Chapter 2

Optical modes of dielectric spheres
(Microsphere Resonators)

2.1 Introduction

The modes of a spherical dielectric particle were first investigated by Mie at the
beginning of the 19" century, in the context of light scattering from spherical parti-
cles. The scattering spectrum exhibited sharp features, which can be attributed to
resonant circulation of optical energy within the sphere. These optical modes are
confined by continuous total internal reflection at the dielectric air interface and are
often referred to as 'whispering-gallery modes’. This description originated from the
"problem of the whispering-gallery" which Lord Rayleigh published in 1912[35], de-
scribing the phenomenon of acoustical waves he had observed propagating around the
interior gallery of the Saint Paul’s Cathedral'. In the following sections, the resonant
characteristics of spherical dielectric particles (silica microspheres), such as their field
distribution, mode volume, radiation loss etc. are discussed and serve as an introduc-
tion to the terminology which is used throughout this thesis. Approximate formulas
for the free-spectral range and whispering-gallery loss for the experimentally relevant

wavelength and size range are given.

!Some author have also referred to these modes as "morphology dependent resonances" ( MDRs),
however this terminology has not been widely adopted.
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2.2 Optical modes of a dielectric sphere

The optical modes of a spherical dielectric particle can be calculated by solving
Helmholtz equation in spherical coordinates?, which has been treated by several au-
thors (in particular see reference [36] for a comprehensive overview). A significant sim-
plification occurs if the sphere consists of a homogeneous dielectric, and if the optical
modes reflect with grazing incidence upon the dielectric-air boundary, such that the
polarization can be assumed to be constant along the optical trajectories. Under this
assumption the optical modes can be solved by the scalar wave equation approxima-
tion and solutions fall into two classes, and are either electric in character (TM-case)
or magnetic in character (TE-case). The field components can be expressed in terms
of a single field components (E,, for the TM-case or H for the TE-case) and solutions
are found by solving the scalar wave equation for either the E4 or Hy alone by the
separation of variables approach, i.e. Egor Hyg = 1(¢,0,1) = 14(¢)1be(0)1,(r). TE
modes possess an electric field is parallel to the surface of the sphere (i.e. E, = E, =0,
ie. E H?),Whereas the TM modes possess a magnetic field which is parallel to the
surface of the sphere, ie. (ie. H, = H, = 0, 1eﬁH7) As a result, the electric
field distribution of TM modes is predominantly radial in character. The introduced
eigenfunctions for the radial, azimuthal and polar fields can be associated with the
radial mode number (n), the polar mode number (¢) and the azimuthal mode number

(m) as well as the polarization (p). The azimuthal eigenfunctions are given by?:

Yy = exp(+imao) (2.1)

1
V2T

By introducing the polar mode number ¢, the equation for ), is given by:

1 d d m2
cos() df (cos(e)@?/fa) - ng + 0L+ 1)y =0 (2.2)

2Helmholtz equation (V2 — k2n2) 1 = 0 in spherical coordinates is given by: T%aa—;(rw) +

1 9 (g ) 1 2? 21.2,/
rsin(0) or (sm(@)%w) + 72 sin?(0) aqbgw —nk w =0
3The separation of variables approach leads to the introduction of the azimuthal and angular
2 2
mode number, w—{p%q/;qb = const = —m? and ##(r@/},,) = const = L({ + 1).
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And finally the radial field ¢, has to obey:
d? 2d 9 5 Ll+1)
R (= PO 23)

r

The last two equations possess analytical solutions in terms of the generalized Legen-
dre Polynomials P (cosf) (which are commonly re-expressed as the spherical Har-
monics Y,!(0)) and the Bessel functions j,(kr). For each polar mode number ¢, the
allowed azimuthal mode numbers are in the range of —¢ < m < ¢, leading to a 20+ 1

degeneracy of the azimuthal modes.

2.3 Intensity distribution for a microsphere WGM

The field distribution and the resonance locations are determined by matching the

solutions interior and exterior to the sphere at the dielectric-air boundary[37], leading

to a characteristic equation. For a microsphere this requires matching the Bessel

function j;(ka) and the outgoing Hankel functions h;(ka) at the dielectric boundary.

The characteristic equation for this case is given by:
lka) _ Bi(ka)

= where = = [

jl(k‘a) hl(k‘a)

L for TM
% for TE} (24)

The latter equation depends only on the angular mode number ¢ (reflecting the
aforementioned 2¢ + 1 degeneracy, with respect to the azimuthal mode number m).
Figure 2.1 shows the solution to the radial equation for the first three radial mode
numbers. The radial mode number gives the number of field maxima. Outside
the microsphere the fields decays exponentially (where the decay length increases
as a function of the radial mode number n). The complete intensity profile of the
Es—component (i.e. TM polarization) in the (r,#) plane is given in figure 2.2 for
a microsphere of 25-pm-diameter, and was obtained by numerical modeling using a

finite element PDE-eigenmode solver package (see Appendix B). The field outside the

microsphere is evanescent and exhibits exponential decay which is slower for higher
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order radial mode numbers.

