
Multiscale Methods,

Parallel Computation,

and Neural Networks

for

Real-Time Computer Vision

Thesis by

Roberto Battiti

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1990

{submitted November 30, 1989)

Acknowledgments

This work was done while I was a research assistant to Geoffrey Fox in the Caltech

Concurrent Computation Program and it benefited in many ways from his advice on

parallel computation. I thank Christof Koch for providing the seminal ideas for the

work in computer vision and effective assistance.

I am also pleased to acknowledge the useful discussions and suggestions from Wojtek

Furmanski, Paul Messina, Demetri Terzopoulos, Roy Williams, and Edoardo Amaldi.

This work was supported in part by DOE grant DE-FG-03-85ER25009, the Program

Manager of the Joint Tactical Fusion Office, the National Science Foundation with grant

IST-8700064, and by IBM.

Last but not least, thanks to my parents Luciano and Lina and especially to my

wife Annamaria for her patience and support during these intense years. Romano, my

beautiful newborn son, provided a strong motivation to conclude this work in a short

time.

ii

Abstract

This thesis presents new algorithms for low and intermediate level computer vision.

The guiding ideas in the presented approach are those of hierarchical and adaptive

processing, concurrent computation, and supervised learning.

Processing of the visual data at different resolutions is used not only to reduce

the amount of computation necessary to reach the fixed point, but also to produce a

more accurate estimation of the desired parameters. The presented adaptive multiple

scale technique is applied to the problem of motion field estimation. Different parts

of the image are analyzed at a resolution that is chosen in order to minimize the

error in the coefficients of the differential equations to be solved. Tests with video­

acquired images show that velocity estimation is more accurate over a wide range of

motion with respect to the homogeneous scheme. In some cases introduction of explicit

discontinuities coupled to the continuous variables can be used to avoid propagation of

visual information from areas corresponding to objects with different physical and/or

kinematic properties.

The human visual system uses concurrent computation in order to process the vast

amount of visual data in "real-time." Although with different technological constraints,

parallel computation can be used efficiently for computer vision. All the presented al­

gorithms have been implemented on medium grain distributed memory multicomputers

with a speed-up approximately proportional to the number of processors used. A simple

two-dimensional domain decomposition assigns regions of the multiresolution pyramid

to the different processors. The inter-processor communication needed during the so­

lution process is proportional to the linear dimension of the assigned domain, so that

efficiency is close to 100% if a large region is assigned to each processor.

iii

Finally, learning algorithms are shown to be a viable technique to engineer com­

puter vision systems for different applications starting from multiple-purpose modules.

In the last part of the thesis a well known optimization method (the Broyden-Fletcher­

Goldfarb-Shanno memoryless quasi-Newton method) is applied to simple classification

problems and shown to be superior to the "error back-propagation" algorithm for nu­

merical stability, automatic selection of parameters, and convergence properties.

iv

Contents

I Introduction

1 Introduction

1.1

1.2

"Leitmotif" of the Thesis

Properly Coupled Discontinuities for Better Multiscale Vision

1.3 Error Estimation to Improve Optical Flow

1.4 Optimization Techniques to Teach Multilayer Perceptrons

II Multiscale Low-Level Vision with Line Processes

1

2

2

3

4

4

6

2 3D Surface Reconstruction 7

2.1 Introduction: Cooperation of Smoothing and Discontinuity Detection. . 8

2.2 M ultigrid Method for Regularization 9

2.3 Line Processes in Time and Scale-Space . . . 12

2.3.1 Mutual Connections of Line Processes 15

2.3.2 Updating Rule and Look-up Table . . . 16

2.3.3 Invariance, Scale, and Topology: a "Natural" Parametrization . . 18

2.4 Combining Discontinuity Detection and Surface Reconstruction in Time

and Scale . 21

2.5 Results of Multiscale Algorithm 23

2.5.1 Performance with Dense Constraining Data 24

2.5.2 Performance with Sparse Sampling Rate . . 25

2.5.3 Speed-up with Respect to Single-Layer Approach . . 25

V

2.6 Summary 26

3 Adaptive Multiscale Scheme for Optical Flow 33

3.1 Introduction: Reliable Estimation of the Optical Flow 34

3.2 Differential Methods 35

3.3 Towards an Adaptive Multiscale Approach . 37

3.4 Estimation of the Flow Field Error 43

3.5 The Error-Based Adaptive Multiscale Scheme 48

3.6 The Resolution Pyramid .. 49

3.7 Discontinuity Detection .. 50

3.8 Experimental Results 52

3.8.1 Two-Dimensional Sinusoidal Patterns 52

3.8.2 Expanding Sphere 54

3.8.3 Occluding Objects 55

3.8.4 Tests with Natural Images . 56

3.9 Summary and Conclusion 57

III Implementation of the Algorithms on the Hypercube Concur-

rent Processor 70

4 Benchmark of Applications on the Hypercube

4.1 Introduction: SIMD vs. MIMD Approach .

4.2 Domain Decomposition

4.3 Communication Overhead and Complexity ..

4.4 Results for Shape from Shading

4.5 Results for Surface Reconstruction from Depth Constraints

4.6 Summary and Discussion

71

72

73

74

77

80

81

IV Teaching Multilayer Perceptrons with Optimization Methods 84

5 Fast Neural Net Teaching 85

vi

5.1 Introduction: Teaching Neural Networks with the Memoryless Quasi-

Newton Method . 86

5.2 Limits of Back-propagation

5.3 The "Bold Driver" (BD) Method

5.4 The BFGS Memoryless Quasi-Newton Method

5.5 Test: the Parity Function ..

5.6 Test: the Dichotomy Problem

5. 7 Summary and Discussion ..

V Conclusion and Appendices

6 Real-Time Vision Machines?

6.1 Brief Conclusion

A Listing of Hypercube Program

A.1 Header with Basic Data Structures and Macros .

A.2 Host Program and Graphics .

A.3 Node Program

B Three Point Approximation of Derivatives

87

88

89

92

93

94

99

100

. 100

101

101

102

103

104

C Memoryless Quasi-Newton Methods and Conjugate Gradient Meth-

ods 106

D One-Dimensional Minimization 108

vii

Part I

Introduction

1

Chapter 1

Introduction

1.1 "Leitmotif" of the Thesis

The main objective of this thesis has been that of studying efficient parallel distributed

algorithms for computer vision, in which many interconnected computational units

cooperate to reach the desired result. Engineering these computational systems consists

of tuning the mutual connections and the local updating rule to the different problems.

A guiding principle in this task is that of hierarchical organization (for example, images

are analyzed by units at different resolutions). The operations involved in low- and

intermediate-level vision can be compared to distillation processes, where information

is purified (from noise and irrelevant data) before being used by high level modules.

Biological analogies with our visual systems provided some of the motivation for

this work. Nonetheless, emphasis is always on efficiency and possible implementation

using available technology. In particular, all algorithms discussed here can be (and'

have been) implemented on multicomputers with an efficiency dose to 100%.

In the following sections I will briefly outline the contribution of this thesis for the

different problems considered.

2

1.2 Properly Coupled Discontinuities for Better Multi­

scale Vision

Multiscale methods with a new proposal for the coupling of the discontinuity detec­

tion elements (line processes) on different layers and for their incorporation into the

multiscale relaxation process have been applied to two different problems of low level

computer vision: piecewise smooth surface reconstruction and estimation of the motion

field.

First a fast multiscale scheme for reconstructing a piecewise smooth surface from

sparse and noisy data is proposed, in which line element detectors (line processes) at

different resolutions are coupled in a coherent way to a multiscale "smoothing" algo­

rithm (Gauss-Seidel relaxation) acting on the depth points. The suggested strategy is

based on the interaction of the line processes with a neighborhood of depth points and

line processes at various scales. In this way coarse-scale evidence guides detailed place­

ment of discontinuities at finer resolutions, while fine-scale results improve delineation

at coarser resolutions.

The approach has been tested on "Randomville" images (random collection of

quadrilateral structures in the image plane) with promising results. Performance of

the algorithm degrades gracefully when the sampling rate of the constraining data is

reduced to a small fraction (down to 10%) of the grid points at the finest scale. Com­

parison with reconstruction time required by the one scale algorithm shows a speed-up

of at least two orders of magnitude for 129x 129 test images.

The second application has been for estimating the optical flow field (the projection

of the velocity field onto the image plane) from a temporal sequence of images. Intro­

duction of line processes is useful in order to avoid mixing velocity da.t.a from different

moving objects during the relaxation phases. Fusion of information about the presence

of zero-crossings (obtained after filtering the image with the Laplacian of a Gaussian

operator) and about the presence of big differences in nearby velocity values is used to

activate the line processes. The complete algorithm is based on an adaptive mulliscale

strategy, where the finest discretization grid is chosen locally using an estimation of the

reliability of the obtained optical flow, as will be described in the following section.

3

The algorithms have been implemented with high efficiency on a MIMD parallel

computer with distributed memory. A coarse grain domain decomposition is found to

be useful for this and other multiscale problems.

1.3 Error Estimation to Improve Optical Flow

Single scale approaches to the determination of the 2-D optical flow field from the time­

varying brightness pattern assume that the spatio-temporal discretization necessary to

solve the appropriate equation is adequate for representing the patterns and motions

in the scene. However, the choice of an appropriate spatial resolution is very difficult

because it is subject to conflicting, scene dependent, constraints.

In differential methods, for example, derivative estimation is more accurate for long

wavelength and slow motion with respect to the discretization step. On the contrary,

short wavelengths and fast motion are required in order to reduce the relative errors

caused by noise in the image acquisition and quantization process. Thus, the appropri­

ate discretization step depends heavily on the local image and motion characteristics.

Homogeneous multiscale approaches treating all scales on the same footing, reduce

the solution time with respect to single scale schemes, but they cannot avoid the inter­

ference that may be induced by conflicting information from different scales.

In this paper we propose a multiscale method for determining the 2-D optical flow,

where the discretization scale is chosen locally according to an estimate of the error in

the velocity estimation.

Results for 129x129 pixel video acquired images show that this method provides

more accurate optical flow estimation than conventional algorithms (for example [56]),

while maintaining the typical multiscale speed-up.

1.4 Optimization Techniques to Teach Multilayer Per­

ceptrons

Learning is an essential part of our visual system. It is also clear that the availability

of convenient ways to teach or adapt computer vision systems to differeut applications

4

or different situations would open the road to cheaper and faster system development.

It is not unrealistic to think about future off-the-shelf general purpose vision machines,

or visual modules that can be assembled according to their use and "programmed" in

some automatic way. After all, for example it does not take long for a human to learn

a different alphabet set1 •

This work is concerned with the study of fast algorithms for teaching multilayer

perceptrons. The considered "retina" is a simple one (a one-dimensional set of units)

and the presented "images" have little to do with real images. I selected these test

problems because I was concerned about comparing performance of the suggested al­

gorithm with other approaches. It is also important to stress that the most efficient

approach is probably not that of presenting images to a tabula msa neural network

and hoping that it will solve all your problems. All the available tools have to be used

{for distillation of the essential information2) before applying learning to determine

only a limited set {say of less than one thousand) of critical parameters. The results

of the tests show that this is within the reach of widely available computing resources

(microprocessor-based workstations with optional accelerator boards).

Standard back-propagation learning for feedforward neural networks is known to

have slow convergence properties. Furthermore, no general prescription is given for

selecting the appropriate learning rate, so success is dependent on a trial and error pro­

cess. In this work a well known optimization technique (the Broyden-Fletcher-Goldfarb­

Shanno memoryless quasi-Newton method) is employed to speed up convergence and to

select parameters. The strict locality requirement is relaxed but parallelism of compu­

tation is maintained, allowing efficient use of concurrent computation. While requiring

only limited changes to the back-propagation algorithm, this method yields a speed-up

from one to two orders of magnitude for medium-size networks.

Comparisons are done with back-propagation using optimal para.meters a.nd with

a version of it employing learning rate adaptation. This last method is in itself in­

teresting, because it converges in a number of iterations close to that of optimized

back-propagation, with no need for parameter optimization.

1 Except if he is learning Chinese ...
2 Esscntial information is for example contained in zero-crossings, Canny edges, diffcrcut momenta.

of the gray level distribution, etc.

5

Part II

Multiscale Low-Level Vision

with Line Processes

6

Chapter 2

3D Surface Reconstruction

7

2.1 Introduction: Cooperation of Smoothing and Dis­

continuity Detection

Many processes that are based on "visual" sensors as their main source of information

use a preliminary step of segmentation or piecewise smooth surface reconstruction (in

the first case the data to be segmented are intensity values, in the second range data

or depth values).

The smoothing operation filters out irrelevant information in the data (noise derived

from the image formation and acquisition process) and spreads information from the

sampled points to the nearby regions. During this process the explicit introduction of

discontinuities (henceforth "line processes") is necessary both to avoid washing away

important information under the smoothness requirement and to provide a primitive

perceptual organization of the visual input into different elements loosely related to the

human notion of parts or objects, to be used by the high-level processing stages. A

partial list of references includes [3,8,9,72,74,13,75,76,79].

Neural processing in the brain and practical implementations (see, for example,

[11,68,62]) show that the early vision steps can be done in parallel. Many computational

units (neurons or processors) cooperate to reach the desired solution with a speed-up

roughly proportional to their number (at least for regular, local, "trivially parallel"

problems [87]).

Recently a rnultiscale method has been proposed for solving the partial differential

equations associated with the smoothing operation [78]. This method can be i1nplc­

mented in a parallel architecture with processors connected in a pyra.rnida.l structure

[66] or in a two-dimensional grid [2].

Up to now it is not clear how to combine in an effective way the multiscale surface

reconstruction process with the discontinuity detection process. This study addresses

this problem and suggests a simple scheme that allows cooperation of tlw two mornt•nts

without disrupting the regular flow of rnultigrid computation on the different scales.

Discussion of this central point is preceded by a brief summary of the multi~rid

method used for solving the PDEs derived from regularization, mainly to establish tl1e

terminology and the context.

8

2.2 Multigrid Method for Regularization

The goal of the surface reconstruction step is to recover the pcop~rties of physical

surfaces from an array of noisy range data.

In general, the class of admissible solutions is restricted by introducing a priori

knowledge. In the regularization method the desired or plausible properties of the

solution are enforced by transforming the reconstruction problem into the minimization

of a functional.

For example, the energy functional corresponding to an "elastic membrane" (z(x, y)

) pulled by "springs" connected to the data points (d(x, y)) is

E(z(x,y)) = f (z(x,y) - d(x,y))2 + A(z; + z;)dxdy
J1mage

{2.1)

If the functional is quadratic, the minimization problem is straightforward. The

energy surface is convex and gradient descent will lead the system to the energy mini­

mum.

Some proposals have been made in order to extend the approach for non quadratic

functionals [72] [79] . In [72] a "hybrid" approach is used: continuous variables are

changed according to the gradient descent scheme 1 (mapped to a resistive network),

while the line processors are updated at a slower rate (with a. deterministic or stochastic

approach). Similarly, a "mixed" annealing strategy has been proposed in [74].

The Bayesian approach [8] to estimate the most probable image given a. degraded

image and a model for the degradation process is likewise reduced to a similar mini­

mization problem.

After applying the calculus of variations, the stationary points of the functional 2

arc defined by the solutions of the Euler- Lagrange equation.

For the previously introduced functional (eqn. 2.1) one obtains

1This can be done because, for a fixed set of line processes, the energy functio11 is quadratic in the

continuous variables.
2 lfopcfully local minima.

9

.iE = J, {2(z(x,y)- d(x,y)) - 2-X(zxx + Zyy)}.izdxdy
Image

A(zxx + Zyy) = (z - d); or ~z = (1/ -X)(z - d)

(2.2)

(2.3)

In standard methods for solving PDEs, the problem is first discretized on a finite

dimensional approximation space. The very large algebraic system obtained is then

solved using "relaxation" algorithms , which are local 3 and iterative.

By the local nature of the relaxation process, solution errors on the scale of the

solution grid step are corrected in a few iterations; on the contrary, larger-scale errors

are corrected very slowly. Intuitively, in order to correct them, information must be

spread over a large scale by the "sluggish" neighbor-neighbor influence. If we want a

larger spread of influence per iteration we need large-scale connections for the processing

units, i.e., we need to solve a simplified problem on a coarser scale.

In the words of Brandt [4], we must take advantage of the fact that the algebraic

system to be solved does not stand by itself, but is actually an approximation to

continuous equations, and therefore can itself be similarly approximated by other (much

simpler) algebraic systems on coarser grids. The pyramidal structure of the multigrid

solution grids is illustrated in figure 2.1.

This simple idea and its realization in the multigrid algorithm not only leads to

asymptotically optimal solution times (i.e., convergence in 0(n) operations), but also

dramatically decreases solution times for a variety of practical problems, as shown in

[4].

The multigrid "recipe" is simple. First use relaxation to obtain an approximation

with smooth error for a fine grid. Then, given the smoothness of the error, calculate

corrections to this approximation on a coarser grid, and in order to do this, first relax,

then correct recursively on still coarser grids. Optionally one ca.n also use the ncstul

iteration idea (use of coarser grids to provide a good starting point for finer grids) to

speed up the initial part of the computation.

Historically these ideas were developed starting from the sixties by Ilakhvalov, Fe­

dorenko and others (see [16] for a review).

3 The local structure is essential for efficient use of parallel computation.

/ / 7

L~ '/////
. .
. .

. . . .

; Lk~e~i;;v7 r'1
, ... :..._ i_ i~ '. i :

yiJi&,B5
/

i ~.~: :1,)
Figure 2.1: Pyramidal st rnct.ure for mnltigrid algorithms.

It is shown in [4] that, with a few modifications in the basic algorithms, one can

store the actual solution (not the error) in each layer. This method is particularly useful

for visual reconstruction, where we are interested not only in the finest scale result but

also in the multiscale representation developed as a byproduct of the solution process.

This is called full approximation storage algorithm and it is briefly outlined in what

follows.

The algebraic system, obtained by discretizing the original problem on the different

grids (numbered by k with O :S k :S L, 0 = coarsest) is

(Vl)

The <la.ta. on the finest grid define dh 1,, while for the hierarchy of coarser grids t.hP right.

l 1

hand side d h1c is obtained using the two extension (fine ~ coarse) and interpolation

(coarse--+ fine) operators, respectively /l and /1 in this way 4 :

(2.5)

Simple injection and bilinear interpolation are used in the present work.

Before computation is begun on a grid finer than the current one, the initial values

for z are updated as:

(2.6)

while before computation is begun on a grid coarser than the current one, the

updating is

(2.7)

The switching of control between different grids is explained in figure 2.2.

Terzopulos a.pplied the multigrid algorithm for solving PD Es associated with differ­

ent early vision problems (17,78], like the lightness problem, shape from shading, surface

· reconstruction, optical flow. We repeated some tests and obtained typical nrnltiscale

speed-up factors of at least 100 for 129x 129 images.

2.3 Line Processes in Time and Scale-Space

Because "real" images consist of approximately continuous patches separated by dis­

continuities and because a relevant part of the useful information is contained in thes~

discontinuities, a surface reconstruction algorithm will have to deal with t.hcm in a

constructive way.

4 This definition agrees with the idea that coarse-scale corrections are a lop - down influence. The

definition given in "mathematical" texts is usually the opposite, so beware.

12

Find good lnitlal approximation far
finest rtd

Relax current gr1d : k

NO Is convergence slaw ?

k c- k + 1 (to flMr I) k c- k • 1 (to coarser

lnldalla z an grid lnltlallze z on grtd k
t---~

nltlallze d on grid k

Figure 2.2: Flow of control in sequential multigrid (adapted from Brandt).

Even if there are some results in the literature (79,74,8], up to now it ha.s not

been dear how to combine the surface reconstruction and the discontinuity detection

processes in an optimal way (speed is naturally one of the considered parameters).

One has to distinguish clearly bet.ween very different approaches, distinct by the

degree of cooperativity of the two processes, considering both time and sea.le.

In some cases the discontinuity detection step is assigned to a separate preliminary

process. Assuming this, in a regularization approach the smoothness constraint ,vill not

be enforced globally, but locally, depending on the presence or absence of line processes.

For example, eqn. 2.1 will be tra.nsforme<l into

E(z(x,y)) = J, (z(x,y)- cl(x,y)) 2 + .,\(x,y)(z; + z;)d.uly (2.8)
Image

with .X(x, y) = 0 in the presence of a line process, so that a break in the surface will not

influence the value of the energy function. The danger in this case is that unessential

discontinuities are introduced.

In other schemes, discontinuities are detected after the smoothing step (that could

hide some of them), for example, by taking derivatives (error in derivatives will be

smaller after regularization) and thresholding them appropriately.

Finally, other proposals consider cooperation of the two processes in time but do

not consider the problem of organizing the cooperation in scale.

In [72] for example a new term is added to the energy function to favor a good dis­

continuity structure. If we introduce a function G(.X) measuring the local "goodness"

of the discontinuities, eqn. 2.8 becomes

E(z(x,y)) = J, (z(x,y)- d(x,y))2 + .X(x,y)(z; + z;)dxdy+ J, G(.X(x,y))dxdy
Image Image

(2.9)

In the hardware implementation suggested by the authors of [72], an analog network

minimizes the "smoothness and data agreement energy" while, in a cyclic way, a digital

network updates the line processes minimizing the "discontinuity energy."

The line processor network is updated at a much slower speed than the analog one.

This is due to the fact that LPs are delimiting large-scale structures and must wait

for the relaxation process to spread information over large distances before committing

themselves to a yes or no decision.

Summarizing, in the first two approaches one process cannot make use of informa­

tion exchange with the "dual" one, while in the last one the computation tends to be

very slow for large images, because many cycles are required for convergence of the two

coupled networks.

Our suggested approach to the problem will be illustrated in the following sections.

It is based on the introduction of line processes at different scales, "conHcctc<l,, to

neighboring depth points (containing the z values of the surface, henceforth called DPs)

at the same scale and to neighboring line processes (henceforth LPs) on the fin<•r and

coarser sea.le. A heuristic function (called Cost function) is then responsible for embed-

14

ding into the computational system the requirement of proper discontinuity structure.

Finally, the multiscale algorithm is adapted for dealing with discontinuities in a simple

but effective way.

2.3.1 Mutual Connections of Line Processes

During the course of the reconstruction, a given line process updates its value in a man­

ner depending on the values of some other LPs. This is by definition the neighborhood

and we feel free to refer to its members as the processes connected to the original one. It

is useful to define three different subsets of this neighborhood: the set of connected LPs

at the same scale, called SSN , its subset SSN* lacking the two pamllel line processes

(defined as the LPs at both sides of the given one and with the same orientation, see

figure 2.3) and the set DSN containing the connected LPs at the coarser and finer

scales.

Considering first the SSN, inside a given layer a LP is connected to other LPs

with a "snowflake" pattern, as in figure 2.3. The influence of the parallel discontinu­

ities is essential in the multi-scale scheme, to avoid duplication of lines caused by the

"excitatory" coarse ~ fine influence.

The choice of the connections between different layers is more complex. Part of the

difficulty is related to the discretization on grids composed of quadrilateral elements,

whose size is doubled when coarseness is increased. Considering the geometry (see

figure 2.4), it's apparent that there is no immediate definition of the LPs above or

below a given one.

Here is one possible solution to the problem. First the coarse-to-fine influence is

defined according to a minimum distance criterion: the updating of a given LP depends

on the activation values of the LPs in the coarser scale that are at minimum distance

(in the x - y plane) from it. The only problem with this definition is that some LPs will

have two LPs above with minimum distance, while others will have one. This slight

asymmetry can be corrected by adjusting the connection weights so that the combined

effect of the two activated minimum distance LPs (defined as weak influence) will be

the same as the influence of the single LP in the other case (defined as strong influence),

as will be shown in the following section.

15

o.,,m Polnta

\ ____ _.. •. I

i •
• •

SIMPLE OtSCONTINUn'Y NEIGHBORHOOD

•
;---i.

l i i

• • I I
j i • •

- EXTENDED WITH PARAU.El. UNE PROCESSES

Figure 2.3: Discontinuity neighborhood i11side a given layer. Depth points (left) and

corresponding line processes (right) are shown. Influence from the "paralleP' line pro­

cesses is used to prevent duplication of lines going form coarser to finer scak•s.

Then the fine-to-coarse influence is defined by a symmetry requirement: if process

x in scale X influences yin scale Y, then conversely y will be influenced by x. In this

way the fine --+ coarse influence is determined uniquely a.fter defining the coarse --+ fine

one.

2.3.2 Updating Rule and Look-up Table

As we have seen before, starting from partial "visual'' iuforrnat.io11, the· dynamical

system of the line processes and depth points on the different scal0s must evolve in time

to a state corresponding to a faithful rcronslrnclion of the three-dimensional structure

and a perceptual grouping of it into "meaningful" pieces. Creation of discontinuities

IG

COARSE ·• FINE Interaction

two minimum dlstanc. neighbors one minimum distance neighbor
(with weak Influence) (wllh strong Influence)

COMPLETE INTERACTION (derived lrom coarse • ., fine)

Figure 2.4: Discontinuity neighborhood between different layers. First coarse --+ fine

influence is derived based on the minimum distance prescription. Then using symmetry

the complete interaction is derived .

therefore must be favored either by the presence of a large difference in the z values

of the nearby DPs 5 or by the presence of a partial discontinuity structure that can

be improved. Because usually the perceptual grouping corresponds to the underlying

physical structure, these two driving forces cooperate to create the desired results.

Let us define as benefit the square of the derivative at a given point, because intro­

duction of one discontinuity is "beneficial" when this quantity is large

5 During this work a "membrane" energy term in the functional is considered. "Tliin plate" and

higher order terms that may be necessary for some reconstruction problems c.u1 clearly be accon11no-­

datcd in the suggested scheme.

17

Benefit= (8z/8x)2 ~ (zi+I,i; Zi,i)
2

hk
for a vertical discontinuity (2.10)

and let's introduce a cost for a discontinuity in a given environment

Cost = /(LPs E SSN; LPs E DSN)

The local effect of other activated or inactivated discontinuities is given by the depen­

dence of the Cost function on the LP values in the neighborhood at the same scale and

at different scales (variables for activation values at different scales are underlined in

the above notation). Cost is therefore a function of binary variables and will be defined

in the next section. The updating rule for a LP is given by

LP~ 1 iff Cost< Benefit (2.11)

Because the Cost is a positive quantity, discontinuities will be switched on only when

there is a sufficient difference in nearby z values. Moreover, because the Cost depends

on the LPs neighborhood, a good discontinuity structure can be favored by "discount­

ing" Cost if the local structure is improved by activating the given LP.

Cost is a. function of a limited number of binary variables, therefore to increase

simulation speed and to provide the flexibility that is convenient for simulating different

interaction schemes, a look-up table approach was used.

As shown in figure 2.5, an index into the table containing the Cost values 6 is

obtained by reading the activation values (0 or 1) of nearby LPs and considering them

as bits in the binary representation of the index.

2.3.3 Invariance, Scale, and Topology: a "Natural" Parametrization

Clearly segmentation should not depend on the physical scale of the structure 7 • If

the z values of a surface a.re multiplied by a. given factor, one should still get the same

6 For 8 neighbors one gets a 256 entry table when considering only t.he SSN. To consider t.he DSN,

a 64k entry table is needed.
7 Unless we want this to happen.

