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So long . . . and thanks for all the fish.

I suppose this is where I get to sum up my thoughts about the last six years, if that is even

possible. No amount of elegant prose or deserved obsequious gratitude can properly express how

much these years have meant to me, how much growth they have resulted in, nor how fondly I will

look back on them. Clearly, there are a great many people to thank for encouraging me, challenging

me and guiding me — but this is not the end of an intellectual journey, it is the beginning, and I

know that many of the people I am about to mention will be characters in this continuing story.

That fact truly fills me with optimism and excitement. In the same way that the rest of this thesis

is meant to be a record of my scientific thought process and progress, so this brief section is really

my own record of gratitude — to those whom I accidentally omit, please do not take any offense.

The only way I can think to do this rationally is in some kind of chronological order, and maybe

that will require some context that seems unnecessary.

First, my parents, Tim and Eva, and my sister Elisabeth, have always been in support of my

endeavors for higher education. Most importantly, they stoked the fire of curiosity from a very

young age. What other eight year old has his own laboratory and workshop, and is given free

reign to play with all manner of equipment, electronics and chemicals? Countless hours were spent

during my childhood ‘experimenting’, building, shocking and igniting (I almost burnt the house

down twice), and learning about what makes things tick, usually quite literally, by taking apart

everything I could get my hands on. Those early years were the training that would give me the

adept hands and curious mind that have and will continue to fuel my passionate love of science. I

only hope that someday I can provide the same environment.

I left high school thinking I was a hot shot, and I suppose by relative comparison I was, but

during that first year of college, if I learned one thing, it is that I had (and have) a lot to learn.

That time was no less important in my development as a scientist, and there are a few people

I have to thank for guiding me during those years, and sharing in tribulations and triumphs of

what now seems like a very short era. First, I want to thank Joe Schreier, not only for being an

excellent friend and late night study / problem set partner, but also for teaching me a lot about

what it means to form a good argument. I think our healthy competitive natures, mutually pushed

each other to be the best physicists we could be. I also want to thank Stefan Delvoye broadening

my musical horizons, and accompanying me on many a wacky adventure. I also had two great,

unofficial academic advisors during that time. Peter Persans, in addition to teaching me a hell of

a lot about physics, was a great friend and mentor. The many hours spent in his office chatting

about physics, politics and life are amongst my best times in college. Likewise, Peter Kramer was

a great teacher and mentor. Much of my mathematical prowess (dare I use that word) is due to his

extraordinarily high standards of rigor and careful thinking, and the great care he took in seeing

that I pushed myself to do my best. Lastly, I want to thank Alejandro Sela, who encouraged me
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to study abroad and helped open my eyes to the value of understanding another culture. Rarely

have I seen a professor with such calm, yet complete care for the well-roundedness of his students.

During my sophomore year, I heard about an undergraduate program that let students perform

research at any one of NASA’s national laboratories, and with gusto I applied for a fellowship at

JPL in Pasadena, CA. That summer, I worked for Jeff Snyder in the thermoelectrics division at

JPL. Words cannot express how awesome that first summer (2001) was, and how important a role it

played in my future trajectory. There I was, a green, twenty-year-old kid, watching the Mars Rovers

practice in rough terrain next to my building and eating at the same cafeteria where engineers and

scientists mapped the exploration of the cosmos. Jeff was everything a budding scientist could ask

for in a mentor: jovial, intelligent, curious, accepting of my lack of experience and knowledge, and

always willing to teach. We also shared a mutual love of tinkering, and I spent many hours at his

house helping him fix his scooter and lawn equipment. I think it was in his office in Building 272,

scrawling out ideas and equations, that I learned how to properly use a piece of chalk. Additionally,

Jeff and his wife Sossina Haile (a professor at Caltech), provided me with a family on the west coast

— I even lived next door one summer in their neighbor’s pool house. I came back to work with

Jeff the following two summers and into my first year of graduate school, eventually culminating

in my first two scientific publications.

Moving on, I remember that in my senior year of college, I had just finished mid-term exams

and driven with friends down to Mardi Gras for a week of debaucherous fun. I was a few drinks into

my first evening in New Orleans when I got a call from some guy named Rob Phillips at Caltech,

informing me that I had been accepted! I quickly tried to pull myself together and hold a cogent

conversation, needless to say, elated. After that call, the celebratory efforts were redoubled. While

I had other acceptances, as it turns out, the choice to come to Caltech was easy. I arrived that fall,

and was greeted by not only a demanding class schedule, but a great group of new graduate students

with whom I developed a strong and lasting bond. Over the last six years we have shared many

experiences, and all of them have been great friends, adventure mates, and taught me a thing or

two about physics and life; among those good friends are: Deepak Kumar, Raviv Perahia, Vikram

Deshpande, Waheb Bishara, Jen Dionne, Erin Koos and Mike Meyer. There are also a number of

other friends who have been equally as supportive and instrumental in making my time at Caltech

the personal success it was; together we grew as scientists and people, and their company has

meant so much to me, in particular: Tristan Smith, Jenny Roizen, Hernan Garcia, Eric Peterson,

and Anna Folinsky. In addition to these good friends, there have been two close companions who

have shared in my daily life, listened to my rants, I to theirs, and who have been close confidants

and provided immeasurable support: Jenn Stockdill and Amanda Dunn.

After a somewhat tumultuous first year, with my tail between my legs, Rob accepted me into

his group and I quickly devoted myself to the task of figuring out what this field of ‘biophysics’ was

all about. At the time, I was admittedly stigmatized against it, and I’ll never forget that first year

trying to figure out all the jargon of a new field: what on earth does ‘assay’ and ’aliquot’, ‘homolog’
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and ‘phenotype’, and the alphabet soup of gene and protein names mean? Slowly but surely, I

pieced things together. Throughout that time and the years to come, a number of fellow graduate

students and post-docs were immensely helpful with experiments, in brainstorming, and often, even

without realizing it, mentoring; among them special thanks goes to: Corinne Ladous, Paul Grayson,

Dave Wu1, Paul “Off-Color” Wiggins, Stephanie “You’re so much like my brother” Johnson, Heun

Jin “Master of Understatement” Lee, and the ever conscientious Maja Bialecka. Throughout my

graduate career, a number of people have been immensely helpful in getting experiments to work,

troubleshooting, and generating and vetting ideas, namely: Chris Gandhi2, Fan Yang, Olaf Ander-

sen, Sergei Sukharev, Sarah Keller, Rod MacKinnon, Daniel Schmidt,and Evan Evans. Finally, I

have had the honor of working with excellent collaborators on nearly all of the projects discussed

in this thesis. They have provided expert advice and guidance, with special thanks going to: Doug

Rees3, Bill Klug, Pierre Sens, Dan Reeves, Liz Haswell, Jennifer Lippincott-Schwartz and Jané

Kondev.

I spent the summer of 2006 (part of 2007) at the Marine Biological Laboratory in Woods Hole,

and I am not sure words describe how fantastic that summer was. I met so many great people

there, and was given the opportunity to intensely work on a number of really interesting projects,

which also entailed that I learn about microscopy, biochemistry, cell biology, and graffiti. Among

those I have to thank for making those summers truly epic are: Ron Vale and Tim Mitchison,

Dyche Mullins, Jen Gillette, Carolyn Ott, Eric Wieschaus, and all my classmates in the summer of

2006.

Outside of the Phillips Lab, I have many friends who have taught me a lot about the real

meaning of diligence, intellectual honesty, philosophy of science, and most importantly creativity,

while accompanying me on so many great adventures over the years: Mikie Olsen, Robert Sidney

Cox III, Alexander Hamilton Farley, Matthew MacDougall, Robb Walters, Andrea Choe, Dylan

Moon Morris, Peretz Partensky, Justin Bois, Hari Shroff, Doug Campbell, Ethan Garner, and

Anselm Levskaya. I look forward to many more fun and goofy years with these great thinkers and

shakers, and hopefully, together, we will change a few, less savory, aspects of the world around us.

My candidacy and thesis committees have also provided me with needed guidance and perspec-

tive, and to their credit they have accepted the daunting task of vetting the work in this thesis;

much thanks goes to: Michael Roukes4, Doug Rees, Michael Elowitz, Bill Klug5, Scott “You need

1As a precocious first year, Dave uttered one of the truest statements I have yet heard about graduate school.

One afternoon, during our first year, we were both toiling in the Steele lab, and he turned to me and said “Every

step is a mountain.”
2Special thanks goes to Chris for teaching me a lot about biochemistry and protein purification, at one point

proclaiming “You know ... this is easy, it’s just like cooking.”
3A big thanks goes to Doug for opening his lab and his expertise, and offering his sage advice throughout my

graduate career.
4I have always enjoyed my interactions with Michael, and I remember on one occasion during our very first

bootcamp, we were talking and he said something that solidified my desire to stay in academia, “What I love most

about being a professor is that every five years I get to reinvent myself.”
5A man of consummate good nature.
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it now.” Fraser, and Kaushik Bhattacharya.

During the fateful summer of 2005, Rob invited a post-doc to come visit our lab for a month to

conduct experiments on bacterial membranes. Occasionally in life, we meet someone, and within

the first five minutes you know that you are going to be good friends. This was the case with KC

Huang. He has been a great friend, thoughtful mentor, and a faithful ear. I have always valued

our interactions, whether they centered on our mutual love of off-color humor or deep musings in

physics, our dynamic has stimulated a wealth of good and devious ideas. I greet my upcoming

tenure in his research group with the excitement that surrounds any worthy intellectual endeavor,

and the calm of being in the company of a good friend.

Last, but certainly not least, I owe a huge debt of gratitude to my advisor Robert Brooks

Phillips. First and foremost, his integrity and earnestness are an example to us all. He has a fitting

quote for all occasions, and one of the strangest senses of humor I have yet encountered. I have

been, and remain, impressed at his ability to sniff out weak points in theoretical and experimental

work, and his tendency to give sound advice. His dedication to ensuring that the science that comes

out of his lab is cogent, relevant, thorough, and thoughtful is something I will strive to employ in my

future endeavors. While I think I was spread a bit thin in his lab, partially his fault and partially

my own, I immensely appreciate his willingness to let me follow my nose, make my own mistakes,

and pursue many of my own ideas. His knowledge of science history and its relevance to how we do

science today is inspiring, and as I have come to realize, crucially important for understanding our

motivations and our challenges as scientists. No advisor nor student is perfect, and I know that

many days we frustrated each other to the point of complete exasperation6, but I like to think that

as much as he mentored me, and he did, we also taught each other to a degree. Rob’s devotion

to collaboration and his tireless efforts to expose us to new frontiers of research through the many

great scientists, writers, and thinkers he has brought into our midst is one of the joys of my career

thus far. I leave his lab with an education that was about far more than ‘just’ the science itself,

and with a good friend and collaborator for many years to come.

Finally, in closing, I must say how privileged I feel. The ability to wake up each morning, albeit

tired, but excited to go to work is rare from all that I gather. Sure, I have worked very hard,

but really I would be nowhere were it not for the myriad opportunities with which I have been

presented, and the many people who have invested in me.

Curiosity and intellectual honesty are the fundamental human virtues — practice them daily,

fearlessly.

Tristan S. Ursell

May 2009

Pasadena, CA

6There are many choice quotes, but a recent one stands out; I asked Rob if I was the biggest pain in the ass student

he has ever had, to which he responded, “The list of pains in my ass is long, but I am also a good psychological

mirror so I have no doubt that it is better to give than receive, and I have given much pain.”
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Abstract

The Central Dogma forms the foundation of molecular biology couched in polymer language; all the

key players are there — DNA, RNA, protein — or so it would seem. Yet one class of biologically

synthesized molecules, crucial for life, is often over looked: lipids. These amphiphilic molecules

exhibit a number of strange properties, integral to the cells ability to separate self from non-self in

a chemically diverse environment. Lipids self-assemble into two-dimensional bi-layered fluids with

aspect ratios of a thousand to one or more, capable of self-healing and bending into extraordinarily

complex shapes. Within the cell, membranes allow for numerous chemically-distinct compartments,

essential for metabolism, protein assembly, genome management, and cell division. With literally

hundreds of different kinds of lipids and proteins interacting on a given membrane, we have much to

learn about how membranes regulate the flow of materials into and out of cells. Clearly, molecular

level detail is integral to our understanding of these systems, however, on the mesoscopic level

membranes exhibit certain mechanical effects that serve to organize lipids and proteins, the study

of which forms the bulk of this dissertation. We start by building an elastic model of bilayers,

where embedded proteins deform the surrounding membrane and incur a free energy cost. This

allows the mechanical attributes of the bilayer to influence the conformation of embedded proteins.

We explore this connection in the context of mechanosensation in bacteria, as well as developing

methods that allow bilayer mechanics to comment on the structure of classically voltage-gated

ion channels. In addition to affecting conformational preferences, these same deformations have a

finite length-scale that results in interactions between embedded proteins. Depending on the protein

shape, these interactions can be attractive or repulsive, may exert torques on proteins, provide for a

mechanism of shape-specific oligomerization, and importantly allow proteins to utilize the bilayer as

a generic communicator of conformational information. The effects of these elastic interactions are

discussed in the context of mean protein spacing, dimerization, conformational cooperativity, and

likely pathways to multi-mer protein assembly, with the bacterial mechanosensitive channel MscL

as a structural example. In subsequent chapters, bilayer elasticity is used to shed light on the large-

scale organization of lipids themselves. Biological membranes likely have multiple fluid, lipid phases,

where sequestration of saturated lipids and cholesterol form lipid domains. We found that formation

of domains above a certain critical size induces morphological transitions to a ‘dimpled’ phase

which turns on repulsive, elastic interactions that serve to spatially organize domains as well as

severely inhibit domain coalescence. This provides a mechanism for the maintenance of lipid lateral

heterogeneity on relatively short length-scales and long time scales. We further observed discrete

transitions to a ‘budded’ domain morphology and developed a set of interpretive energetic transition

rules between flat, dimpled and budded domains. We demonstrate that these morphologies and

their attendant transitions lead to a unique form of domain-size-dependent transport in membranes.

Further, we employ the mechanics of vesicles to model osmoregulation via channel proteins, and

in the setting of conserved surface area and volume to develop a theoretical and experimental

framework to study membrane adhesion in the context of the homophilic protein binding.
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Thesis Summary and Guide

“The most difficult subjects can be explained to the most slow-witted man if he has not formed any

idea of them already; but the simplest thing cannot be made clear to the most intelligent man if he

is firmly persuaded that he knows already, without a shadow of doubt, what is laid before him.”

– Leo Tolstoy

In large part, the pursuit of science is one of simplification — break a complex system down

to its most fundamental parts and attempt to understand the input-output relationship between

them. This reductionist scheme has been immensely successful throughout chemistry, physics, and

other scientific disciplines, forming the basis of our mechanistic theories that describe the world

around us. In 1839, Theodor Schwann enunciated a startling and broadly impactful statement that

would forever affect how we view the process of life:

“We have seen that all organisms are composed of essentially like parts, namely,

of cells; that these cells are formed and grow in accordance with essentially the same

laws; hence, that these processes must everywhere result from the operation of the same

forces.”

Such revelations came on the heels of massive efforts to classify, categorize, and take stock of

the myriad life forms found in incredibly diverse environments (e.g. Linnaeus’ Systema Naturae,

1770 and Species Plantarum, 1764). Given the shear number of different organisms deriving their

livelihood from diverse sources, it was likely hard to imagine that there were (non-supernatural)

unifying principles that linked every organism on the planet. Likewise, as Erwin Schroedinger

espoused in his book What is Life?, it was equally hard to imagine that the same basic, physical

principles governing the relatively simple orbits of planets and electrons were responsible for the

complexity inherent in life — surely new physical processes, forces and laws must be at work! Yet,

in one of the most beautiful and amazing tales of science, the resounding answer seems to be that

life is ‘just’ a bafflingly complex implementation of the same physical principles.

At the turn of the 20th century, we knew that to begin to understand life, we had to explain

a few key processes: How was hereditary information maintained and passed on? Was there a

material that held information in a form generic enough that all life could possess and manipulate

it? What molecular structures were so modular that they could be locally produced and employed

to perform all the metabolic and reproductive tasks of a cell? How could a cell separate self

from non-self to regulate its internal chemical environment while still interacting with the external

world? The discovery that DNA and RNA are the vehicles of genetic information and heredity;

the identification of twenty indispensable amino acids that build all of the cell’s machinery; and
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Figure 1: The Central Dogma of biology conceptually links the three major biological polymers:

DNA, RNA and poly-peptides, to form the basis of our molecular understanding of life. Given the

supremely important role of lipids, one might add the process of ‘Distinction’ to the list of funda-

mental biological mechanisms, whereby lipids are the molecules solely responsible for distinguishing

self from non-self, allowing a cell to create and control its internal chemical environment. Modified

from [1].

deciphering of the base-pair and codon alphabets that connect these three classes of molecules,

seemed to provide the answers; enough so that Francis Crick, in 1958, enunciated The Central

Dogma of biology, now held as a cornerstone in our understanding of life. Unfortunately, the

Central Dogma orphans the last of these questions; though there is clearly another set of modular,

biologically-synthesized molecules that are neither nucleic nor amino acids, whose exclusive role is

to define the chemical boundary of the cell and compartmentalize its internal components. Thus

one might rightly make an addition to the Central Dogma, as shown in Fig. 1.

Lipid molecules take on a number of unique and crucial roles in cellular physiology. The prop-

erties of a lipid bilayer, when compared to the macroscopic materials around which our intuitions

are built, are supremely strange - it is a high aspect-ratio, self-organized, self-healing, highly bend-

able material, that is selectively permeable to a host different small molecules, formed of multiple

fluid phases. The proteins embedded within it are responsible for regulating the flow of nutrients

and wastes, orchestrating the cytoskeleton for motility, and receiving and transmitting signals via

peptides, ions, sugars and other small molecules. This combination of properties allows membranes

to take on a complex shapes, that compartmentalize cellular volume into a number of chemically

distinct regions, ultimately separating self from non-self, and shown in Fig. 2. While the detailed,

molecular properties of the bilayer, and its interactions with these proteins, are clearly important

for forming a coherent mechanistic picture of these processes, the membrane can be viewed meso-

scopically as a mechanical medium with its own unifying framework. In this thesis, we examine

some of the generic mechanical interactions that enable the membrane to affect proteins within

it, likely help to spatially organize proteins and lipids, and allow proteins to mechanically com-

municate with one another in the membrane. Viewed as a continuous material, a lipid bilayer

has a bending and stretch stiffness, a well-defined thickness, and potentially multiple fluid phases

that render continuum mechanics an informative tool for analyzing how lipids interact with other
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lipids and proteins embedded in the bilayer. The topics explored in this thesis revolve around the

membrane as a mechanical entity with a diverse set of lipid–lipid and lipid–protein interactions. In

particular:

• Following previous work by others, we discuss the construction of a continuum mechanical

model of bilayers that reduces the atomistic complexity of proteins to a set of boundary con-

ditions at the protein–lipid interface, employed in the context of bacterial mechanosensation.

• We develop a set of experimental predictions that comment on the energetic interplay be-

tween ion channel structure and the mechanical properties of the bilayer, notably the scaling

of gating voltage as a function of lateral tension, in hopes of elucidating mechanisms of con-

formational changes in ion channels.

• We construct a theory of deformation-mediated interactions that allow for shape-specific re-

pulsive or attractive forces between embedded proteins, which simultaneously allow proximal

embedded proteins to conformationally couple, in the absence of direct physical contact.

• We discuss potential models of omsoregulation in bacteria and their physical implications,

and outline an experimental design for the ensemble measurement of the pressure-driven

flux of osmolytes and water through certain ‘non-ion’ channels, notably concentrating on the

bacterial channel MscL.

• We build a theory and report on experiments concerning the spatial organization, morpholo-

gies and qualitative kinetics of lipid domains in model, ternary membrane systems, with some

discussion of possible biological relevance.

• We develop theory and discuss initial results of experiments that utilize conserved volume

and surface area unilamellar vesicles to examine membrane adhesion mediated by homophilic

protein binding.

The rest of this summary is a chapter-by-chapter guide that discusses the key results and out-

lines the theoretical and experimental tools used in each project.

Chapter 1: Protein-Bilayer Mechanics

This chapter serves as the background motivation and mathematical foundation for much of the the-

sis. Whether it is an analysis of mechanosensation, membrane-mediated protein interactions, lipid

domain morphology or vesicle adhesion, these mechanical models incorporate energies calculated

from an elastic model of membrane stretching and bending. Exactly how to formulate that model

depends on the membrane geometry and degree of curvature. The chapter begins by discussing the

biological context of mechanosensation and the likely influential role that lipids play in membrane

protein function. Proteins that are embedded in the membrane impose boundary conditions at
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Figure 2: Schematic of the basic membrane structures found in a eukaryotic neuron. The diagram

shows a number of membranous compartments that allow for chemically distinct regions in the cell,

and give the cell the ability to separate self from non-self. These extremely intricate shapes can only

be achieved with a material that self-heals and flows to relieve mechanical stress — two of the most

important properties of lipid bilayers. Membrane structures shown in the diagram are: the plasma

membrane, the rough and smooth endoplasmic reticulum, mitochondria, the Golgi apparatus, and

the nuclear envelope. This figure adapted from a publicly released image under CCL licensor.
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the protein-lipid interface, and can result in both midplane bending and thickness deformations.

Following commonly used techniques, the energy cost of these deformations can be written as a

functional of the deformation fields, and sections of this chapter derive those functionals as well as

their analytic, two dimensional solutions. These deformation energies depend on some combination

of the bilayer mechanical properties, like bending and stretch stiffness or bilayer thickness, all of

which can be measured experimentally. We make refinements to these models in regards to how

tension affects bilayer thickness deformations. We use the analytical results from this chapter to

examine the way that deformation energies scale with bilayer mechanical properties, to understand

which parameters are the strongest determinants of bilayer-protein interaction. Relevant to these

energies, we discuss how one generates protein boundary conditions, useful in the elastic theory,

from known atomistic structures, akin to Fig. 3. These results are put into context by examin-

ing recent experimental work in which channel gating properties were examined as lipid properties

were systematically varied, either by changing membrane thickness or altering membrane properties

through dopants.

The chapter finishes with an overview of our work on how mechanical attributes of the bilayer,

like lateral tension or thickness, could be used as a reporter for the structural rearrangements in

the gating of ion channels, in particular the potassium channel Kv1.2. While the structure of

many ion channels is known, those structures are of either the closed or open state, and in fact, no

ion channel has been definitively crystallized in both the open and closed state; hence the precise

conformational rearrangements upon gating are unknown. That said, if the conformational change

is accompanied by a change in the lipid-protein boundary conditions, a free energy cost is incurred

that is accompanied by a mechanical signature in the gating properties. These concepts are also

discussed in relation to the topic of membrane dopants that affect classically non-mechanosensitive

ion channel function.

Finally, we qualitatively discuss the level of crowding in real biological membranes with relevance

to the potential roles that crowding or explicit bilayer-mediated interactions might be playing in

membrane protein function.

Chapter 2: Bilayer-Mediated Protein Interactions

Building on the analysis of Chapter 1, this chapter explores the origin and consequences of bilayer-

mediated protein-protein interactions. In the same way that ionic solutions act as a medium of

interaction between two charged bodies, embedded proteins that alter bilayer thickness or bend the

bilayer midplane disturb the surrounding lipids with a characteristic decay length — usually on on

the order of a nanometer or tens of nanometers, respectively. In crowded biological membranes,

this means that proteins can ‘sense’ each other through the membrane. This sensing takes the

form of an energetic interaction, such that two membrane proteins in proximity, relative to the

elastic decay length, exert a number of different forces on each other. The simplest of these

forces seeks to spatially organize the proteins by either attraction or repulsion, as shown in Fig. 4.
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protein

Figure 3: A schematic showing the different ways that a conical protein can deform the surrounding

bilayer. An embedded protein of radius R can bend the bilayer midplane and/or change the bilayer

thickness. If these deformations are large enough, the free energy difference between the deformed

and undeformed state of the bilayer is comparable to energetic driving forces from tension or

membrane potential. Here the unperturbed bilayer thickness is l, the leaflet deformation field is

u(r), and the midplane deformation field is h(r).

The form of these potentials depends on the type of deformation and the shape of the proteins

that are interacting. If two conformations of a protein present different shapes to the membrane,

elastic interactions with other nearby proteins will shift the equilibrium probability of finding that

protein in any particular conformation. We use the mechanosensitive channel of large conductance

(MscL) as a case study to examine the implications of these bilayer mediated elastic interactions

on protein conformational statistics and clustering. The deformations around MscL cost energy

on the order of 10 kBT and extend ∼ 3 nm from the protein edge, as such elastic forces induce

cooperative gating, and we propose experiments to measure these effects. Additionally, since elastic

interactions couple to protein conformation, we find that conformational changes can severely alter

the average separation between proteins, effectively leading to a membrane-mediated dimerization

or oligomerization. We discuss the implications of elastic interactions on cooperative conformational

changes and the spatial organization of membrane proteins into functional groups. We examine the

implications of bilayer volume conservation and boundary conditions at the protein-lipid interface

in detail. In the final section of the chapter, we discuss different membrane crowding scenarios that

result in non-specific interactions between membrane proteins, to produce a crowding tension and

protein-induced depletion forces.

Chapter 3: Volumetric Flow in Protein Channels

Continuing the theme of using MscL as a model protein, this chapter lays the foundation for experi-



7

a
�

ra
ct

re
p

e
l

Thickness Deforma!on Midplane Bending

In
te

ra
c!

o
n

 E
n

e
rg

y

Center-to-Center Distance

st
e

ri
c 

re
p

u
ls

io
n

In
te

ra
c!

o
n

 E
n

e
rg

y
Center-to-Center Distance

st
e

ri
c 

re
p

u
ls

io
n

In
te

ra
c!

o
n

 E
n

e
rg

y

Center-to-Center Distance

st
e

ri
c 

re
p

u
ls

io
n

In
te

ra
c!

o
n

 E
n

e
rg

y

Center-to-Center Distance

st
e

ri
c 

re
p

u
ls

io
n

Figure 4: A graphical table showing the mostly attractive or mostly repulsive potentials resulting

from bilayer deformations. For proteins that deform membrane thickness, like attracts like, whereas

the opposite is true for proteins that deform the bilayer midplane. The thickness changing proteins

have the approximate, relative dimensions of MscL in its closed and open states, demonstrating

the qualitatively different interactions that arise from having two distinct conformations. Below a

certain center-to-center spacing steric repulsion of the protein cores dominates.
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ments that measure the volumetric flux of large-pore channels, as a function of pressure drop across

the membrane7, and uses models of volume change in vesicles to report on the aspects of the dose-

response curve that depend on mechanical interactions between lipids and proteins. Many channels

are clearly meant to pass electrical current in the form of ions, often in a highly selective manner,

where the pore only admits ions of a certain kind. In many physiological settings, transmembrane

potentials are the driving force that gate the channel, and when open, these same transmembrane

potentials drive ions through the channel pore in an Ohmic fashion. Given this scenario, elec-

trophysiology is a sensible tool for understanding the mechanism and function of voltage-gated

channels. However, for channels whose physiological driving force is lateral tension, generated by

pressure gradients across the membrane, it seems more sensible to query their flow properties, than

their electrical properties. These channels likely span a wide range of volumetric conductances; for

instance, aquaporins conduct water in single file, while aquaglyceroporins conduct larger uncharged

solutes, and a channel like MscL has a relatively large pore area, able to accommodate ∼ 40 water

molecules in cross-section. For a pore size only an order of magnitude larger than the discrete water

molecules passing through it, a central question is whether this behaves like a classic low Reynolds

number fluid, a granular flow, or has new flow characteristics? Additionally, we will discuss how

thermal fluctuations might play an important role in volumetric conductance.

We start the chapter by developing a physical model of osmotic shock that accounts for mem-

brane permeation, bilayer elasticity, and utilizes different models of channel flow through a switch-

able channel. We make estimates of the flow through the MscL pore in the laminar flow and diffusive

transport regimes, and discuss the relevance of granular flow at this scale. We discuss in detail

the reconstitution of MscL into giant unilamellar vesicles as a vehicle for studying the ensemble

flow characteristics of the channel, as well as lipid-dependent gating characteristics. The proposed

set of experiments use micropipette aspiration and video microscopy to track volume changes of

vesicles over time as a function of the pressure gradient, as shown in Fig. 5. We discuss a number

of experimental challenges and their proposed solutions, including the use of gain-of-function MscL

mutants to reduce the high tensions required to gate the channel, and an experimental calibration

for channel density.

Chapter 4: Organization and Morphology of Lipid Domains

This chapter is a first attempt to acknowledge membrane heterogeneity by examining a two phase

model membrane system, meant to mimic the formation of ‘lipid rafts’ in cellular membranes. This

chapter is one of the longest in the thesis, and as such has been laid out in a pedagogical fashion,

examining many aspects of the mechanical theory of domain morphology, experimental techniques,

and data processing.

Once lipid domains have formed and grown to a certain size, it becomes reasonable to discuss the

morphology and morphological transitions of these domains. We discuss how the competing forces

7This work began with a series of stimulating conversations with Evan Evans.
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Figure 5: General experimental design for MscL volumetric flux experiments. a) A schematic

showing how the aspirated shape of a large vesicle (orange), held by a pipette (gray), evolves over

time as water is driven through the membrane-embedded efflux channels (green) by the pressure

gradients p1 − p3 and p1 − p2. Over time the outer vesicle radius (Rv) shrinks, while the in-pipette

length (Lp) geometrically amplifies the change in volume due to channel efflux. Shown here are

the exact shapes for ∆V/∆t = −Vo/10, where Vo is the vesicle volume in the first frame. b) In

cases where the additional area from membrane stretch can be neglected, the outer vesicle radius

and in-pipette length can be written as a function of the fractional volume; these plots show this

in arbitrary units for the vesicle in (a).
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Figure 6: Morphologies and interaction of lipid domains. a) A two-color phase-separated vesicle

with conserved surface area and volume shows spatially ordered, dimpled lipid domains on its sur-

face. Scale bar 10 µm. b) Theoretical predictions for the shape of dimpled domains in dimensionless

coordinates with line tension (χ) and spontaneous curvature (υo) as indicated, and corresponding

epi-fluorescence view of a dimpled domain on the surface of a vesicle. c) Schematic of two domains

interacting elastically, and the corresponding epi-fluorescence view of dimpled domains interacting

on the surface of a vesicle. Scale bars in (b) and (c) are 3 µm.

of tension, line tension and bending stiffness yield dimpled and budded domains in an idealized flat

surface metric. The tension ensemble used in this theoretical analysis is discussed in the context

of our experimental system of conserved surface area and volume, giant unilamellar vesicles. The

chapter then moves into a detailed discussion of the experimental, three component system used

to visualize these domain morphologies. The mechanical buckling transition that yields dimpled

domains results in elastically mediated interactions between the domains that tend to spatially

organize them and significantly slow coalescence kinetics. We derive a 1D model, and discuss

other’s work on a 2D model, that describes pairwise interactions quantitatively, with representative

data shown in the chapter. Beyond this dilute limit, the radial and angular distributions of domains

that densely populate their parent vesicle exhibit properties that are a mix of the organizational

principles of solid and liquid phases. In certain cases, the domains on these vesicles also undergo

size-selective budding transitions, and we appeal to a simplified model of their morphology to

understand this phenomena, as well as the transitions between dimpled and budded domains.

The chapter finishes with experimental work showing that interacting domains exist in real

biological membranes under certain conditions. By inducing large scale membrane blebbing in

RAW macrophages, we show that membranes with a multitude of lipid and protein species exhibit

phase separation and domain organization akin to that observed in the model vesicle system.

Chapter 5: Membrane Adhesion by Homophilic Protein Binding

When trying to understand how cells stick together to form epithelia or connective nerve tissues,
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certain proteins play a crucial role in mediating close-contact adhesion between cells. A common

adhesion mechanism is to have a protein that is firmly rooted in the bilayer and simultaneously

has an extra-cellular (often repeated) domain that engages in homophilic binding. The strength of

this binding, its potential for cooperativity, and its relation to known disease phenotypes remains

unclear. This chapter develops a dual-pronged theory and reports initial results on membrane

adhesion, mediated by the membrane-anchored homophilic binding protein L1. The first theoretical

model applies to a passive substrate adhesion assay; giant unilamellar vesicles are doped at a

controlled level with special nickel-containing lipids onto which variants of L1 chelate. These

vesicles containing L1 settle onto a glass substrate with a known density of L1 already adhered

to the glass. With the vesicle volume and surface area constrained, and the membrane having a

known bending modulus, adhesion of the vesicle to the surface yields a predictable deformation of

the vesicle shape that, across many measurements, can be used as a reporter for both the adhesion

strength and level of binding cooperativity, as shown in Fig. 7. In a similar assay, these same

vesicles can additionally be doped with biotin-conjugated lipids. Beads coated with strepavidin

will bind to the membrane, and a laser tweezer can be used to apply force to the beads to deform

the adhered vesicle, with the force of deformation directly related to the easily measurable vesicle

geometric properties and the adhesion strength. The limitations of these assays, imposed by optical

resolution, force resolution, and material properties, are discussed.
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Figure 7: Shapes and intrinsic properties of substrate-adhered vesicles. a) Adhered vesicle shapes

for different values of reduced volume from 0.7 to 0.99; the green dots indicate boundaries between

the flat, toroidal, and spherical basis shapes in each deformed vesicle. The vesicle radius of curvature

is R1, the transition (toroidal) zone radius of curvature is R2, and the adhesion zone radius is R3.

b) Radii of curvature and angles (as indicated by colors) characterizing the vesicle shape as a

function of reduced volume, for the membrane parameters in the graph title. The upper dashed

line defines the vesicle radius at a reduced volume of 1.0; the lower dashed line is the sum of the

two angles, which always equals π. c) Membrane tension as a function of the reduced volume, with

the indicated stretch modulus. d) Outward pressure gradient across the membrane as a function

of reduced volume, using the bulk modulus for water. The dashed blue line is the approximation

from the Laplace-Young relation ∆p = 2τ/R1.
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Chapter 1

Lipid Bilayer Mechanics and Mechanosensation

“All models are wrong, some are useful.” – George Box

1.1 Introduction

Cells interact with each other and with their external environment. These interactions are enabled

by transmembrane proteins — machines that have evolved to allow cells to detect and respond to

changes in their environment. These proteins detect external cues, such as an increase in ligand

concentration or the presence of forces or voltage, and transiently alter the permeability of the cell

membrane allowing ions, water, or even larger molecules to cross, as well as triggering receptors for

signaling [2, 3]. The passage of these ions (or molecules) and the triggering of receptors then leads

to a series of downstream events within the cell, enabling a response to these environmental cues.

Mechanical forces and their corresponding deformations constitute one of the most important

classes of external cues. Mechanosensation is a widespread phenomenon in a host of different single-

celled and multicellular organisms [4, 5, 6, 7, 8, 9]. In bacteria, experimental evidence suggests that

mechanosensation arises to detect and regulate the response to changes in the osmotic environment

[10, 11, 12]. More generally, the issue of cell shape and its attendant deformation is important not

only in the context of osmotic stress and the management of physical stresses to which membranes

are subjected [13], but also arises in context of remodeling of the cell and organelle membranes

during cell division [14, 15].

In multicellular organisms, mechanosensation is important in a variety of ways. One intriguing

class of mechanosensors is linked to motility. For example, in nematodes like the much studied C.

elegans, mechanosensation permits the worm to decide which way to move and may have a role in

detecting body curvature, thus telling the worm when to change its wave-like shape [6]. Similarly,

flies have hair bristles that respond to touch [16], while the mechanosensitive lateral-line organelles

in zebrafish provide the means for detecting directional water movement in a way very similar to the

workings of our inner ear [6]. In each of these cases, genetics has led to the identification of a variety

of genes implicated in the ability of the organism to respond to some form of mechanical stimulus.

Parallel insights have been obtained in plants (Arabidopsis in particular), with the identification of

a collection of novel proteins that also appear to be mechanosensitive [17].

Mechanosensitive ion channels are a class of membrane proteins that have recently garnered
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significant interest. Genetic, biochemical and structural studies all conspire to make this a partic-

ularly opportune time to demand a more quantitative picture of the function of these channels. In

particular, there is a growing list of success stories in which the structures of channels associated

with mechanosensation have been found in both closed and open states [11, 18, 19, 20]. In addition,

functional studies that probe how gating depends upon membrane tension or external forces are

beginning to make it possible to dissect the various contributions to the energetics of channel gating

[21, 22, 23, 24].

As a result of these studies, a number of ideas have been proposed to explain the different ways

in which external force can couple to membrane-protein conformation. Two modes of action that

have been hypothesized for channels are: i) cases in which physical, polypeptide linkers pull on

some part of the protein resulting in gating, ii) cases in which tension in the surrounding bilayer

forces the channel to open. The aim of this chapter is to show how statistical mechanics and simple

models of bilayer elasticity can be used to glean insights into this second class of mechanosensors,

as well as play the role of a structural reporter.

The remainder of this chapter is built in four main sections. In the next section, we describe

how statistical mechanics can be used to analyze the probability that a two-state mechanosensitive

channel is open. This discussion will include an analysis of how the external load (i.e. the ten-

sion) can be included in the statistical mechanical treatment of these problems. The next section

considers the elastic deformations imposed on a bilayer by the presence of a transmembrane pro-

tein, and shows how these deformations result in a mechanosensitive channel acting as a bistable

switch (i.e. a protein with two stable conformations). In the subsequent section, we discuss exper-

imental considerations that will help form a tighter connection between theory and experimental

techniques, with specific reference to way in which bilayer mechanics might be used to better un-

derstand structural changes during channel gating. Finally, we examine the way multiple channels

in a membrane might interact through the intervening lipid bilayer and how these interactions can

alter the conformational statistics of individual channels.

1.2 Statistical Mechanics of Mechanosensitive Channels

To begin, we review the application of statistical mechanics to a simple two-state mechanosensitive

channel. This analysis will serve as the starting point for our subsequent, more detailed analysis

which explores how bilayer elasticity can contribute to the energetics of the closed and open states

of a channel.

1.2.1 Lipid Bilayer vs. Protein Internal Degrees of Freedom

One convenient scheme for characterizing the state of ion channels is to invoke the state variable

σ, which is defined by σ = 0 if the channel is closed and σ = 1 if the channel is open. Our

aim is to compute the open probability popen which, in terms of our state variable σ, can be
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written as 〈σ〉, where 〈· · · 〉 denotes an average. When 〈σ〉 ≈ 0, this means that the probability of

finding the channel open is low. Similarly, when 〈σ〉 ≈ 1, this means that it is almost certain that

we will find the channel open. To evaluate these probabilities we need to invoke the Boltzmann

distribution, which tells us that the probability of finding the system in a state with energy E(σ)

is p(σ) = e−βE(σ)/Z, where Z is the partition function defined by Z =
∑

σ e−βE(σ), β = 1/kBT , kB

is Boltzmann’s constant, and T ' 300K.

On the level of a single channel, we introduce εclosed and εopen for the energies of the closed

and open states, respectively. These energies contain contributions from deformations of the sur-

rounding lipid bilayer as well as internal protein energetics; however, they do not contain the

tension-dependent driving force which we will address separately. The state variables can be used

to write the channel energy (in the absence of tension) as

E(σ) = (1 − σ)εclosed + σεopen. (1.1)

With these energies in hand, we can assign weights to the different states, where the probability

that the channel is open is given by 〈σ〉 and can be computed as 〈σ〉 =
∑1

σ=0 σp(σ), where p(σ)

is the probability of finding the channel in state σ. To compute these probabilities, we invoke the

Boltzmann distribution, and evaluate the partition function given by

Z =

1∑

σ=0

e−βE(σ) = e−βεclosed + e−βεopen . (1.2)

As a result, we see that the open probability can be written as

〈σ〉 =
e−βεopen

e−βεclosed + e−βεopen
=

1

1 + eβ(εopen−εclosed)
. (1.3)

This expression is relatively sterile in the absence of some term that tunes the energies of the open

and closed states to reflect the impact of external driving forces. In fact, one of the most remarkable

features of ion channels is that the probability of being in different states can be tuned by external

factors such as ligand concentration, the application of a voltage, or application of tension in the

surrounding membrane. In general, this formalism can account for any of these driving forces, but

we will restrict our attention to the important case of mechanosensitive channels, where the key

driving forces are mechanical. In this case, gating occurs when the energy balance between the

open and closed states is altered by membrane tension.

To give the origin of membrane tension a physical meaning, we introduce the notion of a

“loading device,” which we define as the external agent acting on a lipid bilayer to alter its tension.

As depicted by hanging weights on the bilayer in Fig. 1.1, we can make a toy model of how changes

in bilayer geometry are coupled to the energy of this loading device. The point of introducing this

hypothetical situation is to enforce the idea that, in our statistical mechanical treatment of this

problem, the loading device is an important part of the overall free energy budget of the system.
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Figure 1.1: Energy of the loading device for membrane deformation. This figure compares the

unloaded and loaded membrane and shows how membrane deformation results in a lowering of

the potential energy of the loading device. In this hypothetical experiment, the tension (force per

unit edge length) in the membrane is given by τ = mg/∆l where ∆l is the distance between two

consecutive hooks, and g is the acceleration due to gravity.

As a result, when we write down the partition function for a problem involving a channel and

a deformable membrane, we have to account for the internal protein energetics, the deformation

energy of the lipid bilayer, and the energy associated with the loading device itself. In particular,

we note that an increase in the membrane area will lead to a lowering of the weights depicted in

Fig. 1.1 and a corresponding decrease in the energy of the loading device. Of course, the application

of tension in real membranes is not performed by hanging weights, but through techniques such as

micropipette aspiration [25, 26]. Nevertheless, the concept of hanging weights brings the importance

of the energy of the loading device into sharp focus.

