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ABSTRACT

We study here some models of quantum gravity. In Euclidean quantum gravity,
some of the possible consequences of including topology changes in the path integral
are studied in the semiclassical approximation. The effects of wormhole interactions
on the semiclassical sum are considered. The effects of wormholes in the Yang-
Mills-Einstein system on the phase structure of these theories is discussed. Also, we
perform the computation of some partition and correlation functions in conformal
gauge, in a two dimensional model of quantum gravity, i.e., the sub-critical Polyakov

string.
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Introduction

One of the deep problems in physics today is the formulation of a quantum theory
of gravity. Gravity is well described at the classical level by Einstein’s General Theory
of Relativity . In this theory, the dynamical quantity is the metric of space-time g,

and the dynamics is to be derived from the Hilbert action:

/ \/— [_E—é R + A + Smatter

where G is Newton’s constant, A is the cosmological constant, and R is the curvature

scalar.

Quantum versions of this theory are unsatisfactory. The theory is perturbatively
non-renormalizable. Additional terms involving the curvature tensor, resummation
procedures, enlargement of the symmetry group of the action — none of these pre-
scriptions improves the behavior of the theory [1]. It appears that complete theory
takes us far beyond Einstein gravity. However, as far as low energy phenomena are
concerned, the Einstein-Hilbert action defines an effective quantum theory with a
cut-off at the scale set by G=Y2 ~ Mpjyner = 1012GeV. Perturbative quantum cor-
rections to classical gravity become important at this energy scale. This energy scale
was probably directly relevant to our universe only during the initial instant of the

Big Bang.

The clues that nature yields, if any, then are very subtle. One may be that the
cosmological constant is very small in natural units. A theory of everything such as
superstring theory may mesh the description of gravity with that of everyday matter,

and then a fact requiring explanation is the very small masses of everyday particles

on the Planck scale.

We, therefore, study Einstein gravity as an effective theory. We search non-
perturbative consequences that might carry over to the correct theory, and may

perhaps lead to observable consequences.



We study the Euclidean path integral version of gravity [2]. We compute quan-
tum mechanical amplitudes for transitions between states of the universe. These are
functionals of the 3-geometries of the 3-manifolds. The path integral is to be com-
puted by summing over all 4-manifolds that have these 3-geometries as boundaries.
We may have any number of disconnected 3-geometries in the amplitude, meaning
that we may create and annihilate universes. When we have more than two com-
ponents in the boundary, the corresponding amplitudes are for transitions between
varying numbers of initial and final universes. This is what we mean by topology
change. (Nobody, so far, has proved either the necessity or the inconsistency of
topology change.) We choose the Euclidean version of the path integral over the
Minkowskian because naively the convergence of the path integral is improved and
we can do an expansion around stationary points of the action. (This hope is not
justified [2]. The Einstein action is unbounded from below. Given any metric on a
manifold with a certain action, we can obtain a metric conformal to it with a lower
action. This is usually dealt with by complexifying the conformal factor (in some
gauge) and rotating the contour of integration [2,3]. There is no natural prescription

for this and this is one of the weaknesses of the formalism.)

How to interpret what we compute is another problem. Rotation of a Euclidean
space to a Minkowskian space may not be possible. We, however, interpret Euclidean
amplitudes computed between asymptotically large and smooth spaces as quantum
tunnelling amplitudes for classically forbidden processes in Minkowskian space-time.

The question then is :

(i) are there stationary points of the action that correspond to topology changes?

(Stationary points correspond to classical solutions.)
(ii) is there a consistent semi-classical expansion about these critical points?

The answer to (i) is yes. Einstein gravity by itself does not have any such
stationary points. However in a cut-off theory we may place a constraint on the
size of features in the solution, and there are indeed constrained “wormholes” [3].

Secondly, such solutions arise in theories of gravity with the correct matter content:



axion fields, scalar fields, Yang-Mills fields, etc. These solutions typically have a
length scale governed by the Planck scale.

The answer to (ii) is that the problem of the conformal factor makes this non-
trivial. If there exists a suitable deformation of the contour of integration of the

conformal factor, then the answer is yes.

There are then non-zero amplitudes for a single universe to evolve into a multi-

verse through quantum tunnelling. What might the consequences of these be?[4]

An observer who went from universe one to universe two would not be able to
observe disconnected 3-geometries and hence would have to average his amplitudes
over the unobservable geometries. Thus a pure state would evolve into a mixed state

and quantum coherence would be lost.

The resolution of this problem [5] lies in the realization that the states with
definite number of baby universes attached are not the correct basis elements to
work with. Just as Q.C.D. is in a 8 vacuum that is a superposition of eigenstates of
instanton number, and no local operator can change the value of 8, so the universe
is in a superposition of baby universe number eigenstates and is characterized by
a number of vacuum angles, one for each kind of wormhole. Local operators are
diagonal in this basis. As far as the low energy physics is concerned, the attachment
of the baby universe is a point event and will be summarized by a local operator
(like vertex operators in string theory). This operator will carry the same quantum
numbers as the baby universe. Since closed universes can carry no gauge charges,
or energy or momentum, or angular momentum, our vertex operators will be gauge
invariant Lorentz scalars, and will generically break all ungauged symmetries. Each
operator is multiplied by a coefficient that reflects the cost in action of making the
corresponding baby universe, and the vacuum angle, which is seemingly completely
arbitrary. This means that we can no longer predict the fundamental constants as
they appear in the effective low energy Lagrangian! Large wormholes that would
be suppressed by their large actions, to be as relevant as small ones, because of

multiplication by a large vacuum angle. This problem of large wormholes is still



unresolved.

Now the fundamental couplings have become random variables, determined by
the initial conditions at the Big Bang and by the collapse of the wave-function
of the universe. Our best hope is that, for some reason, the wave function is very
sharply peaked about some values of the vacuum angles and in a way that is not very
sensitive to initial conditions. (Just as in a system with a mostly shallow potential
and a deep well, one would expect most states to have a maximum amplitude in
the well.) Let us try to compute the dependence of the partition function on the
couplings. First, integrate out all the matter degrees of freedom up to some low
energy scale. We are left with an effective Lagrangian for gravity alone. This will look
like the Einstein action up to terms suppressed by the cutoff (Planck) scale with the
cosmological constant and gravitational constant being some complicated functions
of the bare coupling constants and the vacuum angles induced by wormholes. Now
we try to extremize this low energy action. For A > 0, this is extremized by large
four spheres, with action ~ G~2A~1. Coleman [6] actually shows that what appears
is the exponential of the exponential of this quantity so that the amplitude is very
sharply peaked at A = 0,G — 0. One can argue, following Wise, Grinstein and
Preskill [7], that if one tries to regulate this very divergent function, that one would
find A = 0 and G at the minimum possible value. Thus the most likely values of the
vacuum angles can in principle be computed, by computing how they affect the two
gravitional couplings. In practice, these are very sensitive to high energy effects, and
only about the low energy parameter 8g.c.p do we have a concrete prediction[13].
Knowledge of the high-energy theory is not superfluous after all, it is needed even

here to make a prediction.

The problem of the conformal factor may invalidate these ideas. No solution
of the Euclidean Einstein equations is a minimum of the action. There are always
conformal deformations that lower the action. The leading quantum corrections
around a classical solution now involve the computation of the determinant of non-
positive definite operator. Depending on how this object is defined, there is a sign

ambiguity that may turn the supposed singular peak at A = 0 into a well-behaved



function [8].

The following two chapters summarize some investigations in this field. The
material appearing in them was published in the papers [9]. Each chapter is more

or less self-contained, and the reader is referred to them for further details.

It is customary for the theoretical physicist, when frustrated with his problems,
to retreat to a simpler universe (usually two dimensional) where his problems are
more tractable. Actually, theories in two dimensions with a dynamical metric are
interesting in their own right. They are a non-trivial version of quantum gravity.
(Also, we do have a candidate for a quantum theory of gravity, namely, superstrings.
The problem is that we do not know how to do non-perturbative calculations in
the theory. Viewing the superstring as a random surface theory may lead us to a
method of computing.) Versions of the Polyakov string may be exactly solvable.
In recent days it has been shown [10], using random matrix methods to sum the
discretized partition functions, that models of conformally invariant matter living
on world sheets can be rigorously formulated and exactly solved, at least for the
conformal anomaly of the matter d < 1. Continuum limits can be explicitly taken.
Non-perturbative information is available about these theories. The final chapter
of this thesis[11] deals with computations on the d < 1 Polyakov string within an
ansatz suggested by David, Distler and Kawai[12], that purports to be the continuum

version of these theories.
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CHAPTER 1

I. Introduction

1. Wormbhole Correlations

Recently it has been shown that topology changing field configurations (worm-
holes) in the functional integral can have important effects on physics below the
wormbhole scale [1,2,3]. Using the dilute instanton gas approximation the result of
summing over wormhole configurations is to produce an effective field theory, for

physics below the wormhole scale, that has an action™ of the following form [3]

Seff = / d*z \/g(z) Lo(z) + & / d*z \/g(z) K(z) . (1)

Here K (z) is a linear combination of gauge invariant local operators O made from
fields with masses less than the wormhole scale. Possible operators that can occur in
K(z) are: 1, R(z) (the curvature scalar), eg(z)Per(z) (the gauge invariant kinetic
term for right-handed electron field), etc. Nonrenormalizable operators in K are

suppressed, presumably, by powers of the wormhole scale.

