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Abstract

This thesis presents new algorithms for low and intermediate level computer vision.

The guiding ideas in the presented approach are those of hierarchical and adaptive
processing, concurrent computation, and supervised learning,.

Processing of the visual data at different resolutions is used not only to reduce
the amount of computation necessary to reach the fixed point, but also to produce a
more accurate estimation of the desired parameters. The presented adaptive multiple
scale technique is applied to the problem of motion field estimation. Different parts
of the image are analyzed at a resolution that is chosen in order to minimize the
error in the coefficients of the differential equations to be solved. Tests with video-
acquired images show that velocity estimation is more accurate over a wide range of
motion with respect to the homogeneous scheme. In some cases introduction of ezxplicit
discontinuities coupled to the continuous variables can be used to avoid propagation of
visual information from areas corresponding to objects with different physical and/or
kinematic properties.

The human visual system uses concurrent computation in order to process the vast
amount of visual data in “real-time.” Although with different technological constraints,
parallel computation can be used efficiently for computer vision. All the presented al-
gorithms have been implemented on medium grain distributed memory multicomputers
with a speed-up approximately proportional to the number of processors used. A simple
two-dimensional domain decomposition assigns regions of the multiresolution pyramid
to the different processors. The inter-processor communication needed during the so-
lution process is proportional to the linear dimension of the assigned domain, so that

efficiency is close to 100% if a large region is assigned to each processor.
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Finally, learning algorithms are shown to be a viable technique to engineer com-
puter vision systems for different applications starting from multiple-purpose modules.
In the last part of the thesis a well known optimization method (the Broyden-Fletcher-
Goldfarb-Shanno memoryless quasi-Newton method) is applied to simple classification
problems and shown to be superior to the “error back-propagation” algorithm for nu-

merical stability, automatic selection of parameters, and convergence properties.
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Introduction



Chapter 1

Introduction

1.1  “Leitmotif” of the Thesis

The main objective of this thesis has been that of studying efficient parallel distributed
algorithms for computer vision, in which many interconnected computational units
cooperate to reach the desired result. Engineering these computational systems consists
of tuning the mutual connections and the local updating rule to the different problems.
A guiding principle in this task is that of hierarchical organization (for example, images
are analyzed by units at different resolutions). The operations involved in low- and
intermediate-level vision can be compared to distillation processes, where information
is purified (from noise and irrelevant data) before being used by high level modules.

Biological analogies with our visual systems provided some of the motivation for
this work. Nonetheless, emphasis is always on efficiency and possible implementation
using available technology. In particular, all algorithms discussed here can be (and
have been) implemented on multicomputers with an efficiency close to 100%.

In the following sections I will briefly outline the contribution of this thesis for the

different problems considered.



1.2 Properly Coupled Discontinuities for Better Multi-

scale Vision

Multiscale methods with a new proposal for the coupling of the discontinuity detec-
tion elements (line processes) on different layers and for their incorporation into the
multiscale relaxation process have been applied to two different problems of low level
computer vision: piecewise smooth surface reconstruction and estimation of the motion
field.

First a fast multiscale scheme for reconstructing a piecewise smooth surface from
sparse and noisy data is proposed, in which line element detectors ( line processes ) at
different resolutions are coupled in a coherent way to a multiscale “smoothing” algo-
rithm (Gauss-Seidel relaxation) acting on the depth points. The suggested strategy is
based on the interaction of the line processes with a neighborhood of depth points and
line processes at various scales. In this way coarse-scale evidence guides detailed place-
ment of discontinuities at finer resolutions, while fine-scale results improve delineation
at coarser resolutions.

The approach has been tested on “Randomville” images (random collection of
quadrilateral structures in the image plane) with promising results. Performance of
the algorithm degrades gracefully when the sampling rate of the constraining data is
reduced to a small fraction (down to 10%) of the grid points at the finest scale. Com-
parison with reconstruction time required by the one scale algorithm shows a speed-up
of at least two orders of magnitude for 129x129 test images.

The second application has been for estimating the optical flow field (the projection
of the velocity field onto the image plane) from a temporal sequence of images. Intro-
duction of line processes is useful in order to avoid mixing velocity data from different
moving objects during the relaxation phases. Fusion of information about the presence
of zero-crossings (obtained after filtering the image with the Laplacian of a Gaussian
operator) and about the presence of big differences in nearby velocity values is used to
activate the line processes. The complete algorithm is based on an adaptivc multiscale
strategy, where the finest discretization grid is chosen locally using an estimation of the

reliability of the obtained optical flow, as will be described in the following section.



The algorithms have been implemented with high efficiency on a MIMD parallel
computer with distributed memory. A coarse grain domain decomposition is found to

be useful for this and other multiscale problems.

1.3 Error Estimation to Improve Optical Flow

Single scale approaches to the determination of the 2-D optical flow field from the time-
varying brightness pattern assume that the spatio-temporal discretization necessary to
solve the appropriate equation is adequate for representing the patterns and motions
in the scene. However, the choice of an appropriate spatial resolution is very difficult
because it is subject to conflicting, scene dependent, constraints.

In differential methods, for example, derivative estimation is more accurate for long
wavelength and slow motion with respect to the discretization step. On the contrary,
short wavelengths and fast motion are required in order to reduce the relative errors
caused by noise in the image acquisition and quantization process. Thus, the appropri-
ate discretization step depends heavily on the local image and motion characteristics.

Homogeneous multiscale approaches treating all scales on the same footing, reduce
the solution time with respect to single scale schemes, but they cannot avoid the inter-
ference that may be induced by conflicting information from different scales.

In this paper we propose a multiscale method for determining the 2-D optical flow,
where the discretization scale is chosen locally accordihg to an estimate of the error in
the velocity estimation.

Results for 129x129 pixel video acquired images show that this method provides
more accurate optical flow estimation than conventional algorithms (for example [56]),

while maintaining the typical multiscale speed-up.

1.4 Optimization Techniques to Teach Multilayer Per-

ceptrons

Learning is an essential part of our visual system. It is also clear that the availability

of convenient ways to teach or adapt computer vision systems to different applications



or different situations would open the road to cheaper and faster system devclopment.
It is not unrealistic to think about future off-the-shelf general purpose vision machines,
or visual modules that can be assembled according to their use and “programmed” in
some automatic way. After all, for example it does not take long for a human to learn
a different alphabet set!.

This work is concerned with the study of fast algorithms for teaching multilayer
perceptrons. The considered “retina” is a simple one (a one-dimensional set of units)
and the presented “images” have little to do with real images. I selected these test
problems because I was concerned about comparing performance of the suggested al-
gorithm with other approaches. It is also important to stress that the most efficient
approach is probably not that of presenting images to a tabula rasa neural network
and hoping that it will solve all your problems. All the available tools have to be used
(for distillation of the essential information?) before applying learning to determine
only a limited set (say of less than one thousand) of critical parameters. The results
of the tests show that this is within the reach of widely available computing resources
(microprocessor-based workstations with optional accelerator boards).

Standard back-propagation learning for feedforward neural networks is known to
have slow convergence properties. Furthermore, no general prescription is given for
selecting the appropriate learning rate, so success is dependent on a trial and error pro-
cess. In this work a well known optimization technique (the Broyden- Fleicher-Goldfarb-
Shanno memoryless quasi-Newton method) is employed to speed up convergence and to
select parameters. The strict locality requirement is relaxed but parallelism of compu-
tation is maintained, allowing efficient use of concurrent computation. While requiring
only limited changes to the back-propagation algorithm, this method yields a speed-up
from one to two orders of magnitude for medium-size networks.

Comparisons are done with back-propagation using optimal parameters and with
a version of it employing learning rate adaptation. This last method is in itself in-
teresting, because it converges in a number of iterations close to that of optimized

back-propagation, with no need for paramecter optimization.

'Except if he is learning Chinese...
2Essential information is for example contained in zero-crossings, Canny edges, diffcrent momenta

of the gray level distribution, etc.
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Chapter 2

3D Surface Reconstruction



2.1 Introduction: Cooperation of Smoothing and Dis-

continuity Detection

Many processes that are based on “visual” sensors as their main source of information
use a preliminary step of segmentation or piecewise smooth surface reconstruction (in
the first case the data to be segmented are intensity values, in the second range data
or depth values).

The smoothing operation filters out irrelevant information in the data (noise derived
from the image formation and acquisition process) and spreads information from the
sampled points to the nearby regions. During this process the explicit introduction of
discontinuities (henceforth “line processes™) is necessary both to avoid washing away
important information under the smoothness requirement and to provide a primitive
perceptual organization of the visual input into different elements loosely related to the
human notion of parts or objects, to be used by the high-level processing stages. A
partial list of references includes [3,8,9,72,74,13,75,76,79].

Neural processing in the brain and practical implementations (see, for example,
[11,68,62]) show that the early vision steps can be done in parallel. Many computational
units (neurons or processors) cooperate to reach the desired solution with a speed-up
roughly proportional to their number (at least for regular, local, “trivially parallel”
problems [87]).

Recently a multiscale method has been proposed for solving the partial differential
equations associated with the smoothing operation [78]. This method can be imple-
mented in a parallel architecture with processors connected in a pyramidal structure
[66] or in a two-dimensional grid [2].

Up to now it is not clear how to combine in an effective way the multiscale surface
reconstruction process with the discontinuity detection process. This study addresses
this problem and suggests a simple scheme that allows cooperation of the two monicnts
without disrupting the regular flow of multigrid computation on the different scales.

Discussion of this central point is preceded by a brief sumimary of the multigrid
method used for solving the PDEs derived from regularization, mainly to establish the

terminology and the context.



2.2 Multigrid Method for Regularization

The goal of the surface reconstruction step is to recover the properties of physical
surfaces from an array of noisy range data.

In general, the class of admissible solutions is restricted by introducing a priori
knowledge. In the regularization method the desired or plausible properties of the
solution are enforced by transforming the reconstruction problem into the minimization
of a functional.

For example, the energy functional corresponding to an “elastic membrane” ( z(z,y)

) pulled by “springs” connected to the data points ( d(z,y) ) is

B(e(z,)) = [ (+(,9) = dlo,0)* + A+ #)dady (21)

If the functional is quadratic, the minimization problem is straightforward. The
energy surface is convex and gradient descent will lead the system to the energy mini-
mum.

Some proposals have been made in order to extend the approach for non quadratic
functionals [72] [79] . In [72] a “hybrid” approach is used: continuous variables are
changed according to the gradient descent scheme ! ( mapped to a resistive nctwork),
while the line processors are updated at a slower rate { with a deterministic or stochastic
approach). Similarly, a “mixed” annealing strategy has been proposed in [74].

The Bayesian approach [8] to estimate the most probable image given a degraded
image and a model for the degradation process is likewise reduced to a similar mini-
mization problem.

After applying the calculus of variations, the stationary points of the functional 2
are defined by the solutions of the Euler-Lagrange equation.

For the previously introduced functional ( eqn. 2.1 ) one obtains

'This can be done because, for a fixed set of line processes, the energy function is quadratic in the
continuous variables.

2Hopefully local minima.



6E = {2(2(z,y) — d(z,¥)) — 2X(2zz + 2zyy)}62dzdy (2.2)

Image

Mzzz + 2yy) = (2 —d); or Az =(1/A)(z-d) (2.3)

In standard methods for solving PDEs, the problem is first discretized on a finite
dimensional approximation space. The very large algebraic system obtained is then
solved using “relaxation” algorithms , which are local 3 and iterative.

By the local nature of the relaxation process, solution errors on the scale of the
solution grid step are corrected in a few iterations; on the contrary, larger-scale errors
are corrected very slowly. Intuitively, in order to correct them, information must be
spread over a large scale by the “sluggish” neiéhbdr-neighbor influence. If we want a
larger spread of influence per iteration we need large-scale connections for the processing
units, i.e., we need to solve a simplified problem on a coarser scale.

In the words of Brandt [4], we must take advantage of the fact that the algebraic
system to be solved does not stand by itself, but is actually an approximation to
continuous equations, and therefore can itself be similarly approximated by other (much
simpler) algebraic systems on coarser grids. The pyramidal structure of the multigrid

solution grids is illustrated in figure 2.1.

This simple idea and its realization in the multigrid algorithm not only leads to
asymptotically optimal solution times ( i.e., convergence in O(n) operations), but also
dramatically decreases solution times for a variety of practical problems, as shown in
(4]

The multigrid “recipe” is simple. First use relazation to obtain an approximation
with smooth error for a fine grid. Then, given the smoothness of the error, calculate
corrections to this approximation on a coarser grid, and in order to do this, first relax,
then correct rccursively on still coarser grids. Optionally one can also use the nested
iteration idea (use of coarser grids to provide a good starting point for finer grids) to
speed up the initial part of the computation.

Historically these ideas were developed starting from the sixties by Bakhvalov, Fe-

dorenko and others (sce [16] for a review).

3The local structure is essential for efficient use of paralicl computation.
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Figure 2.1: Pyramidal structure for maltigrid algorithms.

