble-averaged Reynolds stress <ulul/U*? >, min.=3.9 x
1075, max.=4.6 x 10~%, increment=3.9 x 1075.
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Figure 3.27: Contour plot of turbulence production terms, scaled with U*3/Ro, (a)
< —uful % > min.=—1x10"* max.=1.8 x 10~*, increment=1x 105; (b) < —uful (% +
2r) >, min.=1 x 107, max.=1.4 x 107*, increment=1 x 107%; (¢) < —u u;%_; >,
min.=—6 x 10 ®, max.=6 x 1079, increment=1 x 10?; (d) < uau’ % > min.=—3x1075,
max.=3 x 107°, increment=1 x 107°.

turbulent production is positive within the entire vortex ring core, and is stronger at the
front half of the core. The major contribution to turbulent production is from the first
two terms, and both terms are positive at the front of the core. Glezer & Coles (1990)
suggested that the higher turbulent production at this region is due to vortex stretching.
However, the last term in Eq. 3.9 is negative in the front region in the simulations. Another

difference between simulation and the experiment is with the term < —ul.u/. 6;7,’ >. This

term is dominant in the experiment because of the large radial velocity gradient across the
thin core. With a thicker core in the simulation, this term has smaller contribution to the

turbulent production.
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Figure 3.28: Contour plot of total turbulence production, scaled with U*3/Ry, min.=2 x
107%, max.=2.4 x 10, increment=1 x 1075,

3.6 Self-similar decay of vortex ring

During the turbulent stage, mean flow properties such as peak axial velocity, peak vorticity,
vortex ring circulation decay in time, whereas the core radius and ring radius increase in
time, both due to turbulent diffusion and entrainment of surrounding irrotational fluid.
Maxworthy (1977) studied the decay of the vorticity inside the core. He separated the
flow field into three distinct regions, ambient, outer flow and core region, with well-defined
interface between them. He found that the ring growth rate was controlled by entrainment
across the core/outerflow interface. The core fed the outer flow with vorticity, mainly
through diffusion, and vorticity was mixed with irrotational fluid by turbulent fluctuations
in the outer flow region. In the current study, Reynolds number is lower than in the
experiments, and the core region is not well separated from the outer flow. This leads to
higher vorticity diffusion and decay rate.

In a fully turbulent vortex ring, the evolution of statistical quantities will be independent
of the kinematic viscosity and depend only on linear impulse I/p, where I is computed from

the time integral of the forcing function. Then from dimensional analysis we can define a
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Figure 3.29: a) Peak axial velocity along the centerline vs. axial location, b) peak axial
velocity along the centerline vs. time.

new velocity scale, us, and coordinates £ and n with (Glezer & Coles 1990),

us = (I/p) ()73, (3.13)
£ = (z —xo) (ﬁ) § (3.14)
_ P 1
n —1"(1({_{0) ) (3.15)
which gives a power law,
w3~ (F=T0)i ~ (& — z0), (3.16)

where z; and % are virtual origins of the turbulent vortex rings.

The decay of peak axial velocity on the centerline u, along the vortex ring trajectory,
and against time, is plotted in Figure 3.29 (a) and (b), respectively. The figures demonstrate
that during turbulent stage, the evolution of vortex ring approximately follow Eq. 3.16.

With least square fitting of Eq. (3.16), the virtual origins are found to be #y = 130.0,
o = 0.064. The virtual origin of time shows a large positive value, which is different than
the experiments of Glezer & Coles (1990), where both z( and ¢ are negative, i.e, the origin
in z is upstream of the orifice where the ring is generated, and the origin in time is earlier
than the beginning of vortex ring formation. The difference is caused by the core thickness.

For a thicker core (turbulent puff), the ring has larger growth rate and both origins tend to
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be positive (Johnson 1970, Kovasznay, Fujita & Lee 1973); whereas for a thin cored vortex
ring, the opposite is usually true (Turner 1957).To test the self-similarity, we plot velocity
profiles in both original (z, ) and scaled coordinates (¢, n) in Figure 3.30. We can compare
Figure 3.30 (b) with Figure 6 in Glezer & Coles (1990). With a larger sample size, the
ensemble averaged mean velocity profiles in the experiment are smoother. In addition, with
higher Reynolds number, the collapse between the profiles are better then the low Reynolds
number simulation. The different values of virtual origins lead to the different value of n
and £. In the experiments, x — x( is larger due to the negative value of zg, therefore n
is larger than in the simulations. On the other hand, (p/I(f — fo))% is smaller due to the
negative value of %y, therefore the variation of 7 in the vortex ring region is smaller than the
simulations. Nevertheless, both axial profile and radial profile of velocity from simulation
show good collapse in the similarity coordinate system. The plots show that self-similar
decay is achieved for £ > 173. the Self-similarity of the sound field will be studied in the

