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Abstract 

The construction of covariant string field theories is an important step toward a 

deeper understanding of string theories. This thesis discusses the general formulation 

of bosonic and supersymmetric covariant open string field theories and their second 

quantization. A particular emphasis is given to the perturbative calculation in the 

framework of string field theory. The use of string wave functional and the technique 

of conformal field theory are illustrated by explicit calculations of on- and off-shell 

string amplitudes. The background independent cubic actions for open strings are 

described briefly. 



V 

Table of Contents 

Dedication . . . . 

Acknowledgements 

Abstract 

Figure captions 

Introduction and Summary 

Chapter 1: Bosonic string field theory 

1.1 General formulation . . . . . . . 

1.2 The on-shell four-tachyon amplitude 

1.3 The off-shell four-tachyon amplitude 

1.4 The off-shell four-point amplitudes involving vector particles 

1.5 The conformal field theory method . . . . 

Chapter 2: Supersymmetric string field theory 

2.1 Reformulation of the superstring field theory 

2.2 Equations of motion and physical states 

2.3 Gauge-fixing and second quantization 

2.4 The Feynman rules and string amplitudes 

Chapter 3: Purely cubic actions for open strings 

3.1 Cubic action for bosonic strings . . . . 

3.2 Cubic action for supersymmetric strings 

Appendix: The relevant integrals 

References 

Figures .. 

11 

111 

IV 

VI 

1 

5 

.5 

11 

13 

25 

30 

32 

32 

41 

47 

49 

56 

56 

59 

63 

69 

72 



VI 

Figure Captions 

1. The world-sheet section for the definition of open string multiplication. It is 

flat except at point E where there is a curvature singularity -Jr. The limit 

8 ---+ 0 is taken at the end. 

2. The string integration is defined on this surface which is flat except a curvature 

singularity 1r at point D. The length 8 is taken to zero. 

3. The world-sheet representation of the open string propagator. The antighost 

zero mode is represented as a line integral l across the strip. 

4. (a) The world-sheet diagram for string amplitudes of four on-shell states. (b) 

The image of the diagram in Fig. 4a under the specified conformal mapping. 

5. The world-sheet path integral representation of a string state. If the state is 

on-shell, the vertex operator is inserted at the infinity; if the state is off-shell, 

the vertex operator is placed at distance T from the boundary EF. 

6. (a) The world-sheet diagram for the off-shell four-tachyon amplitude. (b) The 

image of the diagram in Fig. 6a under the specified conformal mapping. 

7. The Feynman diagrams for two-tachyon and two-vector particle amplitudes. 

8. (a) The world-sheet diagram of the three-string vertex. ( b) The image of the 

diagram in Fig. 8a after a conformal coordinate change to the upper half-plane. 

9. Two of the Feynman diagrams for four-boson amplitudes. The dashed lines 

represent NS external states or propagators. 

10. Two of the Feynman diagrams for four-fermion amplitudes. The solid lines 

represent R external states or propagators. 

11. Two of the Feynman diagrams for two-boson two-fermion amplitudes. 

12. Two of the Feynman diagrams for two-boson two-fermion amplitudes. Fig. 12 

differs from Fig. 11 in that the external states are permuted. 
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Introduction and Summary 

The quest for a coherent understanding of the fundamental building blocks of 

the universe and the interactive forces among them has been a very active area of 

research. The renewed interest in string theory in recent years has generated a re

alistic hope that this most ambitious goal in physics may eventually be achievable 

in the framework of string theory [1]. At the early stage of string theory all the 

formulations and the subsequent calculations were made in the first quantized for

malism and restricted in the light-cone gauge [2]. There a flat vacuum is assumed 

and string amplitudes were calculated perturbatively according to a set of intuitive 

Feynman rules. As space-time symmetry is not preserved, all the string states must 

be restricted on the mass-shell in a thus obtained string amplitude. Furthermore, 

the relation between gauge symmetry and dynamics in string theory is also hidden 

in this formalism. It was then obvious that a more appropriate formulation of string 

theory is necessary. 

The would-be dynamic theory of strings must have the following required prop

erties: The space-time symmetry is preserved, the gauge symmetry is explicitly real

ized, vacuum structure would come out as dynamic solutions of the theory, instead 

of something presupposed, perturbative Feynman rules should be derived systemat

ically and off-mass-shell string amplitudes calculated. 

In parallel to point particle field theory, it was realized [2] that a covariant field 

theory of strings would fulfill all the requirements. But a covariant string field theory 

is very difficult to develop, since it involves an infinite number of gauge invariances. 

The string field theory constructed in early 1970s was still prefixed in the light

cone gauge without space-time symmetry [3]. Later Siegel initiated a study [4] of 

string field theory from a BRST invariant string field action. Subsequently, using the 

concept of noncommutative geometry, Witten achieved a formulation of a covariant 

interacting field theory for both bosonic [5] and supersymmetric [6] open strings. 



2 

However, a covariant field theory for neither bosonic nor supersymmetric closed 

strings has been constructed. 

To compute string amplitudes perturbatively, Witten chose a gauge-fixing con

dition for his bosonic open string field theory and conjectured a gauge-fixed string 

field action. Then it was argued that the correct string amplitude could be obtained 

[7] from the Feynman rules derived from the conjectured gauge-fixed string field ac

tion. The explicit calculation of string amplitudes from Witten's bosonic string field 

theory, however, is a nontrivial matter. Giddings succeeded in calculating on-shell 

four-tachyon amplitude [8]. 

The calculation of string amplitudes in the dual model [2] and the Polyakov path 

integral approach [9] are restricted to on-shell string states. For a better understand

ing of string theories the off-shell information is important. For example, just as in 

point particle field theories, off-shell amplitudes are necessary to derive a low energy 

effective theory of strings and may provide the necessary means to explore the short 

distance behavior of string theories [10]. Early attempts to obtain off-shell ampli

tudes in string theories were not very successful. The covariant string field theories 

suggest another way to approach the problem. 

The off-shell four-tachyon and two-tachyon two-vector particle amplitudes are 

calculated explicitly [11-13]. The off-shell four-tachyon amplitude is calculated in 

reference [12] using the momentum space wave functional. In that approach, it 

appears difficult to obtain amplitudes involving higher mass level states. In refer

ence [13], the off-shell four-tachyon and two-tachyon two-vector particle amplitudes 

were calculated in the operator formalism [14], where an assumption was made about 

the value of the infinite sum of contributions from intermediate particles which was 

too difficult to evaluate directly in that formalism. The methods in reference [11] 

is more powerful and is also explicitly world-sheet reparametrization-independent, 

which will be discussed in detail in this thesis. 

The bosonic string field theory has been formally second quantized [15-17]. A 

gauge-fixed BRST invariant string field action and the BRST transformation that 
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leaves the action invariant were found. The correct Feynman rules have been derived 

from the gauge-fixed action. As far as the perturbative calculation of string ampli

tudes are concerned, the classical string fields for on-shell or off-shell string states 

suffice. 

Witten's superstring field theory has some difficulties however, and it was found 

that the superstring multiplication has an associative anomaly [31]. This implies a 

violation of gauge invariance of the theory and a divergence in tree level four-boson 

amplitudes. All those problems are related to the insertion of a picture-changing 

operator [29] at the string midpoint in the definition of superstring multiplication. 

Since the operator product of two picture-changing operators is divergent, when 

two or more picture-changing operators overlap at the same point in superstring 

multiplications, the product is not well defined. A possible resolution is to modify the 

superstring action and the gauge transformation by introducing an infinite number 

of higher order contact terms such that the divergences are canceled order by order. 

This is obviously very difficult to implement. 

A different approach is taken in reference [32], the key is the realization that the 

conformal and superconformal ghost numbers must be counted separately. A general 

physical superstring field is the linear combination of component fields of conformal 

ghost number -1/2 and various superconformal ghost numbers. A component field 

could be an NS field or an R field depending on whether its superconformal ghost 

number is an integer or half-integer. It is then natural to define superstring multi

plication and integration as the generalization of the corresponding bosonic string 

operations without the insertion of the picture-changing operator and its inverse. 

The new superstring action is still an integral of the Chern-Simons three form. The 

action is gauge invariant and supersymmetric without additional contact terms. The 

second quantization and some sample calculations have been carried out [32]. 

The open string action as an integral of the Chern-Simons three form has de

pendence on space-time background through the BRST charge. If the string field 

theory were to give a complete description of a dynamic process, the background 
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should come out as a solution of the theory instead of something being put in at 

the beginning. In an attempt to eliminate background dependence, Witten's open 

bosonic string field theory action has been written in a purely cubic form [38]. The 

original open string action can be recovered by expanding around a particular clas

sical solution of the equation of motion. Moreover the cubic form of open bosonic 

string field theory also contains closed string states [39], this gives a hope that the 

difficulties in formulating closed string field theory may be sidestepped. The exten

sion to Witten's open superstring field theory has been made [40]. However, the 

associative anomaly of Witten's superstring multiplication would also render the su

perstring cubic action not well defined. In the light of the modified superstring field 

theory [32], a well-defined superstring cubic action is proposed [41]. 

The main subject of this thesis will be the covariant field theories for bosonic 

and supersymmetric open strings. The first chapter starts with a brief review of 

bosonic string field theory and the calculation of the on-shell four-tachyon ampli

tude. Then a more detailed world-sheet reparametrization-independent calculation 

of off-shell four-tachyon and two-tachyon two-vector particle amplitudes is presented. 

The conformal field theory method for off-shell string amplitude calculation is also 

described. 

The second chapter begins with the discussion of Witten's open superstring field 

theory and the difficulties in its original formulation. A proposal for a modified 

superstring field theory is given with particular emphasis on the role played by the 

superconformal ghost. The canonical structure of the open superstring in the Neveu

Schwarz and Ramond sectors is shown to be the consequence of the gauge-fixed string 

field equations of motion. The theory is second quantized and some string amplitudes 

for massless string states are calculated. 

The third chapter is devoted to the exposition of the purely cubic action for the 

bosonic and the supersymmetric open strings. 
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1. Bosonic String Field Theory 

1.1 General formulation 

A string field A[Xµ(a), c(a), b(a)] in Witten's string field theory [5] is a functional 

of string coordinates Xµ (a) and ghost fields c( a) and b( a) on the string world-sheet. 

