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ABSTRACT 

We have developed a method of calculating the Gruneisen parameter, I = 
81nJ/8lnv (J - exchange splitting; v - molar volume), for energy splittings that 

are due to atoms exchanging lattice sites in fermionic systems for which the ex­

change splittings are small compared with the lattice kinetic and potential energies. 

The method involves making two separate path integral Monte Carlo calculations, 

one for a path (sequence of particle positions in time) that doesn't involve atoms 

exchanging lattice sites, and one for a path in which the atoms do exchange lattice 

sites. The difference between a quantity calculated for the two systems is related 

to the Gruneisen parameter. 

The central results of this thesis are firstly, that there is no significant variation 

of the Gruneisen parameters for two, three and four particle exchange ( 12 , 13 and 

14 , respectively) for solid 3 He, in going from 24 cm3 /mole, which is near melting, 

to 22 cm3 /mole. This result was extended to 20 cm3 /mole for 1 2 • Since no sig­

nificant variation was observed, the values calculated for different molar volumes 

were combined to give best estimates for the Gruneisen constants, 1 2 = 15.9 ± .8, 

13 = 16.4 ± 1.4 and 1 4 = 13.8 ± 1.5. The second result is that the magnitudes of 

the Gruneisen parameters are very similar for the three types of exchange despite 

their significantly different geometry. Some very limited runs were done for a sys­

tem of hard spheres. It is interesting that for the hard sphere diameter chosen, 

the Gruneisen parameters are of the same order as for solid 3 He, 1 2 = 21.7 ± .8, 

/3 = 16.8 ± 2.1 and 14 = 19.3 ± 1.9 for the small test systems checked. The final 

result relates to 3 He deposited on a graphite surface. The Gruneisen parameter 

for three particle exchange for a two-dimensional system with a triangular mesh 
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is found to be consistent with 1 3 = 50 ± 5 for a range of nearest-neighbor, lat­

tice spacings from 3.2 A to 3.6A. This is inconsistent with experiment, indicating 

that three particle exchange confined to two dimensions does not account for the 

ferromagnetic properties of this system, as was claimed previously. 
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CHAPTER 1 

Introductory Remarks 

Most physical phenomena we observe result from the collective behavior of 

immense numbers of particles. Often different interactions of roughly equivalent 

energy scale compete to produce the observed effects. This mixing of different sorts 

of interactions greatly increases the difficulty encountered in writing down and solv­

ing the Hamiltonian. Theoretical descriptions of such systems are correspondingly 

difficult, and little progress has been made in quantitatively calculating collective 

phenomena from a microscopic point of view. 

Solid 3 He provides an extremely rich magnetic system, which exhibits complex 

collective behavior, but which also has a large separation of energy scales, which 

allows for a theoretical exploration of some of its properties via quantum Monte 

Carlo computational techniques. This system attractive not only from a theoretical 

point of view but also experimentally, since the ordering temperature of lmK is 

accessible using nuclear demagnetization cryostats. It is expected that in the next 

few years significant experimental work will be done in this area. 

In the low-density, low-temperature solid there are two quite different magnetic 

phases in zero magnetic field. Consider the phase diagram, Fig 1, near the solid­

liquid phase transition, which for low temperatures is at approximately 30 atmo-
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spheres pressure. Below lmK the solid has a noncubic antiferromagnetic structure 

and at higher temperatures it is disordered paramagnetic. As the field is increased 

in the antiferromagnetic region, there is a first-order transition to a high field phase, 

which may be ferromagnetic (Fig. 2). 

Near the lmK ordering temperature and just above melting pressure, lattice 

zero-point energies, exchange energies and nuclear, dipole-dipole interaction energies 

are each separated from the other by several orders of magnitude. The characteristic 

binding potential of the lattice is of the same order as the zero-point kinetic energy, 

an indication of the quantum nature of the solid. Order-of-magnitude estimates of 

these energies are given in Table 1. 

Energy Type Estimate 

Lattice Potential Depth of Helium Potential ~ 10 K 

Zero-Point Kinetic .JC tr,2 
2m ~ 2mD.z 2 ~ 10 K 

~x ~ Latt. Spacing - Hardcore Diam. ~2A. 

Exchange Hard Core Repulsion? --+ 10-3 K 

Dipolar Spin-Spin U ~ (~)2_1 ~ 10-1 K 
r 3 2mc £ 3 

L ~ Lattice Spacing ~ 4A 

Table 1 

Order-of-Magnitude Estimates of Interaction Energies 

The excitation of the lattice degrees of freedom is negligible at 1 mK, and 

the magnetic dipole-dipole interaction energies are small enough to be insignificant 

with respect to the magnetic ordering properties. Thus, it is the energy splitting of 

the otherwise degenerate spin levels, resulting from atoms exchanging lattice sites, 

which is the dominant interaction with respect to magnetic ordering. The order 

of magnitude of the exchange energies is not estimated in any simple way, a fact 

that adds to the interest of this system. In fact, it is only by way of experimental 

observation, such as the lmK antiferromagnetic ordering temperature, that the 
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approximate magnitude of the exchange interactions is known. 

Since exchanges are very rare on the time scale of a lattice vibration, the 

original and the exchanged lattice configuration can, to a very good approximation, 

be treated as a two-state system. 1 The fermionic nature of the atoms, each having 

spin 1/2, then requires an antisymmetric wavefunction and leads to nuclear spin 

ordering. 

Nearest neighbor exchange in the ground state of the low-density, BCC lattice 

provides a good example of how exchange interactions can lead to nuclear, magnetic 

spin ordering. Consider, first, two nearest-neighbor atoms exchanging lattice sites. 

Since direct magnetic dipole-dipole interaction of the two nuclear spins is not sig­

nificant, the value of the spin quantum numbers merely act as labels. Their effect 

is nevertheless important because when considering exchange, the Pauli exclusion 

principle must be satisfied and the total wave function must be antisymmetric. The 

lowest-energy state for the system corresponds to a symmetric, nodeless (lowest 

kinetic energy) spatial wavefunction. The spin wavefunction must therefore be an­

tisymmetric, and hence two-particle exchange is said to favor antiferromagnetism. 

In the antisymmetric state, the spins of the two exchanging atoms are opposite. 

Enforcing this condition for all nearest-neighbor pairs in the lattice produces a spin 

configuration with all atoms in one simple, cubic sub-lattice having spin up and all 

those in the other having spin down. This is referred to as the normal antiferromag­

netic (or N AF) phase. This configuration has the property that all nearest-neighbor 

pairs in the lattice have opposite spins. This is, of course, a semiclassical descrip­

tion, and quantum spin fluctuations will inevitably complicate the picture, but it 

is still a reasonable model with which to gain some intuition about the magnetic 

tendencies of the spin system. 

Magnetic ordering in the low-temperature solid is not, in fact, cubic as it would 

be if only two-particle exchange were significant. The antiferromagnetic phase is 

thought to consist of planes of up and down spins that are parallel to one face of the 

cubic lattice. Such a structure is referred to as the uN dN phase,2 where u and the d 

refer to the alternate planes of up and down spins, respectively, and N refers to the 
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number of planes of each type that occur in a repeating pattern. The NAF phase 

described above has this structure with N=l, but its cubic structure has been ruled 

out by the observation of a tetragonal symmetry axis, corresponding to a broken 

symmetry, in nuclear magnetic resonance (NMR) experiments. The u2d2 phase 

appears to be the best candidate to describe the properties observed so far. This 

phase clearly requires competition between ferromagnetic and antiferromagnetic in­

teractions. The most likely origin of this is the competition between exchanges of 

even numbers of particles (which give antiferromagnetic interactions) and exchanges 

of odd numbers of particles (which give ferromagnetic interactions). 3 The magnetic 

tendencies of an exchange can be deduced from the fact that n particles exchanging 

is equivalent to n-1 two-particle exchanges. Hence, exchanges with odd numbers of 

particles lead to a ground state with a symmetric (ferromagnetic) spin wavefunc­

tion. As in the two-particle case exchanges with even numbers of particles favor 

antiferromagnetism. 

This work was motivated by experimental evidence that quantities such as the 

first two terms in the high-temperature expansion of the specific heat, which depend 

upon several types of exchange (2-, 3-, 4-particle), all scale with molar volume, v, 

according to one parameter. Experimentally, quantities with the dimensions of 

energy vary as v\ with 'Y = 18 ± 2, from near melting at 24 cm3 /mole to 22 

cm3 /mole. The different geometry of two, three and four particle exchange (see Fig 

3) would seem to imply that their volume dependence should be very different and 

hence, .that quantities depending on all of them should have a more complicated 

volume dependence than is experimentally observed. 

The primary purpose of this work is to measure the Gruneisen parameters 

olnJp 
'Y = olnv 

(1.1) 

for two, three and four particle exchange, where J p is the exchange energy for ex­

change type P using quantum path integral Monte Carlo computational techniques. 4 

These types of exchange are considered because, at least qualitatively, they seem 
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to account for many of the behaviors of this system (see Section 2.3). The simplifi­

cation provided by the large separation of energy scales in solid 3 He allows for the 

calculation of I for each type of exchange separately. A semiclassical (WKB) calcu­

lation is not applicable because, as was already mentioned, the kinetic and potential 

energies are of comparable magnitude. The potential is quite broad and actually 

has a slight maximum at the lattice sites, and so a full solution of the quantum 

problem is necessary. The particles may, however, be treated as distinguishable, 

since only a single exchange is involved in each calculation, so that the very hard 

problems involved in fermionic Monte Carlos are not encountered. 

Since this work was started, Ceperley and J acucci 5 have developed a method of 

calculating the exchange energies directly by making Monte Carlo moves, with very 

low acceptance, between· a nonexchanging configuration and an exchanging one. 

This produces values of the exchange energies with errors at the 10% level. They 

calculate the Gruneisen parameter using the values for the exchange energies at only 

two points, 20.07 cm3 /mole and 24.12 cm3 /mole, from which they get I,...., 18. The 

method described here is rather different and does not require the direct sampling of 

the tiny overlap. It therefore provides an independent calculation. In addition, we 

will be able to calculate/ at specific points between 22 cm3 /mole and 24 cm3 /mole 

and hence to gain a more detailed picture of how changes in volume affect the 

different types of exchange. Thus, a direct independent calculation of the Gruneisen 

constant is a useful complement to the work of Ceperley and Jacucci. 

The material covered in this work is essentially as follows. Chapter 2 is a general 

discussion of the solid helium system, to provide background about some relevant 

experimental and theoretical issues. In Chapter 3, the theoretical basis for the 

computational work is laid out, including a path integral formulation of the density 

matrix, an observable derived from the path integral and related to the Gruneisen 

parameters for exchange, and a description of the Monte Carlo techniques used. 

Chapter 4 is a detailed discussion of how the formalism developed in Chapter 3 has 

been implemented, including a description of some techniques that have been used 

to reduce statistical errors and to gain an insight into the number of particles that 
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participate in each type of exchange. This material is, for the most part, common to 

all of the calculations. Chapter 5 is a description of a calculation of the Gruneisen 

parameters for exchange in a system of hard spheres. We studied this system 

originally because it has the simplifying feature that an analytic representation of 

the two-particle, density matrix may be calculated in a short time approximation, 

and the hardcore part of the potential for solid 3 He is believed to be very important 

in the suppression of the exchange energies. Chapter 6 covers the three-dimensional 

computer simulation for solid 3 He. The Gruneisen parameter for two, three and four 

particle exchange will be measured and compared with experiment. A study will 

also be made of the number of particles that participate in each type of exchange, 

to address the question of why the Gruneisen parameters for different types of 

exchange seem to be of similar magnitude. In Chapter 7 a brief look is taken at 

exchange in 3 He deposited as a surface layer on grafoil. It has been proposed that 

the properties of this system are well accounted for by three-particle exchange in one 

surface layer. 6 The validity of this assertion is tested by calculating the Gruneisen 

parameter for three-particle exchange and comparing it with experiment and the 

theoretical calculation based on the above-mentioned theory. Finally, Chapter 8 

contains comments, conclusions and speculations. 
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CHAPTER 2 

Solid 3 He and Exchange 

This work concentrates on an antiferromagnetic phase of 3 He. To understand 

how it relates to the other phases, it is useful to look at the P-T phase diagram (Fig. 

1). Below about lOK along the melting curve, the liquid borders on a BOC phase 

of the solid. At approximately l.OmK (on the melting curve), the solid makes a 

first-order transition from a disordered paramagnetic phase to an antiferromagnetic 

phase. As the pressure is raised, from the melting pressure, the transition tempera­

ture goes rapidly to zero. Fig. 2 shows an H-T phase diagram, where the T axis lies 

on the melting curve. As the magnetic field is raised there is a first-order transition 

from the antiferromagnetic phase to a high-field phase in which the magnetization 

jumps from a small value to roughly half its saturation value. Above that transition 

field of about 4.4 kG, the magnetization increases slowly to a projected saturation 

field at about 180kG. This high-field, pseudoferromagnetic phase is separated from 

the disordered paramagnetic phase in one of three possible schemes,1 all of which 

are consistent with experiment. As shown in Fig. 4b,c,d they are respectively: a 

first-order transition line turning to a second-order line ending at an upper critical 

field; a first-order line ending at an upper critical field; or a first-order transition 

to a critical point. In the final case, there is no clear distinction between the two 
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phases. 

2.1 Experimental Information 

Before going into the details of exchange models, it is interesting to outline 

the model-independent information that has been learned from experiment. There 

are significant constraints on the nature of the magnetic ordering in the antifer­

romagnetic phase, which come from NMR experiments, and there are also some 

very limited neutron-scattering data, which seem to support the conclusions drawn 

from the analysis of the NMR data. A high-temperature expansion of the free 

energy yields series for quantities such as the magnetic susceptibility, the specific 

heat and the pressure. Fitting these experimentally measured quantities allows for 

the calculation of some of the leading coefficients in the series. As mentioned in 

the introduction, the scaling behavior of some of these terms with specific volume 

provides the motivation for this work. The nature of this evidence will be described 

toward the end of this section. These experimentally measured coefficients can then 

be related to the parameters of a given exchange Hamiltonian. Finally, some infor­

mation about spin-wave velocities can be extracted from low-temperature, specific 

heat measurements. 

2.la NMR 

Some of the most elegant work done on solid 3 He is the NMR experiment and 

its analysis. 2
• 

1
• 

3 

Single crystals of the solid were grown directly in the antiferromagnetic state. 

For many different crystals, NMR signals that were assigned to three differently 

oriented domains of the ordered phase were observed. The existence of exactly 

three domains strongly suggests a symmetry axis that must align along one of the 

three principal axes of the cubic lattice. For a given domain, this axis will be 

referred to as l. In Fig. 5, each domain corresponds to a pair of resonance lines, 

one line above the dashed (Larmor Frequency) line and one below it. 
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Generally, each domain is expected to have three resonances, corresponding 

to the three independent directions about which the spins may be rotated. The 

fact that only two modes are observed over a wide range of magnetic fields and 

for many different crystal orientations implies that there is a spin-symmetry axis, 

d, such that a rotation of all of the spins about it causes no shift in the dipolar 

interaction energies. The simplest arrangement that satisfies this criterion is for the 

spins to be either parallel or antiparallel to d. More complicated structures that 

satisfy this requirement but that are eliminated by other considerations will not be 

discussed here. The NMR spectra can be understood in terms of the two anisotropy 

vectors d and i. 1 

Further information about the relative orientation of i and d is given by the 

fact that one of the modes for each domain goes to zero at zero field. For a general 

spin structure there is a spin realignment for some field strength (IH ~ .7 in Fig. 

6) corresponding to the system switching from primarily minimizing the anisotropic 

part of the dipole energy, 

(2.1) 

to primarily minimizing the magnetic energy. The absence of this realignment 

implies that d must be perpendicular to both i and the magnetic field, since that 

has the effect of minimizing both energies simultaneously. Viewing this in another 

way, there is some direction (other than the trivial direction d) about which d can 

be rotated infinitesimally, such that there is no restoring force from dipole-dipole 
' ' 

interactions. This is true only if d is perpendicular to l, in which case there is no 

restoring force for a rotation of d in the plane perpendicular to i. 
One further constraint on the nature of the ordered phase is that smce ED 

1s not zero, the spin structure cannot be cubic. For a cubically symmetric spin 

structure, the anisotropic part of the dipole energy is zero. One particularly simple 

spin structure that meets all of these constraints is the uNdN phase. This refers 

to N planes of up spins followed by N planes of down spins in a repeating pattern, 
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where i defines the normal to the planes. Note that N> 1, since N = 1 is just the 

cubically symmetric NAF phase discussed in Chapter 1. Mean field analysis of sums 

of the dipole energies 1 gives some somewhat better fits to the NMR data for the 

u2d2 phase as compared with the N> 2 phases, but the results are not conclusive. 

A scattering peak has been observed in neutron-scattering data,4 corresponding 

to the ( t ,0,0) wave vector, which disappears above the critical temperature. This 

is consistent with the u2d2 phase but could possibly be a secondary peak for larger 

even values of N. Their data consists of 50 excess neutrons scattered during a run 

of 500 seconds. This experiment is very difficult because of the large cross section 

for neutron absorption in 3 He and the low temperatures that must be maintained. 

Other directions such as ( 'Jv ,0,0) for N>2 were not looked at because of the great 

difficulty of keeping the ·sample in thermal equilibrium (at the mK level) while 

continually heating it with a neutron beam, and so the larger values of N weren't 

ruled out. Because of the limited nature of the data, it can be viewed only as a 

weak confirmation of the u2d2 phase. 

2.lb High-Temperature Series 

As well as the excellent qualitative data given by the NMR experiments, some 

quantitative information can be deduced from the high-temperature data. High, in 

this case, is relative to the lmK transition temperature. In order to calculate the 

high-temperature expansion for the free energy, consider that part of the Hamilto-

nian involving spin coordinates, 

H =Hr+ HM, (2.2) 

where HM = -1n L Si· ii is the Zeeman splitting (ii is the magnetic field), and 

Hr is the interaction Hamiltonian for exchange interactions. The form for Hr is 

developed in Section 2.2. The free energy is given by 

F = -Tln {tre-,BH}. (2.3) 
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Expanding this expression in powers of /3 = ~ gives5 

N [ e2 2 e3 3 1 [';,, ] 
2 

[ a/3
2 

] J F = - - In 2 + -/3 - -(3 ... + - -H (3 1 + 0(3 + - + . . . + . . . , /3 8 24 2 2 8 
(2.4) 

where N is the number of particles in the system and e2 , e3 , 0, and a are the 

coeficients of the expansion that can be expressed in terms of expectation values of 

the H1 at high T and zero H. The two highest-order terms, e2 and 0, are related to 

the interaction Hamiltonian by 

(2.5) 

and 

(2.6) 

where the angle brackets imply a trace over the disordered, paramagnetic state that 

exists at high temperature. In this state the spins have equal probability of being 

in the up or the down state. Extracting such coefficients for high T measurements 

gives well-defined averages of the interaction Hamiltonian of interest. 

Eqn. (2.4) may be used to derive the expansion for the inverse-susceptibility 

per unit volume, 

with 

1 v [fJ2F]-1 B X- = -- - = D(T-0 +-) 
µokB 8H 2 T 

2 a 
B=O --, 

8 

the specific heat at constant volume, 

and the pressure, 

P(T H) = _ 8F = -1_ _ __:L [11iHJ2/3
2
0' 

' av 8T 24T2 + 2 2 ' 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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where prime denotes the derivative with respect to molar volume. The constants 

µ 0 and kB are the permeability of free space and Boltzman's constant, respectively. 

It should be noted that the data are only good enough to fit e2 , 8 and their volume 

derivatives with any certainty, although in principle there is nothing to prevent 

fitting the series to high order, and interesting information is still available from 

the volume dependence of quantities such as e3 as discussed below. 

The most reliably known coefficient is e2 , since for specific volumes near melt­

ing, the 1/T2 term gives the dominant contribution to the specific heat up to ap­

proximately 100-200 mK. Above this temperature range, the contribution from 

phonons becomes appreciable near melting densities. At higher densities, away 

from the melting point, phonon contribution becomes significant at lower tempera­

tures. Values of e2 that have been extracted directly from the specific heat data are 

relatively accurate near the melting curve, e2 '.:::::: 5.8 (mK) 2 at a molar volume of 24.2 

cm3 /mole (Fig. 7, open points). Panczyk and Adams 6 measured the temperature 

dependence of e~. Integrating e~ numerically, they determined e2 up to an additive 

constant. At low enough molar volume, the value of e2 becomes quite small, and 

so ignoring it causes little error. Verification that the error is indeed small, then 

comes from consistency with the direct measurements: the solid points in Fig. 7. 

It is much more difficult to extract the Curie-Weiss constant, 8, from experi­

ment because at low temperature, where Tis much smaller than 8 (see Eqn. 2.7), 

the effect of higher-order terms (in powers of /3 = +) becomes significant. At higher 

temperatures large statistical errors come from extracting 8 as a small correction to 

T. Unlike the e2 data, there is inconsistency between the direct and the integrated 

values. The direct values come from measurements of x (Fig. 8, open points), and 

the integrated values come from 8' extracted from pressure measurements (Fig. 8, 

solid points). This discrepancy may be due to large systematic errors in the direct 

measurements or from too small a value for the integration constant. Resolution of 

this inconsistency probably requires more experimental work. A careful measure­

ment of x over a wide range of temperature, for example, would probably resolve 

the issue. 
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2.lc Volume Dependence of Quantities that Depend upon J 

One of the most interesting features of the solid 3 He system is that different 

quantities such as e2 , e3, (} and TN (the antiferromagnetic-ordering temperature), 

which must depend on very different combinations of the exchange energies, can be 

characterized by one parameter for a range of molar volume from approximately 22 

cm3 /mole to 24 cm3 /mole. 7 • 8 • 9 The parameter is a Gruneisen parameter. Consider 

one such quantity, Q, with units of Energym. The data show that it would be 

well represented by the fit Q = Q0 vm-y, over the above-mentioned range of molar 

volume. Stating this another way, the plot of lnQ versus lnv would be a straight 

line with slope m1. This requires that over the range of volumes, exchanges with 

very different geometry vary in nearly the same volume dependence. The values for 

/ for all quantities measured are consistent with 18±2, according to data available 

up to this point. 

One more precise experiment 10 claims to have found an inconsistency in the 

scaling of the inverse of the maximum magnetization, Mmaz, over a range of volumes 

from 21 cm3 /mole to 24 cm3 /mole. They found/ = 16.2 ± .5 for Mmaz (Fig. 9), 

and/= 18.8±1.0 for TN. The small error bars on/ for Pvlmaz, however, seem a bit 

strange for the following reason. Both plots in Fig. 9 have beautiful straight-line 

fits, but is is a log-linear scale, which would imply an exponential, not a power-law 

fit. Since it is 8lnQ/8lnv that is constant, not/= v8lnQ/8v = 8lnQ/8lnv, 

the variation in / over the range of volumes should be D.v /v ~ 12.53, and so it is 

hard to see how an error of 33 can be justified! 

The fact that these curves seem to fit an exponential is interesting in itself. For 

smaller ranges of specific volume and data with larger errors, the smaller value of 

D.v /v made an exponential fit indistinguishable from a power-law fit. In this case, 

however, we may be seeing evidence for different scaling behavior than has been 

deduced previously from looking at narrower ranges of molar volume. 

Although the analysis of the above data by Miura et al. seems a bit question­

able, they to have some evidence of a breakdown in the scaling of the all quantities 
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with one Gruneisen constant (assuming that their experiment has no significant 

systematic errors), which can be seen in the graph of Fig. 10. The fact that all of 

the points don't lie on a universal curve is evidence for the breakdown of scaling at 

some level. The logic behind this statement goes as follows. Since there is only one 

energy scale, J, the magnetization divided by the maximum magnetization must 

be a function of T / J and therefore of T /TN, where TN is the antiferromagnetic 

transition temperature (which is a function of J). Therefore, M/Maat = f(T /TN) 

universally. 

Getting back to the central point, it is still a puzzle as to how the different 

quantities show the same volume dependence, which would be expected to depend 

on different combinations of the competing exchange rates, and this is the question 

to be addressed in this work by measuring the Gruneisen parameter for two-, three­

and four-particle exchange for molar volumes at 22 cm3 /mole and 24 cm3 /mole, 

and two-particle exchange at 20 cm3 /mole. 

2.ld Low-Temperature Specific Heat 

The final piece of experimental data, which may yield some constraints oi;i this 

system, comes from low-temperature thermodynamic measurements such as Ho 

and specific heat, which can be related to average, spin-wave velocities.1 However, 

unlike the high-temperature series, which can be expected to yield many expansion 

coefficients given good enough data, at low temperatures quantum fluctuations make 

the spin wave velocities very hard to estimate from H1. For this reason, until better 

methods of calculation are developed, parameters derived from the low-temperature 

data should be viewed with skepticism. 

2.2 Separation of Energy Scales and the Exchange Hamiltonian 

As mentioned in the first chapter, one of the crucial features of this system is 

the great separation of energy scales. At the highest level is the closed-shell, elec­

tronic structure at about 105 K. The atomic interaction potential and the lattice, 
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zero-point kinetic energy are both of order 10 K. This equivalence is a reflection 

of the quantum nature of the solid. Direct magnetic dipole interactions between 

nuclear spins are approximately 10-7 K, and therefore the spin quantum numbers 

are essentially constant labels. Exchange interactions are characterized ( approxi­

mately) by the 1 mK, antiferromagnetic ordering temperature. Given the ratio of 

10-4 between exchange energies and lattice energies, a description of the system 

can be made in two parts. First is the zeroth-order, lattice problem neglecting 

exchange interactions. The Hamiltonian doesn't contain the spins explicitly, and 

so the solution is that of a Schrodinger equation for N identical particles, where N 

is the number of particles in the system. Adding the spin labels and taking into 

account the Pauli principle, anti symmetrization requirement then gives a 2N -fold 

degenerate spin system. The second part of the solution is the characterization of 

an effective exchange Hamiltonian, which leads to a small splitting of the degenerate 

levels. This effective Hamiltonian can be described, as shown below, in terms of the 

nuclear spins. 

Consider the N! possible permutations of N particles on the lattice. Each per­

muted configuration of the N particle system can be viewed as a cavity 11 • 12 in 

the 3N-dimensional space of configurations. An exchange can then be viewed as 

a tunneling event through the small tubes connecting the cavities. Since exchange 

is rare on the time scale of the lattice vibrations, very little error will be made by 

considering the hops between different cavities (i.e., different types of exchange) sep­

arately and neglecting the chance that two hops will happen close enough together 

in space-time to affect each other. 

With this approximation, the energy splitting corresponding to a particular 

permutation of the particles on the lattice, p(R), can be calculated by considering 

the two-state system formed by one configuration of the particles and the permuted 

version of that configuration. If the wavefunction corresponding to the system being 

confined to one of the cavities is W0 , then the wavefunction for the permuted system 
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is p(R), and the eigenfunctions are given by 

(2.13) 

Define the energy splitting to be 2J(P) so that Jp gives shift from the energy for 

a non-exchanging system. 

Define the exchange operator corresponding to permutation type p(R) as 

(2.12) 

where pt(R) is the inverse permutation. With the two state approximation formal­

ized by the relations 

p(R) pt(R)q;o = Wo, (2.14) 

it can be seen that 

(2.15) 

Hence, the form of the effective exchange Hamiltonian (referred to as H1 in Section 

2.1) is 

- ~ -(R) Hexchange - - L.J J(P)P , (2.11) 
p 

where the sum is over all permutation types P. The minus sign in front of the 

exchange Hamiltonian comes from the arguments in Chapter 1: The spatially sym­

metric nodeless wavefunction has the lowest energy. 

The total wavefunction must be antisymmetric under an odd permutation of 

spin and spatial coordinates together. This allows the exchange operator to be ex­

pressed in terms of the spin permutation operator, p(u), since f1(R) = (-l)Pp(u), 

where ( -1 )P (pis the parity of the exchange, the equivalent number of two-particle 

exchanges) is positive for exchanges involving even numbers of particles and neg­

ative for exchanges involving odd numbers of particles. Rewriting the exchange 

Hamiltonian in terms of the spin-permutation operator therefore gives 

Hexchange = - L:(-l)PJ(P)P(u). 
p 

(2.16) 
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He:cchange can be expressed in terms of the nuclear-spin operators by using the fact 

that any permutation operator can be expressed in terms of products of pairwise 

permutation operators. To characterize p(u) in terms of spin operators Si, it is 

therefore sufficient to write down the two-particle spin permutation operator for 

particles i and j, 

(a) 1 --+ __, 

p.. = - + 2s~ · S1·. lJ 2 ' (2.17) 

2.3 Theoretical Calculations 

Before discussing work that includes more than one type of exchange, it is 

interesting to note that during the 60's it was assumed that only two-particle, 

nearest-neighbor exchange would be significant. For this case, combining Eqns. 

(2.16) and (2.17) gives the spin-k Heisenberg Hamiltonian, 

H = 212 L Si· Si+ const, 
i,j 

(2.18) 

where i and j sum over all nearest-neighbor pairs and 12 is the two-particle exchange 

energy. The properties of this Hamiltonian are well studied and if it were the only 

significant, interaction this system would be interesting primarily as a pedagogical 

tool. Two-particle exchange was assumed to be the only significant interaction 

because a WKB expression for 12 , 

12 = 10 exp-{ j dxv~~ [V(x) - E] }, (2.19) 

path 

was expected to hold (see Chapter 7). This being the case, the longer path length 

and larger effective mass for several particles exchanging would exponentially sup­

press their effect relative to two-particle exchange. 

The inconsistency of this model with the physical system is marked. The H-T 

phase diagram (Fig. 11 inset graph) has significantly different values of the critical 

temperature and magnetic field, there is no phase with high magnetization, and 
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finally, the antiferromagnetic phase has cubic spin symmetry, a situation ruled out 

by the NMR data. 

In the face of the data, the idea that steric (hardcore) impedance would have a 

much different effect on two-particle exchange than some higher exchanges such as 

four-particle, nearest-neighbor was advanced by Roger, Hetherington and Delrieu.5 

The greater effect of hard-core repulsion on two-particle exchange was believed to 

diminish its predominance and perhaps to suppress it to the point of insignificance. 

The lowered critical values and the additional phase transition observed in ex­

periment relative to a Heisenberg system are positive indications that there is some 

form of competition between ferromagnetic and antiferromagnetic interactions. The 

addition of a three ring exchange, for example, might be expected to suppress the 

antiferromagnetic phase since, as explained in Chapter 1, exchanges involving odd 

numbers of particles favor ferromagnetic interactions. 

The inadequacy of two-particle exchange and the indications of competition in 

the phase diagrams have led to the consideration of multiple-exchange Hamiltonians. 

Roger, Delrieu, Hetherington (RDH) 5 have considered several combinations of 

different exchange types, but the discussion here will focus on one of their more 

successful exchange Hamiltonians involving four-particle, planar, nearest-neighbor 

exchange and a three-particle exchange involving two nearest-neighbor separations, 

and one next nearest-neighbor separation (Fig. 11 ). Three quantities are known 

from experiment with enough accuracy be considered to fit the parameters of this 

model: .the leading term in the high-temperature expansion of the specific heat e2 

= 7.0±.3 mK2
, the transition temperature to the antiferromagnetic phase along 

the melting curve Tc = 1 mK, and the low-temperature, mean spin-wave velocity 

C = 8.4 cm/s. The Curie-Weiss constant,(), is not known well enough to provide a 

very useful constraint on the parameters. 

