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Abstract

Optical microcavities confine light at resonant frequencies for extended periods of

time and fundamentally alter the interaction of light with matter. They are the basis

of numerous applied and fundamental studies, such as cavity QED, photonics and

sensing. Of all resonant geometries, surface tension-induced microcavities, such as

silica micro-spheres, exhibit the highest Q-factor to date of nearly 9 billion. Despite

these high Q-factor and the intense interest in these structures, the nonlinear optical

properties of silica micro-spheres have remained nearly entirely unexplored. In this

thesis the nonlinear optical phenomena which can occur in ultra-high-Q microcavities

are investigated. To efficiently excite the whispering-gallery modes, tapered optical

fibers are used and the coupling to ultra-high-Q modes studied. It is found, that

microcavities with ultra-high enter a regime where scattering of light into the degen-

erate pair of clockwise and counter-clockwise mode is the dominant scattering process.

In this regime the coupling properties are significantly altered, but the cavities still

retain their ability to achieve significant cavity build-up fields. This allowed exceed-

ing the threshold for all common nonlinearities encountered in silica. In particular,

stimulated Raman scattering is observed in taper fiber coupled silica micro-spheres

at threshold levels typically in the micro-Watt range, which usually is considered the

regime of linear optics. Cascaded Raman lasing is also observed in these structures.

The tapered optical fiber in these experiments functions to both pump WGMs as

well as to extract the nonlinear Raman fields. In addition, the tapered-fiber cou-

pling junction is highly ideal, making it possible to strongly over-couple ultra-high-Q

cavities with negligible junction loss. This feature allows for the observation of very

high internal differential photon conversion efficiencies approaching unity. Whereas
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micro-spheres are both compact and efficient nonlinear oscillators, their fabrication

properties lack the control and parallelism typical of micro-fabrication techniques. A

synergistic approach of micro-fabrication and a laser assisted reflow process, allows

to create toroidally silica microcavities on a chip. In this thesis it is demonstrated,

that these cavities can exhibit ultra-high-Q whispering-gallery modes, allowing to

achieve ultra-high-Q modes on a chip. This results is a nearly four-order of magni-

tude improvement with respect to other wafer-scale microcavities. In addition their

azimuthal mode-spectrum is strongly reduced. Nonlinear oscillation in these cavities

has also been studied, and stimulated Raman scattering observed, allowing to achieve

the first Raman laser on a chip. The devices show improved performance compared

to micro-spheres due to a strongly reduced azimuthal mode spectrum, which allowed

to observe single mode emission. The enhanced geometric control of these cavities is

also studied and found to profoundly alter the nonlinear optical processes the toroid

microcavities. Reduction of toroidal cross section is observed to cause a transition

from stimulated Raman to parametric oscillation regime. This allowed to observe

Kerr nonlinearity induced parametric oscillation in a microcavity for the first time.

The parametrically generated "twin beams" exhibit high conversion efficiency and

show near unity signal-to-idler ratio.
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Chapter 1

Introduction

Optical microcavities are used to confine light both spatially and temporally. The

spatial confinement is typically described by the mode volume (V), whereas the tem-

poral confinement is described by the quality factor (Q), which is the photon storage

time, normalized with respect to the frequency of oscillation. Surface-tension-induced-

microcavities, such as micro droplets or microspheres, are dielectric cavities which are

created by surface tension and which exhibit a near atomic scale surface finish. Light

within the sphere is confined by continuous total internal reflection near the cavity

perimeter, and the modes have therefore been called "whispering-gallery" modes. Of

all geometries studied for confining light, surface-tension induced silica microspheres

have attained the highest optical quality-factors (Q) to date of nearly 10 billion [1],

and are of interest for a variety of studies ranging from fundamental physics such as

cavity Quantum Electrodynamics [2][3][4] to more applied areas such as low thresh-

old and narrow line-width lasers [5][6][7], as well as high-sensitivity transducers for

biochemical sensing[8]. The small mode volume and long photon storage time can

also be used for nonlinear optical studies, as strong resonant buildup of energy in

micro-scale volumes significantly reduces the threshold for nonlinear optical effects

to occur. This was recognized in the pioneering work of Chang [9][10] and Campillo

[11][12][13]who observed and studied a variety of nonlinear optical effects in ultra-

high-Q liquid micro-droplets. Their work used free-space illumination to optically

pump the micro-droplets and thereby induce Raman oscillation [10][11][13], cascaded

Raman scattering [10] and Brillouin scattering[14]. However, due to their transient
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nature, liquid micro-droplets have remained a mere laboratory tool, and the pump

threshold for nonlinear effects have remained high, despite ultra-high Q, due to the

low efficiency of free-space excitation. Furthermore, despite a wealth of reported

nonlinear optical microcavity effects, parametric oscillation has not been observed so

far.

Silica microspheres provide a far more stable and robust microcavity in compar-

ison with liquid micro-droplets. However, despite numerous studies on these devices

over the past decade [15][16][17][18][19][20][21] [22][23]the observation of nonlinear

phenomena (beyond thermal effects) in these devices, had been limited to one report

on Kerr-induced wavelength shifts at low temperatures [18].

1.1 Thesis outline

In this thesis the stimulated and parametric nonlinear optical processes in ultra-high-

Q silica microcavities are investigated and analyzed for the first time. To pump the

optical whispering-gallery modes of the silica microcavities efficiently, tapered optical

fibers were used[24][25]. It is demonstrated that the excitation using tapered opti-

cal fibers can be highly efficient [26], and can allow to couple to silica microcavities

with negligible parasitic (junction induced) loss. Ultra-high-Q microcavities naturally

transit into a regime, where surface scattering centers can render the degenerate clock-

wise and counterclockwise mode strongly coupled, giving rise to the regime of strong

modal coupling[27]. It is shown that in this regime the tapered-optical fiber coupling

properties are significantly altered. The whispering-gallery modes appear significantly

split, and behave as a frequency selective mirror. It is shown, that even in the pres-

ence of modal coupling, high circulating power within the cavity can be achieved.

and allowing to exceed the threshold for all common nonlinear optical effects of silica.

Stimulated Raman scattering, the interaction of light with optical phonons of silica,

is observed in fiber-coupled silica microspheres and the measured threshold for non-

linear oscillation are lower than for any other nonlinear optical oscillator reported to
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date. In particular, a silica micro-sphere Raman lasers with ultra-low threshold levels

of only 62 µ-Watts [28] is demonstrated in this thesis. Compared to micro-droplets

these devices allow stable and long term observation of nonlinear optical effects in

microcavities. Cascaded Raman lasing in these devices of up to 5 orders has also been

observed [29][5] and the lasing properties analyzed theoretically and experimentally.

The tapered optical fiber in these experiments functions to both pump WGMs as

well as to extract the nonlinear Raman fields. In addition, the tapered-fiber coupling

junction is highly ideal[26], making it possible to strongly over-couple ultra-high-Q

cavities with negligible junction loss. This feature allows for the observation of very

high internal differential photon conversion efficiencies approaching unity[5].

Whereas microspheres are both compact and efficient nonlinear oscillators, their

fabrication properties lack the control and parallelism typical of micro-fabrication

techniques. In this thesis the optical properties of toroid microcavities on-a-chip

[30] are analyzed, and ultra-high-Q modes (UHQ) demonstrated. The measured Q-

factors in this thesis constitute an improvement in Q-factor of nearly 4 orders of

magnitude compared to other chip-based microcavities. UHQ toroids have several

advantages over spheres including being wafer-scale devices that can be fabricated

in parallel as dense arrays or integrated with electronics or complementary optical

functionality. The use of toroid microcavities as nonlinear oscillators is investigated,

and the first Raman oscillator on a chip is demonstrated[8]. The reduced mode volume

of toroid microcavities, allow to observe stimulated Raman scattering at effectively

lower threshold than in microspheres. In addition the strongly reduced azimuthal

degree of freedom, allowed to obtain single mode Raman lasing, over a large range of

pump powers. This constitutes a significant advantage over micro-spheres and micro-

droplets. Furthermore, the effect of the toroid geometry on the nonlinear optical

effects is studied and is found to profoundly alter the nonlinear optical processes in the

microcavity. Specifically, a reduction of the toroid cross sectional diameter, allowed to

induce a shift from stimulated Raman to Parametric oscillation regime. This allowed

to observe Kerr nonlinearity optical parametric oscillation in a microcavity for the

first time. Optical parametric is observed at ultra-low threshold and high efficiency,



5

and the generated signal-idler "twin beam" show near unity signal-to-idler ratio[9].

1.2 Chapter overview and collaborative work

The results of the author presented in this thesis were to a large extent performed in

collaborative work with his colleagues. In what follows the results of the individual

chapters are given and the relative contributions indicated.

Chapter 2 is a self contained introduction to spherical dielectric resonators (silica

microspheres). The resonant characteristics of microspheres, such as their field dis-

tribution, mode volume and radiation loss are discussed and serve as an introduction

to the terminology which is used throughout this thesis.

Chapter 3 describes the experimental infrastructure the author has implemented

jointly with his colleague Sean Spillane to continue work on microspheres resonators,

that had initially be been started by graduate student Ming Cai. The experimental

setup for fabrication of tapered optical fibers, as well as measurements the author

performed on silica microspheres are described. The up-conversion pictures in chapter

1 were obtained from microspheres which were implanted with erbium ions, a task

Jeroen Kalkman from the group of Albert Polman at AMOLF accomplished.

Chapter 4 investigates the influence of strong mode splitting (which is commonly

observed, due to the sensitive nature of the ultra-high-Q microcavities to surface

defects) on the coupling properties of tapered optical fiber. In particular, the author

has observed and described the coupling properties in the regime of strong modal

coupling, in which the resonator mimics a frequency selective reflector. This chapter

has appeared in Optics Letters [27]. In addition these measurements were carried

out in the presence of negligible parasitic loss, a property which has been further

investigated by his colleague Sean Spillane and which has appeared in Physical Review

Letters[31].

Chapter 5 describes the observation of ultra-low threshold stimulated Raman

lasing in taper-fiber coupled silica microspheres, which the author studied and ex-
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plored in collaboration with his colleague Sean Spillane. Threshold values which are

more than 3 orders of magnitude lower than in previous work have been obtained.

This chapter has been published in Nature[31].

Chapter 6 presents a theoretical and experimental analysis of stimulated and cas-

caded Raman scattering in taper coupled micro-spheres resonators, and complements

the results of chapter 4. The author investigated the properties of cascaded Raman

scattering theoretically, which Bumki Min verified experimentally. This chapter has

been published in Optics Letters [32] and IEEE Journal of Quantum Electronics [5].

Chapter 7, describes the optical properties of the whispering-gallery type modes

of toroid microcavities. The author describes a cavity ring-down measurement setup

he implemented to obtain measurements of Q-factor. The method allowed to ac-

curately measure photon lifetimes, at high circulating cavity intensity. Using this

technique, the author spend one summer continuing measurement his colleague Sean

Spillane and Deniz Armani had started, in trying to observe ultra high-Q factors in

toroidal microcavities on a chip. The author was finally was successful in the sum-

mer of 2002, in demonstrating ultra-high-Q modes in a toroid microcavity on a chip.

The samples for these measurements have been made by the author’s colleague Deniz

Armani. The measurements in this chapter have been published in Nature[33]. In

addition the author investigated the extend to which the micro-torpid geometry could

be reduced, and demonstrated a Q/V ratio of more than 106 (λ/n)−3 .

In Chapter 8 the author investigates the optical modes of disk microcavities.

Disks and toroid microcavities can be excited efficiently using tapered optical fibers.

Surprisingly, disk microcavities allow to observed Q-factors as high as 107 which is

already nearly 3 orders of magnitude higher than in any other reported chip-based

whispering-gallery devices (but lower than in toroid microcavities). The effect is

attributed due to the wedge shaped cavity boundary which causes modal isolation.

This chapter appeared in Applied Physics Letters[34].

Chapter 9 demonstrates the first Raman oscillator on a chip using toroid mi-

crocavities. Raman oscillation in toroid microcavities is compared to micro-sphere

resonators, and found to exhibit intrinsically more favorable properties, such as single
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mode emission and lower effective pump threshold. The work heavily relied on micro-

cavities with ultra-high-Q optical modes, which the author fabricated and obtained

with very high reproducibility. This work has been published in Optics Letters[8].

Chapter 10 presents the first observation the author made of Kerr nonlinearity

induced parametric oscillation in a microcavity. The cavity in this regime paramet-

rically converts a pair of pump photons into a frequency down-shifted signal and

frequency up-shifted idler photons, and near unity signal-idler ratio is observed. As

parametric interaction does not involve coupling to a dissipative reservoir, and the

parametric process creates simultaneously signal-idler photon pairs, the emitted light

should exhibit non-classical correlations. The numerical simulations in this chapter

have been carried out by the author’s colleague Sean Spillane. The author submitted

this work to Physical Review Letters[9].

InAppendix A the coupled wave equations for third order nonlinear phenomena

are derived. Starting from the coupled wave equations for plane waves, the equations

are reformulated for the whispering-gallery modes of a microcavity. The modified

coupling coefficients are given, and the definition of the effective mode volume is

discussed.

In Appendix B the Helmholtz equation is derived for the case of a whispering

gallery mode resonator. The optical modes were numerically modeled using a finite

element PDE eigenmode and eigenfrequency solver and the numerical results are

compared to analytical solutions and good agreement was found. The method in this

chapter has been used for the numerical simulations presented in chapter 7,8,9.

In Appendix C the fabrication of toroid and disk microcavities is described. The

fabrication sequence was originally started by Deniz Armani and Sean Spillane. The

author has made the fabrication process more reproducible (in terms of obtaining

ultra-high Q factors). A variation of the fabrication technique investigated by the

author is also presented, which allows to obtain more geometric control over the

toroid geometry parameters.
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Chapter 2

Optical modes of dielectric spheres
(Microsphere Resonators)

2.1 Introduction

The modes of a spherical dielectric particle were first investigated by Mie at the

beginning of the 19th century, in the context of light scattering from spherical parti-

cles. The scattering spectrum exhibited sharp features, which can be attributed to

resonant circulation of optical energy within the sphere. These optical modes are

confined by continuous total internal reflection at the dielectric air interface and are

often referred to as ’whispering-gallery modes’. This description originated from the

"problem of the whispering-gallery" which Lord Rayleigh published in 1912[35], de-

scribing the phenomenon of acoustical waves he had observed propagating around the

interior gallery of the Saint Paul’s Cathedral1. In the following sections, the resonant

characteristics of spherical dielectric particles (silica microspheres), such as their field

distribution, mode volume, radiation loss etc. are discussed and serve as an introduc-

tion to the terminology which is used throughout this thesis. Approximate formulas

for the free-spectral range and whispering-gallery loss for the experimentally relevant

wavelength and size range are given.

1Some author have also referred to these modes as "morphology dependent resonances" ( MDRs),
however this terminology has not been widely adopted.
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2.2 Optical modes of a dielectric sphere

The optical modes of a spherical dielectric particle can be calculated by solving

Helmholtz equation in spherical coordinates2, which has been treated by several au-

thors (in particular see reference [36] for a comprehensive overview). A significant sim-

plification occurs if the sphere consists of a homogeneous dielectric, and if the optical

modes reflect with grazing incidence upon the dielectric-air boundary, such that the

polarization can be assumed to be constant along the optical trajectories. Under this

assumption the optical modes can be solved by the scalar wave equation approxima-

tion and solutions fall into two classes, and are either electric in character (TM-case)

or magnetic in character (TE-case). The field components can be expressed in terms

of a single field components (Eφ for the TM-case or Hφ for the TE-case) and solutions

are found by solving the scalar wave equation for either the Eφ or Hφ alone by the

separation of variables approach, i.e. Eφor Hφ = ψ(φ, θ, r) = ψφ(φ)ψθ(θ)ψr(r). TE

modes possess an electric field is parallel to the surface of the sphere (i.e. Eφ = Er = 0,

i.e. �E||−→θ ),whereas the TM modes possess a magnetic field which is parallel to the

surface of the sphere, i.e. (i.e. Hφ = Hr = 0, i.e. �H||−→θ ). As a result, the electric

field distribution of TM modes is predominantly radial in character. The introduced

eigenfunctions for the radial, azimuthal and polar fields can be associated with the

radial mode number (n), the polar mode number (c) and the azimuthal mode number

(m) as well as the polarization (p). The azimuthal eigenfunctions are given by3:

ψφ =
1√
2π
exp(±imφ) (2.1)

By introducing the polar mode number c, the equation for ψθ is given by:

1

cos(θ)

d

dθ

µ
cos(θ)

d

dθ
ψθ

¶
− m2

cos(θ)2
ψθ + c(c+ 1)ψθ = 0 (2.2)

2Helmholtz equation
¡
∇2 − k2n2

¢
ψ = 0 in spherical coordinates is given by: 1

r2
∂2

∂r2 (rψ) +
1

r sin(θ)
∂
∂r

¡
sin(θ) ∂∂θψ

¢
+ 1

r2 sin2(θ)
∂2

∂φ2
ψ − n2k2ψ = 0

3The separation of variables approach leads to the introduction of the azimuthal and angular
mode number, 1

ψφ

d2

dφ2
ψφ = const ≡ −m2 and r

ψr

d2

dr2 (rψr) = const ≡ c(c+ 1).
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And finally the radial field ψr has to obey:

d2

dr2
ψr +

2

r

d

dr
ψr +

µ
k2n(r)2 − c(c+ 1)

r2

¶
ψr = 0 (2.3)

The last two equations possess analytical solutions in terms of the generalized Legen-

dre Polynomials P c
m(cos θ) (which are commonly re-expressed as the spherical Har-

monics Y c
m(θ)) and the Bessel functions jc(kr). For each polar mode number c, the

allowed azimuthal mode numbers are in the range of −c < m < c, leading to a 2c+1

degeneracy of the azimuthal modes.

2.3 Intensity distribution for a microsphere WGM

The field distribution and the resonance locations are determined by matching the

solutions interior and exterior to the sphere at the dielectric-air boundary[37], leading

to a characteristic equation. For a microsphere this requires matching the Bessel

function jl(ka) and the outgoing Hankel functions hl(ka) at the dielectric boundary.

The characteristic equation for this case is given by:

x · j
0
l(ka)

jl(ka)
=

h0l(ka)

hl(ka)
where x =

∙
1
m
for TM

m for TE

¸
(2.4)

The latter equation depends only on the angular mode number c (reflecting the

aforementioned 2c + 1 degeneracy, with respect to the azimuthal mode number m).

Figure 2.1 shows the solution to the radial equation for the first three radial mode

numbers. The radial mode number gives the number of field maxima. Outside

the microsphere the fields decays exponentially (where the decay length increases

as a function of the radial mode number n). The complete intensity profile of the

Eφ−component (i.e. TM polarization) in the (r, θ) plane is given in figure 2.2 for

a microsphere of 25-µm-diameter, and was obtained by numerical modeling using a

finite element PDE-eigenmode solver package (see Appendix B). The field outside the

microsphere is evanescent and exhibits exponential decay which is slower for higher
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order radial mode numbers.

2.4 Asymptotic solutions

A very useful formula is given in reference [38] where the approximate resonance lo-

cations are derived by asymptotic expansion of the characteristics equation in powers

of c−1/3. The first 4 terms in the expansion are given by:

ωnmcp =
c

naR

"
c+ 1

2

m
− t0n

m

µ
c+ 1

2

2

¶1/3
+

−p√
m2 − 1

+

µ
c+ 1

2

2

¶−1/3
(t0n)

2

20m
+O

µ
c+ 1

2

2

¶−2/3#
(2.5)

In this equation m is the relative index of refraction m = na/ns (na index of the

medium outside the sphere), c is the angular mode number, t0n is the n
th zero of the

Airy function Ai(−t0n) = 0 (and corresponds to the nth-order Radial mode) and p is

a coefficient related to the polarization given by:

p =

½
1 TE
1/m2 TM

¾

The expansion can be used to relate the polar mode number c to the experimentally

measured free-spectral range of the cavity. The latter is defined as the distance

between successive azimuthal mode numbers and is given by the expression:

∆ωFSR ≡ |ωnmc − ωnmc+1| ≈
cÀ1

c

naR

µ
1

m
− t0n

c−2/3

3

¶
(2.6)

For the microspheres considered in this thesis, the resonance wavelength is located in

the 1550-nm telecommunication band and the corresponding free-spectral-range as a

function of mode number is shown in 2.3 for a fundamental WGM (n = 1, c = m).



12

6 7 8 9 10 11 12
0

2

4

6

8

10

12

14
x 1015

  N
o

rm
al

iz
ed

 R
ad

ia
l I

n
te

n
si

ty

6 7 8 9 10 11 12
0

2

4

6

8

10

12

14
x 1015

 N
o

rm
al

iz
ed

 R
ad

ia
l I

n
te

n
si

ty

6 7 8 9 10 11 12
0

2

4

6

8

10

12

14
x 1015

 Radius (µm)

 N
o

rm
al

iz
ed

 R
ad

ia
l I

n
te

n
si

ty

n=1
l=51
R=10µm
TM

n=2
l=51
R=10µm
TM

n=3
l=51
R=10µm
TM

Figure 2.1: Calculated intensity distribution |Eφ|2 in the radial direction for a mi-
crosphere with principal radius 10 µm and angular mode number c = 51 (λ ≈ 1550
nm) for the first three radial mode numbers (n = 1, 2, 3). The evanescent field is
color coded in red, and exhibits a slower decay for higher order radial numbers (n).
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Figure 2.2: Numerical modeling of the intensity profile ( |Eφ|2) of the whispering-
gallery modes of a 25-µm−diameter microsphere, with polarization TM. In a perfect
sphere modes with different azimuthal, but same radial and polar mode number, are
frequency degenerate.
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crosphere mode (n = 1,m = l) with an polar mode number consistent with
a resonance in the 1550 nm band. The dependence is accurately described by
R[µm] = a · 1/∆λFSR[nm] + b, where a = 264, b = −0.51.
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2.5 Eccentricity splitting

In an ideal sphere the optical modes possess a 2c+ 1 degeneracy with respect to the

azimuthal mode number m. This can be understood by using classical ray optical

interpretation, in which the optical modes with same c, but different m, orbit around

the equatorial plane by reflecting alternatingly from the lower to the upper hemisphere

(and vice-versa), thereby taking different excursions away from the equator. The wave-

vector associated with this trajectory is:

|βl| =
c(c+ 1)

R0

and the projection onto the equatorial plane (i.e. the propagation constant) is given

by:

|βm| =
m

R0

The modes with low m take paths closer to the poles, and their longer path is com-

pensated by a reduced number of reflections at the dielectric-air interface to complete

one revolution. The so called fundamental modes, m = c correspond to motion close

to the equatorial plane (with an angle θ ∝ 1√
c
). Due to the invariable presence of im-

perfection, a microsphere will deviate from exact spherical shape, which will remove

the degeneracy in path-length. If the shape deformation is weak, the new resonance

frequencies can be calculated using perturbation theory. This has been treated in

reference [39]. Elegant analytical results can be obtained, by treating a sphere with

shape imperfections as a ellipsoid with radius r(θ) = r0(1 +
�
3
(3 cos2 θ− 1)). Here the

eccentricity � is related to the polar rp and equatorial radii re by � = rp−re
R0
. This

leads to analytically exact formulas[39] in the case of an axially symmetric shape

distortion4, as given by:
∆ωecc

ωnml
= − �

6

Ã
1− 3 |m|

2

c2

!
(2.7)

4It is interesting to note, that in the case of shape distortions which are not axially symmetric,
the mode number m is not a "good quantum number", i.e. it will leads to eigenstates which are a
linear superpositions of states with different m.
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Hence the splitting between modes with successive azimuthal mode number is given

by:

∆ωecc ≡ |ωnml − ωn,m+1,l| ≈ ωnml · �
|m|+ 1/2

c2
(2.8)

2.6 Loss mechanisms in a microsphere

Due to the presence of loss mechanisms such as material absorption, scattering losses

or tunnel losses, the optical modes of a resonator are dissipative in character ("leaky")

and are referred to as "quasi-modes". Quasi-modes are distinct to their loss-less

counterparts (modes), and an excellent treatment on the properties of quasi-modes

can be found in chapter 1 of ref. [40]. The extent to which dissipation is present in

a resonant system is commonly expressed by the Quality-factor or Q-factor of the

mode, which is defined by the energy storage time normalized with respect to the

period of oscillation.

Q0 ≡ ω
Estored

Pdiss
= ωτ (2.9)

In this equation ω is the resonance frequency, Estored is the energy contained in the

resonant system, and Pdiss is the dissipated power. The above definition extends

beyond the domain of electromagnetism, and is also used to characterize mechanical

or electrical oscillators. Equivalently, in the case of optical microcavities the optical

Q-factor describes the photon lifetime of a mode. In the case of a microsphere, the

total Q-factor is comprised of several loss contributions: intrinsic material absorption,

scattering losses (both intrinsic, as well as inherent to the surface of the cavity),

surface absorption losses (e.g. due to the presence of adsorbed water), whispering-

gallery loss (or tunnel loss) and external coupling losses to a "useful" external mode

(such as a prism or a waveguide).

Q−1tot = Q−1mat +Q−1scatt +Q−1surf +Q−1ext +Q−1WGM (2.10)

In the following sections the limits imposed by the different mechanisms are briefly

reviewed and analyzed, for the case of silica microspheres involved in this work.
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2.6.1 Intrinsic material loss

Silica has a large transparency window and exhibits low absorption losses. The

minimum loss occurs at 1.55 µm, for which it has become the operating wavelength

for fiber-optic telecommunications. The loss at 1.55 µm is 0.2dB/km and is equally

comprised of absorption loss and loss due to Rayleigh scattering, which translates

into an absorption limited Q of:

Qabs
0 =

2πneff
λα

≈ 2.92× 1010 (2.11)

Absorption limited Q-factors have indeed be observed in large diameter (>200 µm)

microspheres[41]. However for most of the work presented in this thesis absorption

due to water, as well as surface scattering centers (as will be discussed in chapter 3)

have presented a natural limitation of Q, with the highest Q-factor measured being

˜2× 109 in the 1550 nm band.

2.6.2 Whispering gallery loss

The optical modes within a microsphere are confined by continuous total internal

reflection at the dielectric cavity-air interface. However, it is a general property that

total internal reflection at a curved interface is incomplete, and leads to a transmitted

wave, which for the case of a resonator causes loss of optical energy5. This loss

mechanism is called whispering-gallery loss, and is due to tunneling of the photons

out of their bound states. This tunneling process, can be understood by drawing an

analog to the quantum mechanical treatment of a 1-D particle in a central potential.

Similarly to the latter can be achieved by formally rewriting the radial equation as an

eigenvalue problem using the transformation u(r) = ψr/r and introducing the energy

5A good intuitive explanation of this effect has been given in reference [42] by considering the
phase velocities in a ray optical picture. For total internal reflection at a planar interface the
exponentially decaying field components have a constant phase velocity u0 < c in the evanescent
region. For a curved surface however, the phase velocity increase with increasing separation from
the boundary i.e u(r) = u0

r
R0

. At the point where the phase velocity exceeds the phase velocity in
air (u(r) > c) the evanescent field becomes propagating, leading to tunnel losses.
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term E = k20n(r)
2 :

∂2

∂2r
u+

c(c+ 1)

r2
u− k20

¡
1− n(r)2

¢
u = k20n(r)

2u = Eu (2.12)

The effective potential Ueff (r) of the particle is thus identified as:

Ueff(r) =
c(c+ 1)

r2
− k20(1− n(r)2) (2.13)

Figure 2.4 shows a plot of the effective potential (normalized to k20). The effective

potential is discontinuous at the cavity-air interface, giving rise to a potential well.

Furthermore the characteristic radii Ra and Rb are given by:

Ra =

p
c(c+ 1)

n
k0

Rb = Ran

In the well region Ra < r < Rb discrete bound states exist which correspond to the

whispering-gallery modes. The region r < Ra as well as R0 < r < Rb corresponds

to a potential barrier, in which the optical modes are exponentially decaying (i.e.

evanescent). The region Rb > r supports a continuum of modes, which are unbound.

Due to the finite height and finite width of the potential barrier in the region R0 <

r < Rb, the optical modes can tunnel from their bound well states into the continuum,

giving rise to a tunnel-loss. The height and width of the potential barrier decreases

as a function of the polar mode number c, causing an increase in tunnel loss.