2.4 Asymptotic solutions

A very useful formula is given in reference [38] where the approximate resonance lo-
cations are derived by asymptotic expansion of the characteristics equation in powers

of ¢=1/3. The first 4 terms in the expansion are given by:

C
Wnmtp = R
a

e+%_§<e+§)”3+ —p +(€+%>1/3(t2)2+0(€+%>2/3]

m m 2 m2 —1 2 20m 2
(2.5)

In this equation m is the relative index of refraction m = n,/ns (n, index of the
medium outside the sphere), ¢ is the angular mode number, t° is the n'* zero of the
Airy function Ai(—t%) = 0 (and corresponds to the n'*-order Radial mode) and p is

a coefficient related to the polarization given by:
1 TE
P=l1y/m? ™
The expansion can be used to relate the polar mode number ¢ to the experimentally

measured free-spectral range of the cavity. The latter is defined as the distance

between successive azimuthal mode numbers and is given by the expression:

- c 1 03
AWFSR == |an€ - wnm2+1| Z>§1 n R E - tn 3 (26)
a

For the microspheres considered in this thesis, the resonance wavelength is located in
the 1550-nm telecommunication band and the corresponding free-spectral-range as a

function of mode number is shown in 2.3 for a fundamental WGM (n = 1,/ = m).
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Figure 2.1: Calculated intensity distribution |E¢,|2 in the radial direction for a mi-
crosphere with principal radius 10 gm and angular mode number ¢ = 51 (A ~ 1550
nm) for the first three radial mode numbers (n = 1,2,3). The evanescent field is
color coded in red, and exhibits a slower decay for higher order radial numbers (n).
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Figure 2.2: Numerical modeling of the intensity profile ( |E4|*) of the whispering-
gallery modes of a 25-pm—diameter microsphere, with polarization TM. In a perfect
sphere modes with different azimuthal, but same radial and polar mode number, are
frequency degenerate.




14

140
€120 o0zt
= -m=l |
N . ~ [ .
=
S
o 80
(M)
S
O 60
L
@
O 401
S
L
= 20|
5 10 15 20 25 30 35
Free-Spectral range ( AKFSR in nm)
Figure 2.3: Free-spectral range Alpsg = [Mume — Aumer1] for a fundamental mi-
crosphere mode (n = 1,m = [) with an polar mode number consistent with

a resonance in the 1550 nm band. The dependence is accurately described by
Rlpm] = a-1/AXpsr[nm] + b, where a = 264,b = —0.51.
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2.5 Eccentricity splitting

In an ideal sphere the optical modes possess a 2¢ + 1 degeneracy with respect to the
azimuthal mode number m. This can be understood by using classical ray optical
interpretation, in which the optical modes with same ¢, but different m, orbit around
the equatorial plane by reflecting alternatingly from the lower to the upper hemisphere
(and vice-versa), thereby taking different excursions away from the equator. The wave-

vector associated with this trajectory is:

(0+1
a1 =22

and the projection onto the equatorial plane (i.e. the propagation constant) is given
by:
m

The modes with low m take paths closer to the poles, and their longer path is com-
pensated by a reduced number of reflections at the dielectric-air interface to complete
one revolution. The so called fundamental modes, m = ¢ correspond to motion close
to the equatorial plane (with an angle 6 %) Due to the invariable presence of im-
perfection, a microsphere will deviate from exact spherical shape, which will remove
the degeneracy in path-length. If the shape deformation is weak, the new resonance
frequencies can be calculated using perturbation theory. This has been treated in
reference [39]. Elegant analytical results can be obtained, by treating a sphere with
shape imperfections as a ellipsoid with radius 7(6) = ro(1 4 §(3cos®# — 1)). Here the
eccentricity e is related to the polar r, and equatorial radii . by € = ”’R;Ore. This

leads to analytically exact formulas[39] in the case of an axially symmetric shape

AWece € ml|*
Steee _ 2 (1 - 3%) (2.7)

distortion®, as given by:

Wnmi 6

41t is interesting to note, that in the case of shape distortions which are not axially symmetric,
the mode number m is not a "good quantum number", i.e. it will leads to eigenstates which are a
linear superpositions of states with different m.
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Hence the splitting between modes with successive azimuthal mode number is given

by:
6|m|—|—1/2

> (2.8)

AWecc = |wnml - wn,m+l,l| N Wnoml *

2.6 Loss mechanisms in a microsphere

Due to the presence of loss mechanisms such as material absorption, scattering losses
or tunnel losses, the optical modes of a resonator are dissipative in character ("leaky")
and are referred to as "quasi-modes". Quasi-modes are distinct to their loss-less
counterparts (modes), and an excellent treatment on the properties of quasi-modes
can be found in chapter 1 of ref. [40]. The extent to which dissipation is present in
a resonant system is commonly expressed by the Quality-factor or Q-factor of the
mode, which is defined by the energy storage time normalized with respect to the

period of oscillation.

ES OT €
Qo =w pt 2 = wr (2.9)
diss

In this equation w is the resonance frequency, Fgiorcq is the energy contained in the
resonant system, and Py is the dissipated power. The above definition extends
beyond the domain of electromagnetism, and is also used to characterize mechanical
or electrical oscillators. Equivalently, in the case of optical microcavities the optical
Q-factor describes the photon lifetime of a mode. In the case of a microsphere, the
total Q-factor is comprised of several loss contributions: intrinsic material absorption,
scattering losses (both intrinsic, as well as inherent to the surface of the cavity),
surface absorption losses (e.g. due to the presence of adsorbed water), whispering-
gallery loss (or tunnel loss) and external coupling losses to a "useful" external mode

(such as a prism or a waveguide).

Qrot = Qi T Quont + Qi p + Qe + Qi (2.10)

In the following sections the limits imposed by the different mechanisms are briefly

reviewed and analyzed, for the case of silica microspheres involved in this work.