It is shown in [4] that, with a few modifications in the basic algorithms, one can
store the actual solution (not the error) in each layer. This method is particularly useful
for visual reconstruction, where we are interested not only in the finest scale result but
also in the multiscale representation developed as a byproduct of the solution process.
This is called full approzimation storage algorithm and it is briefly outlined in what
follows.

The algebraic system, obtained by discretizing the original problem on the different

grids (numbered by k£ with 0 < k < L, 0 = coarsest ) is

Aheghe — gl (2.4)

The data on the finest grid define d"¢, while for the hicrarchy of coarser grids the right

11



hand side d** is obtained using the two eztension (fine — coarse ) and interpolation

(coarse — fine) operators, respectively I' and I'! in this way *:

dh = AR« (ITzhk+l) +1 (dhk+l - Ahk+lzhk+l) (2.5)

Simple injection and bilinear interpolation are used in the present work.
Before computation is begun on a grid finer than the current one, the initial values

for z are updated as:

zhe — b 4 1! (zh"-‘ - Itzh") (2.6)

while before computation is begun on a grid coarser than the current one, the

updating is

zh  [Tghen (2.7)

The switching of control between different grids is explained in figure 2.2.
Terzopulos applied the multigrid algorithm for solving PDEs associated with differ-
ent early vision problems [17,78], like the lightness problem, shape from shading, surface
“reconstruction, optical flow. We repeated some tests and obtained typical multiscale

speed-up factors of at least 100 for 129% 129 images.

2.3 Line Processes in Time and Scale-Space

Because “real” images consist of approximately continuous patches separated by dis-
continuities and because a relevant part of the useful information is contained in these
discontinuities, a surface reconstruction algorithm will have to deal with them in a

constructive way.

*This definition agrees with the idea that coarse-scale corrections are a top - down influence. The

definition given in “mathematical” texts is usually the opposite, so beware.

12
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For example, eqn. 2.1 will be transformed into

Figure 2.2: Flow of control in sequential multigrid (adapted from Brandt).

Even if there are some results in the literature [79,74,8], up to now it has not
been clear how to combine the surface reconstruction and the discontinuity detection
processes in an optimal way (speed is naturally one of the considered parameters).

One has to distinguish clearly between very different approaches, distinct by the
degree of cooperativity of the two processes, considering both time and scale.

In some cases the discontinuity detection step is assigned to a separate preliminary
process. Assuming this, in a regularization approach the smoothness constraint will not

be enforced globally, but locally, depending on the presence or absence of line processes.

((2,9) - d(z,5))* + M, y)(22 + 2)dady

mage




with A(z,y) = 0 in the presence of a line process, so that a break in the surface will not
influence the value of the energy function. The danger in this case is that unessential
discontinuities are introduced.

In other schemes, discontinuities are detected after the smoothing step (that could
hide some of them), for example, by taking derivatives (error in derivatives will be
smaller after regularization) and thresholding them appropriately.

Finally, other proposals consider cooperation of the two processes in time but do
not consider the problem of organizing the cooperation in scale.

In [72] for example a new term is added to the energy function to favor a good dis-
continuity structure. If we introduce a function G()A) measuring the local “goodness”

of the discontinuities, eqn. 2.8 becomes

E(#(z,y)) = /1 mage(z(x, y) — d(z,v))* + Mz, y)(22 + 23)dzdy + /1 e G(A(z,y))dzdy
(2.9)

In the hardware implementation suggested by the authors of [72], an analog network
minimizes the “smoothness and data agreement energy” while, in a cyclic way, a digital
network updates the line processes minimizing the “discontinuity encrgy.”

The line processor network is updated at a much slower speed than the analog one.
This is due to the fact that LPs are delimiting large-scale structures and must wait
for the relaxation process to spread information over large distances before committing
themselves to a yes or no decision.

Summarizing, in the first two approaches one process cannot make use of informa-
tion exchange with the “dual” one, while in the last one the computation tends to be
very slow for large images, because many cycles are required for convergence of the two
coupled networks.

Our suggested approach to the problem will be illustrated in the following sections.
It is based on the introduction of line processes at different scales, “connected” to
neighboring depth points (containing the z values of the surface, henceforth called DPs)
at the same scale and to neighboring line processes (henceforth LPs) on the finer and

coarser scale. A heuristic function (called Cost function) is then responsible for embed-

14



ding into the computational system the requirement of proper discontinuity structure.
Finally, the multiscale algorithm is adapted for dealing with discontinuities in a simple

but effective way.

2.3.1 Mutual Connections of Line Processes

During the course of the reconstruction, a given line process updates its value in a man-
ner depending on the values of some other LPs. This is by definition the neighborhood
and we feel free to refer to its members as the processes connected to the original one. It
is useful to define three different subsets of this neighborhood: the set of connected LPs
at the same scale, called SSN , its subset SSN* lacking the two parallel line processes
(defined as the LPs at both sides of the given one and with the same orientation, see
figure 2.3 ) and the set DSN containing the connected LPs at the coarser and finer
scales.

Considering first the SSN, inside a given layer a LP is connected to other LPs
with a “snowflake” pattern, as in figure 2.3. The influence of the parallel discontinu-
ities is essential in the multi-scale scheme, to avoid duplication of lines caused by the
“excitatory” coarse — fine influence.

The choice of the connections between different layers is more complex. Part of the
difficulty is related to the discretization on grids composed of quadrilateral elements,
whose size is doubled when coarseness is increased. Considering the gcometry (see
figure 2.4 ), it’s apparent that there is no immediate definition of the LPs above or

below a given one.

Here is one possible solution to the problem. First the coarse-to-fine influence is
defined according to a minimum distance criterion: the updating of a given LP depends
on the activation values of the LPs in the coarser scale that are at minimum distance
(in the z — y plane) from it. The only problem with this definition is that some LPs will
have two LPs above with minimum distance, while others will have one. This slight
asymmetry can be corrected by adjusting the connection weights so that the combined
effect of the two activated minimum distance LPs (defined as wcak influence) will be
the same as the influence of the single LP in the other case (defined as strong influence),

as will be shown in the following section.

15
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SIMPLE ODISCONTINUITY NEIGHBORHOQD

Iff’ji”f’"ffl L1

— EXTENDED WITH PARALLEL UNE PROCESSES

Figure 2.3: Discontinuity neighborhood inside a given layer. Depth points (left) and
corresponding line processes (right) are shown. Influence from the “parallel” line pro-

cesses is used to prevent duplication of lines going form coarser to finer scales.

Then the fine-to-coarse influence is defined by a symmetry requirement: if process
z in scale X influences y in scale Y, then conversely y will be influenced by 2. In this
way the fine — coarse influence is determined uniquely after defining the coarsec — fine

one.

2.3.2 Updating Rule and Look-up Table

As we have seen before, starting from partial “visual” information, the dynamical
system of the line processes and depth points on the different scales must evolve in time
to a state corresponding to a faithful rcconstruction of the three-dimensional structure

and a perceptual grouping of it into “mecaningful” picces. Creation of discontinuities

16
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Figure 2.4: Discontinuity neighborhood between different layers. First coarse — fine
influence is derived based on the minimum distance prescription. Then using symmetry

the complete interaction is derived .

therefore must be favored cither by the presence of a large difference in the z values
of the nearby DPs ° or by the presence of a partial discontinuity structure that can
be improved. Because usually the perceptual grouping corresponds to the underlying
physical structure, these two driving forces cooperate to create the desired results.
Let us define as benefit the square of the derivative at a given point, because intro-

duction of one discontinuity is “beneficial” when this quantity is large

5During this work a “membrane” cnergy term in the functional is considered. “Thin plate” and
higher order terms that may be necessary for some reconstruction problems can clearly be accomino-

dated in the suggested scheme.
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s oy 2)2
Benefit = (0z/0z)* = (—A—tl”—hz—zii for a vertical discontinuity (2.10)
k

and let’s introduce a cost for a discontinuity in a given environment

Cost = f(LPs € SSN; LPs € DSN )

The local effect of other activated or inactivated discontinuities is given by the depen-
dence of the Cost function on the LP values in the neighborhood at the same scale and
at different scales (variables for activation values at different scales are underlined in
the above notation). Cost is therefore a function of binary variables and will be defined

in the next section. The updating rule for a LP is given by

LP —~1 iff Cost < Benefit (2.11)

Because the Cost is a positive quantity, discontinuities will be switched on only when
there is a sufficient difference in nearby z values. Moreover, because the Cost depends
on the LPs neighborhood, a good discontinuity structure can be favored by “discount-
ing” Cost if the local structure is improved by activating the given LP.

Cost is a function of a limited number of binary variables, therefore to increase
simulation speed and to provide the flexibility that is convenient for simulating different
interaction schemes, a look-up table approach was used.

As shown in figure 2.5, an index into the table containing the Cost values ¢ is
obtained by reading the activation values (0 or 1) of nearby LPs and considering them

as bits in the binary representation of the index.

2.3.3 Invariance, Scale, and Topology: a “Natural” Parametrization

Clearly segmentation should not depend on the physical scale of the structure 7. If

the z values of a surface are multiplied by a given factor, one should still get the same

$For 8 neighbors one gets a 256 entry table when considering only the SSN. To consider the DSN,
a 64k entry table is needed.

"Unless we want this to happen.
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Figure 2.5: Look-up table for discontinuities. Activity values are used as bits of an

index into the “cost” table.

distribution of line processes by scaling the Cost’s appropriately. Besides, the “topo-
logical” influence (enforcement of good discontinuity structure) should be independent
of scale.

To separate the effects of scale and topology we decided to isolate the scale factor
into one parameter dh, corresponding to the typical size of 3z/9z and 9z/3y that we
want to be detected by our LPs. Because the comparison implied by eqn. 2.10 and
eqn. 2.11 is with the square of these quantities, let’s define the cost for a LD in the

absence of other active LPs in the neighborhood as

Costo = f(0,...,0;0,...,0) = dh?

[t would be of little practical usc to allow 256 degrees of freedom in the definition of

Costs for the SSN. Tirst rolational invariance must be valid. If a given configuration
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is rotated by multiples of 90 degrees, Cost must remain cqual. Moreover, because
of the discretization of direction involved in the quadrangular grid, it seems rcason-
able to extend the notion of rotational invariance for cases like the one in figure 2.6,

corresponding to a more general rotation.

ROTATIONAL SYMMETRY
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Figure 2.6: Rotational invariance leads to a small number of “topological classes™ for

the possible neighborhood structures.

We decided finally to classify all possible SSN* configurations (let’s postpone con-
sideration of the effect of the parallel LPs for the moment) into groups, depending on
the number of regions in which the surface is divided at the location of the discontinu-
ity. IFor some examples, sce again figure 2.6. The Cost for a ncighborhood with n cuts
is multiplied by an associated factor a,, to be selected by the user. If the number of
cuts is too large, Cost is set to a very large value (to penalize formation of “tangled”

lines).
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Cost, = f(LPs € SSN*,0,0; 0,...,0 ) = Costg X a,
if local surface patch is cut into n pieces by the SSN* structure.
Cost=00 ifn>5.

The “inhibitory” influence of parallel lines is described by factor a; (greater than

one), with
Cost(LPs € SSN; 0,...,0 ) = Cost(LPs € SSN*,0,0; 0,...,0 ) X a}?

where np = number of parallel LPs € SSN.

Last but not least, presence of lines at the coarser or finer scale will reduce Cost
by factors r, or rg respectively (smaller than one), in the strong influence case. In the

weak influence case the factors become /T, or \/rq 8,
Cost(LPs € SSN; LPs € DSN ) = Cost(LPs € SSN; 0,...,0 ) x v x 7

where na = number of above LPs € DSN (x1/2 if weak influence).

and nb = number of below LPs, similarly.

This choice turned out to be a convenient method for “programming” the compu-
tational system in order to obtain a desired segmentation structure. For example, if
the occurrence of crossings of type X in one class of images is believed to be rare, a

large ax parameter will do the job.

2.4 Combining Discontinuity Detection and Surface Re-

construction in Time and Scale

Our proposal for approaching the “priority problem” between smooth reconstruction

and discontinuity detection is to combine both phases in time and scale .

8Let’ s remember that the combined weak influence of two LPs (equal to /Tu X /T) must be equal

to the strong influence of a single LP (equal to ry ).
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The reconstruction treats the computational units of the two types (line processes
and depth points) on an equal footing, assigning them equal priority and equal time.

The general flow of control for the multiscale algorithm is similar to that given
in [78] (here it is described using a pseudocode derived from the C language). The
essential difference in this case is that each relaxation step in the initialization part
and in the recursive multiscale call is associated with a line detection step that uses

information about line elements in finer and coarser scales, as follows:

int fmg( )
{
int i,layer ;
layer= coarsest;
i=naa;while(i--) {update_line_processes(layer);relax(layer);}
update_line_processes(layer);
for(layer = immediately finer;layer <= finest;layer++)
{down(1layer-1) ;mg(layer);}

}

int mg(layer) int layer;

{
int i;
if (layer== coarsest){ update_line_processes(layer);relax(layer);}
else{

i=na;while(i--){update_line_processes(layer);relax(layer);}

i=nb;{up(layer) ;while(i--)mg(layer-1);down(layer-1);} /*recursion*/

i=nc;while(i--){update_line_processes(layer);relax(layer);}

}

update_line_processes(layer);

The function relax() performs the relaxation step, while update_line_processes()
updates the discontinuity values. up() and down() are, respectively, the injection oper-

ator (for fine-to-coarse restriction) and the bilinear extension operator (for coarse-to-fine
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extension).

