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ABSTRACT

The optical implementation of neural networks utilizing volume holograms
is investigated. The intrinsic degeneracy effect that limits the number of inde-
pendent interconnections are identified and analyzed by applying the K-space
analysis. Basic relationships between the number of neurons, the number of in-
terconnections and the size of the optical system that is used to implement the
neural network are derived. Systematic methods for selecting the positions of
the neurons to achieve the maximum number of independent interconnections
are described. Experiments of global and local connectivities accomplished by
using fractal sampling grids for eliminating the degenerate interconnections are
presented. The degrees of freedom of the volume hologram and of the planar

hologram are compared.
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1. INTRODUCTION

Motivated by understanding perception, pattern recognition, learning, and
other functions of the brain, neural biologists detect electrical signals sent by in-
dividual neurons, trace the propagation of these signals, study the bio-chemical
basis for generating these signals and try to develop a picture of how neurons
operate collectively to realize complicated functions. They have accomplished a
great amount of knowledge about nervous systems. But the variety and compli-
cation of neural systems require much more effort before they can be understood

in sufficient detail.

A neural network consists of a large number of neurons connected by synapses.
Nerve cells (neurons) have different shape and size. But the basic function of all
neurons is the same. Each neuron sends out pulses to other neurons through the
synapses (or interconnections), and processes the pulses received from many other

neurons. Typically each neuron is connected with thousands of other neurons.

Mathematical models are created to describe neural networks. Based upon
the basic structure and the observations of experimental neural biologists, theo-
retic analysis are conducted to model the functioning of a large number of inter-
connected neurons. Different models are created to describe the neural network
in different ways. These models help to understand the functioning of the human
brain and provide new algorithms to build new hardware with computational

power imitating the neural system.

Electrical and optical systems are built to implement neural network models.

The signal transmission in an electrical circuit is similar to that in a biological



neural network. By designing a complicated circuit, neural network models can
be implemented using many processors connected by wires. The area required
for these wires, however, limits the number of connections and makes the im-
plementation of dense interconnections difficult. Optics provides another way to
implement neural network models. Its large capacity and intrinsic parallelism
have great advantages over electronics. The optical neural network, neural net-
work architecture combined with the advantages of optics, brings new hope for

computers with higher intelligence.

1.1 NEURAL NETWORK MODELS
1.1.1 Neural Network Architecture

All neural network models follow the same basic architecture, simulating that
of the biological neural system. A neural network consists of many identical ele-
ments (neurons) linked by interconnections (synapses). The differences between
different models lie in the way neurons are connected and the way interconnec-
tions are formed. Neurons are usually depicted as points and interconnections as

lines. Fig.1.1.1 shows the basic architecture.

Each neuron receives signals from and sends signals to many other neurons.
The received signals are magnified or attenuated by the interconnections and

summed by the neuron. Suppose neuron i receives a total input signal z!" from ¢

out

7. The relationship

different neurons, and the output signal sent by neuron j is =

between the received and transmitted signals is

[+

1 out

x}":i wi T, (1.1)
=1



Fig.1.1.1 Neural network architecture.

where w;; is the interconnection weight between neurons ¢ and j. The total

received signal is then processed by neuron 7 to send out an output signal

i = g(zi"). (1.2)

The commonly used function, g(z), has a lower bound and a upper bound with
continuous values in between, for example, a sigmoid function, as in Fig.1.1.2.
When the input is very small, the output is the minimum value. When the
input is some moderate value, the output is something in between. When
the input is very high, the output reaches its maximum value. An extreme
case of the function is obtained when the output jumps from its minimum
to its maximum at certain threshold input value, also shown in Fig.1.1.2. In
this case, the output has only two possibilities, low, if the input is below the

threshold value and high, otherwise. The processing performed by the neuron



in this case is a threshold-logic function. This step function is called a hard
thresholding function. In analogy, a continuous function g(z) is called a soft

thresholding function.

SOFT THRESHOLDING

- ——~ HARD THRESHOLDING

TR s e

Fig.1.1.2 Thresholding functions.

Many models assume that neurons are divided into different layers, as shown
in Fig.1.1.3. A neuron receives signals only from neurons in the previous layer
and sends signal only to neurons in the next layer. The simplest network is a
single layer network. It contains one layer of interconnections and two layers
of neurons. The neurons before and after the interconnections are called the
input and output neurons respectively. Multilayer networks are needed to achieve

complicated functions.

One simple neural network is a classifier. It contains two layers of neurons, N

input neurons and only one output neuron. The task is to classify many objects



Fig.1.1.3 Multilayer neural network.

into two different classes. An object can be specified by a given set of values
for all N neurons in the first layer. The class which the given object belongs to
corresponds to the output value of the neuron in the second layer. This neuron
uses a hard thresholding function to give an output value of either high or low,
usually 1 or —1. All objects corresponding to a final output value 1 are classified
into class 1, otherwise class 2. By selecting the proper weight matrix w and the
threshold value wg, a number of objects can be classified into two desired classes.
As N becomes very large, the maximum number of objects that can be correctly
classified into any possible dichotomy is defined as the capacity of this neural

network. The capacity of a linear classifier is 2(N + 1) [1].

More complicated neural networks can be derived from the simple classifier.
A general single layer network can be generated by adding more output neurons,

each of those being a classifier. Multilayer networks can be created by cascading



a single layer network. In general, the set of functions that are implementable

by a neural network depends on its structure and interconnections.

1.1.2 Formation of Interconnections

Once the structure of a neural network is given, the interconnections need
to be specified. The structure determines the capacity of the neural network.
The interconnections depend on the particular task. For example, let us assume
that a neural network is designed to recognize several faces. How many faces
can be recognized depends on the structure. Whose faces can be recognized
depends on the interconnections, i.e., the weight matrix. The procedure that the

interconnections are specified according to given samples is called training.

A number of training methods have been found. Some treat neural networks
as dynamical systems, and they are known as dynamical training algorithms.
Some calculate the weight matrix directly from the given samples, known as

direct calculations.

Dynamical training typically specifies an energy function in weight space.
Different training methods define different energy functions. The global minimum
of the energy function is the point corresponding to the correct weight matrix. A
training procedure starts from any point in the weight space, where the energy
function is usually not at a minimum value. Then the first point is moved along
the energy surface according to the steepest descent until the global minimum

point is reached.

An example of dynamical training is the Perceptron. Consider only a single

output neuron with a hard thresholding function. The weight matrix becomes a



weight vector w. The goal is to find a weight vector such that

w-x'>0 Vx'e€Class1,
(1.3)

w-x'<0 Vx'e Class?2,

where x! is a sample vector whose elements specify the values of the first-layer
neurons. (Here the threshold value wy was absorbed into the weight vector as-
suming xé = 1 for all sample vectors.) The total number of arbitrary vectors to
be classified, M, must not exceed the capacity of the neural network. The Per-
ceptron algorithm starts from an arbitrary weight vector wi. Try to classify the
sample vectors with wj. If a sample vector is correctly classified, go to the next

sample. If a sample vector is misclassified, change the weight vector according to
Wy = W1 + crixi, ‘ (14)

where

{a=1 if x* € Class 1, (1.5)

o' = -1 ifx' € Class 2.
Then try to classify the sample vectors with w;. Change the weight vector to wj
when a misclassified sample is encountered. Follow the same procedure in the
kth step,

Wil :wk—{-akxk, 1.6
+

whenever there is a misclassified sample vector x*, until all the sample vectors
are correctly classified. The final weight vector is not unique but can always be
found as a result of this training, assuming a solution exists. The convergence

proof can be found in reference [1].



In some cases, the weight matrix can be easily calculated and direct calcula-

tion methods can be used.

An example of direct calculation is the Simple Sum. Given the same set of
sample vectors as before, the Simple Sum algorithm calculates the weight vector

as
M - .
w = Zo‘x'. (1.7)

To verify that this weight vector can correctly classify a sample vector x', consider

the product w - x'.

M
w-x = Za'x‘«x'
=1 ‘ (1.8)
=olx . x'+ Z o'xt - x'.
il
When two different sample vectors are statistically independent, the first term
in the last expression will dominate. The product will be greater than 0 if ot

is 1 and less than 0 if ¢! is —1. Therefore the weight vector so calculated will

correctly classify the sample vectors.

The above methods and many others used in training a classifier also apply to
the training of neural networks with more than one output neuron. Each neuron
can be trained as a classifier, and the weight matrix can be decomposed into
weight vectors with respect to each output neuron. For each input vector, the

neural network will give a series of classifications, resulting in an output vector.

Direct calculation and dynamical training are used in different situations.
For multilayer networks, dynamical training can obtain interconnections without

knowing the outputs of the middle-layer neurons. The most commonly used



method is Backward Error Propagation (BEP) [2]. For single layer networks,
direct calculation can reach the optimal solution without changing the weights

iteratively.

1.1.3 Associative Memory

The interconnections are stored in the network as memories, once they are
established. When the input to the network is one of the sample vectors, the

network will recall the related output stored during the training procedure.

The memory used in neural networks is associative memory, or content ad-
dressable memory. It can recall the related output by inputting the content of a
stored vector, even partially correct. The content of the output can be the same
as (auto-associative memory) or different from (hetero-associative memory) that

of the input used in the training procedure.

The outer product scheme is one of the associative memory models. Suppose
the input vectors {x*} are to be associated with the output vectors {y*}, (k =
1,2,---,M), respectively. The weight matrix, according to the outer product

scheme, is a sum of the outer product of the input and output vectors
W= lyk> <xk| . (1.9)

The element wy; is

M
wij = Zy?m;?. (1.10)
k=1

The outer product scheme can implement both auto-associative memory (y* =

x¥) and hetero-associative memory (y* # x*).
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The outer product scheme works in the same way as the Simple Sum algo-
rithm, as discussed in the last subsection. The Simple Sum algorithm is a special

case when yf is either 1 or —1.

When an input vector is used to recall the corresponding output vector, the
network performs an inner product of the weight matrix and the vector. Suppose

the first input vector, x!, is presented to the network, the inner product

w-x' = |y') (xllx1)+§:lyk> <x"lx1> (1.11)

consists of two terms. The first term is the desired output y! multiplied by
(x! } x!). The second term represents the noise resulting from the cross correlation
between different input vectors. When the number of memories, M, does not
exceed the capacity, the thresholding function of the output neurons will give the

correct answer without the cross talk noise.

The capacity is the maximum number of associative memories that can be
stored and correctly recalled by the network. It can be calculated under the
assumption that the input and output vectors are independent random vectors
with each component a random variable with equal probability of being 1 and
—1. In this case, each component in the vector equation, Eq.(1.11), is a random
variable with Gaussian probability distribution, according the Central Limit The-
orem. The threshold value is set at 0. The probability of correctly classifying
each output element is required to approach 1 when the number of input neurons

approaches infinity. The maximum number of associated pairs of random vectors
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can be stored and recalled is

N
2(logN + logNy)’

.Y p— (1.12)

where Nj is the number of neurons at the output layer [3].

The outer product scheme can tolerate errors in the input vectors, that is, if
the input vector used in the recall process is not exactly that used in the training
process, the output vector will still be the desired one. For example, an input
1

vector used in the recall process is zl,,,,, which is close to the input vector =

used in the training process but different in pN bits. The inner product

M
W Xhrror = [¥1) (X xhrrr) + 3 [¥5) (%] xhrror )
k=2
(1.13)

=|y')(1-2p)N + }A:!: lyk> <xk X§rr0r>,
k=2

under the same conditions for random binary vectors. The signal term is de-
creased by a factor (1 — 2p). As long as the signal term still dominates, the

thresholded output will be y!, the desired output vector.

However, tolerating errors in the input vectors decreases the maximum num-
ber of vectors that can be correctly recalled, i.e., the capacity. For the same
conditions, the capacity of a network capable of tolerating any input vector with

pN bits errors is

(1-2p)*N
2(logN + logN1)’

Mmax = (1.14)

The Hopfield model modifies the outer product scheme and introduces feed-

back to realize an auto-associative memory [4]. The weight matrix, in this model,
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is a sum of outer products of the training vectors without the diagonal terms,

wis = {Zﬁﬁ; chek i, (115)
0 ifi=j.

Any input to the network will produce some output at the second layer. This

output is returned to the first layer as new input. The iterations result in a

flow in the space specifying the vectors. As the feed-back continues, the flow

converges to a stable state corresponding to the stored vector which is nearest to

the input vector. This model has been implemented both electronically [5] and

optically [6].
1.2 OpTICAL IMPLEMENTATIONS
1.2.1 Advantages of Optics

Optics provides large capacity in neural network modeling. The human brain
contains more than 1,000 million [7] cells and most of its volume is occupied
by interconnections. It is difficult for electronics to implement such massive
interconnections in a reasonable volume. For optics, the short wave length of light
enables it to accomplish huge number of interconnections in a relatively small
volume. As will be discussed in the following chapters, the storage capacity of an
optical system with volume V is proportional to V/ A3, where ) is the wavelength

of light.

Optics is a convenient technology to realize parallel processing. For example,
a serial digital computer does a Fourier transform by digitizing the input into

a sequence of discrete values, doing the integral by sequentially handling these



13

discrete values, and finally giving a display containing a finite number of pixels.
Optically, the Fourier transform can be simply done by a lens. Putting the input
pattern at the front focal plane of a converging lens and illuminating it with a
coherent plane wave, its Fourier transform appears at the back focal plane. The
intrinsic parallelism of optics is very useful in simulating parallel processes in

neural networks.

Optics is also capable of implementing interconnections in 3-dimensional
space. While building many layers in a VLSI chip is difficult, optical interconnec-
tions can be stored in 3-dimensional crystals. Further more, the interconnections
in neural network models must be modifiable in order to implement learning.
Photorefractive crystals provide a medium for changing the interconnections in

real time.

1.2.2 Optical Neural Networks

In the recent years, many experiments have demonstrated the power of optical

implementation of neural networks [8-14].

An example is the optical auto-associative loop with planar holograms [15],
performed at Caltech. A Liquid Crystal Light Valve (LCLV) is used in this
experiment to simulate a plane of neurons. The memories are stored in two thin
holograms. Four pictures are stored in the loop. When an image is presented to
the system, it forms correlations with all the stored pictures. The diffracted beam
coming out of the two holograms contain a linear combination of all four pictures
with the strength of each picture determined by the correlation between the input

and the picture. The output is again directed to the neural plane, forming a
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feed-back loop. The LCLV does the thresholding. After several iterations, only
the picture with the strongest correlation with the input image is left as the final

output. This experiment is an optical implementation of the Hopfield model.

Another example is the optical perceptron using photorefractive crystal (16,
17]. Two identical images are exposed to the crystal forming a weight vector
with each of its element a volume hologram recorded in certain spatial location
of the crystal. By either writing or erasing the hologram according to the training
patterns, the weight vector is changed iteratively as described in Eq.(1.6). When
the hologram is exposed to an input sample image, it diffracts the beam to
a detector which integrates the output image and forms a single thresholded
output signal. The output signal is either high or low corresponding to the two
states of a neuron. If the input gives a correct output, the hologram will not be
changed. If the input corresponding to a high output gives a low signal, there
is a feed-back system controlling the training beams to write the hologram of
the input pattern. Otherwise, if the input corresponding to a low output gives
a high signal, the feed-back system will turn on a piezoelectric mirror so that
the two images forming on the crystal are not coherent, therefore the hologram
of the input pattern will be erased. The amount of interconnection strength to
be recorded or erased depends on the time the crystal is exposed to the training
beams. This experiment demonstrates an implementation of dynamical training

process.

In this thesis, the investigation will be concentrated on the optical imple-
mentation of interconnections using Fourier holograms in thick medium. The

input and output patterns are Fourier transformed and combined to form an
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interference pattern. This interference pattern is then recorded as the spatial
variation of the refractive index inside a photorefractive crystal. During the re-
construction, the input pattern is used as the reference beam, the reconstructed
object beam is the stored output pattern. The use of Fourier holograms enables
the partial input pattern to reconstruct the whole output pattern. Therefore,
it is convenient to implement the associative memories of neural networks. In
the optical system, neurons are implemented by points, interconnections are im-
plemented by sinusoidal gratings superimposed in the photorefractive crystal.
The use of volume holograms allows the storage of information in 3-dimensional
space, therefore the optical system will have higher storage density than the
system using planar holograms [18, 19]. Unfortunately, sinusoidal gratings in a
3-dimensional crystal can not independently interconnect input and output neu-
rons both located at 2-dimensional planes [20, 21]. Details of the problems and

solutions will be discussed in the following chapters.

1.3 SUMMARY OF THESIS

The basic mechanism of 3-dimensional storage of interconnection weights will
be introduced in Chapter 2. The Vander Lugt system is used to store and read
Fourier holograms written in the photorefractive crystal. The physical back-
ground for volume holography — the photorefractive effect and coupled wave

analysis will also be reviewed.

In Chapter 3, a geometric K-space analysis will be used to discuss the storage
of multiple gratings in a crystal with finite volume. Given a crystal, the total

number of gratings can be stored in it, i.e., the storage capacity of the crystal,
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is proportional to V/A3, where V is the volume of the crystal and ) is the wave-
length of light used to record and read the gratings. This capacity can not be
fully utilized due to the finite dimensions of the practical system. Among the
practically accessible gratings, each grating can interconnect more than one pair
of input-output pixels, causing degenerate interconnections. K-space analysis
can also calculate the angular separation required between two distinguishable
pixels. The result of this calculation is compared with that obtained from the
coupled wave theory. The comparison indicates that the K-space analysis is com-
plementary to coupled wave theory. The combination of both analyses provides

a better understanding of volume holograms.

In Chapter 4, fractal sampling grids are derived to solve the degeneracy prob-
lem. To implement independent interconnections, the locations of neurons at
both input and output planes are selected so that each grating connects only
one pair of input-output neurons. A systematic way of designing sampling grids
is described. Fractal mathematics is applied to the generation of higher order
sampling grids while keeping the fractal dimension unchanged. Different kinds

of sampling grids are derived.

Experiments demonstrating both global and local connectivities are described
in Chapter 5. The resulting interconnections implement the outer pr?duct
scheme. Hetero-associative memories are stored in the crystal and the desired
output patterns are recalled by the corresponding input patterns, with the help

of fractal sampling grids.

In conclusion, Chapter 6, volume hologram and planar hologram are com-

pared. It is shown that the volume of the system is much smaller when volume
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holograms are used.

In the Appendix, the optical implementation of neural networks using planar
holograms is discussed. The K-space analysis is extended to the planar holo-

grams. Fractal sampling grids for planar holograms are also derived.
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2. OPTICAL HOLOGRAPHIC INTERCONNECTIONS

To implement a neural network, the transfer function of the system must be
modifiable according to the given input and output. Consider a network con-
taining a layer of input neurons, a layer of output neurons, and interconnections
between the two layers. The weight matrix specifying the interconnections works
as a transfer function which maps the input vector sent by the input layer to the
output vector received by the output layer. The task of the training process is

to find such a transfer function that accomplishes a desired mapping.

Optical holography provides a method to generate a transfer function between
the desired input and output. The transfer function is recorded as a hologram
by using the desired input as the reference beam and the desired output as the
object beam. The reconstruction of this hologram diffracts the reference beam
to the object beam, i.e., maps the input to the desired output. The conventional
hologram recording takes two steps: 1) exposure of a film to the interference
pattern; 2) film development. The second step makes the dynamic modification

of a hologram inconvenient.

The discovery of photorefractive materials enables real time holography, since
the development is not required. In addition, the photorefractive material allows
the recording of holograms in 3-dimensional crystals — volume holograms. In the
following sections, the recording and reconstruction of volume holograms, and the
problem associated with 3-dimensional storage of interconnection weights will be

discussed.
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2.1 VANDER LUGT SYSTEM

The basic system used throughout this thesis is the Vander Lugt system, as
shown in Fig.2.1.1. It consists of two Fourier transforming lenses with the same
focal length f, separated by 2f; the input plane located at the front focal plane
of the first lens; and the output plane located at the back focal plane of the
second lens. The input plane is illuminated by a collimated plane wave. The
first lens takes the Fourier transform of the field distribution at the input plane.
The resulting Fourier transform pattern appears at the common focal plane, the
back focal plane of the first lens and the front focal plane of the second lens.
At the common focal plane, the light distribution can be modified to realize
Fourier domain processing. The second lens Fourier transforms this modified
light distribution back to the spatial domain, resulting in a processed pattern at

the output plane.