18

OFf (0) DtSCONTINUITY
COST TABLE

_!~
5.00 erf.♦_,.BIT.~),1

Bl~ (D O 10100101

<D
T2------ei► , ___ 32_~5----1

Index

BIT~ITI_.)I 3

Figure 2.5: Look-up ta.hie for discontinuities. Activity values are used as bits of an

index into the "cost" table.

distribution of line processes by scaling the Cost's appropriately. Besides, the "topo­

logical" influence (enforcement of good discontinuity structure) should be independent

of scale.

To separate the effects of scale and topology we decided to isolate the scale factor

into one parameter dh, corresponding to the typical size of 8z/8x and 8z/8y that we

want to be detected by our LPs. Because the comparison implied by eqn. 2.10 a.n<l

eqn. 2.11 is with the square of these quantities, let's define the cost for a LP in the

absence of other active LPs in the neighborhood as

C osto = J(O, ... , O; 0, ... , 0) = dli2

It would be of little practical use to a.How 2.56 degrees of freedom in the definition of

Costs for the SSN. First rotational invariance must be valid. If a given configuration

19

1s rotated by multiples of 90 degrees, Co.c;t must rcmam equal. Moreover, because

of the discretization of direction involved in the quadrangular grid, it seems reason­

able to extend the notion of rotational invariance for cases like the one in figure 2.6,

corresponding to a more general rotation.

ROTATIONAL SYMMETRY

MPflESENTATIVES MEMBERS
ol NEIGBOAHOOO CLASSES

Figure 2.6: Rotational invariance leads to a sma.ll number of "topological classes" for

the possible neighborhood structures.

We decided finally to classify all possible SSN"' configurations (let's postpone con­

sideration of the effect of the parallel LPs for the moment) into groups, depending on

the number of regions in which the surface is divided at th<' location of the discontinu­

ity. For some examples, sec again figure 2.fi. The Co.c;t for a neighborhood with 11 cuts

is multiplied by an associated factor an, to be selected by the user. If the number of

cu ts is too large, Cost is set to a very large value (to penalize formation of "tangled"

lines).

'20

Costn = /(LPs E SSN• ,0,0; 0, ... ,0) = Costo X an

if local surface patch is cut into n pieces by the SSN• structure.

Cost= oo if n 2: 5.

The "inhibitory" influence of parallel lines is described by factor ai (greater than

one), with

Cost(LPs E SSN; 0, ... ,0) = Cost(LPs E SSN\0,0; 0, ... ,0) x a?

where np = number of parallel LPs E SSN.

Last but not least, presence of lines at the coarser or finer scale will reduce Cost

by factors ru or rd respectively (smaller than one), in the strong influence case. In the

weak influence case the factors become ..jr;. or Fa, 8 •

Cost(LPs E SSN; LPs E DSN) = Cost(LPs E SSN; 0, ... ,0) x r:a x r:Ib

where na = number of above LPs E DSN (x 1/2 if weak influence).

and nb = number of below LPs, similarly.

This choice turned out to be a convenient method for "programming" the compu­

tational system in order to obtain a desired segmentation structure. For example, if

the occurrence of crossings of type X in one class of images is believed to bt• rare, a

large ax parameter will do the job.

2.4 Combining Discontinuity Detection and Surface Re­

construction in Time and Scale

Our proposal for approaching the "priority problem" between smooth reconstruction

and discontinuity detection is to combine both phases in time and scale .

8 Let' s remember that the combined weak influence of two LPs (equal to Fu x Fu) must be equal

to the strong influence of a single LP (equal to Tu).

21

The reconstruction treats the computational units of the two types (line processes

and depth points) on an equal footing, assigning them equal priority and equal time.

The general flow of control for the multiscale algorithm is similar to that given

in [78] (here it is described using a pseudocode derived from the C language). The

essential difference in this case is that each relaxation step in the initialization part

and in the recursive multiscale call is associated with a line detection step that uses

information about line elements in finer and coarser scales, as follows:

int fmg()

{

}

int i,layer;

layer= coarsest;

i=naa;vhile(i--) {update-1ine_processes(layer);relax(layer);}

update-1ine_processes(layer);

for(layer = immediately finer; layer <= finest; layer++)

{dovn(layer-1);mg(layer);}

int mg(layer) int layer;

{

}

int i;

if(layer== coarsest){ update_line_processes(layer);relax(layer);}

else{

}

i=na;vhile(i--){update_line_processes(layer);relax(layer);}

i=nb;{up(layer);vhile(i--)mg(layer-1);dovn(layer-1);} /*recursion*/

i=nc;vhile(i--){update_line_processes(layer);relax(layer);}

update_line_processes(layer);

The function relax O performs the relaxation step, while update_line_processes ()

updates the discontinuity values. up() and dovn() are, respectively, the i11jection oper­

ator (for fine-to-coarse restriction) and the bilinear extension operator (for coarse-to-fine

22

extension).

Summarizing, first an initial number of relaxations are performed on the coars­

est scale, then the approximate solution is extended to finer scales and the recursive

multigrid call is applied to each of these.

In the present implementation, relaxation is based on the Gauss-Seidel (sequential)

method 9 • A given z value is updated as follows:

()
Zaum + fJ X h2 X d(x,y)

zx,y +- 2
naum + fJ X h

where /J = ½ ; h = grid step.

Zaum = sum of neighboring DPs not separated by an active discontinuity;

naum = number of terms in the sum ;

Zaum = LP(x + dx, y + dy) x z(x + dx, y + dy);
dx=±h;dy=±h

LP(x + dx, y + dy);
dx=±h;dy=±h

As we will show in the following, this coordination scheme not only greatly improves

convergence speed (the typical multigrid effect) but also produces a more consistent

reconstruction of the surface at different scales.

2.5 Results of Multiscale Algorithm

Detailed performance tests have been made using noisy data for z values corresponding

to "Randomville" structures. These are obtained by constructing quadrilateral blocks

with random coordinates, heights, slants and tilts and placing them in the image plane.

The data are then corrupted by noise and loaded as constraints in the algorithm.

9 The choice of the relaxation method can be modified depending on the desired surface properties

or the amount of parallelism in the computation, while maintaining the proposed coordination strategy

with the discontinuity detection step.

23

2.5.1 Performance with Dense Constraining Data

In this case constraints are present on all grid points. Initial values for the LPs are

equal to the corresponding constraints, where these are given, or to zero, where these are

missing. All DP values are initially zero. Border conditions are obtained by "clamping"

depth points to zero.

All timing results are given in terms of work units, where a work unit is defined as

the amount of computation required to perform one iteration on the finest grid in the

hierarchy. As far as absolute timing is concerned, a work unit corresponds to less than

one minute for 129x129 images using a microcomputer 10 and to approximately 800ms

using a simple parallel computer 11•

For 129x 129 "images" and noise values corresponding to 25% of the highest struc­

ture, a faithful reconstruction of the surface (within a few percent of the original one)

is normally obtained after one single multiscale sweep (with V cycles) on four layers 12 •

The total reconstruction time is 3.43 work units.

Because of the asymptotic optimality of multiscale methods, time increases linearly

with the number of image pixels (i.e., time ex n2 for an image with size n).

User interface examples and results from some tests are shown in the following

figures. Figure 2. 7 shows the simulation environment on the SUN workstation. Active

line processes are shown in the higher half of the screen, for the different layers. Depth

values of the surface are encoded using a proportional gray value and displayed in the

lower part.

The first screen displays an intermediate state of the algorithm, where many spu­

rious discontinuities due to noise are still present. The second screen shows the final

result.

Figure 2.8 and figure 2.9 show the final result for a typical "Randomville" i ma.gc.

The original surface , the surface corrupted by noise (25 %), and reconstruction on

different scales arc shown in this order.

10SUN 386i by SUN Microsystems.
11 Dcfinicom board with 4 Transputcrs with Para.soft software.
12 In other words, parameters na,nb,nc in mg() are equal to one.

2/4

2.5.2 Performance with Sparse Sampling Rate

In order to assess the degradation in performance with increasing sparseness of the

randomly placed depth constraints (corrupted by 25% noise), the sampling rate was

reduced down to 10% of the image points in the finest scale.

Constraints for coarser scales are then obtained by avemging the constraints for the

finer scales, starting with the layer immediately "above" the finest one and repeating

the averaging operation until the coarsest layer is encountered. In all tests we managed

to reconstruct a "correct" surface using the same basic algorithm (in the same compu­

tational time). Figure 2.10 displays the data used for the tests (representing two slanted

and rotated quadrilateral surfaces). Both the original data and the randomly-placed

noise-corrupted constraints are shown.

As shown in figure 2.11, performance degradation is hardly noticeable, even after

the sampling rate has been reduced to 10% . For larger a.mounts of noise or fewer con­

straining data it is useful to increase the number of iterations on each layer. Typically,

performance reaches its limits for a value of three iterations per layer.

2.5.3 Speed-up with Respect to Single-Layer Approach

Some tests have been done in order to assess the gain in speed obtained by using more

than a single scale in the algorithm. With this purpose, the 129x 129 data set described

in the previous section was used as input to a single-scale algorithm . This consists

of relaxation and discontinuity detection on the scale corresponding to the finest grid

used by the multiscale algorithm.

Reconstruction with a quality similar to the one obtained with the multiscale ap­

proach can be obtained only at the price of a large increase in the number of iterations.

Furthermore, the number of relaxation steps for each discontinuity detection step ha.s

to be large (50 : 1 heuristically, for the test problem). This is a consequence of the

slow propagation of information during the relaxation steps. If discontinuities are de­

tected more frequently, spurious discontinuities at the border between regions with and

without constraints will be activated, and these in turn will affect reconstruction in an

almost irreversible way. The resulting computation times are larger by two orders of

magnitude with respect to the multigrid times.

25

Because reconstruction with fixed parameters was not satisfactory, we decided to

use an heuristic described in [72] : formation of discontinuities is penalized at the

beginning, to favor a smooth interpolation except at very steep depth gradients, and

then gradually encouraged, so that the surface will break at smaller gradients. In the

present implementation the parameter dh is linearly decreased in the course of the

computation.

Figure 2.12 shows the evolution of the single-scale algorithm up to 300 iterations

(300 work units because iterations were done at the finest scale).

In this case the shallowest part of the contour has been lost because of the smoothing

effect of relaxation and is not recovered even after drastically decreasing dh (dh cannot

become too small otherwise spurious LPs will be activated).

2.6 Summary

We showed that the extension of multiscale methods to discontinuity detection can be

done in an effective way, combining surface reconstruction and discontinuity detection

in time and scale.

This reduces total computational time by orders of magnitude with respect to single

scale methods and provides a better coordination between the two requirements of

faithful reconstruction and good discontinuity structure.

We strongly believe that the presented method can be easily adapted for similar

problems in early vision (for example, optical flow, shape from shading , ...) and more

general problems in which a two-dimensional distribution of data must be reconstructed

and segmented into smooth regions.

26

Figure 2.7: Simulation environment: rc•s1ilt.s d11ri11g computation and final results. In

the upper part of the screen are a.ctivat.ed discontinuities, in the lower part arc gra.y­

cncodcd depth values (on the different scales).

27

Figure 2.8: "Random ville" landscape: original and noisy images (25% random noise).

28

Figure 2.9: M ultiscale rcconstructio11 of "Ra.ndomville" landscape from dens(' con­

straints: results on different. scales.

29

Figure 2.10: Original depth constraints and noisy data after random sampling (con­

straints placed on 10% of the grid poin1s).

Figure 2.11: Reconstruction with 10% ~ampling rate: multiscale algorithm.

Figure 2.12: Reconstruction with 10% :;a111pli11g: evolution of single scale algorithm.

State after 20, 50, 200, an<l :JOO it.cra.t.io11s is shown. Discontinuities are activated 011ly

after 50 prcli mi na.ry rclaxa.tio11 sl<'ps.

Chapter 3

Adaptive Multiscale Scheme for

Optical Flow

33

3.1 Introduction: Reliable Estimation of the Optical Flow

During the last decade there has been increasing interest in analyzing sequences of

time-varying images and in particular in determining the 2-D motion or velocity field,

which is the projection of the 3-D velocity field onto the image plane (see [37] for

a review). In particular situations, the apparent motion of the brightness pattern,

known as the optical flow, provides a sufficiently accurate estimate of the motion field
1 • The two main approaches that have been proposed for determining the optical

flow are differential [56,28] or based on matching of tokens or intensity values [44,34].

The former estimates the flow field from spatial and temporal variations of the image

brightness while the latter involves an explicit matching of the low-level (intensity

values) or high-level features or tokens across successive frames.

Both approaches make a basic assumption about the scale of the image patterns and

of the motion to be determined. In differential methods, reliable derivative estimation

requires that the space-time variation of the intensity pattern is small with respect

to the discretization steps. Similarly, in single-scale matching methods the search for

correspondence is limited to a local neighborhood defined by the expected motion

amplitude.

The multigrid algorithm with the "full approximation storage" scheme has been

suggested as a way to solve the differential equation in Horn and Shunck's metho<l of

deriving the optical flow [61]. This algorithm converges in a time proportional to the

number of pixels in the image, is computationally efficient, and produces in addition a

consistent result at different spatial scales. Unfortunately, both the multigrid method

and simpler coarse-to-fine continuation schemes tend to suffer from their homogeneous

computational structure. In some cases this may cause the optical flo\v detection process

to oscillate between different estimates at different scales or even to converge to a. wrong

solution (52,55]. Indeed, if no explicit direction is given in order to select locally the

appropriate scale, different scales will, in general, provide conflicting information.

1 For example, use of the "brightness constancy" assumption to derive the optical flow is correct

(produces a flow coincident with the motion field) if the scene is illuminated by 011c fixed light source

at infinity, the surfaces arc Lambcrtian, strong intensity gradients are present, and tlae mot.ion is in

planes parallel to the image plane.

34

We propose a method for tuning the discretization grid to a measure of the reliahility

of the information derived from a given scale. This measure will be based on a local

estimate of the errors due to noise and discretization.

The flow of control is from coarse to fine scale, and we assume that the largest

motion in the image can be estimated by one of the used scales.

Binary discontinuities in the optical flow are introduced explicitly, both because

they prevent smoothing across regions corresponding to different moving objects and

because they provide a compressed representation that can be used by subsequent visual

modules.

Since our long term interest is in achieving real time processing, some thought is

given to selecting methods and algorithms with low computational complexity.

The chapter is organized as follows. First, we summarize some concepts about

differential methods for optical flow, then we introduce and discuss some fundamental

shortcomings of multiscale versions of these approaches. Next, we describe our scheme

with adaptive discretization and explicit discontinuities. It requires the derivation of

an estimate for the relative error in the flow field at a given scale. Finally, we present

some experimental results obtained with synthetic and real world image sequences.

3.2 Differential Methods

In order to estimate the optical flow from a series of time-varying images one needs

to make some assumptions about the temporal evolution of the image brightness. Let

E(x, y, t) be the image brightness at point (x,y) at the time t and suppose that E varies

smoothly with respect to space and time. Many differential methods assume that the

brightness of patches in the image remains approximately constant over small time

intervals (56). This simple assumption leads to the constraint equation

dE
dt = Ex U + Ey V + Et = 0

relating the change in image brightness at a.n image point (x,y) to the tv.,ro compouents

u = ~~ and v = !fjf of the flow field. Ex, Ey, and Et denote the spatial and temporal

brightness derivatives that must be estimated from successive image frames.

Clearly, this brightness constancy equation does not determine both components

of the optical flow field uniquely. From eqn. 3.1 one can recover directly only the

component of the optical flow in the direction of the brightness gradient2 • This is known

as the aperture problem and it has often been taken as evidence that the estimation

of the optical flow is a fundamentally ill-posed problem. Further assumptions lea.ding

to additional constraints are needed in order to retrieve the flow component along the

isobrightness contours [76].

Hom and Schunck [56] regularized the problem by assuming that the optical flow

varies smoothly almost everywhere in the image, and they proposed to minimize the

quadratic energy functional

where the first term expresses the rate of change of the image brightness along the

flow line and the second one the departure from smoothness. The weighting factor

o is proportional to the expected noise in the estimates of the spatial and temporal

brightness derivatives. The appropriate Euler-Lagrange equations

(3.3)

(3.4)

give a necessary condition for an extremum of <I>. After discretization, this leads to

a very large algebraic system (a pair of equations for ea.ch point in the image) that

can be solved using local and iterative "relaxation" methods. The solution method

used throughout this work is Gauss-Seidel lexicographic relaxation. During an updat­

ing cycle the grid points are considered in a fixed order (for the considered images one

starts from the north-west pixel and follows the image lines), a.nd the new approxi­

mation (un+l ,vn+l) of the flow field can be determined from the estimated brightness

derivatives and from the local average (u'\v11) of the previous flow estimate by

2Thc solution to eqn. 3.1 is: (u,v) = ll~~~f +a where a is perpendicular to VE

36

un+l = u'1 _ Ex(Exu.'1' + Eyiff" + Et)
(a2 + E; + Ei)

n+I - ='71 Ey(Exu:' + Eyv" + Et)
v - v - (a2 + E; + E;) '

Natural boundary conditions are given by zero normal derivative.

(3.5)

(3.6)

The smoothness assumption regularizes the problem but it constrains the field to

vary smoothly across the occluding boundaries, where flow discontinuities can be ex­

pected. Several approaches have been suggested to prevent smoothing over discontinu­

ities (see [31] for example). This question will be addressed in section 3.7 where we will

present our coordination scheme for the smoothing and discontinuity detection phases.

Recently, Uras et al. [45] argued that the estimation of the optical flow is not, in

general, an underconstrained problem since the image brightness satisfies other nal ural

assumptions besides the brightness constancy equation. They proposed to consider the

vector equation

d
-"vE=O
dt

(3.7)

which involves second order brightness derivatives and which is verified exactly for a

parallel translation in the image plane and when the light source is distant and fixed. In

general, this gradient constancy equation (as well as any other pair of scalar equations

among eqn. 3.1 and eqn. 3.7) determines the flow field uniquely. This makes the

optical flow problem only ill-conditioned but not ill-posed (except when only straight

edges exist and ExxEyy - E;y = 0). The optical flow cannot be recovered when the

two equations are linearly dependent (in general it cannot be recovered reliably if the

linear system is not well conditioned). At these locations there is not enough local

information and it is therefore necessary to impose some local smoothing.

3.3 Towards an Adaptive Multiscale Approach

All differential or feature-based methods for recovering the optical flow working at a.

single spatial scale share a fundamental limitation. This limitation stems from the fact

37

that an optical flow algorithm needs to solve, at least implicitly, a matching problem.

Indeed, any single scale method faces an ambiguity when it must bring into corre­

spondence image intensities or image brightness foatures in successive frames. This

is especially true when the motion amplitude becomes similar to the spatial intensity

wavelength 3 •

In the differential context, this problem can easily be shown for a one-dimensional

sinusoidal intensity profile sin-¥,(x - vt) of wavelength L moving with velocity v. In

the one-dimensional case, the brightness constancy equation determines the optical flow

uniquely and the measured velocity v is given by

where Ex and Et are the three-point approximations of the spatial and temporal bright­

ness derivatives obtained using the spatial and temporal discretization steps ~x and

~t. Three-point derivatives provide a better estimate (0(h2
)) with respect to the for­

ward difference formula. In addition, the temporal and spatial derivatives are estimated

at the same point (no phase shift is present, as explained in [35]).

Figure 3.1 shows some characteristic graphs of the measured velocity and relative

error in the velocity as a function of the true velocity v for different wavelengths L. For

clarity, the curves are plotted versus the dimensionless ratios vtt and ~x, where ~x is

the discretization step in space and ~t in time.

While in the limit L ~ oo eqn.3.8 converges to the correct velocity v, the relative

error in the computed velocity becomes of the order of 100% even for small velocities

when the wavelength is smaller than approximately five spatial sampling steps Ct ~
0.2). Note that we take into account only the error due to the approximation of the

brightness derivatives.

3 Reducing the interframe movement by increasing the acquisition frequency diminishes this am­

biguity but increases the computational burden because more images have to be treated. Siuce the

motion scale is not known in advance, this frequency must be high and noise problems due to inten­

sity quantization or other sources can arise. A too small interframe movement will, for instance, be

undistinguishable from zero after quantization.

38

----­.... -- --
-----~-- - - -

-- -~- - ... - -
- ..

♦ . s

.
Q

. ··- - ------0.1 ~ -. S ____ ... -
0.1.

,. .

Figure 3.1: Measured velocity (a) and relative error in measured velocity (b), defined as

av/lvl = l(v-v)l/lvl, for moving sinusoidal pattern. Values obtained with discretization

(dots) are compared with correct values (dashed line). Three point approximation for

derivatives is used. Curves for different values of ~x are shown.

In the case of the Horn and Schunck method a. basic problem arises when the motion

amplitude is too large with respect to given resolution (i.e., is more than a few spatial

sampling steps)4 • The problem is caused by the use of discretized formulas for the

estimation of the temporal and spatial derivatives of the image brightness. As said

before, the a.ccura.cy of these formula.c; decreases when the brightness changes rapidly

on the sea.le given hy the discrct.izat.io11 step, beca.11s<' in this ca.se the step cannot. he

considered infinitesimal.

To deal with the matching ambiguity one can consider a resolutio11 pyramid and

4 In this work we assume that the brightness constancy equation 3.1 is valid.

work at different scales ((49] and the contained references). Since the high frequencies

are attenuated at lower resolution, the spatial and temporal derivatives of the bright­

ness are smoothed and their estimate is more informative. In a.,<Jdition, a multiscalc

approach with an effective coordination scheme between the different resolutions re­

duces the computational effort. It has been shown that the multigrid algorithm ((64]

for the general theory) converges in a time proportional to the number of pixels (i.e.,

to n2 for an n x n image) and is furthermore efficient (reducing computation by two

orders of magnitude for images with 129X 129 pixels). This effect can be explained

when one considers that in local iterative procedures information propagates only to

nearest neighbors during an updating step. Now, since points that are neighbors at

lower resolutions are separated by many fine resolution steps, fewer iterations at lower

resolutions are sufficient to spread information between areas that are distant in the

original image.

There has been some previous work on multiscale determination of the optical flow

[52,55,61]. Terzopoulos [61] applied, for instance, the multigrid algorithm to the Euler­

Lagrange equations 3.3 and 3.4. The idea of the multigrid methods [77] consists in

starting from an approximation with smoothed error o"btained by relaxation on the fine

grid and in determining a correction of this approximation on the coarser grid. This

is computationally less expensive and it can be done recursively by relaxation on the

coarse grid and correction on the next coarser grid. The fine-to-coarse and coarse­

to-fine intergrid transfers are realized using, respectively, restriction and interpolation

operators with local averaging properties. Note that the starting approximation itself

can be obtained in a coarse-to-fine fashion, using nested iterations.

Terzopoulos reported, for the case of an expanding Lambertian sphere, a substantial

speed-up with respect to the single scale relaxation [61]. It is important to point out

that this result applies to an image that contains a unique dominant spatial frequency

(related to the sphere diameter). Since in this special case the velocity is perpendicular

to the brightness gradient, the first iteration is already sufficient (in the absence of

noise) to recover the correct optical flow. Indeed, the multigrid method turns out to

be much less effective for more complex images with superposed frequencies, or even

for single frequencies if, as will be shown, a. grid coarser than the finest one provides a.

40

better estimate.

This difficulty has also been encountered by Glazer (55] and Enkelmann (52] and is

relevant to any multisca.le scheme, when conflicting information is present at different

scales.

An example is given in one dimension by considering two scales with a 2 : 1 reso­

lution and an intensity profile composed of two sine waves of different wavelengths L1

and L2. Suppose that in terms of the fine grid spatial step: L1 = 3, L2 = 6 and the

intensity profile velocity is equal to 2 (in the following, for simplicity, dt is equal to 1).

On the coarse grid the higher frequency will be almost completely suppressed 5 and the

measured velocity is equal, according to eqn. 3.8, to the true velocity v = 2.

Figure 3.2 shows that on the fine scale there is at least a 50% error in the velocity for

any combination of the two frequencies. In particular, the measured velocity is equal to

1 for an intensity profile with only the low frequency and it has even an opposite sign

when the ratio between the high and low frequencies is greater than 0.5. It is worth

noting that if v = 1 the correct velocity would clearly be recovered at the fine sea.le.

Typically, the image brightness is a superposition of different frequencies corre­

sponding to the different objects and textures in the scene. Thus, a multisca.le scheme

a la multigrid, involving a (systematic) bidirectional information flow from high-to-low

and low-to-high resolution, is not appropriate because it is likely to mix incoherent in­

formation from the different scales. The scheme may not converge6 or it may converge

to an incorrect result.

The previous examples and considerations suggest a new strategy. It starts by

estimating the overall flow field at a reasonably coarse scale. This approximation is

then improved on successive finer scales only in regions of the image where its estimated

error is greater than a predefined threshold. A local inhomogeneous approach is thus

obtained, where areas of the images characterized by different spatial frequencies or

by different motion amplitudes are processed at the appropriate resolutions, avoiding

corruption of good estimates by inconsistent information from a different scale.

A simple local criterion to evaluate the local reliability of the flow field is based

5 By the smoothing operation preceding the subsampling process.
6 lt may oscillate between two different grids with conflicting information, for example.

41

l- -

~

I

t
t

!
.;.

! t ';
! i

! a .. . I . .
.:

t I I
a. .f ,. ,., I.

Figure 3.2: Measured velocity for superposition of sinusoidal patters as a function of

the ratio short / long wavelength component. 3pt approximation for derivatives is used.

The correct velocity is equal to 2 (~t = 1).

on measuring the amplitude of the brightness gradient in different areas. In fact, in

areas with small gradient the optical flow estimate is mainly obtained by filling in fiow

information from areas with larger brightness gradient (56).

This criterion however is not only insufficient but it may also lead to deterioration

of an initially correct estimate. In fact, areas with large gradient values tend to contain

high frequencies and therefore to be plagued by discretization errors, which in this

way will be propagated to nearby regious. A better criterion should rnnsider both the

discretization and the quantization (nois(') errors.

In section 3.4 we shall derive a loca.l estimate for the ovcmll relative crrnr in the

optical flow that takes into account these two contributions. This estimate will then

be used as a local criterion to choose the appropriate scale for the estimation of tlie

42

optical flow on a given part of the image, as wilf be proposed in section 3.5.

3.4 Estimation of the Flow Field Error

We shall now derive an estimate for the relative error in the flow field. It is worth

noting that this estimate does not depend on the algorithm used for recovering the

optical flow as long as it assumes the brightness constancy equation.

The error will be derived in the one-dimensional case and then extended to two

dimensions using rotational invariance.

We first consider the contribution to the flow field error due to the approximation

of the brightness derivatives. Let f(x - vt) be a one-dimensional translating brightness

profile. Taylor's expansion yields the three-point approximation for the first order

brightness derivatives

{3.9)

In 1-D, the brightness constancy equation 3.1 reduces to Exv+ Et = 0, where E(x, t) =
f(x - vt). It is easy to show (see appendix B) that, neglecting higher order terms, the

three-point approximations of the temporal and spatial derivatives are given by

/"'() J"'(y)
Et~ ft - v y (v~t) 2 and Ex~ fx + --(~x)2,

6 6
(3.10)'

where ~x and ~t are the spatial and temporal sampling steps. By substitution in the

brightness constancy equation, we obtain an approximated expression for the measured

flow field

ft - ~(v~t)2

fx+ f"~(y)(~x) 2

which leads (by second order Taylor's expansion) to the relative error

43

(3.11)

6v = v - v ~ f"'(y) ((vllt)2 - (Llx)2).
V V 6/'(y)

(3.12)

Thus, provided higher order terms ca.n be neglected, the relative error in the flow field

due to the three-point approximation of the brightness derivatives is close to zero when

the interframe motion vAt is of the order of the spatial sampling step Ax. In particular,

for a sinusoidal brightness profile sin 2;, (x - vt) of wavelength L, we have

(3.13)

In practice, the image brightness is corrupted by quantization error and by noise so

that we cannot expect the constancy equation to hold exactly. We shall now estimate

the flow field relative error due to the quantization of the intensity levels. Clearly, this

provides a lower bound on the relative error due to the noise in the image brightness.