Xµ(a), c(a), and b(a) can be expanded into modes a~, Cn and bn, They satisfy 

commutation relations 

and hermiticity conditions 

{ Cm, bn} = Dm+n,O, 

{Cm, Cn} = { bm, bn} = 0, 

[a~, Cn] = [a~, bn] = 0, 

(1.1) 

(1.2) 

where 'T/µv = (-1, 1, • • •, 1) is the space-time metric and µ = 0, 1, 2, • • •, D - 1; D is 

the dimension of space-time, and m, n = 0, ±1, ±2, • • •. 

The world-sheet BRST operator Q [18] can be decomposed as 

Q = co ( Lo - 1) + boT + + Q + (1.3) 

where Lo - 1, T+, and Q+ do not contain ghost zero modes co or bo. And Q is 

nilpotent, Q2 = 0, provided D = 26. The ghost number operator is defined by 

1 (X) 

N = 2(cobo - boco) + L)c-nbn - b_ncn). (1.4) 
n=l 

The BRST operator carries the ghost number + 1. 
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A general string field <l> in the first-quantized Fock-space can be thought of as a 

linear composition of string states with certain ghost numbers 

where c/>a(x) is a number field and la) carries the ghost number Na. la) is assigned 

Grassmann-odd ( or -even) if Na = -½ + 2n ( or ½ + 2n), where n is an integer. 

It is convenient to bosonize the ghost and antighost field on the string world

sheet, 

b _ e-it/>+(w) 
WW - , (1.5a,b) 

where</>( w, w), the bosonized ghost, is a scalar on the string world-sheet. The world

sheet action for string coordinates X µ ( O") and scalar ghost </>( O") are [5] 

(1.6a) 

(1.6b) 

where R is the curvature scalar. The conventions for the fields and propagators are 

1 
c/>(w,w) = 2[1>+(w) + f_(w)], 

on the upper half-plane. 
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The string multiplication 

is defined as a path integral 

on a piece of open string world-sheet sketched in Fig. 1. Where A is defined on 

boundary Fi, and B and Con F2 and F3 respectively. The limit 8-+ 0 is taken at 

the end. The string integration, a c-number, is defined as a path integral 

(1.8) 

on a piece of world-sheet sketched in Fig. 2. Where A is defined on the boundary F, 

and the limit 8 -+ 0 is implied. 

The multiplication * and integration J can further be shown [5] to satisfy 

(1.9a) 

(1.9b) 

J QA=O (1.9c) 

(1.9d) 

where A, B, and C are states in the first-quantized Fock-space. ( - )A is -1 ( or + 1) 

if A is odd ( or even), and ( - )AB is -1 if both A and B are odd, + 1 otherwise. The 

operations * and J have a ghost number anomaly 3/2 and -3/2 respectively, due to 

the second term in the scalar ghost action (1.6b) which couples the ghost number to 

world-sheet curvature. Eqs.(1.9a)-(1.9c) have also been realized in an explicit mode 

expansion [14]. 
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Witten's action for bosonic open string field is 

(1.10) 

where A is required to have ghost number -1/2 and to be Grassmann-odd. The 

action is therefore invariant under gauge transformation 

8A = QA+ A* A - A* A (1.11) 

where A is required to have ghost number -3/2 and to be Grassmann-even. In order 

to do perturbative calculations of string amplitudes, a gauge-fixing condition must 

be imposed. The condition 

boA = 0 (1.12) 

fixes the gauge in linearized theory completely, and it is also used in the interaction 

theory. In principle, one can calculate the scattering amplitudes of various open 

string states [7]. Four-tachyon on-shell amplitudes [8] and four-point off-shell ampli

tudes involving tachyons and massless vector particles [11-13] have been calculated. 

We will give a detailed account of the methods in reference [11] later in this chapter. 

The linearized equations of motion for the classical physical string field is 

QA= 0. (1.13) 

Using the expression in eq. (1.3) for Q we find that eqs. (1.12) and (1.13) are equiv

alent to 

(Lo - l)A = 0, Q+A = 0, (1.14a, b) 

which is the desired equation of motion and constraint for the physical string field. 
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It is known that the gauge fixing of the linearized action leads to the introduction 

of a Faddeev-Popov ghost string field, ghost of ghost field, and so on [19]. The same 

procedure has been carried out [15] for the action in eq. (1.10). There an infinite 

number of ghost string fields 

and antighost string fields 

are introduced. The subscripts indicate the ghost numbers carried by the string 

fields. The physical string field A in eq. (1.10) now corresponds to <l>_1; 2 , All the 

string fields can be written in a compact form 

(1.15) 

where each component field is assumed to be Grassmann-odd, therefore <I> is overall 

odd. The gauge-fixed ERST-invariant action is found to be 

(1.16) 

where /3, having all ghost numbers, is a Lagrange multiplier imposing the gauge-fixing 

condition bo<l> = 0. The equation of motion from eq. (1.16) is 

Q<l> +<I>* <I> - (bo/3) = 0, 

bo<l> = 0 . (1.17) 

The BRST transformation has the form 

8<l>+ = (bo/3)+, 
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8<1?_ = (Q<l? + <l? * <l?)_' 

8(3 = 0, (1.18) 

where + ( or - ) means the component fields of positive ( or negative) ghost numbers. 

One can check that the action in eq. (1.16) is invariant under the BRST transforma

tion. The Grassmann-odd property of <l? is essential for the invariance. It can also 

be shown [15] that the BRST transformation 8 is nilpotent, 

82 <1?+ = 0, 

82<1?_ = 0, 

5213 = o, (1.19) 

by using the equation of motion (1.17). The correct Feynman rules for perturbative 

calculation can therefore be derived from the gauge-fixed action. 

The string field propagator for the gauge-fixed theory is [5] 

00 

b 1 = b J dr e-r(Lo-1) 0 
Lo - 1 ° ' (1.20) 

0 

where e-r(Lo-l) has a path integral representation on a strip of world-sheet with 

length T shown in Fig. 3. The antighost zero mode 

(1.21) 

can be represented as a line integral across the world-sheet in Fig. 3 as indicated. 

The three-string vertex is just that of Fig. 1. The appropriate world-sheet Feyn

man diagram for a string amplitude can be formed by gluing together vertices and 

propagators. 
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1.2 The on-shell four-tachyon amplitude 

The four-tachyon amplitude in Witten's bosonic string field theory has the world

sheet diagram sketched in Fig. 4a, where each external on-shell state is represented 

by a semi-infinite strip with an appropriate vertex operator inserted at infinity. The 

propagator is represented by the strip of length T and then integrated over the 

parameter T. The path integral representation of the amplitude is 

(1.22) 

where 

Sx and S</J are world-sheet actions (eqs. (1.6a) and (1.6b)), and the tachyon vertex 

operator is 

(1.23) 

with PJ = 1, j = 1, ... , 4. cw = ei</J(w,w) and bww = e-i</J+(w) are ghost and antighost 

fields. 

The string world-sheet can be mapped to the upper half-plane by a Schwarz

Christoffel transformation [8], 

(1.24) 

where 

The parameters in the conformal mapping in eq. (1.24) are required to satisfy the 

constraints, 

1 

2 = Ao(/31,k)-Ao(/32,k), (1.25a) 
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where 

k2 = ,4 = 1 - k'z' . 2 1 
sm /31 = 2 2' l+a, 

0:2 
. 2 /3 

Sln 2 = 2 z . 
a + 'Y 

Ao and Z are Heuman's lambda function and the jacobian zeta function, 

Ao(/3, k) = ~[E(k)F(/3, k') + I<(k)E(/3, k') - I<(k)F(/3, k')], 
7r 

E(k) 
Z(/3, k) = E(/3, k) - I<(k) F(/3, k), 

(1.25b) 

where I<(k) and E(k) are complete elliptic integrals of the first and second kinds and 

F(/3, k) and E(/3, k) are incomplete elliptic integrals of the first and second kinds. 

The constraints in eqs. (1.25a) and (1.25b) implicitly determine I and Tin terms of 

0:. From eq. (1.25b) it follows that 

(1.26) 

Upon the conformal coordinate change to the upper half-plane as shown in Fig. 4b. 

the ghost part of the path integral in eq. (1.22) can be carried out to give 

(1.27) 

After evaluating the correlation function involving X µ ( w, w) and the change of vari

able in eq. (1.26), the s-channel on-shell four-tachyon amplitude is 

ao 

( 
l)ZA-A+ZA·A ( 2 )zA-A 

x a+_ (20:)ZA·A _ , 
0: 0: 

(1.28) 
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where ao = -J'2 - 1. The change of variable 

(
1- 0:2) 2 

X = 1 + a2 
(1.29) 

then gives 

1 

As = i J dx x-t-2(1 - x )-s-2, (1.30) 

1/2 

wheres= -(Pi+ P2)2, t = -(P2 + P3)2. The Koba-Nielsen amplitude is the sum 

of s- and t-channel contributions 

1 

AKN =As+ At= i J dxx-t-2(1- x)-s-2. 

0 

1.3. The off-shell four-tachyon amplitude 

(1.31) 

In the path integral approach to on-shell string amplitudes, the prescription is 

to integrate over all embeddings of the world-sheet into space-time and all possible 

world-sheet metrics [9]. This includes integration over all possible world-sheet ge

ometries. The Weyl invariance on the string world-sheet ensures that the resulting 

on-shell amplitudes are independent of the world-sheet geometry chosen in calcula

tions. If the external momenta are extended off the mass-shell, the Weyl invariance 

is lost. It is not clear how to proceed in this case. 

In string field theory, however, the three-string interaction vertex determines 

the world-sheet geometry. For example, in Witten's string field theory, the three

string interaction is specified by overlapping half of one string to half of the other 

to form the third string ( see Fig. 1). This corresponds to a particular world-sheet 

geometry like the one in Figs. 4a and 6a. To calculate the string amplitudes, only 

the embeddings of the world-sheet into space-time are integrated, not the metric 

on the world-sheet, namely, the geometry of the world-sheet is held fixed. In the 

light-cone-like string field theory [20], the three-string interaction is described by two 
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strings joining ends to form the third string, which also fixes a particular world-sheet 

geometry. So this means that in a given string field theory it is the string dynamics, 

particularly the string interaction, that specifies the world-sheet geometry. 