An approximate analytic formula for the whispering-gallery loss of a spherical, ho-

mogeneous dielectric resonator has first been derived by Weinstein [42], by expanding

the characteristic equation and allowing the wave-vector to be complex. The result of

this approach (extended here to include one more term in the perturbation expansion)

is only valid in the limit cÀ 1.

QWGM =
1

2

µ
c+

1

2
− βt0q −

m1−2k
√
m2 − 1

¶
m−(1−2k)(m2 − 1)1/2e2Tnc (2.14)
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Figure 2.4: The effective radial potential for a microsphere with (R = 10 µm, l = 24).
The optical modes are bound in the region Ra < r < R0, and evanescent in the
region R0 < r < Ra and Rb < r < R0. The tunneling from the evanescent region
R0 < r < Ra into the region where the optical modes are unbound (i.e. r > Rb) leads
to a tunnel loss, which is also referred to as "whispering gallery loss" and causes a
finite Q (or line-width) of the modes.
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Figure 2.5: Radial intensity distribution (|Eφ|2) for a fundamental (n = 1, c = m)
mode of a 5 -µm−radius microsphere with angular mode number c = 30, and TM
polarization. The solution was obtained by solving the transcendental equation nu-
merically for the imaginary part of ω. The dotted line denotes the effective radial
potential, which is discontinuous at the dielectric cavity boundary.



21

Where m is the relative index of refraction, t0n the Airy function zero and:

Tnc ≡ (c+
1

2
) ·
Ã
cosh−1(n)−

r
1− 1

m2

!
+ βct

0
n

r
1− 1

m2
(2.15)

βc ≡
µ
c+ 1

2

2

¶1/3
The expression reveals however the important result of the exponential dependence of

Quality factor on polar mode number QWGM ∝ e2c. Therefore the Q-factor exhibits

a strong dependence on sphere diameter. For small polar mode numbers c, the above

expression is not precise and higher accuracy can be obtained by solving the char-

acteristic equation numerically (iteratively). Figure 2.5 shows the "leaky" solution

to the radial equation for a low-Q mode (c = 30) obtained by numerically solving

eqs. 2.10. The oscillatory behavior of the field outside the sphere gives rise to tunnel

loss. The Q-factor obtained by this method is plotted in figure 2.6 as a function of

polar mode number c, and in figure 2.7 as a function of microsphere radius for the

experimentally relevant wavelength range λ ≈ 1550 nm. As can be seen, a Q-value

of >108 is maintained in the case of R > 12µm.

2.7 Mode volume of microspheres

In many applications, not only temporal confinement of light (i.e. the Q-factor), but

also the extend to which the light is spatially confined is an important performance

parameter. Several definitions of mode volume can be encountered in literature, and

are discussed in this section. The most common definition of mode volume, is related

to the definition of the energy density of the optical mode.

we(r) + wm(r) =
1

2
�ẼẼ+

1

2µ
B̃B̃

It is defined as the equivalent volume, the mode occupies if the energy density was

distributed homogeneously throughout the mode volume, at the peak value:
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gallery loss was obtained by solving the characteristic equation numerically, and allow-
ing for complex eigenfrequencies ω = ω0 + i∆ω/2. (The Q-factor is correspondingly
given by Q = ω0/∆ω).



23

6 7 8 9 10 11 12 13 14
103

104

105

106

107

108

109

1010

1011

Radius (µm)

 Q
u

al
it

y-
fa

ct
o

r

TE
TM

Mode numbers:
λ≈ 1550nm
n=1
l=m 

Figure 2.7: Whispering gallery loss versus microsphere radius for a polar mode number
c consistent with a resonance wavelength near 1550 nm, for a fundamental WGM.
The TE-modes have intrinsically higher Q-factor than the TM-modes. For R > 12
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VMode =

R
(we(r) + wm(r)) dV

max(we(r) + wm(r))
=

R
�(r)| �E(r)|2d3r

max(�(r)|�E(r)|2)
(2.16)

The integral is evaluated over all space, and also includes the regions where the field

is evanescent6. Two comments are in place. First, it will be shown in chapter 5 and

6, that this definition of mode volume, differs from the definition of mode volume

which will be encountered when studying nonlinear optical processes (which is called

throughout this thesis effective mode volume, to emphasize the distinction).

Secondarily, the precise definition of mode volume is strictly speaking not rig-

orous. It depends on the physical problem studied (preceding comment), and as

such different definitions can be found in literature. For instance, a more intuitive

definition (that has been adopted by some authors) is to approximate the mode

functions of a spherical WGM by an ellipse, and to evaluate the full-width-at-half-

max of the radial a and azimuthal b intensity distribution yielding the mode volume

Vmode = R0π
ab
4
. Comparison of this definition to 2.16 shows that the mode volume

is ca. 1/3 lower in case the FWHM of the intensity distribution is evaluated. After

these words of caution, definition 2.16 is used for the calculations shown in graph

2.8. It should be noted however, that independent of the mode volume definition, the

numerical modeling allows comparison among different geometry parameters, and as

6It is noteworthy, that if one allows also for propagating components outside the dielectric cavity
(i.e. finite Q) the mode volume diverges. This divergence is due the normalization problem, en-
countered in open systems. Due to the presence of propagating fields outside a whispering-gallery
microcavity (whispering-gallery-loss, which occurs for any finite microcavity radius) the optical mode
volume depends on the quantization volume chosen. This is easily seen by considering the propa-
gating field component outside the microcavity. The electromagnetic field outside the resonator a
distance R from the origin is proportional to:

E(R, t) ∝ eik(R−ct)

R

In case of finite Q (as is the case for any whispering-gallery resonator, even in the absence of
intrinsic losses due to the incomplete total internal reflection) the wave vector contains both a real
and negative imaginary part (i.e. k = k0 − ik00, k00 > 0). Therefore, the field increases outside the
microcavity, as the exponential increase dominates over the slow 1/R dependence.

E(R, t) ∝ ek
00(R−ct)

R

As a result, the mode volume, as defined in equation 2.16, diverges.
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such allows comparison of the three types of cavity geometries studied in this thesis,

i.e. microspheres (chapter 5,6), microtoroids (chapter 7,9,10) and microdisk cavities

(chapter 8). Furthermore, figure 2.8 reveals that the mode volume of a sphere follows

to a very good approximation a quadratic dependence on mode volume (Vm ∝ R11/12),

whereas the effective mode area (shown in the inset) exhibits a linear dependence of

sphere radius.
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Chapter 3

Tapered optical fiber coupling

3.1 Introduction

In this chapter the tapered-optical fiber coupling technique is described. Tapered

optical fibers were fabricated with waist diameters of typically less than 2 micron,

and low loss (typically less than 5%). The tapered optical fibers allowed efficient

and controlled excitation of ultra-high-Q whispering gallery modes, with negligible

parasitic loss. This achievement is the prerequisite for the experiments which are

described in the subsequent thesis chapters.

3.2 Evanescent coupling to microspheres using ta-

pered optical fibers

Free-space excitation of microsphere whispering-gallery modes is extremely inefficient

due different phase velocities in air and silica. Efficient excitation can be achieved

using the evanescent coupling technique, which uses tunneling of evanescent field

components with phase matched wave-vectors to achieve efficient coupling. A well

known implementation of this method is using a total internally reflected beam within

a prism. Prism coupling is well known since the 1960’s and has been used to efficiently

excite surface plasmon-polariton. Prism coupling has also been used to excite WGM

of microspheres. Alternative methods have included eroded or side polished fibers
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(D-shaped). By the bringing evanescent field region in close proximity to a silica

microsphere, evanescent coupling can be achieved. A particularly suitable method

has been proposed by [43][44], in which a fiber is drawn into a thin filament, and

the evanescent field of the fiber is brought to overlap with the sphere. The particular

advantage of this method is threefold. First, tapered optical fibers can be made with

low-loss. Secondarily, tapered optical fibers allow highly efficient excitation of WGM,

with negligible parasitically induced losses (such as scattering). In addition they

allow not only excitation but also extraction of cavity fields through the same taper.

Thirdly, the tapered optical fibers have small transverse dimensions, making them

unique tools to excite WG-microcavities, with small dimensions (as will be shown in

chapter 7,8).

In this section, the tapered optical fiber method is used to controllably couple

light into a microsphere under phase matched condition, and allows to achieve high

ideality. In addition the tapered optical fibers are ideal coupling elements to chip-

based cavities, which will be investigated in chapter 7 of this thesis.

3.3 Fabrication of tapered-optical fibers

Tapered-optical fibers were fabricated by heating a SMF-28 optical fiber with a hydro-

gen torch. To control the flame a flow-controller (solenoid-valve with a flow meter)

was used. In order to facilitate the experiments, a portable taper holder was de-

signed, allowing taper-fabrication to be separate from the coupling setup. Figure 3.1

shows an image of the tapered fiber stage mounted onto the two motorized stages.

The motorized stage is connected to the blocks (with two fiber clamps, Thorlabs)

by two cylindrical posts. Crucial in the design of the stage is very low play in the

movement of the optical blocks, which was achieved in the design by two cylindrical

rails. Setscrews on the bottom of the blocks allowed fixing the posts, and a microm-

eter allowed post-tensioning of the fiber. During the pulling process, the motors we

actuated simultaneously (Oriel motorized stages) and the fiber (with the cladding

removed) was heated using a hydrogen torch. During fiber pulling the transmission
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was monitored continuously and the taper imaged with a camera from the side (using

a ×20 objective). The approximate size of the taper could be inferred from measure-

ment of the transmission, total pulling distance or by monitoring the tapered fiber

using a microscope. Figure 3.2 shows a optical image tapered optical fiber. The fiber

waist is clearly visible as the region exhibiting optical interference patterns (where

the smallest diameter corresponds to the violet colored part on the left).

Figure 3.1: Tapered fiber pulling setup. The tapered optical fibers are held with fiber

clamps which are located on a sliding block, with two rails. The whole structure is

portable, and set-screws prevent movement of the blocks after pulling. The sliding

blocks are attached via two posts to two motors, pulling the fiber symmetrically apart.

A micrometer on the fiber pulling stage allows post-tensioning of the fiber.

In standard telecommunication fibers, light is confined by total internal reflection

at the weak index contrast between the germanium doped core and the silica cladding.

In a tapered optical fiber, the transverse extension of the fiber is reduced continuously,

such that the optical energy residing outside the taper increases. Figure 3.3 shows

the effective propagation constant of the fundamental taper mode as a function of
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Figure 3.2: Optical micrograph of the waist region of a tapered optical fiber. The
tapered fiber, which exhibits a diameter of less than 1 micron, appears colored due to
interference effects. The waist diameter is decreasing from the right to the left side
of the image.

taper waist diameter, and the optical energy residing outside the taper is shown in

the inset.

3.3.1 Optical properties of tapered optical fibers

The optical modes of a tapered optical fiber, can be approximated by the modes of

a dielectric cylinder. Particularly important in the context of taper fiber coupling is

the fraction of energy which is outside the tapered fiber. It is the evanescent part

of the field that can tunnel into a whispering-gallery mode cavity. Figure 3.3 shows

propagation constant βf of the fundamental tapered fiber mode, as a function of

taper diameter in the experimentally relevant 1550-nm wavelength band. The results

were obtained by finite element modeling using a full vectorial model. The evanescent

taper field is given by the expression[37]:

αf = x
K1(xβf )

K0(xβf )
, x =

q
β2f − k0n20

WhereK1andK0 are the Hankel functions of the first and second kind. It is important

to note that by varying the taper thickness (which simply can be achieved by scanning

along the fiber-taper) the propagation constant can be varied in a continuous fashion.
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Figure 3.3: Main figure: Numerically calculated effective index neff of the fundamen-
tal HE11 taper mode as a function of the taper diameter (in the simulation n = 1.44).
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is shown in the inset.
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Figure 3.4: Schematic of a waveguide-coupled resonator.

This allows phase matching of the whispering- gallery modes of the cavity.

3.3.2 Mathematical description of the waveguide-resonator

coupling junction

If the evanescent field of the fiber is brought in the proximity of a microcavity -

such as a microsphere, microdisk or microtoroid cavity-, the fundamental optical

mode will exhibit overlap of the whispering-gallery type modes of the microcavity.

If the coupling is weak, and the perturbation of resonator and waveguide mode is

small, the coupling can be described by the coupling-of-modes formalism[37] and

in the slowly varying amplitude approximation. In case the coupling is strong, the

behavior will ultimately differ and is then correctly described by a matrix model of

the coupling amplitudes[45]. The two models will yield identical results as long as the

slowly varying envelope approximation is valid, i.e. if the cavity field Ec(t) satisfies

Ec(t + T ) − Ec(t) ≈ T d
dt
Ec, where T is the cavity round trip time. The coupling

from a resonator to a waveguide is fundamentally described by three parameters, the

resonant frequency ωo, the decay rate 1/τ 0 of the mode due to internal cavity losses,

and the cavity decay rate 1/τ ex due to coupling to the waveguide mode.

Following the coupling of modes approach given by H. Haus, the optical mode

coupled to a whispering-gallery mode resonator can be described by the following

equation[46]:
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d

dt
U = iωoU −

µ
1

2τ 0
+

1

2τ ex

¶
U + κs (3.1)

Here the resonator excitation is designated as U and the waveguide mode is designated

as s1.The intrinsic lifetime as denoted by τ 0 describes the total losses inherent to

the optical resonator, and the coupling into the waveguide is given by τ ex. In the

absence of coupling to a waveguide the optical energy E = |U |2 in the resonator decay

exponentially with time,

d

dt
|U |2 = U

d

dt
U∗ + U∗

d

dt
U = − 1

τ 0
|U |2 (3.2)

And the quality factor is given by Q0 = ωτ 0. In the presence of a waveguide such as a

taper the optical energy is dissipated both within the cavity as well as due to coupling

to the waveguide. In case of a loss-less resonator, and in the presence of a waveguide,

the decay is entirely due to the waveguide coupling, designated by d
dt
|U |2 = − 1

τex
|U |2

(τ ex external lifetime). The coupling coefficient κ can related to τ ex by time reversal

symmetry, yielding:

|κ| =
r

1

τ ex
(3.3)

Furthermore the transmission past the resonator is of interest. The transmission is

linear in the cavity and input fields, such that the coefficients of the relation t =

c1s+ c2U have to be found. The coefficient c2 can be found by considering the cavity

mode in the absence of waveguide excitation (c1 = 0), yielding c1 =
q

1
τex

. To find

the relation for c2 , power conservation can be used. i.e. the net power transfer into

the cavity, must be equal to the rate of growth of the cavity field added to the rate

of intrinsic dissipation.

|s|2 − |t|2 = d

dt
|U |2 +

µ
1

τ 0

¶
|U |2 (3.4)

1Particular attention has to be paid to the two different normalizations used in this formalism:
|s|2 = normalized to Power
|U |2 =normalized to Energy
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Furthermore from the equation of motion the power dissipated in the resonator is

given by:

d

dt
|U |2 = −

µ
1

τ ex
+
1

τ 0

¶
|U |2 +

r
1

τ ex
(Us∗ + U∗s) (3.5)

Substituting U =
√
τ ex (t− c1s) into the last two equations yields:

|s|2 − |t|2 = − 1

τ ex
|U |2 +

r
1

τ ex
(Us∗ + U∗s) =

= − 1

τ ex
|√τ ext− c1s|2 + (t− c1s) s

∗ + (t− c1s)
∗ s

Comparing the equations yields c1 = −1 :

t = −s+
r
1

τ ex
U (3.6)

The transmission past the resonator is correspondingly given by ∆ω = ω0 − ω.

T =

µ
τ ex − τ 0 − i∆ω

τ ex + τ 0 + i∆ω

¶2
(3.7)

The transmission properties are commonly characterized by over-coupled, critically

coupled and under-coupled.

• Undercoupling: Under-coupling refers to the case where the waveguide cou-

pling is weak and the cavity decay rate τ−10 exceeds the cavity coupling rate

τ−1ex . In this case the amplitude of the cavity leakage field U/ (2τ 0) is much

smaller the amplitude of the transmitted waveguide field. The cavity leakage

field exhibits a phase shift of π > φ > 0.

• Over-coupling: In the over-coupled regime the rate of cavity coupling exceeds

the cavity decay rate
¡
τ−1ex > τ−10

¢
. The amplitude of the cavity decay field in

this case is larger than transmitted pump field, and reaches a value of twice the

waveguide amplitude in the case of strong over-coupling.
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• Critical coupling: Critical coupling occurs when the external lifetime is

matched to the intrinsic cavity decay rate
¡
τ−1ex = τ−10

¢
. In this case the trans-

mission past the resonator vanishes, and complete power transfer of the optical

power carried by the wave to the cavity mode occurs. The transmission vanishes

due to the interference of the cavity leakage field and transmitted pump field,

which exhibit equal magnitude but a relative phase shift π.

3.3.3 Cavity-buildup factor

At the critical coupling point the optical energy in the cavity reaches it’s maximum,

and the circulating power is given by the cavity-buildup factor, where ∆λFSR is the

free-spectral range of the cavity:

µ
Pcav

Pin

¶
=

c∆λFSR

λ2
1

τ ex

µ
1

2τ 0
+

1

2τ ex

¶−2
=

λ

π2Rneff
Qex

µ
1 +

Qex

Q0

¶−2
(3.8)

This shows that within in microcavity, the circulating power is significantly enhanced,

and can be exploited to significantly reduce the threshold for nonlinear optical phe-

nomena, which is presented in this thesis.

3.3.4 Experimental observation of controlled evanescent taper-

fiber coupling to microsphere resonators

The different coupling regimes as discussed in the previous section could indeed be

observed, by accurately controlling the taper microsphere distance. Figure 3.5 shows a

microsphere coupled to a tapered-optical fiber. The coupling amplitude is determined

by the spatial overlap of the whispering gallery mode with the mode of the tapered

optical fiber. Efficient coupling is achieved when the propagation constant of the

taper is matched to the propagation constant of the whispering gallery mode2, and the

2The propagation constant of a whispering gallery mode is simply given by the relation β =
m/R0. To evaluate the coupling from the tapered optical waveguide to the whispering gallery mode
resonator, the directional dependence of β has to be taken into account.
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Figure 3.5: Right panel: Microsphere coupled to a tapered optical fiber. Left panel:
Microsphere visible with fiber stem.

coupling strength has been theoretically analyzed in reference [37]. The propagation

constant of the fiber taper can be continuously varied by scanning the taper along

the waist diameter (compare figure 3.3).

The coupling properties analyzed in the last section, assumed the case of a single

mode waveguide, coupled to a mode of a resonator. However, the coupling will also

induce a non-resonant loss (e.g. due to scattering at the junction). In addition the

tapered fibers are not single-mode (unless the diameter < 1.2 µm) such that the

resonator can couple in principle into the fundamental and higher order taper modes.

These effects will become pronounced in the over-coupled regime, causing a deviation

from complete recovery of the transmission. Observing the postulated transmission

behavior will therefore require that the coupling into the fundamental taper mode

dominates over higher order mode coupling, while the coupling amplitude κ remains

small. In addition, the off-resonant loss (e.g. junction induced scattering) has to be

small, which was indeed observed (compare chapter 3). The extent to which the

system behaves as predicted is given by the "Ideality" which has been extensively

investigated in reference [26], and will not be treated in the author’s thesis. 3. It is

3A detailed analysis of the effect of higher order mode coupling has been carried out by Sean
Spillane and is contained in reference [26] and his thesis.
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merely noted that a more complete description of the junction includes the effect of

coupling to both higher order taper and radiation modes. The extent to which higher

order mode coupling is present can be expressed in terms of the junction-ideality I.

d

dt
U = iωoU −

Ã
1

2τ 0
+

1

2τ 0ex
+
X
i>0

1

τ iex

!
U +

r
1

τ ex
s (3.9)

I ≡ 1/τ 0ex
1/τ 0ex +

P
i>1

1
τ iex

(3.10)

The experimentally predicted coupling regimes under ideal assumption as in eqs. 3.7

could indeed routinely be observed. As the evanescent taper and microsphere fields

decay exponentially, the external coupling κ is expected to vary exponentially i.e.

τ−1ex = τ−1ex (0) exp(−x/γ), where τ−1ex (0) is the external coupling rate with the taper

in contact with the resonator. The characteristic coupling length is determined by

the overlap of sphere and taper mode, and therefore determined by the taper and

microsphere evanescent field decay. The evanescent field decay of a sphere is given

by[37]:

αs =

q
β2l − k0n20 and βl =

c(c+ 1)

R0

whereas in the case of a silica tapered optical fiber[37]:

αf = x
K1(xβf )

K0(xβf )
, x =

q
β2f − k0n20

The overlap of the two fields determines the coupling coefficient, which therefore

varies approximately as γ ' (αf + αs) .The fiber propagation constant is found by

matching the boundary condition for the fiber fields. In figure 3.3 the propagation

constant for a fundamental fiber mode βf = neff ·k0, has been numerically calculated

for the fundamental taper mode HE11 using a finite element solver.

Figure 3.11 shows the observation of different coupling regimes by variation of

the taper-microsphere coupling gap. In this measurement the transmission through

the taper was normalized with respect to the power transmitted in the far under-
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Figure 3.6: Photograph of the fiber-taper coupling setup. The fiber-taper stage is
attached to a closed loop piezoelectric positioning system, which gives lateral motion
in two directions (with 20 nm resolution). Visible in the front is the positioning arm,
to which microspheres or planar cavities can be attached. The arm itself is attached
to the third axis of the piezo-electric stage.
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Figure 3.7: Coupling regimes for a tapered-optical-fiber resonator system. The exper-
iments show the recorder transmission on resonance versus the coupling gap distance
for two whispering-gallery resonators. The zero point corresponds to the taper being
in contact with the resonator. The transmission in this experiment is normalized with
respect to the taper removed from the resonator. The left panel shows the coupling
curve with high ideality, whereas the left curve exhibits low ideality, as witnessed by
the reduced transmission in the over-coupled regime, due to junction scattering.

coupled region. The different coupling regimes are clearly identified, and at the

critical coupling extinction is large than 99%. Upon decreasing the coupling gap

further, recovery of the transmitted signal is found as predicted by equation 3.7. In

the right panel of figure 3.11, recovery exceeds 99%, whereas for the panel in the left

the off-resonant loss has increased by 10%.

The taper coupling mechanism is in general mode selective, but as shown here

also allows to excite higher azimuthal (|m| < l) modes. Figure 3.8 shows a tapered

optical fiber coupled to a microsphere. The microsphere contained erbium (by using

ion implantation), which functioned as a probe for the intensity profile of the excited

whispering-gallery modes. As can be seen in the figure, the tapered optical fiber can

efficiently excite fundamental and higher order azimuthal modes. It is interesting to

note that the equatorial plane of the WGM is determined by the fiber stem, and
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Figure 3.8: Excitation of whispering-gallery modes in a microsphere using a tapered
optical fiber. The equatorial plane of the WGM is defined by the stem of the mi-
crosphere, and is angled with respect to the taper axis. The number field of maxima
in the polar direction is given by c−m+1. The optical modes are made visible in this
experiment by the presence of erbium ions, implanted into the microsphere surface.
The green luminescence is originating from the 2H11/2 stark level of erbium, excited
via a combination of coorporative up-conversion and excited state absorption.
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Figure 3.9: Broadband transmission spectrum of a microsphere with radius of ca. 22
µm. The eccentricity splitting of the azimuthal modes is clearly visible, which is 0.2
nm. This corresponds to an eccentricity of � ≈ 1% . The strongly coupled modes
are identified as fundamental radial modes (n = 1), and the weakly coupled modes
are identified as n = 2. Note that only ca. 20 azimuthal modes are excited with the
tapered optical fiber, of the total 2c+1 eccentricity split modes (c ≈ 130). The latter
is due to the mode selectivity and reduced phase matching for high m-values.
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is angled with respect to the taper fiber axis. This plane orientation corresponds

to smallest perturbation of the optical modes due to the stem. The excitation of

higher order azimuthal modes, split due to eccentricity, is also seen in the broadband

transmission spectrum as seen in figure 3.9. As evident, also higher order radial modes

can also be excited, based on the resonance locations inferred from equation 2.5.

3.4 Linewidth measurements and thermal effects

Since the optical Q-factor determines the threshold for nonlinear optical effects, meth-

ods to accurately quantify the Q are necessary. The optical quality factor of the

whispering-gallery modes was measured in this thesis both in the time and frequency

domain. For a resonator mode the energy decay is given by:

U(t) = U(0)e(iω0−
1
2τ
)t → U(ω) = U(0)

1

i(ω0 − ω)− 1
2τ

(3.11)

In the latter, the linewidth of the resonance can be simply related to Q viaQ = ω
∆ω

. In

the case of high-Q resonance, the transmission T (∆ω) only re-produces the transfer

function |U(ω0 − ω)|2, if the cavity field has reached steady state, which occurs for

times larger than the cavity storage time τ . The transfer function can therefore be

conveniently measured by scanning the laser through a resonance, provided the laser

is scanned with a speed
£
nm
s

¤
that satisfies the relation:

v[
nm

s
] <<

∆λ

τ
109 =

2πc

Q2
109 (3.12)

For a typical scan range of 60 GHz for the laser used in this work (New Focus external

cavity laser), and a Q-factor of 2 × 108 this limits the scan speed of the laser to

approximately 100 Hz. The resolution of the linewidth measurements is limited by

the coherence time of the pump laser, which limits the Q-factor measurement to

approximately 1.5× 108(short term linewidth of 300 kHz, long term 1 MHz).

However, due to the small volume occupied by the WGMmode, and poor thermal

conductivity of silica microspheres, strong thermal effects occur even at low pump
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power, which are due to the temperature dependent resonance locations:

d

dT
λ(n,R) = λ

dn

dT
+ λ

dR

dT

The resonance shift is primarily due to the temperature dependence of the refractive

index dn
dT
= 1.28×10−5K−1, while the thermal expansion of the silica αT = 5.5×10−7

induces a much smaller shift for the cavities considered in this work R ≈ 20−100µm.

For the 1550 nm wavelength range this translates into a thermal tuning coefficient

of dν
dT
= 2.5 GHz/K. The thermal effects have to be taken into account carefully

when measuring Q-factor. In particular heating of the cavity will lead to bistability

behavior with respect to the scanning direction of the laser beam (induced by cavity

heating when scanning the laser in the same direction as the wavelength shift). The

thermally induced wavelength shift also leads to the appearance of oscillations in the

transmission spectrum, upon scanning past a thermally broadened resonance. These

oscillations are due to interference of the pump laser, with the cavity leakage field

(that is frequency red-shifted due to cooling of the cavity). Therefore quality factor

measurements are only a reliable measure in the case of very weak excitation, where

the latter effects are not present.

3.5 Cavity ring-down measurements

The thermal broadening effects, as well as the transient effects associated with scan-

ning over a cavity resonance constitute a systematic error in the measurement of the

cavity Q-factor. In addition the linewidth measurement is coherence-limited to a Q-

value of approximately 1.5× 108. To overcome this limitation, and also the intrinsic

uncertainty in the linewidth measurement, a cavity ring-down measurement setup

was implemented. Cavity ring-down allows to directly record the photon lifetime in

time domain. In contrast to linewidth measurement, cavity ring-down is principally

insensitive to the thermal broadening and allows determination of the loaded Q-factor

even at high pump power. In addition, the laser linewidth is not a limitation of this
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Figure 3.10: Schematic of the cavity ring-down setup to measure photon lifetimes.

method.

Important for the measurement of the cavity lifetime, is to ensure a fast gating-off

of the pump laser, as well as timing the gating once the mode was fully charged at

the critical point. Indispensable for these measurements and their proper timing was

a 1GHz oscilloscope with external trigger capability (Tektronixs TDS 5104). The

experimental setup is shows in figure 3.10. The laser was gated off using a high-speed

LiNbO3 Mach Zehnder modulator (UTP), which was driven by an arbitrary function

generator (Agilent), which limited the gating time to approximately 8 ns. Ring-

down measurements at the critical coupling point were achieved by scanning the laser

simultaneously until the transmission vanished at the critical point. To ensure gating-

off at the critical point the reflected signal was used for the trigger, and the trigger

level set to a value close to the peak reflection. A typical ring-down measurement

is shown in figure 3.11. To increase the temporal window for the trigger, ringdown

measurements were performed on the thermally broadened side of the resonance. For

times t < 0, the cavity mode has reached steady state and is following the laser due
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to thermal shifting of the wavelength. At time t = 0, the trigger is activated, and the

laser gated off with a delay ∆t of 8 ns. Therefore the critical decay signal is given by:

|sRD(t)|2 =
µ

2τ ex
τ 0 + τ ex

¶2
|s(t = 0)|2 e−(t+∆t)

³
1

τcrit

´

Figure 3.11 shows a typical decay trace obtained using the described experimental

setup. The quality factor can be inferred by fitting the cavity decay field, as well by

measuring the recovery of the transmission. Note that at t = 0 in the strongly over-

coupled regime the cavity decay signal reaches values up to 4 times the input signal.