FIRST SECOND
INPUT FOURIER FOURIER FOURIER OUTPUT
PLANE TRANSFORMING PLANE TRANSFORMING PLANE
LENS LENS

/ A

é .

* <

4

Fig.2.1.1 The Vander Lugt system.
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Consider two separate points at the input plane, A and B respectively. If
nothing is done at the common focal plane (or Fourier plane), the output will
simply be the images of the input points. Light originating from the input point
A will not propagate to the output point B. In other words, the input point 4

is not connected to the output point B.

The input point A and the output point B can be connected by using a
hologram in two steps. The first step is shown in Fig.2.1.2(a). The first lens
converts the spherical waves, coming from the two points at the input plane,
to two plane waves interfering with each other at the Fourier plane. When a
crystal is placed at the Fourier plane, it can record this interference pattern as a
hologram. This step corresponds to the training process of neural networks. The
second step is shown in Fig.2.1.2(b). While the input point B is blocked, the
plane wave coming from the input point A will be diffracted by the hologram to
another plane wave, which is in turn converted by the second lens to a light spot
at the place where the output point B used to be. This step corresponds to the
recall process in neural networks. The input point B is only needed during the

training process.

To set up a complete system to implement a neural network, the crystal is
placed at the Fourier plane to record the interference pattern between the input
and the training patterns. The front focal plane of the first lens is divided into
two separate parts. One of them is called the input plane (from now on, only
this part of the front focal plane is regarded as the input plane), and the other
the training plane. During the training process, the input pattern is placed at

the input plane, and the desired output pattern is placed at the training plane.
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LENS LENS
\
A <\ / = B
le ! sle Q ]
€ € € 1€ >
t L, 1 1 Lp t

(b)
Fig.2.1.2 (a) The training process. (b) The recall process.

The back focal plane of the second lens is also divided into two separate parts.

The part corresponding to the image of the training plane is the output plane.
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The other part corresponding to the image of the input plane is not important
in the discussion. Fig.2.1.3 shows the input plane, the training plane, and the
output plane. During the recall process, the training plane is blocked. The light
beam coming from the input plane will be partially diffracted by the crystal to

the output plane.

FIRST SECOND
FOURIER FOURIER
TRANSFORMING CRYSTAL TRANSFORMING
LENS LENS
OUTPUT
PLANE

PLANE

o

g
i f

r
-
*
-

Fig.2.1.3 The input plane, the training plane and the output plane.

This system simulates a single layer neural network. Input and output neu-
rons are implemented by points at the input and output planes respectively. The
activation of a neuron is represented by the intensity at the location of that
neuron. By setting a threshold intensity, hard thresholding neurons can be im-
plemented. The output of a neuron is either high, if the intensity at that point

is above the threshold, or low, if below.

In this system, interconnections are implemented by sinusoidal gratings inside
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the crystal. Since the crystal is placed between two lenses which convert points
to plane waves, the interference pattern generated by two points is sinusoidal.

Many gratings can be superimposed inside the crystal.

2.2 VOLUME HOLOGRAM

A volume hologram is an interference pattern recorded in a 3-dimensional
medium. A thick crystal can record more information than a thin film, because
of the additional dimension. For example, compare the interference pattern of
two plane waves recorded by a thin (planar) hologram and a thick (volume)

hologram. The interference pattern is a sinusoidal grating

I(z,y,2) = 1+ cos(Kzz + Kyy + K.z2), (2.1)

where K = (K,, Ky, K.) is a grating vector whose magnitude reflects the fringe
spacing and whose direction represents the orientation of the fringe normal. The
volume hologram records these fringes in a finite volume with the information of
both spacing and orientation preserved. In contrast, the planar hologram records
only a 2-dimensional cross section of these fringes. For instance, a film placed at

the z = 0 plane records only

I(z,y) = 1+ cos(Kzz + Kyy). (2.2)

The K, component of the grating vector is not recorded in the film. Therefore, it
is impossible to distinguish whether the fringes are tilted in the z-direction or not.

Fig.2.2.1 shows two different gratings recorded by planar and volume holograms.
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Fig.2.2.1 Two different gratings recorded by planar and volume holo-

grams.

While the volume hologram records two distinct gratings, the recording in the

planar medium is the same for both gratings.

The reconstruction of a volume hologram is also different from that of a
planar hologram. For the same example as above, the grating recorded by the
planar hologram can diffract any plane wave resulting in a diffracted plane wave
(more details discussed in the Appendix). The grating recorded in the volume
hologram will produce a diffracted plane wave only if the in-coming plane wave
is incident at the Bragg angle, which will be discussed in subsection 2.2.2. The
diffraction efficiency can reach 100%, if the thickness of the crystal is properly

chosen.

Photorefractive crystals are widely used for volume holographic recording. In

the following subsection, the properties of these materials will be briefly reviewed.
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2.2.1 The Photorefractive Effect

The photorefractive effect has been discovered in many electro-optic crystals
[22-27], such as Lithium Niobate (LiNbO3), Barium Titanate (BaTiO3), Stron-

tium Barium Niobate (SBN) and others.

The recording of a holographic grating is the result of charge redistribution
inside the crystal. A photorefractive crystal contains donors and empty elec-
tron traps (ionized donors). The donors are photosensitive electron traps with
an absorption band in the visible region corresponding to the excitation of the
electrons into the conduction band. When the crystal is exposed to two coherent

laser beams with interference intensity

I(z,z) = Iy[l + mcos(Kz)], (2.3)

the density of electrons excited to the conduction band is higher in the bright
regions than in the dark regions. The excited free electrons are redistributed due
to diffusion, drift and the photovoltaic effects, and they recombine with empty
electron traps. The net charge density will be positive in the bright regions and
negative in the dark regions, as shown in Fig.2.2.2. The electric field generated
by the space charge density changes the refractive index of the crystal due to
the electro-optic effect. The resulting index grating can be erased by heating or

illuminating the crystal by a uniform laser beam [26].

Several theories for the photorefractive effect have been developed [28, 29, 30].

The Kukhtarev model, which is commonly accepted, describes the formation of
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Fig.2.2.2 The charge density and the space charge field with respect to

the interference pattern produced by two plane waves.

space charge field by the following equations:

ONF N .
5 = (sI+B)(Np = Np) — vrnp, (2.4)
i = eun(B - 2L 7 logn) + ple., (2.5)
on ONjH 1 _
E‘—T—ZV-J, (2.6)
7 - (60Esc) = 4me(n + Na — N3). (2.7

Where Np is the density of donors, NE is the density of ionized donors, n is



27

the density of charge carriers (usually electrons), s is the cross section of photo-
ionization, I is the light intensity, § is the rate of thermal excitation, yg is
the recombination constant, j is the current density, p is the mobility of charge
carriers, E is the total electric field, kg is the Boltzmann’s constant, T is the
temperature, p is the photovoltaic constant, e, is the unit vector along the c-
axis, E,. is the space charge field generated by charge redistribution, N4 is the
density of acceptors, € is the dielectric constant, e is the charge of an electron,

and t is the time.

Eq.(2.4) describes the photo- and thermal-ionization of donors and retrapping
of electrons. Eq.(2.5) expresses the current arising from electrons moving in
the conduction band due to drift, diffusion and the photovoltaic effect [31, 32].
Eq.(2.6) relates the charge density changing rate with the current. It has been
assumed that the acceptor levels are completely filled by electrons and are not
involved in phototransitions. But the existence of acceptors allows part of the
donors to be ionized even in the dark [30]. Eq.(2.7) represents the generation of

the space charge field as a result of charge redistribution.

The solution of these non-linear equations have been obtained analytically
for the steady state [30]. Suppose the light intensity of the interference pattern

is given by Eq.(2.3). Define two parameters

_ IT 2 _ COWkBT
€T"'(A) ““ezAQNA’ (2‘8)

and

(2.9)
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where A = K /27 is the fringe spacing and Ej is the external electric field. It
and [p represent charge transport lengths due to diffusion and drift. Assume the

space charge field is along the c-axis, i.e.,

Egc = Eec. - (2'10)

The steady state solutions for the two extreme cases are:

1) For Iy, lg > A:

E = (E) - MyE,sin(Kz), (2.11)
where
sl
Ay = 2.1
4meN 4
E, i (2.13)

m is the modulation depth given in Eq.(2.3) and (E) is the spatially averaged

electric field.
2) For lr, lg < A:

o0
E= Y E,exp(inKz) (2.14)

=00

is a periodic function with fundamental period A and magnitude of each compo-

nent [30]
2 _
E, = AE[—---———-”"*'MA“}" exp(i®), (2.15)
where

AE = {[Eo + Ey(1 - m/M)]* + E;}'/?, (2.16)
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¢ = cot'l[% + %(1 —m/M)), (2.17)
M = Mo(1 - €r —€k), (2.18)

E, = GZ fi) (2.19)

Es= kBZK . (2.20)

E, and E; are the photovoltaic field and the diffusion field, respectively. The

fundamental term giving rise to a sinusoidal phase grating is

VI+M? -1

E, = AE]| %

lexpli( Kz + ¢)]. (2.21)

The time varying space charge field has been simulated numerically [28, 29].
In the short writing time limit, the electric field is sinusoidal with the same period

as the interference pattern. As time changes, higher order terms will appear.

The space charge field changes the refractive index of the crystal through the
electro-optic effect [33]. The index ellipsoid under the perturbation of an electric

field becomes

1 1 1
(= + rieEp)e? + (=5 + raEx)y? + (=5 + rse Br) 2
n "y n3

(2.22)
+2r41 Eryz + 2r5; Epze + 2rep By = 1,
where repeated index k is supposed to be summed over 1, 2, 3, and
( i1 T2 7”13\
ra1 T22 T23
r31 T32 T33 (2.23)

T41 T42 T43

52 T53

T'51
\7'61 r62 7’63}
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is the electro-optic tensor.

The change of refractive index of a Fe doped LiNbQO3 crystal is

A‘n3 = —~—;-n§r33E3, (2.24)

where suffix 3 represents the direction along the c-axis. For LiNbQOg3, r33 is the
largest electro-optic coefficient, and index gratings are written primarily along

the c-axis.

In our experiment, a Fe doped LiNbOj3 crystal will be used. Some parameters

of the LiNbOj crystal are summarized in Table 2.1.

Table 2.1 Parameters of LiNbOj3

Parameter Notation Value Condition | Reference

Curie Tc 1210°C (23]
Temperature

Point 3m or C3, T<T. [34]
Group 32/m or D3y T>T, [34]
Refractive no 2.38 at 4500 A|  [35]
Index ne 2.28 at 4500 A|  [35]
Mo 2.34 at 5000 A|  [35]
ne 2.24 at 5000 A|  [35)]
Non-zero T13 = T93 8.6 x 10712 m/V [33]
Electro-optic | rgp = —113 = —rg| 3.4 x 10712 m/V (33]
Coefficient r33 30.8 x 10~12 m/V [33]
rs1 = T42 28 x 10712 m/V (33]
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More details of the photorefractive effect can be found in the review papers

(36, 37].
2.2.2 Coupled Wave Analysis

Coupled wave theory [38] is one of the methods [39-43] used to analyze the

reconstruction of volume holograms.

The coupled wave analysis for a sinusoidal phase grating starts from the wave

equation

V!E +K*E =0. (2.25)

The optical field has been assumed to have the form

E = E exp(iwt)ey, (2.26)

where e, is the unit vector along the y-direction and w is the angular frequency of
the monochromatic light wave. The phase grating produces a small perturbation

to the dielectric constant

€= ¢€p + €1 COS(K . I‘), (2.27)

where K is the grating vector which is assumed to be in the (z, z)-plane, as shown

in Fig.2.2.3, €; is the magnitude of the spatial modulation,

€1 < €, (2.28)
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and k? can be written as

k2 =2,
2 (2.29)
=p? + 2kB[exp(iK - r) + exp(—iK - 1)],
where c is the speed of light, # and k represent
8 27re(1)/2
R (2.30)
_2mn
==
and
~1 27 €1
4 ) 12’
A g (2.31)
_mm
="

%N

Fig.2.2.3 A sinusoidal grating inside a crystal of thickness d.
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The electric field consists of two parts, the incident beam and the diffracted

beam. E can be written as
E = R(z)exp(—tk; - r) + S(z)exp(—tkq - 1), (2.32)

where k; and k, are wave vectors assumed to be in the (z, z)-plane. Substitution

of Eq.(2.32) into Eq.(2.25) reveals that when
k;=ki — K, (2.33)

the equation can be separated into two second order differential equations by
matching coefficients of each of the two exponential terms in Eq.(2.32). The
second order derivatives are neglected because R(z) and S(z) are changing slowly

with z. The remaining first order differential equations are

cpR = —ikS,
(2.34)
csS' +16S = —ikR,
where
k;
CR = _:éi’ (2.35)
ka;
cs = ——g—-, ‘ (2.36)
as shown in Fig.2.2.4, and
6§ = Kcos(¢—0 K2\ (2.37)
= K cos(¢ — yy— .

The angles ¢ and 6 are shown in Fig.2.2.4. The solutions to the above first order
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equations have the form [38]

R(z) = tiexp(712) + teexp(122),
(2.38)

S(2) = siexp(712) + s2exp(y22).

With given boundary conditions, the coefficients t1, t2, s1, s2, 71 and 72 can be

solved by substituting Eq.(2.38) into Eq.(2.34). The solution for 712 is

6

= —f—
7,2 Scs
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Fig.2.2.4 Variables used in the coupled wave theory.

For a transmission hologram with boundary conditions

S(z=0)=0,
(2.40)
R(z =0) =1,
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the diffracted beam has the solution:

s 02 L £2\1/2 ;
. CR\1/2_—igsin(v” +£7)
S(d) = —i(=& : 2.41
(d) z(cs) Ty RO (2.41)
where d is the thickness of the crystal,
mnid
L . 2.42
Y = oo (2.42)
and
éd
= —. 2.
€= 5c (2.43)
The diffraction efficiency of the grating is
1= 2SS (@,
2.44
~ sin?(v? + £2)1/2 (2.44)
R

Fig.2.2.5 shows the variation of the diffraction efficiency versus the Bragg mis-

match £.

The diffraction efficiency is maximum when £ = 0, which occurs when

cos(¢ — ) = % (2.45)

The above is recognized as the Bragg condition.

If the incident beam is slightly away from the Bragg angle 6,

6 = 6y + A8, (2.46)

then the corresponding variables § and £ will not be zero. They are related to



36

Moax

Fig.2.2.5 Diffraction efficiency versus the Bragg mismatch.

A6 by:

6 = A6K sin(¢ — 6p), (2.47)

Kdsin(¢ — 69)
2cs )

N, (2.48)

The minimum angular deviation corresponding to the zero diffraction efficiency

/ 2 n2d?
59— 2V ~ e (2.49)

Kdsin(¢ — 6p)

1s

Any plane wave incident at an angle 66 away from the Bragg angle 6y will not
be sufficiently diffracted. Therefore 66 represents the angular sensitivity of the

Bragg condition.

A summary of different approaches for analyzing multiple gratings spatially

superimposed inside a crystal can be found in the review paper [42]. The coupled
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wave theory for multiple gratings in anisotropic crystals becomes very compli-
cated. In Chapter 3, the storage of many sinusoidal gratings will be analyzed

geometrically.

2.3 THE DEGREES OF FREEDOM ARGUMENT

For a Vander Lugt system used to implement a neural network, neurons are
located at the input and output planes, and interconnections are stored in a

3-dimensional crystal. The location of each neuron has 2 degrees of freedom.

Suppose neurons are distributed on a regular 2-dimensional grid. The posi-
tion of a neuron can be specified by two indices (¢, 7 ), representing the ith column

and the jth row on the grid. The signal sent by an input (output) neuron is an

i i nput tput
element of a 2-dimensional tensor z:?p g™,

The weight tensor required for the mapping of two 2-dimensional tensors is
4-dimensional. The signal sent by an output neuron is related to the signals sent

by the input neurons by
tput input
.’CZ'{ pu = gkl(z wkz,-ja::;p“ ), (250)
iJ

where wyy;; is the interconnection between the input neuron (¢, j) and the output
neuron (k,1), and gx;(z) is the thresholding function of the output neuron. Four

indices are needed to specify an interconnection.

However, a stationary grating inside a 3-dimensional crystal has only 3 de-
grees of freedom. A grating vector can be described by its three components

(Kz, Ky, K.). It can not be used to represent a 4-dimensional tensor element.
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The lack of 4-dimensional medium forces the dimension of either the input
neurons or that of the output neurons to be reduced. For example, two kinds of

mappings can be performed using a 3-dimensional weight tensor:
2P = g(Y wai™), (2.51)
i

that is, 1-dimension to 2-dimension mapping; or
output __ snput 2 59
T = gk( ) wkijryg ). (2.52)
4J

that is, 2-dimension to 1-dimension mapping.

In general, if the input neurons are distributed d-dimensionally, the output
neurons can be at most distributed (3 — d)-dimensionally, because the gratings
used to implement interconnections are limited within a 3-dimensional crystal.
In the case of fractional dimension, the mapping can not be written in the above
tensor form explicitly. The concept of fractals will be used to discuss the general

neuron distributions in Chapter 4.
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3. K-SPACE ANALYSIS

3.1 INTRODUCTION

K-space analysis is a geometric analysis of volume holographic gratings. With
the help of the Fourier transform, the spatial superposition of multiple gratings
in the real space is described as the distribution of points in the K-space. This
distribution is in turn related to the characteristics of the crystal, such as its

normal surface, shape and dimensions.

The following discussion involves two spaces — the k-space and the K-space.
Here k and K represent the wave vector of a plane wave and the grating vector
of a sinusoidal phase grating respectively. Mathematically, each point in the k-
space (K-space) represents a plane wave (a set of sinusoidal fringes) extended to

infinity in the real space.

Section 3.2 calculates the storage capacity of the crystal. First, a sinusoidal
grating recorded by the crystal is mapped to the K-space with a finite K-space
volume. Then, the storage of multiple gratings is considered. Two gratings
are distinguishable only if their K-space uncertainty volumes do not overlap.
The storage capacity of a crystal will be defined as the maximum number of

distinguishable gratings that can be contained in the K-space.

Section 3.3 discusses the accessibility of the K-space. In practical systems,
such as the Vander Lugt system shown in Fig.2.1.3, the dimensions of the input
and the training planes limit the accessibility of the K-space. The part of the

K-space which is practically reachable will be called the accessible grating space.
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Section 3.4 gives the degeneracy condition in the k-space. The degener-
acy arises when a grating is Bragg matched by more than one pair of incident-
diffracted plane waves. The interconnections between such pairs of input-output
neurons would be implemented by the same grating, and the corresponding weight
tensor elements would not be independent. The degrees of freedom argument in
the last chapter is related to the degeneracy in the k-space. Independent inter-
connections can not be implemented by simply reducing the dimensions of the
neuron distributions. The positions of neurons, that is the directions of plane

waves, will also be taken into consideration.

Section 3.5 evaluates the angular resolution of the Bragg diffraction. The
wave vectors representing plane waves are related to the grating vectors by the
Bragg condition. It is assumed that an ideal grating (a point in the K-space)
can only diffract ideal plane waves (points in the k-space) incident exactly at
the Bragg angle. However, since a real grating recorded in the crystal has a
finite K-space volume, plane waves incident slightly off the Bragg angle will still
be Bragg matched by some points inside this K-space volume. Therefore, the
angular sensitivity of the Bragg condition is related to the geometry of the K-

space volume of the grating.

