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lll 

Abstract 

We formulate the quasielastic response of a non-relativistic many-body system at 

zero temperature in terms of ground state density matrix elements and real time path 

integrals that embody the final state interactions. While the former provide the weight 

for a conventional Monte Carlo calculation, the latter require a more sophisticated 

treatment. We argue that the recently developed Stationary Phase Monte Carlo 

technique can be used to study the approach to "Y-scaling." We perform calculations 

for a particle in a potential well in one and three dimensions and compare them to 

the exact results available for these models. We then derive an eikonal approximation 

to the Path Integrals. This method is suitably generalized to treat strongly repulsive 

interactions, and allows comparison to Silver's theory of final state interactions in a 

straightforward way. We also give an exact prescription to calculate the scaling limit 

for potentials comprising a hard core. Finally, we study the approach to scaling in a 

model 4He nucleus, and find good agreement with experimental data. 
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Chapter 1 

Introduction 
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Inelastic scattering is a very useful experimental tool in many-body physics. This 

is because, in Born approximation, the inelastic cross section is proportional to the 

dynamic structure factor (or dynamic response) of the many-body system, S(q,w). 

Different probes ( e.g., electrons, neutrons, x-rays) can be used to study a variety of 

systems, from solids to liquids, from atoms to nucleons. A suitable choice of energy 

and momentum transfers (w, q) allows the experimenter to focus on one of several 

different aspects of the many-body system, such as collective modes or single particle 

properties. 

This thesis deals with quasielastic (QE) scattering, which involves energy and 

momentum transfers much higher than the characteristic scale of the collective modes. 

QE scattering can be viewed as a two-body collision between the pro be and one of 

the constituents of the many-body system. Many-body effects come into play because 

the initial momentum of the struck constituent is determined by a probability n( k) 

(the one-body momentum distribution) and because the struck particle can interact 

with the other particles during its recoil (final state interaction). 

At high momentum transfers, if the recoil kinetic energy can be assumed to be 

much larger than the interparticle potential, final state interactions (FSI) are expected 

to become negligible, thus making QE scattering an effective means of probing the 

single particle momentum distribution of the many-body system. This assumption 

is called the impulse approximation (IA) and leads to the phenomenon of Y-scaling 
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[1], [2]; i.e., the fact that qS(q,w) depends solely upon the "scaling" variable Y = 
Mw/q-q/2, M being the mass of the struck particle, and not separately upon q and 

w (we assume non-relativistic kinematics unless otherwise specified). Remarkably, 

in the IA, the momentum distribution n( k) can be extracted from the QE cross 

section in a completely model-independent fashion. This fact is of obvious interest 

to the theorist. Fundamental ideas such as Bose condensation [1] in liquid 4He can 

be tested, and our ability to calculate equilibrium properties of many-body systems 

can be checked, together with our knowledge of the interaction potential between 

the constituents. For example, powerful computational techniques, such as Green 

function Monte Carlo [3] or path integral Monte Carlo [4] (PIMC), have been used 

to calculate the ground state of quantum liquids. The situation in nuclear physics 

is less satisfactory, as the short range behavior of the internucleon force is still not 

understood completely. 

What do we learn from the experimental data available for both quantum liq­

uids and atomic nuclei? Unfortunately, connection between data and theory is less 

straightforward than the naive IA suggests. Indeed, inter atomic forces ( and nu­

clear forces to a lesser extent) are characterized by a short range, highly repulsive 

component-almost a hard core-which undermines the picture of free particle recoil 

[5]. Consider a particle initially sitting in the long range, weakly attractive potential 

well due to its neighbors. After being struck by the probe, it will recoil with high 

momentum (i.e., essentially free) until it bounces from the "hard wall" presented by 

one of its neighbors' short range repulsive potential. This will happen even at high 

recoil momenta. Furthermore, in real experiments, only a finite range of momentum 

transfers is available, and it may well be that even the long range attractive part of 

the potential has to be taken into account in trying to unravel the effects of the FSI. 
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This problem is particularly severe in nuclear physics. Here QE scattering is 

limited to the region of negative Y, where the energy transfer is low enough that 

inelastic processes (such as .6.-resonance excitation) are unimportant. Therefore, the 

nucleon recoil energy is at best about 10 times its binding energy. For comparison, 

momentum transfers as high as 24 A -I have been achieved in QE scattering from 

liquid 4He [6], yielding typical recoil energies about 100 times the binding energy. 

One can observe some differences between the response at such high momentum 

transfers and that at lower ones (e.g., q = 7 A-1
), corresponding to those available 

in nuclear physics experiments. 

There is an important difference between QE scattering experiments in quantum 

liquids and in atomic nuclei. High backgrounds prevent neutron scattering experi­

ments from measuring small cross sections. Therefore the QE response of liquid He is 

measured accurately only for small JYI (i.e., over less than two orders of magnitude 

in intensity). Fortunately, this is the domain of interest in the search for the Bose 

condensate. The QE response of nuclei, instead, is subject to more substantial errors 

at small JYJ, arising from inelastic processes, whereas at larger JYI (and Y < 0) it 

can be measured accurately over several orders of magnitude. 

Clearly, it would be desirable to develop a first-principles calculation of the dy­

namic response given a realistic potential to provide a link between the observed 

quasielastic cross sections and the inferred momentum distributions. In view of the 

success of stochastic methods in calculating many-body equilibrium properties, such 

as ground state wave functions and static correlation functions, it is natural to ask 

whether analogous methods can be applied to the calculation of a dynamic property 

such as the QE response. An important ingredient in the success of these static cal­

culations is a well-chosen trial function embodying much of the physics. Fortunately, 
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for the QE response, the IA can provide an analogous zeroth order approximation to 

guide the calculation. 

Although there are no conceptual obstacles toward this end, there is an as yet 

insurmounted practical difficulty when one tries to develop a stochastic method to 

perform quantum dynamics calculations. The evaluation of a static property can 

be reduced to averaging an observable over a sampling weight function in a rather 

straightforward way, at least for Bose systems. For instance, matrix elements of 

the imaginary time evolution operator provide such a weight in the PIMC method. 

Quantum dynamics, on the other hand, requires that the evolution operator ma­

trix elements be evaluated in real time, or that the imaginary time matrix elements 

be analytically continued onto the real axis. In the latter case, [7] the problem is 

essentially equivalent to inverting a Laplace transform, an extremely ill-posed numer­

ical problem. In the former case, real-time evolution turns Boltzmann-like factors 

into oscillatory exponentials, for which stochastic sampling methods have long looked 

hopeless. Recently, however, Doll, Freeman and co-workers [8] have devised a new 

technique, the stationary phase Monte Carlo (SPMC) method, to evaluate oscilla­

tory integrals by sampling the integrand more densely near the points of constructive 

interference. 

Although SPMC is still far from being a general purpose quantum dynamics 

technique, it is a good candidate for a first-principles non-relativistic calculation of 

the QE response, formulated in terms of path integrals. This is suggested by the 

following argument. The problems introduced by the evaluation of path integrals in 

real time become obviously less and less severe the shorter the timescale involved, as 

long as the potential remains finite. An estimate of the important time scale in QE 

scattering is given by the ratio of the characteristic lengthscale of the problem, set by 
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the equilibrium density matrix, to the velocity of the recoiling particle, determined by 

the momentum transfer q. Thus only short times are important at high momentum 

transfers and one legitimately expects the SPMC method to give a satisfactory answer. 

This very argument led Gersch et al. [9] to develop a 1 / q expansion for the FSI. 

Following this reasoning, we first develop a formulation of the QE response in 

which the IA is multiplicatively corrected by a real time path integral between two 

ground state configurations of the many-body system. We propose to evaluate the 

path integral, which embodies the FSI, by the SPMC method. Second, we test the 

principle of this method by applying it to a one-body system in an external potential 

well. This problem is exactly soluble in lD and easily treated numerically in 3D. Next 

we turn to strong potentials, such as the ones encountered in real systems, which 

require a special treatment. Finally, we solve a more realistic problem and calculate 

the QE response of a 4He nucleus, using a state-independent, central potential, that 

has been already employed successfully for static calculations by other authors [10]. 

This thesis is organized as follows. In Ch. 2, we set up the QE response for­

malism, introduce the concept of "Y-scaling", illustrate it (together with its own 

limitations) with experimental results from condensed matter and nuclear systems, 

and briefly review the relevant theoretical background. In Ch. 3, we derive the path 

integral formulation of the response, which allows us to establish Y-scaling and scal­

ing violations. In Ch. 4, we review the SPMC technique and develop it in a way that 

is best suited to our problem. In Ch. 5, we present our numerical methods and results 

for the one-body problem, (both MC and exact calculations), and we also compare 

the SPMC method to the stationary phase method when possible. In Ch. 6, we ad­

dress the problem of strong potentials and hard cores. Finally, in Ch. 7, we present 

the calculation for 4He and compare it to experiment. 
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Chapter 2 

Quasielastic Response and "Y Scaling" 

2.1 The Inclusive Cross Section and the Impulse Approximation 

Consider a system of N particles ( the target) interacting via a many-body po­

tential (which we assume to be spin and isospin independent for simplicity) and an 

external probe, interacting weakly with the constituents of the system. We are in­

terested in the rate of the inclusive process in which the probe scatters from the 

target transferring momentum q and energy w, and the final state of the target is not 

resolved experimentally. 

Let l¢i) and 1¢1) be the initial and final states of the N-body system; the tran­

sition matrix element between these states is given, in Born approximation, by 

(2.1) 
j 

= v(-q)(¢1lp(-q)l¢i)8(E1 - Ei - w), 

where the density operator p(q) is simply the Fourier transform of the one-body 

density of the system (e.g., the charge density for Coulomb scattering). By Fermi's 

golden rule, we obtain the transition rate between initial and final state 

(2.2) 
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Because the final state of the target is undetermined, the rate of the inclusive process 

is calculated by summing over all possible 111)- This yields 

a-(q,w) = 21r lv(q)l 2 NS(q,w), 

which defines the dynamic response, or structure factor, 

S(q,w) = L 1(1tlP(-<f)l7Pi)l28(EJ - Ei - w). 
f 

(2.3) 

(2.4) 

This definition is convenient because it separates the physics of the target (i.e., the 

many-body system) from that of the probe and from the kinematics. An integral rep­

resentation of the energy 8-function allows us to rewrite the structure factor explicitly 

as the Fourier transform of the time-dependent density-density correlation function: 

(2.5) 

where ( ) indicates the ground state average or, at finite temperature, the average 

over the thermal density matrix describing the state of the target, and the Heisenberg 

operators Pq(O) and P-q(t) respectively inject momentum q into the system at time 

0 and remove it at time t: 

N 

Pq(t) = Leiif•r;(t)_ (2.6) 
i=l 

The expression we have just derived can be extended easily to relativistic form 

( appropriate for high energy electron-nucleus scattering). We simply replace the 

density operator p(x, t) by the 4-current jµ(x), to get the explicitly covariant response 

tensor 
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It is easy to recognize that w00 reduces to S("if, w) in the non-relativistic limit. In what 

follows, we will remain within the workframe of non-relativistic quantum mechanics, 

unless otherwise specified. 

It is convenient to split the response into two parts, according to whether the 

particle absorbing momentum q is or is not the same one to give it up after time t. 

We thus define the incoherent response 

stij,w) = 2:N J di eiwt(~ e-iq•r;(t)eiq-r;(O))' 

z 

(2.7) 

and the coherent response 

(2.8) 

In the IA, as we discussed in the previous chapter, FSI are neglected. Thus the 

struck particle recoils freely, 

and one can write 

e-iij-r;(t)eifr;(O) lk... k ... ) = e-i(q,k;+q2 /2)tlk... k ... ) I,···, N I, ... , N · 

Insertion of complete momentum eigenstates into Eq. 2. 7 leads to 

(2.9) 

whereupon the incoherent response scales to a function of the single variable 

(2.10) 
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(we set the mass of the constituents equal to one for the moment): 

(2.11) 

where n(k) is the one-body momentum distribution. Therefore, in the IA, the QE 

cross section can be calculated from the static properties of the ground state or 

thermal ensemble of the many-body system. A similar treatment of sc leads to an 

expression that falls off very rapidly with q compared to Si. This happens because 

the coherent response probes the ground state density matrix at momenta of order q 

(typically much larger than Y). An explicit expression for S1A will be derived in the 

next chapter. 

Experimentally, one defines the functions 

(2.12) 

and looks for scaling by considering the behavior of qS at fixed Y as q increases. In 

the IA, one expects pc to vanish at high q, while pi approaches the q-independent 

function 

. 1 100 

PjA(Y) = -
4 2 dppn(p), 

7r IYI 
(2.13) 

from which the momentum distribution can be obtained simply by differentiating 

with respect to Y: 

(2.14) 



2.2 Review of experimental results 

Quasielastic scattering at high momentum transfers provides a way of measuring 

the momentum distribution through the "scaling" relation Eq. 2.14; this has been 

known for well over 20 years, [1] although the introduction of the term "Y-scaling" is 

more recent [2]. The method was first applied to condensed matter systems. 