17

2.6.1 Intrinsic material loss

Silica has a large transparency window and exhibits low absorption losses. The
minimum loss occurs at 1.55 um, for which it has become the operating wavelength
for fiber-optic telecommunications. The loss at 1.55 pum is 0.2dB/km and is equally
comprised of absorption loss and loss due to Rayleigh scattering, which translates

into an absorption limited Q of:

2mn,

abs eff 10

= ——" ~292x10 2.11
0 )\ ( )

Absorption limited Q-factors have indeed be observed in large diameter (>200 pm)
microspheres[41]. However for most of the work presented in this thesis absorption
due to water, as well as surface scattering centers (as will be discussed in chapter 3)
have presented a natural limitation of Q, with the highest Q-factor measured being

“2 x 10? in the 1550 nm band.

2.6.2 Whispering gallery loss

The optical modes within a microsphere are confined by continuous total internal
reflection at the dielectric cavity-air interface. However, it is a general property that
total internal reflection at a curved interface is incomplete, and leads to a transmitted
wave, which for the case of a resonator causes loss of optical energy®. This loss
mechanism is called whispering-gallery loss, and is due to tunneling of the photons
out of their bound states. This tunneling process, can be understood by drawing an
analog to the quantum mechanical treatment of a 1-D particle in a central potential.
Similarly to the latter can be achieved by formally rewriting the radial equation as an

eigenvalue problem using the transformation u(r) = 1, /r and introducing the energy

®A good intuitive explanation of this effect has been given in reference [42] by considering the
phase velocities in a ray optical picture. For total internal reflection at a planar interface the
exponentially decaying field components have a constant phase velocity ug < ¢ in the evanescent
region. For a curved surface however, the phase velocity increase with increasing separation from
the boundary i.e u(r) = uORLO. At the point where the phase velocity exceeds the phase velocity in

air (u(r) > ¢) the evanescent field becomes propagating, leading to tunnel losses.
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term E = kZn(r)? :

0? 00+ 1
RS

—u
0%r r2

u—ky (1—n(r)?) u=kin(r)>v = Eu (2.12)

The effective potential U.s/(r) of the particle is thus identified as:

Uegstr) = L2 kea ey (2.13)

Figure 2.4 shows a plot of the effective potential (normalized to k2). The effective
potential is discontinuous at the cavity-air interface, giving rise to a potential well.
Furthermore the characteristic radii R, and R} are given by:

(+1)

R, = ——ko
n

}%b = ]%an

In the well region R, < r < R, discrete bound states exist which correspond to the
whispering-gallery modes. The region r < R, as well as Ry < r < R, corresponds
to a potential barrier, in which the optical modes are exponentially decaying (i.e.
evanescent). The region R;, > r supports a continuum of modes, which are unbound.
Due to the finite height and finite width of the potential barrier in the region Ry <
r < Ry, the optical modes can tunnel from their bound well states into the continuum,
giving rise to a tunnel-loss. The height and width of the potential barrier decreases
as a function of the polar mode number /, causing an increase in tunnel loss.

An approximate analytic formula for the whispering-gallery loss of a spherical, ho-
mogeneous dielectric resonator has first been derived by Weinstein [42], by expanding
the characteristic equation and allowing the wave-vector to be complex. The result of
this approach (extended here to include one more term in the perturbation expansion)

is only valid in the limit ¢ > 1.

1-2k

1 1
Qwevr==(0+=— 51&2 __m m—(1—2k)(m2 _ 1)1/262Tne (2‘14)
2 2 m2 —1
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Figure 2.4: The effective radial potential for a microsphere with (R = 10 um, = 24).
The optical modes are bound in the region R, < r < Ry, and evanescent in the
region Ry < r < R, and R, < r < Ry. The tunneling from the evanescent region
Ry < r < R, into the region where the optical modes are unbound (i.e. r > R,) leads
to a tunnel loss, which is also referred to as "whispering gallery loss" and causes a
finite Q (or line-width) of the modes.
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Figure 2.5: Radial intensity distribution (|E,|*) for a fundamental (n = 1, = m)
mode of a 5 -um—radius microsphere with angular mode number ¢ = 30, and TM
polarization. The solution was obtained by solving the transcendental equation nu-
merically for the imaginary part of w. The dotted line denotes the effective radial
potential, which is discontinuous at the dielectric cavity boundary.
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Where m is the relative index of refraction, t2 the Airy function zero and:

(€+%)- (cosh_l(n)— \/1—%) +ﬁét9”/1—# (2.15)
/ 1\ 1/3
Be = ( —52>

The expression reveals however the important result of the exponential dependence of

Tn(

Quality factor on polar mode number Qweaar o< €. Therefore the Q-factor exhibits
a strong dependence on sphere diameter. For small polar mode numbers ¢, the above
expression is not precise and higher accuracy can be obtained by solving the char-
acteristic equation numerically (iteratively). Figure 2.5 shows the "leaky" solution
to the radial equation for a low-Q mode (¢ = 30) obtained by numerically solving
eqgs. 2.10. The oscillatory behavior of the field outside the sphere gives rise to tunnel
loss. The Q-factor obtained by this method is plotted in figure 2.6 as a function of
polar mode number /¢, and in figure 2.7 as a function of microsphere radius for the
experimentally relevant wavelength range A ~ 1550 nm. As can be seen, a Q-value

of >10® is maintained in the case of R > 12um.