The validity of the K-space analysis will be discussed at the end of this chap-
ter. The comparison of the angular resolution obtained using the K-space analy-
sis with that obtained using coupled wave theory indicates that for thick medium
and low modulation depth, the K-space analysis and coupled wave theory are
both valid. However, coupled wave theory is limited to only Bragg scattering

or thick medium diffraction [38], but the K-space analysis allows large Bragg
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mismatch, therefore, is valid for both thick and thin media. On the other hand,
the K-space analysis cannot give the diffraction efficiency without the help of
coupled wave theory. Therefore, the K-space analysis and coupled wave the-
ory are complementary to each other. The combination of the two analyses will

provide a better understanding of both volume and planar holograms.

3.1.1 k-space and the Normal Surface

In an anisotropic medium, the commonly used eigen states of the wave equa-
tion are plane waves with their polarization specified and their wave vectors
confined to the normal surface [33]. Each eigen state has its eigen value — the

wave vector k.

The wave equation in an anisotropic medium can be written as
k x (k x E) + w?ueE = 0, (3.1)

where k is the wave vector, E is the electric field, w is the angular frequency of
the electromagnetic wave, p is the permeability tensor which is assumed to be a
constant, and e is the dielectric tensor. This equation is derived from Maxwell’s
equations by assuming that the electric field and the magnetic field have the form

Eexpli(k - r — wt)],

(3.2)
Hexpli(k - r — wt)].
Eq.(3.1) will have nontrivial solutions if and only if

Where the coordinate system has been chosen such that the dielectric tensor is
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diagonal, i.e.,

e, 0 O
e=| 0 ¢ 0]. (3.4)
0 0 e

Eq.(3.3) specifies a surface in the 3-dimensional k-space, which is called the
normal surface. In general, the normal surface consists of two shells crossing
at four points. These four points specify two optical axes. Each optical axis
passes through two of the four points and the origin. In a special case, two of
the principal dielectric constants are equal and the normal surface becomes two
tangential surfaces, one sphere and the other ellipsoid. Such a crystal is called a
uniaxial crystal. Plane waves with their wave vectors confined on the sphere and

the ellipsoid are called ordinary and extraordinary waves respectively.

In the following discussion, the ordinary and extraordinary waves will be
considered separately with the assumptions that the crystal is uniaxial and there

is no polarization change during diffraction.

In a uniaxial crystal, the normal surface can be separated into a sphere,

k2 ky R,
+ 5+ =5 =k, 3.5
nZ2 n2 n? 0 (3:5)
and an ellipsoid,
ke Ry B,
=k )
n? +n§ +n§ 0 (3.6)

where k = (kg,ky, k;) is the wave vector, nl = e;/e0 = €;/€0, N2 = €, /e,
ko = w/c, €9 and ¢ are the dielectric constant and the speed of light in vacuum

respectively.
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It is sufficient to consider only the diffraction of extraordinary waves, since
the sphere can be regarded as a special case of an ellipsoid with ne = n,. The

coordinate system is chosen such that the optical axis is in the y-direction.

3.1.2 K-space

The K-space distribution of gratings is confined to a finite volume, if the
plane waves used to write and to read these gratings are monochromatic. The
boundary of this distribution can be found with the help of the normal surface

containing the wave vectors.

Consider a grating written in a crystal by two plane waves. When two
different plane waves exp(tk; - r) and exp(ikq - r) form an interference pattern
cos[(kg — k;) - r] inside a crystal, the resulting dielectric phase grating will have
a first order sinusoidal component cos(K - r + ¢), where K is the grating vector
and ¢ is the phase shift [44] between the grating and the interference pattern.

The relation K = kg — k; is the Bragg condition.

Fig.3.1.1 shows a grating vector K and a normal surface depicted inside the
K-space. The origin of the wave vectors, k; and kg, is at the center of the
normal surface. The origin of the grating vector, K, is at the origin of the K-
space, K; = Ky, = K, = 0. The Bragg condition K = kg4 — k; constrains the
three vectors K, k; and kg to form a triangle. Therefore, the center of the normal

surface is displaced to the point K = —k;.

Given an input plane wave, different gratings can be written by different
output plane waves. Consider a given input wave vector k;. The corresponding

normal surface is centered at the point K = —k,, which will be referred to as



Fig.3.1.1 The K-space and the normal surface.

point N. Consider another point P on this normal surface. The vector from
point N to point P represents a possible output wave vector kg. The vector from
point O, which is the origin of the K-space, to point P is —k; + k4. Thus, point
P represents a grating vector K = kg —k;. Since point P can be any point on the
normal surface, all possible grating vectors are distributed on this 2-dimensional

normal surface.

Another set of grating vectors can be found by using another input plane
wave. Having a different input wave vector k is equivalent to displacing the
center of the normal surface to a different point N', which is given by —k!, in
the K-space. All possible grating vectors K' = k}; — k; will be distributed on the

2-dimensional normal surface centered at point N'.

The two normal surfaces (centered at N and N’ respectively) have the same

orientation, which is determined by the given orientation of the crystal.
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All possible locations of the centers of the normal surfaces are confined to an
ellipsoid described by Eq.(3.6), since all —k;’s are confined to the normal surface
described by Eq.(3.6). This ellipsoid is centered at the origin of the K-space and

will be called the center ellipsoid.

By using all possible input plane waves, the gratings are 3-dimensionally
distributed in a confined volume of the K-space. All possible grating vectors
can be found by continuously moving the normal surface in the K-space. Since
the center of the normal surface is restricted to the center ellipsoid, all possible

gratings are distributed inside a bounded grating space.

The boundary of the grating space is an ellipsoid with its axes twice that of

the normal surface ellipsoid. The equation for that boundary is

KK, R
(2ne)?  (2n,)?

G = k3. (3.7)

+

Only half of the gratings inside the above bounded K-space are necessary
to describe independent gratings. Due to the sinusoidal nature of the grating,
grating vectors K and —K represent the same fringe spacing and orientation. In
the following discussion, the top half of the K-space bounded by Eq.(3.7) will
be used. Fig.3.1.2 shows the relationship between the normal surface, the center

ellipsoid and the bounded grating space.
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Fig.3.1.2 The big half ellipsoid is the bounded grating space. The dashed
ellipsoid is the center ellipsoid. The input and output wave vectors are

shown on the normal surface centered at a point on the center ellipsoid.

3.2 THE STORAGE CAPACITY OF A CRYSTAL

The storage capacity of a crystal is the maximum number of distinguishable
gratings that can be stored. The value can be obtained from the K-space repre-
sentation of gratings. By calculating the whole volume of the grating space and

the K-space volume of each grating, the storage capacity of a crystal is simply

the ratio of these two volumes.
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3.2.1 K-space Volume of a Grating

The K-space volume of each grating is related to the dimensions of the record-
ing crystal. The uncertainty principle gives an estimate of this K-space volume

of a grating, which will also be called the uncertainty volume of a grating.

Suppose the crystal has a rectangular shape with its sides Ly, Ly and L,
along the z, y and z directions. The rectangular crystal is chosen to simplify the

following analysis. Other crystal geometries can be analyzed similarly.

The uncertainty values of the a grating vector are related to the sides of the

crystal L; by 6 K;L; ~ 2, where ¢ = z,y, 2. The uncertainty values are explicitly

written as:
8K, ~ %—E—, (3.8)
0Ky = %—E, (3.9)
K, ~ %7-:- (3.10)

The uncertainty volume, vy, of a grating is simply a multiplication of the three

uncertainty values, that is,

(2m)®
L.L,L,

vg = (3.11)

The strength of each grating inside the uncertainty volume can be calculated

from the Fourier transform of the dielectric modulation,
Ae(z,y,2z) = rect(a:/Lx)rect(y/Ly)rect(z/Lz)(Aeg.) exp(tKy - r). (3.12)

Where rect(z/Lz)rect(y/Ly)rect(z/L;) represents the rectangular crystal, and
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exp(Ky - r) represents the interference pattern. The Fourier transform of

Ae(z,y, 2) is:

A&K., Ky, K;) = ///Ae(a;,y,z) exp|—i(Kzz + Kyy + K,z)|dzdydz

_ . Ki—Kg . Ky—Kg, . K,—Kg
=AegLzLyL;sinc( 5771, )sinc( 27/L, )sine( 57 7L, ).
(3.13)

The strength of each grating K is represented by A& K, Ky, K.).
Eq.(3.13) indicates that the grating K = K, has the maximum grating strength.
The gratings with K; = Kg;+27/L,,or Ky = Kgy+2n /Ly, or K, = K¢, £2n /L,

have zero grating strength.

A rectangular box specified by |K; — Kyz| < 7/Lg, |Ky — Kgy| < 7/Ly and
|K, — Ky.| < n/L, is chosen to include ideal gratings with significant strength.
The center of this box is at the point K, and the sides are 27 /L., 2r/L, and
27 /L, along z-, y- and z-direction respectively. For any grating outside the box,

its grating strength will be reduced by sinc(1/2) or more, according to Eq.(3.13).

The volume of this box is defined as the K-space volume of the nominal
grating K. It can be recognized that the sides of this box are the same as the
uncertainty values given by Eq.(3.8), Eq.(3.9) and Eq.(3.10), and the K-space

volume of a grating is the same as its uncertainty volume given by Eq.(3.11).

The uncertain volume will also serve as the criterion for distinguishing two
gratings. Two gratings written in a finite crystal are distinguishable only if their

uncertainty volumes do not overlap.
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3.2.2 Maximum Number of Distinguishable Gratings

The storage capacity of a crystal is defined as the maximum number of distin-
guishable gratings that can be contained by the grating space. It is a theoretical
upper limit based upon the geometrical considerations. To reach this upper limit,
gratings have to be stacked in the K-space, so that two adjacent gratings are
barely distinguishable. Since the K-space volume of each grating is independent
of the grating vector, as shown in Eq.(3.11), the total number of distinguishable
gratings is the ratio of the volume of the grating space to the K-space volume of

each grating.

The volume of the grating space, i.e., the upper half of the ellipsoid bounded
by Eq.(3.7), can be evaluated as

14w

Vi = 55 (2neko)(2noko)(2neko). (3.14)
It can be written in the form
Vi = %’ingnokg. (3.15)

Therefore, the storage capacity is the ratio C' = Vg /vy, which can be ex-

pressed as

_ 167r 2 Vztal

C= Tncno-—xy. (316)

Where Vgyap = Lz x Ly x L; is the volume of the crystal and A is the wavelength
of light in vacuum.

For example, the storage capacity of a 1em3 LiNbOj crystal, with A = 0.5um,

can be as high as approximately 10°.
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3.3 ACCESSIBILITY OF THE K-SPACE

Practically, the full storage capacity of a crystal is not reachable by using the
Vander Lugt system, as shown in Fig.2.1.3. The finite dimensions of the input
(output) plane limit the range of the input (output) wave vectors. The gratings
which can be written and read by these wave vectors are constrained in a much

smaller space than that given by Eq.(3.7).

To find the accessible grating space, it is necessary to specify the accessible
normal surface. Suppose the input (output) wave vectors are limited within
the upper (lower) right area of the normal surface, as shown in Fig.3.3.1. The
portion of the normal surface selected for input (output) wave vectors is part of
the ellipsoid cut by four planes, two perpendicular to the ky-direction and two
perpendicular to the k;-direction. The input and output wave vectors are chosen
symmetrically with respect to the plane k, = 0. The accessible normal surface of

the input (output) wave vectors will be called the input (output) normal surface.

The input normal surface gives rise to a symmetric part of the center ellipsoid,
since each input wave vector k; corresponds to a point —k; on the center ellipsoid,
as in Fig.3.1.2. This part of the center ellipsoid will be referred to as the partial

center ellipsoid. Fig.3.3.1 shows the partial center ellipsoid in the K-space.

Given an input wave vector k;, a set of gratings can be found on the output
normal surface, as shown in Fig.3.3.2(a). In the K-space, the center of the normal
surface is at the point —k;. Each output wave vector kg is related to a grating

vector K by K = kg — k;.

A different input wave vector k; will give another normal surface centered at
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Fig.3.3.1 The input, output normal surfaces in the k-space and the partial

center ellipsoid in the K-space.

the point —k/ and another set of possible gratings, as shown in Fig.3.3.2(b). Since
the center of the normal surface has been displaced from point —k; to point —k!,
every point on the normal surface is also displaced by (—k}) — (=k;) = k; — k!.
The set of gratings given by the input wave vector k] and all possible output
wave vectors will be the displaced version of the previous set of gratings. The

displacement is again k; — ki.

The 3-dimensional accessible grating space can be found by changing the in-
put wave vector within its accessible values. As the input wave vector k; moves
on the input normal surface, the center of the normal surface —k; moves on the
partial center ellipsoid correspondingly, as shown in Fig.3.3.2(a) and (b). The

set of gratings associated with the input wave vector k; and all the possible



(b)
Fig.3.3.2 (a) A set of gratings formed by the input wave vector k; and all

the possible output wave vectors. (b) A new input wave vector k; gives

a displaced version of the previous set of gratings.



53

ACCESSIBLE
GRATING SPACE

v

GRATING SPACE

Fig.3.3.3 A plot of the accessible grating space determined by the input

and output normal surfaces shown in Fig.3.3.1.

output wave vectors will also move in the K-space following the displacement of
the center of the normal surface —k;. When input wave vector k; moves con-
tinuously through all its possible values, the center of the normal surface —k;
also moves continuously through the partial center ellipsoid. During the contin-
uous displacement, the output normal surface will sweep out a 3-dimensional

accessible grating space in the K-space. Fig.3.3.3 shows a plot of the accessi-
ble grating space determined by the input and output normal surfaces shown in

Fig.3.3.1.

The magnified accessible grating space and cross sections cut by planes are
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shown in Fig.3.3.4. The accessible grating space is bounded by two planes

perpendicular to the Ky-direction, two planes perpendicular to the K -direction,
and the curved surfaces determined by the input and the output normal sur-
faces. The two boundary planes perpendicular to the Ky-direction represent the
maximum and minimum values of the grating vector component K,. The maxi-
mum K, can be reached when k;y is its minimum and kg, is its maximum, i.e.,
Kymazr = kdymaz — Kiymin. Since the input (output) normal surface in Fig.3.3.1
is obtained by cutting the normal surface with two planes perpendicular to the
ky-direction and two planes perpendicular to the k;-direction, any input wave
vector k; along the bottom arc of the input normal surface and any output wave
vector kg along the top arc of the output normal surface in Fig.3.3.1 will form
a grating with Ky = Kymas. All the grating vectors with Ky = Kymer and
different values of K, and K, are on the top boundary of the accessible grating
space. Similarly, the bottom boundary of the accessible grating space represents
all grating vectors with minimum K, value, and the two planar boundaries per-
pendicular to the K, -direction represent all grating vectors with maximum and

minimum K, values respectively.

To determine the curved boundaries of the accessible grating space, it is
sufficient to move the output normal surface vertically following the move of the
center of the normal surface along one of the edges of the partial center ellipsoid.
As will be seen in the following discussion, this procedure gives two of the four
curved surfaces on the right side of the accessible grating space. Reflecting these
two curved surfaces with respect to the K; = 0 plane will result in the other two

curved surfaces of the right side boundary, since both the input and the output



55

ACCESSIBLE CROSS SECTION CROSS SECTION
GRATING PERPENDICULAR PERPENDICULAR
SPACE TO Kz TO K,
Ky
X
z

\

/7
(a) (v) (e)

Fig.3.3.4 The magnified accessible grating space and its cross sections.
(a) The accessible grating space. (b) The cross section cut by a plane
perpendicular to the K,-direction. (c) The cross section cut by a plane

perpendicular to the Ky-direction.

normal surfaces are chosen symmetrically with respect to the K, = 0 plane.
The left side boundary is reflection symmetric to the right side boundary, since
the partial center ellipsoid is reflection symmetric to the output normal surface.

Where the reflection plane is the K, = 0 plane and the comparison between the
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partial center ellipsoid and the output normal surface is conducted on a common

ellipsoid.

Consider the procedure of moving the output normal surface vertically fol-
lowing the move of the center of the normal surface along the front edge (—kiz is
the minimum value) of the partial center ellipsoid, as shown in Fig.3.3.5. Start
from the top point (—kiy is the maximum value) of this edge. The output normal
surface itself gives the upper half of the right side boundary. This is because
the output normal surface is tilted to the left and the partial center ellipsoid is
tilted to the right, therefore moving the output normal surface from the top to
the bottom will not exceed the original position. The lower half of the right side
boundary is swept out by the bottom edge of the output normal surface during
the moving, since the rest of the points on the output normal surface are all to
the left of the bottom edge. The two curved surfaces are allocated on one side of
the K, = 0 plane. This is because the front edge of the partial center ellipsoid
corresponds to kiz; = Kkizmaz- Since it has been chosen that kgzmaez = Kizmaz,
therefore, any grating vector K = kg — k; is located on the K; < 0 side. The
boundaries of the accessible grating space will be discussed in Chapter 4 in more

detail.

The volume of the accessible grating space can be calculated once its bound-
aries are found. This will be calculated in the next chapter, where the volume
of the accessible grating space will be given according to the dimensions of the

input and output planes.
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K-space

Fig.3.3.5 To obtain part of the curved boundaries of the accessible grat-
ings space, move the output normal surface vertically following the move
of the center of the normal surface along the front edge (—ki; is the

minimum value) of the partial center ellipsoid.

3.4 DEGENERACY IN THE k-SPACE

The mapping between a grating vector and a pair of wave vectors is not a
one to one mapping. A grating vector can be mapped to different pairs of input-
output wave vectors as shown in Fig.3.4.1. More than one pair of input-output
plane waves matched by the same grating vector are said to be degenerate. In
this section, the degeneracy condition will be analyzed both in the K-space and

in the k-space.
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 Fig.3.4.1 Degeneracy in the k-space.

3.4.1 k-space Degeneracy Ellipses

All pairs of degenerate input-output wave vectors matched by the same grat-
ing vector K are located on two ellipses, called degeneracy ellipses, on the normal
surface. To find the two degeneracy ellipses in the k-space, consider a pair of
input-output plane waves (k;,kg). These two wave vectors must satisfy the fol-

lowing conditions:

L
n?  n2 nZ "
kczlx k‘%y kg 2
Az Y, ez 1
and
K =k; — k. (3.19)

Eq.(3.17) and Eq.(3.18) indicate that k; and kg are confined to the normal



59

surface. Eq.(3.19) is the Bragg condition. Subtract Eq.(3.18) from Eq.(3.17)

and substitute kg by K + k;. The resulting equations consist of only k;’s.

2
_Iizﬁf. Eﬁ’. + Zc.i”. = k2,
ng ny  n}
(3.20)
(2kiz + K:)Kz  (2kiy + Ky)Ky  (2ki: + K,)K,
2 + 2 + 2 =0.
n8 nO n’e
Similarly, the equations consisting of all kg’s are
2
_’&213_ dy kgz 2
Tt = ko,
€ o €
(3.21)

(2k4y — Kz)K; 4 (2kqy — Ky)Ky + (2kq, — K;)K,

= O
2 2 2 '
ng ns ng

It can be recognized that these two curves are two ellipses resulting from
cutting the normal surface by two parallel planes. The direction of the vector
normal to these two planes, K, is given by

K./ nz
K=|K,/n?]|, (3.22)
K,/n?
which, in general, is different from the K direction. The distances between the

origin of the k-space and these two planes are +d, where

2 KZ Kq
_ 3G+ ) (5.28)
Vi &

The two degenerate ellipses are shown in Fig.3.4.2.
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Nl

Fig.3.4.2 The k-space degeneracy ellipses for the grating vector K.

The degeneracy ellipses can be used to locate all pairs of input-output wave
vectors which are matched by a given grating vector K. A pair of input-output
wave vectors can be found by picking up one point on one ellipse, for instance
k!; then adding the vector K to ki, resulting in a point on the second ellipse,

i = ki + K. For each point on one degeneracy ellipse, there exist one and only
one point on the other degeneracy ellipse such that these two points can be Bragg

matched by the given grating vector K.