The ringdown measurement have been carried out at the critical coupling point,

where the taper transmission vanishes. Operation of this point was motivated twofold.

First, the critical coupling point, can be accurately identified experimentally by

recording the taper transmission (T = 0), and is relatively stable with respect to

taper fluctuations (since dT
dx
= 0). Secondarily, while under-coupled ringdown mea-

surements allow direct measurement of intrinsic Q, the cavity decay amplitude is

larger at the critical point allowing for better signal-to-noise ratio upon signal detec-

tion. In addition, the ultra-high-Q modes are in nearly all cases observed as doublets,

due to modal coupling. Therefore ringdown in the undercoupled regime, requires

locking to one of the doublet eigenmodes, whereas at the critical point, the splitting

of the two eigenmodes is masked.
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Figure 3.11: Cavity ringdown measurement trace. Main figure: The transmission
past the microcavity as a function of time. For t = 0 the pump field is gated off,
which occurs with a delay of approximately 8 ns. For t > 8 ns the recorded trans-
mission is entirely due to the cavity leakage field. The inset shows the recovery of the
transmission, upon gating-off the laser.
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Chapter 4

Modal coupling in
whispering-gallery-type resonators

4.1 Introduction1

The splitting of degenerate levels (which transforms energy level crossings into anti-

crossings) in the presence of coupling is a very general principle in physics; the for-

mation of energy bands in semiconductors (level repulsion) can be attributed to this

principle, as well as the splitting of atomic levels in the presence of (LS) coupling. In

this thesis chapter an optical analog of this effect is studied, that was encountered in

whispering-gallery type resonator such as microspheres, microdisks and microtoroids,

as considered in this thesis. Each mode in a whispering-gallery type resonator pos-

sesses a natural 2-fold degeneracy, in addition to degeneracies with respect to other

"quantum numbers" (such as the azimuthal mode number in microspheres) resulting

from the two possible directions of propagation (clockwise CW and counterclockwise

CCW) [47]. Lifting of the degeneracy and coupling of the two modes can occur when

a fraction of the mode energy is scattered into the oppositely oriented mode. The de-

generacy can also be lifted by rotating the whispering gallery-type resonator around

its symmetry axis, which causes the CCW mode and CW mode to exhibit different

round trip times, and correspondingly removing the degeneracy in their resonance

1This chapter has appeared in "Modal Coupling in traveling-wave resonators" Optics
Letters, 27 (19) 1669-1671, 2002.
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frequency. 2

The consequences of degeneracy lifting by distributed scattering has been first

theoretically investigated by [48]. In this chapter we experimentally confirm these

predictions using high-Q (> 108) micro-sphere resonators coupled to fiber-optic taper

waveguides. The long photon lifetimes of high-Q micro-sphere resonators make pos-

sible a counter-intuitive effect in which minute scattering gives rise to the regime of

strong modal coupling. In this regime scattering into the oppositely oriented mode

is the dominant scattering process. Resonances are significantly split and severe de-

viations of the critical coupling point occur. We show and observe that in certain

regimes the whispering-gallery resonator can acts as a narrow bandwidth reflector,

causing a strongly reflected signal and vanishing waveguide transmission. The altered

coupling properties are of importance in high-Q micro-resonator based cavity QED

and nonlinear optical experiments [49, 40].

4.2 Modal coupling in whispering-gallery-type res-

onators

In a traveling wave resonator such as a microsphere, Rayleigh scattering from surface

inhomogeneities or density fluctuations will transfer power from the initially excited

mode to all the confined and radiative modes of the resonator. The scattering to

all modes other than the CW and CCW mode is included in the overall effective

loss, given through the intrinsic lifetime τ 0. The cross coupling of modes can be

described using coupled-mode theory and using the slowly varying envelope approxi-

2This effect is referred to as Sagnac effect, and can be used to create rotation sensors (Gyroscopes).
The presence of modal coupling in these systems leads to the formation of a photonic band structure.
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Figure 4.1: Schematic of a traveling-wave resonator coupled to a waveguide. The
input power launched through the waveguide is denoted as P = |s|2. The two
eigenmodes of the resonator couple back into the waveguide giving rise to reflection
(R = |r|2) and transmission (T = |t|2).

mation(equivalent to that presented in reference [48]).

d

dt
acw = i∆ω · acw −

µ
1

2τ 0
+

1

2τ ex

¶
· acw +

1

2γ12
· accw + κ · s (4.1)

d

dt
accw = i∆ω · accw −

µ
1

2τ 0
+

1

2τ ex

¶
· accw +

1

2γ21
· acw

Here acw, accw is the amplitude of the CCW and CW modes of the resonator and s

denotes the input wave. The excitation frequency is de-tuned by ∆ω with respect to

the resonance frequency ω0 of the initially degenerate modes, τ is the total lifetime

of photons in the resonator, which is related to the quality factor by Q = ω · τ . The

coupling coefficient κ denotes the coupling of the input wave to the CW mode of

the resonator. The relation κ =
p
1/τ ex associates the coupling coefficient with a

corresponding lifetime, where the total lifetime is given by 1/τ = 1/τ ex + 1/τ 0. The

mutual coupling of the CCW and CW mode is described by a (scattering) lifetime

γ. Since the cross-coupling is only to redistribute energy between the CW and CCW

modes, the scattering coefficients must obey the relation:

d

dt

¡
|acw|2 + |accw|2

¢
+
¡
|acw|2 + |accw|2

¢µ 1

2τ 0
+

1

2τ ex

¶
= 0

1

2γ12
accwa

∗
cw +

1

2γ∗12
a∗ccwacw +

1

2γ∗21
a∗cwaccw +

1

2γ21
acwa

∗
ccw = 0 (4.2)
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This is satisfied if the cross-coupling coefficients obey:

γ12 + γ∗21 = 0 (4.3)

Which requires that γ12 and γ21 must be imaginary i.e. setting γ12 = −iγ. Further

details about the model and its validity can be found in [46].3 The coupling of the

resonator modes to the waveguide gives rise to a transmitted (t) and reflected (r)

field:

t = −s+
r

1

τ ex
· acw; r =

r
1

τ ex
· accw (4.4)

The state-state solution for the clockwise and counterclockwise excitation of the res-

onator modes are given by the expressions:

acw = κs
i∆ω + (τ−10 + τ−1ex )

−∆ω2 − γ2 + (τ−10 + τ−1ex )
2 + i∆ω(τ−10 + τ−1ex )

(4.5)

accw = κs
−2iγ

−∆ω2 − γ2 + (τ−10 + τ−1ex )
2 + i∆ω(τ−10 + τ−1ex )

The new eigenmodes are now symmetric and anti-symmetric superpositions4 of the

degenerate CW (n, c, p,m) and CCW (n, c, p,−m) modes centered around new eigen-

frequencies ω = ω0± 1
2γ
(having a linewidth of 1/τ).

uS =
1√
2
(acw + accw) (4.6)

uAS =
1√
2
(acw − accw)

It is noteworthy that in the presence of modal coupling the eigenmodes lose their

purely traveling wave character, as given by the azimuthal dependence Ψcw,ccw
φ ∝

exp(±imφ). If the two amplitude of the clockwise and counterclockwise excitation

3It should be noted that in this expression the quantity |s|2is normalized to the power carried by
the waveguide , in contrast to the resonator amplitude excitation a which is normalized such that
|a|2 corresponds to the Energy in the resonator mode.

4The new eigenmodes are spatially symmetric and anti-symmetric with respect to the symmetry
plane of the waveguide-resonator system.
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are equal, the eigenmodes of the system correspond to (two orthogonal) standing

waves, i.e. {cos(mφ), sin (mφ)}.

Modifications to the resonator coupling physics (transmission, reflection and circu-

lating power) can be described in terms of the normalized modal coupling parameter:

Modal Coupling Parameter Γ ≡ τ 0/γ. (4.7)

The normalized coupling parameter describes the extent of splitting with respect to

the intrinsic cavity lifetime, and as such is a natural measure of how observable the

mode splitting in the undercoupled regime is (compare figure ??). In addition we

introduce the normalized coupling coefficient to facilitate the discussion:

Normalized Coupling Parameter K ≡ τ 0/τ ex (4.8)

Using this definition, critical coupling corresponds to K = 1,over-coupling corre-

sponds to K < 1 and under-coupling corresponds to K > 1. The Transmission

(T = |t|2) as a function of the previously introduced parameters and the normalized

frequency detuning ∆ω ≡ ∆ω · τ 0 is:

T (∆ω,Γ, K) =

¯̄̄̄
Γ2 + (1−K)(1 +K)−∆ω2 + 2i∆ω

Γ2 + (1 +K)2 + 2i∆ω

¯̄̄̄2
(4.9)

The corresponding reflection (R = |r|2) coefficient is given by:

R(∆ω,Γ,K) =

¯̄̄̄
2ΓK

Γ2 + (1 +K)2 + 2i∆ω

¯̄̄̄2
(4.10)

The doublet resonance locations for the reflection and transmission (i.e. dR
d∆ω

=

0, d2R
d∆ω2

< 1 and dT
d∆ω

= 0, d2T
d∆ω2

> 1) are located at: ∆ω = ± 2
p
Γ2 − (1 +K)2 and

for the transmission at ∆ω = ± 2
√
Γ2 + 1−K2.
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Figure 4.2: Spectral transmission and reflection properties of a 70 µm sphere with
Q0 = 1.2 · 108 [50] in the regime of strong modal coupling with Γ = 10. The solid
line represent a fit using the presented model from equation 1. The inset shows a
microsphere coupled to a tapered fiber.
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4.3 Experimental observation of the regime of strong

modal coupling

We experimentally observed the frequency splitting of whispering-gallery modes in a

fiber-coupled [51] micro-sphere resonator. Due to the high-Q (typically exceeding 108)

resonances frequently occur as doublets, since only minute scattering is required to

cause easily observable mode splitting of the clockwise (|n, l,mi) and counterclockwise

(|n, l,−mi) whispering gallery modes[52]. The waveguide-resonator interface [53], the

resonator surface, and thermodynamic inhomogeneities [48] in the resonator itself can

all induce scattering. However, the use of small (typically in the range of D ≈ 50µm),

high-Q resonators has the advantage that efficient power transfer from the waveguide

to the mode can occur with the waveguide several microns removed from the resonator

surface. In this way, the presence of the waveguide has a negligible contribution to

the overall scattering and distributed scattering centers intrinsic to the resonator or

its surface can dominate. As evidence of this, we found the splitting frequency to

increase only slightly (less than 5%) while decreasing the taper-sphere gap.

The inset of figure 4.2 shows a photograph of a micro-sphere (diameter ca. 70 µm)

coupled to a tapered fiber. The taper is attached to a 20 nm resolution positioning

stage to adjust the taper-sphere gap, which allows accurate control of the external

lifetime τ ex (and correspondingly K). A 1.55 µm tunable laser source is used to

excite a Whispering Gallery Mode (WGM) of the resonator. The laser is scanned

repeatedly through a scan range of 60 GHz, containing the resonance doublet. In the

experiments the forward and backward transmission through the tapered fiber was

recorded as a function of taper-sphere gap. The recorded transmission and reflection

spectra were simultaneously fitted to the coupled mode model of equation ??, and

the model parameters inferred. Figure ?? shows a resonance doublet for a 70 µm

sphere (Q0 = 1.2 · 108) with a resonance splitting of approximately Γ = 10.

An ideal whispering-gallery-type resonator (characterized by Γ = 0) allows electro-

magnetic energy carried by a waveguide to be completely transferred to the resonant
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Figure 4.3: Transmission (stars) and reflection (diamonds) behavior for the case of
symmetric ∆ω = 0 excitation vs. K [54], for a mode with Q0 = 1.2 · 108 and a
modal coupling of Γ = 10. The solid line is a theoretical fit using the model from
equation 4.1, under the assumption of constant scattering γ and constant intrinsic
lifetime τ . For large backscattering the minimum T = 0 occurs at K ≈ Γ (compare
with equation 4.11) and is accompanied by a maximum back-reflection of 84%. The
dotted line shows the transmission for an ideal whispering-gallery micro-resonator in
the absence of backscattering, where critical coupling occurs for K = 1.
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mode - a property which in the optical and microwave domain is termed ’Critical

Coupling’ [55]. Figure 4.3 shows the power transmission and reflection as a function

of external coupling for symmetric excitation (∆ω = 0) of a resonator mode. In the

absence of scattering (Γ = 0, corresponding to the dashed curve in figure 4.3) the crit-

ical point - the point where the waveguide transmission vanishes - occurs at K = 1.

The fact that the critical coupling point coincides with the point of maximum circu-

lating power is due to the uni-directionality of an ideal traveling-wave-resonator. The

forward input mode of the waveguide is coupled to only one (CCW or CW) mode of

the resonator. In the presence of backscattering uni-directionality is lost, drastically

altering the coupling properties. The modifications are particularly interesting in the

regime of strong modal coupling (ΓÀ1). Even in this regime the condition of critical

coupling - vanishing waveguide (taper fiber) transmission (T = 0) - can be achieved.

However, only for the case ∆ω = 0, as can be seen in figure 4.3. The doublet structure

in the transmission at this point vanishes, as the two resonances in transmission are

located at:

Furthermore the presence of two eigenmodes changes the transfer-function of the

waveguide resonator system to a second order (i.e. causes the presence of two poles).

In the transmission this can be observed in particular at the critical point, as a flat-

tened frequency response5. In addition, the point of zero transmission is accompanied

by a maximum reflected signal. This feature can be understood as an interference

effect; the excited CCW and CW modes couple back into the two taper directions.

The CW mode interferes destructively with the incoming wave (with the clockwise

cavity decay field exhibiting a π-phase shift, resulting in zero (forward) transmission,

while the CCW mode leaks back into the opposite direction, causing (back-) reflec-

tion. Analyzing the equations it is important to realize that the condition of vanishing

waveguide transmission (T=0) has changed and occurs for:

Kcrit ≡
µ
τ 0
γ

¶
=
√
1 + Γ2 (4.11)

5The filter reponse in the presence of modal coupling is 2nd order, and is equal to the configuration
of two uni-directional resonators, coupled with a rate equal to the scattering rate γ−1.
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This expression shows a significant shift of the critical point is possible and causes

renewed attention of the definition of critical coupling. The critical coupling point

is therefore strongly dependent on the modal coupling and occurs in what would, in

the absence of modal coupling, be considered the over-coupled regime, since van-

ishing transmission occurs for τ ex < τ 0. The amount of over-coupling required for

zero transmission increases monotonically versus modal coupling. (As an aside, we

note that the condition K = 1 has the special property of causing a transmission and

reflection of equal magnitude irrespective of inter-mode coupling strength.). It should

further be noted that in the case of strong modal coupling, the linewidth (or corre-

sponding photon lifetime) at critical coupling is entirely dominated by the splitting

frequency, i.e.

τ crit =

sµ
1

γ

¶2
+

µ
1

τ 0

¶2−1
≈

τ0Àγ
γ. (4.12)

The experimental data presented in figure 4.3 was obtained for a mode exhibiting a

modal coupling of Γ = 10 and Q0 = 1.2 · 108. The observed maximum back-reflection

was 84%. This agrees very well with the theoretically predicted maximum of 82%

(see figure 4.4). In addition the point of maximum back-reflection and zero forward

transmission occurs where theoretically predicted. For reference, the dotted line in

the figure gives the case of an ideal WG-resonator characterized by no modal coupling

(Γ = 0). As can be seen the critical coupling point is significantly shifted to smaller

separations from the microsphere.

The solid line in Figure 4.4 is a fit obtained using a constant splitting frequency

and constant intrinsic lifetime. The theoretical fit shows excellent agreement with

the experimental data, despite the fact that the splitting frequency was found to vary

slightly as a function of resonator loading.

The maximum reflection is observed at the critical point and is given by:

Rcrit =

µ
Γ

1 +
√
1 + Γ2

¶2
(4.13)

The reflection asymptotically approaches unity in the limit of large Γ with all incom-
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Figure 4.4: Experimentally observed and theoretically determined reflection at the
critical point as a function of modal coupling Γ. For large Γ the reflection asymptot-
ically approaches unity. The inset of the figure shows the transmission and reflection
at the T = 0 point, for a mode having Γ = 31. In this case 94% of the optical power
is reflected. Note that the doublet structure is masked, since the lifetime of the mode
is of the same order as the lifetime of the modal coupling process. The presence of
modal coupling causes a flattened frequency response at criticality.
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ing power coupled back into the direction of the source. We experimentally verified

this functional dependence as is shown in figure 4.4. The inset of figure 4.4 illustrates

that in the strong modal coupling regime the whispering-gallery-type resonator (in

this case a microsphere) behaves like a ’frequency selective reflector’. The highest

intermode coupling of Γ = 31 was observed in a sphere with a diameter of 30 µm.

This large modal coupling implies that the probability for scattering a photon into the

oppositely oriented mode was 31 times higher than the probability of a photon being

lost (absorbed or scattered into nonresonant modes). This surprisingly efficient cou-

pling process can be understood qualitatively by considering the spatial distribution

of the mode in the microsphere. Only light which is scattered into an angular segment

exceeding the mode’s cut-off angle is lost [48], all the remaining light is channeled

back into the clockwise and counterclockwise propagating mode, thereby inducing

modal coupling. Since the ratio of modal volume (approximately quadratic in radius)

and sphere volume increases for smaller spheres, the modal coupling is expected to

increase as well. This is in agreement with our experimental findings, since the largest

intermode coupling of Γ ≈ 30 was generally only observed in spheres with a diameter

of less than approximately 40 µm.

It is important to note that the critical coupling point in the presence of scattering

does not correspond to the point of maximum circulating power. In fact, maximum

circulating power occurs with finite transmission. We theoretically investigated the

shift of the point of maximum power transfer and determined that the largest shift

occurs for a modal coupling of Γ = 1.5 at which it shifts to K = 1.52. Interestingly,

in the case of large modal coupling (ΓÀ 1), the maximum power transfer condition

approaches the condition K = 1, as was the case for weak or no modal coupling

(Γ = 0). The condition K = 1 has the special property of causing a transmission and

reflection of equal magnitude. In addition the circulating power is reduced in the

presence of modal coupling.

Defining a power reduction factor C for the total circulating power, and assuming
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Figure 4.5: Calculation of the resonant circulating power in the microcavity within
the microcavity for the case of weak splitting (Γ = 1) and symmetric excitation
∆ω = 0 as a function of waveguide-resonator coupling (as defined by equation 4.8).
The circulating power in the clockwise (|acw|2) and counter-clockwise (|accw|2) mode is
shown, and normalized with respect to the circulating power in the absence of modal
coupling (Γ = 0 case).
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that one of the new eigenfrequencies ω = ω0 ± 1
γ
is excited, C can be written as:

C(Γ) ≡
|acw|2γ + |accw|

2
γ

|acw|2ideal
=
(2Γ2 + (1 +K)2)2 + (1 +K)2 Γ2

(4Γ2 + (1 +K)2)2
+

Γ2

4Γ2 + (1 +K)2

(4.14)

The first term on the right hand side is the power contributed by the CW mode

and the second term is the power in the CCW direction. In the limit of no scattering

(Γ = 0) one obtains the ’ideal’ circulating power, while in the case of large scattering

the amount is reduced by a factor of 2. Figure 4.6 shows the fraction of circulat-

ing power in the original clockwise and counterclockwise cavity mode as a function of

coupling . As evident from the figure, in the undercoupled regime clockwise and coun-

terclockwise mode are excited equally, provided the scattering rate exceeds intrinsic

loss rate (γ−1 > τ−10 ) . As the coupling is increased, a point is reached where the cav-

ity losses (either intrinsic or coupling related) dominate (τ−10 > γ−1). For this case

the amplitude of the counter-propagating wave decreases, since the counter-clockwise

propagating does not have sufficient time to be build up. In the limit of strong over-

coupling, the resonator therefore again approaches the behavior of an ideal traveling

wave resonator. The presence of modal coupling and reflection has additionally the

important property of reducing the maximum energy storage of the cavity. Figure

4.6 shows the reduction of cavity energy (with respect to the ideal case, i.e. Γ = 0).

In this calculation maximum circulating power was calculated, and compared to the

ideal case. In the limit of strong modal coupling the circulating power is reduced by

a factor of two. This property will be particularly important in the second part of

this thesis, where nonlinear optical effects in microcavities are considered.

4.4 Physical mechanism giving rise to strong modal

coupling in micro-sphere resonators

We studied the origin of the scattering amplitudes causing strong modal coupling by

analyzing the sphere’s surface around the equatorial plane using SEM imaging. It was
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Figure 4.6: Power correction factor as a function of modal coupling parameter Γ. In
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Figure 4.7: Observation of a-symmetric mode splitting. The doublet structure ex-
hibits an a-symmetry in terms of the linewidth and transmission (T). Inset: Scanning
electron microscopy of the surface of a microsphere resonator exhibiting strong modal
coupling. Surface defect centers with dimensions below the excitation wavelength are
visible which can give rise to strong modal coupling. The defects centers are due to
evaporation and subsequent redeposition of silica on the sphere surface.

found that for spheres with large intermode coupling, small, localized and randomly

distributed surface defects, which had sub-wavelength dimensions (typically hundreds

of nanometers as shown in the inset of figure 4.7) were present, while in spheres

exhibiting negligible mode splitting these defects were absent. It can be concluded

that for the spheres under consideration, the modal coupling was caused by scattering

of surface defects. The surface centers are likely due to re-deposition of silica during

the CO2 laser annealing step. As pointed out in Appendix C the laser heating is

routinely observed to cause evaporation of silica from the cavity surface.

The sub-wavelength nature of the surface scattering centers can also be a possible

explanation for the observation of asymmetric mode splitting. Figure 4.7 shows the

observed effect, as evidenced from a transmission spectrum. As the proper eigen-
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modes in the presence of (strong) modal coupling are standing waves (with the

angular variation |u|2 ∝ cos2(mφ), sin2(mφ) ) the eigenmodes are orthogonal and

sense different parts of the resonator surface and its imperfections. Correspondingly,

this can lead to a different loss rate for the two orthogonal pair of standing waves

(and correspondingly lead to the asymmetric mode splitting).

4.5 Summary

In conclusion, we have experimentally observed the regime of strong modal coupling,

where scattering rate among the degenerate CW and CCW propagating whispering

gallery mode is the dominant scattering mechanism and exceeds both intrinsic loss

rate as well as the waveguide-coupling rate. We have analyzed the modified coupling

properties in the presence of large modal coupling. We observe a shift in the critical

coupling point, and a strongly reflected signal. The extent to which the resonator

properties are altered can be described by the normalized modal coupling parameter

Γ. In the regime of strong modal coupling, back-reflection as large as 94% was

observed, and demonstrate that the whispering-gallery mode resonator does not store

appreciable optical energy but functions as a ’narrow-band reflector’. The arising

modifications of criticality and circulating power are important in cavity QED and

nonlinear optical experiments, [49, 40]. The discussed properties are not resonator-

type specific and can be found in other resonant geometries, e.g. fiber-rings, planar

disks, or cylinders.
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Chapter 5

Ultralow-threshold Raman Lasing
in spherical microcavities

5.1 Introduction1

The long photon lifetimes and small mode volume of ultra-high-Q microcavities, al-

low to significantly reduce the threshold for nonlinear phenomena. Early work[56][57]

recognized these attributes through Raman excitation in microdroplets, and have ob-

served and investigated many stimulated nonlinear phenomena, such as stimulated

Brillouin[58], stimulated Raman[59] scattering and cascaded Raman scattering[60] in

liquids formed from Raman active media such as Carbondisulfid (CS2). However,

due to the inefficient nature of free space laser excitation used in these experiments,

as well as due to the transient nature of the microdroplets, microdroplets required

high threshold pump powers and did not allow stable and long term study of nonlin-

ear optical effects. In contrast, silica microspheres (which have first been studied by

Ilchenko and Gorodetsky[61]) are good candidates for stimulated Raman sources, and

have the highest Q-factors of any optical resonator (>109). Silica microspheres allow

both stable and long term study of nonlinear effects, and can be efficiently excited

with tapered optical fibers as studied chapter 3. Despite these favorable properties,

however, nonlinear optical phenomena in silica microspheres have remained nearly

entirely unexplored, with the with the exception of the Kerr-effect, which was ob-
1Work presented in this chapter has been published in: "Ultra-low threshold Raman

laser using a spherical microcavity", Nature, 415, 621-623 (2002).
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served in low-temperature experiments as an intensity dependent shift of the reso-

nance wavelength[62]. In this thesis chapter a micrometer-scale, nonlinear Raman

source using a taper-fiber coupled microsphere is demonstrated[63] that has a highly

efficient pump-signal conversion (higher than 35%) and pump thresholds nearly 1000

times lower than shown before. This reduction of necessary pump power is due the

efficient and optimum coupling to ultra-high-Q optical modes. This allows to observe

stimulated Raman scattering at threshold levels as low as 65 µWatt, which is usu-

ally considered the regime of linear optics. In contrast, silica-fiber Raman sources

used to-date in telecommunication require high power pump lasers (typically with

several Watts), and are macro-scale devices. As such, the result presented in this

chapter present a route to compact, ultra-low threshold sources for numerous wave-

length bands that are usually difficult to access. While ultra-high-Q microsphere

enables a large reduction in the necessary threshold pump power, the fiber-coupling

notably improves overall efficiency and provides a convenient method of optical field

transport.

5.2 Nonlinear optics in fiber

If one wished to study nonlinear optical effects, one would intuitively not choose silica

at first sight. Due to the inversion symmetry of the material it does not have a second

order nonlinearity χ(2). The third order nonlinearity χ(3) of silica is, compared to most

other materials, nearly 2-orders of magnitude smaller. However, the low nonlinearity

of silica is compensated by the fact that silica possesses low absorption (0.2 dB/km at

1550 nm) yielding a very high nonlinearity-to-loss ratio. This has been recognized by

many researchers and makes optical fiber based nonlinear optics a highly attractive

and fruitful field of research (A comprehensive overview of quantum and nonlinear

optics in fiber is given in ref. [64][65]). On an applied side, optical fiber is the medium

of choice for optical field transport and as such bears practical potential.

The nonlinear optical response is in general described by expanding the polariza-
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tion in powers of the electric field.

Pi = ε0χ
(1)
ij Ej + ε0χ

(3)
ijklEjEkEl

The lowest order nonlinearity in silica is third order2. The an-harmonic terms in

this expansion of the susceptibility gives rise to a variety of nonlinear optical phe-

nomena, which are explained in Appendix A. The different nonlinear optical effects

which can be observed in silica, are associated with different products of the field op-

erators EjEkEl and the respective susceptibility function. In general the third order

nonlinearity exhibits both a real and imaginary part:

χ(3) = χ
(3)
Re + i · χ(3)Im

The third order nonlinearity in silica fiber exhibits both an instantaneous and time

delayed response. The instantaneous nonlinear response of silica is determined mainly

(81%) by the far-off resonant electronic response from the medium which occurs at

a time-scale of τ = 5 fs. In addition as small part of this instantaneous response

(19%) is due to vibrational states (phonons)[64].

5.2.1 Kerr nonlinearity

The instantaneous response of silica gives rise to a change of the refractive index with

intensity n(I) = n0 + n2I, where n2 = 3 × 10−16cm2/W , and is commonly referred

to as the optical Kerr effect. As shown in appendix A, it is related to the nonlinear

susceptibility by:

n2 =
3

8nc�0
χ(3)

2To describe the nonlinear optical response of a medium, the polarization is expanded in a power
series of the electric field, i.e.