The Hamiltonian for this process is 

(2.20) 
ijk ijkl 

where the sums run over all distinct exchanges of each type, including both forward 
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and backward permutations, as opposed to the standard convention in which only 

one direction of permutation is summed over, and the is no factor of 1/2 in the 

definition of the exchange operators. lt ,KP corresponds to the three-particle and 

four-particle exchanges, respectively. The sign convention is such that Jt > 0 (fer­

romagnetic) and Kp > 0 (antiferromagnetic). For some calculations, such as the 

high-temperature expansion, the spin representation 1 is easier to use and can be 

produced as was done for Eqn. (2.18). 

The quantities which RDH finally settled on to fit lt,Kp were e2 and C. Eval­

uating Eqn. (2.5) using the Hamiltonian of Eqn. (2.2) RDH derived the expression 

(2.21) 

and they felt that a calculation of C at low temperatures would be more accurate 

than the mean-field theory estimate of Tc. It should be noted, however, that the 

zero-point corrections to C are probably large and that if the Curie-Weiss constant 

or e3 were known accurately, they would be preferable candidates for the second 

parameter. The fit using e2 and C results in 

lt = 0.13mK, KP = 0.385mK. (.2.22) 

A very appealing feature of this model is that its H-T phase diagram, calculated 

in mean-field theory, is qualitatively very similar to the experimental data (Fig. 

11 ). There is a first-order transition to the u2d2, antiferromagnetic phase near 

1.0 mK. As the field is increased in the antiferromagnetic phase, there is a phase 

transition across which the magnetization jumps from a small value to a value 

equal to approximately half the saturation value. RDH have determined that the 

spin structure of the high-field phase is N AF with the spins canted along the field 

( CN AF) and that the canting persists even in zero field. This phase is separated 

from the paramagnetic phase by second-order transition. In addition to the second­

order line, there is a first-order line that extends into the CN AF phase, running 

nearly parallel to the second-order line and ending in a critical point. The first­

order line is consistent with the experiments of Osheroff (1982), 13 but it is not clear 
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from the data if there is a critical point or whether the first-order line continues to 

enclose the high-field phase. 

The most serious disagreement between this model and the data is the value 

of the critical magnetic field, lfc=15 kG at T=O, which is approximately four times 

the experimental value. Such a large difference is very unlikely to be accounted 

for by quantum spin fluctuations, a view supported by the exact solution of a 16 

quantum spin system with the Hamiltonian of Eqn. (2.20), 14 in which the critical 

field was shifted very little compared with the classical value. 

In order to improve the agreement between experiment and theory RDH tried 

including a two-particle, nearest-neighbor exchange. This did have the effect of 

lowering He to about 8 kG, still quite large, but at the expense of adding another 

antiferromagnetic phase at zero field above the u2d2 phase (Fig. 12). Good specific 

heat data (Fig. 13) 15 show no enhancement at a second critical temperature as 

would be expected if there were another phase transition. 

The good qualitative agreement obtained by RDH seems to indicate that com­

petition between different types of exchange is the right idea. If the inclusion of 

more exchange terms is necessary, there needs to be some explanation of why several 

exchanges are all of the same order for a wide range of specific volume as indicated 

in the work of Ceperley and Jaccuci. 16 The Gruneisen parameters calculated in this 

work may provide the first step toward an explanation of this puzzle. 
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CHAPTER 3 

The Path Integral 

The approach taken in this work is to approximate nature by a periodically ex­

tended finite system. For the systems considered, the particles are in the quantum 

mechanical regime (they are very light and sit in a broad potential with a slight 

maximum at the lattice sites), and so they cannot be evolved using force equations 

as is done in molecular dynamics. Because of the complexity of the system, the 

wavefunctions are not known and therefore observable quantities cannot be calcu­

lated as expectation values. The approach taken instead is to consider the density 

matrix for the system propagating from one position eigenstate to another in a time 

large compared with the time scale for the interactions of interest. This long-time 

density matrix is expressed as an integral over all paths, between the initial and 

final configuration, of the short-time (or high-temperature) density matrix, which 

can be accurately approximated in terms of two-particle density matrices, as ex­

plained later in this chapter. The long time density matrix gives the probability of 

the particular evolution of the system, and when it is expressed as a path integral, 

the integrand gives the conditional probability distribution of the paths which the 

system can take between its initial and final positions. 

To make the path integral accessible from a computational point of view, it 
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is discretized (in time) so that the originally continuous path between the initial 

and final configurations is a list of positions for all of the particles in the system 

at discrete time intervals. Monte Carlo techniques can then be used to produce a 

sequence of configurations distributed according to conditional probability distribu­

tion of the paths. Any observable (e.g., the energy density) that is not constrained 

by the system size may be "measured" on these configurations and its average cal­

culated. Assuming that the quantity being measured does not change either when 

the system size is increased, when there is a decrease in the time interval between 

the discrete steps in the path or when the total path length is increased, it can 

be assumed that the calculated average is the correct value of the observable for a 

macroscopic system at zero temperature. Both of these checks will be done for the 

systems considered in this work. 

In the rest of this chapter the mathematical machinery used for the Monte 

Carlo simulation is introduced. The density matrix is formulated as a path integral 

and an expression for the integrand is developed as a pair product form of the 

density matrix in the short-time limit. Once the path integral is formulated, a 

suitable Monte Carlo observable is defined, which can be related to the Gruneisen 

parameters . The general approach for deriving the observable is to introduce a 

length-scaling parameter, ,\, into the path integral. Differentiation with respect to 

ln ,\ leads to an expression for the derivative of the path integral with respect to 

volume. The two-state approximation discussed in Section 2.2 is then used to relate 

the path integral to the exchange energies and hence to the Gruneisen parameters. 

Finally, the Monte Carlo method is described along with a method for generating 

the simultaneous move of several timeslices of one or more particles, instead of the 

usual one-particle, one-timeslice move. 

3.1 From the Density Matrix to the Path Integral 

The density matrix is derived from the Schrodinger equation, 1 

8p(f3) = -H (a) 
8{3 p tJ ' 

(3.1) 
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where h/3 is imaginary time and the formal solution is 

(3.2) 

The timet may be broken up into n pieces, E = /3/n, such that 

n 

p(/3) = 11 e-i:H. (3.3) 
/=:l 

To derive the coordinate representation for the density matrix, the relation 

n 

p(x,x';/3) = (xlp(/3)1x') =(xi 11 e-"Hlx') (3.4) 
/=:l 

will be used, where x, x' are many-particle position vectors. Inserting a complete 

set of position eigenstates, 
00 

1= j lx1 )(x1 1d:r/, (3.5) 
-oo 

between each of the terms in Eqn. (3.4) and taking the expectation value between 

the state corresponding to all of the particles in their initial positions, (x J, and that 

for all of the particles in their final positions after a time /3, Ix'), 

p(x,x';/3) 

00 00 

= J ... J (x I e-i:H I xl )(xl I e-i:H I x2) ... (xn-l I e-i:H I x')dxl dx2 ... dxn-l 

(3.6) -oo -oo 

00 00 

J J ( 1 ) ( 1 2 ) ( n-1 r )d 1 d 2 d n-1 = ... px,x;Epx,x;E ... px ,x;E x x ... x . 

-oo -oo 

The path is then defined as the sequence of positions at subsequent time inter-

vals, 

[ l { 1 2 n-1 '} x = x, x 'x ' ... , x 'x ' (3.7) 

t /3 will be referred to as the time, even though its units are inverse energy. 
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and e-eH is referred to as the time-evolution operator. In general, superscripts will 

refer to time indices and subscripts will refer to particle number indices. The lack 

of a subscript implies a many particle vector containing the positions of all of the 

particles in the system. The path integral is defined as the limiting value of the 

density matrix as n-t oo with /3 = nE fixed. For future convenience, Eqn. (3.6) can 

be rewritten as 
00 00 

p(x,x 1 ;/3) = J ... J e-S((:r:];,l3)d([x]), 

-oo -00 

with normalization constants dropped, where 

and 

d([x]) = lim dx 1dx 2 ... dxn-l 
n-->oo 
ne=,13 

n-1 

S([x];/3) = - JLIIJo Lln[p(x1,xI+ 1 ;E)], 
ntE=,13 l=O 

(3.8) 

(3.9) 

(3.10) 

where x = x 0 and x' = xn. Finite n versions of these express10ns are used for 

the Monte Carlo computations. The value of n must be large enough so that the 

quantity being calculated has converged. 

3.2 The Many Particle Density Matrix to First Order 

Before solving for the density matrix, including the interparticle potential, it 

is useful to write down the solution for the free-particle density matrix, where the 

Hamiltonian, Ho = p2 /2m, leads to the Schrodinger equation 

1i2 fJ2p1(x,x 1;/3) 
2m 8x 2 

(3.11) 

The solution to this diffusion equation is 

3N 

( 
m )-2 ( "" )(:r: :r:')2 

P ( x x 1·/3)= e- 21L 2tJ -
1 ' ' 27r1i2/3 ' 

(3.12) 
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where the 1 subscript implies the free-particle (or one particle), density matrix and 

N is the number of particles in the system. 

To calculate the density matrix for a system of particles moving in a potential, 

consider the following perturbation expansion 1 about the free-particle density ma­

trix. Define the difference between the free-particle and the exact density matrix 

as, 

(3.13) 

which will be small in the short-time limit, E ~ 0. Writing the Hamiltonian as 

H = H 0 + V, the formal solution is given by Eqn. (3.2). Since p is very close to 

p1 , p/ p1 = eEHo p should vary slowly with E. Taking the derivative of this quantity 

with respect to E, 

(3.14) 

Integrating Eqn. (3.14) and using the boundary condition that eEHo p IE=o= 1, 

E 

eE' Hop( E') I~= - J eE' Hoy p( E')dE' 

0 

E 

p(E) = e-EHo - J e-(E-E')Hov p(E')dE'. 

0 

Expressing this in the coordinate representation gives 

€ 00 J (x!e-("-"
1 )Ho{ J lx")(x"I dx"}Vp(E') lx')dE', 

0 -oo 

(3.15) 

(3.16) 

(3.17) 
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and since (x"IVp(E')lx') = V(x")(x"lp(E')lx'), 

€ 00 

p(x,x1;E) = p1 (x,x 1;E)- J J p1(x,x";E- E1 )V(x")p(x",x';E')dx"dE' 
0 -oo 

€ 00 

~P1(x,x';E)- J J P1(x,x";E-E1 )V(x")p1(x",x';E')dx"dE', 
0 -oo 

(3.18) 

where p has been replaced by p1 in the final expression in Eqn. (3.18) to produce the 

perturbation expansion to first-order. The next order correction can be generated 

by replacing p on the right-hand side of the first line in Eqn. (3.18) with the 

first-order solution. 

Since Eis very small, the integrand in Eqn. (3.18) is highly peaked around 

x" = 
XE+ (E - E

1)x1 

E 
(3.19) 

as can be seen by finding the minimum of the sum of the exponentials of the two 

free-particle terms. Performing the x" integral with V(x") set equal to its value at 

the position given in Eqn. (3.19), 

€ 

1 J XE + ( E - E
1 )x1 

1 bp=-p1(x,x;E) V( E )dE. (3.20) 

0 

Estimating the integral as a simple sum gives 

bp = -p1(x,x';t::)~(V(x) + V(x')), (3.21) 

so that 

p(x,x';t::) =p1(x,x';t:)(l- ~(V(x) + V(x'))). (3.22) 

Finally, for notational convenience, 

(3.23) 
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to first-order in €. Eqn (3.23) is a first order approximation to the many-particle 

density matrix for a system of particles moving in a potential V(x ), which depends 

upon the separations of all of the particles. 

3.3 Formulating the Density Matrix to Include Higher Order Terms 

Since it is possible to calculate very accurately the two-particle density matrix, 

p2 , it is useful to express the many-particle density matrix in terms of it and the free­

particle density matrix. (Methods for calculating the two-particle density matrix 

for both a hard-core potential and for the helium potential will be discussed in 

Chapters 5 and 6, respectively.) Taking Eqn. (3.23) for the special case of a two­

particle system, the two-particle density matrix is given by 

( 
1 1 ) ( 1 ) ( 1 ) -.f(V(::c··)+V(::c' .. )) 

P2 x · x · x · x · · € = P1 x · x · · € p1 x · x · · € e 2 
'' •1 

i, Jl tl J' i, p Jl J' 
(3.24) 

where Xij = Xi - x j and p2 is the part of the two-particle density matrix involving 

interactions between particles. Expressing the many-particle density matrix of Eqn. 

(3.23) in terms of p1 and P2 for a many particle system moving from timeslice I 

and position x 1 to timeslice I+ 1 and position x 1+1 in a time € gives 

N N 

( I I+l. ) IT { ( I I+l. ) IT -( I 1+1. )} P x 'x '€ = P1 xi 'xi '€ P2 xii' xij '€ ' (3.25) 
i=l j=i+l 

where N is the number of particles in the system. This form is used to generate 

higher order approximations by using better representations for p2 • 
2 This allows the 

number of timeslices which the path is divided into ( n of Eqn. (3.3)) to be smaller 

for a given accuracy and takes much better account of abrupt potentials such as 

that of a hard core. 

The action as defined in Eqn. (3.10) may then be written 

(3.26) 
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where 

U( I I--1-1. ) _ 1 [- ( I I+l. )] x ij, x ij , E = - n p2 x ij, x ij , E • (3.27) 

U is often referred to as an effective potential because of the similarity to its role in 

the short-time density matrix. In fact, to first order, U(xij,X~j;c:) = -c:/2(V(xij)+ 

V( x~j)). A constant term corresponding to the normalization factors in the free­

particle density matrices of Eqn. (3.12) has been left out of Eqn. (3.26). This term 

can be considered as a shift in the total energy, which has no effect on the final 

results. The path integral, denoted as Z in the language of statistical mechanics 

instead of as p, is then written as 

00 00 

Zp - p(x,x';/3) = J ... J e-S([:z:];i3)d([x]). (3.28) 

-oo -oo 

The subscript Prefers to the exchange path defined by x, x' = Px, /3. Z0 will refer 

to the ground-state path integral for which P = 1. 

3.4 The Monte Carlo Observable and the Exchange Rate 

In this section, the Gruneisen parameters, /p, are related to mathematical ob­

servables, which are measured on the configurations generated using path integral 

Monte Carlo techniques. The results from this section are used in the 3 He calcula­

tions. A different result, derived in an analogous manner, will be used in Chapter 5 

for quantum hard spheres. In Section 3.4a, the derivative of the path integral with 

respect to a lattice scaling parameter is calculated and related to the derivative 

of the exchange rate with respect to specific volume (volume/particle). In Section 

3.4b, the connection will be made between the Monte Carlo observable and /P· 

3.4a Taking the Derivative of the Path Integral 

In order to calculate the volume derivative of Z, begin by explicitly including 
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a lattice-scaling parameter ,\ in the expression for the path integral, 

00 00 

Z(-Xx, -Xx'; ,8) = J ... J e-S([>.:c];,B) _x 3N(n-l)d([x]), (3.29) 

-oo -oo 

with ,\ nominally equal to one. Taking the derivative of Eqn. (3.29) then gives 

00 00 

,\oz - 3N(n - l)Z - J J ,\BS e-S([:c];,B) _x 3 N(n-l)d([x]) {},\ - ... {),\ . (3.30) 

-oo -oo 

With the definition 

<I>([-X ]·a) = ,\ 8S([-Xx]; ,8) 
x ,!-' - {}). ' (3.31) 

the derivative of S, given in Eqn. (3.26), with respect to >. evaluated at >. = 1 gives 

(3.32) 

Substituting Eqn. (3.31) into Eqn. (3.30) with>.= 1 and dividing by Z, the result 

is 
00 00 

oln Z _ 1 J J . -S([:c]) aln,\ - 3N(n -1) - Z ... <I>([x],,B)e d([x]), (3.33) 
-oo -oo 

Finally, to relate >. to the specific volume v, note that v ex >.3 • Therefore, 8ln >. = 

tolnv so that 

00 00 

8lnZ = N(n -1) - I_ J ... J ~<I>([x];,B)e-S([:c])d([x]) 
8ln v Z 3 

-oo -oo (3.34) 

1 
= N(n -1) - J\<I>([x];,8)). 

The last term in Eqn. (3.34) is the expectation value of <I>([x]; ,8) in the ensemble of 

configurations produced by the path integral Monte Carlo as explained in Section 

3.5 and will be referred to as the Monte Carlo observable. 
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3.4b Relating the Observable to the Exchange Rate 

Let P be a hermitian exchange operator as defined in Chapter 2. Consider 

(3.35) 

The nonexchanging path integral corresponding to P = 1 will be denoted Z0 • If 

{wi} is a complete set of energy eigenstates, then 

(3.36) 

Now consider the "home based" wavefunction I</>), 3 where all atoms are lo­

calized at their lattice sites (no exchange). The permutation operator, acting on 

I</>), gives a new permuted state IF</>). Given the rarity of exchanges in the lattice, 

these two configurations form an approximate two-state system, for the purpose of 

calculating the energy splitting that is due to exchange type P. The eigenfunctions 

are 

(3.37) 

with eigenvalues 

(3.38) 

where E 0 is the energy of the system without exchange and 2J p = E_ - E+, 

J p being the exchange energy of exchange type P. Note that in the two-state 

approximation, 

With the definitions 

and using Eqns. (3.36) and (3.39), 

Zp 

Zo 

(3.39) 

(3.40) 

(3.41) 
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2 
a+ 2K 
-2-=e ' 
a 

Zp 
- = tanh(,BJp + K). 
Zo 

(3.42) 

(3.43) 

In the home-based wave function approximation each particle is considered to be 

confined to its lattice site, and exchange can be viewed to some approximation as 

corning from the overlap in the wavefunctions of neighboring particles. K is just 

a measure of the extent of overlap between the wavefunction before and after an 

exchange. The fact that exchange interactions modify the ground state energy by 

only 1 part in 104 is therefore a good indication that K will be very small. ,BJ p can 

be seen to be much less than one because Jp ex: 10-3 K- 1 empirically, as mentioned 

above, and ,8 ~ 103 K- 1 in all of the simulations done for this work. 

With tanh(,BJp + K) '.:::: ,BJp + K, taking the derivative of the logarithm of 

Eqn. (3.43) with respect to the logarithm of the specific volume v gives 

8ln Zp _ 8ln Z0 _ 1 (,a 8.lp _ 8K ) 
8 ln v 8 ln v - ,8 J p + K 8 ln v 8 ln v · 

(3.44) 

Defining minus 1/3 times the left-hand side of Eqn. (3.44) as 0, it is just minus 

the difference between the Monte Carlo observable in an exchanging configuration, 

( ~) P, and in a non-exchanging configuration, ( ~) 
0

. 0 is therefore related to J p 

and K by 

With the Gruneisen parameter defined as 

/P is related to J p and K by 

8lnJp 
/P = 8ln v ' 

K 1 8K 
IP = ( l + ,8 J p ) e - ,8 J p 8 Inv . 

(3.45) 

(3.46) 

(3.47) 
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One approach to extract IP is by measuring E> for different values of /3 and 

projecting to the f3 = oo limit, since 

IP = 0 l,e=oo · (3.48) 

In order to reduce the large, computational demands of this approach, techniques 

have been employed to minimize and possibly to eliminate the effect of the terms 

that include K in Eqn. (3.44). The elimination of those terms would make Eqn. 

(3.48) valid for finite (3. Those terms come from what are essentially end point 

effects in the path integral. 

The path begins with all the particles "frozen" at their lattice sites in the state 

Ix). As the path evolves from that starting point, the particles relax into a pseu­

dogroundstate (the ground state for a system without exchange), which doesn't 

"know" about the frozen starting point. At some later time the particles partici­

pating in the exchange leave the pseudogroundstate and move to their new lattice 

cells. This exchange period is quite short compared with the total path length, f3. 

Next, the particles settle back into a new exchanged pseudo-ground state and are 

finally "frozen" into their new lattice sites in the state I Px). 

The observable is actually measured over only a minimal range of time con­

taining the exchange, eliminating as much pseudogroundstate as possible from the 

observable. This serves two purposes. Firstly, the pseudogroundstate in the ex­

changing configuration will give the same contribution to ( <1') P as the true ground 

state in the nonexchanging configuration contributes to ( <1') 
0

, and will therefore 

cancel numerically when ( <1') P - ( <1') 
0 

is calculated. Secondly, and more impor­

tantly, the regions of the path near the fixed end points contain most of the finite 

path-length error coming from K, and so avoiding those regions can (to be verified 

empirically) avoid the effects of K altogether. The only problem occurs when the 

exchanging region moves too close to one end of the path. In that case, leaving the 

end points fixed, the rest of the path is shifted so that the exchanging region (or 

instanton 4 ) is moved to the center of the path. How the instanton corresponding 

to the exchange is measured, and the procedure for shifting it will be described in 
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detail in Chapter 4. After the shift, the particle positions at the two ends of the 

path are in nonequilibrium configurations, and so the system is allowed to rether­

malize in a Monte Carlo sense. This shifting technique is feasible only because of 

the empirical fact that the instanton moves very slowly with the number of lat­

tice updates, as compared with the number of updates required to rethermalize the 

lattice. 

3.5 The Monte Carlo Method 

This section will present the Monte Carlo methods for calculating 

J <I>([x])e-S([:c])d([x]) 
( <f>) = f e- S( [ :c]) d( [ X]) 

The basic idea is to generate a sequence of lattice configurations 

[x]i, [x)2, ... , [x]N 

distributed according to e-S([:c]) and to evaluate 

1 N 
(<I>) = lim N 2:: <I>([x]n)· 

N-+oo 
n=l 

(3.49) 

(3.50) 

(3.51) 

The Markov chain procedure 5 is used to generate a sequence of configurations 

beginning with an arbitrary start. After a thermalization period, configurations are 

produced according to the probability distribution e-S([:c]). 

If Rij is the rate at which lattice configurations [x ]i go to [x ]j, then the condition 

of detailed balance, 

(3.52) 

is sufficient to guarantee that the sequence of configurations correctly samples the 

probability distribution. Such a sequence is a Markov chain. If Tij is the probability 

of picking a move from [x]i to [x]j and Pij is the probability of accepting that move, 

then 

R . · - T· ·P· ·e-S([:c];) 
i; - i; i; ' (3.53) 
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where e-S([:i:];) is the probability of being in configuration [x]i. The constraint in 

Eqn. (3.52) can then be rewritten as 

p .. T·· 
•J Ji -AS·· - = -e 1• 

Pji Tij 
(3.54) 

3.5a Standard Metropolis 

For the standard Metropolis method (Metropolis et al. 6 
) method, a trial move 

is generated, which has the property that the probability of picking state j, given 

state i, is the same as the probability of picking state i, given state j (Tij = Tji). The 

ratio of the probability of accepting a move [x]i --t [x]j divided by the probability 

of accepting a move [x]j - [x]i is then 

Pij -AS·· - =e 1• p .. 
Ji 

(3.55) 

If 6.Sji < 0, the move 1s accepted. Otherwise it is accepted conditionally with 

probability e-AS;;. It can be seen that this prescription satisfies Eqn. (3.55), and 

hence detailed balance. 

In order to generate moves that are not too far from the previous configuration 

(so that acceptance rates aren't too low), moves of the form 

[x]j = [x]i + o[x] (3.56) 

are typically chosen, where o[x J is some "small" increment (often random over the 

increment size), which has the requisite property that Tij = Tji· This type of move 

has the characteristic that subsequent lattice configurations are highly correlated 

and hence many updates must be done between measurements of the observable 

(typically on the order of 50 updates of the whole system). 

3.5b Metropolis with Biased Moves 
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In order to produce less correlated configurations and therefore to move through 

the space of configurations more rapidly, it is useful to bias the selection of new 

configurations toward regions where e-S([:z:J) is large. A further benefit of such a 

scheme is that it is possible to move several consecutive timeslices of some particle 

simultaneously, effectively decreasing the number of degrees of freedom to be evolved 

by the Monte Carlo. The method presented here is due to Pollock and Ceperley. 2 

In order to maintain the detailed balance constraint of Eqn. (3.52) with a 

biased move, the acceptance criterion must be altered to account for the fact that 

Tij =/=- Tji, when biasing occurs. For the particular biasing scheme used here, the new 

position for particle i at timeslice I, x{ new' does not depend on its old position, 
' 

x{, but depends only on the particles' positions (all the particles in the system) 

at an earlier and a later· timeslice. This implies that the probability of selecting 

a new configuration [x]j given an initial configuration [x]i, depends only on the 

probability of configuration [x]j occurring, and hence Tij = Tj. The modified 

acceptance criterion is therefore given by 

Pij Ti -l:;.S,·; -l:;.S'. - - -e - e ,, 
p .. -T· - ' 

Ji J 
(3.57) 

where 

1 (Ti) ~sji = ~Sji - In T· . 
J 

(3.58) 

The criterion for accepting a move is then the same as that described in Section 

3.5a with ~Sji substituted for ~Sji· 

In the remainder of this section, the procedure for generating a biased move will 

be explained. The form for Ti will be given with a slight change in notation. Since 

the j subscript refers to a particular set of values of all position coordinates in the 

path, T([x]) will denote the probability distribution for an arbitrary configuration 

[x]. 

Consider the density matrix 

p(x,x';/3) = J p(x,x";r)p(x",x';/3- r)dx", (3.59) 
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where the integrand, if it could be sampled directly, would give the ideal distribution 

for a trial move position x". The integrand is too complicated, however, and is 

therefore approximated by a Gaussian. Rewriting it as 

( '·/3)(p(x,x";T)p(x",x';/3-T)) 
px,x, ( '·/3) , p x,x' 

(3.60) 

the term inside the parentheses is the correctly normalized conditional probability of 

choosing a new point, x 11
, based on the initial and final points, x and x 1

, respectively. 

Writing the correction to the free-particle, density matrix as 

_ , ) p(x,x';/3) 
p(x,x ;/3 = ( '·/3)' Pl x,x' 

(3.61) 

where as before, p1 is th~ free-particle density matrix. The correction terms from 

Eqn. (3.60) may be expanded about x" = x, T = 0 giving 

p(x,x";T)p(x",x';/3- T) 
p(x,x';/3) 

p(x,x;O)(p(x,x';/3) + V'p(x,x';/3)(x" - x)) ,...., ~~~~~~~~~~~~~~~~~~ 
p(x,x';/3) 

,...., (V' In p(z,z';/3))(z" -z) _e . 

(3.62) 

Expressing the free-particle terms and the correction term as a single Gaussian gives 

the expression for the conditional probability, T([x]), given by 

T([x]) = p(x,x";T)p(x",x';/3- T) = [-1-] ~ e _(z'~~2z)2 + O(T) 
p(x,x';/3) 211"0-2 

(3.63) 

with 

x= (/3 - T)x + Tx' T(/3 - T) ( , /3) 
/3 + /3 sx,x; , (3.64) 

s(x,x';/3) = AV'lnp(x,x';/3), (3.65) 

(3.66) 

where A= mjn,2. Eqn (3.63) gives the probability distribution used for calculating 

Ti /Ti in Eqn. (3.58). A more formal derivation may be found in an appendix of 
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Pollock and Ceperley. 2 It is interesting to note that the trajectory defined by x in 

Eqn. (3.64) defines the classical path, in the sense that it minimizes the action in 

a quadratic approximation. The first term in Eqn. (3.64) gives the intermediate 

positions of the particles at time T if they were to follow the classical, free-particle 

trajectory. The second term gives a correction coming from interparticle interac­

tions. When applied to a subset of particles within a larger system, Eqn. (3.64) 

defines the classical path only for the subset of the system, for the case when the 

rest of the system fixed. 

For the calculations done in this work, r is set equal to (3 /2. Generating a move 

with several consecutive timeslices between fixed end points is done in stages using 

a bisection method. First, the center timeslice is generated. Next, the timeslices 

halfway between the center and the two fixed end points are generated, etc. In this 

way, 

n 

1, 3, 1, ... ,I: 2i = 2n - 1 
i=O 

timeslices can be threaded in between fixed endpoints. 

3.6 Summary 

(3.67) 

The following is a summary of the important results derived in this chapter. 

In Sections 3.1-3.3, the path integral representation of the density matrix was de­

veloped ·and is given by 

<Xl <Xl 

Zp = p(x,Px;(J) = j ... j e-S([:z:];f3)d([x]), (3.68) 
-<X) -<Xl 

with the definitions 

(3.69) 
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and 

(3.70) 

P is an exchange operator. In Section 3.4a, the Monte Carlo observable is derived 

from the path integral and has the form 

00 00 

J ... J <I>([x];,B)e-S([:c])d([x]) 
(<I>) = -oo -=00 00 ( 3. 71) 

J ... J e-S((:c])d([x]) 
-oo -oo 

where 

(3.72) 

In Section 3.4b, the Gruneisen parameter is related to the Monte Carlo observable. 

With end point effects removed, the result is 

(3.73) 

In Section 3.5a, the standard Monte Carlo procedure is explained and a final result 

(not reproduced here), given by Eqns. (3.63-66), is the conditional probability 

distribution for the intermediate position of the particles in the system, given fixed 

starting and ending positions. It is derived as a Gaussian approximation to the 

many-particle density matrix. 
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CHAPTER 4 

Implementing the Computation 

The purpose of this chapter is to fill the gap between the formalism of Chapter 

3 and the C code in Appendix C. All important aspects of the implementation of the 

Monte Carlo algorithm, for hard spheres and for solid 3 He, will be discussed. This 

includes the standard Metropolis and the biased Metropolis move and accept/reject 

procedures, how the instanton (region in imaginary time where the exchange takes 

place) is shifted when it moves too near to one end of the path, and how the 

particles in the system are divided into shells that are successively farther from 

the region where the exchange takes place. Also described are the techniques used 

to deal with the periodic boundary conditions. Not described in this chapter are 

the algorithms used to calculate the two-particle density matrices. They will be 

described in Chapters 5 and 6, for the hard spheres and 3 He, respectively. 

4.1 The Monte Carlo Update Procedure 

There are two phases of the Monte Carlo calculations: the update phase when 

the particle positions are changed, an<l the measurement phase when the observ­

able is measured. The update procedures will be described in this section and the 

measurement procedures in the next section. 
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The update procedure consists of two parts. First, the new particle positions 

are generated. Second, the new positions are accepted or rejected according to the 

procedures given in Section 3.5. Two different update schemes are used. One is 

the standard Metropolis method (Section 3.5a), and the other is a modification to 

the standard Metropolis method (Section 3.5b ), whereby the new particle positions 

are biased toward regions where the density matrix is large. The first method is 

simpler and contains many features of the second and so it will be described first. 

4.la Standard Metropolis Updates 

For the standard Metropolis update, only one timeslice of one particle is moved 

at a time. The move size, nx, is specified as an input parameter to the program. 

To calculate a new position for particle m at timeslice K, x~,new' in terms of its 

old position, x~ old' the relation 
' 

x!,new = x!,old + (e - .5)nx ( 4.1) 

is used, where e is a vector of independent random numbers on [0,1). 