For isotropic crystals, degeneracy ellipses become degeneracy circles. The two
circles are perpendicular to the grating vector K, since the K direction becomes
the same as the K direction for n. = n,. The separation between each circle
plane and the origin is half the magnitude of the grating vector, as given by
Eq.(3.23).
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3.4.2 K-space Degeneracy Ellipse

The degeneracy condition can also be discussed in the grating space. For a
given grating vector K, an ellipse on the center ellipsoid can be found, such that
when the normal surface is moved along this ellipse, the grating can always be

matched by two points on the normal surface, as shown in Fig.3.4.3.

NORMAL SURFACE
GRATING SPACE

CENTER ELLIPSOID

Fig.3.4.3 Degeneracy shown in the K-space.

Consider a grating vector K which is Bragg matched by the input and output
wave vectors k; and kg, as shown in Fig.3.4.3. Represent the origin of the wave
vectors, that is the center of the normal surface, by —k; = (z,y,2). Since k;

and kg = K + k; are confined to the normal surface. (z,y,z) must satisfy the
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following conditions,
2 2 2

T ) Z 2
I+ =k 3.24
n  nl + n? 0 ( )

and

(K; — m)z + (Ky - y)2 + (K, - Z)Z

n? n? n?

= k2. (3.25)

Eq.(3.24) restricts the center of the normal surface to the center ellipsoid.

Eq.(3.25) indicates that the point K is on the normal surface.

Subtract these two equations. The curve consisting of the centers of normal

surfaces is found to be

1:2 yz 22
atoat s
ne nl) ne

2
= k()a

(3.26)

=0.
2 2 2
Te U Ne

This is an ellipse resulting from cutting the center ellipsoid by a plane. The nor-
mal direction of the plane is along the same direction as expressed by Eq.(3.22).
The distance between the plane and the origin of the K-space is d, where d is

the same as in Eq.(3.23).

In the case of isotropic crystals, the degeneracy ellipse becomes degeneracy
circle. The degeneracy circle is perpendicular to the grating. And the distance
between the circle plane and the origin of the K-space is half of the magnitude

of the grating.
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3.5 ANGULAR RESOLUTION IN THE k-SPACE

The minimum angle between two wave vectors which can be used to distin-
guish two different gratings is defined as the angular resolution in the k-space. In
this section, the angular resolution will be analyzed in terms of the uncertainty

of a grating and compared with that obtained from coupled wave theory.

A grating written in a finite crystal can be matched by input-output wave
vectors slightly off the Bragg angle determined by the nominal grating vector.
This is because a grating vector K + AK within the uncertainty volume of K
can diffract light from plane wave k; + Ak; to plane wave kg + Aky if K+ AK =
(ka + Akyg) — (ki + Akj), i.e.,

AK = Aky — Ak;. (3.27)

To distinguish two different gratings, the wave vectors are required to have
a minimum separation angle. Since a plane wave off the Bragg angle can still
be diffracted, when two adjacent gratings are recorded, e.g., K, and K, it is
necessary for two input wave vectors to be separated by a sufficiently large angle
so that the output wave can be recognized as a diffraction from one grating or
the other. Similarly two output wave vectors have to be different from each other

by certain angle so that diffractions from two different gratings can be separated.

The criterion for two pairs of input-output plane waves to distinguish two
different gratings is that the difference of the difference between these two pairs
of wave vectors, i.e., (kg, —kia) — (kap — kip) = Ko — K, is outside the uncertainty

volume of a grating.
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3.5.1 k-space Calculation

It is only reasonable to discuss minimum separation in the direction per-
pendicular to the degeneracy curve, since any wave vector along the degeneracy
curve can be matched by the same grating to a wave vector along the second

degeneracy curve.

The discussion starts by defining a local coordinate system. Consider a pair
of input-output wave vectors k; and k; connected by a grating vector K, 1i.e.,
K = kg — k;. Fig.3.5.1(a) shows the local coordinate systems. One of the di-
rections chosen for a coordinate system located at the point k; is the direction
perpendicular to the normal surface, k;. Any wave vector k; + Ak; has its incre-
ment Ak; approximately tangential to the normal surface, that is perpendicular
to k;. Here it has been assumed that the increment Ak; is very small. Another
two characteristic directions are the direction along the degeneracy curve, 7,
and the direction perpendicular to it, 3;. These unit vectors, k;, #; and 3; can be

expressed as

) kix/n%

231' = "”;m‘”_{'—-r‘ ks’y/"g ’ (328)
k;x/ng + kgy/ng + kiz/ng kiz/n2
€

f— Fixka (3.29)
|ki x kd]
and
5 = ki x iy, (3.30)
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where
. 1 kdz/ng
b= k2 /n& + k2 /nd + k%, /nd kay/m5 | - (3.81)
iz/ e 1y/ Yo 1z/ '%e kdz/ng

It can be recognized that the normal direction of the degeneracy ellipse, K in
Eq.(3.22), is the same as kg — k;. The vector 7;, as expressed by Eq.(3.29), is
perpendicular to k;, kg and kg — k;. Therefore, #; is in the plane tangential to
the normal surface and also in the plane containing the degeneracy ellipse. In
other words, #; is along the degeneracy curve. The vector 3; formed by taking
the cross product of k; and #; is in the plane tangential to the normal surface

and perpendicular to the degeneracy curve.

Similarly, the coordinate system located at the point kg can be defined by
three unit vectors kg, fig and §q4. kq has been given in Eq.(3.31). 4 can be chosen

the same as 7, as in Eq.(3.29). Therefore, §; is defined as

84 = I::d X fig. : (3.32)

It is the direction 3; along which the angular resolution will be discussed. The
minimum separation of two wave vectors along the §;-direction for distinguish-
ing two different gratings is denoted by 6k,,. Here 6 represents the minimum
difference needed to distinguish two different gratings, and A represents arbi-
trary difference. Consider two pairs of input-output wave vectors, (k;,kq) and
(k; + Ak;, kg + Aky). The difference of these two pairs is (Ak;, Akg). The mini-
mum value ék;, is defined such that for any value of Aky, the difference Aky—dk;

is just outside the uncertainty volume.
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line 1 / k4
line 2 & 3 | line 1

(a) (b) (c)

Fig.3.5.1 Geometrical explanation of the ék;;. (a) Local coordinates
(ki, 7, 3;) and (kg, g, 84). (b) Line 1 is drawn parallel to the kq4-direction.
Line 2 and line 3 project K on line 1 and cut the §;-axis by a segment
of length &k;s. The points on the normal surface hit by line 2 and line 3
gives the angular resolution 86;. (c) The area around point k; is magni-
fied. The angle © between line 1 (the k:4-direction) and the k;-direction

is the same as the angle between line 2 and the 3;-direction.
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The value of §k;s can be calculated as following. Write K = (6K;, 6Ky, 0K )
with § K, 6K, and §K, expressed in Eq.(3.8), Eq.(3.9) and Eq.(3.10) respectively.
Consider 6K = Ak, — 6k;, which is the extreme case that the vector Aky — 6k;

is on the boundary of the uncertainty volume. Since

6K - kg = (Akg — 6k;) - kg (3.33)
and
Akg-kg=0 : (3.34)
for small Aky, therefore
6K - kg = —6k; - kq. (3.35)
Similarly
6K - ki = 6kg - Ky, (3.36)
because
Ak, - k; = 0. (3.37)

Eq.(3.35) indicates that 6k; can be related to §K by projecting them in the
kg-direction. By calculating the projection of 8k; = 6kis3; in the k4-direction,
6k, - kg = kiy(3; - kg), the value 6k;, can be found.

iy = SKitka, (3.38)
3; - kg

From the definition of the unit vectors #; and 3;, Eq.(3.30) and Eq.(3.31), it can
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be derived that
8- ’}d =sin 0, (3.39)

where © is the angle between k; and kg. Substituting Eq.(3.35) and Eq.(3.39)
into Eq.(3.38), the value 6k;, is found to be

kiy = K ki (3.40)

sin ©

Where the minus sign came from the relation AK = Akq — Ak;.

It is the magnitude that limits the angular resolution. So the minimum

separation required between two input wave vectors along the 3;-direction is

6K - kg
sin® I’

Shiy = ] (3.41)

Similarly the minimum separation required for two output wave vectors along

the §4-direction is

6K - k;

sin® |’

ok, =

(3.42)

The value of 6k;, is geometrically shown in Fig.3.5.1(b) and (c). Vectors k;
and kg are drawn together with their common starting point at the tip of k;. Two
lines, line 2 and 3, perpendicular to k4 and across the edges of the uncertainty

volume hits the normal surface at two points separated by 6k;s.

Finally, the angular resolution 86; is related to 6k;s by
66; =—2 cos i
1] lk,‘ 3
6K - kg

=|k,~$sin®

(3.43)

cos «j,
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where a; is the angle between k; and k;. Similarly

664 u—:f—]fﬁf- cos ay,

[kal
gy (3.44)

“Tkg[sin©

for the output plane wave.

3.5.2 Comparison with Coupled Wave Theory

In this subsection, the K-space analysis and coupled wave theory will be
compared. The comparison starts from the angular resolution obtained from

each analysis.

From coupled wave theory, the angular resolution is given by Eq.(2.49). Using

the new notation, Eq.(2.49) can be rewritten as

omy[(Rag )2 — b iF

%0 = Rasn(r=0)/2)

(3.45)

where K = |K]|; d is the thickness of the crystal, i.e., L,; nj is the coupling index.

The crystal was assumed to be isotropic with infinite L, and L,.

In the case of weak coupling,

kq n%d2
T <

kdz 2
) (3.46)

This angular resolution is given by

k
27r;;ﬁ5

86i = Kdsin((m — ©)/2)




For isotropic crystal K = 2n,kq sin(©/2). Substitute d by L.,

2x k
§0; = —Lencke (3.47)

. .

nokosin ©

This is the same result obtained from Eq.(3.43).

The difference between the angular resolution obtained from the K-space
analysis (Eq.(3.43)) and that obtained from coupled wave analysis (Eq.(3.45))
arises from the different approximations made in these two analyses. In the
K-space analysis, the normal surface has been assumed to be approximately
unchanged by the modulation of the refractive index. This approximation is le-
gitimate if the perturbation of refractive index caused by the holographic grating
is much smaller than the average refractive index of the c?ystal, which is prac-
tically satisfied since the electro-optic coefficient is usually very small [33]. This
approximation has also been used in coupled wave theory, since the input wave
vector has been assumed to be on the unperturbed normal surface. In addition,
coupled wave theory has assumed that the condition Ky = kg — k; is always
satisfied, even if the input plane wave is not incident exactly at the Bragg Angle.
When the incident plane wave is off the Bragg angle, the diffracted plane wave
k,; will not be confined to the normal surface, as shown in Fig.3.5.2. But the
assumption of Thick medium in coupled wave theory [38] implies that the Bragg
mismatch is very small, therefore, the diffracted wave kg will be approximately
on the normal surface. This approximation indicates that coupled wave theory
is more accurate in analyzing diffractions exactly satisfying the Bragg condition

than in analyzing diffractions with Bragg mismatch.
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Fig.3.5.2 When the incident plane wave is off the Bragg angle, coupled
wave theory does not confine the diffracted plane wave to the normal

surface.

In the case of large Bragg mismatch, the angular resolution should be calcu-
lated according to Fig.3.5.3. Eq.(3.43) was derived with the assumption that the
increment Ak; is approximately tangential to the normal surface. When Ak; is
large, this approximation is no longer valid. However, the K-space analysis can
still be used to calculate the angular resolution. Fig.3.5.3 shows the geometry
for calculating the angular resolution. When the input wave vector is changed
by certain value 6k;, the uncertainty volume associated with the grating barely
touches the normal surface. The angle between the two input wave vectors k; and
k; + 6k; is the angular resolution 66; for the input plane wave. Siﬁce the uncer-
tainty volume may touch the normal surface by different points on its boundary

depending on particular input and output wave vectors, therefore, the angular
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resolution may have different expressions for different pairs of input-output wave

vectors.

Fig.3.5.3 When the incident plane wave is off the Bragg angle, the K-
space analysis confines the diffracted plane wave to the normal surface.
The angular resolution is calculated according to the condition that the

uncertainty volume barely touches the normal surface.

The combination of coupled wave theory and the K-space analysis gives
diffraction efficiency for diffractions with large Bragg mismatch. For a grat-
ing vector K which is exactly Bragg matched by a pair of input-output wave
vectors (k;, kg), the diffraction efficiency can be obtained from coupled wave the-
ory, Eq.(2.44). The strength of the grating K can be evaluated by using Fourier
transform, Eq.(3.13). Therefore, the diffraction efficiency associated with the in-

put wave vector k;, the output wave vector k4 and the grating vector K can be
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found from the combination of these two analyses. For example, for a nominal
grating K, stored in a crystal with Ly, Ly — oo and L, = d, the modulation

index nj can be written as

. . K. - K

W)' (3.48)

Since K = kg — ki, there is no Bragg mismatch in the calculation using coupled
wave theory. Suppose the crystal is isotropic, Eq.(2.42) and Eq.(2.44) give the
diffraction efficiency
ani(ki, ka)d mnoko
A vV 7‘Eiz';éd.z
2
.2 nd*nokonimaz
= sin“ { ————=—X (3.49)
t AVEizkq:
. Lk
5(kdx — kiz — ng)5(kdy - kiy - Kgy)smc( dz

U(ki,kd) r“'Sinz( )7

— kiz — ng
5 /d h

where ng is the average refractive index and k¢ = 27/A. In the above expression,
k; and k, are not necessarily Bragg matched by the nominal grating vector Ky,

unlike the approximation used in coupled wave theory [38].

In conclusion, K-space analysis is complementary to coupled wave theory. It
is valid for both thick and thin media. The extension of the K-space analysis to
the planar holograms is discussed in the Appendix. When the storage medium
is anisotropic with finite dimensions, coupled wave theory becomes very compli-
cated, the K-space analysis is especially helpful. The combination of coupled
wave theory and the K-space analysis provides a better understanding of both

volume and planar holograms.
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4. FRACTAL SAMPLING GRIDS

4.1 INTRODUCTION
4.1.1 Introduction

In this chapter, fractal sampling grids are used to select the locations of
neurons at the input and output planes so that independent interconnections
can be implemented and the storage capacity of the crystal can be reached.
To implement independent interconnections, the fractal sampling grid for the
input plane and that for the output plane are derived simultaneously to avoid
degeneracy between any two pairs of input-output neurons. To reach the storage
capacity of the crystal, the sum of the dimensions of a pair of input-output
sampling grids is designed to be 3, which is limited by the dimension of the

crystal.

Section 4.2 relates the degeneracy condition for the locations of neurons in the
input and output planes to the degeneracy ellipses in the k-space. The conversion
between the wave vectors and the positions at the input and output planes are
performed by the Fourier transforming lenses. The corresponding degeneracy

curves at the input and output planes will be calculated.

Section 4.3 gives the optimal configuration for the system set up so that
the storage capacity of the crystal can be reached. The maximum number of
accessible gratings that can be sufficiently used, when the separation of pixels at
the input and output planes and the shape of the crystal are properly chosen, is
derived. The selection of the aperture and the focal length of the lenses will also

be discussed.
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In Section 4.4, fractal sampling grids are systematically designed. Different
kinds of fractal sampling grids are found for mapping d-dimensionally distributed
input neurons to (3 — d)-dimensionally distributed output neurons for 1 <d < 2.

Different fractal sampling grids can be used for different purposes.

The system used in the following discussions is a modified Vander Lugt sys-
tem, as shown in Fig.4.1.1. The input plane and the training plane are separated
by a large angle. Two lenses L; and L/, are used for the input plane and the
training plane, respectively. Lenses L, and L} have the same optical axis. The
angle between the optical axis of lens L; and that of lens Ly is chosen to yield

high diffraction efficiency.

TRAINING PLANE

Fig.4.1.1 A modified Vander Lugt system.
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4.1.2 Fractals

Two important mathematical properties of fractals [45, 46] are the fractal

dimension and self similarity.

The fractal dimension describes the non-integer dimensions. The definition
for fractal dimension can be expressed in different ways. The definition used in
this thesis is as follows. In the 2~diménsional Euclidian space, the input plane
has a total of N x N pixels and N; of those will be used as locations of neurons.
The fractal dimension of the sampling grid is defined as d; = log N1/log N, in
other words, N1 = N%. Similarly, the dimension of the sampling grid for output
neurons, dg, is defined as d2 = log Ny/log N, or No = N 4 N, is the number of

output neurons.

The self similarity is the scaling invariance of the geometrical characteristics
of fractals. Mathematically, a fractal should have infinite orders, i.e., a fractal

keeps the same geometrical structure even it is enormously magnified.

The self similar property will be used to generate higher order fractal sampling
grids based upon first order ones while keeping the fractal dimensions unchanged.
Examples will be given in Section 4.4. In reality, the fractal sampling grids always
have finite orders. Typically, only the first or the second order fractal sampling

grids are used.
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4.2 THE DEGENERACY CONDITIONS AT THE INPUT (TRAINING) PLANE

4.2.1 Mapping Between Neuron Positions to Wave Vectors

The position of a neuron at the input (training) plane is mapped to a wave
vector k; (kg) through two steps. First, a point source at the input (training)
plane is converted to a plane wave propagating in the air by the Fourier trans-
forming lens Ly (L)), as shown in Fig.4.1.1. Then, this plane wave is refracted
at the surface of the crystal, resulting in a plane wave propagating inside the

crystal.

The position of neurons at the input plane will be expressed by the local
coordinate system (z!,y!,2}). The optical axis of lens L; is chosen as the z{-
direction. The input plane is chosen as the (z},y!)-plane, where the z}-direction
is along the z-direction of the global coordinate system and the y;-direction is
perpendicular to both the z} and 2] directions. Similarly, the local coordinate
system for the training plane is (2§, y}, z;). Fig.4.2.1 shows the global and local

coordinate systems.

The relationship between the local coordinates of a point source at the input
plane and the wave vector of the corresponding plane wave propagating in the air
can be found by using the paraxial approximation. Consider a point (z},y;) at
the input plane. The wave vector of the plane wave after lens L, is represented by
pi. Assume that the area of the input plane is small compared with the aperture

and the focal length of the lens so that the paraxial approximation is valid. The
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Fig.4.2.1 The global and local coordinate systems.

components of p; can then be written in the global coordinate system as

p' o~ ._...k—O.x’.
sz f )
. kO ! .
Piy A COS 6(———}—-y,~) — sin 6k, . (4.1)
. kO 1]
Pir = sIn 9('—“}:‘%) + cos Bkg.

Where f is the focal length of the lens, 8 is the angle between the optical axis of

lens L; and the z-direction of the system, as shown in Fig.4.2.1.

Similarly, the wave vector representing a plane wave coming from the point
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(z)},y4) at the training plane is given by

Py ~ 22!
z f d?
Pdy & cosé?(-ul—}qyfl) + sin 6k, (4.2)

k
Pd: = —sin 9(—-—};0-31:,) + cos 0kg.

Here the angle between the optical axis of lens L, and the z-direction of the
system is chosen to be the same as that between the optical axis of lens L; and

the z-direction.

The wave vector of the refracted plane wave can be related to the wave vector
of the incident plane wave by the boundary conditions. Suppose the plane wave
hits the crystal at the surface parallel to the (z,y) plane. Denote the wave
vectors of the input and the training plane waves inside the crystal by k; and
kq respectively. The boundary condition requires that ki; = piz, kiy = piy and
kiz = pdz, kiy = pay. Inside the crystal, the wave vectors are confined to the
normal surface. Therefore, the z-components, k;, and k4,, can be calculated from
Eq.(3.6). The components of an input wave vector inside the crystal are related

to the local coordinates of a point at the input plane by

1
x.
kiz ~ “*fiko,

!

kiy = cos 9(—%-&:0) — sin Bkg, (4.3)

sin?g sin6cosOkg Y

no

n? 1 sin’é

(]

Where the approximation is made to the first order of z}/f or y!/f, which is

assumed to be small under the paraxial approximation. Similar expressions can
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be found for the training wave

!