2.7 Mode volume of microspheres

In many applications, not only temporal confinement of light (i.e. the Q-factor), but
also the extend to which the light is spatially confined is an important performance
parameter. Several definitions of mode volume can be encountered in literature, and
are discussed in this section. The most common definition of mode volume, is related

to the definition of the energy density of the optical mode.

1 -~ 1 ~~
We(r) + wp(r) = §eEE+ZBB

It is defined as the equivalent volume, the mode occupies if the energy density was

distributed homogeneously throughout the mode volume, at the peak value:
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Figure 2.6: The whispering-gallery-loss limited Q for a fundamental microsphere mode
(i.,e. m =1,/ = m) as a function of the angular mode number (¢). The whispering
gallery loss was obtained by solving the characteristic equation numerically, and allow-
ing for complex eigenfrequencies w = wy + iAw/2. (The Q-factor is correspondingly

given by () = wo/Aw).



23

Mode numbers: /
A~ 1550nm .//

=1 -

10° |”= / i

m

Quality-factor

3 | | | | | | |

6 7 8 9 10 11 12 13 14
Radius (pm)

Figure 2.7: Whispering gallery loss versus microsphere radius for a polar mode number
¢ consistent with a resonance wavelength near 1550 nm, for a fundamental WGM.
The TE-modes have intrinsically higher Q-factor than the TM-modes. For R > 12
pwm Q>10® can be maintained.
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J (we(r) + wn(0) AV [ e(r)|E(r) 2
max(we(r) + wn(r))  max(e(r)|E(r)]?)

Viode = (2.16)

The integral is evaluated over all space, and also includes the regions where the field
is evanescent®. Two comments are in place. First, it will be shown in chapter 5 and
6, that this definition of mode volume, differs from the definition of mode volume
which will be encountered when studying nonlinear optical processes (which is called
throughout this thesis effective mode volume, to emphasize the distinction).
Secondarily, the precise definition of mode volume is strictly speaking not rig-
orous. It depends on the physical problem studied (preceding comment), and as
such different definitions can be found in literature. For instance, a more intuitive
definition (that has been adopted by some authors) is to approximate the mode
functions of a spherical WGM by an ellipse, and to evaluate the full-width-at-half-
max of the radial a and azimuthal b intensity distribution yielding the mode volume
Vinode = Roﬁ%b. Comparison of this definition to 2.16 shows that the mode volume
is ca. 1/3 lower in case the FWHM of the intensity distribution is evaluated. After
these words of caution, definition 2.16 is used for the calculations shown in graph
2.8. It should be noted however, that independent of the mode volume definition, the

numerical modeling allows comparison among different geometry parameters, and as

6Tt is noteworthy, that if one allows also for propagating components outside the dielectric cavity
(i.e. finite Q) the mode volume diverges. This divergence is due the normalization problem, en-
countered in open systems. Due to the presence of propagating fields outside a whispering-gallery
microcavity (whispering-gallery-loss, which occurs for any finite microcavity radius) the optical mode
volume depends on the quantization volume chosen. This is easily seen by considering the propa-
gating field component outside the microcavity. The electromagnetic field outside the resonator a

distance R from the origin is proportional to:
eik(Rfct)
E(R,t) x ————

(Rot) o

In case of finite Q (as is the case for any whispering-gallery resonator, even in the absence of
intrinsic losses due to the incomplete total internal reflection) the wave vector contains both a real
and negative imaginary part (i.e. k = k' — ik” k" > 0). Therefore, the field increases outside the
microcavity, as the exponential increase dominates over the slow 1/R dependence.
ek”(Rfct)

R

As a result, the mode volume, as defined in equation 2.16, diverges.

E(R,t) x
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Figure 2.8: Numerically calculated mode volume V,, (using definition 2.16) for a
microsphere as a function of radius. The polar mode number ¢ was adjusted such
that the resonance wavelength location was close to 1550 nm. Inset: Plot of the mode
area (A,,) vs. radius.
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such allows comparison of the three types of cavity geometries studied in this thesis,
i.e. microspheres (chapter 5,6), microtoroids (chapter 7,9,10) and microdisk cavities
(chapter 8). Furthermore, figure 2.8 reveals that the mode volume of a sphere follows
to a very good approximation a quadratic dependence on mode volume (V}, oc R'/12),
whereas the effective mode area (shown in the inset) exhibits a linear dependence of

sphere radius.
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Chapter 3

Tapered optical fiber coupling

3.1 Introduction

In this chapter the tapered-optical fiber coupling technique is described. Tapered
optical fibers were fabricated with waist diameters of typically less than 2 micron,
and low loss (typically less than 5%). The tapered optical fibers allowed efficient
and controlled excitation of ultra-high-() whispering gallery modes, with negligible
parasitic loss. This achievement is the prerequisite for the experiments which are

described in the subsequent thesis chapters.