Perhaps the most interesting application is the measurement of the momentum 

distribution of liquid 4He (LHe). 4He atoms obey Bose statistics and LHe is experi­

mentally found to have a superfluid transition at T>. = 2.17 K at standard pressure. 

Below T>., the behavior of LHe reveals the presence of a macroscopic quantum state, 

and it is natural to ask whether this can be identified with the Bose condensate. 

By measuring the momentum distribution above and below T>. one should be able 

to detect macroscopic occupancy of the zero-momentum state, if Bose condensation 

occurs [1]. Indeed, substituting into Eq. 2.13 

n(k) = no8k,o + n'(k), 

where n' ( k) is the excited states momentum distribution (i.e., that of the normal state 

of LHe), one finds 

1 100 

F(Y) = no8(Y) + - 2 dk k n'(k), 
41r !YI 

(2.15) 

that is, F(Y) now shows a 8-function peak at Y = 0. Obviously, this peak will be 

broadened by experimental resolution and also by FSI, and its detection by compar­

ison with the normal state F(Y) is highly non-trivial. Indeed even for temperatures 
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Figure 2.1 - Dynamic response of liquid 4 He near the quasielas­
tic peak, at momentum transfer q = 24 ..4.-l and temperatures 
T = 3.5 and 0.32 K. The excess strength around Y = 0 for 
the T = 0.32 K data is attributed to a ~ 10% Bose conden­
sate peak, broadened by experimental resolution and final state 
interactions. 

4 

as low as a few tenths of a Kelvin, where the superfluid fraction approaches 100%, 

the condensate fraction certainly doesn't exceed ~10% [11]. 

Fig. 2.1 shows a comparison of measurements of F(Y) at 3.5 and 0.32 K [11]. 

These measurements are carried out by inelastic neutron scattering. Momentum 

transfers as large as 24 A_-l have been used. Because one finds appreciable differences 

between the q = 7 and the q = 24 data [11], it would be important to reach even 

higher momentum transfers. 

QE scattering has been widely used in nuclear physics experiments as well. Here 

"Y-scaling" is expected only for negative Y; for Y ~ 0, the energy transferred to the 
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nucleon is high enough to excite its internal degrees of freedom, so that the picture of 

a point-like nucleon breaks down. This point is well illustrated in Fig. 2.2, showing 

the QE response of 12C measured by electron scattering. Thus the interest is focussed 

on large negative Y. Probing n(k) at large momenta is a way of testing nuclear inter­

actions at short distances (this is impossible to achieve by nucleon-nucleon scattering 

at high energy, again because of inelastic effects). 

..... 
I 

:> 
Q) 

c., ,.,__, 

-----:>-t 
C\l 

O' ,.,__, 
Ii-, 

8 

6 

4 

2 

X = 0.23-0.27 (GeV/c)2 

+ = 0.38-0.48 (GeV/c) 2 

ll: = 0.57-0.98 (GeV/c) 2 

+ = 1.16-1.49 (GeV/c} 2 

□ = 1.65-2.17 (GeV/c}2 

◊ = 1.51-2.52 (GeV/c}2 

-0.5 -0.25 0 

Y(GeV/c) 
0.25 0.5 

Figure 2.2 - Longitudinal response of 12 C, from electron scat­
tering data. Inelastic processes are dominant for Y 2: 0. The 
Q2 range is shown for each curve. 

Fig. 2.3 shows the QE response of 4He, 12 C, 56Fe, and 197 Au, as measured by 

the NE3 collaboration at SLAC [12] [13]. 

One can see that the data display quite impressive scaling behavior over several 

orders of magnitude in F(Y). However, a closer look at the data, at fixed Y, reveals 
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Figure 2.3 - Quasielastic electron scattering from nuclei for sev­
eral different kinematics. The response is extracted from the 
measured cross sections as described in Ref. [13]. Scaling be­
havior is displayed over several orders of magnitude, but strong 
scaling violations are also visible. Note the logarithmic vertical 
scale. 

0 

0 

that the response does indeed show a residual q-dependence, that can be as large as 

100% (Fig. 2.4). This observation [14] raises the question of the importance of FSI 

in nuclear physics. 

2.3 Review of theories of FSI 

Several calculations of FSI have been performed for both neutron scattering from 

quantum liquids and electron scattering from nuclei. The first appeared in the work 

of Hohenberg and Platzmann2 [1] on QE neutron scattering and the IA for liquid 

4He, and was based on the following simple considerations. The response at high q 

is dominated by the pole at the single-particle recoil energy, Er = w + Y 2 /2M. The 
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~(J;::: : : : : I: : ~~~M:G~V:c: : : : ] 
1 U 2 ~ 3 ~ 

Q2 (GeV/c) 2 

Figure 2.4 - The quasielastic response of 56 Fe at fixed Y for in­
creasing momentum transfer suggests that scaling may not have 
been attained at the actual experimental kinematics (scaling be­
havior requires that F( Q2 , Y) be independent of Q2 at fixed Y). 
Here, Q2 is minus the four-momentum transfer. 

effect of collisions during the recoil results in a mean free path, or lifetime, of the 

recoiling particle, which gives the energy Er an imaginary part. This shows up as a 

broadening of the QE peak. In this ansatz, the effect of FSI can be accounted for by 

convolving the IA structure factor with a lorentzian broadening function: 

F(Y) = 1: dY' R(Y - Y
1
)F1A(Y') 

R(Y) = l r = Re.!_ /oo dxeiY x-rx 
11" y2 + r2 7r lo 

(2.16) 

where the width r is related to the mean free path ,\ as follows: 

1 r = 
2

,\ = N <Y( q)/2V. 
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Thus, R(Y) is simply the Fourier transform of the probability that there be no collision 

as the particle recoils between O and x. For hard spheres of radius a, a = 27ra2 , 

whereby 

N 2 r = -7ra V . (2.17) 

For a strongly repulsive potential, one can choose an effective, momentum transfer­

dependent hard core radius a such that 

More relevant to the work developed in this thesis is the calculation by Gersch 

et al. [9] who were able to expand the structure factor as a sum of integrals of 

many-body correlation functions, the expansion parameter being the inverse of the 

momentum transfer q. At q ---+ oo, the response is given by the lowest order term, 

which they found to be exactly the IA. In this way, they could calculate not only the 

broadening of the QE peak in neutron scattering from LHe, but also its shift toward 

lower Y due to FSI at finite q. However, these results are only qualitatively correct; 

the extracted value of the condensate fraction is about 3%, lower than more refined 

calculations suggest ( no ~ 9%). 

In fact, the theory is not applicable to strong two-body interactions. The reason 

can be understood qualitatively for hard core (HC) interactions, where the scattering 

amplitude, which can be regarded as a renormalized potential, grows linearly with 

q. Therefore, O(V/q) corrections to the IA cannot be expected to vanish at high q. 

Indeed, as shown by Weinstein and Negele [5] with a perturbative calculation of the 

HC Bose gas, although Y-scaling is still observed asymptotically, the scaling function 

is not related in an obvious way to the momentum distribution. 
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Figure 2.5 - Hard Core Perturbation Theory fit to the dynamic 
response of superfluid liquid 4 He near the quasielastic peak ( q = 
24 }l-1 ; T =0.32 K. The theory includes empirical experimental 
resolution and final state interactions. 

4 

The persistence of correlation effects in the infinite-q limit is also a feature of 

Silver's theory of FSI, named "Hard Core Perturbation Theory" [15]. Like Hohenberg 

and Platzman, he predicts a convolution form for the QE response, but the broadening 

function he derives, largely from semiclassical arguments, is not a lorentzian. Despite 

its abstruse formulation, this theory simply amounts to replacing 

N 2 xr = x-1ra - V 

in Eq. 2.16 with fox dzf(z), where the collision rate per unit length, f(z), is taken to 

be 

(2.18) 
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where g is the pair correlation function of the liquid. This theory is in excellent 

agreement with neutron scattering data from liquid 4He (Fig. 2.5); it is expected to 

be successful at very high momentum transfers, which have been attained in neutron 

scattering, but its relevance to QE electron scattering is far from being clear (16]. 

An exact expression for the q--+ oo limit of F(Y) for a many-body system inter­

acting through an arbitrary potential containing a hard core has been derived recently 

by Gurvitz, Rinat, and Rosenfelder [17] employing the concepts of geometric optics. 

We will derive the same expression in Sec. 6.4, using the path integral formalism 

that we are going to establish in the next chapter. Thus we refer to Chapter 6 for a 

detailed treatment of this theory. 

This brief ( and by no means exhaustive) review of theories of FSI indicates that 

they generally suffer from one or more of the following limitations: low order trun­

cation of the perturbation expansion, inconsistent treatment of the static (ground 

state) and dynamic ( final state) properties, unrealistic (e.g., pure hard core) poten­

tials. Therefore, it would be desirable to develop a first-principles calculation of the 

dynamic response given a realistic potential to provide a link between the observed 

quasielastic cross sections and the inferred momentum distributions. 
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Chapter 3 

Path lntegra I Representation of the QE Response 

Functional integrals are probably the most elegant way of approaching the many­

body problem and deriving perturbation expansions [18). They also provide a way to 

get nonperturbative results, as often required in treating strongly interacting systems. 

In what follows, however, we shall introduce and develop functional integrals simply 

because they are the only tractable (nonperturbative) numerical technique for solving 

the many-body problem. 

3.1 The Dirac-Feynman Path Integral 

We start by recalling the Dirac-Feynman formulation of quantum mechanics. We 

work with a single particle in one dimension for simplicity. Let H be the hamiltonian 

operator ( again, we put m = 1) 

H = T + V = P 2 /2 + V. 

The Schrodinger equation 

(3.1) 

is formally solved by 

(3.2) 
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The time evolution operator e-iHt is called the propagator, because the knowledge 

of its matrix elements allows one to "propagate" the wavefunction in space-time: 

'ljJ(x', t) = J dxK(x', x; t)'ljJ(x, 0), (3.3) 

where 

(3.4) 

Therefore, knowing the propagator is equivalent to having solved the Schrodinger 

equation (its Green's function is indeed G = -iK). For the free particle, the solution 

is found easily by inserting a resolution of unity in terms of momentum eigenstates: 

If V -=I- 0, a problem arises from the non-commutativity of V and T: 

exp(it(T + V)) = exp(itT) exp(itV) exp(-t/2[V, T] + · · ·) 

[V, T] = (V" + 2iV' P)/2. 

Thus, if the operator [V, T] is finite ( as is the case if the potential is well-behaved), 

the error made by neglecting the commutator goes to zero, as the time interval E-+ 0, 

Upon inserting a complete set of momentum eigenstates, one has 

K(x', x; E) = e-itV(x) Ji: eip(x1-x)e-itp2 /2 + 0( E2) 

1 ei(x1-x)
2 
/2E-ifV(x) + 0( E2), E -+ 0. 

~ 

(3.6) 
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This suggests how to proceed for finite t. By slicing up the time, E - t/N, and 

inserting complete sets of position eigenstates in the definition above at each timeslice, 

we derive a most useful convolution identity: 

K(x',x;t) = (x'l(e-iHt)Nlx) 

= J dx1 ... dxN-1K(x', XN-li t:)K(xN-l, XN-2i t:) ... K(x1, x; t:). 
(3.7) 

Note that the sequence of positions at subsequent time intervals 

defines a continuous, albeit not differentiable, path in coordinate space; hence the 

term "Path Integral." 

By convolving the short time propagator with itself N - 1 times, we get 

1 J N-l dx. . I:N (xi-xi-1)2 I:N 
}'.7( I t) II J i . 2 if: J·-_1 V(xJ·) 

'I. x x· = ----== ---e J= 1 € 

' ' ~ j=l ~ ' 
(3.8) 

where have neglected a remainder that goes to zero as N -+ oo ( or equivalently 

E-+ 0). The remainder can be made higher order in Eby rearranging the kinetic and 

potential energy terms in the hamiltonian; for instance, writing H = V/2 + T + V/2 

yields 

while the expression for K ( x', x; t) is changed only at the endpoints of the path. 
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It is interesting to observe that the argument of the exponential is nothing but 

the discrete approximation of the action along the path { x j}; indeed, as E ---+ 0, we 

have 

{xj}---+ x(r) 

t (x; -
2
:;-i)' - < f,v(x;)--+ l dr(½(::)' - V(x(r))), 

j=l j=l 

(3.10) 

and it is conventional to use the shorthand notation 

1
xl 

K(x',x;t) = x V[x(r)]eiS(x,t)_ (3.11) 

Path integrals are particularly appealing because they are a rigorous approach 

to quantum mechanics, but at the same time allow us to exploit our intuition for 

classical systems (the concept of path is purely classical). We shall see how this proves 

useful below. It is worthwhile to mention that functional integrals can be applied with 

equal success to statistical mechanics. The replacement it = f3 in the discussion above 

yields a path integral representation of the Boltzmann factor exp(-/3H) (where now 

the paths are defined in imaginary time, or inverse temperature); this, combined with 

stochastic integration techniques, provides one of the most powerful tools in modern 

theoretical physics. 