T
kdz ~ ""}ékﬂa
yl
kay ~ cos 8(—=Lko) + sin bk,

f (4.4)

n2g  sin6 cos Ok 25 Y
sinZ@  sin @ cos8kyZs
ki, ~ nekoy[1 — 57—+ - :"_f.
ng 1 — sin g

no

The grating vector of a grating written by an input point located at (z,y})
and a training point located at (z},v}) is K = kg — k;, i.e.,
K; ~ ko(; — 73)/ f,

K, ~ cos0ko(y; — yy)/f + 2kosin 6,
sin 8 cos Bk 25

K, ~ ——===(y; + v/ f-
1 — sin (
no

4.2.2 Degeneracy Lines at the Input and the Training Planes

(4.5)

To find the degeneracy condition for two input neurons and two output neu-
rons, the degeneracy ellipses in the k-space are mapped to the input and the
training planes. The result, to the linear approximation, are two lines, one at the

input plane and the other at the training plane.

The equations for the degeneracy curves at the input and the training planes
can be obtained by expressing the degeneracy ellipses in terms of the local co-
ordinates. Substitute Eq.(4.3) into Eq.(3.20). The first part of Eq.(3.20) is
automatically satisfied. The second part of Eq.(3.20) gives the degeneracy curve

at the input plane. To the first order approximation, the degeneracy curve is
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described as a line at the input plane, in terms of the local coordinates (z}, ).

The equation for this line is

Je! +(20039Kyk0 2sin @ cos 6K , ko
' p) -
fng fn2ne /1 — sx:i&
- in? @
K? K] K? | 2sin6Kyky _ 2K.koy/1 — %‘}g—-) .

n n n? n? e

i+

(HKaho
fri

(4.6)

Y

where K = (K, Ky, K.) is a given grating.
Similarly, the degeneracy line at the training plane is

2K ko 2cosfK, kg 2sinfcosK kg
(7,‘3‘{')1’21-*( fngy - —

e

!
fniney /1 — Si“ze)yd-*-

o'te Ya

2 K2 R o 2K ko /1 — 128 &0
K: Kp  KP 2sinfKyk 2Mehyl-Sg7 o

2 2 2 2
ne Ny ne n, Ne

(

The above linear approximation is valid when the maximum deviation be-
tween these straight lines and the actual curves is much less than the separation
between two adjacent pixels. More accurate expressions for the degeneracy curves

at the input and training planes can be obtained by keeping higher order terms
of zi/f, yi/f, =}/ f and v}/ f in Eq.(4.3) and Eq.(4.4).

Fig.4.2.2 shows two degeneracy lines drawn on regular 2-dimensional grids at
the input and the training planes. The two lines are almost parallel, since the
difference between the slopes of the two lines is very small when K, <« Ky which
is true if the separation angle between the input plane and the training plane,
26, is much bigger than the angle between two adjacent input or training wave

vectors.
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Fig.4.2.2 Two degeneracy lines drawn on regular 2-dimensional grids at

the input and the training planes.
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Once the degeneracy lines are found for a grating, all the degenerate inter-
connections corresponding to the same grating can be found. If a neuron on the
degeneracy line at the input plane and a neuron on the degeneracy line at the
training plane are separated by | — z}; = K f/ko in the z-direction, these two
neurons are connected by the grating specifying the two lines. When two or more
pairs of input-training neurons satisfy the above condition, the interconnections

between those pairs of neurons are degenerate.

4.3 OprTIMAL CONFIGURATION

Due to the degeneracy, the total number of independent gratings is less than
the product of the number of pixels at the input plane and that at the output
plane. In the last chapter, the accessibility of the gratings were discussed in the
K-space. In the following discussion, the total number of accessible gratings will
be calculated in terms of the dimensions of the input and the output planes.
The result will show that for a 2-dimensional input (output) plane with N x N
resolvable pixels, the maximum number of accessible gratings is in the order of

N3,

The optical system has to satisfy certain conditions in order to utilize the
maximum number of accessible gratings. The aperture of the system, the di-
mensions of the crystal and the separation between two nearest pixels will be

considered to achieve the optimal accessibility.
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4.3.1 Total Number of Accessible Gratings

To find the relationship between the accessible grating space and the dimen-
sions of the input and the training planes, it is necessary to express the grating
vector in terms of (z},y}) and (z},y}). Eq.(4.5) relates the local coordinates of
a point at the input plane and a point at the training plane to the the grating

vector which is Bragg matched by plane waves coming out of these two points.

To specify the finite dimensions of the input and the training planes, sup-
pose the points at the input plane, (z},y}) plane, are confined within a square,
—a/2 < 7} < a/2 and —a/2 < y; < a/2, and the points at the training plane,

(2!, y}) plane, are confined within —a/2 < z}; < a/2 and —a/2 < y; < a/2.

The minimum and maximum values of K,, K, and K, according to Eq.(4.5),

Kimin = ~—k0a/f,
Kimazr = koa/f,

Kymin = 2kosin6 — ko cosfa/f,

Kymaz = 2kosin 6 + ko cosba/f, (4.8)
sin 6 cos 675
szin = "’kO"'""—'_—""' ’
1 sin 9 f

sin 8 cos 9-—& a

0f

szax = kO

g

The shape of the accessible grating space is a parallelepiped bounded by edge
points given above. This result can be obtained by considering the cross sections

of the accessible grating space. In Eq.(4.5), the value of K, does not depend
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on the values of either K, or K,. Therefore, the cross section of the accessible
grating space cut by any plane perpendicular to the K,-direction is the same
for all values of K,. For a constant K, the minimum K, is reached only when
y; = —a/2 and y), = a/2, which results in K, = 0. Likewise, the maximum K,
is reached only when y; = a/2 and y; = —a/2, and also K, = 0. The minimum
(maximum) K is given by y; =y, = —a/2 (y; = ¥}, = a/2). When K, = K.min
or K; = K.maz, Ky will be 2kgsin 6, which is half way between its maximum
and minimum values. The boundaries of the cross section are straight lines,
since K, and K, are changing linearly with both y; and y;. The cross section
at a constant K, can be obtained by connecting the four points, (K, Kymin,0),
(Kz,2kosin 8, K;maz), (Kzy Kymasz,0) and (Kz,2kosiné, K min). The resulting
shape is a rhombus, as shown in Fig.4.3.1(a). The accessible grating space can

be obtained by moving the rhombus in the K-space from Kzmin to Kzmaz. The

final result is a parallelepiped, as shown in Fig.4.3.1(b).

Comparison of Fig.4.3.1 with Fig.3.3.4 reveals that the linear approximation
has replaced all curved lines in Fig.3.3.4 by straight lines. This approximation
is valid when the area of the input (output) normal surface is very small so that
the curvature of the normal surface can be neglected. When the area becomes

large, higher order terms need to be added in Eq.(4.3) and Eq.(4.4).

The total number of accessible gratings can be calculated in the accessible
grating space. The area of the rhombus in Fig4.3.1(a) is
%(Kymag; — Kymin)(Kzmaz — Kzmin). The side of the parallelepiped in the K-

direction is Kyzmaz — Kzmin. Therefore, the volume of the parallelepiped shaped



86

———K

(2)

MAGNIFIED
PARALLELEPIPED

(b)

Fig.4.3.1 (a) The cross section of the accessible grating space cut by a
plane perpendicular to the K-direction. (b) The accessible grating space,

to the linear approximation.



87

accessible grating space is
1, . .
Va = §(Aymax - Kymin)(szax - zmin)(hxmax - xmin)- (4'9)

Substitution of Eq.(4.8) into Eq.(4.9) obtains

)3 ne sin(26) cos 0

Vo = 2kg( (4.10)

)
o 1— sinf
no

The ratio between the volume of accessible grating space and the volume of the
whole grating space is V, /Vk, i.e.,

3 1 sm(ZG)cosé’ a

8 neng _ sm 2g
"o

)3 (4.11)

The total number of accessible gratings is just N, = Vi/vy, where v, is the
uncertainty volume of a grating, or N, = pC. The expression in terms of the

parameters of the optical system is

N, =2 a:tal( )3 ne sin(26) 0089 (4.12)
1— sin’0

This result shows that the total number of accessible gratings is proportional to
the storage capacity, Eq.(3.16), and depends on the numerical aperture of the

system, a/ f, and the geometry of the optical set up, 6.
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4.3.2 Maximum Number of Pixels at the Input (Output) Plane

The separation between two nearest pixels is determined by the angular res-
olution of two adjacent plane waves, as discussed in the last chapter. Due to the
refraction at the crystal surface, the separation angle inside the crystal, 66;, and

the separation angle outside the crystal, 66, are different.

To decide the separation between two nearest pixels on a regular
2-dimensional grids with equal separation for all adjacent pixels, consider the
point at the origin of the input plane (z} = y; = 0) and the point at the origin
of the training plane (z!, = y; = 0). It can be calculated from Eq.(3.31) that
ks = (0,sin %,cos -6-'2)—), where © is the angle between k; and kq. According to
Eq.(3.40),

2r . @ 2« 0. 1
Skis = (-Z—y- sm-é-» + Z-z-cos E)Sin@'

(4.13)

The value of §k;s is related to the value of §6; by Eq.(3.43). Since sin 6 = nsin6;,
where n is the refractive index for the plane wave with incident angle 6;, the

relation between 66; and 66; is
cos 6,68, = n cos 6;66;. (4.14)

Therefore, the separation angle outside the crystal is

cos 8; 6k;,
—_— 2 4.15
cos 8l o cos a; (4.15)

86, =

Where the relation |k;| = nko has been used, and the angle 6; can be expressed
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in terms of 6;,

sin? 6;

n2

cosf; =4/1— (4.16)

To obtain the minimum spatial separation éy! in the y!-direction, use 66; ~ éy;/f.

The expression for éy; is

1 _ sinzﬁ
\/ n2 277 . (-) 27 @ 1 f (4.17)

— COS aj.

e T 9 T 9y
o, ot L3t me

The spatial separation between two nearest pixels in the zj-direction is calcu-
lated according to the uncertainty value of the grating vector in the z-direction.
In order to separate the degeneracy from the angular resolution, it is assumed
that when considering the minimum separation of the two input plane waves, the
same output plane wave is concerned, and vice versa. In general, the minimum

separation of two input plane waves, along the degeneracy curve, must be
Skip = 6K - 1y (4.18)

in order to be diffracted by two distinguishable gratings. In the case of two
beams coming out of the origins of the input and the training planes, 7; is
the z-direction. The difference between two input plane waves have to be at
least Ak, = 6K, = 2m/L, along the z-direction in order to distinguish two
different gratings. Since 8pi; = 6ki; and piz = bx}ko/f according to Eq.(4.1),

the minimum separation of two nearest pixels along the z} direction is

1 2m S
51?‘ ~ Lz ko. (4»19)

A regular 2-dimensional grid with pixels equally separated in both directions
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can be obtained when éz; = dy,. For Eq.(4.17) and Eq.(4.19) to be equal, the
dimensions of the crystal and the angle between the input plane and the output

(training) plane have to satisfy

2

1 1-22 3, 6 1 ©
P ————————————. n — e — ' 42
L= wd L3 T sme (4:20)

In this case, the maximum number of resolvable pixels at the input plane is

N x N, where

N = a/6} = a/by,
al, (4.21)

The number of pixels along each direction, N, can be expressed in terms
of the maximum number of accessible gratings, N,, as in Eq.(4.12). It can be

derived that

3 _ 2_1_5_53
N - f'\),
. Lg 1__si229 (4'22)

“2L,L, sin(26)%% cos 6

This relation shows that the total number of accessible gratings is of the order

of magnitude of N3.

4.3.3 Optimal Optical Setup Condition

To use the maximum number of accessible gratings, the dimensions of the
crystal should be chosen such that the factor L2/L,L, in Eq.(4.22) is maximized

under the condition of Eq.(4.20). Substitute L, in Eq.(4.20) into the factor
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L?/L,L.,
L? _ cos? @sin’ ©
LyL, (1- Ei—,‘-};-ﬁ)[sin@ + = sin®(9) + %‘i cos?($)] cos? e ’
v * (4.23)
sin © cos? §
21— %—Q)cosz a;
The equality holds when
L, sin(—(;-)-) =Ly cos(-(;-). (4.24)

This gives the maximum number of N3,

2 o cos @ 1-——-853-‘;—2
N3 - 1n; sin® V n2 (4.25)

mar T %4 n, sin(26) (1 — §i_’r§ﬁ)msz a;

Expressing n and © in terms of n,, n, and §, NJ,,, can be expressed as

11— sin? § 1
Nyor = Nz —=2 , 4.26
e a41—§-‘-}§—g(1-§‘—“’;§—€+§§sin29)coszag7 (4.26)
where
n2
n = 4/sin?6(1 — =5) + n?. (4.27)
nO

Summarize the conditions for maximum number of independent interconnec-

tions,

cosf cos(%—)

A Y
VAR et (4.28)

L, cos(—?—) =L, sin(g?-).

L, =

Through the discussion it is assumed that the lens aperture is large enough

such that the crystal is fully covered by any plane wave coming out of a point
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at the input (training) plane, but the lens aperture is not too large to fit in the
system. As shown in Fig.4.3.2, these restrictions are satisfied by the following

two conditions:

a< A—(Lycosf+ L,siné),

a<A-L,g, (4.29)
-g— < ftané,

where a is the linear dimension of the input (training) plane, A is the aperture

of lenses.

L2

Fig.4.3.2 Geometrical optics considerations for the restrictions on the

apertures of the system.
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For the system to satisfy the paraxial approximation, it is also required that

a < 2f, (4.30)

where f is the focal length of lenses which is assumed to be the same for all three

lenses in the system shown in Fig.4.1.1.

To design an optimal optical system, the parameters of the system can be
chosen as in the following example. 1) the angle 6 between the two optical axes
is chosen to yield high diffraction efficiency. 2) The relative dimensions of the
crystal are chosen according to Eq.(4.28) to satisfy the optimal condition. 3)
The numerical aperture a/f and the volume of the crystal Vg4 are chosen to
implement the desired number of interconnections, according to Eq.(4.12) and
Eq.(4.26). 4) The focal length of lenses f is chosen to match the separation
between two adjacent pixels of the device used to implement neurons, such as
SLM or LCLV, according to Eq.(4.19). 5) The dimension of the input (output)
planes a is chosen as the numerical aperture times the focal length, a = (a/f) x f.
6) The aperture of the lenses A is chosen to satisfy Eq.(4.29). An example of

optimal set up parameters is given in Table 4.1.

In practical systems, the size of neurons must also be taken into considera-
tion. The finite size of neurons will affect the effective separation between two
adjacent pixels and the width of plane waves. Due to the finite width of plane
waves, the crystal is not necessarily fully illuminated. Therefore, effective crystal
dimensions, that is the dimensions of the part of crystal illuminated by plane
waves, shall be used. The finite size of neurons will be considered in Chapter 5

when the experimental system is designed.
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Table 4.1 An Example of Optimal Optical System
Parameter Notation Value
Number of Pixels N 100
Wave Length A 4880 A
Refractive Index n, 2.34
of LiNbOj Ne 2.24
Angle 0 20°
Numerical Aperture alf 0.2
Dimensions L, 0.3 mm
of the L, 0.3 mm
Crystal L, 2 mm
Pixel Resolution oz 0.1 mm
Focal Length f 60 mm
Dimension of the a 12 mm
Input (Training) Plane
Aperture of Lenses A 30 mm

4.4 FRACTAL SAMPLING GRIDS

A set of locations of input (output) neurons without degenerate interconnec-
tions is called a fractal sampling grid. The word fractal implies that the sampling
grid has a fractional dimension and usually higher order sampling girds can be
generated according to the self similarity of fractals. The locations of input neu-
rons and output neurons must be considered simultaneously so that any two pairs

of input-output neurons are connected by two different gratings.
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4.4.1 Dimensions of the Sampling Grids

The dimension of the input sampling grid, d;, and the dimension of the
output sampling grid, ds, are related to each other and can be chosen arbitrarily
within some range. The number of neurons at the input (output) plane, N1 (N2),
determines the dimension of the fractal sampling grid, d; (dz), since Ny = N%
(N = N d’). The sum of d; and d; must be less than or equal to 3, because
the number of independent interconnections connecting Ny input neurons to N
output neurons, N7 X N3, must be no more than N 3 which is the maximum
number of accessible gratings. On the other hand, the dimension of a sampling
grid embedded in a plane cannot exceed the dimension of the Euclidian space,

which is 2 in this case.

Therefore, the dimensions of the input and the output sampling grids must

satisfy
0<d; <2,
(4.31)
0<d; <2,
and
dy +dy <3. (4.32)

Fractal sampling grids are often designed to reach the upper bound of the
accessible interconnections. To use all N? independent gratings, the product
of the number of points on the input sampling grid and that on the output
sampling grid should be N3. The equality sign in Eq.(4.32) is desired. Let d
be the dimension of the input sampling grid, i.e., di = d. The corresponding

dimension of the output sampling grid is d2 = 3 — d.
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4.4.2 Different Kinds of Fractal Sampling Grids

Fractal sampling grids are usually designed for the input plane and the train-
ing plane. Since the output plane is the image plane of the training plane, the
fractal sampling grid for the training plane will also serve for the output plane. If
the local coordinate system at the output plane is chosen such that the m;(o“tp“tL
direction and the y},(°*®#*)_direction are opposite to the z/,(#"*"9)_direction and
the y",(t'“i"i”g)-direction respectively, as shown in Fig.4.2.1, the distributions of

neurons at the training plane will be the same as that at the output plane.

To systematically avoid degenerate interconnections, one of the methods is
to arrange the input (training) neurons along vertical columns, i.e., in the y; (y})
direction, and separate the columns such that the horizontal distance between any
two columns at the input plane is different from that between any two columns
at the training plane. The resulting fractal sampling grids will be free from
degeneracy. This can be seen from the following two sufficient conditions for

avoiding degenerate interconnections.

The first sufficient condition for avoiding degenerate interconnections can be
found from Eq.(4.5). Consider two neurons at the input plane, (z};,y;;) and
(25, Yly), and two neurons at the training plane, (z};,y};) and (zl,,y},). It is
sufficient for the two corresponding grating vectors, K; = kq; — ki1 and K =
kg2 — ki2, to be different if their # components are not equal, i.e., K1; # Ko;.
According to Eq.(4.5) this sufficient condition can be expressed in terms of z;,

! ! i
T.y, Ty and Ty, as

C'?:'z - -T:u # 3?1‘2 - x:zza (4.33)
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or equivalently,

T — Tig # Ty — Ty (4.34)

The second sufficient condition for avoiding degenerate interconnections can
be found with the help of the degeneracy lines at the input and the training
planes. If the degeneracy lines corresponding to the grating K; = kg; — k1 does
not pass through both neuron (z’,,yl,) at the input plane and neuron (z},, yy,)
at the training plane, the grating K, = kgo — k;o will definitely be different from
K. Therefore, it is sufficient that either point (z!,,y},) or point (z),,y},) avoids

the degeneracy lines, which are determined by point (z};, y};) and point (z};, ¥}, )-

Now, consider any two neurons belonging to two different columns at the in-
put plane and any two neurons belonging to two different columns at the training
plane. The first sufficient condition, Eq.(4.34), is satisfied, since the horizontal
distance between the two columns at the input plane, z}; — z,, is chosen to be
different from the horizontal distance between the two columns at the training
plane, z);; — z!),. Even if the two input neurons belong to the same column, the
first sufficient condition will still be satisfied as long as the two output neurons

do not belong to the same column, and vice versa.

Consider two neurons belonging to the same column at the input plane and
two neurons belonging to the same column at the training plane. Since z}; = z},
and 7!}, = z),, the first sufficient condition is violated. However, the second
sufficient condition is satisfied, since the two degeneracy lines determined by
K; = kg1 — ki1 will not be both vertical as long as the angle 8 is not 0° or 90°.

This can be seen by considering the coefficient in front of y; in Eq.(4.6) and the
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coefficient in front of y}; in Eq.(4.7). The two coefficients will be both zero only
if 6 = 90° or # = 0° and K, = 0. By choosing the angle § within the range
0° < 8 < 90°, the degeneracy lines will not pass through both neuron (z},,y;,)
and neuron (z',, y},). Therefore, these two pairs of input-output neurons will not
be connected by degenerate interconnections. In conclusion, this type of fractal

sampling grids are free of degeneracy.