Although different string field theories specify different world-sheet geometries, 

they give the same on-shell string amplitudes. However, the off-shell amplitudes in 

one theory may differ from those in another in general. By studying the off-shell 

behaviors of the two theories, we may be able to determine whether one is physically 

more sensible than the other. 

In the remaining three sections of this chapter we use Witten's bosonic string 

field theory to calculate off-shell string amplitudes. In this section, we calculate the 

off-shell four-tachyon amplitude and extract the first few poles in the s-channel. Our 

calculation will be formulated such that it is explicitly independent of world-sheet 

parametrization. 

An on-shell string state is represented by a vertex operator with conformal di

mension zero. The off-shell extension of the vertex operators should be world-sheet 

scalars, therefore well-defined world-sheet reparametrization-independent off-shell 

amplitudes can be obtained. We will first find a vertex operator for the off-shell 

tachyon state which is world-sheet reparametrization-independent. This means that 

the off-shell tachyon vertex operator should be a world-sheet scalar. The vertex 

operator 

e iP-X(u) _ / iP-X(u)) . iP,X(u) . 
- \ e . e . 

= lim exp (-!PµPv (Xµ(a')Xv(a))) : eiP-X(u): 
u'--,u 2 

(1.32) 

is a world-sheet scalar, but the first factor is singular. So we introduce an invariant 

distance cutoff [21], 

2 /\ a I\ b I\ a 'a a c = 9abua ua , ua = a - a . 

Since the expression (1.32) is coordinate-independent, for convenience we can choose 

a parametrization so that the world-sheet metric is conformally flat and use complex 



15 

variables, 

z = 0"1 + ia-2' z = 0"1 - ia-2' 

(1.33) 

fXµ( I -')Xv( -)) µvG( I -I -) \ z,z z,z =g z,z;z,z. (1.34) 

The vertex operator will be put on world-sheet boundaries. In this case, the corre

lation function is 

, _, - lg./z',vz(z',z)l2 
G(z ,z ;z,z) = -ln ~y'rh , 

dz' dz 

where 

, EVZ',yz ( z', z) 
E(z, z) = ffziv'rh 

dz' dz 

is the prime form [22], and it transforms like a (-1/2, -1/2) form with the limit 

lim ln EVZ',VZ(z', z) = ln(z' - z) + finite. 
z'-+z 

So we have 

G(z', z'; z, z) = - ln lz' - zl 2 + finite. 

Then the regularized vertex operator 

Vx = lim e_p21HeiP-X(z,z) 
f--+0 

= lim {e-P2
lnlz'-zlexp [-!pµpv (Xµ(z',z')Xv(z,z))]} 

z'--+z 2 

is also a world-sheet scalar. 

(1.35) 
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From eq. (1.6b) we see that 

3. J d 'd-1 _ ~ Z Z Z _ / _/ / _/ 
(ef>(z, z)) = cp(z, z) = -- (-. -),Jg G(z, z; z, z )R(z, z ). 

41r i 
(1.36) 

We redefine the scalar field, 

$(z, z) = cp(z, z) - ef>(z, z), (1.37a) 

then 

(1.37b) 

The vertex operator 

ei1P(z,z) = eii(z,z) /i(z,z) 

= \ eii(z,z)) : eii(z,z): /¢(z,z) 

is a scalar. After the invariant distance cutoff in eq. (1.33), we have 

VIP = lim e-½lnt:ei1P(z,2) 
t:--->O 

(1.38) 

which is a world-sheet scalar as well. In eq. (1.38) there is an extra factor eii(z,z); 

to obtain the ghost part of tachyon vertex operator this factor must be removed. In 

the following, we will find a scalar factor such that the ghost part of the tachyon 

vertex operator is the product of VIP in eq. (1.38) with this factor. In Witten's open 

string field theory, the world-sheets are flat except at a few points where curvature 
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singularities have the value ±1r, therefore the volume form can be factorized into a 

product of a holomorphic and an antiholomorphic one-form, 

2gz2 dzdz = dw(z )dw(z), (1.39a) 

dw(z) wz(z)dz, dw(z) w:z(z)dz. (1.39b) 

It should be noticed that in defining the string state the vertex operator will be 

placed on a semi-infinite strip (Fig. 5), and the total curvature on the strip is 21r. 

From eq. (1.36) we find that the scalar factor 

(1.40) 

is the one needed. Then the vertex in eq. (1.38) becomes, after multiplication by the 

factor in eq. (1.40), 

(1.41) 

Now the tachyon vertex operator is 

Vp(z, z) Vx(z, z)Vc(z, z), (1.42) 

where Vx and Ve are as in eqs. (1.35) and (1.41). 

In section 1.2, the on-shell amplitude has an antighost line integral across the 

string propagator, 

J (dw dw ) 
27ri bww + 27ri bww . (1.43) 

l 

Now we need a one-form having a line integral equal to the antighost line integral 

in a given coordinate system. When z is away from curvature singularities, we have, 
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from eqs. (1.6b) and (1.36), 

(1.44) 

which implies 

(1.45) 

Let 

and the correlation function is 

(
,...__ ,...__ , ) £VZ,#(z, z') 
ef>+(z)</>+(z) = - ln ~ ;,-, . 

vdzvdz' 
(1.46) 

The vertex operator 

(1.47) 

is a world-sheet scalar. We can make a parametrization-independent regularization 

to obtain, from eqs. (1.46) and (1.47), 

(1.48) 

where wz(z) is as in eq. (1.39). As in eq. (1.38), e-(i+(z) should be removed by 

multiplying a scalar factor. Since the vertex operator will be put on the open string 
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propagator which is a strip of length T and total curvature 21r, from eqs. (1.36), 

(1.45) and (1.48), the scalar factor is found to be 

(1.49) 

Multiplied by the factor in eq. (1.49), the vertex operator in eq. (1.48) becomes 

(1.50) 

where Wz is as in eq. (1.39b). Since½ is a scalar, ½dw(z) is a one-form. The 

covariant version of the antighost line integral in eqs. (1.22) and (1.43) is 

J dw J 1 
21ribww = 27fi ½(z)dw(z), (1.51a) 

l l 

and similarly 

J dw J 1 -
21ribww = 21ri ½(z)dw(z). (1.51b) 

l l 

The formulae in eqs. (1.35), (1.41), (1.42) and (1.51) are completely general, they can 

be used in any coordinate system on the world-sheet. For the parametrization used 

in section 1.2, 2gww = 1 and Ww = Ww = 1. After the conformal coordinate change 

from the natural coordinate won the world-sheet to the coordinate z in eq. (1.24), 

we have 

(1.52a) 

and 

(1.52b) 
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On the upper half-plane, the correlation function has the simple form 

-. 1 _, _ 1 l£VZ,'IZ'(z,z')l2 1 l£VZ,#(z,z')l2 
G(z, z, z, z) - --2 ln ,JJ;-./J:ii - -2 ln ,JJ;-./J:ii 

dz dz' dz dz' 
(1.53) 

with 

The vertex operators in eqs. (1.35) and (1.41) now take the form 

(1.54a) 

(1.54b) 

where Wz and w2 are as given in eq. (1.52b ). 

The vertex operators (1.54a) and (1.54b) contain dz's and dz's in the exponen

tials. But in calculating string amplitudes, the total momentum and the total ghost 

number on the string world-sheets are zero. This ensures that all dz's and dz's drop 

out. 

Now we want to find the representation of the off-shell tachyon state. The path 

integral with vertex operator Vx ½ placed at distance T from the boundary EF, as 

shown in Fig. 5, is proportional to e-(P
2

-I)r at large T. To define a finite wave 

functional we must multiply the path integral by the factor e(P
2
-l)r. So the wave 

functional for the off-shell tachyon state can be written as 

(1.55) 

where Xµ ( a-) and ¢( a-) are string coordinates and the ghost field, and 

(Vx½) = J 
X(!T),ef>(!T),r 

is the path integral on the strip in Fig. 5 with the boundary condition X ( a-) and 

¢(a-) on EF and the operator (Vx½) placed at distance T from EF. This will become 

more clear as we actually do the calculation later. 
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At this point one might worry about the uniqueness of the off-shell tachyon 

state, since scalar particle states at higher mass levels may mix into the off-shell 

tachyon state. However, this will not happen. For example, if a term proportional 

to the vertex operator of the massive scalar at the fourth mass level is added to the 

tachyon vertex operator in eq .(1.55), this additional term vanishes like e-3r in the 

limit T -t oo. So there is no mixing from the higher mass level states. Similarly, 

if one demands the off-shell wave functional for the higher mass level states to be 

finite, there is no mixing from the lower mass level states either (see section 1.4 for 

the vector particle case). 

Similar to the on-shell amplitude calculation, but using A[X( a-), <,6( a)] defined in 

eq. (1.55) as the off-shell tachyon wave functional, the s-channel contribution to the 

off-shell four-tachyon scattering amplitude is as the world-sheet diagram sketched in 

Fig. 6a. The path integral representation of the amplitude is 

x (J (~ ½(z)dw(z) + ~ ½(z)dw(z))) ) IT e(P]-l)r1 
27rz 27l"Z . 

l J 

(1.56) 

where Vx(zj, Zj), Vc(zj, Zj), ½(z) and dw(z) are defined in eqs. (1.35), (1.41), (1.50) 

and (1.39), and j = 1, ... , 4. In eq. (1.56) the limit Tj -t oo is implicit, moreover 

the coordinate z is completely general. 