After the move has been generated, the first thing to be done is to check 

whether particle m's hard core, t in its new position, overlaps with the hard core of 

any other particle in timeslice K. If there is an overlap, then the move is rejected 

immediately since an overlap would cause the system to have infinite energy. If 

there are no hard core overlaps, the change in the action S (from Eqn. (3.26)), 

( 4.2) 

is calculated. Fortunately, it is not necessary to calculate all of the terms in the 

sum of Eqn. ( 4.2) for the old and the new state because many are the same and 

will cancel identically when the difference is taken. The outer sum over timeslices 

t Even the 3 He two particle density matrix has a hardcore cutoff. 
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is different only when the loop variable, I, is equal to K - 1 or K. Considering the 

two inner terms separately, the first term contributes only when particle index, i, 

is equal to m. The second term contributes only when either i or j is equal to m. 

Rewriting the action, including only the differing terms gives 

K N } 
Spartial = '"""' { ~(x/ _ xl+l )2 + '"""' U(x! x!+l. E) (4.3) 

~ 2fi2 m m ~ iml im ' 
l=K-1 E i=l 

io;i.m 

With the above definition, the change in the action, ~S, is calculated, 

~s = spartial - 5partial 
old new · ( 4.4) 

As given by Metropolis, .if b.S ~ 0 then the move is accepted: x!. is set equal 

to x!. new· If ~S > 0 the move is accepted with probability exp( -~S). This is 
' 

achieved in practice by generating a random number, e, on [0,1) and accepting only 

if e > exp( -~S). If the move is rejected, the value of x!. remains at its original 

value, x!. old" 
' 

One update of the system consists of this procedure applied to each timeslice 

(excluding the endpoints) of each particle in the system. 

4.lb Biased Metropolis Update 

The biased Monte Carlo procedure is similar to the standard procedure de­

scribed above, but the details differ in both move selection and accept/reject. The 

move consists of a sequence (or thread) of new positions for several consecutive 

timeslices of one particle (many particle moves are possible, but are not used for 

this work). If the move is accepted, the entire thread replaces the positions in the 

stored lattice. 

The new particle positions are generated one at a time, starting with the center 

timeslice between the two fixed endpoints of the new thread (Fig 14). Once the 

middle timeslice is generated, it is treated as a fixed endpoint for the two segment 

into which it divides the thread. In an identical procedure, a new middle position 
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may be generated for each of those two segments, etc. Following this procedure 

allows for the threading of 
n 

1, 3, 1, ... , .z:.= 2i 
i==O 

( 4.5) 

particles between fixed endpoints. The reason that a bisection procedure is used 

instead of threading the particles in one at a time from the beginning of the thread 

to the end, is that instead of needing to know the two-particle density matrix at N 

values of E where N is the number of particles being threaded in, only ln2 N values of 

E are required for the bisection procedure. Typically, seven consecutive timeslices of 

one particle are moved simultaneously, leading to acceptance rates from . 7 to .9 for 

the values of E used in this work. The acceptance rate increases with decreasing E, as 

the Gaussian approximation to the exact density matrix described below becomes 

more accurate. 

The threading procedure is the same for each timeslice in the thread and so 

the procedure will be described once here. The new position is selected based on 

a Gaussian distribution, which depends on the positions of all the particles in the 

system at the two endpoints and the separation of the endpoints. The primary 

task is to calculate the mean of the Gaussian distribution (from Eqn. (3.64) ~ith 

T = E/2), 

X + X 1 
E I x= 

2 
-4A'VU(x,x;E). ( 4.6) 

When only generating the position for one particle as is done for this work, the 

gradient of the effective potential, U / E, acts only on the coordinates of the particle 

being moved. Expressing U in terms of the individual particle coordinates gives 

N 

U(x,x';E) = L U(rij,r~jiE). 
i==l 

j==i+l 

If particle m is being moved, Eqn. ( 4. 7) can be rewritten as 

( 4.7) 

( 4.8) 
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Given x and the standard deviation, 0"2 = EA/4 from Eqn. (3.66), a new 

particle position can be generated according to the corresponding Gaussian distri­

bution. This is accomplished by generating a random number, 77, according to the 

distribution exp(-x 2 /2) (see Appendix A), and making the identification that 

( 4.9) 

so that 

Xm,new = 1]0" = 11#· ( 4.10) 

As each of the timeslices is threaded in, the probability of the particle's being 

in its old position and its probability of being in its new position, according to the 

Gaussian distributions, is saved so that the acceptance criterion can be modified as 

prescribed in Eqn. (3.58), 

(4.11) 

where the identifications j = new and i old have been made. It is important to 

note that the Gaussian distributions for the old and new positions will typically be 

different since they may depend on different intermediate particle positions between 

the two fixed endpoints. Since Ti is the above-mentioned Gaussian, the last term 

in Eqn. (4.11) can be written more directly as 

In( Ti) = -(Xold - Xold)
2 + (xnew - Xnew)

2 

T· 20"2 
J 

( 4.12) 

The probability of the entire thread of particles being in their respective posi­

tions is just the product of Tj for the individual particles, and so the the logarithm 

of the probability of the the old thread's being generated, divided by that for the 

new thread positions is just the sum of ln(Ti/Tj) for each timeslice individually. 

This sum is accumulated while the thread is being generated and is subtracted 

from L'::l.Sji when the new thread is tested for acceptance or rejection. Calculating 
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the change in the action is the same as for the standard method except that several 

timeslices must be included in the calculation of 5partial. 

When updating the system, the timeslices that are fixed during one update, 

are in the center of a thread during a subsequent update, thereby assuring that all 

of the timeslices are updated. 

It should be emphasized that whether the Gaussian is an accurate representa­

tion of the density matrix is not very important, since the bias is compensated for 

in the accept/reject procedure. Doing as well as possible does, however, increase 

the acceptance rate and helps to move through the space of configurations more 

rapidly. 

4.2 Measuring the Observable 

In Section 3.3, the Monte Carlo observable was derived by introducing a length­

scaling parameter into the path integral and differentiating with respect to it. The 

observable is then calculated to be 

( 4.13) 

A simpler expression for the last term, which involves the effective potential 

U / t:, may be calculated by noting that U can be written as a function of three scalar 

variables 7'ij =I Xij I, r~j =I x~i I, and 0, the angle between Xij and x~i' so that 

( 4.14) 

(mathematicians, forgive me). Timeslice indices have been suppressed and the prime 

is taken to mean the next timeslice. This representation is actually more natural in 

the sense that the new variables are the ones used when calculating the 3 He density 

matrix. 

Using the new variables with 7'ij --7 A7'ij and r~j --7 ;\r~j and differentiating 
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with respect to .\ gives 

(4.15) 

and hence the observable can be expressed as 

( 4.16) 

The derivatives are calculated numerically from U, for 3 He, using finite differ­

ences. The effective potential for hard spheres is given by an analytic form and can 

therefore be differentiated directly. 

4.3 Minimizing Statistical and Systematic Errors 

Two different techniques have been used to reduce the statistical errors in the 

Monte Carlo observable. One restricts the number of particles in the system that 

are updated and measured. The second restricts measurement of the observable 

to a region of the path around the instanton, which is smaller than the full-path 

length. The second technique also reduces systematic errors coming from endpoint 

effects. 

4.3a Scaling the System Size 

A natural way to minimize statistical error in the observables is to pick as small 

a system as possible for which an increase in the system size causes no change in 

the observable measured. For a BCC lattice in three dimensions, the possible sizes 

are 16,54,128,... for a periodic system (2N3 ). Unfortunately, the computational 

requirements scale as N 2 • 

To avoid this limitation, when a 54 particle periodic system is used, only the 

particles whose lattice sites fall within some radius of the region where the exchange 

takes place are updated. The remaining particles sit at their lattice sites and provide 

a fixed cage of particles for a background potential. With this technique, much 
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smaller increments in the effective system size are possible. One other interesting 

piece of information can be extracted from the way the observable scales with the 

particle number: a measure of the number of particles that play a significant role 

in the exchange processes. 

4.3b Measuring Subsets of the Path and Shifting the Instanton 

Ideally, for this calculation the path length would be taken to infinity (/3 ----t oo ). 

The region of the path where the exchange occurs (referred to as the instanton) 

corresponds to some subset of the path. A way from the instanton, its effects fall 

off rapidly. In this ideal system, the Monte Carlo observable could be measured 

for different numbers of timeslices around the instanton, and measurements for 

equivalent numbers of tirueslices would be made for a nonexchanging path. The 

Gruneisen parameter could then be calculated for the different numbers of timeslices 

and the result would converge as that size increased. 

To simulate this ideal situation as closely as possible, the instanton's position is 

measured (as explained below) and regions around the instanton which are shorter 

than the total path length are measured. In order to implement this idea, it is 

necessary to prevent the instanton from moving too close to either end of the path. 

Otherwise, it would not be possible to measure a symmetrical region about the 

instanton. Not allowing the instanton to move too close to the endpoints also has 

the advantage of eliminating end effects that are absent in the ideal system. The 

end effects show up as a deformation of the instanton when it moves to close to one 
. 

endpoint. Analytically it shows up in K of Eqn. (3.42). 

In order to apply this idea, it is necessary to measure the position of the 

instanton. The method described below requires that there be only one instanton 

(i.e., the exchange only happens once over the path). This requirement is satisfied 

easily because for accessible path lengths, the probability of more than one exchange 

is very small. Typical path lengths are of the order of /3 = 1.0 K- 1 . Since exchange 

energies are of the order 1.0 mK, there will typically be 1 exchange per 103 K- 1 of 

path length! 
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Consider first how one might define an instanton for one of the exchanging 

particles moving from its initial to its final position along a given path. The first 

step is to project the particle's positions onto the line joining the initial and the 

final points. On this axis, 0 is defined as the starting point and 1 is located at the 

final point. Moving from the starting point along the axis away from the finishing 

point is the negative direction. The instanton is then defined to be located at the 

average of two positions, calculated by starting at each of the two endpoints and 

searching toward the other endpoint for the first time that the particle is within 

some distance of that other endpoint (Fig 15). The distance used was determined 

empirically to be .2. 

The above procedure gives the instanton for one particle, but can make mistakes 

in identifying the locatio·n of the exchange. Consider, for example, two particle 

exchange. If the two-particles move far enough in the same direction along the axis 

joining them, the one moving toward its final destination may have appeared to 

exchange (Fig 16). The solution to this problem is suggested by the fact that, for 

such common motions, one particle's projection goes negative while the other's is 

going positive. Hence, the definition used for the instanton is the average of the 

individual particle instantons for all of the particles participating in the exchange. 

Finally, when the instanton moves within some (empirically determined) dis­

tance from either end of the path, it must be shifted back to the center of the path 

as mentioned above. This is accomplished as follows. Recall the notation used in 

defining the path, 

[ J { 0 1 2 n-1 n} 
x = x 'x 'x ' ... , x 'x ' ( 4.17) 

where x 1 is the many-particle position vector for all particles m the system at 

timeslice I. The endpoints, x0 and xn, are fixed, while the rest of the path is 

allowed to vary. Define the position (in units of the number of timeslices) as Tinst, 

then 

( 4.18) 

gives the number of timeslices that the instanton needs to be shifted. If ~Tinst < 0, 
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then for timeslices 1 to n - ~Tinat, xI is set equal to xl+AT;,..t. For timeslices 

n - ~Tinst + 1 to n - 1, the particle positions are set equal to the final position, 

x 1 = x n. Fig ( 17) shows an instant on before and after being shifted. If ~Tinat < 0, 

then for timeslices 0 to ~Tinat, the particle positions are set equal to the initial 

position, xI = x 0
• For timeslices ~Tinat + 1 to timeslice n - 1 xI is set equal to 

xI -AT;n•t. After the shift 25 standard Monte Carlo updates are done to rethermalize 

the lattice. 

4.4 Interactions in the Periodic System 

The interaction between two particles in the periodic systems considered is 

taken as the infinite system interaction between one particle and the closest periodic 

extension (including the particle itself) of the other particle. This can be extended 

to include further interactions and, in fact, the programs will do this, but that 

facility has not been used. 

This closest separation is found by calculating the closest separation for each 

dimension, i, separately. Consider that the system size in each dimension is Li. 

Then for each dimension, start with 

( 4.19) 

the difference between the particle positions in the fundamental set of particles for 

particles 1 and 2 in dimension i. It can be seen that this distance will always be less 

than half the system size in the given dimension. The prescription below is used 

for each dimension to calculate the shortest distance. 

If ~Xi > Li/2 then ~Xi = ~Xi - Li· 

If ~Xi ~ -Li/2 then ~Xi = ~Xi +Li. 

4.5 Units and System Parameters 

The units used in all of the calculations have energy in units of K and length 

in units of A. ·with these units the quantity A is defined by 

fi 2 
2 

A = - = 16.08K A . 
2m 

( 4.20) 
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Other units such as time are converted to these units (e.g., time--+ K- 1 (time/Ii)). 

One other issue is important for determining running parameters. Quantities 

of interest are calculated for certain molar volumes (cm3 /mole), but the program 

accepts the simple, cubic lattice spacing, Dcub (DCU Bin the program), as an input 

parameter. The relationship between the two is calculated by noting that for a cubic 

piece of the solid with many particles on an edge of side L, there are ( L / Dcub) 3 

particles in the simple, cubic lattice and therefore 2( L / D cub )3 particles in the block 

(A BCC lattice consists of two simple cubic lattices offset from each other by half 

the simple cubic lattice spacing in each dimension.). The molar volume is then 

given by 

L3 
V = 2(L/ Dcub) 3 N Avagadro = .301D~ub· ( 4.21) 
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CHAPTER 5 

Hard Spheres 

As a preliminary calculation to explore the idea of calculating the Gruneisen 

parameter for exchange, we first looked at the problem of hard spheres interacting 

in three dimensions. The hard-sphere potential between two particles is zero when 

the particles are separated by greater than a hard core diameter and infinite when 

their separation is less than or equal to that diameter. Exchange processes for 

this system should to be similar to those in solid helium because it is the effect of 

the hard-core part of the potential that is thought to be primarily responsible for 

suppressing exchange energies far below lattice energies. The hard-sphere system 

is also a quantum system for which a WKB type calculation of the exchange is not 

possible. Finally, there is an analytic representation for the two-particle density 

matrix which, although it is valid in the small time limit, allows a reasonably 

large mesh in the time direction, as compared with using only the free-particle 

representation. This makes the system accessible from a computational point of 

view. 

A derivation of the two-particle density matrix, using an image approximation, 

will be given in Section 5.1. This two-particle density matrix contains an explicit 

length scale (the hard core-diameter). In Section 5.2, that fact will be used to derive 
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a Monte Carlo observable with better statistical properties than the more general 

result from Chapter 3. 

5.1 The Two-Particle Density Matrix 

The quantity of fundamental importance for this calculation, as for the 3 He 

calculations, is the two-particle density matrix. In the short time limit, an analytic 

expression for the two-particle density matrix for hard spheres can be derived using 

an image method that guarantees that the density matrix goes to zero as the hard 

spheres approach each other .1 

The Schrodinger equation for the two-particle density matrix is solved by sepa­

rating the density matrix into the product of center of mass and a relative coordinate 

terms (see Section 6.2), 

where 

and 

R = X1 + X2 

2 

r = X1 - x2; 

Af = 2m 

m 
µ=-. 

2 

(5.1) 

(5.2) 

(5.3) 

Af and µ are the effective masses of the center-of-mass system and the relative 

system, respectively, and mis the particle mass in the original system. The equation 

for Pcm is just that of a free particle with mass lvf, 

~RR' 2 

Pcm OC e -2"M"€( - ) · ( 5.4) 

The short time limit implies that the particles interact only when they are 

"close" and that the particles will move only a "small amount" in the given time. 

These distances must be small compared with the important length scale for in­

terparticle interaction: the hard core diameter. When considering the hard core 

potential as a function of the separation of the surfaces for two spheres that are 
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very close, the potential is just like that for a point particle in the presence of an 

infinite hard wall. With a coordinate system for the relative density matrix such 

that the x-axis is defined by the line joining the centers of the particles at the initial 

time (Fig 18), define the coordinates u and v by 

r = (u + D,v), (5.5) 

where Dis the hard-sphere diameter (also the minimum value of Jr J). With this 

definition, the problem of finding Prel in the short time limit is identical to that of 

finding the density matrix for a free particle of mass µ, with position ( u, v) in the 

presence of a hard wall at u = 0. After a time E, the particles should have moved a 

short enough distance that the curvature of the hard-core potential is not apparent, 

just as the curvature of the earth isn't apparent while walking on it. The other 

important factor is that as E is made smaller the interaction falls off much more 

rapidly, and so the particles must be quite close compared with the particles' radius 

of curvature before they interact significantly. 

The particle, its image and the new position of the particle are depicted in Fig 

19 for the system considered as a free-particle in the presense of a hard wall. To 

insure that the density matrix is zero at u = O, the free-particle density matri:i for 

the image particle hopping from (-u, v) to ( u', v') in a time E is subtracted from 

the free particle density matrix for the particle hopping from ( u, v) to ( u', v') in a 

time E, 

Factoring out the first exponential in Eqn. ( 5.6) and expressing it in terms of the 

difference coordinates gives 

_l_ , 2 , 

Prel ex: e-4K€(r-r) (1 - e-~), ( 5.7) 

where A = 1i2 /m. Multiplying the first term in Eqn. (5.7) by the expression for 

Pcm from Eqn. (5.4) gives the free-particle density matrix for the two particles 

in the original system. Therefore, expressing Eqn. ( 5. 7) in terms of the particle 
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positions and dividing by the free-particle density matrix, gives the correction to 

the free-particle density matrix as 

- ( 1 1. ) _ P2 - l -±-(P:1-:c2l-D)(P:~-:c~l-D) p2 x1, x2, x 1, x 2, E = - - - e e • 
P1 

( 5.8) 

5.2 The Observable 

The form for the correction to the two-particle density matrix given in Eqn. 

( 5.8) has the nice feature that it explicitly contains a length scale, D. Below it will 

be shown how to relate derivatives with respect to D to derivatives with respect 

to the specific volume. This allows for a more direct calculation of the Gruneisen 

parameter than is possible for a more general representation of the two-particle 

density matrix, which cannot be assumed to contain such a length scale explicitly. 

That case was dealt with in Chapter 3, in which case a length-scaling parameter had 

to be introduced into the path integral (see Eqn. (3.29)). The observable generated 

using the explicit length scale has much less statistical noise when averaged over the 

ensemble of configurations generated by the Monte Carlo procedure. This has the 

obvious advantage that shorter computer run-times are required to generate results 

with certain statistical uncertainty. 

To relate differentiation with respect to the hard-core diameter, D, to differ­

entiation with respect to the specific volume, v, note that there are actually two 

length scales in the problem: D, and L the lattice spacing. The exchange rates are 

expressed as energies and so from dimensional analysis they may be expressed in 

the form 

(5.9) 

If f' is the derivative off with respect to its argument, the derivative of the loga­

rithm of J p with respect to L and D are, respectively, 

8lnJp 

BL (5.10) 
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8ln J p 

8D 
1 !' 

- LJ. ( 5.11) 

The specific volume is proportional to £ 3 (£2 in 2 dimensions), so that 8ln v = 

38lnL. Using this and eliminating f /f' between Eqns. (5.10) and (5.11) gives the 

Grunesian parameter in terms of the derivative of J p with respect to the hard-core 

diameter, 

,....., 8lnJp = _ D 8lnJp _ 
213 IP - 8 ln v 3 8 D . ( 5.12) 

Note that in Eqn. ( 5.12) if the three is replaced by two the equation is valid 

in two dimensions. The next problem is to relate the derivative on the right-hand 

side of Eqn. ( 5.12) to the path integral in a manner analogous to the derivation of 

Eqn. (3.48). Taking the derivative of the path integral given in Eqn. (3.28) with 

respect D gives 

8lnZp 

8D 

00 00 

;P j ... j <I>([x];/3)e-S([:i:];!3)d([x]), 

-oo -oo 

(5.13) 

where using the expression for the action, S([x]; /3), from Eqn. (3.26), <I> is given by 

( 5.14) 

Remembering that U = -ln,02, the expression for ,02 given in Eqn. (5.8), can be 

used to calculate the derivative of U with respect to D, 

8 U( 1 I+l. ) (x[j + x{f 1 
- 2D)/AE 

£:lD xi3"' xi]" 'E = I I+l ' 
U l (:i: .. -D)(:i: .. -D))/AE _ e i1 i 1 

(5.15) 

so that the Monte Carlo observable is given by the expectation value of 

~ NP (x!. + x!:l- 1 
- 2D)/ AE 

<I>([x]; /3) = ~ L iJ I iJ 1+1 · 
l=O i=l 1 _ e(:i:ij-D)(:i:ij -D)/AE 

nE=/3 j=i+l 

(5.16) 
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An identical argument to that used in Section 3.4b is used to relate the derivative 

of the logarithm of the exchange rate with respect to the hard-core diameter to the 

Monte Carlo observables in the large /3 limit, 

8 ln J p = ( q,) P _ ( q,) 
0 

• 

8D 
( 5.17) 

The final expression for the Grunesian parameter is obtained by combining Eqns. 

(5.12) and (5.17), 

5.3 The System 

D 
IP = --( (1>)p - (1>)o) - 2/3. 

3 
(5.18) 

Since this system provides an interesting caricature of the solid helium system 

with which to try out the ideas outlined in Chapters 3 and 4, a BCC lattice is used 

at a density of 24 cm3 /mole, to approximate solid 3 Ile near melting as closely as 

possible. The hard-core diameter has been chosen following the work of Kalas et 

al. 2 to be .8o-=2.05 A. They used a hard sphere-potential and fit the hard-core 

diameter to known ground state energies. 

Three-particle threading been used in updating the system for all of the fol­

lowing runs. The runs were done for a 16 particle system. Values of E of .003125 

K- 1 and .00625 K- 1 were used to verify that the time mesh was close enough to 

the continuum limit within the statistical uncertainties of the values calculated. At 

E=.00625 K- 1 , variation with /3 was also checked. The results of these tests are 

shown in Fig 5.1 below. 1 2 ,gen is the general expression for the Gruneisen param­

eter (see Eqn. (4.16)), which must be used in the case of 3 He where the effective 

potential is not expressed analytically, and therefore doesn't have an explicit length 

scale as does the effective potential for hard spheres. It is reassuring that two very 

different expressions for the Gruneisen parameter give consistent answers. 
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E(K- 1 ) ,B(N T) K- 1 
1'2 /2,gen Nr,meas 

.003125 .4(128) 20.7±1.0 18.0±2.1 81 

20.7±0.7 19.4±1.9 41 

.00625 .4( 64) 19.8±.8 20.0±1.6 41 

.8(128) 21.7±0.8 18.9±2.7 81 

21.5±0.7 20.6±1.4 41 

Table 5.1 

Checking the Variation of 12 with Respect to € and ,8. 

Exchange 1' v Nr,mea11 
Type (cm3 /mole) 

2 21.7±0.8 24 81 

21.5±0.7 41 

23.9±0.7 20 81 

22.9±0.5 41 

3 16.8±2.1 24 81 

15.9±0.9 41 

4 19.3±1.9 24 81 

15.6±1.3 41 

Table 5.2 

Gruneisen Constants for Systems with Only the Exchanging Particles Updated. 

Note the better error bars for /2 as opposed to /2,gen, especially for N T,mea 11 =81. 

The column NT,meaa gives the range of timeslices over which the observable is mea­

sured in the exchanging and the nonexchanging systems (see Section 4.3b ). The 

closest distance which the instanton was allowed to approach the endpoints, before 

it was shifted back to the center of the path, was 21 for NT,meas=41 and 45 for 

NT mea11=81. 
' 

The system parameters selected for the runs of the other exchanges were € = 
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.00625 K- 1 , and /3=.8 K- 1 . Table 5.2 gives the results of the Gruneisen parameter 

for two-, three- and four- particle exchange (12 , 1 3 and /2, respectively) for only the 

exchanging particles being updated in a system with 16 particles total. One point 

was run at molar volume, v=20 cm3 /mole and, as can be seen, there is only a 103 

variation in the Gruneisen parameter. 

It is interesting to note that the magnitudes of the Gruneisen parameters are 

very similar for the three types of exchange, despite their significantly different 

geometries. Furthermore, at least for two-particle exchange, the variation with 

volume is small, although statistically significant. 
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CHAPTER 6 

Solid 3He 

This chapter deals with the calculation of the Gruneisen parameters, /P, for 

two-,three-, and four-particle exchange in solid 3 He. First, a description of the 3 He 

two-particle density matrix calculation is given, which includes a description of the 

way it is stored and retrieved for access by the Monte Carlo program. Readers not 

interested in the details of this calculation should skip to Section 6.2, which contains 

a description of the tests and checks that are not part of the Gruneisen parameter 

calculations, which have been used to verify that the program works properly. In 

Section 6.3 is a presentation of the data and its analysis, which includes the way in 

which running parameters were chosen, such as the total path length /3, the number 

of particles to be updated, and the size of the imaginary time mesh E. 

6.1 The Two Particle Density Matrix 

The calculation described in this section has been implemented in a vectorized 

Cray program written by David Ceperley, whom I gratefully acknowledge. The 

algorithm is included in the body of the thesis because it is a crucial ingredient to the 
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calculation of the Gruneisen parameters and because a comprehensive description 

is not available elsewhere. 

The fundamental element used for all of the 3 He calculations is the two-particle 

density matrix. It is calculated using the Storer matrix squaring method. 1 Before 

going into the matrix squaring method, a description of how to generate a short-time 

representation of the two-particle density matrix will be given. 

6.la A Partial Wave Representation 

Consider first the Hamiltonian for two particles interacting via the potential 

V( Ir I) separated into center-of-mass and relative parts, 

(6.1) 

where R, r, M, µ are defined as in Eqns. (5.2) and (5.3). Appendix D contains 

a description of the potential that is used. It is a better approximation to the 

He-He potential than the standard Lennard-Jones potential. The solution to the 

Schrodinger equation of Eqn. (3.1) can then be written as 

p(r,R,r',R';/3) = Pcm(R,R';/3)prel(r,r';/3). (6.2) 

The center-of-mass density matrix is given by the free-particle solution, 

-M(R-R') 2 

Pcm ( R, R'; /3) = ( M2 ) ~ e n 
2 

f3 
27rh /3 

(6.3) 

where A= h2 /m (mis the helium atom mass). The piece remaining to be solved is 

the relative coordinate density matrix, 

Prez(r,r';/3) = (rJe-/3H.c1 Ir'), (6.4) 

which is the solution to 

(6.5) 



-64-

The solution to Eqn. (6.5) can be separated into a product of angular and spatial 

terms. The solutions to the angular part are Legendre polynomials, P1( cos 0), and 

form the basis of the partial wave expansion, which will be used here. Dropping the 

rel subscript and explicitly denoting vector quantities with an arrow, the partial 

wave expansion for the relative density matrix can be written as 

p(r,r';/3) = f 21 + 1 
p1(r,r';/3)P1(cosO), 

47rrr' 
l=O 

(6.6) 

where r and r', are the magnitudes of the vectors rand T' respectively, and (} is the 

angle between them. Having separated out the angular dependence, the equation 

for Pl is 

1 a2p1 t(t + 1) ap 
A 8r2 - Ar2 Pt - V(r)p1 = 8/3' (6.7) 

In the small /3 (classical) limit, V ( r) may be treated as a perturbation Hamil­

tonian as was done in Section 3.2. The Hamiltonian is H = H 0 + V, where 

H 
0 

= _ !._ 8
2 + l ( l + 1) 

A 8r 2 Ar 2 
(6.8) 

The solution for Pl is then given by 

As before, the solution must be found to the Schrodinger equation, which doesn't 

include the potential. As in Section 3.2 it is just the free-particle density matrix, 

but in this case the representation is slightly more complicated, 

(6.10) 

where i1( z) is a modified spherical Bessel function. It should be noted that if 

V(r) = O, the summation over l in Eqn. (5.6) produces the free-particle density 
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matrix for the relative coordinates. Combining Eqns. ( 5.6,9,10) gives the relative 

coordinate, two-particle density matrix, 

p( r, r', 8; /3) = ( 4A7r/3)-~ f)2z + 1 )e- r 24i~
12 

i1 ( ;~~) P1( cos 8)e-~( V(r)+ V(r')), 

l=O 

(6.11) 

in the small /3 limit. 

6.lb Matrix Squaring 

Now that a reasonable starting point has been established within the short 

time limit, the Storer matrix-squaring method 1 will be described. The fundamental 

relation from which it stems is the exact operator relation 

-(3H _/1.H _/1.H e =e 2 e 2 (6.12) 

Expressing it in the coordinate representation for Pl gives 

00 

( I /3) J ( II /3) ( II I /3 )d II Pl r, r ; = Pl r, r ; 2 Pl r , r ; 2 r . (6.13) 
0 

The form of Eqn. (6.13) even seems to suggest the procedure. Starting with a value 

of f3 small enough so that Eqn. ( 6.11) is sufficiently accurate, generate a complete 

set of values for Pl over some region. The integral of Eqn. (6.13) can be written as 

a finite sum, 

(6.14) 

over the discrete set of values for which the density matrix is calculated. Generating 

the density matrix with twice the value of /3 is therefore equivalent to squaring a 

matrix, as can be seen from the form of Eqn. ( 6.14). This procedure can be applied 

iteratively to produce successively larger values of /3. 

Two significant modifications have been made to the basic matrix-squaring 
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procedure. 2 The first is meant to eliminate the problem of edge effects that come 

from the finite spatial extent of the matrix. This is essentially the same as a cutoff 

in the integral and causes some error, especially in the regions near the edge of 

the matrix. The technique used to avoid this problem consists of setting up the 

matrix in such a way that it covers a much larger fraction of the space of positions 

required for the problem at hand, but in a nonlinear way so that the matrix is 

still a manageable size from a computational point of view. This nonlinear mesh is 

theoretically arbitrary and could possibly be tailored carefully to the density matrix 

of interest so that the mesh spacing is very fine where the density matrix is largest 

and becomes more widely spaced as the density matrix falls off. For this work, a 

1/r2 mesh was used: The positions for which the density matrix values are stored 

are given by 

1 
r? 

t 

1 1, 

-2--.-
r min Zmaz 

(6.15) 

where i runs from 0 to imaz, and rm in is the hard core cutoff. Since the mesh 

is nonlinear, generating values of the density matrix between the stored values is 

trickier than for a uniform mesh. The solution is to interpolate between several 

gridpoints, by inverting Eqn. ( 6.15) to find the index corresponding to the given 

position, keeping the fractional part of the index. The interpolation can then be 

done using the equally spaced index points. The Lagrange four-point interpolation 

function found in Abramowitz and Stegun 3 is used to calculate a function f( i + p ), 

where P, is the fractional part of the position index. Given that the function is 

tabulated at equal increments fj, 

(6.16) 

Because of the nonlinear mesh, the naive squaring technique will obviously not 

work and so another method of approximating the integral of Eqn. (6.13) must be 

found. Since the free particle component of the integrand falls off like exp( -x"2 ) for 

large x", it is sensible to use Hermite integration, which is also found in Abramowitz 

and Stegun. Listed there are the weights, Wi, and the positions, Xi, to evaluate an 
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oo n 

j g( x )dx = L Wi exp( x; )g( xi), 
i=l -oo 

( 6.17) 

for different values of n. This integral is calculated with n = 10, with the zero coor­

dinate of the integral set to (r + r')/2, the location where the Gaussian, calculated 

by combining the two free-particle terms, is maximum. 