In the following discussion on fractal sampling grids, the unit of distance is
chosen as the spatial separation of two adjacent pixels, and the first column to

the left of the input (training) plane will be represented by = = 1.

Fig.4.4.1 shows an example of this kind of fractal sampling grid with N =
16. There are 4 columns of neurons at both the input plane and the training
plane. The neurons at the input plane are distributed column by column, i.e.,
the separation between two adjacent columns is Az} = 1. The neurons at the
training plane are distributed uniformly with the separation between two adjacent
columns Az), = 4. Since the maximum separation between two columns at the
input plane is less than the minimum separation bétween two columns at the
training plane, the horizontal distance between any two columns at the input
plane will not be equal to that at the training plane. Since this fractal sampling
grid consists of N 3/2 = 64 neurons at both the input plane and the training

plane, the fractal dimensions are di = dp = 3/2.

Fractal Sampling Grids for N¢ — N3~¢ Mappings

The fractal sampling grids for N4 — N3¢ mapping consist of N 4 peurons

at the input plane and N3~¢ neurons at the training plane, where d is between
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Fig.4.4.1 An example of fractal sampling grids with N = 16.
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1 and 2. The neurons at the input (training) plane are arranged along n (n2)

columns, with ny (n2) defined by N? =N xn; (N3¢ = N x ny). Therefore, n;

and ny are related by ny x nj = N. Assume nj < nj in the following discussion.

A family of fractal sampling grids can be systematically designed following the

next three steps.

1)

2)

Select the ny neuron positions along one row at the training plane. Label

the neurons as 1, 2, - - -, ny. Separate the ny neurons uniformly by nj, i.e.,

e = (k-1) xni+29, (4.35)

where k represents the kth neuron with 1 < k < np and :cgd) represents
the position of the first neuron. There are n; different distributions in
this case, for mgd) can take one of the values from 1 through n;. These n;

distributions are called n; row patterns denoted by {Bi, B2, -+, By, }.

Select the n; neuron positions along one row at the input plane. Label the
neurons as 1, 2, ---, n;. Suppose that there are M different row patterns.

For the jth row pattern, select the position of the kth neuron to be
2 = (1 = 1) x n1 + &, (4.36)

where li is an integer within the range 1 < l{ < ng. For each neuron, li
can be any of the ns values from 1 through nj. Since there are nj neurons,
there exist n3* different combinations for l{ , lg, ey l{;l. Thus the number
of different row patterns is M = nj'. Represent these M different row

patterns by {41, Az, ---, Am}.
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3) Design a pair of fractal sampling grids for the input and the training planes.
For a row at the input plane, choose any of the {A;, Ag, -+, Ay} row
patterns. For a row at the training plane, choose any of the {Bi, Ba,
.-+, By, } row patterns. Duplicate other rows at the input (training) plane
according to the same row pattern. A total number of (n; x nj') pairs
of different fractal sampling grids can be generated in this way. Fig.4.4.2

shows three pairs of different fractal sampling grids.

The degeneracy is avoided by using any pair of these fractal sampling grids.
Consider the mth and the nth column at the input plane and the m'th and
the n'th column at the training plane. The horizontal distance between the two
columns at the input plane :tg,? - mg) = (I}, = I}) x ny 4+ (m — n), which is never
a multiple number of n; for m # n. The horizontal distance between the two
columns at the training plane mg,‘f,) — xfg) = (m' — n') x ny, which is always a
multiple number of n; for m' # n'. So, the two distances can not be equal,
ie., :cﬁ,? - a:f{ ) # xf;f,) - x,(j) According to the argument of sufficient conditions
for avoiding degenerate interconnections, the fractal sampling grids are free of

degeneracy.

Higher Order Fractal Sampling Grids

Higher order fractal sampling grids can be generated from the first order
fractal sampling grids if \/n1 and /n3 are both integers. The higher order fractal
sampling grids, which will be given below, are not necessarily scaling invariant,
however the fractal dimension will be kept. The following three steps are used

to generate the second-order fractal sampling grids.
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(a)
Fig.4.4.2 Three examples of fractal sampling grids for N 4, N3-4 map-
pings. The neurons are labeled as 1, 2, 3, etc. Positions of neurons at the
input and training planes are given by Eq.(4.36) and Eq.(4.35) respec-
tively. (a) N =16, d; = d3 = 3/2, n; = ny = 4; in Eq.(4.35), :cgd) =1;in
Eq.(4.36), B =1, =21} =3 and [ = 4.
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in BEq.(4.36), I = 5,1, = 3.
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(c) N =12, d; = log36/log12 ~ 1.44, d; = log48/log 12 = 1.56, n; = 3,

ns = 4; in Eq.(4.35), 2\¥ = 2; in Eq.(4.36), =3, =4, = 1.
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Construct the first-order row patterns at the input and the training planes.
Consider a row of v/N pixels at the input (training) plane and select \/n1
(v/n2) neuron positions. Using the steps 1) and 2) discussed above to
design |/n1 row patterns at the output plane and \/ﬁ'z"/a row patterns at

the training plane.

Generate a set of second-order row patterns for the fractal sampling grids
with N total pixels per row. To generate the second-order row patterns at
the input plane, choose any two (could be the same) first-order row patterns
for the input plane. Replace each neuron of one of the two first-order row
patterns by the other first-order row pattern, and replace each blank pixel

by VN blank pixels. That gives
Xl?l),k2 = K’é’f) —1)y/n1+ k1 —1]n; + (li’f) —1)y/n1 + k2. (4.37)

Here, X is used to denote the horizontal neuron location on the second-
order fractal sampling grid. The subscripts k1 and k2 indicate that the
k1th neuron of the jlth first-order row pattern is replaced by the j2th
first-order row pattern, and k2 represents the k2th neuron of the j2th first-
order row pattern. The superscript (i) represents the input neuron. The
location at the training plane will be represented by a superscript (d). Since
1<51,72< (\/1'{5‘/"_‘), the total number of second-order row patterns for
the input plane is (\/ﬁ?ﬁ{;)2 Similarly, the second-order row patterns for
the training plane can be generated by using two first-order row patterns

for the training plane.

x(@,, = (k1 = Dy + 2 = 1y + (k2 - Dy +2. (4.38)
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Since 1 < a:gdl), xgdz’) < /ni, the total number of second-order row patterns

for the training plane is (,/n7)?, i.e., ny.

3) Generate the second-order fractal sampling grids by using the second-order

row patterns. Choose one of the second-order row patterns for a row at the

input (training) plane. Duplicate other rows at the input (training) plane

according to the same row pattern. The total number of pairs of different

fractal sampling grids is (,/ng‘ﬁq)2 x (y/m1)?, ie., n1/mz V™, Fig.4.4.3

shows two examples of second-order fractal sampling grids.

To show that the second-order fractal sampling grids are free of degeneracy,

it is sufficient to prove that the horizontal distance between two columns at the

input plane is different from that at the training plane. Consider two columns at

the input plane,
X0 = 08D = D)y + k1= 1ng + (15D - 1)y/m7 + k2,
X8, o = [08Y = Dv/AT + ml = 1 + (193 - 1)V + m2,
and two columns at the training plane,
X = (k) = )y + 2 = g + (k2 = 1)y + 21,
X, e = [(m1' = D)y/Ar + 2 — 1y + (m2 - 1)y + 2
The horizontal distances are
X 0= X8 o =10ED = 10D )1 + (1 = m1)my
+(1(12) (’2))\/—+(k2 m2),

and

X‘(:f} ko X’(:l)l’mzl = {(kl’ hd mll)\/nl I‘nl + (k2' - m2')\/r_{1_.

(d2)

(4.39)

(4.40)

(4.41)

(4.42)
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Fig.4.4.3 Two examples of second-order fractal sampling grids for N = 16
and d; = d; = 3/2. (a) The second-order row pattern at the input
(training) plane is generated by replacing each neuron of the first-order
row pattern on the left by the first-order row pattern on the right, and

replacing each empty pixel by 4 empty pixels.
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(b) The self similar second-order row pattern for each plane is generated

from two identical first-order row patterns.
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If k2 # m2, the right hand side of Eq.(4.41) is not a multiple number of |/n1,
since 1 < k2,m2 < ,/n7. However, the right hand side of Eq.(4.42) is always a
multiple number of \/f7. So the two distances can not be equal. If k2 = m2,
Eq.(4.41) becomes

X0 0 = X8 = [0G) = 19D)v/AT + (k1 = m1)na. (4.43)

mlm2 —

The right hand side of Eq.(4.43) is always a multiple number of n;. However, the
right hand side of Eq.(4.42) is not a multiple number of ny, since 1 < k2',m2' <
\/m1. So the two distance can not be equal either. Therefore, it has been proven
that for the second-order fractal sampling grids generated above, the horizontal
distance between two columns at the input plane is different from that at the

training plane.

If \/\/n1 and \/\/nz are still integers, third-order fractal sampling grids can

be generated in a similar way. If not, higher order fractal sampling grid can still
be designed by using the closest integers, but only a portion of the final sampling

grid within N x N pixels will be utilized to locate input (training) neurons.

Special Fractal Sampling Grids for N3/2 — N3/ Mappings

The N3/2  N3/2 mappings are specially interesting because they allow the

same number of neurons at the input and the training planes.

A special family of fractal sampling grids, which cannot be obtained using
the method previously described, is found for N 3/2 s N3/2 mappings. The
procedure for deriving these fractal sampling grids can also be described in three

steps.
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Select the v/N neuron positions along one row at the training plane. Label
the neurons as 1, 2, ---, V/N. Separate the V/N neurons uniformly by
VN + 1, 1e.,

2P =k-1)x (VN+1)+1, (4.44)

where k represents the kth neuron with 1 <k < V/N. There is only one

row pattern for the training plane.

Select the v/N neuron positions along one row at the input plane. Label
the neuronsas 1,2, ---,5—1,7+1, -+, V/N +1. Notice that there is not jth
neuron, and j can be any integer between 1 and v/N + 1. Suppose there
are M different row patterns. For the ith row pattern, select the position

of the kth neuron to be
2V =l -1 x (VN +1) +k, (4.45)

where 1 < I} < VN —1 and k # j. For each neuron, l;; can be one of

the VN — 1 values from 1 through VN — 1. Since there are VN neurons,

there exist (VN — 1)‘/W different combinations for I}, &, ---, I;-_l, l;'-{»lv
RN i/ﬁ+1’ And because j can be 1, 2, ---, /N + 1, there are VN +1

possibilities of choosing j. Thus the number of different row patterns is

M = (VN +1)(VN - l)m. Denote these M different row patterns by
{AI) A27 vty AM}
Design a pair of fractal sampling grids for the input and the training plane.

For a row at the input plane, choose any of the {4, Az, -, Ay} row

patterns. For a row at the training plane, use the only row pattern derived
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in step 1). Duplicate other rows at the input (training) plane according to
the same row pattern. A total number of [(VN + 1)(v/N — 1)”’%’] pairs of
different fractal sampling grids can be generated in this way. Fig.4.4.4 (a)

and (b) show two pairs of fractal sampling grids for N 3/2 1y, N3/2 mappings.

The fractal sampling grids are free from degeneracy, since they can be re-
garded as partial sampling grids for a bigger input (training) plane with

(VN +1) x (VN +1) pixels.

Other Fractal Sampling Grids

Neurons are not necessarily aligned along columns. Fig.4.4.5 shows a pair
of fractal sampling grids with tilted lines. The neurons shown in Fig.4.4.5 are

distributed more uniformly than those grouped in columns.

For this kind of fractal sampling grids to implement independent intercon-
nections, the angle 6, which is the angle between the optical axis of lenses and
the z-direction, has to be properly chosen. The slopes of degeneracy lines at the
input and the training planes depend on the angle 8, as in Eq.(4.6) and Eq.(4.7).
By changing the angle 6, the degeneracy line at the input (training) plane can
be tilted so that it will not pass through certain neurons which are possible to
cause degeneracy. Since the neurons are aligned along lines titled by the same
angle, all degeneracy lines can be adjusted simultaneously to avoid any degener-
acy. The degeneracy lines whose slopes do not change with the angle ¢ are lines
along the z-direction. For each row at the input (training) plane, the positions of
neurons can be given by Eq.(4.36) (Eq.(4.35)). It has been proven that the row

patterns given by Eq.(4.35) and Eq.(4.36) can avoid degeneracy. Therefore, the
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Fig.4.4.4 Two examples of fractal sampling grids for N 3/2  N3/2 map-
pings with N = 16. Positions of neurons at the input and training planes
are given by Eq.(4.45) and Eq.(4.44) respectively. (a) j = 1; in Eq.(4.45),

B=li=0=10=2
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(b) j = 3; in Eq.(4.45), L=1,15=21 =3, and =2



114

*.orti .| INPUT
. . e - -@ - e PLANE

e Yo %e.%e | TRAINING
e . @ -@- -@- PLANE

Fig.4.4.5 An example of fractal sampling grids with titled lines. N =12,
dy = log 36/ log 12 ~ 1.4, dy = log 48/ log 12 ~ 1.56.
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fractal sampling grids, shown in Fig.4.4.5, can be used to avoid any degenerate

interconnections.

Fig.4.4.6 shows another pair of fractal sampling girds. The only difference
between the sampling grids shown in Fig.4.4.6 and that shown in Fig.4.4.5 is that
one of the grids in Fig.4.4.6 contains broken lines of neurons. For a N 3/2 s N3/2
mapping as in Fig.4.4.6, the breaking of tilted lines makes the distribution of
neurons more uniform than continuous lines. The arguments for degeneracy free

conditions are similar as above.

The discussions in this chapter gives sufficient and necessary conditions for
a pair of fractal sampling grids. The sufficient and necessary conditions can be
described as: any two pairs of input-training neurons must be related to two dif-
ferent pairs of degeneracy lines. Here a pair of input-training neurons represents
two neurons, one at the input plane and the other at the training plane. The
related pair of degeneracy lines indicates two lines, one at the input plane and
the other at the training plane, give by Eq.(4.6) and Eq.(4.7) respectively. The
grating vector K in Eq.(4.6) and Eq.(4.7) is related to the positions of the given

pair of neurons by Eq.(4.5).

The systematically designed fractal sampling grids given in this chapter are
not complete. There exist other possible fractal sampling grids which cannot be
generated using the formulas in Section 4.4. The complete set of fractal sampling

grids still needs to be found.
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5. EXPERIMENTS

The optical implementations of neural networks with global and local con-
nectivities are experimentally investigated by using the photorefractive crystals.
For global connectivity, each neuron at the input plane is connected to all the
neurons at the output plane. Whereas for local connectivity, each neuron at
the input plane is only connected to neurons within a local neighborhood at the
output plane. Results of a sequence of experiments are given in the following

sections.

Experiments in this chapter are conducted to implement interconnections by
sinusoidal phase gratings inside volume hologram crystals. Section 5.1 describes
the experimental procedures. Section 5.2 shows the degeneracy problem. Section
5.3 demonstrates that with the help of the fractal sampling grids, independent
interconnections for the global connectivity can be implemented. Section 5.4
illustrates the implementation of holographic hetero-associative memories using
the outer product scheme. In Section 5.5, the fractal sampling grids for local

connectivities are derived and experimentally tested.

Both the Vander Lugt system shown in Fig.2.1.3 and that shown in Fig.4.1.1
are used in the experiments. The system shown in Fig.2.1.3 is used to implement
global connectivity, when the light intensity is sufficient to write gratings with
low spatial frequencies. The system shown in Fig.4.1.1 can be used to implement
both global and local connectivities. By using two lenses for the input and the
training planes respectively, the system can be used to increase the strength of

gratings by increasing the spatial frequencies of grating vectors, and to realize
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local connectivities by spatial multiplexing.

5.1 EXPERIMENTAL PROCEDURES

The experiments are performed in two steps: a) the storage of gratings into
the crystal; b) the reading out of the stored memories. The first step is called

the training process and the second the recall process.

5.1.1 Training

During the training process, the crystal records the interference pattern of
the desired input and output patterns. The desired input and output patterns
are placed at the input plane and the training plane respectively. The input
(training) plane is illuminated by a collimated laser light propagating along the

direction of the optical axis of the Fourier transforming lens Ly (Lj).

Multiple exposures are conducted to store more than one pair of hetero-
associative patterns. After the interference pattern formed by the first pair of
desired input-output patterns is recorded, the patterns at the input and the
training planes are replaced by the second pair of desired input-output patterns.
During the second exposure, the second interference pattern is superimposed
upon the first one inside the crystal. While the second set of gratings are written
in the crystal, the first set of gratings are partially erased. By controlling the
exposure times, the second set of gratings ca.n be written with the same strength
as that of the first set which has been partially erased by the second exposure.
Similarly, many exposures can be done before the strength of each grating is too

weak to be detected [16].
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5.1.2 Recall

During the recall process, each output pattern is read out by the associated
input pattern used in the training process. At the training plane, the light is
blocked. At the input plane, the input pattern is placed at the same position
as in the training process. At the output plane, the desired output pattern

associated with the input pattern will be read out.

Together with the desired output pattern, there will be some weak cross-talk
points and degenerate points at the output plane. The cross-talk points arise from
the overlapping between different input patterns. The locations of these cross-
talk points will be on the output fractal sampling grid. The degenerate points
come from the Bragg matching of gratings by more than one pair of input-output

points and are off the output fractal sampling grid.

The photorefractive crystal used in the experiments is the Fe-doped LiNbO3.

The parameters of the LiNbO3 crystal are given in Table 5.1.

Table 5.1 Parameters of the LiNbO3 Crystal

Parameter | Notation Value
Dimensions Lg 25 mm
of the Ly 25 mm
Crystal L, 5 mm
Doping Density 0.05 %
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5.2 DEGENERACY IN THE k-SPACE

Two experiments are performed to show the degeneracy problem. The first
experiment records a grating with two points one at the input plane and the other
at the training plane, and reads out the grating by another point at the input
plane. The second experiment records a pair of continuous patterns without using
the fractal sampling grids. The read-out pattern consists of the desired output

pattern and some ghost images produced by the degenerate interconnections.

5.2.1 The Degenerate Interconnections

The points used for recording are shown in Fig.5.2.1. The two points at
the input plane, (z},y},) and (zi,,y},), are aligned along the z)-direction, i.e.,
yi; = ylp. The point at the training plane, (z%;,y},), is aligned in the y'-direction
with the first input point, i.e., z}}; = ;. The coordinate systems in Fig.5.2.1

have been rotated 90° with respect to those used in the last chapter.

The grating to be Bragg matched by both of the two input points is K; =
k41 — ki1 formed by the points (z};,v;) and (2}, v};). Eq.(4.5) indicates that
grating K has a zero K, component, since z};; = z};. Eq.(4.6) and Eq.(4.7) give
two horizontal degeneracy lines for grating K, one at the input plane and the
other at the output plane. Since the two input points are on the degeneracy line,

Y1 = ylo, the point (z),,y},) will also be Bragg matched by the grating K.

Fig.5.2.2 shows the result of the read-out pattern. The two bright spots are
the two input points going straight through the crystal. The two weaker spots

result from the two diffracted plane waves. The point at the position (zl;,v};)



121

(xy, y) (g Yay)

(X2, ¥i2)

Fig.5.2.1 Three points used to show the degenerate interconnections.

is the desired output. The point at the position (z),,4},) is a degenerate spot
read-out by the input point (z}y,y],) which is degenerately Bragg matched by
the grating K;. It can be seen that the degenerate point (zl,,y},) is on the

degeneracy line of K1, v, = v}
5.2.2 Recording without Fractal Sampling Grids

Another experiment showing the degeneracy problem involves more that one
degenerate gratings. Fig.5.2.3 shows the patterns used for recording. During the
training process, letter B is put at the input plane and letter A is put at the
training plane. The Fourier transforms of letters A and B interfere inside the

crystal forming many gratings superimposed upon one another.
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Fig.5.2.2 The input and the output points during the recall process.