Pi = ε0χ
(1)
ij Ej + ε0χijk

(2)EjEk + ε0χ
(3)
ijklEjEkEl

Due to inversion symmetry of the material (silica), the polarization must transform from Pi → −Pi
and the electric field as Ei → −Ei under spatial inversion. This is only the case if the even terms
vanish (χijk

(2) ≡ 0).
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As a result a light beam experiences an intensity dependent refractive index, which

can be used in a variety of fundamental and applied studies and gives rise to squeez-

ing, solitons, wavelength conversion, pulse compression, optical switching etc. (see

references [64][65] for an overview). It should be noted that the imaginary part of

n2, describes two-photon absorption and in the case for silica can be neglected, since

resonant processes occur at photon energies of ca. 9 eV.

5.2.2 Raman scattering

In addition to the instantaneous response, there is also a time-delayed response of

the medium (which can be modeled as a time-delayed susceptibility function). This

non-instantaneous silica response due to vibrations (phonons) gives rise to stimulated

Raman scattering. Raman scattering is an inelastic light scattering process which

was first observed in 1904 by Raman and Shrinivan. The theory of stimulated Ra-

man scattering was later developed by Bloembergen, and reference [66] contains an

excellent treatment on the physics of stimulated Raman scattering. Stokes scattering

describes the process where a photon is red-shifted and a phonon created, whereas

the reverse process, the absorption of a phonon and the creation of a blue-shifted

wave is referred to as anti-Stokes scattering.

In silica stimulated Raman scattering is due to the interaction with optical phonons.

Due to the rapid decay of the optical phonons (τ ≈ 100 fs), the treatment of stim-

ulated Raman scattering simplifies considerably, leading to de-coupled Stokes and

anti-Stokes fields [66], and leads to Stokes amplification, whereas the anti-Stokes field

is attenuated. Stimulated Raman scattering was first observed in optical fibers by

Stolen and Ippen at Bell labs (see reference [67][68]). It is important to note, that

Raman scattering leads to both forward and backward a scattered Stokes fields. Mo-

mentum conversation in this process is intrinsically satisfied, since the dispersion

relation ω(
¯̄̄
�k
¯̄̄
) of optical phonons is essentially flat, and an optical phonon carrying

the difference in wave-vector ∆�k = �kp − �kR can be found for both forward and back-

ward scattered light. Therefore Raman oscillation in a microcavity will excite both
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Silica nonlinearity Frequency Linewidth Gain-factor (g)

Shift (ν0) (∆ν) (m/W)
Brillouin Scattering 10 GHz 100 MHz 500×10−13

Raman Scattering 14.3 THz ≈10 THz 1×10−13

Kerr-FWM - >10 THz 2×10−13

Table 5.1: Nonlinear optical processes of silica and their associated modal gain.

CW and CCW whispering-gallery modes.

5.2.3 Brillouin scattering

In addition the light field can also couple to acoustical phonons which is referred to as

Brillouin scattering. This effect has been reported for optical fiber in reference [69].

In contrast to optical phonons, acoustical phonons in silica exhibit a linear dispersion

relation ω(k) = v ·
¯̄̄
�k
¯̄̄
. Therefore a light wave can only couple efficiently via an

acoustical phonon to selected wave-vectors, and gives rise only to backwards light

scattering. In addition, the linear dispersion curve leads to a frequency shift much

smaller than for optical phonons. Table 5.1 summarizes the characteristic parameters

of Brillouin, Raman and Kerr nonlinear optical processes in silica, along with their

respective modal gain. It is important to note that the Kerr-effect has a maximum

gain which exceed that of Raman by a factor of 2 (This will give rise to parametric

oscillation, which is the topic of chapter 10).

5.3 Stimulated Raman scattering in microcavities

In silica, stimulated Raman scattering occurs due to the coupling of a photon to the

optical phonons of amorphous silica, and can be described by the third-order nonlin-

earity, as is described in Appendix A. Figure 5.1 shows the Raman gain spectrum as

a function of phonon frequency for silica glass.

In a microcavity stimulated Raman scattering can occur when both energy and

momentum conservation among the pump photon, scattered photon and phonon are
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Figure 5.1: Raman gain spectrum of SiO2. The peak gain occurs at 14.3 THz and
13.9 THz. The broad nature of the Raman gain spectra is due to the rapid de-phasing
of the phonons, which occurs on the order of 10 ps. The inset shows the schematic
of the light-phonon interaction which gives rise to a red-shifted photon, where the
difference in energy is carried by the phonon field.
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obeyed. Momentum conservation is intrinsically satisfied, due to the essentially flat

dispersion relation of optical phonons. Due to the broad nature of the Raman gain

spectrum, the resonance condition (i.e. energy conservation) for a Raman mode is

strongly relaxed, as for the microcavities considered in this thesis, the number of

modes under the Raman gain curve is typicallyÀ1 (i.e. since the free-spectral-range

is much less than 30 THz), and accidental overlap is in all experimental scenarios

guaranteed. In addition the Stokes amplification is a phase insensitive amplifica-

tion scheme, and therefore phase-matching of pump and Raman mode intrinsically

satisfied.

The lasing threshold occurs when cavity round-trip gain equals round-trip loss.

For an intensity-dependent gain coefficient (such as for a stimulated Raman scatter-

ing), and taking into account the power build-up factor in a resonator, the following

equation for threshold pump power can be derived;

Pthreshold =
π2n2Veff

λPλRC(Γ)gBR
QP

e

µ
1

QP
T

¶2
1

QR
T

(5.1)

Here Pthreshold denotes the incident power necessary in the fiber (not the power

coupled into the resonator), n is the index of refraction, Veff is the effective pump

mode volume (i.e. which will be explained in detail in the next chapter), λP and λR are

the pump and Raman wavelengths, gbR is the nonlinear bulk Raman gain coefficient,

C(Γ) is a correction factor of the circulating power due to internal backscattering

(between 1 and 2), and Qp
T is the total quality factor for the pump mode, made up of

an intrinsic contribution Qp
o and a coupling contribution Q

p
e (and similarly for the Ra-

man mode). Equation (1) has the important feature that the threshold pump power

scales inversely with the factor V/Q2, which is the same as quality factor multiplied

by the cavity Purcell factor (∝ Q/V ). Thus quality factor plays a dominant role in

device performance. This is a classical conclusion, neglecting the possible additional

benefit due to enhancement of the gain coefficient by cavity quantum electrodynam-

ics (QED)[70]. As a result the ultra-high-Q modes of microspheres, should enable

significant reduction in the necessary pump power required for stimulated Raman
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Substance Raman Shift (ν0) Linewidth(∆ν) Raman—gain (g)

cm−1 cm−1 (m/W)
Silica SiO2 467 0.8×10−11

CS2 665 0.5 24×10−11

LiNbO3 256/637 23/20 8.9/9.4×10−11

Table 5.2: Comparison of the Raman properties for the substances used in cavity
nonlinear optical experiments using microdroplets and microspheres.

scattering, which is indeed experimentally observed as will be described in the next

section.

5.4 Observation of stimulated Raman scattering in

microspheres

Silica microspheres were fabricated as described in chapter 2 of this thesis by melting

the tip of a standard telecommunication (SMF-28) fiber with a CO2 laser, and coupled

using tapered optical fiber. In these measurements, values of Q were in the low 108

range, believed to be limited by surface scattering and OH absorption[71]. Surface

scattering also induces backscattering of power and couples the initially degenerate

clockwise (CW) and counter-clockwise (CCW) circulating modes, causing a splitting

of the resonance wavelength, which has been observed earlier in microspheres[72]. In

addition, as discussed in chapter 4, there is an associated reduction of the circulating

power due, compared to the case of no backscattering (up to a factor of two). The

taper position is controlled relative to the microsphere by a three-axis stage with a

resolution of 20 nm. A tunable 1550-nm external-cavity diode laser with 300 kHz

linewidth is used as a pump. The laser is scanned repeatedly through a frequency

range of approximately 60 GHz around a single whispering gallery mode (WGM).

Figure 5.2 shows the emission spectrum for a Raman microsphere laser (intrinsic

pump quality factor of Qo = 10
8) excited far above the threshold for stimulated Ra-

man scattering. There are a multitude of nonlinearly generated wavelengths, from
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Figure 5.2: Spectrum of a 70-µm diameter Raman microsphere laser with pump
powers of 2 mW. The pump is at 1555 nm. The peaks located around 1670 nm
are Raman oscillation, separated by the free-spectral-range (here about 5 nm) of
the microsphere. The secondary lines around 1555 nm are due to four-wave-mixing
(FWM) between the pump and two Raman waves. Inset is a microsphere coupled to
a fiber taper.
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stimulated Raman peaks centered around 1670 nm to Raman-assisted four-wave mix-

ing (FWM) peaks located symmetrically about the 1550-nm pump. Stimulated Ra-

man scattering has a very high threshold (nonlinear gain coefficient of 10−11 cm/W ),

requiring significant circulating pump powers. This suggests that other nonlinear

processes having lower thresholds such as stimulated Brillouin scattering (SBS) could

also be present in the systems tested. SBS, for example, should have a threshold

roughly 500 times lower than stimulated Raman scattering (nonlinear gain coefficient

is 500 times larger). To determine the presence of SBS, an optical spectrum analyzer

was used to measure backward propagating optical power coupled from the micro-

resonator into the fiber taper. The gain spectrum for SBS is very narrow (< 10MHz)

with a roughly 10 GHz frequency downshift in silica. The micro-resonators tested

here have free spectral ranges on the order of teraHertz (the angular mode number was

in the range of 50 . c . 200), with an eccentricity splitting of the azimuthal modes
on the gigahertz scale (i.e. |∆νecc| = ν · � |m|+

1
2

c2
,corresponding to an eccentricity of

the order of � . 1% . In general this splitting is dependent upon fabrication-induced

irregularities, thus overlap with the SBS spectrum is unlikely. Accidental overlap with

the Brillouin gain spectrum has been observed in experiments on liquid droplets[58],

but has not been observed in the microspheres used in this study. In addition, it is

worth noting that Brillouin scattering in silica fiber leads to the deviation from the

Brillouin theory, since the acoustical wave depart from their plane wave nature (un-

derlying the conventional Brillouin scattering treatment) as they are eigenmodes of

the cylindrical fiber structure. This leads to the case of forward acoustic wave scat-

tering (guided acoustic wave Brillouin scattering)[73][74], which is due to acoustical

modes which have zero wave-vector parallel to the axis of propagation, but non-zero

frequency3. However, the backward spectral monitor did show the expected strong

Raman oscillation. Cascaded Raman peaks, if present, were not observable due to the

wavelength range of the optical spectrum analyzer (and are analyzed in a different

experiment using a 1450 nm pump as described in the next thesis chapter). Note that

3Frequency components (typically 2×∆v,∆v ) which might indeed be attributed to forward-wave
acoustic Brillouin scattering have been observed in certain cases (for frequency shifts ∆v ≈ 5 MHz,
which were smaller than the cavity linewidth).
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Figure 5.3: Single longitudinal mode Raman lasing. Raman spectrum for a 40-µm
diameter microsphere, exhibiting a uni-directional conversion efficiency of 16% (pump
is at 1555 nm).

four-wave-mixing associated with the Kerr effect was also observed. However, such

processes in micro-cavities are governed by strict conditions imposed by the combined

effect of the phase-matching requirement with the WGM spectral structure. This will

be investigated in future work, and the results of this study are presented in the last

chapter of this thesis.

Stimulated Raman oscillation was observed by pumping a single WGM and mon-

itoring the transmission using an optical spectrum analyzer. Once the threshold for

SRS was exceeded, lasing modes in the 1650-nm band could be observed, in cor-

respondence with the peak Raman gain which occurs down-shifted in frequency by

approximately 14 THz relative to the pump frequency (wavelength shift of approxi-

mately 110 nm). Figure 5.3 shows Raman emission for an ultra-high-Q microsphere.

The Raman emission with respect to the gain peak is provided in the inset of figure
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Figure 5.4: High resolution scan of the Raman output emission slightly above thresh-
old from the previous figure, exhibiting 5 oscillating azimuthal modes (identified as
c = m, ..., c = m − 4) where c ≈ 150 . The modes are split due to eccentricity by
|∆νecc| ≈ 7.5 GHz which corresponds to an eccentricity of � ≈ |∆νecc|

ν
c ≈ 0.06%.
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5.3 . Since the fundamental whispering gallery modes (n = 1, c = m, p = TM) are

most tightly confined (i.e., smallest mode volume), Raman lasing is expected to occur

first for these modes. The presence of nearly degenerate azimuthal modes in a spher-

ical microcavity (i.e., weak eccentricity splitting), causes simultaneous oscillation on

several azimuthal modes. Figure 5.4 shows a higher resolution spectral scan of the

spectrum in figure 5.4. Several azimuthal modes can be observed to be oscillating

simultaneously (to the temporal resolution of the optical spectrum analyzer). The

splitting of the modes is for fundamental WGM (n = 1, c ≈ m) is given by (compare

chapter 1):

|∆λecc| ≈ λ · �1
c

(5.2)

And corresponds to an eccentricity of � ≈ 0.06%. The efficiency of the Raman

oscillator was investigated by decreasing the pump power until a single emission

wavelength was observed on the optical spectrum analyzer (inset of figure 5.5). The

measured threshold is 86 µW for this 40-µm sphere. This value is nearly 1000× lower

than the corresponding values measured in previous work using microdroplets (45 mW

for a 30-µm CS2 droplet; ref. [57]), despite the fact that silica has a 1000 times lower

Raman gain coefficient (compare table5.2). This improvement of nearly 106 times

lower threshold results from efficient single WGM excitation and controlled coupling,

whereas free space beams (used previously) lack high spatial mode selectivity and

efficient power transfer. The measured unidirectional absolute conversion efficiency

was 16%, with a differential quantum efficiency (CW and CCW oscillation) of 36%.

In other microspheres tested Raman output powers as large as 200 µW have been

obtained.

5.4.1 Coupling dependence of stimulated Raman threshold

The threshold formula predicts a strong dependence of the threshold on the coupling

dependence. To investigate the dependence on quality factor, the threshold was

measured while varying the coupling between the taper and microsphere by changing

the air gap (compare figure 5.5). The data follow a near parabolic shape with a



77

measured minimum value of 62 µW. This value is, to the author’s best knowledge, the

lowest directly measured (not inferred) Raman threshold for any nonlinear substance

to date. A theoretical fit, based on exponential dependence of the coupling Q, shows

excellent agreement.

As a further verification of the threshold formula the theoretical minimum thresh-

old value was compared with the observed value. The quality factor and the mode

splitting of the whispering-gallery mode were measured by performing a linewidth

sweep in the undercoupled regime, where the backscattering-induced doublet struc-

ture is most pronounced. These measurements yielded Q0 = 1 × 108 and Γ = 2 .

The size of the microsphere was inferred from the free spectral range, ∆λ = 10.5

nm i.e. 50 µm diameter, where the free-spectral range denotes here modes with

successive angular mode number c. The mode volume was calculated using an-

alytic expressions based on estimated mode numbers for the fundamental WGM

(n = 1, p = TM,m = c, c ≈ 139). Numerical Calculations yield a modal volume of

ca. 1300 µm3. Using these values, the theoretically expected minimum threshold is

given by 50 µWatts which is in good agreement with the experimentally measured

value of 62 µWatts.

Figure 5.6 shows the measured pump threshold plotted versus the transmission

for the data of figure 5.5. Note that the graph is not single-valued as the transmission

in over and under-coupled regime take identical values. As evident from the measure-

ment, the Raman threshold is always lower in the undercoupled regime, due to the

1/Q2-dependence of the Raman threshold. The minimum threshold (marked by the

arrow) does not lie at the critical coupling point[75], where circulating pump power

(and correspondingly Raman gain) is largest. It in fact occurs for the system in a

slightly undercoupled state (weaker cavity coupling rate than at the critical point),

corresponding to an observed pump transmission of 12%. This shift results from

the interplay between Raman gain and loss, resulting from the coupling of both the

pump and Raman wave to the fiber waveguide, and will be explained in more detail

in the next thesis chapter. In the simplified case where the quality factors of pump

and oscillating modes are equal the theoretical minimum occurs for a pump power
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Figure 5.5: Coupling gap and size dependence of the Raman threshold. Main fig-
ure, Raman oscillation threshold vs. taper-sphere gap for a 40-µm-diameter sphere
(Q0=108). Position is measured from the critical coupling point, where negative val-
ues correspond to the undercoupled regime. The minimum threshold occurs with the
microsphere about 0.15 µm undercoupled, and corresponds to a transmission of 12%.
Solid line, a theoretical fit to the threshold equation. Inset shows Raman power out-
put (sum of forward and backward emission) vs. incident pump power. Differential
quantum efficiency is 36%.
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Figure 5.6: Stimulated Raman scattering threshold versus transmission past the mi-
crosphere, for the measurement presented in figure 5.5. Since the cavity transmission
is a symmetric function with respect to the critical coupling point, the threshold data
plotted is not single-valued, and under- and over-coupled regime are indicated in the
figure. The arrow denoted the minimum Raman threshold, which occured undercou-
pled with a finite pump transmission of ca. 12% in agreement with the prediction of
the threshold equation (under equal pump and Raman Q).
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transmission of T = 1/9 = 11%, and is in good agreement with the measurement.

5.4.2 Mode volume dependence of the Raman threshold

From equation 5.1, the threshold is expected to scale linearly with the mode volume.

The inset of figure 5.7shows numerically calculated mode volume for a fundamen-

tal mode of a microsphere at 1550 nm. For a microsphere, the mode volume scales

approximately as radius squared. Therefore the Raman threshold is expected to ex-

hibit approximately an R2 behavior on Raman threshold. To investigate this, the

minimum threshold for various sphere diameters ranging from 28 to 110 µm was

measured. In this experiment, the minimum Raman threshold Pmin
t , the microsphere

size (as inferred from the free-spectral-range), the intrinsic Q in the pump band (Q0)

and the intermode coupling parameter (Γ) were measured. To extract the volumet-

ric dependence of the Raman threshold using data from cavities having different

resonant characteristics, the threshold data were normalized to the set of parame-

ters (Q0 = 10
8,Γ = 0, gR = gmaxR ). The result of this procedure is shown in the main

figure 5.7. The data indeed show a quadratic dependence on R (the actual fitted

exponential from a double logarithmic plot is 1.95 and is in good agreement with the

expected value of 1.83) and confirm the linear relationship of the Raman threshold

on the mode volume as predicted by equation 5.1. It should be noted that for smaller

spheres the mode volume deviates from this R2−behavior and ultimately, since for

very small diameters, the mode volume increases due to weakening of the whispering

gallery confinement. The minimum mode volume occurs for a radius of 6.9µm (for

c = m = 34)[76] for 1550 nm wavelength and the mode volume is Vmin = 173.1µm3.

However, this size is not optimum for stimulated Raman scattering as the additional

benefit of reduced mode volume is more than offset by the significant decrease in Q

factor to ~105 due to whispering-gallery loss (Threshold power ∝ V/Q2). In previous

work on microdroplets, it was found that for droplets with diameters of less than 30

µm there is an additional threshold reduction due to cavity QED effects[70]. In the

present work we could not accurately determine threshold in this size range. Smaller
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Figure 5.7: The Raman oscillation pump threshold of a microsphere as a function
microsphere diameter. To compare microspheres with different resonance character-
istics, the Raman threshold was Q-normalized to Q = 1.0× 108 and modal coupling
normalized to Γ = 0. A double logarithmic plot of the data with a linear fit obtains
a dependence of Pthresh ∝ R1.95 which is in close agreement with the theoretically
expected dependence of Veff ∝ R1.83. The inset shows the calculated mode volume
of a microsphere as a function of diameter using a finite-element solver.
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spheres experienced very large temperature effects, causing the WGM’s to experience

instabilities as well as thermal shifting of the spectrum, complicating pumping of

the resonant mode. With sufficient thermal control it may be possible to quantify

precisely the reduction of threshold in this smaller size regime.

5.5 Conclusion

There are several ways to improve the performance of this system. Quality factors

of 109 have been achieved previously in fused-silica microspheres[71], which should

lead to sub-microwatt Raman thresholds. The use of small spheres (provided tem-

perature issues can be resolved) should improve Raman conversion efficiencies under

increased pump power due to the increase in free spectral range, which decreases the

efficiency of secondary Raman lines and Raman-assisted four-wave-mixing. Planar

microcavities, such as disks should allow true single-mode emission, and in fact were

also demonstrated in this thesis, using toroid microcavities (see chapter 9).

Concerning the outlook for future work and the implications of this work beyond

an ultra-efficient and compact Raman source: As noted earlier, Raman and four-wave-

mixing in these systems have been observed. These non-linearities can be accessed in

a compact volume through a nearly ideal field transport channel (optical fiber) and

field coupling junction (the tapered optical fiber). As such, this system can be viewed

more broadly as a building block for study of a host of nonlinearity within a high-Q sil-

ica resonator and potentially for generation of non-classical photon states[77][64] and

their efficient transport. Indeed, the compact nature of the system combined with the

potential of fiber field transport could afford relatively straightforward access to reso-

nant systems in normally challenging environments such as ultra-low-T chambers[62].

The ability to load or suitably modify spheres using dopants or quantum dots could

also be useful in such studies.
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Chapter 6

Theoretical and experimental
analysis of cascaded Raman
scattering in ultra-high-Q
microcavities

6.1 Introduction1

In the previous chapter stimulated Raman lasing was observed in fiber coupled mi-

crosphere resonators at ultra-low threshold and high efficiency. Due to the high con-

version efficiency the internal Raman fields can reach power levels which are sufficient

to generate higher order Raman fields. This process, which is referred to as cascaded

Raman scattering, is described in this chapter and analyzed both theoretically and ex-

perimentally. Cascaded Raman scattering in liquid microdroplets has been observed

up to 14th order, but in these studies the characteristics of the pump-to-Raman conver-

sion could not be studied. In this chapter cascaded Raman scattering in microspheres

is observed and the pump-to-Raman characteristics measured. Theoretical analysis

shows that the generated higher order Raman fields exhibit distinct characteristics

on their order. Even order Raman fields exhibit a linear pump-to-Raman conversion,

while odd order exhibit a square-root pump to Raman conversion efficiency. Further-

1Work in this chapter has been published in: "Fiber-coupled cascaded Raman laser",
Optics Letters, 2003 and "Theoretical and Experimental Analysis of Stimulated Raman
scattering in ultra-high-Q optical microcavities", submitted (JSTQE).
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more scaling-laws underlying the cascaded Raman process are derived. The threshold

for N th−order cascaded Raman modes is shown to follow a N3−dependence, whereas

the efficiency decreases with Stokes order as 1/N2. The theoretical findings are in

good agreement with measurements up to second order Raman modes, and have also

been confirmed beyond second order Raman scattering by Bumki Min [29], who ver-

ified the pump threshold and efficiency relation up to 5 orders in microspheres[29],

using a 980-nm-wavelength pump laser. Furthermore, the first section will present

the coupled-wave equations for Raman lasing in a waveguide-coupled whispering-

gallery-mode resonator, and complements the experimental results discussed in the

previous chapter. The nonlinear processes can be conveniently described using the

coupling-of-modes formalism of chapter 2, by properly defining the (intra-cavity) Ra-

man gain coefficient. Using this set of equations, the expression for the threshold and

the efficiency of stimulated Raman scattering is derived and the optimum coupling

(minimum Raman threshold) analyzed. The analysis is then extended to the case

of cascaded Raman oscillation in which Raman signals serve to pump and generate

higher-order Raman waves.

6.2 Theoretical analysis of stimulated Raman scat-

tering in microcavities

6.2.1 Coupled-mode equations for 1st order Raman scatter-

ing in microcavities

The classical coupled-wave-equations for stimulated Raman scattering have been

given by several authors. In the conventional treatments, the pump and Raman

waves are assumed to be plane waves, with only one spatially varying variable, sim-

plifying considerably the coupled wave-equations. In the case of a microcavity, the

fields involved are the whispering-gallery modes. By reformulating the wave-equation

one arrives at a similar set of equations as in the case of plane waves, however with
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modified coupling coefficients, which take into account the coupling among different

WG-modes. This treatment leads to the definition of overlap factors (or alternatively

stated to the definition of the effective mode area, or effective mode volume). The

plane wave interaction is described by:

d

dz
Ip = −

µ
ωp

ωR

¶
gRIRIp

d

dz
IR = gP IpIR

In these equations2 the bulk Raman gain coefficient is given by gR and is well known

for silica fibers. The equations can also be formulated in terms of the electric field

which is related to the field strength by: I = 1
2
n�oc |E|2.

d

dz

−→
E p = −1

2

µ
ωp

ωR

¶µ
c

neff

¶
gR

¯̄̄−→
E R

¯̄̄2−→
E p

d

dz

−→
ER =

1

2
gR

µ
c

neff

¶ ¯̄̄−→
E p

¯̄̄2−→
ER

To connect these equations with the previously introducedmodel of aWGMmicrocavity-

waveguide system, the slowly varying amplitude (cavity excitation) Ai(t) is intro-

duced. Furthermore, to facilitate the discussion, the amplitude is normalized to yield

the electromagnetic energy of the whispering gallery mode, |Ai|2 = UWGM .

�Ei(r, z, φ, t) =
1√
Ni

Ai(t) · �E(r, z)eiωit−imiφ

where

Ni ≡
Z ¯̄̄

�Ei

¯̄̄2
dV = 2π

Z ¯̄̄
�Ei

¯̄̄2
dA

2The factor
³
ωp
ωR

´
reflects conservation of photon number in the Raman process, i.e. d

dz (
Ip
~ωp −

IR
~ωR ) = 0. (termed Manley-Rowe relations).
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Inserting these solutions into the coupled mode equation (and reformulated in the

temporal domain) leads to:

µ
c

neff

¶−1
dAp

dt
�Ep = −

ωp

ωR
gR(ωp,ωR)

µ
c

neff

¶ ¯̄̄
�ER

¯̄̄2
�Ep · |AR|2Ap

1

NRµ
c

neff

¶−1
dAR

dt
�ER = gcR(ωp, ωR)

µ
c

neff

¶ ¯̄̄
�Ep

¯̄̄2
�ER · |AP |2AR

1

Np

(6.1)

Next, in order to eliminate the explicitly appearing field dependence �Ei, and

to arrive at an equation which describes the evolution of the energy of the pump

(|Ap|2) and Raman modes(|AR|2), the equation is multiplied by the operator
R
E∗R,pdV

from the left. This reduces the explicit field dependence as entered through Ep,R =

Ep,R(r, z, φ) to an overlap factor, which is the effective mode are of the nonlinear

process.

dAp

dt
= − ωp

ωR
gR(ωp,ωR)

µ
c

neff

¶2
Veff · |AR|2Ap

dAR

dt
= gcR(ωp, ωR)

µ
c

neff

¶2
Veff · |AP |2AR

V −1eff =

R
|Ep|2 |ER|2 dVR

|Ep|2 dV
R
|ER|2 dV

(6.2)

Since the reformulated equations are now compatible with the coupling-of-modes

formalism (for the treatment of the whispering-gallery coupling junction), one can

proceed and add waveguide coupling and intrinsic loss terms, as has been done in

chapter 2:

dAp

dt
= −

µ
1

2τ ex
+

1

2τ 0

¶
p

Ap −
µ
ωp

ωR

¶
gR(ωp,ωR)

c2

2n2eff
Veff · |AR|2Ap +

r
1

τ ex
s

dAR

dt
= −

µ
1

2τ ex
+

1

2τ 0

¶
R

AR + gcR(ωp, ωR)
c2

2n2eff
Veff · |AP |2AR

V −1eff ≡
R
Vcav

|Ep|2 |ER|2 dVR
dV |ER|2 ·

R
|Ep|2 dV

(6.3)
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Three comments are in place. First, it should be noted that the Raman gain

will excite both CW and CCW Raman modes of the resonator. For simplicity of

discussion the two modes are here described by only one amplitude, such that |AR|2 =

|Accw
R |2 + |Acw

R |
2 . Therefore, equal amplitude emission occurs along both waveguide

directions given by |sr|2 = |AR|2
2τex

. Secondarily, modal coupling is generally present in

the UHQ WG-resonators, exciting both CW and CCW pump modes, as described by

a coupled set of equations as in chapter 4. The treatment of modal coupling in the

case of stimulated Raman scattering can however be simplified, by treating the total

pump field |Ap|2 =
¯̄
Accw
p

¯̄2
+
¯̄
Acw
p

¯̄2
. The reduction in total circulating power due to

modal coupling C(Γ), can be taken into account power by redefining an equivalently

reduced Raman gain (i.e. by a factor of 1/C(Γ)). Thirdly, other nonlinear effects

such as Four-wave-mixing or Brillouin scattering are not considered in this analysis

as the microcavity poses stringent frequency matching constraints on these processes

making their observation difficult. In the case of Stimulated Brillouin Scattering,

the narrow gain bandwidth in the range of 100 MHZ makes overlap of cavity modes

with the Brillouin gain spectrum unlikely. In the case of four-wave-mixing, stringent

phase matching conditions are present (and will be discussed in chapter 10). For

simplification, we assume that the pump wavelength and the Raman wave are on

resonance and use the slowly varying envelope approximation.

dAp

dt
= −

µ
1

2τ ex
+

1

2τ 0

¶
p

Ap −
ωp

ωR
gcR · |AR|2Ap +

r
1

τ ex
s

dAR

dt
= −

µ
1

2τ ex
+

1

2τ 0

¶
R

AR + gcR · |AP |2AR

(6.4)

Here A signifies the slowly-varying amplitude of the pump and Raman WGM

modes of the cavity and s denotes the input wave. The excitation frequency of the

pump mode and resonant Raman mode is given by ωR and ωpand τ is the total life-

time of photons in the resonator, which is related to the quality factor by Q = ω · τ .