With these two modifications, the matrix-squaring procedure is applied in a 

straight-forward way. Values of /3 used in these calculations vary from .003125 K- 1 

to .1 K- 1 . Starting with a value of beta of .1/214 K- 1 , 14 "matrix squarings" are 

performed and the values are saved between .003125 K- 1 and .1 K-1. The values 

stored are actually the values of U(r12,ri 2,8) = -ln,02 (see Eqn. (3.27)), since the 

free-particle terms are easy to calculate and U is the quantity that comes into the 

calculation of the observable. Instead of writing out the matrices for all 32 values 

of l that are used, an expansion of U( r12, ri 2, 8; /3) is used to fit the data. The fit is 

of the form 

where 

(6.19) 

Uo(r) is referred to as an endpoint approximation and is calculated from the 

new values of p1(r,r';/3) after a matrix squaring, using 

-Uo(r) - ~ (21+1) . e = ~ 
2 2 p1(r,r,/3)P1(0) 

1rT 
l=O 

LMAX-l ( 2[ + l) oo ( 2l ) 
" ( /3) " + 1 (0)( . /3) -,BV(r) ~ 27rr2 Pl r, r; + ~ 27rr2 Pz r, r, e . 

l=LMAX 

(6.20) 
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The last term is an approximate correction to account for the higher-order terms 

that are not computed. It can be calculated using the fact that 

~ (21+1) /o)(r r· /3) = e-~(r-r)2 = l 
L.J 27rr2 l ' ' ' 

( 6.21) 
l=O 

and hence the endpoint term is given by 

The remaining coefficients are calculated in two ways. First, a 2-variable least­

squares fit 4 is done to ~U(r) = U(r)-U0 (r) using only U1 and U2 , leaving the 

other coefficients set to zero. Second, a 5-variable least-squares fit is done for all 5 

coefficients. The value of x2 for each of the three fits is calculated. The x2 of the 2 

parameter fit must be at most .9 times that for the end point fit, or else only the end 

point fit is used. Similarly, only if the x2 for the 5-coefficient fit is at most .9 times 

that for the 2-coefficient fit are all 5 coefficients used. The nonused coefficients are 

set to zero. 

The limits of integration for the least-squares fit are cut off in both the radial 

and angular directions. Firstly, the trivial hard core cutoff is respected. This cutoff 

has been set to 1.55A in these calculations, well within the Lennard-Jones parameter 

of 2.6A. Secondly, looking at Eqn. (6.10), it can be seen that the relative density 

matrix falls off like exp{ -r2 / 4A/3} for large relative separations. The cutoff in the 

difference coordinate has been chosen to be r~ut = 18( 4A/]). This same constraint 

is used to cut off the 8 integration, again only for r > rcut· Assuming that in a 

"time" /3, particles will travel at most r cut, the largest angular separation possible 

is given approximately by 

(} . -1 ( r cut) cut= Sln -- . 
r 

(6.23) 

Two other points need to be made regarding the least-squares fit. If the matrix 

that must be inverted for the least-squares fit is not invertible, only U0 is used, and 

the higher-order coefficients are set to zero. 
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These coefficients are calculated for values of r corresponding to each of the 

nonlinear mesh points. Calculating a value for U( r12, r~ 2 , O; /3) is then accomplished 

using Eqn. ( 6.18). Each coefficient is calculated by interpolating between the non­

linear mesh points as in Eqn. (6.16). Appendix E gives a listing of the coefficients 

that were generated using the above described method. The program that produces 

these values also produces values for au/ o/3, using a simple finite difference scheme. 

The use for this quantity, which is essentially an effective potential, is described in 

Section 6.2c. 

6.2 Testing the Program 

Three independent tests of the Monte Carlo program have been done in an 

attempt to assure that it is working properly. The first is a three-dimensional, free­

particle calculation, and the second is a harmonic oscillator in one dimension. Both 

of these were put into the code with very little change in the program structure, and 

both have analytic answers, which can be compared with the numerically calculated 

values immediately, to see if everything is working properly. The third test relates 

the difference in the "expectation value" of the energy in an exchanging lattice and 

a nonexchanging lattice to the path length /3. 

6.2a Free Particle 

For the following test, a certain path integral involving one free particle in 

three dimensions was calculated numerically by measuring the expectation value of 

the Hamiltonian over the path. The value was also calculated analytically, and the 

results are compared with the calculated value. This quantity is not an expectation 

value of the energy, but will be referred as to an expectation value for convenience. 

The quantity of interest is 

where as usual 

(H) 
= (xlHe-{3Hlx') o l z 
- ( I {3H I ) = - 8/3 n ' x e- x' 

(6.24) 

(6.25) 
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For a free particle, 

(6.26) 

and in three dimensions, 

(6.27) 

Hence, taking the /3 derivative of the logarithm of Z gives 

(H) = ~ - (x - x')2 
2/3 2A/32 

(6.28) 

To calculate the observable, Z is written as a path integral as was done in 

Chapter 3, with the modification that one of the terms contains a p 2 , 

(6.29) 

Note that p2 can be inserted in any of the terms, and therefore the observable may 

be measured over all of the timeslices and the average taken. The remaining task 

is to evaluate 

(6.30) 

So finally, 

( 6.31) 

where the angle brackets on the right-hand side denote an average over timeslices 

and configurations. 

The above procedure for determining the observable is equivalent to the formal 

procedure of setting /3 = nE and considering n fixed so that {](3 = naE. The 



-71-

observable can then be determined by taking the E derivative of the Z, written 

as a path integral, directly. This technique will be used in the next two sections. 

This test was run for the case x = x', and therefore (H) = 3/2(3. The path 

length used was (3 = .8 and the results listed in Table 6.1 show that after 2000 

updates, the calculated value is consistent with the theoretical value. 

Analytical Numerical 

1.88 K 1.81 ± .23 K 

Table 6.1 

Comparison of analytic and numerically calculated results 

for a free particle in three dimensions. 

This test result verifies that the biased Monte Carlo threading technique and 

the accept/reject algorithms work properly. 

6.2b Harmonic Oscillator in One Dimension 

The free particle test did not check the part of the biasing that involves the 

interaction potential, and so the following test was selected as one of the few cases 

where an analytic result can be computed for comparison with the numerically 

calculated value. 

The differential equation for the density matrix of a harmonic oscillator in one 

dimension is given by 

8p A 82 p 1 2 
- 8(3 = 2 8x2 + 2A(3~ x p, (6.32) 

where (3~ = l/(1iw) 2 (w is the characteristic frequency of the hamonic oscillator). 

The solution to this differential equation,5 with the initial condition 

p(x,x';O) = 8(x - x'), (6.33) 
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IS 

p( X, XI j (3) = 

(27rAf3w sinh( l_ ))-t exp{- ~ _/}__ [(x + x') 2 cosh(: ) - 2xx'] }. 
f3w 2Af3w smh( {3.., ) fJw 

(6.34) 

Simplifying to the case x = x', and using Eqn. ( 6.24) gives 

coth( /-) 
(fl) = 1-'w 

2f3w 
(6.35) 

A small E form was used for U(x, x'; E) (see Eqn. (3.23)), 

U(x,x';e) = _:(V(x) + V(x')) = AEr.n (x2 +x'2). 
2 4 fJw 

(6.36) 

As explained near the end of Section 6.lb, an E derivative will be used to 

calculate the observable here. For the purposes of this derivative it is important 

to include the normalization terms, which have usually been omitted, in the path 

integral, so that 

Z = N j ... j e-S([:r:];/3)d[x], (6.37) 

with 

1 Jllfn-
N - (-) - 27rAE ' (6.38) 

where D is the spatial dimension of the system, N is the number of particles and 

n is the number of timeslices (for this case N = D = 1, and n=128.). Using action, 

S, given in Eqn. (3.26), the observable is 

1 ( I +I 1)2 1 
(H)=--/ x -x )+l-[(x1+1)2+(x1)2J). 

2E \ 2AE2 \ 4A{3~ 
(6.39) 

Again, the timeslice and configuration averages are implied by the angle brackets 

on the right-hand side. Identify the first two terms in the observable as the kinetic 

energy and the last term as the potential energy. 
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When /3 is of the same order as /3w, the observable is essentially equal to the 

free-particle result, (H) = 1/2/3. Since it is the effect of the potential that needs to 

be tested, the values of /3 and /3w were chosen so that /3 '.::::'. 10/3w, for which case the 

potential makes a significant contribution to the observable. The parameters used 

were /3 = .sK- 1 , f3w = .125K- 1
. The results shown below in Table 6.2 again show 

consistency between the analytical and the numerical results. 

Analytical Numerical 
KE+ PE 

(80-77.8±.2) + 1.71±.02 K 

4.0 K 3.9±.2 K 

Table 6.2 

Comparison of Analytic and Numerically Calculated Results 

for a One-Dimensional Harmonic Oscillator. 

6.2c Energy Check 

Ceperley2 has suggested that the following check, which can be done for the 

lattices from which the Gruneisen parameters are calculated. Starting with Eqn. 

(3.43), 

z z: = tanh(/3J p + K) '.::::'. j3J p + K, 

the derivative of the logarithm of this expression gives 

8lnZp 

8/3 
8lnZo 

8/3 
1 

(6.40) 

( 6.41) 

The expressions on the left-hand side of Eqn. (6.41) are just the negative of the 

expectation values of H in the exchanging and the nonexchanging configurations as 

shown in the last section. The corresponding observable is 

( 6.42) 

_E+V, 
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where again the average over timeslices and configurations is implied by the angle 

brackets on the right hand-side. The term in braces is the kinetic contribution to 

the energy (defined to be E) and the last term is the potential contribution (defined 

to be V). The E derivatives of U are produced by the same program that produces 

U itself, as mentioned at the end of Section 6.1. 

Finally, the relation to be used to check the lattices is 

1 
jj = -(H)p + (H)o 

(6.43) 

::::: D.E - D.V. 

6.3 Determination of E and f3 

The approach taken in the determination of the path mesh t:, and the total path 

length f3, was to run on the smallest system size so that a systematic check could be 

done across both parameters. The Gruneisen parameter for two-particle exchange, 

1 2 (/a and 14 will refer to the Gruneisen parameter for three- and four-particle 

exchange), was measured for a system consisting of two particles being updated in 

a system of 54 particles (see Section 4.3a). Variation of 12 with f3 was also checked 

for 8 particles being updated in a system of 54 particles, 8/54 using the notation 

1\1 / S to denote M particles being updated in a system of S particles, because the 

constraint of having the nearest neighbors of the exchanging particles fixed could 

change the shape and width of the instanton. 

Three-particle threading (see Section 4.1 b) has been used for the data in Table 

6.3, but seven-particle threading has been used in the rest of the calculations. The 

acceptance rate for three-particle threading is approximately .9, and for seven­

particle threading it is approximately . 7. 

The 2/54 system has been run for values of the imaginary time step E = .003125, 

.00625, .0125 and .025. Consistency is also checked with respect to total path 

length (3. The unfamiliar parameters listed in the table below are N T,meas and 

N shift· Nr,meas is the range of timeslices over which the Monte Carlo observable 
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was measured (see Section 4.3b ). N shift gives the closest distance from the ends of 

the path (in units of timeslices) which the instantons were allowed to move before 

being shifted back to the center of the path (see Section 4.3b ). 

i:(K-1) ,B(Nr) K-1 
/2 Nr,m.eas N shift 

.003125 .2(64) 20.2±1.0 41 21 

.4(128) 24.2±1.1 81 45 

23.0±.8 41 

.00625 .4( 64) 23.6±1.1 41 21 

.8(128) 24.2±1.1 81 45 

22.8±1.2 41 

.0125 .8(64) 19.9±.8 41 21 

.025 1.6(64) 14.1±1.3 41 21 

Table 6.3 

Checking the Variation of 1 2 with Respect to E for 2/54. 

Although ,Bis not constant over the range of E, the values of 1 2 compare at the 

same value of ,B pairwise for the first three values of ,B, and for E = .025 K- 1 , the 

,B is larger than necessary (which will cause no error). Fig. 20 shows a graph of 12 

for the data of Table 6.3, from which it can be seen that at E = .00625 K- 1 , 12 has 

converged to within the error bars. A fit line has been omitted intentionally from 

the graph of this data, because it is likely that at least some of the variation in 1 2 

is from errors in U = - In P2. 

The next question to be answered is whether at E = .00625 K- 1 , the total 

number of timeslices, Nr, should be 64 or 128. From the data in Table 6.3 it would 

seem that Nr=64 would be adequate, but when the number of particles being 

updated is increased to 8, the variation of 1 2 with NT indicates (as shown in Table 

6.4) that Nr=128 is a better choice. 
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,B(Nr) K- 1 
/2 Nr,meas N shift 

.4( 64) 14.3±1.3 41 21 

.8(128) 17.8±1.5 81 45 

17.7±1.1 41 

1.6(256) 16.3±3.1 121 70 

15.1±2.3 81 

14.7±1.5 41 

Table 6.4 

Two particle exchange. Variation with ,8 for 8/54. 

The fact that for Nr=64, the value of 12 is too low indicates that the instanton's 

shape is being affected when it moves within 21 timeslices of the ends of the path. 

This can be seen to be the case, since for ,8 = .8, a measurement over 41 timeslices 

gives an answer consistent with the rest of the data. It is interesting that even 

though a range of 41 timeslices is enough to measure the instanton, a larger range 

must feel its effect (i.e., the values of /2 agree for ,8 = .8 for NT,meas= 41 and 81, 

but the ,8 = .4 value disagrees). 

After determining the run parameters to be E = .00625 K-1 and ,8 = .8, the 

main results of this work were generated. 

6.4 Results 

With the exception of one data point, which were run on a Cray XMP, all of 

the following Gruneisen parameter data was run on a 500 node NCUBE parallel 

computer. Typically, 1/2 to 3/4 of the computer was dedicated to this computation 

from lOpm to 9am, and 1/4 to 1/2 during the rest of the day for a period of 

three weeks. 128 nodes of the NCUBE is roughly equivalent to one head of a 

Cray XMP for this (nonvectorized) code, and so the total runtime is equivalent 

to approximately 900 hours on a Cray XMP. The program is 80 percent efficient, 

running on 64 nodes of the NCUBE for a 54 particle system with Nr=128 and seven 

particle threading. Typically, 2-6 separate jobs were run on different portions of the 
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nodes simultaneously, because the efficiency decreases rapidly when the number of 

nodes is increased. 

The largest amount of data was generated for molar volume, v=24 cm3 /mole, 

which is near the solid/liquid phase transition, where exchange energies should be 

largest. At this volume the variation of/ with system size was checked most closely, 

and the results there (along with the very large statistical uncertainty for the larger 

systems) determined what system sizes were chosen to run at v=22 cm3 /mole. 

The lack of variation in the Gruneisen parameters between 24 cm3 /mole and 22 

cm3 /mole prompted us to check one exchange at 20 cm3 /mole, but as seen in Fig. 

21 it shows no significant deviation from the rest of the data. 

The Gruneisen parameter data are tabulated below in Tables 6.5,6, 7 for each 

type of exchange, separately. The graphical presentation of the data in Figs. 

21,22,23 includes only the NT,meas=81 data because it should be the most ac­

curate, including larger deviations of the instanton width than for the NT,meas=41 

measurements. Fig. 25 shows all of the data for NT,meas=81, including the smallest 

system data, and Fig. 24 shows the same data minus the small system points. 
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N updated /2 v NT, meas 

(cm3 /mole) 

2 24.3±1.1 24 81 

22.8±1.2 41 

8 17.8±1.5 24 81 

17.7±1.1 41 

14.9±1.8 22 81 

10.5±2.2 41 

15.3±1.6 20 81 

16.3±1.3 41 

14 15.5±2.3 24 81 

15.9±1.5 41 

17.3±3.3 22 81 

14.3±2.4 41 

24 13.0±3.1 24 81 

13.8±2.1 41 

54 20.2±7.7 24 81 

11.1±5.5 41 

Table 6.5 

Two-particle exchange: E = .00625, /3=.8. 
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N updated /3 v NT,meas 

(cm3 /mole) 

3 19.3±1.7 24 81 

13.9±1.8 41 

10 16.2±2.8 24 81 

14.8±2.0 41 

16.1±3.1 22 81 

18.0±1.8 41 

16 14.4±2.9 24 81 

14.3±2.1 41 

22 16.6±3.1 22 81 

16.8±2.2 41 

26 20.3±4.8 24 81 

16.3±5.l 41 

Table 6.6 

Three-particle exchange: € = .00625, /3=.8. 
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N updated /4 v NT,meas 

( cm3 /mole) 

4 31.1±2.4 24 81 

20.7±1.4 41 

14 13.8±2.9 24 81 

14.3±2.9 41 

12.0±2.2 22 81 

13.4±2.2 41 

24 13.3±3.1 24 81 

10.8±2.5 41 

18.0±4.5 22 81 

13.5±3.3 41 

Table 6.7 

Four-particle exchange: E = .00625, /3=.8. 
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The data for the smallest system sizes have been omitted from the graphs that 

present the data for each type of exchange. The reason, as alluded to above, is that 

the smallest systems for each type of exchange differ qualitatively from all of the 

bigger systems, in that the group of exchanging particles interacts directly with the 

fixed cage of particles. In all larger systems, the particles that interact with the fixed 

cage are nominally doing the same thing for the exchanging and the nonexchanging 

configurations. There will be second-order differences becausse of the exchange, but 

that is why scaling with system size is still checked. For a large enough number of 

particles being updated, the particles interacting with the fixed cage will have an 

identical environment for both the exchanging and nonexchanging configurations. 

The data for two- and three- particle exchange seem to indicate that the second 

system size (8 and 10 particles updated, respectively) are already very close to that 

limit (see Figs. 22 and 23). The values for four-particle exchange (Fig. 24) are 

consistent with the same conclusion, but it is not so clear because of the lack of 

good large-system-size data. What is clear is that over the range of molar volume 

from 22 cm2 /mole to 24 cm3 /mole, as seen experimentally, the different types of 

exchange all vary with nearly the same Gruneisen parameters. 

Two final issues will be addressed here before the presentation of our primary 

results. The first is the estimation of error bars. A very simple procedure was used. 

The data were grouped into sets of 50 values, and the average was computed for 

each set. These averages were treated as statistically independent values, for which 

the ave.rage and the standard deviation of the mean was calculated. This procedure 

is consistent with the more subjective procedure of calculating the autocorrelation 

function, 

N-i 

N L (xn - x)(xn+i - x) 
C· ____ n_=_1 _______ _ 

i - N - i N 

I: (xn - x) 2 

( 6.44) 

n=l 

(where the prefactor has been set to one since N ~ i), and picking the point, id, 

where the data are decorrelated (which is the subjective part). Typically, to make 
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this comparison, the data were considered decorrelated when the autocorrelation 

function had fallen from its maximum value of 1 to .1. When id is determined, 

the standard deviation of the mean for the whole data set is multiplied by ./"[d, to 

correct for the fact that only 1/id of the measurements are independent. 

The second issue is the "energy" check of Section 6.2c. Table 6.8 shows the 

results of applying the check which, from the discussion in Section 6.2, is expected 

to be 1/.8=1.25 K. The difference between the two observables in Eqn. (6.43) has 

been rewritten for the purpose of display in Eqn. ( 6.45) below as the difference 

between the kinetic and the potential parts of the observable separately, so 

1 
/j = !::. E - !::. V. (6.45) 

Exchange !::.E !::. v !::. E - !::. V 
Type (K) (K) (K) 

2 17.4±1.6 12. 7±0.4 4.6±1.7 

11.5±2.3 7.8±0.4 3.6±2.3 

6.1±2.6 5.8±1.0 .3±2.8 

13.3±3.0 5.7±1.0 7.6±3.2 

9.5±11.0 8.9±4.0 .5±12.0 

3 20.3±3.0 13.5±1.0 6.8±3.2 

12.5±3.9 7.6±0.8 5.0±4.1 

10.6±4.3 6.4±1.0 4.1±4.5 

Table 6.8 

Energy Check for Two- and Three-Particle Exchange. 

The fact that the results don't match the expected value is actually not sur­

prising in retrospect, because of the shifting procedure used to remove end effects, 

and the related fact that measurements are performed over only fractions of the 

path. It might be possible to define an effective /3, but it is not clear a priori if it 
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should be f3 = oo or the value of /3 corresponding to the range of timeslices over 

which the observable is measured, or some other value. 

Given the apparent constancy of the Gruneisen parameter, the final quoted 

values for 1 2 , 1 3 and 14 are calculated as weighted averages over the data for all 

the system sizes and densities shown in Figs. 21, 22, 23 (this excludes values for 

the smallest systems). The values given in Table 6.9 below are calculated using 

the numbers in Tables 6.5,6,7 for NT,meaa=81. The weighted average x is given in 

terms of the individual measurements Xi and their errors CTi by 

( 6.46) 

The error for this natural definition of x was calculated from 

(6.47) 

/2 /3 /4 

15.9±0.8 16.4±1.4 13.8±1.5 

Table 6.9 

Gruneisen Constants for Two-, Three- and Four-Particle Exchange. 
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CHAPTER 7 

Exchange in Two-Dimensional 3 He: A Test 

The following chapter is a check to see whether a theoretical calculation in­

volving exchange in two dimensions in a high-density approximation, and extended 

to lower density, has properly calculated the Gruneisen parameter for three-particle 

exchange in a two-dimension system with a triangular lattice. This result has been 

used as evidence that planar three-particle exchange is the mechanism by which 

ferromagnetic ordering takes place in a physical system involving 3 He deposited on 

a surface of exfoliated graphite (grafoil). 1 • 2 

The original interest in the two-dimensional 3 He system came from the experi­

mental observation of surface-induced ferromagnetism in confined liquid 3 He.3 In a 

later experiment by Franco et al. on grafoil,4 coverages from 1 to 5 monolayers were 

studied. They observed that at 2.2 layers, ferromagnetism appears suddenly and 

reaches a maximum at 2.5 layers. This is thought to imply that layer two solidifies 

partially at a coverage of 2.2 layers and completes solidification at 2.5 layers. 

These results indicate that there is some sort of ferromagnetic interaction in­

volving the solid phase in the second layer. One possibility is three-particle exchange 

within the second layer (three-particle exchange is favored in a two-dimensional, tri­

angular geometry (Fig 27) ). Seemingly, at least as likely, is exchange between the 
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partially filled third layer and the solid second layer. Roger 5 has made a high­

density calculation of the three-particle exchange, for which the particles are con­

strained to move in two dimensions. He used a two-dimensional, triangular geometry 

and a WKB type expression to calculate the exchange energy in a high-density ap­

proximation, which he optimistically6 claims should be valid up to a lattice spacing 

of 3.2 A. He compares these calculations with an extrapolation of exchange rates 

measured by Richards using NMR7 for the first monolayer with nearest-neighbor 

spacings from 3.25A to 3.6 A. These values were extrapolated to a lattice spacing of 

3.85A corresponding to a valid density for the second monolayer, where experiment 

and theory remarkably agree (Fig 26). 

In the next section, the WKB calculation of Roger will be briefly outlined 

and related to the discussion of Chapter 3. The results of that calculation and a 

calculation made using the methods developed in this work are compared in Section 

7.2. 

7.1 The Theoretical Calculation of Roger 

The following is a brief outline of Roger's calculation,5 which involves a WKB 

expression for the exchange energy, which should be valid at high densities where 

the potential energy predominates with respect to the kinetic energy. Writing the 

path integral as in Chapter 3, 

(7.1) 

where the action is taken in the continuum limit ( t = T /fi ----; 0), 

T 

S = J dr [; ( ~:) 
2 

+ V ( x ( t)) J . (7.2) 

0 

An explicit factor of 1/fi has been factored out, so T = fi/3 has units of time. 

Consider an expansion in energy eigenstates as in Eqn. (3.36), where again only 
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the two-state system W ± with eigenvalues E± = E 0 =i= J p are considered. In this 

case, the difference between the overlap of the position eigenstates with the odd 

and even wavefunctions is neglected, 

(Remember that x' = Px.) Then 

With the conditions 

Eqn. (7.4) gives 

Zp '.::::' <P~( e-E+T/fi _ e-E_ Tffi) 

= 2</J~e-EuT/fi sinh(JpT/1i). 

J = 1iC e-E0 T/1i J d[x]e-Sffi 
P 2T</J~ 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

For the serrriclassical lirrrit (valid for small 1i2 /m), the integral of Eqn. (7.4) is 

dominated by the classical path, defined by the relation oS = 0. Minimizing the 

action defines the classical (highest probability) path and leads to the usual WKB 

form, 

11:i: Jp "'"'exp{-r;, :i:' dx[2m(V - E0 )J! }. (7.7) 

The potential along the exchange path is estimated by a one dimensional si­

nusoidal potential, which is essentially the first fourier component of the potential 

along the exchange path, 

(7.8) 

where L is the half length of the exchanging path, and VM is the value of the 

potential for the classical pa.th at the rrrid-point (and presumably the maximum). 
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The prefactor in Eqn. (7.6) is estimated by calculating the one dimensional 

wavefunction and using an expression for the exchange energy in terms of a flux 

integral over the plane, :E, orthogonal to the exchange path, 8 

E_ - E+ 
Jp=----

2 

;,,
2 JE(w_ vw+ - '11+ vw_)ds 

2m JI W + W _ I dv 
(7.9) 

The potential used corresponds to the repulsive part of the Lennard-Jones 

potential, 

(7.10) 

where <J" = 2.65A is slightly larger than the standard value. The exponent of Eqn. 

( 7. 7) is estimated by minfmizing the classical action for the exchange path. For the 

two-dimensional, triangular lattice with the potential of Eqn. (7.10) this leads to 

the following expression for the three particle exchange energy J3 , 

(7.11) 

where a is the lattice spacing. 

Eqn. (7.11) is not an accurate estimate of J3 because the prefactors have been 

calculated very roughly, but the Gruneisen parameter for the exchange should be 

given accurately within the validity of the high-density approximation. It is given 

by 

a 8 ln J3 ( <J") s 
2 

Ba = 129.25 ~ - 4.75. (7.18) 

7.2 Results 

The calculation of the Gruneisen parameter for three-particle exchange was 

made in the same way as for those calculated in Chapter 6 (using the same program), 

with the dimension set to be 2 and with a two-dimensional, triangular lattice. The 

full 3 He potential described in Appendix D is used. The system was 18 particles 
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(32 2) of which 6 were typically updated. For one value of the lattice spacing, a, 

all 18 particles were updated to verify that 6 particles was an adequate number. 

The results, along with the predictions of Roger, and the values from experiment 

are presented below in Table 7.1. The fit line drawn through the experimental data 

(Fig 26) is, in fact, an exponential, not a power law fit, but the range of a is small 

enough that the variation of the Gruneisen parameter is not significant compared 

with the variation of the data, especially at the larger values of a. The slope of 

the experimental line is 8ln J /8a ~ 14.0 A- 1
• The Gruneisen parameters were 

calculated using 

8ln J a 8ln J 
1=--=---. 

8lnv 2 8lna 
(7.19) 

The Monte Carlo calculations were done only accurately enough to show the incor­

rect nature of Roger's calculation. 

a (A)/1 Roger Monte Carlo Experiment 

3.2 42 50±5 23±2 
(18 parts. 49±10) 

3.4 32 55±4 24±2 

3.6 23 49±4 25±2 

Table 7.1 

Comparison of Gruneisen Parameters. 

7.3 Conclusions 

Two interesting conclusions can be drawn from these results. First is that the 

high-density approximation of Roger is not very good at low densities, although 

as the density increases (a decreases), his value gets closer to the Monte Carlo 

result. Secondly, it seems that the physically intuitive idea, that the three particle 
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exchanges aren't well constrained to lie in a plane, is probably correct. This also 

leaves open the possibility that interlayer exchange is important. 

Finally, this Monte Carlo calculation could be modified to check the effect 

of out-of-, me exchange by working in three dimensions with the addition of a 

substrate potential varying in the direction normal to the plane. The effect of 

interlayer exchange could also be measured, although exchange with the liquid layer 

would necessarily involve some sort of average over different starting points for the 

particles whose path begins in the liquid. 
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CHAPTER 8 

Conclusion 

The central results of this work are summarized in Table 6.9: 1 2 = 15.9 ± .8, 

1 3 = 16.4±1.4 and /4 = 13.8±1.5. These results are systematically low as compared 

with the most recent values of Ceperley and Jacucci,1 which are 12 = 19.0 ± .4, 

13 = 19.9 ± .4 and 14 = 17. 7 ± .4. They ran on systems consisting of 54 and 128 

particles, and so it is possible that the difference is a finite-size effect. The small 

systems give a greater contribution to our weighted averages because of their smaller 

error bars. The average values for 12 and 1 3 for the largest system sizes are both 

near 20, but the bars are too large to make any reasonable conclusion from that 

fact. 

Experimentally measured Gruneisen parameters are consistent with I = 18 ± 

2, which is consistent with both sets of calculated values, although Ceperley and 

Jacucci's are admittedly a bit closer. It is also important to point out that the 

physical observables are combinations of all possible types of exchange and don't 

say anything about the individual Gruneisen parameters. It is possible, for example, 

that some higher exchange is having an effect. 

To improve our results at the larger system sizes could resolve the issue of 

consistency, but would require significantly more computing time. Estimates of the 
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amount of time needed will be given in Section 8.2, but first a brief discussion of 

Ceperley and J acucci 's clever method for calculating the exchange energies will be 

given. 

8.1 The Method of Ceperley and Jacucci 

Starting with Eqn. (3.42), 

Zp 
Zo = tanh(,BJ p + K), (8.1) 

the idea2 is to consider Monte Carlo moves that take configurations between the ex­

changing and the nonexchanging systems. This is done by clipping out a segment of 

timeslices somewhere in the path of the particles, which participate in the exchange 

(for either the exchanging or nonexchanging configuration). The different ends of 

the paths that are left "dangling" are then reidentified, and using the techniques 

described in Section 4.1 b (with a more accurate Gaussian representation for the 

density matrix), a new sequence of particle positions is threaded between the dan­

gling ends, which have been reidentified as belonging to the same particle. In this 

way, a path with an exchanging geometry can be mapped into a path with a nonex­

changing geometry, and a path with a nonexchanging geometry can be mapped into 

a path with an exchanging geometry. 

With a Monte Carlo move that takes the system between configurations, the 

ratio of the density matrix for the exchanging system divided by the density matrix 

for the nonexchanging configuration is just the ratio of the number of Monte Carlo 

steps the system spends in the exchanging system divided by the number of steps 

it spends in the nonexchanging system. In fact, the moves need not be made from 

one system to the other. It is sufficient to run a system of each type and measure 

the rates at which each one hops to the other. If fp is the fraction of the Monte 

Carlo hops from the exchanging configuration to the nonexchanging configuration, 

which are successful, and / 0 is the successful fraction going in the other direction, 

Zp fo 
Zo - fp. (8.3) 
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One limitation of this method is that as the exchange energies decrease, the 

overlap between the Gaussian probability distributions, used to map between the 

two systems, goes to zero. This reflects the fact that for smaller exchange rates, more 

particles participate in the exchange and hence reconnecting only the exchanging 

particles becomes a poorer way to move from a nonexchanging to an exchanging 

configuration. On the other hand, the methods developed in this work will do better 

in the high-density regions where the Gruneisen parameters are larger (and hence 

the relative error is less). Larger systems may have to be used, but the observable 

grows only linearly with computing time. Hence, where their method is infeasible, 

our method will still work. 