For the case of tension-activated ion channels, the open probability, 〈σ〉, is dictated by a com-

petition between the energetic advantage associated with reduction in the energy of the loading

device and the energetic cost of the open state due to both the internal protein energetics and the

energetics of membrane deformation. Following up on the idea of Fig. 1.1, but now with special

reference to the case of a mechanosensitive ion channel, Fig. 1.2 shows how the opening of the

channel results in a reduction of the energy of the loading device.

The total area of the bilayer is constant (to within a few percent), and as a result, when the

channel opens and the radius gets larger the weights in our hypothetical loading device are lowered

by some amount, which lowers the potential energy. The greater the weights, the larger the change

in potential energy. The notion of weights is a simple representation of externally applied forces

on the membrane. If we imagine a finite membrane with fixed area as shown in Fig. 1.2, when the

channel opens, the outer radius will change as ∆Rout = (R/Rout)∆R, where R is the closed channel

radius, ∆R is the change in channel radius upon opening, Rout is the outer radius of the membrane

when the channel is closed, and ∆Rout is the increase in the outer radius of the membrane when
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Figure 1.2: Schematic of how channel opening results in a relaxation in the loading device. For

simplicity, we represent the loading device as a set of weights attached to the membrane far from

the channel. When the channel opens, these weights are lowered, and the potential energy of the

loading device is decreased.

the channel opens. We are interested in evaluating the change in potential energy of the loading

device (i.e. the dropping of the weights) as a result of channel opening. To do so, we compute the

work associated with the force F , which is most conveniently parameterized through a force per

unit length (the tension, τ) acting through the distance ∆Rout as shown in Fig. 1.2. This results in

∆Gtens = τ∆s
︸︷︷︸

force on arc

× R

Rout
∆R

︸ ︷︷ ︸

displacement of arc

× 2πRout

∆s
︸ ︷︷ ︸

number of arcs

. (1.4)

where ∆G represents a change in free energy. We have introduced the variable ∆s for the increment

of arc length such that τ = F/∆s. Given these definitions, we see that the change in the energy of

the loading device is given by

∆Gtens = −τ2πR∆R. (1.5)

In light of our insights into the energy of the loading device, we introduce the energy as a function

of the applied tension τ , which is given by

E(σ, τ) = (1− σ)εclosed + σεopen − στ∆A. (1.6)

The term −στ∆A favors the open state and reflects the fact that the energy of the loading device is

lowered in the open state. In fact, this term reveals that any increase in protein area is energetically

favored when membrane tension is present, which could imply hidden mechanosensitivity in other

classes of ion channels and receptors — a subject we will discuss later in Section 1.5.

To compute the open probability of the channel in the presence of applied tension, we need to

once again evaluate the partition function Z =
∑

σ e−βE(σ). Using the energy given in eqn. 1.6, we

find

Z = e−βεclosed + e−β(εopen−τ∆A). (1.7)
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STATE ENERGY WEIGHT PROBABILITY

Figure 1.3: States, weights and corresponding probabilities for a two-state mechanosensitive channel

under load.

This permits us to write down the open probability directly as

popen =
1

1 + eβ(εopen−εclosed−τ∆A)
. (1.8)

The corresponding states, weights, and probabilities for a channel under applied tension are shown

in Fig. 1.3. The open probability of a mechanosensitive channel is shown in Fig. 1.4 as an increasing

function of the applied tension.

To understand how a particular channel is going to behave under a driving force, we need to

know two things. First, we need to understand the channel’s intrinsic preference for each of its

two states, which is encoded by εclosed and εopen. Second, we need to understand how the external

driving force alters the relative energies of these different states. With these two quantitative

measurements in hand, statistical mechanics allows us to compute the behavior of the channel

under a range of driving forces. To make further progress, we need to examine the microscopic

origins of εclosed and εopen. Intriguing recent experiments suggest that these energies are driven in

large measure by membrane deformations.

1.3 Bilayer Free Energy and Channel Gating

The abstract formalism of the previous section leaves us poised to examine mechanosensation to

the extent that we can understand the physical origins of εclosed and εopen. The main idea is to show

how simple models of the elastic properties of lipid bilayers can be used to determine the bilayer’s

contribution to εclosed and εopen. One of the key clues that hints at the importance of membrane

deformation in dictating channel gating is the data shown in Fig. 1.5a. In particular, this plot

shows how the open probability depends upon the lipid carbon tail length. This data strongly
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Figure 1.4: Ion channel open probability as a function of applied tension. The plot shows popen = 〈σ〉
as a function of the applied tension τ . The parameters used in the plot for a model mechanosensitive

channel are εopen − εclosed = 10 kBT and ∆A = 10 nm2. The critical tension is 1.0 kBT/nm2, corre-

sponding to popen = 1/2 . For reference, the tension can be rewritten as 1 pN/nm ' 0.25 kBT/nm2.

suggests that the energetics of the surrounding membrane is an important part of the overall free

energy budget of channel gating (also see [27] and the informative review [28]).

The parameters εclosed and εopen can each depend on some combination of the energetics of

protein conformation, membrane deformation, and hydration energy. Our strategy is to use the

tools of continuum mechanics to calculate how the deformation of lipids surrounding a protein

and the applied tension work in concert to affect the channel’s preference for a particular state

[29, 30, 31, 32]. Unfortunately, relatively little is known about how the internal rearrangements

of the protein and the hydration energy of the channel pore contribute to the overall free energy

balance [33, 34]. This ignorance is in part due to a lack of general rules that tell us how internal

rearrangements translate into changes in protein energy. Further, the lack of crystal structures in

the open and closed states of many channel proteins means we cannot be sure where each residue

moves, which are exposed to the surrounding lipids and which are facing the hydrated internal pore.

It is also difficult for molecular dynamics to comment on the energies associated with the internal

movements of the protein [35, 36, 37, 38] because the all-atom energies of these simulations are

very large in comparison to the changes in free energy, and hence it is difficult to distill relatively

small free energy changes in the background of large energy fluctuations. To complicate the issue

further, it is also possible that the internal movements of the protein yield relatively small free

energy changes between the two states, but may provide various kinetic hurdles in the form of

energy barriers, which affect the transition rate from one state to another.

It is reasonable on the scale of a single membrane protein to ask whether a bilayer composed

of discrete lipid molecules can be approximated as a continuum material. We argue heuristically

that, given the relative diffusion coefficients of membrane proteins (D ∼ 0.1− 1µm2/s) [39, 40, 41]

and lipids (D ∼ 10µm2/s) [42], in the time it takes a transmembrane protein to diffuse one lipid

diameter, many lipids will have exchanged places near the protein, in a sense averaging out the
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Figure 1.5: Effects of bilayer thickness and small molecules on open channel probability. a) MscL

open probability as a function of pipette pressure in lipids with different tail lengths. The curves

are an empirical fit to patch-clamp data from [22]. The diagrams on the right show how different

tail lengths imply a different hydrophobic mismatch as a result of the boundary conditions at the

proteinlipid interface. PC16, PC18 and PC20 are phospholipid bilayers with acyl chain lengths of

16, 18 and 20 carbons, respectively. b) Membrane doping and membrane protein function. The

diagrams show hypothetical mechanisms whereby the insertion of amphiphilic molecules can alter

the membrane–protein interaction. For example, the asymmetrical insertion of lysolipids in the

membrane produces a torque on the protein. The introduction of toxins can alter the boundary

conditions between the protein and the surrounding lipids. Finally, small molecules can stiffen the

membrane. In principle, all these effects could alter the bilayer’s contribution to channel gating.
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discreteness of the lipid molecules. Additionally, the transition time for protein conformational

change (∼ 5 µs) [43] is slow compared to lipid diffusion. Hence, we argue the bilayer can be

approximated as a continuous material in equilibrium with well-defined elastic properties [44].

Further, we choose to formulate our analysis in the language of continuum mechanics, rather than

lateral pressure profiles [45].

Approximating the membrane as a continuum material [46, 29, 30, 31, 44, 47, 32], we will

concentrate our analysis on how the mechanical properties and deformations of lipids affect the

energy balance of the protein, and how tension can play the role of a driving force for gating the

channel. In particular, the mechanosensitive channel of large conductance (MscL) is one of the best

characterized mechanosensitive channels. Additionally, a combination of X-ray crystallography and

electron paramagnetic resonance studies have yielded insights into the structures of both the closed

and open states of MscL [11, 48, 19]. One of the outcomes of this structural analysis is the idea

that the structure can be roughly approximated as a cylinder, making it amenable to mechanical

modeling. MscL exemplifies many of the characteristics one might call “design principles” for a

mechanosensitive channel [47, 32], such as change in hydrophobic thickness, a change in radius,

and sensitivity to membrane curvature. In the next few sections, we will lay the foundation for a

continuum mechanical understanding of how lipid deformations and tension work together to give

a switchable channel.

1.3.1 The Case Study of MscL

In the prokaryotic setting, the physiological purpose of MscL is thought to be an emergency relief

valve under conditions of hypoosmotic shock [10, 11, 12], where the osmotic pressure difference

between the inside of a cell and the environment translates into increased membrane tension. The

channel responds by gating and non-selectively releasing osmolytes to the environment until the

internal and external pressures are equilibrated [21, 49]. This presents us with (at least) two key

questions. First, what gives MscL its ability to “sense” tension in the membrane? Second, what

role is the lipid bilayer playing in the gating transition?

We argue that the answers to these questions are found in the properties of a lipid bilayer and

the geometrical features of the channel as revealed in Table 1.1. In particular, the bilayer has

four key elastic properties that give it the ability to transduce tension and resist deformation by

a transmembrane protein. The most striking elastic feature is the in-plane fluidity of the bilayer,

which, in the absence of cytoskeletal interactions, results in equalization of tension throughout the

membrane. This means that any in-plane stress (i.e. tension) on the membrane is felt everywhere

equally. Hence, in the case of MscL, an increase in tension is applied uniformly to the outer edge

of the protein, essentially trying to “pull” the channel open. We argue it is this “pulling” which

constitutes the driving force for channel gating. However, this driving force is competing with the

energetic cost to gate the channel due to internal conformational changes within the protein and

deformations of the surrounding lipid.



22

hydrophilic

hydrophilic

hydrophobic

cytoplasm

periplasm
a) b)

protein

Figure 1.6: Continuum view of bilayer deformation and hydrophobic mismatch. a) A schematic

representation of how a conical protein with a hydrophobic region, shown in gray, can both locally

alter membrane thickness, characterized by the function u(r), and induce bilayer midplane curva-

ture, characterized by the function h(r). b) Space filled view of the closed-state structure of the

mechanosensitive channel of large conductance (MscL). Hydrophobic residues have been colored

blue and hydrophilic resides red, clearly showing the region of the protein that aligns itself with

the bilayer’s hydrophobic core. On the left, lipids are schematically shown extending their length

to match the hydrophobic thickness of the protein.

Three other properties give the membrane the ability to store energy elastically upon defor-

mation. First, each leaflet of the membrane resists changes in the angle between adjacent lipid

molecules, leading to bending stiffness of the membrane [46, 29, 30, 31, 44, 32]. Second, the mem-

brane has a preferred spacing of the lipid molecules in-plane and will resist any changes in this

spacing due to external tension [30, 26]. Third, the membrane has a well-defined equilibrium hy-

drophobic thickness, which, when given an embedded protein of a different hydrophobic thickness,

leads to energetically costly ‘hydrophobic mismatch’ [30, 31, 44, 47, 32]. These concepts are demon-

strated schematically for a protein that alters bilayer thickness and induces midplane curvature,

and more specifically the bilayer thickness deformations induced by the closed MscL channel, in

Fig. 1.6.

The competition between the driving force and the energetic cost to gate the channel hints at

a set of design principles that dictate how the channel behaves as a bistable switch. If we neglect

the molecular details of MscL, its conformational change can be characterized by a set of simple

changes in geometrical parameters. In particular, in our coarse-grained description we will think

of the gating transition as being accompanied by changes in height, radius and protein angle, all of

which couple to various modes of membrane deformation as shown in Fig. 1.7. The central question

becomes, is deformation of the lipids surrounding the protein a major player in gating energetics?

Indeed, experiments have already suggested that the gating characteristics are intimately linked to

the hydrophobic mismatch between the protein and bilayer as was shown in Fig. 1.5 [22, 27, 28].

It is the goal of the following sections to build up a theoretical framework for understanding the

various kinds of bilayer deformation around a transmembrane protein and to describe how these
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Parameter: Value: Source:

Closed height ∼ 3.8 nm [11]

Closed radius ∼ 2.5 nm [11]

Open height ∼ 2.5 nm [19]

Open radius ∼ 3.5 nm [19]

Measured ∆A∗ ∼ 7 − 20 nm2 [50, 21, 23]

Measured ∆G∗ ∼ 20 − 50 kBT [50, 21, 23]

Calculated ∆G∗ (at critical tension) ∼ 55 kBT this work

Critical Tension∗ ∼ 2.5 kBT/nm2 [23]

Lytic Tension∗ ∼ 3.5 kBT/nm2 [26]

Bending Modulus (κb) ∼ 20 kBT [51, 26]

Area Stretch Modulus (KA) ∼ 60 kBT/nm2 [26]

Leaflet Thickness (l) ∼ 1.75 nm [26]

Table 1.1: MscL geometrical and bilayer elastic parameters. (∗) These parameters depend on the

elastic properties of the bilayer, in particular the bilayer bending modulus (κb), the bilayer area

stretch modulus (KA), and the leaflet hydrophobic thickness (l).

deformations contribute to the overall free energy budget associated with the gating of MscL (and

probably other channels as well).

1.4 Bilayer Deformation, Free Energy and the Role of Tension

To investigate the contribution of membrane deformation to channel gating in mechanosensitive

channels, we put our ignorance of the internal protein energetics aside and focus on the response

of the membrane. The point of this analysis is to see how large the membrane contributions are

to the free energy of channel gating, and to examine how they compare to the measured values. A

mechanosensitive channel must resist the driving force due to tension to exhibit the properties of a

bistable switch. As we will demonstrate in this section, deformation of the surrounding lipids can

provide this resistance, and almost certainly does in the case of MscL, given our knowledge of the

open and closed structures and the body of experimental data describing the interactions between

lipids and MscL [21, 22, 52].

The deformations that a transmembrane protein induces can be most broadly split into two main

classes: those that deform the midplane of the bilayer, and those that deform the bilayer leaflet

thickness. If the deformation is not too severe, these two types of deformation are independent of one

another [32]. Figure 1.7 shows these two classes of deformation and the simple model idealizations

implied by elastic descriptions. The basic structure of the models we consider are those in which

the contributions of deformation to the overall free energy are obtained by computing local bending
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and thickness deformation, and then summing over the contributions from all the area elements

making up the bilayer.

1.4.1 Midplane Deformation

Deformation of the midplane of the bilayer involves a cost to bend the midplane from its flat,

equilibrium position [46, 44, 32]. We use the function h(r) to denote this change in height of the

bilayer midplane as a function of the position r as shown in Fig. 1.7. The energy cost associated

with bending the membrane away from its flat configuration can be written as

G
(mid)
bend =

κb

2

∫ (

∇2h(r)− cb
o

)2
d2r, (1.9)

where the bilayer bending modulus κb ' 20 kBT [51, 26] and cb
o is the bilayer spontaneous curvature.

Throughout this chapter the gradient operator is defined by ∇ = (∂/∂x, ∂/∂y), and the Laplacian

operator by ∇2 = ∂2/∂x2 + ∂2/∂y2, in Cartesian coordinates. In general, bilayers with symmetric

leaflet compositions have zero midplane spontaneous curvature, although we will discuss the origins

of spontaneous curvature and quote the relevant energetic contribution later in this chapter. Tension

also plays a role in the energetics of midplane deformation because any bend in the midplane results

in a reduction in the projected area of the membrane, which couples directly to an increase in the

energy of the loading device, resulting in a contribution to the free energy of the form

G
(mid)
ten =

τ

2

∫

(∇h(r))2d2r, (1.10)

where the tension, τ , ranges from zero up to the nominal membrane lytic tension of ∼ 3.5 kBT/nm2

[26]1. In general, the elastic parameters we use are representative of a typical phosphatidylcholine

(PC) lipid. Thus the total energy expended to deform the midplane over an area A is

G(mid) =

∫

A

(τ

2
(∇h(r))2 +

κb

2
(∇2h(r))2

)

d2r. (1.11)

The logic behind this kind of analysis is to find the free energy minimizing function h(r). One

way to carry out this minimization is by solving a partial differential equation that is generated by

formally minimizing the free energy, the details of which are discussed in the second half of chap. 4.

An alternative (and approximate) scheme to be explored later in this section is to make a guess

for the functional form of h(r) and to minimize with respect to some small set of parameters. This

approach is called a variational method and can be quite useful for developing intuition.

In the midplane-deforming model, the protein can dictate the slope of the membrane at the

protein-lipid interface which, in addition to the protein radius, will determine the deformation

energy. The length scale over which the membrane returns to its unperturbed state is given by

1The lytic tension of a bilayer is technically a stochastic quantity [53], however, we quote the lytic tension as the

tension at which bilayer lysis is a rapid, spontaneous process.
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λτ =
√

κb/τ and the energy for this type of deformation is

G(mid)(R, τ) = πκbθ
2 R

λτ
· K0(R/λτ )

K1(R/λτ )
, (1.12)

where R is the radius of the protein, θ is the slope of the membrane at the protein-lipid interface

as shown in Fig. 1.7, and Ki are modified Bessel functions of the second kind of order i [54, 32].

Given a protein with a particular radius and fixed boundary slope, an increase in tension will make

any deformation more costly. Hence, for midplane deformation, increased tension prefers a flatter

membrane and/or smaller protein radius. To get a feel for the energy scale of this deformation

several examples for different parameter values are summarized in Table 1.2.

With the contribution to the free energy difference arising from midplane deformation in hand,

we can now explore the competition between applied tension and the energetics of membrane

deformation in dictating channel gating. The key to understanding the interplay between tension

and deformation energetics lies in the scaling of these two effects with protein radius. The midplane

deformation energy scales roughly linearly with the radius of the protein and is unfavorable. On

the other hand, the term proportional to the applied tension scales as the square of the protein

radius and favors the open state. If we fix the membrane slope, then the energy of a midplane

deforming protein as a function of protein radius and tension is

G(R, τ) ' G(mid)(R, τ)− τπR2. (1.13)

As tension increases, the potential energy of the loading device eventually overcomes the deforma-

tion energy and a larger protein radius and/or more cylindrical protein shape is the preferred state.

Indeed, midplane deformations have been hypothesized to be an important functional mechanism

of MscL [54]. One of the uncertainties that accompanies a model of this type is the fact that

there is some function that connects the slope of the membrane at the protein-lipid interface (θ)

with the current radius of the channel, that is, there is some unknown function θ(R) [55]. Future

experiments will be necessary to further clarify this point. If we make the simplest approximation

that θ(R) = constant and look at two reasonable values of θ = 0.6 and θ = 0.8 [54], using eqn. 1.13

and the parameters in Table 1.1, we find the rather small critical tensions ∼ 0.004 kBT/nm2 and

∼ 0.06 kBT/nm2, respectively, compared to the known critical tension of MscL at ∼ 2.5 kBT/nm2

[23, 34]. Though we have shown that midplane deformations are capable of endowing a channel

protein with bistability, the scale of the critical tension and the free energy difference between con-

formations indicates that, at least for MscL, an additional kind of deformation might be important

as well.
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Figure 1.7: Elastic idealizations of deformations and protein-lipid boundary conditions. a) Atomic-

level structure [11] and an elastic idealization of the mechanosensitive channel of large conductance

(MscL) as a rigid cylinder of radius R with hydrophobic mismatch at the proteinlipid interface, uo,

and the bilayer thickness deformation described by the function u(r). For r � λk the membrane

thickness is at its equilibrium value. b) Atomic-level structure [18] and an elastic idealization of the

mechanosensitive channel of small conductance (MscS) as a protein that deforms the membrane

midplane by an angle θ at the protein lipid interface, causing a midplane height deformation

described by the function h(r). For r � λτ the bilayer midplane is flat. c) Membrane distortion

and corresponding free energy of deformation per unit area of membrane surrounding MscL. d)

Membrane distortion and corresponding free energy of deformation per unit area of membrane

surrounding MscS. In (c) and (d) the elastic response of the lipids is captured with springs, and

the color coding indicates the local strain energy density at different distances from the proteins.
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Fixed Parameters: Dynamic Parameter: Free Energy Difference:

R = 3 nm, θ = 0.5 τ = 0 → 2 kBT/nm2 10 kBT

R = 3 nm, τ = 2 kBT/nm2 θ = 0 → 0.5 10 kBT

R = 3 nm, τ = 2 kBT/nm2 θ = 0 → 0.8 26 kBT

θ = 0.5, τ = 2 kBT/nm2 R = 3 → 6 nm 14 kBT

θ = 0.8, τ = 2.5 kBT/nm2 R = 2.5 → 3.5 nm 13 kBT

Table 1.2: Typical free energies for midplane deformation. The first row indicates how tension

leads to an increase in deformation energy. The second and third rows show the sensitivity to the

boundary slope. The fourth row indicates how protein radius changes deformation energy. The

last row is a comparison with the known radius change and critical tension of MscL.

1.4.2 Thickness Deformations

We have examined how protein conformation can alter midplane bending of the surrounding lipid

bilayer and how this deformation energy penalizes the open state by virtue of its larger radius.

A second major class of deformations are those that bend and compress a single leaflet of the

membrane [29, 56, 31, 32] and can be thought of as imposing a local thickness on the lipid bilayer

that is different from its equilibrium value, as illustrated in Fig. 1.7. This kind of deformation relies

on the fact that most proteins are rigid in comparison to the flexibility of a lipid molecule. Hence,

when trying to match the hydrophobic region of the protein to the hydrophobic core of the bilayer,

it is the lipid that will undergo the vast majority of the deformation. For the calculations considered

here, we assume that leaflet deformations are symmetric: whatever happens to the top leaflet is

mirrored in the bottom leaflet. The deformation is measured as the deviation of the equilibrium

position of the lipid head-groups by the function u(r) at each position r on the membrane as was

introduced schematically in Fig. 1.7. The bending energy takes the form

G
(leaf)
bend =

κb

4

∫

(∇2u(r)− cl
o)

2d2r, (1.14)

where κb ' 20 kBT is the bending modulus of a bilayer [51, 26], equal to approximately twice

the bending modulus of a leaflet, and the spontaneous curvature of the leaflet, cl
o, characterizes

the leaflet’s natural tendency for a curved state at a hydrophobic-hydrophilic interface [30]. For

many bilayer forming lipids, such as phosphatidylcholines, the spontaneous curvature is small [57],

however, for many other lipids this is not the case, and it behooves us to briefly digress to discuss

the origin of monolayer spontaneous curvature.

Monolayer spontaneous curvature can be an important contribution to the free energy budget

of thickness deformations, explored in some detail in Section 2.6.3. The origin of monolayer spon-

taneous curvature is asymmetry in the rotationally averaged shape of individual lipid molecules

[57]. The volume explored by individual lipids can be thought of as a truncated cone, as shown in

Fig. 1.8. If this truncated cone uses more area in the head group region than in the tail region,
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monolayers of that lipid tend to curve towards the tail group. If the truncated cone uses more area

in the tail region, than in the head group region, the monolayer tends to curve towards the head

group. The desire of the monolayer to adopt these curved states has been explored through the use

of so-called hexagonal phases of lipid monolayers, a topic elegantly reviewed in [58]. Using these

ideas, we can construct a simple parameter that characterizes a lipid’s tendency to form monolayers

of a particular spontaneous curvature. Given the lipid length l and effective volume v, along with

the previously mentioned head group and acyl chain effective areas, atop and abott, respectively, we

define the shape parameter

S =
v

atopl
, (1.15)

where values greater than one generally correspond to lipids with negative monolayer spontaneous

curvature, and values less than one generally correspond to lipids with positive monolayer sponta-

neous curvature, as shown schematically in Fig. 1.8. Additionally, one can estimate the spontaneous

curvature itself from the shape factor by straightforward geometric analysis to find

cl
o =

2

l
(1− S). (1.16)

Some lipids, notably lyso-PC lipids, have such a high degree of spontaneous curvature that they

cannot form bilayers, and in fact tend to break up bilayers if introduced at a level above a certain

critical concentration. Having built intuition for the origins of monolayer spontaneous curvature,

let us return to calculating the thickness deformation energy.

In addition to bending, matching the hydrophobic regions of the protein and bilayer necessarily

means the bilayer will change in thickness, giving rise to a bilayer energy penalty of the form

G(leaf)
comp =

KA

2

∫ (
u(r)

l

)2

d2r, (1.17)

where l ' 1.75 nm is the leaflet hydrophobic thickness, and due to membrane volume conservation,

the bilayer area stretch modulus, KA ' 60 kBT/nm2, is associated with this deformation [26]. Yet

another contribution to the free energy of deformation in those cases where the membrane thickness

is perturbed is a local change in the area per lipid as the bilayer thickness varies around the protein.

Membrane volume conservation arises because the membrane is roughly forty times more resistant

to volume change than area change [60, 61]2. As a result, if a transmembrane protein locally thins

the bilayer, lipid area locally increases in a way that conserves volume. Similarly, if the protein

locally thickens the bilayer, the area per lipid will locally decrease. This implies that the area

change near the protein is proportional to the compression u(r), and the work done on the bilayer

is the integrated area change multiplied by tension

G
(leaf)
ten = τ

∫
u(r)

l
d2r, (1.18)

2This topic is discussed in detail in Section 2.6.4.



29

a) b) c)

Figure 1.8: Lipid shape as a determinant of monolayer spontaneous curvature. a) Lipid shape can

be approximated as a truncated cylinder with a certain length, upper and lower area, and effective

volume. These features can be used to estimate the shape factor of the lipid, which is related to the

monolayer spontaneous curvature. b) Approximate shapes and shape factors for some common lipid

types: PA is phosphatidic acid, PE is phosphatidylethanolamine, PC is phosphatidylcholine, PS is

phosphatidylserine, PI is phosphatidylinositol, and lyso-PC is a single chain phosphatidylcholine.

c) Diagram showing how lipids with shape factors greater than one and less than one, organize into

the hexagonal phase. Measurements of the lattice constant in the hexagonal phase have been used

to measure the spontaneous curvature of monolayers. Parts of this figure adapted from [59].

where τ is the externally applied bilayer tension. Hence, u less than zero corresponds to a reduction

in the energy of the loading device. All of these contributions can be added up to yield the free

energy cost associated with thickness variations of the two leaflets that can be written as

G(leaf) =

∫

A

(
KA

2

(u

l

)2
+

τu

l
+

κb

2

(
∇2u

)2
)

d2r. (1.19)

In elastic models of this type, the protein dictates the degree of hydrophobic height mismatch,

u(R) = uo, and the angle at which the leaflet contacts the protein at the interface between the

protein and the surrounding lipids, as shown schematically in Fig. 1.6. Far from the protein,

we expect the bilayer to be flat and slightly thinner in accordance with the applied tension, i.e.

|∇u(∞)| = 0 and u(∞) = −τ l/KA, respectively. In the case of a cylindrical protein we make

the further simplifying assumption that the angle is zero (i.e. |∇u(R)| = 0) [29], however non-

zero values are of interest as they allow monolayer spontaneous curvature and monolayer Gaussian

curvature to influence energetics, a topic discussed further in section 2.6.3. The hydrophobic

mismatch itself depends on membrane properties; changes in membrane thickness are linearly

related to the hydrophobic mismatch by uo = d/2 − l, where d is the hydrophobic thickness of

the protein. Unlike midplane deformation, the length scale at which the leaflet returns to its
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unperturbed state, λk, depends only on fixed elastic parameters of the membrane given by

λk =

(
l2κb

KA

)1
4

' 1 nm. (1.20)

The deformation energy due to thickness variation in the surrounding lipids induced by the protein

can be written in a simple form when the radius of the protein is larger than λk (which is the case

for MscL) as

G(leaf)(R, τ) = πκb

(
uo

λk
+

τ

KA

l

λk

)2 (

1 +
√

2
R

λk

)

. (1.21)

The deformation energy scales linearly with protein radius and depends quadratically on the hy-

drophobic mismatch, uo [32], making the overall deformation energy particularly sensitive to the

hydrophobic mismatch, and hence leaflet thickness l3. The deformation energy is fairly insensitive

to changes in stretch stiffness, KA (i.e. most terms in the energy are sublinear), and generally

insensitive to changes in the bending modulus since G ∝ κ
1/4
b . Additionally, given the actual values

of the elastic parameters, one finds that the leaflet free energy scales roughly linearly with tension,

due to the very small value of τ/KA. Like midplane deformation, we see that thickness deformation

prefers a smaller protein radius. On the other hand, in the midplane case, tension always increases

the deformation energy around a channel while in the case of lipid bilayer thickness variations,

the tension can either increase or decrease the deformation energy depending on the sign of the

hydrophobic mismatch. In fact, since the hydrophobic mismatch can be either positive or negative

(i.e. the protein can be thicker or thinner than the bilayer), tension will increase the deformation

energy around a protein that is thicker than the membrane (e.g. the closed state of MscL) and

decrease the deformation energy around a protein that is thinner than the membrane (e.g. the

open state).

One of the nice outcomes of this simple thickness variation elastic theory is that the total free

energy as a function of protein radius can be written in the simple form

G(R, τ) = G(leaf)(R, τ)− τπR2, (1.22)

which is reminiscent of classical nucleation theory and results in free energy profiles as shown in

Fig. 1.9. At zero tension, the deformation clearly prefers a smaller protein radius, limited only by

the steric constraints of the protein structure, which means that there is a certain minimum radius

that the protein can adopt. As the tension increases, the quadratic dependence of the driving force

on radius will eventually overcome the linear dependence of the deformation energy, leading to a

preference for the open state (corresponding to larger R). We introduce a “hard wall” potential at

the open radius which provides a severe energy penalty for radii larger than the open state radius

3The concept of hydrophobic mismatch is valid when the hydrophobic regions of the protein and the bilayer strongly

interact, however, this concept has its limits based on the chemistry between the lipids and the transmembrane region

of the protein [62, 63, 64], and eventually this condition will be broken if the mismatch is too large [32].
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Figure 1.9: Thickness deformation and tension induced energy of a MscL-like channel. Competition

between the cost of deforming the lipid surrounding a protein and the benefit of opening a pore

under tension leads to a bistable switch. At zero tension, the cost of deformation favors a small

protein radius, limited only by the steric constraints of the protein. As tension increases, the benefit

to opening a pore is comparable to the energetic cost to deform the lipids surrounding the protein,

and a larger protein radius is now possible. At high tension, the potential energy of the loading

device far outweighs the deformation cost and a larger protein radius is favored, again limited by

the steric constraints of the protein.

and argue that this approximation captures the idea that opening the channel any further would

lead to some degree of energetically costly denaturation. This model also captures the correct scale

for the critical gating tension which is on the order of 1 kBT/nm2.

It is of interest to compare the energy scale implied by this elastic model to measured values. The

free energy change of MscL gating was measured to be ' 51 kBT using native bacterial membranes

[23, 34]. If one uses the independently measured geometrical properties of the channel, contained

in Table 1.1, and elastic properties of pure bilayers (in the text) to calculate the free energy

of the closed and open states, their difference is approximately 55 kBT at the critical tension of

2.5 kBT/nm2. Though very encouraging, this close correspondence depends sensitively upon the

choice of hydrophobic mismatch, as dictated by the channel structure and bilayer thickness. It is

worth noting that, like the midplane bending case, compression deformation also is accompanied

by a constraint which relates the hydrophobic mismatch of the channel to the radius (i.e. uo(R)).

In calculating the free energy change of MscL above, we only made use of the end points of this

function at uo(Rclosed) and uo(Ropen).
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1.4.3 Approximating Bilayer Deformation: The Variational Approach

In previous sections, we performed cursory derivations of the energy functionals which govern

membrane shape for both midplane and membrane thickness deformations. In order to extract

meaning from these energies, we had to minimize the free energy functionals of eqns. 1.11 and

1.19 with respect to membrane shape. To solve the full problem, the conventional scheme (used

to obtain the earlier quoted results) is to use the calculus of variations to derive a corresponding

partial differential equation in the unknown deformation fields h(r) and u(r)4. A useful and intuitive

alternative is to adopt a variational approach in which we guess a family of solutions (called ‘trial

functions’) that depend upon a small set of parameters and then minimize the deformation energy

with respect to those parameters.

For simplicity, we will showcase this method for one-dimensional membranes which amounts to

the approximation that the protein radius is larger than the natural length-scale of deformation,

schematized in Fig. 1.10. We will use the variational approach to find an approximation for the

functions h(r) and u(r) with their related energies, and in the process derive the natural length-

scale of deformations in both cases. Picking a ‘good’ trial function is intimately related to the

success of the variational approach. The choice of the trial function is often dictated by what we

know about the character of the solution. In this case, we know that in the near-field the protein is

locally disturbing the bilayer by inducing bending or hydrophobic mismatch. In the far-field, these

disturbances should decay back to a flat bilayer. Keeping in mind that most of the energy cost is

stored in the local disturbance around the protein, we want a trial function that has locally varying

character around the protein and then a simple decay far from the protein. Such a trial function

(call it f(x)) could be constructed using a local disturbance, g(x), within a decaying envelope

f(x) = g(x)e−x/λ. (1.23)

The constant λ is an as-yet undetermined natural length scale of deformation and will emerge

from the minimization process itself. Further, this choice of an exponential envelope essentially

guarantees that the membrane returns to its unperturbed state far from the protein.

As a practical tool for calculation, our choice of g(x) should have enough parameters to re-

produce the given boundary conditions. In addition, we want to choose g(x) such that the free

energy is a simple function of these parameters. The power of the variational approach is that once

we have written the energy in terms of these variational parameters, the best version of f(x) is,

by definition, the one that minimizes the energy. Thus, for instance, if the trial function has two

free parameters a and b, f(x; a, b), finding the best trial function amounts to solving a system of

algebraic equations defined by

∂

∂a
G[f(x; a, b)] = 0 and

∂

∂b
G[f(x; a, b)] = 0, (1.24)

4A detailed derivation of the thickness deformation and deformation energy are found in Appendix A.
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Figure 1.10: Protein-induced line tension. Deformation of the membrane around an ion channel

can be described using a line tension. This line tension is obtained by solving for a one-dimensional

deformation energy per unit length and then imposing that energy around the circumference of the

channel. The diagrams above show the sequential wrapping of this one-dimensional line tension

around a cylindrical channel.

where the brackets indicate the energy, G, is calculated using the trial function f . This variational

strategy can also be used as the basis of numerical approaches in which the membrane deformation

is represented using finite elements, for example. In this case, the trial functions permit us to

determine the energy to an arbitrary degree of accuracy. Our strategy in the remainder of this

section is to use the simplicity of the variational approach to find approximate energies for the

midplane and thickness deformations imposed by membrane proteins.

1.4.4 Variational Approach for Midplane Deformations

Our goal is to obtain an approximate expression for the one-dimensional energy due to midplane

bending given by

G(mid) = 2πR

∫ ∞

0

(

τ

2

(
d

dx
h(x)

)2

+
κb

2

(
d2

dx2
h(x)

)2
)

dx. (1.25)

The presence of the 2πR in this expression is due to the fact that we are computing the energy per

unit length for a deformed bilayer, as shown in Fig. 1.10, and must then multiply by the length

(the circumference) of deformed material.

The strategy employed in the variational approach is to plug the trial function into the free

energy functional and compute the resulting energy, which depends upon the parameters in the

trial function. Our trial function has the form

h(x) = g(x)e−( x
λ). (1.26)

The choice of g(x) can be made based upon the boundary conditions. In particular, at the boundary

of the protein, we require that
d

dx
h(x)|x=0 = θ, (1.27)

which tells us that we can make the choice g(x) = constant. Applying this boundary condition
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yields the functional form

h(x) = −θλe−( x
λ), (1.28)

where the only remaining undetermined parameter is the length scale, λ. This trial function can

be plugged into eqn. 1.25 and the integral is easily evaluated to yield the free energy

G(mid)(λ) =
π

2
Rθ2

(

τλ +
κb

λ

)

. (1.29)

The next step in the variational strategy is to minimize the free energy with respect to λ,

∂

∂λ
G(mid)(λ) = 0 → λ =

√
κb

τ
, (1.30)

which upon substitution yields

G(mid) = θ2πκb
R

λ
= θ2πR

√
κbτ . (1.31)

This is precisely the asymptotic ((R/λτ) � 1) form of eqn. 1.12 for midplane bending energy,

and our minimization correctly defines the natural length-scale of midplane deformation. Though

it should be noted that given a nominal protein size of a few nanometers and nominal values of

tension in membranes [26, 13], rarely is this an applicable regime for midplane deformations.

1.4.5 Variational Approach for Membrane Thickness Deformations

A similar analysis can be made for the one-dimensional deformations induced by hydrophobic

mismatch. In this case, the free energy functional in the absence of tension can be written as

G(leaf) = 2πR

∫ ∞

0

(

KA

2

(
u(x)

l

)2

+
κb

2

(
d2

dx2
u(x)

)2
)

dx. (1.32)

We adopt the same functional form for the trial function, namely,

u(x) = g(x)e−( x
λ). (1.33)

In this case, we specify two boundary conditions in the near-field; there is a hydrophobic mismatch

which demands

u(R) = uo, (1.34)

and the leaflet has a particular slope at the membrane interface, which we will set to zero,

d

dx
u(x)|x=0 = 0. (1.35)
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Figure 1.11: Comparison of the exact and variational solutions for the thickness deformations

around a protein. The variational approach generates an approximation to u(x) which is close to

the exact solution. The protein radius is R/λ = 3.

In order to accommodate these two boundary conditions, g(x) must have two free parameters. As

a result, we pick the simplest function which has two degrees of freedom, namely a line, and hence

set g(x) = ax/λ+ b, where a and b are constants. Applying the two near-field boundary conditions

constrains the trial function to the form

u(x) = uo

(

1 +
x

λ

)

e−( x
λ ), (1.36)

where λ is a free parameter with respect to which the energy must be minimized. Using this trial

function, the free energy can be written as a simple expression of the form

G(leaf)(λ) = πκbu
2
oR

(
5

4

KA

κbl2
λ +

1

4λ3

)

. (1.37)

Minimizing the energy with respect to λ gives

∂

∂λ
G(leaf)(λ) = 0 → λ =

(
3

5

)1
4
(

κbl
2

KA

)1
4

(1.38)

which upon substitution gives the membrane thickness energy

G(leaf) =

(
5

3

)3
4
(

KA

κbl2

)3
4

πκbu
2
oR. (1.39)

Again, the variational approach has reproduced the correct asymptotic form of the energy with

a small multiplicative error (see eqn. 1.21); the exact asymptotic result has
√

2 instead of
(

5
3

) 3
4 ,

introducing an error of ∼ 4%.

Finally, there are many forms of u(x) which yield roughly the same energy, but how does the

exact deformation shape compare with our minimized trial function? Here too, the variational

approach gives a trial function that nearly matches the exact result as shown in Fig. 1.11.
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1.4.6 Distilling the Design Principles

Having explored how midplane bending, thickness variation and area change are coupled to tension

and the geometric features of the MscL channel, can we distill general rules for what makes a

membrane protein mechanosensitive? One simple statement is that under tension an increase

in protein area is always favored, regardless of bilayer elastic properties, because an increase in

area lowers the potential energy of the loading device. Conversely, both midplane and thickness

deformations prefer a smaller channel, because a larger radius results in a larger annulus of deformed

lipid and hence a larger free energy penalty (except in the case where the spontaneous curvature

favors a larger radius [32]). With the area change preferring a larger radius and deformation

preferring a smaller radius, we have the necessary energetic competition that ultimately leads to

bistability. This also means the sign of the free energy change due to deformation (midplane or

thickness) must be positive. Hence, the channel is going from a closed state with less deformed

lipid surrounding it, to an open state with more deformed lipid surrounding it. The contributions

to the free energy budget of a mechanosensitive protein, like MscL, due to channel-area change

and membrane deformations are shown in Fig. 1.12. The basic point of this picture is to show how

various contributions to the free energy scale with the radius (R) and the elastic parameters.

Midplane deformation is the deformation which depends most simply on membrane properties,

since it is only linked to the bending modulus. Additionally, its tension dependence is such that

the cost of the deformation always increases with tension and angle, hence we know that tension in

addition to preferring a larger protein, also wants a more cylindrical protein in the case of midplane

bending. This allows us, within the limitations of our theory, to put an upper bound on the cost of

midplane deformations. Taking the lytic tension as an upper bound, a nominal bending modulus

of 20 kBT , and θ = 0.6 as a reasonable value of the membrane slope [54], the maximum energetic

cost of deformations for a protein of radius R (in nm) is ' R × 9 kBT/nm, or in other words, a

midplane deformation induced line tension of ∼ 1.5 kBT/nm.

Thickness deformation depends on all the elastic parameters; bending modulus, area stretch

modulus, and membrane thickness. The tension dependence of thickness deformation energy is

also more complex, though a general principle does emerge. We know that tension can increase or

decrease the overall thickness deformation energy, but the general principle is that it always prefers

the protein to have the same hydrophobic thickness as the bilayer, though the bilayer thickness

is itself decreased as tension increases. The other important feature to note is that a decrease in

the thickness of a transmembrane protein is always accompanied by an increase in the area of the

membrane surrounding the protein due to volume conservation of the membrane. This change in

membrane area is indistinguishable from a change in protein area. Indeed for MscL, the measured

area change is probably a mix of a change in the areal footprint of the protein, and a local increase

in the membrane area surrounding the protein, together giving the measured value of ∼ 20 nm2. An

estimate of the upper bound of leaflet deformations is made by assuming the maximum uo = 0.5 nm,

then the maximum change in free energy for a protein of radius R (in nm) is ' R × 22 kBT/nm
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Figure 1.12: Contributions to the deformation free energy. This figure shows how the different

modes of deformation contribute to the overall free energy budget of the membrane-protein system.