The parameter &, which occurs in eq. (1), is given by

1
[Sw2®

&= —Swey | (2)
where Sy is the action for the wormhole field configuration and « is a dimensionless

quantity that characterizes the possible vacuum states of the theory much in the way

fqcp determines the possible vacuum states in the strong interactions.

* Semr is not an effective action that includes all loop effects and is to be used at tree level. We
shall use T' to denote such an effective action. Rather Seg is the action for a quantum field
theory which describes physics below the wormhole scale.



We have assumed in egs. (1) and (2) that there is only one type of wormhole.
If there are many then there is an « parameter for each type of wormhole and
eq. (1) contains a sum over &’s for each different type of wormhole. Since the K(z)’s
corresponding to different types of wormholes will (in general) contain a different
linear combination of operators, the coupling constants in the low energy effective
field theory become different linear functions' of the o’s. In eq. (2) the factor of
[.S'W]_p/ 2 arises from p zero modes. Translational invariance implies four zero modes

and so p > 4.

Ineq. (1) Lo(x) is the Lagrangian density appropriate to the effective field theory
obtained without summing over wormhole configurations. It is the piece proportional
to & which takes into account the effects of summing over wormholes. Note that in
the dilute instanton gas approximation summing over wormholes produces a local
effective field theory even though the probability for (two) wormholes to connect

space-time points separated by a large distance is not suppressed.

Neglecting quantum fluctuations, in the dilute instanton gas approximation the

wormholes are treated as uncorrelated: the probability density P,(z1,...,zs) for
wormholes to be located at Kuclidean space-time points z1,..., 2z, is taken to be
Po(z1,...,20) = [A1]" (3)

where Pi(z) = P; is independent of z due to translational invariance. In general we

expect there to be some correlations between the wormholes, and these are charac-

terized by correlation functions &,(z1,...,2,) defined by
Pn(m17 oo ,mn)
1 + n xz yeesgdin) = . 4

The interactions between wormholes can lead to nonlocal terms in the effective action

Ses for physics below the wormhole scale. For example, a two—point correlation may

T If one redefines the fields, so that their kinetic terms have the usual normalization, then the o
dependence of the coupling constants is not linear. We are imagining here that the coefficients
of the kinetic terms are also treated as coupling constants.



give rise to terms in Seg of the form
&2 / d*zy \/g(z1) d*zo \/g(z2) O(z1) f(z1,x2) O(zs) . (5)

If the function f(z1,z2) falls off fast enough with separation |z; — z2| then even
for & of order unity the term in the effective field theory below the wormhole scale,
given by eq. (5), will be approximately local. For example consider the effects of
this term in the effective action when O(z) = ¢(z), where ¢ is a gauge singlet scalar

field. If the function f(z,y) falls off as |z — y|™? for large separations, then using

Ho)blw) = $(2) + (0=9)*8()0u8(2) + 5 (o) (o) $(=)0uDu(z) + - (6

we see that the coeflicients of ¢?(z) and ¢(z)ug(z) in the effective Lagrangian den-
sity for physics below the wormhole scale are finite if p > 6. When p > 6 the first
divergence encountered, in the expansion of the Lagrangian density in local oper-
ators, occurs in a nonrenormalizable operator and so nonlocalities induced by the
long range two—point wormhole correlation are suppressed by powers of the worm-
hole scale and hence (even for & of order unity) only have a small effect on low energy

physics.

Wormbhole solutions have been found for a U(1) Goldstone boson coupled grav-

itationally [4,5]. The Euclidean action for this case is (a surface term involving the

extrinsic curvature also contributes)

0)2
_ =My

S = o / dz VIR + % / d*z V9 9" 0ud0ug (7)

where ¢ is the Goldstone boson field. In eq. (7) .ME,OI); denotes the “bare” Planck
mass, which is the coefficient of R in the Lagrangian density before integrating out

the wormholes. Wormhole solutions appropriate to tunnelling between states of
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definite charge [5] are found by solving the field equations:

)2 1 Ao
MPL G;w = 167 Eg;w g a/\¢aa¢ - 8u¢’av¢ 3 (8a)

1

\/5”

where Gy, is the Einstein tensor. Adopting spherical symmetry about the wormhole

V9994 =0 (8b)

one introduces spherical coordinates
ds® = dr? + a®(r)dQ? | 9)

where dQ2? is the line element on the three-sphere. The Goldstone boson field for a

wormbhole solution of charge n is determined by

¢(7°) = n/f27r2a3(r) , (10)

and the metric satisfies the differential equation

ME) (i) 1\ _ -
167 <a2(r>‘a2<r>)‘8w4a6<r‘>f2 ’ (11)

where a dot denotes a derivative with respect to r and f is the “decay constant” of

the Goldstone boson. For a wormhole solution a(0) = 0 and so

, 1/4

2n

a(0)= —‘*(6‘)—2*—* ; (12)
3ndMp; f?

is the wormhole length scale. Far from the wormhole “location” (r = 0) the metric

is approximately flat (i.e., a(r) = r). For large r
1 /a(0)\*
1+6<7~>} : (13)

Using this wormhole solution we can estimate the large distance behavior of the

a(r) ~r

two—point correlation for wormholes carrying charges n; and ny of opposite sign.
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The two-point correlation is given, according to eq. (4), by

1+ &a(21,29) =~ exp(—Swll,2] + Sw(l] + Sw(2]) , (14)

where Syy[1, 2] is the minimal action for a field configuration consisting of a wormhole
carrying charge n1 located at z; and a wormhole carrying charge ns located at zo,
Sw[1] is the action of a wormhole carrying charge ny and Sy[2] is the action for
a wormbhole carrying charge ny. Here we estimate the contribution to €a(z1,z2)
coming from the part of the two wormhole field configuration that is far from either
wormhole. We consider separations |21 —z2| that are much larger than the wormhole
length scales. For an approximate two wormhole field configuration we take (in

cartesian coordinates)

guv[la 2] = 6uv + h;u/[ly 2] (15a)
ue[1,2] = Auell] + 9udl2] (15b)

In eq. (15a) hyy is chosen to satisfy the linearized Einstein equations with the field
configuration (15b) as the source for the gravitational field. We first estimate the
contribution to —Syy[1,2] + Sw[l] + Sw[2] that comes from the Goldstone boson
part of the action. Eqs. (10) and (13) imply that the region near the wormholes
contributes an amount of order 1/|zy — z2|? to this difference of actions. It is the
region a distance of order |1 — 3| away from either wormhole that dominates. Thus
we have that the Goldstone boson part of the action contributes an amount (using

cartesian coordinates)

., ung / gty u(@n = (22 — 1))
R |2tz — (22 — z1)*
_ ning
 f4r?|zy — 202

to Swll, 2] —Sw(l] — Sw[2]. Next we consider the gravitational part of the action. It
is easy to see that in the region far from either of the wormholes the extrinsic curva-

tive surface term cancels the order 1/|z1 — z2|? contribution from the gravitational
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part of the action in eq. (7). So we have the following estimate of the two—point

correlation

1+ &o(z1,22) ~ exp < e ) . (16)

47|z — 22)?