We conclude this brief introduction by observing that Eq. 3.11 is trivially ex­

tended to arbitrary number of particles N in a space of arbitrary dimension d. All 

one has to do is to write down the action for the many-body system, and consider all 

the possible paths in a d x N configuration space. 
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3.2 The response operator 

In this section, we apply the path integral formalism to the calculation of the 

(scaled) QE response 

qS(q w) = _q_ J dteiwt < eiHtp ➔e-iHt ➔ > 
' 21rN -q Pq . (3.12) 

We recall that we have set 1i = 1 and, in the rest of this chapter, we can also put 

m = 1 without loss of generality. We start by inserting complete sets of position 

eigenstates: 

qS(q,w) = J dxdx'e(x,x')O(x',x) (3.13) 

Here x denotes the ensemble of all the particle coordinates; these are n = N x d in 

number for N particles in d dimensions. e(x, x') is the density matrix element and 

(3.14) 

is the "response operator." We now introduce path integral representations of the 

propagators forward and backward in time 

(3.15) 

Consider the incoherent response first. For a finite interaction potential V, we 

expect that the main contribution to Si comes from the IA, Eq. (2.13); in fact, this 

is a rigorous result (19]. As discussed in the previous section, this corresponds to 

considering a free-particle recoil. Therefore, a good starting point will be to shift to 
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new path integration variables z±( T) centered around the path of the freely recoiling 

particle: 

T 
x+(T) = z+(T) + (xo - x)- + x 

t 

x_(T) = z_(T) + (xo - x')!.. + x' 
t 

(3.16) 

(so that z±(O) = z±(t) = 0) and to substitute xo----+ xo + (x + x')/2, thus obtaining 

The subscript II denotes the coordinate of the recoiling particle along the momentum 

transfer vector q; we will use the subscript J_ to indicate all the remaining n - 1 coor­

dinates ( the "spectators"). V± is the potential evaluated along the paths X± ( T). The 

first line of the formula above depicts a particle receiving momentum q at time zero, 

propagating in a straight line between x and xo forward in time t, and then backward 

to x' after giving up momentum q. The path integrals in the second line describe the 

quantum fluctuations around this classical picture, as well as the interactions within 

the many-body system. The IA and the approach to scaling, however, are not yet 

evident. A few more algebraic steps are needed, which again are suggested by the 

physics. 

As we argued at the end of the previous section, we expect shorter and shorter 

time scales to be relevant to QE scattering as the momentum transfer grows larger 

and larger. In such a short time, the struck particle will propagate a finite distance 

along the direction of its high-speed recoil (i.e., parallel to q), while the motion 

in the other directions ( and that of the other particles in the system) will tend to 

be frozen. (Incidentally, we note that this picture is not justified in presence of 
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strong interactions, when "billiard ball" collisions can take place. However, when 

we deal with hard cores in Ch. 6, we shall see that we can still employ these ideas, 

in the eikonal approximation.) As we are dealing here with finite interactions, we 

choose new sets of coordinates in line with our reasoning. We introduce velocities by 

defining xo - vt and explicitly scale time by the inverse of the momentum transfer, 

t - (l - l)(x - x')11/ q. Notice that now particles moving at finite velocity will travel 

only distances ~ 1/ q. The recoil velocity, vii, has to be proportional to q, so we set 

vii ("' + 1 )w / q. Upon introducing these changes of variables, we arrive at 

~ ✓wlx-x'l11 ✓wlx-x'l11 where (j - r /t is the scaled time, e - el q ' K, - K,/ q and Z± -

(±-/itT- Notice that e, 'i., and Z± are all suppressed as 1/ .jq_ at high q; i.e., at high 

momentum transfers, the argument of the potential becomes independent of the fluc­

tuations around the free-particle recoil. We emphasize that Eqs. 3.18, 3.19, although 

derived largely from intuitive arguments, is formally exact. 

Before we discuss the result we have just derived, we rewrite Eq. 3.19 using 

a Fourier representation of the path, which makes the kinetic energy diagonal (i.e., 

local) in the path coordinates. This will prove convenient in the next sections, as 

well as for computational purposes. Because the endpoints of the paths are fixed 

((±(a= 0) =(±(a= 1) = 0), we can write 

./2 00 1 
(±(a)= - L -rJm± sin(m1ra), 

7r m 
m=l 

(3.20) 
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so that the action becomes 

(3.21) 

The argument of the potential will be written down explicitly in a later chapter. 

Equation 3.18 reveals that we have succeeded in separating the IA contribution 

from terms that are of order 1 / q or higher. Indeed, since we are considering finite 

two-body interactions, if we let q ~ oo, we easily recover the IA, Eq. 2.13, as all 

integrals in Eq. 3.18 become trivial, yielding 

(3.22) 

It has long been known that the 0(1/q) correction to the IA can be written 

down in a rather straightforward fashion. This is also easily derived from Eq. 3.18. 

We simply expand 

(x-x')11 ~ 11 (x-x') 11 
exp(-i--~(e-1) do-V±) ~ 1 + i II do-V± 

q O q 0 

and evaluate the potential at the zeroth order path in 1 / q ( Z± = 0), to obtain 

!1{(x1,x) =-i-e-iY(x-x')11<5'(n-l\x - x')..1 (x - x')11 
21rq 

x 11 

do- (V(x - (x - x')110-) - V(x')). 

Upon substituting Eq. 3.24 into Eq. 3.13, we recover Eq. 31 of Ref. [9]. 

(3.23) 

(3.24) 

We turn now to the coherent response. We rewrite the matrix elements of the 

density operator in Eq. 3.14 as follows 
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Therefore, grouping the identical contributions from all pairs, we obtain 

(3.25) 

1.e., our discussion of the matrix elements ni(x', x) remams unchanged, the only 

difference being a "coherence" factor multiplying the density matrix. This factor is 

responsible for the rapid decay of the coherent response at high q, where it measures 

the probability of finding two particles with very high momenta in the equilibrium 

density matrix of the system. 

Now that we have set up the path integral formalism in a way that makes the 

approach to scaling quite transparent, we are left with the problem of carrying out 

the integrations. These are of two different kinds: Eq. 3.13 is the average of the 

response operator n( x', x) weighed by the density matrix elements e( x, x'); we expect 

standard MC techniques to be suitable for this calculation. However, Equation 3.18 

is a high dimensional oscillatory integral, which we propose to evaluate by the SPMC 

method. 
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Chapter 4 

The Stationary Phase Monte Carlo Method 

4.1 The Monte Carlo Method 

In the previous chapter, we have exploited the path integral formalism to write 

the QE response as a multidimensional integral. This often gives one a lot of insight 

in the many-body problem, as we have seen. Further, it provides a practical compu­

tational tool, if the integrals can be evaluated stochastically. The reason is that the 

precision of the result improves as the square root of the number of evaluations, Ns, 

of the integrand, because of a statistical error 0(1/ N; 12 ) ( as expected from a method 

based on the central limit theorem) [20]. Instead, for conventional quadrature meth­

ods ( or direct integration of the Schrodinger equation) the error is 0(1/ N/ D) in 

D dimensions (the actual value of, depends on the quadrature scheme used, e.g., 

1 = 4 for Simpson's rule). Therefore, stochastic quadrature outperforms conventional 

quadrature as soon as D > 8. But there is also another reason, that can become com­

pelling for small D. Often the main contributions to a physical observable come from 

a very small, a priori unknown, region in phase space. It is greatly advantageous, in 

terms of "signal to noise" ratio, that the observable be preferentially sampled over 

those more important regions; usually "importance sampling" can be incorporated 

into the Monte Carlo method in a very straightforward fashion. 

The following simple example illustrates the basics of stochastic integration, or 

Monte Carlo method. Consider the integral 

( 4.1) 
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f(x) = g(x)p(x), 

iv dDxp(x) = 1 

p(x) 2:: 0, 

so that the original integrals becomes 

I _ ..::....:f V_;_d_D_x_g (_x_)p-'-( x---'-) 
- fvdDxp(x) 

We shall hereafter use the shorthand notation 

I=< g >p 

( 4.2) 

( 4.3) 

( 4.4) 

for any integral of this kind, i.e., that is expressed as the average of an observable g 

with weight p. Note that in many problems of interest, integrals already come in this 

form. For example, in statistical mechanics, the average of the physical observable 0 

function of the coordinates { x} is given by 

fv dDxO(x) exp(-f3H(x)) < 0 >= ..;;_:_ ________ _ 
fv dDx exp(-f3H(x)) 

( 4.5) 

In any case, once the integral has been cast in the form of Eq. 4.4, one proceeds 

by drawing Ns independent samplings {xi} of the probability function p(x), and 

approximates the integral by 

(4.6) 
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One can show [20] that as N grows large, IN becomes normally distributed around 

around I, with standard deviation 

_ ( 2 2)1/2/ r;:;-N 
O"Ns - < g >p - < g >p V lVs, (4.7) 

which allows one to write 

This approximation becomes in principle exact as Ns - oo, but in practical cases, 

as already mentioned, an appropriate choice of the weight p( x) allows one to obtain 

sufficiently small variances a at finite Ns, as evident from Eq. 4. 7. This is called 

"importance sampling." The Stationary Phase Monte Carlo method involves the 

construction of such weight. Numerous other examples can be found in the literature. 

4.2 The Principles of the SPMC Method 

In view of the problem we set out to solve, namely the evaluation of the path 

integrals in Eq. 3.18, it is crucial to investigate the existence of a good sampling 

weight for the oscillatory integrals that occur in a generic quantum dynamics problem 

[21]. Many of the results reported in this section were originally derived by Doll, 

Freeman and coworkers (DF), who were motivated by the need of calculating dynamic 

correlations at finite temperature [22], i.e., functions of the type 

CAB(t) = tr(exp(-,BH) A exp(iHt) B exp(-iHt))/tr(exp(-,BH)). (4.8) 

This bears a strong resemblance to our problem, which nonetheless is complicated 

by the fact that we work in frequency space and, above all, that we formulate the 

correlation function in a way (see Eqs. 3.13, 3.14) that forces us to work with integrals 
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of pure phase factors. Thus, while DF have studied extensively [22] ,[8] the model 

problem 

J dxp(x)exp(if(x)) / J dxp(x), ( 4.9) 

where p( x) is a smooth probability distribution stemming from the Boltzmann factor, 

we have to face integrals of the type [see Eq. 3.18] 

J dxexp(if(x)). (4.10) 

In any case, the strategy is to follow DF's basic idea: to generate a weight for a 

MC calculation that samples the integrand more densely in the regions where the 

phase interference is constructive; i.e., near the stationary points. Let us consider the 

following one-dimensional example, for which generalization to arbitrary dimension 

is straightforward. 

Starting from the identity 

I - J dx if(x) = J dx eif(x) J dy P(y) ei(f(x-y)-f(x)), ( 4.11) 

where P(y) is a normalized "probability" function (f dyp(y) = 1), peaked around the 

origin, we write 

D( x) = / dy P(y) ei(f(x-y)-f(x)) ~ J dy P(y) e-iyf'(x) - D1 ( x ), ( 4.12) 

whereupon 

( 4.13) 
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This is convenient if the r.h.s. integral in Eq. 4.12 can be done easily. This is the 

case if P(y) is a gaussian, P(y) = e-Y
2

/
2

E
2 
/~, as we will assume hereafter. The 

function 

( 4.14) 

is called the SPMC filter. If<: is small enough, D1(x) is a good approximation for D(x) 

and one can hope to be able to evaluate the difference 5D( x) = D( x )-D1 ( x) ~ D( x) 

with a few-point MC calculation: 

( 4.15) 

The integral ( 4.13) has the pleasant feature that the function D1 ( x) now provides 

a good weight for a stochastic evaluation of J: 

( 4.16) 

where N = J dx D1(x) denotes the normalization of D1 and we use the notation 

( · · ·) n1 to denote average with the weight function D1. This weight samples prefer­

entially around the stationary points of the original integral ( 4.10) ( where f' is small), 

helping to filter the signal from the noise. An obvious complication is that one has 

to normalize the sampling weight (i.e., calculate N). This is in general exceedingly 

harder at zero temperature (see Eq. (4.10)) than it is at finite temperature (Eq. (4.9)), 

where one can cautiously seek help in the identity 

( 4.17) 
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Fortunately, in the application of ( 4.16) to our problem, we need not worry about 

the normalization of the weight, which turns out to be straightforward, as we will see 

below. 