The energies are written in the limit where λk < R < λτ to show their dominant scaling with the

relevant parameters. For the sake of simplicity, we did not address how spontaneous curvature

factors into the free energy budget. However, a thorough discussion of both midplane and leaflet

spontaneous curvature energy contributions are found in [32]. The arrows indicate the forces and

torques felt by the protein due to lipid deformations.
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at zero tension with the given elastic parameters (see Table 1.1). This corresponds to a thickness

deformation induced line tension of ∼ 3.5 kBT/nm. This illustrates that while both midplane and

thickness deformations are important factors in determining the preferred protein conformation,

thickness deformations are generally associated with a higher energy scale.

1.5 Experimental Considerations

Much of our knowledge of the function of mechanosensitive channels, including MscL, comes from

detailed electrophysiology studies where gating of the channel is monitored by sharp differences in

the ion flux through a membrane patch [10, 21, 49, 22, 23, 34]. A small voltage (∼ 50mV) is applied

across a patch of membrane at the tip of a micropipette. As a function of pressure difference, channel

opening events are recorded as stochastic changes in patch current by an ammeter with picoamp

(pA) sensitivity. This truly amazing single-molecule spectroscopy technique allows the experimenter

to adjust the voltage as well as the pressure difference across the membrane as shown in Fig. 1.14.

The pressure difference across the membrane translates into a lateral membrane tension (via the

Laplace-Young relation [65]), responsible for gating the mechanosensitive channel. However, there

are two serious problems with this method when probing the mechanisms of mechanosensitive

channels.

Arguably, the most serious problem is that often pressure difference (J/m3) across the membrane

is taken to be the input variable of prime importance, when in fact tension (J/m2) is the membrane

parameter which governs mechanosensitive gating. Pressure difference is linearly related to tension

via the radius of curvature of the membrane, hence in principle the fix is straightforward - image

the membrane patch (see Fig. 1.14). While certainly not impossible [21, 50], the membrane patch

can be difficult to image due to its small size and the fact that it is inside the micropipette. A

recent study [50] demonstrated the importance of measuring tension in lieu of pressure difference.

It was shown that using the standard methods for creating “identical” micropipettes, the measured

characteristics of a channel varied significantly. However, when the membrane patch was imaged

and tension used as the principal input variable, the same data collapsed to within a few percent of

each other, as shown in Fig. 3.3. In general, if one could perfectly control the size and shape of the

micropipette tip used for contacting and sealing the membrane patch, all measurements would be

related by a single constant (the radius of curvature). However, variations in micropipette shape

and size, as well as variations in how the membrane contacts and adheres to the pipette5 tip all lead

to potentially large variations in the perceived gating characteristics of the channel. Additionally,

it is difficult to compare the wealth of quantitative data coming from electrophysiology studies

to theoretical models when pressure difference, instead of tension, is used as the principal input

variable. Tension is routinely measured in micropipette aspiration experiments [26], and in fact,

single-channel electrophysiology recordings are possible in such a setup [25] using ion channels

5Glass–bilayer adhesion, specifically in the context of electrophysiology, is discussed in detail in Section 3.6.
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with conductances lower than MscL. Hence, this technique might provide a useful way to apply

known membrane tension to reconstituted MscL channels in well characterized membranes, a topic

discussed further in Chapter 3.

With tension being used as the variable of prime importance, electrophysiology is poised to put

the continuum mechanical view to the test, elucidating the role of lipids in ion channel function.

In particular, the elastic properties of many lipids have been measured [26], enabling a careful

examination of the dependence of gating energy on lipid carbon chain length. The simple continuum

view we set forth here predicts a quadratic dependence of the lipid thickness deformation energy

on hydrophobic mismatch, which is directly linked to carbon chain length. This, of course, has

implications for both the function of various transmembrane proteins, and comments meaningfully

on the ability of bilayer thickness to segregate proteins in biological membranes.

A second class of intriguing experiments concerns the mechanosensitivity of other ion channels

and receptors, generally regarded not to be mechanosensitive [66, 67]. This is both interesting from

a functional standpoint, in an effort to understand the full physiological effects of these proteins,

and as a tool for understanding structural features such as the motions of transmembrane helices.

Performing a similar experiment where lipid carbon chain length is varied around a voltage-gated

ion channel (for example) could reveal hidden mechanosensitivity, and energetic analysis from such

an experiment could comment on the degree of height and area change during the gating transition.

Indeed by comparing the known electrostatic gating energy of ∼ 15kBT for common voltage-gated

ion channels, contributions to the gating energy from membrane deformation can be estimated, and

used in two ways [68]. First, one can use such estimates to predict the shift in the gating voltage

of these channels as a function of bilayer mechanical attributes like leaflet thickness or tension, as

shown in Fig. 1.13. Second, the way in which these predicted changes in gating voltage scale with

various mechanical properties, can serve as a indicator of which deformation modes are dominant

during gating, and hence might indicate relevant structural changes in the protein upon gating.

Such analysis has been performed in detail [68], and the results for a typical voltage-gated ion

channel are shown in Fig. 1.13.

The second problem facing a complete understanding of the function of mechanosensitive chan-

nels is that for many such channels volumetric flow, and not ion flux, is the relevant physiological

parameter6. Hence, ion flux is used as a surrogate measurable in place of the true physiological

output of the channel. One could argue that ion flux is proportional to volumetric flow, however

this assumes that the way ions flow through the channel pore is identical to the way water flows

through the pore. Experiments have elucidated the roughly Ohmic nature of mechanosensitive

channels [22, 75] at low voltage (. 80mV), however we know essentially nothing about how a pres-

sure gradient across the membrane translates into a volumetric flow. Even the simplest continuum

approximation (Hagen-Poiseuille flow) would predict a non-linear function relating the area of the

6The mechanosensitive bacterial channel MscS [12, 69, 18] is another example. Although, there are also

mechanosensitive channels that appear to be highly ion selective, such as the bacterial mechanosensitive ion channel

MscK [70] and the K2P family of mammalian mechanosensitive channels [71, 72, 73, 74].
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Figure 1.13: Mechanosensitivity as a structural reporter. These plots apply to the expected shifts

in gating voltage of the Shaker family protein Kv1.2. In all plots the solid gray lines represent

thickness deformations, the dotted gray lines represent protein area dilation, and the solid black

lines represent midplane bending deformations. a) Shift in gating voltage as a function of tension,

assuming the closed channel deforms the membrane. b) Shift in gating voltage as a function of

tension, assuming the open channel deforms the membrane. c) Shift in gating voltage as a function

of leaflet thickness, assuming the closed channel deforms the membrane. d) Shift in gating voltage

as a function of leaflet thickness, assuming the open state deforms the membrane. This figure

adapted from [68].
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Figure 1.14: Measurement of tension vs. pressure difference in an electrophysiological experiment.

A channel protein (small blue rectangle) is embedded in a membrane patch (green). A potential of

order 50mV is applied across the sealed membrane patch, and channel opening events are measured

by an ammeter (circle) with picoamp (pA) sensitivity. a) At low pressure difference, the tension

in the patch is low, the mechanosensitive channel is in the closed conformation, and the patch has

a large radius of curvature. The plot to the right shows normalized channel current as a function

of time for a simulated channel; the open state has low occupation at low tension. b) At high

pressure difference, the tension in the patch is high, the mechanosensitive channel will occupy the

open state, and the radius of curvature (r) is on the order of microns. The plot to the right shows

the open state has high occupation at high tension. c) Optical micrograph of vertically oriented

membrane patch at low (top) and high (middle and bottom) pressure differences, illustrating the

decrease in the radius of curvature with increase pressure difference (from [50]). The scale bar is

5µm.

channel pore to the volumetric flow, in contrast to the linear relationship between ion flux and

channel pore area as predicted by Ohm’s Law [76]. It would be of considerable physical and phys-

iological interest to expand our understanding of fluid flow at the molecular level, by measuring

the relationship between pressure gradient and volumetric flow through a large-pore channel like

MscL. This topic will be discussed in detail in Chapter 3.

1.5.1 Other Experimental Clues

In addition to aforementioned analysis of MscL, other avenues of research have shown interesting

links between the function of membrane proteins and the lipid environment. One such avenue is the

effects of membrane doping (by toxins, lipids or cholesterol) on channel activity, as schematically
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shown in Fig. 1.5b. Certain lipid species and other membrane components are clearly required for

proper protein function [77, 78], but studies using toxins support the idea that the membrane is

also a generic mechanical medium with which proteins interact. Rather than having evolved to

target a specific channel, some toxins impair the function of multiple membrane proteins, and some

small molecules, such as capsaicin [79], and peptide toxins, like those found in spider venom [80],

target membrane channels across many species. These broad-ranging effects favor a mechanism

that targets a generic property of membrane proteins. It has therefore been proposed that these

toxins affect the interactions with the membrane itself. But can these toxins be understood in

terms of a coarse-grained membrane model?

As discussed earlier, many studies have shown that bilayer thickness, bending stiffness and

monolayer spontaneous curvature can affect the function of embedded proteins [81, 28]. Indeed,

although the role of certain proteins (such as mechanosensitive channels) is to respond to membrane

mechanical stress, in principle this stress can alter the function of any membrane protein. For ex-

ample, the dimerization kinetics of the channel-forming peptide gramicidin A can be controlled by

externally applied membrane tension, resulting in membrane thinning and decreasing the hydropho-

bic mismatch between the membrane and the gramicidin dimer [25]. Furthermore, using gramicidin

A enantiomers as sensors for membrane mechanical properties, the small molecule capsaicin has

been shown to indirectly target and trigger the pain receptor TRPV1 by decreasing the bending

modulus of lipid bilayers in a concentration-dependent manner, that is, not with a certain fixed

stoichiometric relation between toxin and channel, but progressively by altering the membranes

bending stiffness [79]. Conversely, voltage-dependent sodium channels are inactivated by capsaicin

with no significant change to the conductance properties of the channels, but by an alteration of the

gating voltage itself, suggesting that even channels that are not mechanically gated may still be sub-

ject to the effects of membrane mechanics through alterations of membrane properties [82, 67, 83].

In addition, it seems that some peptide toxins target multiple types of stretch–activated cation

channels, not by changing membrane properties per se but by changing the effective boundary

conditions at or near the protein-lipid interface [80]. This is yet another generic method by which

membrane mechanics can couple to protein function, as indicated in Fig. 1.5b. In particular, it

seems that either enantiomer of a peptide toxin is localized in the membrane close to the channel

and shifts its dose-response curve. Altogether, these experiments show that the entire range of

membrane mechanical properties, as well as alteration of protein-lipid boundary conditions, can

be utilized to affect channel function. If the changes such membrane dopants cause to bilayer

mechanical properties can be carefully quantitated, future experiment may be able to utilize these

methods to get a better understanding of the role of lipids in membrane protein function.
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1.6 Interaction between Transmembrane Proteins

One intriguing consequence of the deformations induced in membranes by ion channels is that

channels will interact. These interactions can lead to cooperativity in the gating of neighboring

channels and can also induce spatial ordering of the proteins. These interactions can be thought

of as arising from two different effects: those of elastic origin and those of thermal origin. The

elastic forces are purely an enthalpic effect coming from a minimization of the deformation energy

around two proteins separated by a given distance. The thermal forces are entropically driven by

the thermal fluctuations of the membrane and are analogous to Van der Waals forces. Though we

briefly discuss these forces here, Chapter 2 is devoted to an in depth analysis of bilayer mediated

interactions.

1.6.1 Enthalpic Interactions

As discussed above, proteins which change the membrane thickness or bend the membrane midplane

produce deformations which extend anywhere from a few nanometers (thickness) up to tens of

nanometers (midplane) from the protein edge. As two proteins approach each other, their respective

deformation fields overlap resulting in a deformation profile between them that is different than

either of them produce separately. In this case, the total deformation energy of the system is

dependent on the separation between the two proteins and results in an interaction potential that

is dependent upon the conformation of the proteins. These forces arise purely from the mechanical

attributes of the deformed membrane and have no entropic component. We know that midplane and

thickness deformations are independent, and hence there are distinct interactions due to midplane

and thickness deformations.

Pairwise interactions due to midplane deformation using eqn. 1.11 have previously been calcu-

lated for a variety of membrane curvature environments and protein shapes at zero tension [84].

Using a bilayer bending modulus of ∼ 100 kBT , attractive interactions of order ∼ 1 − 5 kBT were

found when the proteins were separated by 1 - 2 protein radii (which we estimate to be 5 - 10

nm measured center-to-center for a typical transmembrane protein). If we adjust the energy scale

to be consistent with a phosphatidylcholine bilayer bending modulus of ∼ 20 kBT this lowers the

interaction energetics to ∼ 0.5−3 kBT . These interactions tend to be long-ranged with a power-law

decay of 1/r4 [85]. Simple pairwise interaction will be inadequate to describe the nature of inter-

actions between more than two proteins. This arises because one protein can shield other proteins

from feeling the deformation of a neighboring protein, and hence interactions are not (in general)

pairwise additive. Apart from direct numerical simulation, there are few analytical (i.e. theoretical)

tools which allow one to study how many interacting proteins in close proximity behave as a group

[44]. In the presence of positive membrane tension, these interactions take on a distinctly different

form, having a finite interaction length scale given by λτ , where proteins that curve the membrane

in the same direction tend to repel and proteins that curve the membrane in opposite directions
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tend to attract, as shown in Fig. 1.15.

Like midplane deformations, the thickness deformation fields extending from the edges of two

proteins will overlap and interact as the proteins come into close proximity [86, 56, 87]. We provided

evidence that lipids likely influence the function of MscL through thickness deformations and once

again we will appeal to MscL as a case study for interacting membrane proteins. The short-

range nature of thickness deformations (essentially exponential decay) means there is no power-law

asymptotic formula for their interaction, though these interactions were numerically explored for all

possible conformations of two MscL proteins as shown in Fig. 1.15. As we saw with single proteins,

the energetic scale of thickness interactions is generally higher than with midplane deformations,

and can vary greatly depending on the hydrophobic mismatch. The leaflet interactions between two

MscL proteins are appreciable when they are within several nanometers of each other, and ranged

from ∼ 2 − 25 kBT depending on the protein conformations and the tension in the membrane.

This kind of short-ranged interaction might play an important role in membrane protein function

[88, 89, 90], given the nominal density of transmembrane proteins in biological membranes leads to

spacings on the order of 10− 100 nm [91].

Additionally, the interactions due to thickness variations can be either attractive or repulsive

depending on the shape of the proteins. The general principle that emerges is that ‘like’ proteins

attract and ‘unlike’ proteins repel (in contrast to electrostatics) as shown in Fig. 1.15 [87]. Proteins

whose hydrophobic mismatch has the same sign (i.e. both are taller or both are shorter than the

membrane) lead to net attractive interactions; proteins with opposite signs of hydrophobic mismatch

lead to repulsive interactions. As discussed later in this chapter, and in detail in Chapter 2, we can

show that these conformation-dependent interactions communicate state information between two

proteins, leading to cooperative channel gating.

1.6.2 Entropic Interactions

A second class of forces between membrane proteins arise due to membrane fluctuations. Like

most entropic forces, the thermal interactions between transmembrane proteins are fairly weak, on

the order of a few kBT . Two fluctuation-induced forces have been studied in some detail in the

literature; a long-ranged Casimir force due to the surface fluctuations of the membrane [85, 92],

and a very short-ranged depletion force due to the excluded volume of lipid molecules between two

membrane proteins [93].

The Casimir force between two membrane proteins arises because the available spectrum of

fluctuations of the membrane-midplane depend on the distance between two proteins. Entropically,

the membrane-protein system seeks to maximize the number of available modes of fluctuation and

hence an energetic potential exists between two transmembrane proteins in a fluctuating, thermally

active membrane. Through a series of elegant calculations, this force was shown to have a 1/r4

asymptotic form, where r is the center-to-center distance between two cylindrical proteins [85, 92].

If we presume that this potential is approximately correct for small separations (r ' 2R), this
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Figure 1.15: Trends in bilayer mediated protein-protein interactions. In thickness deformations,

proteins that either both thicken or both thin the membrane tend to attract (upper left), while

proteins repel each other if one thickens and one thins the bilayer (lower left). In midplane defor-

mations, proteins that bend the bilayer in the same direction tend to repel each other (lower right),

while proteins that bend the bilayer in opposite directions tend to attract each other (upper right).

implies an attractive potential with an energy scale of ∼ 1 kBT .

Lateral density fluctuations of lipids in the membrane also lead to entropic forces between

proteins. Using Monte Carlo simulations, these entropic depletion forces (also called ‘excluded

volume forces’) between cylindrical proteins were shown to be appreciable only when the proteins’

edges were within ∼ 1 lipid molecular diameter [93]. For cylindrical proteins, with diameters on

the order of ∼ 1−2 nm, direct edge contact resulted in a favorable interaction with an energy scale

of ∼ 2 kBT .

1.6.3 Protein Conformations Affected by Interaction

As noted above, the elastic interactions between ion channels, such as MscL, depend on protein

conformation. In earlier sections, we established that the equilibrium conformations of the channel

are entirely determined by the free energy difference between the two states. As a result, elastic
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interactions which change the energy of a two-channel system will affect the probability that we

measure any one channel in the open state [87]. In fact, electrophysiology (see Fig. 1.14) is well

suited to such measurements where the total amount of time spent in the open state divided by

the total measurement time is the open probability.

The free energy difference between the open and closed states of a single channel is roughly

50 kBT [23], which implies the energy scale for two channels is roughly 100 kBT . In Chapter 2

we show that two MscL channels in proximity have interactions on an energy scale of roughly

∼ 20 kBT as shown in Fig. 2.3. Two open channels have a strong, favorable interaction that can

significantly alter the open probability of a given channel relative to the isolated channel value

as shown in Fig. 2.3. Such interactions also affect channel ‘sensitivity’, defined by the derivative

of the popen curve with respect to tension [87], which quantifies how responsive the channel is to

changes in the driving force, in this case tension. The full-width at half maximum of this peaked

function is a measure of the range of tension over which the channel has an appreciable response. In

general, the area under the sensitivity curve is equal to one, hence increases in sensitivity are always

accompanied by decreases in range of response, as demonstrated by the effects of the beneficial open-

open interaction on channel statistics. The critical gating tension and sensitivity are essentially

the key properties which define the transition to the open state, and are analogs to the properties

which define the transition of any two-state ion channel. Hence, the elastic interactions can affect

channel function on a fundamental level.

1.6.4 Interaction and Protein Density in Biological Membranes

Recent proteomic and lipidomic approaches have made it possible to survey the protein and lipid

content of biological membranes, revealing a crowded and heterogeneous bilayer. Whether we

consider a synaptic vesicle [94], bacteria or red blood cells [91, 95], the conclusion is the same, that

biological membranes are as much protein as they are lipid, with typical protein-to-lipid mass ratios

of approximately 60–to–40 [91, 95]. There are many ways to estimate the mean spacing between

membrane proteins, and while the details change from one cell type to another, the message is

always the same: biological membranes are crowded. The mean center-to-center spacing between

proteins is estimated at about 10 nm (comparable to the distance between proteins in the cytoplasm

[96, 97]), strongly indicating that these proteins might be able to influence each other through the

intervening membrane.

1.7 Overview and Concluding Remarks

The goal of this chapter is to take stock of the role of lipid bilayer deformations in membrane

protein function, using mechanosensation as a case study. More precisely, we have argued that the

lipid bilayer is not a passive bystander in the energetics of channel gating. As a result, by tuning

membrane properties it is possible to alter channel function. We have emphasized two broad
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classes of membrane deformation that are induced by the presence of a transmembrane protein: i)

deformation and bending of the midplane of the lipid bilayer, ii) variations in the thickness of the

lipid bilayer that are induced by hydrophobic mismatch. As a result of these deformations, there is

a free energy cost to changing the radius of a channel since the open state implies a larger annulus

of deformed material and hence a higher free energy. This deformation energy competes with the

energetic relaxation of the loading device.

One of the key reasons for performing theoretical analyses like those described here is that

they permit us to sharpen the questions that can be asked about a given biological problem. This

sharpness is ultimately most meaningful if it is translated into precise experimental predictions.

The theoretical results described here suggest a variety of experimental predictions.

• Dependence of gating tension on hydrophobic mismatch. Previous work has already shown

that lipid bilayer tail lengths can alter channel gating by changing the hydrophobic mismatch.

To more precisely examine this relationship, careful measurements of the membrane tension

need to be made, as opposed to pipette pressures, to elucidate the energetics underlying

gating. Alternatively, mutagenesis could be used to explore the same effect by changing the

hydrophobic thickness of the protein.

• Hidden mechanosensitivity in other classes of channels and receptors. The results described

here have been applied to the case study of MscL, and we briefly touched upon Kv1.2.

However, we argue that any transmembrane protein that varies its radius or hydrophobic

thickness upon conformational change will exhibit mechanosensitivity. Furthermore, the way

tension affects the function of these proteins might help elucidate the classes of structural

changes that occur during their conformational change.

• Cooperative gating of channels. As a result of the elastic deformations induced in the lipid

bilayer by mechanosensitive channels, nearby channels can communicate their conformational

state, resulting in cooperative gating. This cooperativity should be observable in electrophys-

iology experiments as a change in the critical tension and channel sensitivity with an increase

in channel density.

Shortcomings of the Theory. Obviously, the use of simple ideas from elasticity theory to capture

the complex process of mechanosensation provides a caricature of the real process. One signature

of the shortcomings of this kind of approach is the fact that single amino acid substitutions can

completely alter the properties of certain proteins [33, 98]. This serves as a warning of the pitfalls

of models that ignore atomic-level details and their impact on biological function. A second class of

complaint that can be registered against the models described here is that we have ignored material

heterogeneity. In particular, biological membranes are built up of a broad range of different lipids

and are riddled with membrane proteins. As a result, it is not clear if an elastic description like

that described here is appropriate, and if it is, how to select the relevant material parameters.
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Regardless of the difficulties highlighted above, it is clear that the emergence of an increasing

number of structures of ion channels coupled with functional studies of these proteins has raised

the bar for what should be expected of theoretical models of channel function.
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Chapter 2

Bilayer-Mediated Protein Interactions

“Happy is he who has discovered the causes of things and has cast beneath his feet all fears, un-

avoidable fate, and the din of the devouring Underworld.” – Virgil

2.1 Introduction

Biological membranes are elastic media in which the presence of a transmembrane protein leads

to local bilayer deformation. The energetics of deformation allow two membrane proteins in close

proximity to influence each other’s equilibrium conformation via their local deformations, and

spatially organize the proteins based on their geometry. We use the mechanosensitive channel of

large conductance (MscL) as a case study to examine the implications of bilayer-mediated elastic

interactions on protein conformational statistics and clustering. The deformations around MscL

cost energy on the order of 10 kBT and extend ∼ 3 nm from the protein edge, as such elastic forces

induce cooperative gating and we propose experiments to measure these effects. Additionally, since

elastic interactions are coupled to protein conformation, we find that conformational changes can

severely alter the average separation between two proteins. This has important implications for how

conformational changes organize membrane proteins into functional groups within membranes1.

Additionally, we will discuss potential non-specific interactions between proteins due membrane

crowding.

2.2 Background

Biological membranes are active participants in the function and spatial organization of membrane

proteins [100, 63, 28]. At the simplest level, the membrane positions proteins into a two-dimensional

space, where they are often laterally organized into groups. These groups can serve specific purposes

on the cell surface and within organelles, such as sensing, adhesion and transport [101, 102, 103,

104, 105, 106]. Electrostatic and van der Waals forces help drive lateral organization [85], however

there is an additional class of purely bilayer-mediated elastic forces that can facilitate the formation

of complexes of membrane proteins.

1Much of this chapter is adapted from [87]. The author would also like to thank Eric Peterson and KC Huang for

being excellent and continuing collaborators on this project.
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Conformational changes of membrane proteins result from a wide range of environmental factors

including temperature, pH, ligand and small molecule binding, phosphorylation, membrane voltage,

and membrane tension. Likewise, conformational state is often tightly coupled with function (e.g.

for ion channels) [10, 2, 3]. In this work, we demonstrate how elastic interactions can communicate

information about protein conformation from one neighboring protein to another coupling their

conformational state. Additionally, we find that these interactions lead to spatial organization

within the bilayer that is strongly dependent on protein conformation.

We suggest that elastic forces play a role in the function and spatial organization of many

membrane proteins across many cell types, given the generically high areal density of membrane

proteins [91] and the strength of these interactions. We use the mechanosensitive channel of large

conductance (MscL) from E. coli as the model protein for this study. MscL is a transmembrane

homo-pentamer found in the plasma membrane of E. coli (and many other bacteria) serving as

an emergency relief valve under hypo-osmotic shock [10, 11, 12]. As membrane tension increases,

this non-selective ion channel changes conformation from a closed state to an open state, releasing

osmolytes [21, 49]. Though several substates have been identified in this gating transition, the

relatively short dwell-times in these substates as compared to the fully open or fully closed states,

allow us to approximate the protein as a simple two-state system [21, 23]. Crystal and electron-

paramagnetic-resonance structures suggest the bilayer-spanning region is nearly cylindrical in both

the open and closed conformations [11, 48, 19], making MscL particularly amenable to mechanical

modeling. Electrophysiology of reconstituted channels allows measurement of the state of one

or more of these proteins with excellent temporal and number resolution. Therefore, theoretical

predictions for how elastic interactions change the gating behavior of a MscL protein can be readily

tested using electrophysiology and other experimental techniques.

Following earlier work, we use continuum mechanics to break down the deformation caused

by a cylindrical transmembrane protein into a term penalizing changes in bilayer thickness and

a term penalizing bending of a bilayer leaflet [29, 86, 56, 31, 32], and we introduce a third term

that preserves bilayer volume under deformation [62]. Due to its structural symmetry, MscL can

be characterized by its radius and bilayer-spanning thickness in its two conformations (i.e. open

and closed), neglecting any specific molecular detail (see Fig. 2.2). As these geometric parameters

change with conformation, the bilayer-mediated interaction between two channels is altered. Using

the interaction potentials in each combination of conformations, we explore how both the single-

channel and interacting energetics affect the spatial and conformational behavior of two channels.

In the first section we cover the physical principles behind bilayer deformation due to the pres-

ence of membrane proteins. In the second section we explore the differences in gating behavior of two

MscL proteins when held at a fixed separation. In the third section we explore the conformational

and spatial behavior of diffusing MscL proteins as a function of areal density. Finally, in the fourth

section we discuss the relevance of these forces as compared to other classes of bilayer-mediated

forces and support our hypotheses with results from previous experiments.
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Figure 2.1: Bilayer thickness deformations in molecular dynamics. This plots shows the normal-

ized thickness variations for coarse-grained proteins with both positive and negative hydrophobic

mismatch in a coarse-grained lipid bilayer. This figure adapted from [108].

2.3 Elastic Deformation Induced by Membrane Proteins

The bilayer is composed of discrete lipid molecules whose lateral diffusion (D ∼ 10 µm2/s) [42] is

faster than the diffusion of transmembrane proteins (D ∼ 0.1 − 1µm2/s) [39, 40, 41]. In the time

it takes a transmembrane protein to diffuse one lipid diameter, many lipids will have exchanged

places near the protein to average out the discreteness of the lipid molecules. Additionally, the

transition time for protein conformational change (∼ 5 µs) [43] is slow compared to lipid diffusion.

Hence, we argue the bilayer can be approximated as a continuous material in equilibrium with well-

defined elastic properties [44]. A number of recent coarse-grained molecular dynamics simulations

[107, 108, 109] show that the deformation profiles around cylindrical proteins with either positive or

negative hydrophobic mismatch are well approximated by the continuum deformation profiles we

derive in this section, as demonstrated in Fig. 2.1, and hence the energies calculated with continuum

mechanics serve as good estimates. Further, we choose to formulate our analysis in the language

of continuum mechanics, rather than lateral pressure profiles [45]. In particular, each leaflet of the

bilayer resists changes in the angle between adjacent lipid molecules, leading to bending stiffness of

the bilayer [29, 46]. Likewise, the bilayer has a preferred spacing of the lipid molecules in-plane and

will resist any changes in this spacing due to external tension [26]. Finally, experiments suggest that

the volume per lipid is conserved [60, 61] such that changes in bilayer thickness are accompanied

by changes in lipid spacing [63, 44].

Transmembrane proteins can compress and bend a bilayer leaflet via at least two mechanisms.

The protein can force the bilayer to adopt a new thickness, matching the hydrophobic region of the

protein to the hydrophobic core of the bilayer. Additionally, a non-cylindrical protein can induce
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a slope in the leaflet at the protein-lipid interface [31, 30].

For transmembrane proteins like MscL, that can be approximated as cylindrical, symmetry

dictates that the deformation energy of the bilayer is twice the deformation energy of one leaflet.

Presuming the protein does not deform the bilayer too severely, we can write the bending and

compression (thickness change) energies in a form analogous to Hooke’s law, and account for ex-

ternal tension with a term analogous to PV work. We denote the deformation of the leaflet by the

function u(r), which measures the deviation of the lipid head-group from its unperturbed height as

a function of the position r (see Fig. 2.2). In all the calculations that follow the physical parameters

chosen are representative of a typical phosphocholine (PC) lipid bilayer and the number of lipids

in this model bilayer is fixed. The energy penalizing compression of the bilayer is

Gcomp =
KA

2

∫ (
u(r)

l

)2

d2r, (2.1)

where KA is the bilayer area stretch modulus (∼ 58 kBT/nm2, kBT is the thermal energy unit,

with T = 300 K) and l is the unperturbed leaflet thickness (∼ 1.75 nm) [26]. The bending energy

of a leaflet is

Gbend =
κb

4

∫

(∇2u(r)− co)
2d2r, (2.2)

where κb (∼ 14 kBT ) is the bilayer bending modulus, co is the spontaneous curvature of the leaflet

[44, 26, 51], and ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator.

Coupling external tension to bilayer deformations is more subtle than the previous two energetic

contributions. We note that the bilayer is roughly forty times more resistant to volume change than

area change [60, 61], hence if a transmembrane protein locally thins the bilayer, lipids will expand

in the area near the protein to conserve volume. Likewise, if the protein locally thickens the bilayer,

lipids near the protein will condense (see Fig. 2.2). Therefore, the area change near the protein

is proportional to the compression u(r), and the work done on the bilayer is the integrated area

change multiplied by tension

Gten = τ

∫
u(r)

l
d2r, (2.3)

where τ is the externally applied bilayer tension [56, 62]. Slightly below bilayer rupture, and near

the expected regime of MscL gating, τ ' 2.6 kBT/nm2 [21, 26]. In total, the bilayer deformation

energy is

G =
1

2

∫ (

KA

(
u

l
+

τ

KA

)2

+ κb

(
∇2u − co

)2

)

d2r, (2.4)

where we have made use of the constant bilayer area to elucidate the interplay between tension

and compression. Specifically, we added a constant proportional to membrane area and τ2, which

is identically zero when calculating differences in free energy.

To obtain the length and energy scales of these deformations, we non-dimensionalize the bilayer

deformation energy, G. We scale both the position r and displacement u(r) by λ = (κbl
2/KA)1/4 '
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1 nm, the natural length scale of deformation, to give the new variables ρ and η(ρ) respectively,

where ρ = r/λ and η(ρ) = u(r)/λ. Then G can be written as

G =
κb

2

∫ (

(η + χ)2 +
(
∇2η − νo

)2
)

d2
ρ, (2.5)

where νo = λco is the dimensionless spontaneous curvature and χ = τ l/KAλ is the dimensionless

tension, which is ' 0.09 in the regime of MscL gating. The energy scale is set by the bending

modulus, κb.

Using the standard Euler-Lagrange equation from the calculus of variations [110], the functional

for the deformation energy can be translated into the partial differential equation2

∇4η + η + χ = 0. (2.6)

The deformation profile u(r) that solves this partial differential equation depends on four boundary

conditions. In the far-field, we expect the bilayer to be flat and slightly thinner in accordance with

the applied tension, i.e. |∇u(∞)| = 0 and u(∞) = −τ l/KA, respectively. At the protein-lipid

interface (r = ro) the hydrophobic regions of the protein and the bilayer must be matched, i.e.

u(ro) = uo (see Fig. 2.2), where uo is one-half the mismatch between the hydrophobic region of the

protein and the hydrophobic core of the bilayer. Finally, the slope of the bilayer at the protein-lipid

interface is set to zero (i.e. |∇u(ro)| = 0). The motivation for this last boundary condition is subtle

and will be examined in more detail in the Discussion.

To understand how the deformation energy scales with hydrophobic mismatch (uo), protein size

(ro), and tension (τ), we solve eqn. 2.6 analytically for a single cylindrical protein. The deformation

energy is

Gsingle = πκb

∫ ∞

ρo

(

(η + χ)2 +
(
∇2η − νo

)2
)

ρdρ, (2.7)

where ρo = ro/λ is the dimensionless radius of the protein. The leaflet deformation around a single

protein is a linear combination of zeroth order modified Bessel functions of the second kind (K0)

[31, 32]. For proteins such as MscL with a radius larger than λ (i.e. 1 nm) the deformation energy

is well-approximated by

Gsingle = πκb

(
uo

λ
+

τ

KA

l

λ

)2 (

1 +
√

2
ro

λ

)

. (2.8)

The deformation energy scales linearly with protein radius and depends quadratically on the com-

bination of hydrophobic mismatch (uo) and tension (τ). This makes the overall deformation energy

particularly sensitive to the hydrophobic mismatch, and hence leaflet thickness l. The deformation

energy is fairly insensitive to changes in KA (i.e. most terms in the energy are sublinear), and

2With no loss of generality, the equation that governs deformation can also be written in the parameter free form

∇
4η + η = 0, with all parametric sensitivity absorbed into the boundary conditions.
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l

Figure 2.2: Schematic of bilayer deformations due to MscL. Mismatch between the hydrophobic

regions of the lipid bilayer and an integral membrane protein gives rise to bending and compression

deformations in each leaflet of the bilayer. The largest deformations occur at the protein-lipid

interface, and over the scale of a few nanometers the bilayer returns to its unperturbed state.

MscL is shown schematically at zero tension in its closed and open states with relevant dimensions.

The red region of the protein indicates the hydrophobic zone. The hydrophobic mismatch at the

protein-lipid interface is denoted by uo. The deformation profile, denoted by u(r), is measured with

reference to the unperturbed leaflet thickness (l) from the protein center at r = 0.
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generally insensitive to changes in the bending modulus since G ∝ κ
1/4
b .

Using our standard elastic bilayer parameters and the dimensions of a MscL channel (see

Fig. 2.2), the change in deformation energy between the closed and open states is ∆Gsingle ' 50 kBT .

The measured value for the free energy change of gating a MscL protein, including internal changes

of the protein and deformation of surrounding lipids is ' 51 kBT [23]. This close correspondence

does not indicate that bilayer deformation accounts for all of the free energy change of gating [33],

but does suggest that it is a major contributor.

The gating energy of two channels in close proximity is a complex function of their conformations

and the distance between them. As two proteins come within a few nanometers of each other (i.e. a

few λ), the deformations which extend from their respective protein-lipid interfaces begin to overlap

and interact. The bilayer adopts a new shape (i.e. a new u(r)), distinct from the deformation

around two independent proteins, and hence the total deformation energy changes as well. This is

the physical origin of the elastic interaction between two bilayer-deforming proteins [86, 56].

Each protein imposes its own local boundary conditions on the bilayer, that vary with conforma-

tion, hence the deformation around a pair of proteins is a function of their individual conformation

and the distance between them. A MscL protein has two distinct conformations, hence there can

be pairwise interactions between two closed channels, an open and a closed channel, or two open

channels (see Fig. 2.3). Tension also affects the deformations. The hydrophobic mismatch can be

either positive or negative (i.e. the protein can be thicker or thinner than the bilayer), thus tension

will strengthen the interaction of proteins that are thicker than the bilayer (e.g. the closed-closed

interaction of two MscL proteins) and weaken the interaction of proteins that are thinner than

the bilayer (e.g. the open-open interaction). This effect is demonstrated in Fig. 2.3. The inter-

actions due to leaflet deformations have been explored before [86, 56], but our model elucidates

the role that these interactions can play in communicating conformational information between

proteins. Additionally, in our model, tension can play an important role in determining the overall

deformation energy around a protein.

In a one-dimensional model, the interaction potentials can be solved for analytically. For

two identical proteins in close proximity (e.g. closed-closed and open-open interactions), the ap-

proximate shape of the potential is linearly attractive κb(uo/λ)2(d/2λ −
√

2). Between two dis-

similar proteins in close proximity (e.g. open-closed interaction) the potential is approximately

κb(uo/λ)2π4/4(d/λ)3, where in both cases d is measured from the edges of the proteins. This

illustrates the general principle that two similar proteins attractively interact, while two dissimi-

lar proteins tend to repel each other. This one-dimensional model helps build intuition for what

governs the strength of elastic interactions. Whether the interaction is attractive or repulsive,

the strength of the interaction is dominated by its quadratic dependence on the combination of

hydrophobic mismatch and tension-induced thinning. Hence, interactions between proteins that

deform the membrane more severely are simultaneously more sensitive to tension. These effects are

demonstrated in Fig. 2.3 where the closed-closed interaction, which has less hydrophobic mismatch,
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Figure 2.3: Elastic potentials between two MscL proteins. To minimize deformation energy,

two transmembrane proteins exert elastic forces on each other. MscL has three distinct interaction

potentials between its two distinct conformations. External tension weakens the interaction between

two open channels (Voo) and strengthens the interaction between two closed channels (Vcc), but has

almost no effect on the interaction between an open and closed channel (Voc). The open-open

and closed-closed interactions are both more strongly attracting than the open-closed interaction,

indicating that elastic potentials favor interactions between channels in the same state. The ‘hard

core’ distance is where the proteins’ edges are in contact.

is both weaker and less sensitive to tension than the open-open interaction. In a two-dimensional

bilayer, the geometry and boundary conditions of the two proteins makes it difficult to solve for

the interaction analytically, thus numerical techniques were used (see Materials and Methods).

This theoretical framework provides a strong foundation for understanding how protein geome-

tries and lipid properties give rise to elastic interactions. With this, we can investigate how elastic

forces change the conformational statistics of a two-state protein population.

2.4 Gating Behavior of Two Interacting Channels

To probe the range of separations over which elastic interactions affect the gating of two MscL

proteins, we need to account for the non-interacting energetics of gating a single channel in addition

to the interactions between two channels. The non-interacting energy is the sum of three effects.

First, there is some energetic cost to deform the surrounding membrane, which we already calculated

as ∆Gsingle. Second, there is some cost to change the protein’s internal conformation, independent

of the membrane. Together, these first two effects are the gating energy ∆Ggate ' 51 kBT for MscL
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[23]. Finally, there is an energetic mechanism that overcomes these costs and opens the channel as

tension increases. This mechanism is provided by the bilayer tension working in concert with the

conformational area change of the protein (∆A ' 20 nm2 for MscL [23]). Given the experimentally

determined values for ∆Ggate and the area change during gating, the critical tension, defined by

∆Ggate = τc∆A, is τc = 2.6 kBT/nm2.

In our thermodynamic treatment we need to keep track of the conformations of each protein in

a population in a way that allows us to tabulate the non-interacting and interacting contributions

to the free energy. To this end, we assign a state variable, si, to each channel indicating the

conformational state of a protein, where si = 0 indicates that the ith channel is closed and si = 1

indicates that the ith channel is open. The non-interacting energy for two channels is then

Hnon(s1, s2; τ) = (∆Ggate − τ∆A) (s1 + s2). (2.9)

If both channels are closed (s1 = s2 = 0) the free energy is defined to be zero. If one channel is

open and the other closed (s1 = 1, s2 = 0 or s1 = 0, s2 = 1) this counts as the cost to gate one

channel working against the benefit at a particular tension to opening the channel. Likewise, this

counts twice if both channels are open (s1 = s2 = 1). We will measure all energies that follow in

units of kBT (' 4.14× 10−21J).

As we alluded to earlier, the interacting component of the free energy between two channels

is a function of their states (s1 and s2), their edge separation (d), and the tension. Using a

numerical relaxation technique to minimize the functional in eqn. 2.5 (see Materials and Methods),

we calculated the interaction potentials Hint(s1, s2, d; τ) for a range of tensions and separation

distances (see Fig. 2.3). The total energy, Hnon + Hint, is used to derive the Boltzmann weight for

the three possible configurations of the two-channel system,

z(s1, s2) = e−(Hnon(s1,s2;τ )+Hint(s1,s2,d;τ )). (2.10)

The probability that the system has two closed channels is

P0 =
z(0, 0)

Z
, (2.11)

where the partition function Z is the sum of the Boltzmann weights for all possible two-channel

configurations,

Z =

1∑

s1,s2=0

z(s1, s2) = z(0, 0) + 2z(0, 1) + z(1, 1). (2.12)

Likewise, the probabilities for the system to have exactly one or two open channels are

P1 =
2z(0, 1)

Z
and P2 =

z(1, 1)

Z
, (2.13)
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respectively. Finally, the probability for any one channel in this two channel system to be open is

Popen(τ, d) =
z(0, 1) + z(1, 1)

Z
. (2.14)

If the distance between two channels is much greater than λ, they will behave independently. As the

channels get closer (d . 5λ) they begin to interact and their conformational statistics are altered.

Popen as a function of tension for certain fixed separations is shown in Fig. 2.4. The open-open

interaction is the most energetically favorable for most separations, hence the transition to the

open state generally shifts to lower tensions as the distance between the two proteins is decreased.

Though the edge spacing can be small, even fractions of the width of a lipid molecule, the two-

dimensional nature of the interaction means that the majority of the interaction is mediated by lipids

in the intervening region between the two proteins. Thus, a continuum model is still applicable,

albeit less accurate, for very small protein separations.