The string world-sheet in Fig. 6a can be mapped to the upper half-plane by the 

conformal coordinate change in eq. (1.24). Under this transformation, (w1, w2, w3 , w4 ) 

corresponds to (z1,z2,z3,z4); (A1,A2,A3,A4) corresponds to (a,-a,-1/a,1/a); 

and (B, D, E, F) corresponds to (0, i1 , i/1 , oo ). The limit Tj -t oo is equivalent to 

the limit (z1, z2, z3, z4) -t (a, -a, -1/a, 1/a). On the other hand, 

(1.57) 

where j = 1,2,3,4. On the upper half-plane, zj's are on the real axis and wz(zj) is 
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as in eq. (1.52b ). In the limit Tj -----t oo, eq. (1.57) becomes 

dz1 
dT1 = ---, 

z1 - a 
dz3 

dT3 =----, 
Z3 + 1/a 

dT2 = - dz2 ' 
z2 +a 

dz4 
dT4 =----. 

Z4 - 1/a 

The above equations can be solved to give 

(1.58) 

(1.59) 

where C1, ... , C4 are integration constants depending on a and 1 . By the symmetry 

of the conformal mapping, we have the relations 

(1.60) 

In the appendix it is shown that (see eqs. (A.10) and (A.12)), 

(1.61a, b) 

and 

ln C = _ _!!__F(/3, k') + ln 01[( i1r / I<)F(/3, k')]0o[( i1r / I<)F(/3, k')]2I< 
2K 0'1[O]0o[O]N1i1r 

(1.62) 

where 

k'2 = 1 - k2, 

I< = I<( k) and F(/3, k') are the complete and incomplete elliptic integrals of the 

first kind; 0o and 01 are the jacobian 0 functions (for details, see reference [23]). 1 

depends on a through the relation in eq. ( 1.25a). 
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Using eqs. (1.50), (1.52), (1.54), and (1.58)-(1.61), the off-shell four-tachyon 

amplitude in eq. (1.56) becomes the path integral on the upper half-plane: 

(1.63) 

where I: = I:j PJ, and C is defined in eq. (1.62). The ghost part of the correlation 

function in eq. (1.63) is exactly the same as in the case of the on-shell four-tachyon 

amplitude which is given in eq. (1.27). After the change of variable from T to a (see 

eq. (1.26)), we find 

(1.64) 

To convert eq. (1.64) into a more familiar form, we make a change of variable x = 

[(1 - a 2)/(1 + a 2)] 
2

. The integration regions for the different variables are 

TE(O,oo), aE(V2-l,0), :rE(l/2,1). 

The final expression for the s-channel off-shell four-tachyon amplitude is 

(1.65) 

wheres= -(Pi+ P2)2, t = -(P2+P3)2, I: = I:j P} and C(x) is defined in eq. (1.62). 

The t-channel contribution is obtained by permuting the states 1 ---+ 2 ---+ 3 -+ 4 ----+ 1 
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in As, 

(1.66) 

If PJ = 1, As+ At reduces to the Koba-Nielsen amplitude for four on-shell tachyons. 

In what follows we discuss the pole structure of the off-shell amplitude in the 

s-channel. In the appendix, C ( x) is expanded in power of E = 1 - x ( see ( A.17)), 

(4) 3

/

2

( 5 ) C(x)= 3 l-
32

(1-x)2 +-·· . 

The integrand in eq. (2.65) has the expression 

(
16)(~-

4
)/

2 -s-2{ ( ~) = - E 1+ t+- E 
27 2 

+ [1(t + 2)(t + 3) + ~ - 4) ({ + ~ + ~~)] t:
2 
}· (1.67) 

The logarithmically divergent terms in eq. (1.65) correspond to intermediate particle 

poles in the s-channel. Now the residues of the poles are 

(lc-4) 1 (16) 2 

A~----
3s-+-1-s - 1 27 ' (1.68a) 

1 (16)¥( 1) A~- - t+-~ 3
s-+O _s 27 2 ' (1.68b) 

1 (16) ¥ [1 (1 1 19)] As;::-1 l _ s 27 2(t + 2)(t + 3) + (~ - 4) 2t + S~ + 
32 

.(l.68c) 

Eqs. (l.68a)-(1.68c) agree with the results of reference [15], where the Neumann 

function method [14] is used to calculate the individual intermediate particle contri

butions to the s-channel four-tachyon amplitude. 



25 

1.4. The off-shell four-point amplitudes involving vector particles 

The method used in calculating the off-shell four-tachyon amplitude can be ap

plied to the off-shell four-point amplitudes concerning other higher mass level parti

cles. In this section, we consider the four-point amplitudes involving vector particles 

and tachyons; after this is done, the generalization to other cases should be clear. 

The extension of the on-shell vector particle vertex operator 

IS 

(1.69) 

where Vx, Vc, G(z',z';z,z) and Wz are defined in eqs. (1.35), (1.41), (1.53) and 

(1.39), and Vz is the covariant derivative (described, for example, in reference [24]). 

One can see immediately that V(z, z, P, e) is a world-sheet scalar. The off-shell wave 

functional for the vector particle can be defined by the path integral like that m 

eq. (1.55), 

A[X(o-),ef>(o-)] = lim lv(z,z,P,e) 
7"--->00 \ 

-il · P ((wz)-\3zr) Vc(z,z)Vx(z,z)) eP
2

r 
X(o-),¢(0-),r 

(1. 70) 

where V(z, z, P, l) is given in eq. (1.69). The second term in eq. (1.70) cancels the 

divergence in the first term. The parameter T is the invariant distance on the world

sheet from the boundary EF (see Fig. 5) to the point where the vertex operator is 

inserted, so (wz)- 18zT is reparametrization independent. Since the path integral in 

eq. (1. 70) is proportional to e-P
2

r at large T, the factor eP
2
r is introduced to make 

the wave functional well defined. The definition in eq. (1. 70) for the off-shell vector 

particle state is a natural extension of the on-shell state. 
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The two-vector particle two-tachyon amplitude (Fig. 7a) has the same string 

world-sheet diagram as the four-tachyon amplitude (see Fig. 6a ). So most of the 

calculations here are parallel to that of the four-tachyon amplitude. The amplitude 

under consideration has the same path integral representation as that in eq. (1.56), 

except the tachyon vertex operators V ( z1, 21) and V ( z2, 22) are replaced by vector 

particle vertex operators V(z1, 21, Pi, 6) and V(z2, 22, P2, 6) defined in eq. (1.69). 

It should be remembered that the vertex operators are on the world-sheet boundary 

where z = 2 and z' = 21
• From eqs. (1.39) and (1.53) we have 

and 

"VzEvz,R = (gz2)-½8z [(gzz)½Evz,R] 

= ozEvz,R + (wz)-1 (dwz )Evz,R, 
dz 

(1.71a) 

(1. 71b) 

Using the tachyon wave functional in eq. (1.55) and the vector particle wave func

tional in eq. (1.70), we find that the path integral representation of the two-tachyon 

two-vector particle amplitude with the diagram in Fig. 7 a is 

x [/ c~i V.(z)dw(z) + 2~i ½(z)dw(z)) j) ( 1,1 e<P}-l)r,) (\Vin) , 
(1.72) 
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where k = 1,2; j = 3,4, and 

: l · V zX(z, z)Vx(z, z) : = lim [l · V z,X(z', z')Vx(z, z) - il · PV z,G(z', z'; z, z)] . 
z'-+z 

The ghost part of A1a is exactly the same as that in the four-tachyon amplitude. 

Making use of eqs. (1.53) and (1.71), the amplitude is found to be 

(1.73) 

where 

B1 _ a (-1- + __ 2 _____ 1 __ -,,..---1----,--c-) 
- 2a2 a 2 - 1 / a 2 a 2 + 1 2 a 2 + 1 / 1 2 · 

The change of variable x = [(1 - a 2)/(1 + a 2)]
2 

gives 
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where 

s =-(Pi+ P2)2, t = -(P2 + P3)2, ~ = LPJ, 
J 

Bi_ a (-1- + __ 2 _____ 1 ____ 1_....,...) 
- 20:2 a2 - 1 / a2 a2 + ,2 a2 + 1 / ,2 ' 

and C(x) is given in eq. (1.62). 

The diagram in Fig. 7 g is identical to the diagram in Fig. 7 a, so the corresponding 

amplitudes should be equal. Following the same procedure as described previously, 

we find 

(1.75) 

where 

1 (a2 
2 1 1 ) 

B2 = a 2 + 1 / a2 - a2 - 1 / a2 + ,2 - 1 / a2 + 1 / ,2 . 
With the help of an identity 

it is not hard to show that A1a and A1g are equal as expected. 
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In the same manner, the amplitudes for diagrams in Figs. 7b and 7c are found 

to be 

(1.76) 

and 

(1. 77) 

where 

The amplitudes A7d, A1e, and A1J can be obtained from A1a, A7b, and A1c by switch

ing the labels 1 and 2. It is easily seen that the off-shell amplitudes A1a, ... , A1J are 

reduced to the corresponding on-shell amplitudes, when the conditions 

are imposed. 
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The calculation of the off-shell four-vector particle amplitude is straightforward. 

The method used in this section is also applicable to the off-shell amplitudes involving 

other states. 

1.5. The conformal field theory method 

In section 1.3 and 1.4, off-shell string amplitudes involving tachyons and vec

tor particles are calculated in a way which is explicitly independent of world-sheet 

parametrization. Now we briefly describe how to calculate off-shell amplitudes in 

Witten's bosonic string field theory by the conformal field theory method [25]. Al

though this method is not explicitly world-sheet reparametrization-independent, the 

final results agree with those obtained in previous sections. 

The prescription for conformal field theory calculation is the following. Instead 

of using eqs. (1.35), (1.41) and (1.50), we take vertex operators, 

Vx(w, w) =: eiP-X(w,w) :, 

Ve( w, w) =: ei¢(w,w) :, 

bww = ½(w) =: e-i¢+(w): 

(1. 78a) 

(1.78b) 

(1.78c) 

with conformal dimensions P 2 , -1 and 2, respectively. Choosing the natural coordi

nate system, with 2gww = 1, on the world-sheet [5, 8], we define the off-shell tachyon 

wave functional as that in eq. (1.55), but the vertex operators in there are replaced 

by those in eqs. (1.78a) and (1.78b). The path integral for the off-shell four-tachyon 

amplitude in s-channel is 

(! ( dw dw )) ) IT (P
2 

1),· -b +-b-- e 1 - 1 
27ri WW 21ri WW . • 

l J 

(1.79) 
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Then we make the conformal coordinate change in eq. (1.24) and note that 

dz P
2 

Vx(w,w) = ldw\ Vx(z,z), 

I 
dz 1-1 Vc(w, w) = dw Vc(z, z), 

(
dz )

2 

bww = dw bzz· (1.80) 

Inserting eq. (1.80) into eq. (1.79) and doing the calculation similar to that in sec

tion 1.3, we obtain the same result as that in eq. (1.65). 