The one-dimensional constancy equation v ~ -f leads, when v is not null, to the

expression for the relative error

(3.14)

where hEx and hEt are the errors on the temporal and spatial derivatives respectively'.

If we consider the errors induced by the quantization process, we have (assuming

that the image intensity is an integer going from O to a maximum value n, so that the

minimum amount of "observable" intensity difference is 1, see also figure 3.3):

1
hEx ~ - and

Llx

7To derive eqn. 3.14 we made the assumption hv ~ (88;r)26 E~ + (8
8;,)26 E?, vali<l for a Gaussian

distribution of the errors.

44

3

2

tttia llized ersion
()

Dx

error introduced hy ,1uantizatio11

Figure 3.3: Error in derivative estimation due to quantization of intensity values.

This crude approximation is sufficient because the error estimate will be compared

with a user-defined threshold in the adaptive scheme. A better average precision in

the estimated relative error can be obtained by using the average discreli=ation error.

This avera.ge can be calculated using a statistical model for the considered images, as

explained in [32].

Since lvl ~I f I, we can rewrite

✓~+~
J Ex I

In the following we shall denote the spatial and temporal differences with ~xE and

8-.tE, respectively. Now IExl ~I t:i.l; I and therefore

1 1

(L\xE)2 + (vExl\t)2 •
(3.17)

By the constancy equation, which holds approximately,

1 1
(L\xE)2 + (Etl\t)2 (3.18)

d . E AtE an since t ~ At ,

1 1
(L\xE)2 + (L\tE)2 •

(3.19)

Finally, we get an overall estimation of the flow field relative error due to the three­

point approximation of the derivatives and to the quantization of the image intensity8 :

1 1
(L\xE) 2 + (L\tE) 2 '

(3.20)

where the function C(x) depends on the first and third brightness derivatives at the

image point x under consideration.

The first term refers to the approximation of the derivatives and can be derived

from 3.12 using the constancy equation and the two basic expressions Et ~ 6Jf and

Ex~ Al:. Since this term does not depend on the number n of brightness quantization

levels and since L\tE as well as llxE are proportional to n, the function C(x) must be

proportional to :\. This relation can be shown for a sinusoidal intensity profile. In n

that case, the first term of eqn. 3.20 can be rewritten, according to 3.13, as

(3.21)

8 Given the approximated nature of the estimate, a simple summation of the quantization and

discretization errors is used in this final step.

46

Let's introduce the parameter p (fractional range of intensity values in a given image),

defined by p = (maximum-intensity - minimumJntensity)/n. The typical scale for

the value of the brightness derivative is given by the range of intensity values of the

sinusoid pn, divided by the wavelength L (i.e., 6a: ~ y). This latter relation implies

that (,¥)2 ~ (6P~) 2 , which leads (by substitution in eqn. 3.21) to the inverse relation

between C(x) and n 2• After completing the cited substitution, the equation for the

error estimation that was used in the tests is the following:

1 1
(llxE)2 + (lltE)2 '

{3.22)

where the value for C is 2;
2

as suggested by the above argument. For a general im­

age, the the fractional range of the image p was estimated using the standard deviation

u in the distribution of intensity values (p = u/n).

It is clearly difficult to determine the third derivative of the intensity at every point

in the image but our tests show that, as a working hypothesis, we can consider it as

a constant independent of the image position. In practice, we shall use the constant

estimated for sinusoidal gratings given in eqn. 3.22. The "difference" terms (like llxE)

grow linearly with the number of discretization levels n. Therefore, while the first term

of the overall relative error does not depend on n, the second term, which expresses the

contribution due to the quantization process, decreases with n and can be eliminated

(at a price!) by increasing the number of quantization levels.

The quantity in expression 3.22 is clearly only an approximation of the overall

relative error. Note that approximations are necessary since it is (clearly) not possible

to evaluate the error in the optical flow precisely without knowing precisely the optical

flow itself.

It is important to point out that the final result in eqn. 3.22 presents in a concise

way the tradeoff between the two kinds of errors introduced. According to this criterion,

the "close-to-optimal scale" is the one that locally minimizes this relative error.

The two-dimensional estimate of the overall relative error is obtained from cqn. 3.22

by rotational invariance, substituting (.6.xE)2 with the sum of the squared differences in

the two dimensions (.6.xE) 2 +(.6.yE)2
• This amounts to measuring the field unreliability

47

according to the error on the component of the velocity that is normal to the brightness

gradient.

3.5 The Error-Based Adaptive Multiscale Scheme

Our proposed strategy· is based on a low-to-high resolution scheme. The resolution

pyramid used will be described in section 3.6 and the locally adaptive discretization

strategy is implemented with the use of an inhibition flag associated with each point

in the image.

Preliminary processing consists in building the Gaussian pyramid associated with

the image (49]. The Laplacian pyramid data are then obtained at every scale by expand­

ing the intensity values at the coarser scale and subtracting them from those at that

scale (details about the procedure are in (49]). This procedure is equivalent to perform­

ing at each level a difference of Gaussians (DOGs) that are a reasonable approximation

of Laplacians of Gaussians [36].

Computational time is reduced with respect to filtering with masks with large sizes,

while the produced zero crossings are hardly distinguishable from those obtained by

filters with a large mask in all our test images.

When the above data are obtained, the Horn and Schunck relaxation algorithm

described in equations 3.5 and 3.6 (with Gauss-Seidel lexicographic updating) is applied .
starting from the lowest resolution for a selected number of cycles. As will be shown

in section 3.7, if the image contains different moving objects it is important to activate

line processes in order to avoid smoothing over discontinuities [74,69,31].

After the relaxation cycles are finished, the overall estimation of the flow field

relative error (according to eqn. 3.22) is calculated for every pixel at the given resolution.

This quantity is then used to decide about the local reliability of the optical flow. For

every pixel a test is done to see whether the error is below a defined threshold Terr or

if the pixel is already inhibited. If the test is positive, the grid point corresponding to

this pixel at the finer resolution in the pyramid and its immediate four neighbors (in

the east,west,north,south directions) are inhibited.

The optical flow values are then interpolated (with bilinear interpolation) to tlic next

48

finer scale where they are used as initial approximation for further local relaxations .

. Inhibited pixels will not participate in the relaxation process and will maintain the

optical flow values interpolated from coarser resolutions, preventing loss of the reliable

estimation due to incorrect derivatives at the new scale (as explained before and in the

final tests).

This procedure is then repeated iteratively, where relaxation occur only in the

regions where the approximation obtained at the coarser scale is not yet satisfactory.

The optimal grid structure for a given image is translated into a pattern of active

and inhibited grid points in the pyramid, as illustrated in figure 3.4.

Final result of the computation is a reconstruction of the optical flow at the different

resolutions with an explicit indication of the motion discontinuities, with an associated

measure of the optical flow reliability. This information will be used by subsequent

visual modules.

In the present scheme, computation starts from a field equal to zero on the coars­

est scale, while in a real-time continuous scheme it should start from the previously

determined field.

3.6 The Resolution Pyramid

In this work we consider a 2:1 resolution pyramid built from a sequence of three images.

The coarser versions of these images are obtained by local averaging using the the 5-

point and one-parameter mask proposed by Burt (49]. The mask is essentially an

approximation of a Gaussian filter with support given by five points [49].

The procedure is then repeated iteratively to construct the other low resolution

versions of the three images. For an appropriate choice of the para.meter the result

closely approximates the convolution of the original images with Gaussian filters of

appropriate width (49]. If the original images are noisy an additional preliminary

filtering with a Gaussian filter whose size can be selected by the user is applied to the

sequence of raw images. In the tests that we carried out, the finest scales contained

129x129 pixels. The number of layers depends on the image size (a pyramid with 3

different resolutions is used for the chosen size).

49

The spatial and temporal derivatives of the brightness are calculated independently

at each level of the pyramid using the three-point approximations [35]. Besides the

higher accuracy, the three-point formula has the advantage of estimating the derivatives

at the intermediate frame instead of between the frames like the two-point one. This

fact will turn out to be very useful in the discontinuity detection process (as will be

illustrated in the following section). The "flow of information" from the three images

to the estimated derivatives and error is shown in figure 3.5.

3. 7 Discontinuity Detection

For typical scenes the optical flow is piecewise smooth so that discontinuities are nec­

essary for a faithful recovery of the flow field. Some authors suggested using "oriented

smoothness" constraints [38], adapting the constraints to the local differential structure

of the intensity "surface."

Others succeeded in considerably improving the effectiveness of the Horn and Schunck

algorithm by introducing explicit binary discontinuity elements (line processes) [31] on

a grid halfway between the grid formed by the image pixels. The line processes are

either "on" or "off' depending on whether the smoothness term between the corre­

sponding points of the image has to be neglected or not. Some additional terms are

added to the energy <I> (which is no longer quadratic) in order to control the spread of

the line processes activation. The line processes are then updated to minimize <I>. To

effectively combine the estimation of the optical flow and the discontinuity detection,

their updating cycles are separated in time by a few relaxation cycles. It is worth

noting that even though it is no longer guaranteed to converge to a global minimum,

the system reaches good minima of <I> (31].

A positive feature of the last method is that the additional iuformation contained

in the discontinuities can be used by following high-level vision modules.

The method presented in this work detects discontinuities at different resolutions

by introducing line processes at every scale. The type of neighborhood considered for

a line process (LP) within a given level of the pyramid is shown in figure 2.3. The line

process activation must clearly be favored by a large difference in flow field maguitu<lc

50

between the two closest points in the image and by the possibility of improving t.he

local discontinuity structure. We define the benefit of the LP between pixels (i,j) and

(i + 1,j) as

where hk is the spatial step at the kth scale. This is proportional9 to the amount by

which the activation of the line element can decrease the energy~- A similar expression

defines the benefit of a horizontal LP between pixels (i,j) and (i,j + 1).

The cost of a line process depends on the local discontinuity structure and it is

defined from a basic cost C that corresponds to the typical size of the flow field dis­

continuity that we want to detect. The possible local structures are then classified

depending on the number n of continuous regions in which they are divided and a

parameter Cn is associated to each class. Now the cost of a line process with a local

structure composed of n regions is given by cost= C *Cn and a line process is activated

if and only if benefit > cost.

In order to combine the discontinuity detection at the different scales, the line pro­

cesses can also interact with contiguous ones in the two adjacent levels (see figure 2.4).

The state of a line process at a level k, 0 ~ k ~ L, influences also the cost of its

neighboring line elements in the levels k - 1 and k + 1. If this element is "on" it will

decrease by a certain factor Fud (where "ud" is for "up or down") the cost of its neigh­

boring line elements in the two adjacent levels. The cycles of line process updates are

then combined at every scale with the relaxation sweeps. This type of coordination

scheme gave good results when applied to surface reconstruction and the look-up table

approach was very efficient [62].

The detection of optical flow discontinuities can be improved further by using in­

formation on the intensity discontinuities [24]. As in [31], we prevent the activation of

line process where there are no zero-crossings of the Laplacian-of-a-Gaussian fi ltcr (at

the different scales) unless there is strong evidence for the flow discontinuity.

This is realized by choosing a basic cost C that is large with respect to the typical

size of the flow field and a very large factor Fzc by which the presence of a zero-crossi11g

9 Because of the o- 2 factor in eqn. 3.2.

51

decreases the cost of the corresponding line processes.

Zero crossings of V2G have been chosen because of their useful properties. For

example, they are not created as the scale increases and they form close contours,

unless they intercept the boundaries. A detailed description of other properties is

in [43).

3.8 Experimental Results

Tests of the proposed algorithm have been done for images of varying complexity. To

measure in a quantitative way the correctness of the derived optical flows, images have

been generated in a controlled environment, combining different parts with different

textures (both "natural' and artificial). The image generating "tool" allows the user to

select different movements for the different parts, producing a sequence of three images

(the data for the algorithm) with the associated motion flow (used for comparison).

Test results are presented both in visual form (display of the obtained optica] flow)

and in graphical form (graph of the root mean square (r .m.s.) error between the correct

motion flow and the obtained optical flow).

Finally the results of tests with a sequence of video-acquired images of a natural

scene are presented.

3.8.1 Two-Dimensional Sinusoidal Patterns

These examples demonstrate the necessity of an adaptive scheme based on a measure

of the optical flow reliability.

The images show a "plaid" pattern, a superposition of sine waves of different wave­

lengths in the vertical and horizontal directions. The intensity of a pixel with coordi­

nates (i, j) is obtained according to the following formula:

The relative amount of short versus long wavelength component is determined by

the parameter R, the intensity is normalized to obtain values in the range (0-255).

52

The first example illustrates the basic difficulty arising in a multiscale strategy. The

parameter R is 1.0, the long and short wavelengths are 7.5 and 3.210• The resulting

image is in figure 3.6.

Movement is a translation in the plane in the north-east direction with velocity

equal to (1 , 2).

Comparison of the results of the homogeneous versus the adaptive coarse-to-fine

strategy are shown in figure 3. 7. Ten iterations are done on every discretization grid,

bilinear interpolation of results is applied before relaxation is initiated on a finer grid.

Relaxation on the coarsest grid produces an optical field whose difference with the

correct motion flow increases as a function of the iteration number. This is caused by

large errors in derivative estimation on this grid (the intensity is almost constant and

discretization errors, which are the dominant error term in this case, are large).

The situation is better on the intermediate grid. In spite of incorrect initial values

obtained from the coarser grid, the error is rapidly reduced after the first relaxations.

Error in derivative estimation reaches in this case the minimum value (motion on this

scale is less than the dominant wavelength).

After interpolation to the finest grid, the homogeneous scheme continues the re­

laxation process, driving the result to a worse solution. This is again caused by bad

derivative estimation (motion on this scale is not small in comparison with the shorter

wavelength). On the contrary, the adaptive scheme recognizes that the error on the

intermediate scale is lower than the given threshold Terr (0.4 in this case) in most of

the image pixels, so that the computational units corresponding to these pixels at the

finer scale are "inhibited" (no relaxation is done) and the error in the obtained optical

flow is similar to that on the middle scale.

The difference in the qualitative structure of the derived optical flow can be appre­

ciated in figure 3.8.

Finally figure 3.9 shows a display of the estimated error (according to eqn. 3.20) on

the different scales.

The quantization error is larger at the coarser scale, while the derivative estimation

10These represent "generic" wavelengths (not multiples of the grid step to avoid particular dfocts),

chosen to give different "dominant" components at different scales.

53

error is larger at the finest scale. The total error reaches the minimum on the middle

scale, in agreement with the results about the r.m.s. measured error.

In more complex images, errors will be greatly different in different part of the

image so that the reconstructed optical flow will be "frozen" at different scales, as will

be shown in following examples.

3.8.2 Expanding Sphere

These examples illustrate the difficulties due to propagation of velocity field information

across boundaries between different moving objects.

A set of ray-traced images of an expanding sphere was chosen because it was used in

Terzopoulos [61) as an example of the speed-up that can be obtained with the multigrid

algorithm. The spheres are superimposed on a fixed "natural" background, in order

to provide derivatives different from zero on the background 11 • These images contain

a unique dominant spatial frequency of the order of magnitude given by the sphere

diameter.

If we do not consider the effect of quantization (255 intensity levels) and assume

that the motion amplitude is very small with respect to the radius, one iteration is

sufficient to recover the correct optical flow, as can be seen from equations 3.5 and 3.6

in the special case of a velocity vector perpendicular to the brightness gradient. The

function of relaxation is, in this case, to provide a better estimate by averaging noisy

derivative estimations on neighborhoods with a size that increases with the number of

relaxations applied12 •

Unfortunately, this is true only if one assumes that the occluding boundary is known

a priori and if the correct velocity is given on this boundary, as was the case in Ter­

zopoulos' work [61]. In the general case (no initial information) different results a.re

possible. As will be shown in the following tests, the r.m.s. error increases for small

spheres (because noisy information on the boundary is propagated in both directions),

while for larger spheres it first decreases (for the averaging effect) but after a few it­

erations increases (an average over very large neighborhoods becomes worse tha.n the

11 If derivatives are zero, all motion fields minimize the Horn and Schunck functional.
12 With a "Gaussian" weighting of the different derivative estimates.

54

original estimate) with a speed proportional to the parameter a in the cited equations.

The graphs in figure 3.10 show the behavior of the r.m.s. error as a function of the

work units, for two different values of the sphere radius (55 and 95 pixels). Movement

is an expansion (3 pixels per frame on the border of the sphere). Both the single scale

and the multiscale algorithms are tested.

For the smaller sphere, single scale relaxations make the error worse. Tbe multiscale

algorithm does not improve the result. The r.m.s. error as a function of work units in

not monotonic (see graph), and the last fine scale iterations show an increasing error.

The effect of the boundary is particularly bad at the coarsest scale because the ratio

boundary_/ internal points is large.

For the larger sphere (the sphere boundary is now outside the visible window of

129x129 pixels) the situation is different. Single scale relaxations improve the r.m.s.

error at the beginning. The error reaches its minimum when 4 work units are completed,

then it increases. In this case the multiscale approach reduces the error faster (the

minimum is reached after 1.06 work units). But the minimum value is reached on the

middle scale and error becomes larger on the finest scale.

The following figure shows the optical field obtained with the multiscale algorithm

in the two cases.

These examples show that the effect of the boundary conditions on the result is

indeed an important one. Going from an exact a priori knowledge of the occluding

boundary with their velocity values to a situation where the only boundary conditions

are the "natural" boundary conditions at the border of the image, can lead to very

different results.

If an exact knowledge of the occluding boundary information is missing, incorpo­

ration of a boundary detection step in the algorithm is essential in order to avoid

smoothing across regions corresponding to different moving objects, as will be shown

in the next section.

3.8.3 Occluding Objects

This test compares the result obtained with or without discontinuity detection. It

shows that the optical flow near an occluding boundary may be reconstructed with

55

large errors unless the smoothing process is blocked by line processes.

The images contain two spheres of different sizes (radius are 35 and 24 pixels),

translating with velocities (0.0 , -1.0) and (0.8 , 0.2) against a natural background.

Their reflectance patterns are sinusoidal grids (L is 13.3) of a different intensity range

mapped onto them using polar projection (in order to obtain a wide range of Fourier

components in the different regions of the spheres), while illumination is coming from

a source at infinity orthogonal to the image plane.

The parameters for the discontinuity detection process are C = LO,

Cn = (0.6, 0.5, 2.0, 5.0, 100.0), and Fzc = 0.25. While the parameter C is essential

and is related to the typical scale of the motion discontinuities, it is important to em­

phasize that the precise value of the other parameters is not as important as their

relative sizes (which are chosen in order to favor continuation of existing lines and

to discourage formation of junctions with more than two line processes and parallel

lines)13•

The following figures illustrate the optical flow obtained with the adaptive multiscale

process, using 6 relaxations on each of three scales. The first image shows the result

obtained without discontinuity detection, while the second one shows the result when

a discontinuity detection step has been done every 2 relaxations.

The qualitative results are confirmed by the graph of the measured r.m.s. error in

the optical field for the two cases.

Although zero crossings are dense for this image (as shown in figure 3.14), the final

activation of the motion discontinuities corresponds in a reasonable way to the real

motion discontinuities. This is an indication that the effect of parameter Fzc is only

that of guiding the discontinuity detection process, while the final placement is dictated

by the presence of a real motion discontinuity.

3.8.4 Tests with Natural Images

The images used for this test show a pine cone moving in the upward direction. 'I'hey

were acquired with a S-VHS video camera and a Targa frame grabber. fvfovemcnt was

13 In other terms the Cn parameters could be given as values of a fuuction /(n, </>, x) of a fixed

qualitative form and dependent on one or two parameters.

56

executed by adjusting a tripod sustaining the object by 0.25cm every frame. Measured

velocity in pixels is 1.6 pixel / frame. Tests have been done for sets of three images

taken every one, two, and three frames. The average velocity {on a window centered on

the pine cone) obtained with the homogeneous multiscale algorithm is compared with

that obtained with the adaptive version. While this second version always produces a

better estimate, the difference is particularly significant for large motion amplitudes,

as shown in figure 3.15.

In this case the fine scale derivative information is completely erroneous. This is

recognized by the adaptive scheme that freezes the solution obtained at coarser grids,

producing a better final estimate.

3.9 Summary and Conclusion

We have shown that a simple estimation of the relative error in the flow field can lead

to an effective adaptive multiscale scheme for recovering the optical flow. This method

provides a more accurate flow field reconstruction by dealing locally with the different

types of motions and textures in a generic image. Contradictory derivative estimations

on different scales do not cause incorrect optical flow reconstruction. The multiscale

strategy finds the first scale (starting from the coarsest one) that produces a reliable

estimate and locally freezes the result.

The suggested scheme is especially necessary for scenes with multiple motions

and/or multiple patterns and textures.

It is worth noting that the strategy used in this approach is general, in the sense that

it does not depend on the single scale algorithm used to recover the optical flow. Other

algorithms need to change the error estimation equation in a way that is appropriate

for their derivative estimation.

While for the presented tests the parameters involved in the discontinuity detec­

tion process have been chosen with a trial and error process, automatic tuning of t lie

parameters is suggested for practical implementations of the presented algorithm.

57

e ACTIVE POINTS

Figure 3.4: Adaptive grid and activity pattern in the multiresolution pyramid.

58

l - Dt

estimate of error

tern pol ~erivatives

spatial derivatives

t

t + Dt

Figure 3.5: Information flow (at ea.ch levcJ of the Gaussian pyramid) for the estimation

of spatial and temporal derivatives and errors .

. 59

Figure 3.6: "Plaid" image: two-di mcnsional pattern with long a.nd short wavelengths.

60

j I

• ~

\/
\ I

LI
!

, .. !
!

\
~

\ '-.----------------
t
t

,.-,,;_.I-----~--------=-=--------=- ,.-, ... I ___________________ _ ,. ,. .
(3) (b)

Figure 3. 7: Comparison of homogeneous versus adapti vc multiscale strategy: translat­

ing "plaid" pattern. Graphs show r.m.s. error in the optical flow a.s a. function of work

units (i.e., as a function of actual computing time, because a wor·k unit is defined as

the amount of computation used for a complete relaxation at the finest scale). Fig.(a):

multiscale homogeneous strategy (with no adaptation). Fig.(b): multisca.le adaptive

strategy. The adaptive algorithm "freezes" the result at the intermediate grid because

the error measure is below threshold Terr and interpolates to finest grid.

GI

., ,_._,\, . ,,,,

Hf~ :{~:{~;)j/
.. \ , - ,, .. ' _ \. .. .
: i ~: ~:: ~~ ~ ~ ~: ~:: ~:; ~ ! : :~ ~ :: :

Iii ~!+l~l;J:~1~11~l!Jl
: ~ ~ : ~ ~ : : ~~ : : :: : ~ ~ : r: ~ ~~ ~ : :~ ~ =~ ~
... ' - .\ ,

~ i i~ : f i i ; :~ ; it ; j ~ '. :11 i~ i l i~ ~ l ~ !
:; .: ': ~ : ~ ': : : .- ..: ·--:.;..:: ... ' . ' . ' ' \ .. ' -
!:::::::~~~~~:::~ , , .. , , -..... , ' .. '' \ ' ,, ,

... ,,, ,, ,

.. ' ' ' .. \ ' ' ' ------~---,----
~ ~.~~
! ~~~~~
l~~'.:.~

(a)

~~~~~~~~~~~~~~~~~~~~}~~~~~~~~~~~: 
!~=~~~~~~~~~::~:::~=~=~=:~:::~:~: .. , ....... , .. , .............. , ... , ... , ... , ... ' ._ ........... , ... , .. ..., .... , .. , .. , .... ,_ ............. , ... , .. , ........ ~ .......... ,,,, ,, ..................................... , ................................ , ... ,. -' ..... '' ........ ·- ....... ' ... ' ... ' ................... '' '\ ... ' .. ,, ... , ... , ........ , .............. , ... , ... , ... , ... , ... , ...... ,,,,,, 

~~:~:~~: :~;~~:~=~=~:,: ::~~~~~=~ ~ .. , ... ,, , ... ' ...... , ....... , ... , ... ,, _, ' ... ,, ...... _, ....... 

f:3~~:~~~~~~~~~~:f::~~~~~~:~~: 
... , ............. ' .................... , .. '\. .. ' ...... , ........ _, .. , .. -\,,,, .................. ,,, ... , ... , ... , .......... , .......... , ... , .. 
.... , ... , ., ......... , ........ , ... , ... , ... , .......................... ,. ........................ _ .......................................... . 
... , ... , ... , .......................................... , ................................ . . , ... , ........ , ...... ,., ....... , ... , .. , ... ,,, ........... , ...... . .., .. , ................................. , ... , .. _., ........ , ....... , ... , .. , .......... ' ............................. ' .................................. . ....... , ........................ , ...... , ....................... , ... , ~ .,,,,, .. , ... , .. , ..... , ... ,,, ... , ..... ,,, ....... ,. 
, ..................................... _ ..... , .............................. , . 
... ... . .. .. .. ... .. . ...... . .. .. .. ... .. ... ... .. ....... ........ ...... .. ...... . .. . . ....... '' .... , '" ........... ' 
!:::~:::~~::~~::: ............. ,,,,,, .............. , 
........................................ . ..... ,,,,,,,,, ....... , 
,· ..... ~::::::::::: 
.. ................................... .. 
... ........ ,,,, .. ,, .... ' ....................................... , ...... ,,,,,,,, .............. , .................... ,, ............. ... 

fi~~-
! 
\ ,,,,,..., 
~~~ 

cP

C ,CJI

CI

CIJ
t«i]

Cc)

a-

a

Figure 3.8: Reconstructed optical flow for translating "plaid" pattern. Fig.(a): ho­

mogeneous multiscale strategy. Fig.(b): adaptive multiscale strategy. Fig.(c): active

(black) and inhibited (white) points.

G2

Figure :J.9: Estimated error on different sca.l<'S. Int<'nsit.y value is proportional to error.

Derivative estimation, quantization, and total error ar<' shown iu t!tis order.

·t
f •-~

j; .,,
f·

'· -~ ·.

o. "---------------------:-

(a) Cb)

Figure 3.10: Expanding sphere: r.m.s. error as a function of the amount of computa­

tion in the multiscale scheme. Fig.(a): small sphere (ra<lius=55). Fig.(b): larger sphere

(radius=95). Single scale results (circles) and multiple scale results (diamonds). Inter­

polation to finer scales increases temporarily the r.m.s. error. Algorithm is terminated

after the given number of work units because r.m.s. error is increasing.

64

I. ~1 ':::
. ·:: ··:I :::
i~~~~~~;: ~~~

S~Au .. Sftf-€"~€°"
WITtt

NATVR.,A-l.
S~K.GftOvN b

------------.. ·--
-·-·· _ .. - ---- __

Figure 3.11: Multiscale optical flow for spheres of differe11t. sizes. The effect of the

sphere boundary on the result is visible for the smaller sphere.

65

..................... ················ (a)

Figure 3.12: Occluding moving spheres: optical flow obtained without (a.), and with

the concurrent discontinuity detection process (b).

66

,. -

i -•~
I

i

o.~0------------------,0---------u

Figure 3.13: Occluding moving spheres: graphs of the r.rn.s. error with (o) and

without (D) discontinuities.