8.2 Estimation of Computer Runtimes for Larger Systems 

To estimate the computer run time required to get values of I with error bars 

on the order of one for 54 and 128 particle systems, consider the data for the Monte 

Carlo observable measured in the nonexchanging state for several system sizes as 

listed in Table 8.1. 

System Size Monte Carlo 
Observable 

2 590.0±1.6 

8 2247.0±4.6 

14 3852.0±6.8 

54 12990.0±17.2 

Table 8.1 

The Monte Carlo Observable for the Nonexchanging State. 

The error bars can be seen to scale approximately with system size (actually, 

there is a slight decrease proportionally). The problem is that the Gruneisen pa­

rameters, which are calculated as the difference of two such numbers, are essentially 

fixed, while the errors increase with system size. To get an error of approximately 3 
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in the Monte Carlo observable (hence 1in1; see Eqn. (3.45)) requires a reduction 

of 17.2/3~6 in the error. Since the error scales with the total number of measure­

ments, N, as 1/JIV, this reduction in error would require an increase in the runtime 

by a factor of 36. The points quoted in Table 8.1 are all for 750 measurements. The 

54 particle system (for the exchanging and nonexchanging systems) required ap­

proximately 48 hours of runtime on 250 nodes of the NCUBE parallel computer, 

which is roughly 96 hours of nonvectorized Cray XMP cpu time. This implies that 

1700 hours would be required, running on half of the NCUBE (50 days). Doubling 

that time would give the values for both three and four particle exchange, since the 

nonexchanging configuration would not have to be run again. Running on a 128 

particle system and keeping the target error bars fixed would increase the comput­

ing requirements in two ways. Scaling the statistical error with system size, a factor 

of (128/54) 2 = 5.8 would be required to maintain the error bars calculated for the 

54 particle system. Secondly, a factor of 1282 /542 = 5.6 comes from the increase 

in the time required to calculate the interactions between all the particles in the 

system during update and measurement phases of the calculation. The total factor 

is therefore a factor of 32. Given these large estimates, more computing power is 

required to make calculations involving these larger systems feasible. 

One way to achieve a speedup of approximately 3-4 is to vectorize the code for 

the Cray. The next generation of parallel computers, which will be available in the 

next couple of years, will have nodes that run at approximately 10 Mflops (million 

floating point instructions per second), as compared with a maximum Cray speed 

for the program of approximately 40 Mflops if it is vectorized. 64 nodes of such 

a parallel computer would yield on the order of 500 Mfl.ops, with no vectorization 

required. This is a factor of 10 faster that the whole NCUBE running at 100 % 

efficiency. 

8.3 The Future 

As mentioned above, the program can be vectorized. This would be achieved 

by performing a vector move of all timeslices in the path at once. One idea that 
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would improve the vectorization and the efficiency of the parallel algorithm is to 

allow for the simultaneous threading of different segments within one thread. As 

an example, consider seven-particle threading. The new position for the middle 

timeslice must be generated first, but once that is complete, the generation of the 

two three-particle subthreads can proceed simultaneously. 

Although our method doesn't scale well to large systems, it is still possible 

to extract interesting physics when smaller systems are studied with present com­

puting speeds. For example, even at 3.2 A, nearest-neighbor separations in the 

two-dimensional system studied in Chapter 7, no finite-system dependence was de­

tected (within admittedly large error bars) in going from updating only 6 particles 

in an 18 particle system to updating all 18 particles. This nearest-neighbor spacing 

in the 3 dimensional system would correspond to a molar volume of 15.2 cm3 /mole, 

quite a high density. As mentioned at the end of Chapter 7, including a substrate 

potential and removing the two-dimensional constraint for the system discussed 

there would provide an interesting comparison with experiment. 

The observable used to measure the Gruneisen parameter for the hard-sphere 

model has much smaller error bars than for the 3 He observable, and the run time 

is faster for this system because of a much simple expression for the two-particle 

density matrix. It is interesting to note that for the small systems consisting of 

the exchanging group of particles being updated in a system of 16 particles, the 

Gruneisen parameters (see Table 5.2) are of the same magnitude as for 3 He. The 

hard-sp,here model might be useful as a complement to simple analytical models 

to provide rough comparisons of how I varies as compared with predictions of the 

analytical models. Another interesting, although computationally more intensive, 

possibility is to compare carefully the results of large ( 54 particle) hard-sphere 

systems with those for solid 3 He to try to extract which features of the 3 He system 

are from hard-core effects and which features are a more complicated function of 

the interaction potential. 
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Appendix A 

Parallel Programming Issues 

The opportunity to participate in the emerging field of parallel computing has 

been interesting and exciting. The programming model used to port the program 

listed in Appendix C to a parallel machine has been developed in the last couple of 

years at Caltech, and I have been lucky to have participated in its development. This 

appendix will first describe this programming model, which is closely related to the 

Cubix 1/0 system. 1 Next, a description of a subset of the Cros III communication 

system1 will precede a discussion of the algorithm used to implement the parallel 

Monte Carlo program. 

One note before continuing is in order. The Cubix 1/0 system and the Cros 

III communication system work well only for programs written in a synchronous 

fashion. Thus whenever one node (processor) of the parallel computer writes to 

another node, that other node must read the message before the two nodes continue. 

This means that each processor must be given a roughly equal amount of work, or 

many nodes will sit idle waiting for the node with more work to catch up. Hence, it 

is said that the programming model described below is useful for regular problems. 

A.1 A Powerful Parallel Programming Model for Regular Problems 
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Before discussing the Cubix programming model, a schematic description of 

typical parallel computing hardware will be given, followed by a brief discussion of 

a historical programming model for parallel computing (still held by many). 

Most parallel computers consist of a host computer, with an attached array 

of computers that provide the parallel computing facility. The host is a multi­

user computer with an advanced operating system and attached peripherals such as 

diskdrives, tapedrives, network interfaces, etc. Programs to be run on the array are 

downloaded from the host, and output from the array typically must go through 

the host. (There are parallel disk systems on some machines such as the NCUBE 

parallel computer which are attached directly to the array.) The individual nodes 

of the array are typically much simpler than the host, often having no memory 

protection and less memory than a typical multi-user computer. 

The historical model presented here for comparison is often referred to as the 

80 /20 picture, where 80% of the code making up a parallel program resides on the 

sequential host computer, and 20% resides on the array of parallel computers. The 

program for the host contains most of the code, including 1/0, user interface, etc. 

The second part that runs on the array, contains only the computationally intensive 

parts of the program and the communication necessary for reading data into the 

cube and writing it out. The program flow starts in the host program. It runs 

until it reaches a section involving a large amount of computation. At that point 

a request is sent to the array (including data and whatever else is needed) for the 

large computation to be done. The host program then reads the answer from the 

array when the computation is complete. 

On the face of it, this sounds like quite a reasonable approach to take, but 

it has inherent difficulties that hobble the efficient development of new programs, 

and furthermore, give no hope at all that such a program could ever be simply 

ported, either to or from a sequential computer. The largest problem for new 

program development is that host-array communications, which are quite similar 

from program to program, must be developed anew each time a program is written. 

Porting working code is even worse, since the first thing that must be done is 
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to rip the program into two pieces and insert communication calls into the two 

pieces. Any attempt to debug the array program involves the further introduction 

of communication in both the host and the node programs. 

The key to the Cubix programming model is that only one program is written, 

and it runs on the array. Cubix is made up of a universal program that runs on the 

host, and a library of 1/0 subroutines, which may be called from the array program. 

The 1/0 subroutines make the standard C (or Fortran) 1/0 facilities, which are 

actually on the host, appear to be available directly on the array. This natural 

way of standardizing host node communication has the enormous advantage that a 

program that runs on a sequential computer can be compiled and run on one node 

of the array with no modification. The process of parallelization then consists of 

allowing all of the nodes to run the program with the same parameters in sections 

of the code that can't be parallelized. When a part of the program that can be 

parallelized is reached, each node does its bit of the work (this is usually achieved 

by modifying the limits in loops which are summed over in the calculation), after 

which the results are combined and the program continues in a sequential manner. 

There is one caveat to be made here. If the hardware making up the nodes is 

not completely reliable, occasionally some node might calculate a different answer in 

a sequential section of the program, where all of the nodes are relied upon to give the 

same answer. This is mentioned here because the NCUBE parallel computer, used 

as the primary computer for this work, has this feature, and extra communication 

had to be added to compensate. With reasonably designed hardware, this caveat 

would not be an issue. 

Caveat aside, when a program is to be ported to a parallel machine, the Cu­

bix programming model decreases the time to develop, port and modify parallel 

programs by at least a factor of 20 based on practical experience gained in the 

Caltech Concurrent Computation Project. It also allows programs of much greater 

complexity to be developed than would otherwise be possible. 

Before discussing the specific issues involved in the parallelization of the pro­

gram used to calculate the Gruneisen parameters for exchange, the communication 
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routines used (a subset of Cros III) 1 will be described. The first routines described 

are used to provide transparently a mapping of the array connection topology onto 

a grid suitable for the parallel decomposition of the problem being solved. They are 

gridinit( griddim,num), 

grid coo rd( proc, coo rd), 

gridchan(proc,dir,sign). 

Gridinit initializes a griddim dimensional mesh. Num is an array passed to gridinit 

that has griddim elements, each giving the size of one dimension of the mesh. All 

nodes call gridinit at the beginning of the program. Gridcoord returns the mesh 

coordinates in the griddim dimensional array coord for node number proc. Gridchan 

returns the channel mask which node proc must use to communicate with the node 

connected to it in the di,mension dir. There are two processors connected in each 

dimension, so if sign=-1, it is the minus dir direction, and if sign=l, it is the plus 

dir direction. 

Once the communication mesh (which is periodic in each of the dimensions) is 

set up, the following communication routines may be used. One of the most useful 

routines (and primarily used in the program listed in Appendix C) is 

cshift( inbuf, in mask, insz, outbuf, outmask, outsz ). 

It reads insz bytes from channel inmask into the buffer pointed to by inbuf, and 

writes outsz bytes to channel outmask from the buffer pointed to by outbuf. 

The other routines used for communication between individual nodes are cread 

and cwrite. 

cread(buf, in mask, 0, nbytes) 

reads nybtes from channel inmask into the buffer pointed to by buf. The third 

argument allows for a simultaneous read, but this will not be described here. The 

function complementary to cread is 

cwrite(buf, outmask, nbytes ), 

which '-.ATites nbytes from the buffer pointed to by buf, to the channel outmask. 

The final two commands are used to deal with more global communication than 
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the previously described commands. The first is 

broadca8t(buf,8rc, ma3k, nbyte8 }, 

which causes nybte8 bytes under the pointer buf on node 3re to be placed under the 

pointer buf on all the other nodes, when ma8k is set equal to the total number of 

nodes minus one. Different values of ma8k can be used to broadcast to different 

subsets of the cube, but that won't be discussed here. Finally, the command 

eombine(buf,fune, 3Z, nitem8} 

is used to combine the nitem8 different items (each of size 3Z, stored under the pointer 

buf on each node) according to the function June. The combined result is placed 

under the pointer buf on each node. For example, consider the case where buf is the 

pointer to a floating point number, so that sz = sizeof(f loat) and nitems = 1. If 

June adds two floating point numbers, each node will end up with the sum of the 

floating point numbers stored under buf from all the processors. 

A.2 Implementing a Portable Parallel Program 

The program which calculates the Gruneisen parameters was ported from a 

sequential computer. Currently, with the change of one compiler switch, it can run 

on either a parallel or a sequential computer, including a 500 node N cube pa'rallel 

computer, an Elxsi 6400, and a Cray XMP. The program won't vectorize on the 

Cray as currently written, but it appears to be possible to do so while keeping the 

ability to run on the NCUBE. 

There are two sorts of parallelism that can be exploited in the Monte Carlo 

algorithm described in Chapters 4 and 5. A two-dimensional communication mesh 

is used to take advantage of them (Fig 28). The first sort of parallelism comes from 

the fact that timeslices not adjacent to each other can be updated simultaneously. 

This fact is used to divide the path among as many nodes as possible. This is 

the most efficient sort of parallelism because during the update of one thread, no 

communication in the time direction is necessary. Consider the case where nP 

particles are being threaded. Each node in the time directions has m( nP + 1) + 1 

timeslices of the path. Typically, m=l, but it doesn't have to be. Each set of 
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np + 1 timeslices corresponds to the first, fixed timeslice and nP timeslices which are 

threaded in. The position of the last fixed timeslice for each thread is identical to 

the first, fixed timeslice of the next thread. If the next thread is on the next node 

in the time direction, two copies of that fixed timeslice are kept, one in each node. 

To make a connection with the program in Appendix C, the first and last timeslice 

in each node are stored in t.Lrange[O] and t.Lrange[l], respectively. As mentioned 

above, t.Lrange[l] in one node is equal to ts_range[O] in the next node in the time 

direction. The typical number of timeslices used for the calculations of Chapter 6 is 

128+1. Therefore, for the value of nP = 7, at most 16 nodes can be used in the time 

direction. This parallelism can be seen in Appendix C in the function update_thr(). 

After each update made as described above, each node updates a slightly dif­

ferent portion of the path using a new set of threads, beginning with the one that 

has fixed the initial fixed timeslice at ts_range[O] + ( np/2 + 1 ), and ending with 

the one that has its final fixed timeslice at ts_range[l J + ( np/2 + 1) (The very last 

thread described in this way goes off the end of the path and so it isn't updated.). 

This guarantees that the fixed end points for the update described above are in the 

middle of the new threads and therefore get updated. Before this shifted updated 

can occur, the timeslices from ts_range[l] to ts_range[O] + (np/2+1) in each pro­

cessor must be read from the processor with a time mesh index one greater than 

its own. Similarly, after this update, the modified data are shifted back so that the 

first type of update can be performed with a consistent path. 

The second sort of parallelism that may be extracted involves interparticle in­

teractions within each timeslice. More than one particle per timeslice may not be 

updated simultaneously because of the long-range nature of the interaction poten­

tial, but when the pairwise interactions between one particle and all of the other 

particles in the system are calculated, the work may be divided between several pro­

cessors, and the results combined at the end (see the function S() in the file mov.c 

in Appendix C). This is achieved by using the spatial coordinate of the processors in 

the two-dimensional, communication mesh ((pcoord[O],pcoord[l]) = (time,space)). 

Consider the case where there are N 8 nodes in the spatial direction, numbered from 
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0 to Na - 1. Node n 8 will calculate the interactions with particles n 8 , n 8 + N 8 , 

n 8 + 2N8 , etc. In this way all pairwise interactions are calculated. Both forms of 

parallelism may be seen in the subroutine obs() in Appendix C. 
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Appendix B 

Random Numbers 

B.1 Linear Congruential 

A linear congruential pseudorandom number generator is used for the programs 

written for this work and has been setup to work when the programs are compiled 

for either a parallel computer 1 or for a sequential computer. 

The basic algorithm is defined by 

Rn+ I = ( aRn + b )modm, (B.l) 

where {Rn} defines a sequence of pseudorandom numbers. The values for a,b and 

m have been taken from the ANSI standard publication .2 

a= 1103515245 

b = 12345 

m = 2a2 

Floating point numbers on [0,1) are derived from the integer numbers Rn by 

dividing by the modulus m, 

f 
_Rn 

n - . 
m 

(B.2) 
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The way this algorithm is used on a parallel computer is by noting that a 

relation can be written down that gives then+ kth random number in terms of the 

nth, 

Rn+k = AkRn +Bk, (B.3) 

with 

Ak = ( ak )modm (B.4) 

and t 

k-1 

Bk= (b I:)modm. (B.5) 
i=O 

The forms for Ak and Bk are easily derived by repeatedly substituting the expression 

for Rj, in terms of Rj_ 1 , into the recursion relation of Eqn. (B.1 ). 

B.2 The Polar Method of Producing Normal Random Numbers 

This algorithm comes from Knuth, 2 who says, "The polar method is quite slow, 

but it has essentially perfect accuracy ... " It uses a pseudorandom number generator 

such as the one described in Section B.l to generate two random numbers that are 

scaled to the range [-1,1). Call these numbers ri and r 2 • Defining 

(B.6) 

it checks to see whether S < 1 and, if not, generates two more numbers. This 

procedure is repeated until the two random numbers satisfy the requisite condition. 

Then defining an intermediate value 

w = V(-2ln(s)/s), (B.7) 

two independent normal random numbers distibuted according to 

(B.8) 

are given by 

(B.9) 

t The expression for B in the reference is in error, but Eqn. (B.5) gives the 

correct expression. 
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Appendix C 

Source Code 

The following is a listing of the important sections of the source code used to 

produce the results for the Gruneisen paramters for 3 He. For the sake of brevity, 

1/0, debugging, and the user interface code have not been reproduced here. Before 

the code is a listing of the subroutine names in the order in which they appear, with 

a brief explaination of the function of their function is. 

setup.c:setup() /• Setup System Parameters •/ 
setup.c:pot_init() /• Initialize Density Matrix •/ 
setup.c:int samevec(x1,x2) 
setup.c:int is_in(x1,rad,pn,ts,iarr,sw) 

par.c:par_setup() /• Setup parallel program parameters •/ 

layer.c:layer_setup(ex_type) /• Setup shell structure to update subsystems •/ 

obs.c:struct obsret obs(nlyr,tsmid) /• Calculate observable •/ 
obs.c:float poten(nlyr,tsmid) /• Calculate Potential energy using V(r) •/ 
obs.c:float eff_poten(nlyr,tsmid) /• Calculate V_eff(r) = dU/d(eps) •/ 

update.c:update_thr(num,nlyr) /• Do threading update •/ 
update.c:update(num,nlyr) /• Do standard Metropolis update •/ 

mov.c:movthr(pn1,ts) /• update one thread •/ 
mov.c:movpar(pn1,ts) /• update one timeslice •/ 
mov.c:float S(xindex,pn1,ts1,ts2) /•Calculate the Changed Part of the Action•/ 
mov.c:int overflow(pn1,ts,parswitch,test) /• Check for hard core overlap •/ 

sbias.c:sbias(pn1,ts1,ts2,bind,choice) /• Calculate bias from V_eff •/ 
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/• loop() calculates the interaction of one particle with the rest of the 
system (see comment above program listing) •/ 
loop.c:float loop(funcp,pass_pn1,pass_ts1,pass_ts2,pass_bind,xx1,xx1p,lpfl) 
loop.c:float S_func() /• Low level calculations •/ 
loop.c:float effpoten_func() 
loop.c:float poten_func() 
loop.c:float obs_func() 
loop.c:float sbias_func() 
loop.c:cvecO() /• Calculate r12 r12p •/ 
loop.c:cvec() /• Calculate r12 r12p and costh •/ 
loop.c:int minO(a,b) 
loop.c:int maxO(a,b) 
loop.c:float amin1(a,b) 

inst.c:int check_inst(extype,retwidth) /• return instanton position and width •/ 
inst.c:plot_inst(extype) /• Print out a listing of instanton values •/ 
inst.c:shift(tsinst,extype) /• Shift the instanton •/ 

init.c:xinit(exnum) /• Initialize a lattice •/ 
init.c:ginit() /• initialize the ground state. 

prand.c:unsigned int seedgt() 
prand.c:pranset(seed) 
prand.c:float pranf() 
prand.c:float normal() 
prand.c:backup_seed() 

u.c:float uO(bind) /• Returns End Point Approximation to U •/ 
u.c:float u(bind) /• Returns U •/ 
u.c:float uprime(bind) /• Returns V_eff = dU/d(eps) •/ 
u.c:getd() /• Load two-particle density matrix parameters •/ 
u.c:interp() /• Interpolate between nonlinear mesh points •/ 

/••• parms.h ••• Sean Callahan •/ 

#define DIM 3 
ldefine NPSD 3 

ldefine NP 54 

ldefine NT 128 

/• The dimension of the space •/ 
/• NPSD = the number of particles on one edge of the 

simple cubic lattice 
•I 

/• NP = 2•NPSD••3 is the total number of particles•/ 

/• NT is the total number of timeslices including the 
first and last fixed ones 
•/ 

#define DCUB 4.304 /• this is the spacing(in Angstroms) of the simple 
cubic lattice. Nearest-neighbor spacing is 
sqrt(3•(DCUB/2)••2). 
Molar specific volume is related to DCUB by 
V_M = .301 * DCUB~3. V_M(4.304) = 24.0 cm~3/mole 

V_M 24 23.5 23 22.5 22 21.5 21 20.5 20 
DCUB 4.304 4.274 4.243 4.212 4.181 4.149 4.117 4.084 4.050 

•/ 

#define CUTOFF 5.0 /• This cutoff is for calculation of the bias. 
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Only hard-core interactions are significant •/ 

#define RMIN 1.55 /•hard core cutoff •/ 
#define RMIN2 2.4336 /• (RMIN+DELTA)"2 •/ 

#define LAM 16.0802 /• This is h_bar squared over m (mass of HE 3) in 
units where distance is measured in units of 
Angstroms and energy is measured in 1K(k_Boltzman). 
•I 

#define NBETA 6 /• the number of values of beta for which the two 
particle density matrix has been tabulated 
•/ 

#define BIND_OFS 1 /• Gives the offset in the U() array of DBETA •/ 
#define DBETA .00625 /• the spacing between timeslices of the lattice 

•I 

#define NDIM 70 /• the number of mesh points for the two particle 
density matrix. 
•/ 

#define DELTA .001 I* delta for calculating gradients •/ 

#define NINDEX 2 /* 0 - 1 particle threading; 1 - 3 thr; 2 - 7 thr; •/ 

I• 
edge_sz - the size of one edge of the unit volume ( = NPSD•DCUB ) 
•I 

extern float edge_sz[3],hedge_sz[3]; 
extern float x[NT][NP][3],xthr[NT][3]; 
extern int nmov[5]; 
extern float ex; 
extern int ip; 
extern int try,acc1,acc2,sphov; 
extern float r12,r12p,costh; 

/• Parallel variables •/ 
extern int pcoord[2],tmc[2],tm[2],sm[2]; 
extern int gdim[2]; 
extern int cell_sz[2],nt_sz,pos_sz[2],szpnd,ex_sz; 
ext,ern int ts_range [2]; 

extern int upts; 
extern int downts; 

#define NLAYER 4 
extern int layer[NP],layer_ind[NLAYER+2] ,crossref[NP]; 
extern int layer_ofs[NP][3]; 
extern float rlayer[4][NLAYER - 1]; 
extern int xcon[4] [6][2] ,ts_size; 

float loop(),S_func(),sbias_func(),obs_func(); 

struct obsret { 
float KE; 
float PE; 
float KE_old; 



} ; 

/••• setup.c *** 
#include <math.h> 
#include "parms.h" 
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Sean Callahan •/ 

/• Note that exchange type 4 is only correct here in two dimensions. For the 
three-dimensional case the correct values are set in setup() 

•/ 
int xcon[4][6][2] = { 

0,1 • 1,0 • -1,-1 • -1,-1 • -1,-1 ,-1,-1 
0,2 • 2,0 • -1,-1 • -1,-1 • -1,-1 ,-1,-1 
0,2 • 1,0 • 2,1 • -1,-1 • -1,-1 ,-1,-1 • 
0,2 • 2,3 . 3,1 . 1,0 . -1,-1 ,-1,-1 

} ; 
float edge_sz[3],hedge_sz[3]; 
int reset_tslim = 21; 

setup() 
{ 

int n,i,a,b,c,d,np; 

ip = 2; 
ex= RMIN•RMIN * (NDIM-1); 
#if DIM==3 
for (n=O;n<DIM;n++) { 

• , 

edge_sz[n] = (float)NPSD•DCUB; /• Edge size of periodic region •/ 
hedge_sz[n] = edge_sz[n]/2.; 

} 

#endif 
#if DIM==2 
edge_sz[O] = (float)NPSD•DCUB; /• Edge size of periodic region in x dir•/ 
hedge_sz[O] = edge_sz[0]/2.; 
edge_sz[1] = (float)NPSD•DCUB•sqrt(3.); /•Edge size in y dir•/ 
hedge_sz[1] = edge_sz[1]/2.; 
edge_sz[2] = O.; hedge_sz[2] = O.; 
#endif 

upts = NT - reset_tslim; 
downts = reset_tslim; 

#if (DIM==2) 
np = 2•NPSD•NPSD; 
#endif 
# i:f ( DIM==3) 
np = 2•NPSD•NPSD•NPSD; 
#endif 
if (np ! =NP) { 

} 

printf("ERROR - Constant NP is inconsistent with constant NPSD\n"); 
printf("np = Y.d,npsd=Y.d\n",np,NPSD); 
abort(30); 

nmov[O] = 1; /• Initialize threading information •/ 
for (i=1;i<5;i++) nmov[i] = nmov[i-1] + (1<<i); 

#if (DIM==3) 
/• intitialize 4 particle nearest-neighbor exchange particle values •/ 



a = 1 · ' b = 2•(NPSD•NPSD 
c = b + 1; 
d = b + 2•NPSD; 

xcon[3] [O] [O] 
xcon[3] [OJ [1J 

xcon[3J [1J [OJ 
xcon [3J [1J [1J 

xcon[3] [2] [O] 
xcon[3J [2J [1J 

xcon [3J [3J [OJ 
xcon[3] [3] [1J 
#endif 

pot_initO; 
par_setup(); 
} 

pot_init() 
{ 

= 
= 

= 
= 

= 
= 

= 
= 
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+ 1); 

a; 
b; 

b· 
' c· 
' 

Cj 

d; 

d· 
' a; 

getd(); /• not bin_getd() for the Cray •/ 
} 

int samevec(x1,x2) 
float x1[3J,x2[3J; 
{ 

} 

int n; 
for (n=O;n<DIM;n++) if (x1[nJ != x2[nJ) return(O); 
return(1); 

int is_in(x1,rad,pn,ts,iarr,sw) 
/• if sw==O 

returns O =>particle (pn,ts) not within rad of x1[J. 

else 

1 => one encarnation of particle (pn,ts) is within rad. It's 
integer offset is in iarr[OJ[0-2J. 

2 =>more than one encarnation ... range of offsets stored in 
iarr [OJ [nJ to iarr [1J [nJ . 

returns O => if not in 
1 => if in with iarr giving offset of closest reflection. 

float x1 [3J ,rad; 
int pn,ts,iarr[2J[3J; 
{ 

float compdist2,compdelta,dist2,rad2,delta[3J; 
int n,flag; 

dist2 = O.; 
rad2 = rad•rad; 
for (n=O;n<DIM;n++) { 

delta[nJ = x[tsJ[pnJ[nJ - x1[nJ; 
iarr [OJ [nJ = 0; 
while (delta[nJ<O. kt delta[n]<=(-hedge_sz[nJ)) { 



} 
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delta[n] += edge_sz[n]; 
iarr[O][n]++; 

while (delta[n]>O. ll delta[n]> hedge_sz[n]) { 
delta[n] -= edge_sz[n]; 
iarr [O] [n] -- ; 

} 

dist2 += delta[n]•delta[n]; 
} 

if (dist2 > rad2) return(O); 
if (sw==1) return(!); 

flag = O; 
for (n=O;n<DIM;n++) { 

compdist2 = dist2 - delta[n]•delta[n]; 
compdelta = delta[n]; 
iarr[1][n] = iarr[O][n]; 
while( 1) { 

compdelta += edge_sz[n]; 
if ((compdist2+compdelta•compdelta) <= rad2) { 

flag = 1; 
iarr [1] [nJ ++; 

} else { 
break; 

} 
} 

compdelta = delta[n]; 
while(!) { 

compdelta -= edge_sz[n]; 
if ((compdist2+compdelta•compdelta) <= rad2) { 

flag = 1; 
iarr [OJ [n]--; 

} else { 
break; 

} 
} 

} 

if (flag) return(2); 
else return(!); 

} 

/••• par.c *** 

#ifdef PAR 
#include <cros.h> 
struct cubenv cubinfo; 
#endif 

#include <stdio.h> 
#include "parms.h" 
#include <math.h> 

int doc; 
int pcoord[2] = {O,O}; 
int ts_range[2] = {O,(NT-1)}; 
int gdim[2] = {1,1}; 

Sean Callahan •/ 
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int tmc[2],tm[2],sm[2],nt_sz,pos_sz[2],szpnd,ex_sz; 

/• Set up the parameters to run on a parallel machine using the Cros 3 
communication system and the Cubix I/O system. 

•/ 
par _setup() { 
#ifdef PAR 

int nsz; 
if (gridinit(2,gdim)==-1) { 

printf("gridinit ERROR\n"); 
abort ( 70); 

} 

cparam(tcubinfo); 
doc = cubinfo.doc; 
/• Set up the two-dimensional grid. •/ 
if (gridcoord(cubinfo.procnum,pcoord)==-1) { 

printf("gridcoord ERROR\n"); 
abort(71); 

} 

/• Get the communication masks for communicating with neighboring nodes •/ 
tmc[O] = tm[O] = gridmask(cubinfo.procnum,0,-1); 
tmc[1] = tm[1] =·gridmask(cubinfo.procnum,0,1); 
sm[O] = gridmask(cubinfo.procnum,1,-1); 
sm[1] = gridmask(cubinfo.procnum,1,1); 

if (pcoord[O]==O) tm[O] = O; /• not periodic in time •/ 
if (pcoord[O]==(gdim[0]-1)) tm[1] = O; 

nsz = nmov[NINDEX]/2 + 1; 
/• The sizes of chunks to communicate must always be that for a 3 vector since 

the data in memory in three vector format (even if DIM!=3) 
•/ 

/• Set up communication sizes 
•/ 

nt_sz = 3•NP•sizeof(float); 
pos_sz[O] = 3•nsz•NP•sizeof(float); 
pos_sz(1] = 3•(nsz+1)•NP•sizeof(float); 
szpnd = (NT-1)/gdim[O]; 
ex_sz = szpnd•3•NP•sizeof(float); 

if ((NT-1)%gdim[O] != 0) { 

} 

printf("ERROR: NT doesn't divide evenly among the nodes\n"); 
printf("NT = Y.d; gdim = Y.d Y.d\n",gdim[O],gdim[1]); 
abort(51); 

/• Make sure the threading works 
•/ 
if ( szpndY.(nmov[NINDEX]+1) != 0) { 

} 

printf("ERROR: # of prtcls/node != int•(nmov[NINDEX]+1)\n"); 
abort(50); 

/• Setup the range of timeslices in this processor •/ 
ts_range[O] = pcoord[O]•szpnd; 
ts_range[1] = ts_range[O] + szpnd; 

#endif 
} 
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/••• layer.c ••• Sean Callahan •/ 

#include <stdio.h> 
#include <math.h> 
#include "parms.h" 

int layer[NP],layer_ind[NLAYER+2],crossref[NP]; 
int layer_ofs[NP][3]; 
float rlayer[4][NLAYER - 1] = { 

4. ,5. ,6 .• 
4. ,5. ,6 .• 
4.5,5.5,6., 
4. ,5. ,6. 