The coupling coefficient κ =
q

1
τex

denotes the coupling of the input pump wave s

to the cavity whispering-gallery-mode Ep[46]. The Raman intra-cavity gain coeffi-
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cient is denoted as gcR, which is related to the more commonly used gain coefficient

gR(measured in units of m/Watt) by,

gcR ≡
c2

C(Γ)2n2
1

Veff
gR(ωR, ωp) and Veff =

R
|EP |2 dV

R
|ER|2 dVR

|EP |2 |ER|2 dV
(6.5)

where Veff is the effective modal volume, and
−→
E is electric field of the WGM. This

definition of effective mode volume deviates from the previously introduced energy-

density related definition, because it takes into account the spatial overlap of the

pump and Raman modes, and the intensity dependent gain.

6.2.2 Effective mode volume and modal coupling

It is interesting to note that the presence of standing waves (as described by the

intermode coupling parameter Γ, see chapter 3) does not effect Veff , and for differ-

ent combinations of standing-wave and traveling-wave character pump and Raman

mode leads to the same value (provided pump and Raman mode are fundamental

whispering-gallery modes). This is the case, since mode volume is smallest for the

fundamental modes, and overlap of the fundamental with higher order azimuthal

modes is low). This can be seen explicitly inserting the φ−dependence pump and

Raman WGM into the definition of Veff (containing the proper normalization as in

chapter 3), and allowing for different excitation strength of the CW and CCW ampli-

tude (a, b). Here mp = cp,mR = cR designate the azimuthal mode number of pump

and Raman mode.

�ER(r, z, φ) = �ER(r, z)
1q

|aR|2 + |bR|2
¯̄
aRe

imRφ ± bRe
−imRφ

¯̄2
�Ep(r, zφ) = �ER(r, z)

1q
|ap|2 + |bp|2

¯̄
ape

impφ ± bpe
−impφ

¯̄2
As can be seen there are four possible cases of Raman and pump mode overlap,

designated by {(++) , (−+) , (+−) , (−−)}. Carrying out the φ−integration (and ne-
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glecting the r, z integration over the transverse mode profile) yields for the (++)

case:

V −1eff(++) ∝
Z

dφ ·
¯̄
aRe

imRφ + bRe
−imRφ

¯̄2 ¯̄
ape

impφ + bpe
−impφ

¯̄2
(|ap|2 + |bp|2)(|aR|2 + |bR|2)

= 2π +
2π

(|ap|2 + |bp|2)(|aR|2 + |bR|2)

Z
dφ ·

¡
2apb

∗
pe

imRφ(|aR|2 + |bR|2) + ...
¢
.| {z }

=0

= 2π

Equivalently all the other combinations overlap factors {++,−+,+−,−−} also lead

to this result, and as such the effective mode volume, is for different values of inter-

mode coupling (as given by Γ) of pump and Raman mode equivalent. This result is

due to the fact, that the polar mode numbers of pump and Raman mode are distinct,

causing no contribution from the cross terms in the integration. Hence the effective

mode volume is given for all four cases by:

Veff = 2π

R
|Ep(r, z)|2 |ER(r, z)|2 rdrdzR

|Ep(r, z)|2 rdrdz
R
|ER(r, z)|2 rdrdz

≈ 2πR0Aeff

Where in the last line the highly localized nature of the WGMmodes near the perime-

ter has been used (i.e. r ≈ R0).

6.2.3 Stimulated Raman scattering threshold and conversion

efficiency

Steady state analysis of the coupled mode equations, results in a clamped, cavity

pump field above threshold. This clamping alters the coupling of pump power to the

resonator, and, in turn, the pump power dependence of Raman laser power such that

the following square root dependence results.

PR =
ωr

ωp

µ
1

τ ex

¶2µ
1

2τ 0
+

1

2τ ex

¶−2
· Pt

Ãr
P

Pt
− 1
!

(6.6)
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The physical origin of this square root dependence of the pump-to-Raman conversion

can be viewed as a “pumping inefficiency” i.e. the coupled pump power does not in-

crease linearly with launched fiber power. The nonlinear dependence of coupled pump

power can be illustrated by considering a pump wave that is initially critically coupled

to the resonator. As noted above, critical coupling features complete transfer and dis-

sipation of power from the resonator (i.e., zero transmission). In terms of the fields

involved in coupling both to and from the resonator, critical coupling results from

the destructive interference of the cavity leakage field with the transmitted, pump

field (i.e., the portion that does not couple to the resonator from the waveguide).

Once the onset of Raman lasing is reached, the cavity pump field is clamped at the

threshold value resulting in a fixed cavity pump leakage field. Subsequent increase in

launched pump power will imbalance the leakage and the transmitted pump fields,

giving rise to finite transmission and a shift away from the critical point. The pump

coupling to the resonator is thereby less and less efficient as the pump field is in-

creased. The expression for the Raman threshold pump power can be factorized into

terms involving modal volume, waveguide-cavity coupling strength and cavity life-

time (or Quality factor). To facilitate separation of the coupling and intrinsic lifetime

dependence, the in chapter 4 introduced dimensionless normalized coupling parame-

ter Kp =
³

τ0
τex

´
p
is used. In the ideal case of a single-mode waveguide coupled to a

whispering-gallery-mode the waveguide transmission as a function of coupling is given

by T =
¡
1−K
1+K

¢2
and K typically varies exponentially with the waveguide-microcavity

"coupling gap" distance [46].

Pt =
π2n2

C(Γ)gRλpλR
Veff ·

µ
1

Q0

¶
R

µ
1

Q0

¶
P

· (1 +KR) (1 +Kp)
2

Kp
(6.7)

Here C(Γ) is a correction factor to account for intermode coupling of the degenerate

clockwise and counterclockwise propagating whispering-gallery modes, and which has

been introduced and plotted in chapter 4 of this thesis. Briefly restated, the leakage of

the cavity field into the backwards waveguide direction causes a reduction of the cavity

buildup factor with respect to the ideal case in the absence of intermode coupling.
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In the limit of strong modal coupling, the cavity buildup factor is reduced by a

factor of 2, which subsequently causes a twofold increase in the threshold necessary

to achieve Raman lasing. In the presence of modal coupling the waveguide coupling

condition for minimum threshold experiences a slight shift towards over-coupling with

the maximum shift occurring at Γ ≈ 1.5. In the regime of very strong modal coupling

the condition of minimum Raman threshold approaches again the original condition

K = 1/2.

The threshold expression follows an inverse square dependence on the quality

factor. This reflects the fact that an increase in Q will cause a twofold benefit in

terms of both reducing cavity round trip losses that must be overcome for threshold

as well as increasing the Raman gain, due to the intensity dependence of the Raman

gain coefficient on the pump field (∝ gRIp). In addition, the equation shows that the

threshold scales linearly with the effective modal volume. The volume dependence of

the Raman threshold was examined experimentally in previous chapter, and confirmed

experimentally.

The threshold equations also exhibits a strong loading dependence, and figure 6.1

shows a plot of the threshold equation for typical microcavity parameters, for the

experiments in the previous chapter. A good approximation in the experiments, is to

assume equal coupling strength to both pump and Raman mode i.e. Qp
ex = QR

ex.This

assumption is based on the assumption of equal evanescent field decay for pump and

Raman mode, which is the case for cp, cR À 1 (see chapter 1). When analyzing the

coupling dependence under this assumption (Qp
ex = QR

ex) but allowing for different

intrinsic RamanQR
0 and pumpQ-factorsQ

p
0, the minimum threshold can be calculated

and occurs for:

Qmin
ex =

Qp
0

2
+

sµ
Qp
0

2

¶2
+ 2QR

0Q
p
0 (6.8)

Furthermore from eqs. 6.8 it is evident that for QR
0 < Qp

0 minimum threshold occurs

for Qmin
ex < 2 ·Q0, whereas for QR

0 > Qp
0 minimum threshold occurs for Q

min
ex > 2 ·Q0.

When analyzing the coupling dependence under the assumption of equal Raman and

pump quality factors and coupling factors Kp = KR ≡ K and τR = τ p, the minimum
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undercoupled.
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threshold occurs when Qmin
ex = 2 ·Q0 or Kmin= 1

2
, i.e. in the undercoupled regime

with finite waveguide transmission of Tmin= 1
9
(˜11%), which was indeed observed

experimentally (as noted in the last chapter).

Pt =
π2n2

C(Γ)gRλpλR
Veff ·

µ
1

Q0

¶2
· (1 +K)3

K
(6.9)

Pmin
t =

cπ2n2

C(Γ)gRλpλR
Veff ·

µ
1

Q0

¶2
· 27
4

(6.10)

It is worth noting that at this coupling condition, the circulating pump-power in the

resonator is not maximum. This can be understood since minimum threshold repre-

sents an optimal balance of both pump coupling and Raman mode coupling loss. The

conversion of pump power to Raman power above threshold can be characterized by

the differential slope efficiency. The bidirectional external differential slope efficiency

ηex is derived by linearizing the expression for PR near the threshold condition and is

given by,

ηex ≡
dPRaman

dPlaunched
= 2 · ωr

ωp

µ
1 +

1

K

¶−2
(6.11)

Figure 3 shows the differential slope efficiency as a function of coupling strength. It

is noteworthy that it approaches the value of 2ωr
ωp
in the limit of strong over-coupling

( τ0
τex
=∞). Surprisingly, this value exceeds unity, indicating that every waveguide

pump photon added above threshold, is converted on average to more than one Ra-

man photon. This result can be understood by again considering the nonlinear de-

pendence of coupled pump power, except this time in the over-coupled regime. In

particular, the differential increase in coupled pump power grows more quickly in the

over-coupled (more slowly in the undercoupled regime) than the differential increase

in launched pump power. This leads to the interesting effect that the differential

photon conversion efficiency can exceed unity. Taking into account the nonlinear de-

pendence of coupled pump power by defining the internal differential efficiency ηint

as the coupled (as distinct from the launched) pump-to-Raman power, the efficiency
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approaches, as expected , the value ωr
ωp
in the limit of strong over-coupling.

ηint ≡
dPRaman

dPcoupled
=

ωr

ωp

K

(K + 1)
(6.12)

Figure 6.2 shows both the internal and external differential Raman conversion effi-

ciencies as a function of coupling strength.

6.2.4 Analysis of cascaded Raman scattering in high-Q mi-

crocavities

The first Raman field can itself act as a secondary pump field and generate further

Raman modes. This process of cascaded Raman scattering can be described by

including higher order coupling terms into the coupled mode equations of pump and

Raman fields as shown below[29].

dEp

dt
=

∙
−
µ
1

2τ t

¶
P

− gc
R1

µ
ω
P

ω
R

¶
|ER1|2

¸
Ep +

r
1

τ ex
s (6.13)
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−
µ
1
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µ
ω
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ω
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|ER1|2

#
E
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dE
R2

dt
=

"
−
µ
1

2τ t

¶
R2

+ gc
R2
|ER1|2 − gc

R3

µ
ω
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ω
R3

¶
|ER3|2

#
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.......

dE
RN

dt
=

"
−
µ
1

2τ t

¶
RN

+ gc
RN

¯̄
ER(N−1)

¯̄2#
E

RN

whereN is the Raman order. To find the corresponding thresholds and output powers

for these higher order processes, the set of equations can be solved iteratively in steady

state. To facilitate the discussion, the dimensionless coefficients ci is introduced.

ci ≡
ωi

ωi+1
· g

c
i+1

gci+2
=

ωi

ωi+1
· Veff(λi+2)
Veff (λi)

(6.14)

The general solutions for the threshold of the even and odd order N th Raman modes

are given by the following expressions. As in the previous section, we have assumed
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equal coupling strengths and intrinsic Q factors for the pump and Raman modes.

PN=2m
t =

1

C(Γ)

1

gcR

τ ex

(τ t)
3

Ã
mX
i=0

(ci)
i

!2Ãm−1X
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(ci)
i

!

PN=2m+1
t =

1

C(Γ)

1

gcR

τ ex

(τ t)
3

Ã
mX
i=0

(ci)
i

!3
(6.15)

As evident from these expressions even and odd order Stokes fields exhibit different

threshold powers as a function stokes order. When considering Raman scattering

in silica at optical frequencies, one can approximate the above expressions by taking

ci ≈ 1 since the Raman shift is small compared to the optical frequency. In addition it

is assumed that the mode volume is wavelength-independent. Under this assumption,

the threshold expressions reduce to:

PN=2m+1
t =

1

C(Γ)

π2n2

gRλpλR
Veff

1

Q2
0

(1 +K)3

K
· (N + 1)3

8
(6.16)

PN=2m
t =

1

C(Γ)

π2n2

gRλpλR
Veff

1

Q2
0

(1 +K)3

K
· N

2(N + 2)2

8

It follows that the threshold for cascaded Raman oscillation exhibits a cubic depen-

dence on Raman order N (compare figure 6.3). The emission power varies depending

upon whether the highest order wave is even or odd. For the odd order case, all odd

orders increase as the square root of the pump power and even orders are clamped.

For the even order case, all even order lines increase linearly with pump power while

odd orders are clamped. Figure 6.3 illustrates this behavior showing the Raman

output for several Stokes orders as a function of input pump power. The analytic

expressions for the Raman output power in these cases are given by:

PN=2m+1 = ηNex · 2
µq

PN
t P − PN

t

¶
(6.17)

PN=2m = ηNex ·
¡
P − PN

t

¢
The differential power conversion efficiencies can be obtained by linearizing the above



97

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

 Cascaded Raman Mode (N)

 N
o

rm
al

iz
ed

 R
am

an
 T

h
re

sh
o

ld
 

x 23 

x 33 

Figure 6.3: Microcavity stimulated Raman threshold as a function of cascaded Raman
order (N) as given in equation 6.16. The threshold is normalized to the threshold of
the first order. The cascaded Raman threshold exhibits a N3−scaling law on Stokes
order N .
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expressions near the threshold condition. The external and internal differential effi-

ciencies decrease steadily as a function of stokes order. For optical frequencies that

are much larger than the Raman shift, the external differential conversion efficiency

reduces to:

ηN=2mex =
λp
λRN

µ
1 +

1

K

¶−2
· 16

(N + 2)2
(6.18)

ηN=2m+1ex =
λp
λRN

µ
1 +

1

K

¶−2
· 8

(N + 1)2

For high order (N) Raman fields, the external differential conversion efficiency thus

follows a 1/N2-dependence.

6.3 Observation of cascaded Raman scattering in

ultra-high-Q microspheres

The presence of Raman scattering in microspheres leads to the possibility of generat-

ing higher order Raman modes by cascade. By using a shorter pump laser (located at

around 1450 nm) cascaded Raman scattering was indeed observed. Figure 6.4 shows

a typical cascaded Raman spectrum, with a second order Raman mode appearing in

the 1650-nm band, two phonon frequencies shifted from the pump. The pump-to-

Raman conversion characteristics for first order Raman scattering and the 2nd order

Raman mode are shown in the inset. It can be seen that the first order mode does

indeed exhibit a square-root dependence on the launched pump power. The solid line

is a fit using equation 6.17. The 2nd order Raman mode, in contrast, exhibits the

expected linear increase with pump power.

To study cascaded Raman scattering beyond 2nd order, experiments using a 980

nm wavelength pump [29] were employed. The shorter wavelength pump allowed the

observation of up-to 5th-order cascades (from 980-1300 nm) owing to the reduced

mode volume at shorter wavelengths, and the higher Raman gain coefficient (gR ∝

1/λ). With less than 900 µ-Watts of launched fiber power up to fifth order Stimulated
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Raman Scattering was observed [29].

6.4 Summary

In summary cascaded Raman scattering in microspheres is experimentally observed

and theoretically analyzed in waveguide-coupled microcavities, which apply to the

results obtained in taper-fiber coupled microspheres or toroid microcavities. A the-

oretical analysis was presented using the coupled mode equations for the pump and

Raman WGMs. Using these equations, the threshold condition for stimulated Raman

scattering was derived and the relative importance of waveguide coupling strength,

mode volume and intrinsic resonator Q were described. Furthermore the analysis

was extended to the case of cascaded Raman oscillation and threshold and efficiency

expressions were derived for higher-order Raman fields. This analysis revealed that

odd and even order Raman lines exhibit different pump-to-Raman emission charac-

teristics. Even order Stokes fields are found to exhibit a linear increase in generated

Raman power as a function of pump power, whereas odd-order Stokes fields exhibit

a square root dependence. In addition the underlying scaling laws for threshold and

efficiency were derived.
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Chapter 7

Ultra-high-Q toroid microcavities
on a chip

7.1 Introduction1

Wafer-scale processing techniques allow precise dimensional at the nano-scale level,

and are the foundation of modern microelectronics. The potential of these techniques

in the domain of optics, and in particular optical microcavities, has been extensively

investigated in the early 1990, and have led to the demonstration of a variety of chip

based optical microcavities concepts. Microdisk cavities were among the first chip-

based microcavities demonstrated[78]. Since then, a variety of other confinement

geometries, such as vertical micro-posts or photonic crystal defect cavities have been

demonstrated. The small mode volume and high-Q factor of these structures, can

be used in a variety of fundamental and applied studies. In addition the wafer-

scale nature allow possible integration with complementary optical, mechanical or

electrical functionality. Reported Q-factor results have ranged from 13,000[79] in

InGaAs microdisks, to 130,000 in polymer rings[80], to a record value of more than 3

million in a silica microdisk [34] and described in thesis chapter 8.

However, these Q-factors are several orders of magnitude lower than those found

in surface-tension-induced micro-cavities, since the nanometer-scale surface finish re-

quired for ultra-high-Q has not been attainable using wafer-scale processing. In this
1Section 1.1-1.3 have appeared in: "Ultra-high-Q toroid microcavity on a chip",

Nature, 421, No. 6926 (2003). Remaining sections are in preparation (2004).
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chapter, we present and explore the properties of a chip-based (planar) STIM de-

vices in the form of a micro-toroid which combine for the first time the advantages

of wafer-scale processing and ultra-high-Q [81]. These cavities are made by combin-

ing conventional micro-fabrication techniques with a laser-assisted re-flow process to

achieve the atomic-scale surface finish characteristic of STIMs, and the fabrication

is described in appendix A of this thesis. In this chapter, the optical properties of

toroid microcavities are analyzed, and Quality factors demonstrated in excess of 100

million. This value constitutes an improvement in terms of Q-factor of nearly 4 or-

ders of magnitude. The mode structure of these micro-cavities is shown to exhibit a

strongly-reduced mode density compared to a micro-sphere of the same size. Besides

Q-factor, the mode volume is of interest. Using a finite element solver, the optical

modes of toroid microcavities are solved and the corresponding mode volume calcu-

lated. Numerical simulation reveals that a strong reduction of mode volume compared

to spherical microcavities is possible, and experimental results for high Q-factor small

mode volume cavities are presented. The highest value of Q/V was ca. 106 (λ/n)−3 .

7.2 Taper coupling to toroid microcavities

The optical modes of a toroid are whispering-gallery type and circulate at the periph-

ery of the toroidally-shaped silica cavity. Efficient coupling to the toroid microcavities

can therefore be achieved using tapered optical fibers in the same experimental setup,

which has been described in chapter 2 of this thesis. In particular, as the material of

the cavity is silica, the effective index neff is close to the index of refraction of op-

tical fiber, and therefore tapered fibers are also expected to achieve phase—matching

of the toroidal WGM. Whereas in the case of microspheres, also D-shaped fibers or

prisms have been used to efficiently excite the whispering-gallery type optical modes,

the latter is not suitable for coupling to toroid microcavities on a chip, due to the

proximity of the toroid to the planar silicon substrate (typically only several microns

of separation). Tapered optical fibers in contrast, provide an ideal coupling technique
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Figure 7.1: A toroid microcavity fabricated from a 1 µm−thickness thermal oxide.
The toroidal cross section is apparent and exhibits a diameter of approximately 4
micron.

Figure 7.2: SEM image of a microdisk which underwent the CO2 reflow process. The
profile clearly reveals the toroidal shape and exhibited in this sample an eccentricity
of 2%.
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Figure 7.3: Array of toroid microcavities.

due to the small transverse extend of the tapered optical fibers, which can be used to

locally excite the toroidal WGM at the cavity periphery. Figure 7.4 shows a tapered

optical fiber coupled to a microtoroid in this fashion.

7.3 Cavity ringdown Q-factor measurements of toroid

microcavities

Figure 7.5 shows the transmission spectra through a taper in close proximity (on the

order of hundreds of nanometers) to a toroidal micro-resonator. The observed free

spectral range corresponds to the angular mode number (c-index, which in this case

is >130). Inspection of the data (inset of Fig. 7.5) shows that the resonator supports

two azimuthal (m-index or transverse) modes, tentatively identified as (m = c and

m = c− 1) and that coupling to the fundamental radial mode (n = 1) dominates the

measurement. This is in contrast to spheres, which support (2c+1) azimuthal modes.

In the case of ultra-high-Q modes, the spectra also exhibited a reflected signal due to

modal coupling, due to the sensitive nature of these modes to scattering centers, as
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Figure 7.4: Optical micrograph of a tapered optical fiber coupled to a toroid micro-
cavity on a silicon chip. The bright reflection from the central region is due to the
reflection from the silicon pillar.

evident in figure 7.6. The significant reduction of azimuthal modes in this case, can

be inferred from comparison with the mode spectrum of a microsphere of equivalent

principal diameter, as given in figure 2.9.

The quality factor or Q of the resonators was measured in two ways, as outlined

in chapter 3. First, the full-width half-maximum of the Lorentzian-shaped resonance

in the under-coupled regime was directly measured by scanning a single-mode laser

(short-term line-width about 300 kHz) through a resonance. Low input power levels

(typically less than 5 micro-Watts) were used to avoid thermally-induced distortion

of the line shape due to resonant-field buildup within the cavity. Repeated measure-

ments on samples fabricated with various radii (80-120 µm) and tori thickness (5-10

µm) yielded Q values in excess of 100 million (108). This is a record value for a

planar device, and constitutes an improvement by nearly 4 orders of magnitude over

all previous planar micro-resonators fabricated by wafer-scale processing2.

2It is interesting to note that the optical modes of disk microcavities made from silica deposited by
electron-cyclotron-resonance plasma-enhanced chemical vapor deposition (ECR-PECVD), exhibited
Q-factors typically 1-2 orders of magnitude below those of thermally grown oxide. The laser assisted
reflow did improve the quality factor, but to a level typically 1-2 orders of magnitude lower than for
thermal oxide.
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Figure 7.5: Typical transmission spectrum of a toroidal resonator. The free spectral
range (defined as the wavelength spacing between modes with successive angular
mode number c) is 5.65 nm, which corresponds to a 94-µm-diameter torus. The inset
shows the splitting of the different azimuthal modes, which is ~12 GHz (0.1 nm).
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Figure 7.6: Transmission and reflection spectrum of an ultra-high-Q toroid micro-
cavity on a chip. The designated fundamental toroid modes are separated by the
free spectral range (∆λ = 10 nm). Due to the presence of modal coupling the opti-
cal modes appear as doublets, giving rise to reflection (magenta). The fundamental
modes couple most strongly to the taper mode and higher order modes are more
weakly coupled.
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As an independent and more precise measurement of quality factor, the photon

lifetime was directly measured by cavity ringdown (The experimental setup has been

described in Chapter 2). In particular, ringdown measurements are immune to the

thermal effects described above. This was done by repeatedly scanning the laser into

resonance with a mode that was critically coupled (i.e. T = 0) to the taper. As the

laser scanned into resonance, power transfer increased until maximal “charging” of

the resonant mode was attained. At this moment, the laser input was gated “off”

by use of a high-speed, external modulator and cavity ringdown is observed as the

resonant power discharges. Because the resonator is by necessity loaded during this

measurement, the observed ringdown time yields the loaded Q-factor at the critical

point (not the intrinsic Q). Data from a typical ringdown measurement is shown in

Fig. 7.7. At time t = 0 in the figure, the laser is fully gated off and the detected power

is due entirely to the cavity discharge field. The solid line represents an exponential

fit as expected for decay of a single cavity mode. The inset shows a logarithmic plot

to infer the cavity lifetime. Nearly two orders of magnitude decay could be observed

before reaching the instrumental noise level. The loaded lifetime in this structure was

43 ns. As a further check on this time constant, after fully gating-off the pump laser

the waveguide power has dropped to 80% of its predicted maximal value. This value

is in agreement with the gating delay of the ringdown setup (approximately 8 ns). In

particular, using the observed mode-lifetime of τ = 43 ns yields,

T0 = e∆t/τcrit ≈ 0.83

As noted before, to infer the intrinsic cavity Q it is necessary to correct for loading

by the taper waveguide. In addition it is necessary to take into account excitation

of the counter-propagating mode due to scattering centers intrinsic to the resonator

(described by a dimensionless inter-mode coupling parameter Γ [82] as has been intro-

duced in chapter 4). For the mode of figure 7.7 the inter-mode coupling was measured

to be approximately Γ ≈ 1, giving rise to a weak counter-propagating wave excitation

(17% of the cavity buildup field is stored in the counter-propagating mode at critical
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Figure 7.7: Cavity ringdown measurement of a toroid microcavity at the critical
coupling point. The solid line is a fit using an exponential decay of the recorded
cavity leakage field. Right Inset: logarithmic plot to infer the cavity decay time. Left
inset: Under-coupled line-width scan to obtain the splitting frequency and modal
coupling parameter. When taking into account the waveguide loading and modal
coupling, the measured lifetime of τ crit = 43 ns and corresponds to an intrinsic
quality factor of Q = 1.25×108.
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Figure 7.8: Cavity ringdown measurement of a toroid microcavity with a free spec-
tral range ∆λFSR = 7.3 nm. The main figure shows the cavity decay signal at
the critical coupling point, exhibiting a critical decay time of 75 ns (which corre-
sponds to 0.98×108). When correcting for waveguide loading (Γ ≈ 3) the intrinsic
Q-factor yields 3.7×108. The corresponding finesse of the cavity is F = ∆λFSR/∆λ =
1.74× 106.

coupling). As has been discussed in chapter 4, the presence of inter-mode modifies

the relation between intrinsic (unloaded) and critically coupled Q:

Q ≡ ω0τ 0 = ω0τ crit
³
1 +
√
1 + Γ2

´
(7.1)

This yields an intrinsic cavity Q of 1.25 × 108 inferred from cavity ringdown. This

value agrees with the measurements of the frequency line shape described above. The

highest optical Q-factor presently observed in toroid microcavities is shown in figure

7.8, yielding a intrinsic Q factor of 4× 108, which has been observed in a microtoroid

with a ca. 70 µm principal diameter.
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Finally, there is an alternate method for determining the intrinsic Q factor in

cases where thermal broadening does not allow to accurately determine the intermode

coupling parameter. This approach does not require knowledge of Γ, but rather only

the doublet splitting frequency (γ−1). As before, the ring-down lifetime at the critical

coupling condition is measured. However, now the following expression is used to

relate both this information and the measured splitting frequency to the intrinsic Q

factor.