For the vector particle, the vertex operator is 

V(w,w,P,e) = Vc(w,w) lim [e · "Vw 1X(w',w')Vx(w,w) 
w 1-+w 

= ¼(w,w): e · "VwX(w,w)Vx(w,w):, (1.81) 

where Vx( w, w) and ¼( w, w) are as defined in eq. (1.78). The vertex operator 

in eq. (1.81) has the conformal dimension P 2 . Analogous to eq. (1.70), the wave 

functional for off-shell vector particle is 

A[X(cr),¢(cr)] lim lv(w,w,P,e) 
1"--+CXJ \ 

-ie' P(OwT)Vc(w,w)Vx(w,w)) eP
2

-r 
X(a-),</>(o'),-r 

(1.82) 

where V( w, w, P, e), Ve( w, w) and Vx( w, w) are given in eqs. (1.81 ), (1. 78a) and 

(1.78b). The amplitude for the diagram in Fig. 7a has the same expression as 

eq. (1. 79) except two of the tachyon states are replaced by two vector particle states. 

Then performing calculations similar to what follows eqs. (1. 72) and (1. 79), we obtain 

the result in eq. (1.74). Other diagrams in Fig. 7 can be done similarly. 
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2. Supersymmetric String Field Theory 

2.1 Reformulation of the superstring field theory 

We begin by reviewing Witten's open superstring field theory [6] and some of the 

difficulties associated with it. We will then propose modifications that circumvent 

these problems. 

In Witten's theory, a superstring field A = ( <p, 7./J) contains a Neveu-Schwarz field 

<p and a Ramond field 7./J, where both <p and 7./J are functional of string coordinates 

Xµ(cr) and 7./Jµ(cr), conformal ghosts c(cr) and b(cr), and superconformal ghosts ,(er) 

and /3( er). Each of those fields corresponds to a set of harmonic oscillators: 

Xµ(cr): µ aµt - aµ an, n - -n, 

7./Jµ( (T) : d~, dµt - dµ · n - -n' or df, dµt - dµ r - -r' 

c(a): Cn, } -c . n - -n, b(a): bn, b! = b_n, 

,( (T) : in, ,t - , . n - -n, or ,r, ,) = 1-r' 

/3( a) : /3n, ;3t - /3 . n - - -n, or /3r, /3) = -/3-r, 

where n is an integer and r is a half-integer, and µ = 0, · • •, D - 1. D = 10 is the 

dimension of space-time. The oscillators satisfy the following ( anti- )commutation 

relations (26, 27, 28]. 

In the Neveu-Schwarz (NS) sector: 

[ 
µ V] µv C am, an = mr, vm+n,O, (2.la) 

(2.lb) 
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(2.lc) 

(2.ld) 

and other ( anti- )commutators are zero. Here m and n are integers, while r and s are 

half-integers. 'r/µv = ( -1, 1, ... 1) is the metric of ten-dimensional space-time. The 

BRST charge is 

(2.2) 

where MNS contains only conformal and superconformal ghost modes, and 

(2.3) 

where Ln and Gr are generators of super-Virasoro algebra. The BRST charge QNS 

is nilpotent, 

in ten-dimensional space-time. The conformal and superconformal ghost number 

operators are 

1 00 

Ne= 2(cobo - boco) + 2)c-nbn - b_ncn), 
n=l 

00 

Nsc = - L (,-s/3s + /3-s1s), 
s=l/2 

In the Ramond (R) sector: 

(2.4a) 

(2.4b) 

(2.5a) 

(2.5b) 
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(2.5c) 

(2.5d) 

and other ( anti- )commutators vanish. Both m and n are integers. The BRST charge 

is given by 

(2.6) 

In eq. (2.6) the dependence on conformal and superconformal ghost zero modes is 

made explicit. MR and J{ contain ghost modes only, and 

QR= L LnC-n + L Fn,-n, (2.7) 
n,i!:0 n,i!:0 

where Ln and Fn are generators of super-Virasoro algebra. We also have 

when D = 10. The ghost number operators in the R sector are 

1 00 

Ne= 2(cobo - boco) + L(c-nbn - b_ncn), (2.8a) 
n=l 

1 00 

Nsc = - 2("Yo/3 + /30,0) - Lh-n/3n + /3-n"Yn), (2.8b) 
n=l 

The conformal and superconformal ghost system can be bosonized [29], 
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b - -ip 
-e ' 

where a- and <p are two scalar fields having correlation functions 

(2.9) 

(2.10) 

(2.lla,b) 

on the world-sheet, and 'T/ and t are anticommuting. The conformal dimensions of 

the fields are 

'T/ 1 ' e o. (2.12) 

The ghost number currents are 

(2.13) 

So 'T/ and t have a ghost number zero. Then the picture-changing operator 

X = {Q,O (2.14a) 

and inverse picture-changing operator 

(2.14b) 

have a conformal dimension zero and ghost number + 1 and -1 respectively. Y is 

the inverse of X in the sense that 

(2.15) 

The simple extension of string field multiplication* in eqs. (1.9a)-(1.9d) to the 

superstring field theory now has ghost number anomalies 3/2 from the conformal 
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ghost and -1 from the superconformal ghost, whereas the extension of string state 

integration J has ghost number anomalies -3/2 and 1 respectively. The operators 

* and J for superstring fields ( we still use the same notation as in bosonic string 

field theory) satisfy the relations (1.9a)-(1.9d) if A, Band C there are interpreted as 

superstring fields. In order to have a desired ghost number counting, Witten defined 

the superstring multiplication and integration [6] as 

A1 *A2 = (</>1,¢1) * (</>2,¢2) 

= ( X ( <Pl * </>2) + ¢1 * ¢2, X ( <Pl * ¢2 + ¢1 * </>2)) (2.16) 

and 

(2.17) 

where X and Y are inserted at the middle point of the string and the integration 

of the Ramond field ¢ is zero. The operations * and J so defined also satisfy the 

superstring version of eqs. (1.9a)-(1.9d). Witten's gauge-invariant superstring action 

takes the form 

l=tf (A*QA+~A*A*A), 

where A = ( </>, 'ljJ) has ghost number ( -1 /2, 0). The gauge transformation is 

where A= (c,X) has ghost number (-3/2,-1). The supersymmetrycharge is 

Qa = j dcre-<fi/2 Sa, 

(2.18) 

(2.19) 

(2.20) 

where Sa is the spin field on the world-sheet [27]. The supersymmetry transformation 

of the string field is defined as 

(2.21) 

In reference [5], it was argued on general grounds that a linear transformation U 

like that in eq. (2.21) is a global symmetry of the action in eq. (2.18) if it has the 
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following three properties, 

f UA= 0, (2.22a) 

(2.22b) 

[Q,U] = 0. (2.22c) 

And the supersymmetry transformation in eq. (2.21) indeed satisfies eqs. (2.22a )

(2.22c), therefore it is a global symmetry. 

Using eqs. (2.15)-(2.17), one can find that the quadratic part of eq. (2.18) is 

I= J q> * QNS</> + J 1P * Y(1r/2)QR'lj; 

= (</>IQNS</>) + (1/;IY(1r/2)QR'lj;). 

The derived equations of motion have the standard form 

The gauge-fixing conditions were chosen as 

bo1/; = /301/; = 0. 

(2.23) 

(2.24) 

(2.25) 

Eqs. (2.24) and (2.25) determine the spectrum of physical excitations in the NS and 

R sectors [28]. It was shown in detail [6] that the linearized gauge-fixed action is 

(2.26) 

where 4>' and 1/;' contain no ghost zero modes. 
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The four-massless-particle amplitudes were calculated schematically in refer

ence [30]. More careful calculation [31] revealed that the four-boson amplitude is 

divergent, because the two picture-changing operators inserted on the world-sheet 

overlap. For the same reason the gauge invariance of the action in eq. (2.18) is also 

spoiled. To fix this problem, a four-point contact term is added to the action in 

eq. (2.18) as a counter term [31]. It makes the action gauge invariant to order g2 

of the coupling constant and, at the same time, cancels the divergence in the four

vector boson amplitude. Once a four-point contact term is introduced, higher-point 

contact terms are inevitable in order to ensure the gauge invariance of the action at 

higher orders of the coupling constant g. This will continue order by order. On the 

other hand, divergences are expected in higher-point amplitudes, and it is not clear 

that the same sort of cancellation occurs at higher orders, namely that the same 

counter term cancels the divergence in amplitudes and ensures gauge invariance of 

the action at each order simultaneously. 

Having the aforementioned difficulties, we are forced to look for an alternative 

formulation of open superstring field theory such that those problems can be by

passed. Moreover, just like the bosonic string field theory, string amplitudes should 

be derived from the gauge-fixed ERST-invariant action like that in section 2.1. But 

it is not clear how to proceed on gauge-fixing explicitly in the above formulation 

of superstring field theory. Finally, in the above formulation, no distinction has 

been made between conformal and superconformal ghosts in ghost number counting. 

Since the two ghost systems are independent, one would like the ghost numbers of 

the two different systems to be counted separately. Fortunately, all those problems 

can be solved very naturally in a modified theory [32]. The rest of this chapter is 

devoted to this purpose. 

Based on the discussion of bosonic string field theory in Chapter 1 and the ob

servation of picture-changing phenomenon [29], one naturally expects that a generic 

superstring field should contain all conformal and superconformal ghost numbers, 
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<P = L <Ps,n, (2.27) 
s,n 

where <Ps,n is a string field with the conformal ghost number s which takes half

integer values and the superconformal ghost number n which could be integers or 

half-integers. The component field <Ps,n is a Neveu-Schwarz (or Ramond) field, if n 

is an integer ( or half-integer). The physical states are contained in string fields of 

conformal ghost number -1 /2, namely 

<Pphysical <P -1/2 = L <P -1/2,n · (2.28) 
n 

String fields of other conformal ghost numbers are ghost and antighost fields. In a 

"canonical choice of picture," we identify <I> _ 1; 2,0 as physical NS fields and <I> _ 1; 2,1; 2 

as physical R fields. In the more familiar language, this corresponds to the F2-

picture. We also require that each individual superstring field <Ps,n is Grassmann

odd, consequently <I> is overall odd. All this will become clear as we get more explicit 

later. 