next chapter.
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Figure 3.30: Centerline mean axial velocity. (a), in origin variables, scaled with the maxi-
mum axial velocity just after ring formation, u,,; (b) in similarity variables. Radial profile
of mean axial velocity across the center of the vortex ring (c) in origin variables, scaled with
Um; (d) in similarity variables. ( )t =173 (----) £ = 216, (——) £ = 259, (-) t =
302, (O) t = 346.
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Chapter 4

Sound Field of a Turbulent Vortex
Ring

In this chapter, we study the sound generation by a turbulent vortex through DNS. The
simulated sound field is compared with experiments and theories, to help understand the

sound generation process and evaluate different theories discussed in section 1.5.

4.1 The acoustic field

Figure 4.1 shows the acoustic field, measured with pressure perturbation p’, in the far field.
Recall that the far-field is computed by the Kirchhoff method described in Section( 2.3). At
t = 138, a large pressure pulse is generated by the vortex ring formation, and propagates out
of the domain. After # = 225, sound with higher frequency is generated by the vortex ring
instability, and the sound generation continues until the vortex ring become fully turbulent.
The acoustic field is stronger in the downstream direction.

The acoustic field is measured around a circle at |z| = 16.1R, x = 52° for a particular
realization of case 8. The initial pulse produced by the forcing is the same among all the

realizations and can be removed by the ensemble average,
p=p—<p> (4.1)

The acoustic field is then decomposed into azimuthal modes n = 0, 1, 2, 3 (Figure 4.2). The
sound pressure level begins to grow during the linear stage, and peaks when the instability
becomes nonlinear and the vortex ring starts to breakdown. The pressure signals have a

distinct frequency at this stage. As the vortex ring transitions and vorticity begins to decay,
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Figure 4.1: Contour plot of pressure p'/pa2, at the far field, |z| from 10Ry to 90Ry, t =, a)
138, b) 225, ¢) 311, d) 380, with 20 levels evenly spaced between —1.5x 107% and 1.5 x 1075,



65

A
2 2r
— -
X |
C\l8 0 B =
3 _
3
<
X -2

IR | L | T TR [ TR NI B

100 150 200 250 300 350

St

Figure 4.2: Azimuthal components of acoustic field at |z| = 16.1R, x = 52°, (——) n = 0,
(----)mn=1, (——) n=2, (O) n = 3, one realization in case 8.

both the amplitude and the frequency of the pressure disturbance decreases as well. The
drift of the peak frequency to lower frequency is also detected in the experiments (Zaitsev
et al. 1990). It is also found that at this location, the amplitudes of the first 3 azimuthal
modes are roughly equal, whereas the peak amplitude of the n = 3 mode is less than 20
percent of the first 3 azimuthal modes. The n = 1 mode of the acoustic fields for three
realizations of case 8 is plotted in Figure 4.3, and compared with case 10, which has a longer
domain and enables acoustic measurement for longer time before the vortex ring interact
with the boundary. It is observed that the phases of pressure disturbances have higher
correlation during the laminar stage, and are less correlated after the turbulent transition.
The sound pressure level decays rapidly after # = 300, and the vortex ring stops radiating

sound after £ = 400, suggesting that the core oscillations are suppressed.

4.2 Sound pressure level and spectrum

The sound pressure level (SPL) , which is defined as

— _ Prms
SPL = 2010g1() (2 " 10_5> (42)
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Figure 4.3: Azimuthal components n = 1 of the acoustic field at |z| = 16.1R, x = 52°, 3
realizations of case 8 (red, green, and blue lines) and 1 realization of case 10 (black line).
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Figure 4.4: Sound pressure level measured at point x = 52°, 16.1R;, (——) ensemble
averaged (N = 12); (—-—) realization 1; (----) realization 2.