Summarizing, first an initial number of relaxations are performed on the coars-
est scale, then the approximate solution is extended to finer scales and the recursive
multigrid call is applied to each of these.

In the present implementation, relaxation is based on the Gauss-Seidel (sequential)

method °. A given z value is updated as follows:

Zgum + B X h? x d(z,vy)
Nsum + ﬂ x h?

x(z,y)

1
where g = 3 h = grid step.
Zsum = sum of neighboring DPs not separated by an active discontinuity ;

N,um = number of terms in the sum ;

Zgum = Z LP(z + dz,y + dy) x 2(z + dz,y + dy);
dr=%h;dy==xh
Tsum = Z LP(z + dz,y + dy);
dr=%h;dy=%h

As we will show in the following, this coordination scheme not only greatly improves
convergence speed ( the typical multigrid effect) but also produces a more consistent

reconstruction of the surface at different scales.

2.5 Results of Multiscale Algorithm

Detailed performance tests have been made using noisy data for z values corresponding
to “Randomville” structures. These are obtained by constructing quadrilateral blocks
with random coordinates, heights, slants and tilts and placing them in the image plane.

The data are then corrupted by noise and loaded as constraints in the algorithm.

9The choice of the relaxation method can be modified depending on the desired surface propertics
or the amount of parallelism in the computation, while maintaining the proposed coordination strategy

with the discontinuity detection step.
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2.5.1 Performance with Dense Constraining Data

In this case constraints are present on all grid points. Initial values for the LPs are
equal to the corresponding constraints, where these are given, or to zero, where these are
missing. All DP values are initially zero. Border conditions are obtained by “clamping”
depth points to zero.

All timing results are given in terms of work units, where a work unit is defined as
the amount of computation required to perform one iteration on the finest grid in the
hierarchy. As far as absolute timing is concerned, a work unit corresponds to less than
one minute for 129x 129 images using a microcomputer !° and to approximately 800ms
using a simple parallel computer 1.

For 129x129 “images” and noise values corresponding to 25% of the highest struc-
ture, a faithful reconstruction of the surface (within a few percent of the original one)
is normally obtained after one single multiscale sweep (with V cycles) on four layers 2.
The total reconstruction time is 3.43 work units.

Because of the asymptotic optimality of multiscale methods, time increases linearly
with the number of image pixels (i.e., time ox n? for an image with size n).

User interface examples and results from some tests are shown in the following
figures. Figure 2.7 shows the simulation environment on the SUN workstation. Active
line processes are shown in the higher half of the screen, for the different layers. Depth
values of the surface are encoded using a proportional gray value and displayed in the
lower part.

The first screen displays an intermediate state of the algorithm, where many spu-
rious discontinuities due to noise are still present. The second screen shows the final
result.

Figure 2.8 and figure 2.9 show the final result for a typical “Randomville” image.
The original surface , the surface corrupted by noise (25 %), and reconstruction on

different scales are shown in this order.

1°SUN 386i by SUN Microsystems.
""Definicom board with 4 Transputers with Parasoft software.

21n other words, parameters na,nb,nc in mg() are equal to one.
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2.5.2 Performance with Sparse Sampling Rate

In order to assess the degradation in performance with increasing sparseness of the
randomly placed depth constraints (corrupted by 25% noise), the sampling rate was
reduced down to 10% of the image points in the finest scale.

Constraints for coarser scales are then obtained by averaging the constraints for the
finer scales, starting with the layer immediately “above” the finest one and repeating
the averaging operation until the coarsest layer is encountered. In all tests we managed
to reconstruct a “correct” surface using the same basic algorithm (in the same compu-
tational time). Figure 2.10 displays the data used for the tests (representing two slanted
and rotated quadrilateral surfaces). Both the original data and the randomly-placed
noise-corrupted constraints are shown.

As shown in figure 2.11, performance degradation is hardly noticeable, even after
the sampling rate has been reduced to 10% . For larger amounts of noise or fewer con-
straining data it is useful to increase the number of iterations on each layer. Typically,

performance reaches its limits for a value of three iterations per layer.

2.5.3 Speed-up with Respect to Single-Layer Approach

Some tests have been done in order to assess the gain in speed obtained by using more
than a single scale in the algorithm. With this purpose, the 129x 129 data set described
in the previous section was used as input to a single-scale algorithm . This consists
of relaxation and discontinuity detection on the scale corresponding to the finest grid
used by the multiscale algorithm.

Reconstruction with a quality similar to the one obtained with the multiscale ap-
proach can be obtained only at the price of a large increase in the number of iterations.
Furthermore, the number of relaxation steps for each discontinuity detection step has
to be large ( 50 : 1 heuristically, for the test problem ). This is a consequence of the
slow propagation of information during the relaxation steps. If discontinuities are de-
tected more frequently, spurious discontinuities at the border between regions with and
without constraints will be activated, and these in turn will affect reconstruction in an
almost irreversible way. The resulting computation times are larger by two orders of

magnitude with respect to the multigrid times.



Because reconstruction with fixed parameters was not satisfactory, we decided to
use an heuristic described in [72] : formation of discontinuities is penalized at the
beginning, to favor a smooth interpolation except at very steep depth gradients, and
then gradually encouraged, so that the surface will break at smaller gradients. In the
present implementation the parameter dh is linearly decreased in the course of the
computation.

Figure 2.12 shows the evolution of the single-scale algorithm up to 300 iterations
(300 work units because iterations were done at the finest scale).

In this case the shallowest part of the contour has been lost because of the smoothing
effect of relaxation and is not recovered even after drastically decreasing dh ( dh cannot

become too small otherwise spurious LPs will be activated).

2.6 Summary

We showed that the extension of multiscale methods to discontinuity detection can be
done in an effective way, combining surface reconstruction and discontinuity detection
in time and scale.

This reduces total computational time by orders of magnitude with respect to single
scale methods and provides a better coordination between the two requirements of
faithful reconstruction and good discontinuity structure.

We strongly believe that the presented method can be easily adapted for similar
problems in early vision (for example, optical flow, shape from shading ,...) and more
general problems in which a two-dimensional distribution of data must be reconstructed

and segmented into smooth regions.
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Figure 2.9: Multiscale reconstruction of “Randomville” landscape from dense con-

straints: results on different scales.
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Figure 2.11: Reconstruction with [0% sampling rate: multiscale algorithm.



Figure 2.12: Reconstruction with 10% sampling: cvolution of single scale algorithm.
State after 20, 50, 200, and 300 iterations is shown. Discontinuitics are activated only

after 50 preliminary relaxation steps.
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Chapter 3

Adaptive Multiscale Scheme for
Optical Flow
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3.1 Introduction: Reliable Estimation of the Optical Flow

During the last decade there has been increasing interest in analyzing sequences of
time-varying images and in particular in determining the 2-D motion or velocity field,
which is the projection of the 3-D velocity field onto the image plane (see [37] for
a review). In particular situations, the apparent motion of the brightness pattern,
known as the optical flow, provides a sufficiently accurate estimate of the motion field
1. The two main approaches that have been proposed for determining the optical
flow are differential [56,28] or based on matching of tokens or intensity values [44,34].
The former estimates the flow field from spatial and temporal variations of the image
brightness while the latter involves an explicit matching of the low-level (intensity
values) or high-level features or tokens across successive frames.

Both approaches make a basic assumption about the scale of the image patterns and
of the motion to be determined. In differential methods, reliable derivative estimation
requires that the space-time variation of the intensity pattern is small with respect
to the discretization steps. Similarly, in single-scale matching methods the search for
correspondence is limited to a local neighborhood defined by the expected motion
amplitude.

The multigrid algorithm with the “full approximation storage” scheine has been
suggested as a way to solve the differential equation in Horn and Shunck’s method of
deriving the optical flow [61]. This algorithm converges in a time proportional to the
number of pixels in the image, is computationally efficient, and produces in addition a
consistent result at different spatial scales. Unfortunately, both the multigrid method
and simpler coarse-to-fine continuation schemes tend to suffer from their homogeneous
computational structure. In some cases this may cause the optical flow detection process
to oscillate between different estimates at different scales or even to converge to a wrong
solution [52,55]. Indeed, if no explicit direction is given in order to select locally the

appropriate scale, different scales will, in general, provide conflicting information.

!For example, use of the “brightness constancy” assumption to derive the optical flow is correct
(produces a flow coincident with the motion field) if the scene is illuminated by onc fixed light source
at infinity, the surfaces are Lambertian, strong intensity gradients are present, and the motion is in

planes parallel to the image plane.
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We propose a method for tuning the discretization grid to a measure of the reliability
of the information derived from a given scale. This measure will be based on a local
estimate of the errors due to noise and discretization.

The flow of control is from coarse to fine scale, and we assume that the largest
motion in the image can be estimated by one of the used scales.

Binary discontinuities in the optical flow are introduced explicitly, both because
they prevent smoothing across regions corresponding to different moving objects and
because they provide a compressed representation that can be used by subsequent visual
modules.

Since our long term interest is in achieving real time processing, some thought is
given to selecting methods and algorithms with low computational complexity.

The chapter is organized as follows. First, we summarize some concepts about
differential methods for optical flow, then we introduce and discuss some fundamental
shortcomings of multiscale versions of these approaches. Next, we describe our scheme
with adaptive discretization and explicit discontinuities. It requires the derivation of
an estimate for the relative error in the flow field at a given scale. Finally, we present

some experimental results obtained with synthetic and real world image sequences.

3.2 Differential Methods

In order to estimate the optical flow from a series of time-varying images one needs
to make some assumptions about the temporal evolution of the image brightness. Let
E(z,y,t) be the image brightness at point (z,y) at the time ¢ and suppose that E varies
smoothly with respect to space and time. Many differential methods assume that the
brightness of patches in the image remains approximately constant over small time

intervals [56]. This simple assumption leads to the constraint equation

dE
—(E = Exu+Eyv+E¢ =0 (31)
relating the change in image brightness at an image point (z,y) to the two components

u = % and v = %’f of the flow field. E;, F,, and £, denote the spatial and temporal

brightness derivatives that must be estimated from successive image frames.
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Clearly, this brightness constancy equation does not determine both componcats
of the optical flow field uniquely. From eqn. 3.1 one can recover directly only the
component of the optical flow in the direction of the brightness gradient?. This is known
as the aperture problem and it has often been taken as evidence that the estimation
of the optical flow is a fundamentally ill-posed problem. Further assumptions leading
to additional constraints are needed in order to retrieve the flow component along the
isobrightness contours [76].

Horn and Schunck [56] regularized the problem by assuming that the optical flow
varies smoothly almost everywhere in the image, and they proposed to minimize the

quadratic energy functional

® = / / (Ezu+ Eyv + E)? + o?(u2 + u + v2 + v])dzdy, (3:2)
Image

where the first term expresses the rate of change of the image brightness along the
flow line and the second one the departure from smoothness. The weighting factor
a is proportional to the expected noise in the estimates of the spatial and temporal

brightness derivatives. The appropriate Euler-Lagrange equations

(Ezu+ Eyv + E)E; = o*Au (3.3)
(Ezu+ E,v+ E)E, = o*Av (3.4)

give a necessary condition for an extremum of ®. After discretization, this leads to
a very large algebraic system (a pair of equations for each point in the image) that
can be solved using local and iterative "relaxation” methods. The solution method
used throughout this work is Gauss-Seidel lericographic relazation. During an updat-
ing cycle the grid points are considered in a fixed order (for the considered images one
starts from the north-west pixel and follows the image lines), and the new approxi-
mation (u™t!,v"*1!) of the flow field can be determined from the estimated brightness

derivatives and from the local average (u", o) of the previous flow estimate by

2The solution to eqn. 3.1is: (u,v) = ;I_I—%"D‘TITE + a where a is perpendicular to VE
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_ E(E;w" + E;5" + E)

(@ + B2+ E))
E,(E;%" + E;5" + E;)
ol = - X Y 3.6
(a2 + E2+E2) ° (3.6)

Natural boundary conditions are given by zero normal derivative.

(3.5)

The smoothness assumption regularizes the problem but it constrains the field to
vary smoothly across the occluding boundaries, where flow discontinuities can be ex-
pected. Several approaches have been suggested to prevent smoothing over discontinu-
ities (see [31] for example). This question will be addressed in section 3.7 where we will
present our coordination scheme for the smoothing and discontinuity detection phases.