The integration and multiplication we will use for superstring fields are just 

the simple extensions of their bosonic string counterparts. The multiplication * has 

conformal and superconformal ghost number anomalies (3/2, -1) and the integration 

J has anomalies (-3/2, 1). Thus the product of two NS fields or two R fields is 

an NS field, and the product of an NS and an R field is an R field, as expected. 

One can show that * and J for superstring theory obey the superstring version of 

eqs. (1.9a )-(1.9d). The integration of an R field is zero by superconformal ghost 

number counting. Now we can write down an action for superstring field theory, 

I = i J ( <I> _1/2 * Q<l> _1/2 + ~<I> -1/2 * <l>-1/2 * <I> _1/2) , (2.29) 

where <I> _ 1; 2 is defined in eq. (2.28). Evidently, this action is invariant under the 
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gauge transformation, 

(2.30) 

where !1_3; 2 is Grassmann-even, and 

n-3/2 - L n-3/2,n · (2.31) 
n 

We do not need to worry about the possible associative anomaly in the multiplication 

*, as long as <I> _ 1; 2 and 0_3; 2 are open string Fock-space states, which are the states 

that will concern us in this paper. 

The supersymmetry transformation is now generated by the supersymmetry 

charge in eq. (2.20) without any inverse picture-changing operator insertion, 

(2.32) 

The supersymmetry charge Qa has ghost number (0, -1/2), so it interchanges NS 

states which have integer superconformal ghost numbers and R states which have 

half-integer superconformal ghost numbers. Following the argument given in refer

ence [.5], it is not difficult to show that 

(2.33a) 

(2.33b) 

(2.33c) 

It then follows that eq. (2.32) is a global symmetry of the action in eq. (2.29). The 

perturbative vacuum is described by <I> _ 1; 2 = 0, which is obviously invariant under 

eq. (2.32). 
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2.2. Equations of motion and physical states 

Since the new superstring action ( eq. (2.29)) has the gauge invariance ( eq. (2.30) ), 

in order to derive the equations of motion that define physical states and perform 

the perturbative calculation of string amplitudes, we must fix the gauge. 

As far as conformal ghost zero modes co and bo are concerned, the BRST charges 

QNS and QR in eqs. (2.2) and (2.6) have the same structure as the bosonic case in 

eq. (1.3). Following the same argument used in bosonic string field theory, we see 

that 

bo<l>-1;2 = 0 (2.34) 

fixes the gauge for the linearized version of eq. (2.29) completely. From eq. (2.20), 

we have 

(2.35) 

where Qa is the generator of the supersymmetry transformation in eq. (2.32). It 

follows that the gauge-fixing condition in eq. (2.34) is supersymmetry-covariant. 

Now we will study the linearized equations of motion more carefully to see that 

they give rise to the correct physical state spectrum in the NS and R sectors. As in 

eq. (2.28), the physical superstring field is the sum of the NS and R fields, 

cp -1/2 = <l>Ns + <PR - L <l> _1/2,n + <l>-1/2,n · (2.36) 
n=integer n=half-integer 

We can write the linearized equations of motion separately, 

(2.37a, b) 

for the NS sector, and 

(2.38a, b) 

for the R sector. In addition, the string fields in the NS sector are required to be 
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invariant under the generalized G-parity projection [27, 33], 

(2.39) 

where Nd = I:~1;2 d_r · dr, and Nsc is defined in eq. (2.4b). The string fields in 

the R sector are also required to be invariant under the generalized Weyl-projection 

[27, 33], 

(2.40) 

where Na= I:~=l d_n · dn, and Nsc is defined in eq. (2.8b). 

In order to expand the physical string field into component fields, we must find 

the Fock-space vacuum state in the NS sector. To do so, we first define vacuum 

states for each set of oscillators in eq. (2.1). Because the conformal (anti-)ghost has 

zero modes, there are two vacuum states in its Fock-space [18], which satisfy 

(2.41) 

and have ghost number 

(2.42) 

Following the Z2-grading for string field in reference [5], l+)c is Grassmann-even, 

and 1-) c is odd. The vacuum state for the superconformal ( anti-)ghost is defined as 

1s IO)sc = /3s IO)sc = 0, S > 0 (2.43) 

with ghost number 

IO)sc : Nsc = 0. (2.44) 

We require IO) sc to be Grassmann-even. The harmonic oscillators for bosonic string 
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coordinates have, as usual, the vacuum state 

(2.45) 

where IO) a is Grassmann-even. The vacuum state for fermionic coordinates is defined 

by 

d~ JO)d = 0, s > 0. (2.46) 

We require JO) d to be Grassmann-odd. 

Then the Fock-space vacuum state in the NS sector is 

(2.4 7) 

so IO)Ns is Grassmann-even with ghost number 

(2.48) 

The physical string field that satisfies eq. (2.37b) and the projection condition 

in eq. (2.39) now has the component expansion, 

(2.49) 

where Aµ is a massless spin 1 field, Aµ, Aµ, 11 , Aµv>. are massive physical modes, and 

Nµ is an auxiliary field. The vector field Aµ is even, since JO)Ns is even, and <I> _ 1; 2,0 

is odd. Similarly, the higher mass level component fields in eq. (2.49) all have correct 

statistics. 
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The vacua for conformal ( anti- )ghost and bosonic coordinate oscillators in the 

R sector are exactly the same as those in the NS sector, eqs. (2.41) and (2.45). 

Since the superconformal ( anti- )ghosts have zero modes, the vacuum states are more 

complicated here; they are 

/Jo l+)sc = /Jn l+)sc = 1n l+)sc = 0, n > 0, 

(2.50) 

with ghost number 

I+) Nsc = 1/2, 

1-) Nsc = -1/2, (2.51) 

and both are taken to be Grassmann-even. 

The zero modes of fermionic coordinates have the same algebra as that of the 

ten-dimensional ,-matrices, eq. (2.5b ), so the vacua have spinor structure. In ten

dimensional space, there are two independent Majorana-Weyl spinors of opposite 

chiralities. Then we have 

(2.52) 

(2.53) 

where the spinor indices are implicit. Following reference [34], we adopt the conven

tion that ISL) is Grassmann-odd, and ISR) is even. Now we can define Fock-space 
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vacuum states in the R sector, 

(2.54a) 

(2.54b) 

with ghost numbers 

(2.55a) 

(2.55b) 

It also follows that ISL)R is Grassmann-even, consequently ISR)R is Grassmann-odd. 

The physical string field that satisfies eq. (2.38b) and the projection condition 

in eq. (2.40) can be expanded as 

(2.56) 

where 'ljJ(x) is a massless left-handed spin 1/2 field, '/Pi(x) is a massive left-handed 

spin 3/2 field, 'ljJt(x) is a massive right-handed spin 3/2 field, and L(x) is an aux

iliary field. All the spinor indices are implicit in eq. (2.56). Because <I> _ 1; 2,1; 2 is 

Grassmann-odd, the three fields 'ljJ(x), '/Pi(x), and 'ljJf(x), as well as higher mass level 

fields including auxiliary fields in expansion (2.56) are all Grassmann-odd, therefore, 

they have correct statistics. 
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The equations for physical string fields in (2.37) and (2.38) are 

(2.57a, b) 

and 

QR<P _1/2,1/2 = 0, bo<P _1/2,1/2 = 0 • (2.58a, b) 

We can expand the string field in NS sector as 

(2.59) 

where </>NS has ghost number (0, 0). Plugging eq. (2.59) into eq. (2.57a), we obtain 

(2.60a, b, c) 

which determine the spectrum of physical excitations in the NS sector contained in 

</>NS [30]. For the R sector the expansion is 

<P _1;2,1;2 = Jw) + Jw), (2.61) 

where 

(2.62a, b) 

and 

(2.63a, b) 
n n 

In eq. (2.63), W~) and W~) have ghost number (0, 0), and all other component fields 

have nonzero ghost numbers. Therefore the physical excitations in the R sector 
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should have the form 

(2.64) 

Inserting eqs. (2.61)-(2.64) into eq. (2.58b), we have 

(2.65) 

where 

Equations in (2.65) are the conditions satisfied by the physical excitations in the R 

sector [28]. 

From the previous discussions we see that the generalized GSO projections (see 

eqs. (2.39) and (2.40)) not only lead to the same number of physical states at each 

mass level in the NS and R sectors, they also ensure that each field has the correct 

statistics. So far we have only discussed superstring field theory at the classical level. 

Just like in bosonic string field theory [8, 11-13], it would suffice to use classical 

superstring field if we only want to calculate superstring amplitudes perturbatively. 

We will do some explicit calculations in section 2.4. However, the superstring field 

theory in eq. (2.29) can be second quantized in very much the same way as that of 

bosonic string field theory, which will be the subject of the next section. 

2.3. Gauge-fixing and second quantization 

Witten's original superstring field theory has been formally second quantized 

[35] under the assumption that superstring multiplication is well defined and the 

action is gauge invariant. Since the modified theory in eq. (2.29) satisfies these 

two conditions, the procedure in [35] is actually applicable here. In what follows, 

however, an approach parallel to that of section 2.1 will be taken. We observe first 

that the physical superstring field in eq. (2.28) is formally similar to the physical 
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string field <l> _1; 2 of bosonic string theory ( the same notation is used for both cases) 

except the field content is different. Furthermore the superstring action (eq. (2.29)), 

gauge transformation (eq. (2.30)) and gauge-fixing condition (eq. (2.34)) all have 

corresponding similarities to their counter part in bosonic string field theory ( see 

section 2.1). We can just borrow the relevant formulae from there. We introduce 

ghost superstring fields 

(2.66) 

as well as antighost superstring fields 

(2.67) 

where each field has conformal ghost number as indicated and all superconformal 

ghost numbers, namely, 

<Ps = L <1>s,n for 
3 5 1 3 

s - -- -- ... - - ... 
- 2' 2' '2'2' . (2.68) 

n 

All of the string field is required to be Grassmann-odd. The succession of ghost 

and antighost string fields are necessary for complete gauge fixing [15, 19]. As has 

already been done in eq. (2.27) we can use a more compact notation 

s 

where <l>s is defined in eq. (2.68). 