The two wormhole contribution from wormholes of charge ni and ny to the

vacuum-—vacuum amplitude is thus estimated to be

[ dova@ [ auaw) anlamclcze—swme—Swm(l+fz<w,y>> . (17a)

On the other hand, since the effective field theory (1) contains terms (here a,, and

oy, are complex since we are not in a CPT eigenstate basis)

dtx /g(w){anl 1 einlqﬁ(:c)/f e—S'w[l] + am, ¢ em2¢(:z;)/f e—S’w[Z]}
it gives a contribution to the vacuum-vacuum amplitude that is

[ @42/ [ a49v/a) n, s ex ez 5wl emSul) (cimsb1 pinesio
(175)
But:

n1g(2)/f in2d(v)/f\ _ —ning
(emos o) ey (ot )

so the two—point correlation in eq. (16), which arose due to the contribution of the
scalar field far away from either wormhole location to the action, does not give rise
to a nonlocal term in the effective field theory below the wormhole scale. Similarly,
correlations arising from the long range field of one wormhole perturbing the solution
for the other wormhole, near its location, will be reproduced by adding local terms to
the effective field theory below the wormhole scale that involve derivatives of ¢ and
have coefficients linear in &. It thus seems likely that f in eq. (5) and the consequent
nonlinear & dependence will arise only from interactions where the two wormholes
are very near each other and hence will not destroy the locality of the effective field

theory below the wormhole scale.
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Dimensional analysis suggests that at small separations the correlations of large
wormholes are enormous. For large wormholes coupling constants, A, may have a

power series expansion in & of the form

AM&) = Ao+ A&+ A X&2 + A3 X288 + -

= X+ F(aX) . (18)
Here X, which arises due to the wormhole correlations, is enormous (e.g., of order
exp(M](JOI)IZCLZ(O))). If F'is a bounded function then it is possible that for all &
the effects of large wormholes are suppressed by 1/X. For example, this occurs if
Fly) = (y+ y2)e“-’/2. However, this possibility seems somewhat unnatural since
typically a bounded function A(&), with a power series expansion where the terms in
this expansion have the order of magnitude given by eq. (18), will not have wormhole
effects suppressed by 1/X. Of course, since the action Sy for a wormhole of large

size is large, if o is of order unity then eq. (2) implies that & itself is very small.

Recently it has been argued that the probability distribution for the o’s is [6]
dP = N [[ deiZ(a)f(a) (19)

where a subscript ¢ denotes the wormhole type and dP is the probability of finding the
a’s in an interval between «; and o; +de;. In eq. (19) f(a) is a function determined
by the boundary conditions used to define the wavefunction of the Universe. With
Hartle-Hawking boundary conditions [7] f(a) = [], e=®/2. N is a normalization

factor independent of o. The function Z(«) is given by
Z@)=exp| > el (20)
topologies

where T'y is equal to the background gravitational field effective action T'n(g) eval-

uated at the stationary point in ¢ of minimum action. For large smooth manifolds
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the effective action I'4(g) can be expanded in the curvature tensor

MZ
Ta(g) = / d*z\/g [A - —fLp (21)
167
The a dependence of I'y(g) resides in the cosmological constant A and in the Planck
mass Mpy. For positive A the stationary point of minimum action is a four sphere.

Evaluating the above effective action at this stationary point gives
Ty =—3Mp;/8A . (22)

The probability distribution for the o’s is infinitely strongly peaked on the subspace
of o’s for which the cosmological constant vanishes. A volume regulation of the
probability distribution seems to show that it is also infinitely strongly peaked at
the value of «, within the subspace for which A = 0, that maximizes Mpy, [8]. It is
important that Mpy be a bounded function of the a’s since in the limit Mp; — oo
gravity becomes a free theory. Assuming Mpy, is a bounded function of the a’s, then
typically @ will be chosen to maximize M% ; when & is of order unity, even if this
corresponds to a value of o that is enormous: naively, wormholes of large size are

important, even though their action is large [9].

Wormbholes break global symmetries, and in spontaneously broken global sym-
metries, the Goldstone boson acquires a mass. We are then hard pressed to save the
invisible axion as a solution to the strong CP puzzle [10,11].We have to ensure that
the wormhole generated mass is sufficiently small. Naively, wormholes of length scale
a(0) and charge n give (in the dilute instanton gas approximation) a contribution to

the axion mass, m,, of order

2 A
2 n“& ()2,

For the axion to be able to solve the strong CP puzzle this contribution to its mass—

squared must be much less than (myma/(my + mg))({(@u) /£2). But if f, is much
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smaller than ]\4}(30%, then, since n is quantized, all wormholes that contribute to mg

are large in size compared with 1 /MJ(JOI), (see eq. (12)). It is then crucial to suppress

large wormbholes.

Actually for n of order unity and f, < M](,OI)/ the size of the wormhole is small
compared to 1/ f,. We should include the field that gets a vacuum expectation value.
We assume that this field has a small mass in Planck units, and that the mass term
can be neglected near the neck of the wormhole. Then it turns out that f,, the v.e.v.

of this field, is always small, and the wormhole is always large (in Planck units)[12].
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Chapter Two

1. Introduction

We have seen so far some of the effects that wormholes might have on macroscopic
physics. It will in general be true that given a wormhole solution involving some
particular fields, we will be able to construct solutions that swallow the appropriate
combinations of quanta of other fields that are Lorentz scalars , gauge invariant,
etc. (For example see the discussion of baryon number violation in [1].) The cost in
action is higher for the more complicated wormholes. The apparent unboundedness
of the coupling constants can compensate for the suppression by the exponential of
the action. Thus large wormholes may be as relevant to the semiclassical limit as
small ones. We must suppose that there is some resolution to this problem in order to
motivate the search for other wormhole solutions.We also would like to see whether
wormbholes require exotic matter or whether they would appear in theories that have
as matter content the fields that we know to exist in nature. The interesting thing
about the solutions described below is that they could occur in the Standard Model

of particle interactions.

The geometry of the solution that we look for is as follows. The manifold has the
topology of R! ® S3. We call this a wormhole. Let us parametrize the R! manifold
by a “time” coordinate, ¢, ¢ € (—oo, c0). The slices of constant ¢ in this geometry are
assumed to be three spheres, with the radius of the three sphere at a minimum at
t=0, and approaching infinity as ¢ — dco. The size of the wormhole this minimum
radius. This geometry requires negative stress-energy, as may be seen by computing
the Einstein tensor. Alternatively, one may note that the throat of the wormhole
acts as a defocussing gravitational lens; hence negative stress-energy is required to
support the throat. In Euclidean space, it is not so hard to find matter that gives
rise to negative stress-energy. For example, the Euclidean Lagrange density of an

electromagnetic field is

Ly = (E2 + éz) : (1.1)

b =
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and the corresponding Euclidean “energy density” is

(Too)w = (E’2 . B’Z) . (1.2)

N =

Therefore, a magnetic fleld acts as a source of negative “energy” in the Euclidean

Einstein equation, and is capable of supporting the throat of a wormhole.

This observation was used by Hosoya and Ogura [2], who described wormhole so-
lutions for gravity coupled to gauge fields in both 3 and 4 Euclidean dimensions. OQur

main objective here will be to elucidate the physical implications of these solutions.

We first review the properties of the 3 dimensional electromagnetic wormholes
and note that by choosing an Abelian subgroup of the gauge group, we can generalize
these to Yang-Mills theory. The electrodynamic wormholes may be arbitrarily large,

but Yang-Mills wormholes have a maximum size above which they are unstable.

In three dimensions the magnetic wormholes violate the topological conservation
laws of the gauge theory. We argue that wormholes convert ordinary noncompact
electrodynamics to compact electrodynamics, and drive electric confinement. Matter
that tranforms faithfully under the center of the gauge group makes the wormhole
solutions forbidden. The low energy physics induced by magnetic wormholes cannot
be distinguished from the low energy physics of a ordinary non-Abelian gauge theory

( without wormholes ) that undergoes the Higgs mechanism at a large mass scale.

We then describe a class of wormhole solutions of four dimensional Yang-Mills
gravity system. However, we argue that these are unstable with respect to small
deformations of the gauge field, and so do not correspond to semiclassical tunnelling

processes.

2. Magnetic Wormholes in 241 Dimensions

Consider first the case of a U(1) gauge field coupled to gravity in 3 Euclidean
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dimensions. The action is

1 1 ..
= d3 —_— N % S 4 . F . .
S / z\/g [ g Bt g2 979 Fu Fe (2.1)

Here GG is Newton’s constant, R is the scalar curvature, e is the electromagnetic
coupling. In three dimensions, both G~1 and e? have the dimensions of mass (with
h=c=1). F;; = 0;A; — 0;A,; is the electromagnetic field strength. We choose to
describe Fj; as a three component magnetic field that is the curl of the gauge field

A.