Recently, Uras et al. [45] argued that the estimation of the optical flow is not, in
general, an underconstrained problem since the image brightness satisfies other natural
assumptions besides the brightness constancy equation. They proposed to consider the

vector equation

d

EVE =0 (3.7
which involves second order brightness derivatives and which is verified exactly for a
parallel translation in the image plane and when the light source is distant and fixed. In
general, this gradient constancy equation (as well as any other pair of scalar equations
among eqn. 3.1 and eqn. 3.7 ) determines the flow field uniquely. This makes the
optical flow problem only ill-conditioned but not ill-posed (except when only straight
edges exist and E,;Ey, — E2, = 0). The optical flow cannot be recovered when the
two equations are linearly dependent (in general it cannot be recovered reliably if the
linear system is not well conditioned). At these locations there is not enough local

information and it is therefore necessary to impose some local smoothing.

3.3 Towards an Adaptive Multiscale Approach

All differential or fcature-based methods for recovering the optical flow working at a

single spatial scale share a fundamental limitation. This limitation stems from the fact
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that an optical flow algorithm needs to solve, at least implicitly, a matching problem.
Indeed, any single scale method faces an ambiguity when it must bring into corre-
spondence image intensities or image brightness features in successive frames. This
is especially true when the motion amplitude becomes similar to the spatial intensity
wavelength3.

In the differential context, this problem can easily be shown for a one-dimensional
sinusoidal intensity profile sin%(z — vt) of wavelength L moving with velocity v. In
the one-dimensional case, the brightness constancy equation determines the optical flow

uniquely and the measured velocity ¥ is given by

sind® (r4vt+vAt)—sin2E (z4vt—vAt)

. E o~ _ sin(FvAt) Az (38)
v= —E.'x T sin2E(z4vt4Ar)—sindE (4 uvt—Az) - sin(%’Az) At’ )

2Azx

where E, and E, are the three-point approximations of the spatial and temporal bright-
ness derivatives obtained using the spatial and temporal discretization steps Az and
At. Three-point derivatives provide a better estimate (O(h?)) with respect to the for-
ward difference formula. In addition, the temporal and spatial derivatives are estimated
at the same point (no phase shift is present, as explained in {35]).

Figure 3.1 shows some characteristic graphs of the measured velocity and relative
error in the velocity as a function of the true velocity v for different wavelengths L. For
clarity, the curves are plotted versus the dimensionless ratios %1 and ALE, where Az is

the discretization step in space and At in time.

While in the limit L — oo eqn.3.8 converges to the correct velocity v, the relative

error in the computed velocity becomes of the order of 100% even for small velocities
. . . . A

when the wavelength is smaller than approximately five spatial sampling steps (5% >

0.2). Note that we take into account only the error due to the approximation of the

brightness derivatives.

3Reducing the interframe movement by increasing the acquisition frequency diminishes this ai-
biguity but increases the computational burden because more images have to be treated. Since the
motion scale is not known in advance, this frequency must be high and noise problems due to inten-
sity quantization or other sources can arise. A too small interframe movement will, for instance, be

undistinguishable from zero after quantization.
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Figure 3.1: Measured velocity (a) and relative error in measured velocity (b), defined as
Sv/|v| = |(v—1)|/|v|, for moving sinusoidal pattern. Values obtained with discretization
(dots) are compared with correct values (dashed line). Three point approximation for

derivatives is used. Curves for different values of QLE are shown.

In the case of the Horn and Schunck method a basic problem arises when the motion
amplitude is too large with respect to given resolution (i.e., is more than a few spatial
sampling steps)?. The problem is caused by the use of discretized formulas for the
estimation of the temporal and spatial derivatives of the image brightness. As said
before, the accuracy of these formulas decreases when the brightness changes rapidly
on the scale given by the discretization step, because in this case the step cannot be

considered infinitesimal.
To deal with the matching ambiguity one can consider a resolution pyramid and

*In this work we assumc that the brightness constancy cquation 3.1 is valid.
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work at different scales ([49] and the contained references). Since the high frequencies
are attenuated at lower resolution, the spatial and temporal derivatives of the bright-
ness are smoothed and their estimate is more informative. In addition, a multiscale
approach with an effective coordination scheme between the different resolutions re-
duces the computational effort. It has been shown that the multigrid algorithm ([64]
for the general theory) converges in a time proportional to the number of pixels (i.e.,
to n? for an n x n image) and is furthermore efficient (reducing computation by two
orders of magnitude for images with 129X129 pixels). This effect can be explained
when one considers that in local iterative procedures information propagates only to
nearest neighbors during an updating step. Now, since points that are neighbors at
lower resolutions are separated by many fine resolution steps, fewer iterations at lower
resolutions are sufficient to spread information between areas that are distant in the
original image.

There has been some previous work on multiscale determination of the optical flow
[52,55,61]. Terzopoulos [61] applied, for instance, the multigrid algorithm to the Euler-
Lagrange equations 3.3 and 3.4. The idea of the multigrid methods [77] consists in
starting from an approximation with smoothed error obtained by relaxation on the fine
grid and in determining a correction of this approximation on the coarser grid. This
is computationally less expensive and it can be done recursively by relaxation on the
coarse grid and correction on the next coarser grid. The fine-to-coarse and coarse-
to-fine intergrid transfers are realized using, respectively, restriction and interpolation
operators with local averaging properties. Note that the starting approximation itsel{
can be obtained in a coarse-to-fine fashion, using nested iterations.

Terzopoulos reported, for the case of an expanding Lambertian sphere, a substantial
speed-up with respect to the single scale relaxation [61]. It is important to point out
that this result applies to an image that contains a unique dominant spatial frequency
(related to the sphere diameter). Since in this special case the velocity is perpendicular
to the brightness gradient, the first iteration is already sufficient (in the absence of
noise) to recover the correct optical flow. Indeed, the multigrid method turns out to
be much less effective for more complex images with superposed frequencies, or even

for single frequencies if, as will be shown, a grid coarser than the finest one provides a
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better estimate.

This difficulty has also been encountered by Glazer [55] and Enkelmann [52] and is
relevant to any multiscale scheme, when conflicting information is present at different
scales.

An example is given in one dimension by considering two scales with a 2 : 1 reso-
lution and an intensity profile composed of two sine waves of different wavelengths L,
and L;. Suppose that in terms of the fine grid spatial step: Ly = 3, Lz = 6 and the
intensity profile velocity is equal to 2 (in the following, for simplicity, At is equal to 1).
On the coarse grid the higher frequency will be almost completely suppressed  and the

measured velocity is equal, according to eqn. 3.8, to the true velocity v = 2.

Figure 3.2 shows that on the fine scale there is at least a 50% error in the velocity for
any combination of the two frequencies. In particular, the measured velocity is equal to
1 for an intensity profile with only the low frequency and it has even an opposite sign
when the ratio between the high and low frequencies is greater than 0.5. It is worth
noting that if v = 1 the correct velocity would clearly be recovered at the fine scale.

Typically, the image brightness is a superposition of different frequencies corre-
sponding to the different objects and textures in the scene. Thus, a multiscale scheme
& la multigrid, involving a (systematic) bidirectional information flow from high-to-low
and low-to-high resolution, is not appropriate because it is likely to mix incoherent in-
formation from the different scales. The scheme may not converge® or it may converge
to an incorrect result.

The previous examples and considerations suggest a new strategy. It starts by
estimating the overall flow field at a reasonably coarse scale. This approximation is
then improved on successive finer scales only in regions of the image where its estimated
error is greater than a predefined threshold. A local inhomogeneous approach is thus
obtained, where areas of the images characterized by diffcrent spatial frequencies or
by different motion amplitudes are processed at the appropriate resolutions, avoiding
corruption of good estimates by inconsistent information from a different scale.

A simple local criterion to evaluate the local rcliability of the flow field is based

5By the smoothing operation preceding the subsampling process.

1t may oscillate between two different grids with conflicting information, for example.
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Figure 3.2: Measured velocity for superposition of sinusoidal patters as a function of

the ratio short / long wavelength component. 3pt approximation for derivatives is used.

The correct velocity is equal to 2 (At = 1).

on measuring the amplitude of the brightness gradient in different areas. In fact, in
areas with small gradient the optical flow estimate is mainly obtained by filling in flow
information from areas with larger brightness gradient [56].

This criterion however is not only insufficient but it may also lead to deterioration
of an initially correct estimate. In fact, areas with large gradient values tend to contain
high frequencies and therefore to be plagued by discretization errors, which in this
way will be propagated to nearby regions. A better criterion should consider both the
discretization and the quantization (noise) crrors.

[n section 3.4 we shall derive a local estimate for the overall relative error in the
optical flow that takes into account these two contributions. This estimate will then

be used as a local criterion to choose the appropriate scale for the estimation of the
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optical flow on a given part of the image, as will be proposed in section 3.5.

3.4 Estimation of the Flow Field Error

We shall now derive an estimate for the relative error in the flow field. It is worth
noting that this estimate does not depend on the algorithm used for recovering the
optical flow as long as it assumes the brightness constancy equation.

The error will be derived in the one-dimensional case and then extended to two
dimensions using rotational invariance.

We first consider the contribution to the flow field error due to the approximation
of the brightness derivatives. Let f(z — vt) be a one-dimensional translating brightness
profile. Taylor’s expansion yields the three-point approximation for the first order

brightness derivatives

= r)+ O o). (3.9)

fly+h)— f(y—h)
2h

In 1-D, the brightness constancy equation 3.1 reduces to E v+ E; = 0, where E(z,t) =
f(z — vt). It is easy to show (see appendix B) that, neglecting higher order terms, the

three-point approximations of the temporal and spatial derivatives are given by

E, = f - P—f—:;(—y)(vAt)z and E,~ f, + @(Az)z, (3.10)

where Az and At are the spatial and temporal sampling steps. By substitution in the
brightness constancy equation, we obtain an approximated expression for the measured
flow field

B fo— 2 wAr?
E, fo + W (Az)?

5= — (3.11)

which leads (by second order Taylor’s expansion) to the relative error
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bv _ ~ @)
= T 6y )((vAt)z (Az)?). (3.12)

Thus, provided higher order terms can be neglected, the relative error in the flow field
due to the three-point approximation of the brightness derivatives is close to zero when
the interframe motion vAt is of the order of the spatial sampling step Az. In particular,

for a sinusoidal brightness profile sin2%(z — vt) of wavelength L, we have

2
fvf s %((A:c)z — (vAt)?). (3.13)
In practice, the image brightness is corrupted by quantization error and by noise so
that we cannot expect the constancy equation to hold exactly. We shall now estimate
the flow field relative error due to the quantization of the intensity levels. Clearly, this
provides a lower bound on the relative error due to the noise in the image brightness.
The one-dimensional constancy equation v = ——g-’; leads, when v is not null, to the

expression for the relative error

6E (5E¢

(3.14)

where § E; and 8 E; are the errors on the temporal and spatial derivatives respectively”.
If we consider the errors induced by the quantization process, we have (assuming
that the image intensity is an integer going from 0 to a maximum value n, so that the

minimum amount of “observable” intensity difference is 1, see also figure 3.3):

1 1 o 1=
6E;,; =~ E and 5Et ~ E (Jl’))

"To derive eqn. 3.14 we made the assumption §v = \/( )2652 + (2 2-)26 £7, valid for a Gaussian

distribution of the errors.
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Figure 3.3: Error in derivative estimation due to quantization of intensity values.

This crude approximation is sufficient because the error estimate will be compared
with a user-defined threshold in the adaptive scheme. A better average precision in
the estimated relative error can be obtained by using the average discretization error.
This average can be calculated using a statistical model for the considered images, as
explained in [32)].

Since |v]| =] % |, we can rewrite

fv \/(515'1:)2 + (22 _ \/(AL)’ + wan?

~ - (3.16)
[v] | Ex | [ Ez |

In the following we shall denote the spatial and temporal differences with A FE and

A E, respectively. Now || =] AA’;E | and therefore
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bv 1 1

o~ \/(AzE)2 + E.AL? (3.17)
By the constancy equation, which holds approximately,

év 1 1

— 1

fol \/ @.E7 1 By (3.18)
and since E; = AALF,

v 1 1

] . .1

o= (319

Finally, we get an overall estimation of the flow field relative error due to the three-

point approximation of the derivatives and to the quantization of the image intensity®:

dv 2 2 1 1
1% C(@) | (M) - (4,F) |+\/ 5 (3.20)

where the function C(z) depends on the first and third brightness derivatives at the
image point £ under consideration.