We can adopt a procedure similar to that of the bosonic string field theory and 

find the gauge-fixed ERST-invariant action 

(2.69) 

where B is a Lagrange multiplier enforcing the gauge condition 

bo<l> = 0, (2.70) 

and B has all conformal and superconformal ghost numbers. The equations of motion 
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from eq. (2.69) is 

Q<I> + <I> * <I> - boB = 0 , (2.71) 

which have the same form as the equation for the bosonic open string field theory. 

The BRST transformation that leaves gauge-fixed action ( eq. (2.69)) invariant is 

found to be 

which is also nilpotent 

8<1>+ = (boB)+ , 

8<I>_ = ( Q<I> + <I> *<I>+ boB)_, 

8B =0, 

by iterating eq. (2.72) and using the equation of motion (2.71). 

2.4. The Feynman rules and string amplitudes 

(2. 72) 

(2. 73) 

In this section we will find the propagators for NS and R states and interaction 

vertices from the gauge-fixed action obtained in section 2.3. In principle, all the 

string amplitudes can thus be calculated perturbatively in string field theory. Four

point amplitudes for massless states are worked out as examples. 

The kinetic term in the gauge-fixed action (eq. (2.69)) is 

(2.74) 

After imposing the gauge-fixing condition ( eq. (2. 70) ), we have 

(2. 75) 
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Eqs. (2.2) and (2.6) imply 

From eqs. (2.75) and (2.76), we can derive the gauge-fixed form of eq. (2.74), 

IK = j[if>Ns * co(Lo -1/2)if>Ns + if>R * coLoif>R]-

(2.76) 

(2. 77) 

The propagators are just the inverse of kinetic operators co(Lo - 1/2) and coLo 

when acting on states (eq. (2.75)). They are easily found to be 

for NS states and 

00 

TNs = bo 
1 

= bo j dTe-r(Lo-I/ 2) 
Lo - 1/2 

0 

00 

TR= bo2_ = bo j dTe-rLo 
Lo 

0 

(2. 78) 

(2.79) 

for R states. Analogous to the bosonic string field theory, the propagators TNs and 

TR have representations as a path integral on a strip of length T with b0 as a line 

integral across the strip. Then the parameter T is integrated from O to CXl at the end. 

The three-string interaction vertex in the action ( eq. (2.69)) is 

(2.80) 

Like bosonic string field theory [5, 8, 11], an external physical state in superstring 

field theory is a path integral on a semi-infinite strip with the appropriate vertex 

operator inserted at infinity, 

J DXD'ljJDpD~Dr;D<p e-(Sx+S,i,+Sp+5e-ri+5¢)V, (2.81) 

where X(a), • · ·, <f;(a) are the boundary conditions for the corresponding fields on 

EF in Fig. 5. The string field for an external state must satisfies eq. (2.37) or (2.38). 
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Because the BRST current is conserved on the string world-sheet, a string field of 

the form (eq. (2.81)) is a solution of eq. (2.37) or (2.38) if the vertex operator V 

anticommutes with the BRST charge, 

{Q, V} = 0. (2.82) 

In the following, we will find the solutions of eqs. (2.37) and (2.38) that represent 

various physical string states. The string field A:_
112

,0 which represent a massless 

vector particle in the NS sector is 

(2.83) 

with l · P = 0, P 2 = 0. Since 

we find that A~1; 2 ,0 satisfies the equations for physical string fields, 

(2.84) 

The string field A~ 1; 2 ,0 is in the F2-picture in the usual language. Up until now we 

have not made any use of the picture-changing operator [29]. In our formulation, 

the effect of picture change is that for a given string state there is a multitude of 

string fields with different superconformal ghost numbers; they are the solutions of 

the eqs. (2.37) or (2.38) and correspond to this same string state. For example, 
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A:_
112

,
0 

in eq. (2.83) is a representation of vector particle state, we also have 

(2.85) 

with (. P = P 2 = 0, as a solution of equations 

(2.86) 

where 

The string field A:_
112

,1 is another representation of the vector particle state in a 

different picture. 

Similarly, the string field that represents the massless fermion in the R sector is 

X ( uo: (P)cw e-<f>(w)/2 SLo:( w )e2iP-X(w)) 

with P • 1u(P) = P 2 = 0, which is a solution of equations, 

(2.87) 

(2.88) 

In the NS and R sectors, for each physical state, we can find the corresponding 

string fields as the solutions of eq. (2.37) or (2.38) with various superconformal 

ghost numbers (namely, in different pictures). It should be noticed, as is clear from 

the discussion thus far, that the picture-changing effect in reference [29] is actually 

achieved in the superstring field theory described here by the solutions, with various 

superconformal ghost numbers, to the equations for physical string fields. 



53 

Taking into account ghost number conservations, especially superconformal ghost 

number conservation, we find, from eqs. (2.80), (2.83), (2.85) and (2.87), the three

vector particle vertex and the two-fermion one-vector particle vertex to be 

(2.89a) 

and 

3 j <I>Ns * <I> R * <I> R = 3 j A~1/2,o * A~1/2,1;2 * A~1/2,1;2· (2.89b) 

The three-string vertex has the world-sheet diagram sketched in Fig. 8a. The cal

culation is nearly the same as the bosonic theory. Inserting eqs. (2.83), (2.85) and 

(2.87) into eqs. (2.89a) and (2.89b), then followed by a conformal coordinate change, 

to the upper half-plane as shown in Fig. 8b, we obtain the three-vector particle vertex 

and two-fermion one-vector particle vertex 

which agree with the results in reference [36]. 

The Feynman rules for superstring field theory are similar to the bosonic case 

[5, 7, 15, 16]. In superstring field theory, however, the interaction vertex has con

formal and superconformal ghost number anomalies (3/2,-1), and the NS and R 

propagators both have ghost numbers (-1, 0). In a Feynman diagram one must 

choose external states such that the total ghost numbers of the diagram are zero. 

For instance, to calculate the four-vector particle amplitude in superstring field the

ory, we choose four NS states that represent massless vector particles: A_ 1; 2,1 (1 ), 
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A-1/2,0(2), A-1/2,0(3), and A-1/2,1 ( 4) as given in eqs. (2.83) and (2.85). Two of the 

Feynman diagrams are shown in Figs. 9a and 9b, there the dashed lines represent 

external NS states or propagators, while the solid lines represent external R states 

or propagators. In Figs. 9a and 9b the total conformal and superconformal ghost 

numbers from propagators, interaction vertices and external states add up to zero. 

Since external states and propagators are represented by strips, the superstring field 

theory diagrams have the same world-sheet geometry as the diagrams in the bosonic 

string field theory, the calculations are almost parallel to the bosonic case. The di

agrams in Figs. 9a and 9b each contribute to half of the Koba-Nielsen integration 

range with the same integrand. Their sum is 

(2.90) 

wheres = (p1 + pz)2, t = (p2 + p3)2 and J{ is the kinetic factor. The amplitude agrees 

with the result in reference [36]. In the above calculation we have set a' = 2. Since 

no picture-changing operator has been inserted in the interaction vertex, tree-level 

amplitudes are finite in this modified theory, therefore contact terms are no longer 

needed. 

The four-fermion amplitude can be calculated in a similar fashion. We take four 

R states that correspond to the massless spin 1/2 fermion as is given in eq. (2.87). 

Two of the Feynman diagrams are shown in Figs. 10a and 10b. The sum of the two 

diagrams gives 

where correlation functions of spin fields derived in reference [37] have been used. 

Finally, we consider two-fermion two-boson amplitudes. The four external states 

are A-1/2,1;2(1), A-1/2,1;2(2), A-1/2,0(3), and A-1/2,1(4). Four of the diagrams are 

shown in Fig. lla-Fig. 12b. The contributions of Figs. lla and llb are added up to 
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give 

(2.92) 

Similarly, the sum of diagrams in Figs. 12a and 12b is 

(2.93) 

We have seen, from the explicit calculations, that all the massless four-particle 

amplitudes obtained from the modified open superstring field theory coincide with 

the previously known results [36]. Along the same line, it is straightforward to 

compute other tree amplitudes of the theory. It is still remained to be checked by 

explicit calculations, however, that whether the loop amplitudes come out correctly. 
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3. Cubic Actions for Open Strings 

3.1 Cubic action for bosonic strings 

In Witten's bosonic string action ( eq. (1.10)) there is a background dependence 

since the BRST charge depends on background fields. A theory intended for a com

plete description of a physical process must include the dynamics of the background 

as well. The attempt to eliminate explicit background dependence of Witten's open 

bosonic string field theory has led to the discovery of purely cubic action [38] 

(3.1) 

where the notation is as in Chapter 1. The field A with ghost number -1/2 1s 

Grassmann-odd. The action is invariant under gauge transformation 

where 

A'= u-1 * A* U 

A 1 
U = e =I+ A+ -A* A+···. 

2 

(3.2) 

(3.3) 

The fields U and A are Grassmann-even and have ghost number -3/2. The identity 

J in eq. (3.3) is a string field satisfying 

(3.4a) 

QI= 0. (3.4b) 

The field I has a path integral representation, in the sense of section 1.3, on the 

world-sheet shown in Fig. 2 without any vertex insertion. For an infinitesimal A, 
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eq. (3.2) has the form 

8A = A' - A = A* A - A * A. (3.5) 

The equation of motion from the action (eq. (3.1)) is 

(3.6) 

For any solution A, an operator DA can be defined by 

(3.7) 

where (-)B = -1 if Bis odd and +1 if it is even. Then it follows from eqs. (1.9b), 

(3.6) and (3. 7) that 

(D A)2 = 0, 

J DAB= 0 VB, 

D A(A * B) = (D AA)* B +(-)AA* (DAB). (3.8) 

To make a connection between the action in eqs. (3.1) and (1.10) we will first find a 

special solution of eq. (3.6). Let us consider the decomposition 

where 

are the BRST current iw integrated over the left- and right-half of the string. 
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Eq. (3.4b) then implies 

(3.9) 

From the operator product Jz]w of the BRST current, it can be checked that 

{Q,jw}=O, (3.10a) 

therefore 

{Q, QL} = 0. (3.1Gb) 

By the definition of the multiplication * (see Fig. 1) and the conservation of the 

BRST current on the string world-sheet, we can derive 

(3.11) 

as the consequence of the fact that the integral of the BRST current around a closed 

curve vanishes. 