67

is measured and ensemble averaged at xy = 52°, 16.1 R in case 8. This position corresponds
to an acoustic delay of £ = 58.0 from the nominal ring position. The averaged SPL and SPL
from 2 realizations are plotted against time in Figure 4.4. For comparison with Figure 3.2,
stages I, IT and IIT of the circulation evolution is marked. The sound generation also
consists of three stages, which are related to the dynamics of the vortex ring. Before ¢ =
200, instability waves generate relatively weak sound, and the growth of the sound pressure
level is related to the growth rate of the corresponding vortex ring instability modes. From
t = 200 to 260 vortex breakdown occurs, and the sound pressure level is maximum. From
t = 260 to 300, the turbulent decay of the ring leads to a decay in SPL by 30 dB.

The spectrum at four different polar angles for azimuthal mode n = 0, 1, 2 and the
total is measured and plotted in Figure 4.5. Because the computational domain move with
the vortex ring, there is no Doppler shift between different angles. In the laboratory, there
would be a Doppler shift, but since we wish to compare to the very low Mach numbers
(M = 0.08) experiments of Zaitsev et al. (1990), we made no Doppler correction here. The
frequency is scaled with f* = Qg/4m, where € is the equivalent vorticity if vorticity were
uniformly distributed inside the core. For a laminar vortex ring, the equivalent vorticity
can be calculated with the vortex ring translational velocity U and p, which is the ratio
of core radius to ring radius, and the ring radius R. Although the vortex ring transitions
to turbulence, its sound radiation peaks at the late stage of laminar ring, therefore we
use formulas for laminar vortex ring to find the equivalent 2. A laminar vortex ring with

circulation T', ring radius R and core radius ¢ will translate with velocity (Kelvin 1867b)

r S8R 1
— log— — = 4.
Utr 47TR|:Og o 4:|a ( 3)
with uniform vorticity €2y, the total circulation is
= / Qodzdr = 102y, (4.4)
finally
Qo = 4Uyr /> RC (), (4.5)

where C(u) = log(8/p) — %, and = o/R.

The peak of the spectrum is found to be close to 1.0, the value predicted by the model of
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Kopiev & Chernyshev (1997), and the aforementioned experimental results. The spectrum is
also narrow banded, but the band width is about 2 to 3 times larger than the experiments. A
possible explanation can be obtained from the inviscid model (Kopiev & Chernyshev 1997).
The bandwidth of the peak Af/f is proportional to the core to ring ratio u, and the vortex
rings in the simulation have p = 0.34, whereas y =0.12 in the experiments. In addition,
when the sound pressure level is scaled with pM*R/|z|, it also agrees well with experiment
(M =~ 0.074). Another observation is that at different polar angles, each mode has different
relative strength. For example, at shallow angles to the vortex ring axis, the axisymmetric
mode dominants; at higher angles, modes n = 1 and 2 become relatively stronger, with
mode n = 1 becoming dominant at y = 55.9°. The measured directivity of the total sound
field is the sum of contributions from each azimuthal modes, and is more monotonic than
the individual components. Like the sound field of an unforced jet, there is no angle of
extinction. This is a major difference between the sound field of a turbulent vortex ring and

an axisymmetric vortex ring, or with axisymmetric interactions such as vortex ring pairing

(Bridges & Hussain 1992).

4.3 Comparison with vortex sound theory

From the vortex sound theory(Mohring 1978), the far-field sound generated by a compact
vorticity field in a low-Mach number flow is
po  TiTj a3

"(x,t) = = Qia(t — 4.6
p(a:7 ) ].27TC% |$|3 dt3QZ]( |"E|/CO)7 ( )

where ();; is given by the second-order moments of vorticity

Qui(t) = / (y x w(y, ©))iy;dv. (4.7)
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Figure 4.5: Spectrum of different azimuthal modes at different polar angles, |z| = 15R. a)
x = 18.6% b) x = 37.2% ¢) x = 55.9%; d) x = 93.1°( ) total spectrum; (----) n = 0;
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Transforming the coordinate system from (r, 6, z) to (z,y, z), we obtain