Interactions also affect channel ‘sensitivity’, defined as the derivative of Popen with respect to

tension, which quantifies how responsive the channel is to changes in tension. The full-width at

half maximum of this peaked function is a measure of the range of tension over which the channel

has an appreciable response. The area under the sensitivity curve is equal to 1, hence increases

in sensitivity are always accompanied by decreases in range of response, as demonstrated by the

effects of the beneficial open-open interaction on channel statistics (see Fig. 2.4).

In summary, we find that elastic interactions between two proteins have significant effects when

the protein edges are closer than ∼ 5 nm. At these separations the elastic interactions alter the

critical gating tension and change the tension sensitivity of the channel (see Fig. 2.4). The critical

gating tension and sensitivity are the key properties which define the transition to the open state,

and are analogs to the properties that define the transition of any two-state membrane protein.

Hence, we have shown that elastic interactions can affect protein function at a fundamental level.

2.5 Interactions between Diffusing Proteins

With an understanding of how two proteins will interact at a fixed distance, we now study the

conformational statistics of two freely-diffusing MscL proteins allowed to interact via their elastic

potentials. In biological membranes, transmembrane proteins that are not rigidly attached to

any cytoskeletal elements are often free to diffuse throughout the membrane and interact with

various lipid species as well as other membrane proteins. On average, the biological areal density

of such proteins is high enough (∼ 103 − 104 µm−2 [91]) that elastic interactions should alter the

conformational statistics and average protein separations.

We expect that if two MscL proteins are diffusing and interacting, the open probability will

be a function of their areal density as well as the tension. It then follows that for a given areal

density, elastic interactions will couple conformational changes to the average separation between
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Figure 2.4: Conformational statistics of interacting MscL proteins. Interactions between neigh-

boring channels lead to shifts in the probability that a channel will be in the open state (dashed

lines). The sensitivity and range of response to tension, dPopen/dτ , are also affected by bilayer de-

formations (solid lines). Popen and dPopen/dτ are shown for separations of 0.5 nm (red) and 1.5 nm

(green) with reference to non-interacting channels at d = ∞ (blue). Interactions shift the critical

gating tension for the closest separation by ∼ 12%. Additionally, the peak sensitivity is increased

by ∼ 90% from ∼ 5nm2/kBT to ∼ 9.5nm2/kBT , indicating a Hill coefficient of ∼ 2.
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the proteins. To calculate the open probability of two diffusing MscL proteins, the Boltzmann

weight for these proteins to be in the conformations s1 and s2 must be summed at every possible

position, giving

〈z(s1, s2)〉 = e−Hnon

∫ ∫

e−Hintd2r1d
2r2, (2.15)

where 〈. . .〉 indicates a sum over all positions. The distance between the proteins is measured

center-to-center as |r1 − r2| and only the absolute distance between the two proteins determines

their interaction, hence we can rewrite the integrand as a function of r = |r1− r2|. We then change

the form of the integrand to

e−Hint(s1,s2,r;τ ) = 1 + f12(r), (2.16)

which allows us to separate the interacting effects from the non-interacting effects (the function f12

is often called the Mayer-f function) [111]. Thus, the position-averaged Boltzmann weights are

〈z(s1, s2)〉 = e−Hnon

(

1 +
2π

A

∫ ∞

0

f12(r)rdr

)

, (2.17)

where A is the total area occupied by the two proteins. Following our previous calculations, the

probability that any one channel is open in this two-channel system is

Popen(τ, α) =
〈z(0, 1)〉+ 〈z(1, 1)〉

〈Z〉 , (2.18)

where α is the protein areal density (i.e. α = 2/A) and 〈Z〉 =
∑

s1,s2
〈z(s1, s2)〉.

In Fig. 2.5a, we plot Popen(τ, α) over a wide range of areal density, from the area of ∼ 100

lipids up to areas on the whole-cell scale. The more beneficial open-open interaction tends to

shift the transition to the open state to lower tensions, with the most pronounced effect when the

two proteins are most tightly confined. For the estimated biological membrane protein density

of ∼ 103 − 104 µm−2 (or ∼ 10 − 30 nm spacing) [91], the gating tension is decreased by ∼ 13%,

the sensitivity is increased by ∼ 85% and the range of response is decreased by ∼ 55%. For the

in vivo expression of MscL of ∼ 1 − 10 µm−2 [112] the gating tension is reduced by ∼ 7%, the

sensitivity is increased by ∼ 70% and the range of response is decreased by ∼ 40%. These changes

in gating behavior are accessible to electrophysiological experiments where MscL proteins can be

reconstituted at a known areal density (∼ 0.1−10 µm−2), and the open probability can be measured

as a function of tension.

In addition to lowering the critical tension and augmenting channel sensitivity, the conforma-

tional states of channels are tightly coupled by their interaction. The probability that exactly

one channel is open (P1) decreases dramatically as areal density increases. For tensions above

the critical tension, interacting channels (∼ 103 µm−2) are nearly three orders of magnitude less

likely to gate as single channels than their non-interacting counterparts (∼ 10−3 µm−2), as shown

in Fig. 2.5b. Additionally, the tension at which it is more likely to have both channels open, rather
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Figure 2.5: Elastic interactions lower the critical gating tension and couple conformation changes.

Two MscL proteins in a square box of area A diffuse and interact via their elastic potentials. a) At

low areal density, the response to tension is the same as an independent channel. As the areal density

increases, the more beneficial open-open interaction (see Fig. 2.3) shifts the open probability to lower

tensions and decreases the range of response (dashed lines) while increasing the peak sensitivity,

indicating that areal density can alter functional characteristics of a transmembrane protein. b)

The probability for exactly one channel to be open (P1 - solid lines) is shown at a low (blue) and

high (red) areal density. For tensions past the critical tension, interacting channels are ∼ 1000

times less likely to gate individually. The probability for both channels to be open simultaneously

(P2 - dashed lines) is shown for low (blue) and high (red) areal density. The tension at which two

simultaneously open channels are favored is significantly lower for interacting channels. Together

these facts signify a tight coupling of the conformational changes for two interacting channels.
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than a single channel, is significantly lower for interacting channels, signaling that gating is a tightly

coupled process. In addition to altering the open probability of two channels, the favorable open-

open interaction provides an energetic barrier to leaving the open-open state. Based on a simple

Arrhenius argument, the average open lifetime of two channels that are both open and interacting

will be orders of magnitude longer than two open but noninteracting channels.

Having shown conformational coupling over a range of areal densities, it is reasonable to expect

that elastic interactions will affect the separation between two proteins. We ask, how do interactions

affect the average separation between proteins? How often will we find the two proteins separated

by a distance small enough that we can consider them ‘dimerized’?

From eqns. 2.15 and 2.16 it follows that the Boltzmann weight for the two proteins to be

separated by a distance r is

z(s1, s2, r) = e−Hnon
2π

A
(1 + f12)r. (2.19)

The probability that the proteins are separated by a distance r, regardless of their conformation,

is

P (r) =
Z(r)

〈Z〉 =

∑

s1,s2
z(s1, s2, r)

〈Z〉 , (2.20)

from which we calculate the average separation

〈r〉 =
1

〈Z〉

∫

Z(r)rdr (2.21)

=
1

〈Z〉
∑

s1,s2

e−Hnon

(

δ
π

6

√
A +

2π

A

∫ ∞

0
f12r

2dr

)

.

This equation is valid as long as the area does not confine the proteins so severely that they are

sterically forced to interact. The constant δ is an order-one quantity that is defined by the entropic

component of average separation on a surface S, given by
∫ ∫

S(A) |r1 − r2|d
2
r1

A
d2

r2
A = δ π

6

√
A, and

depends on the actual shape of the surface. For a square box, δ ' 1, and for a circle, δ '
√

2.

The average separation of two MscL proteins as a function of tension is plotted for various areal

densities in Fig. 2.6. For certain densities, elastic interactions couple the conformational change

from the closed to open state with a decrease in the average separation by more than two orders

of magnitude. Our estimates of biological membranes yield fairly high membrane-protein densities

(∼ 103−104 µm−2) [91] which corresponds to the more highly confined conditions on the Figs. 2.5,

2.6 and 2.7. In the native E. coli plasma membrane, MscL, with a copy number of ∼ 5 [112], is

present at a density of ∼ 1 − 10 µm−2, which means that even membrane proteins expressed at a

low level are subject to the effects of elastic interactions.

To quantify the effects of interaction on the spatial organization of two channels, we define

a ‘dimerized’ state by the maximum separation below which two channels will favorably interact

with an energy greater than kBT (i.e. Hint(s1, s2, τ, r) < −1). This defines a critical separation,

rc(s1, s2, τ), which depends on the conformations of each protein and the tension. The probability
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Figure 2.6: Average separation between proteins drops significantly due to elastic interactions.

The average separation between two diffusing MscL proteins in a box of area A is plotted as

a function of tension for a range of areal densities, each shown as a different line color. The

grey region roughly indicates when gating is occurring. At low areal density (most blue) the

conformational change does not draw the proteins significantly closer together. As the areal density

increases, the conformational change is able to draw the proteins up to ∼ 100 times closer than

they would otherwise be. At the highest areal density (most red) the steric constraint of available

area intrinsically positions the proteins close to one another regardless of their conformation. The

average separation begins to increase again as higher tension weakens the open-open interaction.

that the two proteins are found with a separation less than or equal to rc is

Pdimer(τ, α) =
1

〈Z〉
∑

s1,s2

e−Hnon

(
πr2

c

A
+

2π

A

∫ rc

0
f12rdr

)

. (2.22)

This ‘dimerization probability’ is plotted as a function of tension and areal density in Fig. 2.7.

At low tension and high areal density, the channels are closed and near enough that the closed-

closed interaction can dimerize them a fraction of the time. Keeping the areal density high, in-

creasing tension strengthens the closed-closed interaction and the dimerization probability increases

until tension switches the channels to the open state, where the significantly stronger open-open

interaction dimerizes them essentially 100 percent of the time. When the areal density decreases to

moderate levels, as denoted by the white dashed lines in Fig. 2.7, the dimerization is strongly cor-

related with the conformational change to the open state. The zero tension separation between the

two proteins for this one-to-one correlation is ∼ 40 nm to ∼ 2 µm. Finally, when the areal density is

very low, entropy dominates, and neither the closed-closed, nor the open-open interaction is strong
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Figure 2.7: Elastic interactions tightly couple conformational change with protein dimerization.

Diffusing MscL proteins are considered dimerized when they are close enough that they attract

with an energy greater than kBT . At high areal density, the net attractive closed-closed interaction

is sufficient to dimerize the two channels part of the time. As the areal density decreases, the

closed-closed interaction is not strong enough to dimerize the two channels — now dimerization

only happens at higher tensions after both channels have switched to the open conformation.

As the areal density decreases further, the open-open interaction is no longer strong enough to

overcome entropy. This loss of dimerization is amplified by the fact that the open-open interaction

is weaker at higher tensions (see Fig. 2.3). The white dashed lines roughly indicate the range of

areal densities for which dimerization probability and open channel probability are equal to each

other (see Fig. 2.5).

enough to dimerize the channels. Understanding the onset and stability of dimers is an important

first step in understanding the formation of larger oligomers of membrane proteins. As the areal

density of membrane proteins increases, clusters of more than two proteins become favorable and

are energetically stabilized by their multi-body interactions. For a rigorous theoretical treatment

of these multi-body interactions we refer the interested reader to [113, 114, 115].

In summary, we have shown that over a broad range, areal density plays a non-trivial role in

allowing two channels to communicate conformational information. This communication can lead

to large changes in the average separation between two proteins and the probability that they will

be found together in a dimerized state. This may have implications for how conformational changes

of transmembrane proteins in biological membranes are able to facilitate the formation of functional

groups of specific proteins.
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2.6 Further Discussion

In this section, we will perform a brief survey of other bilayer-mediated forces between proteins and

make a comparison of their relative length and energy scales. We will also address some of the finer

details of our model and how boundary conditions can affect deformation energy around a protein.

Finally, we will suggest experiments using MscL to observe the predicted changes in conformational

statistics, as well as provide evidence from previous experiments that leaflet interactions lead to

significant changes in conformational statistics.

2.6.1 Comparison to Other Interactions

There are at least two other classes of purely bilayer-mediated forces between membrane proteins.

The first is a different type of bilayer deformation that bends the mid-plane of the bilayer. This

arises from transmembrane proteins with a conical shape that impose a bilayer slope at the protein-

lipid interface [30, 84]. If the protein does not deform the bilayer too severely, the mid-plane

deformation energy of a bilayer is

Gmid =

∫ (τ

2
(∇h(r))2 +

κb

2
(∇2h(r))2

)

d2r, (2.23)

where h(r) is the deviation of the height of the mid-plane from a flat configuration [32, 46]. These

kinds of interactions have been calculated for a variety of bilayer curvature environments and protein

shapes at zero [84, 116] and positive [117] tension. Using a bilayer bending modulus of ∼ 100 kBT ,

attractive interactions of order ∼ 1− 5 kBT were found when the proteins were separated by 1− 2

protein radii (which we estimate to be 5−10 nm measured center-to-center for a typical transmem-

brane protein). If we adjust the energy scale to be consistent with a PC bilayer bending modulus of

∼ 14 kBT this lowers the interaction energetics to ∼ 0.4− 2 kBT . Hence, although the length scale

of appreciable interaction for mid-plane deformation is longer than for leaflet deformation, the in-

teraction energies from leaflet deformation can be 10 times greater depending on protein geometry.

The deformation fields h(r) and u(r) exert their effects independent of one another [32], suggesting

that while energetically weaker than leaflet deformation, mid-plane deformation probably also con-

tributes to the spatial organization and conformational communication between transmembrane

proteins. However, for the resting tension of many biological membranes [13], the interaction due

to midplane deformation has a length-scale (
√

κb/τ ' 50 nm) longer than the nominal spacing of

proteins (' 10−30 nm [91]). Thus, one protein can shield other proteins from feeling the deforma-

tion of a neighboring protein, and hence interactions are not (in general) pairwise additive. In fact,

this is a general feature for both leaflet and midplane elastic interactions — they can be shielded

by the presence of other proteins, and non-specific protein interactions can couple to conformation

and position within the membrane in the same manner as the specific interactions we have explored

in the previous sections.

The second class of bilayer-mediated forces is a product of the thermal fluctuations of the bilayer.
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There is a small thermal force due to the excluded volume between two proteins, calculated via

Monte Carlo methods to have a favorable ∼ 2 kBT interaction [93]. This force only exists when

the proteins are separated by a fraction of the width of a lipid molecule. There is also a long-range

thermal force, due to the surface fluctuations of the bilayer, which tends to drive two rigid proteins

closer together [85, 92]. This force is proportional to 1/r4 and is generally attractive. Estimates

using this power law indicate that the interaction is ∼ 1 kBT when the center-to-center separation

is roughly 2 protein radii. Though elegant, the derivation of this force is only valid in the far-field,

thus how this force might contribute to conformational communication between proteins in close

proximity is not entirely clear.

To gauge the overall importance of leaflet interactions, the virial coefficient used in eqn. 2.17,

CV = 2π

∫ ∞

0
f12(r)rdr, (2.24)

quantifies how the combination of length and energy scales leads to a deviation from non-interacting

behavior; it is exponentially sensitive to the energy but only quadratically sensitive to the length-

scale. One can interpret the virial coefficient as the area per particle that makes the competing

effects of entropy and interaction equivalent. Using this measure, we estimated the virial coefficients

for all of these bilayer-mediated forces and found that leaflet deformations, while having a short

length scale, actually lead to the most significant deviation from non-interacting behavior, due to

their high energy scale. We estimate the virial coefficients from leaflet interactions to be ∼ 104 −
106 nm2, while mid-plane bending interactions are ∼ 103 nm2, and the thermal forces ∼ 102 nm2.

2.6.2 Role of Elastic Boundary Conditions

Examining our elastic model in greater detail, we have assumed that the slope of the leaflet at the

protein-lipid interface is zero, which eliminates any dependence on the spontaneous and Gaussian

curvatures of the leaflet. In a more general continuum-mechanical theory, the slope would be left

as a free parameter with respect to which the energy could be minimized [31]. We examined this

possibility and found that, at most, the energy was reduced by a factor of two. Spontaneous

curvature couples to the slope of the leaflet at the protein-lipid interface, however the spontaneous

curvature of bilayer forming lipids, such as phosphocholines, is small [57]. In addition, for proteins

whose radius is larger than λ, if we assume the modulus associated with Gaussian curvature is of

the same magnitude as the mean curvature modulus (κb) [118], the Gaussian contribution to the

deformation energy is a second-order effect. We also examined the possibility of a term proportional

to (∇u)2; using the interfacial tension (∼ 5 kBT/nm2) as a modulus for this term, these effects were

also second-order. Finally, we imposed the ‘strong hydrophobic matching’ condition at the protein-

lipid interface, assuming that the interaction of lipids with the hydrophobic zone of the protein

is very favorable. Relaxing this condition would result in a decrease in the magnitude of the

hydrophobic matching condition, uo, and hence an overall decrease in energetics [32].
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There are also experimental and mechanical reasons to believe the boundary slope on a cylin-

drical protein is small. The membrane protein gramicidin was used to comment on this so-called

‘contact angle’ problem of lipid-protein boundary conditions [29, 119]. It was found that indeed

the slope was nearly zero. From a mechanical standpoint, if the lipids are incompressible, a pos-

itive boundary slope that deviates significantly from zero would correspond to the creation of an

energetically costly void at the protein-lipid interface when the protein is shorter than the bilayer.

Conversely, lipid would have to penetrate the core of the protein to produce a negative slope when

the protein is taller than the bilayer, again a very costly proposition.

We examined a roughly cylindrical protein and demonstrated the interesting effects elastic

interactions would have in such cases. However, the scope of possible effects increases when non-

cylindrical proteins are considered. Most notably, non-cylindrical cross-sections allow for orienta-

tional degrees of freedom in the interaction, hence such proteins do not just attract or repel each

other, but would have preferred orientations in the membrane with respect to each other. Efforts

are underway to understand the nature of these shape-dependent interactions, specifically what

torques proteins exert on each other, how to encode specificity of interaction through shape, what

effects monomer shape has on the assembly of oligomeric membrane proteins.

2.6.3 Effects of Spontaneous Curvature

While there are good reasons to believe that the slope of the bilayer deformation profile is small

at the cylindrical protein-bilayer interface, as discussed in the previous section, it behooves to

have a better understanding of how energetics and membrane conformation change as we relax

this condition. For simplicity, we will examine this in the one dimensional setting, which is a

valid framework when the protein radius is larger than the elastic decay length (as it is for MscL).

Written in one dimension, the free energy of bilayer thickness deformation is

G = πκbρo

∫ ∞

ρo

(

(η + χ)2 +
(
η′′ − νo

)2
)

dρ (2.25)

akin to eqn. 2.5. Solving the resulting Euler-Lagrange equation, subject to the boundary conditions

η(ρ)|ρ=ρo = ηo and η′(ρ)|ρ=ρo = ε, gives the one dimensional thickness deformation profile,

η(ρ) = e
−ρ−ρo√

2

(

(ηo + χ) cos

(
ρ − ρo√

2

)

+ (ηo + χ + ε
√

2) sin

(
ρ − ρo√

2

))

− χ, (2.26)

which can then be substituted into this functional to find the deformation energy, where we leave

the boundary slope, ε, as a free parameter. The resulting deformation energy, with spontaneous

curvature included is

G =
√

2πκbρo

(

(ηo + χ)2 + ε(ε +
√

2(ηo + χ + νo))
)

. (2.27)
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Note that if the boundary slope is set to zero, the deformation energy does not depend on the

spontaneous curvature. Minimizing this free energy with respect to the boundary slope, that is

∂G/∂ε = 0, gives the an equation for the minimum energy boundary slope, which can be solved to

find

εmin = − 1√
2

(ηo + χ + νo) . (2.28)

This can then be substituted into the free energy of eqn. 2.27, to find the boundary slope minimized

deformation energy

Gmin =
√

2πκbρo

(

(ηo + χ)2 − 1

2
(ηo + χ + νo)

2

)

. (2.29)

In the absence of spontaneous curvature, we see that the slope-minimized deformation energy is

precisely one half the deformation energy calculated when setting the boundary slope equal to zero.

For the moment, let us presume that the dimensionless spontaneous curvature is small, and hence

the contribution to the deformation free energy from spontaneous curvature is approximately linear

and of the form

Gspc ' −
√

2πκbρoνo(ηo + χ). (2.30)

Measurements of the spontaneous curvature in the HII phase of lipid monolayers [58] vary with

bilayer composition, but a good approximate value for bilayer forming lipids is νo ' 0.1. Recall

that we assume the deformation is weak, that is (ηo + χ) is small, and hence the elastic energy

terms that include spontaneous curvature and those that do not, are both of the same order of

magnitude. Hence, if the monolayer slope at the protein-bilayer interface is allowed to freely vary,

we expect the monolayer spontaneous curvature to further reduce the thickness deformation energy

by an amount comparable to the magnitude of the spontaneous curvature independent deformation

energy. Taken together, allowing the slope to vary, and possibly including monolayer spontaneous

curvature, both reduce the severity of the deformation profile, and hence we expect that they reduce

the magnitude of the bilayer mediated elastic interactions between proteins.

We can also use this one dimensional analysis to comment on whether the low gradient limit

(|∇η| < 1) is valid. Using eqn. 2.26 for the thickness deformation profile, the position of the

maximum monolayer slope is given by
∂2η

∂ρ2
= 0, (2.31)

which can be solved to find

ρmax = ρo +
√

2 tan−1

(

ηo + χ +
√

2ε

ηo + χ

)

. (2.32)

In the scenario where ε = 0, the deformation profile’s maximum slope is at ρmax = ρo + π
2
√

2
, which
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when substituted into ∂η/∂ρ, gives the maximum slope

∣
∣
∣
∣

∂η

∂ρ

∣
∣
∣
∣
max

= |ηo + χ|e−π
4 . (2.33)

Even with the large hydrophobic mismatch of MscL, |ηo + χ| ≤ 0.6, the maximum boundary slope

is only
∣
∣
∣
∂η
∂ρ

∣
∣
∣
max

' 0.27, indicating that our approximation is likely valid when ε = 0. In the scenario

where the energy is minimized with respect to the boundary slope, the position of the maximum

slope is given by

ρmax = ρo −
√

2 tan−1

(
νo

ηo + χ

)

, (2.34)

where it should noted that if νo/(ηo +χ) > 0, the maximum monolayer slope occurs at the protein-

lipid interface, that is ρmax = ρo; alternatively stated, this equation is not valid for νo/(ηo +χ) > 0.

However, if νo/(ηo + χ) < 0, this can be substituted into ∂η/∂ρ to find a general expression for the

maximum monolayer slope,

∣
∣
∣
∣

∂η

∂ρ

∣
∣
∣
∣
max

=

√

(ηo + χ)2 + ν2
o

2
· etan−1

“

νo
ηo+χ

”

. (2.35)

If the spontaneous curvature is zero, then ρmax = ρo, and the maximum slope is

∣
∣
∣
∣

∂η

∂ρ

∣
∣
∣
∣
max

=
|ηo + χ|√

2
, (2.36)

where using the upper bound |ηo + χ| ≤ 0.6, this gives the maximum profile slope
∣
∣
∣
∂η
∂ρ

∣
∣
∣
max

= 0.42.

Finally, evaluating the maximum slope for the estimated value of spontaneous curvature νo ' 0.1

and the upper bound hydrophobic mismatch of MscL, we find
∣
∣
∣
∂η
∂ρ

∣
∣
∣
max

= 0.49 if νo/(ηo + χ) > 0,

and
∣
∣
∣
∂η
∂ρ

∣
∣
∣
max

= 0.36, if νo/(ηo +χ) < 0. While these last three results have slightly higher maximum

slopes than the ε = 0 case, they still suggest that we are within reasonable bounds to calculate the

thickness deformation energy using a low gradient approximation.

2.6.4 Implications of Bilayer Volume Conservation

When examining the mechanics of bilayer deformations around a channel, we considered the bilayer

to be a volume preserving material. In the first part of this section, we quantitatively show that

this is the case, using values of the isothermal compressibility of bilayers [60, 61], the area stretch

modulus, and bilayer thickness [26]. Imagine we compress the bilayer thickness by an amount u

and ask the question — given the elastic parameters, does the bilayer preserve volume and hence

change area, or does the area remain relatively constant at the cost of changing volume? If volume

is preserved, the area change of the membrane will be proportional to the compression u. Indeed,

this was the model espoused throughout this work, but we can be more explicit as to why it is a

good approximation.
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Consider a patch of membrane with undeformed area Ao and undeformed volume Vo. We write

the change in patch area as

∆A = Ao − A, (2.37)

and the change in patch volume as

∆V = A(l + u)− Aol. (2.38)

Treating the bilayer as a linear elastic material, the energy in both area changing and volume

changing deformation modes is a quadratic function of the strain in both modes, written as

Gvol =
B

2

(
∆V

Vo

)2

Vo +
KA

2

(
∆A

Ao

)2

Ao, (2.39)

where KA ' 60 kBT/nm2 is the area stretch modulus [26] and B ' 2 GPa is the bulk modulus of a

typical bilayer known from previous measurements [60, 61]. Equation 2.39 can be rearranged into

a dimensionless form, written as

Gvol =
KAAo

2

[

f

(
∆V

Vo

)2

+

(
∆A

Ao

)2
]

, (2.40)

where the dimensionless material constant f = Bl
KA

is a relative measure of the area compressibility

and volume compressibility – if this value is greater than one, area change is the preferred mode

of deformation, if the values is less than one, volume change is the preferred mode of deformation.

With the aforementioned values of the elastic constants f ' 40. Using eqn. 2.37 and 2.38, we can

rewrite the patch deformation free energy as a function of patch area

Gvol =
KAAo

2

[

f

(
A

Ao
(1 + µ) − 1

)2

+

(
A

Ao
− 1

)2
]

(2.41)

where the dimensionless constant µ = u/l is simply a normalized value of the compression. This

free energy is then minimized with respect to the only variable, the patch area A, to find

(
A

Ao

)

min

=
f(1 + µ) + 1

f(1 + µ)2 + 1
(2.42)

In this same notation, the areal strain is written as

∆A

Ao
=

(
A

Ao

)

min

− 1 (2.43)

and the volumetric strain is written as

∆V

Vo
=

(
A

Ao

)

min

(1 + µ) − 1. (2.44)
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Figure 2.8: Comparison of areal and volumetric strain. Upon compressing a bilayer patch by

an amount µ, the bilayer both changes volume and area, however the bilayer thickness, stretch

modulus, and bulk modulus conspire to conserve volume and allow the membrane to change area,

as shown by the relatively small volumetric strain (green) and the relatively large areal strain (red).

Finally, we are in a position to quantitatively comment on the way area and volume of a bilayer

patch change with compression µ. It is likely that MscL represents a protein whose structural

change is accompanied by a severe change in membrane thickness. As we showed earlier, the

anticipated compression in the open state is µ ' 0.3, and hence we plot the areal and volumetric

strain over a range of −0.3 < µ < 0.3, as shown in Fig. 2.8, demonstrating that under bilayer

compression, volume is conserved and area is not.

The fact that bilayer is generally volume conserving has implications for our understanding of

mechanosensation in general. Up until now, we modeled single channel gating statistics by the

equation

Popen =
1

1 + e(∆Gmem+∆Gprot−τ∆A)
(2.45)

where here ∆A refers to the change in channel area upon gating, ∆Gmem is the component of the

free energy change from membrane deformation, and ∆Gprot is the component from internal changes

in the protein itself. However, operating under the assumption of volume conservation, we derived

the bilayer deformation free energy

Gsingle = πκb

(
uo

λ
+

τ

KA

l

λ

)2 (

1 +
√

2
ro

λ

)

(2.46)

in eqn. 2.8. Expanding the term in parentheses we find both a linear and quadratic term in bilayer

tension. Considering that l/λ = O(1) and τ/KA � 1, only the linear term is important for our

energetic analysis. The linear term can be interpreted as the component of the free energy that is
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due to the area change of the lipids surrounding the protein, and not the protein itself. Consider

the free energy change for a cylindrical protein whose hydrophobic mismatch has an initial value

u
(i)
o and final value u

(f)
o and, for simplicity, whose radius is constant. In addition to the expected

term that is quadratic in uo/λ, there is a term linear in the tension, given by

∆Glinear = τ · 2π
κbl

KAλ2

(

1 +
√

2
ro

λ

)(

u(f)
o − u(i)

o

)

︸ ︷︷ ︸

lipid area change

, (2.47)

that corresponds to the area change of the lipids surrounding the protein. Thus the perceived area

change during an experiment is partly composed of a change in the area of the protein, and partly

composed of a change in the area of the lipids surrounding the protein. This means that changing

bilayer thickness changes both the tension independent contribution to the gating free energy, and

adds a tension dependent contribution that depends on the bilayer thickness relative to the change

in hydrophobic thickness of the protein. Hence we would expect that changing bilayer thickness

changes not only the nominal gating tension of the channel, but also adjusts the sensitivity to

tension upon gating, that is, the slope of the Popen curve. Indeed, the experiments by Perozo et

al. [22] showed both of these effects, a decrease in gating tension and corresponding decrease in

channel sensitivity. The change in sensitivity, and hence change in total gating area, was somewhat

unexpected because the open state conductance properties and hence open state area were identical

regardless of bilayer thickness — alternatively stated — if open state structure is essentially the

same, why would the perceived area change with lipid thickness? The simple argument presented

here qualitatively explains these results, however, experiments that measure the membrane tension

itself (as opposed to the trans-patch pressure), as well as more precise information about channel

structure, would be needed to make a quantitative comparison with this theoretical insight.

2.6.5 Experimental Examples of Bilayer Mediated Interactions

Measuring the changes in conformational statistics of two MscL proteins held at a fixed separation

would allow for quantitative verification of our predictions. Electrophysiology is a common tool used

to probe the conformation of ion channels, and is routinely used to measure the open probability

of a single MscL protein in vitro [21, 23, 22]. Cysteine point mutations on the outer edges of two

MscL proteins [48] could be covalently linked [120, 121, 122, 123] by a polymer with a specific

length (∼ 0.5 − 10 nm) to control the separation distance [124, 125]. Linking stoichiometry could

be controlled genetically [126] to ensure one channel interacts with only one other channel.

Similar experiments have been performed using gramicidin A channels [88]. The conducting

form of gramicidin A is a cylindrical transmembrane protein which, like MscL, tends to compress

the surrounding bilayer [29, 44, 127] and hence have a beneficial interaction. Electrophysiology of

polypeptide-linked gramicidin channels [88] qualitatively supports our hypothesis that the benefi-

cial interaction of the deformed lipids around two gramicidin channels significantly increases the
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lifetime of the conducting state [128]. As another example, recent FRET studies showed that

oligomerization of rhodopsin is driven by precisely these kinds of elastic interactions, and exhibits a

marked dependence on the severity of the deformation as modulated by bilayer thickness [90]. Ad-

ditionally, recent experimental work has shown that the bacterial potassium channel KscA exhibits

coupled gating and spatial clustering in artificial membranes [89].

In summary, we have demonstrated that leaflet deformations are one of the key mechanisms of

bilayer-mediated protein-protein interactions. We provided support for our choice of boundary con-

ditions at the protein-lipid interface, and suggested that extensions of our model for non-cylindrical

shape have exciting possibilities for the specificity of elastic interaction. Finally, we suggested how

one might measure the predicted changes in conformational statistics and drew an analogy to

previous gramicidin channel experiments.

2.7 Computational Methods

To compute the pairwise elastic potentials in Fig. 2.3, we discretize the bilayer height, η(ρ), and

minimize the deformation energy in eqn. 2.5 using a preconditioned conjugate gradient approach.

A separate minimization with the aforementioned boundary conditions, including the zero-slope

boundary condition, was computed for each combination of channel configurations, protein-protein

separation, and bilayer tension. Except in the regions of the bilayer nearby a protein at position

(xo, yo), we use a Cartesian grid with spacing dx = dy = 0.1λ = 0.093 nm. However, since

deformations in the bilayer are largest at the circular membrane-protein interface, we interpolate

between a polar grid at the interface at r = ro and a Cartesian grid along the square S defined by

|x − xo| < ∆, |y − yo| < ∆, where ∆ is chosen to be an integral multiple of dx. This interpolation

ensures an accurate estimate of the elastic deformation energy of a single protein and preserves the

symmetry of the protein in its immediate vicinity.

The lines connecting the grid points along S define nθ angular grid points θi (i = 1, . . . , nθ), and

nr + 1 grid points within the interpolation region are defined by the polar coordinates (rij, θi) =

(ro + δrij/nr, θi), where ro is the radius of the protein and the distance from the center of the

protein to S along θi is ro + δri (e.g., for θi = 0, δri = ∆− ro; for θi = π/4, δri = ∆
√

2− ro. For a

protein in the open or closed configuration, ∆ was chosen such that nθ = 320 or 224, respectively.

The deformation energy determined using this numerical relaxation method is converged with

respect to dx, ∆ and the overall dimensions of the bilayer (18.5 nm× 37.1 nm), and reproduces the

analytic results for a single protein given by eqn. 2.8. The elastic potentials were determined over

the relevant range of channel separations from 0 to ∼ 8 nm (measured from protein edge to protein

edge), and for a range of bilayer tensions from 0 to 3.4 kBT/nm2.
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2.9 Summary of Bilayer-Mediated Interactions

In the first part of this chapter, we described the important role of an elastic bilayer in the function

of, and communication between, membrane proteins. The interplay between the length scale of in-

teraction (a few nanometers) and the energetics of interaction (on the order of 10kBT ) mean elastic

interactions are relevant over a wide range of areal densities; from protein separations on the order

of nanometers up to a micron or more. Transmembrane proteins can communicate information

about their conformational state via the deformations they cause in the surrounding bilayer. We

demonstrated with a model protein, the tension-sensitive channel MscL, how deformations lead to

elastic forces and result in cooperative channel gating. Additionally, we found that elastic interac-

tions strongly correlate conformational changes to changes in spatial organization, aggregating two

channels even at low areal densities, and hence bringing them together over very large distances

relative to their size.

The elastic theory presented here can be easily expanded to include more complex deformation

effects (such as spontaneous curvature) and protein shapes, and is applicable to any protein which

causes thickness deformation in the membrane. Our calculations for the conformational statistics,

average separation, and dimerization are insensitive to the actual stimulus triggering the conforma-

tional change. Hence, we suggest that elastic interactions are likely to play a role in the function

and organization of many membrane proteins which respond to environmental stimuli by forming

functional groups of multiple membrane proteins. Recent work suggests chemotactic receptors in

E. coli function by precisely this kind of spatially clustered and conformationally coupled modality

[129].

2.10 Non-Specific Interactions from Crowding

In this section we explore how protein crowding and phase separation [130] affect the way that

proteins laterally organize. Our previous discussions in this chapter focused on specific interactions

between proteins that are mediated by bilayer mechanics. In a mechanism similar to how crowding

in the cytosolic environment affects chemical reactions and equilibria [131, 132], we hypothesize

that there may be important effects from protein and lipid crowding in a membrane environment,
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a) b) c)

Figure 2.9: Depictions of crowding and depletion zones in two dimensions. a) A crowded arrange-

ment of discs (gray) in a finite area (blue). b) The same discs as in (a), now with small red zones

around each disc showing the excluded zone for the particle shown just under the box. The relative

sizes here reflect the different between the area of lipids and nominal membrane proteins. c) The

same discs as in (a), now with red zones around each disc showing the excluded zone for the par-

ticle shown just under the box. The relative sizes here reflect crowding of membrane proteins by

membrane proteins. The red zones indicate regions where another crowding particle cannot enter,

and in regions where red zones overlap, other crowding particles are completely excluded.

as shown schematically in Fig. 2.9, where the density of proteins is such that neighboring proteins

are generally within a few nanometers of each other [91]. In fact, during the composition of this

thesis, new and interesting research on the effects of membrane protein crowding was published

[133], and advocated for a more systematic look at the effects of crowding in membranes. We will

discuss in detail the effects of ‘ideal’ crowding, that is, crowding from a dilute ‘gas’ of proteins,

as well as some approximate schemes for handling weakly non-ideal crowding. As we show in the

following few subsections, the statistical mechanical ensemble one chooses significantly affects how

crowding tension in the membrane exerts its effect.

First, consider what general forces are at work that give a lipid bilayer its coarse structure.

Hydration energy of the lipid tails, though arguably due to the reduction in entropy of water when

in contact with those tails [134], is essentially an enthalpic effect that causes lipids to aggregate.

The smectic nature of the liquid crystal is due to its amphiphilic qualities, but again is generally

an enthalpic effect [57]. Once the lipids have aggregated into a smectic liquid crystal, the tails

themselves entropically explore space similar to a worm like chain polymer [57], and hence push

against the surrounding tails to gain volume in which to wander around. The result is a competition

between this tail entropy, which prefers more area per lipid, and the hydration forces, that assemble

a membrane into a structure with minimum surface free energy, and a well defined area per lipid

molecule. From this energetic competition the membrane is able to support lateral tension. We

discuss the course structure of a bilayer to build intuition for why lipids do not simply form a

molecular gas when in an aqueous solution, and by way of contrast to the two dimensional gas of
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membranes we are about to discuss, that exist in the bilayer itself.

2.10.1 Ideal Crowding Tension

Consider a nearly spherical vesicle3 with total area A and a dilute (ideal) solution of N membrane

proteins embedded within it. The proteins’ sampling of configuration space includes the entire

metric area of the membrane, which we denote as A, as opposed to some flat plane projection of

that metric area. The partition function is then

Z = AN , (2.48)

where we have neglected the factor of 1/N !, because it does not affect our calculations. Then the

free energy due to entropy is

Gideal = −NkBT ln(A). (2.49)

The spectrum of thermal undulations on a membrane is heavily weighted towards wavelengths

much longer than the size of a typical protein, and on the length scale of a protein, the bilayer is

exceptionally flat due to the bending stiffness (see Section 4.5 for details). Considering that the

proteins can explore the metric area of the membrane, flattening of these long wavelength thermal

fluctuations does not make more area available to the proteins; only a change in the area per lipid

adds configurational area. Thus an appropriate description of the bilayer is a linear elastic material,

where the metric area of the lipid bilayer at zero lateral tension is Ao and with an areal strain the

area becomes A = Ao(1 + φ), where φ is the areal strain. In the ideal limit, the area taken up by

proteins is negligible compared to the total membrane area, and hence this equation for A is valid.

When stretched, the membrane elastically stores energy

Gstretch = Ao

∫ φ

0
τ(φ′)dφ′ = Ao

KA

2
φ2, (2.50)

resulting in the total free energy for the vesicle with dilutely embedded proteins

G = Gideal + Gstretch = −NkBT ln(Ao(1 + φ)) + Ao
KA

2
φ2. (2.51)

The equilibrium value of areal strain is found by solving

∂G

∂φ
= 0 (2.52)

for φ, yielding

φ =
1

2

(√

1 +
4

δ
− 1

)

' 1

δ
, (2.53)

3We assume that the vesicle has some amount of free area, but that the shape is roughly that of a sphere.
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where δ = KAAo/NkBT is a dimensionless measure of stretch energy compared to thermal entropic

energy. In the dilute limit, where δ → ∞, the crowding tension on the bilayer is independent of

bilayer properties, and is given by

τc = kBT
N

Ao
= kBTc. (2.54)

Note that this tension is always positive, meaning it pulls on the bilayer in an attempt to make

more configurational area available to the diffusing proteins. In the dilute solution for typical values

of the stretch modulus in phospholipid bilayers (e.g. KA ' 60 kBT/nm2), δ � 1.

2.10.2 Slightly Non-Ideal Crowding Tension

Keeping the same physical picture and ensemble, where the number of lipids and proteins is fixed,

we now consider a more crowded vesicle where the area available to each protein to wander around

is actually reduced by the presence of the other proteins. The area of the lipids in such a vesicle is

A` = Ao(1 + φ), (2.55)

where Ao is the unstressed area of the lipids. The total area of the proteins is then simply Ap = Nα,

where α is the area per protein, such that the total area of the vesicle is Atot = A` + Ap. Then the

available area for any one protein to wander around is

Aent = Atot − N
α

pmax

= A` − Nα
(
p−1

max − 1
)

= A`

(

1 − Nα

A`

(
p−1

max − 1
)
)

, (2.56)

the constant pmax = π
√

3/6 ' 0.907 is the maximum 2D packing fraction for discs. Effectively, this

is subtracting from the total area of the vesicle N hexagonal unit cells of area α/pmax, to give a

more accurate measure of the area in which any one protein can wander. From this equation, we

can see that the ideal gas assumption is indeed the dilute limit Nα/A` � 1. Then the partition

function of this system is

Z =
(
A` − Nα

(
p−1

max − 1
))N

. (2.57)

This partition function is the popular approximation [135] that leads to the equation of state for a

2D hard disc gas

τc = kBT
c

1 − c
cmax

, (2.58)

when the derivative is taken with respect to Atot, but we are asserting that proteins are incom-

pressible, and it is only A` that can change. The parameter cmax = pmax/α is the maximum packing

concentration of discs in 2D. Then the entropic component of the free energy is

Gnon-ideal = −NkBT ln
(
A` − Nα

(
p−1

max − 1
))

. (2.59)
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Like before, the elastic energy stored in the bilayer is

Gstretch = Ao
KA

2
φ2, (2.60)

so that the total free energy is

G = Gideal + Gstretch = −NkBT ln
(
Ao(1 + φ) − Nα

(
p−1

max − 1
))

+ Ao
KA

2
φ2. (2.61)

Again we solve ∂G/∂φ = 0 to find the entropic areal strain

φ =
1

2

[√

(ε − 1)2 +
4

δ
+ ε − 1

]

, (2.62)

where the new constant,

ε =
Nα

Ao

(
p−1

max − 1
)
, (2.63)

is the ratio of the total close-packed interstitial area to the total area of unstressed lipids, and δ is

defined immediately after eqn. 2.53. The value ε = 1 signifies that all available lipid is packed into

the interstitial sits of the hexagonal protein crystal. The value of ε is generally between 0 and 1,

however, values greater than 1 are possible, simply corresponding to the case where all protein is in

a close-packed disc crystal and there is stressed lipid in the interstitial area. For a situation where

the proteins are nearly close-packed, and hence ε ' 1, φ ' δ−1/2. Generally, this equation of state

does a good job of accounting for the first few terms of the real Virial expansion of the non-ideal

hard disc gas, and contains a singularity in the right place (i.e. when the packing fraction reaches

pmax), however, the order of the singularity is not correct [135].