Q0 = ωτ 0 =
2

τ crit

µ
1

τ 2crit
− 1

γ2

¶−1
(7.2)

This method is less sensitive to thermal effects since the splitting frequency is nearly

immune to thermal shifts (since for symmetric mode splitting, each mode is affected

equally by the excitation wave and thermally shifted by equal amounts).

7.4 Modeling of toroidal whispering-gallery modes

Besides the Q-factor, an understanding of the optical modes of toroid microcavities is

of significant interest. In this section the intensity distribution and mode volume of

toroid microcavities are calculated, within the scalar wave equation approximation.

The details of the modeling are given in appendix C. Figure 7.9 shows the mode

volume for a fundamental toroid mode (TM-polarization) as a function of minor di-

ameter (d). In this simulation the angular mode number (c = 138) was kept constant,

as well as the toroid principal diameter (D = 50µm). The case of equal minor and

principal diameter (d = D) corresponds to a microsphere. As evident from the cal-

culation, and intuitively expected, the mode volume decreases as a function of the

toroid minor diameter. Two regimes of mode volume reduction can be identified.

7.4.1 Weak modal compression regime
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Figure 7.9: Numerically calculated mode volume of the fundamental (TM-
polarization) toroid mode as a function of minor toroid diameter (d). In this cal-
culation the principal toroid diameter (D) was kept constant at a value of 50 µm.
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inset shows the resonance wavelength as a function of minor toroid diameter (d).
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Figure 7.11: Intensity plot |Eφ|2 for a fundamental TM-mode with an angular mode
number c = 66 for a silica microsphere (left panel) and for a silica toroid (right panel).
The principal diameter is constant (25µm).

In the initial transition from a spherical (d = D) to a toroidal (d < D) geometry,

the mode volume is reduced slowly (obeying a Vm ∝ d1/4 scaling law). The resonance

wavelength of the mode (shown in the inset of figure 7.9) is perturbed slightly and

shifted to shorter wavelengths. The wavelength shift exhibits a much slower depen-

dence on the toroidal cross section than the mode volume (obeying a λ ∝ dx,with

x = 0.04 ). Since in this "weakly perturbative" regime the resonance frequency

remains nearly unchanged and the mode volume is slowly decreasing, it can be in-

ferred that the dominant effect of the toroidal geometry are changes of the azimuthal

eigenfunctions (spherical harmonics in case of a sphere).

Indeed, numerical modeling confirms (figure 7.12) that the radial field depen-

dence (which in a sphere determines the resonance locations), remains only weakly

perturbed in this regime, whereas the azimuthal eigenfunctions are perturbed signif-

icantly leading to narrowed field distribution in the azimuthal direction.

7.4.2 Strong mode volume compression
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Figure 7.12: Radial (inset) and polar (main figure) intensity distribution for a mi-
crosphere (D = d = 25µm) and toroid microcavities (d = 6µm, d = 4µm). The polar
scan is taken at a radial position corresponding to the maximum intensity.



116

Upon reducing the toroid cross section beyond the weak model compression regime, a

transition to a rapidly decaying mode area can be observed in the simulation. In this

strong compression regime, not only the azimuthal eigenfunctions are significantly

changed, but also the radial eigenfunctions. The latter is evident from the fact that

the resonance locations are strongly shifted to higher frequencies, as seen in the inset

of figure 7.9. This is expected as the strongly reduced azimuthal degree of freedom of

the toroid leads to an increase in field intensity outside the dielectric cavity, leading

to a lower effective index neff (and as a result a shorter effective round-trip path-

length). This also implies that in order to calculate the mode volume for constant

resonance frequency (which reflects the experimental situation where the excitation

wavelength is kept constant), the angular mode number has to be adjusted to lower

values in order to compensate the decreased effective index neff = βm/k0. Taking

this into account the mode volume is seen to decrease earlier than in the simulation

for constant c, making the mode volume compression even more severe in this regime.

Figure 7.10 shows the result of the adjustment of the angular mode number for

a 50 µm-diameter toroid microcavity as a function of minor toroid diameter (TE-

polarization). The inset of figure 7.10 shows the changes in the angular mode number,

which shifts from its original value (c = 138 for d = D) to a value of c = 113 for d = 1

µm. It is significant to note that due to the reduction in angular mode number, also

the whispering-gallery loss is expected to increase (as discussed for a microsphere in

chapter 2).

7.5 Fabrication of small mode volume toroid mi-

crocavities

In many microcavity applications the figure of merit is determined by a combination

of Q-factor and mode volume. Table 7.1, shows a list of representative areas and

their respective microcavity requirements. The preceding section has shown, that the

mode volume of toroid microcavities is reduced with respect to the mode volume of
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Area of Study Figure of Merit Q-V Dependence
Weak coupling Purcell-factor Fp ∝

¡
Q
V

¢
Strong coupling Crit. atom/photon number N0 ∝ V

Q
, n0 ∝ 1

V

Photonics Laser threshold, optical loss Pthresh ∝ 1
Q

Bio-chemical sensing Finesse (sensitivity) F ∝ Q
V

Nonlinear optics Threshold Nonlin. oscillation PNL ∝ V
Q2

Table 7.1: Microcavity application areas and their respective figure of merit, expressed
in mode volume (V), and Quality factor (Q).

a spherical microcavity of identical principal diameter.

In this section the experimentally possible reduction of mode volume is inves-

tigated experimentally for toroid microcavities with varying principal diameter (d).

Toroid microcavities used for this study were fabricated from 1 micron thermal oxide

wafers, and exhibited a toroidal cross section of less than d < 4 µm. As in the case

of microspheres, small principal diameter toroid microcavities (D < 40 µm) were

observed to exhibit strong modal coupling (Γ > 10). Figure 7.14 shows the Q-factor

(measured at 1550 nm) as a function of principal toroid diameter, for approximately

constant minor toroid diameter (d). Ultra—high Q in excess of 108 could be maintained

for principal diameters of more than 28 µm. Subsequent decrease of principal diam-

eter resulted in a strong reduction of Q. The solid line is the whispering-gallery-loss

limit for a microsphere calculated by numerically solving the characteristic equation

(for TE and TM polarization), as has been discussed in chapter 2. The toroid mi-

crocavities exhibited a Q-factor nearly an order of magnitude below the spherical

radiation limit, indicating that other Q-limiting processes, such as surface scatter-

ing, significantly determine the experimentally observed Q-factor. The inset of figure

shows the ratio of Q-factor to mode-volume, by measuring the geometry parameters

using a SEM. The highest Q/V achieved in the present study was 8.9 × 105(λ/n)−3

which is nearly an order of magnitude larger than recent measurements in photonic

crystals defect cavities. It is worth noting that the finesse of this structure F of nearly
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Figure 7.14: Main figure: The optical Q-factor measured as a function of toroid
principal diameter (D) for approximately constant toroidal cross-sectional diameter
(d ≈ 4µm). The numerically calculated whispering-gallery-loss Q-factor is given by
the solid line (blue:TE-case, red: TM-case). Inset: The ratio of quality factor to
mode volume (in µm3) for the devices tested.

4.6× 106 constitutes a record value for an optical microcavity.

7.6 Summary

Thus ultra-high-Q planar cavities on a chip were demonstrated for the first time.

Toroid-shaped microcavities were formed using a combination of lithography, dry

etching and a selective re-flow process, as described in the appendix A. Self-limited

collapse of a molten silica disk enables the dimensional control typical of wafer-scale

processing while providing the surface finish (and hence cavity Q) typical of a spher-

ical resonator. Q values obtained by this process are typically four orders of magni-
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Parameter: Value:
Quality factor (Q = ωτ) 400×106
Mode volume (V ) d=3.5µm D=14.4µm
Ratio Q/V 890,000 (λ/n)−3

Finesse F 4.7×106
Purcell-factor Fp 6.8×104

Table 7.2: Characteristic parameters of an ultra-high-Q small mode volume toroid
microcavity.

tude higher than previous wafer-based resonators. In some applications mode volume

is also an important factor, and certain chip-based micro-resonators[83] [84] feature

smaller mode volumes than the present structures. As a gauge to the lower bound on

size, radiation leakage becomes a significant factor in determining Q for diameters less

than 28 micron. The highest Q-factor to mode-volume ration obtained was 890,000

(λ/n)−3. The planar nature of the toroid microcavity and the large transparency

window of silica suggest that these devices will find a wide range of applications in

photonics as well as in fundamental studies. As an indication of the possibilities

for these structures, in the course of this work nonlinear optical effects have been

observed with characteristics comparable to recent studies on spherical ultra-high-Q

cavities, and which will be investigated in the next chapters. As standard processing

techniques are used, the addition of optical functionality by techniques such as im-

plantation or coating is possible. Likewise, electrical functionality can be introduced

to integrate control functions with the ultra-high-Q microcavities. More generally,

this work provides a new functional element that is synergistic with recent demon-

strations of basic experimental physics on a chip. For example, by combining the

present results with techniques recently demonstrated to integrate atomic traps on

a chip[85] it would be possible to achieve chip-scale integration of cavity quantum

electrodynamics experiments and related devices. Finally, there is great interest in

improving the sensitivity of biological and chemical sensors. Proposals based upon

optical resonators[86] will benefit from the ability to attain ultra-high Q on a chip.
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Chapter 8

Optical properties of microdisk
resonators

8.1 Introduction1

Using a combination of lithography and etching, semiconductor whispering-gallery mi-

crocavities have obtained Q values in the range of 104 [84] while polymer whispering-

gallery cavities have recently obtained a Q value of 105. Q values are typically limited

by scattering at the all-important resonator perimeter. As a way to overcome this

problem, we have recently reported a technique to fabricate ultra-high-Q (exceeding

108) toroid microcavities on a chip [30]. In that work a laser-assisted re-flow step is

used to achieve the atomically-smooth resonator surface finish characteristic of ultra-

high-Q surface-tension-induced-microcavities. In this chapter it is demonstrated that

- surprisingly - planar silica disk resonators can exhibit whispering-gallery-type modes

with high-Q values in excess of 1 million and up to 5 × 107, without any additional

chemical or laser processing. The observed Q-factors are due to modal isolation, due

to the wedge shaped perimeter of the microdisk cavities. The proposed mechanism

is in agreement with experiments and numerical modeling of the microdisk modes.

The spectral properties of these resonators are very regular and reproducible, and

are readily modeled. Additionally, highly efficient coupling to a planar resonator is

demonstrated by efficient coupling to these resonators through a tapered optical fiber.

1This chapter has been published in "Fabrication and coupling of high-Q silica disk
microcavities", Applied Physics Letters, 83(4), p.797-799 (2003).
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Figure 8.1: Scanning electron micrograph of a silica disk resonator. Inset: A silica
micro-disk coupled to a tapered optical fiber.

8.2 Taper coupling to microdisk resonators

To analyze the quality factor of these modes as well as the mode spectrum, tapered

optical fibers [55] were used to couple to the disk resonator. The tapered fiber was

attached to a piezoelectric stage which allows precise positioning of the taper with

respect to a silicon wafer containing multiple microdisks. An optical micrograph of a

taper coupled to a disk is shown in the inset of figure 8.1.

When brought in the proximity of the microdisk, the taper mode can evanescently

excite a whispering-gallery mode. The efficiency of this process depends on the ratio

of parasitic loss (e.g. undesired coupling from either the fundamental taper mode or

the target resonator mode to higher order taper modes or radiation modes) to the

intended taper-junction coupling. The efficiency of this junction in the context of
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coupling to high-Q micro-resonators has been studied in reference [55]. Figure 8.2

shows the absolute transmission and reflection properties at resonance as a function

of the taper-disk gap of a microdisk resonator side-coupled via a tapered fiber. As

the taper is progressively moved closer to the resonator (step-size being 20 nm),

the transmission transits different coupling regimes, from undercoupled to critically-

coupled to over-coupled [46]. Nearly complete extinction is reached at the critical

point (> 99%). When further reducing the gap distance the over-coupled transmission

approaches unity (the actual measured value is > 93%). In addition, bringing the

taper close to the microdisk caused negligible scattering as observed by the small

increase in off-resonant loss of < 5%. The fact that strong over-coupling can be

achieved, with negligible off-resonant loss, demonstrates the high efficiency of the

tapered-fiber-coupling junction, which is > 93% in this case [55].

The quality factor of whispering-gallery resonances was inferred by line-width

measurements, using a 300 kHz external-cavity diode laser to excite the resonances in

the 1550-nm band. Q-factors above 1 million were consistently observed, the highest

observed value to date being 3.2× 106. We attribute the high quality factor, despite

the lithographic roughness (which can be observed at the cavity perimeter with an

optical microscope), to the fact that the cavity disk perimeter exhibits angled side-

walls, due to the use of an isotropic etch. The wedge is believed to induce modal

isolation from the disk edge, where etch blemishes are most pronounced. The fact,

the highest optical Q-factor observed in devices exhibiting the strongest wedge angle

(ca. 8 degree) also supports this hypotheses.

Due to a combination of perimeter roughness and intrinsic thermal-oxide in-

homogeneities, a fraction of the circulating power is back-scattered into the mode

that counter-propagates with respect to the mode excited by the taper. As discussed

in chapter 4 this mode couples out of the resonator in the reverse direction along the

fiber, equivalent to a reflection [82]. The transmission (T) and reflection (R) through

the resonator-waveguide system in the presence of backscattering are given by (at
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line-center ∆ω = 0):

T =

∙
Γ+ (1−K)(1 +K)

Γ+ (1 +K)2

¸2
R =

∙
2ΓK

Γ+ (1 +K)2

¸2
(8.1)

Here Γ accounts for the excitation of the counter-propagating waveguide mode, andK

is the coupling strength, defined as K ≡ τ0
τex
(i.e. the ratio of intrinsic lifetime to the

coupling lifetime). The K−parameter typically varies exponentially with waveguide-

resonator separation. The Γ-parameter was readily be measured in the undercoupled

regime by observing the associated resonant splitting [82] and was approximately 1.5

for the device measured in figure 8.2. The observed reflection of approximately 28%

is consistent with this Γ value using theory. We have observed the regime of strong

modal coupling with inter-mode coupling parameters up to Γ ≈ 10 for structures

of similar dimensions. The solid lines in Figure 8.2 represent a theoretical fit using

equation 8.1.

8.3 Microdisk mode Structure

We also investigated the mode-structure of the samples. Figure 8.4 shows the mea-

sured cavity mode spectrum for a 114-µm-diameter resonator (2-µm-oxide thickness).

The dimensions were measured by scanning-electron-microscope studies. The spec-

trum was taken for both polarizations (TE/TM) supported by the microdisk res-

onator. The free spectral range (modes with successive angular mode numbers) was

measured to be ∆λFSR = 4.80 nm. We inferred the approximate center of the radial

field distribution from the free spectral range ∆λFSR ≈ λ2

2π·R·n using the refractive in-

dex of thermally-grown oxide n = 1.445 (the actual effective index is expected to be

lower than the bulk value). The resulting diameter of 109 µm lies between the mea-

sured inner wedge edge (100 µm) and outer (114 µm) diameter of the disk, suggesting

that the modes are confined to within inner and outer radii of the wedge. A further

indication is that the maximum coupling strength of these modes was achieved with

the tapered fiber located tangentially near the center between inner and outer radii.
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Figure 8.2: Transmission (normalized with respect to the launched fiber power, with
the tapered fiber far away from the resonator) and reflection properties versus taper-
disk gap-distance. The inset shows the transmission versus frequency near the critical
point. The off-resonant loss was less than 5%. Inset: Undercoupled line-width scan
of the device with the highest Q-factor of 6×106 exhibiting strong modal coupling (
Γ = 9.6).
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These findings are consistent with the conjecture concerning the origin of the high

modal Q.

To confirm the hypothesis of modal isolation, the optical modes were numerically

modeled using a finite element solver PDE solver. Figure 8.3 shows the calculated

intensity distribution of a fundamental mode of a disk microcavity for three different

wedge angles. In this simulation, the resonant wavelength was λ = 1550 nm, and a

principal diameter of 50 µm was used. The simulation reveals the increased modal

isolation from the scattering-contributing edge perimeter, as the wedge angle (or the

corresponding wedge parameter w,which is related to the inner diameter D − w) is

decreased. In addition, modeling the geometry which was measured above yielded

a mode center located at 105.2 µm . This value is smaller than the approximate

value of calculated above (109 µm), due to the expected reduced effective index (i.e.

neff < n).

As the WGM’s of this structure cannot be solved analytically, approximate solu-

tions were obtained using a simplified disk model. Identifications using this model

are given in figure 8.4 with first and second order radial modes denoted using circles

and diamonds. The TE/TM spectra exhibit slightly different splitting of the radial

modes (0.6 and 0.8 nm). In addition, the influence of vertical confinement on mode

spectra was studied. In experiments two samples having layer thicknesses of 1 and 2

microns were measured. The resulting spectra exhibit qualitatively the same struc-

ture as shown in figure 8.4. However, as the oxide thickness was reduced from 2 to 1

micron, the splitting of the two dominant radial modes increases significantly for one

polarization, while remaining practically unchanged for the other.

8.4 Application of disk microcavities for add-drop

devices

The high-Q devices demonstrated here can be important for low insertion loss devices

such as add-drop filters, which typically require large bandwidth and correspondingly
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Figure 8.3: Modal isolation in microdisk cavities. The graph shows the numer-
ically calculated intensity distribution |Eφ|2 for a fundamental disk mode (TM-
polarization). In the simulation the principal disk diameter was 50 µm and the
inner diameter is given by (D − 2w). The simulation shows the decrease in the ef-
fective radius for the mode (as evidenced from a shift of the center of the intensity
distribution), as a function of the wedge parameter (w).
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low total Q. In a symmetric add/drop device, efficient channel dropping requires that

the total Q factor of the resonator is primarily induced by loading. If this is not

the case, then parasitic cavity loss will induce an excessive loss penalty upon channel

drop as well as an extinction-ratio penalty. For example, consider the ratio of power

dropped versus incoming waveguide power, in a device consisting of two identical

waveguides symmetrically coupled to a resonator. A simple analysis gives,

Pdropped

Pin
= 1− 4 ·Q0/Qex

(1 + 2 ·Q0/Qex)
2 −

1

(1 + 2 ·Q0/Qex)
2 (8.2)

Here, the first term constitutes a loss incurred because the resonator has a finite Q0,

and the second term is a loss resulting from residual transmission. As is evident from

the expression, a high intrinsic-to-external Q ratio, will minimize insertion loss of

the dropped signal by first reducing the impact of intrinsic resonator loss and second

by biasing the input waveguide towards the optimal critical-coupling point, thereby

coupling more power into the resonator. For asymmetrically-coupled waveguides, the

finite channel transmission can be remedied by critically coupling the input waveguide

to the resonator. The insertion loss of the dropped channel in this case is composed

only of intrinsic resonator loss, which can be minimized using a large intrinsic Q.

Pdropped

Pin
= 1− 1

(1 +Q0/Qex)
2 (8.3)

Using the highest Q values observed in this work and assuming a loaded Q of 2 · 104

(corresponding to a dropped bandwidth of 10 GHz) yields a channel extinction of 50

dB and a drop loss of 0.03 dB for a symmetrically configured add/drop filter. For

comparison, an intrinsic Q factor of 2 · 104 yields an extinction of 9.5 dB and a drop

loss of 3.5 dB.

8.5 Summary
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In summary, high-Q silica resonators on a chip were fabricated. A combined wet

etch and isotropic gas etch leaves undercut silica disks with a silicon support pillar.

Without any further surface processing, quality factors in excess of 107 were measured.

These high-Q values are attributed to modal isolation away from the disk edge that

is induced by a wedge-shaped disk profile. High Q values can be used to create

very low loss and high extinction add-drop filters, even in devices which operate at

a substantially lower loaded Q value. In addition we have shown that tapered fibers

enable efficient excitation of the disk modes as well as strong over-coupling with low,

off-resonant insertion loss. Additional optical functionality in these structures can be

added by means of implantation to obtain low threshold lasers.
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Chapter 9

Ultra-low-threshold microcavity
Raman laser on a chip

9.1 Abstract1

The ultra-high-Q optical modes in toroid microcavities, as well as the observed

strongly reduced azimuthal mode spectrum, make toroid microcavities a promising

candidate for nonlinear optical oscillators. In contrast to spheres, toroid microcavities

are wafer-scale, and as such allow possible integration with other functionality. In

this chapter the particular suitability of toroid microcavities as nonlinear Raman

oscillators is shown, and the first Raman laser on a chip demonstrated. As in the

case of microspheres, the long photon storage times in conjunction with the high

ideality of a tapered optical fiber coupling junction[31], allows stimulated Raman

lasing to be observed at ultra-low threshold (as low as 74 µW of fiber-launched power

at 1550 nm). High efficiency (up to 45% at the critical coupling point) is obtained and

in good agreement with theoretical modeling. In addition the emission is observed

to be single mode over a large range of pump powers, which was not attainable in

microspheres, due to the presence of nearly degenerate azimuthal modes. In addition,

numerical modeling shows that the optical modes of toroid microcavities, possess a

lower effective mode volume compared to microspheres. While the mode volume is

readily calculated using numerical tools, it is experimentally difficult to access. In
1Work in this chapter has appeared in "Ultra-low threshold microcavity Raman

Laser on a microelectronic Chip", Optics Letters, Vol. 29, No. 11 (2004).
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this chapter a technique is presented, which uses the minimum stimulated Raman

threshold as a means to infer the mode volume. Using this method the mode volume

of toroid microcavities with small cross sectional areas is retrieved, and the observed

threshold reduction is in qualitative agreement with numerical modeling.

9.2 Stimulated Raman scattering in toroid micro-

cavities

In chapter 5, the long photon storage times and small mode volume of ultra-high-

Q spherical microcavities were shown to allow significant reduction of the necessary

threshold for stimulated Raman scattering[63]. However, microsphere properties such

as their size and shape are not easily controlled during fabrication, nor are they

readily integrable with other optical devices or electronics. In addition the microsphere

Raman lasers were observed to emit inherently multi-mode, due to the presence of

nearly degenerate azimuthal modes.

In this chapter the first demonstration of a chip-based (monolithic) single-mode

micro-cavity Raman laser is presented, using ultra-high-Q toroid microcavities[33].

Toroid microcavities are excellent candidates for nonlinear oscillation based on Raman

gain, as they exhibit microwatt-level stimulated Raman thresholds and high-pump-

to-Raman conversion efficiencies (up to 45% observed). In comparison to Raman

oscillation in microspheres[63], these devices, oscillate single mode over a wide range

of pump powers, due to their reduced azimuthal degree of freedom. The latter also

leads to a reduced mode volume, of the WGM modes taking part in the nonlinear

process, and lead to an lower effective Raman oscillation thresholds compared to a

spherical microcavity.

The fabrication of wafer-based toroid microcavities is described in appendix C,

and uses a combination of conventional silicon micro-fabrication techniques and a

CO2 laser assisted re-flow process, and is described in detail in reference [33]. The

re-flow process creates an exceptionally smooth dielectric interface and enables ultra-
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Figure 9.1: SEM side profile of a toroid microcavity showing the principal (D) and
minor(d) toroid diameters.

high Q factors in excess of 100 million, as has been demonstrated in chapter 7. Figure

9.1 shows a scanning electron micrograph of a toroid microcavity and it’s geometry

parameters.

Figure 9.2 shows a typical Raman emission spectrum for a critically coupled mi-

crotoroid WGM pumped above Raman threshold. The pump wavelength is located

at 1550 nm and the Raman emission is present in the 1650-nm band, down-shifted by

approximately 12.5 THz relative to the pump mode, cavity-detuned from the peak

Raman gain in silica, which occurs at 14 THz [87]. It is significant to note that the

emission was observed to be single mode. Single mode operation was generally ob-

served over a large range of pump powers and, in contrast to microspheres, is a result

of the strongly reduced azimuthal degrees of freedom within the toroidal cavity, as has

been investigated in chapter 7. This single mode behavior constitutes a significant

improvement with respect to prior work on micro-spheres[63] or micro-droplets[56],

which exhibit multi-mode oscillation spectra due to the presence of numerous nearly-

degenerate azimuthal modes (as has been discussed in chapter 5 in the context of
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Figure 9.2: Raman emission spectrum of a toroid microcavity showing single mode
oscillation. The pump is located at 1550 nm and the Raman emission is 12.5 THz
shifted into the 1650 nm band. Inset: Bidirectional Raman emission as a function of
pump power for a 58-µm-diameter toroid microcavity (Q0=0.6×108) at the critical
point. The threshold is ca. 250 µ-Watts and the bidirectional conversion efficiency is
ca. 45%.
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Raman lasing in microspheres).

The dependence of the Raman emission as a function of pump power for a critically-

coupled microtoroid is given in the inset of figure 9.2 and displays a clear threshold

behavior. The maximum Raman output power for this micro-toroid was more than

150 µW (bidirectional) and the measured pump-to-Raman differential conversion effi-

ciency was 45 %. This number is close to the theoretically expected launched-pump-

to-Raman differential conversion efficiency in the absence of any parasitic losses, which

is ~47% at the critical point, as given by:

ηex ≡
dPRaman

dPp
= 2

λp
λR

µ
1 +

1

K

¶−2
As experimentally and theoretically shown in chapters 5 and 6, the pump threshold for

stimulated Raman scattering depends linearly on the effective mode volume Veff . Due

to the different cavity geometry of toroid microcavities, and the reduced azimuthal

confinement, a lower threshold operation in a toroidal geometry is expected. In this

chapter the extent of mode volume reduction is quantified using numerical modeling.

These results are then compared to experimentally measured mode volume, which

has been achieved by means of using the stimulated Raman threshold as a probe of

mode volume.

9.3 Numerical modeling of the effective mode vol-

ume

To calculate the effective mode area (or volume) of toroid microcavities, the toroidal

WGM were solved using the scalar wave equation approximation (In appendix B the

details of the numerical modeling are given). In the case of a third order nonlinear

process such as stimulated Raman scattering, the gain coefficient is linearly dependent

upon the intensity of the pump field (gNL ∝ Ip), and the gain will only occur in a

region close to the peak intensity. This fact is taken into account in the threshold

equation by the effective mode volume[88][65]:



136

Veff =

ÃR
V
|Ep|2 dV

R
V
|ER|2 dVR

V c
|Ep|2 |ER|2 dV

!
≈
¡R

V
|Ep|2 dV

¢2R
V c
|Ep|4 dV

(9.1)

The integral in the denominator is taken only over the extent of the dielectric cavity

volume (which contributes to the nonlinear gain), whereas the integral in the numer-

ator is taken over the entire volume. The effective mode volume, as will be seen in

this section Veff , differs in definition and value from the previously introduced en-

ergy related definition Vm =
R
ε(r)|�E|2dV

max(ε(r)| �E|2) , which assumes a rectangular profile at peak

intensity. Figure 10.2 shows the mode volume as well as the effective mode volume

for a fundamental TM-mode of a 25−µm−diameter toroid microcavity with varying

minor diameter. The numerical modeling shows that the effective mode volume for

high aspect ratio D/d is approximately a factor of two larger than the (energy related

definition) of mode volume Vm (eqs. 2.16). This is due to the fact that the defin-

ition Vm overestimates the gain for an intensity dependent process such as Raman

scattering or parametric oscillation, as only regions of high field intensity contribute

significantly to the Raman gain (and consequently lead to a lower effective intensity

and correspondingly higher effective mode volume).