Qu = —/rzw00320 dv Qo = — /rzwsin29 dv Q33 = —/rzw dv

1 1
Q2 = —3 /rzwsin20 dv Qi3 = —/22w0059 dv Q21 = —3 /Tzwsin29 dv
Qo3 = —/zQwsinﬂ dv Q31 = /r wcosf dv Q30 = /r wsind dv

where

27
/dvz/ d9/d:v/rdr
0

To a first approximation, we only examine the vorticity component wy, and neglect w, and
w,, which is a good approximation when the flow is nearly axisymmetric. We can then

decompose the vorticity field into azimuthal Fourier modes
n

w(r,0,z,t) = Z wi(z, T, t)eika. (4.8)

k=—n

It is found that all the moments with n >2 are zero. Plugging Eq. (4.8) into Eq. (4.6), we

obtain
po 1 d°Qo 2
== -1 4.
p0(|$|1X) 1203 |$| dt3 (3COS X )1 ( 9)
po 1 d°Qy
pi(|z], x,0) = 2422‘ W —~~sin2xcos(6 — ), (4.10)
1 d3Q
p2(|z|,x,0) = 222 Tl dt32sm xcos2(6 — 6y), (4.11)
0

for modes n = 0, 1 and 2, respectively, where

Qo = /erwo dzdr, Q= /(rz2 + r3)w1 dzdr, Q2 = /r22w2 dzdr. (4.12)

At finite translational Mach number, corrections to these formulas should be made, as
the pressure perturbation is intensified in the downstream direction. When we model the

vortex ring as a simple quadrupole source convected with constant Mach number, M, the
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pressure perturbation will change by the factor (1 — Mcosy) 3.

Figure 4.6 (a) shows the polar distribution of sound pressure level associated with the
total sound field, as well as contribution from azimuthal modes n = 0, 1, and 2. Also
plotted as comparison is the convection amplification factor p’ ~ (1 — Mcosy) 3. When
the convection term is suppressed from the sound pressure level, the directivity of each
modes is closer to that predicted with Eq. (4.9), (4.10) and (4.11) . The directivity for
the first 3 azimuthal modes, and for two vortex ring Mach numbers M=0.14 and 0.28, are
depicted in Figure 4.6 (b) to (d), and are also compared with the theory. The pressure
perturbation is scaled with poM*R/|z|(1 — Mcosy)~3, and the directivity from theory is
plotted at arbitrary amplitude. The agreement between the simulation results and the
simplified model is good. The deviation is likely due to the non-compactness of the acoustic
source, and non-azimuthal components of the vorticity field. At n = 2, the contribution
from the other two components of vorticity w, and w, become comparable with azimuthal

component wy, therefore the deviation is larger.

4.4 Vortex core oscillation

In section (4.2) we found a distinct peak frequency around f/f* = 1.0. From the vortex
sound theory, this peak frequency must be related to the vorticity oscillation inside the
core. On the other hand, Eq. (4.9) to (4.11) relate the far field pressure fluctuations
to the third order time derivative of moments of vorticity. To explore this connection,
we compute terms dQq/dt3, d*Qq/dt® and d3Q./dt?, and compute the far field pressure
perturbation with Eq. (4.9) to (4.11). The predicted pressure field is compared with the
DNS result in Figure 4.7 (a), (b) and (c) for mode n = 0, 1, 2, respectively. The result
shows good agreement between the DNS result and prediction with vortex sound theory
at earlier time. The deviation becomes larger after turbulent transition, again due to the
increase of vorticity component w, and w,.

Among studies of unsteady motions of vortex ring core, Moore (1980) studied the ve-
locity of a vortex ring with elliptic cross section and uniform vorticity 2. When the core
radius is much smaller than the ring radius, the core motion is, to leading order, locally

two-dimensional Kirchhoff vortex in a plane normal to the ring axis. The boundary of the
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Figure 4.6: (a) Polar distribution of sound pressure level for M=0.28 in dB. (——) (1 —
Mcosy) 3. (+) total pressure disturbance; (0) n = 0; (A) n = 1; (o) n = 2. (b) to (d),
Polar plot of p?,,,. (b) mode n =0, ( ) (3cos?x—1)2, (----) M = 0.14, (—-—) M=0.28;
(c) mode n =1, ( ) sin?2y, (----) M = 0.14, (——) M=0.28; (d) mode n = 2, (——)
sin*y, (----) M = 0.14, (—-—) M=0.28. Note that the theoretical directivities are plotted
with an arbitrary overall amplitude.
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core rotates with constant angular velocity,

T Qmab Qab

b= m(a + b)? - m(a + b)? - (a + b)2’ (4.13)

where g and b are the semi-major and semi-minor axes of the core cross section. I' is the
circulation of the ring, and ¢ is the angle between the major axis and the axis of symmetry
of the vortex ring. When the aspect ratio is close to one, i.e. the core is nearly circular, the
angular velocity is approximately €2/4.