Instead, a more serious problem is encountered in applying this method to eval­

uating a real time path integral such as that given in Eq. 3.18. Indeed, the main 

contribution to the phase (i.e., to the action) comes from the kinetic energy, which 

is a quadratic form in the integration variables. Let us consider the trivial integral 

I = J dx eix
2
12 ( this integral has also been considered by D F, though still in the 

2 2;2 context of "finite temperatures"). The SPMC filter is a gaussian, e-1: x , decaying 

too slowly to filter the noise coming from the oscillations of the integrand. However, 

quadratic phases offer the advantage that the function D(x) can be evaluated exactly: 

( 4.18) 

Now, since 8D(x) = 0, E can be chosen arbitrarily and the integral becomes 

( 4.19) 

The second exponential provides the weight for a MC calculation of the oscillatory 

integral. Furthermore, a good choice for E ( E ~ 1) will suppress the oscillations, as 

the phase has acquired a factor 1/(1 + E4 ). 

If the phase in J is of the type f(x) = (x2 /2 - V(x)), we simply replace x in 

Eq. ( 4.18) by x - V'(x ), thus obtaining an approximation for D(x ), D2 (x ), that is 

correct up to terms O(V"): 

D ( ) ( . 2)-1/2 ( E
2 (x - V'(x))2) ( . E

4 (x - V'(x))
2

) 
2 x = 1 - ZE exp --

1
-+-E-4 ---2

--- exp -z-
1

-+-E-4 2 

( 4.20) 
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In this case, however, the choice of E is less obvious than for a quadratic phase. One 

has to compromise between high values of E, which dramatically improve the signal 

to noise ratio but make a MC calculation of 8D = D - D2 impractical, and low values 

of E, which yield the correct result but with extremely large variance. We shall be 

content with choosing E ~ 1 and ignoring 8D [23] (we observe that 8D ~ O(V") and 

thus expect it to be reasonably small, when working with finite, smooth potentials; 

this issue will be addressed more rigorously in the next section). 

In this way, we can write 

( 4.21) 

and the only problem left is the choice of the normalized weight w( x) to be used in 

the MC evaluation of ]z. For this, we propose to take the normalized probability 

distribution 

( 
E2 x2)/ w(x) = exp --- -

1 + c4 2 
( 4.22) 

Once again, we expect this choice to be appropriate whenever the phase is largely a 

quadratic function of the coordinates. 

4.3 Simple Examples 

The SPMC approach to quantum dynamics is still in its infancy. The literature 

offers not more than a handful of essentially trivial examples where the method has 

been applied successfully [8] [22] [23] [24] [25] [26]. This makes it hard to appreciate 

its potential and limitations thoroughly. In the following, we try to build up our 

intuition by solving some simple one-dimensional integrals (not directly related to 

any physical problem). 
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Consider the integral representation of the Airy function 

( 4.23) 

Using the notation of the previous section, p( x) = 1 for all x and the SPM C weight 

1S 

Hereafter, we take t = 1. 

,,.--.... 
..--1 .._,,, ...... 
~ 

2.0 

1.5 

1.0 

0.5 

0.0 

-0.5 

-1.0 5 10-

X 

E 

Figure 4.1- Real (x) and imaginary part of the Airy function in­
tegral representation (Eq. 4.23), obtained by the SPMC method 
with N 8 = 4000 and Ny = 10. The dotted lines represent the 
exact value. 

( 4.24) 
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The normalization N of this weight is calculated easily by a standard integra­

tion routine available in the IMSL library. The calculation of the Airy function thus 

requires only two MC averages (see Eq. 4.17), one weighted by D1(x) for the observ­

able, and one weighted by a gaussian for the correction oD(x) (Eq. 4.15). The latter 

has to be carried out for each one of the Ns samplings of the observable, and it is 

therefore desirable to perform a small number of samplings Ny ~ N 8 • 

,......._ 
.....-i ..__.., ...... 
-c:c: 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 4 10-

X Ny=20 

□ Ny=2 

◊ Ny=0 

X ◊ 

·····')(''''·~---·~·····~---·~---··············· 

□ □ □ 
X 

◊ 
◊ 

cS 
◊ 

Figure 4.2 - Real part of the Airy function integral representa­
tion, obtained by SPMC. The different curves show the effect of 
increasing the number of points used in sampling the correction 
15D. The error bars for each values of E are comparable to those 
displayed in Fig. 4.1. 

In Fig. 4.1, we plot the results for Ai(l) obtained with Ns = 4000, Ny = 10, 

as a function of t. It is quite clear that the noise becomes considerably smaller as 

we increase c; however a systematic error shows up for E 2:: 2. One would think 
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that slightly increasing Ny eliminates this inconvenient; but this is not the case even 

for Ny as high as a few hundred, where the computation is already extremely time­

consuming ( of course one eventually has to recover the right answer as Ny - oo). 

The dependence of the result on Ny is shown in Fig. 4.2. From this example, it 

appears that for f. ~ 0.1, where 8D can be safely ignored, or readily computed with 

a few-point calculation, the SPMC method offers a thirty-fold improvement over the 

brute-force (E = 0) evaluation of the oscillatory integral. 

--... 
....... ........., 
1--1 

Cl) 

~ 

2.0 

1.5 

1.0 

0.5 

0.0 

-0.5 

-1.0 5 10-

Figure 4.3 - The oscillatory gaussian integral (Eq. 4.25) with 
SPMC; N. = 4000. 

Let us consider now the integral 

( 4.25) 
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Now the statistical errors are considerably larger, and the choice of E would normally 

be much less obvious than before. In this case, it is advantageous to follow the method 

outlined at the end of the previous section, which allows one to evaluate integrals of 

quadratic phases with large E and no systematic error. The effect of doing so is 

illustrated in Fig. 4.3. 

4.4 Validity and Limitations of the SPMC Method 

Given that in some interesting applications (e.g., QE scattering, as treated in 

this thesis) the SPMC filter can only be evaluated approximately, it is important 

to assess the validity of such approximations. In particular, we want to discuss the 

validity of our approximation for nearly quadratic phases. To do so, we start from 

the exact path integral for the response operator (Eq. 3.18) 

( 4.26) 

(4.27) 

Here we assume that the v..1_ integration, whose main contribution to the phase is 

linear, can be done reliably ( we shall take on this point in the next chapter). In the 

remaining integrals, the phase is predominantly a quadratic function of r, (the sine­

transform of(, according to Eq. 3.20), "', and t. We want to show that, if the K,, t 
integrals can be handled in a controlled way, the approximation ( 4.20) is essentially 

equivalent to a loop expansion. This is not surprising, because our method accounts 

exactly for the kinetic energy, and approximates the potential energy, neglecting some 

terms of order V" or higher. 
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Consider the path integral 

( 4.28) 

Upon slicing up the time (and using a Fourier representation of the path), this be­

comes the iteration of a prototype integral 

J dx eix2 /2(t/N)-iV(x)t/N. 

J21rit/N 
( 4.29) 

We rewrite this trivially as 

( 4.30) 

(taking t > 0 for concreteness). The exact SPMC filter is given by the integral 

If the potential is finite and smooth, to be definite, of order one ( this can always be if 

units are chosen appropriately), then the error we make by approximating D(x) with 

Eq. 4.20 is found to be of order 

( 4.32) 

here we recall (Sec. 3.2) that 

t = (l -e)(x - x')/q, ( 4.33) 
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where ( x - x') is the typical lengthscale of the density matrix. Now, the e, K integrals 

are in turn carried out by SPMC; in these integrations, the parameter c can ( and 

should) be chosen independent of ex. Let us call it c1• Then e turns out to be of order 

c1. Thus we find 

(x - x') 
t~c1---, 

q 
(4.34) 

so that we want this condition to be fulfilled: 

( 4.35) 

We shall typically use cz ,::;; 1, so that we demand 

Ex(x - x')/qN ~ 1. ( 4.36) 

Evidently, the higher N we choose, the better our approximation for the SPMC weight 

will be. However, since N determines the dimension of the oscillatory integral, it won't 

be convenient to choose it too large, because in that case we would need a very high 

value of Ex to reduce the noise. Again, we emphasize that one has to look for an 

optimal intermediate range of N, Ex. 

Finally, it is important to point out that the method we have presented is similar 

to the stationary phase approximation [27], because it is not exact (if we ignore 

liD), but it relies on the "smoothness" of the potential. However its application is 

much more straightforward, since it requires neither evaluations of determinants nor 

searches for stationary points, which may become prohibitive for high-dimensional 

integrals ( we shall encounter a concrete example in the next chapter). 
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Chapter 5 

A Model Problem 

In Chapter 3, we have derived an exact expression for the dynamic response of 

a non-relativistic many-body system. We have used a path integral representation 

of the time evolution operator and have chosen a reference path as suggested by the 

physics of the problem we want to address, namely the approach to scaling. Indeed, we 

were able to derive, in a straightforward way, the scaling form of the structure factor 

at high momentum transfers and the 0(1/ q) correction to scaling; both expressions 

are well known, and have been derived by different means by other authors. 

In view of the generality of the path integral method, one expects it to be of some 

help in those cases in which the nature of the interactions or the experimental data 

available require more than simple perturbative expansions. However, while there 

exist well established techniques for computing with path integrals in imaginary time, 

only recently have people turned to dynamics problems requiring the evaluation of 

path integrals in real time. We have seen in Chapter 4 that the SPMC method offers 

some promises, especially when the relevant time scales in the problem are small; 

however, more work is clearly needed in that direction. In fact, not only do we lack a 

general technique, but we are not even aware of any attempt made at solving realistic 

problems. 
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5.1 The Exact Solution 

It is important to test the SPMC method by solving model problems, for which an 

exact solution is available either analytically or by numerical quadrature. This is the 

case for the one-body problem, and also for the two-body problem, where the center­

of-mass motion is separable. Here we show how the calculation of the structure factor 

is essentially reduced to computing the ground state and two scattering eigenstates 

of the Schrodinger equation. Let us consider a quantum system in the ground state 

17Pa), such that 

Hl?j,o) = Eol7Po). 

According to Eq. 3.12, we write the response as 

S(q,w) = 2:N J dteiwt(1PoliHtp_qe-iHtNl1Po) 

= 2:N J dtei(w+Eo)t(1PolP-qe-iHtNl1Po). 

(5.1) 

(5.2) 

Now insert complete sets of position eigenstates and express the resulting propagator 

in terms of the retarded and advanced Green's functions [28] 

K(x',x;t) = i(G+(x',x;t)0(t) + a-(x',x;t)0(-t)), (5.3) 

to obtain 

j dtei(w+Eo)tK(x',x;t) = 2ilmG+(x1,x;w + Eo), (5.4) 

whence 

S(q,w) = -~ j dxdx'?j,o(x)?j,~(x')e-iq•(x-x')1mG+(x',x;w + Eo). (5.5) 



-42-

Let us start from the one-dimensional case. Again we work with unit mass for 

convemence. The retarded Green's function satisfies the inhomogeneous Schrodinger 

equation 

(5.6) 

whose homogeneous associate is of the Sturm-Liouville type [29]. The boundary 

conditions simply require that a+ be the outgoing Green's function: 

Q+ ~ e±ikx, X -+ ±oo. 

Let x>(<) denote the greater (smaller) of x, x', and 'lj)>(<) be two outgoing solutions 

to the homogeneous equation, such that 

X -+ 00 

X-+ -00. 

Then we have [30] 

(5.7) 

where the Wronskian 

is a function of k = ✓2(w + Eo). This shows that we only need to compute the 

ground state and two scattering states of the potential V( x) to calculate the response 

function. 
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ln three dimensions, with a central potential, we can still exploit the simple 

result of the Sturm-Liouville problem, after a partial-wave decomposition. We write 

where the Y's are spherical harmonics and g+ is the solution to the inhomogeneous 

radial Schrodinger equation 

(::2 + k2 
- 2V(r) - l(l + 1)/r2)gt(r1

, r; k2 /2) = 28(r - r1)/r2
, (5.10) 

with the boundary conditions 

g+ eikr r --+ 00 
l ~ ' 

Denoting by u1, vi the solutions to the radial equation that are regular at the origin 

and outgoing at infinity, respectively, we have 

(5.11) 

The response is now computed by substituting a+ into Eq. 5.5, taking a spherically 

symmetric ground state, and using the identity 

oo l 

ifr = 41r L L ilj,(qr)Y,*m(q)Yr(f·)' (5.12) 
l=D m=-l 

where j1 are the spherical Bessel functions of the first kind. The angular integrations 

are now trivial and one finds 

S(q,w) = -4 j drdr' rr''ljJo(r)'ljJo(r') Ljz(qr)jz(qr1)(2l + 1) 
l 

X rm(w(~,v)uz(rdvz(r>)). 

(5.13) 
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Again all we need is the ground state wave-function and two scattering states for 

each partial wave. In practice, computation is possible because only a finite number 

of partial waves contribute to the infinite sum. This results from the behavior of the 

regular Bessel functions at the origin and from the finite range, R, of the ground-state 

wavefunction: 

r--+0, 

so that 

l ::=; lmax ~ qR. 