From eqs. (3.9) and (3.11), we obtain 

and 

which implies 

(3.12) 

Eq. (3.12) simply says that QLI is a solution of eq. (3.6). Using eqs. (3.9) and (3.11) 
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again, we have 

(3.13) 

Now we can expand around the classical solution 

and insert it into eq. (3.1), the result is 

(3.14) 

where the eq. (3.13) has been used. The gauge invariances in eqs. (3.5) and (3.2) 

become 

8A =QA+ A* A - A* A , 

A' = u-1 * QU + u-1 * A * U 

So we have derived the Chern-Simon-type action (see eq. (1.10)) from the cubic 

action of bosonic strings. The action in eq. (3.1) was also taken as a starting point 

to discuss the closed string states in bosonic open string field theory [39]. 

3.2 Cubic action for superstrings 

The extension of the cubic action to superstring theory were made in refer

ence [40] based on Witten's original formulation of the open superstring theory. As 

the superstring multiplication was not well defined [31] in its original form, neither 

was the superstring cubic action. However, a well-defined superstring cubic action 
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[41] can be constructed in the modified open superstring field theory [32]. The 

superstring cubic action is 

(3.15) 

where the notation of section 2.1 is used. The identity i of the superstring field 

theory is simply a generalization of the bosonic case, 

j * <I> = <I> * j = <I> V<I>' (3.16a) 

(3.16b) 

Since i has conformal ghost number -3/2 and superconformal ghost number 1, it is 

a NS field. The gauge invariance of the action ( eq. (3.15)) is 

(3.17a) 

with 

A 1 
u = 1 + n_312 + 2n_3;2 * n_3;2 + · · · . (3.17b) 

If !1_3; 2 is infinitesimal, eq. (3.17a) reduces to 

o<I> _1;2 = <I>~1;2 - <I> _1;2 = <I> _1;2 * n-3/2 - n_3;2 * <I> _1;2 . (3.18) 

In addition to gauge invariance the action is invariant under supersymmetry trans

formation 

(3.19) 

with the supersymmetry charge Qa given in eq. (2.20). The equation of motion is 

<I>-1/2 * <I> _1/2 = 0. (3.20) 

For any solution <T> _ 1/ 2 we can define a superstring operation 

A if> A 

D ~ <I> <I> -1/2 * <I> - ( - ) <I> * <I> -1/2 
-1/2 

(3.21) 

where (-)if> = -1 (or +1) if <I> is odd (or even), The relations (3.8), (3.10), (3.11) 
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and (3.12) as well as their derivations can all be generalized to superstring theory. 

So we have 

(D"' )2 = 0, 
"'-1/2 

J Dfi, <T> = 0 V<T>, 
-1/2 

D:.. (<T>*<T>')=(D:.. <T>)*<T>'+(-)q,<T>*(D:.. <T>'), (3.22) 
"'1/2 "'-1/2 "'-1/2 

{ Q, QL} = 0, (3.23) 

and 

In eq. (3.25), Qrs f is an NS field and a solution of eq. (3.20). From eq. (3.24) it 

follows that 

(3.26) 

The expansion 

A ~ NS A ~ 
<T> _1/2 = <T> _1/2 + <T>-1/2 = Q1 I+ <T> -1/2 (3.27) 

then gives 

(3.28) 

with gauge invariance 

(3.39a) 
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<I>~1;2 = u-1 * QU + u-1 * <I> _112 * u. (3.29b) 

From the operator product ja(z)jBRST(w) of supersymmetry charge current ja(z) 

and BRST charge current jBRST(w) it can be checked that 

[Qa, jBRST(w)) = 0, (3.30a) 

and consequently 

(3.30b) 

Since the supersymmetry charge current is conserved on world-sheet [6, 29), we have 

(3.31) 

Eqs. (3.30b) and (3.31) imply 

(3.32) 

which means that the background Qrs J is invariant under supersymmetry transfor

mation (eq. (3.19)). From eqs. (3.32), (3.19) and (3.27) we obtain 

(3.33) 

as a global symmetry of the action (3.28). 

It is clear, by comparing eqs. (3.28), (3.29) and (3.33) with eqs. (2.29), (2.30) 

and (2.32), that we have derived the results of section 2.1 from our cubic action 

in eq. (3.15) by expanding around the background field Qrs i. Further progress in 

understanding open string field theory can be made by exploiting the cubic action 

in eqs. (3.1) and (3.15). For example, it would be important to find and classify 

other nontrivial solutions of eqs. (3.6) and (3.20), and study the closed string states 

in eq. (3.15). It would be very interesting to find out how far this can lead us. 
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Appendix 

In this appendix we give a brief derivation of eqs. (1.61b) and (1.62). All the 

formulae involving elliptic integrals can be found in reference [23]. 

Bw1 in Fig. 6a corresponds to Bz1, in Fig. 6b. Using eqs. (1.52b) and (1.57), we 

have the integral 

Z1 _ J Jz2 + 1 2Jz2 + 1/,2 
T1 - N dz ( 2 2) ( 2 / 2 ) z-a z-la 

0 

( 
a2 l/a2 ) ] 

a 2 - z 2 1 / a 2 - z 2 
(A.1) 

where 

To evaluate eq. (A.1), we first work out the following integrals from the tables in 

reference [23]. 
Z1 

I - J dz - F(/3 k') 1 
- J 2 2J 2 1/ 2 - 1 ' ' z +, z + 1 

0 

(A.2) 

where tan/3 = zi/1 , k'2 = 1- k2 , k = 1 2 . 
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(
F( ·,1, k)A (/3 k) _ iK l 01(v + iw) ) ] 

X i'f', O 2, n 0 ( + . ) 
7r 1 -v iw 

where 

z = -i,t' 

K = K(k), v = 
2
;{F(irp, k), w = 2;{F(f32, k'). 

We have two identities 

F(irp, k) = iF(/3, k'), 

2 2 
Ao(/31, k) + Ao(/32, k) = 1 + -(1 - k )KN1, 

7r 

and a constraint from eq. (1.25a) 

where 

1 
Ao(/31, k) - Ao(/32, k) = 2, 

. f3 1 
Sln 1 = ( 2 2)1/2' l+a, 

. f3 (Y 

sm 2 = (a2 + ,2)1/2' tan f3 = sinh <p = zi/1. 

Using the identities and the constraint, h can be rewritten as 

,N1 l 01 [~(F(/32, k') + F(/3, k'))] 
+-2- n 01 (;j<(F(/32, k') - F(/3, k'))]. 

(A.3) 

(A.4) 
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,N1 l 0o [*(F(fi2, k') - F(fi, k'))] 
+-2- n 0o [*(F(fi2, k') + F(fi, k'))] . 

From eqs. (A.1)-(A.5) we have 

-N [1 + (a2 +,2)(0:2 + 1/,2)(J -I)] 
TI - 1 l 4 2 3 -a 

= _.!!_F((./ k') 2I< /J, 

(A.5) 

ln { 01 [*(F(fi2, k') + F(fi, k'))] . 0o [*(F(fi2, k') + F(fi, k'))] } . (A.6) 
+ 01 [;j((F(fi2, k') - F(fi, k'))] 0o [;1(F(fi2, k') - F(fi, k'))] 

The limit z1 --+ a implies fi --+ fi2, and 

(A.7) 

Inserting eq. (A.7) into eq. (A.6), we obtain 

= _.!!_F((./ k') + l 01 [(1k)F(fi, k')] 0o [(1k)F(fi, k')] 2aI< - l ( _ ) (AS) 
TI 2K /J, n 0o[O]0'1[O]i7r N1 n a zi ' · 

Comparison of eq. (A.8) with eqs. (1.59) and (1.61a) then yields 

(A.9) 
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and 

(A.10) 

where 

C is a function of a only, since , depends on a through the constraint ( eq. ( 4a)). 

In the same way, 

00 

Changing the variable z-+ 1/z and then comparing with eqs. (A.l) and (A.9), we 

have, in the limit z4-+ 1/a, 

(A.11) 

This actually implies 

and 

(A.12) 

In the remainder of this appendix, we evaluate C in the limit a -+ 0. After 
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changing variable z = 1t and expanding to order k2 , eq. (A.I) becomes 

(A.13) 

where p = z/1 , PI = zi/1 , N2 = (1/2 + p2)p2 k2. Eq. (A.13) can be evaluated to give 

+ ln(2 + 2p2) - (1/2 + p2)p2 k 2
. (A.14) 

The constraint (eq. (1.25a)) is actually an integral (see reference [8]), 

Z"( 

! . _ J Jz2 +,2Jz2 + 1/,2 
1ri - N dz ( 2 2)( 2 / 2) . 2 z-o: z-lo: 

(A.15) 

0 

We change the variable by z = i,t and evaluate the integral in eq. (A.15) to order 

k 2 , then the result is 

1 2 [ 1 1 2 2 2 1/2 1 ] - = N,p --N3 - -(1 + N3p ) + (1 + N3p )(1 + p ) -
2 4 2 2p ' 

(A.16) 

where N3 = (1/2 + p2)k2. Substituting p = po(l + r,k2) into eq. (A.16), the k0 and 

k2 terms yield 

Inserting 

and 

1 
po= J3" and 

2 2 4 1 - x = 4o: = 4p k c::: -k 
3 
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into eq. (A.14), we obtain 

ln C = - ln - - -( 1 - x) + • • • 3 (4) 5 2 

2 3 32 ' 

(4) 3/

2 

[ 5 2 ] C(x) = 3 1 -
32 

(1 - x) + · · · . (A.17) 
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