The velocity of the vortex ring is

U(t) = % {m (alii) - % + 38 - E; cos2¢} . (4.14)

Using Mohring’s formula for the axisymmetric case, the acoustic source function become

(Shariff et al. 1989)

Qo Id*U
= —— 4.15
dt? T dt?’ (4.15)
where [ is the impulse of the ring, and finally
d3
dgo = —(Ccos2¢, (4.16)

1 7
3122 (a—b)
Cc = -, 4.17
onl (@10 (.17)

Therefore the frequency of the acoustic signal is twice the frequency of the core rotation,
2/4m, the same peak frequency of a turbulent vortex ring. However, this core rotation can
not be sustained in real vortex ring with a peaked vorticity distribution. It tends to become
nearly circular in just two eddy turnover time (Melander, McWilliams & Zabusky 1987). We
propose that the turbulent vortex ring generates sound with a similar mechanism, however,
the rotation of the core is in the form of concentrated vorticity region rotating around the
core center, induced by the mean vorticity inside the core region. Figure 4.8 depicts the
tangential velocity across the center of the vortex ring core at £ = 86.4 and 172, the core
region is between the two velocity peaks, and the induced velocity within the core is close to

a solid body rotation. At ¢ = 172, concentrated vorticity regions form at several spots in the
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Figure 4.8: Tangential velocity v/U* across the core at ¢ = (OJ) 86.4, (o) 172.

vortex ring, and begin to rotate around the core center with the induced angular velocity.
Figures 4.9 and 4.10 plot the motion of vorticity inside the core during different stages.
During laminar stage, the vorticity distribution is smooth and nearly steady, which results
in nearly constant vorticity moments; during the nonlinear instability stage and transition
stage, multiple vorticity peaks emerge and begin to rotate around the center of the core
with angular velocity /2. The figures show qualitatively the unsteady dynamics of vortex
patches in the vortex ring. However, further study is needed to quantitatively connect the

vortex oscillations to the sound spectrum.

4.5 Asymptotic decay of the sound field

Another interesting phenomena is the temporal decay of the sound pressure level after the

transition. Since the flow becomes self-similar and the vorticity field evolves with a similarity

law, the acoustic field generated by the vorticity field would also follow a similarity law.
From Eq. (4.6), at a fixed position in space (|z|, x), the pressure perturbation changes

with %Qij(t — z/cp). In addition, as shown in Eq. (3.13), during the turbulent stage

—1/4 upon which the flow is

there is a velocity scale us; and a length scale Ly = [p/I(f — tp)]
self-preserving.
Define nondimensional velocity u* = u/Us, £* = x/L,, which should be invariant in

time, and then we get
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Figure 4.9: Azimuthal averaged vorticity contour at ¢ = 105, 109, 112, 116, with 20 evenly
spaced contours from 0.1 to 2.0.



7

Figure 4.10: Azimuthal averaged vorticity contour at ¢ = 150, 157, 166, 173, with 20 evenly
spaced contours from 0.05 to 1.4.
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Figure 4.11 presents the decay of p'? at point (|z| = 15Rg, x = 37.2°) for two Mach

numbers M = 0.14 and 0.28. The agreement with the similarity scales is satisfactory.
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4.6 Comparison with jet noise

In this section we try to compute the sound field generated by a train of de-correlated vortex
rings, as a notional model of sound generation from coherent structures in a turbulent jet.
For a single vortex ring, sound radiation is the strongest when the vortex ring breaks down
and transitions. The vortex breakdown takes place at an approximately fixed downstream
location of about 7 to 8 ring diameters, which is roughly the same location of the close
of the potential core in a low Reynolds number jet. When a train of de-correlated vortex
rings breaks down consecutively at the same location, the sound detected in the far field is
the sum of each vortex ring sound field, with a delay time At between neighboring rings.
We define a vortex ring replication Strouhal number St, = 2R/u;At , where u; is the
approximate exit jet velocity. A simple slug model predicts the translational velocity to be
Uy = Up/2, where U, is the piston velocity in the piston-cylinder mechanism, which is also
the exit jet velocity from the cylinder. In practice, U, varied from 0.5U), to 0.6U,, therefore
the vortex rings with M = 0.28 correspond exit jet Mach number between 0.47 to 0.56.
Analogously, this is the approximate convection velocity of a large scale structure in a jet
with Uy = 0.5U; to 0.6U;.