We are now ready to look at the details of the computation. As we simply want 

to test the principles of our method, we choose a finite attractive well, 

(5.14) 

This potential lacks an important feature, displayed by atomic and nuclear potentials, 

namely a strong short-distance repulsive component. We shall address this problem 

in the next chapter. 

The Schrodinger equation is integrated numerically using the fourth order Nu­

merov algorithm [31]. Incidentally, we remark that the eigenstates are known in one 

dimension [32], being linear combinations of the associated Legendre functions [33]. 

This provides a check of the numerical solution. Once we have found the ground 

state and the retarded Green's function, Eq. 5.13 can be integrated using either some 

quadrature rule (we used Simpson's rule), or simply the Monte Carlo method. In 

the latter case, the ground state density matrix g( x', x) = 1PO ( x )1Po ( x') is used as a 

weight, and ground state configurations are generated using the Metropolis algorithm 

[34]. 
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5.2 The SPMC Calculation 

The dynamic response was written exactly in Chapter 3 as the ground state 

average of the response operator (Eq. 3.13); the latter was in turn expressed as a 

real-time path integral (Eq. 3.18). The ground state average is computed by Monte 

Carlo, as discussed in Sec. 4.1. 

Next we consider Eq. 3.18. The path integrals are carried out, as usual, by 

keeping a finite number of modes in the Fourier representation of the paths and 

discretizing commensurately the time integrals of the potential: 

1° 'D(+ 'D(_ ei(S+(C+,(+,t)-S-((-,(_,t)) 

J 
aM-+ aM ➔ M M+l 

= (~:)M 1J- exp(isgn(t)]; ½UY~)2 /2 - it/(M + 1) ~ V+j (5.15) 

M M+l 

- isgn(t) L ½UY~) 2 /2 + it/(M + 1) L V_j), 
m=l ~1 

where (o = (M+l = 0. M modes are needed for M + 1 timeslices; m numbers the 

modes, and j the timeslices. Otherwise, the notation is that used in Chapter 3. We 

write down the argument of the potential explicitly, for the 3D case: 

V+j = v(z/({ij+}) + ((w/q 2)(x - x')11(K + l)(l-1) -(x- x')11/2)aq 

+ x - (x - x')J_a/2 + v_1_(x - x')11/ q(l - l)a) 

V_j = v(zj-({ij-}) + ((w/q2)(x - x')11(K + l)(l-1) + (x - x')11/2)aq 

+ x + (x - x')J_a/2 + v_1_(x - x')11/ q(l - l)a) , 

with q = q/ q, z = ( vftT, ( and ij are related by a sine transform. 

(5.16) 

(5.17) 
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These expressions, together with the"', e integrals, result in a 6M +2 dimensional 

oscillatory integral, whose phase reduces to a quadratic form as t -----+ 0. We treat it 

by SPMC, as explained in Chapter 4. To make the correspondence with the formulas 

derived in that section more straightforward, we chose to use a Fourier representation 

of the path. As for the choice of the SPMC parameter E, we have used different values 

for the integrals over the "lightcone" variables "', e than for the path integral. We will 

denote these by Ez and Ex, respectively. 

A different treatment is required in carrying out the integral over the transverse 

velocities, v1_, which arises whenever there is more than one particle in the system 

or the spatial dimension is greater than one. The t -----+ 0 limit of the phase is linear 

in v1_: this indicates that the SPMC method is not suitable for this case, because 

there are no stationary points. However, in the same limit, the integral yields a 8-

function in the transverse coordinates of the density matrix. This suggests that a 

good way of proceeding is to expand the potential through second order in v 1_ and 

do the resulting gaussian integral analytically, thus obtaining a quadratic phase in 

(x - x1)1-. Note that, doing so, we are neglecting terms of order 1/q4 in the phase; 

therefore we expect the resulting approximation to be very accurate. 

At this stage, we have gained some insight in the calculation. Only very small 

values of (x-x')1- contribute constructively to the integral, i.e., l(x-x'hl ~ (x-x')11-

This means that it would be inefficient to generate x, x' from the density matrix, 

which is isotropic. Instead, we take advantage of the new quadratic phase in ( x -x'h 

and generate values of (x - x').l_ by SPMC, obtaining a narrow gaussian distribution 

around zero at high q. The density matrix is used to generate (x + x') as well as 

( x - x')11 via the Metropolis algorithm. It is amusing (but perhaps not surprising!) 

to note that the normalization of this weight is now 21Cq S1A(Y = 0). 
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4- 6 

q 

IA 
exact 

X SP 
0 1/q 
◊ SPMC 

8 10 

Figure 5.1 - F(q, Y) as a function of q at fixed Y = -0.5 for a 
particle in the lD potential well V(x) = -0.Scosh- 2 x. In our 
units, h = rn = l. The ground state energy is E 0 = -0.37; the 
minimum allowed momentum transfer is q0 = 1.5. Here and in 
the remaining figures we plot ±lo- error bars. 

12 

We have calculated the QE response for a particle in the 1D well V(x) = 

0.8cosh-2 (x) and in the 3D spherical well V(r) = 2lcosh-2 (r). The potential sets 

the length scale, and hence the momentum scale. The ground state energies are re­

spectively Eo = -0.36 and Eo = -12.5. For any given Y, the requirement that the 

struck particle be excited to the continuum (i.e., that w > -Eo), fixes a minimum 

value for the momentum transfer: 

q > qo = -Y + Jy2 - 2Eo. (5.18) 

The time scale of the problem is set by the ratio (Ix - x'l)11/ q. If the product of this 

number and the average value of the potential is smaller than one, one can regard the 
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time scale as "small," and the intuitive arguments at the end of Sec. I apply. However, 

as the product approaches one, we expect the SPMC method, as formulated in the 

present paper, to break down. This will clearly happen for very strong potentials at 

any q, and for weak potentials near q c:::: qo. For our potentials, this happens around 

q;;;; 2 in lD and q < 10 in 3D. For nuclear interactions, considering the attractive part 

of the potential only, one estimates that SPMC breaks down at momentum transfers 

smaller than 1 Ge V / c. 
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····························i··········································· 

0.46 ! 

0.45 
0 2 4 6 8 

Figure 5.2 - F(q = 3, Y = -0.5) as a function of the SPMC 
parameter€; (£1 = 1). The potential is the same as in Fig. 5.1. 

10 

For the particle in lD, we have calculated the QE response at fixed Y = -0.5 

for all the allowed values of q. In Fig. 5.1, we plot Fi(q, Y) vs. q and compare it to 

the exact result (solid line) as well as to the IA, which is a constant. We have also 
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performed the real time integrals (5.15) by the stationary phase (SP) method [27] and 

plot the results for comparison. The time integrals were carried out on a 16 point grid 

(i.e., we keep 15 Fourier modes). The SPMC parameters were chosen to be El= 1 and 

Ex = 2. We have checked the E dependence of the results by calculating at different 

Ex and E[. In Fig. 5.2 we plot the scaled response F(q = 3, Y = -0.5) with E[ = 1 

for different values of Ex. We can see how the statistical errors decrease dramatically 

moving up from Ex = 1. At higher values (i.e., Ex '.:::'. 2.5), a larger systematic error 

sets in, which should be attributed to the fact that we are ignoring the correction 8D 

in our calculation. 
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Figure 5.3 - F( q, Y) as a function of Y at fixed q = 10 for 
a particle in the 3D spherical well V(r) = -21cosh- 2 r. The 
ground state energy is E 0 = -12.5. The scaling limit (which for 
our potential coincides with the IA) is reached at about q = 40, 
within our error bars (see also Fig. 5.5). 
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Next we present results for the particle in the 3D potential well. In Fig. 5.3 

we plot Fi(q, Y) at fixed q = 10 as a function of Y. We kept 15 Fourier modes and 

checked for convergence with 23 modes at Y = -0.5. The dimension of the oscillatory 

integral, in this case, was 140. The SPMC parameters were chosen to be cz = 1 and 

f.x = 2.2. We notice that the peak of the curve is shifted towards negative Y, with 

respect to the IA. It is known that this is the case when we are dealing with smooth, 

attractive interactions, because the deviations from the IA are best described by the 

0(1/ q) correction (Eq. 3.24), which is odd in Y. 
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Figure 5.4 - Contributions O(l/q2 ) and higher to F(q, Y) as a 
function of Y at fixed q = 10 (same potential as Fig. 5.3). The 
q dependence was eliminated in lowest order by subtracting the 
IA and the 0(1/q) contribution (see Eq. 3.24) and multiplying 
through by q 2 = 100. 

4 



-51-

lf one regards the one-body problem as describing a two-body system in the 

center of mass, it is sensible to define the coherent response, according to Eq. 3.25. 

Exact calculations show that the coherent response, Fc(q, Y), is suppressed by about 

a factor 102 ~ 103 with respect to Fi(q, Y), which makes it impossible to carry out a 

meaningful SPMC calculation, given our error bars. 

....-I 

I 
II 

0.20 

0.19 
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- exact 
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~ 1/q 

~ 0.17 
O" .........,,, 

j:':i;.. 

0.16 

0.15 
0 10 20 30 40 50 

q 

Figure 5.5 - F(q, Y) as a function of q at fixed Y = -1.5. The 
potential is the same as in Fig. 5.3. The minimum allowed mo­
mentum transfer is qo = 6. 72. 

In Fig. 5.4 we plot the difference between the scaled response function F( q, Y) 

and its value through order 1/ q, which can be calculated reliably (i.e., without the 

complications introduced by the real time dynamics) using Eq. 3.24. It is no surprise 

that this quantity is very small. Indeed, as we pointed out before, Eq. 3.24 works 
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remarkably well for smooth interactions. The results are multiplied by q2 = 100, since 

they are expected to be 0(1/ q2 ). 

In Fig. 5.5 we plot F( q, Y) at fixed Y = -1.5. The "exact" result is obtained 

as described in Sec. 5.1, for q < 20, and joined smoothly to the "exactly" known 1/q 

correction for large q, where the numerical integration of the Schrodinger equation 

starts to become problematic. Again, the SPMC calculation was performed with 15 

modes and checked the result at q = 15 with 23 modes. The SPMC parameters are 

the same we chose for Fig. 5.3. We can see that the SPMC gives a satisfactory answer 

down to q ~ 10. Below that, the errors become large. The reason is that we are not 

including the derivatives of the potential in our sampling weight (i.e., our weight is 

given by Eq. 4.22 instead of Eq. 4.20); this works satisfactorily at high q, because the 

derivatives of the potential are all suppressed by 1/ fa.. The lowest q for which we 

calculate, q = 7, is very close to the lowest allowed momentum transfer, qo = 6.72. 

We also point out that, although the strength of the potential, Vo, is much smaller in 

the lD case than in 3D, the SPMC method in the latter case breaks down at relatively 

much lower values of q; we attribute this to the role played by the centrifugal force 

in three dimensions. 
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Chapter 6 

Strong Interactions and Ha rd Cores 

In the previous chapters, we have discussed the QE response of a non-relativistic 

many-body system in the high momentum transfer limit. We have formulated the 

response in a way that separates the final state (dynamic) properties from those of 

the initial state (static). This allowed us to establish Y-scaling for finite many-body 

interactions, where the short time propagator tends to the free propagator as t --+ 0. 

We were able to recover the simple expression of the 0(1/q) scaling violations first 

obtained by Gersch et al. [9] using a different approach. 

However, Gersch's theory is not suitable for calculations involving strong in­

teractions. This affects its capabilities of making predictions about real many-body 

systems, whose interparticle potential usually consists of a strong repulsive core at 

short range and a weak attractive tail at large distance. The path integral method 

clearly suggests how to proceed in this case. Indeed, we recall that the potential was 

explicitly introduced in Eq. 3.6, but one need not do so. Instead, the propagator can 

be rewritten exactly as a convolution of short time propagators: 

( ,
1 

-iHtl ) /a a ( ,
1 

-iHt/NI ) ( 
1 

-iHt/NI ) X e X = XI ... XN-I X e XI ... XN-I e X • (6.1) 

If N is chosen large enough that in the time interval t / N only binary interactions 

are important, then the short time propagators can be written as products of two­

body terms [35], which are the Fourier transforms of the two-body Green's function 

for the strong potential. Our goal in this chapter is to carry out this program for 
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a soft core nucleon-nucleon interaction to be used subsequently, the Malfliet-Tjon 

potential. This is a two-yukawa potential, whose singularity at the origin is of the 

Coulomb type (1/r). Therefore, we will have to calculate the exact propagator for 

the Coulomb interaction. Then we will show what modifications would be required 

to deal with rigorously hard core potentials. 