The field equations of this theory have a spherically symmetric solution in which

the metric takes the form
ds* = dt* + a(t)? (d6* + sin®0 dg?) . (2.2)

The slice at constant “Euclidean time” is a two-sphere of radius a(¢), as advertised
above. The magnetic field on this slice points in the £ direction and carries magnetic

flux ® = 27n; thus the field strength is

F=— (2.3)

—2§F = ReZgt (2.4)

The magnetic flux is quantized in anticipation of including charged matter fields in

the theory. The scale factor a satisfies the Einstein equation

. TGn?
a? =1 22 (2.5)
which is solved by
G 2
a(t)? = B + 2, B = 7’62” (2.6)

Here by, is the minimal value of the scale factor, or the thickness of the throat of the

wormhole; by is roughly the geometric mean of the two length scales G and e~2 in the
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problem. Semiclassically, we may interpret b as the radius of a baby universe that
spontaneously nucleates. It is, in fact, the maximum radius of a (2 + 1)-dimensional
Friedmann-Robertson-Walker cosmology that is supported by the magnetic flux & =
2mn. This radius is large in Planck units as long as the gauge coupling e? is small
in those units. The Euclidean action of a “semiwormhole” (comprised of one of the

asymptotically flat regions and half of the throat) is

3/2

00
1
SE,n = 2/d3$\/g——é—e—2~ /dt47ra 4
0
n

1 T
=972 () = = 2.
g (2e> b 2 G 27)
(Half of Sg, comes from the scalar curvature term in S, and half from the magnetic
field strength term.) Roughly, this is the “self-energy” of a monopole with magnetic

charge ¢ = ngo, and core size by,.

For a Yang-Mills gauge field, we merely imbed this solution in an Abelian sub-
group of the gauge group. Since the Yang-Mills fields themselves are charge carrying
fields, the magnetic flux that the wormhole carries is automatically quantized. Sec-
ondly, while we can construct solutions that carry an arbitrary integer value of flux,
most of these solutions are unstable [3]. If slightly perturbed, the field strength
decays, with the excess energy being radiated to infinity. There is thus a maximum
size to the stable wormholes. The stable solutions are characterized by the value of
the conserved magnetic flux on a two-sphere, which takes values in the center of the

gauge group G. The magnetic field strength is

Q (2.8)

where () is an element of the Lie algebra of G such that exp(27i@Q) is a nontrivial

element of the center of G.

For example, if G = SU(N), with center Zy there are N-1 distinct wormhole

solutions, one for each nontrivial element of Zy. The values of Q that satisfy the
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Brandt-Neri-Coleman [3] stability criterion are, in a particular gauge,

n n n—N n—N
= di —_— . = =1,2,... -1 . (2.
Qn dla"g \ZV’ ]V'J )l \N b} NJ ] n y~y 7N 1 ( 9)
N —n times n ti;les

The Yang-Mills Lagrange density on the two-sphere of radius a is

—1—tr P2 o_ 1 n(N —n)

e? 4e2qt N ’

(2.10)

and an analysis identical to that described above shows that the thickness of the

wormbhole throat is
2 27G n(N —n)
n e? N

(2.11)

and the action of a semiwormhole is

Span = \/”;3 6\1/@ \/"(NN_”) . (2.12)

There are also solutions if the gauge fields are coupled to Higgs fields, and the

gauge symmetry is realized in a Higgs phase. For example, if the Higgs mass scale

is u, and p~! is large compared to the size of the wormhole a(0) , then a solution
exists that closely resembles that described above. But at larger length scales, the
magnetic flux finds it energetically favorable to collapse to a vortex with thickness

1

of the order =" rather than to be uniformly distributed. Now, if n vortices come in

from far away to vanish down the wormhole, the action of the configuration diverges

like
n My / dt (2.13)

where m, is precisely the mass of the stable vortex particle that appears in the

spectrum of the theory in the Higgs phase.
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The condition that the Dirac magnetic flux string be invisible to the Yang-Mills
field forces it to be quantized. This quantization, however means that it cannot
change through continuous deformations, and in particular, through time evolution,
which is continuous. The magnetic flux is characterized by the “Aharanov-Bohm”
phase associated with circumnavigating it. This phase must be constant, and we

have a topological conservation law for the magnetic flux.

An observer concerned with physics on scales of length large compared to the
wormhole would percieve them to be magnetic monopoles. Only on closer examina-

tion would he discern the wormhole threaded with magnetic flux.

3. Intrinsic Breaking of Topological Symmetry, and its Consequences

To consider the effects of the wormholes described above on physics at low energy
we integrate out the wormbholes, incorporating their effect in a effective local field
theory with a cutoff scale on the order of the wormhole size. The local operators
in the effective action induced by the wormholes must behave as the source of the

magnetic flux that the wormholes carry.

We follow [4] to define a local operator ¢(x) that creates or destroys a unit of
magnetic flux. The operator can be described as follows. In the canonical formalism,
impose the gauge condition Ay = 0. Construct a Hilbert space H spanned by the
eigenstates of the operators A;(Z). The physical states form a subspace Hp of H:
these are the states that are invariant under time-independent gauge transformations.

The operator ¢(z) acts on a basis for H as follows:

¢(7) |Ai(9)) =

A9 (3.1)

() is a time independent gauge transformation that has a minimal winding number
around the point &, and so has a singularity at &, but is smooth everywhere else. (A
cutoff procedure or renormalization must be performed to avoid infinite self-energy

at the singularity.) For example, if the gauge group is G = SU(N), then € SU(N)
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has a discontinuity

amifN Qbelow cut (32)

Qabove cut = €

across a cut in the plane that terminates at the point Z. Since the gauge field actually
transforms as a representation of SU(N)/Zy, the discontinuity cannot be detected
by the gauge field. On a state in the subspace Hp, at every point away from Z the
action of ¢(Z) is merely a time-independent gauge transformation, under which the
state is invariant. So the action of ¢(Z) on physical states is completely defined by
the point # and the winding number of the gauge transformation §. It is easy to see
that in Hp, ¢(Z) is a gauge-invariant operator. It commutes at spacelike separation
with all gauge-invariant smeared polynomials in the gauge fields. Its action on
Hp cannot be duplicated by polynomials in the gauge fields. It must therefore be
included in the local field algebra. A charged field acquires a Aharanov-Bohm phase
corresponding to the winding number of the gauge transformation 2 when carried
once in a curve around the point Z. We see therefore that ¢(Z) creates a Dirac string
of magnetic flux at the point . The states of Hp divide into superselection sectors
that are characterized by the value of the topologically conserved magnetic flux; this
quantity takes values in Z for G =U(1) and in Zy for G =SU(N). While the smeared
gauge-invariant polynomials in the gauge fields preserve these superselection sectors,
the operator ¢(Z) interpolates between sectors by creating or destroying a unit of

magnetic flux.

In the Euclidean path integral language, a correlation function with an insertion
of the operator ¢(z) would be computed by summing over all gauge field configura-

tions that have a Dirac magnetic monopole singularity located at the point z.

We now have the operator needed to complete the sum over wormholes. By
integrating out wormholes that carry n units of quantized magnetic flux, we generate

a term in the effective action that in the leading semiclassical approximation is

Lpn = Cpe™™® (a} + a_p)¢™(@) + he. . (3.3)

Here ¢ is the local operator defined above, al is an operator that creates a baby uni-
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verse that carries n units of magnetic flux, and a_,, annihilates a baby universe that
carries —n units of magnetic flux; Sk, is the Euclidean action of the corresponding
semiwormbhole solution, eq. (2.7). (More precisely, Sg , is the part of action coming
from a region near the wormhole throat; this distinction is important in the case
where the gauge symmetry is spontaneously broken and there are stable vortices,
since then the total action of the semiwormhole diverges in the infrared.) The con-
stants C, can in principle be determined by matching the Green functions of our
effective field theory to Green functions computed on the wormhole background, in
the leading semiclassical approximation. (The required formalism has been outlined
in [5,6].) To interpret eq. (3.3), one observes that the Hilbert space of baby universes
is spanned by eigenstates of the operators a); + a_p, with eigenvalues «,. Thus, the
low-energy physics described by our effective field theory divides into superselection
sectors [7,8]. The distinct sectors are labeled by {ay}, and each sector has distinct
physics, for the coefficient of the local operator Lg , in the effective action depends
on the value of a;. For the purpose of discussing the qualitative effects of wormholes

on low-energy physics, it suffices to consider the physical effects of the interactions

LEn.

In the absence of wormholes, for both Abelian and non-Abelian gauge theories
the magnetic flux is conserved for topological reasons. The Aharanov-Bohm phase
associated with circumnavigation of the Dirac string of magnetic flux must be invis-
ible to the charged fields and so must lie in the center of the group, which is Z for
the U(1) case and Zy for SU(N). No smooth deformation, and in particular contin-
uous time evolution, can change the value of this element of the center, because the
center is a discrete group. In the case of G = SU(N), multiples of N times the flux
quantum can be deformed away, because these correspond to the identity element in

the center.