A reduction of the toroidal cross section causes the effective mode area to de-

crease as a function of toroid minor diameter (d). A comparison of the mode area

(mode-volume) and effective mode area (volume) is shown in the inset. In the weak

compression regime the toroidal cross section does equally reduce mode volume and

effective mode volume, and the ratio remains unchanged (ca. Veff = 2× Vm). In the

case of strong modal compression, the effective mode volume reduces faster than the

mode volume, which decreases the Raman oscillation threshold. Figure 9.5 shows

the effective mode volume as a function of toroid cross sectional diameter (from 1-10

µm) for three different principal diameters(D = 25, 50, 75 µm). It is furthermore

interesting to note, that the mode volume of higher order azimuthal modes are also

significantly reduced. In fact, the difference of fundamental to higher order mode

(which in a microsphere is ca. 30%) reduces, as the toroid minor diameter is de-

creased. This behavior is shown in figure 9.6.
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9.4 Measurement of effective mode volume via Ra-

man scattering

Since the mode volume of the toroidal WGMs is expected to be reduced as the minor

diameter is reduced for D fixed (see figures 9.5 and 9.3), lower threshold operation

is expected in a microtoroid when compared to the case of a micro-sphere having

diameter D and comparable Q. Conversely, measurement of the Raman threshold

allows the mode volume to be inferred via inversion eqs. 6.7:

Veff =
4

27
(Q0)

2 gRλpλR
C(Γ)π2n2

Pmin
t (9.2)

This method is used below to both infer the toroid mode volume with varying mi-

nor diameter as well as to compare the mode volume of toroids and spheres having

equivalent principal diameters. For this study, toroid micro-cavities were fabricated

with an approximately constant principal diameter (D) of 55 µm and varying minor

diameters (d) from 3.7 to ~10 µm. The quality factors were measured by cavity ring-

down, as used in ref. [63], and had values in the range of 100 million (ca.,~80 ns)

for all the samples used in the Raman study. The observed Raman thresholds varied

in the range of 74 µW to 250 µW. To compare the threshold among different cavity

geometries, the threshold formula was normalized to take into account the different

resonator characteristics, leaving only the modal volume dependence. The experimen-

tal protocol proceeded by determining the loaded Q factor and the modal coupling

parameter Γ. To correct for variation of the Raman gain coefficient g(λR,λp), both

the pump λp and Raman emission wavelength λR were also measured. Subsequently,

scanning electron microscopy was used to record the side profile of the micro-cavities

to determine the effective toroid minor diameter (d). Mode volume was then retrieved

from the minimum Raman threshold measurement by eqs. 9.2.

Figure 9.7 presents the experimental results of this procedure and plots the mode

volume of the toroid inferred from the measurement process. For comparison, the

solid (dashed) line is the theoretically expected volume dependence based on a calcu-
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Figure 9.7: Main figure: Experimental and theoretical mode volume (in cubic-
microns) of toroid microcavities as a function of the toroid minor diameter (d) for fixed
principal diameter D (D= 50 microns). The case d=D (unity aspect ratio)corresponds
to a microsphere, and the data shown for this case is taken from ref [89] for compar-
ison. The solid and dotted lines refer to the mode volume of a fundamental toroidal
WGM (TM and TE case respectively) obtained by numerical modeling. Inset: An op-
tical micrograph of a ca. 80-micron-diameter toroid microcavity coupled to a tapered
optical fiber.
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lation of the TM (TE) fundamental mode volume for a 50-µm-diameter microtoroid.

Despite experimental uncertainty due to the inability to measure ring-down in the

1600 nm band, the measured volume dependence is in qualitative agreement with

the calculation. The lowest observed threshold in this measurement occurred for the

smallest toroidal minor diameter (D = 61 µm, d = 3.7 µm,Γ = 1.3, Q0 = 1.0 × 108

with P=74 µW) in agreement with the Raman threshold formula). Also, for com-

parison purposes, data obtained from a previous study[89] using silica microspheres

having a comparable diameter (case of d = D) are included in the plot.

9.5 Summary

In summary the first Raman laser on a chip is demonstrated. Compared to mi-

crospheres, these microcavity oscillators allow integration with other optical and elec-

trical functionality. In addition to their practical advantages, the emission properties

are highly advantageous, and single mode emission was observed over a large range of

pump powers, owing to the strongly reduced azimuthal mode spectrum. The strong

azimuthal confinement also leads to a reduced mode volume and effective mode vol-

ume of toroid vs. spherical microcavities. To compare and infer the mode volume,

a measurement of effective mode volume is presented using the minimum Raman

threshold as a probe. The results indeed confirm the reduced mode volume of toroid

microcavities, and are in qualitative agreement with the numerical modeling.
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Chapter 10

Kerr-nonlinearity optical
parametric oscillation in an
ultra-high-Q toroid microcavity

10.1 Abstract1

Kerr-nonlinearity induced optical parametric oscillation in a microcavity is reported

for the first time. Geometrical control of recently developed toroid micro-cavities

enables a transition from stimulated to optical parametric oscillation regimes. Optical

parametric oscillation is observed at record low threshold levels (174 micro-Watts of

launched power) more than two orders of magnitude lower than for optical-fiber-

based OPOs. In addition to their microscopic size (typically tens of microns), these

oscillators are wafer-based, exhibit high conversion efficiency (36%) and are operating

in a highly ideal "two photon" emission regime, with near-unity (0.97±0.03) idler-to-

signal ratio.

10.2 Introduction

Optical parametric oscillators (OPOs) rely on energy and momentum conserving op-

tical processes to generate light at new “signal” and “idler” frequencies. In contrast

to oscillation based on stimulated gain, optical parametric oscillation does not involve

1This chapter has been submitted to Physical Review Letters (2004)
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coupling to a dissipative reservoir. The lack of such dissipation makes them uniquely

suited for fundamental studies, such as the generation of non-classical states[90][91]

for quantum information research[92]2 as well as in numerous applied areas (e.g. pho-

tonics, spectroscopy, sensing). However, oscillation based on optical parametric gain

requires stringent phase matching of the involved optical fields[93]. This combined

with the necessity of high field intensity or long interaction length poses severe chal-

lenges to attaining micro-cavity optical parametric oscillators. In fact, whereas micro-

cavity stimulated nonlinear oscillators have been demonstrated[60, 70, 56, 94, 63, 95],

optical parametric equivalents have not been demonstrated so far.

Here we report Kerr-nonlinearity induced optical parametric oscillation in a toroidal

microcavity. Toroid micro-cavities are silica-based whispering-gallery-type resonators

possessing ultra-high Q-factors[33]. Efficient coupling, with high ideality[63] is a

achieved using tapered optical fibers as coupling elements. While ultra-high-Q en-

sures high circulating field intensities within the resonator[61], causing a variety of

nonlinear optical effects[70, 62, 94, 56, 60], it is not a sufficient condition to ensure

parametric oscillation. Due to inversion symmetry, the lowest order nonlinearity in

silica is the third order nonlinearity so that the elemental parametric interaction con-

verts two pump photons (ωp) into signal (ωS) and idler (ωI) photons[93, 91]. In order

for parametric oscillations to efficiently occur, both energy and momentum must be

conserved in this process[88, 93]. In whispering-gallery-type resonators, such as mi-

crotoroids, momentum is intrinsically conserved when signal and idler angular mode

numbers are symmetrically located with respect to the pump mode (i.e. lS,I = lp±N

2Due to parametric conversion process, the signal and idler photons are generated in pairs at
the same instant in time. The simultaneous generation of photon pairs, leads to two beams which
are highly correlated. In particular, the individually generated beams exhibit noise above the shot-
noise-limit (SNL). However if the noise produced by both beams is subtracted it can fall below
the shot-noise limit, a situation which is commonly referred to as two-mode squeezing. Part of the
correlations is however lost due the presence of the cavity, which randomizes the photon escape
times. The correlations will thus only persist for correlation times exceeding the cavity lifetime. A
simple model leads to the noise spectrum at frequency Ω :

S(Ω) = SSNL(Ω) ·
µ
1− �

1 + Ω2(τ−10 + τ−1ex )−2

¶
Here � is the probability that the photon is detected, and τ is the cavity lifetime. In the present
case, the cavity lifetime is given by τ−10 + τ−1ex .
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)3.

2βm = βm+N + βm−N

2
m

R0
=

m−N

R0
+

m+N

R0

Energy conservation (2~ωp = ~ωS+~ωI), on the other hand, is not expected to be

satisfied a priori, since the resonant frequencies are, in general, irregularly spaced due

to both cavity and material dispersion. As a result, the parametric gain is a function

of the frequency detuning,

∆ω = 2ωp − ωS − ωI

which effectively gives the degree to which the interaction violates strict energy con-

servation. In the case of silica, the material dispersion of silica in the 1500 nm

band
¡
dn
dλ

< 0
¢
leads to a positive detuning frequency. It can be shown that the ex-

istence of parametric gain requires that this detuning be less than the parametric

gain bandwidth[88] Ω = 4 c
n
γP (γ = ω

c
n2

Aeff
) where n2 ≈ 2.2 × 10−20m

2

W
is the Kerr

nonlinearity for silica [93] and P is the circulating power within the micro-cavity.

The effective nonlinearity γ depends on inversely on the effective cross section of

the mode4. By equating parametric gain and micro-cavity loss (as determined by

loaded Q factor), the threshold pump power necessary in the waveguide is obtained

for parametric oscillation.

PKerr
t =

ω20Q
−2
0 (1 +K)2 + (∆ω/2)2

2γ∆ω (c/neff )
· π

2Rneff
C(Γ)λ0

(K + 1)2

Q0K

Here K ≡ Qex/Q0 characterizes the coupling of the resonator to a waveguide used for

3The propagation constanst is given by βc =
m
R , where R is the cavity radius.

4As shown in the appendix, the effective cross section for a third order nonlinear process, is given

by: A−1eff =
R
(Ei)

∗(Ej )
∗
EkEldA³R |Ei |2dA R |Ej |2dA R |Ek |2dA R |El |2dA´1/2 , where E is the electric field distribution of the

respective mode. As the angular mode numbers for signal, idler and pump are closely spaced, a
good approximation is: A−1eff ≈

R
|Ep |4dAR |Ep |2dA R |Ep |2dA .
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both pumping of the resonator as well as collection of oscillator power. This coupling

is characterized as over-coupled (K > 1), critical (K = 1) and under-coupled (K < 1)

using the standard definitions[96]. Q0 and Qex are the intrinsic and the external

(coupling related) quality factors, respectively. R is the principal cavity radius, neff

is the effective index and C(Γ) is a correction factor in the range of [1..2] taking into

account the reduction of circulating power in the presence of modal coupling of the

degenerate clockwise and counterclockwise "whispering gallery modes" (WGMs) [27].

Figure 1 shows both parametric and Raman oscillation regimes as a function of the

detuning frequency ∆ω and the coupling parameter K. The threshold pump power

for parametric oscillation is color-coded as indicated.

As stimulated Raman scattering does not depend on the detuning frequency (i.e.

it is intrinsically phase-matched), it is the dominant nonlinear mechanism by which

light is generated for large detuning values. With decreasing ∆ω, a transition from

stimulated to parametric regimes occurs when the threshold for parametric oscillation

falls below that for Raman (The peak parametric gain is larger than the peak Raman

gain, gmaxKerr ≈ 2 ·gmaxR [93] ). Also note that for increased waveguide loading (and hence

correspondingly higher threshold pump powers) the transition can be made to occur

for detuning values that are progressively larger.

To bring about the condition 0 < ∆ω < Ω a reduction of the toroidal cross-

sectional area reduces the modal effective area Aeff and produces a two-fold benefit.

First, it increases the parametric bandwidth Ω through its dependence on γ [88] and

second, it reduces ∆ω. The latter occurs because of increased modal overlap with

the surrounding dielectric medium (air) and hence flattening of the modal dispersion.

Finally, numerical finite-element-modeling was used to calculate the dependence of

Aeff on the toroid principal (D) and minor diameter (d). Figure 2 shows the he

calculated modal area for a fundamental toroidal WGM as the dotted and solid lines

(TE and TM polarization). Note that the case (d = D)corresponds to a spherical

microcavity. Thus, the desired transition can be induced with toroidal geometries

of high principal-to-minor toroid diameter (high aspect ratio), where the principal

diameter (D) denotes the outer cavity diameter and the minor diameter (d) refers to
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Figure 10.1: Nonlinear processes in a micro-cavity with D = 50µm, d = 4µm and
Q0 = 10

8. The vertical axis denotes coupling strength K of the waveguide-resonator
system while the horizontal axis denotes frequency detuning. The dotted line cor-
responds to the critical coupling point (defined by vanishing waveguide transmission
[96, 75]). The dark blue colored part of the spectrum denotes areas where Raman
oscillation occurs. The color-coded region corresponds to the parametric oscillation
regime (where the parametric threshold is indicated by color in micro-Watts).
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the smaller, toroid cross-sectional diameter.

In order to confirm this prediction, toroid micro-cavities with an approximately

constant principal diameter (D) and varying minor diameter (d) in the range of 3.8-

10 µm were fabricated. Due to the ultra-high-Q of the toroidal whispering-gallery

modes (WGMs), ultra-low-threshold, stimulated Raman scattering was consistently

observed for toroids having an aspect ratio of ca. D/d < 15[97].

For micro-toroids having an aspect ratio (D/d) in excess of ca. 15 a transition (and

a subsequent quenching of Raman[66, 98]) to parametric oscillation was observed.

Figure 3 shows a parametric oscillation emission spectra for a micro-toroid with d=3.9

µm, D=67 µm and Q0 = 0.5× 108. In this measurement a single fundamental WGM

of a micro-toroid is pumped in the telecommunication window near 1550-nm using

tapered optical fiber waveguides[99, 75]. Phase-matching of taper mode and WGM

was achieved by varying the taper waist in the coupling region. In this way high

ideality of the coupling junction was achieved[31]. The parametric interaction in

the micro-cavity causes emission of co-propagating signal and idler modes, which are

coupled into the forward direction of the tapered fiber. Some residual signal and

idler reflection was detected in the backward direction due to the presence of modal

coupling[27], induced by backscattering5. The generated signal and idler modes had

identical oscillation threshold, within the experimental resolution set primarily by

taper coupling variations (ca.± 5%).

Figure 4 shows the parametric oscillation threshold as a function of taper-toroid

coupling gap for the toroid micro-cavity of figure 3. Analysis of the threshold equation

shows that the coupling point of minimum threshold is a function of the detuning

frequency. At the optimum frequency detuning (i.e. maximum parametric gain, for

∆ωopt = 3 · ω
Q0
), the minimum threshold occurs under-coupled for Kmin = 0.5 with

5The presence of modal coupling randomizes the escape direction of the generated signal and
idler photons. If the reflected radiation is not measured, and the remaining part of the detection
scheme is ideal, the detection probability is given by:

� = (1−R(Γs))(1−R(Γi))

Therefore the presence of modal coupling decreases the possible noise reduction, unless the reflection
is included into the measurement scheme.
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Figure 10.2: Calculated WGM mode area as a function of minor toroid diameter
(for a fixed principal diameter D = 50µm). The solid and dotted lines are the
mode area obtained from finite-element modeling of the fundamental toroidal WGM
(dotted line: TE polarization, solid line: TM polarization) at a wavelength of 1550
nm. For comparison the inset shows modeled field intensity plots of a fundamental
micro-sphere WGM (right panel) and a toroid WGM of equal principal diameter
and d = 2µm (left panel). Upper inset: Scanning-electron-micrograph of a toroid
microcavity with the geometry parameters indicated.
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Figure 10.3: Parametric-oscillation spectrum measured for a 67-µm-diameter toroidal
micro-cavity. The pump is located at 1565 nm and power levels are far above thresh-
old. The signal and idler are modes with successive angular mode numbers and are
spaced by twice the free spectral range (2×7.6 nm). The subsidiary peaks (denoted
I’,S’) only appeared at high pump powers and are due to a combination of nonlinear
effects, such as parametric oscillation (of signal and idler) as well as four-wave-mixing
involving the idler, pump and signal. Inset: idler emission power plotted versus the
signal emission power, recorded for different pump powers. The idler-to-signal power
ratio is 0.97± 0.03. For higher pump powers deviation is observed due to appearance
of secondary oscillation peaks (I’,S’) (compare main figure).
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finite pump transmission (Tmin = 1/9), whereas for larger detuning the minimum

threshold point shifts towards being over-coupled (compare figure 1). The measured

minimum threshold in the present case was 339 micro Watts and occurred for the

taper displaced by 0.04 microns into the under-coupled regime. The corresponding

pump transmission was T ≈ 4% (K ≈ 0.7), indicating that the frequency detuning

is close to being optimum. Above threshold the signal and idler fields increase ap-

proximately linearly with pump power (for high pump power P, the emission scales

PS,I ∝
q

P
Pt
− 1). The inset of figure 3 shows a pump-to-idler conversion characteristic

at the point of minimum threshold.

The corresponding differential conversion efficiency was 17% pump-to-idler (The

total differential conversion efficiency of pump to both signal and idler fields was 34%).

Comparison of the differential conversion efficiency to theory η = 2 · (1 +K−1)−2 is

consistent with the minimum threshold occurring under-coupled, as the inferred cou-

pling point is K = 0.7 (corresponding to T = 4% in agreement with the above

measured value). Using the minimum threshold data and the cavity ringdown mea-

surements a detuning frequency of ∆ω/2π ≈ 24 MHz is inferred from the threshold

equation, compared with ∆ωopt/2π = 11.6 MHz for optimum detuning frequency

at the measured Q value. The lowest measured parametric oscillation threshold for

the micro-toroids in this study was 170 micro-Watts of launched power in the fiber

(for a micro-cavity with D/d = 16, d = 4µm, Q0 = 1.25 × 108 and ∆ω/2π ≈ 18

MHz) and is a factor of 200 lower than for fiber OPOs[100] that utilize the dis-

persion control provided by photonic crystal fiber [101]. As a further confirmation

that parametric oscillation is present, both signal and idler emission were recorded

for varying pump power. From theory a signal-to-idler photon creation ratio of unity

is expected for parametric oscillation[93]. The inset of figure 4 shows the measured

idler emission power plotted versus signal emission power through the optical fiber

taper. The recorded data was corrected for modal coupling[27] by measuring the

reflected power for all three resonances at the critical point. After correcting for

modal coupling the ratio of idler conversion to signal conversion was 0.97±0.03. The

observation of near-unity idler-signal emission-power ratio, along with the identical
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Figure 10.4: The coupling-gap-dependence of the parametric threshold with respect
to the critical coupling point measured using a 67-µm-diameter toroid microcavity.
The minimum threshold occurs with the tapered optical fiber 0.04 µm under-coupled
(with finite transmission of ca. 4%). The solid line is a theoretical fit using the thresh-
old equation. Inset: Idler emission versus pump power. The differential conversion
efficiency from pump-to-idler was 17%(and correspondingly 34% for pump to signal
and idler).
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threshold for signal and idler wave emission, demonstrates that the observed emission

bands can solely be attributed to Kerr-induced micro-cavity parametric oscillation.

Finally, stimulated Brillouin scattering (SBS), which involves coupling to a acoustic

phonon, was not present, despite having a nearly 3 order of magnitude larger gain

in comparison to the parametric gain. As noted previously, SBS is unlikely to occur

in microcavities[63]. In particular as micro-toroids exhibit strongly reduced mode

spectrum due to azimuthal confinement[33, 97], overlap with the gain bandwidth is

SBS is unlikely.

10.3 Summary

We have thus observed for the first time (to the authors’ knowledge) Kerr-nonlinearity

induced optical parametric oscillation in a micro-cavity. Parametric interactions pro-

vide a distinct and important class of nonlinearity in both applied and fundamental

areas, and as such this result should extend the range of micro-cavity applications

into new fields. In addition to the highly advantageous practical aspects of on-chip

micro-cavity nonlinear oscillators, (such as wafer-scale integration and control), these

oscillators exhibit important properties due to the nature of the underlying nonlinear

process within the micro-cavity. Specifically, a phase-sensitive amplification process

that can exclude competing Brillouin or Raman processes, as demonstrated here, with

a highly ideal coupling junction can provide an excellent candidate system for the gen-

eration of non-classical states of light[102, 103, 91, 90, 64, 104, 105, 106] in a micro-

cavity. Whereas the work presented here has used the third order nonlinearity of silica

itself, it should also be possible to induce second-order nonlinear interaction (such as

parametric down-conversion), by using ultraviolet[107] or thermal-electric[108] glass

poling techniques. This would be important in quantum information[92] and quan-

tum optical studies[91, 109, 110, 111] as well as for novel bio-imaging schemes based

on entanglement[112]. Moreover, the toroid micro-cavities exhibit high modal purity

(single mode emission). This property and their nearly lossless coupling junction[31],
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are important prerequisites for both applied and quantum optical studies.
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Appendix A

Theoretical analysis of
Kerr-nonlinearity parametric
oscillation in a whispering-gallery
microcavity

A.1 Introduction

This section complements the discussion of the Kerr nonlinearity parametric oscilla-

tion in a microcavity as presented in chapter 10. Starting from the classical equations

of four-wave-interaction for plane waves, the equations for parametric interaction in

a microcavity are derived. The treatment in the case for optical modes of a resonator

will lead to identical coupled-wave-equations, however with modified coupling coef-

ficients. These coupling coefficients are determined by the pump, signal and idler

overlap factors.

A.2 Third order nonlinear polarization

The nonlinear Polarization can be introduced phenomenologically by expanding the

polarization in terms of the electric field. In the case of Kerr-nonlinear interaction,

the 2nd order nonlinearity is not present due to inversion symmetry, such that the



157

first nonlinear contribution is third order:

Pi = χEi + χ
(3)
ijklEiEjEk + ...

The physical process underlying the third order nonlinearity is a four-photon interac-

tion. For the present treatment, it is assumed that the two pump fields are frequency

degenerate. Inserting four fields and their amplitudes Ep ,(Ep), Es, Ei into the above

equation (i.e. Ep(t) =
1
2
Epe

iωpt + c.c.) for the nonlinear polarization, and neglecting

anti-resonant terms such as EpEpEp ∝ e−3iωpt (i.e. using the rotating wave approxi-

mation) several nonlinear optical terms can be identified, which lead to the generation

of new frequency components, as well as phase shifts.

The phase insensitive terms ∝ |Ei|2Ej give rise to a change in the index of re-

fraction n the field experiences and are referred to as self-phase modulation(SPM),

and cross-phase modulation (XPM). The change of index is related to then nonlinear

index of refraction by: n = n0+I ·n21. As the name implies SPM refers to the change

in index induced by the field itself, whereas XPM refers to the situation where the

index of refraction is modified by the presence of a different field.

The phase sensitive polarization terms, such as EiEiE
∗
j (where i 6= j), give rise

to parametric frequency conversion. In a classical picture this process can be viewed

as being due to the temporal modulation of the refractive index n(t) = n0 +∆n2(t)

due the beat-frequency caused by two fields at different frequencies. Whereas the

spatial modulation of the refractive index, gives rise to Bragg reflection, the temporal

modulation of the refractive index gives rise to a frequency shift. The governing

equations of motion are particularly simple for plane waves, assuming:

�E(r, t) =
1

2
E(z) exp(i(ωt− kz)) + c.c

�P (r, t) =
1

2
P (z) exp(i(ωt− kz)) + c.c

1Some authors also define the nonlinear index of refraction as: n = n0 + n2

¯̄̄
�E
¯̄̄2
.
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Susceptibility expression Associated Nonlinear Optical Processes
χ
(3)
Re Ei |Ei|2 Self-phase modulation (SPM)

χ
(3)
Re Ei |Ej|2 Cross-phase modulation (XPM)

χ
(3)
Re EiEiE

∗
j , ... Four wave mixing process (FWM)

χ
(3)
Im Ei |Ei|2 two-photon absorption

χ
(3)
Im Ei |Ej|2 Raman-process (Stokes gain,...)

χ
(3)
Im EiEiE

∗
j , ... coherent anti-stokes Raman scattering

Table A.1: Nonlinear optical effects associated with the third-order susceptibility

the governing equations for four-wave mixing are given by [91][93]:

∂Ep

∂z
=

µ
iωp

c

¶
3

8
χ
(3)
Re

¡
E2
pE

∗
p + 2EpEiE

∗
i + 2EpEsE

∗
s + 4EsEpE

∗
p + 2EpEpE

∗
i

¢
∂Es

∂z
=

µ
iωs

c

¶
3

8
χ
(3)
Re

¡
E2
sE

∗
s + 2EsEiE

∗
i + 4EsEpE

∗
p + 2EpEpE

∗
i

¢
∂Ei

∂z
=

µ
−iωi

c

¶
3

8
χ
(3)
Re

⎛⎜⎝ 2

fEi |Ei|| {z }
SPM

+ 2fEi |Es|2| {z }
XPM (Idler)

+ 4fEi |Ep|2| {z }
XPM(Pump)

+ 2fEpEpE
∗
s| {z }

FWM-Term

⎞⎟⎠
If one assumes that the pump field is not depleted, and that the signal and idler fields

are weak, the coupled mode equations simplify considerably:

∂Ep

∂z
=

µ
iωp

c

¶
3

8
χ
(3)
Re

¡
E2
pE

∗
p + 4EsEpE

∗
p + 4EpEpE

∗
i

¢
∂Es

∂z
=

µ
iωs

c�0

¶
3

8
χ
(3)
Re

¡
4fEs |Ep|2 + 2fEpEpE

∗
i

¢
∂Ei

∂z
=

µ
−iωi

c�0

¶
3

8
χ
(3)
Re

¡
4fEi |Ep|2 + 2fEpEpE

∗
s

¢

A.3 Coupled mode equations for Kerr-parametric

interactions in a whispering-gallery-microcavity

To formulate the coupled mode equations for Kerr oscillations in a cavity, the gov-

erning equations are first formulated in the temporal domain, and cavity losses and
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pumping via a waveguide are introduced using the previously introduced formalism.

Starting point for the derivation of the coupled mode equations is the wave-equation:

µ
−∇2 + n2

c2
∂2

∂t2

¶
−→
E = µ0

∂2

∂t2
−→
P NL

To derive an equation for the coupled amplitudes of the whispering-gallery waves,

the Helmholtz equation is first solved for the case of a whispering gallery mode of

the system (i.e. the homogeneous solution, without the nonlinear polarization term).

The general form of a whispering gallery mode, expressed in cylindrical coordinates

for the case of a TM mode is:

Ei
z(r, z, φ, t) =

1

2
Ei
z(r, z)e

iciφ+iωt + c.c.

Here c is the angular mode number of the whispering gallery mode. Due to the

presence of the nonlinear polarization the whispering gallery modes will exhibit an

additional time dependence, expressing the fact that fields might be created, or ab-

sorbed. To describe the growth of the WGM the amplitude is introduced, which only

depends on the time,

Ei
z(r, z, φ, t) =

1

2
Ai(t) ·Ei

z(r, z)e
iciφ+iωt + c.c

The effect of the nonlinear polarization can now be investigated, by deriving a coupled

mode equation for the field amplitude Ai(t):

µ
−∇2 + n2

c2
∂2

∂t2

¶
Ai(t) ·Ei

z(r, z)e
iciφ+iωt = µ0

∂2

∂t2
−→
P NL

Ai(t)·
µ
−∇2 + n2

c2
∂2

∂t2

¶
Ei
z(r, z)e

iciφ+iωit| {z }
=0

+

µ
n2

c2
∂2Ai(t)

∂t2
+ 2iω

n2

c2
∂Ai(t)

∂t

¶
Ei
z(r, z)e

iciφ+iωit = µ0
∂2

∂t2
−→
P N
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The first term on the right hand side is zero, since E is assumed to be a mode i.e.

a solution of the homogenous problem. To arrive at a coupled wave equation, the

slowly varying amplitude approximation can be made, i.e. assuming:

¯̄̄̄
∂2Ai(t)

∂t2

¯̄̄̄
¿
¯̄̄̄
2iωi

∂Ai(t)

∂t

¯̄̄̄
leading to: µ

2iωi
n2

c2
∂Ai(t)

∂t

¶
Ei
z(r, z)e

iciφ+iωit = µ0
∂2

∂t2
−→
P NL

This is a good approximation, since the conversion due to nonlinear optical processes

is slow compared to the time-scale of the optical cycle ω. Next, the polarization term

has to be re-casted:
∂2

∂t2
−→
P NL =

∂2

∂t2
¡
χijkEjEkEl

¢
The nonlinear susceptibility has been treated in the last section. The product of the

three whispering-gallery mode fields on the l.h.s. contains a rapidly varying term

(due to the phase of the whispering-gallery modes ∝ eiωit), and a slowly varying part

(given by the amplitude A(t)). In taking their derivative with respect to time, the

slow time dependence of the fields can be neglected. Assuming that the total three

fields vary as EiEjEk ∝ ei(ωi+ωj+ωk)t ≡ eiω
0t

µ0
∂2

∂t2
−→
P NL = µ0ω

02 ¡χijklEjEkEl

¢
In addition each of the field contains a azimuthal dependence due to the eigenfunctions

exp(±icφ). Therefore the polarization also contains a term:

EiEjEk ∝ ei(li+lj+lk)φ

Inserting the phasor and angular dependence into the polarization leads to:
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µ
2iωi

n2

c2
∂Ai(t)

∂t

¶ eEi
z(r, z)e

iciφ+iωit = µ0ω
02
i

µ
3

8
χijk eEj

eEk
eElAjAkAl

¶
ei(ωj+ωk+ωl)tei(cj+ck+cl)φµ

∂Ai(t)

∂t

¶ eEi
z = − iω02i

2�on2ωi

µ
3

8
χijk eEj

eEk
eElAjAkAl

¶
ei(ωj+ωk+ωl−ωi)tei(cj+ck+cl−c

The latter equation is cumbersome to evaluate, since the explicit fields eEi = eEi(r, z)

enter in the equation. It is desirable to arrive at an equation which describes only

the energy or amplitude of the mode i.e. A(z). This can be achieved by integrating

over the transverse extend of the WG mode and by multiplying the conjugate fieldeEi
z(r, z)

∗ from the left.