6.1 The Exact Two-Body Propagator 

In this section, we show how the two-body propagator 

(6.2) 

can be calculated exactly from the eigenstates of the two-body hamiltonian 

(6.3) 

It is convenient to shift to center-of-mass coordinates, 

(6.4) 

where the problem is separable: 

K(x~,x;,x1,x2;t) = K(X',X;t)K(x',x;t) 

K(X' X·t)= 1 ei(X'-X)2/4m 
' ' (-"Jrit/m) 312 (6.5) 

K(x',x;t) =< x'le-it(p2/m+V)lx >' 

Here p is the momentum of the relative motion, and the center-of-mass propagates 

according to the free dynamics. The propagator of the relative motion is non-trivial, 
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and can be calculated following closely the discussion of Sec. 5.1. We start out 

observing that the unitarity of the time-evolution operator, expressed by the identity 

K(x', x; t) = K*(x, x'; -t), (6.6) 

allows us to consider propagation forward in time without loss of generality. There­

fore, in the remainder of this section, we assume t ~ 0, so that the propagator is 

given, up to a factor i, by the retarded Green's function [28] 

T/( ➔/ ➔• ) - ·a+( ➔/ ➔-t) .n. X, X, t = Z X, X, • (6.7) 

Furthermore, we observe that for central potentials, the propagator can depend only 

on x', x, and 0, so we can expand it in Legendre polynomials in the following fashion: 

K(x',x;t) = ~ 21 + l Pz(cos0)Kz(x',x;t). (6.8) 
L 41r 
l=O 

Upon inverting Eq. 5.4, we obtain 

T/ ( I ) [
00 

dw I a+ ( I ) -iwt 11.z x, x; t = -2 Jo 27r m 1 x, x; w e . (6.9) 

This corresponds to integrating the discontinuity of G1 along thew > 0 cut. This is 

all, if the potential doesn't have any bound state, as in the case, for example, of a 

repulsive Coulomb interaction. If we had bound states, i.e., if Gz had poles on the 

negative w axis, they would contribute a discrete sum, I::n exp(-iwnt)1Pn,1(x)VJ~,z(x') 

to the right hand side. 

In this way, the calculation of the exact two body propagator reduces to that 

of the retarded Green's function for the center-of-mass problem, which was solved in 

Sec. 5.1. This allows us to define an effective potential through the relation 

K(x' x· t) = I{ (x' x· t)e-itVeJJ(x',x,cos(B);t) , , - free , , • (6.10) 

Thus, the effective potential, 

(6.11) 

will in general be a non-local, complex function of x', x, and also of time. 
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6.2 The Nucleon-Nucleon Interaction 

As the nucleon-nucleon interaction, we choose the Malfliet-Tjon (MT) potential 

(Fig. 6.1) [36]. This is a spin-independent central potential, obtained by fitting the 

sum of two Yukawa potentials to low energy (:s; 300 MeV) parameters (e.g, the 

scattering phase shifts). Several slightly different sets of parameters can be obtained 

through such fits, but the choice among them is quite an irrelevant issue for our 

purpose. Our units are such that 

1i = 1 

c=l 

mn = 2 

(observe that now the reduced mass is unity). Thus the potential takes on the fol­

lowing form: 

1 V(r) = _ x (7.39e-l.3062r _ 3.22e0.6531r), 
r 

(6.12) 

where the unit energy is 469.5 MeV and the unit length is 0.42 fm. For comparison, 

we write down the Coulomb potential between two protons: 

1 
Ve= 0.007297 x - , 

r 

which can be regarded as a small perturbation. 

(6.13) 

While in principle our program of calculating the exact two-body propagator can 

be carried out for the full MT potential, following the steps outlined above and in 

Sec. 5.1, it is more convenient to split the potential into a regular (Vr) and a singular 

(½) part. These are displayed in Fig. 6.2. We observe that this decomposition yields 
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Figure 6.1 - The nucleon-nucleon Malfliet-Tjon potential, as­
sumed to act in all states. 

10 

a purely attractive regular component, and the repulsive core is completely absorbed 

in the singular part. Because the latter is of the Coulomb type, 

a 
Vs(r) = - , 

r 
(6.14) 

with a = 4.17, its eigenstates are known [37] (i.e., they can be calculated efficiently 

without having to integrate the Schrodinger equation numerically). Here we give the 

details of the calculation of the Coulomb propagator. After the usual partial wave 

decomposition, the radial Schrodinger equation becomes 

( 
d2 2ry l(l + 1)) - + 1 - - - ---'- r.pz(p) = O, 

dp2 p P2 
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where 

p = kr 

'r/ = a/k. 

The general solution is a linear combination of the regular and irregular solutions at 

the origin, denoted by F1(rJ,P) and G1(rJ,p), respectively. These are normalized to 

have unit Wronskian: 

,,......._ 
~ ..__., 
:> 

-5 

W(Fz, G1) = -1. 
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.. . . . . . . . . . . . ....... 
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r (X0.42 fm) 

Figure 6.2 - The nucleon-nucleon potential of Fig. 6.1 (solid 
line), decomposed into regular and singular (1/r) terms (dotted 
lines). 
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The first step is to construct the outgoing Green's function. To this end, we 

observe that 

as p -t oo; this provides the required outgoing wave function. Therefore, we write 

(6.15) 

whereupon the 1-th wave Coulomb propagator is obtained by the following integration 

(6.16) 

Adding the contributions of all partial waves, we arrive at the propagator for the 

singular part of the MT potential, 

The full propagator is then obtained simply in the following fashion: 

T/( -,/ _, t) T/ (-,/ _, ) -itV,. 
11 x, x; = 11 8 x, x; t e . (6.17) 
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6.3 Storing the Propagator 

We are now ready to look into the details of the actual computation. We are 

facing two main problems: one is carrying out the integral for the real-time prop­

agator (Eq. 6.16), and the other one is storing the results efficiently. The solution 

to both problems clearly involves restricting the domain in space and time, where 

the procedure above needs to be carried out. A few considerations on Eq. 6.16 are 

required. The familiar free-particle expression (we recall that we work with reduced 

massµ= 1), 

T/0( , ) 41r ei(r1
2
+r

2)/2t(-,;)lJ· (r'r/t) .n. 1 r , r,· t = I • l 
(21rit)3 2 

(6.18) 

is recovered for r, = 0, i.e., for zero charge or for very high momentum (very short 

time). While this provides an essential check of the computer codes, here we are 

clearly interested in the strong coupling regime, where the naive semiclassical approx­

imation, Kz = Kpe-itV, breaks down. In particular, we have to find the propagator 

for finite time and short distance (where the repulsion is strong). In this regime, 

we expect the propagator to be determined by the behavior of the regular Coulomb 

wavefunction for r, ~ p, i.e., to be suppressed by the "penetration factor" C(r,) [37], 

2 2 21rr, 
Fz ex: C ( 'f/) = ( e21r11 - 1) . (6.19) 

We begin by restricting the spatial domain of the calculation. For r > 1, r' > 1, 

the MT potential is so small that it can be treated in the usual way (Eq. 3.6). 

Instead, we calculate the exact propagator when both r, r' < 1. In this way, we are 

not comprising the potentially dangerous trajectories that reach deep into the core 

starting from far out. These occur frequently enough to require special treatment. 

So we carry out the exact calculation also in the domain r < 0.6 and r' ~ 3. We 
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also set a lower limit to r, by implementing a hard core requirement (i.e., I{ = 0) 

whenever r, r1 < 0.2. Physically, this corresponds to distances r < 0.08 fm, so this 

approximation is certainly justified; numerically, one cannot see any difference in the 

calculated QE response ( see next chapter) even if the lower cutoff is moved to r = 0.4. 
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Figure 6.3 - Numerical computation of the exact "Coulomb" 
propagator (normalized to the free particle) at fixed r = 0.4, 
r' = 0.8, cos 0 = 1, as a function of time (real part = dashed 
line, imaginary part = dotted line). The coupling constant is 
a= 4.17. 

1 

It is particularly important that the calculation of the Coulomb propagator be 

cut off at some upper distance, because this effectively turns into an upper bound 

on the number of partial waves needed for convergence of Eq. 6.8. We find that 

l ::::; 10 is usually sufficient. Of course, this would not be the case if we calculated 

for extremely short times (i.e., very high momenta), but we avoid that. This is 
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because a further complication occurs for very short times, that is, the energy Fourier 

transform is numerically ill-behaved. Fortunately, we can set a lower cut-off in time, 

t = 0.2(rr1
)

112 , such that for shorter times tV(r) < 1 on average, and we are effectively 

dealing with a "weak" potential, and may use again Eq. 3.6. Finally, we find that 

for times t > 2 (i.e., for low momenta) the Coulomb barrier is effectively preventing 

propagation near the core, and again we can put J{ = 0. (Incidentally, one would 

not normally deal with such long timeslices in a path integral calculation; however, 

since the QE response is actually expressed as a time Fourier transform, our timeslice 

is actually a stochastic variable, and it can in principle happen, although extremely 

unlikely, that we have to evaluate the propagator for large t.) 

1 

0 
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--- - - -=-·:---: - -

-1 

-2~~~~,__,__,__,__,__,__,__,__,__,__~~~~~~~~~~_,_____, 

0 0.2 0.4 0.6 0.8 

r 

Figure 6.4 - Numerical computation of the exact "Coulomb" 
propagator (normalized to the free particle) at fixed t = 0.3, 
r = 0.4, cos 8 = 1, as a function of penetration distance (real 
part = dashed line, imaginary part = dotted line). 

1 
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Figure 6.5 - Numerical computation of the exact "Coulomb" 
propagator (normalized to the free particle) at fixed t = 0.3, 
r = 0.4, r' = 0.8, as a function of the angle (real part = dashed 
line, imaginary part = dotted line). 

1 

The energy Fourier transform is carried out by an IMSL library integration 

routine. To get a feel for how the propagator looks like, we show a few plots of the 

ratio Ks/ Ko. In Fig. 6.3, this is plotted at fixed r = 0.4, r' = 0.8 and cos 0 = l., 

as a function of time. In Fig. 6.4, time is fixed (t = 0.3) and r is allowed to vary 

from 0.2 to 1. In Fig. 6.5, the ratio is plotted as a function of cos 0. In all cases, 

the propagator shows a very smooth behavior, which in turn translates into a smooth 

effective potential ( except that the real part of the latter abruptly changes sign when 

the imaginary part of the former goes through zero). As a consequence, we need 

not store the effective potential on a very dense grid. We decided to store it as a 
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four-dimensional matrix, 

The gridpoints are chosen homogeneously in radius ( step b.r = 0.1) and solid angle 

(step b.cos0 = 0.1), whereas we chose a time step b.t = 0.02 fort::; 0.5 and b.t = 0.1 

for t ~ 0.5. In the actual calculation, we are required to evaluate ¼ff at arbitrary 

point in space-time. We interpolate linearly between the stored values using a five­

point Lagrange interpolation formula in four dimensions. 

6.4 Scaling and Hard Cores 

The hard core potential represents a very special type of strong interaction, be­

cause it can never be treated perturbatively with respect to the momentum transfer. 

Since such perturbative arguments are the key to the relation between the response 

function at high q and the momentum distribution through the Impulse Approxima­

tion, we may expect that additional complications arise for hard cores. Indeed, we 

shall show that the IA breaks down: the response does scale at high q, but the scal­

ing function is not the momentum distribution, nor is it related to it by convolution 

with simple broadening functions, as postulated in Silver's "hard core perturbation 

theory" [15]. 

Of course, a perturbation parameter still exists; we must recover the free particle 

case as the core radius a goes to zero, or, equivalently, for vanishing density or infinite 

lengthscale of the density matrix. Thus, for dilute systems, we expect only binary 

collisions to be important, and we can proceed to regularize the two-body interaction 

as described earlier in this chapter. The two-body density matrix must vanish at 

( and inside) the core, and can be calculated in terms of spherical Bessel functions 

outside. Unfortunately, the time integration, Eq. 6.9, can only be done numerically. 
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However, in this discussion we are interested only in the infinite q limit. Here one 

can use the concepts of geometric optics, as is done in recent work by Gurvitz, Rinat 

and Rosenfelder [17]. We won't follow this strategy, but show how the same result 

can be arrived at using path integrals. 

Following very closely the derivation of Sec. 3.2, we write the scaled response, 

F, in terms of the equilibrium density matrix and the response operator: 

F(q,w) = q j dxdx'e(x,x')n(x',x) 

= J dx dx' e(x, x') J 2!~ eiwt ~ J dxo(x'leiHtlxo)(xole-iHtlx) /Hx;-xJ). 
z,J 

(6.20) 

Again we specialize to the incoherent response. We can carry out the very same 

coordinate changes as we did before, to arrive at (see Eq. 3.18) 

Using Eq. 3.19 (with an effective potential yet to be discussed), we write 

(6.22) 

where we recall that z, 'ii,, e are all SU ppressed by 1 / Jg_ with respect to (, tc, e, 
respectively. In this way, we can take the q ~ oo limit, by evaluating the effective 

potential along the "eikonal" trajectories; however, unlike what was done in Eq. 3.23, 

here we may not expand the exponential in powers of V / q. The argument of the 

potential becomes 

¼Jf(+;j) = ¼Jf(x- (x - x')11j/N) 

¼ff ( -; j) = ¼JJ( x') 
(6.23) 
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and thus, as in Ch. 3, all integrals become trivial, yielding the scaling function 

F(Y) = J_ jdxdx1g(x,x1)e-iY(x-xi\5n-I(x - x')..L 
21r 

X exp(i(x - x')11/q fo1 

da(¼ff(x - (x - x')11a) - ¼ff(x'))). 
(6.24) 

The effective potential introduced here is simply a trick to implement the hard 

core boundary condition for the many-body Green's function, i.e., to make the latter 

vanish whenever any two ( or more) particles touch. Therefore, it is a many-body 

interaction, taking on the value 

Veff = ioosgn(x - x'), if any two particles overlap 
(6.25) 

= Vreg, otherwise. 