67

_J

Figure 3.14: Occluding movi11g ~pheres: i111a.ge aud dcri ved zero crossiugs.

6

~
;>

"tS
~

c:s
el

., 2
~

~

°' d
1--
<Ii
;>
d

rP.n l "'J

Figure 3.15: Test image and co1npa.riso11 of results. Average velocities (vy component

in the down-up direction) obtain0.d with the homogc11eous a.nd adaptive methods are

com pa.red with the correct velocity.

o9

7

I

Part III

Implementation of the

Algorithms on the Hypercube

Concurrent Processor

70

Chapter 4

Benchmark of Applications on

the Hypercube

71

4.1 Introduction: SIMD vs. MIMD Approach

From our experience MIMD computers with powerful processors (~ 1 Mflop), sufficient

distributed memory (~ 1 Mbyte), and two-dimensional internode connections1 are a

close-to-optimal choice for implementing medium-level vision algorithms (see also [68,

51] and [60] for a general discussion).

In this case a simple two-dimensional domain decomposition can be used efficiently:

a slice of the image with its associated pyramidal structure is assigned to each processor.

More complex schemes with dynamic load balancing are not needed because a real­

time scheme is supposed to produce a solution in the given time in the worst possible

case, when all grid units are active (this situation corresponds to images with fine

details in all regions of the scene).

All nodes are working all the time, switching between different levels of the pyramid.

No modification to the sequential algorithm is needed for points in the image belonging

to the interior of the assigned domain. On the contrary, points on the domain boundary

need to know values of points assigned to nearby processors. With this purpose the

assigned domain is extended and a communication step before each iteration on a given

layer is used, as described in [87,58,63]. The communication overhead is a "surface

effect" proportional to the linear dimension of the domain.

Considering now implementations on a SIMD parallel computer with a large number

of processors, the maximum amount of parallelism is obtained assigning one processor

to each grid point [65,57]. SIMD implementations, given the small grain size of the

processors, are subject to some efficiency and portability problems. As an example of

these problems, if the implementation is on a fine grain hypercube parallel computer and

if the mapping is such that all the communication paths in the pyramid are mapped into

communication paths in the hypercube with length bounded by two (65], a fraction of

the nodes is never used (one third for two-dimensional problems encountered in vision).

Furthermore, if the standard multigrid algorithm is used, when iteration is on a coarse

scale all the nodes in the other scales (i.e., the majority of nodes) a.re idle and the

efficiency of computation is in part compromised.

1 In particular, Hypercube computers support a two-dimensional mesh.

72

Details about the different applications are given in the following chapters.

4.2 Domain Decomposition

If one defines as one work unit the amount of computation required by a complete

relaxation and discontinuity detection on the finest grid, execution of the presented

algorithms require from 3 to 10 work units 2 , depending on the number of relaxations

used on each layer (i.e., depending on the precision required on the solution).

Given the regularity of the algorithms and the locality of communication between

different computational elements, they can be parallelized in a straightforward manner.

The decomposition scheme depends on the technical constraints imposed by character­

istics of the individual processors and of the hardware connections between them. One

essential distinction that has to be done is related to the number of processors available

and the "size" of a single processor.

If implementation is done on a SIMD parallel computer with a number of processors

comparable to the number of computational units, one strategy assigns one processor

to each unit (see (65,70]). In this manner the maximum amount of parallelism is ob­

tained. The drawback of this approach is that if the implementation is on a hypercube

parallel computer and if the mapping is such that all the communication paths in the

pyramid are mapped into communication paths in the hypercube with length bounded

by two [65], a fraction of the nodes is never used (one third for two-dimensional prob­

lems encountered in vision). A detailed presentation of mapping techniques available

for hypercube multiprocessors with small grain nodes 3 has been given in [65]. These

techniques are based on the assignment of a one-dimensional array of pixels to pro­

cessors ordered according to the binary reflected Gray code. The maximum Hamming

distance between processors assigned to grid points that need to communicate data is

in this case limited by two.

Furthermore, if the standard multigrid algorithm is used, when iteration is on a.

coarse scale all the nodes in the other scales (i.e., the majority of nodes) are idle and

2 Using a SUN 386i workstation and C language, this correspouds to approximately one minute, if

memory is large enough to contain the entire pyramidal structure.
3 The Connection Machine is an example.

73

the efficiency of computation is in part compromised. To ameliorate this problem,

intrinsically parallel multiscale algorithms must be considered [66].

Fortunately, if a MIMD computer with powerful processors, sufficient distributed

memory, and two-dimensional internode connections (clearly the hypercube contains a

two-dimensional mesh) is available the above problems do not exist. The individual

processors are powerful and capable of containing data corresponding to the large group

of pixels assigned to them •. Assuming that a two-dimensional grid can be en bedded

in the parallel architecture 5 , a two-dimensional domain decomposition assigns to ev­

ery processor a rectangular patch of the image with its "slice" of pyramidal structure

(containing elements at all scales corresponding to the assigned patch).

The two mapping strategies are illustrated in figure 4.1.

All nodes are working all the time, switching between different levels of th pyramid

(as required by the multiscale algorithm) as illustrated in figure 4.2.

No modification to the sequential algorithm is needed for points in the image be­

longing to the interior of the assigned domain. On the contrary, points on the domain

need to know values of points assigned to a nearby processor. With this purpose the

assigned domain is extended to contain points assigned t~ nearby processors a.nd a

communication step before each iteration on a given layer is responsible for updating

this strip so that it contains the correct (most recent) values. Every processor oper­

ates at all levels of the pyramid, alternating computation and communication steps to

exchange the data on the borders of the assigned domain, as illustrated in figure 4.3.

Only two exchanges of data in the two dimensions are necessary.

4.3 Communication Overhead and Complexity

Multigrid algorithms are optimal in the sense that they can compute a solution m

time proportional to the number of unknowns. Let's suppose that complexity for the

"This is indeed the case for the Definicom board with Transputers used during the development

phase. Each Transputer contains up to 1 Megabyte of memory and produces approximately 10 11ips.
5 For a hypercube multiprocessor the cross product of two one-dimensional Gray codes can be used.

74

\

\
\
\

\

\
\

PIii

f MIii

f hu· ,111111·11,.1,,u.li l'\t.t1tttd

1(1 Ill

II

· IIICI 1111

HIii

Figure 4.1: Grid points of a pyramidal structure can be mapped to Hypercubes in

different ways, depending on technology constraints. Left: mapping using Gray code.

Right: mapping using domain decomposition.

standard algorithm is (asymptotically) Time = ,comp n, where n is the number of

pixels and ,comp depends on the number of relaxations used in the algorithm.

Since all processors are active most of the time and since the communication over­

head is a "surface effect" proportional to 1 / .jn, where n is the number of pixels assigned

to a given processor, the parallel implementation brings a speed-up that is approx­

imately linear in the number of available processors. Taking both computation and

communication into account, complexity for the suggested parall<'l version is

n {n
Time = "Ycomp D + 'Ycomm V D (4.1)

exchange O

1.·x.change

Figure 4.2: Domain decomposition for multigrid computation. Processor communica­

tion is on a two-dimensional grid, each processor operates at all levels of the pyramid.

where D is the number of domains (equal to the number of processors). The proportion­

ality factor ,comm depends on the communication speed, on the number of iterations,

and on the height of the pyramidal structure.

Preliminary timing has been done using a board with four processors 6 obtaining

times of 600-900ms for 65x65 images on all the considered problems. Each node spends

approximately 20% of its time in internode communication. In addition some time

is required to load the data and read results. Results are illustrated graphically in

figure 4.4.

Given the approximately linear speed-up, a configuration with 8x8 nodes sl1ould

be able to "solve" a 256x256 image in less than one second (excluding input-output

6 Definicom board with Transpu 1.crs, software from Para.soft.

76

~xd,ange 0

PROCO

PROC 2 PROC 3

Figure 4.3: Communication strategy for two-dimensional domain decomposition. Data

of the assigned domain are bordered by data received from nearby processors. Two

exchanges are sufficient.

time).

4.4 Results for Shape from Shading

In this section I present the results of the parallel implementation of the shape from

shading algorithm proposed in [71]. They proposed an iterative scheme for solving

the shape form shading problem. A preliminary phase recovers information about

orientation of the planes tangent to the surface at each point by minimizing a functional

containing the image irra.diance equation a.n<l a.n intcgrn.bility r.onstrninl, a.s follows:

77

le_., ■ - • ■ _,. I ■ - l ■ - l

,,.,. ,,. CC11111111M1tcatto,, lltoutt~

-....

Figure 4.4: Timing results. Above: time spent exchanging data (change) and commu­

nicating with the host (read-write).

E(p,q) = f (I(x,y) - R(p,q))2 + A(Py - qx)2dxdy
}Image

where p = oz/8x

q = 8z/8y

l= measured intensity

R= theoretical reflectance function

(4.2)

After the tangent planes are available, the surface z is reconstructed minimizing the

following functional:

E(z) = f (zx - p)2 + (zy - q)2 cl.1:dy
Jlmagc

78

Euler- Lagrange differential equations and discretization arc left as an exercise to

the reader.

figure 4.5 shows the reconstruction of the shape of a hemispherical surface start­

ing from a ray-traced image 7 • Above is the result of standard relaxation after 100

sweeps, below the "minimal multigrid" result 8 whose total solution time is equivalent

to approximately four iterations on the finest grid.

Figure 4.5: Reconstruction of shape from shading : standar<l relaxation versus multi­

grid.

This case is particularly hard for a standard relaxation approach. The image can be

interpreted "legally" in two possible ways: either as a concave or a convex hcrnisphC'rc.

Starting from random initial values, after some relaxations some image patches will

7 A simple Lambertian reflection model is used.
8 V cycles with one relaxation on each level

79

typically "vote" for one or the other interpretation and try to extend tll<' local interpr~­

tation to a global one. This not only takes time (given the local natur<' of the updating

rule) but encounters an·endless struggle in the regions that mark the border b,,fwe<'n

different interpretations. The multigrid approach solves this "democratic impasse" on

the coarsest grids (much faster because now information spreads over large distances)

and propagates this decision to the finer grids, which will now concentrate their efforts

on refining the initial approximation.

Another example is show in figure 4.6 , where the algorithm tried to reconstruct

the three-dimensional structure of the Mona Lisa face painted by Leonardo 9 •

Discontinuities were not considered for the two previous tests.

4.5 Results for Surface Reconstruction from Depth Con­

straints

For the surface reconstruction problem (with membrane energy term) the energy func­

tional is

E(z(x,y)) = J, (z(x,y)- d(x,y))2 + .\(z; + z;)dxdy
Image

(4.4)

A physical analogy is that of fitting the data d(x,y) with a membrane pulled by

springs connected to them. A given z value is updated as follows:

()
Zsum + /3 X h2 X d(x, y)

zx,y +-
2

nsum + /3 X h
(4.5)

where h = grid step.

Zsum = DN(x + dx,y + dy) x z(x + dx,y + dy};
dx=±h;dy=±h

9 Anticipating the reader's unhappiness with her aesthetic appearance, let's remember tha.t the

Lambertian reflectance model is clearly a very naive approximation of the artistic slta.di11g used by

Leonardo

80

nsum = DN(x + dx, y + dy);
dx=±h;dy=±h

The effect of active discontinuities (D N = 1) is clearly that of confining the smooth­

ing action inside the detected borders.

Detailed performance tests have been made using noisy data for z values correspond­

ing to "Randomville" structures. These are obtained by generating random coordinates,

heights, slants and tilts for quadrangular blocks and placing them in the image plane.

The data are then corrupted by noise and loaded as constraints in the algorithm.

For 129 x 129 "images" and noise values corresponding to 25% of the highest

structure, a faithful reconstruction of the surface (within a few percent of the original

one) is normally obtained after one single multiscale sweep (with V cycles) on four

layers 10•

The total computational time corresponds approximately to the time required by

3 relaxations on the finest grid._ Because of the optimality of multiscale methods, time

increases linearly with the number of image pixels.

User interface examples and results from some tests are shown in chapter 2. Fig­

ure 2. 7 shows the simulation environment on the SUN workstation. The reconstruction

of a typical "Randomville" image has been presented in chapter 2 (see figures 2.8

and 2.9).

A simplified version of the used parallel program for MIMD machines, using the Ex­

press communication routines (a commercial version of the communication environment

developed within the Caltech Concurrent Computation Program) is listed in chapter A

in the appendix.

4.6 Summary and Discussion

The presented multiple scale algorithms can be efficiently executed on a parallel com­

puter with medium grain size and a two-dimensional domain decomposition is suggested

as a simple but effective approach. Given the computational load per pixel of the al­

gorithms (approximately 100 floating point operations per pixel), the communication

10 In other words, parameters na,nb,nc in mg() are equal to one.

81

time between neighboring processors is not a critical parameter11 •

The loading and unloading time (i.e., the time required to load the image data into

the different nodes and to get the results back to the host processor) has been the

limiting factor in the "close-to-real-time" implementation 12 •

Richer connectivity (for example, use of an additional channel for direct transmis­

sion of the image data and results to and from each processing node) or faster channels

have to be used if 30 images per second (with 512x512 pixels) have to be transferred

to the nodes for processing.

11 A bandwidth of lMbyte/sec is enough for efficiency greater than 90% using processors of lMflop

with IMbyte of memory.
12 For example, the bandwidth for image loading obtained with Tranputer hoards and Parnsoft soft-

ware is less than lOOKbytes/sec.

82

Figure tl.6: Ivloua. Lisa in three dimensions.

Part IV

Teaching Multilayer Perceptrons

with Optimization Methods

84

Chapter 5

Fast Neural Net Teaching

85

5.1 Introduction: Teaching Neural Networks with the

Memoryless Quasi-Newton Method

Multilayer feedforward "neural" networks have been shown to be a useful tool in di­

verse areas, such as pattern classification, multivariable functional approximation, and

forecasting over time (82,83,89,93,95,91,85]. For example, in the character recognition

field, many applications have already been developed using neural network approaches

(see (92] and the contained references).

In the "back-propagation" (BP) learning procedure a network with a fixed structure

is programmed using gradient descent in the space of the weights, where the energy

function to be minimized is defined as the sum of squared errors (95].

A common difficulty encountered in using back-propagation is that the number

of iterations required for convergence tends to increase rapidly with the size of the

problem. Significant problems require the use of supercomputers, while other learning

tasks are beyond current computational power.

Now, it is well known from the optimization literature that pure gradient descent

methods can be, and usually are, very inefficient, as will be explained in the following

section. In addition, there are no general prescriptions for selecting the parameters in

the learning algorithm (like the learning and momentum rate in BP). It is usually left

to the user to find a good or optimal combination of these parameters that lea.ds to

avoidance of local minima and fast convergence times. This is surely interesting from

the point of view of theoretical research ((100] is an example), but leads to a waste of

time and computational resources during this meta-optimization phase (optimization

of the behavior of the optimization method).

The focus of this work has been on transferring some meta-optimization techniques,

usually left to the user, to the learning algorithm itself. Since this involves measuring

optimization performance and correcting some parameters while the optimization al­

gorithm is running, some global information is required (typically in the form of scalar

products of quantities distributed over the network).

In all cases the "standard" back-propagation algorithm is used to find the values

of the energy and the negative gradient for a given configuration. The differences arc

86

in the definition of the search direction and/or in the selection of a step size along the

selected direction.

In the first method proposed, the search direction remains equal to the negative

gradient but the (scalar) step size is adapted during the computation. This strategy

has been suggested independently in [101] and is here summarized for convenience

before using it in the test problems. In the second one both the search direction and

the step size are changed in a way that is suggested by standard techniques used in

optimization. In both cases the network is updated only after the entire set of patterns

to be learned has been presented to it.

The description of the two proposed methods (see also [80]) is preceded by a brief

discussion about the limits of back-propagation and about some heuristics that have

been proposed for accelerating its convergence.

5.2 Limits of Back-propagation

In a given iteration n of back-propagation, the search direction dn is given by the

negative gradient of the energy, while the step along this direction is taken to be

proportional to dn with a fixed constant f (learning rote), as follows:

(5.1)

(5.2)

The learning rate is usually chosen by the user to be "as large as possible without

leading to oscillations" ([95]).

The inefficiency of gradient descent methods is well known in the optimization

literature. For example, if the steepest descent method is applied to a. quadratic function

F(x) = cT x + ½ xT Gx (G symmetric and positive definite) using an exact line search

to determine the step length, it can be shown that

F(xn+I) - F(x*) ~ (Amax - Amin)
2

(F(xn) - F(x*))
Amax+ Amin

(5.3)

where x* is the optimal point and Amax and Amin a.re the largest and smallest eigenvalues

of G. This means that the asymptotic error reduction constant can be arbitran:ly close

87

to unity ([88]). A case in which this happens is when "the search space contains long

ravines that are characterized by sharp curvature across the ravine and a gently sloping

floor" ([95]).

The situation can be ameliorated in part by modifying the search direction with

the introduction of a momentum term, as follows:

(5.4)

Assuming that the parameter a is chosen appropriately, convergence is in this case

faster, although the obtained performance is far from optimal.

Recently an overview of heuristics employed to accelerate back-propagation has

been presented in (94], where it is suggested that each weight should be given a different

learning rate, changing over time during the computation.

5.3 The "Bold Driver" (BD) Method

This method is an example of an heuristic solution to the problem of selecting an

appropriate learning rate in BP 1 • It requires only a limited change to standard back­

propagation, based on the following intuitive argument.

In general, the number of steps to convergence for BP is a decreasing function of

the learning rate up to a given point, where oscillations in the weights are introduced,

the energy function does not decrease steadily and good local minima are missed.

Performance degradation in this case is usually rapid and unpredictable. The proposed

solution is to start with a given learning rate (any value greater than zero will work) and

to monitor the value of the energy function E(wn) after each change in the weights. If

E decreases, the learning rate is then increased by a factor p. Vice versa if E increases,

this is taken as an indication that the step made was too long~ the learning rate is

decreased by a factor a, the last change is canceled and a new trial is done. The

process of reduction is repeated until a step that decreases the energy value is found

(this will be found if the learning rate is allowed to tend to zero, given that the search

di rcction is that of the negative gradient).

1 For clarity of comparison the momentum rate is set to zero.

88

Heuristically, p has to be close to unity (say p ~ 1.1) in order to avoid frequent

"accidents," because the computation done in the last back-propagation step is wasted

in these cases. Regar!1ing the parameter <1 a choice of <1 ~ 0.5 can be justified with the

reason that if the local "ravine" in the search space is symmetric on both sides this will

bring the configuration of the weights close to the bottom of the valley.

The exponential increase in the learning rate (£ = £oPn) is preferred to a linear one

because it will typically cause an "accident" after a limited number of steps, assuming

that the proper learning rate for a given terrain increases less rapidly. Now, such acci­

dents are productive because after them the learning rate is reset to a value appropriate

to the local energy surface configuration.

An example for the size of the learning rate as a function of the iteration number

is given in figure 5.1.

The performance of this apparently "quick and dirty" method (considering both

the number of iterations required and the quality of the local minimum found) is close

and usually better than that obtainable by optimizing a learning rate that is to remain

fixed during the procedure. Besides the momentum term, there are now no learning

parameters to be tuned by the user on each problem. The given values for p and a

can be fixed once and for all and, moreover, performance does not depend critically on

their choice, provided that the heuristic guidelines given above are respected. Given

the above reasons, we decided to use this method in order to obtain a meaningful

comparison with the method suggested in the following section.

5.4 The BFGS Memoryless Quasi-Newton Method

We will use the term "conjugate gradient method with inexact linear searches" as a

synonym for "one-step BFGS memoryless quasi-Newton method", (BFGS for short)

leaving some technical details and a brief explanation in_appendix C.

Shanno (98] reviews several variations of the conjugate gradient method and sug­

gests one method using inexact linear searches and a modified definition of the search

direction that "substantially outperforms known conjugate gradient methods on a wide

class of problems".

89

tS-

Figure 5.1: Example of learning rate behavior as a function of the iteration number for

the "bold driver" network. "Accidents,, during the search ca.use a rapid decrease in the

learning rate, followed by exponential increase during normal operation.

90

Let's define the following vectors: gn = v' E(wn), Pn = Wn - Wn-1 and Yn =
gn - gn-t • In the suggested strategy, successive approximations to the minimizer w*

of a function E(w) are generated iteratively in the following way:

do= -go

where fn = minE(wn + f dn)
C

(5.5)

(5.6)

(5.7)

(5.8)

The coefficients An and Bn are combinations of scalar products of the vectors defined

at the beginning of this section, as follows:

An = _ (i + Yn · Yn)
Pn·Yn

Pn · gn + Y n · gn
Pn · Yn Pn · Yn

Pn ·Yn

(5.9)

(5.10)

Every N steps (N being the number of weights in the network) the search is restarted

in the direction of the negative gradient. It is worth noting that if the function E(w) is

quadratic in an N-dimensional space (E(w) = cT w + ½ wTGw, where G is a positive

definite symmetric matrix), this method is guaranteed to converge to the minimum in at

most N + 1 function and gradient evaluations. Correction of the search direction based

on previous steps is in part reminiscent of the use of a momentum term introduced in

[95], with the added feature that a definite prescription is given for the choice of the

various factors.

A critical issue to consider when applying conjugate gradient methods to back­

propagation is that the computation required during the exact one-dimensional opti­

mization implied by eqn. 5.8 is expensive because every function and gradient eval­

uation involves a complete cycle of pattern presentation and error back-propagation;

therefore efficient approximate one-dimensional optimization have to be used. The

one-dimensional minimization used in this work is based on quadratic iutcrpolation

and tuned to back-propagation where in a single step both the energy value a.n<l the

negative gradient can be efficiently obtained. Details on this step are contained in

appendix D.

91

The above method, while requiring only minor changes to standard back-propagation,

is capable of reducing the number of steps to convergence by orders of magnitude on

some problems with a large number of weights. Three example problems and the

obtained results are described in the two following sections. A similar optimization

approach, using Polak-Ribiere optimization, is presented in [90]. They also obtain a

sizable speed-up with respect to standard back-propagation, although they do not op­

timize its parameters2 • Now, a major difficulty with the Polak-Ribiere algorithm is

that the search directions obtained a.re not necessarily descent directions, and numer­

ical instability can result. This happens because the matrix used to obtain the search

direction from the gradient is not symmetric and hence not positive definite. Another

problem caus~d. by this lack of symmetry is that the quasi-Newton equation is not

satisfied (see [98]). The cited difficulties a.re not present in the BFGS method.

5.5 Test: the Parity Function

Recently Tesauro and Janssens (100] measured optimal averaging training times and

optimal parameter settings for standard back-propagation with momentum term. Their

training set contains binary strings as input and their parity as target output.

In order to benchmark the two new proposed methods, the same network is used (n

input units, 2n hidden units, one output) and weights are initialized randomly using

the same scale parameter Topt and momentum rate parameter O:opt as those given in

[100].

The results of 100 simulations for each problem show first that back-propagation

with adaptive learning rate (BD) produces results that are close to those obtained by

optimizing parameters in back-propagation with fixed learning rate, second that the

memoryless quasi-Newton method brings a sizable speedup on both previous methods.

Visual and numerical displays of results are in figure 5.2 and in table 5.1. Results in

[100] arc given both as number of iterations and as number of cycles. Tl1is last number

is more significant for the comparison, since in the other cases weights are corrected

2 We agree with them that "finding parameters (for BP) that result in fast progress aud st able

behavior is a black art, at best".

92

• i
.! 10

4 f
(I ,.
;

,or .:...z----------.--------~-----------,-------,0
""•b•r of '"""t• to 1'.aritv fu,.ctio11

Figure 5.2: Performance comparison: standard back-propagation with optimal param­

eters from Tesauro-Janssens (Upper curve (o): number of iterations. Lower curve (

o): iterations divided by training patterns), back-propagation with adaptive learning

rate (D) and memoryless quasi-Newton method (◊).

after one cycle of pattern presentations. Since the number of local minima is small in

this case, only data regarding correct convergence are shown.

5.6 Test: the Dichotomy Problem

This problem consists in classifying a set of randomly generated patterns in two classes.

It has been demonstrated in (81] that an arbitrary dichotomy for any set of N points in

general position in d dimensions can be implemented with a network with one hidden

layer containing r NI dl neurons. This is in fact the smallest such net, a.s dichotomies

that cannot be implemented by any net with fewer units ca.n he, constructed. In this

93

I patterns f BP BD BFGS I speedup (DD/BFGS) j
cycles (s.d.) cycles (s.d.) cycles (s.d.)

2 24 (N/A) 46 (11) 16 (8) 2.8

3 33 (N/A) 57 (17) 22 (10) 2.6

4 75 (N/A) 137 (57) 68 (58) 2.0

5 130 '(N/A) 213 (115) 93 (69) 2.3

6 310 (N/A) 616 (835) 199 (127) 3.0

7 800 (N/A) 875 (359) 371 (300) 2.3

8 2000 (N/A) 4310 (3088) 700 (368) 6.1

Table 5.1: Results for parity problem. Timing comparison between standard back­

propagation with optimal parameters (from Tesauro-Janssens) and the two methods

suggested in the article.

test the pattern coordinates are random values belonging to the [0-1] interval.

A dichotomy problem is defined by the number of patterns generated. The dimen­

sion of the space and the number of inputs is two, the number of middle-layer units is

r N /21 by the above criterion and one output unit is responsible for the classification.

Simulation runs have been made starting from small random weights (to break

symmetry), with maximum size r equal to 0.1. Correct performance is defined as

coming within a margin of 0.1 of the correct answer. Results of the "bold driver" and

the memoryless quasi-Newton methods are compared in figure 5.3.

The capability of the network does not avoid the problem of local minima. These

points are detected in an approximate way by terminating the search when the modulo

of the gradient or of the weight change becomes less than 10-6 • In fact the results show

that their number is increasing as a function of the dimension of the search space (i.e.,

the number of weights in the network). Results of different tests {the random number

generator seed is changed) are given in table 5.2.

5. 7 Summary and Discussion

The main object of this work has been that of comparing standard back-propagation

with the memoryless quasi-Newton method (BFGS) for optimization. Tliis method ha.s

94

= ..
" a ...

I

l
t

i
I
i

,oz~
I
!
I
I
.1.

I

/0- - - -,-

I

--

- - -
____ _,.

- - -

,ao ..:..i _____ __._~ ____ .._ _____ -+--------"------......
a za 40 &o so 1 oo

Figure 5.3: Performance comparison: back-propagation with adaptive learning rate

(squares) versus memoryless quasi-Newton method (diamonds). Continuous lines show

the average number of cycles for convergence to correct solution, dashed lines for con­

vergence to local minimum.

I patterns I BD BFGS I speedup (BD/BFGS) I
6 cases: cycles (s.d.) cases: cycles (s.d.)

correct 124: 1040 (1458) 115: 44 (56) 23.6

loc.min. 4: 9032 {10403) 13: 49 (74)

10

correct 104: 5044 (6870) 90: 204 (368) 24.7

loc.min. 24: 3923 (4914) 38: 404 (1005)

16

correct 106: 13245 {10572) 94: 295 (513) 44.8

loc.min. 22: 14116 {11960) 34: 755 {1605)

20

correct 111: 23293 (16792) 87: 380 {433) 61.3

loc.min. 17: 41000 (28583) 41: 1632 (3021)

30

correct 44: 46265 (20761) 36: 710 (418) 65.1

loc.min. 20: 59843 {16555) 28: 1800 (1300)

50

correct 4: 157296 (36837) 13: 1347 (600) 116.7

loc.min. 4: 211292 (59424) 51: 4307 (2159)

100

correct 0: 0: N/A
lac.min. 8: 1435950 (560974) 64: 12645 (4161)

Table 5.2: Results for dichotomy problem. Back-propagation with adaptive learning

rate ("bold driver" method, or BD) vs. memoryless quasi-Newton method (IlFGS).