Since the action of ¢ on a state changes the value of the topologically conserved

flux, we may define a unitary operator U that ”counts” this flux. It commutes with
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the Hamiltonian, and obeys
U(a) ¢(z) UH(a) = € ¢(z) , a € [0,27] (3.4)
in the case G = U(1), or
Uy, ¢(z) Ugt = 2N gz) | ke {0,1,2,... N—1} (3.5)

in the case G =SU(N). Thus we may say that the gauge theory respects a “topological
symmetry.” This is a continuous global U(1) symmetry if the gauge group is U(1),
and a discrete Zy symmetry if the gauge group is SU(N). The terms induced by

wormbholes in the action explicitly break this symmetry.

As stressed by Polykov[9] and t’Hooft [4], the realization of the topological sym-
metry characterises the phase structure of gauge theories, i.e., whether the gauge
theory is in a Higgs phase, Coloumb phase, or confining phase. Wormholes carry

topological charge and so their impact on the phases of the gauge theory must be

assessed.

In 241 dimensions the Hilbert space of a U(1) gauge theory with an infra-
red cutoff divides into sectors labelled by the magnetic flux n € Z. In ordinary
electrodynamics with a massless photon, the energy of the ground state |n) of sector
n tends to zero as the infrared cutoff is removed, and the vacuum state of the theory

becomes infinitely degenerate. The local operator ¢ is not diagonal in the basis {|n)}

for vacuum states:
(m|¢(z)In) = vémm-1 - (3.6)

Correlation functions evaluated in this basis do not satisfy cluster decomposition. It

i1s more convenient to use the basis

e e]

> e n) (3.7)

nN=—00

0) =

5~
|
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such that

(0'10) = 6(8' —9) and {0'|¢(z)|0) = ve5(6—0") . (3.8)

The action of the topological U(1) symmetry on the vacuum states is
U(a)|n) = e |n) (3.9)

U(a)|8) = |0 —a) . (3.10)

We see that the topological U(1) is spontaneously broken. The Goldstone boson can
be identified with the photon. (In two spatial dimensions, massless particles have no
helicity, and the representations of the Poincare group do not distinguish between

the massless photon and a scalar.)

We can also couple a Higgs scalar to electrodynamics, and have the U(1) gauge
symmetry spontaneously broken (the Higgs mode). Then there is a massive stable
vortex particle in the spectrum of the theory, created by the action of ¢ on the
vacuum. It carries a unit of magnetic flux, and so the true ground state is now in

the n = 0 sector. The topological symmetry is now manifest.

Let us now include finite action monopole configurations in the Euclidean path
integral of the 2+1 dimensional U(1) theory. Wormbholes, for example, do this for
us. The monopoles terminate lines of magnetic flux, and the topological symmetry
is explicitly broken. In the Coloumb phase, the photon which was massless by virtue
of being a Goldstone boson, now acquires a mass, suppressed by the factor e,
where Sy is the Euclidean action of the magnetic monopole. Another way of saying

this is that the plasma of magnetic monopoles and antimonopoles has induced Debye

screening, correlation functions decay exponentially, and the theory has a mass gap.

The dilute plasma of magnetic monopoles and antimonopoles is a source of

weakly correlated magnetic fluctuations in the vacuum [9]. (The long range magnetic
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field has no long range correlations because of Debye screening.) The Wilson loop

operator defined on the closed oriented loop C

W(C) = exp (i 7{ A, dzh) (3.11)
C

is a measure of the magnetic flux enclosed by the loop. The weakly correlated
magnetic fluctuations cause (0| W(C')|0) to behave like a product of uncorrelated
factors, with the number of factors growing like the area of the loop, and the Wilson

loop has area-law behavior
(0| W(C)|0) ~ exp [—r( Area)] . (3.12)

We have electric confinement by Wilson’s criteria, with « the electric string tension.
y g

In the Higgs phase, ordinarily the magnetic vortex acquires a mass. Vortex
particles are stable, the vacuum is not magnetically disordered and electric flux is
not confined. Monopoles and antimonopoles act as sources that create or destroy
the vortex particles, but since they are joined by massive magnetic flux tubes they
are strongly correlated and magnetic disorder is not generated. Wormholes do break
intrinsically the topological U(1) symmetry so that vortex number is not precisely

conserved, but they do not forbid the Higgs phase.

We now turn to the 2+1 dimensional SU(N) Yang-Mills wormholes. The phases
the gauge theory may exist in are described by the realization of the Zy symmetry
[4]. If the Zy symmetry is unbroken, vortex particles are stable, there is no magnetic
disorder and the theory is in a Higgs phase. If the Zy symmetry is spontaneously
broken, then the vacuum, which has an indefinite number of vortices, is magnetically
disordered, and the theory has electric confinement. The electric flux tubes are
boundaries (domain walls) between vacua with different values of the order parameter
¢. Now in a SU(N) theory N units of magnetic flux enclosed in a compact region can
be smoothly deformed away into a trivial field configuration, without affecting the

long range fields. This is just a statement about the Zy symmetry. This means that
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there are always gauge field histories with weakly correlated magnetic fluctuations
at long distances [13], and magnetic disorder implies electric confinement. Thus a
(24+1) dimensional Yang-Mills theory which is not in a Higgs phase is in a confining
phase.

Now to the effects of wormholes. We first note that wormholes carry Zy mag-
netic flux and behave as Zy monopoles. If we introduce matter that transforms
faithfully under the center of the group, (e.g., the fundamental representation) it
cannot propagate consistently on a wormhole background because it can detect the
Dirac string of a Zy monopole. Then we cannot have any wormhole configurations
in which a non-trivial amount of Zy magnetic flux vanishes down the wormhole. So

we have eliminated the possibility of stable magnetic wormholes altogether.

Let us therefore assume that the matter fields in the theory are invariant under
at least some subgroup of the center of the gauge group. Then some wormholes are
allowed, and they induce an intrinsic breakdown of the topological Zy symmetry.
However, this is not novel to a theory with wormholes. In a theory with a hierarchy
of gauge symmetry breakdown, we may generate nonsingular monopoles of finite
action in the first stage of symmetry breakdown and vortices in the second stage.
These vortices can terminate on the heavy monopoles generated at the first stage
[12,13] and the topological symmetry is intrinsically broken. Thus the physics that
arises due to wormholes can be duplicated by enlarging the gauge group, and causing
it to undergo the Higgs mechanism at a large mass scale. A low energy observer will

not be able to differentiate between the two cases.

However, we point out that a magnetic wormhole with a large action, and large
exponential suppression may still have significant effects at low energies, compared
to a conventional monopole at the same mass scale because of the arbitrariness
in coupling constants induced by the sum over wormholes. The really significant
contributions of these wormholes may lie in their contribution to the suppression of

the cosmological constant.
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4. Magnetic Wormbholes in 341 Dimensions

First, we very briefly indicate the construction of wormhole solutions to the

Yang-Mills-Einstein system in 3+1 dimensions.

One way to arrive at the solutions is to realize that classical Yang-Mills theory
is conformally invariant. This means that a flat space solution to the Yang-Mills
equations remains a solution on spaces with conformally flat metrics. Then it is just
a question of satisfying the Einstein equation, and verifying that the geometry of the

solution is that appropriate to a wormhole.
We follow Hosoya and Ogura (HO) [2,14]. We start with the action of a SU(2)
gauge field coupled to gravity.

1 1 v o a a
S:/ d4$\/§ [A*E;G‘R-f-@g“ gpF“a—F,,p . (4:1)

The equations of motion derived from the action are the Einstein equation

1
R,ﬂ/ - §gl“/R = 87TG(TI“/ — Ag/“/) . (4:20;)
1 a ap 1 a apo
Tuv = =5 | F*ouF s = 2 9urF® oo F . (4.2)

and the Yang-Mills equation

DFF®,, =0 . (4.2¢)

We use a generalization of the HO ansatz that is most conveniently described in
their language. We define the one-forms o that satisfy the Cartan-Mourer structure

equation
do® + ot A o° = 0. (4.3)
The o may be obtained from
o= %Q‘ldﬂ (4.4)

where (1 is the standard identity map form the three-sphere to the group SU (2).
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The ansatz for the metric and gauge field are
ds® = dr? + d®*(r)o® @ o° (4.4a)

A® = A%dz* = h(r)o®. (4.4b)

(HO consider the case h(r) = 1). The identification of the color and space indices
and the condition Eq.(4.3) make the solution be simple. After some work we find

the Einstein equation to be
d*=1- gé-hz(Z —h)? + r%h'z - H’a® (4.5)
where H? = 87GA/3 and ro = 1/47G/e?. The Yang-Mills equation is
2a(ah’) — h(h—1)(2—h) =0 . (4.6)

Here / denotes differentiation with respect to r.