During the recall process, letter A is blocked and the input letter B reads
out the recorded volume hologram. Fig.5.2.4 shows the resulting pattern at the
output plane. Besides letter A, the desired output, there are two weaker images
of letter A shifted up and down. This is because letter B contains shift invariant
patterns along the z)-direction. The upper half and the lower half of the letter B
have similar structures. The ghost images of letter A are read out by more than
one point of the letter B. There are other degenerate points. Those read out by
fewer input points have lower intensities. Some of them can not be seen on the

picture.

These experiments have demonstrated the necessity for using fractal sampling
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Fig.5.2.3 The 2-dimensional patterns to be recorded without using fractal

sampling grids.

Fig.5.2.4 The pattern read out by the input letter B.

grids to implement independent interconnections. During the training process,
the fractal sampling grids for the input and the training planes are used to record
independent gratings. During the recall process, the fractal sampling grid for
the output plane eliminates all the degenerate points, therefore only the desired

output pattern will be the net output.
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5.3 GLOBAL CONNECTIVITY
5.3.1 Optical System for Global Connectivity

The system used in the experiments demonstrating the global connectivity is
the system with a single optical axis, as shown in Fig.2.1.3. The input and the
training planes are separated by a distance s. Each neuron is represented by a
spot of diameter 2R. Since the spot size is not infinitesimal, the crystal is not
entirely illuminated. Therefore, the gratings are written in an effective crystal
volume with Ly (crs), Ly(ess) and Ly (cry). By calculating the values of 6z’ and &y’
according to Eq.(4.17) and Eq.(4.19), the distance between two adjacent pixels

is chosen to be more than the required minimum value.

The effective crystal dimensions Ly (¢s5), Ly(es ) @and L (ef5) can be calculated
using the method of Fourier Optics [47]. If the electric field amplitude at the front
focal plane of a Fourier transforming lens is U(zg, yo), the field amplitude at the

back focal plane will be

00 00

U(z,y) = / / U(zo, yo)exp[-—i-?\ff—(a:om + yoy)]dzodyo. (5.1)

—00 —00

Where a constant factor has been neglected for simplicity. Eq.(5.1) is the Fourier
transform of U(zg,yo). Each circular spot at the input (training) plane is trans-
formed into an Airy function [47] at the Fourier plane. Two different spots give
rise to two overlapping Airy functions multiplied by different phase factors. The
width of the Airy function is 1.22)\f/2R. Therefore, each neuron spot is ap-

proximately converted to a plane wave with a circular cross section of diameter
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1.22Af/2R. The cross section is taken to be perpendicular to the z-direction and
near the Fourier plane. The effective crystal volume illuminated by the plane

waves, as shown in Fig.5.3.1, is given by

1.22)
L iy ! (5.2)
1.22)f
Ly(eff) ~ 5R (53)
and
Lz(eff) = nﬁn{L,,Ly(eff)/tan(O)}. (5.4)

Where 26 is the angle between the input and the training plane waves inside the

crystal.

i/

ey
\
R

Fig.5.3.1 The effective crystal volume illuminated by the plane waves.
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Table 5.2 Parameters of the System for Global Connectivities

Parameter Notation Value
Focal Length f 75 mm
Dimension of the a 5 mm

Input (Training) Plane

Separation between the s 5 mm

Input and Training Planes

Dimensions of the dy 3/2
Fractal Sampling Grids dy 3/2
Distance between Two Az' 0.3mm

Nearest Pixels Ay 0.3mm

Diameter of a Spot 2R 0.15mm

Wavelength of Ar-Laser A 48804

The parameters of the system are given in Table 5.2. The effective crystal
dimensions have been calculated as Ly(csr) = Ly(ess) = 0.3mm and L,(55) =
L, = 5mm. According to Eq.(4.12) and Eq.(4.26), the maximum number of im-
plementable interconnections is about N3, ~ 3.3 x 10*. The maximum number
of pixels along each direction Npmaz is Nmazr & 32. Due to the finite size of neuron
spots, N is chosen as N = Np,.,/2 =~ 16. With given spot size and focal length,

the configuration given in Table 5.2 is close to optimal.

5.3.2 Sampling Grids and the Sampled Patterns

Different kinds of fractal sampling grids have been tested experimentally. In
the last chapter, fractal sampling grids with neurons aligned along straight lines

in the y'-direction and along tilted lines have been designed. Three pairs of them
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will be used in the following experiments.

The fractal sampling grids and the sampled patterns are shown in Fig.5.3.2,
Fig.5.3.3 and Fig.5.3.4. Fig.5.3.2(a) shows the fractal sampling grids with tilted
lines. Fig.5.3.2(b) shows the sampled letters A and B. The total number of pixels
at the input (training) plane is N x N = 16 x 16 = 256. The number of points on
each fractal sampling grid is N 3/2 = 64. To sample letters A and B, some of the
points on the grids are illuminated and some are not. Fig.5.3.3(a) and Fig.5.3.4(a)
show another kind of fractal sampling grids with neurons aligned along straight
lines. Both of these grids have N = 25, Ny = N; = 125 and d; = d; = 3/2.
Fig.5.3.3(b) and Fig.5.3.4(b) show the corresponding patterns resembling letters
A and B. The illuminated and the dark points represent neurons with output
value 1 and 0 respectively. Each grating written by an input point and a training

point represents an interconnection weight element wj;.

Each pair of the sampled letters A and B will be used as input and training
patterns in one of three different training processes. In each training process, a

different location of the crystal will be used to record the volume hologram.

5.3.3 Experimental Results

Fig.5.3.2(c), (d) show the experimental results. Fig.5.3.2(c) is the read-out
pattern obtained when the letter B at the training plane is blocked. Fig.5.3.2(d)
is obtained by blocking letter A at the input plane. In fact, it is arbitrary to
choose one of the letters A and B as the input pattern and the other as the

training pattern, since the input plane and the training plane can be exchanged.

Fig.5.3.3(c), (d) and Fig.5.3.4(c), (d) show the experimental results when



128

(b)

(d)

Fig.5.3.2 (a) The fractal sampling grids with tilted lines. (b) The sampled letters
A and B. (c) Letter A read out by letter B. (d) Letter B read out by letter A.
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Fig.5.3.3 (a) The fractal sampling grids with neurons aligned along
straight lines in the y'-direction. (b) The input and training patterns. (c) The
output pattern A read out by the input pattern B. (d) The output pattern B

read out by the input pattern A.
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Fig.5.3.4 (a) Another pair of fractal sampling grids. (b) The input and training
patterns. (c) The output pattern A read out by the input pattern B. (d) The

output pattern B read out by the input pattern A.
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using the other two pairs of fractal sampling grids.

The read-out patterns contain the desired output and some weak degener-
ate points. All the degenerate points are off the sampling grid. If the output
fractal sampling grid is placed at the output plane, the net output pattern will
contain only the desired output. Therefore, it has been demonstrated that the
fractal sampling grids can eliminate the ghost images arising from the degenerate

interconnections.

54 HOLOGRAPHIC HETERO-ASSOCIATIVE MEMORIES

With the help of the fractal sampling grids, the outer product scheme can be
implemented using volume holograms. The following discussion will reveal the
similarity between the outer product scheme and holographic memories. Hetero-
associative memories with three different pairs of input-output patterns will be

stored in the crystal and recalled sequentially.

5.4.1 Holographic Outer Product Scheme

The holographic gratings can be described as interconnection weight matrix
elements. Suppose the Nj input neurons and the N, training neurons have binary
output values (z1,z2,---,2N,) and (y1,¥2, -, YN,) respectively. The z;’s and
y;’s are either 1 or 0. The value of z; will be 1 if the neuron spot is illuminated,
otherwise, 0. With the help of the fractal sampling grids, the grating connecting
the input neuron : to the output neuron j can be formed only if both of these

spots are illuminated, i.e., the product z;y; = 1. Therefore, the weight matrix
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element wj; can be written as

1, if the grating can be formed;
wji = Y;Ti = { (5.5)

0, otherwise.

The weight matrix can be written as an outer product of vectors x and y, i.e.,
w = [y) (z]. (5.6)

The storage of more than one pair of input-output patterns can be accom-
plished by multiple exposures. Multiple exposures will partially erése the holo-
grams previously recorded in the crystal. The exposure times are controlled
so that when the last hologram is recorded, all the holograms have the same
strength. This can be done by exposing the first hologram with the longest time,
then reducing the exposure time for the following exposures sequentially. The

final weight matrix can then be written as

w=3"Iy") ("], (5.7)

In the above equation, M is the number of exposures, or the number of associative
input-output pairs. It can be noticed that Eq.(5.7) is the same as that given by

the outer product scheme, Eq.(1.9).
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5.4.2 Optical Implementation of Hetero-associative Memories

The following experiment associates the Chinese characters one, two, three
with the Arabic numerals 1, 2, 3 respectively. The purpose is to recall the Arabic
1, 2, 3 by the corresponding Chinese one, two, three respectively. The optical

system is the same as that described in the last section.

During the training process, the three pairs of input-output patterns are
recorded by three exposures. Fig.5.4.1 shows three pairs of patterns to be asso-
ciated. For the first exposure, Chinese one and Arabic 1 are placed at the input
plane and the training plane respectively. For the second exposure, Chinese two
and Arabic 2 are placed at the input and the training planes respectively. For
the third exposure, Chinese three and Arabic 3 are placed at the input and the

training planes respectively. The exposure times are reduced sequentially.

During the recall process, different input patterns are used to read out the
corresponding output patterns. Fig.5.4.2 shows the Arabic numerals 1, 2 and
3 read out by the Chinese characters one, two and three respectively. Inspect
the output number 2. Besides all the degenerate points off the output sampling
grid, there are also some weak points resulting from the Arabic 1 and 3. This is
because the Chinese character two has some common points with those of one and
three. This cross-talk noise is the limitation of the capacity of the outer product
scheme. Within the capacity of the outer produce scheme, the cross-talk noise

can be eliminated by choosing a proper threshold value for the output neurons.
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(b)

Fig.5.4.1 The fractal sampling grids and the sampled patterns used in the im-
plementation of hetero-associative memories. (a) The fractal sampling grids. (b)
The Chinese characters one, two, three to be associated with the Arabic numerals

1, 2, 3 respectively.
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Fig.5.4.2 The Arabic numerals 1, 2 and 3 read out by the Chinese char-

acters one, two and three respectively.

5.5 LocaL CONNECTIVITY

A network with local connectivity has a structure such that each neuron
in the input layer is only connected to neurons within a local neighborhood in
the output layer, as shown in Fig.5.5.1. The optical implementation of local
connectivity requires that each beam coming from an input neuron intersects

with only some of the beams coming from the training neurons.
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LOCAL CONNECTIVITY

N; Neurons

Input

TOTAL NUMBER OF INTERCONNECTIONS:

N; np = Ny ny

Fig.5.5.1 A neural network with local connectivity.

5.5.1 Optical System for Local Connectivity

The optical system used to implement local connectivities is a modified
Vander Lugt system with two optical axes, similar to that shown in Fig.4.1.1.
Fig.5.5.2(a) and (b) depict the geometrical optical path for the systems used for
implementing global and local connectivities respectively. In Fig.5.5.2(a), the
two optical axes cross each other at the common focal point of lenses L; and
L. All plane waves overlap at the same region where the crystal is placed. In
Fig.5.5.2(b), the two optical axes cross each other at a point beyond the focal
planes of lenses Ly and L}. Inside the crystal, each plane wave overlaps with

only some of the other plane waves.
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(b)
Fig.5.5.2 (a) The geometrical optical path for the systems used for implementing
global connectivities. (b) The geometrical optical path for the systems used for

implementing local connectivities.
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The fact that each plane wave overlaps with only its near neighbors at a
certain distance away from the focal plane can be used to implement local con-
nectivity. Fig.5.5.3 shows the optical system for local connectivity. The crystal
is placed at the cross point of the optical axes of lenses L; and L). The two
lenses are located at the same distance away from the crystal. The input (train-
ing) plane is located at the front focal plane of lens Ly (L}). By controlling the
distance between the crystal and the lens, the size of local neighborhood can be

adjusted.

The distance between the crystal and the lens can be calculated, given the
size of a neuron spot at the input (training) plane, the separation between two
adjacent pixels, the focal length of the lens, the desired area of the local neighbor-
hood and the wavelength of light. Suppose each neuron at the input plane is to be
connected to output neurons within an area equal to m x m pixels. The distance
between the crystal and the focal plane of lens Ly (L)) can be calculated accord-
ing to Fig.5.5.3(b). Consider the two similar triangles AABC and AA'B'C'. AB
is the distance between two pixels at the input plane, A'B’ is the separation be-
tween the two beams at a distance Az’ away from the focal plane. The value Az’
is chosen so that when the two points A and B are m pixels apart, the separation
A'B' is the width of each plane wave b. Since AB/AC = A'B'/A'C', AC = f
and A'C' = Az, therefore

mAzx'

b
= Ay (5.8)

Agz' is the distance between two adjacent pixels, b is the width of each plane

wave, Az’ is the distance between the crystal and the focal plane of the input
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Fig.5.5.3 The optical system for local connectivity. (a) The side view. (b)

The top view.
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(training) plane. The width of each plane wave b can be obtained from Eq.(5.2),

which gives

1.22)\f
2R

b= : (5.9)

Where 2R is the diameter of each neuron spot. Therefore, Az’ is related to the

locality parameter m by

1.22)f2

I
A = op T

(5.10)

In the above calculation, the locality parameter m is determined according to the
pixels along the z'-direction. It can be noticed that the z' and y’ directions are
not symmetric due to the large angle §' between the two optical axes. Therefore,
the number of pixels to be locally connected in the y'-direction, my, is usually
larger than m. This will be seen in the following experiment. However, since
the degeneracy occurs mostly along the z'-direction, the locality parameter m,
along the y'-direction will not affect the fractal sampling grids. In the following
discussions on the fractal sampling grids, the local area will be taken as m x m

pixels.

Table 5.3 lists the parameters of the optical system used to implement local

connectivities.
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Table 5.3 Parameters of the System for Local Connectivities

Parameter Notation Value
Focal Length f 75 mm
Angle between Two 26 45°
Optical Axes
Distance between Two Az 0.3mm
Adjacent Pixels Ay 0.3mm
Diameter of a Spot 2R 0.15mm
Wavelength of Ar-Laser A 48804
Distance between Crystal A7 4mm
Focal Plane

5.5.2 Fractal Sampling Grids for Local Connectivity

It is necessary to design new fractal sampling grids for local connectivity. It is
still necessary to use sampling grids for local connectivity, because the degeneracy
problem 1is intrinsic in using holographic gratings. At the same space inside
the crystal, a grating can always connect more than one pair of wave vectors.
However, at different places inside the crystal two gratings with the same grating
vector represent two independent gratings because of their spatial separation,
similar to the spatial multiplexing of holograms. Therefore, the fractal sampling

grids for local connectivities are different from those for global connectivities.

The sampling grids for local connectivity can be derived from those for global
connectivity. First the sampling grids for global connectivity of neurons within

input area of m x m pixels and output area of m x m pixels are designed, as in
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Chapter 4. Then the same local input (output) sampling grid is duplicated and
stacked to fill up the whole input (output) plane. Fig.5.5.4 shows an example of

fractal sampling grids for local connectivity.

! . . - . - .
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Fig.5.5.4 An example of fractal sampling grids for local connectivity.

The fractal dimension of the sampling grids for local connectivity depends on
the size of the neighborhood and it is higher than those for global connectivity.
As shown in Fig.5.5.4, the input (training) plane is divided into (N/m) x (N/m)

blocks. Each neuron at the input plane is only connected to neurons within one
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block at the output plane. Suppose each of the neurons at the input (output)
plane is connected to ny (n;) neurons at the output (input) plan. n; and n; are
related by n; x ny = m®, where m is the number of pixels along each direction
within a block. The total number of neurons at the input (output) plane is
Ny = nyN2/m? (N; = nyN?/m?), where N x N is the total number of pixels.
The fractal dimensions D; and D, of the sampling grids for the local connectivity
are D; = log N1/log N and D; = log N3/ log N respectively. The sum of D; and
D, is

i+ b, A

__log(N“/m)
~ logN
log(N/m)
logN

(5.11)
=3 +
It can be noticed that

> 3, for local connectivity, i.e., N > m;

D+ D { 5.12
! 1= 3, for global connectivity, i.e., N = m. (5:12)

5.5.3 Experimental Demonstrations

The experiment implementing local connectivity is conducted with the fractal
sampling grids and the sampled patterns shown in Fig.5.5.5. The fractal sampling
grids have n; = 24, np = 72, m = 12, N = 36, N1 = 216, N; = 648, D; = 1.5
and Dy = 1.8. The parameters of the optical system are given in Table 5.3.

During the training process, the crystal records gratings formed by overlap-

ping plane waves. The pattern with lower density is placed at the input plane

and the pattern with higher density is placed at the training plane. According
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(b)
Fig.5.5.5 (a) The fractal sampling grids. (b) The sampled patterns.
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(a) (b)

(c) (d)

Fig.5.5.6 (a) The output letter A read out by the input letter A. (b) The output
letters A and B read out by the input letter B. (c¢) The output letter C read
out by the input letter C. (d) The output letters C' and D read out by the input

letter D.
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to the parameters chosen above, letter A at the input plane will be connected to
letter A at the output plane only, and similarly for letter C. Due to the thickness
of the crystal, the input pattern B (D) crosses both the output letters A and
B (C and D) when the beams go through the crystal, as shown in Fig.5.5.3.
Therefore, letter B (D) at the input plane will be connected to both letters A

and B (C and D) at the output plane.

During the recall process, the training plane is blocked and different input
patterns read out different output patterns. The experimental resulté are shown
in Fig.5.5.6. When the letter A (C) is placed at the input plane, the output
contains only letter A (C'). When the letter B (D) is placed at the input plane,

both letters A and B (C and D) are read out at the output plane.

The same system can be used to locally connect the input letter B (D) to
the output letter B (D) only. This can be accomplished by using either multiple
exposures or a thinner crystal. The method of multiple exposures involves two
exposures, the first with the input letters A and C and the training letters A
and C, the second with the input letters B and D and the training letters B and
D. The method of using a thinner crystal leaves the overlapping between the
input letter B (D) and the output letter A (C) outside the crystal, as shown in
Fig.5.5.2(b). Therefore, each input neuron will be connected to the same number

of output neurons.

Conclusion
The fractal sampling grids used in the optical holographic implementation

of neural networks can prevent the degenerate interconnections. Both global
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and local connectivities can be implemented with the help of the corresponding
fractal sampling grids. The fractal dimensions of the sampling grids for the local

connectivity are higher than those for the global connectivity.
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6. CONCLUSION

In this chapter, the use of volume hologram and planar hologram will be
compared to show that volume hologram provides higher storage density for the

implementation of neural networks.

6.1 VOLUME OF THE SYSTEM

In order to compare the storage density of the optical system implemented
with a volume hologram with that of a planar hologram system, it is necessary
to calculate the volume of the optical system in terms of the number of intercon-
nections. The optical system is shown in Fig.6.1.1, where the hologram can be
either volume or planar. It has been discussed in Chapter 4 and the Appendix
that for the same system, the number of interconnections is N when using vol-
ume hologram and N? when using planar hologram. The volume of systems for

the same number of interconnections can be calculated under certain conditions.