Number of test cases and average number of cycles (and standard deviation) for con­

vergence to correct solution or local minimum are shown. Speedup is given only for

convergence to correct solution.

96

been selected because its memory and computation requirements during each step grow

only linearly with the number of weights. Furthermore numerical stability is assured

and the number of steps for convergence has been shown to be small in many test prob­

lems. The strategy for the one-dimensional search is based on quadratic interpolation

and requires a limited number of (expensive) function evaluations.

Since back-propagation requires a choice of its learning rate, a fair comparison

brought us to consider an adaptive version of back-propagation (BD), where the learning

rate is adapted to the structure of the energy surface. From some tests, BD produces

results close to those obtainable by optimizing BP (with parameters that are to remain

fixed during the learning phase) and therefore can be considered a good candidate for a

fair comparison against BFGS. In addition, the user-driven optimization of parameters

is avoided.

For the considered test problems, the memoryless quasi-Newton method converges

in a time that is from one to two orders of magnitude smaller than that required by BD

(or by a session of BP with optimized parameters). The BFGS method therefore should

be considered as an effective modification to standard BP, especially for problems that

require an expensive training phase.

One possible objection to using standard optimization techniques for BP is that

they require some sort of global computation. Now locality is a concept that depends on

the mapping between a given algorithm and the processors (VLSI hardware, biological

neurons, ...) responsible for the computation. In this sense back-propagation is local

if different processors are assigned to the different weights and "neurons" and if the

chain rule for partial derivatives is used in calculating the gradient , "back-propagating"

the errors through the network. A concept related but different from locality is that

of parallelism, where a given computation can be done by more computational units

working concurrently on different partial tasks (with a speedup in the time required to

complete it). Despite the fact that networks performing local computation are usually

easier to implement in parallel architectures, it is nonetheless true that parallelism of

computation can be obtained also in certain cases where a global information exchange

is required (see [87] for many examples in both areas).

97

Both proposed methods have indeed been implemented on parallel hard ware 3 (as­

signing different patterns to be learned to different processors) and require only one

global exchange of information during each learning cycle, in order to choose the next

learning rate and search direction. Efficiency of implementation is close to 100% for

problems with a large number of patterns to be learned (this is one case in which

computation time tends to prevail over communication time).

3 A hypercube built with 16 Transputers.

98

Part V

Conclusion and Appendices

99

Chapter 6

Real-Time Vision Machines?

6.1 Brief Conclusion

The design of real-time computer vision systems is facilitated if fast special purpose

visual modules are integrated using parameter optimization (i.e., learning techniques).

Nonetheless, since the learning task is difficult and requires a computing time that

increases rapidly with the size of the problem, it is imperative to use all the available

algorithmic tools before applying learning only to select a restricted number of essential

and difficult to determine or unknown parameters.

In this thesis, efficient techniques based on multiple scale processing with adap­

tive grids and discontinuities have been implemented on parallel computers, showing

that real-time performance for low and intermediate level computer vision modules is

within the reach of available digital computing technology. In the near future the same

operations may be implemented at a still lower cost using analog VLSI vision chips.

In addition, learning techniques based on optimization have been shown to converge

in some minutes of CPU time using standard microprocessors (for problems with a few

hundreds of parameters to be determined).

The next challenge (left as an excercise for the reader ...) is that of integrating the

available visual modules in an optimal way in order to open the road to a widespread

use of computer vision for the different applications.

100

Appendix A

Listing of Hypercube Program

A.1 Header with Basic Data Structures and Macros

101

A.2 Host Program and Graphics

102

A.3 Node Program

103

Appendix B

Three Point Approximation of

Derivatives

We shall derive the third-order expressions for the three-point approximations of the

temporal and spatial brightness derivatives. Let f(x - vt) be a one-dimensional trans­

lating brightness profile. Taylor's expansion provide the three-point formula for the

first order brightness derivatives:

f(y + h):;;, f(y - h) = f'(y) + f 111
~)h

2 + O(li3).

The approximation of the temporal derivative is given by

E _ J(x - v(t + ~t)) - J(x - v(t - ~t))
t - 2~t

which becomes by setting y = x - vt,

E _ J(y - v~t) - f(y + v~t)
t - ---'----2-~-t-------'-

and which is, according to (22), equal to

104

(B.l)

(B.2)

(B.:J)

- vf'(y) - vf"'(y)(vfl.t)2 + 0(v(vfl.t}3).
6

Since ft= f'(x - vt)(-v) = -vf'(y), we arrive at

(B.4)

(B.5)

where the higher order terms are neglected. A similar expression holds for the approx­

imation of the spatial derivative

(B.6)

where fl.x is the spatial sampling step.

105

Appendix C

Memoryless Quasi-Newton

Methods and Conjugate

Gradient Methods

The Newton's method for minimization (see the comprehensive description in (88]) is

based on a local quadratic model for the function F to be minimized, obtained using

Taylor expansion:

(C.l)

where Hn is the Hessian matrix.

Newton's method defines the step d to be the minimizer of the Taylor expansion,

or the solution of the linear system obtained from eqn. C.1:

(C.2)

If H n is positive definite, only one iteration is required to reach the minimum of the

model function.

The key to the success of Newton type methods is in the curvature information

provided by the Hessian matrix. Now, quasi-Newlon methods build up curvature infor­

mation as the iterations of a descent method proceed, without explicitly forming the

Hessian matrix. Let's define as Kn the iterative approximation to the Hessian matrix.

106

Since for the Hessian

(C.3)

or

(C.4)

the new Hessian approximation Kn+l = Kn+ Un is required to satisfy the following

quasi-Newton condition:

(C.5)

Different quasi-Newton methods vary in their prescription for the updating of Kn.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

1 T 1 T
Kn+t = Kn - T Kndndn Kn+ Td YnYn

dn Kndn Yn n
(C.6)

is believed to be the most effective update formula. It has hereditary symmetry (K n+t

is symmetric if Kn is) and hereditary positive-definiteness for "sufficiently accurate"

linear searches along the search direction given by

(C.7)

For large-scale problems the computation used in matrix-vector multiplications

(O(N2
); where N is the number of variables of the function to be minimized) and

the memory requirements make this method inefficient.

The "one-step" memoryless BFGS update is given by the BFGS formula for the in­

verse Hessian, with the previous approximation taken as the idmtity matrix (eqn. 5.6).

Only vectors need to be stored and computation is reduced to O(N), because only

scalar products are involved.

If exact linear searches are ma.de, memoryless quasi-Newton methods generate mu­

tually conjugate directions. Shanno illustrates this relationship in detail ([98]).

107

Appendix D

One-Dimensional Minimization

Let us write E(f) for E(xn-1 + fdn) where dn has been defined in eqn. (11). First

E(O) and E(f = 4fn-t) are calculated.

If E(f = 4fn-t) is greater or equal to E(O), the parameter f is divided by four until

E(f) is less than E(O). Since dis guaranteed to be a descent direction this point will be

found. Then the minimizer fmin of the parabola going through the three points is found.

The process is then repeated with the three points obtained after substituting fmin for

one of the three previous points, to reobtain the configuration with the function value

at middle point less than that at either end. The process continues until the difference

in the last two approximations to the minimum value is less than 10-6 •

On the contrary, if E(E = 4En-d is less than E(O), the parameter f is multiplied by

four until E(E) is greater than E{O) + EE'(O) (to assure existence of a minimum in the

quadratic minimization step). If this is found the final f is set either to the quadratic

minimizer of the parabola through E(O) and E(E) with initial derivative E'(O) or to

4En-I , depending on the minimum value of the energy function for these two points.

If this is not found after a reasonable number of trials (5 in our case), the final f is set

to 4En-1·

The efficiency of the method is due to the fact that only a very limited 11umber

of iterations are actually done in the two cases . Furthermore, in the second case the

derivative E'(O) is obtained rapidly with the scalar product of dn and gn, which in turn

are found together with the value E(O) during the last hack-propagation step.

108

Bibliography

References mostly for Chapter 2

[1] R. Battiti, "Collective Stereopsis on the Hypercube," in Proc. III Conf. on Hy­

percube Cone. Comp. and Appl. Vol. II, 1000-1006, (Pasadena, CA, 1988).

[2] R. Battiti, "Surface Reconstruction and Discontinuity Detection: a Fast Hierar­

chical Approach on a, Two-Dimensional Mesh," in Proc. of the IV Conf. on Hy­

percube Concurrent Computers and Applications, (John Gustafson at. al. (eds.),

Monterey, 1989).

[3] A. Blake and A. Zisserman, Visual Reconstruction, (MIT Press: Cambridge, MA,

1987).

[4] A. Brandt, "Multi-Level Adaptive Solutions to Boundary-Value Problems,"

Math. Comput. 31, 333-390, (1977).

[5] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. ·walker, Solving Problems

on Concurrent Processors, (Prentice Hall, New Jersey, 1988).

[6] P. Frederickson, 0. A. McBryan, "Intrinsically Parallel Multiscale Algorithms for

Hypercubes," in Proc. III Con£. on Hypercube Cone. Comp. and Appl. Vol. II,

1726-1734, (Pasadena, CA, 1988).

[7] W. Furmanski and G. Fox, "Integrated Vision Project on the Computer Net­

work,"' Caltech C3P report 623, (Caltech Concurrent Computation Project.,

Pasadena, CA 91125, 1988).

109

[8] S. Geman and D. Geman, "Stochastic Relaxation, Gibbs Distributions, and the

Bayesian Restoration of Images," IEEE Trans. Pattern Analysis Machine Intelli­

gence 6, 721-741, {1984).

(9] T. Kanade, Three-Dimensional Machine Vision, (Kluver: Boston, MA, 1987).

(10] C. Koch, J. Marroquin, A. Yuille, "Analog Neuronal Networks in Early Vision,"

Proc. Natl. Acad. Sci. USA 83, 4263-4267, (1986).

(11] D. Marr and T. Poggio, "Cooperative Computation of Stereo Disparity," Science

195, 283-287, (1976).

(12] J. Marroquin, "Surface Reconstruction Preserving Discontinuities," M.I. T. Artif.

In tell. Lab. Memo 792, (MIT, Cambridge, MA, 1984).

(13] J. Marroquin, "Optimal Bayesian Estimators for Image Segmentation and Surface

Reconstruction," M.I. T. Artif. Intell. Lab. Memo 839, (MIT, Cambridge, MA,

1985).

(14] T. Poggio and C. Koch, "Ill-Posed Problems in Early Vision: from Computational

Theory to Analogue Networks," Proc. R. Soc. Lond. B 218, 303-323, (1985).

(15] T. Poggio, V. Torre and C. Koch, "Computational Vision and Regularization

Theory," Nature 317, 314-319, (1985).

(16] K. Stiiben and U. Trottenberg, "Multigrid Methods: Fundamental Algorithms,

Model Problem Analysis and Applications," in Multigrid Methods Proc., 1-176,

(Springer-Verlag: Berlin, BRD, 1982).

(17] D. Terzopulos, "Multilevel Computational Processes for Visual Surface Recon­

struction," Comp. Vis., Graph., and Image Proc. 24, 52-96, (1983).

(18] D. Terzopulos, "Image Analysis Using Multigrid Relaxation Methods," IEEE

Trans. Pattern Analysis Machine Intelligence 8, 129-139, (1986).

[19] D. Terzopulos, "Regularization of Inverse Visual Problems Involving Discontinu­

ities," IEEE Trans. Pattern Analysis Machine Intelligence 8, 413-424, (1986).

References mostly for Chapter 3

110

(20] R. Battiti "Surface reconstruction and discontinuity detection: A hierarchical

approach," Caltech C3P Report 676, (Caltech Concurrent Computation Project,

Pasadena, CA 91125, 1988).

(21] A. Brandt "Multi-level adaptive solutions to boundary-value problems," Math.

Comput. 31,333-390, {1977).

(22] P.J. Burt "The pyramid as a structure for efficient computation," Rosenfeld

A.(ed) Multiresolution image processing and analysis, 6-35, (Springer-Verlag

1984).

(23] W. Enkelmann "Investigations of multigrid algorithms for the estimation of op­

tical flow fields in image sequences," Computer Vision, Graphics and Image Pro­

cessing 43, 150-177, {1988).

(24] E. Gamble and T. Poggio "Integration of intensity edges with stereo and motion,"

MIT Artificial Intelligence Lab. Memo No.970,, {1987).

(25] S. Geman and D. Geman "Stochastic Relaxation,Gibbs Distributions, and the

Bayesian Restoration of Images," IEEE Trans. Pattern Analysis Macl1ine Intelli­

gence 6, 721-741, {1984).

[26] F. Girosi, A. Verri and V. Torre "Constraints for the computation of the optical

flow," Proceedings of the IEEE Workshop on Visual Motion, 116-124, (Irvine,

CA, March 1989).

[27] F. Glazer "Multilevel relaxation in low-level computer vision," Rosenfeld

A.(ed)Multiresolution image processing and analysis, 312-330, (Springer-Verlag,

1984).

[28] E.C. Hildreth "Computations underlying the measurement of visual motion,"

Artificial Intelligence 23, 309-354, (1984).

(29] B.K.P. Horn Robot Vision, (MIT Press, McGraw-Hill, 1986).

[30] B.K.P. Horn and G. Schunck "Determining Optical Flow," Artificial Intelligence

17, 185-203, (1981).

[31] J. Hutchinson, C. Koch, J. Luo and C. Mead "Computing Motion Using Ana.log

and Ilinary Resistive Networks," IEEE Computer, 52-63, (March 1988).

111

(32] B. Kamgar-Parsi and B. Kamgar-Parsi "Evaluation of Quantization Error in

Computer Vision," IEEE Trans. Pattern Analysis Machine Intelligence 11(9),

929-940, {1989).

[33] C. Koch, J. Marroquin, A. Yuille "Analog neuronal networks in early vision,"

Proc. Natl. Acad. Sci. USA 83, 4263-4267, (1986).

[34] J. Little, H.H. Biilthoff, and T. Poggio "Parallel optical flow using local voting,"

Proceedings of the Int. Conf. on Comp. Vision (Tarpon Springs, Florida, Dec.

1988).
I

[35] J. Little and A. Verri "Analysis of differential and matching methods for optical

flow," Proceedings of the IEEE Workshop on Visual Motion, 173-180, (Irvine,

California, March 1989).

[36] D. Marr Vision, (Freeman, NewYork, 1982).

(37] H.H. Nagel "Analysis techniques for image sequences," Proc. 4th Int. Joint Conf.

on Pattern Recognition, (Kyoto, Japan, Nov 1978).

(38] H.H. Nagel and W. Enkelmann "An Investigation of Smoothness Constraints

for the Estimation of Displacement Vector Fields from Image Sequences," IEEE

Trans. Pattern Analysis Machine Intelligence 8(5), 565-593, (1986).

[39] H. Nishihara "Practical real-time imaging stereo matcher," Opt. Eng. 23{5),

536-545, (1984).

(40] T. Poggio, V. Torre and C. Koch "Computational vision and regularization the­

ory," Nature 317, 314-419, (1985).

(41] Stiiben K. and Trottenberg Multigrid Methods: Fundamental Algorithms, Model

Problem Analysis and Applications," M ultigrid Metlwds Proc., 1-176, (Springer­

Verlag, Berlin, 1982).

[42) D. Terzopoulos "Image analysis using multigrid relaxation methods," IEEE

Trans. Pattern Analysis Machine Intelligence 8, 129, (1986).

(43] V. Torre, T. Poggio "On Edge Detection," IEEE Trans. Pattern Analysis and

MAchine Intelligence 8(2), 147-163, (1986).

[44] S. Ullman "Analysis of Visual Motion by Biological and Computer Systems,"

IEEE Computer, 57-69, (August 1981).

112

[45] S. Uras, F. Girosi, A. Verri and V. Torre "A computational approach to motion

perception," Biological Cybernetics 60, 79-87, (1988).

References mostly for Chapter 4

(46] R. Battiti "Surface Reconstruction and Discontinuity Detection: a Fast Hierarchi­

cal Approach on a Two-Dimensional Mesh," Proc. of the IV Con£. on Hypercube

Concurrent Computers and Applications(John Gustafson at. al. (eds.), Monterey,

1989).

(47] R. Battiti Caltech C3P Report, in preparation.

(48] A. Brandt "Multi-level adaptive solutions to boundary-value problems," Math.

Comput. 31, 333-390, (1977).

(49] P.J. Burt "The pyramid as a structure for efficient computation," Rosenfeld

A.(ed)Multiresolution image processing and analysis, 6-35, (Springer-Verlag,

1984).

(50] T.F. Chan and Y. Saad "Multigrid Algorithms on the Hypercube Multiproces­

sor," IEEE Trans. on Computers Vol. C-35, No. 11, (1986).

(51] H. Embrechts , D. Roose "Efficiency and Load Balancing Issues for a Parallel

Component Labelling Algorithm," Proc. of the IV Conf. on Hypercube Concur­

rent Computers and Applications, (John Gustafson at. al. (eds.), Monterey, CA,

1989).

[52] W. Enkelmann "Investigations of multigrid algorithms for the estimation of op­

tical flow fields in image sequences," Computer Vision, Graphics and Image Pro­

cessing 43, 150-177, (1988).

(53] G. Fox , M. Johnson , G. Lyzenga ,S. Otto , J. Salmon , D. Walker Solving

Problems on Concurrent Processors, (Prentice Hall, New Jersey, 1988).

(54] W. Furmanski and G. G. Fox "Integrated vision project on the computer net­

work," Caltech C3P report 623, (Caltech Concurrent Computation Project,

Pasadena, CA 91125, 1988).,

113

[55] F. Glazer "Multilevel relaxation in low-level

computer vision," Rosenfeld A.(ed)Multiresolution image processing and analysis,

312-330, (Springer-Verlag, 1984).

(56] B.K.P. Horn and G. Schunck "Determining Optical Flow," Artificial Intelligence

17, 185-203, (1981).

(57] H.A.H. Ibrahim , J .R. Kendler , D.E. Shaw "Low-level image analysis tasks on

fine-grained tree-structured SIMD machines," J. Par. Distr. Comput. 4, 546-574,

(1987).

(58] 0. McBryan and E. Van de Velde "Hypercube Algorithms and Implementations,"

SIAM J. Sci. Stat. Comput. 8, 227-287, (1987).

(59] T. Poggio, V. Torre, and C. Koch "Computational vision and regularization the­

ory," Nature 317, 314-319, (1985).

[60] Q.F. Stout "Supporting divide-and-conquer algorithms for image processing," J.

Par. Distr. Comput. 4, 95-115, (1987).

[61] D. Terzopoulos "Image analysis using multigrid relaxation methods," IEEE

Trans. Pattern Analysis Machine Intelligence 8, 129, (1986).

[62] R. Battiti "Collective Stereopsis on the Hypercube," Tl1e III Conf. on Hypercube

Cone. Comp. and Appl. Vol II, 1000-1006, (ACM Press, New York, 1988).

(63] R. Battiti "Surface Reconstruction and Discontinuity Detection: a Hierarchical

Approach," Caltech C3P Report 676 - B, (Caltech Concurrent Computation

Project, Pasadena, CA 91125, 1988).

(64] A. Brandt "Multi-level adaptive solutions to boundary-value problems," Matli.

Comput. 31, 333-390, (1977).

[65] T.F. Chan and Y. Saad "Multigrid Algorithms on the Hypercube Multiproces­

sor," IEEE Trans. on Computers Vol. C-35, No. 11, (1986).

[66] P. Frederickson and 0. A. McBryan "Intrinsically Parallel Multiscale Algorithms

for Hypercubes," The III Con£. on Hypercube Cone. Comp. and Appl. Vol II,

1726-1734, (ACM Press, New York, 1988).

(67] G. Fox, M. Johnson, G. Lyzenga, S. Otto , J. Salmon , D. Walker Solving Prob­

lems on Concurrent Processors, (Prentice Hall, New Jersey, 1988).

114

(68] W. Furmans~i and G. C. Fox "Integrated vision project on the computer net­

work," Caltech C3P report 623, (Caltech Concurrent Computation Project,

Pasadena,.CA 91125, 1988).

(69] S. Geman and D. Geman "Stochastic Relaxation,Gibbs Distributions, and the

Bayesian Restoration of Images," IEEE Trans. Pattern Analysis Machine Intelli­

gence 6, 721 (1984).

[70] J. G. Harris "A new approach to surface reconstruction: the coupled depth/slope

model," Proc. IEEE Fiest Int. Con£. on Computer Vision 277-283, (London,

1987).

(71] B.K.P. Horn, M.J. Brooks "The Variational Approach to Shape from Shading,"

MIT A.I. Memo 813, (1985).

[72] C. Koch, J. Marroquin, A. Yuille "Analog neuronal networks in early vision,"

Proc. Natl. Acad. Sci. USA 83, 4263-4267, (1986).

[73] D. Marr and T. Poggio "Cooperative computation of stereo disparity," Science

195, 283-287, (1976).

[74] J .L. Marroquin "Surface Reconstruction Preserving Discontinuities," MIT A.I.

Memo 792, {1984).

(75] T. Poggio and C. Koch "Ill-posed problems in early vision: from computational

theory to analogue networks," Proc. R. Soc. Lond. B 218, 303-323, (1985).

[76] T. Poggio, V. Torre and C. Koch "Computational vision and regularization the­

ory," Nature 317, 314-319, {1985).

[77] K. Stiiben and Trottenberg "Multigrid Methods: Fundamental Algorithms,

Model Problem Analysis and Applications," M ultigrid Methods Proc., 1-176,

(Springer-Verlag, Berlin, 1982).

[78] D. Terzopoulos "Image analysis using multigrid relaxation methods," IEEE

Trans. Pattern Analysis Machine Intelligence 8, 129, (1986).

[79] D. Terzopoulos "Regularization of inverse visual problems involving discontinu­

ities," IEEE Trans. Pattern Analysis Machine Intelligence 8, 413 (1986).

References mostly for Chapter 5

115

[80] R. Battiti "Accelerated Back-propagation Learning: Two Optimization Meth­

ods," Complex Systems accepted for publication {1990}.

(81] E.B. Baum "On the Capabilities of Multilayer Perceptrons," Journal of Complex­

ity 4, 193-215, (1988).

[82] A. Borsellino and A. Gamba "An outline of a mathematical theory of PAPA,"

Nuovo Cimento Suppl. 2 20, 221-231, (1961).

(83] D.S. Broomhead and D. Lowe "Multiva.riable Functional Interpolation and Adap­

tive Networks," Complex Systems 2, 321-355, {1988).

[84] P. Collet and J.P. Eckmann,Itera.ted map on the Interval as Dynamical Systems,

{Birkhauser, Boston, 1980).

[85] J. Denker, D. Schwartz, B. Wittner, S. Solla, R. Howard, L. Jackel and J. Hop­

field "Large Automatic Learning, Rule Extraction, and Generalization," Complex

Systems 1, 877-922, {1987).

(86] M. Feigenbaum, J. Stat. Phys. 19, 25, {1978}.

(87] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon , D. Walker Solving Prob­

lems on Concurrent Processors, (Prentice Hall, New Jersey, 1988).

[88] P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, {Academic

Press, 1981).

[89] R. P. Gorman, T. J. Seinowski, "Analysis of Hidden Units in a Layered Network

Trained to Classify Sonar Targets," Neural Networks 1, 75-89, {1988).

[90] A. H. Kramer, A. Sangiovanni-Vicentelli, "Efficient Parallel Learning Algorithms

For Neural Networks," Advances in Neural Information Processing Systems Vol.

1, 75-89, (Morgan Kaufmann, CA, 1988).

[91] A. Lapedes and R. Farber, "Nonlinear signal processing using neural networks:

Prediction and system modeling," Los-Alamos Preprint LA- UR-87-1662.

(92] A. Rajavelu, M. T. Musavi, and M. V. Shirvaikar "A Neural Network Approach

to Character Recognition," Neural Networks, 2, 387-393, (1989).

[93] T. J. Seinowski and C.R. Rosenberg, "Parallel Networks that learn to pronounce

English Text," Complex Systems, 1, 145-168, (1987).

116

(94] R. A. Jacobs, "Increased Rates of Convergence Through Learning Rate Adapta­

tion," ,Neural Networks 1, 295-307, (1988).

[95] D. E. Rumelhart and J. L. Mc~Clelland (eds.),Parallel Distributed Processing: Ex­

plorations in the Microstructure of Cognition. Vol. 1: Foundations, (MIT Press,

1986).

(96] D. E. Rumelhart and J. L. McClelland (eds.),Parallel Distributed Processing:

Explorations in the Microstructure of Cognition. Vol. 2: Psychological and Bio­

logical Models, (MIT Press, 1986).

[97] R. Serra and G. Zanarini, Tra Ordine e Chaos, (Clueb, Bologna, Italy, 1986).

(98] D. F. Shanno, "Conjugate gradient methods with inexact searches," Mathematics

of Operations Research 3 - 3, 244-256, {1978).

[99] G. Tesauro, "Scaling relationship in back-propagation learning: dependence on

the training set size," Complex Systems 1, 367-372, (1987).

(100] G. Tesauro and B. Janssens, "Scaling relationship in back-propagation learning,"

Complex Systems 2, 39-44, {1988).

[101] T.P. Vogl, J.K. Mangis, A.K. Rigler, W. T. Zink and D. L. Alkon, "Accelerating

the Convergence of the Back-Propagation Method," Biological Cybernetics 59,

257-263, {1988).

[102] P. J. Werbos, "Generalization of Back-propagation with Application to a Recur­

rent Gas Market Model," Neural Networks 1, 339-356, (1988).

[103] R. D. Williams, "Finite Elements for 2D Elliptic Equations with Moving Nodes,"

Caltech C3P Report 423, (Concurrent Computation Project, Caltech, Pasadena,

CA 91125, 1987).