In the simulations, the reference frame moves with the vortex ring at a constant velocity,
but in most jet noise experiments, the acoustic field is measured at fixed locations. For
better comparison with jet noise measurement, we interpolate the data from the grid that
is moving with speed M to a stationary grid. The sound pressure level at shallow angles
will increase due to the translation of the vortex ring, whereas sound pressure level at
downstream points will decrease. The frequency at downstream will also increase due to
Doppler effect. Figure 4.12 demonstrates these effects at 3 points at |z| = 60R and x = 30°,
60° and 90°.

The pressure perturbations of 12 realizations are summed in random order with S,
varies from 0.08 to 0.4. Figure 4.13 depicts the replicated acoustic field with St, = 0.4,
0.2 and 0.1. The total spectrum is plotted in Figure 4.14 for two polar angles 30° and 80°.
At St,= 0.4, the pressure perturbation has the most overlap, therefore higher amplitude;
whereas at St, < 0.1, there is no overlap of pressure perturbation and the spectrum is the
same as an individual vortex ring. Between 0.2 and 0.33, the spectrum is nearly invariant.

On the other hand, the peak frequencies St; = 2fR/u; are between 0.4 to 0.5, and are
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independent of the replication frequency. The spectrum at xy = 30° from experimental
data (Stromberg, McLaughlin & Troutt 1980) of a Mach 0.9 jet with a Reynolds number
Re; = U;D;/v = 3600 is overlaid on the spectrum in Figure 4.14 (a). The corresponding jet
Reynolds number of the present vortex ring is 1900. The peak frequency of the jet noise is
about 0.23, which is lower than the peak frequency of the vortex ring; however, the spectral
shape at higher frequencies is quite similar between the jet and the train of vortex rings. In
addition, the spectrum at y = 80° is flatter than xy = 30°, representing a larger contribution
from higher frequency components.

To compare sound pressure level and directivity, the overall sound pressure level along a
circle of |z| = 15R for the sound field of a single vortex ring in moving frame, in stationary
frame, and a train of vortex rings in stationary frame are depicted in Figure 4.15. The
sound pressure level at shallow angle in the stationary frame is higher than the moving
frame, but decays faster downstream. When the sound fields of a train of vortex rings
are replicated, the overall sound pressure level increases by about 5dB. We compare it to
the sound field of a subsonic jet measured by Lush (Lush 1971). The closest jet velocity
in the experiments of Lush is 195 m/s, or Mach number 0.58. The SPL of the jet noise
is scaled from the distance of 120 nozzle diameters to 7.5 diameters. At xy = 60°, the
sound pressure level of the train of vortex rings is about 4dB lower than the jet, likely due
to slightly lower Mach number. To compare directivity, we plot the experimental data in
Figure 4.15, with amplitude rescaled to agree with the train of vortex rings at 60°. The
overall directivity patterns of the two curves are similar. A difference is that the sound
radiation from the vortex rings is relatively stronger near the axis, and weaker at angle
between 20° to 40°. In jet noise, the sound propagating at shallow angles is refracted to
larger angles, thus increasing the sound pressure level in this region. The steeper fall off in
directivity for x > 60° in the simulation is probably a low Reynolds number effect and is
similar to that observed in jet experiments (Stromberg et al. 1980) and simulations at low
Re (Freund 2001). The directivity of jet with Mach number 0.9 (Stromberg et al. 1980) is
also plotted, with the sound pressure level scaled by (0.9/0.54)*. The directivities of the
jet and the train of vortex rings are nearly identical at angles higher than 60°. However, at
30°, the difference is about 8 dB. The difference is due to two factors: the first factor is the
convective amplification, which is (1 — Mcosy)~® for compact source and (1 — Mcosy) ™ for

jet. For vortex ring with convection Mach number 0.28, convective amplification leads to
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3.3 dB of increase from 60° to 30°, whereas for a jet with source convection Mach number
0.45, it leads to 5.2 dB of increase from 60° to 30°. A more important factor is the sound
generated by the roll-up of vortices due to jet instabilities, and the interactions between
these vortices upstream of the close of potential core. This component of the sound field
has peak Strouhal number of about 0.2 and 0.3, and is large at shallow angles and decays
fast at higher angles. This sound generation process is not captured with the de-correlated
train of vortex rings, therefore the difference in SPL is larger at shallow angles and smaller

at higher angles.
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Figure 4.13: Acoustic field of a train of de-correlated vortex rings at |z| = 60R, x = 30°,
(a) St, = 0.4, (b) St, = 0.2, (c) St, = 0.1.
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Figure 4.15: Polar distribution of total sound pressure level. (+) turbulent vortex ring with
translational Mach number M =0.28 along a circle of |z| = 15R moving with the vortex ring,
(o) along a stationary circle; (A), a train of de-correlated vortex rings with St, = 0.2; (o)
experimental data (Lush 1971) for a subsonic jet with jet Mach number 0.58 scaled to agree
with the train of vortex rings at 60°, ( ) experimental data (Stromberg et al. 1980),
scaled with M*.
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Chapter 5