It 1s essential to keep the same accessible grating space, the separation be-
tween two adjacent pixels, the angle between two optical axes and the wave length
so that the change of number of interconnections is only due to the change of
system volume. Consider Eq.(4.10) and Eq.(4.12),

sin(26) cos 9
1 — 8in 79’

no

V, = 2k0( )3 Ze (4.10)

ztal( )3 ne sin(26) cos 6

N, = (4.12)

sin?f
1-55=
n2

Eq.(4.12) indicates that the number of interconnections, which is proportional to

N,, depends on the numerical aperture of the system, a/f, the angle between the
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Fig.6.1.1 The optical system for the holographic implementation of neural

networks.

two optiéal axes, 0, and the volume of the crystal, V;4q. Eq.(4.10) indicates that
any change of the numerical aperture or the angle between the two optical axes
will change the volume of the accessible grating space V,. To exclude the change
of the number of interconnections due to the change of the accessible grating
space so that the change of the number of interconnections is related only to the
change of the system volume, the angle between the two optical axes # and the
numerical aperture of the system a/f are kept as constants. Write the numerical

aperture as

= a, (6.1)

| e

where o is a constant, a is the linear dimension of the input (output) plane,
f is the focal length of lenses L; and L;. Eq.(4.12) also shows that for the

fixed accessible grating space, the number of interconnections depends only on
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the volume of the crystal which is in turn related to the uncertainty volume
of a grating. When the dimensions of the crystal are changed, there are two
possibilities to change the number of interconnections. First is to change the
separation between two adjacent pixels so that there will be more (or less) neurons
within the input (output) plane. Second is to change the focal length and the
dimension of the input (output) plane so that the resolution of the system (éz')
will not be changed. In order to relate the number of interconnections only to
the volume of the system, the resolution of the system will be kept as a constant.
Therefore, the second possibility of changing the number of interconnections will

be taken. Consider Eq.(4.19),
szt~ 2L (4.19)

The resolution of the system, that is the separation between two adjacent pixels
éz!, depends on the ratio f/L,. To exclude the change of the number of inter-
connections due to the change of resolution of the system, this ratio is kept as a

constant, i.e.,

where [ is a constant.

The volume of the system can then be expressed in terms of the number
of pixels along each direction N. The transverse area of the system shown in
Fig.6.1.1 is the maximum among the area of the input (output) plane, the area of
the lenses and the transverse area of the crystal. According to Eq.(6.1), Eq.(6.2),

Eq.(4.28) and Eq.(4.29), these areas are proportional to one another. Since the
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length of the system is proportional to the focal length of the lenses, the volume
of the system is proportional to the transverse area of the input (output) plane
times the focal length of the lenses, i.e., Viysem a’f. Because the numerical
aperture of the system is kept as a constant (Eq.(6.1)), the volume of the system

is then proportional to f3, i.e.,

Vsystem = 7f3a (63)

where 7 is a constant. According to Eq.(4.21), Eq.(6.1) and Eq.(6.2), the focal
length f is related to the number of pixels along each direction at the input

(output) plane, N, by

_al, '
_7T’
op (6.4)
D)
Therefore,
— (3N
Vsystem = 7(aﬂ) N7, (6'5)

i.e., the volume of the optical system is proportional to N3. This result is the
same for the volume hologram system and for the planar hologram system, since

the above calculations do not involve the geometry of the storage medium.

The volume of system expressed in terms of the number of interconnections
instead of the number of pixels will have different forms for the volume hologram
system and the planar hologram system. Write the number of interconnections

stored in the volume (planar) hologram as Nc(a—D) (Nc(z—D) ). According to the
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discussions in Chapter 4 and the Appendix,

NE-D) — N3, (6.6)
and

NP — N2, (6.7)

Substitute Eq.(6.6) and Eq.(6.7) into Eq.(6.5) respectively. The corresponding

volume of system can be expressed as

(3-D) _ _, A \3,(3-D)
Vsystem - '7(’(;5) Nc ) (68)
and
- A _
Vi = v(m)a'(Nfgz Dz, (6.9)

To store the same number of interconnections, i.e.,
$=D) _ N#-D) _ N, (6.10)

the ratio of the volume of the two systems ought to be

3-D
Vs(ystenz _ 1 (6 11)
VoL VN o

system

Therefore, the ratio of storage density, which is defined as p = N¢/Viystem, is

(3-D)
P
Wp(zwp) = +/N,. (6.12)

For example, to implement 10® interconnections, the required volume of the pla-

nar hologram system is 10,000 times that of the volume hologram system.
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6.2 COMPARISON BETWEEN PLANAR AND VOLUME HOLOGRAMS

Table 6.1 summarizes the comparison between the planar hologram system
and the volume hologram system. The number of neurons at the input and the

output planes are taken to be the same, i.e.,
N, =Ny = Ny =+/N,. (6.13)

All constant factors are neglected in order to show the change with respect to

the number of neurons.

Table 6.1 Planar vs. Volume Holograms

N, = Number of Neurons

2-D for Planar Hologram

3-D for Volume Hologram

2-D 3-D
Linear Dimension Ny N,f/ 3
Area N2 NE3
Total System Volume N3 N?

System Volume Ratio v(@-D);y(-D) = N,
Storage Density Ratio p2=D)/p(3=D) = 1 /N,

6.3 CONCLUSION

This thesis has theoretically analyzed and experimentally demonstrated the
optical holographic implementations of independent interconnections. The K-

space analysis gives the limit of the holographic storage capacity based upon
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geometric considerations. By using the fractal sampling grids, the degenerate in-
terconnections associated with Fourier holography are avoided, and the degrees
of freedom of the hologram are fully utilized. The holographic hetero-associative
memory is a direct implementation of the outer product scheme. The storage
density of volume holograms is higher than the storage density of planar holo-

grams.

There are several other factors, beyond the basic geometric constraints dis-
cussed in this thesis. In order to gain a complete understanding of the capabilities
of volume holograms for implementing neural network interconnections, the phys-
ical limitations of the photorefractive crystal and the recording mechanism must
be taken into consideration [16]. The effects of second and third order diffraction
of gratings should also be addressed [48]. To effectively record a given set of
gratings into the photorefractive crystal, the least number of exposures are de-
sired [49]. These issues have been addressed by my colleagues, and together with
the results of this thesis, they form the foundation for the practical realization

of optical neural networks.
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APPENDIX PLANAR HOLOGRAMS

The optical implementation of neural networks can also be accomplished by
using planar holograms rather than volume holograms. Similar to the volume
holographic implementation, the planar holographic implementation involves the
training process and the recall process. The training process is implemented by
the recording of the interference pattern of the reference beam and the object
beam, and the recall process is implemented by the reconstruction of the object
beam. In this appendix, the implementation of independent interconnections

using planar holographic sinusoidal gratings will be analyzed.

Section A.1 discusses the shift invariant property of planar holograms. The
diffraction condition of planar holographic gratings is different from that of vol-
ume holographic gratings. The Bragg condition, which must be satisfied during
the diffraction of volume holographic gratings, is no longer a constrain during

the diffraction of planar holographic gratings.

Section A.2 will extend the K-space analysis to the discussion of planar holo-
graphic gratings. The shift invariant diffraction of a planar holographic grating
is related to the lack of information in the third dimension, as mentioned in Sec-
tion 2.2. The difference in dimensionalities of the storage media will cause the

difference in their storage capacities.

Section A.3 designs different fractal sampling grids for the planar holographic
implementation of independent interconnections. The fractal dimensions of the
sampling grids for planar holograms are less than those for volume holograms,

due to the reduction of dimensions of the storage medium.
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A.1 SHIFT INVARIANCE

The shift invariant diffraction of a planar holographic grating can be under-
stood by considering an example of an amplitude grating. Suppose a grating is

recorded in a 2-dimensional medium as a transmittance function,

t(z0,y0) = Q[1 + cos(Kzz0 + Kyyo)]. (A.1)

Where @ is a constant, K = (K, Ky) is the 2-dimensional grating vector. A
plane wave is incident upon the recorded hologram, which is located at the z = 0

plane. The field amplitude of the plane wave can be written as

Up(zo, Yo) = eXP[i(kixxO + kiyyﬂ)]~ (A‘Q)

At a distance z after the hologram, the electric field amplitude U,(z,y) is
given by [47]

oo 00
k k
U.(e,0) =B expli2(a? +47) [ [ Uatan,wttan, )

k 2m
expliz (2 + v expl~iz—(z20 + yyo)ldzodyo.

Where A is the wavelength of light and k¢ = 27/A. Substitute Eq.(A.1) and
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Eq.(A.2) into Eq.(A.3). The field amplitude U,(z,y) can be written as

U.(z,y) =Q exp(ikoz)

2 2
k3,

{exp(~i—'-2-,c—0—izz) x expli(kiz T + kiyy))

+ exp[—1 x

2kg (A4)
expli(kiz + Kz)z + i(kiy + Ky)y]
. 2 . 2
+ exp[—1 (kiz = Kz)” + (kiy v) z]x
2ko

expli(kiz — Kz)z + i(kiy — Ky)y]}.

Eq.(A.4) indicates that after the planar hologram, the optical field consists of
three plane waves, i.e., the Oth, +1st and —1st order plane waves. The Oth order
plane wave is the undiffracted plane wave with its wave vector k;. The +1st

order plane waves have their wave vectors

kaz(+1) = kiz + Kq,

kdy(il) = kiy + Ky-;

(A.5)
kdz(:tl) = \/kg - kﬁm(:{:l) - kgy(il)’
(kiz £ K )? + (kiy £ K,)?
2k '

%kg——

It can be seen from Eq.(A.4) that a plane wave is not necessarily incident
at the Bragg angle in order to be diffracted by the existing grating. To see
the change of the diffracted plane wave with respect to the change of the in-
cident plane wave, consider the first order diffraction. Suppose the incident
plane wave exp(ik; - r) gives rise to a diffracted plane wave exp(tkq - r). By

changing the incident angle, the new incident plane wave can be expressed as
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exp{i[(kiz + Akiz )z + (kiy+ Akiy)y]}, where the z component of the wave vector is
neglected for simplicity. According to Eq.(A.4), the new diffracted plane wave is
exp{i[(kaz + Akiz)x + (kgy + Akiy)y]}, ie., the increments Akg, = Ak;; and
Akgy = Akiy.

When the Vander Lugt system is used to implement neural network inter-
connections, the planar holographic diffraction makes the system shift invariant.
Suppose the two input plane waves correspond to the two input points (z}, y}) and
(zi+ Az}, yi+Ay!), and the two output plane waves correspond to the two output
points (z),y}) and (2} 4+ Azl v} + Ay))). Since Aky, = Akiz and Akgy = Akyy, it
can be seen from Eq.(4.1) and Eq.(4.2) that the displacement of the output point,
(Azl, Ay}), is the same as that of the input point, (Az}, Ay}), i.e., Azl = Az}
and Ay}, = Ay!. If a pattern consisting of many points is reconstructed from the
planar hologram by using a point at the input plane, the reconstruction by using
a shifted point at the input plane will be the same pattern shifted at the output

plane, since all points are shifted by the same displacement.

A.2 EXTENSION OF K-SPACE ANALYSIS TO PLANAR HOLOGRAMS

The K-space analysis discussed in Chapter 3 can be extended to the analysis
of planar holograms. Fig.A.2.1 shows the K-space geometry when the recording
medium becomes very thin. The uncertainty value é K, = 27 /L, increases as the

thickness L, decreases.

When the thickness L, becomes comparable with the wavelength A, the
diffraction becomes completely shift invariant. Fig.A.2.2 shows that when the

incident plane wave k| is significantly off the Bragg angle, which is determined
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Fig.A.2.1 The K-space geometry for a thin recording medium.

by the nominal grating vector K, the wave vector k! can still be Bragg matched
by a grating vector K inside the uncertainty volume to produce a diffracted plane
wave k). From Eq.(3.13), it can be noticed that the grating strength of K is close
to that of K, as long as |[K,—K,| < 27/L,. Therefore, shift invariant diffraction

is a result of the uncertainty of the 2-dimensional recording.

The storage capacity of the 2-dimensional recording medium is proportional
to A/A?, where A is the area of the recording medium. To derive an expression
for the capacity, suppose the medium is isotropic, and the magnitude of any wave

vector is k. Therefore, the bounded grating space is the top half of the sphere,

Kl + K} +K?=(2k)%. (A.6)
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Fig.A.2.2 The shift invariant diffraction as a result of the uncertainty of

the 2-dimensional recording.

For planar hologram, k is comparable with the uncertainty value K, = 27 /L,.
The dimension of the uncertainty volume along the K ,-direction is comparable
with the dimension of the grating space. Different gratings correspond to non-
overlapping uncertainty volumes separated in the K, or K direction. The largest
cross section of the grating space perpendicular to the K;-direction is the circle
in the (K, Ky)-plane. The area of this circle is 7(2k)?. The cross section of
the uncertainty volume perpendicular to the K,-direction is § K;6 K. Therefore,
the storage capacity, which is defined as the maximum number of distinguishable
gratings can be contained in the grating space, is given by

C— m(2k)?

— m, (Ao?)

where 6 K; = 2w /L;, 6Ky = 2w /L,. Eq.(A.7) can be written as
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C= 47m2-§-

3 (A.8)

Where n is the refractive index of the material, and A = L, L, is the area of the

planar hologram.

The total number of accessible gratings N, can be calculated using similar
procedures as in Subsection 4.3.1. For the same input and output planes, the
accessible grating space is the same as that shown in Fig.4.3.1. The cross section
cut by the K, = 0 plane is a rectangle. The area of the rectangle can be calculated

from Eq.(4~8) as Ag = (meaz - I{xmin)(Kyma:c - ymin)a which gives

2koa  2kg cosfa
A, = X s
oo (A.9)
=4k2 cos 9(7)2.

The total number of accessible gratings is

— A“
~(27/Ly)(2r/Ly)’

aqA
:4c059(7)2—/-\—2—.

N,
(A.10)

The number of pixels at the input (training) plane can be chosen to be
N x N x Ng. To determine N, consider the separation between two adjacent

pixels 6z, and éy;. From Eq.(4.1), éz; and 6y can be related to ép;; and ép;, by

k
5Pi$ = 63::“}2:
. (A.11)

8piy = 8y; cos 7
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According to Eq.(4.18),

2
523:':5 = zzv
o (A.12)
e
5pty = Ly

Substitute Eq.(A.12) into Eq.(A.11), the minimum separation between two ad-

Jacent pixels is given by

Sz = _7.':_1:.
L=
Lok (A.13)
syl = =8 f
' Lykgcosf’
To have a regular 2-dimensional grid, select éz} = 6y}, which gives
L, = Lycosé. (A.14)
The total number of pixels
a a
N =5 s
_COSQ( —)? /\2, (A.15)
T4

A.3 FRrRAcCTAL SAMPLING GRIDS FOR PLANAR HOLOGRAMS

The shift invariant diffraction of planar holograms requires new fractal sam-

pling grids for avoiding degenerate interconnections.

The fractal dimensions of the sampling grids and the allocations of the neu-
rons are different from those discussed in Chapter 4. To reach the storage capac-

ity, the number of neurons at the input (training) plane Nj (N2) is chosen such
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that
N1 X Ng = Nz. (Alﬁ)

Therefore, the fractal dimensions, d; and dj, of the sampling grids for the input

and the training planes are related by

di+dy = 2. (A.17)

It is required to avoid shift invariance in all directions in the case of 2-
dimensional storage. The shift invariance condition for two neurons at the input
plane, (z};,yl;) and (z}y,yl,), and two neurons at the training plane, (z};,v})

and (!, y),) is given by

1 ! ! !
Tio — Tip = Tagp — Tqps (A.18)

and

y£2 - 921 = ?/112 - yfn- (A.19)

A systematic method to design fractal sampling grids is to locate row patterns
derived in Chapter 4 at proper vertical positions. The number of neurons within
each row is n; = +/Nj at the input plane and ny = /N at the training plane.
The number of rows containing neurons is n;j = /N at the input plane and

ny = /N3 at the training. Since N;N; = N2, n; and n, are related by njny = N.

In the following discussion on fractal sampling grids, the unit of distances is

chosen as the spatial separation of two adjacent pixels. The first column to the
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left of the input (training) plane will be represented by z = 1. The first row on

the bottom of the input (training) plane will be represented by y = 1.

A family of fractal sampling grids can be systematically designed following

the next five steps.

1) Select the ny neuron positions along one row at the training plane. Label

the neurons as 1, 2, - -+, ny. Separate the ny neurons uniformly by n, i.e.,
:z:gcd) =(k-1)xn + IL‘gd), (A.20)

where the superscript (d) represents the training neurons, k represents the
kth neuron with 1 < k < ng, and :cgd) represents the position of the first
neuron. There are n; different distributions in this case, for xgd) can be one
of the values from 1 through n;. These n; distributions are called n; row

patterns denoted by {Bj, Bz, ---, Bn, }.

2) Design fractal sampling grids for the training plane. Choose one of the nj
row patterns, B,. Duplicate this row pattern to obtain n; identical row
patterns. Label these ng identical row patterns as 1, 2, ---, ny. Separate

the ny row patterns uniformly by ni, i.e.,

y = (k= 1) xny + 9, (A.21)

where k represents the kth row pattern with 1 < k < ny and ygd) represents

the vertical position of the first row pattern. For each chosen B,, there are
(

n different possibilities to locate the row patterns vertically, since yld) can

be one of the values from 1 through n;. Because B, can be any of the n;
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row patterns derived in step 1, the total number of fractal sampling grids

for the training plane is n?.

Select the n; neuron positions along one row at the input plane. Label the
neurons as 1, 2, - -+, n1. Suppose that there are M different row patterns.

For the jth row pattern, select the position of the kth neuron to be
2V = (H — 1) x ny +k, (A.22)

where the superscript (7) represents the input neurons, and li is an integer
within the range 1 < li < ny. For each neuron, li can be any of the
ny values from 1 through n2. Since there are nj neurons, there exist ny'
different combinations for l{ , lg, RN lf;l. Thus the number of different row
patterns is M = nj'. Represent these M different row patterns by {Aj,

AQ: Ty AM}

Design fractal sampling grids for the input plane. Choose one of the M
row patterns, A,. Duplicate this row pattern to obtain n; identical row
patterns. Label these n; identical row patterns as 1, 2, ---, nj. Suppose
that there are M’ different vertical distributions. For the jth distribution,

select the position of the kth row pattern to be
v = =1) xny +k, (A.23)

where l{ is an integer within the range 1 < H < ny. For each row pattern,
l,{ can be any of the ny values from 1 through ny. Since there are n; row

patterns, there exist nj* different combinations for 1§, I3, - - -, I,,. Thus the



5)

166

number of different vertical distributions is M' = M = ng’. Because A,
can be any of the M row patterns derived in step 3, the total number of

2n4

fractal sampling grids for the input plane is M? = nj

Design pairs of fractal sampling grids for the input and training planes. A
pair of fractal sampling grids can be obtained by selecting any one of the
M? sampling grids derived in step 2 for the input plane and any one of the
n? sampling grids derived in step 4 for the training plane. Therefore, the

total number of pairs of fractal sampling grids is n%n%n‘.

The shift invariance is avoided by using any pair of these fractal sampling

grids. It has been proven in Chapter 4 that the horizontal distance between any
two columns of neurons at the input plane is different from that at the training
plane. Since the vertical distribution of neurons is designed in the same way as
for the horizontal distribution of neurons, according to the same argument, the

distance between any two rows of neurons at the input plane is different from

that at the training plane. Therefore, the shift invariance condition, Eq.(A.18)

and Eq.(A.19), is avoided by these fractal sampling grids.

Fig.A.3.1 shows an example of fractal sampling grids. In this example, N =

12, Ny =9, N =16, n; = 3, ng = 4, d; ~ 0.88 and dz ~ 1.12. The horizontal

locations of neurons at the input plane are given by

s =(B-1)x3+1=71,
2 =(@2-1)x3+2=5, (A.24)

) =(2-1)x3+3=6.



167

[6)
YN
el INPUT
cee . .. .. PLANE
............ >x(‘)
y (@
D TRAINING
- PLANE
. . L ] .
: 5 x@

Fig.A.3.1 An example of fractal sampling grids for the planar hologram.

The horizontal locations of neurons at the training plane are given by

:L'gd) =2,

2P =(2-1)x3+2=5,

(A.25)

P =(3-1)x3+2=8,

2P =(4-1)x3+2=11L
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The vertical locations of neurons at the input plane are given by

W=@-1)x3+1=17,
W =@-1)x3+2=05 (A.26)

W =(2-1)x3+3=6.
The vertical locations of neurons at the training plane are given by

ygd)~”-32,
v =(2-1)x3+2=5

) (A.27)
WW=(3-1)x3+2=8,

v =4-1)x3+2=11

Other fractal sampling grids, such as higher order fractal sampling grids, can

be generated using the same strategy.
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