The first term refers to the approximation of the derivatives and can be derived
from 3.12 using the constancy equation and the two basic expressions E; = % and
E,.~ AA‘L,E. Since this term does not depend on the number n of brightness quantization
levels and since A(E as well as A, E are proportional to n, the function C(z) must be
proportional to -';15 This relation can be shown for a sinusoidal intensity profile. In

that case, the first term of eqn. 3.20 can be rewritten, according to 3.13, as

71'2 T 2 ¢
2 (&L - ) (321)

8Given the approximated nature of the estimate, a simple summation of the quantization and

discretization errors is used in this final step.
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Let’s introduce the parameter p (fractional range of intensity values in a given image),
defined by p = (maximum.-intensity - minimum-intensity)/n. The typical scale for
the value of the brightness derivative is given by the range of intensity values of the
sinusoid pn, divided by the wavelength L (i.e., %ﬁf ~ &*). This latter relation implies
that (4%)? ~ (%‘nE)z, which leads (by substitution in eqn. 3.21) to the inverse relation
between C(z) and n2. After completing the cited substitution, the equation for the

error estimation that was used in the tests is the following:

v C 2 _ 2 1 1
[v] = p?n2 [ (AE) — (AE)* | +\/(AxE)2 + (AE)? (3.22)

where the value for C is % as suggested by the above argument. For a general im-
age, the the fractional range of the image p was estimated using the standard deviation
o in the distribution of intensity values (p = o//n).

It is clearly difficult to determine the third derivative of the intensity at every point
in the image but our tests show that, as a working hypothesis, we can consider it as
a constant independent of the image position. In practice, we shall use the constant
estimated for sinusoidal gratings given in eqn. 3.22. The “difference” terms (like A E)
grow linearly with the number of discretization levels n. Therefore, while the first term
of the overall relative error does not depend on n, the second term, which expresses the
contribution due to the quantization process, decreases with n and can be eliminated
(at a price!) by increasing the number of quantization levels.

The quantity in expression 3.22 is clearly only an approximation of the overall
relative error. Note that approximations are necessary since it is (clearly) not possible
to evaluate the error in the optical flow precisely without knowing precisely the optical
flow itself.

It is important to point out that the final result in eqn. 3.22 presents in a concise
way the tradeoff between the two kinds of errors introduced. According to this criterion,
the “close-to-optimal scale” is the one that locally minimizes this relative error.

The two-dimensional estimate of the overall relative error is obtained from eqn. 3.22
by rotational invariance, substituting (A, E)? with the sum of the squared differences in

the two dimensions (A E)?+(A, E)?. This amounts to measuring the field unreliability
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according to the error on the component of the velocity that is normal to the brightness

gradient.

3.5 The Error-Based Adaptive Multiscale Scheme

Our proposed strategy is based on a low-to-high resolution scheme. The resolution
pyramid used will be described in section 3.6 and the locally adaptive discretization
strategy is implemented with the use of an inhibition flag associated with each point
in the image.

Preliminary processing consists in building the Gaussian pyramid associated with
the image [49]. The Laplacian pyramid data are then obtained at every scale by expand-
ing the intensity values at the coarser scale and subtracting them from those at that
scale (details about the procedure are in [49]). This procedure is equivalent to perform-
ing at each level a difference of Gaussians (DOGs) that are a reasonable approximation
of Laplacians of Gaussians [36).

Computational time is reduced with respect to filtering with masks with large sizes,
while the produced zero crossings are hardly distinguishable from those obtained by
filters with a large mask in all our test images.

When the above data are obtained, the Horn and Schunck relaxation algorithm
described in equations 3.5 and 3.6 (with Gauss-Seidel lexicographic updating) is applied
starting from the lowest resolution for a selected m.lmber of cycles. As will be shown
in section 3.7, if the image contains different moving objects it is important to activate
line processes in order to avoid smoothing over discontinuities [74,69,31].

After the relaxation cycles are finished, the overall estimation of the flow field
relative error (according to eqn. 3.22) is calculated for every pixel at the given resolution.
This quantity is then used to decide about the local reliability of the optical flow. For
every pixel a test is done to see whether the error is below a defined threshold T,,, or
if the pixel is already inhibited. If the test is positive, the grid point corresponding to
this pixel at the finer resolution in the pyramid and its immediate four neighbors (in
the east,west,north,south directions) are inhibited.

The optical flow values are then interpolated (with bilinear interpolation) to the next
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finer scale where they are used as initial approximation for further local relaxations.

. Inhibited pixels will not participate in the relaxation process and will maintain the
optical flow values interpolated from coarser resolutions, preventing loss of the reliable
estimation due to incorrect derivatives at the new scale (as explained before and in the
final tests).

This procedure is then repeated iteratively, where relaxation occur only in the
regions where the approximation obtained at the coarser scale is not yet satisfactory.

The optimal grid structure for a given image is translated into a pattern of active
and inhibited grid points in the pyramid, as illustrated in figure 3.4.

Final result of the computation is a reconstruction of the optical flow at the different
resolutions with an explicit indication of the motion discontinuities, with an associated
measure of the optical flow reliability. This information will be used by subsequent
visual modules.

In the present scheme, computation starts from a field equal to zero on the coars-
est scale, while in a real-time continuous scheme it should start from the previously
determined field.

3.6 The Resolution Pyramid

In this work we consider a 2:1 resolution pyramid built from a sequence of three images.
The coarser versions of these images are obtained by local averaging using the the 5-
point and one-parameter mask proposed by Burt [49]. The mask is essentially an
approximation of a Gaussian filter with support given by five points [49].

The procedure is then repeated iteratively to construct the other low resolution
versions of the three images. For an appropriate choice of the parameter the result
closely approximates the convolution of the original images with Gaussian filters of
appropriate width [49]. If the original images are noisy an additional preliminary
filtering with a Gaussian filter whose size can be selected by the user is applied to the
sequence of raw images. In the tests that we carried out, the finest scales contained
129x129 pixels. The number of layers depends on the image size (a pyramid with 3

different resolutions is used for the chosen size).
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The spatial and temporal derivatives of the brightness are calculated independently
at each level of the pyramid using the three-point approximations [35]. Besides the
higher accuracy, the three-point formula has the advantage of estimating the derivatives
at the intermediate frame instead of between the frames like the two-point one. This
fact will turn out to be very useful in the discontinuity detection process (as will be
illustrated in the following section). The “flow of information” from the three images

to the estimated derivatives and error is shown in figure 3.5.

3.7 Discontinuity Detection

For typical scenes the optical flow is piecewise smooth so that discontinuities are nec-
essary for a faithful recovery of the flow field. Some authors suggested using "oriented
smoothness” constraints [38], adapting the constraints to the local differential structure
of the intensity “surface.”

Others succeeded in considerably improving the effectiveness of the Horn and Schunck
algorithm by introducing explicit binary discontinuity elements (line processes) [31] on
a grid halfway between the grid formed by the image pixels. The line processes are
either "on” or "off” depending on whether the smoothness term between the corre-
sponding points of the image has to be neglected or not. Some additional terms are
added to the energy ® (which is no longer quadratic) in order to control the spread of
the line processes activation. The line processes are then updated to minimize ¢. To
effectively combine the estimation of the optical flow and the discontinuity detection,
their updating cycles are separated in time by a few relaxation cycles. It is worth
noting that even though it is no longer guaranteed to converge to a global minimum,
the system reaches good minima of & [31].

A positive feature of the last method is that the additional information contained
in the discontinuities can be used by following high-level vision modules.

The method presented in this work detects discontinuities at different resolutions
by introducing line processes at every scale. The type of neighborhood considered for
a line process (L P) within a given level of the pyramid is shown in figure 2.3. The line

process activation must clearly be favored by a large difference in flow field magnitude
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between the two closest points in the image and by the possibility of improving the
local discontinuity structure. We define the bene fit of the L P between pixels (7, 7) and
(i+1,5)as

benefit = (i1, — i ;)?/hi + (vig15 — vij)*/hE),

where h; is the spatial step at the kth scale. This is proportional® to the amount by
which the activation of the line element can decrease the energy ®. A similar expression
defines the benefit of a horizontal LP between pixels (¢,5) and (1,5 + 1).

The cost of a line process depends on the local discontinuity structure and it is
defined from a basic cost C that corresponds to the typical size of the flow field dis-
continuity that we want to detect. The possible local structures are then classified
depending on the number n of continuous regions in which they are divided and a
parameter C,, is associated to each class. Now the cost of a line process with a local
structure composed of n regions is given by cost = C *C,, and a line process is activated
if and only if benefit > cost.

In order to combine the discontinuity detection at the different scales, the line pro-
cesses can also interact with contiguous ones in the two adjacent levels (see figure 2.4).
The state of a line process at a level k, 0 < k < L, influences also the cost of its
neighboring line elements in the levels k — 1 and k£ + 1. If this element is "on” it will
decrease by a certain factor F,4 (where “ud” is for “up or down”) the cost of its neigh-
boring line elements in the two adjacent levels. The cycles of line process updates are
then combined at every scale with the relaxation sweeps. This type of coordination
scheme gave good results when applied to surface reconstruction and the look-up table
approach was very efficient {62].

The detection of optical flow discontinuities can be improved further by using in-
formation on the intensity discontinuities [24]. As in [31], we prevent the activation of
line process where there are no zero-crossings of the Laplacian-of-a-Gaussian filter (at
the different scales) unless there is strong evidence for the flow discontinuity.

This is realized by choosing a basic cost C that is large with respect to the typical

size of the flow field and a very large factor F. by which the presence of a zero-crossiug

9Because of the a” factor in eqn. 3.2.
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decreases the cost of the corresponding line processes.

Zero crossings of V2G have been chosen because of their useful properties. For
example, they are not created as the scale increases and they form close contours,
unless they intercept the boundaries. A detailed description of other properties is
in [43].

3.8 Experimental Results

Tests of the proposed algorithm have been done for images of varying complexity. To
measure in a quantitative way the correctness of the derived optical flows, images have
been generated in a controlled environment, combining different parts with different
textures (both “natural’ and artificial). The image generating “tool” allows the user to
select different movements for the different parts, producing a sequence of three images
(the data for the algorithm) with the associated motion flow (used for comparison).

Test results are presented both in visual form (display of the obtained optical flow)
and in graphical form (graph of the root mean square (r.m.s.) error between the correct
motion flow and the obtained optical flow).

Finally the results of tests with a sequence of video-acquired images of a natural

scene are presented.

3.8.1 Two-Dimensional Sinusoidal Patterns

These examples demonstrate the necessity of an adaptive scheme based on a measure
of the optical flow reliability.

The images show a "plaid” pattern, a superposition of sine waves of different wave-
lengths in the vertical and horizontal directions. The intensity of a pixel with coordi-

nates (1, j) is obtained according to the following formula:

.. 255 . 27, . 27, . 2m . .27
I(3,7) = 2(1+R-i-sm(-i£z)+Rsm(Tﬂ-z))(1+R+sm(—L£])+Rsm(—;E])) (3.23)

4(1+ R)
The relative amount of short versus long wavelength component is determined by

the parameter R, the intensity is normalized to obtain values in the range (0-255).
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The first example illustrates the basic difficulty arising in a multiscale strategy. The
parameter R is 1.0, the long and short wavelengths are 7.5 and 3.2'°. The resulting
image is in figure 3.6.

Movement is a translation in the plane in the north-east direction with velocity
equal to (1, 2).

Comparison of the results of the homogeneous versus the adaptive coarse-to-fine
strategy are shown in figure 3.7. Ten iterations are done on every discretization grid,

bilinear interpolation of results is applied before relaxation is initiated on a finer grid.

Relaxation on the coarsest grid produces an optical field whose difference with the
correct motion flow increases as a function of the iteration number. This is caused by
large errors in derivative estimation on this grid (the intensity is almost constant and
discretization errors, which are the dominant error term in this case, are large).

The situation is better on the intermediate grid. In spite of incorrect initial values
obtained from the coarser grid, the error is rapidly reduced after the first relaxations.
Error in derivative estimation reaches in this case the minimum value (motion on this
scale is less than the dominant wavelength).

After interpolation to the finest grid, the homogeneous scheme continues the re-
laxation process, driving the result to a worse solution. This is again caused by bad
derivative estimation (motion on this scale is not small in comparison with the shorter
wavelength). On the contrary, the adaptive scheme recognizes that the error on the
intermediate scale is lower than the given threshold T,,, (0.4 in this case) in most of
the image pixels, so that the computational units corresponding to these pixels at the
finer scale are “inhibited” (no relaxation is done) and the error in the obtained optical
flow is similar to that on the middle scale.

The difference in the qualitative structure of the derived optical flow can be appre-

ciated in figure 3.8.
Finally figure 3.9 shows a display of the estimated error (according to eqn. 3.20) on

the different scales.

The quantization error is larger at the coarser scale, while the derivative estimation

%These represent “generic” wavelengths {not multiples of the grid step to avoid particular cffects),

chosen to give different "dominant” components at different scales.
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error is larger at the finest scale. The total error reaches the minimum on the middle
scale, in agreement with the results about the r.m.s. measured error.

In more complex images, errors will be greatly different in different part of the
image so that the reconstructed optical flow will be “frozen” at different scales, as will

be shown in following examples.

3.8.2 Expanding Sphere

These examples illustrate the difficulties due to propagation of velocity field information
across boundaries between different moving ob jects.

A set of ray-traced images of an expanding sphere was chosen because it was used in
Terzopoulos [61] as an example of the speed-up that can be obtained with the multigrid
algorithm. The spheres are superimposed on a fixed “natural” background, in order
to provide derivatives different from zero on the background!!. These images contain
a unique dominant spatial frequency of the order of magnitude given by the sphere
diameter.