3.2 Evanescent coupling to microspheres using ta-

pered optical fibers

Free-space excitation of microsphere whispering-gallery modes is extremely inefficient
due different phase velocities in air and silica. Efficient excitation can be achieved
using the evanescent coupling technique, which uses tunneling of evanescent field
components with phase matched wave-vectors to achieve efficient coupling. A well
known implementation of this method is using a total internally reflected beam within
a prism. Prism coupling is well known since the 1960’s and has been used to efficiently
excite surface plasmon-polariton. Prism coupling has also been used to excite WGM

of microspheres. Alternative methods have included eroded or side polished fibers
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(D-shaped). By the bringing evanescent field region in close proximity to a silica
microsphere, evanescent coupling can be achieved. A particularly suitable method
has been proposed by [43][44], in which a fiber is drawn into a thin filament, and
the evanescent field of the fiber is brought to overlap with the sphere. The particular
advantage of this method is threefold. First, tapered optical fibers can be made with
low-loss. Secondarily, tapered optical fibers allow highly efficient excitation of WGM,
with negligible parasitically induced losses (such as scattering). In addition they
allow not only excitation but also extraction of cavity fields through the same taper.
Thirdly, the tapered optical fibers have small transverse dimensions, making them
unique tools to excite WG-microcavities, with small dimensions (as will be shown in
chapter 7,8).

In this section, the tapered optical fiber method is used to controllably couple
light into a microsphere under phase matched condition, and allows to achieve high
ideality. In addition the tapered optical fibers are ideal coupling elements to chip-

based cavities, which will be investigated in chapter 7 of this thesis.

3.3 Fabrication of tapered-optical fibers

Tapered-optical fibers were fabricated by heating a SMF-28 optical fiber with a hydro-
gen torch. To control the flame a flow-controller (solenoid-valve with a flow meter)
was used. In order to facilitate the experiments, a portable taper holder was de-
signed, allowing taper-fabrication to be separate from the coupling setup. Figure 3.1
shows an image of the tapered fiber stage mounted onto the two motorized stages.
The motorized stage is connected to the blocks (with two fiber clamps, Thorlabs)
by two cylindrical posts. Crucial in the design of the stage is very low play in the
movement of the optical blocks, which was achieved in the design by two cylindrical
rails. Setscrews on the bottom of the blocks allowed fixing the posts, and a microm-
eter allowed post-tensioning of the fiber. During the pulling process, the motors we
actuated simultaneously (Oriel motorized stages) and the fiber (with the cladding

removed) was heated using a hydrogen torch. During fiber pulling the transmission
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was monitored continuously and the taper imaged with a camera from the side (using
a %20 objective). The approximate size of the taper could be inferred from measure-
ment of the transmission, total pulling distance or by monitoring the tapered fiber
using a microscope. Figure 3.2 shows a optical image tapered optical fiber. The fiber
waist is clearly visible as the region exhibiting optical interference patterns (where

the smallest diameter corresponds to the violet colored part on the left).

Figure 3.1: Tapered fiber pulling setup. The tapered optical fibers are held with fiber
clamps which are located on a sliding block, with two rails. The whole structure is
portable, and set-screws prevent movement of the blocks after pulling. The sliding
blocks are attached via two posts to two motors, pulling the fiber symmetrically apart.

A micrometer on the fiber pulling stage allows post-tensioning of the fiber.

In standard telecommunication fibers, light is confined by total internal reflection
at the weak index contrast between the germanium doped core and the silica cladding.
In a tapered optical fiber, the transverse extension of the fiber is reduced continuously,
such that the optical energy residing outside the taper increases. Figure 3.3 shows

the effective propagation constant of the fundamental taper mode as a function of
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Figure 3.2: Optical micrograph of the waist region of a tapered optical fiber. The
tapered fiber, which exhibits a diameter of less than 1 micron, appears colored due to
interference effects. The waist diameter is decreasing from the right to the left side
of the image.

taper waist diameter, and the optical energy residing outside the taper is shown in

the inset.

3.3.1 Optical properties of tapered optical fibers

The optical modes of a tapered optical fiber, can be approximated by the modes of
a dielectric cylinder. Particularly important in the context of taper fiber coupling is
the fraction of energy which is outside the tapered fiber. It is the evanescent part
of the field that can tunnel into a whispering-gallery mode cavity. Figure 3.3 shows
propagation constant 3, of the fundamental tapered fiber mode, as a function of
taper diameter in the experimentally relevant 1550-nm wavelength band. The results
were obtained by finite element modeling using a full vectorial model. The evanescent

taper field is given by the expression[37]:

K'(z8;) 2
aF =1 #ﬁj),x: \/ B — kong

Where K'and K° are the Hankel functions of the first and second kind. It is important
to note that by varying the taper thickness (which simply can be achieved by scanning

along the fiber-taper) the propagation constant can be varied in a continuous fashion.
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Figure 3.3: Main figure: Numerically calculated effective index n.y; of the fundamen-
tal HE; taper mode as a function of the taper diameter (in the simulation n = 1.44).
The fraction of electromagnetic energy that resides outside the dielectric taper region
is shown in the inset.
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Figure 3.4: Schematic of a waveguide-coupled resonator.

This allows phase matching of the whispering- gallery modes of the cavity.

3.3.2 Mathematical description of the waveguide-resonator

coupling junction

If the evanescent field of the fiber is brought in the proximity of a microcavity -
such as a microsphere, microdisk or microtoroid cavity-, the fundamental optical
mode will exhibit overlap of the whispering-gallery type modes of the microcavity.
If the coupling is weak, and the perturbation of resonator and waveguide mode is
small, the coupling can be described by the coupling-of-modes formalism[37] and
in the slowly varying amplitude approximation. In case the coupling is strong, the
behavior will ultimately differ and is then correctly described by a matrix model of
the coupling amplitudes[45]. The two models will yield identical results as long as the
slowly varying envelope approximation is valid, i.e. if the cavity field E.(t) satisfies
E.(t+T) — E.(t) ~ TLE,, where T is the cavity round trip time. The coupling
from a resonator to a waveguide is fundamentally described by three parameters, the
resonant frequency w,, the decay rate 1/7¢ of the mode due to internal cavity losses,
and the cavity decay rate 1/7., due to coupling to the waveguide mode.