Of course, since we are taking the q --+ oo limit, the regular part of the interaction 

should be taken to be zero. Observe that we may drop the term ¼ff(x') in the 

previous equation. This is legitimate, because there is no need to implement the 

hard core condition at x': the exact density matrix of the system, g( x, x') does this 

automatically. 

The correction to the IA is simplest in the two-body problem (in the many­

body case multiple scattering, i.e., multiple reflections, considerably complicate the 

calculation). Here Eq. 6.24 reduces to 

l/2 , ➔➔ I F(Y) = - d R1_ dzdz g(R1_, z; R1_, z) 
271" 

-iY(z-zl) i(z-z1)/q r1 
do-VeJJ(R.L+(z-o-(z-zl))z) e e Jo . 

(6.26) 

The hard core constraint will be effective for 

➔ I 
IR1- + (z - (z - z )a)zl :Sa, 0 :Sa :S 1, (6.27) 
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that is, for 

IR_j_l < a 
(6.28) 

zz' < 0. 

Hence, the correction to the IA is given by 

~F(Y) = F(Y) - F1A(Y) 

- _!_ j d2 R dzdz1(!(R... z· R z1)e-iY(z-z') - 21r _j_ J_, ' _l_, 

X ( l _ ei(z-z!)/q f0

1 
d(1'Veff(R1. +(z-(J'(z-zl))z)) (6.29) 

= -2 r dR_j_ R_j_ 1° dz !
00 

dz' (!(R_j_, z; R_j_, z')e-iY(z-zl) . 
Jo -oo Jo 

This expression has several noteworthy properties, that are maintained in the 

many-body case. First, it does Y-scale; this shows that in an experiment Y-scaling 

alone doesn't guarantee that the momentum distribution is being measured. This 

was first suggested by Weinstein and Negele [5], who nevertheless did not arrive at 

an exact analytical expression. Another interesting property is that ~F is even in Y, 

as is F1A, and it obeys the sum rules [17] 

1-: dYYn~F(Y) = 0, n = 0, 1,2. (6.30) 

One can show that, for a nodeless ground state, this implies that Fis suppressed at 

Y = 0, and it is therefore enhanced on both sides of the quasielastic peak. 
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6.5 Comparison with Silver's Theory of FSI 

It is interesting to compare the "eikonal" theory of final state interactions, de­

veloped in the previous section, to the very popular Hohenberg-Platzman ansatz [1] 

and to the closely related theory by Silver [15]. There, the FSI are described by a 

convolution function R(Y), defined in Eq. 2.16. With A denoting Fourier transform 

with respect to Y, we obtain 

F(s) = F1A(s)R(s), 

which can be viewed trivially as the definition of R(s). From Eqs. 3.13 and 3.22, we 

find 

F1A(s) = j dxf2(x, x - sq), 

while transforming Eq. 6.24 yields 

Thus the final state broadening function is given by the Fourier transform of 

Id ( A) is/q f
1 

du(VeJJ(x-squ)-Vejj(x-sq)) 
A Xf] x, x - sq e Jo 
R(s) - J d ( A) , Xf2x,x-sq 

(6.31) 

Hence the final state broadening is expressed as a density matrix average of the eikonal 

distortions of the recoiling particle wave function; i.e., of the forward transmission 

amplitude. 

Let us consider a hard core potential for concreteness. Then, Vet f acts to forbid 

propagation along paths occupied by another particle in the medium: eiVef f 1s one, 
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if the struck particle can recoil freely from O to s, and it is zero whenever a collision 

with the medium happens. Then R( s) is the probability that a particle suffers no 

collisions while moving a distance s on a straight path, calculated by averaging over 

the density matrix weight of each path. Now, ignoring spatial correlations, this 

probability is simply an exponential with decay rate given by the mean free path; in 

this way, we recover the Hohenberg-Platzman approximation (see Eqs. 2.16, 2.17) 

This approximation was improved by Silver, who accounted for two-particle spatial 

correlations during the recoil (see Eq. 2.18), and obtained 

l lsl la r,:;-:-;; 
RA ( ) -(N/V)21r dz dbbg(y b2+z2 ) ss=e o o . 

6.6 Numerical Results for Hard-Core Potentials 

This section is devoted to illustrating the concepts we have exposed with a few 

numerical examples. We should point out immediately that our aim is to study 

the q --+ oo limit exactly, but give only a qualitative description of the response at 

finite momenta. Indeed, while at very high momenta the eikonal approximation is 

appropriate (and it becomes exact asymptotically), at lower q one would have to 

compute the exact propagator, following the method explained in a previous section. 

We consider here the same interaction we used in the calculations of the previous 

chapter, modified by introducing a hard core of radius a: 

V(r) = oo, r < a 
(6.32) 

= 21 cosh r, r > a. 
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Figure 6.6 - Deviations of the scaling function from the impulse 
approximation, .6.F(O)/ F(O), for a particle in an attractive po­
tential well, V(r) = -21cosh- 2 r, with hard core repulsion at 
r = a. 

1.25 

In Fig. 6.6, we plot the deviation from the IA at Y = 0, ,6.F(0)/ F(0), as a function 

of the hard core radius (note that we need a :s:; 1.6 to have a bound state). This 

curve represents the exact answer, obtained through Eq. 6.29. The scaled response is 

decreased at Y = 0 by the presence of the core. For small a, ,6.F(0)/F(0) ex a2 , as 

expected from Eq. 6.29, as well as from naive shadowing arguments; as the hard core 

radius grows, deviations from the IA are stronger than quadratic in a. 

Fig. 6.7 shows the results for F(q, Y = -1.5) (compare to Fig. 5.5), obtained by 

the SPMC method, without treating the hard sphere propagator rigorously, but only 

imposing the hard core condition that the propagator vanishes inside the core. We 

have put a = 0.4 in this calculation. This obviously reproduces the exact asymptotic 
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Figure 6.7 - F(q,Y=-1.5) as a function of q. The potential is as 
in Fig. 6.6, with a = 0.4. The circles and the dashed line rep­
resent the exact values of F at finite and infinite q respectively. 
The squares were obtained by the SPMC method. ¥-scaling is 
observed. The scaling function, however, is not the IA (dotted 
line). Compare to Fig. 5.5, corresponding to the case a= 0. 

answer, but it appears deficient elsewhere (except at the lower values of q, where the 

"weak" attractive tail of the potential, which is treated accurately, is most impor­

tant). Attempts to correct for this by introducing semiclassical representations of 

the hard-core propagator [38] do not improve the agreement with the (numerically) 

exact solution. (One should note that, unlike in the case of weak potentials, the exact 

solution is not easily calculated, nor extrapolated, beyond q ~ 15.) The asymptotic 

limit obtained through the momentum distribution (the IA) is also shown. As ex­

pected from the sum rule, this time the IA lies below the true asymptotic value of 

the response. 
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Chapter 7 

The Response of a 4 He Nucleus 

7.1 The Experimental Data 

The inclusive electron scattering cross section from 4He near the QE peak has 

been measured at SLAC by the NE3 collaboration, in the experimental range 2.02 ::; 

E ::; 3.60 GeV, 15::; 0 ::; 30 degree in the laboratory, and for Q2 < 2.8 GeV2 [12],[13]. 

In these references, and in subsequent work [39], the data were analyzed for scaling 

in the Impulse Approximation (Fig. 7.1), following a method (and a definition of the 

scaling variable) that is somewhat different from what we have used so far. Because 

this method is used in virtually all of the nuclear physics literature, we briefly review 

it, following Ref. [39], and make connection to the formalism we have developed in 

Chapter 2 (which is based on Ref. [2]). 

One starts by assuming that the cross section is given, in the Impulse Approxi­

mation, by the single nucleon elastic cross section folded into the nucleon momentum 

distribution (taken to be the same for the N neutrons and Z protons): 

da- J d3 
k ( ( da- ) ( da- ) ) 

dn'dE' = (21r)3 z dD/ ep + N dD/ en n(k), (7.1) 

with the electron-nucleon cross sections given by 

da- I M I 

d ... , = (7'ep(en) E' 8(E - E + Ej - Ei)-
H ep(en) 
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Figure 7.1-The dynamic response of the 4 He nucleus, measured 
by inclusive electron scattering, on the low energy transfer side 
of the QE peak (from Ref. [13]). Different curves correspond to 
different beam energies and scattering angles. 

0 

Here Ei(f) denote the initial (final)-state energy of the struck nucleon, and 0'
1 is the 

Mott cross section multiplied by a combination of nucleon form factors, depending 

only upon the 4-momentum transfer squared Q2 = q2 - w2 . The 8 function enforces 

(relativistic) energy conservation: 

(7.2) 

MA is the rest mass of the target, MA-I is the mass of the recoiling nucleus (possibly 

in an excited state), and one often defines the quantity E through 

(7.3) 
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Putting all this into Eq. 7.1, one obtains 

where, neglecting the kinetic energy of the recoiling nucleus, 

Pmin = -q + J2M(w + c) + (w + c)2 

Pmax = Pmin + 2q • 

Now observe that, in the q--+ oo limit, one can write 

Yrel - Pmin = -q + J2M(w + c) + (w + c)2 

and thus 

F( ) _ 1 q _d_a _ 
Yrel - Z a~P + N a~n M dO,' dE' 

100 dp 
= (21r)2pn(p). 

Yrel 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

This looks again like y-scaling, but we use lowercase y to stress the difference between 

the present discussion and our previous derivation of scaling in Chapter 2 and Chapter 

3. If one repeats the steps above with non-relativistic kinematics, one arrives at the 

following scaling variable: 

y = -q + J2M(w + c), 

which of course can also be obtained by expanding Yrel in powers of w / M: 

(w + c)3/2 
Yrel c:::'. Y+ .JsM 

The non-relativistic variable y is related to Y as follows: 

y2 c 
y = y+- - -. 

2q q 

Hence, y and Y are identical in the q --+ oo limit, as they should be! 

(7.8) 

(7.9) 

(7.10) 



-75-

7.2 Numerical Computation 

In this section, we describe our non-relativistic numerical computation of the 

quasielastic response of a schematic 4He nucleus; that is, of a collection of four point­

like nucleons interacting through the two-body potential specified in Eq. 6.12 (also 

see Figs. 6.1 and 6.2). We include the Coulomb potential (Eq. 6.13) between the two 

protons, which amounts to a very small correction to the nuclear interaction. 

According to Eq. 3.13, the first step consists in obtaining the ground state density 

matrix. Because we are dealing with a four-body problem, this alone involves quite 

a considerable amount of work. For instance, stochastic methods, such as Green's 

Function Monte Carlo [40] and Path Integral Monte Carlo [10] have been applied to 

this problem. For our purpose here, it will suffice to use a good "trial" wave function, 

such as the one employed in the calculations of Ref. [10]. This consists of a totally 

antisymmetric spin-isospin wave function, multiplied by a spatial totally symmetric 

Jastrow function 

with 

4 

1,L,(r1,r2,r3,r4) = IJJ(rij) 
i<j 

(7.11) 

(7.12) 

Because the symmetry of the spatial wave function is preserved by time evo­

lution under our hamiltonian, our computation is effectively dealing with a system 

of four bosons and thus we need not worry about the famed "minus sign problem" 
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encountered in Monte Carlo simulations of systems of fermions. The parameters of 

the wave function were optimized in Ref. [10], the optimal choice being 

T/ = 3.64 

( = 0.46 

ro = 2.6 fm 

b = 0.15 fm. 

With this choice, the variational ground state energy turns out to be 

Eo '.:'.::= 26MeV, 

rather close to the experimental value of 28.2 MeV, and the QE response in the IA 

is shown in Fig. 7 .2 together with the experimental data ( we explain below how the 

IA was obtained). The good qualitative agreement of the IA calculation shown in 

Fig. 7.2 assures us of the quality of the trial ground state wave function (7.11). 