If we do not consider the effect of quantization (255 intensity levels) and assume
that the motion amplitude is very small with respect to the radius, one iteration is
sufficient to recover the correct optical flow, as can be seen from equations 3.5 and 3.6
in the special case of a velocity vector perpendicular to the brightness gradient. The
function of relaxation is, in this case, to provide a better estimate by averaging noisy
derivative estimations on neighborhoods with a size that increases with the number of
relaxations applied!2.

Unfortunately, this is true only if one assumes that the occluding boundary is known
a priori and if the correct velocity is given on this boundary, as was the case in Ter-
zopoulos’ work [61]. In the general case (no initial information) different results are
possible. As will be shown in the following tests, the r.m.s. error increases for small
spheres (because noisy information on the boundary is propagated in both directions),
while for larger spheres it first decreases (for the averaging eflect) but after a few it-

erations increases (an average over very large neighborhoods becomes worse than the

11f derivatives are zero, all motion fields minimize the Horn and Schunck functional.

12With a “Gaussian” weighting of the different derivative estimates.
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original estimate) with a speed proportional to the parameter a in the cited equations.

The graphs in figure 3.10 show the behavior of the r.m.s. error as a function of the
work units, for two different values of the sphere radius (55 and 95 pixels). Movement
is an expansion (3 pixels per frame on the border of the sphere). Both the single scale
and the multiscale algorithms are tested.

For the smaller sphere, single scale relaxations make the error worse. The multiscale
algorithm does not improve the result. The r.m.s. error as a function of work units in
not monotonic (see graph), and the last fine scale iterations show an increasing error.
The effect of the boundary is particularly bad at the coarsest scale because the ratio
boundary. / internal points is large.

For the larger sphere (the sphere boundary is now outside the visible window of
129x129 pixels) the situation is different. Single scale relaxations improve the r.m.s.
error at the beginning. The error reaches its minimum when 4 work units are completed,
then it increases. In this case the multiscale approach reduces the error faster (the
minimum is reached after 1.06 work units). But the minimum value is reached on the
middle scale and error becomes larger on the finest scale.

The following figure shows the optical field obtained with the multiscale algorithm
in the two cases.

These examples show that the effect of the boundary conditions on the result is
indeed an important one. Going from an exact a prior: knowledge of the occluding
boundary with their velocity values to a situation where the only boundary conditions
are the "natural” boundary conditions at the border of the image, can lead to very
different results.

If an exact knowledge of the occluding boundary information is missing, incorpo-
ration of a boundary detection step in the algorithm is essential in order to avoid
smoothing across regions corresponding to different moving objects, as will be shown

in the next section.

3.8.3 Occluding Objects

This test compares the result obtained with or without discontinuity detection. It

shows that the optical flow near an occluding boundary may be reconstructed with
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large errors unless the smoothing process is blocked by line processes.

The images contain two spheres of different sizes (radius are 35 and 24 pixels),
translating with velocities (0.0 , -1.0) and (0.8 , 0.2) against a natural background.
Their reflectance patterns are sinusoidal grids (L is 13.3) of a different intensity range
mapped onto them using polar projection (in order to obtain a wide range of Fourier
components in the different regions of the spheres), while illumination is coming from
a source at infinity orthogonal to the image plane.

The parameters for the discontinuity detection process are C = 1.0,
C. = (0.6,0.5,2.0,5.0,100.0), and F,. = 0.25. While the parameter C is essential
and is related to the typical scale of the motion discontinuities, it is important to em-
phasize that the precise value of the other parameters is not as important as their
relative sizes (which are chosen in order to favor continuation of existing lines and
to discourage formation of junctions with more than two line processes and parallel
lines)!3.

The following figures illustrate the optical flow obtained with the adaptive multiscale
process, using 6 relaxations on each of three scales. The first image shows the result
obtained without discontinuity detection, while the second one shows the result when
a discontinuity detection step has been done every 2 relaxations.

The qualitative results are confirmed by the graph of the measured r.m.s. error in
the optical field for the two cases.

Although zero crossings are dense for this image (as shown in figure 3.14), the final
activation of the motion discontinuities corresponds in a reasonable way to the real
motion discontinuities. This is an indication that the effect of parameter F,. is only
that of guiding the discontinuity detection process, while the final placement is dictated

by the presence of a real motion discontinuity.

3.8.4 Tests with Natural Images

The images used for this test show a pine cone moving in the upward direction. They

were acquired with a S-VHS video camera and a Targa frame grabber. Movenient was

3In other terms the C, paramecters could be given as valucs of a function f(n,é,x) of a fixed

qualitative form and dependent on one or two parameters.
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executed by adjusting a tripod sustaining the object by 0.25cm every frame. Measured
velocity in pixels is 1.6 pixel / frame. Tests have been done for sets of three images
taken every one, two, and three frames. The average velocity (on a window centered on
the pine cone) obtained with the homogeneous multiscale algorithm is compared with
that obtained with the adaptive version. While this second version always produces a
better estimate, the difference is particularly significant for large motion amplitudes,
as shown in figure 3.15.

In this case the fine scale derivative information is completely erroneous. This is
recognized by the adaptive scheme that freezes the solution obtained at coarser grids,

producing a better final estimate.

3.9 Summary and Conclusion

We have shown that a simple estimation of the relative error in the flow ficld can lead
to an effective adaptive multiscale scheme for recovering the optical flow. This method
provides a more accurate flow field reconstruction by dealing locally with the different
types of motions and textures in a generic image. Contradictory derivative estirations
on different scales do not cause incorrect optical flow reconstruction. The multiscale
strategy finds the first scale (starting from the coarsest one) that produces a reliable
estimate and locally freezes the result.

The suggested scheme is especially necessary for scenes with multiple motions
and/or multiple patterns and textures.

It is worth noting that the strategy used in this approach is general, in the sense that
it does not depend on the single scale algorithm used to recover the optical flow. Other
algorithms need to change the error estimation equation in a way that is appropriate
for their derivative estimation. ‘

While for the presented tests the parameters involved in the discontinuity detec-

tion process have been chosen with a trial and error process, automatic tuning of the

parameters is suggested for practical implementations of the presented algorithm.
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Figure 3.4: Adaptive grid and activity pattern in the multiresolution pyramid.
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Figure 3.5: Information flow (at each level of the Gaussian pyramid) for the estimation

of spatial and temporal derivatives and errors.
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Figure 3.6: “Plaid” image: two-dimensional pattern with long and short wavelengths.
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Figure 3.7: Comparison of homogeneous versus adaptive multiscale strategy: translat-
ing “plaid” pattern. Graphs show r.m.s. error in the optical flow as a function of work
units (i.e., as a function of actual computing time, because a work unit is defined as
the amount of computation used for a complete relaxation at the finest scale). Fig.(a):
multiscale homogeneous strategy (with no adaptation). Fig.(b): multiscale adaptive
strategy. The adaptive algorithm “freczes” the result at the intermediate grid because

the error measure is below threshold T, and interpolates to finest grid.
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Figure 3.8: Reconstructed optical flow for translating “plaid” pattern. Fig.(a): ho-
mogeneous multiscale strategy. Fig.(b): adaptive multiscale strategy. Fig.(c): active
(black) and inhibited (white) points.
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Figure 3.9: Estimated error on diflerent scales. Intensity value is proportional to error.

Derivative estimation, quantization, and total error are shown in this order.
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Figure 3.10: Expanding sphere: r.m.s. error as a function of the amount of computa-
tion in the multiscale scheme. Fig.(a): small sphere (radius=55). Fig.(b): larger sphere
(radius=95). Single scale results (circles) and multiple scale results (diamonds). Inter-
polation to finer scales increases temporarily the r.m.s. error. Algorithm is terminated

after the given number of work units because r.m.s. error is increasing.
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Figure 3.12: Occluding moving spheres: optical flow obtained without (a), and with

the concurrent discontinuity detection process (b).
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Figure 3.14: Occluding moving spheres: image and derived zero crossings.
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Chapter 4

Benchmark of Applications on

the Hypercube
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4.1 Introduction: SIMD vs. MIMD Approach

From our experience MIMD computers with powerful processors (= 1 Mflop), sufficient
distributed memory (= 1 Mbyte), and two-dimensional internode connections! are a
close-to-optimal choice for implementing medium-level vision algorithms (see also [68,
51] and [60] for a general discussion).

In this case a simple two-dimensional domain decomposition can be used efficiently:
a slice of the image with its associated pyramidal structure is assigned to each processor.

More complex schemes with dynamic load balancing are not needed because a real-
time scheme is supposed to produce a solution in the given time in the worst possible
case, when all grid units are active (this situation corresponds to images with fine
details in all regions of the scene).

All nodes are working all the time, switching between different levels of the pyramid.
No modification to the sequential algorithm is needed for points in the image belonging
to the interior of the assigned domain. On the contrary, points on the domain boundary
need to know values of points assigned to nearby processors. With this purpose the
assigned domain is extended and a communication step before each iteration on a given
layer is used, as described in [87,58,63]. The communication overhead is a “surface
effect” proportional to the linear dimension of the domain.

Considering now implementations on a SIMD parallel computer with a large number
of processors, the maximum amount of parallelism is obtained assigning one processor
to each grid point [65,57]. SIMD implementations, given the small grain size of the
processors, are subject to some efficiency and portability problems. As an example of
these problems, if the implementation is on a fine grain hypercube parallel computer and
if the mapping is such that all the communication paths in the pyramid are mapped into
communication paths in the hypercube with length bounded by two [65], a fraction of
the nodes is never used (one third for two-dimensional problems encountered in vision).
Furthermore, if the standard multigrid algorithm is used, when iteration is on a coarse
scale all the nodes in the other scales (i.e., the majority of nodes) are idle and the

efficiency of computation is in part compromised.

In particular, Hypercube computers support a two-dimensional mesh.
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Details about the different applications are given in the following chapters.

4.2 Domain Decomposition

If one defines as one work unit the amount of computation required by a complete
relaxation and discontinuity detection on the finest grid, execution of the presented
algorithms require from 3 to 10 work units 2, depending on the number of relaxations
used on each layer (i.e., depending on the precision required on the solution).

Given the regularity of the algorithms and the locality of communication between
different computational elements, they can be parallelized in a straightforward manner.
The decomposition scheme depends on the technical constraints imposed by character-
istics of the individual processors and of the hardware connections between them. One
essential distinction that has to be done is related to the number of processors available
and the “size” of a single processor.

If implementation is done on a SIMD parallel computer with a number of processors
comparable to the number of computational units, one strategy assigns one processor
to each unit (see [65,70]). In this manner the maximum amount of parallelism is ob-
tained. The drawback of this approach is that if the implementation is on a hypercube
parallel computer and if the mapping is such that all the communication paths in the
pyramid are mapped into communication paths in the hypercube with length bounded
by two [65], a fraction of the nodes is never used (one third for two-dimensional prob-
lems encountered in vision). A detailed presentation of mapping techniques available
for hypercube multiprocessors with small grain nodes 3 has been given in [65]. These
techniques are based on the assignment of a one-dimensional array of pixels to pro-
cessors ordered according to the binary reflected Gray code. The maximum Hamming
distance between processors assigned to grid points that need to communicate data is
in this case limited by two.

Furthermore, if the standard multigrid algorithm is used, when iteration is on a

coarse scale all the nodes in the other scales (i.e., the majority of nodes) are idle and

2Using a SUN 386i workstation and C language, this corresponds to approximately one minute, if
memory is large enough to contain the entire pyramidal structure.

3The Connection Machine is an example.
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the efficiency of computation is in part compromised. To ameliorate this problem,
intrinsically parallel multiscale algorithms must be considered [66].

Fortunately, if a MIMD computer with powerful processors, sufficient distributed
memory, and two-dimensional internode connections (clearly the hypercube contains a
two-dimensional mesh) is available the above problems do not exist. The individual
processors are powerful and capable of containing data corresponding to the large group
of pixels assigned to them *. Assuming that a two-dimensional grid can be enbedded
in the parallel architecture ®, a two-dimensional domain decomposition assigns to ev-
ery processor a rectangular patch of the image with its “slice” of pyramidal structure
(containing elements at all scales corresponding to the assigned patch).

The two mapping strategies are illustrated in figure 4.1.

All nodes are working all the time, switching between different levels of th pyramid
(as required by the multiscale algorithm) as illustrated in figure 4.2.

No modification to the sequential algorithm is needed for points in the image be-
longing to the interior of the assigned domain. On the contrary, points on the domain
need to know values of points assigned to a nearby processor. With this purposec the
assigned domain is extended to contain points assigned to nearby processors and a
communication step before each iteration on a given layer is responsible for updating
this strip so that it contains the correct (most recent) values. Every processor oper-
ates at all levels of the pyramid, alternating computation and communication steps to
exchange the data on the borders of the assigned domain, as illustrated in figure 4.3.

Only two exchanges of data in the two dimensions are necessary.