Following the coupling of modes approach given by H. Haus, the optical mode
coupled to a whispering-gallery mode resonator can be described by the following

equation|[46]:
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d 1 1
LU =iwU — [ — 1
dtU iw,U (2To + 27690) U+ ks (3.1)

Here the resonator excitation is designated as U and the waveguide mode is designated
as s'.The intrinsic lifetime as denoted by 7 describes the total losses inherent to
the optical resonator, and the coupling into the waveguide is given by 7.,. In the
absence of coupling to a waveguide the optical energy £ = |U |2 in the resonator decay
exponentially with time,

d d

d R 1
- U” = U=U +U—U = = U (3.2)

And the quality factor is given by Qg = w7(. In the presence of a waveguide such as a
taper the optical energy is dissipated both within the cavity as well as due to coupling
to the waveguide. In case of a loss-less resonator, and in the presence of a waveguide,
the decay is entirely due to the waveguide coupling, designated by % U = —% U|?
(Ter external lifetime). The coupling coefficient x can related to 7., by time reversal

symmetry, yielding:

1

TEI

k] = (3-3)

Furthermore the transmission past the resonator is of interest. The transmission is
linear in the cavity and input fields, such that the coefficients of the relation ¢t =
c15+coU have to be found. The coefficient ¢, can be found by considering the cavity
mode in the absence of waveguide excitation (¢; = 0), yielding ¢; = \/g . To find
the relation for ¢y , power conservation can be used. i.e. the net power transfer into
the cavity, must be equal to the rate of growth of the cavity field added to the rate

of intrinsic dissipation.

2 2 d 2 1 2
P = 1t = Z 0P+ () 1U] (3.4)

IParticular attention has to be paid to the two different normalizations used in this formalism:
|s|> = normalized to Power

|U|? =normalized to Energy
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Furthermore from the equation of motion the power dissipated in the resonator is

given by:

d 2 1 1 2 ]- * *
dt\U| = (T + )|U| + - (Us*+U*s) (3.5)

exr 0 exr

Substituting U = /T, (t — ¢15) into the last two equations yields:

1 1
IsP =t = ——|UP+/—(Us* +U*s) =
1

= —— |\Tat—as +(t—cs)s + (t—cas)'s
pn

exr

Comparing the equations yields ¢; = —1 :

/1
t=—s+ T_emU (36)

The transmission past the resonator is correspondingly given by Aw = wg — w.

, 2
T <Tex—70—zAw> (3.7)

The transmission properties are commonly characterized by over-coupled, critically

coupled and under-coupled.

e Undercoupling: Under-coupling refers to the case where the waveguide cou-

pling is weak and the cavity decay rate 7;'

exceeds the cavity coupling rate
7.1, In this case the amplitude of the cavity leakage field U/ (27¢) is much
smaller the amplitude of the transmitted waveguide field. The cavity leakage

field exhibits a phase shift of 7 > ¢ > 0.

e Over-coupling: In the over-coupled regime the rate of cavity coupling exceeds
the cavity decay rate (Te_xl > T 1). The amplitude of the cavity decay field in
this case is larger than transmitted pump field, and reaches a value of twice the

waveguide amplitude in the case of strong over-coupling.
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e Critical coupling: Critical coupling occurs when the external lifetime is

o =To 1). In this case the trans-

matched to the intrinsic cavity decay rate (7”1
mission past the resonator vanishes, and complete power transfer of the optical
power carried by the wave to the cavity mode occurs. The transmission vanishes
due to the interference of the cavity leakage field and transmitted pump field,

which exhibit equal magnitude but a relative phase shift .

3.3.3 Cavity-buildup factor

At the critical coupling point the optical energy in the cavity reaches it’s maximum,
and the circulating power is given by the cavity-buildup factor, where AApgg is the

free-spectral range of the cavity:

_9 —2
(P) _ Ao 1 (L - ) E—— (1 ¥ Q“) (3.8)

Pz' >\2 Tex 27_0 27—6.27 - 7T2Rneff QO

This shows that within in microcavity, the circulating power is significantly enhanced,
and can be exploited to significantly reduce the threshold for nonlinear optical phe-

nomena, which is presented in this thesis.

3.3.4 Experimental observation of controlled evanescent taper-

fiber coupling to microsphere resonators

The different coupling regimes as discussed in the previous section could indeed be
observed, by accurately controlling the taper microsphere distance. Figure 3.5 shows a
microsphere coupled to a tapered-optical fiber. The coupling amplitude is determined
by the spatial overlap of the whispering gallery mode with the mode of the tapered
optical fiber. Efficient coupling is achieved when the propagation constant of the

taper is matched to the propagation constant of the whispering gallery mode?, and the

2The propagation constant of a whispering gallery mode is simply given by the relation f =
m/Ry. To evaluate the coupling from the tapered optical waveguide to the whispering gallery mode
resonator, the directional dependence of 3 has to be taken into account.
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Figure 3.5: Right panel: Microsphere coupled to a tapered optical fiber. Left panel:
Microsphere visible with fiber stem.

coupling strength has been theoretically analyzed in reference [37]. The propagation
constant of the fiber taper can be continuously varied by scanning the taper along
the waist diameter (compare figure 3.3).