µ
∂Ai(t)

∂t

¶Z
r,z

¯̄̄ eEi
z

¯̄̄
dA = −3

8

iω02i
2�on2ωi

³
χijk eEi

eEj
eEkAiAjAk

´
ei(ωj+ωk+ωl−ωi)tei(cj+ck+cl−ci)φ

µ
∂Ai(t)

∂t

¶
= −3

8

iω02i
2�on2ωi

χijkAiAjAk ·

⎛⎝Z
r,z

eEi
eEj
eE∗k eEi

z
∗ dA| {z }

⎞⎠ ei(ωj+ωk+ωl−ωi)tei(cj+ck+cl

≡A−1eff

In the last expression, the fact that the mode function are normalized has been used,

i.e.
R
r,z
|Ei|2 dA = 1. The last term is the effective mode area and has units of inverse

area, which as in the case of Raman scattering deviates from the mode area, as defined

by the energy density definition. In the case E is describes the electric field and is not

normalized, the effective area is given by:

A−1eff ≡ fijkl =

R
Acav

E∗iE
∗
jEkEldA

Π
i

¡R
A
|Ei|2 dA

¢1/2
Since in a microcavity the susceptibility vanishes outside the cavity (i.e. in air) the

integral in the denominator is carried out only over the dielectric cavity area). As in

the case of stimulated Raman scattering, the effective mode area can actually differ

from the actual mode area (and for microspheres and microtoroids is approximately

×2 larger). The above definition of effective mode area describes all third order

nonlinear optical phenomena, and as such also yields again the Raman gain coefficient
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(i.e. which is proportional to P ∝ E∗iE
∗
iEk i.e. yielding A−1eff = Appss.). Hence the

coupled mode equations are given by:

µ
∂Ai(t)

∂t

¶
= − iω02i

2�on2ω
fijkl ·

3

8
χ
(3)
ijk ·AjAkAle

i(ωj+ωk+ωl−ωi)tei(cj+ck+cl−ci)φ

Furthermore it is common to introduce the nonlinear coefficient:

γi ≡
n2ωi

c
fijkl ≈

n2ωi

cAeff

Where the third order nonlinear susceptibility is related to the nonlinear index of

refraction n2 by, and Aeff is assumed to identical for all coupling processes.

n2 =
3

8n
χ(3)

The fields entering the expression of the nonlinear polarization can only couple to the

l.h.s. of the Helmholtz equation, if the time dependence is the same as on the left, i.e.

if P ∝ eiωit. The remaining terms are anti-resonant (and in a full quantummechanical

treatment are seen to violate energy conservation with respect to the photon energy).

Therefore only terms, in which ωi ≈ ω0 will induce an efficient coupling by means of

the nonlinear susceptibility. In addition the angular dependence eilφ on both sides

of the equation needs to be identical, to achieve coupling of modes. The latter two

conditions, can be shown to be equivalent to the requirement of energy and angular

momentum conservation. To arrive at a set of coupled mode equations for parametric

oscillation, which parametrically converts two pump photons into signal and idler,

only resonant terms have to be kept in the treatment. For i, j, k, l equal to two pump

fields, as well as signal and idler, this leads to the coupled mode equations for signal
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and idler.

∂Ap

∂t
= i
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n

´ n2ωp

2cAeff

¡
Ap |Ap|2 + 4ApApA

∗∗
si e

i∆ωtei∆lφ + 4ApApA
∗
i e

i∆ωtei∆lφ
¢

∂As

∂t
= i

³ c
n

´ n2ωs

2cAeff

¡
4As |Ap|2 + 2ApApA
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i e
−i∆ωte−i∆lφ

¢
∂Ai

∂t
= i

³ c
n

´ n2ωi

2cAeff

¡
4Ai |Ap|2 + 2ApApA

∗
se
−i∆ωte−i∆lφ

¢
In this set of equations, the pump has been assumed strong |Ap| À |Ai| , |As| , and

for the idler and signal only the XPM and FWM term included, whereas the pump

field experiences only SPM and FWM to signal and idler frequencies. In addition the

angular momentum and frequency detuning parameters have been introduced:

∆ω ≡ 2ωp − ωI − ωS

∆c = 2cp − ci − cS

(Angular) Momentum conservation for WGM

It is important to note, that if the signal and idler mode numbers are chosen

symmetrically around the pump field, the (angular) momentum matching condition

is satisfied intrinsically (since β = c
R0
):

βc + βc + βc+N + βc−N = 0

Energy conservation

On the other hand, energy conservation is not a priori assumed to be satisfied, due

to the presence of waveguide and material dispersion. The detuning ∆ω effectively

describes the extent to which strict energy conservation is violated and is given by:

∆ω ≡ 2ωp − ωI − ωS

It is interesting to note, in the case of a cavity, the role of frequency and momentum

in the context of parametric gain are reversed. In the waveguide case, a continuum of
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Figure A.1: Schematic of the effect of cavity detuning on the occurrence of parametric
oscillation. For ∆ω > 0, parametric oscillation can only occur if the detuning ∆ω =
2ωp − ωs − ωi is less than the parametric band-width (given by 0 < ∆ω < Ω).Note
that the parametric band-width exists only for positive detuning, due to the shift of
resonant frequency caused by XPM and SPM.
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frequencies ω exists, such that energy conservation is a priori satisfied, whereas the

momentum distribution is discrete
−→
ki (ω). In contrast, for a whispering-gallery micro-

cavity, momentum is satisfied intrinsically, whereas only a discrete set of frequencies

exist ωncmp, which are required to satisfy energy conservation. Using the frequency

detuning, the coupled-mode-equations are:

∂As

∂t
= − 1

2τ s
As + iκ1As + iκA∗i e

i∆ωt

∂Ai

∂t
= − 1

2τ i
Ai − iκ1Ai − iκA∗se

i∆ωt

Where:

κ1 ≡
³ωp

c

´ 3
8
χ(3)4f |Ap|2 = 4 |Ap|2 γ

κ ≡
³ωp

c

´ 3
8
χ(3)2fApAp = 2ApApγ

In the case of a whispering-gallery microcavity, the governing equation for the pump

whispering gallery mode is given by the equation:

∂ eAp

∂t
= − 1

2τ p
Ap + iκspAp + κkpA

∗
pe
−i∆ωt +

r
1

τ ex
s

κkp ≡
3

8
χ(3)f · 2AsAi

κsp ≡
3

8
χ(3)f · |Ap|2

This set of equations of coupled equations for signal and idler fields can be formally

solved. By the transforming into a rotating frame i.e. As = Ase
−i∆ωt/2 , AI =

AIe
−i∆ωt/2 and eliminating the time dependence yields the linear system of coupled

equations:

∂As

∂t
e−i

∆ω
2
t − i

∆ω

2
Ase

−i∆ω
2
t = − 1

2τ s
Ase

−i∆ω
2
t + iκ1Ae

−i∆ω
2
t + iκA∗i e

+i∆ωt/2

∂Ai

∂t
e−i

∆ωt
2 − i

∆ω

2
AIe

−i∆ωt
2 = − 1

2τ i
Aie

−i∆ω
2
t − iκ1Aie

−i∆ω
2
t − iκA∗se

+i∆ωt/2
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If the idler equation is conjugated a linear differential equation system is obtained:

∂

∂t

µ
As

A∗i

¶
=

⎛⎝ − 1
2τ
+ iκ1 + i∆ω

2
iκ

−iκ∗ − 1
2τ
− i∆ω

2
− iκ1

⎞⎠µAs

A∗i

¶
(A.1)

The eigenvalues are given by: λ1,2 =

½
±
µ

1
2τ
−
q
|κ|2 − κ21 −∆ωκ1 − ∆ω2

4

¶¾
and

the parametric gain be identified correspondingly as:

gParam(∆ω) =

s¡
γ |Ep|2

¢2 −µγ |Ep|2 +
∆ω

2

¶2
(A.2)

=

r
2γ |Ep|2∆ω − ∆ω2

4

The parametric gain is non-zero only for 0 < ∆ω < Ωp where Ωp is the parametric

gain bandwidth:

Ωp ≡ 4γ |Ep|2 (A.3)

The maximum parametric occurs shifted away from ideal energy conservation, at

non-zero detuning:

∆ωmax ≡ 2γ |Ep|2 (A.4)

This shift is due to the effect of cross phase modulation of the signal and idler due to

the pump.

A.4 Parametric oscillation threshold

The parametric oscillation threshold is reached when the gain exceeds the cavity losses

i.e. in steady state for λ1,2 = 0.Thus:s
2γ |Ep|2∆ω −

µ
∆ω

2

¶2
=

µ
1

2τ 0
+

1

2τ ex

¶
=

1

2τ 0
(1 +K) (A.5)
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From this equation the necessary circulating pump power in the cavity can be derived:

|Ep|2 =

³
1
2τ0
(1 +K)

´2
+
¡
∆ω
2

¢2
2γ∆ω

(A.6)

Taking into account the cavity buildup factor, the threshold for parametric oscillation

as a function of coupling and detuning is obtained:

PKerr
t =

ω20Q
−2
0 (1 +K)2 + (∆ω/2)2

2γ∆ω · c
neff

µ
π2Rneff
C(Γ)λ0

(K + 1)2

Q0K

¶
(A.7)

γ ≡ n2ωi

cAeff
(A.8)

A.5 Material and cavity mode dispersion

The optical modes within a cavity are in general not regularly spaced due to the

presence of material and cavity dispersion. First, material dispersion is considered.

The detuning frequency can be related to n0 = dn
dω
by noting that ωi = cλi/2πRneff

and in a simple model neff ≈ n(ω).
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In the case of silica in the 1550 nm banddn
dω

> 0. Therefore the parametric detuning

frequency due to material dispersion is always positive, as is required in order for

parametric oscillation to occur. Secondarily, the free-spectral range is naturally not

constant. In the case of a microsphere, the analysis of chapter 1 yielded:

∆ωFSR ≡ |ωnmc − ωnmc+1| ≈
cÀ1

c

naR

µ
1

m
− t0n

c−2/3

3

¶
(A.9)

Therefore the detuning frequency contribution from the WGM dispersion is always

positive, since the FSR (∆ωFSR) increases for increasing angular mode number c.

∆ω = 2ωp − ωi − ωS = ∆ωp−i
FSR −∆ωp−s

FSR

As a result both material dispersion and cavity mode dispersion, cause the parametric

detuning frequency to be ∆ω > 0.
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Appendix B

Modelling of whispering-gallery
microcavity modes

B.1 Wave equation for whispering-gallery resonators

with rotational symmetry

Whereas the optical quality factor (Q) is dependent upon many external factors (such

as cavity surface roughness, water adsorption, defects in the oxide layer etc.), and

can vary significantly across micro-spheres and micro-cavities with nearly-identical

geometry parameters, the mode volume of the optical modes is entirely dependent

upon the cavity geometry. However, while Q-factor can be measured directly and is

experimentally accessible, the same is not true for the optical mode volume, which

can only be probed indirectly, such as by near field optical probes or as be presented

in chapter 7, using the oscillation threshold of stimulated Raman scattering. In

this section the optical mode-volumes as well as the effective nonlinear optical mode

volumes are calculated for toroid and disk microcavities using numerical modelling

using a PDE finite-element solver. To accomplish this task the Helmholtz equation

for the whipering-gallery resonator case is derived and transformed in the required

standard PDE form.

The whispering gallery resonators studied in this thesis (i.e. spheres, disks and

toroids) all exhibit (if the presence of eccentricity is neglected, and only treated
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Figure B.1: Direction of the field components of the whispering-gallery modes of
magnetic type (i.e.TE-case) for a toroid. TE (TM) modes posses a E-field (H-field)
which is perpendicular to the equatorial plane of the torus.

as a weak pertubation) a rotational symmetry. Therefore the choice of cylindrical

coordinates for the modelling is a natural choice. The optical modes of a whispering

gallery type resonator are described in their most general form by a total of six

field components, (Hr, Hφ,Hz, Er, Eφ,Ez). The boundary condition couples the electric

and magnetic field components. A significant simplification occurs, if the index of

refraction n(r) is homogeneous throughout the dielectric cavity, and the polarization

is constant. In this case the scalar-wave equation approximation can be used. The

solutions of the scalar wave equation fall into two classes; the optical modes are

either electric in character (referred to as transverse-magnetic TM case) or magnetic

in character (referred to as transverse electric TE case). In the case of TM-modes

in a WGM resonator (with the symmetry axis along the z-axis) , the magnetic field

is transverse to the direction of propagation (which occurs along −→e φ) implying that

Hφ = 0, whereas for the TE-case Eφ = 0. All the remaining field components can

be expressed in terms by only one field component (Hφ for TE-modes and Eφ TM-
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modes) , reducing the problem to a scalar Helmholtz equation for one field component.

An additional simplification of the Helmholtz equation occurs due to the rotational

symmetry in case of a perfect whipering-gallery resonator. Due to the periodicity

condition (exp(−βl2π) = 1) the TE and TM-mode can be expressed as:⎧⎨⎩ Eφ(r, z, φ)

Hφ(r, z, φ)

⎫⎬⎭ =

⎧⎨⎩ Eφ(r, z)

Hφ(r, z)

⎫⎬⎭ · exp(i([±βφ− ωt])andβl = l (B.1)

Where l is the angular mode number. The Helmholtz in cylindrical coordinates is

given by (considering in what follows only the TM case):

(∇2 + ω2

c2
n2)Eφ =

∙µ
d2

dr2
+
1

r

d

dr

¶
+
1

r2
d2

dφ2
+

d2

dz2
+

ω2

c2
n2
¸
Eφ = 0 (B.2)

Using the separation of variables approach for the angular direction (and introducing

the angular mode l number correspondingly):

Eφ(r, z, φ) = Eφ(r, z) · exp(±ilφ) (B.3)

this yields the equation:

∙µ
d2

dr2
+
1

r

d

dr

¶
− 1

r2
l2 +

d2

dz2
+

ω2

c2
n2
¸
Eφ = 0 (B.4)

multiply by r· from the left and rearranging:

∙µ
r
d2

dr2
+

d

dr

¶
+ r

d2

dz2
− 1

r
l2 + r

ω2

c2
n2
¸
Eφ = 0

d

dr

µ
r
d

dr
Eφ

¶
+

d2

dz2
(rEφ)−

µ
1

r2
l2−ω

2

c2
n2
¶
rEφ = 0

Rearranging and the expression thus produces the Helmholtz equation in the required

PDE format (TM -case):
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Figure B.2: Comparisson of the analytical and numerically calculated intensity dis-
tribution of the |Eφ|2 component plotted in the radial direction, for a microsphere of
10 µm radius.The numerical and analytical models show excellent agreement.

∇r,z·(r∇r,zEφ)+

µ
ω2

c2
n2 − l2

r2

¶
rEφ = 0 (B.5)

−∇r,z·(r∇r,zEφ)+
β2

r
Eφ =

ω2

c2
n2rEφ

To test the accuracy of the numerical modelling, the calculated resonance locations

for a microsphere were compared to the resonance locations obtained by an asymptotic

expansion (see chapter 1). The deviations were less than 2.5e-004 for both TE and

TM polarization, and assure the accuracy of the simulation results. Furthermore, in

figure B.2 the numerical and theoretical results of the radial equation are plotted,

showing excellent agreement.
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Appendix C

Experimental techniques:
Fabrication of toroid and disk
microcavities on a silicon chip

Surface-tension induced microcavities such as droplets of microspheres undergo a

liquid phase, in which surface tension induces the spherical cavity shape and in ad-

dition provides exceptionally smooth surfaces. For silica microspheres, atomic-force

microscopy has revealed surface roughness in the range of less than 1 nm r.m.s. The

quality of the surface has enabled to observe absorption limited Q-factors in mi-

crospheres of nearly 9×109[41], which are the highest Q-factors to date in the optical

domain. In this chapter the fabrication of toroidally shaped silica microcavities on

a silicon chip is described. The fabrication technique is a combination of standard

micro-fabrication techniques with a selective reflow process inherent to fabrication of

surface-tension-induced microcavities. As in the case of microspheres, toroid micro-

cavities undergo a liquid state during their fabrication, enabling them to obtain sur-

face roughness characteristics similar to other surface-tension-induced microcavities

such as microspheres. This allows, under proper preparation, to observe ultra-high-

Q optical modes, as has been demonstrated in chapter 7, and constitutes the first

demonstration of ultra-high-Q microcavity on a chip[81].

The fabrication sequence involves as a first step the fabrication of silica disk micro-

cavities on a silicon substrate. Microdisk also fall into the class of whispering-gallery

devices, as their modes are confined by continuous total internal reflection at the disk
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perimeter. In a second step, the disk-cavities are laser irradiated causing a selective

reflow of the silica. This process causes the disk surface to collapse and to from

a toroidally shaped boundary, whose limiting dimensions are defined by the pillar

geometry.

Starting material for the fabrication process are oxidized silicon wafers (in the

work intrinsic oxidized wafers with resistivity of typically more than >10 Ohm/cm2

and [100] crystal orientation, Virginia Semiconductors ). Processing involved the

etching of circular pads into the oxidized wafers. In this thesis work positive photo-

resist (Shipley-1813) was used and spun for 2 minutes at 3000 rpm. To promote

adhesion of the photo-resist the wafer was exposed to HDMS prior to spinning. After

soft-bake (115 C at 2 minutes) the wafers were exposed and developed (MF-319),

and hard-baked (120 C for 15 minutes). After visual inspection on the uniformity of

the pads, the wafers were etched with hydrofluoric acid until all oxide was removed,

leaving circular pads on a silicon wafer. Since silicon is hydrophilic as opposed to

silica, the removal of the entire layer of oxide can be inferred visually. Due to the

isotropy of the HF etching, combined with the effect of undercutting of the photo-

resist, the silica disks exhibit wedge shaped side-wall profiles. The wedge angle is

dependent on the amount of undercutting of the photo-resist pads and was less than

45 degree in this work. After etching the sample was cleaned with acetone, methanol

and DI. Critical in the processing is avoiding particles during cleaving of the wafer

into individual chips. This was achieved by spinning (and subsequently soft-baking)

a second time photo-resist on the etched sample. The layer of photo-resist in this

case functioned as a protection layer for particles during cleaving. The processed

wafer was cleaved into ca. 5 × 20mm chips, in order to facilitate the coupling using

tapered optical fibers. Each chip contained one single row of resonators, to ensure

rapid testing of resonators. After cleaving individual chips containing the photo-resist

layer were rinsed with water and all particles removed. Subsequently the samples

were cleaned in acetone, at a temperature of 60 degrees for 15 minutes followed by

a methanol and DI rinse. This ensured complete removal of the photo-resist. To

optically isolate the silica disks from the silicon a dry (gas-) etch employing XeF2 at
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room temperature was used. Figure ?? shows a scanning electron micrograph of the

resulting structure. The amount of undercut can be controlled by the XeF2 etching

parameters, however large variations were found at the edges of the samples, likely

due to proximity and inhomogeneous gas-flow. The resulting structures are microdisk

cavities, and their optical modes will be examined in chapter 7. Nonetheless, the

above process flow leaves lithographic blemishes, visible in an optical microscope,

at the all-important disk periphery. Therefore additional processing was pursued to

achieve the surface finish characteristic of STIM structures exhibiting rms roughness

of several nanometers or less[41].

Next, a processing step was introduced to selectively heat and reflow the undercut

SiO2disks without affecting the underlying silicon support pillar similar to techniques

used for integrated circuit planarization[113]. This steps leaves toroidally shaped

cavities with a surface roughness which is comparable to surface-tension induced mi-

crocavities such as microspheres. The reflow step was performed using a Carbon

dioxide laser (Synradt Inc., 10W optical power), which was also used for the fabrica-

tion of microsphere resonators. The CO2 laser emitted in a TEM00 mode and had a

beam diameter of ca. 1 mm. Improved beam profiles were obtained when increasing

the optical path length of the laser to the sample ca. 4 feet. The laser was focused

using a 5 inch focal length lens (Umicore Inc.), resulting in a beam diameter of ca.

200 µm diameter. As during the reflow process alignment of the Gaussian laser beam

with the silica disk is critical, a 45-degree ZeSn alignment beam-splitter with a 633

nm reflective coating was used. The beam-splitter was placed directly after the ZeSn

lens and a ×20 objective with a focal length of 6 cm was used to image the laser spot.

The chips with the silica disks were mounted vertically on a sample holder mounted

on a stage, to allow relative positioning with respect to the image and laser spot. The

schematic of the setup is shown in C.1.
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Figure C.1: Microcavity fabrication steps: 1. Cleaving 2. Photolithography 3. Wet-
etching using hydrofluoric acid 4. Dry etching using XeF2.

Figure C.2: Schematic of the CO2−laser selective reflow process to create toroidally
shaped microcavities.



177

C.1 Properties of Silica and Silicon at CO2 laser

wavelength

Silicon, due to its band-gap of 1.12 eV, does not absorb the energetically lower photons

from the CO2 laser (10.6 µm wavelength which corresponds to 0.12 eV) through direct

optical excitation of valence band electrons. Heating and corresponding absorption

is primarily caused by free-carrier-absorption (FCA) of thermally excited electrons

in the conduction band. At room temperature silicon is therefore nearly transparent

to CO2 laser light. At higher temperature the silicon absorption increases through

thermally excited carriers, which in turn increase the absorption due to free-carriers

excitation. This positive feedback of the heating is referred to as thermal runaway

heating. For the laser intensities in this work, thermal run-away heating of silicon

was not observed, as the laser intensities were below 100 MW/cm2.

Silica, on the contrary does strongly absorb CO2 laser light due to the presence of

resonant vibrational levels near 10.6 µm . Strong absorption occurs due to excitation

of the transverse optical and longitudinal optical phonon mode of the O−Si−O bond

which is located at 1090 cm−1 and 1200 cm−1 respectively. The room temperature

absorption coefficient is 32 inverse micron. For higher temperature the silica absorp-

tion increases to a good degree linearly due to thermal run-away. The temperature

dependent silica extinction coefficient is given approximately by the expression[114]:

k00 = a · T + b where a = 1.8 · 10−2 and b = 10 · 10−5, and is related to the absorption

coefficient by: α = 4πk00

λ
= (i.e. the e−1 penetration depth). The expression is valid in

the temperature range of 25-1800 ◦C. The optical and thermal properties are given

in the table C.1. The strong increase in temperature during the illumination process

can also lead to temperature levels, which are sufficient to induce evaporation of the

silica from the surface, This effect has been observed during microsphere fabrication

and has been discussed in chapter 5 in the context of modal coupling.

Due to this strong temperature dependence of the silica optical extinction coeffi-

cient, as well as the thermal isolation of the undercut SiO2 disk, irradiation of silica

disks on a silicon pillar, will cause melting of the silica disk along the periphery. In
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Properties Silica (Thermal Oxide) Silicon

Melting Point 1710 ◦C 1414 ◦C

Boiling Point 2590 ◦C 3173 ◦C

Thermal Conductivity 150 W
mK

1.3 W
mK

Table C.1: The optical and thermal properties of silica and silicon.

addition to having a far weaker optical absorption at 10.6 microns, silicon is 100 times

more thermally conductive than silica[115][114]. The silicon pillar therefore remains

significantly cooler and physically unaffected throughout the silica reflow process,

serving as a heat sink to the selectively absorbed optical power in the silica layer.

Due to the melting of the periphery and the action of surface tension, the disk was

observed to shrink and more significantly form a toroidally shaped cavity boundary, in

width exceeding that of the initial silica disk. As the disk diameter shrinks, the effec-

tive cross-section available to absorb laser power decreases and shrinkage is observed

to terminate. Beyond this point, continued laser treatment at the same intensity re-

sults in no observable change of the structure. The process is therefore self-quenching

with the final diameter of the molten disk rim controlled by lithography and chemi-

cal etch steps. It should be noted that it is possible to interrupt the reflow prior to

quenching thereby producing a toroid with a diameter intermediate to the initial disk

diameter and terminal diameter. The irradiation parameters (amplitude, pulse shape

and duration), were controlled using a function generator driving the CO2 laser, and

pulse durations were in the range of typically several tens of milliseconds. Compar-

ison of the final toroidal cavity volume to the initial preforms shows, that for high

intensity illumination a significant fraction of the silica is lost during the selective

reflow, due to evaporation which has been mentioned in Chapter 4.

Figure C.3 shows a scanning electron micrograph of a reflown disk structure. The

imaging reveal the high degree of symmetry of the structure. The cross-sectional area

of the cavity is circular and the resulting cavity geometry therefore a torus, which
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can be characterized by two parameters:

Minor diameter : d

Principal diameter : D

As silica is consumed to form the toroidal cross sectional area, the minor diameter is

larger or equal to the thickness of the silica microdisk prior to reflow. Reduction of

the toroidal cross-sectional area can therefore be achieved by using thinner thermal

oxide layers in the disk processing as well as by reducing the amount of undercut and

limiting the amount of silica undergoing the liquid state. However, the use of thinner

oxides leads to shape deformed disk microcavities, due to relaxation of the compressive

strain inherent to thermally oxidized silicon wafers. This leads to a silica disk which

exhibits wave-like cavity boundaries, which can transfer into shape deformed toroids

during the reflow process. In addition the decreased silica film thickness requires more

optical power to induce melting. For the CO2 laser and focusing optics used in this

work, the minimum oxide thickness that could be molten was 500 nm.

In some cases deviations from the toroidal geometry were observed, in which the

toroid cross-sectional area was elliptic, however in the large majority of the toroids

used in this work, the action of surface tension causes formation of a circular cross

sectional areas with low eccentricity.

C.2 Toroid dimensional control by preform design

Increased lithographic control over the toroid geometry can be achieved by suitable

design of the silica disk preform. Due to the thermal runaway effect, the thickness

of the preform is an important parameter determining the required flux of CO2 laser

illumination to initiate silica reflow and toroid formation. As noted above, for thin

oxide layers the required flux is strongly increased, and thus by using a variable

preform thickness profile, the temperature distribution of the silica in the laser illu-

mination process can be controlled. For example, an annular preform (i.e., thicker at
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Figure C.3: SEM of a microdisk structure fabricated from a 1 micron thermal oxide.
Due to the compressive strain induced by the thermal growth process used to oxidize
silicon, the formed microdisk cavities exhibit warping around the perimeter due to
strain relaxation. The effect increases as the pillar diameter is decreased and the oxide
thickness is reduced. The inset shows the cavity geometry parameters; principal toroid
diameter (D) and minor toroid diameter (d).
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Figure C.4: An annular preform can be used to control the dimensions of the toroid.
The left panel shows an annular preform prior to melting and the right panel shows
the preform after irradiation. The CO2 laser radiation selectively melts the thicker
annulus perimeter, leaving the thinner interior disk unaffected.

the perimeter) will be preferentially heated at the perimeter, where the oxide thick-

ness is large. We have found that not only does this mean that the melt initiates in

the annulus, but significantly it is prevented from proceeding into thinner interior.

The left panel of figure C.4 is an optical micrograph of an annular preform, featuring

a thick rim at the perimeter (2 µm), and a thinner, interior disk (1 µm). In order

to fabricate this structure two consecutive lithographic steps and buffered HF ox-

ide etching were performed. The right panel in figure C.4 shows the structure after

pulsed laser illumination. The outer annulus region preferentially melts and surface

tension causes it to form a toroid. The process is observed to self-quench when the

inner toroid diameter reaches the inner annulus diameter, and, significantly, prior to

reaching the silicon pillar, The advantage of this fabrication technique is that the

amount of material used to form the toroid as well as the inner diameter of the toroid

micro-cavity can be accurately controlled by lithography. In addition, the supporting

disk structure can be made very thin, which thereby increases the optical confinement

of the modes within the toroidal periphery.
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