Examining δ we find it is a constant, KAao/kBT ∼ 35, connected to the stretch stiffness per lipid

(ao is the unstressed area per lipid), multiplied by the molar ratio of lipid to protein, N`/N . If the

area per protein is 10 nm2 and each protein is occupying twice as much area as the minimum unit

cell (α/pmax), then the lipid associated with each protein uses ∼ 12 nm2, or ∼ 20 lipids. Using these

values, the molar ratio of lipid to protein is twenty, and then the δ ' 700, ε ' 0.09, φ = 0.0016,

and τc = 0.09 kBT/nm2.

Let us estimate what this means for the crowding tension felt by lipids in the bilayer. If the

proteins are fairly densely packed (only 25% more area than the minimum unit cell) then for a

10 nm2 protein, the area of lipid is ∼ 3.8 nm2 or about 6 lipids per protein. Then δ ' 220, ε ' 0.27,

φ ' 0.0062, and τc ' 0.36 kBT/nm2. Already this suggests some interesting possibilities for lipids

in the bilayer, if there are organizational principles in membranes that are dependent on the lateral

tension felt by lipids, this protein induced crowding tension may be important. Additionally, this

means that in a protein dense membrane, there will be a chemical potential benefit for lipids to join

the bilayer, distinct from the aforementioned hydrophobic effects. This crowding tension is felt by

the lipids, but the overall effect on embedded proteins remains unclear, although we will explore
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Figure 2.10: Plot showing the effects of material constants and protein concentration on the osmotic

areal strain in the bilayer. This plots show how the areal strain (φ) in the slightly non-ideal crowding

tension model depends on the dimensionless material constant δ, and the dimensionless protein area

occupancy ε. Multiply φ by ∼ 60 kBT/nm2 to get the corresponding osmotic lateral tension.

two physical scenarios below.

2.10.3 Proteins that Change Area

Given the analysis of Section 2.10.1, we question what overall osmotic tension is felt by an embedded

membrane protein, and more specifically, we ask what happens if a protein changes area? As an

initial inquiry, and to build intuition, we will simply assume that there are N −1 crowding proteins

with area α and one area-changing protein with area αc. Recall that in both of the previous cases,

the area available for proteins to explore was the bilayer area. Given the rather small areal strains

that we would expect from the previous analysis, let us assume the area per lipid is constant, then

the canonical partition function is

Z = AN
o , (2.64)

where Ao is the area of the bilayer. So long as the number of proteins and lipids remains constant

in the system, a change in protein area, represented by a change in αc, does not change the metric

area of the bilayer. Thus, to lowest order, the net crowding tension felt by embedded proteins is

zero. Alternatively said, as far as an area-changing protein is concerned, the positive tension on the

membrane due to expansion of the protein gas is exactly balanced by the negative osmotic tension

of those same crowding proteins, as schematically shown in Fig. 2.11b.

In this problem, the ensemble we choose plays a critical role. One example of an ensemble where

the area changing protein does feel a crowding tension, is when the total area of the vesicle is held

constant, and the protein area αc is allowed to change, necessitating that more lipid be added. In



80

this case, the partition function would be

Z = (Ao + α(o)
c − αc)

N , (2.65)

where α(o)
c − αc is the area of lipid added as the initial protein area, α(o)

c , changes. Then the free

energy is

G = −NkBT ln(Ao + α(o)
c − αc), (2.66)

and the crowding tension would be

τc = −kBT
N

Ao
· 1

1 − α
(o)
c −αc
Ao

︸ ︷︷ ︸

'1

= −kBTc, (2.67)

where the approximation indicated by the bracket is valid for any sufficiently large system. Thus we

see that this ensemble generates a net compressive tension, or alternatively, this could be viewed as

the tension felt by an external membrane reservoir. In other words, the current ensemble becomes

relevant if there is a reservoir of lipid from which lipids can be added to the vesicle to hold the

area constant during the area change of the protein. The current physical scenario is similar to a

conserved volume container with gas, where if one of the gas particles changes size, that change in

volume is available to the configurational volume of the other molecules. However, in a bilayer, the

medium in which the particles are diffusing is essentially incompressible, thus a change in protein

size translates to a change in ‘container’ size. From the perspective of crowding tensions that affect

protein conformations, this is a dubious physical picture (as discussed in the following section)

because it holds the total vesicle area constant, when in reality, on the time scales for protein

conformational area changes (on the order of microseconds [43]), we want to hold the total number

of lipids and proteins constant.

2.10.4 Choosing an Ensemble

While there are myriad scenarios where the choice of ensemble has little effect on the overall

thermodynamics of a system, this does not seem to be one them. Due to the fact that we are

calculating the configurational entropy of proteins within a certain available area, and that area

depends on the ensemble we choose, the ensemble plays a key role in the physical interpretation of

crowding tension. Additionally, the time scale of interest affects what ensemble is reasonable. For

instance, consider a large vesicle that encloses machinery capable of producing new lipids over time -

part of what one might call a simple model of a cell. Simultaneously, this vesicle has some population

of membrane proteins that can change their areal footprint. If the time required to produce and

incorporate a group of lipids, whose area is comparable to the area change of the protein, is much

longer than the time scale of the protein conformational change, it seems reasonable that the right

ensemble to choose is one of fixed protein and lipid number, as we did above.
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In fact, we can estimate and compare these time scales, at least in the microbial setting. For

instance, consider the nominal dimensions of an E. coli bacterium (a pill of length ∼ 2 µm and

radius ∼ 0.5 µm), whose area corresponds to approximately 107 lipids per leaflet4, with the area

per lipid ∼ 0.6 nm2 [136]. Under the best, and hence fastest, growth conditions, the bacterium will

divide approximately every ∼ 1200 s (20 minutes), meaning that, at their fastest, lipids must be

incorporated at a rate of approximately one lipid per 100 µs. On the other hand, the well studied

channel protein MscL has a gating time scale of ∼ 5 µs [43], and for this particular channel, a rather

large change in area upon gating of O(10 nm2) = O(10 lipids) [21, 50, 19]. Thus on the time scale

of protein conformational change, the area of the lipids added, as compared to the area change

of the protein, is small. Hence, it seems that the appropriate ensemble for studying the effects of

crowding on channel gating, even for proteins whose area change is a tenth of MscL, is the fixed

particle number ensemble, in which the net crowding tension on the channel is zero (in the ideal

limit), as shown in Fig. 2.11. It should be noted that this equilibrium world view may be inaccurate

in the fast-paced setting of a dividing cell.

If on the other hand, we are concerned with the behavior of this system on much longer time

scales, the fixed particle number ensemble is likely not appropriate. While it is difficult to know the

‘right’ ensemble in the various contexts relevant to a cell, we can make a general and interesting

comment, rooted in a basic understanding of configurational entropy. A simple calculation of

configurational entropy shows that the maximum degree of entropy is reached when half of the

available sites for a protein to occupy are filled. This suggests that, at least from an entropic

perspective, there is an energetic driving force that prefers the area taken up by lipids and the area

taken up by proteins in the membrane, to be equal. With no claims of causality, it is interesting to

note that cellular measurements of the relative areas of lipid and protein are approximately one to

one in various biological membranes [91], in line with this notion of maximizing the configurational

entropy.

An interesting result of the fixed particle number ensemble in the ideal limit is that regardless of

dimensionality, particles immersed in an incompressible medium (like water or a bilayer) experience

zero net osmotic forces per unit length (2D) or area (3D). This is not to say that there are no effects

from crowding; indeed an excluded area force exists, as we will show in the next section.

2.10.5 Excluded Area Effects

This section does not present any new work, and indeed, excluded volume forces have been a topic

of intense research interest for decades [137]. In the context of lipid bilayers, there has been some

work exploring the effects of excluded area forces, due to the depletion of lipids between proteins

[93], however our discussion here is more centered on excluded area forces arising from a population

of crowding proteins. This calculation is included for the sake of completeness in the context of

4This assumes the leaflet is made up entirely of lipids, but considering the mass ratio of protein and lipid in many

membranes is roughly one to one [91], this is correct within a factor of two.
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a) b)

Figure 2.11: Schematic showing how protein expansion tension couples to the bilayer equation of

state. a) The upper layer represents the protein configurational space, while the lower layer is a

bilayer. Proteins, shown as blue circles, thermally wander around in the upper layer and exert an

expansive tension on the boundary as shown by the arrows. Demanding that the area of the upper

and lower layers be equal, is equivalent to saying that the proteins remain in the bilayer; then the

expansive tension couples directly to the elastic equation of state of the bilayer below. b) Upon

insertion of an area changing element, it is clear that the crowding proteins in the upper layer exert

a compressive tension on this element, while those same proteins couple to the equation of state in

the lower bilayer, causing an equal and opposite expansive tension. Thus there is zero net tension

on the area changing element.

discussing crowding effects. While it might seem that the previous calculations of crowding tension

affect how we think of excluded area forces, the following calculations demonstrate that these forces

remain intact.

Consider a box of area A with N diffusing particles of radius R and two blocks a distance D

apart, as shown in Fig. 2.12. Choosing either the fixed particle or fixed area ensemble does not affect

this situation because no particles are changing size and the particle numbers are being conserved.

The distance between the blocks does not affect how much area is available to the blocks, hence we

need not consider the conformational entropy of the blocks. However, the area available to each

diffusing particle is

Aent = A − Nαp−1
max − Θ(2R − D)D` (2.68)

where ` is the length of the blocks, α = πR2 is the area of the diffusing particles, and Θ is the

Heaviside function. The partition function is then

Z =
(
A − Nαp−1

max − Θ(2R − D)D`
)N

, (2.69)

and the free energy is

G = −NkBT ln
(
A − Nαp−1

max − Θ(2R − D)D`
)
. (2.70)
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Figure 2.12: Depictions of origin of excluded area forces. Particles of radius R (green) interact

with two larger blocks (blue) in a 2D plane. a) If the distance D between the blocks is greater than

2R there is no net change in area available to the crowding particles, and hence no excluded area

force. b) When the distance between the blocks is less than 2R, there is an excluded zone between

the blocks, shown in red, that will entropically cause the blocks to attract. c) Potential between

the blocks in the dilute limit as a function of separation distance D in units of kBT .

For simplicity, let us assume the ideal limit, which amounts to letting α → 0, and the potential

between the two blocks is then

G(D) = −NkBT

[

ln(A) + ln

(

1− Θ(2R − D)
D`

A

)]

. (2.71)

For any sufficiently large system D`
A � 1, and we can zero the potential to find

G(D) = kBTc ·Θ(2R − D)D`. (2.72)

Thus the same analysis we used previously shows that excluded area forces exist, with an initial

energy barrier of 2R`c kBT at D = 2R, and an attractive force below that of F = −c` kBT . To

make a rough estimate, let us assume these ‘blocks’ are proteins with length ` = 10 nm, and there

is a concentration of crowding proteins of c = 0.001 nm2, then the depletion force is on the very

relevant scale of F = 1 pN.

2.11 Crowding in a Lipid Domain

As a transition to the next chapter, which will discuss phase separation and formation of lipid

domains, we take a look at how proteins with a hydrophobic mismatch that is better suited to

a lipid domain, energetically segregate themselves into a domain. This has relevance to both the

specific interactions we discussed, in that the hydrophobic mismatch considered here is the same

mechanical effect we discussed earlier. Likewise, the osmotic tension of proteins in a domain will

be an important effect, and hence this section serves to demonstrate one particular union between

specific mechanical and non-specific entropic effects.
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Consider a domain whose lipids occupy an area AD and proteins with fixed area α. Due to

the membrane thickness difference between the domain and the surrounding membrane, there is

an energy cost per unit boundary length γ around the domain [130, 138]. We assume that due to

the difference in membrane deformation around the protein outside and inside the domain, there

is a fixed energy benefit −µ for the protein to enter the domain — this can be calculated from

membrane mechanics and is generally related to the difference of the squares of the hydrophobic

mismatch in the two lipid regions and the protein in question, although strictly speaking there are

contributions from the size of the protein, relative to the size of the lipid domain. Given these

assumptions, we see that the free energy for N proteins to enter a domain at T = 0 is

G = 2
√

πγ
[√

AD + Nα −
√

AD

]

− Nµ, (2.73)

where the first terms accounts for the change in unfavorable lipid domain boundary length upon

entry of a protein, and the second term is the elastic benefit of a protein entering a domain. We

define the dimensionless constant5

χ =
γα

µ
√

AD

, (2.74)

which can be interpreted as the ratio of the compressive tension on the domain from the unfavor-

able boundary, to effective tension on the protein when entering the domain. We also define the

dimensionless protein concentration as

η =
Nα

AD

. (2.75)

For a domain that contains proteins, this parameter measures the area taken up by proteins relative

to the area taken up by lipids within the lipid phase boundary. Finally, a natural energy scale can

be defined, such that the energy is normalized by

Go = β
µAD

α
, (2.76)

where β = 1/kBT , yielding the dimensionless energy

G = Go

[

2
√

πχ
(√

1 + η − 1
)

− η
]

. (2.77)

Recall that the maximum packing density is pmax, hence the maximum dimensionless particle num-

ber is ηmax =
(
p−1

max − 1
)−1 ' 9.74. This energy function has a number of interesting features. Upon

examination, one finds that the energy decreases with increasing protein concentration as long as

χ < π− 1
2 , up to ηmax. For values of χ greater than this critical value, there is an energy barrier for

proteins to join the domain. For a given domain size and line tension around the phase boundary,

this means that proteins that are too large (α) and/or proteins whose chemical potential from

hydrophobic mismatch (µ) is too small will be energetically inhibited from joining the domain, up

5We apologize for the redundancy in parameter naming, but there are only so many Greek and Latin letters.
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to a point. Above this critical value, the maximum of the energy barrier is located at χ = π− 1
2 , and

hence if the dimensionless protein concentration in the domain is greater than this value, the free

energy change for other proteins to join the domain again becomes negative. Hence, this has the

appearance of nucleation a problem, with a twist. If the domain size is large, and the protein size

is small, and/or the chemical potential is very favorable, any addition of protein is energetically

beneficial. Although, above the critical value of χ, there is a critical protein concentration, below

which addition of the proteins to the domain is inhibited. Generically, this means that larger do-

mains are more promiscuous than smaller domains, about which proteins are energetically favored

to enter. Thus, the values of the parameter χ determine a domain’s ability to segregate proteins

by hydrophobic mismatch, with higher values of chemical potential µ corresponding to stronger

enrichment of the corresponding protein in the domain.

To include the effects of entropy in the ideal limit6, we define the fixed concentration of protein

outside the domain as co and the concentration of protein inside the domain is

c =
N

AD + Nα
=

1

α
· 1

1
η + 1

' η

α
=

N

AD

, (2.78)

where to get analytical answers, we have taken the limit of low protein concentration, η → 0, such

that the entropic component of the chemical potential for a protein to enter the domain is

µc(n) = kBT ln

(
c

co

)

= kBT ln

(
n

coAD

)

, (2.79)

where n is the integration variable for the number of proteins, as shown below. Making use of

this result from the statistical mechanics of an ideal gas, allows us to skip the laborious spatial

integrals that pertain to the position of each protein in the system. The free energy contribution

from entropy is then

Gc = β

N∑

n=1

µc(n) = ln

[

N !

(coAD)N

]

. (2.80)

Then the total free energy is

Gtot = Go

[

2
√

πχ
(√

1 + η − 1
)

− η
]

+ ln

[

N !

(coAD)N

]

, (2.81)

and the mode concentration of proteins in the domain, in the limit of low protein concentration

and large domain area, is found by solving ∂Gtot/∂N = 0 , to give

N

AD

' coe
βµ(1−χ

√
π) = coe

β

„

µ−γα
q

π
AD

«

, (2.82)

6It is a relatively straightforward extension to include non-ideal terms in the entropy.
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Figure 2.13: Normalized concentration enrichment as a function of the domain area for α = 10 nm2

and γ = 0.4 kBT/nm. Note that as the domain area grows, the concentration enrichment increases,

but the rate of that increase drops past a certain domain area, as indicated by the dashed line.

and further

c

co
= e

β

„

µ−γα
q

π
AD

«

, (2.83)

with c ' N/AD. As domain area grows larger, and the marginal cost in line tension for adding a

new protein shrinks, and we approach the maximum enrichment factor

c

co
= eβµ. (2.84)

Figure 2.13 plots the concentration enrichment, normalized by this maximum enrichment, as a

function of the initial lipid domain size. More work remains to better understand how the mechanics

of a phase separated bilayer, and the hydrophobic mismatch of an embedded protein work in concert

to segregate specific proteins into domains, but this section serves as good launching point.

2.12 Concluding Remarks

This chapter was about interactions between proteins. In the first few sections we showed that

the deformations of the lipid bilayer due to thickness mismatch encode specific information about

protein state, and not only allow proteins to exert specific forces of attraction or repulsion on

each other, but also imbue a protein dense membrane with a generic form of protein cooperativity

and communication. Work is ongoing to understand how protein shape, that is deviations from a

cylindrical shape, affect these interactions, as well as what relevance they might have to the way

proteins in real biomembranes assemble and interact (e.g. chemotatic receptors in bacteria [129,

139]). We then discussed a set of non-specific, and more generic interactions between membrane
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proteins that arise from crowding in the membrane. We calculated an approximation for the

depletion force due to crowding, finding it has a relevant scale of around one pico-Newton. We

found that likely on the time scales of protein conformational changes, the appropriate choice of

ensemble for crowding is fixed particle number, and thus likely there is a corresponding zero net

crowding tension. On the other hand, crowding likely serves as an energetic bias that prefers

the addition of lipids, and might even be at work setting the coarse lipid-protein areal ratio in

membranes. Lastly, we combined a subset of this information to begin to understand how lipid

domains might be able to both specifically select and enrich the concentration of certain proteins

within their borders. All of these projects are ongoing, and we hope that the varied stories each of

these physical effects tell will come to some convergence in our future work.
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Chapter 3

Volumetric Flow in Protein Channels

“A scientist prizes what he does not understand at least as much as what he does.” – Unknown

3.1 Not All Are for Ions

As a cell grows and eventually divides, a host of processes are in play to manage cell size and

partition internal components. Broadly speaking, the genome must be replicated and partitioned,

new membrane and cell wall (where applicable) must be synthesized, and throughout the process

of continual growth, cell and organelle volume must be managed in accordance with the rate of

production of lipids, cell wall material, and internal components [15, 14]. Permeation of water

through the membrane is a passive process [140], which when driven by osmotic gradients can serve

as a mechanism for volume management. Though beyond that, cells have a number of membrane

channels whose main purpose is to move water and osmolytes [141], for instance the well know

protein family of aquaporins [142, 143] and aquaglyceroporins [144, 145] is found in nearly all

organisms. In some cases, the channel activity is coupled to membrane tension [71, 73], indicating

that transmembrane pressure may be the basal physiological regulator of their conformational

state. In particular, bacteria [69, 11, 18, 24] and, by homology, certain plants species [17] have

developed a set of membrane tension sensitive channels that, by virtue of their ability to rescue

microbes from osmotic shock or regulate organelle morphology in plants, respectively, are ostensibly

involved in volume management. In both the microbe and plant cases (and aquaporins as well),

absence or mutations of these channels has serious deleterious effects on the organism under certain

physiological conditions. Yet, despite their clearly important role in cellular physiology, there are

two aspects of these channels that are relatively unexplored. First, as we have discussed at length

in Chapters 1 and 2 of this thesis, details of the mechanical interaction between lipids and these

channels remain largely at a hypothetical stage, where in Chapter 1 we discussed the possible effects

of lipid mechanics on channel function. The second set of questions, which we will explore in more

detail in this chapter, revolve around the volumetric flow properties of these channels in a physical

sense. More specifically, the manner in which water osmolytes move through the channel pore

present us with fertile ground for experimentation. A few well-formed questions have motivated

our thinking on this topic, in particular: What is the relationship between pressure gradient, pore

size and flow through the channel? Does the flow follow ‘typical’ low Reynolds number properties
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of a small pipe? Does the flow exhibit any effects from the fact that the pore is only an order of

magnitude larger (or less) than the size of the particles passing through it? Do thermal fluctuations

of the water and solute molecules affect the flow properties of the channel?

A huge amount of experimental effort has been expended to understand the gating properties

[21, 22, 50, 49] and structure [11, 18, 146, 19] of the microbial channels, as well as propose possible

functions in vivo [147, 148, 149]. In these explorations, electrophysiology has been an indispens-

able tool in measuring the conformational states of channels (i.e. conducting or non-conducting

states) as well as probing what physiological factors cause these changes in conformation [21, 50]

(e.g. transmembrane voltage, tension, or ligand concentration). In accordance with their proposed

function as regulators of volume and/or pressure (depending the physical viewpoint), and the fact

that the membrane is essentially impermeable on time scales of channel gating [43], these channels

must be sensitive to the pressure acting on the membrane. Indeed, in a system where the enclosed

volume and membrane surface area are conserved on time scales relevant to volume flux through

these channels, membrane tension is a reporter of pressure and enclosed volume. In particular, the

Laplace-Young relation [65] relates the mean curvature of a surface to the pressure drop across it

and surface tension on it (in the absence of bending). Using this relationship, many important

material properties of membranes have been gleaned through the use of micropipette aspiration

[140, 26, 150].

In this chapter we perform a series of calculations aimed at estimating channel flow proper-

ties and constraining the range of parameters that might be seen in experiments that attempt to

measure those properties. On the experimental side, we will discuss at length how to measure the

ensemble flow properties of the bacterial mechanosensitive channel of large conductance (MscL),

using both wild-type and mutant forms, to gain a better understanding of both the lipid-related

gating behavior and the nanoscopic flow across a membrane. Additionally, we will present prelim-

inary experimental results on pressure-driven water flux across a bilayer, as a proof of concept of

the proposed volumetric channel flow measurement.

3.2 Gating and Conductance Properties of MscL

In their varied environments, microbes are subject to a number of different mechanical forces,

and must be able to compensate for potentially large differences in the external osmotic pressure,

as schematically shown in Fig. 3.1. In particular, it was observed that bacteria could survive

high degrees of hypo-osmotic shock by selectively releasing ions and other uncharged osmolytes

rapidly after osmotic down shock [148, 149]. Much of this osmolyte transport was traced back

to a large pore channel in the inner bacterial membrane, composed of five monomers, each 125

residues in length and about 15 kD in mass [11], that seemed to be sensitive to pressure gradients

and/or membrane tension [147, 151]. Given the now standard tools of bacterial molecular biology

and protein purification, such a channel is a good place to begin studying volume and osmolyte
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Figure 3.1: Hypo-osmotic shock in E. coli. Schematic showing how bacteria cope with rapid

reduction in the external, absolute osmotic pressure. First row: cells initially in equilibrium with

the surrounding osmotic pressure are subject to hypo-osmotic shock. Water rapidly permeates

across the membrane increasing cell volume and raising membrane tension. At some critical tension,

mechanosensitive channels open, increasing the influx of water, but also allowing the cell to jettison

some portion of its internal osmolytes, thereby returning to equilibrium with the external osmotic

pressure. Second row: upon hypo-osmotic shock, cells that lack mechanosensitive channels increase

in volume, membrane tension increases, and without alleviation of the internal osmotic pressure

and corresponding membrane tension, the membrane ruptures resulting in cell death.

movement on the scale of a single cell.

The low copy-number [112] (∼ 10 per cell) bacterial channel MscL is an excellent target for

studying how water and osmolytes move across a membrane when a pressure gradient, and corre-

sponding membrane tension, are present. It has been conclusively shown that membrane tension

is the key physical parameter that regulates the gating of this channel [21, 50]. The channel does

not exhibit any strong ion selectivity, again suggesting that its purpose is not to move ions, per

se, but to allow flow of water and/or osmolytes. In the microbial setting, the pressure gradient

across the inner membrane couples to the radius of curvature of the membrane to produce a lateral

tension on the membrane surface. At relatively low membrane tension the channel adopts a closed,

non-conducting conformation, while at tensions near the rupture tension of a typical bilayer, the

channel transitions to an open state, and spends relatively little time in sub-conducting states

[21, 50, 49]. For this reason, we can reasonably approximate the channel, mechanically coupled

to the membrane, as a two-state system whose equilibrium probability for being in either state

is influenced by the bilayer tension. As we will show in the following subsections, experimental

techniques are available to quantitatively control the tension on giant unilamellar vesicles in such
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Figure 3.2: Schematics showing the hypothetical structural transitions of MscL. a) Side and top

views of the transmembrane α-helices (TM1 and TM2) as they transition from the closed to pro-

posed open state, in an iris-like mechanism. b) View of the pore cross-section during the same

three stages of the closed to open transition, showing that the pore gets wider and shorter going

from closed to open. c) Detailed view, with dimensions, of the orientation and resultant pore size of

the transmembrane α-helices in the open state as measured from electron paramagnetic resonance.

Figure adapted from [19].

a way that we can control which channel conformation dominates.

In the open state, the channel pore is relatively large [146, 19, 75], approximately 3 nm in

diameter (as compared to the pore sizes of channels that conduct single chains of water [145] or

ions [78, 152]) and ∼ 2.5 nm in length [49, 146, 19], as schematically shown in Fig. 3.2. With a pore

of this size conducting ∼ 4nS1, the electrical conductance is ∼ 10 − 100 times larger than typical

ion channels [153], and in fact is so large that even small proteins can pass through [75, 154]. If

our goal is to construct an experiment capable of measuring the water and osmolyte flux through

a channel, the large size of this channel’s pore makes it a good target for studying how a variety

of osmolytes, with different sizes and hydration shells (e.g. glycerol, sugars, urea, amino acids and

small peptides) affect channel flow [148, 149]. Similarly, the large pore means that the flux per

channel will be relatively high, in comparison to the aforementioned water transport channels, and

thus we expect the contribution to the volume change of a vesicle or cell from each channel to be

relatively high.

Additionally, this particular channel has the advantage that it does not exhibit significant

1By comparison a copper wire with these dimensions would conduct a whopping 170mS, or 40 million times more

current!
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transitions to, nor latency in, non-conducting states [49], like those seen in other mechanosensitive

channels [24]. This feature will prove crucial to our experimental construction, since it means

that for a given tension, the equilibrium probability that the channel is in the open state remains

constant in time, or put another way, the channel is a well behaved two-state system (closed and

open). This gives us confidence that the behavior of the channel is described well by the relatively

simple dose-response curve shown in Fig. 3.3. The free energy difference between the open and

closed states has three main contributions, as were discussed earlier in Chapter 1. The increase in

channel area couples to membrane tension to give a free energy contribution of the form −τ∆A,

while the change in the deformation of the surrounding membrane and internal structure of the

protein give contributions ∆Gmem and ∆Gprot, respectively. Measurements of the area change upon

gating span a range from 6.5 − 7 nm2 [21, 50] up to ∼ 20 nm2 [23]. The free energy difference

coming from membrane deformation has already been discussed in detail in Chapter 1. In contrast,

relatively little is known about the free energy component coming from rearrangements of the

protein’s internal structure or hydration of the pore [34, 98], although this contribution will be

discussed in later sections of this chapter. Measurements of the free energy of channel gating, in

different lipid bilayer compositions, range from ∼ 15− 20 kBT [21, 50] up to ∼ 50 kBT [23], and we

will use 20 kBT as the typical value. Together, these contributions yield the open state probability

as a function of tension given by

Po(τ) =
1

1 + e(∆Gmem+∆Gprot−τ∆A)/kBT
. (3.1)

Though we do not know the precise molecular origins of the protein free energy ∆Gprot, we do know

that its contribution can be made to favor the open state via single point mutation of residues lining

the channel pore; the use of such mutants will be discussed later in this chapter. With these facts in

mind, we are now in a position to (conceptually) build an experiment, using MscL, that measures

the ensemble volumetric flow through a protein pore, though first we will build intuition for how

bilayers with and without volumetric channels respond to osmotic shock.

3.3 Modeling Hypo-Osmotic Shock

The following few subsections discuss the volumetric measurement, and its theoretical background,

in detail. We begin with a series of thought experiments that will help us understand how osmolarity,

elasticity, pressure, volume, and permeation relate to one another to establish the behavior of an

osmotically shocked vesicle. To begin, we consider a large membrane sphere composed of a single

bilayer of lipids that contains the channel protein MscL at a molar ratio, m, with the surrounding

lipid, where m � 1.2 This so-called ‘giant unilamellar vesicle’ (GUV) has some initial radius Ro,

2In later parts of this chapter and accompanying appendices, we discuss how to create such vesicular structures as

well as reconstitute channels into them. Molar ratio is used because this is an unambiguous measure of the relative

protein and lipid content, as opposed to mass ratio.
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Figure 3.3: Experimental dose response curves of MscL under tension. a) Five different traces of

MscL channel activity as a function of membrane tension in an electrophysiological bilayer patch

composed of a 1:1 molar mixture of PE:PC lipids, as measured using the Laplace-Young relation.

The mean free energy of transition, ∆Gmem + ∆Gprot, and mean area change of the channel, ∆A,

are shown on the graph. Plotted as a function of pressure gradient across the patch, these curves

do not line up nearly as well [50]. These traces represent some of the lower measured values for

both gating parameters, ∆G and ∆A, which are highly correlated as shown in (b) for each of the

five traces and [23]. Raw data kindly provided by P. Blount [50], and reprocessed by the author.

that specifies the volume Vo and surface area Ao. At the onset, we presume the concentration of

osmolytes inside and outside the vesicle is equilibrated such that the resting membrane tension is

close to zero; or in other words, the pressure gradient across the membrane is zero. Assuming the

osmolytes are dilute, we can use the ideal gas approximation (in this setting often referred to as

the ‘ideal solution’ approximation) to calculate the absolute osmotic pressure outside the vesicle as

p
(O)
1 = α1c̄1kBT, (3.2)

and the absolute osmotic pressure inside the vesicle as

p
(O)
2 = α2c̄2kBT, (3.3)

where c̄i is the number concentration per unit volume of solute molecules in the two regions,

proportional to the molarity, αi is the van ‘t Hoff coefficient which relates molarity to osmolarity,

kB is Boltzmann’s constant (1.38× 10−23 J/K), and T is the temperature (' 300 K). To consider

mixed osmolytes, one simply uses the sum of osmolarities of the individual components,
∑

i αi c̄i,

according to Raoult’s Law, analogous to the law of partial pressures. For ease of notation, we

refer to the concentration of osmolytes as ci = αic̄i. With the external volume much larger than

the volume enclosed by the vesicle, we presume the external, absolute osmotic pressure remains

constant, unless we as the experimentalists cause a change in external osmolarity. Then the osmotic
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pressure gradient across the membrane is ∆p(O) = (α1c̄1 − α2c̄2)kBT = (c1 − c2)kBT , where every

44 mOsm difference in osmolyte concentration corresponds to approximately one atmosphere of

pressure. In the experiments we propose below, the internal osmolyte is sucrose, with a van ‘t

Hoff coefficient of α1 ' 1.12, and the external osmolyte is glucose, with a van ‘t Hoff coefficient of

α2 ' 1.06 [155]3.

The Laplace-Young Law [65] allows us to easily calculate the membrane tension for a spherical

vesicle with a pressure gradient. As a two-dimensional fluid, the bilayer does not accumulate

shear stress, and hence any tension that exists on the membrane is equal everywhere. Then the

energy of this spherical vesicle has three contributions, coming from bending of the bilayer into

a spherical shape, tension on the bilayer surface, and PV work of the volume enclosed by the

membrane. The bending energy of a sphere is proportional to bending stiffness of the membrane,

κb ' 20kBT [26, 51], and is calculated using the area and constant mean curvature of a sphere,

to find Ebend = 8πκb ' 500 kBT [57]. Since the bending contributes a constant energy for any

size spherical vesicle, it has no effect on the overall vesicle size. The remaining free energy of the

spherical vesicle as a function of vesicle radius, R, is written as

E = τ4πR2 − ∆p
4π

3
R3. (3.4)

Solving for the sphere radius with minimum energy, ∂E/∂R = 0, gives the tension on the vesicle

surface (τ) as a function of radius and pressure gradient, τ = ∆pR/2.

With these facts in mind, let us conduct two thought experiments. First, consider what hap-

pens to such a vesicle under conditions of hypo-osmotic shock, where the external concentration of

osmolytes drops sharply, to produce a relatively large inward pressure gradient. In the absence of

membrane volumetric channels, there are two mechanisms by which the pressure can equilibrate.

First, water can permeate across the membrane into the vesicle in an attempt to equilibrate the

internal and external osmolyte concentrations, thus increasing the enclosed volume. Second, the

sugar molecules (or other relevant osmolytes) themselves could permeate across the membrane

(in the opposite direction) to equilibrate the internal and external osmolyte concentrations, ac-

companied by a relatively minor reduction in volume. In fact, both of these mechanisms happen

simultaneously, however the rate at which they happen is significantly different. Early experiments

in membrane physiology show that the ratio of the permeation rate of water to the permeation rate

of sugars is 100,000 to 1, and several orders of magnitude larger for the relative permeation rate of

charged species [1]4. The result is that if no channels are present in the bilayer, the vesicle volume

swells and the membrane stretches.

As we will suggest later in this chapter using preliminary experimental results, and has been

suggested by others [140, 156], water permeation across the membrane has an approximately linear

3The van ‘t Hoff coefficients for sucrose and glucose are constant for solute concentrations up to ∼ 1 M.
4Although, in vivo, bacteria have a number of transporters responsible for the active pumping of osmolytes [141].
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response to a pressure gradient, of the form

dV

dt
= cp∆pA, (3.5)

where this volume flux is the total water volume entering the vesicle through the bilayer per

unit time due to permeation, and cp is the lipid-specific permeation coefficient, with values from

preliminary experiments in the lipid DOPC of cp ' 2 × 10−6 µm3/pN · s, in good agreement with

previous measurements [140]. This simple relationship merely states that the volume flux across

each unit area of membrane is proportional to the pressure gradient. Given our previous statements

about the very slow relative rate of permeation of osmolytes across the membrane, water permeation

is, by far, the dominant mechanism by which vesicle volume changes in the absence of channels.

The pressure gradient driving water across the membrane is the sum of contributions from the

osmotic concentration gradient, which tries to move water inward, and membrane stretch as the

vesicle volume increases (analogous to the pressure generated inside a balloon as it is inflated),

which tries to move water outward. First, let us tackle the contribution from the concentration

gradient. The concentration of osmolytes inside the vesicle is simply c1 = no/V where no is the

number of osmolytes enclosed at t = 0, and we will write this number as no = c
(o)
1 Vo where c

(o)
1 is

the initial internal concentration of osmolytes at t = 0. Then as a function of vesicle volume, the

osmotic pressure gradient is

∆p(O) = c
(o)
1 kBT

1

w

(

w
Vo

V
− 1

)

, (3.6)

where the dimensionless parameter w = c
(o)
1 /c2 is the ratio of the concentration of osmolytes inside

and outside the vesicle, respectively, upon osmotic shock at t = 0. This quantifies the degree of

hypo-osmotic shock, with higher values corresponding to initially larger osmotic differences. To

calculate the second contribution to the pressure gradient, membrane elasticity must be taken into

account. Given that the number of lipids in the vesicle is conserved, the increase in vesicle volume

must be accompanied by membrane stretch, and hence a positive areal strain, φ, given by

φ =
A

Ao
− 1, (3.7)

which can be written as a function of the volume using A = (6
√

πV )
2/3

,

φ =

(
V

Vo

)2
3

− 1. (3.8)

In modes of pure stretch, the bilayer behaves like a standard linear elastic material [26, 57], such

that the areal strain and tension are linearly related through the lipid-specific stretch modulus, by

τ = KAφ, with KA ' 60 kBT/nm2 for a typical phosphocholine bilayer [26]. Relating these two

equations to the Laplace-Young relation for a sphere, we see that membrane stretch produces a
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pressure gradient in the opposite direction as the concentration gradient, given by

∆p(s) = −2KA

Ro

(
Vo

V

) 1
3

((
V

Vo

)2
3

− 1

)

. (3.9)

Then the volume change of the vesicle as a function of time is given by the differential equation

dV

dt
= cp

(
6
√

πV
)2/3

(

∆p(O) + ∆p(s)
)

. (3.10)

With this equation in hand, we can now estimate how much of an osmotic down shock a vesicle

without channels can withstand, and how exactly this threshold down shock relates to material

parameters and vesicle size. Let us assume temporarily that the membrane can stretch indefinitely,

then equilibrium corresponds to zero pressure gradient, given by

(
V

Vo

)

∆p = 0 = kBT
c
(o)
1

w

(

w − V

Vo

)

− 2KA

Ro

(
V

Vo

)2/3
((

V

Vo

)2/3

− 1

)

, (3.11)

which can be simplified to

ρ

w

(

w − V

Vo

)

−
(

V

Vo

)2/3
((

V

Vo

)2/3

− 1

)

= 0, (3.12)

where the dimensionless constant ρ = kBTc
(o)
1 Ro/2KA is the ratio of the pressure scales set by

the internal osmotic pressure and membrane stretch. For a typical phosphocholine bilayer vesicle

at room temperature, with initial radius Ro = 10 µm and internal osmolyte concentration of 300

mOsm (equivalent to the concentration of osmolytes in healthy E. coli [157]), ρ ' 18, or with a

radius Ro = 1 µm, closer to the size of a bacterium, ρ ' 1.8. While the fluid properties of bilayers

allow them to bend into fantastically contorted shapes, bilayers cannot withstand high degrees of

lateral stress, and tend to rupture for areal strains of only a few percent [26]. With this in mind,

we employ the approximation (V/Vo) − 1 � 1 in eqn. 3.12 to find a simple expression for the

equilibrium volume increase of a vesicle without channels under conditions of hypo-osmotic shock,

V

Vo

∣
∣
∣
∣
t→∞

=
(3ρ + 2)w

3ρ + 2w
. (3.13)

Finally, the equilibrium areal strain on a bilayer after osmotic down shock is

φ =

((
V

Vo

)2/3

− 1

)

=

((
(3ρ + 2)w

3ρ + 2w

)2/3

− 1

)

, (3.14)

and knowing the rupture tension of a typical bilayer, we can bound the value of osmotic shock, w,

that the vesicle can withstand in the absence of volume conducting channels. Assuming a maximum

areal strain of ∼ 10% can be sustained (and in many cases this is a high estimate), this puts an
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upper bound on the hypo-osmotic shock a vesicle lacking volumetric channels can withstand, at

the relatively low values of w ' 1.16 or w ' 1.23, for Ro = 10 µm and ρ = 18 or Ro = 1 µm and

ρ = 1.8, respectively. For reference, these values of w correspond to a reduction of ∼ 40 mOsm and

∼ 55 mOsm respectively, from the 300 mOsm concentration in a typical bacterium [157], assuming

the bacterium (or vesicle) is initially in osmotic equilibrium with its surroundings.

Moving forward, let us consider the same scenario, except now the bilayer contains volumetric

conducting channels. This introduces two distinct, new processes. First, upon channel opening,

the pressure gradient will drive volume through the channel pores into the vesicle. Second, the

open pore acts as a diffusion channel for the movements of osmolytes down the concentration

gradient, and out of the vesicle, where the exit of these osmolytes causes a small reduction in

volume. To make this model tractable, we must simplify certain physical processes. The first

assumption is that the internal and external concentrations of osmolytes are well mixed on time

scales relevant to osmotic shock. In our current picture, this corresponds to the time required for

the root-mean-square deviation of an osmolyte’s position to traverse one vesicle radius, set by the

diffusion coefficient of the osmolytes, the dimensionality, and vesicle size. Then the time scale of

concentration equilibration is

teq =
R2

o

6D
(3.15)

in three dimensions. Given that the diffusion coefficient of sucrose in water at 25C (for instance) is

D ' 600 µm2/s [155], the concentration equilibration time scale is ∼ 25 ms for a 10 µm vesicle or

about ∼ 300 µs for an E. coli size vesicle of radius 1 µm. As we will see in the forthcoming model,

when the channels are open, the dynamics governing vesicle volume and osmolyte concentration

are slow in comparison to this time scale, hence this is probably a reasonable approximation.

The second, more offending assumption is that the volume flux through the pore into the vesicle

is independent of the flux of osmolytes through the pore, down the concentration gradient, and

out of the vesicle. While this assumption might be invalidated by specific charge-based effects

or interactions with the channel pore, we speculate that this approximation is reasonable in the

scenario where the drift velocity of the water and osmolytes through the channel pore, due to

the pressure and concentration gradients, respectively, is slow in comparison to their root-mean-

square velocity through the pore from diffusion. For instance, given the pore length and diffusion

coefficient of water (∼ 3000 µm2/s [140]), the root-mean-square velocity through the channel pore

is on the order of a 1 m/s. Using the same diffusion coefficient and considering one atmosphere of

pressure driving water through the pore, for example, the drift velocity is only of order 0.01 m/s,

hence this might be a reasonable approximation.

Like the previous thought experiment, the initial hypo-osmotic shock still produces a large in-

ward pressure gradient that causes water to permeate into the vesicle. However, as the tension

on the vesicle surface rises past a critical tension, the volumetric channels adopt the open confor-

mation. If the pore of the channel is large enough to conduct water, but cannot conduct larger

osmolytes, channel gating merely serves as a tension sensitive, discontinuous increase in the water
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permeation coefficient of the bilayer, since there is still essentially no exchange of osmolytes across

the membrane. Conversely, if the channel pore is large enough to pass osmolytes of various sizes,

then for a sufficiently high density of channels in the bilayer, gating corresponds to a large, discon-

tinuous increase in the permeation of osmolytes, as well as water. Thus as water permeates across

the membrane and through the channels’ pores into the vesicle, driven by the osmotic pressure

gradient, osmolytes diffuse out through the channel pore driven by the concentration gradient.