The coupling properties analyzed in the last section, assumed the case of a single
mode waveguide, coupled to a mode of a resonator. However, the coupling will also
induce a non-resonant loss (e.g. due to scattering at the junction). In addition the
tapered fibers are not single-mode (unless the diameter < 1.2 pm) such that the
resonator can couple in principle into the fundamental and higher order taper modes.
These effects will become pronounced in the over-coupled regime, causing a deviation
from complete recovery of the transmission. Observing the postulated transmission
behavior will therefore require that the coupling into the fundamental taper mode
dominates over higher order mode coupling, while the coupling amplitude x remains
small. In addition, the off-resonant loss (e.g. junction induced scattering) has to be
small, which was indeed observed (compare chapter 3). The extent to which the
system behaves as predicted is given by the "Ideality” which has been extensively

investigated in reference 26/, and will not be treated in the author’s thesis. ®. Tt is

3A detailed analysis of the effect of higher order mode coupling has been carried out by Sean
Spillane and is contained in reference [26] and his thesis.
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merely noted that a more complete description of the junction includes the effect of

coupling to both higher order taper and radiation modes. The extent to which higher

order mode coupling is present can be expressed in terms of the junction-ideality I.
L w,U +—+ Z
= iwoU— [ —+—
dt 2T 0 27’ O

) Tl s (3.9)
1/7°

I = gmisr (3.10)

1>1

61'

The experimentally predicted coupling regimes under ideal assumption as in eqgs. 3.7
could indeed routinely be observed. As the evanescent taper and microsphere fields
decay exponentially, the external coupling x is expected to vary exponentially i.e.
.t = 7.1(0) exp(—z/v), where 7_,}(0) is the external coupling rate with the taper
in contact with the resonator. The characteristic coupling length is determined by
the overlap of sphere and taper mode, and therefore determined by the taper and
microsphere evanescent field decay. The evanescent field decay of a sphere is given

by[37]:

((+1
as:\/ﬁf—kong and f; = (Ro )

whereas in the case of a silica tapered optical fiber[37]:

K'(xBy) /
ap =1z Wﬁi),x: ﬁfc—kon%

The overlap of the two fields determines the coupling coefficient, which therefore
varies approximately as v =~ (ay + a;) .The fiber propagation constant is found by
matching the boundary condition for the fiber fields. In figure 3.3 the propagation
constant for a fundamental fiber mode 8¢ = nyy - ko, has been numerically calculated
for the fundamental taper mode H Ej; using a finite element solver.

Figure 3.11 shows the observation of different coupling regimes by variation of
the taper-microsphere coupling gap. In this measurement the transmission through

the taper was normalized with respect to the power transmitted in the far under-
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Figure 3.6: Photograph of the fiber-taper coupling setup. The fiber-taper stage is
attached to a closed loop piezoelectric positioning system, which gives lateral motion
in two directions (with 20 nm resolution). Visible in the front is the positioning arm,
to which microspheres or planar cavities can be attached. The arm itself is attached
to the third axis of the piezo-electric stage.
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Figure 3.7: Coupling regimes for a tapered-optical-fiber resonator system. The exper-
iments show the recorder transmission on resonance versus the coupling gap distance
for two whispering-gallery resonators. The zero point corresponds to the taper being
in contact with the resonator. The transmission in this experiment is normalized with
respect to the taper removed from the resonator. The left panel shows the coupling
curve with high ideality, whereas the left curve exhibits low ideality, as witnessed by
the reduced transmission in the over-coupled regime, due to junction scattering.

coupled region. The different coupling regimes are clearly identified, and at the
critical coupling extinction is large than 99%. Upon decreasing the coupling gap
further, recovery of the transmitted signal is found as predicted by equation 3.7. In
the right panel of figure 3.11, recovery exceeds 99%, whereas for the panel in the left
the off-resonant loss has increased by 10%.

The taper coupling mechanism is in general mode selective, but as shown here
also allows to excite higher azimuthal (|m| < [) modes. Figure 3.8 shows a tapered
optical fiber coupled to a microsphere. The microsphere contained erbium (by using
ion implantation), which functioned as a probe for the intensity profile of the excited
whispering-gallery modes. As can be seen in the figure, the tapered optical fiber can

efficiently excite fundamental and higher order azimuthal modes. It is interesting to

note that the equatorial plane of the WGM is determined by the fiber stem, and
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Figure 3.8: Excitation of whispering-gallery modes in a microsphere using a tapered
optical fiber. The equatorial plane of the WGM is defined by the stem of the mi-
crosphere, and is angled with respect to the taper axis. The number field of maxima
in the polar direction is given by ¢ —m+ 1. The optical modes are made visible in this
experiment by the presence of erbium ions, implanted into the microsphere surface.
The green luminescence is originating from the 2Hiq 5 stark level of erbium, excited
via a combination of coorporative up-conversion and excited state absorption.
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Figure 3.9: Broadband transmission spectrum of a microsphere with radius of ca. 22
pum. The eccentricity splitting of the azimuthal modes is clearly visible, which is 0.2
nm. This corresponds to an eccentricity of € &~ 1% . The strongly coupled modes
are identified as fundamental radial modes (n = 1), and the weakly coupled modes
are identified as n = 2. Note that only ca. 20 azimuthal modes are excited with the
tapered optical fiber, of the total 2¢ + 1 eccentricity split modes (¢ ~ 130). The latter
is due to the mode selectivity and reduced phase matching for high m-values.
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is angled with respect to the taper fiber axis. This plane orientation corresponds
to smallest perturbation of the optical modes due to the stem. The excitation of
higher order azimuthal modes, split due to eccentricity, is also seen in the broadband
transmission spectrum as seen in figure 3.9. As evident, also higher order radial modes

can also be excited, based on the resonance locations inferred from equation 2.5.