Important in the sequel is the “charge” @ evaluated on each concentric three

sphere

SS
Here wes 1s the Chern-Simons from
1 2 43
which satisfies
1 2
dwcs = 'é;_‘z— tr (F ) . (49)

The quantity on the right-hand side of Eq. (4.9) is the Pontriagin topological charge

density, or instanton density. The Pontriagin charge turns out to be

Q=-(h-=) . (4.10)
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The total instanton number in the four-volume bounded by two nested closed
three-surfaces is the difference between the values of the charge @) on the two surfaces.
The instanton in flat spacetime (with ) = 1) corresponds to h = 2,a(r) = r. The
HO solution with 2 = 1,a(r) = 1/(rZ +r2) has Q = 1/2. For each value of Q € (0,1)

wormbhole solutions can be constructed.

If we ignore the Einstein equation, then the Yang-Mills field with A = 1 is the
flat space meron solution of de Alfaro, Fubini and Furlan [14]. This solution has a
field strength that varies as a function of the distance r from its center like r—2. The

components of the field strength are

Fi=0, Fj = 6:? : (4.11)
If we identify r with Euclidean “time” then the “electric” field strength vanishes
and the solution is purely “magnetic.” Since the meron field strength behaves like
r~2 its Euclidean action diverges logarithmically at both » = 0 and r = co. The
two singularities are identical in form and by a conformal transformation we may
convert the spherically symmetric solution to a “meron pair” configuration that is
nonsingular at r = co and has two singular points that are separated by a finite
distance R. If the cores of the meron pair are smeared out we get a configuration

that has a finite action that increases logarithmically with the separation R.

When Yang-Mills theory is coupled to gravity the singularity at » = 0 opens out
a wormhole with a throat of size rg. The wormhole swallows the Pontriagin charge Q).
The Euclidean action of this wormhole diverges logarithmically for large distances
because of the r=2 decay of the field strength. This remains true for Q € (0,1).
These solutions however have non-vanishing electric field strengths. The solutions
may be constructed so that the electric field vanishes at the neck of the wormhole.
The neck of the wormhole then can be matched on to real time evolution, and the

wormhole describes quantum mechanical tunnelling between universes.

What role do these solutions play in the low energy behavior of Yang-Mills

theories? We suspect, none at all. The flat space meron, or meron pair, is unstable.
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A widely separated meron pair, for example, has a Euclidean action that increases
logarithmically with the separation R. It is clear that by dressing the meron with
one-half unit of instanton number the action can be reduced [15]. Now the pair
has the long range field of an instanton and is non-interacting. Gravity does not
prevail over this long range instability of the Yang Mills field and the wormhole
is also unstable. This instability afflicts all the solutions discussed above. It is
indicative of another solution of lower action, (rather than a configuration of lower
action, via say, a conformal transformation of the metric). This instability makes it
difficult to make sense of the sum over the small fluctuations about the wormhole
solution. These wormholes would contribute only if we force the existence of more
than two disconnected components of the bounding three geometries by some choice

of boundary conditions.

We do note that the presence of wormholes makes it possible to have large gauge
transformations that change the Pontriagin number of the vacuum without instan-
tons. (An instanton is necessary to smooth out the singular core of a large gauge
transformation. The wormhole neck serves this purpose just as well.) However these
would be suppressed by the wormhole action rather than an instanton action, and
secondly, would occur at too high an energy scale to be relevant to the determination

of the low energy value of 0g ¢ p.

The fact that the standard model-gravity system has wormhole solutions may

have no significant consequences for low energy physics.
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Chapter Three

I. Introduction

Classical gravity in two dimensions is trivial. This is because of the very simple
geometry of two-manifolds. However quantum gravity in two dimensions has recently
attracted a lot of attention. It is interesting from the viewpoint of the statistical
mechanics of random surfaces, strings in non-critical dimensions. In many cases, it
is exactly solvable, by discretizing and taking a continuum limit, or the methods of
topological field theory. The field is progressing very rapidly at present and the final
words have yet to be written. The work presented here was performed in the infancy

of the field, when many of the new results and techniques were not yet developed.

Following the work of Polyakov[l] and subsequently Knizhik, Polyakov and
Zamolodchikov [2] there has been progress in the conformal gauge by David, Distler
and Kawai (DDK) [3,4]. Anomalous dimensions derived from these agree with the
exact solutions using random matrix methods. However it would be interesting to
compute other physical quantities and comparing the answers using all available ap-
proaches, if for no other reason than verifying the correspondence and consistency
between the various methods. (We note that there has been some work in conformal

gauge on random surfaces with the topology of the disc using operator methods [7].)

Here we restrict ourselves to the conformal gauge and calculate in the semiclas-
sical limit [8] and exactly, following the DDK ansatz, partition functions and some
correlation functions. We find that exact results on genus zero surfaces in the DDK
approach are possible for some “magic” values of the central extension (for which

values the operator algebra is solvable in the work of [7]).

We consider conformally invariant matter fields X that live on a two—dimensional
worldsheet. When we study the dynamics of these fields, we find that the metric of
the worldsheet enters the dynamics via the conformal anomaly. Indeed, only when
the anomaly has a critical value does the metric decouple, and only then can we
construct the theory of critical strings. In two—dimensions the form of the metric is

very simple. On any coordinate patch it is possible to make a change of coordinates
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in which the metric is conformal to a fiducial metric, i.e.,

Yuv = eqsg;w-

What enters the dynamics then, is the conformal factor ¢. Apart from this, there
are additional parameters, the modular parameters 7 which parametrize the globally
inequivalent ways of attaining conformal gauge. (These are absent on genus zero

surfaces.)

For manifolds with a fixed topology the partition function is

1
Z = g / (dr)[Dy )| Dy X] Je~ 536 (Xe0) 85w (1.1)

Here (Voxv) is the volume generated by the conformal killing vectors, and J/(Vckvy)

is a determinant that arises from gauge fixing. Sgrav[g], the Einstein-Hilbert action

in two dimensions, is given by

Sunld] = [ Peva(‘ern+i) (12)

where A and fi are the “string coupling constant” and the cosmological constant,

respectively. In two dimensions

8% / d*¢\/gR = (1—h) (1.3)

where h is the genus of the surface. So

Swlel = e (1-0)+ [ Pevgn (1.4
The conformal invariance of the matter action implies that if
g=¢% (1.5)

where § is an arbitrary reference metric, then
SulX,g9l = Su(X,§] . (1.6)

However, since the path-integral in eq. (1.1) must be regulated in a generally covari-

ant fashion the measure Dy X depends on ¢. Since, as far as X is concerned,
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¢ can be treated as a background field it is straightforward to explicitly display

the dependence of the measure on ¢
/[DQX] e—SM[X,g] _ / [D; X] e SM[X,3] +aE-5L10,3] (1.7)
where d is the central charge of the matter theory and Sy [¢, §] is the Liouville action

Splé, 3] / d€/§ [ §"0.0y¢ + R + pe?| . (1.8)

Similarly, the dependence of the determinant J on the conformal factor ¢ can

be determined

1
(Vekv)

Z = / (d)[Dy Dy X1 e=5ulXod) +(G7) Seldd] o=Semeld]l | (1.9)

In the measure for the Liouville field ¢, the metric cannot be treated as a background
field. This makes it more difficult to deduce the Jacobian involved in going from
[Dyg] to [Dyg].

DDK assume that it can be expressed as a sum over local terms involving the ¢

field and that these terms are of the same form as those originally appearing in the

Liouville action. After appropriate rescalings this ansatz gives

)\(h—l)
-~ (Vekv)

(d7)[Dygl[Dy X)J esv S £EVII8 D ¢+QR$+ue™] o=SulX3] (1 10)

Treating p perturbatively, they show that the choice of the background metric § is
irrelevant if
25 —d

Q = —*3—— (1.110,)

—7[V25 d+vi=d| . (1.115)

Comparison with results of the semiclassical approximation reveals that the minus

sign should be chosen in eq. (1.11b).
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Similarly, if an insertion of the average over the two-dimensional space of a

primary scalar field, Oy, of the matter theory is desired then

/ 026/5(8) Oy (6) (1.124)

is replaced by

/ P63/5 0ar(€)e® (1.120)

Dependence on the choice of background metric drops out of correlations functions
if the operator Oy (€)eP? is a (1,1) operator. This condition determines (again
perturbatively in u) that

=1

B = e V25 —d++/1—d+24A (1.13)

where A is the scaling dimension of Oj. Comparison with semiclassical results
determines that the minus sign is appropriate in eq. (1.13). The partition function
in eq. (1.10) doesn’t exist for genus zero and one surfaces since the action (for a
positive cosmological constant) is minimized as § — —oo; implying that the partition
function is dominated by surfaces with very small area. A quantity which is well-
defined (and one we will study) is the partition function for surfaces with fixed area

A. With zero cosmological constant it is

)\(h—l)
(Vekv)

5 (/ A%~/ et — A) : (1.14)

Z[A) = / Dy §1ID; X ed J LEVAI+QRA —SulX,q]

Typically, the delta function couples together the various modes of ¢, making this

theory non—trivial.