4.3 Communication Overhead and Complexity

Multigrid algorithms are optimal in the sense that they can compute a solution in

time proportional to the number of unknowns. Let’s suppose that complexity for the

*This is indeed the case for the Definicom board with Transputers used during the development
phase. Each Transputer contains up to 1 Megabyte of memory and produces approximately 10 Mips.

5For a hypercube multiprocessor the cross product of two one-dimensional Gray codes can be uscd.
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Figure 4.1: Grid points of a pyramidal structure can be mapped to Hypercubes in
different ways, depending on technology constraints. Left: mapping using Gray code.

Right: mapping using domain decomposition.

standard algorithm is (asymptotically) Time = Ycomp 7, where n is the number of
pixels and Y.omp depends on the number of relaxations used in the algorithm.

Since all processors are active most of the time and since the communication over-
head is a “surface effect” proportional to 1/,/n, where n is the number of pixels assigned
to a given processor, the parallel implementation brings a speed-up that is approx-
imately linear in the number of available processors. Taking both computation and

communication into account, complexity for the suggested parallel version is

n

] n
szc = 'Ycomp Tj + Ycomm 5 (4]‘)
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Figure 4.2: Domain decomposition for multigrid computation. Processor communica-

tion is on a two-dimensional grid, each processor operates at all levels of the pyramid.

where D is the number of domains (equal to the number of processors). The proportion-
ality factor y.omm depends on the communication speed, on the number of iterations,
and on the height of the pyramidal structure.

Preliminary timing has been done using a board with four processors  obtaining
times of 600-900ms for 65X 65 images on all the considered problems. Each node spends
approximately 20% of its time in internode communication. In addition some time
is required to load the data and read results. Results are illustrated graphically in
figure 4.4.

Given the approximately lincar speed-up, a configuration with 8x8 nodes should

be able to “solve” a 256x256 image in less than one second (excluding input-output

$Definicom board with Transputers, software from Parasoft.

76



cxchange 0

exchange |

PROC 2 PROC 3

Figure 4.3: Communication strategy for two-dimensional domain decomposition. Data

of the assigned domain are bordered by data received from nearby processors. Two

exchanges are sufficient.

time).

4.4 Results for Shape from Shading

In this section I present the results of the parallel implementation of the shape from
shading algorithm proposed in [71]. They proposed an iterative scheme for solving
the shape form shading problem. A preliminary phase recovers information about
orientation of the planes tangent to the surface at cach point by minimizing a functional

containing the image irradiance equation and an integrability constraint, as follows:
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Figure 4.4: Timing results. Above: time spent exchanging data (change) and commu-

nicating with the host (read-write).

E(p,q) = / (I(z,y) — R(p,9))* + A(py — ¢z)’dzdy (4.2)

mage
where p = 02/0z
g = 92/0y
I= measured intensity

R= theoretical reflectance function

Aftér the tangent planes are available, the surface z is reconstructed minimizing the

following functional:

E(z) = /, (zz = p)2 + (2, — ¢)dady (4.3)
mage
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Euler-Lagrange differential equations and discretization arc left as an exercise to
the reader.

figure 4.5 shows the reconstruction of the shape of a hemispherical surface start-
ing from a ray-traced image 7. Above is the result of standard relaxation after 100
sweeps, below the “minimal multigrid” result  whose total solution time is equivalent

to approximately four iterations on the finest grid.

Figure 4.5: Reconstruction of shape from shading : standard relaxation versus multi-

grid.

This case is particularly hard for a standard relaxation approach. The image can be
interpreted “legally” in two possible ways: either as a concave or a convex hemisphere.

Starting from random initial values, after some relaxations some image patches will

TA simple Lambertian reflection model is used.

8V cycles with one relaxation on cach level
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typically “vote” for one or the other interpretation and try to extend the local interpre-
tation to a global one. This not only takes time (given the local nature of the updating
rule) but encounters an-endless struggle in the regions that mark the border between
different interpretations. The multigrid approach solves this “democratic impasse” on
the coarsest grids (much faster because now information spreads over large distances)
and propagates this decision to the finer grids, which will now concentrate their efforts
on refining the initial approximation.

Another example is show in figure 4.6 , where the algorithm tried to reconstruct

the three-dimensional structure of the Mona Lisa face painted by Leonardo °.

Discontinuities were not considered for the two previous tests.

4.5 Results for Surface Reconstruction from Depth Con-
straints

For the surface reconstruction problem (with membrane energy term) the energy func-

tional is

BG@w) = [ (o(e,9) - de,9)? + A2 + #)dzdy (44)

mage

A physical analogy is that of fitting the data d(z,y) with a membrane pulled by

springs connected to them. A given z value is updated as follows:

Zsum + ﬁ X h2 X d(‘r7 y)
Nsum + ﬂ x h?

2(z,y) «
where h = grid step.

Zum =,  DN(z +dz,y+dy) x 2(z +dz,y + dy);
dr=th;dy==%h

? Anticipating the rcader’s unhappiness with her aesthetic appearance, let’s remember that the
Lambertian reflectance model is clearly a very naive approximation of the artistic shading used by

Leonardo
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Ngum = Z DN (z + dz,y + dy);
dr=th;dy=1h

The effect of active discontinuities ( DN=1 ) is clearly that of confining the smooth-
ing action inside the detected borders.

Detailed performance tests have been made using noisy data for z values correspond-
ing to “Randomville” structures. These are obtained by generating random coordinates,
heights, slants and tilts for quadrangular blocks and placing them in the image plane.
The data are then corrupted by noise and loaded as constraints in the algorithm.

For 129 x 129 “images” and noise values corresponding to 25% of the highest
structure, a faithful reconstruction of the surface (within a few percent of the original
one) is normally obtained after one single multiscale sweep (with V cycles) on four
layers 1°.

The total computational time corresponds approximately to the time required by
3 relaxations on the finest grid. Because of the optimality of multiscale methods, time
increases linearly with the number of image pixels.

User interface examples and results from some tests are shown in chapter 2. Fig-
ure 2.7 shows the simulation environment on the SUN workstation. The reconstruction
of a typical “Randomville” image has been presented in chapter 2 (see figures 2.8
and 2.9).

A simplified version of the used parallel program for MIMD machines, using the Ex-
press communication routines (a commercial version of the communication environment
developed within the Caltech Concurrent Computation Program) is listed in chapter A

in the appendix.

4.6 Summary and Discussion

The presented multiple scale algorithms can be efficiently executed on a parallel com-
puter with medium grain size and a two-dimensional domain decomposition is suggested
as a simple but effective approach. Given the computational load per pixel of the al-

gorithms (approximately 100 floating point operations per pixel), the communication

1974 other words, parameters na,nb,nc in mg() are equal to one.
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time between neighboring processors is not a critical parameter!!.

The loading and unloading time (i.e., the time required to load the image data into
the different nodes and to get the results back to the host processor) has been the
limiting factor in the “close-to-real-time” implementation!?.

Richer connectivity (for example, use of an additional channel for direct transmis-
sion of the image data and results to and from each processing node) or faster channels
have to be used if 30 images per second (with 512x512 pixels) have to be transferred

to the nodes for processing.

A bandwidth of 1Mbyte/sec is enough for efficiency greater than 90% using processors of 1Mflop

with 1Mbyte of memory.
2For example, the bandwidth for image loading obtained with Tranputer boards and Parasoft soft-

ware is less than 100Kbytes/sec.
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Figure 4.6: Mona Lisa in three dimensions.
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Part IV

Teaching Multilayer Perceptrons
with Optimization Methods
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Chapter 5

Fast Neural Net Teaching
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5.1 Introduction: Teaching Neural Networks with the
Memoryless Quasi-Newton Method

Multilayer feedforward “neural” networks have been shown to be a useful tool in di-
verse areas, such as pattern classification, multivariable functional approximation, and
forecasting over time [82,83,89,93,95,91,85). For example, in the character recognition
field, many applications have already been developed using neural network approaches
(see [92] and the contained references).

In the “back-propagation” (BP) learning procedure a network with a fixed structure
is programmed using gradient descent in the space of the weights, where the energy
function to be minimized is defined as the sum of squared errors [95].

A common difficulty encountered in using back-propagation is that the number
of iterations required for convergence tends to increase rapidly with the size of the
problem. Significant problems require the use of supercomputers, while other learning
tasks are beyond current computational power.

Now, it is well known from the optimization literature that pure gradient descent
methods can be, and usually are, very inefficient, as will be explained in the following
section. In addition, there are no general prescriptions for selecting the parameters in
the learning algorithm (like the learning and momentum rate in BP). It is usually left
to the user to find a good or optimal combination of these parameters that leads to
avoidance of local minima and fast convergence times. This is surely interesting from
the point of view of theoretical research ({100} is an example), but leads to a waste of
time and computational resources during this meta-optimization phase (optimization
of the behavior of the optimization method).

The focus of this work has been on transferring some meta-optimization techniques,
usually left to the user, to the learning algorithm itself. Since this involves measuring
optimization performance and correcting some parameters while the optimization al-
gorithm is running, some global information is required (typically in the form of scalar
products of quantities distributed over the network).

In all cases the “standard” back-propagation algorithm is used to find the values

of the energy and the negative gradient for a given configuration. The differences are
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in the definition of the search direction and/or in the selection of a step size along the
selected direction.

In the first method proposed, the search direction remains equal to the negative
gradient but the (scalar) step size is adapted during the computation. This strategy
has been suggested independently in [101] and is here summarized for convenience
before using it in the test problems. In the second one both the search direction and
the step size are changed in a way that is suggested by standard techniques used in
optimization. In both cases the network is updated only after the entire set of patterns
to be learned has been presented to it.

The description of the two proposed methods (see also [80]) is preceded by a brief
discussion about the limits of back-propagation and about some heuristics that have

been proposed for accelerating its convergence.

5.2 Limits of Back-propagation

In a given iteration n of back-propagation, the search direction d, is given by the
negative gradient of the energy, while the step along this direction is taken to be

proportional to d,, with a fixed constant ¢ (learning rate), as follows:

d, = -VE(wy) (5.1)
Wnil = Wp +ed, (5.2)

The learning rate is usually chosen by the user to be “as large as possible without
leading to oscillations” ([95]).

The inefliciency of gradient descent methods is well known in the optimization
literature. For example, if the steepest descent method is applied to a quadratic function
F(x)=cTx+ 1 xTGx (G symmetric and positive definite) using an ezact linc scarch

to determine the step length, it can be shown that

- ’\min

2
Flanr) = Fa*) = (2200 ) (Flan) - () (5.3)

/\maa: + /\min
where z* is the optimal point and Aoz and Ay, are the largest and smallest eigenvalues

of G. This means that the asymptotic error reduction constant can be arbitrarily close
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to unity ([88]). A case in which this happens is when “the search space contains long
ravines that are characterized by sharp curvature across the ravine and a gently sloping
floor”([95]).

The situation can be ameliorated in part by modifying the search direction with
the introduction of a momentum term, as follows:

dn = —VE(wn) + (%) Awat (5.4)

Assuming that the parameter a is chosen appropriately, convergence is in this case
faster, although the obtained performance is far from optimal.

Recently an overview of heuristics employed to accelerate back-propagation has
been presented in [94], where it is suggested that each weight should be given a different

learning rate, changing over time during the computation.

5.3 The “Bold Driver” (BD) Method

This method is an example of an heuristic solution to the problem of selecting an
appropriate learning rate in BP 1. It requires only a limited change to standard back-
propagation, based on the following intuitive argument.

In general, the number of steps to convergence for BP is a decreasing function of
the learning rate up to a given point, where oscillations in the weights are introduced,
the energy function does not decrease steadily and good local minima are missed.
Performance degradation in this case is usually rapid and unpredictable. The proposed
solution is to start with a given learning rate (any value greater than zero will work) and
to monitor the value of the energy function E(w,) after each change in the weights. If
E decreases, the learning rate is then increased by a factor p. Vice versa if E increascs,
this is taken as an indication that the step made was too long, the learning rate is
decreased by a factor o, the last change is canceled and a new trial is done. The
process of reduction is repeated until a step that decreases the energy value is found
(this will be found if the learning rate is allowed to tend to zero, given that the search

direction is that of the negative gradient).

!For clarity of comparison the momentum rate is set to zero.

88



Heuristically, p has to be close to unity (say p = 1.1) in order to avoid {requent
“accidents,” because the computation done in the last back-propagation step is wasted
in these cases. Regarding the parameter o a choice of o = 0.5 can be justified with the
reason that if the local “ravine” in the search space is symmetric on both sides this will
bring the configuration of the weights close to the bottom of the valley.

The exponential increase in the learning rate (€ = €gp™) is preferred to a linear one
because it will typically cause an “accident” after a limited number of steps, assuming
that the proper learning rate for a given terrain increases less rapidly. Now, such acci-
dents are productive because after them the learning rate is reset to a value appropriate
to the local energy surface configuration.