Already this suggests a basic design principle for channels that regulate osmotic pressure. If the

flow of water through the channel pore is fast relative to the flow of osmolytes, channel gating only

accelerates the onset of membrane rupture. On the other hand, if the flow of water through the

channel pore is relatively slow, osmolytes can flow out equilibrating the osmotic pressure, before

the influx of volume causes membrane rupture.

Let us again begin with the differential equation describing the vesicle volume, however now

there are two new terms, one to account for the flow of water into the vesicle through the channel

pore, and the second term to account for the removal of volume form the vesicle as osmolytes leave,

giving the equation
dV

dt
= cpA∆p + NPo(τ)Fc(Ac, L, η, ∆p)+ Vosm

dn

dt
, (3.16)

where N is the total number of channels, Po(τ) is the open channel probability, and Vosm is the

volume of each osmolyte. The time scale for conformational changes of the protein, on the order

of a few microseconds [43], is much faster than any of the other processes involved with osmo-

regulation, and hence the actual protein dynamics are irrelevant to this model. The per channel

flow rate, Fc(Ac, L, η, ∆p), is technically an unknown function of the pressure gradient across the

pore (∆p), the pore area (Ac), pore length (L), and fluid viscosity (η). In fact, it is this flow that

we eventually want to measure in our experiment, as a function of pressure gradient.

For the purposes of our model here, a priori, there are (at least) three reasonable classes of

models to employ. First, is that of low Reynolds number, Hagen–Poiseuille flow through a pipe of

area Ac and length L [153, 158], given by

Fc = ∆p
A2

c

8πηL
. (3.17)

Physically speaking, models of laminar flow, like this, have the interesting property of time reversal

symmetry, which means that the flow rate through the pore is independent of the direction of flow

[158]. Hence the orientation of the channel in the bilayer has no effect on its flow properties, because

the way that fluid moves through the pore does not depend on the direction of flow. Let us estimate

the magnitude of flow predicted by this model. The open pore area of MscL is Ac ' 7 nm2, the pore

length is L ' 2.5 nm and the viscosity of water at room temperature is η ' 0.001 N s/m2. Notice

that if we divide Fc by the channel area and pressure gradient, we arrive at what can be thought of

as the permeation coefficient of the channel; in comparison to the flux of water across a pure bilayer,

a MscL channel permeates water at a rate ∼ 104 times faster (in this model). More concretely,
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with one atmosphere of pressure across the pore, this model predicts a flow of ∼ 0.08 µm3/s, or

∼ 106 − 107 pore volumes per second.

Another possible model is that of granular flow, relevant in systems where particle and pore size

are comparable and friction and/or dissipation are important dynamical parameters, as they are

at low Reynolds number. Considering that the diameter of a water molecule is ∼ 0.4 nm, then the

pore is only ∼ 9 water molecules in diameter, and the entire pore can hold only about ∼ 600 water

molecules. Under these circumstances, one might rightly ask if a laminar flow approximation,

like Hagen–Poiseuille flow, is valid. The physics of granular flow is an area of active research

[159, 160, 161], and a few qualitative features are broadly acknowledged, namely a dependence on

the ratio of the pore diameter to the particle diameter (even for values much larger than unity),

the fact that the pressure (in most cases due to gravity) does not affect the flow rate through the

pore, and a very different scaling of flux with pore area, A
3/4
c [162], as opposed to A2

c for laminar

flow or Ac as in the following diffuse transport model.

Unfortunately, no large scale molecular dynamics simulations have been undertaken to assess

how volume moves through pores as large as the MscL pore. However, a few important facts

have been garnered simulating the pressure driven flow of water through a model aquaglyceroporin

channel [163]. These simulations show two important features; first that the flux through the

channel is approximately linear with pressure gradient, and second that the permeation coefficient

is not strongly dependent on the direction of flow, as shown in Fig. 3.4. Considering that a single

file chain of water passes through the pore, let us assume that the pore has a diameter of one water

molecule, and then the permeation coefficient of the pore is ∼ 0.008 µm3/pNs, about 4000 times

more permeable than a pure bilayer. The resulting flow rate is in agreement with the order of

magnitude of channel flow found in cellular swelling experiments [142]. The scaling of the flux with

pore area and length is still unknown, however the following paragraph attempts to estimate this

scaling in the regime of diffuse transport.

The third model is the only one of these models that expressly accounts for the effects of

temperature and diffusion, and pleasingly also depends on both the size of the pore and the size

of molecules passing through it. At low Reynolds number the relevant equation of motion for a

particle immersed in a fluid is Aristotelian, where the velocity (not acceleration) is proportional to

the force through a mobility coefficient, µF = v [111]. The Einstein relation, D = µkBT , connects

the diffusion of a particle to is mobility and temperature, such that we can write the equation

of motion as v = D
kBT F . Then consider that the pressure gradient across the pore can be easily

translated into a force per molecule if we know the cross-sectional area of the molecule, by F = ∆pa,

where a is the area per molecule. Then the volumetric flux through the channel pore is

Fc = ∆p · Aca
D

kBT
. (3.18)

Being a small, uncharged molecule, for all reasonable osmolyte concentrations, water is the major

molecule passing through the pore, and hence its diffusion coefficient and cross-sectional area are
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Figure 3.4: Molecular dynamics of aquaglyceroporin channel flow. a) Depiction of a single chain of

water molecules in the pore of the aquaporin family protein GlpF as they are driven through by

a pressure gradient. b) Flux of water per unit area per unit time as a function applied pressure

gradient as simulated by all-atom molecular dynamics. The slope of this line is the pore permeation

coefficient equal to ∼ 0.008 µm3/pNs. Figure adapted from [163].

of interest. The diffusion coefficient of water is D ' 3000 µm2/s [140] and the cross-sectional area

of a water molecule is a ' 0.12 nm2. Under the same conditions we used in the laminar flow

example, the channel would conduct a very similar value of ∼ 0.06 µm3/s, although this similarity

is coincidental since the scaling with pore size is quite different. Compared to the flux through

aquaglycerporin, as calculated through molecular dynamics [163], this method estimates the water

permeation of the MscL pore is ∼ 0.09 µm3/pNs, or about tens times more permeable per unit

pore area. This is a reasonable model if the drift velocity of water molecules through the channel

pore is slow in comparison to their root-mean-square velocity, which as we showed earlier, is the

case for even the highest pressures encountered in the setting of osmoregulation.

Given that both the simulations of aquaglyceroporin and our own estimates of the diffuse

transport of water through the pore predict a linear scaling with pressure gradient, let us invoke

a constitutive model of pore flux, linear in both pore area and pressure gradient with permeation

coefficient cpore, such that the volume change of the vesicle is

dV

dt
= (cpA + NPo(τ)Accpore)∆p + Vosm

dn

dt
. (3.19)

The osmolyte volume, Vosm, is calculated using the effective hydrodynamic radius from the mobility,

which includes coordinated waters around the osmolyte [134]; for example, Vosm = 0.20 nm3 for

sucrose, which is the relevant osmolyte in our in vitro experiments.
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Having discussed possible mechanisms by which channels conduct water, let us consider how

channels regulate the effects of osmotic shock. In addition to its volumetric conductance, an

open channel allows the passage of osmolytes across the membrane, hence changing the number of

osmolytes enclosed by the vesicle. The osmolar concentration gradient causes a flux of osmolytes

out of the vesicle, where Fick’s Law for the flux of osmolytes through the cylindrical channel pore

is given by

Jc = −DoAc ·
∆c

∆x
= −DoAc ·

c1 − c2

L
, (3.20)

where Do is the osmolyte diffusion coefficient, with Do ' 600 µm2/s for sucrose in water at 25C

[155], and this is presumed to be a reasonable estimate of the diffusion coefficient for all osmolytes

of interest5. That said, the structure of bacterial mechanosensitive channels (both MscL and MscS

[11, 18]) have cytoplasmic domains that are proposed to be molecular sieves, only allowing the

passage of certain osmolytes. Which osmolytes those are is still unknown, but if this speculative

function of these domains is correct, it means that the osmolyte flux through the channel is not as

simple as Fick’s Law, because the concentration gradient that matters is then only the gradient of

the osmolytes that can pass through the sieve. Rearranging this equation we see that the osmolyte

flux is proportional to the osmotic pressure

Jc = − DoAc

LkBT
·∆p(O). (3.21)

Again, using the Einstein relation, Do = µokBT [111], we find that within the limits of this

approximation, the osmotic conductivity of a large pore channel is µoAc/L, a result completely

analogous to the formula for electrical conductivity. Using this relationship, the total flux of

osmolytes out of the vesicle is the product of this per-channel flux and the mean number of open

channels. If the total number of channels in the vesicle is N , then the mean number of open

channels, No, is simply

No = NPo(τ), (3.22)

where, as shown in eqn. 3.14, τ is a function of the relative volume increase V/Vo. Thus the total

flux of osmolytes out of the vesicle is

dn

dt
= −NPo

DoAc

LkBT
· ∆p(O), (3.23)

where we have made use of the continuity equation NoJc − dn/dt = 0. We now have two coupled,

first order differential equations that describe the movement of volume, in terms of vesicle size, and

the movement of osmolytes. Notice that the osmotic pressure, which appears in both equations,

can be written as a function of the normalized volume, V/Vo, normalized number of osmolytes

5Accounting for osmolytes with differing diffusion coefficients is a straightforward extension of this equation.
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n/no, and osmotic down shock, w, by

∆p(O) = c
(o)
1 kBT

1

w

(

w
n

no

Vo

V
− 1

)

. (3.24)

Already we can see that the conditions of equilibrium, when ṅ = V̇ = 0, differ from a vesicle lacking

channels; in this case equilibrium demands both ∆p(O) = 0 and ∆p = 0. This has a number of

significant implications. Unlike a vesicle lacking channels, vesicles with channels equilibrate their

internal osmolarity with the external osmolarity and given sufficient time will return to their original

volume after osmotic shock, and hence return to their original state of (nearly) zero tension.

To demonstrate the concepts laid out in this thought experiment, we will numerically solve

this set of equations to demonstrate their behavior in a few different regimes. After some lengthy

algebraic manipulation, the differential equation for the volume change can be written as

d

dt

(
V

Vo

)

=
2KA

VoRo

(
Vo

V

)[

4πR2
ocp

(
V

Vo

)2
3

+ NPoAccpore

]

· (3.25)

[

ρ

w

(

w
n

no
− V

Vo

)

−
(

V

Vo

)2
3

((
V

Vo

) 2
3

− 1

)]

+ c
(o)
1 Vosm

d

dt

(
n

no

)

where the initial condition is V/Vo|t=0 = 1. With similar algebraic manipulation, the equation for

the relative number of osmolytes in the vesicle can be written as

d

dt

(
n

no

)

= −NPo ·
DoAc

LVo
· 1

w

(

w
n

no

Vo

V
− 1

)

, (3.26)

where the initial conditions is n/no|t=0 = 1.

In Fig. 3.5, we numerically explore the behavior of an E. coli size vesicle with Ro = 1 µm under

differing degrees of osmotic shock, two different channel densities, and using both the calculated

permeation rate of the MscL from eqn. 3.18 and the ‘measured’ permeation rate of aquaglyceroporin

applied to the MscL pore. This analysis shows a number of interesting effects and unique time scales

for swelling and equilibration. Qualitatively, we can map out how such a vesicle will behave under

different conditions. Consider first the following scenario: upon osmotic shock, the vesicle swells and

tension increases. If the osmotic shock is relatively low, the vesicle swells slowly, the tension does

not rise enough to trigger channel opening, and we are essentially in the regime where the presence

of the channels, at any molar concentration, does not matter (e.g. see Fig. 3.5 for w = 1.05). Next,

consider the contrasting scenario, where the osmotic shock is relatively high, the vesicle rapidly

swells, the tension rises, and upon reaching the gating tension of the channel, osmolytes begin

to flow out of the vesicle at a rate determined by the product of channel osmolyte conductivity

and channel density. Concomitantly, volume rushes into the vesicle through the channels and,

depending on the degree of osmotic shock, for a sufficient density of channels the internal osmolyte

concentration decreases rapidly enough so that the tension / areal strain peaks below the value for
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bilayer rupture (e.g. see Fig. 3.5 for w ≤ 2). Then the tension gradually drops, the channels begin

to close, and the vesicle volume slowly returns to its initial state. These are necessary steps for

proper osmoregulation. Finally, again consider high osmotic shock, but where the channel density

is too low, or the flux of water through the pore into the vesicle is high relative to the flux of

osmolytes through the pore out of the vesicle, the tension will rise to the point of rupture (e.g. see

Fig. 3.5 for w ≥ 10 for all but the last column).

While we acknowledge that our analysis is fairly simplistic, built on simple models of the various

physical processes involved, one might also see this as making the model robust in a certain sense.

The bottom line of this preliminary analysis is multi-faceted. First, at the ostensible in vivo

channel density (∼ 10 per cell [112] or 10 per Ro = 1 µm vesicle), this model indicates that large

changes in the volumetric conductance of the channel (by an order of magnitude) have relatively

little effect on the maximum degree of osmotic shock that can be tolerated, and that maximum

degree, on the surface, seems incommensurate with the degrees of osmotic down shock that cells

are known to be able to withstand in experiment. Specifically, for the set of parameters meant to

mimic bacterial conditions, in Fig. 3.5(a–c)(low flow) and (g–i)(high flow), the maximum change

in osmolyte concentration that does not rupture the membrane is ∼ 150 mOsm (and in terms of

this model, that is likely a high estimate). Whereas experiments show that bacteria can withstand

reductions of ∼ 500 mOsm [17, 164]. In a similar manner, increasing channel density (in our model)

by an order of magnitude does not rectify this apparent discrepancy, as shown in Fig. 3.5(d–f), but

does raise the maximum osmotic down shock to ∼ 250 mOsm.

There are a number of possible explanations of these results. One possibility is that the bacterial

membrane permeates water much more slowly than in vitro bilayers. Another, possibility is that

the bacterial membrane is much stiffer than purified bilayers. The author speculates that the cell

wall acts to stiffen the effective stretch modulus of the inner membrane, thereby allowing the cell

to osmoregulate even with large degrees of down shock, as shown in Fig. 3.5(j–`), but this remains

to be seen through further modeling and experimentation.

3.4 Measuring Ensemble Channel Flow

Now that we have built some intuition for how channel density, qualitative channel flow character-

istics, and osmotic shock affect the state of tension and volume of a free vesicle we are in a position

to design an experiment that will actually measure the volumetric flow through a channel under

certain assumptions. The experiment begins with a vesicle containing reconstituted MscL channels,

with a surface area to volume ratio larger than that of a sphere, that is, a vesicle with extra area.

The vesicle contains sucrose inside at a controlled osmolarity, and glucose in the solution outside, at

the same osmolarity. The slight density difference between the sucrose solution inside and glucose

solution outside [155], sediments the vesicle to the bottom of the microscope chamber in which the

experiment will take place, allowing it to be easily viewed. The membrane is fluorescently labeled
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Figure 3.5: Numerical solutions for the behavior of a vesicle with volumetric channels under hypo-osmotic

shock. In all plots the pore area is Ac = 7 nm2, the pore length is L = 2.5 nm, the free energy of gating is

∆G = 20 kBT , the vesicle radius is Ro = 1 µm (approximately the size of an E. coli bacterium), the initial

internal osmolyte concentration is c
(o)
1 = 300 mOsm which is the measured absolute osmotic concentration

in E. coli [157], and the degree of osmotic shock w is listed in the legend; all other parameters are indicated

in the text. The gray lines in the plots of relative osmolyte number (n/no) are the asymptotic values, given

by 1/w. As discussed in this section, a relative volume increase of V/Vo ' 1.23 is the maximum areal strain

that a membrane vesicle of this size can withstand before rupture; this level is indicated by the gray dashed

lines in the plots of V/Vo. a-c) The relative volume, relative number of osmolytes and ensemble channel

open probability, respectively, for a vesicle with a molar ratio of channel protein to lipid of 1:106, estimated

to be the in vivo ratio [112]. In these plots the channel flow follows the diffuse model of eqn. 3.18. d-f)

The relative volume, relative number of osmolytes and ensemble channel open probability, respectively, for

a vesicle with a molar ratio of protein to lipid of 1:105, ten times higher than the in vivo estimate. Notice

that even with elevated protein levels, osmoregulation is still compromised. g-i) The relative volume, relative

number of osmolytes and ensemble channel open probability, respectively, for a vesicle with estimated in

vivo molar ratio of channel protein to lipid of 1:106, but a flow rate set by the permeation coefficient of

aquaporin as measured by molecular dynamics [163]. Notice that changing the pore permeation coefficient

by a factor of ten has only a minor effect on the osmoregulation, as compared to (a-c). j-`) The relative

volume, relative number of osmolytes and ensemble channel open probability, respectively, for a vesicle with

a molar ratio of protein to lipid of 1:106, and channel flow following the diffuse model of eqn. 3.18, but with

the membrane stretch modulus five times higher than a typical bilayer, that is KA = 300 kBT/nm2, as a

speculative estimate to approximate stiffness of the surrounding cell wall in an actual bacterium.
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Figure 3.6: Schematic of aspirated vesicle shape. The shape of an aspirated vesicle is characterized

by a large outer portion with radius Rv, a cylindrical portion in the pipette of length Lp and radius

Rp with a hemispherical cap of radius Rp. Knowing the pressure gradient p2−p3, one can calculate

the internal pressure of the vesicle, p1, and the membrane tension τ . Figure adapted from [1].

with a small mole fraction of rhodamine head-group labeled lipid (usually 0.5%), which is used to

visualize the vesicle in epi-fluorescence.

In the equatorial plane of the vesicle, we approach with a glass micropipette, pre-coated with

bovine serum albumin, so as to prevent the bilayer sticking to the glass. The solution inside the

pipette is the same as the solution outside the vesicle. In the far field, the pressure drop across

the pipette tip is controlled by the height of a water bath and it has been adjusted so that there

is zero pressure drop across the pipette tip at the height of the equatorial plane of the vesicle. As

we get close to the vesicle surface, the height of the water bath is lowered, creating a small suction

pressure, of only a few tens of Pascals, at the pipette tip. Presuming the tip is close enough to

the target vesicle, the vesicle enters the tip forming the aspirated shape shown in Fig. 3.6. The

bending energy difference between this aspirated shape and the nominally spherical shape before

aspiration is miniscule in comparison to the energy of stretching the membrane and performing PV

work with the pipette.

This shape is characterized by three main geometric features: an outer vesicle radius Rv, an

in-pipette length Lp, and a pipette radius Rp. Additionally, three pressures exist in the three

volumetric regions. In the pipette is the lowest pressure, p3, set by the far-field water bath; in the

vesicle is the highest pressure, p1; and in the region outside the vesicle is atmospheric pressure p2.

Because the pipette has been coated with a blocking agent that prevents membrane sticking to the

pipette, there is a slip boundary condition inside the pipette, and thus the tension on the membrane

is equal in all regions. We can calculate this tension by again employing the Laplace-Young relation.

The pressure drop across the outer vesicle is (p1 − p2) and hence the tension is

τ =
1

2
(p1 − p2)Rv, (3.27)

and the pressure drop across the inner spherical region is (p1 − p3) and hence the tension is also
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given by

τ =
1

2
(p1 − p3)Rp. (3.28)

This gives us two equations and two unknowns, namely the tension τ and the internal pressure p1.

Solving this system of equations leads to the well-known approximation for vesicle tension [26]

τ =
p2 − p3

2

Rp

1 − Rp

Rv

, (3.29)

and internal pressure is calculated using

τ =
1

2
(p1 − p2)Rv, (3.30)

to find

p1 − p2 = (p2 − p3)
Rp/Rv

1 − Rp

Rv

. (3.31)

Typical experimental values for the ratio Rp/Rv range from ∼ 0 to ∼ 1/2, and thus the factor on

the right hand side of this equation is, at most, order unity. Typical values of the pressure gradient,

(p2 − p3), are set by the relative height of the water bath, equivalent to a few inches of water (1

inch water at STP = 249.0 Pa), thus the pressure gradient across the membrane is on the order of

a kilo-Pascal or less. Another important feature to notice is that these equations are monotonic in

the variable Rp/Rv which means that as the vesicle progressively deforms and enters the pipette,

tension and pressure always rise, as shown in Fig. 3.7.

Clearly, to make a measurement of channel volumetric flux, we must be able to measure some

kind of volume change. One of the results from our earlier calculation is that a pressure gradient

across a membrane of a few kilo-Pascals, fractions of an atmosphere, has essentially no effect

on osmolyte concentrations in the volume enclosed by a pure bilayer vesicle if the absolute, but

balanced, osmotic pressure is multiple atmospheres. This suggests that the easiest way to conduct

this experiment is with an internal and external osmolyte concentration of a few hundred milli-

osmolar, equivalent to a few atmospheres of absolute osmotic pressure. Under these circumstances,

the pressure gradients p1 − p2 and p1 − p3 will not cause any significant water permeation across

the membrane.

The volume and surface area of an aspirated vesicle are calculated using the geometry of the

aspirated shape, where the total vesicle volume is

V =
2

3
πR3

p

[

2

(
Rv

Rp

)3

+
3

2

Lp

Rp
+ 1

]

, (3.32)

and the total vesicle area is

A = πR2
p

[

4

(
Rv

Rp

)2

+ 2
Lp

Rp
+ 1

]

, (3.33)



108

2

4

6

8

10

0.2

0.6

0.4

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8 1.0

a) b) c)

Figure 3.7: General experimental design for MscL volumetric flux experiments. a) A schematic

showing how the aspirated shape of a large vesicle (orange), held by a pipette (gray), evolves over

time as water and osmolytes are driven through the membrane-embedded efflux channels (green)

by the pressure gradients p1 − p3 and p1 − p2. Over time the outer vesicle radius (Rv) shrinks,

while the in-pipette length (Lp) geometrically amplifies the change in volume due to channel efflux.

Shown here are the exact shapes of a vesicle for ∆V/∆t = −Vo/10, where Vo is the vesicle volume

in the first frame. b) In cases where the additional area from membrane stretch can be neglected,

the outer vesicle radius and in-pipette length can be written as a function of the fractional volume,

that is, the current volume normalized by the volume at t = 0; these plots show this in arbitrary

units for the vesicle in (a). c) Fluorescence images of an actual vesicle at varying levels of membrane

tension, as indicated on the images.
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both written in terms of the dimensionless shape measures, Lp/Rp and Rv/Rp, which are the rele-

vant independent shape variables considering that Rp is a geometric parameter fixed by the pipette;

or in other words, these are the parameters one measures during an experiment. Thus measuring

volume and area of an aspirated vesicle is reduced to measuring a few geometric parameters, which

can be easily tracked in time through video microscopy. This system of equations can be solved

for the values of these geometric parameters, which we will use later in this section, however the

results are rather lengthy to write out explicitly.

Let us presume that the aspirated vesicle has some concentration of channels, such that there

are N channels in the bilayer. Then the flux of water and osmolytes out of the aspirated vesicle

is given by the product of the number of open channels subject to a particular pressure gradient

across the two relevant patches of membrane

dV

dt
= −NPo(τ)

[

π(4R2
v − R2

p)

A
Fc(p1 − p2) +

2πR2
p

A
Fc(p1 − p3)

]

, (3.34)

or in a slightly simplified form6

dV

dt
= −N

A
Po(τ)πR2

p

[
(4(Rv/Rp)

2 − 1)Fc(p1 − p2) + 2Fc(p1 − p3)
]
. (3.35)

As indicated in the two equations above, the two relevant patches of membrane are the outer vesicle

region, and the spherical patch of membrane inside the pipette. The cylindrical patch of membrane

presumably has the same density of channels, but as it pressed up against the glass pipette, and is

in force balance, there is no water flux through the channels in this region.

Qualitatively, the course of events of the experiment will go as follows. The vesicle is initially

aspirated, tension is at a low level, relative to the gating tension of the channels. Even at this low

tension, channels sporadically open and release volume, the geometric parameters change, and the

vesicle tension and internal pressure incrementally increase. As this process continues, tension rises

until the gating tension is reached and then volume begins to rapidly exit the vesicle, regulated by

the channel density, their pressure dependent flow rate, and the area of membrane across which

the pressure gradient acts, which is ever decreasing. At some point the vesicle will lose enough

volume that it either pops or is sucked into the pipette. One advantage of such a setup is that each

experiment samples a range of pressure gradients across the membrane. The setup just described

is the simplest, because it fixes the pressure drop across the pipette p2 − p3. There are also other

ways one could conduct the experiment, namely, if software is written to track vesicle shape in real

time, the tension and internal pressure can be calculated, and a feedback to the pressure mechanism

could be used such that the tension or internal pressure is held constant even as the vesicle shape

evolves. In such experiments, the vesicle volume and geometric parameters, Rv/Rp and Lp/Rp, as

6Equation 3.35 can be further simplified if the vesicle volume and area are such that Rv/Rp > 1, such that the area

in the outer vesicle is much larger than the area in the spherical region inside the pipette; under these circumstances,

the second term on the right hand side of eqn. 3.35 can be ignored.
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a function of time are the basal measurements.

As we did in the previous section, where osmotic shock of a free vesicle was examined, this

equation can be numerically simulated if we write the tension (τ), internal pressure (p1), area (A)

and outer vesicle radius (Rv) as a function of the enclosed volume (V ), using eqns. 3.29, 3.31,

3.33 and 3.32, respectively. To perform this simulation we must again appeal to a presumptive

model of channel flow, and for consistency with the previous calculation, we will again assume that

the volumetric flux through the channel is linear in the pore area and pressure gradient, given by

eqn. 3.18, with the permeability calculated from the diffusion coefficient of water. We performed

these simulations under two generic conditions that correspond roughly to energetic properties

of two mutants of MscL, namely the relatively difficult to gate wild-type protein, and a gain-of-

function point mutant with lower gating free energy, as shown in Fig. 3.8. The advantages to using

the gain of function mutant are two-fold, as discussed in Section 3.4.2. The idea is that mutants

can be to answer both of our motivating questions. Independent of the lipid-protein interactions,

the gain-of-function mutant can be used to measure the volumetric flow properties of the channel,

as shown in Fig. 3.8(c and d); this experiment is of significant interest in and of itself, but is

also necessary to measure ensemble channel gating properties. With that information in hand7,

the gain-of-function mutant can be used to measure the dose-response curve (i.e. Popen vs. τ), as

simulated in Fig. 3.8(e and f).

3.4.1 Bilayer Permeability and Proof of Concept

In an effort to put the conceptual layout of the experiment discussed in the previous section on

a firm footing, we performed a series of membrane permeation experiments that serve as a proof

of concept for our ability to track detailed vesicle shape, membrane tension and internal pressure

through time. The advantage to conducting these preliminary experiments is two-fold: first we could

move forward with detailed experimental design and software development without having to first

streamline protein purification and reconstitution; second, given our analysis of osmotic shock in

previous sections we expect that membrane permeation results in a slow change in volume, relative

to vesicles that have volumetric channels at a reasonable molar fraction, and hence we can assess

the temporal sensitivity of our experimental setup. Additionally, corroborating our measurement

of pressure-driven permeation in a standard phosphocholine bilayer to values determined by others

[140, 156], serves as a reality check that our setup is working properly.

The protocol for measuring membrane permeability is exactly the same as the protocol for

measuring channel volumetric flux, except, of course, there were no channels in the bilayer. One

other important difference between the two experimental setups was that to actually enable water

to permeate through the bilayer, the osmotic gradient had to be balanced and the absolute osmotic

pressure had to be very low, in this case we simply set the internal and external absolute osmotic

pressure to zero (i.e. the internal and external sugar concentrations were zero). Results from

7This is not meant to be flippant, we are sure many unique challenges lie in wait for us during these experiments.
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Figure 3.8: Simulating a measurement of ensemble channel flux via GUV aspiration. In all plots the protein

to lipid ratio is 1 : 5× 104, the channel pore area is Ac = 7 nm2, the pipette radius is Rp = 5 µm, the initial

vesicle radius is Ro = 20 µm, the initial volume is 95% the volume of a sphere with radius Ro (i.e. 0.95Vo),

and the constitutive flow model employed is 3.18. a) The channel open probability and normalized volume

V/Vo as a function time for the wild-type channel. b) The membrane tension as a function of time for the

same physical scenario as (a). In (a) and (b) the pressure gradient is p2 − p3 = 3000 Pa. c) The channel

open probability and normalized volume V/Vo as a function time for the gain-of-function mutant channel

(∆G = 14 kBT ). d) The membrane tension as a function of time for the same physical scenario as (c). In (c)

and (d) the pressure gradient is p2 − p3 = 3000 Pa. Notice that using the mutant at this pressure gradient

linearizes the vesicle volume flux, because Po ' 1, and speeds up the experiment by an order of magnitude.

e) The channel open probability and normalized volume V/Vo as a function time for the mutant channel. f)

The membrane tension as a function of time for the same physical scenario as (e). In (e) and (f) the pressure

gradient is p2 − p3 = 2000 Pa, lowering the membrane tension considerably, and lengthening the experiment

by an order of magnitude as compared to (c) and (d).
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these preliminary experiments are very encouraging (see Fig. 3.9); under optimal conditions we

can measure changes in vesicle volume of a percent or less, measure changes in internal pressure

of ∼ 25 Pa, and measure changes in membrane tension as small as ∼ 0.01 kBT/nm2, all of which

suggest that we have adequate sensitivity to measure the volumetric flux through channels.

From these experiments we were able to calculate the water permeation rate and hence water

permeation coefficient of a typical phosphocholine bilayer (DOPC), as shown in Fig. 3.9. Equally

encouraging as determining that we have more than sufficient sensitivity to perform the proposed

measurement, the value of the permeation coefficient we measure, while somewhat variable due to

issues of image quality, is in good quantitative agreement with previous measurements; Olbrich

and coworkers [140] measured a permeation coefficient in DOPC of 1.9 × 10−6µm3/pNs and we

measured a tension-independent value for the permeation coefficient of 1.9± 1.5× 10−6µm3/pNs.

3.4.2 Using Gain-of-Function Mutants

While the experiment, discussed above is relatively simple in concept there are two complications

that should be discussed, and for which we have likely found a solution by using mutant forms of

MscL that gate at significantly lower tensions. The first issue is that rupture of a bilayer, caused

by tension, does not exhibit the same properties as failure in macroscopic materials. In previous

sections, we stated that an areal strain greater than ∼ 10% results in membrane rupture, and

indeed this is a good upper bound value for the tensile strain of a typical bilayer. Although, unlike

a macroscopic material (e.g. latex, steel, etc.), whose tensile strength has a well defined value;

the rupture, and hence rupture tension, of a bilayer is a stochastic process sensitive to thermal

fluctuations. More precisely, rupture of a bilayer is caused by the nucleation of membrane holes.

Above a critical size a hole will grow rapidly causing catastrophic failure of membrane integrity

[53], similar to the popping of a balloon, where the kinetics of hole nucleation depend on thermal

fluctuations and membrane properties.

We can briefly outline this failure mechanism to understand how the rate of failure depends on

membrane tension. When a hole is created in a bilayer, the hydrophobic core of the membrane

is exposed to water, and lipids will leave their normal positions to partially cover the core. The

combined exposure of the hydrophobic core and the deformation of lipids that try to cover the core,

cost a certain energy per unit length. This line tension was measured in a series of experiments

where giant unilamellar vesicles where electroporated during pipette aspiration, in a manner similar

to the experiments discussed here. The line tension was found to be γ ' 2.5 kBT/nm for a typical

phosphocholine bilayer (without cholesterol)[165]. If the membrane is subject to a tension τ , the

creation of a hole of radius r will have an elastic free energy

Ghole = 2πrγ − πr2τ. (3.36)

This equation always has a minimum at r = 0, and there is a barrier between this stable state and
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Figure 3.9: Proof of concept by measuring bilayer water permeability. a) Three fluorescent images

of an aspirated giant unilamellar vesicle, as water permeates through the bilayer decreasing the

enclosed volume. b) Schematic of an aspirated vesicle showing the important shape characteristics

and pressures required to calculate volume, area, and tension as a function of vesicle shape. c)

Volume of the aspirated vesicle in (a) as a function of time at constant pressure gradient p2 − p3.

d) Calculated membrane tension and internal pressure as a function of time as vesicle volume

decreases. e) The bilayer permeation coefficient as a function of the calculated membrane tension.

For the approximately linear regime of tension in (d), the permeation coefficient increases slightly,

as indicated by the gray ellipse, but has an approximately constant value of 3.5 × 10−6µm3/pNs.

The average permeation coefficient measured over a number vesicles (n = 16) was 1.9 ± 1.5 ×
10−6µm3/pNs, in good quantitative agreement with previous measurements [140].
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hole nucleation that leads to membrane failure, where the critical size for hole nucleation is rc = γ/τ

and the barrier height for the rupture transition is Gbarr = πγ2/τ . We can estimate the maximum

tension that can be stably applied to a vesicle by saying that the barrier to hole nucleation must be

much greater than kBT , for instance Gbarr ∼ 10 kBT , which happens when τ = πγ2/10 kBT . For the

value of line tension quoted above, this yields a nominal maximum stable tension of ∼ 2 kBT/nm2

which is in line with our previous estimates. The point of this little exercise is to show that

membrane failure is actually a stochastic process, whose rate, khole ∝ e−Gbarr , increases rapidly with

τ . Thus if we are forced to subject the bilayer to high membrane tensions, like those estimated in

bacteria and measured in vitro to gate the MscL channel, we are already tempting stochastic fate

to rupture the membrane. If we can use lower tensions to gate the channel, the chances that the

membrane will rupture during an experiment decrease exponentially.

The second issue concerns the requirement that we know the detailed dose-response curve of

channel opening. In eqn. 3.1 and borne out in Fig. 3.3, we saw that the gating tension of MscL

was ∼ 2 − 3 kBT/nm2, again close to the expected rupture tension of a membrane. Our analysis

of vesicle shape shows that pressures and/or reduction in volume required to achieve this tension

are relatively high, and hence to actually relate the volume flux of the channel to the reduction

in volume of the vesicle would require detailed knowledge of Po(τ). It is then a bittersweet fact

that the dose-response curve changes with lipid type [22] and even shows variability within the

same bilayer composition, as shown in Fig. 3.3. One way around this complication is to employ a

mutant channel whose gating tension is easily achieved, such that past some relatively low value of

membrane tension, we can be sure that the probability that any one channel is open is essentially

unity. In other words, we seek a mutant form of the channel for which it is easy to force the function

Po ' 1 for some value of τ much less than the rupture tension, and hence the detailed nature of

the dose-response becomes irrelevant.

Thankfully, mutational studies of MscL have shown that by changing the hydration energy of the

channel pore, the free energy of gating related to channel structure, ∆Gprot, can be reduced [34, 33]

(or augmented [98]). Specifically, examining the hydrophobicity of residues lining the channel pore

that become hydrated upon channel opening, one finds a number of them have a high degree of

hydrophobicity, as measured by standard hydropathy [166]. The mutant form of the channel we will

use8 has a single point mutation at the 23rd residue from the C-terminus, changing a hydrophobic

valine (hydropathy 4.2 [166]) to either of two hydrophilic residues, threonine (hydropathy -0.7 [166])

or aspartic acid (hydropathy -3.5 [166]), at the narrowest point of the channel pore, as shown in

Fig. 3.10. In practice, the latter mutant opens too easily and hence is generally toxic to the bacteria

at expressions levels required for purification of the channel.

Using measured values of the hydration energy of amino acids, in this case free energies of

transfer from octanol to water [167], the free energy of transfer of valine is 0.77 kBT per molecule,

8Kindly constructed and donated, with a poly-histidine purification tag, for the purposes of this research by S.

Sukharev, University of Maryland.
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a) b)

Figure 3.10: Gain of function MscL mutants. a) Top and side view of the V23 point mutation site

in the narrowest part of the channel pore as shown by the magenta spheres on each MscL monomer.

In this view, each protein monomer is uniquely colored. b) Top and side view of the V23 point

mutation site in the narrowest part of the channel pore as shown by the magenta spheres. In this

view, protein residues are colored by hydrophobicity, blue being more hydrophobic than red. We

clearly see that the transmembrane helices are generally hydrophobic, as is the conducting pore,

hence the reason why this point mutation is effective in changing the protein free energy.
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and −0.42 kBT and −0.72 kBT for threonine and aspartic acid respectively. The channel protein

is composed of five identical subunits [11], each carrying the point mutation. Thus within the

limitations of this estimate, the hydration of the valines in the pore raises the free energy ∼ 3.9 kBT ,

while hydration of threonine and aspartic acid lower the free energy by ∼ 2.1 kBT and ∼ 3.6 kBT

respectively. Thus in terms of the change in the change in free energy of gating, from wild type to

either of these mutants, we estimate the free energy of the gating transition is lowered by ∼ 6 kBT

for the threonine point mutation, and by ∼ 7.5 kBT for the aspartic acid mutation. Using our

nominal value of the total free energy of gating in the wild type protein of 20 kBT , and change of

protein area upon gating of 7 nm2 we calculate a gating tension of ∼ 2.85 kBT/nm2 for the wild type

protein, again near expected values for membrane rupture. Using our estimates of the reduction in

hydration energy of the threonine and aspartic acid point mutants, the gating tensions are reduced

to ∼ 1.98 kBT/nm2 and ∼ 1.78 kBT/nm2, respectively. While this is a naive estimate, it puts

the qualitative mechanism of gating tension reduction by pore point mutation on sound theoretical

footing. Additionally, using the estimates of membrane hole nucleation, we can estimate the relative

decrease in the rate of hole nucleation, and subsequent membrane failure when using the gain of

function mutants. Given that the rate of hole nucleation is proportional to the Arrhenius factor

e−πγ2/τ , and we now have estimates for the gating tensions in the wild type and mutant channels,

the relative decrease in the rate of membrane rupture is given by

kwt

kmut

= e
πγ2

“

1
τmut

− 1
τwt

”

' 20, (3.37)

meaning that the point mutants, on average, extend the life of the experiment by a factor of twenty!

On that high note, let us address one last, less savory experimental reality.

3.4.3 Controlling for Channel Density

At this point we have addressed, to varying levels of detail and accuracy a number of aspects

of the mechanics of this experiment, namely: how hard is to gate the channel, and what does

that say about how long an experiment can last? Can we simplify what we must know about the

dose-response curve? What are reasonable estimates of the permeation through the channel, from

molecular dynamics and experiments, and can we use those values to constrain the design principles

of the channel as they relate to osmotic and volumetric conductance? How do we turn aspirated

vesicle geometry into a useful measurement? In essence, these are all important questions because

they relate back to specific parameters in and functional form of the basal model (i.e. eqn. 3.35) that

will be used during the experiment. However, one parameter has not been adequately commented

on, and in fact likely has a large degree of variability. The channel density, N/A, as represented

by the channel number N , which appears in all of the dynamical equations so far, is difficult to

control. Consider its origin 9; channels are expressed and grown in bacteria, the protein is purified

9Appendices for this chapter discuss in detail the methods of protein purification and reconstitution.
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to some concentration that varies from preparation to preparation. The protein is mixed with lipid

and detergent with some error, and the final incorporation of the channel into giant unilamellar

vesicles relies either on the formation of such vesicles from either a dessicated film or fusion of small

unilamellar vesicles with the giant unilamellar vesicles in an uncontrolled manner (see appendices).

This is all to say that it is inherently difficult to control N/A in a real experiment from a biochemical

perspective.

There are at least two ways to circumvent this problem. First, and certainly more difficult, is

that for every preparation of giant unilamellar vesicles with reconstituted MscL, a subset of vesicles

could be assayed via electrophysiology to determine the channel concentration from knowledge of the

membrane patch size and maximum current through the patch. This seems like an undesirable route

for a number of reasons: first, it ties together our already complex experiment with a distinctly

different readout of channel function (i.e. electrical current), requires independent and equally

daunting tasks of measuring patch geometry and size in a visually obscure region of a patch pipette,

and has its own challenges for verifying how many channels are present. That said, in principle,

electrophysiology could be used as an assay to calibrate the areal density of channels.

An easier and more straightforward way of determining N/A, that does not require the use of

a completely separate and laborious experiment, is simply to measure multiple vesicles of different

sizes from each preparation of GUVs. Consider that each vesicle of a different size will have

a unique evolution of its volume over the course of the experiment, since the pressure, tension

and area through which the channels permeate water are unique for a given geometry. Thus, if

we perform measurements on multiple vesicles, we essentially have multiple equations and two

unknowns: the channel density and the pressure-dependent flow rate. Given that all of the vesicles

are coming from the same preparation and have been subjected to the same conditions, we would

expect that any variance in the number of channels per vesicle area is small in comparison to mean

number of channels per vesicle area. If we take measurements of dV/dt from four geometrically

distinct vesicles, for instance, this would give us three measures of the channel density and ensemble

channel flow rate, allowing us to put a mean and standard deviation on the value of N/A and Fc.