At this point, one is able to generate the initial and final ground state configu­

rations of the four nucleons, {ri}, {~}. As before (see Chapter 5), we define the new 

variables 

From the ground state wave function, we generate {.Ri} and lz (hereafter, lz _ (z1 -zD 

shall refer to the struck particle, and z is chosen in the direction of the momentum 

transfer, while {l..L} shall refer to all other transverse coordinate differences). This is 

done via the Metropolis algorithm [34], by standard Monte Carlo, i.e., by sampling 

the weight 
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Figure 7.2 - The dynamic response of the 4He nucleus: a com­
parison between experimental data and the Impulse Approxi­
mation assuming a trial ground state wave function (Eqs. 7.11, 
7.12). Note the linear scale. 

0.4 

One must be careful to avoid self-correlations between subsequent samplings of the 

observable (in our case, the response); a simple check is provided by computing the 

autocorrelation function of a sequence of measurements [20]. As already observed, 

the normalization of our weight is 

so it is known once the IA is calculated. This is done folding Eq. 3.22 into Eq. 3.13. 

The resulting expression is amenable to Monte Carlo integration, once we write it in 

the form 
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The one dimensional l integral is carried out by Simpson's rule. 

The remaining coordinates describing the ground state configuration, {GJ, are 

found expanding the potential in Eq. 3.19 linearly in v/q, so that the v integral in 

Eq. 3.18 becomes 

where V' denotes average of the gradient of the potential along the eikonal path of the 

system. This indicates that the transverse coordinates sample a very small region of 

the density matrix, proportional to Ft2 , where Fis some average force (mean field), 

plus terms of order t 3 or higher. In this way, we complete our ground state averaging, 

and can turn to Eq. 3.19. 

Because the motion of the center of mass is free and thus the path integral 

associated with it is trivial, we find it convenient to generate the paths in the center 

of mass coordinate system: in this way we deal with 9 X 2N rather than (12 x 2N)­

dimensional integrals. Because, as was done in Chapter 5, we want to generate the 

paths using Eq. 4.20 and gaussian random number generation, we need to find a set 

of coordinates that diagonalize the kinetic energy in the center of mass. One of these 

is proportional to the "Jacobi coordinates." Choosing the coordinates of particles 2, 

3 and 4 ((2, (3, (4) to be independent variables ((1 = -(2 -(3 -(4), the new variables 

2 ➔ ➔ ➔ 
er= J3((1 + (2 + (3) 

➔ 1 ➔ ➔ ➔ 
f3 = v'6((1 + (2 - 2(3) 

1 ..... ..... 
1- J2((1 - (2) 

make the kinetic energy diagonal and do not change the mass. It is easy to see that 

the new coordinates still vanish at the endpoints, making it possible to define a sine 
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Figure 7.3 - Impulse Approximation and 0(1/q) scaling viola­
tion for a 4 He nucleus described by the wavefunction (7.11) and 
a state-independent Malfliet-Tjon potential. 

0.3 

transform, as in Eq. 3.20. Once we generate the path, we transform back to the { (} 

coordinates, where the evaluation of the potential is simpler. 

The pairwise potential is taken to be the Malfliet-Tjon interaction introduced 

in Sec. 6.2, and renormalized at short distances through the logarithm of the exact 

two-body density matrix, as described in Sec. 6.3; the Coulomb interaction also acts 

between the two protons. Because the effective potential is now non-local, imple­

menting the derivatives in Eq. 4.20 turns out to be an extremely hard and tedious 

task. Fortunately, the exact density matrix is in general quite small and smooth in 

the region where we need to use it. This means that the effective potential has a 

negative ( damping) imaginary part and a small derivative. Therefore the derivative 
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correction in Eq. 4.20 can be safely ignored. However, we account for it when dealing 

with the "regular" part of the interaction, or when using the full potential directly 

( at larger separations), though even in these cases, we find that this term has a rather 

small effect. 
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Figure 7.4 - Experimental approach to scaling in 4 He (Y = -0.2 
GeV) compared to the 1/q scaling violation. 

7 .3 Results and Discussion 

2.5 

We start out by investigating the magnitude of the 0(1/ q) correction to scaling 

(Eq. 3.24), whose calculation does not require evaluating real time path integrals. 

Fig. 7.3 shows the scaled response for IYI :S 0.2 GeV through order 1/ q, for q = l 

GeV: the magnitude of the asymmetric correction to the IA is rather small, yet it 

doesn't seem to reproduce the trend in the experimental data. This is made clearer in 
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Fig. 7.4, which compares the behavior of the experimental response at fixed Y = -0.2 

GeV, as a function of q, with the calculated O(1/q) scaling violations. The latter 

would indicate that Y -scaling is approached fairly quickly, as the momentum transfer 

reaches ~ 1 Ge V, from below. 
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Figure 7.5 - Experimental approach to scaling at Y = 0. 

The experimental data show opposite behavior. The observed approach to scal­

ing is from below near the top of the quasielastic peak (see Fig. 7.5), whereas the 

O(1/q) correction vanishes at Y = 0 and is positive (but small) for IYI < 0.1 GeV 

(see Fig. 7.3). On the other hand, for larger !YI, the experimental response is a 

decreasing function of q, which contrasts with what we saw in Fig. 7.4. This is not 

very surprising, as we mentioned in previous occasions; it is simply an indication that 
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Figure 7.6 - Impulse Approximation and eikonal approximation 
to the quasielastic response at q = lGeV (compare to Fig. 7.3; 
here the error bars in the calculation -not shown- are larger). 

0.3 

a V / q expansion is not appropriate for strong potentials. Gersch et al., who first 

calculated the 1 / q scaling violations for LHe [9], were well aware of this problem. 

Here, we can go a step further, much as we did in Sec. 6.4 for the hard core 

potential. In fact, we can argue again that the high momentum transfer limit of 

the response is given by Eq. 6.24, where the effective potential this time is nothing 

but the logarithm of the exact two-nucleon propagator, derived in Secs. 6.1-6.3. The 

resulting structure factor contains now all orders in V / q, and should contain the 

essential physics; in particular, it should describe the approach to scaling correctly. 

This is indeed what the calculations show; note that these do not involve computing 
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Figure 7.7 - SPMC calculations of F(q = 1, Y = 0) for various 
values of Ex (see Fig. 5.2). 

4 

with path integrals in real time, and bear only a statistical error associated with 

sampling the ground state wave function stochastically. 

Finally, we have performed the real time path integral Monte Carlo calculations. 

We chose to use the same values of the parameters (Ex, Ez) that we used for our 

model problem in Chapter 5 ( Ex=2.2, Et=l ). The sensitivity of the calculation to 

Ex is shown in Fig. 7.7. We considered doing an extrapolation to Ex = 0. However, 

any attempt to improve on the rather obvious (by inspection) fit to a constant is 

practically meaningless, on a small data sample, because of the fast growing error 

bars for smaller Ex. 

Fig. 7.8 shows the calculated quasielastic response function at Y = 0, together 

with the eikonal approximation and the experimental data. The theoretical scaling 
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Figure 7.8 - Approach to scaling at Y = O. The dotted line is the 
theoretical scaling function, the IA (this does not coincide with 
the experimental scaling function, because of of deficiency of 
our trial wavefunction, and also because the experimental points 
are rather sensitive to inelastic "noise" at Y = 0.) Note that 
both SPMC and eikonal approximation (to which the former 
converges at high q) show a small residual q-dependence at the 
highest experimental q. 

does not coincide with the experimental one, presumably because of deficiency of our 

trial wavefunction, and also because the experimental points are rather sensitive to 

inelastic "noise" at Y = 0. Note that both SPMC and eikonal approximation (to 

which the former converges at high q) show a small residual q-dependence at the 

highest experimental q. Of course, one should be cautious in making quantitative 

statements for large q, based on our calculation: relativistic effects are expected to 

be important at the highest Q2 reached in the experiment. 



,........_ 
...... 

I 

::> 
Q) 

0 .___., 
,........_ 
C\1 

0 
I 
II 

::,... 
CT' .___., 
~ 

1.50 

1.25 

1.00 

0.75 

0.50 

0.25 

0.00 
0 0.5 

-85-

1 1.5 

q(GeV) 

0 expt. 

+ eikonal 

X SPMC 

2 2.5 

Figure 7.9 - Approach to scaling at Y = -0.2 GeV. The dotted 
line is the theoretical scaling function, the IA. 

Fig. 7.9 shows the response at Y = -0.2 GeV. Contrary to what we saw in the 

Y = 0 case, here scaling is approached from above. Because the overall behavior 

of the approach to scaling, as a function of Y, is remarkably different from what 

expected based on the 1/q correction (Eq. 3.24), this means that non-perturbative 

effects are dominant. This contrasts with what we found in our model problem in 

Chapter 5; there the potential was lacking the important short range repulsion. 

Fig. 7.10 shows the scaling violations at q = l GeV, normalized to the re­

sponse function at the highest experimental momentum transfer ( F( q = l, Y) / F( q = 

2, Y) - 1). This comparison should be quite insensitive to the actual value of the 
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Figure 7.10 - Scaling violations at q = 1 GeV, normalized to the 
response function at the highest momentum transfer achieved 
in the experiment (F(q = 1, Y)/F(q = 2, Y)-1). This compari­
son should be quite insensitive to the actual value of the scaling 
function (i.e., to fine details in the potential and in the trial 
wavefunction). Note that the sign of the scaling violations has 
a cross-over at Y ~ 70 MeV. This is well reproduced by our cal­
culation, and should be attributed to the short range repulsion 
in the nuclear force. 

0.1 

scaling function and in general to any systematic source of discrepancy between ex­

periment and theoretical calculations (i.e., to fine details in the potential and in the 

trial wavefunction). 

It is curious to observe that the scaling violations in the 4He nucleus have the 

same qualitative behavior seen in Sec. 6.5 for the hard core potential; that is, the 

response lies below the IA around the top of the QE peak, and above it on the 

sides. Two main differences should be stressed. First, the scaling function, for the 
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nuclear potential we used, is indeed the IA ( this must be the case if the potential is 

not rigorously hard core). Second, while in the calculations presented in Sec. 6.5, the 

q ---+ oo limit allowed us to explain the behavior of the scaling function (relative to the 

IA) invoking the sum rule ( the area under the QE peak is fixed), this argument is not 

rigorous in the present calculation, because the sum rule is valid only in the q = oo 

limit. It becomes qualitatively valid, however, in the spirit of Silver's discussion, i.e., 

if one defines an effective ( q-dependent) hard core, as explained in Sec. 2.3. 
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Chapter 8 

Summary and Conclusions 

This thesis was concerned with quasielastic scattering from quantum many-body 

systems, and with the possibility of extracting the one-body momentum distribution 

from the measured dynamic response, in the "Y-scaling" regime. We have emphasized 

that this problem is common to quite distinct fields in physics. The formalism we 

have developed, separating the initial state (static) properties from the final state 

( dynamic) interactions, allows in principle calculations for any system, given the 

interaction potential. 

Driven by the success of stochastic methods in computing equilibrium proper­

ties with arbitrary accuracy, we have explored the possibility of developing similar 

methods for dynamic properties. At present, this looks feasible only for very small 

systems. In fact, the calculations of Chapter 5 and Chapter 7 are the first of this 

kind ever performed. Future work should attempt to compare real time Monte Carlo 

calculations with analytic continuation of imaginary time Monte Carlo data. Because 

this technique, too, has shown promise only in the last year [7], this issue is completely 

unexplored so far. 

We have been able to understand the approach to scaling in QE scattering from 

4He, and explain its behavior as a function of the scaling variable Y. Scaling is 

approached in the same way expected for a hard core potential; that is, from below 

near the top of the QE peak, and from above on the sides ( of course, unambiguous 

experimental data are available only on the left side of the peak). However, unlike 
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in the case of a true hard core, the scaling limit of the QE response was shown to 

be the IA, thus establishing the connection between the dynamic response and the 

momentum distribution. 

Our calculations of a 4He nucleus, where the nucleons interact via a strongly 

repulsive potential, have underscored the importance of renormalizing the potential 

through the exact density matrix. This idea, already employed in static calculations of 

liquid and solid He, was suggestive of a method for treating truly hard core potentials. 

We were able to write the exact expression for the scaling function in this case. 

Furthermore, the use of the renormalized potential together with an eikonal 

approximation of the path integral has proven to be able to grasp much of the inter­

esting physics of the 4He nucleus. Extension to larger systems, in particular liquid 

4He, appears at this point straightforward ( to the extent a path integral Monte Carlo 

calculation of the density matrix of He clusters at zero temperature can be called 

such). This would be quite interesting, because for quantum liquids, where the in­

terparticle potential is considerably harder that in nuclei, the experimental scaling 

function is not expected to be the IA. 

Finally, our calculations, being completely non-relativistic, cannot be extended 

to larger IYI (in the nuclear physics case) in any simple way. The momentum distri­

bution of atomic nuclei at large IYI (to measure which, by the way, is the reason the 

experiments were done), is still to be understood. In West's words (41], "Perhaps one 

of the most peculiar aspects of the nuclear data is that, over a considerable range of 

Y, F(Y) ~ e-alYI. There seems to be no straightforward reason why F(Y) should 

exhibit such a simple structure." 
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