117

PARALLEL SURFACE RECONSTRUCTION (header)

mg.h

/"'.llQ. h:
j•

1•

1•

1•

pro<;1ram for multiQrid surface reconstr~c~ion
header with data structures and ~acros
written by Roberto Battiti, Feb 1988
uses Express communication environment (Parasof:1
version with floats, for 65X65 imaqes

tinclude <stdio.h>
finclude <math.h>

fdefine PROFILE 0 /*l for profile information *I

fdefine LAY 7 /•defines ext memory available •/
tdefine NEU 5722 /*neurons 1n LAY layer pyramid */
tdefine LP 11176 /*tot of discontinuities */
tdef1ne II 64 /* i.e. (l«(LAY-1)) */
tdef1ne ID 65 /* i.e. (II +l) image dimension */
fdef1ne STEP (lay) (II »(lay))
fdef1ne NEU IN ROW(lay) ((l« (lay)) +l)

fdefine LP IN LAY(lay) (2*NEU IN ROW(lay)*(NEU IN ROW(lay)-1))
/* neurons-inside a given layer: - */ - -
Ide fine NEU IN LAY (lay) (NEU IN ROW (lay) * NEU IN ROW (lay))
/*from physical (x,y) to offset In layer*/ - -
fdefine OFFSET(x,y,l) (((x)/STEP(l}) + ((y)/STEP(l))*NEU IN ROW(l)
/*from offset in· layer to physical (x,y)•/ - -
fdef1ne PHYSX(o,l) (((o)\NEU IN ROW(l)) *STEP(l)
fdefine PHYSY(o,l) (((o)/NEU=IN=ROW(l)) *STEP(l)

/*parallel version stuff I I I I I I I I I I I I I I I I I I 1111111111111111111111111111 l I*/
finclude •express.h•
fdef1ne NODES 4
tdef1ne NX 2
tdef1ne NY 2
fdefine NODE_NEU 1797
fdefine NODE LP 3432
fdefine NODE=II 32

/*neurons in LAY layer pyramid,for each node, plus border*/
/*tot of discontinuities */

fdefine NODE_ID 33 /*35 includinQ border*/
tdefine COMM SIZE (NODE ID*NODE I0*4) /*communication size - imaQe patch in node*/
/•cepends on-DATA_TYPE*/ -

fdefine QUIT 0
tdefine LOAD IMAGE l
tdefine BACK_IMAGE 2
tdefine DEBUG 3
tdefine FMG 4

/*commands sent to nodes by host•/

tdef:ne NODE_NEU_IN_ROW(lay) {NEU IN ROW 1 :4y-l) ~2) /*2 for 3CRDER pixels*/
taefine NODE LP IN LAY{lay) (2*NCJE-NEC :~ ROW(lay)•(NODE NEU IN ROW(lay)-1))
/• ~eurons i;side a given laye:: --I - - - - -

/• neurons inside a Qiven layer: •/
fdefine NODE NEU IN LAY(lay) { NODE_NEU_:N_ROW(lay) • NODE_NEU_!N_ROW(lay)
/•from rela:ive (x,y) to offset from ~ode layer•/
/•(x,y)•{OO} for top-left OWNED pixel•/
fdefi~e NODE_OFFSET(x,y,l) ((l+({x)/STEP{l))I + (l+{{y)/S7E?(ll))*NODE_NE:U_IN_RCW(
1 I I
/•from offset in layer to physical {x,y)*/
fcefir.e NODE_?HYSX(o, l) ((({o) \NODE_NEU_:N_ROW(~)) -:1 •STEP (l)
taefine NODE_PHYSY (o, 1) ({ ((o) /NODE_NEU_:N_rlOW: ~: l -: I •STEP (1)

exLern ~r.L T_command_to_nc~ ~();
exLer~ ~~ar fromnodes[COMM s:ZE];
exLer~ ~nt host back tmaQe();
/•parallel version sLuffl 1111: 111111 i 111111 I I! 11111: 1 111 ! l I: l I;:· i I l: I! I*/

•aef:,e ~ RA.ND 2147483647
; ldefine ~.AX-STRLEN 56
:/•values ~or mq_~laq:
I tdefine SHAPE_~~TEGR
1tdefine SHAPE SMOOTH
! tdefine SURFACE
lfdefine LINE_PROC

!tdefine LP_METHOD_TABLE 0

0
1
2
3

· tdefine LP METHOD CONST 1
1 tdefine LP-METHOD-WOJTEK 2
fdefine LP-METHOO-CHRISTOF 3
tde!ine DOWN METHOD SIMPLE 0
fdefine DOWN=METHOD=STAR 1
tde!ine DOWN_METHOD_STAR_DISC 2

*/

fdefine INFINITY 1000000000000.0

/"2"31 -1

/* shape enforcinQ inteqrability*/
/* ••••••••••••••• smoothness */

/* surface reconstruction */

/* iine processes */

/*methods for fill_:p_table() */

/*methods for interpolation */

fdefine STOP {while(!getc(stdin)--EOF){}}

tdefine BYTE unsigned char
typedef float DATA_TYPE; /*basic data type: float or double?•/

1••···•1 typedef struct MGPAR{ /*state variables and parameters*/
int lp method,down method;
int nlay,naa,na,nb;nc,ran;
int history,film,zoom,ld;
DATA TYPE max h;
DATA-TYPE mul;
DATA-TYPE alpha,beta,noise;
DATA=TYPE dh,al,a2,a3,a4,ai; /*lp price list*/
DATA TYPE ru,rd; /•reduction for up or down lines*/
char-z out file[MAX STRLENJ;
char disc out file[MAX STRLEN);
char crnd file{MAX STRLENJ;
char z file[MAX STRLEN);
char pr file[MAX STRLEN);
char history file(MAX STRLENJ;

MGPAR; - /* alpha • 1/lambda
tdefine EX_LP_METHOD LP METHOD TABLE
fdefine EX_DOWN_METHOD DOWN_METHOD_STAR
fdefine EX_NLAY 4
tdefine EX_NAA 1
fdefine EX_NA 1

'j tdefi:1e
. fdefi:1e
i tdefine
. taefi:i.e
: tdef1:1e
\ tdefine
: tdefine

EX -
EX -EX -EX_
EX -
EX -::.x -
EX -::x -
EX -
£X -::x -

NB 1
NC 1
RAN 13
HISTORY 1
FILM 0
ZOOM 1
ALPHA 0.005
BETA 0.25
NOISE 0.25
MAX H 10.0 -
~UL 1.0
DH 10.0

/* data agreement spring •1 tdefine
tdef!ne

. tdefi:1e
, tdefine
: tdefine
: tdefi:1e
! tdefine

::.x Al • 8 /* al ... a1 are multi~lyinQ price•/

tde f i :-:e
tdef.:.:-:e

· tdefi:1e
j tdefi:-:e

EX
::.x
::.x
:::x
::x

-
-
-
-
-
-

A2 .4
A3 1. 3
A4 1.6
AI 10.0
?.U 0.5

lt~ -2

tdefine £X RD 0.5
fdef1ne EX Z OUT F!LE •z•
4defi~e EX-DISC OUT FILE "disc•
41e~:~e EX-CMD FILE-"demo.com•
,aef:~e £X-Z FILE •ranl.z"
tdef~~e EX-?R FILE "film.pr"
tdefine EX=HISTORY_FILE "demo.history•

tdefine INIT MGPAR \
!EX LP METHOO,EX DOWN METHOD,

EX-NLAY,EX NAA,Ex NA;Ex NB,EX Nc,Ex AAN,
EX-HISTORY;Ex FIU!,EX ZOOM,0,- -
EX=MAX_H, - -
EX MUL,
EX-ALPHA,EX BETA,EX NOISE,
EX-DH,EX Al;Ex A2,EX Al,EX A4,EX AI,
EX-RU,EX-RD, - - - -
EX-Z OUT-FILE,
EX=DISC_OUT_FILE,
EX CMD FILE,
EX-Z FILE,
£X=PR_FILE,
EX HISTORY FILE

) - -

\
\
\
\
\
\
\
\
\
\
\
\
\
\

1••···•1 typedef struct _NEURON{
BYTE n type;

/*basic neuron with connec:1:ions */

DATA TYPE z,•znoisy;
BYTE-bt; /*additional byte */

struct NEURON •n, •s, *e, •w;
struct =NEURON •ne, •se, .•nw, *sw;
struct NEURON •next;
struct -NEURON •on, •os, •oe, •ow; /*pt to others */
struct =NEURON •uO,•ul,*dO,*dl,*d2,*d3,*d4,*d5; /*disc. conn. betw. layers*/

! NEURON;
tdefine INIT Z 0.0
tdefine INIT-ZNOISY (DATA_TYPE *)0
tdefine INIT=3T 0
tdeflne VOID ((NEURON*) 0)
fdefine IN NEU 1 /*values for n_type: internal

/* on the REAL border */ fdefine 30 NEU 2
tdefine NODE BO_NEU 0 /*for pixels on the •communication border in NODES*/

tdefine INIT!AL_NEU
NODE 80 NEU,
INIT=Z,INIT_ZNOISY,

\

\
INIT BT, \
voID;voID,VOio,voro, ,
VOID,VOID,VOID,VOID, \
VOID, \
VOID,VOID,VOID,VOID, \
VOID,VOID,VOIO,VOID,VOID,VOID,VOID,VOID \
I

fdef~ne LP TABLE SIZE 256

1•········~---··~···•1
/•access and movement in pyramid structure ~acros
tdeLne Qett (val) th1s->val
taefine qet~(val) th1s->n->val
tdef:ne qets(val) this->s->val
tdef:~e ~ete(val)
iaef:~e qetw(val)

:.his->e->va l
this->w->val

tdef:~e qetne(val) this->ne->val

•/

fde :'.1 :1e oetse (vaU t~is->se->val
fdef!.:,e oetnw(val) :his->nw->val
fuef!.:1e Qet:sw(val) this->sw->val

! fdefine Qeton (val I this->on->val
jfdef~ne Qetos (val) this->os->val
: fdef!.ne Qe:oe(va:) this->oe->val
i ldefbe qetow (val) this->ow->val

! fdefine QetdO (val l this->dO->val
I fdefine Qetdl(val) this->dl->val
fdefine Qetd2 (val) th1s->d2->val
fdefine QetdJ (val) th1s->d3->val
fdefine Qetd4 (val) this->d4->val
fdefine QetdS (val) th1s->d5->val
fdefir:e oetuO (val) this->uO->val
fde fine Qetul (val) this->ul->val

fdefine H IND£X(1) \
{ 1•0;1f(Qetn(bt))1+•64;1f(Qetne(bt))1+•128;1f(Qete(bt))1+•1;1f(Qetse(bt))1+•2; \

1f(Qets(bt))1+•4;1f(Qetsw(bt))1+•8;1f(Qetw(bt))1+•16;1f(Qetnw(bt))i +•32;1

fdefine V !ND£X(1) \
(i•O;if(Qetn(bt))i+•l;if(Qetne(bt))i+•2;if(Qete(bt))1+•4;1f(Qetse(bt))1+•8; \

if(Qets(bt))1+•16;1f(Qetsw(bt))1+•32;if(Qetw(bt))1+•64;if(Qetnw(bt))1+•128;}

t••••••••••••••••••••••••••••extern declarations••••••••••••••••••••••••/
extern MGPAR mgpar;
extern int read commandfile();
extern int dump=disc ();
extern int dump_imaQe ();
extern int rand();
extern !.nt sw_header();
extern int sw_vls feedback(); /•visual feedback */

extern DATA_TYP£ z[IDJ (ID);

PARALLEL SURFACE RECONSTRUCTION (host program)

hmg.c

i •runq. c:
t•

program for mult1gr1d surface reconstruct~on
host program

1· written by Roberto Battiti, Feb 1988
1• uses Express communication environment (Parasoftl

t•pr .•• pixrect reference manual routines (SUN microsystemsl
/*user interface: sunview, but easily portable (SW_ routines)

•include "mg.h"
t1nclude <pixrect/pixrect_hs.h>

MGPAR mgpar • INIT_MGPAR;

DATA_TYPE z(ID) (ID];

char fromnodes(COMH_SIZEJ;
char tonodes(NODES*COMH SIZE);
short coord(NODES)(2J; -

struct nodenv env;
int •pto1;

main(argc, argv)
int argc;
char •argv (l;
{

T load();
S\t init {);

Hf 'PROFILE
cprofcp {);

tendif

exit (0);

int T load()
{

int dest;
int pgind, nodes;
int src, type• 123;
int n;

/*image format is pixrect file */

/*array containing complete "image"*/

/* for communicating with nodes•/
/* for communicating with nodes*/
/*x and y coordinate for each node*/

/*load nodes and start command interpreter*/
/* sunview user interface starts ~/

/*load nodes and start command interp=eter*/

i!(pg1nd•exopen("/dev/transp~~~r•, ~ODES, DONTCARE) < 0) exit(l);
exload(pgind, "rung");

exparam(,env); /* Get system parameters*/

/•NN*/
for(n•0;n<env.nprocs;n++l{

src • DONTCARE;
exread(!romnodes, COMM_SIZE, ,src, ,type);
ptoi•(1nt •)fromnodes;
coo rd [src I [OJ - •pc.oi+•;
coord(src] [11- •p~oi+•;

i
/*NN*/
printf("nodes are alive and well ... \n");
!"or (naQ; ::<env. nprocs; n++l i

printf("node\d \d \d •. \n",n,coord(n](0],coord(nl(lll;

\20-l

i int :_co~.mand_to_nodes(comml int comm;
! i

i

I
I

:.nt type-123;
int command;

command •comm;
exbroadcast (,command, HOST, 4, ALI.NODES, (int *10, ,type);

int dump_data ()
{

/*dumps surface values as printable numbers*/

FILE *Z out file;
static Int ser1aln•O;
char str[MAX STRLEN);
int 1; -
DATA_TYPE *ptodt;

sprintf(str,•,s ,d ,d.data•,mo;,ar.z out file,ser1aln,NEU IN ROW(LAY-1));
z out file•fopen(s~r,•w•); - - - -
1-=ID*ID;
ptodt•(DATA TYPE •)z;
while (1--) (-

fpr1ntf (z_out_f1le, •,t\n•, •ptodt++);

fclose(z_out_file);
serialn++;

int load_z_values()
{

NEURON *th1s,•p;
int 1,j,fd,n,offx,offy;
DATA TYPE •ptodt;
FILE-*z file;
int src;dest,type•l23;

/*from p1xrect file to internal memory */

if((fd • open(mQpar.z_f1le,0))•• -1)
ERR (10)·;
return(O);

while((1• read(fd,z,ID*IO*sizeof(DATA TYPE)))!• ID*IO*sizeof(DATA_TYPE))
{ -

ERR(20);
close(!d);
fd•open(mQpar.z_file);

mQpar. ld•l;
close(fd);

mQpar.max_h•O.O;
ptodt•(DATA_TYPE *)z;
!. •ID* ID;
'«hile (1--l I

if(*ptodt > mcpar.max_h)mqpar.max_h• •ptodt;
ptodt++;

=ar.domize z ();

T_CO:!'.mand_to_nodes(LOAD IMAGE);

u .. 0-1

ptodt• ((DATA_TYPE •1 (tonodes+ COMM_SIZE*NODESI) -1;

n•NODES;
whiie (n--) I

offx•coord[nl {O]*(NOOE II);
offy•(NY-1-coord[n)(l))*(NOOE II);
j•NCDE_ID; -
while (j--) {

i•NODE ID;
while (1--l {

*ptodt-- •z(j+offy)(i+offx);

/*write imaqe to nodes*/
for(n•O;n<env.nprocs;n++l {

dest•n;
exwrite(tonodes+n*COMM_SIZE,COMM_SIZE,,dest,,type);

sw_vis_feedback(LAY-1,SURFACE,•z values •••••• •);

return (1);

int host_back_imaqe()
{

int n,src,type•l23,offx,offy,i,j;
DATA_TYPE *ptodt;

~ command to nodes(BACK IMAGE);
for(n•O;n<en;.nprocs;n+~) {

src • DONTCARE;
exread(fromnodes, COMM_SIZE, ,src, ,type);

ptodt• ((DATA TYPE*) (fromnodes+COMM SIZE))-1;
offx•coord[src] [O)*(NOOE II); -
offy•(NY-1-coord(src) [l)l*(NODE II);
j•NODE ID; -
while (j--l {

!•NODE ID;
while (1--) {

z[j+offy) [i+offx)• •ptodt--;

sw_msq("imaqe read from nodes ••• \n");

sw_vis_feedback(LAY-1,SURFACE,"z values •..••• ");

return (1);

1••···•1 ;• basic mu:tiarid rout!.~e •/

!.nt t.ype-123;

T command to nodes(FMG);
exbroadcast((char •1 (&mgpar), HOST, sizeof(MGPAR), AL:.NODES, (!.:1t •)O, ,type);

\ 2.0-)

, 1•••···1
; ~~t dl.!.ITlp_imaqe(x,y,dx,dy,filename)
. !.nt x,y,dx,dy;
char •filename; /•used for film-makinq

i I
i colormap_t •colormap•NULL;

int type• RT STANDARD;
struct pixrect •screen,•icon;
FILE •output;

while((output•fopen(filename,"w")l••NULL)
ERR (10);
sleep(3);

screen•pr open("/dev/fb");
lcon•pr reqion(screen,x,y,dx,dy);
while(pr dump(icon,output,colormap,type,l)••PIX ERR) I

ERR(l3); -
fclose(output);
sleep(3);
oucput • fopen(filename, •w•);

pr close(screen);
pr-close(1con);
fclose(outputJ;

int randomize z (I

fdef1ne MY_RAND ({{DATA_TYPE) rand()/{DATA_TYPE) MAX_RAND)-.5)
I

int 1, j;
DATA_TYPE maxno1se;

srand(mqpar.ran);
maxno1se • mgpar.noise • mgpar.max_h;
for (1•0; 1<:::0; i++) I

for (j•0; j<ID; j++) I
z[ll (j] +• maxnoise• MY_RAND;

1~RR(numberJ !nr number;

I
' switch(number)(

case ~O:
1 sw msq("\n error opening file");

brealc;
case 11:

case 12:

case 13:

case 20:

sw msq("\n error loading-creating raster file");
break;

sw msg("\~wrong imace size");
break;

sw_msq("\npr_dump failed");
break;

sw msq("\n error in readinq");
break;

case 100:

default:

sw_msq("bad ~~d_file");
b:-eak;

b:-eak;

llO-L

*/

PARALLEL SURFACE RECONSTRUCTION (graphics and user interface)
hmg-;-sw.c

f • ~"T\Q SW. C:

f•
Sunview routines (SUN) used ~or ~ser :nterface im ~~q.c •1
to be compiled with host proqram •/
written by Roberto Battiti, Feb 1988 •/
~ses Express communicat:on environment (Parasoft) •/

1••···•1
finc~ude "mq.h"
linclude <suntool/sunview.h>
tinclude <suntool/canvas.h>
tinclude <suntool/tty.h>
tinclude <suntool/panel.h>
linclude <pixrect/pixrect_hs.h> /*image format is pixrect file */

tdefine PROG LABEL •multigrid
lde!ine ~INE=WIDTH 3

surface reconstruction from noisy z values•

tde!ine SCREENX 1152
tdefine U WIN X 0
tde!ine U-WIN-Y 32
tdefine U-WIN-HEIGHT 850
ldefine U-WIN-WIDTH 850
lde!ine U=WIN=ROWS 15
tde!ine U WIN COLUMNS 32
tdefine MILLE-1000
tde!ine PIX COLOR(color) ((color)«5)
tdefine MY iix 0xl9
tde!lne LiiE(line) 12*(11ne)

/* U_ • user specified */

/* no clipping */

tdefine PIX 3 /*size of a pixel in screen units*/
tdefine PIXX 5

Frame base frame,setpar frame;
Panel panel,setpar panel;
Panel item msg item,fname item,history item,out !name item,disc out !name item,cmd !name

item; - - - - - - - - -

Canvas canvas;
Pixwin •pw;
Keet rect;
~nsiqned char colmap[3l (256];

:nt bin_assoc_table(7)• {
1,2,4,8,16,32,641;

int zeroten assoc table[lll•
0,1;2,3,4;5,6,7,8,9,lOI;

:nt yesno assoc table[2l•{
0;11; -

:ypedef struct SWPAR{
int •history assocp[2);
int •film_assocp(2);
int •zoom assocp[2];
int •lp method assocp[2];
int •down method assocp(2];
int •nlay=assocp(2];
:nt •naa_assocp[2];
int •na_assocp[2J;
i~t •nb_assocp[2];
:nt •nc_assccp[2J;

SWPAR;

S~PAR sw_par • {
i&(mqpar.history),yesno assoc table!,
i&(mqpar.f::~),yesno assoc table!,
{&{mqpar.zoom),yesno-assoc-tablel,
!&{~qpar.lp_~ethod) ,zeroten_assoc_tablel,

\ lO -S

I ;

1,(mQpar.1own_method),zeroten_assoc_table},
i,(mqpar.~.ay),zeroten assoc tablet,
1,(mqpar.~aa),zeroten assoc table!,
1,(mqpar.~al,zeroten_assoc_tablel,
l&(mqpar.nbl,zeroten assoc table!,
i&(mqpar.ncJ,zeroten=assoc=tablel

sw_init ()
(

base frame• window_create(0, FRAME,
WIN_X, U WIN X,
WINY, U-WIN-Y,
FRAME_INHERIT_COLORS, TRUE,
FRAME LABEL, PROG LABEL,
0); - -

canvas• window create(base frame, CANVAS,
WIN HEIGHT,-U WIN HEIGHT,
WIN-WIDTH, U WIN WIDTH,
CANVAS RETAINED,- FALSE,
0); -

rect.r left•rect.r top•O;
rect.r-wldth•U WIN-WIDTH;
rect.r-heioht•U WIN HEIGHT;
pw - canvas_plxwln(canvas);

panel• window create(base frame, PANEL,
WIN RIGHT OF, - canvas,
0);- -

sw create panel items();
window_flt(panel);

window fit(base frame);
sw put-colmap();
window=maln_loop(base_frame);

int sw_create_panel_ltems()
(

int i•O;
int sw qult(),sw read commandflle(),sw load z values(l,sw dump data();
int sw-button(),sw value(),sw int value(),sw setpar(l;
int sw=dump_disc (); - - -

int sw debuQ(),sw host back imaoe();
panel_create_item(panel, PANEL_SLIDER,

?ANEL LABEL X, ATTR_COL (0),

ATTR_ROW (!.++), ?ANEL-LABEL-Y,
PANEL=LABEL=STRING,
PANEL VALUE,
PANEL=MIN_VALUE,
? ANEL _MAX_ VALUE,
PANEL SLID£~ WIDTH,
PANEL-NOTIFY-LEVEL,
?ANEL=NOT!:Y=PROC,
?A.NEL CLIENT DATA,
0); - -

"mul: ",
(!.nt) (mqpar.mul*MILLEl,

0,
lO*MILLE,
100,
?ANEL_DONE,
sw_ value,
(caddr_t) (& (mopar.mul)),

panel_create_item(panel, PANEL SLIDER,
PANEL LABEL X, ATTR_::OL{O),
?ANEL-LABEL-Y, ATTR_ROW(1H),
?ANEL=..ABEL=STRING, "ran:",

120- ~

PANEL_ VALUE,
PANEL_MIN_VALUE,
PANEL MAX VALUE,
?ANEL=SLIDER_WIDTH,
PANEL NOTIFY :EVEL,
PANEL-NOTIFY-PROC,
PANEL-CLIENT-DATA,
0); - -

panel create item(panel,
PANEL LABEL x,
PANEL-LABEL-Y,
PANEL-LABEL-STRING,
PANEL=VALUE:-
PANEL MIN VALUE,
PANEL-MAX-VALUE,
PANEL=SLIDER_WIDTH,
PANEL NOTIFY LEVEL,
PANEL-NOTIFY-PROC,
PANEL=CLIENT=DATA,
0);

panel create item{panel,
PANEL LABEL x,
PANEL-LABEL-Y,
PANEL-LABEL-STRING,
PANEL-VALUE;
PANEL-MIN VALUE,
PANEL-MAX-VALUE,
PANEL-SLIDER WIDTH,
PANEL-NOTIFY-LEVEL,
PANEL-NOTIFY-PROC,
PANEL-CLIENT-DATA,
0); - -

panel create item{panel,
PANEL LABEL x,
PANEL-LABEL-'i,
PANEL=LABEL=STRING,
PANEL VALUE,
PANEL-MIN VALUE,
PANEL=MAX=VALUE,
PANEL SLIDER WIDTH,
PANEL-NOTIFY-LEVEL,
PANEL=SOTIFY=PROC,
PANEL ~LIENT DATA,
0); - -

{l.ntl {mqpar.ran),
0,
MILLE,
100,
?ANEL DONE,
sw 1nt value,
(caddr=t) (, (mqpar. ran)),

PANEL_SLIDER,
ATTR_COL(O),
ATTR_ROW (1++),

•noise:•,
(int) (mqpar.noise*MILLE),

o,
MILLE,
100,
PANEL DONE,
s.., value,
(caddr_tl (, (mqpar .noise)),

PANEL_SLIDER,

•beta:•,

o,
MILLE,
100,

ATTR COL(O),
ATTR=ROW(i++),

(int) (mgpar.beta*MILLE),

PANEL DONE,
sw value,
(caddr_t) (, {mqpar .beta)),

PANEL_SLIDER,

•dh:•,

ATTR COL (0) ,
ATTR=ROW(i++),

(int) (mqpar.dh
0,
MILLE*!.00,
100,
PANEL DONE,
sw value,
(caddr_tl (, (mcwar .dh) l,

*MILLE),

panel_create_it~~(panel, PANEL_SLIDER,
PANEL LABEL X, ATTR COL (0),

ATTR=ROW(1++), PANEL=LABEL=Y,
PANEL_LABEL_STRING, "al:",
PANEL_VALUE,
PANEL_MIN_VALUE,
?ANEL_MAX_VALUE,
?ANEL SLIDER ~IDTH,
?ANEL=SOTIFY=LEVEL,
?ANEL NOTIFY ?ROC,
?ANEL-CLIENT-DATA,
Ol; - -

(l.!1t) (mqpar .al *MILLE),
0,
MILLE*2,
:oo,
?ANEL_JONE,
sw value,
{caddr_tl (& (rnqpar.al)),

panel_c=eate_item{panel, ?ANE:_SLIDER,
?A.NEL_LABEL_X, ATTR_COL{O),
PANEL LABEL Y, ATTR_ROW(i++),
?ANEL=LABEL=STRING, "a2:",
?ANEL_VALUE, (.!.nt) {mqpar.a2 *MI:.L£),

120 -7

PANEL_MIN _ VALUE,
PANEL MAX VALUE,
PANEL-SLIDER WIDTH,
PANEL=NOTIFY=LEVEL,
PANEL NOTIFY PROC,
PANEL=CLIENT=DATA,
0);

panel create item(panel,
PANEL_LABEL_X,
PANEL LABEL Y,
PANEL-LABEL-STRING,
PANEL-VALUE;
PANEL-MIN VALUE,
PANEL-MAX-VALUE,
PANEL=SLIDER_WIDTH,
PANEL NOTIFY LEVEL,
PANEL-NOTIFY-PROC,
PANEL=CLIENT=DATA,
0);

panel create item(panel,
PANEL LABEL x,
PANEL-LABEL-Y,
PANEL=LABEL=STRING,
PANEL VALUE,
PANEL-MIN VALUE,
PANEL-MAX-VALUE,
PANEL-SLIDER WIDTH,
PANEL-NOTIFY-LEVEL,
PANEL=NOTIFY=PROC,
PANEL CLIENT DATA,
0); - -

panel create item(panel,
PANEL LABEL X,
PANEL-LABEL-Y,
PANEL-LABEL-STRING,
PANEL-VALUE:­
PANEL=MIN_VALUE,
PANEL MAX VALUE,
PANEL-SLIDER WIDTH,
PANEL=NOTIFY=LEVEL,
PANEL NOTIFY PROC,
PANEL-CLIENT-DATA,
0); - -

o,
MILLE•2,
100,
PANEL_DONE,
sw value,
(caddr_tl (, (mqpar.a2)),

PANEL_SLIDER,

•aJ:•,

0,
HILL£•2,
100,

ATTR_COL(0),
ATTR_ROW(i++),

(int) (mqpar.a3 •MILLE),

PANEL DONE,
sw value,
(caddr_t) (' (mqpar.a3) l,

PANEL_SLIDER,
ATTR COL(0),
ATTR=ROW(l++),

(int) (mqpar.a4 •MILLE),
0,
HILLE•2,
100,
PANEL DONE,
sw value,
(caddr_t) (,(mqpar.a4)),