Partition Function on genus one surfaces

The method of computation follows the original string theory calculations of

Polchinski [11]. Eq. (1.10) factors into contributions from the X integrations, the
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contributions from the ghosts (i.e., J ) and the contribution from the Liouville field.

The latter 1s
ZilA 7] = / [D;9] e J LEV/E#00+QRY) 5 ( / P67 ea¢_A) @)

Choose § to be a constant curvature metric (§11 = 1, §12 = 71, Joo = 7& + 72). Here

7 =71 + 179 is the modular parameter of the torus. In this metric & = 0.

Expand the Liouville field ¢ in eigenfunctions of the Laplacian [J :

Coo
= ’ + E On1 no 71,N2 22
qs \/’7—5 ni,n2 , ¢ ( )

The normalization is

/ P58 Brtms = Sust Sun 2.3)

The measure 1s

Dyd) = TT (z2) (2.4

1,712

The vanishing of R means that the zero mode part of ¢ does not appear in the action,
and so the delta function integral can be performed without introducing interactions

in the theory. We find then that

1-1/2

7_22 6—71’7'2/3 f(627ri7')

Rk
] 2.6)

with
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The T7-dependence of the Liouville field’s contribution to the partition function
is the same as that of a free scalar field. The contribution from the ghosts is the

same as in string theory

4 1
_ -2 f3) p14
J = —-27_22 [7’2 e I/ jl (2.8)

while the matter contribution Zj(7) depends on the particular conformal field theory

chosen.

Putting these results together gives

1) = (570 =) [ S 2w o)

2

where the 7 integral is over the usual fundamental region.

The modular dependence of the partition function arising from integrating over
the Liouville field is independent of the matter sector and modular invariant on
its own. Since we expect for unitary matter that its contribution to the modular

dependence for large 7 is

Zy () — el 4/6) (2.10)

we expect the complete integral to have the factor
Zy (1) — ¢l (1=d)/6) (2.11)

For d > 1 the surfaces tend to degenerate to those with infinite values of 7. This
is in accordance with the view that the surface becomes a branched polymer, and
1s one more manifestation of the well-known change in character of the theory for
d > 1. The string theory view would be that there is a tachyon in the spectrum,

though of course we have no space-time interpretation for d < 1.
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II1. Partition Function on the Sphere

Choose the background metric § to correspond to the sphere of unit radius.
Proceed as in the case of the torus: expand the Liouville field in eigenfunctions of
the Laplacian on the sphere, and use the delta function to do the integral over the

constant mode. This yields

9 = os 1@
2= 2 [ 1o (3 [ eevioes)) {f fevg e }

(3.1)
where ¢' denotes the nonzero modes of ¢. The calculation can proceed without
approximation when the central extension d is such that —@)/a is a non-negative
integer n. The path integral then corresponds to a free field theory with n vertex

operator insertions. It is convenient to map the sphere to the complex plane by

stereographic projection and we find that

Zuldl= (en(n; ) \/-2_) e '(62)_’%“2 . {det’ (_E) J _1/2_

" Antl 4
1
dzz.../d2z e 3.2
/ ' " H |z — 2|2 (3.2)
Z<]
where €2 is an invariant short distance cutoff on the unit sphere. There are cutoff

dependent pieces that arise form the determinant in eq.(3.2) and from the matter
and ghost integrals as well. These can all be absorbed in the bare string coupling.
The renormalized partition function is then defined in terms of a dimensionful renor-

malized string coupling.

The partition function Zj(A) has a SL(2,C) symmetry which enables us to
cancel the volume of conformal Killing vectors (see eq.(1.14)) against three of the
integrals in eq.(3.2). Naively, when n < 3, the partition function on the sphere

vanishes. (This argument may be too naive. See ref [13].) The relationship between
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the central extension and n is, using eq.(1.11),

6n% — 25n + 25

n—1

d =

(3.3)

For d = 1 the number of integrals is only two and the partition function vanishes.
This may be related to the logarithmic contribution to scaling seen in the random

matrix approach [6].

For consistency, it is necessary that we show that the partition function that we
compute is independent of the choice of background metric §. We show that this is

indeed the case for genus zero surfaces, when—@)/a = n, a non-negative integer.

We start with a fiducial metric § = e%§, where § is the (constant curvature)
metric on the unit sphere and show that the partition function is independent of o.

Z1]A] is given by

zl4l= [ Dgdlen [gl;; | #eileo+aha)] o [ eefs e - a)

(3.4)
Since o can be treated as a background field

(D56] = [Dyg] emztl] (3:5)

Expanding ¢ in eigenfunctions of [J, as before, gives

_ 1 V2 N i f CEVEl80 ~QlIr¢']
2114 =exo (-51le)) 5 [ s e
[ G e e

: { A Y (3'6)

where ¢’ denotes the nonzero mode part of ¢. Shifting the integration variable ¢' to

¢' — Qo' /2 (the measure is invariant under this) gives
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Zi|A] = exp (ZLS%SL[UO exp [2%3622 / dzf\/ga[ﬁaJ
';/—Z (D, )es= | 4E/360H [A / B2er/Ges X9 +QF) “q (3.7)

o' denotes the nonzero mode part of o. Performing the functional integral, regulating
the short distance singularities with a cutoff that is invariant with respect to the full

metric g, gives

ZL[A]:{epoé—(lJrSQZ Sile H / P36

o 1 2QY e
e"(Ei)e( 75 ) (E’)} X (terms independent of o) . (3.8)

In the derivation of eq. (3.8) we redistributed some of the dependence on the zero
mode of o between the two terms in brace brackets. Since %a(a + Q) = —1 the o—
dependence drops out of the second term in brace brackets. Furthermore, in Z[A],

the matter and ghost contributions dependence on o cancels that of Z;[A] since

1+3Q%+(d—26) = 0 . (3.9)

IV. Correlation Functions

We outline here the procedure that enables us to compute some integrated corre-
lation functions for certain “magic ” values of the central extension. For these values
these functions reduce to free field theory with some number of vertex operator

insertions, as in the computation of the partition function.

Consider an operator in the matter sector Oy (¢) with dimensions (A, A). This
operator is replaced by the operator O(¢) = ef?(€)0 (€), where the dressing factor
¢#? is determined by demanding that O(€) be a (1,1) operator. Quantities indepen-

dent of the choice of background metric are formed by integrating the operator over
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the surface. The correlation functions of conformally coupled matter factorize into
a product of Liouville and matter sector functions. The Liouville sector correlation

function is given by
/ (D glets | EEVAB+QRS) 5 ( / PErJG e A) L PHE) PO (41

Performing the integral over the constant mode of ¢ gives that the above is equal
to

N8

_8L_
2 1 2 NP P14 ! ! d2 Aea’qsl “ ¢
&[A /[ngg'] ein J CEVEIS'THT B4(6) B4 (6w) lLﬁA_\/g*_] (4.2)

where ¢ is the non—constant part of the Liouville field. As before, if

—(—Q+£ﬂ-) =n , (4.3)

(0% «

where n is a non-negative integer, the above path integral is straightforward to do.
The restriction in eq. (4.3) means that only correlation functions involving specific
numbers of operators can be done with this method. Once the Liouville correlation
function is known, it can be combined with the matter correlation, deduced from
conformal field theory [17], and then integrations over the surface can be performed

to get a gauge invariant quantity.