An example for the size of the learning rate as a function of the iteration number
is given in figure 5.1. o

The performance of this apparently "quick and dirty” method (considering both
the number of iterations required and the quality of the local minimum found) is close
and usually better than that obtainable by optimizing a learning rate that is to remain
fixed during the procedure. Besides the momentum term, there are now no learning
parameters to be tuned by the user on each problem. The given values for p and o
can be fixed once and for all and, moreover, performance does not depend critically on
their choice, provided that the heuristic guidelines given above are respected. Given
the above reasons, we decided to use this method in order to obtain a meaningful

comparison with the method suggested in the following section.

5.4 The BFGS Memoryless Quasi-Newton Method

We will use the term “conjugate gradient method with inexact linear searches” as a
synonym for “one-step BFGS memoryless quasi-Newton method”, (BFGS for short)
leaving some technical details and a brief explanation in appendix C.

Shanno [98] reviews several variations of the conjugate gradient method and sug-
gests one method using inexact linear searches and a modified definition of the search
direction that “substantially outperforms known conjugate gradient methods on a wide

class of problems”.
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Figure 5.1: Example of learning rate behavior as a function of the iteration number for
the “bold driver” network. “Accidents” during the scarch cause a rapid decrease in the

learning rate, followed by exponential increase during normal operation.
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Let’s define the following vectors: g, = VE(W,), Pn = Wn — Wy and y, =
gn — Bn—1- In the suggested strategy, successive approximations to the minimizer w*

of a function E(w) are generated iteratively in the following way:

do = - (5.5)
dn = —8n + AnPn + BaYn (5.6)
Wil = Wn + €, dy (5.7)
where €, = min E(w,+€d,) (5.8)

The coefficients A, and B, are combinations of scalar products of the vectors defined

at the beginning of this section, as follows:

Anz_(1+)'n')'n) pn‘gn_*_)'n‘gn (5.9)

Prn*¥n/ Pn*¥n Pn-¥Yn
B, = B 8n (5.10)
Pn-Yn

Every N steps (N being the number of weights in the network) the search is restarted
in the direction of the negative gradient. It is worth noting that if the function E(w) is
quadratic in an N-dimensional space ( E(w) = ¢Tw + 3 wIGw, where G is a positive
definite symmetric matrix), this method is guaranteed to converge to the minimum in at
most N + 1 function and gradient evaluations. Correction of the search direction based
on previous steps is in part reminiscent of the use of a momentum term introduced in
[95], with the added feature that a definite prescription is given for the choice of the
various factors.

A critical issue to consider when applying conjugate gradient methods to back-
propagation is that the computation required during the exact one-dimensional opti-
mization implied by eqn. 5.8 is expensive because every function and gradient eval-
uation involves a complete cycle of pattern presentation and error back-propagation;
therefore efficient approximate one-dimensional optimization have to be used. The
one-dimensional minimization used in this work is based on quadratic interpolation
and tuned to back-propagation where in a single step both the encrgy value and the
negative gradient can be efficiently obtained. Details on this step are contained in

appendix D.
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The above method, while requiring only minor changes to standard back-propagation,
is capable of reducing the number of steps to convergence by orders of magnitude on
some problems with a large number of weights. Three example problems and the
obtained results are described in the two following sections. A similar optimization
approach, using Polak-Ribiere optimization, is presented in [90]. They also obtain a
sizable speed-up with respect to standard back-propagation, although they do not op-

timize its parameters?

. Now, a major difficulty with the Polak-Ribiere algorithm is
that the search directions obtained are not necessarily descent directions, and numer-
ical instability can result. This happens because the matrix used to obtain the search
direction from the gradient is not symmetric and hence not positive definite. Another
problem caused by this lack of symmetry is that the quasi-Newton equation is not

satisfied (see [98]) The cited difficulties are not present in the BFGS method.

5.5 Test: the Parity Function

Recently Tesauro and Janssens [100] measured optimal averaging training times and
optimal parameter settings for standard back-propagation with momentum term. Their
training set contains binary strings as input and their parity as target output.

In order to benchmark the two new proposed methods, the same network is used (n
input units, 2n hidden units, one output) and weights are initialized randomly using
the same scale parameter 1,5 and momentum rate parameter Qopt aS those given in
[100].

The results of 100 simulations for each problem show first that back-propagation
with adaptive learning rate (BD) produces results that are close to thosc obtained by
optimizing parameters in back-propagation with fixed learning rate, sccond that the
memoryless quasi-Newton method brings a sizable speedup on both previous methods. |
Visual and numerical displays of results are in figure 5.2 and in table 5.1. Results in
[100] are given both as number of iterations and as number of cycles. This last number

is more significant for the comparison, since in the other cases weights are corrected

2We agree with them that ”finding parameters (for BP) that result in fast progress and stable

behavior is a black art, at best”.
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Figure 5.2: Performance comparison: standard back-propagation with optimal param-
eters from Tesauro-Janssens (Upper curve ( o ): number of iterations. Lower curve (
o ): iterations divided by training patterns), back-propagation with adaptive learning

rate ( O ) and memoryless quasi-Newton method ( O ).

after one cycle of pattern presentations. Since the number of local minima is small in

this case, only data regarding correct convergence are shown.

5.6 Test: the Dichotomy Problem

This problem consists in classifying a set of randomly generated patterns in two classes.
It has been demonstrated in [81] that an arbitrary dichotomy for any set of N points in
general position in d dimensions can be implemented with a network with one hidden
layer containing [N/d] neurons. This is in fact the smallest such net, as dichotomies

that cannot be implemented by any net with fewer units can be constructed. In this
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l patternsJ BP ] BD I BFGS l speedup (BD/BFGS)J
cycles (s.d.) | cycles (sd.) | cycles (s.d.)
2 24 (N/A) 46 (11) 16 (8) 2.8
3 33 (N/A) 57 (17) 22 (10) 2.6
4 75 (N/A) 137 (57) 68 (58) 2.0
5 130 (N/A) | 213 (115) 93 (69) 2.3
6 310 (N/A) | 616 (835) | 199 (127) 3.0
7 800 (N/A) | 875 (359) | 371 (300) 2.3
8 2000 (N/A) | 4310 (3088) | 700 (368) 6.1

Table 5.1: Results for parity problem. Timing comparison between standard back-
propagation with optimal parameters (from Tesauro-Janssens) and the two methods

suggested in the article.

test the pattern coordinates are random values belonging to the [0-1] interval.

A dichotomy problem is defined by the number of patterns generated. The dimen-
sion of the space and the number of inputs is two, the number of middle-layer units is
[N/2] by the above criterion and one output unit is responsible for the classification.

Simulation runs have been made starting from small random weights (to break
symmetry), with maximum size r equal to 0.1. Correct performance is defined as
coming within a margin of 0.1 of the correct answer. Results of the “bold driver” and
the memoryless quasi-Newton methods are compared in figure 5.3.

The capability of the network does not avoid the problem of local minima. These
points are detected in an approximate way by terminating the search when the modulo
of the gradient or of the weight change becomes less than 107, In fact the results show
that their number is increasing as a function of the dimension of the scarch space (i.e.,
the number of weights in the network). Results of different tests (the random number

generator seed is changed) are given in table 5.2.

5.7 Summary and Discussion

The main object of this work has been that of comparing standard back-propagation

with the memoryless quasi-Newton method (BFGS) for optimization. This method has
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| patterns | BD BFGS | speedup (BD/BFGS) |
6 cases: cycles (s.d.) | cases: cycles (s.d.)
correct 124: 1040 (1458) 115: 44 (56) 23.6
loc.min. |  4: 9032 (10403) 13: 49 (74)
10
correct 104: 5044 (6870) 90: 204 (368) 24.7
loc.min. | 24: 3923 (4914) 38: 404 (1005)
16
correct | 106: 13245 (10572) 94: 295 (513) 44.8
loc.min. | 22: 14116 (11960) 34: 755 (1605)
20
correct 111: 23293 (16792) 87: 380 (433) 61.3
loc.min. 17: 41000 (28583) 41: 1632 (3021)
30
correct 44: 46265 (20761) 36: 710 (418) 65.1
loc.min. 20: 59843 (16555) 28: 1800 (1300)
50
correct 4: 157296 (36837) 13: 1347 (600) 116.7
loc.min. | 4: 211292 (59424) 51: 4307 (2159)
100
correct 0: 0: N/A
loc.min. | 8: 1435950 (560974) 64: 12645 (4161)

Table 5.2: Results for dichotomy problem. Back-propagation with adaptive learning
rate (“bold driver” method, or BD) vs. memoryless quasi-Newton method (BFGS).
Number of test cases and average number of cycles (and standard deviation) for con-
vergence to correct solution or local minimum are shown. Speedup is given only for

convergence to correct solution.
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been selected because its memory and computation requirements during each step grow
only linearly with the number of weights. Furthermore numerical stability is assured
and the number of steps for convergence has been shown to be small in many test prob-
lems. The strategy for the one-dimensional search is based on quadratic interpolation
and requires a limited number of (expensive) function evaluations.

Since back-propagation requires a choice of its learning rate, a fair comparison
brought us to consider an adaptive version of back-propagation (BD), where the learning
rate is adapted to the structure of the energy surface. From some tests, BD produces
results close to those obtainable by optimizing BP (with parameters that are to remain
fixed during the learning phase) and therefore can be considered a good candidate for a
fair comparison against BFGS. In addition, the user-driven optimization of parameters
is avoided.

For the considered test problems, the memoryless quasi-Newton method converges
in a time that is from one to two orders of magnitude smaller than that required by BD
(or by a session of BP with optimized parameters). The BFGS method therefore should
be considered as an effective modification to standard BP, especially for problems that
require an expensive training phase.

One possible objection to using standard optimization techniques for BP is that
they require some sort of global computation. Now locality is a concept that depends on
the mapping between a given algorithm and the processors (VLSI hardware, biological
neurons, ...) responsible for the computation. In this sense back-propagation is local
if different processors are assigned to the different weights and “neurons” and if the
chain rule for partial derivatives is used in calculating the gradient ,“back-propagating”
the errors through the network. A concept related but different from locality is that
of parallelism, where a given computation can be done by more computational units
working concurrently on different partial tasks (with a spcedup in the time required to
complete it). Despite the fact that networks performing local computation are usually
easier to implement in parallel architectures, it is nonetheless true that parallelism of
computation can be obtained also in certain cases where a global information exchange

is required (see [87] for many examples in both areas).
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Both proposed methods have indeed been implemented on parallel hardware 3 (as-
signing different patterns to be learned to different processors) and require only one
global exchange of information during each learning cycle, in order to choose the next
learning rate and search direction. Efficiency of implementation is close to 100% for
problems with a large number of patterns to be learned (this is one case in which

computation time tends to prevail over communication time).

3A hypercube built with 16 Transputers.
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Part V

Conclusion and Appendices
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Chapter 6

Real-Time Vision Machines?

6.1 Brief Conclusion

The design of real-time computer vision systems is facilitated if fast special purpose
visual modules are integrated using parameter optimization (i.e., learning techniques).

Nonetheless, since the learning task is difficult and requires a computing time that
increases rapidly with the size of the problem, it is imperative to use all the available
algorithmic tools before applying learning only to select a restricted number of essential
and difficult to determine or unknown parameters.

In this thesis, efficient techniques based on multiple scale processing with adap-
tive grids and discontinuities have been implemented on parallel computers, showing
that real-time performance for low and intermediate level computer vision modules is
within the reach of available digital computing technology. In the near future the same
operations may be implemented at a still lower cost using analog VLSI vision chips.

In addition, learning techniques based on optimization have been shown to converge
in some minutes of CPU time using standard microprocessors (for problems with a few
hundreds of parameters to be determined).

The next challenge (left as an excercise for the reader...) is that of integrating the
available visual modules in an optimal way in order to open the road to a widespread

use of computer vision for the different applications.
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Appendix A

Listing of Hypercube Program

A.1 Header with Basic Data Structures and Macros
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A.2 Host Program and Graphics
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A.3 Node Program
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Appendix B

Three Point Approximation of

Derivatives

We shall derive the third-order expressions for the three-point approximations of the
temporal and spatial brightness derivatives. Let f(z — vt) be a one-dimensional trans-
lating brightness profile. Taylor’s expansion provide the three-point formula for the

first order brightness derivatives:

- ) + 9 og) (B.1)

f(y+h)— fy—h)
2%

The approximation of the temporal derivative is given by

5 _ Sz = o(t+ A) - f(z — vt - A))
t= 2At

(B.2)

which becomes by setting y = = — vt,

B - f(y — vAt) — f(y + vAl)
t= 2AL

(B.3)
and which is, according to (22), equal to
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- o) - LOCAT 4 owary) (8.4

Since f; = f'(z — vt)(—v) = —vf'(y), we arrive at

By=f - EL;(_!I)(,,A,)Z, (B.5)

where the higher order terms are neglected. A similar expression holds for the approx-

imation of the spatial derivative

Ex = fz + "jllﬁ(y_)(Az)z, (B‘6)

where Az is the spatial sampling step.
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Appendix C

Memoryless Quasi-Newton
Methods and Conjugate
Gradient Methods

The Newton’s method for minimization (see the comprehensive description in [8