} ; 

/• Set up shells of particles which are within distances in the array 
rlayer[][] of the exchanging region 
•/ 
layer_setup(ex_type) 
int ex_type; 
{ 

int pn,iarr[2][3],i,count,n; 
float xav[3]; 

/• crossref[index] gives the particle number given the layer[pn] number for 
particle pn (i.e. - crossref [layer[pn]] = pn) •/ 

for (pn=O;pn<NP;pn++) crossref[pn] = 256; 

for (n=O;n<DIM;n++) xav[n] = O.; 
count = O; 

/• First do layer 1 of the exchanging set of particles 
•I 
while(xcon[ex_type][count][O] != -1) { 

pn = xcon[ex_type][count][O]; 

} 

for (n=O;n<DIM;n++) xav[n] += x[O][pn][n]; 
layer[count] = pn; 
layer_ofs[count][O] = layer_ofs[count][1] = layer_ofs[count][2] = O; 
crossref[pn] = count; 
count++; 

layer_ind[O] = O; 
layer_ind[1] = count; 

for (n=O;n<DIM;n++) xav[n] /= (float)count; 

/• Search for all the particles within each layer radius, and build the 
layer[] array. layer_ind is the index for each layer which gives 
the starting point for each shell of particles in the layer[] array. 

for (i=O;i<(NLAYER-1);i++) { 

for (pn=O;pn<NP;pn++) { 

if (crossref[pn] != 255) continue; 
if (is_in(xav,rlayer[ex_type][i],pn,0,iarr,1)) { 

layer[count] = pn; 
layer_ofs[count][O] = iarr[O][O]; 
layer_ofs[count] [1] = iarr[0][1]; 
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layer_ofs[count][2] = iarr[0][2]; 
crossref[pn] = count; 
count++; 

} 

} 

layer_ind[i+2] = count; 

} 

/• The last layer gets the rest of the particles 
•/ 
for (pn=O;pn<NP;pn++) { 

} 

if (crossref[pn] != 255) continue; 
is_in(xav,100.,pn,0,iarr,1); 
layer[count] = pn; 
crossref[pn] = count; 
layer_ofs[count][O] = iarr[O][O]; 
layer_ofs[count][1] = iarr[0][1]; 
layer_ofs[count][2] = iarr[0][2]; 
count++; 

if (count != NP) { 
printf("ERR:count = Y.d should be = Y.d\n",count,NP-1); 
abort(120); 

} 

layer_ind[NLAYER+1] = NP; 

} 

/••• obs.c *** 
Measure observable 

Sean Callahan •/ 

obs = 1/(LAM•DBETA)•(x-xprime)A2 + Sum over all pairs (j>i) of 
{ r_ij dU_ij/dr_ij + r_ijprime dU_ij/dr_ijprime } 

#include <stdio.h> 
#include <math.h> 
#include "parms.h" 

#ifdef FAST 
#define cshift fshift 
#endif 

int ts_size=30; /• This give the default distance around the instanton 
to measure 

/• nlyr gives the layer number for the shell of particles to measure and 
tsmid is the position of the instanton 

•/ 
struct obsret obs(nlyr,tsmid) 
int nlyr,tsmid; 
{ 
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float cnst,x1[3],x1p[3]; 
int ts,pn1,n,bind,index,count,lowts,hights; 
struct obsret retobs,com[2]; 
int sw; 
float in,out; 

out = 3.1415; 

lowts = tsmid - ts_size; 
hights = tsmid + ts_size; 
cnst = 1/(DBETA•LAM); 
com[O].KE=com[O].KE_old=com[O].PE=O.; 
com[1].KE=com[1].KE_old=com[1].PE=O.; 
retobs.KE_old = 0.; 
retobs.KE = O.; 
retobs.PE = O.; 
bind = O; /• use smallest timeslice •/ 

for (ts=ts_range[O];ts<ts_range[1];ts++) { 
if (ts<lowts 11 ts> hights) continue; 
if (ts==O) continue; 
for (count=O;count<layer_ind[nlyr];count++) { 

pn1 = iayer[count]; 
for (n=O;n<DIM;n++) { /•set xi and add in free-particle part•/ 

x1[n] = x[ts][pn1][n]; 
x1p[n] = x[ts+1][pn1][n]; 

/• The Kinetic term is calculated using a split-point approximation 
(see Creutz prob. 3 Chpt. 1) instead of the standard divergent 
finite difference method •/ 

if (pcoord[1]==0) retobs.KE_old += 
cnst•(x1[n]-x1p[n])•(x1[n]-x[ts-1][pn1][n]); 

/• and with the standard method •/ 

} 
} 

} 

if (pcoord[1]==0) retobs.KE += 
cnst•(x1[n]-x1p[n])•(x1[n]-x1p[n]); 

retobs.PE += loop(obs_func,count,ts,ts+1,bind,x1,x1p,nlyr); 

#ifdef PAR /• Communicate results •/ 
com[O] = retobs; 
SW = 1; 
for (index=O;index<(gdim[1]-1);index++) { 

cshift(tcom[sw],sm[O],sizeof(struct obsret), 

} 

lcom[(sw+1)%2],sm[1],sizeof(struct obsret)); 
retobs.KE_old += com[sw].KE_old; 
retobs.KE += com[sw].KE; 
retobs.PE += com[sw].PE; 
SW ~= 1; 

com[O] = retobs; 
SW = 1; 
for (index=O;index<(gdim[0]-1);index++) { 

cshift(lcom[sw],tmc[1],sizeof(struct obsret), 
tcom[(sw+1)%2],tmc[O],sizeof(struct obsret)); 

retobs.KE_old += com[sw].KE_old; 
retobs.KE += com[sw].KE; 
retobs.PE += com[sw].PE; 



SW ~: 1; 
in = 0.; 
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cshift(lin,tmc[O] ,sizeof(float),lout,tmc[1],sizeof(float)); 
if (in!=out) abort(915); 

} 

#endif 

return(retobs); 
} 

float poten(nlyr,tsmid) 
int nlyr,tsmid; 
{ 

float cnst,x1[3],x1p[3],poten_func(); 
int ts,pn1,n,bind,index,count,lowts,hights; 
float retobs,com[2]; 
int sv; 
float in,out; 

out = 3.1415; 

lowts = tsmid - ts_size; 
bights = tsmid +·ts_size; 
cnst = 1/(DBETA•LAM); 
com[O]=O.; com[1]=0.; 
retobs = O.; 
bind = O; /• use smallest timeslice •/ 

for (ts=ts_range[O];ts<ts_range[1];ts++) { 
if (ts<lowts I I ts > bights) continue; 

} 

for (count=O;count<layer_ind[nlyr];count++) { 
pn1 = layer[count]; 

} 

for (n=O;n<DIM;n++) { /•set x1 and add in free-particle part•/ 
x1[n] = x[ts][pn1][n]; 
x1p[n] = x[ts+1][pn1][n]; 

} 

retobs += loop(poten_func,count,ts,ts+1,bind,x1,x1p,nlyr); 

#ifdef PAR 
com[O] = retobs; 
SW : 1; 
for (index=O;index<(gdim[1]-1);index++) { 

cshift(lcom[sw],sm[O],sizeof(float), 
lcom[(sw+1)Y.2],sm[1],sizeof(float)); 

retobs += com[sw]; 
SW ~: 1; 

} 

com[O] = retobs; 
SW = 1; 
for (index=O;index<(gdim[0]-1);index++) { 

cshift(lcom[sw],tmc[1],sizeof(float), 
lcom[(sw+1)Y.2],tmc[O],sizeof(float)); 

retobs += com[sw]; 
SW ~: 1; 

in = 0.; 
cshift(lin,tmc[O] ,sizeof(float),lout,tmc[1],sizeof(float)); 
if (in!=out) abort(915); 
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} 

#endif 

return(retobs); 
} 

float eff_poten(nlyr,tsmid) 
int nlyr,tsmid; 
{ 

float cnst,x1[3],x1p[3],effpoten_func(); 
int ts,pn1,n,bind,index,count,lowts,hights; 
float retobs,com[2]; 
int SW j 

float in,out; 

out = 3. 1415; 

lowts = tsmid - ts_size; 
hights = tsmid + ts_size; 
cnst = 1/(DBETA•LAM); 
com[O]=O.; com[1]=0.; 
retobs = 0.; 
bind= O; /•use.smallest timeslice •/ 

for (ts=ts_range[O];ts<ts_range[1];ts++) { 
if (ts<lowts II ts> hights) continue; 

} 

for (count=O;count<layer_ind[nlyr];count++) { 
pn1 = layer[count]; 

} 

for (n=O;n<DIM;n++) { /•set x1 and add in free-particle part•/ 
x1[n] = x[ts][pn1][n]; 
x1p[n] = x[ts+1] [pn1] [n]; 

} 
retobs += loop(effpoten_func,count,ts,ts+1,bind,x1,x1p,nlyr); 

#ifdef PAR 
com[O] = retobs; 
SW : 1; 
for (index=O;index<(gdim[1]-1);index++) { 

cshift(tcom[sw],sm[O],sizeof(float), 
tcom[(sw+1)%2],sm[1],sizeof(float)); 

retobs += com[sw]; 
SW A= 1; 

} 

com [O] = retobs; 
SW = 1; 
for (index=O;index<(gdim[0]-1);index++) { 

cshift(tcom[sw],tmc[1],sizeof(float), 

} 

#endif 

tcom[(sw+1)%2],tmc[O],sizeof(float)); 
retobs += com[sw]; 
SW A= 1; 
in = 0.; 
cshift(tin,tmc[O],sizeof(float),tout,tmc[1],sizeof(float)); 
if (in!=out) abort(915); 

return(retobs); 
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} 

/••• update.c *** Sean Callahan •/ 

#include "parms.h" 
#include <math.h> 
#include <stdio.h> 

int counter = O; /• Particles outside nlyr get updated once in 10 updates•/ 
extern int updateall; 

/• Do num biased updates for particles within layer nlyr (note: updateall 
was set equal to 0 for all the runs performed •/ 
update_thr(num,nlyr) 
int num,nlyr; 
{ 

int hofs,count,ts,ofs,j,ulim1,llim2,ulim2,uplim,min0(); 

hofs = nmov[NINDEX]/2 + 1; 
ofs = nmov[NINDEX]+1; 

ulim1 = layer_ind[nlyr]; 
if (nlyr == (NLAYER+1)) { 

ulim2 = llim2 = NP; 
} else { 

} 

llim2 = ulim1; 
ulim2 = NP; 

for (j=O;j<num;j++) { 

for (count=O;count<ulim1;count++) { 

} 

for (ts=ts_range[O] ;(ts+ofs)<=ts_range[1];ts+=ofs) { 
movthr((int)layer[count],ts); 

} 

if (counter==9 tt updateall) { 

} 

for (count=llim2;count<ulim2;count++) { 

} 

for (ts=ts_range[O];(ts+ofs)<=ts_range[1];ts+=ofs) { 
movthr((int)layer[count] ,ts); 

} 

#ifdef PAR 

#endif 

if 

} 

for 

} 

(tm[O]!=O I I tm[1]!=0) { 
cshift(tx[ts_range[1]+1][0][0],tm[1] ,pos_sz[O], 

tx[ts_range[0]+1][0][0],tm[O],pos_sz[O]); 

(count=O;count<ulim1;count++) { 
uplim = minO((NT-1),(ts_range[1]+hofs)); 
for (ts=ts_range[O]+hofs;(ts+ofs)<=uplim;ts+=ofs) { 

movthr((int)layer[count],ts); 
} 

if (counter==9 tt updateall) { 
for (count=llim2;count<ulim2;count++) { 



} 
} 
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uplim = minO((NT-1),(ts_range[1]+hofs)); 
for (ts=ts_range[O]+hofs;(ts+ofs)<=uplim;ts+=ofs) { 

movthr((int)layer[count],ts); 
} 

counter = (counter + 1)%10; 

#ifdef PAR 
if (tm[O]!=O I I tm[1] !=O) { 

cshift(lx[ts_range[O]][O][O],tm[O],pos_sz[1], 
lx[ts_range[1]][0][0],tm[1],pos_sz[1]); 

} 
#endif 

} 
} 

update(num,nlyr) 
int num,nlyr; 
{ 

int count,ts,j,k,ulim1,llim2,lowlim; 

ulim1 = layer_ind[nlyr]; 
if (nlyr == (NLAYER+1)) llim2 = NP; 
else llim2 = ulim1; 

if (pcoord[O]==O) lowlim = ts_range[O] + 1; 
else lowlim = ts_range[O]; 

for (j=O;j<num;j++) { 

for (k=O;k<6;k++) { 

} 

for (count=O;count<ulim1;count++) { 

} 

for (ts=lowlim;ts<ts_range[1];ts++) { 
movpar((int)layer[count],ts); 

} 

if (updateall) { 

} 

for (count=llim2;count<NP;count++) { 

} 

for (ts=lowlim;ts<ts_range[1];ts++) { 
movpar((int)layer[count] ,ts); 

} 

#ifdef PAR 

#endif 

} 
} 

if (tm[O] !=O I I tm[1] !=O) { 
cshift(lx[ts_range[1]][0][0],tm[1],nt_sz, 

lx[ts_range[O]][O][O],tm[O],nt_sz); 
} 
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/*** mov.c *** Sean Callahan */ 

#include <stdio.h> 
#include <math.h> 
#include "parms.h" 

extern float movsz; 
extern int try_ov; 

float rets[3]; /•This is the place where bias vector is returned•/ 

/* Make biased move */ 
movthr(pn1,ts) 
int pn1 ,ts; 
{ 

int sep,ibeta,i,j,ts1,ts2,im,n,lim,ofs,bind,overflow(),ovflag,index; 
float sig,rbar_old[3],rbar_new[3],normal(),beta,dStr,dS,S(),pranf(); 
float rets_old[3],rets_new[3]; 

ofs = nmov[NINDEX] + 1; 
dStr = 0.; 

/• Set up the endpoints of the new thread */ 
for (n=O;n<DIM;n++) { 

} 

xthr[ts] [n] = x[ts] [pn1] [n]; 
xthr[ts+ofs][n] = x[ts+ofs][pn1][n]; 

/•Generate the thread, storing it in the array xthr[](]. */ 

lim = 1; 
for (i=NINDEX;i>=O;i--) { 

sep = nmov[i]/2 + 1; 
ts1 = ts; 
im = ts1 + sep; 
ts2 = im + sep; 
for (j=O;j<lim;j++) { 

ibeta = ts2 - ts1; 
beta = DBETA•ibeta; 

/• Each iteration of this loop threads in 
one particle. •/ 

sig = sqrt(beta•LAM•.25); 
bind = i + 1; /* used as an index into density matrix array •/ 

/• Calculate the interaction part of the bias for the old and the 
new thread. 

•/ 
sbias(pn1,ts1,ts2,bind,1); 
for (n=O;n<DIM;n++) rets_new[n] = rets[n]; 
sbias(pn1,ts1,ts2,bind,O); 
for (n=O;n<DIM;n++) rets_old[n] = rets[n]; 

for (n=O;n<DIM;n++) { 
rbar_new[n] = .5•(xthr[ts1][n]+xthr[ts2][n]) 

+ .25•beta•rets_new[n] ; 
rbar_old[n] = .5•(x[ts1][pn1][n]+x[ts2][pn1][n]) 

+ .25•beta•rets_old[n] ; 
xthr[im][n] = sig•normal() + rbar_new(n]; 
dStr += ( pow((x[im][pn1][n] - rbar_old[n]),2.) -
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pow((xthr[im][n] - rbar_new[n]),2.) )/(2.•sig•sig); 
} 

#ifdef PAR /• Communicate the result if this is a parallel computer. 

•I 

This fixed a hardware bug which very infrequently caused the 
results to be different for different nodes of the NCUBE 
hypercube 

for (index=O;index<(gdim[1]-1);index++) { 

} 

#endif 

} 

if (pcoord[1]==index) 
cwrite(txthr[im][n],sm[1],DIM•sizeof(float)); 

if (pcoord[1]==(index+1)) 

} 

lim = 

cread(txthr[im][n],sm[O] ,O,DIM•sizeof(float)); 

/• Check to see if the new position overlaps hard-cores with any 
other particles in the system 

ovflag = overflow(pn1,im,O,O); 

if ( ovflag ) { 
sphov++; 
return; 

} 

ts1 = ts1 + ibeta; 
ts2 = ts2 + ibeta; 
im = im + ibeta; 

2•lim; 

/• Now accept or reject the move. •/ 

ts2 = ts + ofs; 
/• dS = Sj - Si + log(T_i/T_j) •/ 

dS = S(1,pn1,ts,ts2) - S(O,pn1,ts,ts2) + dStr; 

#ifdef PAR 
for (index=O;index<(gdim[1]-1);index++) { 

} 

#endif 

if (pcoord[i]==index) cwrite(tdS,sm[1],sizeof(float)); 
if (pcoord[1]==(index+1)) cread(tdS,sm[O],O,sizeof(float)); 

try++; 

if (dS < 0.) { 
acc1++; 
for (i=(ts+1);i<=(ts2-1);i++) { 

for (n=O;n<DIM;n++) x[i][pni][n] = xthr[i][n]; 
} 

} else if (exp(-dS) > pranf()) { 
acc2++; 
for (i=(ts+1);i<=(ts2-1);i++) { 

for (n=O;n<DIM;n++) x[i][pni][n] = xthr[i][n]; 
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} 
} 

} 

movpar(pn1,ts) 
int pn1,ts; 
{ 

} 

int n,overflow(),ovflag; 
float dS,S(),pranf(); 

for (n=O;n<DIM;n++) { 

} 

xthr[ts-1] [n] = x[ts-1] [pn1] [n]; 
xthr[ts][n] = x[ts][pn1][n] + 2•(pranf()-.5)•movsz; 
xthr[ts+1][n] = x[ts+1][pn1][n]; 

ovflag = overflow(pn1,ts,try_ov,O); 
if ( ovflag ) { 

sphov++; 
return; 

} 

/• Now accept or reject the move. •/ 

dS = 5(1,pn1,ts-1,ts+1) - S(O,pn1,ts-1,ts+1); 

try++; 
if (dS <= 0.) { 

acc1++; 
for (n=O;n<DIM;n++) x[ts][pn1][n] = xthr[ts][n]; 

} else if (exp(-dS) > pranf()) { 
acc2++; 
for (n=O;n<DIM;n++) x[ts][pnl][n] = xthr[ts][n]; 

} 

/• Calculate the part of the action which is different for the old and the 
new thread. 

•/ 
float S(xindex,pn1,ts1,ts2) 
/• xindex = 0 -> use x(i,np,nt) everywhere; = 1 -> use xthr for the thread •/ 
int xindex,pn1,ts1,ts2; 
{ 

int ts,n,bind,index; 
float x1[3],x1p[3],cnst,ret5; 
int sw; 
float com [2] ; 

retS = 0.; 
bind = O; 
cnst = 1/(2•LAM•DBETA); 

for (ts=ts1;ts<ts2;ts++) { 
if (xindex==1) { 

for (n=O;n<DIM;n++) { 
xl[n] = xthr[ts][n]; 
x1p[n] = xthr[ts+1][n]; 



} 
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} 
} else { 

for (n=O;n<DIM;n++) { 

} 
} 

x1[n] = x[ts][pn1][n]; 
x1p[n] = x[ts+1] [pn1] [n]; 

/• add in free-particle part for each particle being moved •/ 

if (pcoord[1]==0) /• On a parallel machine only add it in once! •/ 
for (n=O;n<DIM;n++) retS += cnst•(x1[n]-x1p[n])•(x1[n]-x1p[n]); 

retS += loop(S_func,pn1,ts,ts+1,bind,x1,x1p,O); 

#ifdef PAR /• Combine the results •/ 
com[1] = O.; 
com[O] = retS; 
SW = 1; 
for (index=O;index<(gdim[1]-1);index++) { 

cshift(icom[sw],sm[O],sizeof(float), 
icom[(sw+1)%2],sm[1],sizeof(float)); 

rats += com[sw]; 
SW ~: 1; 

} 

#endif 

return(retS); 
} 

int overflow(pn1,ts,parswitch,test) 
int pn1,ts,parswitch,test; /• if parswitch==1 spatial parallelization is done •/ 
{ 

int index,n,retov,pn2; 
float amin1(),x1[3],dist,delta; 

int start,inc; 
int sw,com[2]; 

retov = O; 

if (parswitch) { 
start= pcoord[1]; 
inc = gdim[1]; 

} else { 

} 

if 

} 

} 

start = O; 
inc = 1; 

(test) { 

for (n=O;n<DIM;n++) 
else { 

for (n=O;n<DIM;n++) 

x1 [n] 

x1 [n] 

= 

= 

for (pn2=start;pn2<NP;pn2+=inc) { 
if (pn1==pn2) continue; 
dist = O.; 

x[ts] [pn1] [n]; 

xthr[ts] [n]; 
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for (n=O;n<DIM;n++) { 
delta= x[ts] [pn2][n] - x1[n]; 
while ( delta<O. kl delta<=(-hedge_sz[n])) delta+= edge_sz[n]; 
while ( delta>O. tl delta> hedge_sz[n] ) delta-= edge_sz[n]; 
dist += delta•delta; 
if (dist > RMIN2) goto check_next; 

} 

/• dist <= RMIN2 return indication of hard core overlap •/ 
retov = 1; 
break; 

check_next: ; 

} 

#ifdef PAR 
com[1]=0; 
com[O] = retov; 
SW = 1; 
for (index=O;index<(gdim[1]-1);index++) { 

cshift(lcom[sw],sm[O],sizeof(int), 
lco~[(sw+1)Y.2],sm[1],sizeof(int)); 

retov I= com[sw]; 
SW A= 1; 

} 

#endif 

return(retov); 

} 

/••• sbias.c ••• 

#include "parms.h" 
#include <math.h> 

extern float rets[3]; 

#ifdef FAST 
#define cshift fshift 
#endif 

I• Calculate the interaction part of the bias 
•I 
sbias(pn1,ts1,ts2,bind,choice) 

Sean Callahan •/ 

/•if choice is 0 use x[ts][pn][] otherwise use xthr[ts][] •/ 
int pn1,ts1,ts2,bind,choice; 
{ 

int n,index; 
float x1[3],x1p[3],retval; 

int sw,mes_sz; 
float com[2][3]; 

rets[O]=O. ;rets[1]=0. ;rets[2]=0.; 

if (choice) { 
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for (n=O;n<DIM;n++) { 

} 

x1[n] = xthr[ts1][n]; 
x1p[n] = xthr[ts2][n]; 

} else { 

} 

for (n=O;n<DIM;n++) { 

} 

x1[n] = x[ts1][pn1][n]; 
x1p[n] = x[ts2][pn1][n]; 

retval = loop(sbias_func,pn1,ts1,ts2,bind,x1,x1p,O); 
for (n=O;n<DIM;n++) rets[n] •= -LAM; 

#ifdef PAR 
for (n=O;n<DIM;n++) { 

com[O][n] = rets[n]; 
com[!] [n] = 0.; 

} 
mes_sz = DIM•sizeof(float); 
SW : 1; 
for (index=O;index<(gdim[1]-1);index++) { 

cshift(lcom[sw][O],sm[O],mea_az, 
lcom[(aw+1)%2][0],am[1],mes_sz); 

for (n=O;n<DIM;n++) rets[n] += com[sw][n]; 
SW": 1;; 

} 

#endif 

} 

!••• loop.c *** 

#include <stdio.h> 
#include <math.h> 
#include "parms.h" 

extern float rets[3]; 
extern int mode; 

float •x1,•x1p; 
float x2[3],x2p[3],xofs[3]; 
int pn1,pn2,bind,ts1,ts2; 

Sean Callahan •/ 

/• This is the function where the interactions between one particle 
(pasa_pn1 if lpfl==O or layer[pass_pn1] if lpfl!=O) and the other 
particles in the system. If lpfl==O, the interactions of the 
particle are calculated with all other particles in the system. 

•/ 

If lpfl!=O, the interactions are calculated only with those particls 
that have a layer index less than its own. The arguments have been 
made to be externals for speed, since funp() will be called many times. 
If mode==!, only the closest periodic extension is included in the 
calculation of the interactions, if mode==O, several periodic extensions 
are included. 

float loop(funcp,pass_pn1,pass_ts1,pass_ts2,pass_bind,xx1,xx1p,lpfl) 
float (•funcp)(); 
int pass_pn1,pass_ts1,pass_ts2,pass_bind; 
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float xx1[3],xx1p[3]; 
int lpfl; /• if lpfl==1 don't include cases where pn1>=pn2 •/ 
{ 

int n,i,j,k,flag,jj[3],cnt1,cnt2,lm[2][3],cn[3]; 
float retval,delta; 

retval = 0.; 
x1 = xx1; x1p = xx1p; 
bind= pass_bind; pn1 = pass_pnt; 
ts1 = pass_ts1 ; ts2 = pass_ts2; 

if (lpfl) { 
cnt1 = pn1; 
pn1 = layer[pnt]; 

} 

for (pn2=pcoord[1];pn2<NP;pn2+=gdim[1]) { 
if (pn1==pn2) continue; 
cnt2 = crossref[pn2]; 
if (lpfl) { 

if (cnt1>=cnt2) continue; /• get the counting right •/ 
} 

/• Calculate the closest periodic extension (or a range if mode==O) 
•/ 
for (n=O;n<DIM;n++) { 

} 

if 

} 

x2[n] = x[ts1] [pn2] [n] 
x2p[n] = x[ts2][pn2][n] 
delta= x2[n] - x1[n]; 
cn[n] = 0; 
if ( delta<O. tt delta<=(-hedge_sz[n]) ) { 

delta+= edge_sz[n]; 
cn[n]++; 

} else if ( delta>O. tt delta>hedge_sz[n] ) { 
delta-= edge_sz[n]; 
cn[n]--; 

} 

if (mode==O) { 

if (delta>O) { 
lm[O] [n] = cn[n] - 1; 
lm[1] [n] = cn[n]; 

} else { 
lm[O] [n] = cn[n]; 
lm[1] [n] = cn[n] + 1 j 

} 
} 

(mode==1) { 

xofs [O] = ((float)cn[O])•edge_sz[O]; 
xofs [1] = ((float)cn[1])•edge_sz[1]; 
xofs [2] = ((float)cn[2])•edge_sz[2]; 
cvec(); 
retval += funcp(); 

else { 
for (i=lm[O][O];i<=lm[1][0];i++) { 

xofs[O] = ((float)i)•edge_sz[O]; 
for (j=lm[0][1];j<=lm[1][1] ;j++) { 

xofs[1] = ((float)j)•edge_sz[1]; 
#if (DIM==3) 

for (k=lm[0](2];k<=lm[1][2];k++) { 



} 

#endif 
#if (DIM==2) 

#endif 
} 

} 
} 

} 

return(retval); 
} 

float S_func() 
{ 

float u(); 
return(u(bind)); 

} 

float effpot en_func () 
{ 

float uprime(); 
return(uprime(bind)); 

} 

float poten_func() 
{ 

float pot1(); 
return(pot1(r12)); 

} 

#define HIST_SZ 200 
#define SINHIST_SZ 20 
#define SINMIN 0. 
#define SINMAX 1. 
#define TMIN 0. 
#define TMAX 3 . 
#define RRMIN 1 . 
#define RMAX 4. 
extern int binstate; 
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xofs[2] = ((float)k)•edge_sz[2]; 
I• exclude extention at far corner •/ 
if ((i-cn[O]) ll (j-cn[t]) ll (k-cn[2])) continue; 

cvec(); 
retval += funcp(); 

cvec(); 
retval += funcp(); 

extern int rhist[HIST_SZ],shist[HIST_SZ]; 
extern float mhist[HIST_SZ],mvhist[HIST_SZ]; 
extern int •rshist; 
extern float •rsmhist,•rsmvhist; 

float obs_func() 
{ 

float u(),retobs,u1,u2,sine,s2,r; 

retobs = O.; 



} 

u1 = u(bind); 

r12 += DELTA; 
u2 = u(bind); 
r12 -= DELTA; 
retobs += r12•(u2-u1)/DELTA; 

r12p += DELTA; 
u2 = u(bind); 
r12p -= DELTA; 
retobs += r12p•(u2-u1)/DELTA; 

if (binstate) { 
s2 = 1. - costh•costh; 
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if (s2 < .000001) sine= O.; 

} 

else sine= sqrt(s2); 
r = .5•(r12 + r12p); 
fbin(mhist,HIST_SZ,RRMIN,RMAX,r,fabs(retobs)); 
fbin(mvhist,HIST_SZ,RRMIN,RMAX,r,retobs); 
bin(shist,HIST_SZ,SINMIN,SINMAX,sine); 
bin(rhist,HIST_SZ,RRMIN,RMAX,r); 
bin2(rshist,HIST_SZ,SINHIST_SZ,RRMIN,RMAX,SINMIN,SINMAX,r,sine); 
fbin2(rsmhist,HIST_SZ,SINHIST_SZ,RRMIN,RMAX,SINMIN,SINMAX, 

r,sine,fabs(retobs)); 
fbin2(rsmvhist,HIST_SZ,SINHIST_SZ,RRMIN,RMAX,SINMIN,SINMAX, 

r,sine,retobs); 

return(retobs); 

float sbias_func() 
{ 

} 

int n; 
float u1,u2,u0(),amin1(); 

if (amin1(r12,r12p) > CUTOFF) return(O.); 
u1 = uO(bind); 

for (n=O;n<DIM;n++) { 
x1[n] += DELTA; 
cvecO(); 
u2 = uO(bind); 
x1 [n] -= DELTA; 
rets[n] += (u2 - u1)/DELTA; 

} 

return(O.); 

/• cvecO returns r12 and r12p only •/ 
cvecO() 
{ 

float vr12[3],vr12p[3]; 
int n; 

r12 = O.; r12p = O.; 
for (n=O;n<DIM;n++) { 

vr12[n] = x1[n] - (x2[n] + xofs[n]); 
vr12p[n] = x1p[n] - (x2p[n] + xofs[n]); 
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r12 = r12 + vr12[n]•vr12[n]; 
r12p = r12p + vr12p[n]•vr12p[n]; 

} 

r12 = sqrt(r12); 
r12p = sqrt(r12p); 
if (r12<RMIN I I r12p<RMIN) abort(821); 

/•Given the vectors x1[],x2[],x1p[],x2p[], cvec returns r12,r12p and costh 
•/ 
cvec() 
{ 

} 

int 
int 
{ 

} 

int 
int 
{ 

} 

float dot,vr12[3],vr12p[3]; 
int n; 

dot=O.; 
r12 = 0.; 
r12p = 0.; 

for (n=O;n<DIM;n++) { 

} 

vr12[n] = xi[n] - (x2[n] + xofs[n]); 
vr12p[n] = xip[n] - (x2p[n] + xofs[n]); 
dot+= vr12[n]•vr12p[n]; 
r12 += vr12[n]•vr12[n]; 
r12p += vr12p[n]•vr12p[n]; 

r12 = sqrt(r12); 
r12p = sqrt(r12p); 
if (r12<RMIN I I r12p<RMIN) abort(821); 
costh = dot/(r12•r12p); 

minO(a,b) 
a,b; 

if (a<b) return(a); 
else return(b); 

maxO(a,b) 
a,b; 

if (a>b) return(a); 
else return(b); 

float amini(a,b) 
float a,b; 
{ 

} 

if (a<b) return(a); 
else return(b); 