3.4 Linewidth measurements and thermal effects

Since the optical Q-factor determines the threshold for nonlinear optical effects, meth-
ods to accurately quantify the Q are necessary. The optical quality factor of the
whispering-gallery modes was measured in this thesis both in the time and frequency

domain. For a resonator mode the energy decay is given by:

1

U(t) = U(0)el@0-2) — [(w) = U(0):- P

. (3.11)

27

In the latter, the linewidth of the resonance can be simply related to Q via Q = x=. In
the case of high-Q resonance, the transmission 7'(Aw) only re-produces the transfer
function |U(wy — w)|?, if the cavity field has reached steady state, which occurs for
times larger than the cavity storage time 7. The transfer function can therefore be
conveniently measured by scanning the laser through a resonance, provided the laser

is scanned with a speed [%2] that satisfies the relation:

nm AN 2me
—_— —10° = =—10° 3.12
W] << 10 = (3.12)

For a typical scan range of 60 GHz for the laser used in this work (New Focus external
cavity laser), and a Q-factor of 2 x 10® this limits the scan speed of the laser to
approximately 100 Hz. The resolution of the linewidth measurements is limited by
the coherence time of the pump laser, which limits the Q-factor measurement to
approximately 1.5 x 10%(short term linewidth of 300 kHz, long term 1 MHz).
However, due to the small volume occupied by the WGM mode, and poor thermal

conductivity of silica microspheres, strong thermal effects occur even at low pump
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power, which are due to the temperature dependent resonance locations:

d dn dR

The resonance shift is primarily due to the temperature dependence of the refractive
index g—;ﬂ = 1.28 x 107° K1, while the thermal expansion of the silica ar = 5.5 x 1077
induces a much smaller shift for the cavities considered in this work R ~ 20— 100um.
For the 1550 nm wavelength range this translates into a thermal tuning coefficient
of & = 2.5 GHz/K. The thermal effects have to be taken into account carefully
when measuring Q-factor. In particular heating of the cavity will lead to bistability
behavior with respect to the scanning direction of the laser beam (induced by cavity
heating when scanning the laser in the same direction as the wavelength shift). The
thermally induced wavelength shift also leads to the appearance of oscillations in the
transmission spectrum, upon scanning past a thermally broadened resonance. These
oscillations are due to interference of the pump laser, with the cavity leakage field
(that is frequency red-shifted due to cooling of the cavity). Therefore quality factor
measurements are only a reliable measure in the case of very weak excitation, where

the latter effects are not present.

3.5 Cavity ring-down measurements

The thermal broadening effects, as well as the transient effects associated with scan-
ning over a cavity resonance constitute a systematic error in the measurement of the
cavity Q-factor. In addition the linewidth measurement is coherence-limited to a Q-
value of approximately 1.5 x 10%. To overcome this limitation, and also the intrinsic
uncertainty in the linewidth measurement, a cavity ring-down measurement setup
was implemented. Cavity ring-down allows to directly record the photon lifetime in
time domain. In contrast to linewidth measurement, cavity ring-down is principally
insensitive to the thermal broadening and allows determination of the loaded Q-factor

even at high pump power. In addition, the laser linewidth is not a limitation of this
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Figure 3.10: Schematic of the cavity ring-down setup to measure photon lifetimes.

method.

Important for the measurement of the cavity lifetime, is to ensure a fast gating-off
of the pump laser, as well as timing the gating once the mode was fully charged at
the critical point. Indispensable for these measurements and their proper timing was
a 1GHz oscilloscope with external trigger capability (Tektronixs TDS 5104). The
experimental setup is shows in figure 3.10. The laser was gated off using a high-speed
LiNbO3 Mach Zehnder modulator (UTP), which was driven by an arbitrary function
generator (Agilent), which limited the gating time to approximately 8 ns. Ring-
down measurements at the critical coupling point were achieved by scanning the laser
simultaneously until the transmission vanished at the critical point. To ensure gating-
off at the critical point the reflected signal was used for the trigger, and the trigger
level set to a value close to the peak reflection. A typical ring-down measurement
is shown in figure 3.11. To increase the temporal window for the trigger, ringdown
measurements were performed on the thermally broadened side of the resonance. For

times t < 0, the cavity mode has reached steady state and is following the laser due
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to thermal shifting of the wavelength. At time ¢ = 0, the trigger is activated, and the
laser gated off with a delay At of 8 ns. Therefore the critical decay signal is given by:

2 27—63} 2 2 —(t+At)( L )
sap®)f? = (22— |s(t = )7 20

To + Tex

Figure 3.11 shows a typical decay trace obtained using the described experimental
setup. The quality factor can be inferred by fitting the cavity decay field, as well by
measuring the recovery of the transmission. Note that at ¢t = 0 in the strongly over-
coupled regime the cavity decay signal reaches values up to 4 times the input signal.

The ringdown measurement have been carried out at the critical coupling point,
where the taper transmission vanishes. Operation of this 