PANEL_SLIDER,
ATTR COL (0) ,

ATTR=ROW (1++),

(int) (mqpar.ai •MILLE),
o,
HILLE*l00,
100,
PANEL DONE,
sw value,
(caddr_t) (' (mqpar .ail),

panel_create_item(panel, PANEL_SLIDER,
PANEL_LABEL_X; ATTR_COL (0),

PANEL LABEL Y, ATTR_ROW(J..++),
PANEL-LABEL-STRING, •ru:",
PANEL=VALUE:- (int) (mQpar. ru •~!LLE),
?ANEL_MIN_VALUE,
PANEL_MAX_ VALUE,
?ANEL_SLIDER_WIDTH,
PANEL_NOTIFY_LEVE1,
?ANEL_NOTIFY_PROC,
PA.~EL_CLIENT_DATA,
0);

~ILLE,
~!JO,
?ANEL_DONE,
sw_value,
(caddr _:) (& (mopar. r':.l)),

panel_create_item(panel, PANEL_SL!DER,
PANEL LABEL X, ATTR COL(0),

ATTR=ROW(i++), ?A.~EL-LABEL-Y,
PANEL=LABEL=STRING, "rd:",

11-o-8

PANEL_VALUE,
PANEL_MIN_ VALUE,
PANEL MAX VALUE,
?ANEL=SLIDER_WIDTH,
PANEL NOTIFY LEVEL,
PANEL-NOTIFY-PROC,
PANEL-CLIENT-DATA,
0); - -

(lnt) (mqpar.rd •MILLE),
0,
MILLE,
!.00,
PANEL DONE,
sw value,
(caddr_t l (, (mopar. rdl I,

fname item• panel create item(pane:.
PANEL LABEL x,- -

?ANEL TEXT,
ATTR COL(O),
ATTR=ROW(i++I,
12,

PANEL-LABEL -y,
PANEL-VALUE-DISPLAY LENGTH,
PANEL-LABEL-STRING,­
PANEL-VALUE;
0); -

"z file:",
mqpar. z_flle,

out fname item• panel create item(panel, PANEL TEXT,
-PANEL-LABEL X, - - ATTR COL(OI,

PANEL-LABEL-Y, ATTR-ROW(l++I,
PANEL-VALUE-DISPLAY LENGTH, 12, -
PANEL-LABEL-STRING,- "key for (z).data:",
PANEL-VALUE; mqpar.z out file,
01; - - -

disc out fname item
PANEL_LABEL_X,

• panel create 1tem(panel, PANEL TEXT,
- - ATTR COL(Ol,­

ATTR-ROW(i++),
12, -

?ANEL LABEL Y,
PANEL-VALUE-DISPLAY LENGTH,
?ANEL=LABEL=STRING,- "key for (disc) .pr:",

mqpar.disc_out_file, PANEL VALUE,
O); -

cmd_ fname item• panel create item(panel, PANEL TEXT,
PANEL-LABEL X, - - ATTR COL(OI,
PANEL-LABEL-Y, ATTR-ROW(i++),
PANEL=VALUE=DISPLAY_LENGTH, 12, -
PANEL LABEL STRING, "end file(.coml :",
PANEL -VALUE; mqpar. cmd _file,
O); -

history item• panel create item(panel,
PANEL_LABEL_X, - -

PANEL TEXT,
ATTR COL (01,

?ANE.L_LABEL_Y,
PANEL VALUE DISPLAY LENGTH,
PANEL=LABEL=STRING,-
PANEL VALUE,
O); -

sw_create_setpar_popup(I;

panei create item(panel,PANEL BUTTON,
?ANEL LABEL X, -
?A.NEL=LABEL=Y,

ATT R = ROW (1 + +) ,

12,
"history_file(.hlstory) :•,
mqpar.history_file,

ATTR COL (0),

A:'B.=ROW (1++),
?ANE.L LABEL :MAGE,panel but:on_imaqe(panel,"Debuq",0,0),
?ANEL-NOTIFY PROC, sw_debuy,
O); - -

~anel create item(panel,PANEL BUTTON,
?~~EL_LABEL_X, - ATTR_COL(O),
?ANEL LABEL Y, ATTR ROW(!.d),
?ANEL-LABEL-IMAGE,panel :::>utton imaqe(panel,"9ack irnaqe",0,0),
?ANEL=NOTIFY_?ROC, - sw=host_back_~maqe,

l 2o -~

0);

~anel create item(panel,PANEL BUTTON,
?ANEL_LABEL_X, - ATTR_COL(O),
?ANEL LABEL Y, ATTR ROW(1++),
PANEL-LABEL-IMAGE,panel_button_imaqe(panel,"Set par•,0,0),
PANEL=NOTIFY_PROC, sw_setpar,
0);

panel create item(panel, PANEL_BUTTON,
PANEL LABEL x, ATTR_COL(O),
PANEL-LABEL-Y, ATTR ROW(i++),
PANEL-LABEL-IMAGE,panel button image(panel,•com<file•,4,0),
PANEL-NOTIFY PROC, - sw-read commandfile,
0); - - - -

panel create 1tem(panel, PANEL_BUTTON,
PANEL LABEL x, ATTR_COL(O),
PANEL-LABEL-Y, ATTR ROW(1++),
PANEL-LABEL-IMAGE,panel button image(panel,•Load,Rand•,4,0),
?ANEL-NOTIFY PROC, - sw-load z values,
0); - - - - -

panel create 1tem(panel, PANEL_BUTTON,
PANEL LABEL x, ATTR_COL(O).
PANEL-LABEL-Y, ATTR ROW(i++),
PANEL-LABEL-IMAGE,panel button 1maqe(panel,•Oump z single(.data)•,4,0),
PANEL=NOTIFY_PROC, - sw=dump_data,
0};

panel create 1tem(panel, PANEL_BUTTON,
?ANEL LABEL x, ATTR_COL(O),
PANEL-LABEL-Y, ATTR ROW(1++),
PANEL-LABEL-IMAGE,panel button 1maqe(panel,•Oump disc sinqle(.pr)•,4,0),
PANEL-NOTIFY PROC, - sw-dump disc,
0); - - - -

panel create item(panel, PANEL_BUTTON,
?ANEL LABEL x, ATTR COL (0),

ATTR-ROW(1++),
button_image(panel,•surface•,4,0),

SURFACE,

l?ANEL=LABEL=Y,
PANEL LABEL IMAGE,panel
?ANEL=CLIENT_DATA,
l?ANEL_NOTIFY_PROC,
0);

sw_button,

panel c=eate_item(panel, PANEL_BUTTON,
?ANEL_LABEL_X, ATTR_COL(O),
PANEL LABEL Y,
l?ANEL=LABEL=IMAGE,panel
?.r..NEL NOTIFY l?ROC,
0); - -

i~t sw_create setpar_popup()
I

int i•C,sw_done{l;

ATT R aow (1 + +) ,
button_image(panel,"Quit•,4,0),

sw_quit,

setpar_frame• window_create(base_frame, FRAME,
NIN_X, U_WIN_WIDTH,
WIN'!, U WINY,
~RAME_DONE_?ROC, sw_done,

IZ.O-lo

0);

setpar_panel• window_create(setpar frame, PANEL,0);

msg item• panel create item(setpar panel, PANEL MESSAGE,
-PANEL ITEM x; - - ATTR COL(lO),

PANEL-ITEM-Y, ATTR-ROW(i++),
PANEL-LABEL STRING, •user interface parameters•,
0); - -

/*CAREFUL in initializing panel value: see assoc_table •/

panel create item(setpar panel,
PANEL ITEM x, -
PANEL-ITEM-Y,
PANEL-VALUE,
PANEL-DISPLAY LEVEL,
PANEL-LABEL STRING,
PANEL-CHOICE STRINGS,
PANEL-CLIENT-DATA,
O); - -

panel create item(setpar panel,
PANEL ITEM x, -
PANEL-ITEM-Y,
PANEL-VALUE,
PANEL-DISPLAY LEVEL,
PANEL-LABEL STRING,
PANEL-CHOICE STRINGS,
PANEL-CLIENT-DATA,
0): - -

panel create item(setpar panel,
PANEL ITEM x, -
PANEL-ITEM-Y,
PANEL=VALUE,
PANEL DISPLAY LEVEL,
PANEL-LABEL STRING,
PANEL=CHOICE_STRINGS,
PANEL CLIENT DATA,
0); - -

panel create item(setpar panel,
PA.~EL ITEM x, -
PANEL=ITEM=Y,
i?ANEL VALUE,
PANEL-DISPLAY LEVEL,
?ANEL=LABEL_STRING,
PANEL CHOICE STRINGS,
i?ANEL-CLIENT-DATA,
0); - -

panel create item(setpar panel,
PANEL ITEM X, -
PANEL):TEM=Y,
PANEL_VALUE,
PANEL_DISPLAY ~EVEL,
PANEL_LABEL_S7RING,
PANEL CHOICE STRINGS,
PANEL-CLIENT-JATA,
0); - -

panel create item(setpar panel,
?ANEL ITEM X, -
?ANEL=.i:TEM=':.',
PANEL_VALUE,
?ANEL DISPLAY LEVEL,
?A.~EL_LABEL_STR:NG,

PANEL CYCLE,
- ATTR COL (0),

ATTR-ROW(i++),
mgpar.history,
PANEL CURRENT,
•history:•,
•No•,•Yes•,o,

(caddr_t) (sw_par.history_assocp),0,

PANEL CYCLE,
- ATTR COL(O),

ATTR-ROW(l++),
mgpar.film,
PANEL CURRENT,
•film:•,
•No•,•Yes•,o,

(caddr_t) (sw_par.film_assocp),O,

PANEL CYC:.E,
- ATTR COL(0),

ATTR=ROW(l++),
mgpar.zoom,
PANEL_CURRENT,
•zoom:•,
"So•,•Yes",0,

(caddr_tl (sw_par.zoom_assocpJ ,0,

PANEL CYCLE,
- ATTR CC:..i0l,

ATTR=ROW (i++),
mqpar.lp method,
PANEL_CURRENT,
• lp method:•,
•table•,•const",•wojtek•,•christof•,o,

(caddr_t) (sw_par.lp_method_assocp),0,

PANEL CYCLE,
- ATTR_COL(0),

ATTR_ROW(i++),
~qpar.down_method,
?ANEL_CURRE.NT,
"down_rnethod: ",
"simple","star","star_disc•,o,

(caddr_t l (sw _par. down_method_assocp), 0,

?ANEL_CYCLE,
ATTR_ COL (0),
ATTR_~OW(i++),
rnqpar. nlay,
PANEL_CURRENT,
"nlay:",

\ lo - \\

PANEL_CHCICE_ST~:SGS,
PA.NEL_CLIENT_DATA,
0);

panel_create_item(setpar_panel,
?ANEL ITEM X,
PANEL-ITEH-Y,
PANEL=VALUE,
PANEL DISPLAY LEVEL,
PANEL-LABEL STRING,
PANEL=CHOICE_STRINGS,
PANEL CLIENT DATA,
0); - -

panel_create_item(setpar_panel,
PANEL ITEM X,
PANEL-ITEM-Y,
PANEL=VALUE,
PANEL DISPLAY LEVEL,
PANEL-LABEL STRING,
PANEL=CHOICE_STRINGS,
PANEL CLIENT DATA,
0); - -

panel create item.(setpar panel,
PANEL ITEM x, -
PANEL-!TEM-Y,
PANEL-VALUE,
PANEL-DISPLAY LEVEL,
PANEL-LABEL STRING,
PANEL=CHOICE_STRINGS,
PANEL CLIENT DATA,
0); - -

panel create item.(setpar panel,
PANEL ITEM x, -
PANEL-!TEM-Y,
PANEL=VALUE,
P.a.NEL DISPLAY LEVEL,
PANEL-LABEL STRING,
PANEL=CHOICE_STRINGS,
PANEL_CLIENT_DATA,
0);

window fit(setpar panel);
window=fit(setpar=frame);

int sw_setpar ()

"0","l", "2","3","4","5","6",0,
(caddr_tl (sw_par.nlay_assocpl ,0,

?ANEL_CYCLE,
ATTR_COL(O),
ATTR_ROW (i++I,
mQpar.naa,
PANEL_CURRENT,
•naa:•,

•o•,•1•,•2•,•J•,•4•,•s•,•6•,•1•,•a•,•9•,•10•,o,
(caddr_tl (sw_par.naa_assocp),O,

PANEL_CYCLE,
ATTR COL(O),
ATTR=ROW(i++),
mqpar.na,
PANEL_CURRENT,
11 na:•,

•o•,•1•,•2•,•3•,•4•,•s•,•6•,•1•,•s•,•9•,•10•,o,
(caddr_t) (sw_par.na_assocp),O,

PANEL CYCLE,
- ATTR COL (0),

ATTR-ROW(i++),
mqpar.nb,
PANEL CURRENT,
"nb:•:-

·o•,•1•,•2•,•3•,•4•,•s•,·6•,•1•,•s•.•9•,•10•,o,
(caddr_t) (sw_par.nb_assocp),O,

PANEL_CYCLE,
ATTR COL (0) ,

ATTR=ROW(i++),
mqpar .nc,
PANEL_CURRENT,
•nc:•,

·o•,"1•,•2•,•3•,•4•,"s•,•6•,•1•,•a•,"9",•10•,o,
(caddr_t) (sw_par.nc_assocp) ,0,

window_set(setpar_frame, WIN_SHOW, TRUE,O);

:nt sw_done(frame) Frame frame;

Panel item item;
int index, ••assocp;

if(frame •• setpar frame)
(-

panel each item(secpar panel, item)
index•{int)panel_Qet_value(it~~I;

if(item !• msQ item)

assocp • (:~t •*)par.el_Qet(item,PANEL_CL:ENT_DATA,01;
•(assocp[Oi)• •(assocp(l]+index);

panel_end_each

l ~o - \ 2

;i::~~~~ti"'il~;~~~

window_set(frame, WIN_SHOW, fALSE,O);

sw_value(item,value,event) Pane1_1tem item;
int value;
Event event;
{

DATA_TYPE •dp;

dp• (DATA TYPE •)panel get(item,PANEL CLIENT DATA,O);
•dp• ((DATA_TYPE)value)/MILLE; - -

sw int value(item,value,event) Panel_item item;
inc vaTue:
Event event;

int •ip;

ip• (int •)panel get(item,PANEL CLIENT DATA,0);
• ip• value; - - -

int sw_load_z_values()
{

strcpy(mgpar.z file, panel get value(fname item));
if(mgpar.history)sw history(•l~); -
load_z_values(); -

i~t sw_dump_data()

strcpy(mgpar.z out file, panel get value(out fname item));
if(mqpar.history)sw history(•ds•);- - -
dump_data(); -

inc sw_dump_disc()

scrcpy(mQpar.disc ouc file, panel Qet value(disc out fnaroe item));
if(mgpar.history)sw history(•es•); - - - -
dump_disc(LAY-1,mgpar.zoom);

:.n::. sw_quit ()

if(mQpar.history)sw hiscory(•x•);
T command to nodes(QUIT);
window_destroy{base_frame);

int sw_read_commandf:le()

scrcpy(mqpar.cmd file, ~anel_qet_value(c~d ~narne_i:em));
read_commandfile();

~n::. sw_put_colmap()

int i;
Pixwin •pw_p;

1•:,2,3• ~ed,Qreen,blue;O•white;25S•black;4-254 Qray•/
i • 256;
while (i--l I

colmap(Ol [11 • colmap(l) [ii • colmap[2) [ll • 1;
I
co lmap (O I { l l •O ;
col:nap(l) (l)•O ;
colmap(21 (1)•255
colmap[O) (21•0;
colmap(l) (2)•122
colmap[2J (2]•122
colmap(OJ (3) •O ;
colmap[ll {3]•255
colmap(21 (3 I •O ;
colmap(OJ (4]•122
colmap(ll (4)•255
colmap (21 (4 J •O ;
colmap{OJ (5)•255
colmap{ll {51•255
colmap{2] {5)•0 ;
colmap{OJ{6)•255
colmap{ll {6)•122
colmap{2J {6)•0;
colmap{OI [7)•255
colmap{ll (7J•O ;
colmap(2I (7)•0 ;
colmap[OJ (8)•122
colmap[ll {8)•0 ;
colmap(2) (8)•122
colmap(OJ (9)•255
colmap{ll {9]•255
colmap{2J (9]• 255;

pw setcmsname(pw,•colmap");
pw-putcolormap(pw,0,256,colmap(OJ,colmap{l],colmap(2]);
pw=p • (Pixwin •)window_qet(base_frame,WIN_PIXWIN);
pw setcrnsname(pw p,"colmap");
pw=putcolormap(pw_p,0,256,colmap[OJ,colmap[l],colmap(2]l;

pw p • (Pixwin •)window qet(panel,WIN PIXWIN);
pw-setcmsname(pw p,"=olmap•); -
pw=putcolormap(pw_p,C,256,colmap[OJ,colmap[l),colreap[2]l;

sw_:nso(mso) char •msQ;

pw_text(pw,10,LINE(l),P!X_SRC,NULL,mso);

sw_button(item,event) Panel item :tern;
£vent event;

int mq f!aq;
mq_flao•(int)panel_oet(::em,PANEL_CL!ENT_DATA,O);

if (rnopar. ldl I
:f{mqpar.historyJsw_history{Nz");
fr::Q (mQ_flaQ);

sw_refresh(xC,y0,dx,dy) int x0,y0,dx,dy;

pw lock(pw,,rect);
pw-write(pw,xO,yO,dx,dy,?!X COLOR(l0) I MY_e~X,NULL,0,0);
pw=reset(pw); -

sw plot(lay,mq flaq,zoom,str) int lay,mq_flaq,zoom;
char •str; -
tdefine YEL (PIX COLOR(S) lMY PIX)
tdefine RED (PIX=COLOR(7) IMY=PIX)
{

NEURON •this,•first;
short pix,o,s1,sj,i,j,1nx,1ny,col,nl,nr,n,nn,tnpo,x,y;
DATA_TYPE th,mul;

si• (zoom)? PIX: (PIX•((l<<lay)+ 2•lay));
pix• (zoom)? (STEP(lay)•PIXX) : PIX;
nl•NEU IN LAY(lay);
nr•NEU-IN-ROW(lay);
pw_text(pw,10,LINE(l),PIX_SRC,NULL,str);

switch(mQ flaq) {
case LINE-PROC:

nn•NEU IN ROW(lay);
n•nn-1; -
tnpo•2•n +l;
this•O;

/• (l«lay) +(lay-l)+lay;•/

sj•20;
sw_refresh(si,sj,nr•pix,nr•pix);
pw lock(pw,,rect);
/••••••••••••••alternate vert. horiz •••• last vertical••••••••/
y•sj;
j•n;
while (j--) {

x•si+(pix-1);
i•n;
while (1--) !

if(Qett(bt))pw_write(pw,x,y,l,pix,RED,NULL,0,0);
X +•pix;
this++;

y +• (pix-1 l;
x•s1;
i•nn;
while (1--) {

if(Qett(bt))pw_wr:te(pw,x,y,pix,l,RED,NULL,0,0);
X ,..•pix;
this++;

y +-+;

x•s1+ (plx-1);
!. •n;
whlle(i--l!

if(qett(btl)pw_wr:te(pw,x,y,l,pix,RED,NULL,0,0);
X -•pix;
this..-..-;

pw_reset (pw);
break;

case SURFACE:

120- IS

sj-420;
~~l•(mqpar.mul•2SS)/mqpar.max_h;
pw_lock(pw,&rect);
o-nl;
first•O;
while(o--)(

th1s•f1rst+o;
col•(qett (z) •mul+l28);
i!(col<lO)col•lO;
else 1f(col>254)col•254;
1• (olnr)*p1x+s1;
j• (o/nr)*pix+sj;
pw_wr1te(pw,1,j,p1x,p1x,eIX_COLOR((BYTE)col)IM'!_PIX,NULL,O,O);

pw reset (pw);
break;

int dump_disc(lay,zoom) int lay,zoom;
(

/*dumps surface values as printable numbers*/

static int serialn•O;
char str(MAX STRLENJ;
int pix,si,sj,nr;

si• (zoom)? PIX : (PIX* ((l<<lay) + 2*lay));
pix• (zoom)? (STEP(lay)*PIXX) : PIX;
nr•NEU_IN_ROW(lay);

/* (l<<lay) + (lay-1) +lay;*/

sprintf(str,•ls Id ld.pr•,mgpar.d1sc out file,serialn,NEU IN ROW(lay));
dump 1maoe(si,sj,pix•nr,pix•nr,str);- - - -
serialn++;

int sw_header(mg_flag) int 11\Q_flaq;
(

char str(MAX_STRL£N);

switch(mq flaq) (
case SURFACE:

sprintf(str,"\s","\nSURFACE RECONST~UCT!ON
break;

sw_mso(str);

int sw_imaqe_show(imq_pr) struct pixrect •imo_pr;
{

");

pw_write(pw,10,SOO,imq_pr->pr_size.x,1mq_pr->pr_s1ze.y,eIX_SRC,imq_pr,0,0);

int sw_show_colors(x,y) int x,y;
{

/* quick and dirty*/

pw write(pw,x,y,20,20, PIX COLOR(6) !MY ?IX,NULL,0,0);
pw -write (pw, x+20, y, 20, 20, PIX-COLOR (5) i MY-?IX, NULL, 0, 0);
pw -write (pw, x+40, y, 20, 20, PIX-COLCR (4) I MY-P!X, NULL, 0, 0);
pw-write(pw,x,y-20,20,20, ?IX COLOR(7)1MY ?IX,NULL,0,0);
pw-write(pw,x+20,y-20,20,20,?IX-COLOR(9) 1MY-PIX,NUL:,O,O);
pw -write (pw, Xt-40, y-20, 20, 20, PIX-COLOR (3) I MY -p IX, NULL, 0, 0);
~w-write{pw,x,y-40,20,20, P!X-COLOR(B) 1~-P!X,NULL,0,0);
pw-write(pw,x+20,y-40,20,20,PIX-COLOR(ll IMY-PIX,NU~L,O,OJ;
pw=write (pw,xt-40, y-40, 20, 20, ?IX=COLOR (2) I MY=?IX, NUL:., 0, 0);

::::$'3!"Jl!Jf8n·sssi!"!"li"•···,··IS

~nt sw_debuq() /*retrieves messaqes from :~e nodes•/

int dest, •ptoi;
1nt src, type• 123;
int n;

T_command_to nodes(DEBUG);

for(n•0;n<NODES;n++) (
src • DONTCARE;
exread(fromnodes, COMM SIZE, ,src, ,type);
ptoi•(lnt *)fromnodes;

int sw_host_back_imaoe()
I

host back image();
sw_mso(•image received ••• \n•);

lnt read commandfile() /• interprets commands from file.com */
fdefine GET(type,variable) (fqets(cmd,HAX_STRLEN, comf);sscanf(cmd,•\type •,,mopar.varia
ble);)
I

FILE *com!;
char cmd[HAX STRLEN);
int lay; -

lf((comf • fopen(mgpar.cmd file,•r•))••NULL)(
ERR(l00); -
return 0;

/*MSG*/ sw mso{•Readino commands from file.com\n•);
while(fqets(cmd,MAX STRLEN,comf) !• NULL) I

switch(cmd[O))(
case 'l':

sscanf(,cmd[2),•\s•,mqpar.z_file);
load z values();
break;-

case 'p':
sscanf(,cmd[2],"\s•,mqpar.pr file);
/•change dimensions appropriately
dwnp_image(?,?,?,?,mq_par.pr_flle);*/

break;
case 'c':

GET(d,lp_method);
GET(d,down_method);
GET(d,nlay);
GET (d, naa);
GET(d,na);
GET(d,nb);
GET(d,nc);
GET (d, ran);
GET (d, history);
GET (d, film);
GET(d,zoom);
GET (f, mull ;
GET(f,beta);
GET (f, noise);
GET (f, dh);
GET (f, al);

\ lo - 11

a (lay);

C (lay);

GET(f,a2);
GET(f,aJ);
GET(f,a4);
GET (f, ail;
GET(f,ru);
GET(f,rd);
break;

case 'z':
1f(lll(Jpar.ld) fmo(SURFACE);
break;

case 'd':
sscanf(,cmd[2J,•ts•,mopar.z out file);
1f(cmd[l)••'s')dump data(IAY-1);
else 1f(cmd[l)••'c')for(lay•IAY-mopar.nlay;lay<IAY;lay++)dump_dat

break;
case 'e':

sscanf(,cmd(2),•ts•,mQPar.disc out file);
if(cmd(l)••'s')dUJIIP disc(IAY-1);
else 1f(cmd[ll••'c')for(lay•IAY-mQPar.nlay;lay<IAY;lay++)dump_d1s

break;
case 'x':

fclose(comf);
exit(l);
break;

default:
break;

fclose (comf);
/*MSG*/ sw_mso(•Back to sunview user interface! \n•);

int sw history(str) char •str;
fdefin; PUT(type,variable) fprintf(fp,•\n\type variable•,mQPar.variable)
{

FILE *fp;
short save;
static int serialn•O;
fp•fopen(mopar.history_file,•a•);
switch(str[O)){
case 'z':

/*append to save previous history*/

fprintf(fp,•\nc (mopar values)•);
PUT(d,lp method);
PUT(d,down method);
PUT(d,nlay);
PUT (d, naa);
PUT(d,na);
PUT(d,nb);
PUT(d,nc);
PUT(d,ran);
fprintf(fp,•\nld history•,O);/• PUT(d,history);*/
PUT (d, film);
PUT (d, zoom);
PUT(f,mul);
PUT(f,beta);
PUT(f,noise);
PUT(f,dh);
P!JT(f,all;
PUT (f ,a.2);
PUT (f, a3);
PUT (f,a4);
PUT (f, ai);
PUT (f, ru);

::;:::)..~~~"-~~

PUT (f, rd);
fprint.f{fp,"\nz
breaic;

case 'l' :

(multiQr:d surface rec.)");

fprlnt.f(fp,"\nl \s •,mQpar.z_file);
brealc;

case 'd':
fpr1nt.f(fp,"\nnd\c \s \d •,str(lJ,mQpar.z_out_f1le, serialn);
serialn++;
brealc;

case 'e':
fprint.f(fp,•\nd\c \s •,st.r(l),mopar.disc_out_file);
brealc;

case 'x':
fprintf(fp,•\nx (the end)");
break;

fclose (fp);

int sw vis feedback(lay,mQ flaQ,strl int lay,mQ_flao;
char •str;- -
/*visual feedback: quick,dirty*/
I

int si,sj,i,j,o,pix,nr,nl;
DATA TYPE *pt.odt;
int dt,mul;
int maxi,maxj;

si• (mcwar.zoom}? PIX: (PIX*((l«lay}+ 2*lay));
pix• (mQpar.zoom)? {2*STEP(lay)*PIXX} PIX; /* 2x for 65X65 imaoes*/
nl•NEU IN LAY(lay);
nr•NEU=IN=ROW(lay);

pw_text(pw,10,LINE{l),PIX_SRC,NULL,str);

ptodt. • (DATA TYPE *)z;
s :i•20; -
mul•(int.) { (mQpar.:nul*255.0) /mQpar.max_h);

maxi•si+nr•pix;
maxj•sj•nr•pix;
pw batch on(pw);
pw-lock{pw,,rect.);
for(j•sj;j<maxj;j +- pix) {

for(i•si;i<maxi;i +• pix) {
dt• (int) ((*pt.odt++l •mull;
1 f (dt<ll) dt• 11;
else if(dt>253)dt• 253;
pw write(pw, 1., j,pix,pix,PIX_COLOR((BYTE)dt) !MY_PIX,NULL,0,0);

pw_reset (pw);
pw_batch_off(pw);