Conclusions and Future Work

We have computed transition and turbulent decay of an initially laminar vortex ring together
with its radiated acoustic field. This is the first known numerical simulation of turbulent
vortex ring and its acoustic field. Large number of realizations is computed to get accurate
ensemble averaged mean flow properties and turbulent statistics. Detailed information on
acoustic source is obtained.

After an initial transient, instabilities with specific azimuthal mode numbers (primarily
n =6 and n = 7) and a particular radial structure grow most rapidly, in accord with linear
stability theory (Widnall & Tsai 1977). The growth rate of the unstable modes is dependent
on Reynolds number. The mode shapes of each azimuthal modes are illustrated.

During later stages, nonlinear interactions excite harmonics of the most linearly ampli-
fied waves. The harmonics have larger growth rate and accelerate the vortex ring deforma-
tion. The initially smooth vorticity distribution developed sharp peaks inside the core and
the Reynolds stresses increase rapidly. The mode interactions also bring about significant
growth of the lower azimuthal modes (n = 0, 1, and 2). These modes are more efficient
in turbulent mixing because they induce higher Biot-Savart velocity outside of the vortex
ring core. During this stage, an axial flow is developed due to the uneven growth of waves
around the ring. In addition, the three-dimensional instabilities produce streamwise vor-
ticity, and some of the vorticity is elongated near the centerline and shed into the wake.
Eventually the vortex ring breaks down and the turbulence decays due to cancellation of
vorticity with opposite sign. The circulation of the vortex ring decays linearly in time, and
the translational velocity decays in a stair-like fashion.

We documented all three components of normal Reynolds stresses. The azimuthal

Reynolds stress (which is missing from previous studies) arises from the axial flow, and
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its amplitude is of the same level as the other two components, suggesting that the turbu-
lent field is nearly isotropic. The ensemble averaged turbulence production terms are also
computed. We found that the production is stronger at the front region of the core, where
vortex stretching is large. The major contribution is from the axial normal Reynolds stress
and the shearing Reynolds stress. During turbulent decay, the flow properties become inde-
pendent of viscosity and initial geometry of the vortex ring, and only depend on the total
impulse of the flow. We can define a new velocity scale and a length scale, both functions
of time, and find a good collapse of the azimuthally and ensemble-averaged velocity fields
with the self-similar theory (Glezer & Coles 1990). From self-similarity, the velocity field
decays with ¢3/4.

The acoustic field is solved together with the flow field, and is extended to the far field
by solving a wave equation. Statistics and spectra of the sound field are gathered for an
ensemble of 12 realizations. The sound field is dominated by azimuthal modes n = 0, 1 and
2 (which are the only radiating modes if the noise source is compact) that develops during
the nonlinear stage of vortex ring instability. The evolution of sound pressure level follows
the growth of these modes, and reaches a peak value when the modes saturate and the
vortex begins to break down. Vortex sound theory predicts that for a vortex ring with low
Mach number, the directivity of the first three azimuthal modes are (3cos?y — 1)2, sin?2y,
and sin*y, respectively, where y is the polar angle. However, since the vortex ring translates
with finite Mach number, the acoustic field is adjusted by a convective amplification factor
(1 — Mcosy) ™3, which causes the acoustic field to be intensified at downstream direction.
When we account for the convective amplification, the directivity of these modes agrees
well with predictions of vortex sound theory. If a flow system consists of only axisymmetric
vortices, the acoustic field directivity will be dominated by (3cos?x — 1)?, which, unlike jet
noise, has an extinction angle around 50°. On the other hand, for a turbulent vortex ring,
all the azimuthal modes contribute to the directivity, and the overall directivity become
more monotonic.