-133-

/••• inst.c ••• Sean Callahan •/ 

#include <stdio.h> 
#include <math.h> 
#include "parms.h" 

#define MULTFACT 0.2 
extern int updateall; 
extern int groundstate; 

int check_inst(extype,retwidth) 
int extype,•retwidth; 
{ 

int n,ts,pn,ts1,ts2,in_ts,width,count,check_inst(); 
float mod,u[3],value[NT]; 

ex_latt(); /•made sure all nodes have the correct lattice•/ 
if (groundstate) { 

•retwidth = O; 
return(NT/2); 

} 

count = O; 
for (ts=O;ts<NT;ts++) value[ts] = O.; 

/• For all exchanging particles •/ 
while(xcon[extype][count][O] != -1) { 

pn = xcon[extype][count][O]; 

} 

mod = 0.; 
for (n=O;n<DIM;n++) { /• Calculate unit vector pointing for initial 

to final position •/ 
u[n] = x[NT-1][pn][n] - x[O][pn][n]; 
mod+= u[n]•u[n]; 

} 

if (mod==O.) return(NT/2); 
/• dividing by the square of the norm normalizes all particle 

paths for the exchanges to unit length 

for (n=O;n<3;n++) u[n] = u[n]/mod; 

for (ts=O;ts<NT;ts++) { /• Project path onto exchange axis 
averaging over all exchanging particles •/ 

for (n=O;n<3;n++) 
value[ts] += u[n]•(x[ts][pn][n] - x[O][pn][n]); 

} 

count++; 

for (ts=O;ts<NT;ts++) value[ts] /= count; 

/• Measure instanton position •/ 

for (ts=O;ts<NT;ts++) { 

} 

if (value[ts] >= (1.-MULTFACT)) { 
in_ ts = ts; 
break; 

} 

ts1 = in_ts; 
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for (ts=(NT-1);ts>=O;ts--) { 

} 

if (value[ts] <= MULTFACT) { 
width = in_ts - ts; 

} 

ts2 = ts; 
in_ts = (in_ts + ts)/2; 
break; 

•retwidth = width; 
fprintf(stderr,"center = Y.d; width= Y.d ts1->ts2 = Y.d->Y.d\n", 

in_ts,width,ts1,ts2); 
fflush(stderr); 
if (width < 0) printf("ERROR: negative instanton\n"); 

if (in_ts>upts I I in_ts<downts) { /•Shift lattice if necessary •/ 
shift(in_ts,extype); 
return(check_inst(extype,retwidth)); 

} 

return( in_ ts); 

plot_inst(extype) 
int extype; 
{ 

int n,ts,pn,count; 
float mod,u[3],value[NT]; 
FILE •fp; 
char name[50],choice[10]; 

ex_latt (); I• make sure all nodes have the correct lattice •/ 

printf("Enter \"s\" for single particle inst or \"t\" for the average\n"); 
scanf("Y.s",choice); 

switch(choice[O]) { 

case('s') : 

printf("Enter particle number to print inst for\n"); 
scanf("Y.d" ,lcpn); 

mod = 0.; 
for (n=O;n<DIM;n++) { 

} 

u[n] = x[NT-1][pn][n] - x[O][pn][n]; 
mod+= u[n]•u[n]; 

if (mod==O. ) { 

} 

printf("Ground state instanton projected in x-dir\n"); 
u[O] = 1; u[1] = 0.; u[2] = 0.; 
mod = 1.; 

for (n=O;n<DIM;n++) u[n] = u[n]/mod; 

for (ts=O;ts<NT;ts++) { 
value [ts] = O.; 
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for (n=O;n<DIM;n++) 
value[ts] += u[n]•(x[ts][pn][n] - x[O][pn][n]); 

} 

break; 

case('t') : 

count = O; 
for (ts=O;ts<NT;ts++) value[ts] = O.; 

while(xcon[extype] [count] [O] != -1) { 
pn = xcon[extype][count][O]; 

} 

mod = 0.; 
for (n=O;n<DIM;n++) { 

} 

u[n] = x[NT-1][pn][n] - x[O][pn][n]; 
mod+= u[n]•u[n]; 

if (mod==O.) { 

} 

printf("Ground state instanton projected in x-dir\n"); 
u[O] = 1; u[1] = O.; u[2] = O.; 
mod = 1.; 

/• dividing by the square of the norm normalizes all particle 
paths for the exchanges to unit length 

for (n=O;n<DIM;n++) u[n] = u[n]/mod; 

for (ts=O;ts<NT;ts++) { 
for (n=O;n<DIM;n++) 

value[ts]+= u[n]•(x[ts] [pn] [n]-x[O] [pn] [n]); 
} 

count++; 

for (ts=O;ts<NT;ts++) value[ts] /= count; 

break; 

default: 

} 

do { 

return; 

printf("Enter file name to output values to\n"); 
scanf ( "Y.s", name); 

} while ((fp=fopen(name,"w"))==(FILE •)O); 

for (ts=O;ts<NT;ts++) fprintf(fp,"Y.f\n",value[ts]); 
fclose(fp); 

shift(tsinst,extype) 
int tsinst,extype; 
{ 

int pn, ts , dt s, n; 



} 
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printf("tsinst=Y.d\n",tsinst); 
if (tsinst>(NT/2)) { 

dts = tsinst - (NT/2); 
printf("SHIFTING instanton to center from above, dts=Y.d\n",dts); 
for (pn=O;pn<NP;pn++) { 

} 

for (ts=1;ts<NT-dts;ts++) { 
for (n=O;n<DIM;n++) { 

x[ts] [pn] [n] = x[ts+dts] [pn] [n]; 
} 

} 

for (ts=(NT-dts);ts<(NT-1);ts++) { 
for (n=O;n<DIM;n++) { 

x[ts] [pn] [n] = x[NT-1] [pn] [n]; 
} 

} 

} else { 

} 

dts = (NT/2) - tsinst; 
printf("SHIFTING instanton to center from below, dts=Y.d\n",dts); 
for (pn=O;pn<NP;pn++) { 

} 

for (ts=NT-2;ts>dts;ts--) { 
for (n=O;n<DIM;n++) { 

x[ts][pn][n] = x[ts-dts][pn][n]; 
} 

} 

for (ts=(dts);ts>O;ts--) { 
for (n=O;n<DIM;n++) { 

x[ts] [pn] [n] = x[O] [pn] [n]; 
} 

} 

if (updateall) { 
printf("Doing 5 updates after shift\n"); 
fflush(stdout); 
update_thr(5,5); 

} else { 

} 

printf("Doing 5 updates after shift of exchanging set\n"); 
fflush(stdout); 
update_thr(5,extype); 

/••···························································••/ 
I• •I 
/• This software is copyrighted by Caltech, 1985 •/ 
I• Author: John Salmon, Steve Otto •/ 
/• Modified by Sean Callahan for this application. 
I• •I 
/***************************************************************/ 

#include <stdio.h> 
#include <math.h> 
#include "parms.h" 
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Some routines to do parallel random number generation. The idea is 
to take a standard linear congruential algorithm, and have every 
processor compute the Pth iterate of that algorithm (where P is the 
number of processors.) If the seeds are set up properly, the processors 
leapfrog over one another, and it is just as good as having used the 
basic algorithm on a sequential machine. 

#define MULT 1103516246 
#define ADD 12346 
#define MASK ( Oxffffffff 
static double _twoto32 = 4294967296.; 
extern FILE •seed_fp; 
extern doc; 

unsigned int AAA,BBB,randx; 
unsigned int tmprandx; 

unsigned int seedgt() 
{ 

return(randx); 
} 

pranset(seed) 
I• 
Unlike the sequential algorithm, you MUST call pranset, even if you want 
a seed of 1. Otherwise, all processors will produce the same sequence. 
•I 
unsigned int seed; 
{ 

} 

int nlayers,tcoord; 

nlayers = gdim[O]; 
AAA = 1; 
BBB = O; 
for(tcoord=O; tcoord<nlayers; tcoord++){ 

AAA = (MULT * AAA) t MASK; 
BBB = (MULT * BBB + ADD) t MASK; 
if (tcoord == pcoord[O]) randx = (AAA•seed +BBB) t MASK; 

} 

float pranf() 
I• Return a random float in [O, 1.0) •/ 
{ 

} 

float retvalue; 

retvalue=(float)randx I _twoto32 
randx = (AAA•randx + BBB)t MASK; 
return( retvalue ); 

static float norm_sv; 
static int flag = 1; 
float normal() 
/• 
This is the Polar method for normal distributions, as described on or near 
page 104 of Knuth, Seminumerical Algorithms. To quote Knuth, "The polar 
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method is quite slow, but it has essentially perfect accuracy, and it is very 
easy to write a program for the polar method ... " 'nuf said. Algorithm due 
to Box, Muller and Marsaglia. 
•I 
{ 

float vi, v2; I• uniformly distributed on [-i, 1) 
float s. 

' /• radius squared of a point pulled 

} 

float foo; I• A useful intermediate value. 
float pranf(); 

if (flag) { 
do{ 

} 

vi = 2.0 * pranf()- i.O; 
v2 = 2.0 * pranf()- i.O; 
s = vi•vi + v2•v2; 

} while(s >= i.O); 
foo =sqrt( -2.0 * log(s)/s); 
norm_sv = v2•foo; 
flag = O; 
return(vi•foo); 

flag = i; 
return(norm_sv); 

backup_seed() 
{ 

unsigned int mask; 
tmprandx = seedgt(); 

•I 

•I 
from a uniform circle •/ 

/* I am making the assumption that pcoord[] = (0,0) is node O •/ 
#ifdef PAR 

mask = (t<<doc) -i; 
broadcast(ltmprandx,O,mask,sizeof(int)); 

#end if 

} 

rewind(seed_fp); 
fprintf(seed_fp,"Y.u\n",tmprandx); 
fflush(seed_fp); 
if (ferror(seed_fp)) abort(5566); 

/*** p.h *** Sean Callahan •/ 
/* parameters defined for the two-particle density matrix program •/ 

#define XDIM 
#de:fine LDIM 
#de:fine NTRM 
#de:fine XDIM2 
#de:fine NDMS 
#define NMT 
#de:fine LEVELS 

/•#define RMIN 
/•#define CUTR 
#define CUTR 
#define TMID 

70 
32 
9 

2485 I• = XDIM•(XDIM+i)/2 •/ 
8 
3 /* NMT is the maximum order for polynomial fitting •/ 

i4 /• the number of levels down the matrix squaring goes •/ 

1. 550 •/ 
5.5 /• zero potential is at CUTR ( in angstroms) •/ 
i2.5 /• zero potential is at CUTR ( in angstroms) •/ 

iO.O /* average temp of highest beta */ 

#define HBS2M 8.0420/i0.22 
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/* this uses effective mass */ 
#define EHBS2M 2•8.0420/10.22 
#de:fine IP 2 

/*** u.c *** Sean Callahan •/ 

#include <math.h> 
#include <stdio.h> 
#include "parms.h" 

int nkt[3] = {1,2,5}; 
float :fit[2][NBETA][NDIM][6],rv[NDIM],chi[NBETA][NDIM][3]; 
int nfit[NDIM][NBETA]; 

/* these are arguments :for interp() •/ 
float r,a1,a2,a3,a4; 
int ix; 

/• Return only the endpoint approximation •/ 
float uO (bind) 
int bind; 
{ 

float ui[4]; 
int i,ii; 
float retuO; 
bind += BIND_OFS; 

if (bind > (NBETA-1)) { 

} 

printf("ERROR in uO(): r12,r12p,bind = Y.f Y.f %d\n",r12,r12p,bind); 
exit(O); 

r = .5•(r12 + r12p); 
interp(); 

for (i=O;i<4;i++) { 
ii = ix + i - 1; 
ui [i] = fit [O] [bind] [ii] [O] ; 

} 

retuO = a1•ui[O] + a2•ui[1] + a3•ui[2] + a4•ui[3]; 
return(retuO); 
} 

/* Return -ln(rho_2 tilde) •/ 
float u(bind) 
int bind; 
{ 

float t[5],ui[4]; 
int i,ii,j; 
float retu; 
bind += BIND_OFS; 

r = .5•(r12 + r12p); 
interp(); 

t[O] = r12•r12 + r12p•r12p - 2•r12•r12p*costh; 
t[1] = (r12 - r12p)•(r12 - r12p); 
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t [2J = t [OJ •t [1J ; 
t [3J = t [OJ •t [OJ ; 
t[4J = t[1J•t[1]; 

for (i=O;i<4;i++) { 
ii = ix + i - 1; 
ui[i] = fit[O][bind][ii][O]; 
if (n:fi t [ii] [bind] ! = O) { 

for (j=O;j<nkt[nfit[ii][bind]];j++) { 
ui[i] += t[j]•fit[O][bind][iiJ[j+1]; 

} 
} 

} 

retu = a1•ui[O] + a2•ui[1] + a3•ui[2] + a4•ui[3]; 
return(retu) 
} 

/• This is the beta derivative of U 
float uprime(bind) 
int bind; 
{ 

float t[5],ui[4]; 
int i,ii,j; 
float retu; 
bind += BIND_OFS; 

r = .5•(r12 + r12p); 
interp(); 

(the effective potential) •/ 

t[O] = r12•r12 + r12p•r12p - 2•r12•r12p•costh; 
t[1] = (r12 - r12p)•(r12 - r12p); 
t [2] = t [OJ •t [1] ; 
t[3] = t[O]•t[O]; 
t[4] = t[1]•t[1]; 

for (i=O;i<4;i++) { 
ii=ix+i-1; 
ui[iJ = fit [1][bind][ii][O]; 
if (nfit[iiJ[bind] != 0) { 

} 
} 

for (j=O;j<nkt[nfit[iiJ[bind]J;j++) { 
ui[i] += t[j]•fit[1][bind][ii][j+1]; 

} 

retu = a1•ui[O] + a2•ui[1] + a3•ui[2] + a4•ui[3]; 
return(retu) 
} 

/• Read in the density matrix fit parameters 
•/ 
getd() 
{ 

float tmpu[5][3][2],beta,a,b,c,d,•flptr; 
int nf,jj,k,kk,nmt,n,ir,ib,in; 
FILE •fp; 
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nmt = 3; 

if ((fp = fopen("dmhe3","r"))==(FILE •)O) { 
printf("ERROR: Can't find the file dmhe3\n"); 
exit(248); 

} 

for (ib=O;ib<NBETA;ib++) { 
fscanf(fp,"Y.d Y.f Y.f Y.f Y.f Y.f",lm,ltbeta,lca,lcb,lcc,lcd); 
for (ir=1;ir<NDIM;ir++) { 

fscanf (fp, "Y.f", lcrv [ir]); 
flptr = lcchi[ib][ir][O]; 
for (jj=O;jj<nmt;jj++) fscanf(fp,"Y.f",flptr++); 
flptr = lcchi[ib][ir][O]; 
for (in=O;in<nmt;in++) { 

k = nkt[in]; 
for (kk=O;kk<k;kk++) fscanf(fp,"Y.f",lctmpu[kk][in][O]); 
for (kk=O;kk<k;kk++) fscanf(fp,"Y.f",lctmpu[kk] [in] [1]); 

} 

nf = O; 
if (chi[ib] [ir] [1] < chi[ib][ir][O]) nf = 1 · ' if (chi[ib] [ir] [2] < chi[ib][ir][1]) nf = 2; 

nfit [ir] [ib] = nf; 

fit (O] [ib] [ir] [O] = tmpu[O] [O] [O]; 
fit [1] [ib] [ir] [O] = tmpu[O] [O] [1]; 

if (nf ! = O) { 
for (jj=O;jj<nkt[nf];jj++) { 

fit [O] [ib] [ir] [jj+1] = tmpu[jj] [nf] [O]; 
fit[1] [ib] [ir] [jj+1] = tmpu[jj] [nf] [1]; 

} 
} 

} 

fclose(fp); 
} 

} 

/• Return interpolation information given the sum coordinate 
•/ 
interp() 
{ 

float xx,p,pm1,pm2,pp1,amin1(); 

xx = cx/(r•r); 
xx = amin1(xx,(float)(NDIM)); 

/• xx should be in range 0 to (NDIM-1) •/ 

ix = xx; 
ix = maxO(ix, 1); 
ix= minO(ix,NDIM-3); 
p = xx-ix; 
pm1 = p-1.; 
pm2 = p-2.; 
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pp1 = p+1.; 

#define si .16666666666666666 

a1 = -si•p•pm1•pm2; 
a2 = .5•pm1•pp1•pm2; 
a3 = -.5•p•pp1•pm2; 
a4 = si•p•pp1•pm1; 
} 
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Appendix D 

The He-He Interaction Potential 

Two different representations are used for the He-He potential. The first is the 

potential of Aziz et al., 1 which is used for interatomic spacings greater than 1.828 

A. The Ceperley-Partridge form 2 is used for separations less than that distance. 

D.1 The Aziz Form 

The form used by Aziz et al. is 

V(r) = EV*(x); 
r 

x=­
rm 

V*(x) = Ae-a:z: _ { C6 +Ca + C10 }F(x) 
x6 xB xlo 

x~D 

= 1 x > D. 

(D.l) 

(D.2) 

(D.3) 

This form was used to fit the data for intermediate temperature virial coeffi­

cient and thermal conductivity data, and high temperature viscosity data. The fit 
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parameters found are listed below. 

D = 1.241314 

Tm= 2.9673A 

E = 10.8K 

A= 544850.4 

a = 13.353384 

c6 = 1.3132412 

Ca = .4253785 

C10 = .1781 

In the words of Aziz et al., "In spite of a few remaining inconsistencies, when all 

the different macroscopic properities are considered, the potential produces the best 

representation of the helium interaction potential available at this time." See Fig 

29 for a plot of this potential. 

D.2 The Ceperley-Partridge Form 

The Ceperley-Partridge form, valid for r<l.828 A, is given by 

T 
4 

(T)k V(T) = exp(-,8-) L ak - . 
Tb Tb 

k=-1 

(D.4) 

The parameters have been fit to shock wave experiments at high temperature and 
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pressure. The fit parameters are 

f3 = 3.32316 

Tb = .52910 

a_1 = 1.263030 x 106K 

ao = 1.399549 x 106 K 

ai = -8.389601 x 105 K 

a 2 = 7.426020 x 106 K 

a3 = -2.006420 x 106K 

a4 = 8.570426 x 105K. 

This potential gives a much better account of the data in the region where r<l.8 

A, where the Aziz potential is too repulsive. 
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Appendix E 

Density Matrix Coefficients 

The following is a listing of the fit parameters from which U(r12,ri 2,B;t)) is 

calculated (see Eqn. (6.18)). The value of tJ is listed above each set of data, and 

the columns listed from left to right are, the sum coordinate ( r = .5( r12 + ri 2) ), the 

nonlinear array index, and Uo through U5 , respectively. It should be noted that the 

shape of U is not very smooth for values of r that are less than approximately 1. 7 

A, especially for large angular separations. This is not significant, however, for this 

application because the penetration to that level makes effectively zero contribution 

to the calculations which have been done for this work. This has been verified by 

histogramming events as a funcion of the radial sum coordinate ( .5 * ( ri 2 + ri 2)). 

beta = 0.003125 

12.88 1 -6.5679e-06 0 0 0 0 0 
9.10 2 -5.7091e-05 0 0 0 0 0 
7.43 3 -.00019754 0 0 0 0 0 
6.44 4 -.00047821 0 0 0 0 0 
5.76 5 -.00095334 0 0 0 0 0 
5.26 6 -.0016809 0 0 0 0 0 
4.87 7 -.002721 0 0 0 0 0 
4.55 8 -.0041318 0 0 0 0 0 
4.29 9 -.0059629 0 0 0 0 0 
4.07 10 -.008247 0 0 0 0 0 
3.88 11 -.01099 0 0 0 0 0 



-.014152 
-.017629 

0 
0 
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3.72 
3.57 
3.44 
3.32 
3.22 
3.12 

12 
13 
14 
15 
16 
17 

-.021242 0 

0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 -.024751 -.00050119 -.0028881 

-.027853 -.0008696 -.0033843 .0010039 2.0267e-05 
.0014389 6.7423e-06 

-.010386 
-.030179 -.00072066 -.0096852 -.016309 

3.03 18 -.031291 -.00041559 -.019282 
2.95 19 -.030692 .0001433 -.033146 

.0017966 .00024027 -.024221 

.0021519 .00052702 -.034373 

.0026408 .00089228 -.046919 

.0034657 .0012803 -.061847 

.0060746 .0015325 -.079107 

2.88 20 -.02783 
2.81 21 -.022106 
2.75 22 -.012881 
2.68 23 .00060702 
2.63 24 .018738 
2.58 25 .042492 
2.63 26 .072441 
2.48 27 .10923 
2.43 28 .15349 
2.39 29 .20577 
2.36 30 .26669 
2.31 31 
2.28 32 
2.24 33 
2.21 34 
2.18 36 
2.15 36 
2.12 37 
2.09 38 
2.06 39 
2.04 40 
2.01 41 
1. 99 42 
1. 96 43 
1.94 44 
1. 92 46 
1. 90 46 
1. 88 47 
1. 86 48 
1. 84 49 
1.82 60 
1. 80 51 
1. 79 52 
1. 77 63 
1. 76 54 
1. 74 66 
1. 72 66 
1. 71 57 
1.69 58 
1.68 59 
1. 66 60 
1. 66 61 
1. 64 62 
1.62 63 
1. 61 64 
1.60 65 
1.58 66 
1.57 67 
1. 56 68 
1. 65 69 

.33643 

.41565 
.5046 

.60362 

.71269 

.83194 

.96123 
1.1012 
1.2614 
1. 4117 
1.682 
1.762 

1. 9616 
2.1604 
2.3579 
2.6739 
2.798 

3.0297 
3.2684 
3.6135 
3.7647 
4.0216 
4.2837 
4.6606 
4.8221 
6.0983 
6.3791 
5.6639 
6.9623 
6.244 

6.5379 
6.8344 
7.1327 
7.4308 
7.7276 
8.024 

8.3161 
8.6051 
8.8871 

.0010811 -.062344 
.002648 -.078007 

.0047622 -.11136 

.0077327 -.16316 .0069819 .0018676 -.09791 
.01158 -.20428 .0091523 .002316 -.11753 
.01644 -.26636 .011676 .0028674 -.13723 
.02244 -.33676 .014618 .0036229 -.16624 

.029679 -.41862 .017949 .004311 -.17368 

.038222 -.6106 .021589 .005286 -.18879 
.0483 -.6126 .026093 .0062217 -.20111 

.069864 -.72362 .030973 .0073118 -.21011 

.072951 

.087608 
.104 

.12181 

.14118 

.16206 

.18371 

.20766 

.23284 

.25937 

.28726 

.31646 

.34735 
.3798 

.40968 

.44275 

.47634 

.61083 

.54772 

.58032 

.61701 

.66663 

.69058 

.72621 

.76631 

.79922 

.83857 

.87466 

.91421 

.94912 

.98613 
1.0214 
1. 0681 
1. 0937 

1.123 
1.1536 
1.1822 

1.219 
1.2266 

-.84249 
-.9682 

-1.1006 
-1.2361 
-1.3747 
-1. 516 

-1. 6648 
-1. 7957 
-1.9357 
-2.0742 
-2.2107 
-2.3449 
-2.4796 
-2.6151 
-2.7183 
-2.8384 
-2.9644 
-3.0676 
-3.1958 
-3.2637 
-3.3628 

.036135 

. 041617 

.047014 

.062627 

.057926 
.06281 

.064063 
.06776 

.071117 

.073606 

.075204 

.076783 

.076146 

.072674 

.074767 

.073913 

.069868 

.063637 
.04893 

.048663 

.033997 
-3.4744 .0089705 
-3.5294 .0066294 
-3.612 -.01277 

-3.7375 -.063664 
-3.7529 -.061632 
-3.8665 -.14 
-3.877 -.15196 

-3.9722 -.30458 
-3.9026 -.30787 
-3.8873 -.58386 
-3.713 -.62263 

-3.4969 -.66478 
-3.4668 -1.2614 
-3.3984 -1.4207 
-3.6277 -1.6702 
-3.8547 -1.5121 
-4.1766 0 
-3.0673 0 

.0086779 
.010007 
.011489 
.013249 
.015167 
.017306 
.020808 
.023272 

-.21536 
-.21702 
-.21308 
-.20733 
-.19826 
-.1868 

-.16866 
-.14972 

.026746 -.12749 
.02844 -.10136 

.031136 -.070791 

.033879 -.034673 

.036214 .017796 

.038264 .092177 

.042606 .074166 

. 044762 .13228' 

.047631 .20669 

.050384 .30132 

.052146 .62218 
.06713 .46044 

.069667 .62876 

.060974 

.064232 

.066743 

.066693 

.069787 

.070373 

.071809 

.071479 

.072649 
.07403 

.072414 

.068395 
.06328 

.066995 

.046984 

.032918 
0 
0 

.97747 

.96793 
1.2649 
2.2036 
1.9906 
3.4736 
3.5111 
6.0818 
5.4883 
8.9637 

7.8 
4.7148 
16.353 
19.299 
67.49 

147.05 
0 
0 
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12.88 1 -1.3149e-05 
2 - . 00011442 
3 -.00039589 
4 -.00095876 

0 
0 
0 

9.10 
7.43 
6.44 
5.76 
5.26 
4.87 
4.55 

5 -.001913 0 
6 -.0033775 0 
7 -.0054762 0 
8 -.008329 -.00029252 

4.29 9 -.012036 -.0004503 
4.07 10 -.016656 -.00062486 
3.88 11 -.022182 -.00078905 
3.72 12 -.028495 -.0013979 
3.57 13 -.035333 -.0017432 
3.44 
3.32 
3.22 
3.12 
3.03 
2.95 
2.88 

14 
15 
16 
17 
18 
19 
20 

-.042278 -.0020893 
-.048765 -.0023174 
-.054084 -.0022079 

-.05738 -.0015643 
-.05767 -.00018459 

-.054272 
-.045268 

2.81 21 -.029834 
2.75 22 -.0068 
2.68 23 .024949 
2.63 24 .066432 
2.58 25 .11854 
2.53 26 .18203 
2.48 27 .2575 
2.43 28 .34537 
2.39 29 .44595 
2.35 30 .55939 
2.31 31 .68572 
2.28 32 .82486 
2.24 33 .97665 
2.21 34 1.1408 
2.18 35 1.3172 
2.15 36 1.5053 
2.12 37 1.7048 
2.09 38 1.9153 
2.06 39 
2.04 40 
2.01 41 
1. 99 42 
1. 96 43 
1.94 44 
1. 92 45 
1. 90 46 
1. 88 47 
1. 86 48 
1. 84 49 
1. 82 50 
1. 80 51 
1. 79 52 
1. 77 53 
1.75 54 
1. 74 56 
1. 72 56 
1.71 57 

2.1365 
2.3679 
2.6091 
2.8595 
3.1189 
3.3867 
3.6626 

3.946 
4.2365 
4.5335 
4.8366 
5 .1449 
6.4581 
5.7759 
6.0979 
6.4238 
6.7635 
7.0867 
7.4231 

.0019942 

.0061616 

.0093414 
.014686 
.021293 
.029247 
.038572 
.049348 
.061595 
.075523 
.090741 

.10739 

.12548 

.14499 

.16648 

.18817 

.21116 

.23526 

.26024 

.28605 

.31282 

.34034 

.36861 

.39792 

.42776 

.45818 

.48696 

. 51731 

.54755 

.57763 

.61014 
.6406 

.67252 

.70534 

.73678 

.77558 

.81381 

.84513 

.87916 

0 
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0 
0 
0 
0 
0 
0 

.001871 
.0028576 
.0038073 
.0042525 

0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 

0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

.0063946 1.6049e-05 .00014232 -.0024797 

.0064124 .00017838 .00017692 -.0053369 

.0047533 
.00013081 
-.0092909 
-.025486 
-.05039 

-.085242 
-.13097 
-.18767 
-.26606 
-.33225 
-.41807 
-.6107 

-.60852 
-.70989 
-.81458 
-.91918 
-1.0236 
-1.1271 
-1.2291 
-1. 3336 
-1.4284 
-1. 522 

-1. 6133 
-1.7013 
-1. 786 

-1. 8678 
-1. 9464 
-2.0222 
-2.0963 
-2 .1715 
-2.2482 
-2.2981 
-2.3604 
-2.4187 
-2.4723 
-2.6466 
-2.6783 
-2.629 

-2.6928 
-2.7246 
-2.803 
-2.909 
-2.931 

-3.0078 

.0003956 
.00073589 

.0012739 

.0020745 

.0031753 

.0045612 

.0064483 

.0087175 
.011442 
.014609 
.018087 
.021829 
.025833 
.029997 
.034318 
.038535 

.04263 
.046567 
.060433 

.054 
.057844 
.061116 
.064075 
.066613 

.06866 
.070818 
.072631 
.074192 
.076784 
.076883 
.074478 
.079966 
.079722 
.078215 
.072493 
.061221 

.06907 
.064362 
.048623 
.054296 
.061627 
.040028 
.076373 
.018914 

.00025706 -.0099592 

.00037244 -.016703 

.00048882 -.026527 

.00069566 -.036029 

.00069562 -.047603 

.00086097 -.069243 
.0010604 -.070672 
.0013996 -.081064 
.0018733 -.08992 
.0026014 -.096999 
.0033175 -.10199 
.0043361 -.10623 
.0066222 -.10699 
.0068706 -.10753 
.0082875 -.10593 
.0099166 -.10436 

.011667 -.1021 

.013502 -.099236 

.015369 -.096929 

.017023 -.086635 

.019039 -.086362 

.021088 -.083686 

.023149 -.08001 

.026309 -.076413 

.027546 -.072884 

.029663 -.06983 

.031791 -.066997 

.033873 -.064264 

.035667 -.062005 

.037611 -.045487 

.039606 -.011431 

.042183 -.069803 

.044573 -.058283 
.04738 -.059259 

.050738 -.061228 

.062909 .042705 
.05564 -.080549 

.057996 -.086013 
.06036 .037024 

.062971 -.11638 

.060066 -.014942 

. 058293 . 554 

.060677 .1465 

.062778 .85315 

0 



1. 69 58 
1. 68 59 
1. 66 60 
1. 65 61 
1. 64 62 
1. 62 63 
1. 61 64 
1. 60 65 
1. 58 66 
1. 57 67 
1. 56 68 
1. 55 69 

7.7626 
8.1048 
8.4496 
8.7965 
9.1452 
9.4953 
9.8462 
10.197 
10.547 
10.896 
11.242 
11.583 

beta = 0.012500 

12.88 1 -2.6186e-05 
9.10 2 -.00022581 
7.43 3 -.00077922 

.91099 

.94551 

.97737 
1.0128 
1.0444 
1. 0698 
1.1058 
1.1383 
1.1705 
1. 2025 
1. 2345 
1.2731 