PARALLEL SURFACE RECONSTRUCTION (node program)
nmg.c

···•I
•~~Q.:::: proQram tor ~u:~:qrid syrfac~ reconstruction •/

1• node proQram (restricted vers~on) •/
1• written by Roberto 3attit1, ~eb 1988 •/
1• uses Express communication environment (Parasoft) •/

1••··•·1
•~::elude "mQ.h"

struct nodenv env;

DA:A TYPE node z(NOOE IOI (NODE IO);
:A:A:TYPE •ptodt; - -
c:'lar •ptoc;
1 nt •ptoi;
int coord(2);

MG~AR mqpar • !NIT_MGPAR;

OATA_TYPE lp_table[LP_TABLE_SIZE);

NEURON neuron(NOOE NEU); /* memory containinq all neurons •/
NEURON* node layer(LAY); /* entrance point in each layer for OWNED+ BORDER*/
NEURON• layer[LAYJ; /* entrance point in each layerfor OWNED pixels•/
NEURON initial_neu • INITIAL_NEU;

NEURON lp(NOOE LPJ;
NEURON* lp lay[LAYJ;
NEURON* node_lp_lay[LAYJ;

/•entrance point for OWNED discontinuities*/
/*... for OWNED+ BORDER */

fdefine VERT 1
fdefine HORIZ 0

int nnode,snode,wnode,enode; /*north,south,west,east•/
char icomm(COMM SIZE); /*input communication array*/
char ocomm(COMM=SIZE); /*output communication array*/

main()
I

!. nt n, i , j , k;
int bytes for each;
int :ype ~ 123, dest;
int nprocs (2 I ;
int perbc(2I;
c~ar •ibuf, •obuf;

t; ~ ?ROFI!..E

:::prof_on();

/• Read system parameters, number of nodes etc .•.••• */
exparam (&env);

exQr:dsplit(env.nprocs,2,nprocs);
exQrid1n1t (2, nprocs);

perbc[C]=perbc[lj•O;
exqridbc (perbc);
excridcoo.rd (env·.pioc::'JITI, coord);
f•NN•/
~or {n•O; ::<env .:-.procs; n++) i

if(env.procnum •• n) {
pto1•{1nt •)ocorr.rn;
•pto1+• • coord[O];

,21-1

•ptoi++ • coord(~I;
dest • HOST;
exwrite(ocomm, COMM_SIZE, &dest, &type>;

i
t•NN•/

nnode • exQridnode(env.procnum, VERT, +l);
snode • exQridnode(env.procnum, VERT, -1);
wnode • exQridnode(env.procnum, HORIZ, -1);
enode • exQridnode(env.procnum, HORIZ, +l);

node_sew_pyramid();

server();
ti! PROFILE

/*server for host: wait and interpret commands•/

tendif

cpro! off();
cprofelt(•cprof.out");

exit(O);

int node sew pyramid() t• (xy)•(OO) for the top-left OWNED point•/
/* lay is the layer in the COMPLETE imaqe:lay•6•>65*65•/
/• hence hiqhest lay is 1 •/
/* NODE NEU IN LAY(lay) are pixels OWNED+ BORDER •/
tdefine-COARSEST 1
tdefine FINEST (LAY-1)
I

int i,j,l,o,x,y,n,nn,tnpo;
NEURON •p,•this,•pp,•pds,•ppds;
DATA_TYPE •ptodt;

1••••••••••••••••••••••••••••••init:ialize pyramid structure of ne~rons•/
:)•O;
for(l-COARSEST;l<LAY;l++} I

I

node layer(l]• &(neu=on(j]);
j +•-NODE_NEU_IN_LAY(l);

i• NODE NEU;
while(!=-, neuron(1] • initial_neu;

for(l•COARSEST;l<I.AY;l+•) {
p•node layer[l];
for(o•O;o<NODE_NEU_~N LAY(l);o++) {

this • p+o;
x• NODE PEYSX(o,l);
y• NODE=?~YSY(o,l};/*for macros•/

if(o !•(NODE_NEU_IN_LAY(l)-1)){
ce:t(~ext)•(this+l);

l /•next •1
/•next ~ill =e MODIFIED at the END•/
if(l !•(:: .. AY-:.l l {

J

pp•~ode :ayerflrlj;
ce:: (dQl ~ (pp•NODE_OffSET (x, y, l.+l));

(pp+NODE_OFFSET(x,y,1+1))->uO • th:s;

if (x ! • (~OCE :I•l)) {
ce:: (el - (t::.is+'!.l;
(:t.:s+l)->w • this;

\ 21 -2

/•down-up•/

/•east-west•/

Qett(sl • (th1s+NODE_NEU_IN_ROW(l)I;
(this+NODE_NEU_IN_ROW(l))->n • this;

for(l•COARSEST;l<LAY;l++I{
for(this•node_layer[l);this!•VOID;this•qett(next)l {

1f(Qett(n)) I

}

1f(Qett(n)->e) Qett(ne)• qett(n)->e; /*ne,nw,se,sw. */
if(qett(n)->w) oett(nw)• qett(n)->w;

1f (oett (s) l {
if(oett(s)->e) oett(se)• oett(s)->e;
if((Qett(S)->W)) Qett(SW) • Qett(S)->w;

if((oett(ne)),,(oett(sw)))qett(n_type) •IN_NEU;

for(l-COARSEST;l<LAY;l++) { /*pixels• borders 1n the COMPLETE imaqe*/
this•node layer[l]+NODE OFFSET(((coord[O)••O)? 0: NODE_II),O,l);
i•NODE IO; -
while (1--l {

oett(n type)•BO NEU;
this•oett(s);

this•node layer[l)+NOOE OFFSET(O, ((coord(l)••O)? NODE_II: 0),1);.
!•NODE ID; -
while ff--) {

qett(n type)•BO NEU;
this•q;tt(e); -

/•••••••••••••••••••••••••••initialize pyramid structure of connections•/
/•strategy: first connect disc. to neurons •••• */
j•O;
for(l•COARSEST;l<LAY;l++) {

node lp lay(ll• ,(lp[j));
j ·--NODE_LP_IN_LAY(l);

i• NODE_LP;
while(!--) lp[i] • initial_neu;

~or(l•COARSEST;l<LAY;l++) {
p•node layer(l);
pds•node lp lay[l];
nn•NODE_NEU=IN_ROW(l);
n•nn-1;
tnpo•2*n +l;
for(o•O;o<NODE_NEU_:N LAY(l);o+•) {

this - p+o; /*"this" points to "real" neurons•/
if(Qett (e)) (

ppds • pds +((o/nn)•tnpo +(olnn));
Qett(oe)•ppds;
ppds->ow•chis;
ppas->oe•this+l;
(this+l)->ow-ppds;

lf(Qett(s)l(

,u;
I

ppds • pds •(n• (o/nn) •tnpo •(o,nn)l;
Qett (OS)•ppds;
ppds->on•th1s;
ppds->os•th1s+r.n;
(th1s+nn)->on•ppds;

/* •.• then connect discontinuities amono themselves•/
for(l-COARSEST;l<LAY;l++) {

pds•node lp lay(l);
nn•NODE_NEU=IN_ROW(l);
n•nn-1;
tnpo•2*n+l;
for(o•O;o<NOOE LP IN LAY(ll;o++){

this --pds+o; /* points to discontinuity*/
if(o !•(NODE LP IN LAY(l)-l)l I

gett(nextl~(this+l);

1f (gett (oe)) I

else

if(getoe(el) {
getc (el -t.his+l;
(this+l)->w - this;

I
if (getoe {sl l I

gett(s)•this+tnpo;
(this+tnpo)->n•this;
gett(se)•this+nn;
(this+nnl->nw-this;
gett(sw)•this+n;
(this+n)->ne•this;

I
if (getoe {n)) {

gett(n)•this-tnpo;
(this-tnpo)->s•th1s;
gett(ne)-this-n;
{th1s-n)->sw•th1s;
qett(nw)•this-nn;
(this-nn)->se•th1s;

1f (getos (el) {
qet.t(e)•this+l;
(t.his+l)->w•this;

1 f (Qetos (s) l i
qett(s)•this+t.npo;
(this•t.npo)->n • this;

if((gett(n))&&(cett.(s))&&(gett.(e))&&(Qett(w))IQett(n_type) •IN NE

t•••••••••••connect discontinuities in dif!erent :aye~s•••••••••••••••••••••/
for (l•COA;l.SEST; l< (LAY-il; l·+) {

for(th:s•node_lp_:ay[l:;:his!sVOID;this•Qett(next)) !
/•vert disc•/
if(oet.t: (oe)) j

p-Qet.oe(dO)->w; f•z neuron below*/
oett(dO)•pds•p->oe;
pds->uC •t ~is;
oet.t.(dl)•pds•p->ow;

pds->uO•t~is;
if,pp•p->nl I

Qett(d2l•pds•pp->oe;
lfipds->uO)pds->ul•this;
else pds->uO•this;
Qett(dJJ•pds•pp->ow;
if(pds->uO)pds->ul•this;
else pds->uO•thls;

I
1f (pp•p->s) I

Qett(d4)•pds•pp->oe;
if(pds->uO)pds->ul•thls;
else pds->uO•this;
oett(dS)•pds•pp->ow;
if(pds->uO)pds->ul•this;
else pds->uO•thls;

/*hori disc•/
else I

p•oetos(dO)->n; /*z neuron below*/
gett(dO)-pds•p->os;
pds->uO•this;
oett(dl)-pds-p->on;
pds->uO•this;
lf(pp•p->el{

}

gett(d2)•pds•pp->os;
lf(pds->uO)pds->ul•this;
else pds->uO•this;
Qett(dJ)•pds•pp->on;
1f(pds->uO)pds->ul•th1s;
else pds->uO•thls;

if (pp-p->w) {
gett(d4)•pds•pp->os;
1f(pds->uO)pds->ul•thls;
else pds->uO•this;
gett(dSl•pds•pp->on;
lf(pds->uO)pds->ul•this;
else pds->uO•this;

/*next ls MODIFIED: only OWNED pixels are connected, startinQ ~rom layer[l]*/
/*p point to the west, pp to the east and both go from north to south*/

/*next for value neurons*/
[or(l•COARSEST;l<LAY;l++) !

this•node layer[l];
layer[l)•qett{se);
p•layer[l);
pp•layer(l]+ NEU IN ROW(l-1) -1;
i•NEU IN ROW(:-1) -~;
while (1-:l I

pp->next • p->s;
p•p->s;
pp•pp->s;

pp->next• VOID;

/*next for discontinuity neurons•/
for{l•COARSEST;l<LAY;l++I (

this•node lp lay(lJ;
lp lay(l): Qett{se)->se;
p•lp lay(lJ;
pp•lp lay(l]+ NEU IN ROW(l-:l -2;
i•NEU=IN_ROW(l-l)--1;
while(i--){

pp->next • p->sw;
p•p->sw;
pp•pp->se;
pp->next • p->se;
p•p->se;
pp•pp->sw;

pp->next• VOID;

/•••••••••••••••••••••••••••adjust pointers to the initial data••••••••••••••••/
ptodt • (DATA TYPE •)node z;
for(this•layer[FINEST);this!•VOID;this•Qett(next)I{

gett(znoisy)• ptodt++;
I
for(l•FINEST-1;1>-COARSEST;l--){

for(this•layer(l];this!•VOID;this•gett(next)){
gett(znoisy) • getdO(znoisy);

int node_load_z_values() /•get patch of image from host*/
{

int 1,j,n;
int dest,type-123;

exread((char •)node_z,COMM SIZE, (char •10, (char •)O);

int node_back_z_values()
(

int n,i;
int dest,type•l23;
DATA_TY?E *ptodt,*ptosource;
NE~RON *this;

ptodt•(OATA TYPE •)ocomm;
fo=(this•layer(i'..AY-l];thls !• VOIO;this•Qett(nextll !

*ptodt++ • gett(z);

for(n•O;n<env.nprocs;n++) (

if{env.procnum -- n)
dest • HOST;
exwrite{ocornm, CCMM_SIZE, &dest, &type);

j I
j int ~ode_debuQ()
: !
I

! i r.t .. ,

int type - 123, dest;

~or(n•O;n<env.nprocs;n++){

int server ()

tf(env.procnu.m -- n)
ptol•(int •)ocomm;
•ptoi++ • 13;
•ptoi++ • 17;
dest • HOST;
exwrite(ocomm, COMM_SIZE, &dest, &type);

int command;
int type•l23,l;

for(;;){

f_add (i, :l, size)
:.:1t •!., •j;
int size;

exbroadcast(,command, HOST, 4, ALI.NODES, (int *)O, &type);
switch(command) (
case QUIT:

return (1);

break;
case FMG:

node_fmg();
break;

case LOAD IMAGE:
node_load_z_values();
break;

case BACK_IMAGE:
node back_z_values();
break;

case DEBUG:
node debug();
break;

default:
break;

+• • j;
:-et urn l;

••!
nt ~Q_init(mo_flao) int mq_flao;

int i;

switch (:nq_ ~ laol {
case SU~FAC£:

i•NODE_NEU;
while {1--) {

neuron (i]. z• • {neuron [i]. z:10isy);

/*ACH: znoisy may be VOID*/
i •NODE !..? ;
while(i--) {

12..I -1

lp [1 I • bt •O;
i
brealt;

I
fill_lp_table(mQpar.lp_method);

int step(lay,mQ_flaQ) int lay,mQ_flaQ;
(

exchanQe_borders(lay);

lp update(lay,mg flaQ);
mg=relax(lay,mg_flag);

int exchange_borders(lay) int lay;
fdefine LDZ (*ptodt++ • gett(z);)

·tdefine UDZ (Qett(z) • *ptodt++ ;)
tdefine LOB (*ptob++ • Qett(bt);)
fdefine UDB (Qett(bt) • *ptob++ ;)
(

BYTE •ptob;
DATA TYPE *ptodt;
NEURON *this, •p;
int num_bytes,i,nnr,type•l23;

/*load z•t
/*unload z•/

nnr•NODE NEU IN ROW(lay);
num_bytes•(nnr+2)*s1zeof(DATA_TYPE)+(2*nnr+l)•sizeof(BYTE);

/*n->s•/
ptodt•(DATA TYPE *)ocomm;
this•node_layer[lay]+(nnr-2)*nnr;/•start1ng point for loading comm. buffer•/

LDZ;
this•gett (n);
LDZ;
i•nnr-1;
while (1--) {

this•Qett(e);
LDZ;

this•gett(s);
LOZ;
this•gett(ow);
ptob•(BYTE *)ptodt;
LOB;
this•gett(ne);
I.DB;
i•nnr-1;
while (i--l {

this•gett(nw);
LOB;
this•Qett(sw);
:oe;

this-oett(se);
LDB;

exchanGe((char •)icomm, num bytes, &nnode, &type,
(char •)ocomm,nurn_bytes~&snode,&type);

ptodt•(DATA TYPE •)icomrn;
~his-node liyer(layj+nnr; f•startinQ point for unloading•/

\'2..l-8

.JDZ;
:h~s-qett (nl;

:.•nr:r-1;
while(i--) {

this•qett (el;
UDZ;

this-Qett(s);
~DZ;
this-gett(ow);
ptob•(BYTE •)ptodt;
UDB;
th1s•gett (ne);
UDB;
!.•nnr-1;
while (1--) {

this•gett (nw);
UDB;
th1s•gett(sw);
UDB;

this•gett(se);
UDB;

f•s->n*/
ptodt•(DATA TYPE *)ocomm;
this•node_layer[lay)+nnr;

LDZ;
th1s•gett(s);
LDZ;
i•nnr-1;
while (1--) {

this•gett (e);
LDZ;

this•qett(n);
LDZ;
this-qett(ow);
ptob•(BYTE *)ptodt;
LDB;
this•gett(se);
:.cs;
i•nnr-1;
while (1--) {

th1s•qett (sw);
LOB;
this•qett(nw);
LOB;

this•qett(ne);
:.os;

exchar.oe((char •) icomm,num_bytes,&snode,&type,
(char •)oco~m,n~~_bytes,&nnode ,&type);

ptodt•(DATA ~YPE •)icom.m;
:his•nocte ~ayer'.layl+(r.nr-2)•r.nr;

UDZ;
his•oett (sl;
DZ;
•:1nr-l;

while (1--) (
this•Qeet (el;
UDZ;

this•Qett(n);
UDZ;
th1s•Qett(ow);
ptob•(BYTE *)ptodt;
UOB;
th1s•Qett(se);
UDB;
1•nnr-l;
while (1--) (

this•Qett(sw);
UOB;
this•oett (nw);
UDB;

this•Qett(ne);
UOB;

/*e->w*/
ptodt•(OATA TYPE *)ocomm;
this•node_layer[l~yJ+l;

LOZ;
this•gett(e);
LOZ;
i•nnr-1;
while (1--) {

this•Qett(s);
LOZ;

th1s•gett(w);
LDZ;
this•gett(on);
ptob•(BYTE •)ptodt;
LDB;
th1s•qett(se);
LDB;
1•nnr-l;
while (1--) (

th1s•Qett(ne);
LD9;
this•gett(nw);
LDB;

th1s•gett(sw);
LDB;

exchanQe((char *)1comm, num_bytes, ,enode, ,type,
(char *)ocomm,num_bytes,,wnode,,type);

ptodt•(DATA TYPE *)icomm;
this-node layer[lay]+nnr-2;

UDZ;
th1s•Qett (e);
UDZ;
i•nnr-1;
while (i--) I

th1.s•Qett (S);

UDZ;

121-,0

tnis•oett (wl;

t:- J•Qett(on);
ptoo•(3~TE •)ptodt;
i.:DB;
t:-:!s•Qett (se);
~DB;
i•nnr-1;
while (1--) {

th1s-qett (ne);
:;oe;
th1s-qett (nw);
UDB;

this•oett(sw);
UDB;

/*w->e*/
ptodt•(DATA TYPE *)ocomm;
this•node_layer[lay)+nnr-2;

LOZ;
this•oett(w);
LOZ;
i•nnr-1;
while (1--) {

th1s•gett(s);
LOZ;

this•oett(e);
LDZ;
this•c;ett (on);
ptob•(BYTE •)ptodt;
LOB;
this•oett(sw);
LOB;
i•nnr-1;
while (i--) !

this•oett(nw);
LOB;
this•oett(ne);
LOB;

t:-:is•Qett (se);
LI)B;

exchanQe((char *) icomm, num bytes, &wnode, &type,
(char •)ocomm,num_bytes;&enode,&type);

ptodt•{DATA ~YPE *)icornrn;
this•~ode_layer(lay]+l;

~DZ;
::iis•qe'!:.t (w);
;JDZ;
:.=::n!"-1;
whLe{i--){

chis•c;iett (s);
UDZ;

is•c;iett(e);
Z;
:.s•:;ett: {or.);

\Lt-L\

ptob•(BYTE •)ptodt;
UCB;
::.his•qett (sw);
UDB;
~-nnr-l;
whEe(i--1{

this•qett(nw);
UDB;
this•qett(ne);
UDB;

I
this•qett(se);
UDB;

int node_fmg ()
(

/* basic multiqrid routine*/

short i,j,lay,mg flaq;
int type•l23; -

/*get mgpar from host*/
exbroadcast ((char *) (,mgpar), HOST, sizeof (MGPAR), ALI.NODES, (int *) 0, ,type);

mg flag•SURFACE;
mq=1n1t(mg_flag);

lay• (LAY-mgpar.nlay); /*coarsest layer

1-mgpar.naa;
while (1--) {

step(lay,mg_flag);

lp_update(lay,mg_flag);

for(lay +•l;lay<LAY;lay++){
mg_down(lay-1,mg_flag);
mq(lay,mg_flag);

int mg(lay,mg_flag) int lay,mg_flag;
{

int 1;

if(lay••(LAY-mgpar.nlayll (
step(lay,mg flag);

j/•coarsest layer•/­
else1

i-mqpar. na;
while (1--1 {

step(lay,mg_flag);

i•mgpar.nb;
if (!. ! •O I (

:ng up(lay);
while(i--)mq(lay-1,rnq ~!aq);
:nq_down(lay-1,:nq_f!ag);

!.•mqpar.nc;
while (1--) {

\2..t-11.

step(lay,mQ_flaQ);

lp_~pdate(lay,mQ_flaQ);

fdefine DOWN_STAR(val) pd• gett(dO); dlf • (Qett(vall - pd->val);
\

pd->va l +• dlf;
\

dlf *• . S;
\

pd->n->val +• dlf; pd->s->val +• dlf; pd->e->val +• dif; pd->w->val +• d
if;\

dlf *• • 5;
\

pd->ne->val +• dif; pd->nw->val +• dif; pd->se->val +• dif; pd->sw->val
+• dlf;
fdeflne DOWN SIMPLE(val) getdO(val) • gett(val);
int mg_down(lay,mg_flag) int lay,tnQ_flag; /* from lay (coarse) to lay+l (fine) grid*/
{

NEURON *this,*pd;
DA:'A_TYPE dif;

switch(mQ flag) {
case SURFACE:

switch(mgpar.down_method) {
case DOWN METHOD STAR:

for(thls~layer{lay);thls!•VOID;this-Qett(next)) {
if(Qett(n_type)••IN_NEU){

DOWN_STAR(z);

break;
case DOWN METHOD SIMPLE:

for(this~layer[lay);this!•VOID;this•gett(next)) {
if(Qett(n_type)••IN_NEU){

DOWN_SIMPLE (ZI;

break;
case DOWN_METHOD_STAR DISC:

break;

break;

int mg_up(lay,mg_flag) int lay,mg_flag; /• f~orn lay (fine) to lay-1 (coarse) grid*/
{

~EURON •this;

sw:. tch (mq_flaq) {
case SURFACE:

for (this•layer [lay-1 j ;this! •VOID; th.!.s•get t (next I) (

break;

if(gett(n_type)••IN_NE~) {
qett(z) - getdO(zJ;

l21 -\3

int. :nq_relax(lay,mq_flaq) int lay,mq_flaq;
; i

/•Gauss-Seidel relaxation

_hh;

'.IIEURON •this;
~ATA TYP~ :,step,hh,zb,b,b hh,one ov four b hh
char-str(MAX_STRLENI; - - - - -

step• (DATA TYPE) STEP(lay);
hh• step•step;
b-mqpar. beta;
b_hh • b*hh;

sw1tch(mQ flag) {
case SURFACE:

for(th1s•layer[lay];th1s!•VOID;this•gett(next)l I

break;

1f(gett(n_type)••IN_NEU){

zb•O.O;
1-0;
1f(geton(bt) !•l) {

1++;
zb +• getn(z);

I
1f(getos(bt)!•l}{

1++;
zb +• gets(z);

I
1f(getoe(bt) !•l) I

i++;
zb +- gete(z);

I
if(getow(bt} !•l) {

1++;
zb +• Qetw(z);

one ov four b hh • 1.0/((DATA TYPE)i+ b hh);
gett(Z) • (zb-+ b_hh • (*(Qett(znoisy))))•one_ov_four_b

spr1ntf(,(str[O]),"•••relaxed layer ,d ",lay);

fdef1ne FIND UP DOWN DISCOUNT(discount) \
- -{1f(Qett(ul))d1scount•((Qetul(bt))? rus: l.O)•((getuO(bt))? rus: 1.0); \

else discount•((getuO(btll? ru: 1.0);
1f(getd0(bt))d1scount •- rd; \
1f(getdl(bt))d1scount •- rd; \
if(getd2(bt))d1scount rds; \
if(qetd3(bt))d1scount •- eds; \
1f(qetd4(bt))d1scount •- rds; \
if(qetd5(bt))d1scount •• rds;)

tdefine FIND_UP DISCOUNT(d1scount) \
-!if(qett{ul)}discount•((Qetul(btll? rus: l.O)•((oetuO(bt))? rus: 1.0);
else d1scount•((Qetu0(bt))? ru: 1.0);}

i~t ~p_update{lay,mq_flaQ) int lay,mq_flaq;

NEURON •th!.s;
!.nt ir.dex,1;
DATA !~PE de,oneovhh;
DATA_TYPE ru,rd,rus,rds,discount;

ru ~ :nopar.ru;

/*reduction up or down •/

rd • mQpar. rd;
rus• sqrt (ru);
rds• sqrt (rd);
oneovhh• 1.0/ (OATA_TYPE) (STEP (lay) •STEP (lay));

if(lay<(LAY-!)) (
for(this•lp lay[lay);this!•VOID;this•Qett(next)) {

if(gett(n type)••IN NEU)!

else /*finest layer*/

if(gett(on))/*horizontal*/{
H_INDEX (index);
de• (geton(z) - Qetos(z));
de *•de;
de • -oneovhh;
FIND UP DOWN DISCOUNT(discount);
de•lp_table[index)*discount -de;

else /•vertical*/{
V INDEX (index) ;
de• (getoe(z) - getow(z));
de •-de;
de •-oneovhh;
FIND UP DOWN DISCOUNT(discount);
de•lp_table(index)*discount -de;

}
if(de<O.O)gett(bt)•l;
else Qett(bt)•O;

for(thls•lp lay(lay);this!•VOID;this•gett(next))I
if(Qett(n type)~•IN NEU){

if(gett(on))/*horizontal*/{
H_INDEX (index);
de• (geton(z) - getos(z));
de ••de;
de ••oneovhh;
FIND UP DISCOUNT(discount);
de•lp_table[index]•discount -de;

else /*vertical*/!
V INDEX (index);
d;• (getoe(z) - Qetow(z));
de ••de;
de •-oneovhh;
F!ND_UP_DISCOUNT(discount);
de•lp_table[index)*discount -de;

I
if(de<O.O)get~(bt)•l;
else Qett (bt) •O;

1••···•1 int ftll lp_table(lp_method) int lp_method;
!

DATA_TYPE price,price0,pricel,price2,price3,price4, inhi;
DATA_TYPE cl,cp,cw;
short i,n,ne,e,se,s,sw,w,nw;
short nlp,nup,ndown;

\'2..1-lS

I

!priceO;

l nh 1 • :nqpa r. al;
pricel•priceO*(mqpar.al);
price2•priceO•(mqpar.a2);
price3•pr:ce0*(mqpar.a3);
price4•pr:ce0*(mqpar.a4);
cl•pr~=e2;
cw•(pricel-price2);
cp•pr1ce2*(inhi-l.0);
if ((cw<O. 0) II (cp<O. 0));

for(i•O;i<LP TABLE SIZE;i++){
n•(i\2); -
ne• ((1»1) 12);
e•((1»2) 12);
se• ((1»3) 12);
s•((1»4) 12);
SW• ((1»5) 12);
w• ((1»6) 12);
nw• ((1»"7) 12);
swltch(lp method) I
case LP METHOD TABLE:

-nlp•n+ne+se+s+sw+nw;
swltch(nlp){
case 0

case 1

case 2

case 3

case 4

default

price-priceO;
break;

price-pricel;
break;

price-price2;
break;

price•price3;
break;

price•price4;
break;

price•INFINITY;
break;

lf(w)prlce •- inhi;
if(e)price •• lnh1;
break;

case LP_METHOD_CONST:
price •priceO;
break;

case LP_METHOO_WOJ'l'EK:
nup• nw+n+ne;

/•parallel lp excluded•/

/*price increase if parallel lp's•/

ndown•se+s+se;
if((nup••O)&&(ndown••O)) price•priceO;
else 1f((nup\2)••(ndown\2))price • ((nup\2)? (-pricel): pricel) +

else price•O.O;
break;

case LP_METHOD_CHR!STOF:
nup• nw+n+:1e;
:1down•se+s+se;
price• cl +cp•(e+w) +cw•((l-:1up)• (1-nup)+(l-ndown)•(l-ndown));
break;

lp_table(il•price;