The spectra are peaked at a frequency that corresponds to 47 f/Qy = 1.0, in agreement
with experiments (Zaitsev et al. 1990). The rotation rate is half of the mean vorticity
Q. The theory of Kopiev & Chernyshev (1997) connects this frequency with linear eigen-
oscillations of a thin-cored vortex ring. Shariff et al. (1989) demonstrated that an axisym-

metric vortex ring with elliptic core will radiate at the same frequency due to the rotation
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of the vortex boundary. We found that at late nonlinear stage, concentrated vorticity re-
gions form in the core, and rotate around the center with angular velocity induced by the
mean vorticity. We conjecture that motion of the irregular vorticity leads to fluctuation of
vorticity moments in Mohring’s equation, and radiates sound with the specific frequency.

Based on the theory for self-similar decay of the near field, we use vortex sound theory
to determine the decay rate for the acoustic field. The sound pressure level is found to
decay with #%5 . Simulation results at two different Mach numbers 0.14 and 0.28 confirm
the scaling.

Finally, we compare sound radiated by the vortex ring to jet noise. We heuristically
model the jet as a de-correlated train of vortex rings with a fixed replication frequency. To
compare frequencies between the ring and jet, we assume that the ring translates with a
convection speed corresponding to 0.5U; to 0.6U;. We find that the directivity and shape of
the noise spectrum is nearly invariant to replication frequencies around the range St = 0.2
to St = 0.3, which corresponds to the frequency of peak amplification of linear instability
waves to the jet mean flow field. The primary effect of replication is to enhance SPL by
about 5 dB.

The peak frequency of the single vortex ring is preserved in the train of rings. It
corresponds to about St = 0.4, which is somewhat higher than the peak frequency of jet
noise, especially at low Mach and Reynolds numbers. Nevertheless, the spectral shape at
higher frequencies is quite similar to low Reynolds number experiments (Stromberg et al.
1980) for a M=0.9 jet. The directivity also shows substantial agreement with jet noise data.
The sound pressure level (of the replicated ring) is within about 4 dB of a higher-Reynolds
number jet(Lush 1971) with a slightly higher Mach number than our simulations. The
directivity is nearly identical with jet noise data with similar Reynolds numbers (Stromberg
et al. 1980) at higher polar angle.

In future work we plan to further explore the connections between vortex ring and jet
noise. The train of de-correlated rings appears to capture the main features of the low-
Reynolds number acoustic field ezcept perhaps the sound radiated by instabilities of the
mean jet profile that lead to vortex roll-up upstream of the close of the potential core and
the peak frequency with St = 0.2 to 0.3. However, once formed, the vortex ring instabilities
and breakdown may be reasonable models of the sound generation toward the close of the

potential core. An intriguing possibility is that excitation of higher azimuthal modes in
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a jet (say with chevron nozzles) amplifies the most unstable modes (say with n = 6-7) of
vortices that are formed by the instabilities of the mean jet profile. This may lead to more
rapid breakdown of the vorticity toward the close of the potential core in a process similar

to that observed for the present isolated vortex ring.
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Appendix A

Comparison of nonimpulsive
forcing with the cylinder/piston
mechanism

Here it is shown that the long duration forces discussed in Section 2.4.1 produce a flow which
is very similar to flow produced by pushing a column of fluid through an orifice. Didden
(1979) found that for short times, the trajectory of the leading vortex ring follows z, ~ $3/2
(up to a stroke length L/D = 0.6), and this result was confirmed in previous computations,
which attempted to model the roll up of the vortex sheet explicitly (Nitsche & Kransy 1994),
and which specified an inlet velocity profile (James & Madnia 1996). In order to demonstrate
the similarity of the present generation mechanism to the cylinder/piston mechanism, we
plot in Figure A.1 the trajectory of the leading vortex ring as the duration of the non-
impulsive forcing is varied from TC/R? = 1.58 to 25.3. For early times, the #3/2 behavior
is also obtained for generation by nonconservative force. After the forcing is turned off, the
ring translates at nearly steady velocity z. ~ t.

The axial velocity profile at the center of the forcing region is plotted in figure A.2, at
several instances during and slightly after the forcing. These plots are typical of all our runs
with long duration forces. Comparing these to similar plots from previous computations and
experiments (James & Madnia 1996, Nitsche & Kransy 1994, Didden 1979), it is evident that
the nonconservative forcing produces an axial velocity profile that has the same qualitative

features as those measured at the discharge plane in the cylinder/piston mechanism.
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Figure A.2: Axial velocity at the center of the forcing region. tC/R? = 8.86 (----);
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The velocity is normalized with the maximum axial velocity at time tC/R% = 31.6.
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