In this procedure there will be short distance divergences that have to be regu-
lated. One procedure is to introduce a world sheet cutoff, and to subtract all cutoff
dependent pieces. When logarithmic divergences occur, they cannot be subtracted
without introducing another scale into the theory. In string theory, these divergences
are interpreted as poles in the S-matrix. Here, the interpretation is not clear. We
believe that subtraction of power law divergences is correct. It is straightforward to
show that the answers obtained in these cases is independent of the choice of back-
ground metric. Many such examples may be constructed using the d < 1 minimal

models of conformal field theory.
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Correlations that are not computable by the above methods may be estimated
using the semiclassical approximation, which improves as d — —oco. We do not
perform the DDK rescaling (eq. 1.1) but merely integrate small fluctuations about
a stationary point of the action. For example, here we compute all the connected
correlations of the operator R? integrated over the surface. We write the generating

functional

1

) = (Vekv)

/ [Dyg] e~ (55)S2 6 ( / dzf\/'g"——A> e[ PEAR (g 5)

The connected correlation functions are generated by differentiation with respect to
a. Actually our generating function is singular at o = 0, so what we mean is the
piece left over after subtracting away this singularity. We choose the fiducial metric

Jab(€) to be the metric on a unit sphere, and the Liouville mode to be given by

gab(f) = ed)(g)gab(f) . (47)

We expand ¢ in properly normalized spherical harmonics and perform the path inte-
gral, after expanding to terms of quadratic order in the coefficients of the expansion.
A point to note is that the integration of the I = 1 modes is proportional to the
volume of conformal killing vectors, in this approximation, and so they drop out of

the integral. With

47
¢(€):% Com Yom (7 (48)
we obtain
1 !8#)204 dCém _d> 1 2
Z - A - P = O m
(@) = N © / H Vo eXp{ <12A %2[ tm|
£>1

<[£(z+ -2+ ?28—4;)3 e +1)~ 2] 2) } . (4.10)
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The integration over the Cj,, with [ > 2 produces a determinant which is regu-

lated using zeta function techniques. We obtain

() = (%) - %mn%m[ (12,4) }g( ) + (4.11)
where
() = g (2£+1){[£(z+1)..2] +3(Efl§)2‘ {e(ul)—z}z}_s . (4.12)

Now we expand in a:

¢(s) = ; ( (?fg;) 4D S+k_1 g (20+1) [ £+1)_2}_3+k+...

(4.13)

where the ellipses denote the term independent of «. The sum over £ can be put in

a convenient form for our purposes using the methods of Weisberger [19]

i(% + DAL +1) — 25tk

£=2
s (_1)7%32%?3_}5 n—1) (25 — 2k +n —2)CRr(2s — 2k + n — 1) .(4.14)
n=0 )

Combining equations (4.13) and (4.14) gives that ¢(0) is independent of o and
that

0 —3847?205 E [(k+1)/2] 32m
I — .2
(O = 20 [EEE] S tem ) g s B
(4.15)

where By, denotes the m'th Bernoulli number and [(k + 1)/2] denotes the largest

natural number less than or equal to (k + 1)/2. Because ((0) is independent of
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a, semiclassically, the operator [ d%¢4/g(€)R?(€) has no anomalous scaling while

eq. (4.15) implies that its connected k-point correlations are given by

<(/ dzsx/E@Rz(§)>k> _ ((82)2> i [%%r . [(k+z1)/2]

m=0

2
3“m Bogta_om

L(2m +1) 2I'(k 4+ 2 — 2m)

(4.16)

So, for example, using By = 1/6 and By = —1/30 gives

(] ecsomo) - 2 -l

For large negative d fluctuations decrease the average value of [d2£4/g(€)R2(£).
Similarly, correlations of higher powers of the curvature can be calculated and we

find no anomalous scaling in the semiclassical approximation for these operators.
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V. Conclusions

In short, we have seen how to compute certain functions in the DDK formalism.
In principle some of them can be computed exactly. The weakness is that the
overall normalization of the DDK partition function is not known, or derivable. The
divergences that arise can be handled as long as they are not logarithmic. The
interpretation of these divergences is problematic; perhaps some correlations are

indeed infinite.

The partition function on the torus shows signs of the d = 1 transition which is
believed to be caused by the domination of manifolds with large 75 which are like

long thin tubes.

We would also like to remark that the extension of this formalism to open surfaces
has not yet been made. One issue that arises is the choice of boundary conditions for
the Liouville field. Our investigations in the semiclassical limit indicate that among
simple choices of boundary conditions, only Neumann boundary conditions give re-

sults consistent with the general coordinate invariance of the underlying theory.



48

References

10.

11.

12.

13.

14.

A. M. Polyakov, Mod. Phys. Lett. A2 (1987) 893.

V. G. Knizhnik, A. M. Polyakov and A. B. Zamolodchikov, Mod. Phys. Lett.
A3 (1988) 819.

F. David, Mod. Phys. Lett. A3 (1988) 1651.
J. Distler and H. Kawai, Nucl. Phys. B321 (1989) 509.

F. David, Nucl. Phys. B257 (1985) 45; V. A. Kazakov, Phys. Lett. B156
(1985) 282; J. Ambjorn, B. Durhuus and J. Fréhlich, Nucl. Phys. B257 (1985)
433; V. A. Kazakov, I. K. Kostov and A. A. Migdal, Phys. Lett. B157 (1985)
295; V. A. Kazakov, Niels Bohr Inst. preprint NBI-HE-89-25 (1985).

V. A. Kazakov, A. A. Migdal, Nucl. Phys. B311 (1988) 171.

J. L. Gervais and A. Neveu, Nucl. Phys. B224, 329 (1983); Nucl. Phys.
B238, 125 (1984); B238, 396 (1984).

. A. B. Zamolodchikov, Phys. Lett. 117B (1982) 87; S. Chaudhuri, H. Kawai

and S. H. Tye, Phys. Rev. D36 (1987) 1184.
A. M. Polyakov, Phys. Lett. 103B (1981) 202.

D. Friedan, Introduction to Polyakov’s string theory, in Proceedings of 1982
Les Houches Summer School, ed. J. B. Zuber and R. Stora (Elsevier) (1984)
839; O. Alvarez, Nucl. Phys. B216 (1983) 125.

J. Polchinski, Commun. Math. Phys. 104 (1986) 36.

H. W. J. Bloete, J. L. Cardy, H. P. Nightingale, Phys. Rev. Lett. 56 (1986)
742; 1. Afleck, Phys. Rev. Lett. 56 (1986) 746.

M. Cates, Europhys. Lett. 8 (1988) 719; F. David and E. Guitter, Europhys.
Lett. 3 (1987) 1169.

M. B. Green, J. M. Schwarz and E. Witten, Superstring Theory, (Cambridge
University Press, Cambridge) (1987).



49

15. J. Liu and J. Polchinski, Phys. Lett. B203 (1988) 39.
16. B. Grinstein and M. B. Wise, Phys. Rev. D35 (1987) 655.

17. A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Nucl. Phys. B241
(1984) 333.

18. J. Polchinski, Nucl. Phys. B307 (1988) 61; M. Green and N. Seiberg, Nucl.
Phys. B299 (1988) 559.

19. W. L. Weisberger, Nucl. Phys. B284 (1987) 171.



50

Epilogue

To quickly recount the substance of previous chapters: Topology change in grav-
ity theories lead to a new indeterminacy of the fundamental coupling constants at
low energies. This conclusion is likely to survive the ultimate correct theory of grav-
ity. Everything else is on much shakier ground. That the low energy cosmological
constant vanishes, and that its vanishing (along with the minimization of the grav-
itational coupling) can determine the low energy parameters for us may hold. The
semiclassical sum which is an uncorrelated sum of wormhole insertions has much of
the behavior we want: no non-localities are introduced, quantum coherence is main-
tained. Correlations between wormhole pairs do not make a difference to this. On
the other hand, there is no infrared cutoff, or equivalently, a principle which bounds
the range of values within which the coupling constants may lie. The suppression of
large wormholes seems to require knowledge of the high energy physics. This theme
of the mixing of scales that occurs again and again in the literature on the subject
may be a message to us of something fundamental, or more likely, that we are simply

wrong.

Topology changes can occur in models with the standard matter content. How-
ever, apart from an influence via large wormholes, and providing a mechanism for A

to vanish, they do not seem to play a role in the real world.

Two-dimensional gravity may reward us some day by indirectly solving for us
via an improved understanding of string theory the problem of gravity. Recently
there has been great advances in the exact formulation and solutions of models
of conformally invariant matter and dynamical metric in two dimensions. These
proceed through solving a discretized version of the model and proceeding to the
continuum limit. On the other hand, we may try to directly build a continuum model
(say by the DDK approach). The question is, of course, is our continuum theory
describing the same physics? As far as the d = 1 string is concerned, it appears that

there are extra logarithms of the cutoff scale that appear when taking the continuum
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limit of the discretized version, that do not appear in the DDK approach. It may be

possible to reinterpret DDK to give the correct results, but this is an ongoing story.