3.5 Speculations

The following two subsections are included as a discussion of other ideas, ways of asking and

answering similar questions, and questioning what else might be important for a sound physical

understanding of fluid flow at the nanoscopic scale. The first subsection discusses in more depth

what role thermal fluctuations might be playing in the conductance properties of the channel. The

second section suggests additional classes of experiments and complementary in vivo studies for

assaying channel flow and the physiological role of osmoregulation.
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3.5.1 Possible Effects of Temperature

Clearly, temperature plays an important role in regulating the transitions between the closed and

open states of any channel, and in particular this channel, since it adjusts the relative importance

of the free energy difference between possible conformations, as seen in eqn. 3.1. Then consider a

channel, subject to a membrane tension higher than the gating tension, such that the open-channel

probability is essentially unity; this is particularly easy to imagine for the gain-of-function mutants

of MscL that gate at lower tensions than wild-type MscL. The pressure drop across the membrane

acts to push water and osmolytes from regions of high pressure to regions of low pressure, performing

thermodynamic work in the typical PV fashion. Unlike a macroscopic pipe or orifice, where the

pressure drop across and volume of the pore results in work with an energy scale much larger than

kBT , as we demonstrate below, the channel pore volume and relevant pressures result in work

with an upper bound energy scale on the order of kBT , suggesting that the pressure driven fluid

movement through the pore must compete with fluctuations in fluid flux in the pore produced by

thermal fluctuations. Our estimates of the channel volumetric flux using Aristotelian dynamics is

flavored with the notion of variability in fluid flow due to thermal fluctuations, because it expressly

acknowledges that the driving force is acting in concert with diffusion.

As mentioned earlier, the pore diameter of MscL is approximately 3 nm, and spans a thickness

of ∼ 2.5 nm, giving the pore a total volume of ' 18 nm3. The pressure drop across the membrane

spans a large range, depending on whether we are considering micropipette aspiration experiments,

with pressure gradients on the order of 1/100th of an atmosphere, or pressure gradients experienced

by living microbes which can be as high as ∼ 3 atmospheres [157]. Given that at any one time

the pore contains ∼ 18 nm3 of fluid volume, this means moving that volume across the membrane

corresponds to a change in free energy of ∼ 0.005 kBT at lower pressures up to ∼ 1 kBT at higher

pressures seen in the real physiological setting. In either case, though especially in the lower

pressure scenario, this estimate suggests that fluctuations in the movement of fluid through the

pore, caused by temperature, might play an important role in the channel’s flow properties. For

instance, thermal fluctuations have been theoretically predicted to affect the conductance of other,

lower conductance channels [168]. Even the physical state of water in a nanoscopic pore is thought

to be variable [169]. Likewise, our own estimates point towards fluctuation playing an important

role, where we estimated the diffusive root-mean-square velocity of water through the channel pore

was 100 times faster than the drift velocity of water through the pore due to a pressure gradient. To

put this fluctuation in more biologically familiar terms, this is querying the processivity of volume

movement through the channel. This is analogous to querying the processivity of forward motion

of a molecular motor [170, 171], where the free energy difference between motor steps is often small

enough that thermal fluctuations cause the motion of the motors to be less than fully rectified,

hence effectively slowing down the processive motion of the motors. By analogy, we would expect

this fluctuation in fluid movement to cause a generic decrease in the rate of volume flux, though this

qualitative prediction certainly does not account for all the effects in play, and awaits experimental
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verification.

For purposes of comparison, consider the free energy change of a typical mono-valent ion mov-

ing down an electrochemical gradient. A typical transmembrane potential is ∼ 50 mV [1], which

translates into a free energy change for an ion moving from one side of the membrane to the other

of ∼ 0.05 eV ' 2 kBT . Typically, ion channels hold multiple such ions in their pore at any one

time, and hence to make the analogy complete, the free energy to move the entire chain of ions

through the channel pore, down the electrochemical gradient, is closer to ∼ 20 kBT . This is simply

to say that for two classes of channels whose function on the coarsest level is similar, that is, to

move ‘things’ across the membrane, their detailed mechanisms may be quite different. Likewise,

the entire interesting and pertinent realm of physics concerned with electro-diffusion and electro-

chemical flows [172] lies well outside this author’s range of expertise, but given that life exists in,

and crucially depends on high ionic concentrations, these physics of material transport may yet be

an important piece of the nanoscopic fluid flow puzzle.

3.5.2 Interesting Possibilities

While designing, modeling and obtaining preliminary results for this experiment, other interesting

ideas for future experiments were generated. We will briefly discuss a few of them here, to keep

a record of some possible future directions. The first, and probably simplest extension of this

experiment would be to employ fluorescent dyes as an additional readout of material transport

across the membrane. For instance, GUVs could be formed that contain ionic calcium at the

millimolar level, and after formation could be transferred to a solution containing calcium sensitive

dye [173]. Given that the MscL channels are not ion selective [147], the calcium would exit the

vesicle and light up the solution around the vesicle. In principle, one could measure the rate of

increase of fluorescence, properly corrected for photobleaching, and ascertain the rate at which dye,

presumably at a controlled concentration, must have exited the vesicle. Or alternatively, one could

use fluorescence correlation spectroscopy to measure the in situ change in concentration of dilute

dye molecules in the vesicle to get the same generic readout [174, 154].

In the microbial setting, cells that express GFP, or a similar large fluorescent genetic marker,

could be loaded with a small organic dye of a different color. Cells could be adhered in a flow

chamber where the osmolarity can be quickly and precisely changed. Prior to osmotic down shock,

a wild-type cell or cell line expressing MscL would be two colors from the two different markers,

and then after down shock, only the protein marker would remain in the cell, hence a large color

shift upon hypo-osmotic shock. In a mutant strain missing the genes encoding for mechanosensitive

channels, the osmotic down shock should burst the cells allowing both fluorescent markers to escape

and hence the mutant cells would go dark under hypo-osmotic shock. In both cases, high speed

video microscopy could be used to track the fluorescence changes over time to estimate reaction

time of the osmoregulation proteins and rate of passage of the osmolytes.
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3.6 Effects of Glass-Bilayer Binding in Electrophysiology

During the course of our research to understand what is known about the flow properties of large

pore channels, it became clear that a sound understanding of the state of tension in electrophysiolog-

ical settings is not known10. This section aims for a better understanding of the lateral tension in a

bilayer patch found inside an electrophysiological pipette, where nearly all functional measurements

of mechanosensitive channels have been made. We will be using an energy formulation to query

the state of tension in the membrane, though forces and torques offer another viable solution[175].

To begin, let us tabulate the relevant parameters: the pipette has a certain radius, Rp, typically on

the order of a micron, there is a tension-independent interaction energy, γ, between the membrane

and the glass pipette, and a pressure gradient, p, across the membrane. For the kinds of tensions

and pressures in a bilayer patch, the contribution from bilayer bending is unimportant.

3.6.1 The Zero Pressure Limit

When the pressure gradient is zero, the membrane is flat, and has an initial zero-tension area of

πR2
p. Let us assume that membrane adhered to the pipette is at zero tension, or in other words,

has no areal strain. Generally, this is a good assumption for lipids, because the stretch modulus

is many times higher than the rupture tension. As the membrane stretches in response to the

beneficial binding energy between the membrane and the glass an areal strain develops

φ =
A − Ao

Ao
or A = (1 + φ)Ao, (3.38)

leading to a new zero-tension area of the patch

Ao(φ) =
πR2

p

1 + φ
. (3.39)

To bind to the glass, the membrane stretches and stores elastic energy of the form

Gφ =
Ao(φ)KA

2
φ2, (3.40)

where KA ' 60 kBT/nm2) is the elastic stretch modulus [26]. The difference in zero-tension area

of the patch before and after adhering to the glass gives a binding energy

Gγ = −γπR2
p

(

1 − 1

1 + φ

)

, (3.41)

10Thanks goes to Rod MacKinnon and Daniel Schmidt for stimulating discussions on this topic.
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where γ is the bilayer-glass adhesion energy per unit area.11 We minimize Gφ + Gγ with respect

to φ, to find

φ =

√

1 +
2

κ
− 1, (3.42)

where κ = KA/γ is the dimensionless area stretch modulus. The membrane tension is proportional

to the areal strain, τ = γκφ, and hence we find

τ = γκ

(√

1 +
2

κ
− 1

)

. (3.43)

Noting that κ � 1, the resting tension for a membrane patch at zero pressure is τ ' γ.

3.6.2 Patches Under Pressure

When a pressure gradient is applied across the membrane, we assume the patch shape is described

by a section of a sphere, with a radius of curvature Rc and a polar angle θ, restricted by geometry

to be

θ = sin−1

(
Rp

Rc

)

, (3.44)

as shown in Fig. 3.11. The problem can be stated in a dimensionless fashion, elucidating the

important combinations of parameters. Let the change in binding position ∆z = ζRp, noting that

−1
2 < ζ < 1

2 , and let the dimensionless curvature Rp/Rc = ρ, noting that 0 < ρ < 1. The area of

the curved patch is determined geometrically as

A = 2πR2
c(1 − cos(θ)) = 2π

(
Rp

ρ

)2

(1−
√

1 − ρ2). (3.45)

Simultaneously, to create this curved patch, some amount of zero-tension area delaminates from

the pipette, and hence the patch has a zero-tension area given by

Ao = πR2
p(1− 2ζ). (3.46)

The zero-tension area is required to calculate the stretch energy in the patch,

Gφ = Ao
KA

2

(
A − Ao

Ao

)2

. (3.47)

The same zero-tension area that delaminates costs adhesion energy of the form

Gγ = −γ2πR2
pζ. (3.48)

As the patch curves under pressure, the volume of fluid bounded by the patch increases and couples

11Section 3.6.3 uses experimental data to find γ ' 0.55kBT/nm2.
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2Rp

Figure 3.11: Electrophysiological patch geometry. Schematic showing the membrane patch shape

at zero (a) and non-zero (b) pressure, with the relevant geometric parameters, in an idealized

cylindrical pipette.

to the overall membrane energy. This change in volume is given by

∆V = πR3
pζ

︸ ︷︷ ︸

delaminating

+
π

3

(
Rp

ρ

)3

(1 − cos(θ))2(2 + cos(θ))

︸ ︷︷ ︸

spherical cap

, (3.49)

and couples energetically to the pressure by Gp = −p∆V . Already we can see how tension depends

on our dimensionless parameters, namely

τ = γκ

(
A

Ao
− 1

)

= γκ

[

2
1−

√

1 − ρ2

ρ2(1 − 2ζ)
− 1

]

, (3.50)

though this is not very useful since we do not have an expression for ζ or ρ as a function of pressure.

We can now assemble the free energy

G

σ
=

κ

2(1 − 2ζ)

[
2

ρ2
(1 −

√

1 − ρ2) − (1− 2ζ)

]2

− 2ζ − ε

[

ζ +
1

3ρ3
(1−

√

1 − ρ2)2(2 +
√

1 − ρ2)

]

,

(3.51)

where we define the dimensionless pressure gradient ε = pRp/γ and the energy is normalized by

the characteristic energy σ = πR2
pγ. At this point, ρ and ζ are free variables with respect to which

the free energy must be simultaneously minimized, by solving

∂G

∂ζ
= 0 and

∂G

∂ρ
= 0. (3.52)
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The first equation can be used to find

1 − 2ζ =
2

ρ2

√

κ(2− ρ2 −
√

1 − ρ2)

ε + κ + 2
, (3.53)

which relates ζ and ρ. Upon substitution into the formula for τ , we find a rather (surprisingly)

simple result

τ = γκ

(√

ε + κ + 2

κ
− 1

)

. (3.54)

Notice that if we let pressure go to zero (ε → 0), we recover our first result. Additionally, this

shows that for a given pressure and pipette radius, stiffer membranes are at higher tensions. If we

further assume that membrane area is conserved, that is κ → ∞, we find something analogous to

the Laplace-Young relation

τ ' γ(1 +
ε

2
) = γ +

pRp

2
. (3.55)

One important thing to note is that the radius here is the pipette radius, not the patch radius of

curvature. This means that if we know the glass-bilayer interaction energy and pipette radius, we

know the tension, without any further measurements on the membrane.

This formulation is insensitive to where the patch is located in the pipette, and hence has

translational symmetry along the axis of the pipette, so long as the pipette radius is essentially

constant over the delamination length, ζ. The values of the dimensionless delamination are generally

bounded to be |ζ| < 1/2, hence this is usually a good assumption.

Further information can be garnered by examining the second of the two energy minimization

equations. Solving this equation with the additional knowledge of eqn. 3.53, gives a compact result

for the dimensionless curvature

ρ =
1

2

ε

ε + 2

(

1 +

√

ε + κ + 2

κ

)

, (3.56)

and in the limit where membrane area is conserved

ρ =
ε

ε + 2
. (3.57)

For a given membrane composition and pipette radius, one can measure how ρ depends on ε to

determine a value for γ. At first these results, though intuitively pleasing, may seem inconsistent

with the Laplace-Young relation, written as

τ = γ
ε

2ρ
(3.58)

in dimensionless variables. Upon substitution of eqn. 3.57 into this equation, we recover eqn. 3.55,

showing that the Laplace-Young relation still holds — what we have essentially done is filled in the
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missing variable of patch curvature as a function of pressure and pipette size.

Notice that for the area conserved model, 0 < ρ < 1 for all values of ε. However, in a membrane

with stretch one reaches the (at first) strange conclusion that ρ > 1 if ε > 2
√

2κ. One can readily

derive a rather complicated expression for ζ, where this peculiar property of ρ is accompanied by ζ

taking on complex values, as shown by the vertical dashed line in Fig. 3.12c. With area conserved,

the delamination is given by

1 − 2ζ = 2
(ε + 2)(ε + 2 − 2

√
ε + 1)

ε2
. (3.59)

The critical value of dimensionless pressure, where ε = 2
√

2κ, indicates a delaminating transition.

Physically speaking, above this critical pressure for every unit area of zero-tension membrane that

delaminates, costing energy, there is more energy relieved by the subsequent increase in volume

above the point of delamination. In other words, above this critical pressure, the membrane will

begin to freely slide and rapidly translate up the pipette in an uncontrolled manner.

3.6.3 Determining γ from Patch Curvature

Using a wealth of data12 that links patch curvature to applied pressure, we examine possible values

of the glass-bilayer binding energy, γ, in the limit of a stiff membrane (κ → ∞). Better yet, these

data also include multiple lipid preparations, and hence we can get an idea of the distribution of

this parameter over different lipid types.

Note that we can rewrite eqn. 3.57 in a linear form

ρ−1 = 2ε−1 + 1, (3.60)

and with dimensions as

Rc = γ(2p−1) + Rp. (3.61)

During the course of their studies into the intrinsic stimulus of MscL [50], Moe and Blount measured

patch tension, and therefore patch curvature. Thus their data can be used to fit eqn. 3.61 for the

adhesion energy and the pipette radius Rp. Ideally, if all pipettes and lipid preparations were truly

identical, all of the lines associated with a particular lipid would have the same slope, and only the

pipette radius would change from one experiment to the next. However, clearly buffer conditions,

the type of glass used, the cleanliness of that glass and other variables all effect the actual value of

the adhesion energy.

Some lipid types show fairly homogeneous values of the adhesion energy, while others span a

factor two or three. Opsahl and Webb [175] reported similar values, also with a wide range of

γ = 0.12− 0.97 kBT/nm2. Interestingly, when using the data published in their paper, this theory

gives a slightly different result, specifically from their Fig. 3 they calculate γ = 0.63 kBT/nm2,

12Much thanks to Paul Blount for the kind dissemination of these data.
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Figure 3.12: Analysis of electrophysiological membrane patch geometry and tension. Analytical

results for tension (red) in kBT/nm2, dimensionless delamination (green), and dimensionless cur-

vature (blue) as a function of pressure in mmHg for KA = 55 kBT/nm2, roughly the value for

DOPC. See table for other parameter values. The black lines correspond to the tension in the area

conserved model, where κ → ∞.

Figure: Parameter: Value:

3.12a Rp, γ 1 µm , 0.1 kBT/nm2

3.12b Rp, γ 1 µm , 0.7 kBT/nm2

3.12c Rp, γ 2.5 µm, 0.1 kBT/nm2

3.12d Rp, γ 2.5 µm, 0.7 kBT/nm2
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whereas we calculate γ = 0.47 kBT/nm2; although this could be related to the actual form of the

functional fit. These results are summarized in Fig. 3.13

Across all lipid types, the mean bilayer-glass adhesion energy was 0.544 ± 0.305 kBT/nm2.

This means that (on average) the lowest state of tension on a patch, which we know is at zero

pressure, is ∼ 0.5 kBT/nm2 — much higher than the resting tension on most cell membranes

(∼ 0.001− 0.01 kBT/nm2) [13]. Thus, it is likely that inside-out patch electrophysiology has been

operating in high a tension regime. Theoretical studies have shown that any channel whose protein-

bilayer interface changes upon gating will have some energetic dependence on bilayer tension [68].

This rather high resting tension could effect kinetics of transition, dose-response curves and their

parameters, and might cause the appearance or disappearance of entire conformational states in the

worst case. It should be noted that in many cases channel function is assayed in whole-cell patch

clamping, where there is likely significant interaction between the membrane and cytoskeleton, in

which case this theory is invalid. One can speculate further about what intrinsically high patch

tension means for the field of channel electrophysiology.

3.7 Concluding Remarks

In many ways this was a chapter of estimates. Using the bacterial mechanosensitive channel MscL

as our model volumetric channel, we built a simplified dynamic model of the process of osmotic

shock in an attempt to understand and estimate how bilayer and channel properties, as well as

molecular transport properties, conspire to regulate volume and surface tension in a cell or vesicle.

We explored a number of constitutive models for channel flow to understand how each depends on

pore geometry and general physical assumptions, and applied one of the resultant models (diffusive

transport) to a range of numerical simulations of the osmotic shock of a spherical bilayer vesicle.

Further, we designed in fine detail an experiment capable of measuring the ensemble volumetric

flux through such channels via micropipette aspiration of giant unilamellar vesicles, and explored

how different mutants of the channel protein might affect to the experiment through numerical

simulation of the governing equations. We showed a proof of concept that such an experiment is not

only feasible, but will likely work if mutant protein can be reconstituted at sufficient levels. Surely,

many detail oriented challenges remain, but we are rapidly approaching a functional measurement

that will elucidate the physics, and eventually biology, of nanoscopic flow.
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Figure 3.13: Measurements of glass-bilayer adhesion energy in different lipid mixtures. All plots

show measurements of patch curvature as a function of applied pressure, which can be fit to eqn. 3.61

to find values of the adhesion energy. The slopes of these lines are the values of γ in kBT/nm2 and

the intercepts are the pipette radii Rp in nanometers. Clearly, head group charge has an effect on

both the magnitude and variation of the adhesion energy. It is also likely that buffer conditions

and pipette glass composition affect the values of γ. The lipid compositions are indicated on each

plot. Plots (a-e) were made using data kindly provided by P. Blount, and plot (f) uses data from

[175].
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Chapter 4

Organization and Morphology of Lipid Domains

“Our imagination is stretched to the utmost, not, as in fiction, to imagine things which are not

really there, but just to comprehend those things which are there.” - Richard Feynman

4.1 Introduction

Cellular membranes are a heterogeneous mix of lipids, proteins and small molecules. Special group-

ings enriched in saturated lipids and cholesterol form liquid-ordered domains, known as a ‘lipid

rafts,’ serving as platforms for signaling, trafficking and material transport throughout the secre-

tory pathway. Questions remain as to how the cell maintains heterogeneity of a fluid membrane

with multiple phases, through time, on a length-scale consistent with the fact that no large-scale

phase separation is observed. In the first part of this chapter, we discuss how we have utilized a

combination of mechanical modeling and in vitro experiments to show that membrane morphology

plays a key role in maintaining heterogeneity and organizing domains in a model membrane. We

demonstrate that lipid domains can adopt a flat or dimpled morphology, where the latter facilitates

a repulsive interaction which slows coalescence and tends to organize domains. These forces, that

depend on domain morphology, play an important role in regulating lipid domain size and in the

lateral organization of lipids in the membrane.

Lipid composition and morphology can play a key role in regulating a variety of biological

processes. For example, viral uptake, plasma membrane tension regulation, and the formation of

caveolae all require the creation and control of groups of lipids that adopt specific morphologies. In

the second main theme of this chapter, we use a simplified model mixture of lipids and cholesterol

to examine the interplay between lipid phase-separation and bilayer morphology. We observe and

theoretically analyze three main features of phase-separated giant unilamellar vesicles. First, by

tracking the motion of ‘dimpled’ domains, we measure repulsive, elastic interactions that create

short–range translational and orientational order, leading to a stable distribution of domain sizes,

and hence maintaining lateral heterogeneity on relatively short length scales and long time scales.

Second, we examine the transition to ‘budded’ domain morphologies, showing that the transition

is size-selective, and has two kinetic regimes, as revealed by a calculated phase diagram. Finally,

using observations of the interactions between dimpled and budded domains, we build a theoretical

framework with an elastic model that maps the free energies and allowed transitions in domain
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morphology upon coalescence, to serve as an interpretive tool for understanding the algebra of

domain morphology. In all three cases, the two major factors that regulate domain morphology

and morphological transitions are the domain size and membrane tension.

This chapter is organized into four main sections. The first section gives the background and

motivation behind, as well as in-depth analysis of, our measurements of dilute domain interactions.

The second section moves on to analyze the larger set of morphologies that encompass domain

budding and interactions between domain buds and dimpled domains. These two sections are

followed by a more detailed discussion of domain mechanics and our experimental methods. The

last section discusses our experimental efforts to understand the phase separating properties of

membrane blebs from living cells.

4.2 Dilute Domain Interactions

The plasma and organelle membranes of cells are composed of a host of different lipids, lipophilic

molecules and membrane proteins [176]. Together, they form a heterogeneous layer capable of

regulating the flow of materials and signals into and out of the cell. Lipid structure and sterol

content play a key role in bilayer organization, where steric interactions and energetically costly

mismatch of lipid hydrophobic thickness result in a line tension that induces lateral phase-separation

[177], as shown in Fig. 4.11. Saturated lipids and cholesterol are sequestered into liquid-ordered

(Lo) domains, often known as ‘lipid rafts,’ distinct from an unsaturated liquid-disordered (Ld)

phase [130, 178, 179]. Domains composed of saturated sphingolipids and cholesterol, with sizes in

the range of ∼ 50 − 500 nm, have been implicated in a range of biological processes from lateral

protein organization and virus uptake to signaling and plasma-membrane tension regulation [180,

181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192]. In the biological setting, maintenance of

lateral heterogeneity is thought to arise from a combination of lipid recycling and energetic barriers

to domain coalescence [193, 194, 195] (potentially provided by transmembrane proteins [196]),

ostensibly resulting in a stable distribution of domain sizes. These biological examples serve as a

motivation to better understand the biophysical mechanisms that maintain lateral heterogeneity of

lipids over time, and pose new challenges to the classical theories of phase-separation and ‘domain

ripening’ (such as Cahn-Hilliard kinetics [197]).

The simplest physical model that describes the evolution of lipid domain size and position pre-

dicts that domains diffuse and coalesce, such that the number of domains constantly decreases,

while the average domain size constantly increases [197]. Indeed, models of two-dimensional phase

separation have been studied in detail for many physical systems [198, 199, 200, 201], and where

the phase boundary is unfavorable and characterized by an energy per unit length [138], the do-

main size grows continuously [197, 202, 203]. However, membranes can adopt three-dimensional

morphologies that affect the kinetics of phase separation [204, 205, 206, 207, 208]. In those cases

1Appendix D derives in detail the simplest kinetic model of phase separation for a 2D two-component system.
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a) b) c)

Figure 4.1: Structural differences in amphiphilic lipids. a) Two representations of the chemical

structure of the fully saturated lipid DPPC (Avanti Polar Lipids PN: 850355). Both acyl chains are

‘straight,’ lacking the kinked double bonds that lead to a disordered phase. b) Two representations

of the chemical structure of the mono-unsaturated, symmetric acyl chain lipid DOPC (Avanti Polar

Lipids PN: 850375). Both acyl chains contain a kinked double bond that leads to a disordered phase.

c) Two representations of the chemical structure of the membrane intercalating sterol cholesterol

(Avanti Polar Lipids PN: 700000). In vitro, liquid ordered domains are enriched in cholesterol and

the saturated lipid DPPC. All molecules are oriented with their polar regions up.

where morphology is considered as part of the phase separation model, novel coalescence kinetics

emerge [205]. Experimentally, model membranes have shown that nearly complete phase separation

on the surface of a giant unilamellar vesicle can be reached in as little as one minute [130]. This

seems inconsistent with the fact that on the cell surface, much smaller domains persist on that

same time-scale [195] and no large-scale phase separation is observed. With these facts in mind,

our central questions are: how can model membranes that have phase-separated maintain their

lateral heterogeneity on long time scales and short length scales? Are there membrane-mediated

(i.e. elastic) forces that inhibit coalescence and spatially organize domains?

We begin to answer these questions by examining the energetics of the membrane using a linear

elastic model. A phase-separated membrane is endowed with bending stiffness, membrane tension,

an energetic cost at the phase boundary, and domains of a particular size. Membrane bending and

tension establish a natural length-scale over which a morphological instability develops that switches

domains from a flat to ‘dimpled’ shape, similar to classical Euler buckling [209] (see Fig. 4.2). The

dimpling instability is size-selective and ‘turns on’ a membrane-mediated interaction that inhibits

domain coalescence. This transition is a precursor to budding, and is distinct from transitions that

require spontaneous curvature. While variations in membrane composition may change specific

parameter values, the mechanical effects we describe are generic. Thus, these systems exhibit

shape-dependent coarsening kinetics, that are relevant for a broad class of two-dimensional phase-
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Figure 4.2: Three dimensional rendering of a dimpled lipid domain in dimensionless coordinates.

For a domain (shown in red), a competition between bending, membrane tension, and phase bound-

ary line tension results in a morphological transition from a flat to a dimpled state as depicted

above. The dimple costs bending energy but relieves line tension by reducing the phase bound-

ary length (shown as a white line around the domain). This morphology facilitates interactions

between domains that significantly alter the kinetics of coalescence and lateral lipid organization.

The dimensionless projected domain radius is ρo = ro/λ2, where ro is projected radius, and λ2 is

the elastic decay length.

separating systems. The interaction between domains is a mechanical effect, and we use a model

treating dimpled domains as curved rigid inclusions to distill the main principles governing this

interaction. The confluence of membrane properties required for this morphological change and its

attendant forces lies squarely in the biological regime. Experimentally, we use a model mixture of

lipids and cholesterol to show that such an interaction exists between dimpled domains and is well

approximated by a simple model. We hypothesize that a combination of lipid recycling [193] and

elastic interactions could serve as a mechanism for the maintenance of lipid lateral-heterogeneity

and organization of domains in cellular membranes.

The first part of this chapter section outlines the energetic contributions to the mechanical

model, and predicts the conditions under which domain dimpling occurs. The second section

outlines how dimpled domains facilitate an elastic interaction and compares the model interaction

to our measurements made in phase-separated giant unilamellar vesicles.

4.2.1 The Elastic Model and Morphological Transitions

The energetics of a lipid domain are dominated by a competition — on one hand the applied

membrane tension and bending stiffness both energetically favor a flat domain; on the other hand

the phase boundary line tension prefers any domain morphology (in 3D) that reduces the boundary

length. We use a continuum mechanical model that couples these effects, relating the energetics

of membrane deformation to domain morphology. As we will show, this competition results in a

morphological transition from a flat to dimpled domain shape, where two dimpled domains are

then capable of interacting elastically.
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Lipid domains in a liquid state naturally adopt a circular shape to minimize the phase boundary

length [130], allowing us to formulate our continuum mechanical model in polar coordinates. We

employ a Monge representation, where the membrane mid-plane is described by a height function

h(r) in the limit of small membrane deformations (i.e. |∇h| < 1). With this height function, we

characterize how membrane tension, bending, spontaneous curvature and line tension all contribute

to domain energetics.

Changes in membrane height alter the projected area of the membrane and hence do work

against the applied membrane tension, resulting in an increase in energy written as

Gtens = πτ

(∫ ro

0
(∇h1)

2rdr +

∫ ∞

ro

(∇h2)
2rdr

)

, (4.1)

where τ is the constant membrane tension, ro is the projected radius of the domain, h1 is the

height function of the domain and h2 is the height function of the surrounding membrane [57, 32].

Membrane curvature is penalized by the bending stiffness with a bending energy written as [46, 57]

Gbend = πκ(2)

b

(

σ

∫ ro

0

(
∇2h1

)2
rdr +

∫ ∞

ro

(
∇2h2

)2
rdr

)

. (4.2)

Our model allows the domain and surrounding membrane to have differing stiffnesses, κ(1)

b and

κ(2)

b respectively, characterized by the parameter σ = κ(1)

b /κ(2)

b , and from this point on we drop

the superscript on κ(2)

b . Recent experiments suggest that the bending moduli of a cholesterol-rich

domain and the surrounding membrane are roughly equal [179, 210], and hence for simplicity, we

assume the bending moduli of the two regions are equal (i.e. σ = 1), unless otherwise noted. In

addition to bending stiffness, the domain may exhibit a preferred ‘spontaneous’ curvature due, for

instance, to lipid asymmetry [208] or protein binding [211]. The contribution of domain spontaneous

curvature can be simplified to a boundary integral, which couples to the overall curvature field by

Gspont = −2πσκbco

∫ ro

0

(
∇2h1

)
rdr = −2πσκbcoroε, (4.3)

where co is the spontaneous curvature of the domain and ε is the membrane slope at the phase

boundary. Further, we assume the saddle-splay curvature moduli are equal in the two regions,

yielding no dependence on Gaussian curvature. In principle, this contribution could be accounted

for with a boundary term, explored in detail in Section 4.4. The phase boundary line tension is

applied to the projected circumference of the domain, as shown in Fig. 4.2, by Gline = 2πroγ where

γ is the energy per unit length at the phase boundary.

Finally, a constraint must be imposed that relates the actual domain area, A, to the projected

domain radius ro. The energetic cost to change the area per lipid molecule is high (∼ 50 −
100 kBT/nm2 where kB = 1.38 × 10−23 J/K and T = 300 K [26]), hence we assume the domain

area is conserved during any morphological change (see Section 4.4 for details). We impose this
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constraint using a Lagrange multiplier, τo, with units of tension by

Garea = τo

(

π

∫ ro

0
(∇h1)

2rdr + πr2
o −A

)

. (4.4)

This results in an effective membrane tension within the domain τ1 = τ+τo, which must be negative

to induce dimpling. Examining the interplay between bending and membrane tension, we see that

two natural length scales emerge - within the domain we define λ1 =
√

σκb/τ1 and outside the

domain we define λ2 =
√

κb/τ . These length scales allow us to define the relevant dimensionless

parameters in this system.

The total free energy of an elastic domain and its surrounding membrane is then the sum of

these five terms, G = Gtens +Gbend +Gspont +Gline +Garea. Details on all the terms in the free energy

can be found in section 4.4. With this free energy in hand, we examine how the morphology of a

circular domain evolves as we tune domain size and the elastic properties of the membrane.

The height field and radius can be rescaled by the elastic decay lengths such that the Euler-

Lagrange equation for the domain can be written in the parameter-free form ∇2(∇2 + β2)η1 = 0,

while the equation for the surrounding membrane is ∇2(∇2 − 1)η2 = 0, where the dimensionless

variables are defined by λ2ηi = hi, λ2ρ = r, λ2ρo = ro and β = iλ2/λ1. Using the same di-

mensionless notation, the energy from line tension and spontaneous curvature can be written as

Gline = 2πκbρoχ and Gspont = −2πσκbερoυo, with υo = λ2co and χ = γλ2/κb. The dimensionless

line tension, χ, is simply a rescaled version of the line tension γ and is one of two key parameters

that characterize the morphological transition; the dimensionless domain area, α = A/λ2
2, is the

second key parameter.

The admissible solutions for η1(ρ) and η2(ρ) are zeroth order Bessel functions J0(βρ) and K0(ρ),

respectively, with the boundary conditions |∇η1(0)| = |∇η2(∞)| = 0 and |∇η1(ρo)| = |∇η2(ρo)| = ε.

The boundary slope, ε, is the parameter that indicates the morphology of the domain; ε = 0

indicates a flat domain, while 0 < |ε| . 1 indicates a dimpled domain. The five contributions to

membrane deformation energy yield a relatively simple expression for the total free energy, given

by

G = πκbρo

[

ε2
(

σβ
J0(βρo)

J1(βρo)
+

K0(ρo)

K1(ρo)

)

+ 2(χ − εσυo)

]

(4.5)

−κb(σβ2 + 1)(πρ2
o − α).

Mechanical equilibrium is enforced by rendering the energy stationary with respect to the unknown

parameters ε, ρo, and β,
∂G

∂ε
= 0,

∂G

∂ρo
= 0,

∂G

∂β
= 0. (4.6)

These equilibrium equations physically correspond to torque balance at the phase boundary, lateral

force balance at the phase boundary and domain area conservation, respectively.

Analysis of the equilibrium equations reveals a second-order transition at a critical line-tension,
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χc, as shown in Fig. 4.3. For χ less than this critical value, only the flat, trivial solution with ε = 0

exists. At χc a non-trivial solution describing buckled or dimpled morphologies emerges. For zero

spontaneous curvature, the bifurcation is defined by a transcendental characteristic equation

σβ
J0(βρo)

J1(βρo)
+

K0(ρo)

K1(ρo)
= 0, (4.7)

with β =
√

(χc/ρo − 1)/σ and ρo =
√

α/π. For a given dimensionless domain area, α, this defines

the critical line tension required to dimple the domain. In Fig. 4.3a(inset), this relation is used to

generate a morphological phase diagram that shows where in the space of dimensionless domain

area and line tension we find the discontinuous transition (i.e. bifurcation) from a flat domain, to a

dimpled domain. Near the morphological transition the boundary slope grows as |ε| ∝
√

χ/χc − 1,

indicating that a dimple rapidly deviates from the flat state. The transition is symmetric, in that

both possible dimple curvatures have the same energy, and hence the domain is equally likely to

dimple upwards or downwards. In the experimentally relevant limit of small dimensionless domain

area, the complexity of eqn. 4.7 is reduced to

χc

√
α =

γc

κb

√
A ' 8σ

√
π. (4.8)

This leads to the conclusion that the dominant parameter governing domain dimpling at zero

spontaneous curvature is χ
√

α. For a small domain, the dimpling transition is directly regulated by

domain area, the bending modulus, and line tension, but only weakly depends on applied membrane

tension. Intuitively, domains dimple when line tension or domain size increase (subject to small α),

as shown in Fig. 4.3a(inset). Likewise, a decrease in bending stiffness, due, for instance, to changes

in membrane sterol content [212, 213], can also induce dimpling. The effects of applied membrane

tension are weak because the change in projected area upon dimpling does not lead to a significant

energy cost relative to the cost of bending and line tension.

If membrane elastic properties are fixed (i.e. fixed κb, τ and γ), the dimpling-induced inter-

actions ‘turn on’ only after a critical domain size is achieved. This scenario is encountered when

two domains, too small to dimple on their own, diffusively coalesce into a larger domain capable of

dimpling and hence interacting. Indeed, such a size-selective coalescence mechanism was observed

recently in model membrane vesicles [214]. This constitutes a distinct class of coarsening dynamics,

where classical diffusion-limited kinetics are obeyed until the domain size distribution has matured

past the critical size for dimpling — then domain coalescence is a relatively slow, interaction-limited

process.

For the model domain considered in Fig. 4.3, with area α = π/4 (ro ' 250 nm), the critical

dimensionless line tension is χc ' 13, corresponding to a critical line tension of γc ' 0.65 kBT/nm

(1 kBT/nm = 4.14 pN). This value compares well with theoretical estimates of the line tension

[138, 215] and falls squarely in the range of values from AFM measurements [177], though it is

slightly higher than the value of γ ' 0.22 kBT/nm measured via shape analysis of fully phase
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Figure 4.3: Bifurcation diagram for dimpling transition at constant area (dimensionless domain area

α = π/4, bending modulus κb = 25 kBT , elastic decay length λ2 = 500 nm, ratio of bending moduli

σ = 1). Constant line tension and increasing area produces a qualitatively similar graph. a) At zero

spontaneous curvature (υo = 0, thin black line) the bifurcation is symmetric, the upper and lower

branches are at the same energy, and the flat domain, ε = 0, becomes unstable above the critical

point (horizontal black dashed line). With finite spontaneous curvature (υo = 2, co = (250 nm)−1,

thick blue line) the lower energy branch (upper) has non-zero boundary slope for all line tensions,

asymptoting to the zero spontaneous curvature branch. At a line tension slightly higher than

the critical line tension, χc, for the zero spontaneous curvature case, a bifurcation yields a higher

energy dimple with the opposite curvature as υo (indicated by the second vertical dashed line).

Inset: Equilibrium phase diagrams for bending moduli ratios of σ = 0.5(red), σ = 1(green), and

σ = 2(blue) (the dashed lines are the approximation of eqn. 4.8) showing flat (F) and dimpled

(D) domains. b) Energy difference between the flat and dimpled state, normalized by the bending

modulus κb, for domains with and without spontaneous curvature (υo = 0 → thin black line;

υo = 2 → thick blue line).
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separated vesicles [179] and γ ' 0.40 kBT/nm measured from micropipette aspiration experiments

[216]. In general, measured values of the line tension depend heavily on bilayer composition,

spanning a range of ∼ 0.05− 1.5 kBT/nm [179, 216, 177].

Spontaneous curvature does not affect the Euler-Lagrange equations, and hence will not effect

the class of equilibrium membrane shapes. However, domains with zero and nonzero spontaneous

curvature exhibit qualitatively different behavior. Membranes can be asymmetric with respect to

leaflet composition [212, 180, 217], endowing a domain with potentially large spontaneous curvature.

The energetic contribution from spontaneous curvature takes the form of an additional line tension

depending linearly on the slope taken by the domain boundary, ε. This breaks the symmetry of the

membrane, giving an energetic preference to a dimple with the same curvature as the spontaneous

curvature, and eliminating the trivial ε = 0 solution even at small line-tensions. As line tension

increases, a bifurcation produces a second, stable, higher-energy dimple of the opposite curvature

as υo. The more energetically stable branch of this transition corresponds to a dimpled state for

all values of line tension and non-zero values of domain area, as demonstrated in Fig. 4.3a. This

predicts that as soon as a domain with finite spontaneous curvature forms, it dimples, regardless

of size, and begins to experience interactions with any nearby dimpled domains. It is reasonable to

expect that domains with similar composition will have similar spontaneous curvature, and hence

form dimples whose curvature has the same sign. As we will show, dimples whose curvature has the

same sign tend to interact repulsively. Such a mechanism of coalescence inhibition was observed

recently in simulation [208]. This indicates that control of spontaneous curvature via domain

composition or protein binding can regulate dimpling and hence domain interaction [218, 217].

Indeed, recent theoretical [219] work shows that lipid asymmetry, leads to precisely these kinds of

dimpled domains.

Calculated shapes of dimpled domains induced by line tension and spontaneous curvature are

shown in Fig. 4.4a, alongside dimpled domains observed on giant unilamellar vesicles, shown in

Fig. 4.4b and d.

4.2.2 Elastic Interactions of Dimpled Domains

Given two domains that have met the criteria for dimpling, the deformation in the membrane

surrounding the domains mediates an elastic interaction when they are within a few elastic decay

lengths (λ2) of each other. This equips us to begin addressing how short length-scale and long

time-scale membrane heterogeneity might be achieved. As previously stated, free diffusion sets the

maximum rate at which a quenched membrane can evolve into a fully phase-separated membrane

[197], where this evolution can happen in as little as a minute on the surface of a giant unilamel-

lar vesicle [130]. By comparison, recycling and hence homogenization of cellular membrane is a

process that takes place on the time-scale of an hour or more [220]. Our measurements of domain

interactions (detailed below and other data shown in section 4.4) estimate the coalescence barrier

between dimpled domains at ∼ 5 − 10 kBT . Hence, given the diffusion-limited rate of phase sepa-
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Figure 4.4: Theoretical and experimental dimpled domain shapes. Domains are shown in red, sur-

rounding membrane in blue. a) The dimensionless height profile (η) as a function of dimensionless

radius (ρ) for minimum energy dimples with and without spontaneous curvature (dimensionless

spontaneous curvature, υo, and line tension, χ, are indicated in the legend; dimensionless domain

area α = π/4). b) Epi-fluorescence cross-section of a dimple on the surface of a GUV; the red

and blue lines are a guide to the eye. c) 1D model of interaction — dimples maintain shape, but

tilt (φ) as a function of separation distance (d). Dimples with the same sign of curvature repel,

while dimples with opposite sign attract. The single domain shape, with boundary slope ε and

dimensionless projected radius ρo is shown for reference. d) Epi-fluorescence cross-section of two

dimpled domains interacting on the surface of a GUV. Scale bars are 3 µm.
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ration, interactions slow this process by approximately e−5 ' 0.007 to e−10 ' 0.00005. This makes

the time-scale of lipid heterogeneity comparable to the time-scale of membrane recycling and even

eukaryotic cell division.

The physical origin of domain interaction is explained by a simple model based on the assump-

tion that the dimpled domain shape is constant during interaction, but the domains are free to

tilt by an angle φ, as shown in Fig. 4.4c. This assumption was, in part, inspired by experimental

observations of domain shapes on the surface of giant unilamellar vesicles, as shown, for example,

in Fig. 4.4d. The interaction energy is roughly an order of magnitude less than the free energy

associated with the morphological transition itself (see Fig. 4.3b), thus interaction does not perturb

the domain shape significantly. Only allowing domains to rotate simplifies the interaction between

two domains to a change in the boundary conditions in the three regions of interest, shown in blue

in Fig. 4.4c. Applying the small gradient approximation, the boundary slope is given by |ε − φ|
in the outer regions and by |ε + φ| in the inner region. With the single domain boundary slope,

ε, set by the energy minimization of the previous section (i.e. eqn. 4.6), the pairwise energy is

minimized at every domain spacing, d, by ∂G/∂φ = 0 to find the domain tilt angle that mini-

mizes the deformation energy (see Section 4.4 for details). This results in two qualitatively distinct

scenarios: two domains whose curvatures have the same sign repel each other, while two domains

whose curvatures have the opposite sign attract each other. Scaling arguments can be used to show

that the strength of interaction between two dimpled domains increases roughly linearly with their

area, so long as they are both larger than some critical area (see Section 4.4 for details). Mathe-

matically, the assumption of rigidly rotating dimpled domains is identical to a previous 2D model

of bending-mediated interactions between intramembrane proteins, represented by rigid conical

inclusions [117].