0 
0 

0 

-150-

-3.044 .064549 
-3.1193 -.046064 
-3.1527 .040469 
-3.2028 -.23099 
-3.2401 -.15295 
-3.2172 -.097414 
-3.1544 -.92628 
-3.2093 -1.097 
-3.409 -1.267 

-4.0223 -1.4199 
-6.6708 -1.3492 
-2.9451 -20.47 

0 
0 
0 

6.44 4 -.0018967 0 0 
5.76 5 -.0038144 -.00012304 .00058965 

0 
0 
0 
0 
0 .0012631 

0 

.065065 .48059 

.067109 1.809 
.06931 .92113 

.071299 3.5341 

.073667 2.6407 

.083066 -.028252 

.084668 6.6711 

.086276 8.7728 

.087756 23.476 

.089166 115.9 

.090366 1176.3 
.08762 1077 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 5.26 

4.87 
6 -.0067887 -.00023147 
7 -.011084 -.00045789 .0020703 3.1062e-07 2.8843e-05 .00017247 

0 .0041022 0 0 

0 

4.55 8 -.016949 ~.00064722 
4.29 9 -.024575 -.0010758 
4.07 10 -.034473 -.0014467 
3.88 11 -.045718 -.0019816 
3.72 12 -.058236 -.0025574 

.0066264 -8.8252e-06 4.4967e-05 -.00047652 

.0096944 1.5494e-06 4.2611e-05 -.0018469 
.012648 7.7368e-05 6.1585e-05 -.0046038 
.013635 .00028143 9.7036e-05 -.0089791 

3.57 13 -.071232 -.0028937 .0095712 .00066276 .00013705 -.014598 
3.44 14 -.083538 -.0027217 -.0025335 .0013245 .00017449 -.020874 
3.32 15 -.093647 -.0018877 -.024816 
3.22 16 
3.12 17 
3.03 18 
2.95 19 

-.099791 -.00026051 
-.10004 

-.092463 
-.075216 

2.88 20 -.046676 
2.81 21 -.0055486 
2.75 22 .049184 
2.68 23 .11819 
2.63 24 .20188 
2.58 25 .30037 
2.53 26 .41363 
2.48 27 .54145 
2.43 28 .6835 
2.39 29 .83941 
2.35 30 1.0087 
2.31 31 1.1909 
2.28 32 1.3855 
2.24 33 1.5919 
2.21 34 1.8096 
2 .18 35 
2. 15 36 
2. 12 37 
2.09 38 
2.06 39 
2.04 40 
2.01 41 
1. 99 42 
1. 96 43 
1. 94 44 

2.0382 
2.277 

2.5257 
2.7839 
3.051 

3.3266 
3.6103 
3.9017 
4.2004 

4.506 

.0022506 

.0056826 
.01029 

.015966 

.023108 

.031402 

.041078 

.052271 

.064609 

.078189 

.092959 
.10867 
.12523 
.14257 
.16055 
. 17917 
.19891 
.21823 
.23844 
.25957 
.28145 
.30269 
.32425 
. 34611 
.36816 
.39028 
.41267 
.43596 

-.058204 
-.10229 
-.1554 

-.21644 
-.28197 
-.35187 
-.42226 
-.49292 
-.56421 
-.63281 
-.6996 

-.76426 
-.82667 
-.8857 

-.94192 
-.9952 

-1. 0458 
-1. 0987 
-1.1411 
-1.1842 
-1.2271 
-1.2694 
-1.3076 
-1. 3443 
-1. 3796 
-1.4136 
-1.4462 
-1.4788 
-1.5134 

.0023078 .00024542 -.027088 

.0036648 .00038412 

.0054031 .00063023 

.0074592 .001028 

.0097985 .0015597 

-.032658 
-.037241 
-.040818 
-.043081 

.012336 

.015063 

.017806 
.02052 

.023336 

.025981 

.028517 
.03103 

.033724 

.035992 

.038127 

.040042 

.041865 
.04299 

.045349 

.047194 

.049334 

.052452 

.053929 

.055291 

.056503 

.057794 

.059165 

.057225 

.053514 

.0022541 -.044821 

.0030367 -.045406 

.0039621 -.045995 

.0049689 -.046218 
.006006 -.045633 

.0071155 -.045466 

.0082558 -.045133 

.0093941 -.04479 
.010571 -.04468 
.011806 -.04476 

.01308 -.045088 
.014419 -.045705 
.015779 -.046712 
.01708 -.042495 

.018507 -.048547 

.019871 -.05174 

.021052 -.054217 

.022044 -.057715 

.023516 -.061089 
.02501 -.064886 

.026527 -.069113 

.028087 -.074089 

.029734 -.080364 

.031565 -.077531 

.033173 -.0648 



1. 92 45 
1. 90 46 
1. 88 47 
1.86 48 
1.84 49 
1. 82 50 
1. 80 51 
1. 79 52 
1. 77 53 
1. 75 54 
1. 74 55 
1. 72 56 
1. 71 57 
1.69 58 
1.68 59 
1.66 60 
1.66 61 
1. 64 62 
1. 62 63 
1.61 64 
1. 60 66 
1. 58 66 
1. 57 67 
1. 66 68 
1. 55 69 

4.818 
5.1361 
5.4599 
5.789 

6.1227 
6.4606 
6.8023 
7 .1473 
7.4966 

7.847 
8.2012 
8.558 

8.9172 
9.2787 
9.6422 
10.007 
10.374 
10.742 
11.111 

11.48 
11. 849 
12. 217 
12.583 
12.946 
13.306 

beta = 0.025000 

1 -4.7942e-05 

.45826 

.48147 

.50482 
.5283 

.55303 

.57569 

.60518 

.66049 
.6933 

.72042 

.74934 

. 77551 

.80498 

.83158 

.86231 

.88853 

.99019 
1.0187 
1.0475 
1. 0671 
1.0934 
1.1196 
1.1452 
1.1703 
1.1854 

2 -.00041099 0 
0 12.88 

9.10 
7.43 
6.44 
5.76 
5.26 
4.87 

3 -.0014828 -6.3467e-05 
4 -.0037336 -.00013289 
6 -.0081141 -.00013121 
6 -.014502 -.00031418 
7 -.023769 -.00072965 

4.55 8 -.036421 -.001457 
4.29 9 -.062697 -.0022578 
4.07 10 -.072299 -.002904 

-151-

-1.5366 
-1.5667 
-1.5964 
-1. 626 

-1. 6579 
-1. 6832 
-1.7372 
-1. 9661 
-2.1207 
-2.2002 

-2.256 
-2.4638 
-2.5287 
-2.8648 
-2.9133 
-3.5072 
-3.3476 
-3.8892 
-4.7095 
-4.8303 
-6.1849 
-8.5961 
-13.482 

-25.7 
-28.818 

0 

.059927 

.060536 

.060991 

.061232 
.04914 

.061901 

.046626 

.091294 
.16554 
.17942 

.144 
.2298 

.18174 

. 31116 
.1961 

.44826 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 

.034806 

.036397 

.038004 

.039624 

-.10493 
-.11336 
- .12175 
-.1296 

.041069 -.090052 

.042855 -.158 
.04257 -.052358 
.03004 .46898 

.026638 .84656 

.026848 1.1089 

.026786 1.4336 

.027021 2.6782 

.026763 3.2268 

.026871 

.026322 

.026401 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 

6.4958 
7.3251 
16.038 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 0 0 0 
0 

. 00018356 0 0 0 
. 00060433 0 0 0 
.00099672 -4.6281e-06 -2.1463e-06 9.6559e-06 

.0026216 -1.3916e-05 -2.7883e-06 .00012425 

.0059925 -2.4391e-05 3.9198e-06 -.00017079 
.011394 -2.3569e-05 2.2527e-05 -.0012031 
.016752 4.4952e-05 3.3622e-05 -.0032518 
.018102 .00025897 3.4519e-05 -.0060522 

3.88 11 -.094144 -.0031601 .011263 .00071013 3.6813e-05 -.0090674 
3.72 12 -.11627 -.0029646 -.0057114 .0014505 8.4014e-05 -.011839 
3.57 13 -.13696 -.0023434 -.032261 .0024795 .00022087 -.014183 
3.44 14 -.15016 -.0010417 -.067349 .0037543 .00046103 -.016874 
3.32 15 -.15584 .00081316 
3.22 16 -.1604 .0038628 
3.12 17 -.13174 .0077733 
3.03 18 -.098346 .013013 
2.95 19 -.049407 .019586 
2.88 20 .016386 .027073 
2.81 21 .096044 .035513 
2.76 22 .19243 .044721 
2.68 23 .30428 .054789 
2.63 24 .43119 .065495 
2.58 25 .57261 .076985 
2.53 26 .72788 .08918 
2.48 27 .8963 .10135 
2.43 28 1.0772 .11358 
2.39 29 1.2701 .12605 
2.35 30 1.4744 .13866 
2.31 31 1.6896 .15136 

-.10685 
-.15135 
-.1955 

- . 24017 
-.28588 
-.32863 
-.37074 
-.40951 
-.44623 
-.48136 
-.51363 
-.54413 
- . 57175 
-.59845 
-.62199 
-.64343 
-.66364 

.005168 .00083498 -.017367 
.0067479 .0012799 -.018135 
.0083004 .0018257 -.019065 
.0097684 .0024222 -.019674 

.011472 .0030403 -.01998 

.012817 .0037276 -.020318 

.014461 .004429 -.020722 

.015692 .0051814 -.021123 

.016864 .0069438 -.021688 

.018415 .0067221 -.022562 

.019499 .0075186 -.023466 

.020694 .008296 -.024742 

.021597 .0091937 -.026272 

.022883 .010152 -.028134 

.023608 .011159 -.030296 
.02417 .012235 -.032875 

.024762 .013313 -.036929 



2.28 32 
2.24 33 
2.21 34 
2.18 35 
2.15 36 
2.12 37 
2.09 38 
2.06 39 
2.04 40 
2.01 41 
1. 99 42 
1. 96 43 
1. 94 44 
1. 92 45 
1. 90 46 
1. 88 47 
1. 86 48 
1. 84 49 
1. 82 50 
1. 80 51 
1. 79 52 
1. 77 53 
1. 76 54 
1. 74 65 
1. 72 66 
1. 71 57 
1. 69 58 
1. 68 59 
1. 66 60 
1. 66 61 
1. 64 62 
1. 62 63 
1. 61 64 
1. 60 66 
1. 68 66 
1. 57 67 
1. 56 68 
1. 55 69 

1.9156 
2.1514 
2.3971 
2.652 

2.9158 
3.1879 

3.468 
3.7656 
4.0506 
4.3521 
4.6603 
4.9747 

6.295 
6.6208 
5.952 
6.288 

6.6287 
6.9735 
7.3219 
7.6736 
8.0282 
8.3866 
8.7466 
9.1081 
9.4729 
9.8397 
10.208 
10.579 
10.951 
11. 324 
11. 698 
12.072 
12.447 
12.821 
13.195 
13.566 
13.934 
14.297 

beta = 0.050000 

.16482 

.17901 

.19162 

.20457 
.2181 
.2317 

.24837 

.26827 

.29321 

.31266 

.32816 

.34521 

.36218 

.37461 

.39017 

.40681 

.42149 

.44208 

.45287 

.47096 

.51913 

.56267 

.58337 

.60729 

.62542 

.76069 

.78322 

.80109 
.8246 

.84042 

.86333 

.88639 

.89899 

.91989 

.94173 

.96557 

.98664 

.96922 

-152-

-.68369 
-.70429 
-.71967 
-.73371 
-.74618 
-.75684 
-.77065 
-.79827 
-.85214 
-.88559 
-.90297 
-.91687 
-.92585 
-.95586 
-.9756 

-.99687 
-1. 016 

-.99594 
-1. 0523 
-1.0818 
-1.3964 
-1.9513 
-2.0979 
-2.013 

-2.6616 
-2.7842 
-3.2413 
-3.5637 
-4.2764 
-4.815 

-6.1123 
-8.0046 
-9.3451 
-13.395 
-20.694 
-35.493 
-72.617 
-82.509 

12.88 1 -5.0323e-06 O O 
9.10 2 -.00068031 -4.9916e-06 .00011163 

.02564 
.024257 
.026176 
.027081 
.027061 
.026874 
.023696 
.021051 
.031896 
.040011 
.040748 
.036497 
.027272 

.04236 

.04286 
.043333 
.043724 

.0056707 
.044193 
.036942 
.028768 

.15231 

.17046 
.070814 

.23618 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

.014324 -.039488 

.016374 -.037764 

.016626 -.045489 

.017928 -.052348 

.019222 -.059276 

.020567 -.067942 

.021479 -.070877 

.021761 -.063433 
.02048 -.059727 

.020466 -.067066 

.021693 -.071989 

.022669 -.071004 

.023694 -.071862 

.026186 -.086009 

.026432 -.086042 

.027692 -.084748 

.028974 -.083291 

.029671 -.10098 

.031628 -.09182 
.0326 -.028687 

.026966 .89466 

.021062 2.6894 

.021188 3.4109 

.021117 3.1492 

.021362 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

7.6466 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

7.43 
6.44 
5.76 

3 -.0034161 -3.1621e-06 
4 -.0086038 -.00011376 
6 -.017497 -.00046913 

6.26 6 -.031843 -.0011443 
4.87 7 -.062711 -.0019794 
4.55 8 -.080308 -.002588 

.00022178 -7.3393e-07 -4.0663e-07 1.7084e-06 
.00096242 -4.0185e-06 -1.4991e-06 6.1763e-06 

. 0037545 0 0 0 

.0097546 -1.887e-06 7.1251e-06 -.00055022 
.015584 3.3485e-05 6.5208e-06 -.001579 
.015645 .00024226 7.2762e-07 -.002897 

4.29 9 
4.07 10 
3. 88 11 
3.72 12 
3.57 13 
3.44 14 

-.11299 -.003193 .0071043 
-.14709 -.003593 -.010134 
-.17818 -.0041636 -.03066 
-.20195 -.0038455 -.057601 
-.21415 -.0030609 -.082593 
-.21177 -.00086119 -.11127 

3.32 15 -.19384 .0019638 
.0053958 
.0092361 

-.13613 
3.22 16 -.16026 -.16226 
3.12 17 -.11087 -.18412 
3.03 18 -.045363 .013766 -.20464 

.0006656 3.2016e-05 -.0041942 

.0012768 .00013101 -.0052237 

.0019646 .00033702 -.0063066 

.0028418 .00058982 -.0069344 

.0035767 .00092455 -.0077172 

.0046185 .0012834 -.0081837 

.0050712 

.0059562 

.0064127 

.0068638 

.0017211 -.0086508 

.0021856 -.0091291 

.0027026 -.0095702 

.0032319 -.01005 



2.95 19 
2.88 20 
2.81 21 
2.75 22 
2.68 23 
2.63 24 
2.58 25 
2.53 26 
2.48 27 
2.43 28 
2.39 29 
2.35 30 
2.31 31 
2.28 32 
2.24 33 
2.21 34 
2.18 35 
2.15 36 
2.12 37 
2.09 38 
2.06 39 
2.04 40 
2.01 41 
1. 99 42 
1. 96 43 
1. 94 44 
1. 92 45 
1. 90 46 
1. 88 47 
1. 86 48 
1.84 49 
1. 82 50 
1. 80 51 
1. 79 52 
1. 77 53 
1. 75 54 
1. 74 55 
1. 72 56 
1. 71 57 
1. 69 58 
1. 68 59 
1. 66 60 
1. 65 61 
1. 64 62 
1. 62 63 
1. 61 64 
1.60 65 
1. 58 66 
1. 57 67 
1. 56 68 
1. 55 69 

.036485 
.13442 
.24761 
.37491 
.51521 
.66775 
.83212 
1. 0081 
1.1955 
1.394 

1.6034 
1.8231 
2.0529 
2.2922 
2.5406 
2.7977 
3.0632 
3.3365 
3.6174 
3.9054 
4.2002 
4.5015 
4.809 

5.1224 
5.4415 

5.766 
6.0957 
6.4304 
6.7697 
7.1133 
7.4609 
7.8119 

8.166 
8.5229 
8.8826 
9.2448 
9.6094 
9.9761 
10.345 
10.716 
11.088 
11. 462 
11. 836 
12.212 
12.589 
12.965 
13.341 
13.716 
14.089 
14.458 
14.823 

beta= 0.100000 

.018573 

.024278 

.029905 

.035958 

.041962 

.047433 

.053009 

.058354 

.063891 

.069179 

.075304 

. 081747 

.088427 

.095309 
.10652 
.11407 

.1217 
.13126 
.13786 
.14442 
.15094 
.15744 
.16393 
.17041 

-153-

-.22466 .0077255 
-.24096 .0080783 
-.25733 .0088377 
-.26863 .0089374 
-.27788 .0089933 
-.28922 .0096168 
-.29386 .0095452 
-.2964 .0092975 

-.29812 .0090167 
-.30531 .0095042 
-.30445 .0092612 
-.30235 .0089506 
-.29835 .0085384 
-.29153 .0078819 
-.2823 .00091563 

-.28544 .0023689 
-.28427 .0038986 
-.27777 .0056994 
-.25612 .0042545 
-.23179 .00254 
-.20498 .00050866 
-.17579 -.0018595 
-.14426 -.0046002 
-.11033 -.0077083 

.18082 -.034455 -.026499 

.18904 .052196 -.04365 

.18987 .082678 -.023475 

.19626 .1446 -.029054 

.20271 .21159 -.03548 

.20918 .28256 -.042617 

.22288 .54951 -.11197 

.22214 

.22866 
.2428 

.24188 

.24867 

.26641 

.26201 

.28095 

.27555 

.29724 

.28919 
.3155 

.32094 

.30947 

.34567 
.3556 

.36614 

. 37717 

.38687 

.51336 

.60932 -.068711 
.7347 -.080551 

1.1178 -.18061 
1.2851 -.1246 
1.4832 -.14469 
2.4032 -.38905 
2.4183 -.22169 
3.7246 -.58359 
3.8418 -.34435 
6.0718 -.99172 

6.041 -.54297 
10.277 -1.8602 
13.206 
14.271 
25 .153 
36.908 
57.211 

97.31 
211. 95 

111.9 

-2.2321 
-1.2898 
-5.3623 
-8.1275 
-13.131 
-23.151 
-45.561 
-100.96 

.0037981 -.010947 

.0043847 -.011824 

.0050399 -.013005 

.0057407 -.014426 

.0064944 -.016273 

.0073213 -.017968 

.0081898 -.020843 
.009125 -.02428 
.010079 -.028224 
.011079 -.030526 

.01205 -.036113 
.013038 -.042805 

.01405 -.05108 
.015095 -.061546 
.015892 -.061629 
.016891 -.072004 
.017901 -.086498 
.018674 -.11 
.019961 -.1379 
.021293 
.022672 
.024093 
.025551 
.027046 
.028259 
.029707 
.031724 
.033364 
.035036 
.036741 

.03788 
.040246 
.042052 
.043205 
.045739 
.047627 

.04869 
.061529 
.052413 
.056567 
.056266 
.059753 

.06013 
.062281 
.066345 
.065739 
.067621 
.069191 
.070682 
.07196 

.054777 

-.17137 
-.21096 
-.25753 
-.31204 
-.3757 

-.47519 
-.61324 
-.82046 
-.99719 
-1.2038 
-1.4397 
-2.0685 
-2. 7517 
-3.3422 
-4.7172 
-6.6732 
-7. 9173 
-12.738 
-16.082 
-25.594 
-33.506 
-56.116 
-71.961 
-131.4 

-226.96 
-341. 07 
-626.75 
-1334.5 
-3183.4 
-9253.3 

-47731 
14791 

12.88 1 6.0597e-05 0 0 0 0 O 
9.10 2 -.0020387 -1.2603e-05 5.8034e-05 -2.3884e-07 -1.0654e-07 6.935e-06 
7.43 3 -.0074836 -7.4141e-05 .00069757 -2.264e-06 -1.0629e-06 3.4772e-05 
6.44 4 -.019454 -.00043026 
5.76 5 -.041484 -.0013854 

.0040402 -1.2655e-05 -1.7635e-06 -3.8056e-05 
.011399 2.0663e-05 3.7258e-07 -.00055357 



6.26 
4.87 
4.66 

6 
7 
8 
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-.076798 -.0022082 . 01166 
-.11962 -.0036762 .0067963 
-.16732 -.0060726 -.0076486 

.00013166 6.1143e-06 -.0010529 

.00043689 6.9983e-06 -.0016924 

.00080947 .00016982 -.0020987 
4.29 9 -.21284 -.0071469 -.018331 .0011331 .00034864 -.0027166 

.0016796 .00064296 -.0031078 

.0018585 .00079694 -.0036042 

.0023935 .0010706 -.0038887 

4.07 10 -.24666 -.0078006 -.036668 
3.88 11 -.26604 -.0076775 -.047948 
3.72 12 -.26936 -.0071388 -.064336 
3.57 13 -.2603 -.0065818 -.074626 
3.44 14 -.23669 -.0067719 -.088499 
3.32 16 -.19647 -.0040766 -.096267 
3.22 16 -.13561 -.0017393 -.10819 
3.12 17 -.058132 .0013982 -.11299 

.002538 .0013859 -.0042776 
.0031461 .0017064 -.0047836 
.0032918 .0020461 -.0063436 

.003895 .0023967 -.0069644 
.0039417 .0027762 -.0067846 

3.03 18 
2.96 19 
2.88 20 
2.81 21 
2.75 22 
2.68 23 
2.63 24 
2.68 25 
2.53 26 
2.48 27 
2.43 28 
2.39 29 
2.35 30 
2.31 31 
2.28 32 
2.24 33 
2.21 34 
2.18 36 
2.15 36 
2.12 37 
2.09 38 
2.06 39 
2.04 40 
2.01 41 
1. 99 42 
1. 96 43 
1. 94 44 
1. 92 45 
1. 90 46 
1. 88 47 
1. 86 48 
1.84 49 
1. 82 50 
1. 80 51 
1. 79 52 
1. 77 53 
1. 75 54 
1. 74 55 
1. 72 56 
1. 71 57 
1. 69 58 
1. 68 59 
1. 66 60 
1. 65 61 
1. 64 62 
1. 62 63 
1. 61 64 

.033718 
.13762 
.25262 
.37884 
.51669 
.66637 
.82779 
1. 0007 
1.184 7 
1. 3796 

1.585 
1.8006 
2.0262 
2.2615 
2.5059 
2.7591 
3.0208 
3.2905 
3.5676 
3.852 

4.1431 
4.4405 
4.7441 
5.0535 
5.3684 
5.6887 
6.0141 
6.3443 
6.6793 
7.0186 
7.3621 
7.7094 

8.06 
8.4135 
8.7698 
9.1287 
9.4902 
9.854 
10.22 

10.588 
10.958 

11.33 
11. 703 
12.077 
12.453 
12.829 
13.205 

.0049478 

.0078309 
.01102 

.013568 

.016396 
.01941 
.02204 
.02542 

.029125 

- .1175 
-.12391 
-.12379 
-.13028 
-.12762 
-.12678 
-.13496 
-.13427 
-.1346 

.0040068 

.0044661 

.0044439 
.004947 

.0048786 
.004832 

.0063003 

.0051393 

.0049276 
.033068 -.13394 .00466 
.036329 -.13742 .0060164 
.040407 -.12949 .0046387 

.04453 -.11752 .0042331 
.048697 -.10188 .0037918 
.062922 -.083266 .0032879 
.057727 -.056523 .00043879 
.061358 -.051116 .0019847 
.065367 -.031957 .0020066 
.069766 -.0042283 .00091291 
.074167 .025929 -.00041622 
.078649 
.082899 
.087212 

.09149 
.095737 

.10066 

.10546 

.10846 

.11268 

.11673 

.12093 

.12653 

.12934 

.13357 

.13904 

.14204 

.14641 
.1529 

.15498 

.16162 

.16366 

.17101 

.17251 

.18122 

.18434 

.18565 

.19691 

.058484 -.0019965 

.093196 -.003842 
.12975 -.0059623 
.16779 -.0083676 
.20701 -.011069 
.27665 -.018287 
.36283 -.027575 

.4157 -.02486 
.47581 -.029667 

.5379 -.034766 
.601 -.040623 

.79338 -.065037 

.90841 -.062036 
1.016 -.071385 

1.2646 -.10215 
1.5148 -.10714 
1.6802 -.12277 
2.2614 -.20296 
2.5137 -.18519 

3.262 -.29525 
3.7713 -.2833 
5.0056 
5.6927 
8.0543 
10.246 

12.87 
18.67 

-.47941 
-.44283 
-.85623 
-1.0033 
-1. 0381 
-2.2461 

.0031749 -.0077546 

.0036271 -.0088217 

.0040969 -.010652 

.0046108 -.011627 

.0061362 -.013926 

.0056717 -.016218 

.0062484 -.016524 

.0068148 -.018747 

.0073915 -.020792 

.0079834 -.023172 

.0086401 -.02469 

.0092816 -.0301 
.009948 -.038208 
.01064 -.049208 

.011367 -.063149 

.012098 -.076466 

.012894 
.01371 

.014636 

.016387 

.016268 

.017176 

.018111 

.019072 

.020068 

.021023 

.022022 

.023132 
.02421 

.026306 

.026417 

.027463 

.028689 

.029867 

.030952 

.032246 

.033466 

.034648 

.036976 

.037081 

.038569 

.039659 

.041241 

.042268 

.043742 

.046439 

.046263 

-.08846 
-.10867 
-.13663 
-.16783 
-.20699 
-.25067 
-.30238 
-.36166 
-.42869 
-.63764 
-.68616 
-.8806 

-1. 0477 
-1.2372 
-1. 4471 
-1.9868 
-2.6496 
-3.1658 
-4 .173 
-6.004 

-7 .1192 
-10.61 

-14.101 
-20.248 
-28.747 
-42.698 
-60.356 
-97.164 
-164.29 
-278.62 
-456.27 
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1.60 65 13.581 . 20117 27.082 -3.2048 .047695 -971.45 

1.58 66 13.956 .20513 42.272 -4.8249 .049173 -2413.3 

1.57 67 14.328 .20841 75.722 -7.8525 .050721 -7990.9 
1.56 68 14.698 .20833 202.94 -14.104 .052542 -58124 

1.55 69 15.063 .2503 196.59 -36.982 .049319 -45961 
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FIGURE CAPTIONS 

1. Pressure/Temperature phase diagram for Solid 3 He from Guyer. 1 

2. Phase diagram (H-T) showing the low field ( antiferromagnetic) phase from 

Cross and Fisher. 2 

3. The geometry of two-, three- and four-particle exchange in B.C.C. 3 He from 

Cross. 3 

4. a) shows the H-T phase diagram for solid 3 He. b),c),d) show the different 

possible phase transition structures that are consistent with experiment. They are, 

respectively, a first order transition line turning to a second-order line ending at an 

upper critical field, a first7order line ending at an upper critical field, or a first-order 

transition to a critical point. In the final case, there is no clear distinction between 

the two phases. 

5. NMR spectrum from Osheroff et al. 4 for a solid crystal of 3 He containing three 

different domains of the antiferromagnetic phase. 

6. Typical NMR spectrum for a uniaxial spin structure, from Cross and Fisher,2 

with a nonuniaxial dipole energy (The dipole energy is not described by one axis 

i.) Evidence of the spin realignment is evident at 1H=.7. 

7. The leading coefficient of the high-temperature expansion of the specific heat 

(Cv """' e2/T2
) as a function of molar volume, from Cross and Fisher.2 The open 

points are from direct measurements, and the solid points are derived from pressure 

measurements. 

8. The Curie-Weiss temperature(} as a function of molar volume, from Cross and 

Fisher.2 The open points are from direct measurements, and the solid points are 

derived from pressure measurements. 

9. The antiferromagnetic, ordering temperature, TN, and the inverse of the max­

imum magnetization, 1/Mma:z:' plotted as a function of molar volume, from Miura 

et al. 5 

10. The Magnetization divided by the maximum magnetization, M/Mma:z:, as a 
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function of the inverse of the temperature divided by the antiferromagnetic ordering 

temperature, TN/T, from Miura et al. 5 

11. Mean-field phase diagram for the RDH model with lt=.13 mK and Kp=.385 

mK from Roger et al. 6 The circles and triangles are experimental data. The inset 

graph shows the NAF phase diagram for comparison with the diagram of RDH, and 

experiment. 

12. Predicted phase diagram for the multiple exchange model (Eqn. 2.16) in­

cluding two-, three- and four-particle exchange based on a mean-field calculation, 

from Cross. 3 

13. Plot of the specific heat through the high field to paramagnetic phase tran-

sition at two molar volumes and two magnetic fields, from Cross.3 

14. Sequence of the generation of new positions for seven-particle threading. 

15. Procedure for defining two timeslice positions whose average gives the instan­

ton 's position. 

16. Common motion, which can be mistaken for an instanton when looking at 

the projection of only one particle's position onto the axis joining its initial and 

final positions. 

17. An example of an inst an ton for two-particle exchange, and the effect of 

shifting it 16 timeslices toward the beginning of the path. 

18. The coordinates x and y are defined by the difference vector between two 

particles at a given time: x lies along the difference vector and y is perpendicular 

to it. The coordinates u and v are used to map this configuration onto the system 

of a free particle in the presence of a hard wall (u=x-D,v=y). 

19. Pictured are the particle at ( u, v) and its image at (-u, v). The particle at 

(u,v) propagates to (u',v'). 

20. Two-particle exchange for a 2/54 system plotted as a function of the imagi-

nary time increment, E. 

21. The Gruneisen constant plotted as a function of inverse system size for two-

particle exchange. 

22. The Gruneisen constant plotted as a function of inverse system size for three-
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particle exchange. 

23. The Gruneisen constant plotted as a function of inverse system size for four-

particle exchange. 

24. All of the Gruneisen constant data at molar volumes of 22 cm3 /mole and 24 

cm3 /mole, except for the smallest system sizes, as a function of inverse system size. 

25. All of the Gruneisen constant data at molar volumes of 22 cm3 /mole and 24 

cm3 /mole as a function ofinverse system size. 

26. Three-particle exchange energy plotted as a function of nearest-neighbor 

lattice spacing in the triangular lattice from Roger. 7 

27. A two-dimensional triangular lattice. 

28. Communication mesh used for the parallel version of the program that cal­

culates the Gruneisen parameters. 

29. The Aziz potential of Appendix D. 
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Figure 27 



PERIODIC I CONNECTION 

SPATIAL 
PARALLELISM 

ARROWS INDICATE COMMUNICATIONS DIRECTIONS. 
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HORIZONTAL COMMUNICATION TAKES PLACES AFTER 
A SPATIAL CALCULATION INVOLVING A CERTAIN 
TIMESLICE. 

VERTICLE COMMUNICATIN TAKES PLACE AFTER ALL 
TIMESLIGE CALCULATIONS INVOLVING HORIZONTAL 
GROUPS ARE DONE. Figure 2s 



-188-

Aziz Potential 

20 

,,,--..... 10 
~ ......__,, 
-
0 

-+-' 

c 
Q) 

-+-' 

0 0 
o_ 

-10 

3 4 5 6 

Radial Separation (Angstroms) 

Figure 29 