Independent of the effects of spontaneous curvature, slight osmolar imbalances and constriction

due to the lipid phase boundaries create small pressure gradients across the membrane that tend

to orient all dimples on a vesicle in the same direction, resulting in net repulsive interactions

between all domains. Transitions between ‘upward’ and ‘downward’ dimples are infrequent, due to

a large energy barrier. In the simplest case, where the domains are the same size, the tilt angle

φ monotonically increases as two domains get closer, φ(d) ' −εe−d. Likewise, the interaction

energy increases monotonically with decreasing domain separation, Vint(d) ' 2πκbε
2ρ2

oe
−d. To

quantitatively compare our interaction model with experiment, we analyzed the thermal motion of

small domains on the surface of giant unilamellar vesicles, as described in ‘Materials and Methods.’

For direct comparison, we fit both the 1D model outlined here and the 2D inclusion model [117] to

the measured potential of mean force between domains, as shown in Fig. 4.5. The two models are

experimentally indistinguishable, though with a slightly different elastic decay length.

In these experiments, membrane tension was regulated by balancing the internal and external

osmolarity, giving us coarse control over the elastic decay length λ2. Through time, the distance

between every domain pair was measured and the net results were used to construct a histogram
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Figure 4.5: Measuring domain interactions on the surface of a vesicle. a) Three images of dilute

interacting domains on the surface of the same vesicle (scale bar is 10 µm). b) The repulsive interac-

tion potential (Vint) between domains on the surface of the same vesicle as (a). The energy is mea-

sured in kBT and distance is domain center-to-center. The blue dashed line is a fit to the 1D inter-

action model in this work, Vint(r) = a1e
−r/λ

(1D)
2 +a2, with elastic decay length λ(1D)

2 = 240 nm. The

orange dashed line is a fit to the model, Vint(r) = 2πκb

[
(a1a2)

2K0(r/λ(2D)

2 ) + a2
2a

4
3K

2
2 (r/λ(2D)

2 )
]
+a4,

with elastic decay length λ(2D)

2 = 270 nm, based on the theory of Weikl et al [117]. Both elastic

decay lengths indicate a membrane tension of ∼ 4×10−4 kBT/nm2. Errors bars are shown in green

on the x-axis.

of center-to-center distance probability, the natural logarithm of which is the potential of mean

force, as shown in Fig. 4.5b. We selected vesicles that had a low density of approximately equal-

sized domains, and thus generally the interactions were described by a repulsive pairwise potential.

Though areal density of domains and generic data quality varied in our experiments (see Section

4.4), all data sets exhibit the repulsive core of the elastic interaction. Multi-body interactions occur,

though infrequently; their effect can be seen as a small variation in the baseline of Fig. 4.5b, which

is not captured by the pairwise interaction model. At high membrane tension, when we would

not expect dimpled domains, we qualitatively verified that domains coalesce in a rapid manner as

compared to our low tension experiments (data not shown). Other recent experiments have also

observed repulsive interactions and a correspondingly slower rate of coalescence between domains

on low membrane tension vesicles, and a marked increase in coalescence kinetics on the surface of

taut vesicles [214].

Our measurement of the pairwise potential allows us to estimate elastic properties of the mem-
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brane. The elastic decay length was fit to the 1D and 2D interaction models described above, and

found to be λ(1D)

2 ' 240 nm and λ(2D)

2 ' 270 nm, respectively. Taken with a nominal bending mod-

ulus of 25 kBT , we estimate the membrane tension to be ∼ 4 × 10−4 kBT/nm2. From the images,

we measure the size of the domains at ro ' 350 − 400 nm, and hence ρo ' 1.5. We estimate the

line tension, γ, using eqn. 4.8, based on the fact that the domains are dimpled, and find a lower

bound of γ ' 0.49 kBT/nm (1 kBT/nm = 4.14 pN). This is in good agreement with theoretical es-

timates and values determined from AFM measurements [177], though somewhat higher than the

value of γ ' 0.22 kBT/nm measured via shape analysis of fully phase separated vesicles [179] and

γ ' 0.40 kBT/nm from micropipette aspiration experiments [216]. Finally, viewing the repulsive

core of the interaction as an effective activation barrier to coalescence, a simple Arrhenius argument

suggests a decrease in coalescence kinetics by two to three orders of magnitude. Indeed, such a

slowing of coalescence was recently observed in a similar model membrane system [214].

4.2.3 Discussion of Dilute Domain Interactions

Comparing biologically relevant domain sizes (∼ 50 − 500 nm) with the elastic decay length (λ2),

we expect physiologically relevant domains to be small (i.e. small α), as presumed in eqn. 4.8.

Estimating the elastic decay length requires knowledge of the membrane tension and bending

stiffness. We note that in vitro experiments of osmotically balanced single and multicomponent

vesicles, and measurements of the plasma membrane of unstressed cells suggest membrane tensions

of 10−4−10−2 kBT/nm2 [179, 26, 13, 221]. The typical bending modulus of a phosphocholine bilayer

is ∼ 10 − 50 kBT , depending on the exact lipid and cholesterol content [26, 222, 223]. Choosing

a nominal membrane tension of 10−4 kBT/nm2 and nominal bending modulus of 25 kBT [26, 179]

corresponds to an elastic decay length of λ2 ' 500 nm, suggesting that for lipid domains on the

order of 50− 500 nm, small α is an appropriate approximation.

Our experiments on the surface of GUVs have three potentially confounding effects, all due to

the spherical curvature of the vesicle. First, the surface metric is not entirely flat with respect to the

image plane. Thus, measurements of distance are underestimated the farther they are made from

the projected vesicle center. This problem is ameliorated by concentrating on domains which are at

the bottom (or top) of the vesicle where the surface is nearly flat and demanding that our tracking

software exclude domains that are out of focus; see Section 4.4 for a more detailed explanation.

The second potential complication is that we use a flat 2D coordinate system for our theoretical

analysis, however domains reside on a curved surface. Given that the domain deformation, and

hence energy density, decays exponentially with λ2, as long as λ2 is small with respect to the

vesicle radius, the energetics that govern morphology converge on an essentially flat surface metric.

The final complication is that the circular area of focus creates a fictitious confining potential for

the domains, such that the effective measured potential of mean force is the sum of the elastic

pairwise potential and a fictitious potential, Veff = Vint + Vfict. The fictitious potential is removed

by simulating non-interacting particles in a circle the same size as the radius of focus (see Section
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4.4 for details).

The constant tension ensemble used in our theoretical analysis has an experimental range of va-

lidity, determined by the excess area available on a thermally fluctuating membrane with conserved

volume and total surface area Ao (i.e. a vesicle). In the limit where the morphological transitions

use only a small portion (∆A) of this excess area, defined by kBT/8πκb � ∆A/Ao, the tension is

constant. Outside this regime the tension rises exponentially with reduction in excess area, tending

to stabilize dimples from fully budding (see section 4.4 for details).

In addition to the elastic mechanism of interaction, described herein, there may be other orga-

nizing forces at work in a phase-separated membrane, for instance, those of elastic [138] or entropic

[224, 85] origin. However, the putative length scale over which these effects compete with thermal

fluctuations (on the order of ten of nanometers) is not accessible to the spatial and temporal resolu-

tion of our experiments. Electrostatics may also be at work, in the form of dipole-dipole repulsion

due to the net difference in dipole density between the two phases [225, 226, 227], although to first

order, symmetry suggests there is a net zero dipole moment per unit volume of bilayer [228]. In our

experimental system, the modulator of repulsive interactions is membrane morphology (i.e. domain

dimpling); if other interactions were a major repulsive effect, we would not expect such forces to

depend markedly on large-scale membrane morphology.

4.2.4 Summary of Dilute Domain Interactions

We have shown that lipid domains are subject to a morphological dimpling transition that depends

on the bilayer elastic properties and domain size. Dimpling allows two domains in proximity to

repulsively interact due to the deformation in the surrounding membrane. Our model makes two key

predictions: i) at zero spontaneous curvature the domain size distribution reaches a critical point

where coalescence is arrested by repulsive interactions [214], ii) domains with finite spontaneous

curvature are always subject to interaction and hence should always coalesce at a rate slower than

the diffusion-limited rate [208]. Additionally, the strength of elastic interactions is augmented

by increasing line tension or domain area, with an approximately linear scaling. We proposed

a simple 1D model of an elastic interaction that mediates dimpled-domain repulsion, and then

used a standard ternary membrane system to verify the existence of dimpled domains and their

subsequent repulsive interaction. Our model offers a mechanism that works against diffusion-driven

coalescence, to maintain fine-scale lateral heterogeneity of lipids over time.

4.3 Dimpled Domain Organization and Budding

Cellular membranes are a complex mixture of lipids, membrane proteins, and small molecules (e.g.

sterols) [176, 180]. The membrane serves mainly as a chemical barrier and substrate for membrane

proteins that are responsible for regulating the movement of materials and information across the

membrane. However, there are a host of important tasks that require a change in membrane
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Figure 4.6: Morphologies of a lipid domain. a) A domain (red) lies completely flat when the energy

from line tension is small compared to the cost of deformation from bending and membrane tension.

b) For domains with a size roughly equal to or less than the elastic decay length, a competition

between bending and phase boundary line tension results in a morphological transition from a flat

to a dimpled state. This morphology facilitates elastic interactions between domains that slow the

kinetics of coalescence significantly. c) Line tension in domains whose size is large compared to the

elastic decay length, can cause a transition to a fully budded state.

morphology, such as endo- and exo-cytosis [105, 229], vesicular trafficking from the endoplasmic

reticulum and Golgi apparatus to the plasma membrane [230], and the regulation of tension in

the plasma membrane [181]. While the role of proteins cannot be ignored in these instances (e.g.

clathrin, COPI, COPII, caveolin, SNAREs, actin) [231, 232, 233, 234, 218, 235, 236, 237, 238, 239],

the lipid composition and bilayer morphology of the membrane play an important part [230, 240,

241, 242, 212, 185, 243]. With that in mind, our goals in this section are to examine how lipids in a

model multi-component membrane spatially organize, how this organization relates to membrane

morphology, or specifically membrane mechanics, and to examine how transitions in membrane

morphology are regulated by bilayer mechanical properties.

In vitro studies have conclusively shown that lipids are capable of lateral self-organization [130,

179, 244], facilitated by the structure of their hydrophobic regions and the presence of intercalated

sterols. Saturated lipids and cholesterol are sequestered from the membrane mix to form ‘lipid

rafts’ that serve as platforms for signaling and material transport across the membrane, with sizes

ranging from ∼ 50 − 500 nm [180, 181, 183, 184, 186, 187, 188, 189, 190, 191, 192]. In addition to

their unique chemical properties and protein-specific interactions, lipid rafts are mechanical entities

in a thermal environment, and as such, our analysis focuses on continuum and statistical mechanics

of phase-separated bilayers.
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The remainder of this section is organized as follows. The first subsection examines how dim-

pled domains, which exert repulsive forces on each other, spatially organize themselves into ordered

structures as their areal density increases. Specifically, we measure the potential of mean force and

orientational order, finding that domains exhibit orientational and translational order on length

scales much larger than the domains themselves. The second section studies the transition to a

spherical ‘budded’ morphology [215, 193]. Using a mechanical model that combines effects from

bending, line tension and membrane tension, we predict and observe size-selective budding tran-

sitions on the surface of giant unilamellar vesicles, and derive a phase diagram for the budding

transition. The final section considers the three lipid domain morphologies — flat, dimpled and

budded — and constructs a set of transition rules that dictate the resultant morphology resulting

from coalescence of two domains.

4.3.1 Spatial Organization of Dimpled Domains

Our analysis begins by viewing the bilayer as a mechanical entity, endowed with a resistance to

bending [26], quantified by a bending modulus (κb) with units of energy; a resistance to stretch

under applied membrane tension (τ) [26], with units of energy per unit area; and in the case where

more than one lipid phase is present, an energetic cost at the phase boundary, quantified by an

energy per unit length (γ) [245, 138]. For a given domain size, the line tension between the two

phases competes with the applied membrane tension and bending stiffness to yield morphologies

that reduce the overall elastic free energy. In particular, the bending stiffness and membrane

tension both favor a flat domain morphology. Conversely, the line tension prefers any morphology

(in three dimensions) that reduces the phase boundary length. A natural length-scale, over which

perturbations in the membrane disappear, is established by the bending stiffness and membrane

tension, given by λ =
√

κb/τ . Comparing this ‘elastic decay length’ with domain size indicates the

set of possible domain morphologies. If the domain size is on the order of, or smaller than, the

elastic decay length, flat and dimpled morphologies arise; while domains larger than λ generally

give rise to the budded morphology [215, 193, 204, 205]. This rule of thumb is based on the fact

that bilayer deformations from dimpling are concentrated within a few elastic decay lengths of the

phase boundary, while domain budding energetics are governed by basis shapes much larger than

λ.

Dimpled domains are characterized by a dome-like shape with finite slope at the boundary be-

tween the two lipid phases, as shown in Figs. 4.6 and 4.7(b). In previous work we found a distinct

flat-to-dimpled transition, regulated by line tension and domain area [246], where if all the elastic

parameters are constant in time, the domain is either flat or dimpled, but cannot make transitions

between those states (i.e. there is no coexistence regime). Hence, domains below a critical size lie

flat, and if all other membrane properties are constant, the only way domains transition from flat

to dimpled is by coalescing to form larger domains that are above a critical size. An important
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Figure 4.7: Domain morphology and coalescence. a) A nearly fully phase-separated vesicle, showing

domains (red) flat with respect to the background curvature of the vesicle (blue). b) At low tension,

domains (red) dimple and establish a non-zero boundary slope with respect to the curvature of the

vesicle (blue). c) Flat domains on the surface of a vesicle — coalescence is uninhibited by elastic

interactions. d) Dimpled domains on the surface of a vesicle - coalescence is inhibited by elastic

interactions between the domains, and the domain-size distribution is stable. Directly measuring

membrane tension disturbs the domain size evolution, however the magnitude of membrane fluctu-

ations [214, 247] indicates that the tension in (c) is higher than the tension in (d). Scale bars are

10 µm.

outcome of domain dimpling is the emergence of a membrane-mediated repulsive interaction be-

tween domains that tends to inhibit coalescence. Intuitively, the origin of this force is that dimples

deform their surrounding membrane, but this deformation decays back to an unperturbed state

within a few elastic decay lengths of the phase boundary. Two domains that are within a few elas-

tic decay lengths of each other have overlapping deformed regions, and thus the total elastic free

energy depends on the distance between the domains, leading to a net repulsion. A relatively sim-

ple mechanical model and previous measurements show that the interaction between two dimpled

domains can be approximated by the pair potential V (r) ∝ e−r/λ, where r is the center-to-center

separation between the domains [246].

This repulsive interaction arrests coalescence, and hence significantly affects the evolution of

domain sizes in a phase-separated membrane. For a simple physical model, in the absence of any

interaction, domains would diffuse [248] and coalesce at a rate such that domain size scales as t1/3
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[197, 202, 203]. This sets the time-scale for full phase separation on a typical giant unilamellar

vesicle (GUV) at ∼ 1 minute (see Fig. 4.7(c) and [130]). However, viewing repulsive interactions

as an energetic barrier to domain growth, and given the measured barrier height of ∼ 5kBT (with

kB = 1.38×10−23 J/K and T ' 300 K) [246], the rate of domain coalescence slows by the Arrhenius

factor e−5 = 0.007. A clear example of the difference in the rate of domain growth, with and without

elastic interactions, is shown in Fig. 4.7(d and c), respectively, and [214]. Thus elastic repulsion is a

plausible mechanism by which lipid lateral heterogeneity could be maintained on the hour-long time

scale required for a cell to recycle (and hence partially homogenize) the plasma membrane [220].

Alternative schemes have been proposed that balance continuous rates of membrane recycling and

domain coalescence to yield a stable domain size distribution [193].

We examined the role these elastic interactions play in the spatial organization of lipid domains.

Given that all the domains mutually repel each other, as the areal density of domains increases,

the arrangement of domains that minimizes the elastic free energy takes on distinctly hexagonal

order, so as to maximize the separation between all domains. Indeed, the arrangement of repulsive

bodies on a sphere is a well studied problem in physics [249, 250, 251], and a dominant feature

of such systems is the emergence of hexagonal and translational order. We measured the strength

of this organizing effect by tracking the thermal motion of dimples on the surface of GUVs, and

calculating the radial distribution function (see ‘Materials and Methods’). For time-courses that

have no coalescence events, the vesicle and its domains are in quasistatic equilibrium, thus the

negative natural logarithm of the radial distribution function is a measure of the potential of

mean force between domains. Our previous theoretical and experimental work showed that the

elastic interaction between domains at low areal density is well approximated by a pair potential

of the form V (r) ∝ e−r/λ [246]. As the domain areal density increases, the domains adopt spatial

orientations that maximize their mean spacing. This can be understood in terms of the free

energy of the entire group of domains. If a domain deviates from this spatial arrangement, the

sum of the elastic interaction energy with its neighboring domains increases, providing a mild

restoring force to its original position. Thus the potential of mean force develops energy wells, up

to ∼ 2 kBT in depth, that confine domains to a well-defined spacing, as shown in Fig. 4.8(b–f).

It should be noted that such a restoring force can arise from the combined pair repulsion of the

hexagonally-arranged neighboring domains, and does not necessarily mean that there are attractive,

non-pairwise interactions.

The mutual repulsion and resulting energetic confinement lead to an effective lattice constant

that depends on domain size and packing density. For example, domains may exhibit a well-

defined spacing for first, second (Fig. 4.8(b)), third (Fig. 4.8(c–d)), and fourth (Fig. 4.8(e–f))

nearest-neighbors, corresponding to a correlation in the position of domains over a few microns.

Interestingly, this means that by forming dimpled domains, the motion of individual lipids can

be correlated on length scales up to ∼ 104 times larger than the size of an individual lipid. As

indicated by the exponential decay of these ‘ringing’ potentials (see Fig. 4.8(b–f)), the length scale
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Figure 4.8: Interactions of lipid domains as areal density increases. Left: snapshots of dimples

on the surface of GUVs. Right: corresponding potentials of mean force. a) At low areal density,

interactions are almost purely repulsive, and there is no translational or orientational order —

the domains are in a state analogous to a gas of particles. b–f) At higher areal density, domains

‘condense’ into a state where each domain is repelled by its neighboring domains, giving rise to

energy wells that define a lattice constant and hence translational order. The decay envelope of

these ‘ringing’ potentials indicates the length-scale over which the motion of domains is correlated.

In all plots, the blue line indicates the fit to eqn. 4.9, where λ2 is the order-correlation length

and λ3 is the effective lattice constant. The dashed vertical lines are the approximate minimum

center-to-center distance between domains as determined by domain size measurement (a) or one

half the lattice constant (b–f). Insets: Time-averaged Fourier transforms, showing that mutually

repulsive elastic interactions lead to (thermally smeared) hexagonal order, except in (a) where the

density is too low to order the domains. Scale bars are 10 µm.
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Figure 4.9: Increase in correlated motion of dimpled domains as a function of area occupancy.

This plot shows the ratio of the order-correlation length (λ2) over the lattice constant (λ3) for the

vesicles in Fig. 4.8 (and one additional vesicle) as a function of the total area taken up by the

domains divided by the total measurable vesicle area. The ratio λ2/λ3 quantifies how many nearest

neighbor domains (i.e. 1st, 2nd, etc.) exhibit strongly correlated motion.

over which this correlation in motion exists is limited by both the relatively low strength of pair

repulsion (relative to kBT ) and the dispersion of domain sizes.

In the picture that emerges, lipid domains exhibit a transition similar to condensation in a

liquid–gas system. At the lowest areal densities, the motion of domains is analogous to a ‘gas’

of particles that occasionally have repulsive pairwise interactions. As the domain areal density

increases a ‘condensed’ phase of domains emerges, identified by its translational and orientational

order. As the areal density of dimpled domains increases, the system exhibits three qualitative

effects: i) the lattice constant decreases, as it must, to accommodate more domains per unit area;

ii) the effective confinement grows stronger because the membrane in between the domains is more

severely deformed by the closer packing; iii) hexagonal order clearly emerges, as shown by the

characteristic peaks in the time-averaged Fourier transforms of domain positions in Fig. 4.8(b–

f)(inset). The time-averaged Fourier transform is the arithmetic mean of the Fourier transforms of

domain positions from each image in a data set, with the peaks corresponding to hexagonal order

somewhat ‘smeared’ by the rotational diffusion of the entire group of domains.

To quantify the lattice constant and correlation length of interacting dimpled domains, we

added a phenomenological correction term to the previously mentioned pair potential to account

for interactions between multiple domains, such that the total potential of mean force has the form

Vfit(r) = a1e
− r

λ1 + a2e
− r

λ2 J0 (2π(r − ro)/λ3) , (4.9)
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where J0 is the 0th-order Bessel Function of the first kind, and a1, λ1, a2, λ2, ro and λ3 are

fit parameters. While this equation offers little insight into the underlying physics of densely

interacting domains, the description does an excellent job of capturing the observed features of

interactions between multiple dimpled domains, as demonstrated in Fig. 4.8. Using this formula,

we extracted the correlation length (λ2) and lattice constant (λ3), whose ratio, λ2/λ3, is a measure

of the translational order in the system, which is shown to increase with domain density. As

domain areal density increases, the elastic free energy confines domains to adopt a well-defined

mean spacing with hexagonal order. Thus the motion of domains is correlated over multiple layers

of neighboring domains, as shown in Fig. 4.9.

The dimpled domains that exhibit this behavior arise in situations where the tension is low

and the elastic decay length is longer than the domain size. In the regime where the elastic decay

length is short compared to domain size, ‘budded’ domains emerge as a morphology with distinct

transition rules and interactions.

4.3.2 The Budding Transition

Similar to the analysis of domain dimpling; bending, membrane tension, line tension, and domain

size all play a role in the transition to a budded domain morphology. Many energetic models

have been proposed that describe morphological changes which result in budding and other more

complex morphologies [204, 252, 253, 254, 206, 255]. One of the simplest models, and yet most

reconcilable with experiment, is the ‘spherical’ budding model. This model has its foundations in

classical ‘sessile’ droplet wetting theory [256], and posits that the domain is, at all times, a section

of a sphere [181, 215]. We will recapitulate this model here, and explore some of its implications for

our experiments. This model ignores deformations near the phase boundary, and cannot capture

the existence of the dimpled state, but is a reasonable model to employ in the regime where the

elastic decay length is smaller than the domain size.

The budding domain is characterized by a wrapping angle θ, where θ = 0 corresponds to a flat

domain and θ = π corresponds to the encapsulation of a small volume by a spherical bud, as shown

in Fig. 4.6(c) and 4.10(a). The bending energy of a budding domain is calculated as a fraction of

the bending energy of a sphere, given by

Gbend = 2κb

∫

(H − co)
2 dA (4.10)

= 8πκb
A

4πR2
(1− 2coR) + C,

where H = 1/R is the mean curvature, R is the radius of curvature of the domain, 8πκb is the

bending energy of a sphere, A is the domain area, and co is the spontaneous curvature of the

domain, which, for simplicity, we assume is zero. A constant energy C, that does not depend on

domain shape, is omitted. As the domain becomes more spherical, the areal footprint of the domain

shrinks, as shown in Fig. 4.10(a), and work must be done against the applied membrane tension,
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Figure 4.10: Shapes and energies of domain budding. a) A schematic of domain shape going from a

flat domain, with area α and flat radius ρ, through a dome shape with wrapping angle θ and radius

of curvature R, to a fully budded state, with an applied tension τ . b) The free energy of a budding

domain as a function of line tension (χ) and wrapping angle (θ) for domain size α = 10. At low line

tension (before the blue line), both flat and budded morphologies are stable, but the flat state has

a lower elastic free energy and there is an energy barrier between the two stable states. At the blue

line, the free energy difference between flat and budded is zero. Between the blue and red lines,

both morphologies are stable, but the budded state has a lower elastic free energy. Finally, for line

tensions above the red line, the energy barrier disappears and budding is a spontaneous process.
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given by

Gtens = −τπ(R sin θ)2. (4.11)

The driving force for budding is the reduction of phase-boundary line tension, provided by

Gline = γ2πR sin θ. (4.12)

Finally, for all reasonable membrane tensions, the domain area is conserved during any change in

morphology, and is given by

A = 2πR2(1 − cos θ). (4.13)

This constraint equation links A and R, allowing us to eliminate R from the total free energy,

G = Gbend + Gtens + Gline. After some rearrangement, the total free energy can be written in a

compact form,

G = 4πκb[ χ
√

α

√

1 + cos θ

8π
︸ ︷︷ ︸

line tension

− α
1 + cos θ

8π
︸ ︷︷ ︸

membrane tension

+ 1 − cos θ
︸ ︷︷ ︸

bending

], (4.14)

where the dimensionless area, α = A/λ2, and dimensionless line tension, χ = γλ/κb, emerge as the

regulators of domain budding. The stable morphologies are those found at energy minima, given by

∂G/∂θ = 0, with only flat (θ = 0) or budded (θ = π) morphologies satisfying this equation (in the

absence of spontaneous curvature). Figure 4.10(b) shows the free energy of budding as a function

of wrapping angle θ and the line tension χ. From this plot, one can readily see that there are two

special values of the line tension; the first, shown in blue, is where the free energy difference between

the flat and budded states equals zero, but an energy barrier exists between them. The second

special value of line tension, shown in red, is where the energy barrier between flat and budded

morphologies disappears, and budding becomes a spontaneous process. This graphical analysis

primes us to calculate the budding phase diagram. From the solutions for the energy minima, it

can be shown that the phase diagram has three regions, as shown in Fig. 4.11: i) for certain values

of α and χ both flat and budded domains are stable (coexistence), but flat domains have a lower

elastic free energy; ii) in an adjacent region, both morphologies are stable (coexistence), but buds

have a lower elastic free energy; iii) in the remaining region only buds are stable (single-phase). The

boundary between the regions of the phase diagram that have two stable morphologies (coexistence)

versus one stable morphology (single-phase) is given by the inflection point (∂2G/∂θ2)
∣
∣
θ=0

= 0,

which defines the line tension

χbud = 8

√
π

α
+

√
α

π
, (4.15)

above which only buds are stable, or alternatively stated, there is no energy barrier to the budding

process (see Fig. 4.11). Given that χ is a constant material parameter for constant tension, this

equation specifies a size range over which spontaneous domain budding will occur,

π

4

(

χ −
√

χ2 − 32
)2

< α <
π

4

(

χ +
√

χ2 − 32
)2

. (4.16)
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Thus budding, and in particular spontaneous budding, is a size-selective process that can only

occur if χ > 4
√

2. Membrane tension and line tension can be estimated by measuring size-selective

spontaneous budding on the surface of a phase-separated vesicle. In a few instances, we were able to

capture the onset of size-selective budding, though as a function of initial conditions and timing, this

proves particularly difficult. Sample temperature is a coarse knob that allows us to change the state

of tension on the vesicle surface. Though the exact value of the thermal area expansion coefficient

for bilayers varies with composition, a good approximate value in the temperature range of interest

is cexp ' 5 × 10−3K−1 [257, 258, 259]. In Fig. 4.12(a-c), the temperature is increased slightly

(from ∼ 18 C to ∼ 20 C, see ‘Materials and Methods’), increasing vesicle area by approximately

1% while maintaining the enclosed volume, thus lowering the tension and driving the system into

the spontaneous budding regime. The average size of budding domains is r = 0.93 ± 0.18 µm.

Using eqn. 4.16, and taking κb = 25 kBT as a nominal value for the bending modulus of a domain

[179, 26, 222, 223], we can solve the equations defined by the upper and lower bound to find the

line tension and membrane tension. From this analysis, we estimate τ ' 2.4 × 10−4 kBT/nm2

and γ ' 0.45 kBT/nm. Using the tension and our assumption of bending modulus, we can also

calculate the elastic decay length and dimensionless domain size to find λ ' 320 nm and α ' 26.

This membrane tension, which is within the range set by typical free vesicle [179, 26] and unstressed

plasma membrane experiments [13, 221], sets the dimensionless domain area larger than one, and

hence suggests that the spherical budding model is a good approximation. This estimate of line

tension is consistent with previous measurements [179, 216], and quantitatively matches results

from our previous work [246].

As a prelude to the calculation of allowed morphological transitions, we note that for the

morphology of a domain to move from one region of the phase diagram to another, the domain

must either change size via coalescence, or there must be a change in membrane tension which

affects both α and χ. On the phase diagram in Fig. 4.11, horizontal lines would correspond to

increasing domain area, and the dashed trajectories are increasing membrane tension with fixed

domain area. The key fact is that, except within a region very near the phase boundary, the

free energy difference between the flat and the fully budded states is much larger than kBT , as

is the energy barrier between those states (e.g. Fig. 4.10). Thus, from an equilibrium statistical

mechanics perspective, a budding domain can be approximated as a two state system, with the

spontaneous budding regime included within the budded state. Thus, it makes sense to impose

the thermodynamic requirement that the free energy difference between morphological states be

negative for a transition to be allowed, i.e. G|θ=π − G|θ=0 < 0 if going from flat to budded. This

amounts to describing budding with a two-state model where

∆Gf→b = G|θ=π − G|θ=0 = πκb

(
ρ2 − 2χρ + 8

)
, (4.17)

and ρ =
√

α/π is the dimensionless domain radius. Figures 4.12(a–c) and 4.13(b–d) show the

two states of budding on the surface of phase-separated vesicles. If we consider ρ, a measure of
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Figure 4.11: Equilibrium phase diagram for domain budding as a function of dimensionless domain

area and line tension. In region ‘a’ flat and budded domains coexist, with flat domains at lower

free energy. In region ‘b’ flat and budded domains coexist, with budded domains at lower free

energy. In region ‘c’ only a single, budded phase is stable. The line separating regions ‘a’ and ‘b’

is given by χbud/2 and between regions ‘b’ and ‘c’ by χbud (eqn. 4.15). Dashed lines are trajectories

of increasing membrane tension (as indicated by the arrows) at constant domain area. In all four

trajectories γ = 0.3 kBT/nm, κb = 25 kBT and tension is varied from τ = 10−5 − 10−2 kBT/nm2;

the domain areas are A1 = π(100nm)2, A2 = π(250nm)2, A3 = π(500nm)2, and A4 = π(1000nm)2.
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domain size, as an independent variable, then the single control-parameter χ dictates whether

the thermodynamic condition ∆Gf→b < 0 has been met for a particular domain size. If the

dimensionless line tension is below the critical value χc = 2
√

2, defined by ∆Gf→b = 0, the budding

transition is forbidden for all domain sizes. If χ > χc, budding is allowed, thought not necessarily

spontaneous, within the size range given by

ρ = χ ±
√

χ2 − 8, (4.18)

as demonstrated in Fig. 4.12(f). This size range always includes the range specified by eqn. 4.16,

because spontaneous budding always has a negative free energy.

4.3.3 The ‘Algebra’ of Morphology

With an understanding of the conditions under which a domain transitions from flat to dimpled

[246], and dimpled to budded, we are in position to calculate the change in free energy when domains

of different morphologies coalesce. On a short enough time-scale, coalescence only occurs between

two domains at a time, and hence we can think of the coarsening behavior of a phase-separated

membrane as many such binary coalescence events happening in succession. The purpose of this

section is to begin to build a framework for understanding how domain morphology and coalescence

work in concert to affect the morphological evolution of a phase-separated membrane. In particular,

we calculate the allowed, resultant morphology when two domains, each of a distinct morphology,

coalesce. The change in free energy associated with a change in domain morphology, from flat to

dimpled, or dimpled to budded, is much greater than kBT , and hence, like the budding analysis of

the previous section, for a particular transition to be allowed, we demand that the change in free

energy be negative. Furthermore, the large reduction in line energy upon coalescence (compared to

kBT ) means that, in general, coalescence is irreversible, and hence after each coalescence event the

system is presumed to be in a unique quasistatic equilibrium state, with a unique membrane tension.

The use of these transitions rules must then be considered in the context of these unique states,

that is, transitions involving domains of a particular size that were allowed before a coalescence

event might be prohibited afterward, or vica versa.

Let us denote transitions that involve flat domains with the letter f , dimpled domains with

the letter d, and budded domains with letter b, such that, for instance, a flat domain coalescing

with a dimpled domain to yield a budded domain would be denoted by fd → b. There are six

possible binary coalescence events: ff , fd, fb, dd, db, and bb; each resulting in a single domain

of either f , d or b morphology. Thus at the onset, there are a total of 18 possible morphological

transitions, however, not all of them are thermodynamically allowed. Specifically, any domain

whose size is greater than the critical size required for dimpling cannot adopt a flat morphology as

there is no flat-dimple coexistence, hence only the ff → f transition can end with an f domain

(see Fig. 4.14(a)). This eliminates five of the six possibilities that end with an f domain. The only
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Figure 4.12: Size-selective domain budding. a) Dimples on the surface of a GUV are initially

arranged by their repulsive interactions. b) and c) A slight increase in temperature decreases

membrane tension, causing smaller domains to spontaneously bud (marked with red arrows) and

wander freely on the vesicle surface, while larger domains remain dimpled. The mean size of

budding domains is r ' 0.93± 0.18 µm from which we estimate a line tension of γ ' 0.45 kBT/nm.

d) Plot of the potential of mean force between the dimpled domains in (a), moments before inducing

spontaneous budding. e) Budding stability diagram, showing solutions to ∂G/∂θ = 0 with γ =

0.45 kBT/nm. Solid red lines are stable solutions at energy minima; dashed red lines are unstable

solutions on the energy barriers. Regions 1 and 3 are coexistence regimes, while region 2 is a

spontaneous budding regime, only stable at |θ| = π. The blue dots indicate domain areas with

radii r ' 0.93, 0.93± 0.18 µm. f) The red curve shows the free energy of budding at τ = 1.2 ×
10−3 kBT/nm2, which is greater than zero for all domain sizes, and hence all domains would remain

flat/dimpled. The green curve shows the free energy of budding at τ = 2.4 × 10−4 kBT/nm2.

Domains with radius r ' 0.25 − 3.5 µm have a negative free energy of budding, all other sizes

remain flat/dimpled. Most domains within this size range must still overcome an energy barrier

to bud, but for a small range of domain sizes (r ' 0.75 − 1.11 µm), indicated by the blue line

segment, budding is a spontaneous process. The energies are calculated using κb = 25 kBT and

γ ' 0.45kBT/nm. In (a-c) scale bars are 10 µm.
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other transition that can be eliminated immediately is ff → b, because the coalescence of two flat

domains must first go through the dimpled state.

This leaves twelve possible morphological transitions, as shown in Fig. 4.14(a-`). For simplicity

we will assume the domains have no spontaneous curvature (though this is straightforward to

incorporate [215, 260]). The free energy change associated with each of these twelve transitions is

calculated by knowing the free energy change associated with three simpler transitions, namely the

f → d, f → b, and ff → f transitions. Of these, the f → b transition free energy was discussed in

the previous section, and the f → d transition free energy is a complicated function discussed at

length in [246], though we note the important fact that ∆Gf→d(α1+α2) < ∆Gf→d(α1)+∆Gf→d(α2)

if both domains are above the critical size for dimpling, or in words, the free energy of domain

dimpling as a function of domain area grows faster than linearly. The scheme we are about to build

is a valid frame work for understanding energy based transitions because we know that changes in

free energy, when moving along a reaction coordinate, are additive.

The transition of two flat domains coalescing to yield another flat domain is the most funda-

mental transition, as shown in Fig. 4.14, and can be calculated as the difference in the line tension

energy between the initial and final states given by

∆Gff→f(α1, α2) = 2
√

πκbχ
[√

α1 + α2 −
√

α1 −
√

α2

]
, (4.19)

where α1 and α2 are the dimensionless areas of the two domains and ∆Gff→f(α1, α2) < −kBT

for all domain areas of one lipid or more. This situation, depicted by Fig. 4.14(a) and shown

experimentally in Fig. 4.7(c), is encountered at high membrane tension, when domains are too

small to dimple before and after coalescence.

Using the three basic transitions, we now address the remaining eleven transitions in detail. The

next transition we consider is two flat domains, each too small to dimple on their own, coalescing

to form a domain large enough to dimple, as depicted in Fig. 4.14(b). The transition free energy is

given by

∆Gff→d(α1, α2) = ∆Gff→f(α1, α2) + ∆Gf→d(α1 + α2), (4.20)

and is negative as long as α1 + α2 is greater than the critical area required for dimpling.

The next transition is a flat and dimpled domain coalescing to form a dimpled domain, as

depicted in Fig. 4.14(c). The transition free energy is given by

∆Gfd→d(α1, α2) = ∆Gff→d(α1, α2) − ∆Gf→d(α2). (4.21)

No definitive statement about the resultant morphology after coalescence of a flat and dimpled

domain can be made, because the free energy of this transition must be compared to the closely

related transition of a flat and dimpled domain coalescing to form a budded domain, to determine

which has a greater reduction in free energy. This related transition, depicted in Fig. 4.14(h), has
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Figure 4.13: Gallery of morphological transitions. a) Two dimpled domains (indicated by the white

arrows) interact on the surface of vesicle, eventually coalescing to yield a larger dimpled domain (see

Fig. 4.14(d)). b) An equatorial view of a dimple-to-bud transition (indicated by the red arrows).

c-e) Time courses of multiple types of morphological transitions. Arrows are color-coded and point

to before and after each transition: red arrows indicate a dimple to bud transition, green arrows

indicate a bud engulfing a dimple to form a larger bud (see Fig. 4.14(j)), and yellow arrows indicate

a bud recombining with a larger dimpled domain (see Fig. 4.14(e)). Using video microscopy, we can

put an upper bound on the time scale of the d → b, db → d and db → b transitions at ∼ 200±80 ms,

∼ 160± 70 ms and ∼ 210± 70 ms, respectively. Scale bars are 10 µm.
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the transition free energy

∆Gfd→b(α1, α2) = ∆Gff→f(α1, α2) − ∆Gf→d(α2) + ∆Gf→b(α1 + α2). (4.22)

Which of these two transitions, fd → d or fd → b, dominates depends on which has a greater

reduction in free energy. Comparing eqns. 4.21 and 4.22, asking which transition has the greater

reduction in free energy is simply asking whether ∆Gf→d(α1+α2) > ∆Gf→b(α1+α2) or vica versa.

This energy balance between the f → d and f → b transitions determines the outcome of all of the

subsequent binary transitions as well, though we will rigorously show this for the remaining cases.

Because this energetic comparison crops up so often, we will simply refer to it as the ‘bud-dimple

energy balance.’

The next transition is two dimpled domains coalescing to yield a dimpled domain, as depicted

in Fig. 4.14(d) and shown in Fig. 4.13(a). The transition free energy is given by

∆Gdd→d(α1, α2) = ∆Gfd→d(α1, α2) − ∆Gf→d(α2). (4.23)

Again, we must consider a closely related transition, namely the coalescence of two dimpled domains

yielding a budded domain, as depicted in Fig. 4.14(i), with transition free energy

∆Gdd→b(α1, α2) = ∆Gdd→d(α1, α2) − ∆Gf→d(α1 + α2) + ∆Gf→b(α1 + α2). (4.24)

Comparing these two related transitions, dd → d and dd → b, we see that the dominant transition

is determined by the bud-dimple energy balance.

The next transition is a flat and a budded domain coalescing to form a dimpled domain, as

depicted in Fig. 4.14(g). The transition free energy is given by

∆Gfb→d(α1, α2) = ∆Gff→d(α1, α2) − ∆Gf→b(α2). (4.25)

The related transition, where a flat and budded domain coalesce to form a budded domain, as

depicted in Fig. 4.14(`), has the transition free energy

∆Gfb→b(α1, α2) = ∆Gfb→d(α1, α2) − ∆Gf→d(α1 + α2) + ∆Gf→b(α1 + α2). (4.26)

Comparing these two related transitions, fb → d and fb → b, we see that the dominant transition

is determined by the bud-dimple energy balance.

The next transition is a budded and a dimpled domain coalescing to form a budded domain,

as depicted in Fig. 4.14(j) and shown in Fig. 4.13(c–e)(green arrows). The transition free energy is

given by

∆Gbd→b(α1, α2) = ∆Gfd→b(α1, α2) − ∆Gf→b(α2). (4.27)

The related transition, where a budded and dimpled domain coalesce to form a dimpled domain, as
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depicted in Fig. 4.14(e), and shown in Fig. 4.13(c–e)(yellow arrows), has the transition free energy

∆Gbd→d(α1, α2) = ∆Gbd→b(α1, α2) − ∆Gf→b(α1 + α2) + ∆Gf→d(α1 + α2). (4.28)

Comparing these two related transitions, bd → b and bd → d, we see that the dominant transition

is determined by the bud-dimple energy balance.

The last set of transitions is when two buds coalesce to form a larger bud, depicted in Fig. 4.14(k),

with transition energy

∆Gbb→b(α1, α2) = ∆Gfb→b(α1, α2) − ∆Gf→b(α2), (4.29)

and when two buds coalesce to form a dimple, depicted in Fig. 4.14(f) with transition energy

∆Gbb→d(α1, α2) = ∆Gfb→d(α1, α2) − ∆Gf→b(α2). (4.30)

Comparing these two related transitions, bb → b and bb → d, we see that the dominant transition

is determined by the bud-dimple energy balance.

Given the importance of the bud-dimple energy balance in determining the morphology resulting

from a coalescence event, we note that if the resulting domain area is outside the range specified

by eqn. 4.18, but still larger than the critical size required for dimpling, the dimpled morphology

dominates because the free energy change of budding is positive outside that range. Within this size

range, selecting the dominant behavior is more subtle, and depends on the resultant domain size,

material properties and tension. For this reason, until experimental methods are devised that can

track the detailed three dimensional morphology of a phase separated vesicle (i.e. the positions and

sizes of all domains and the membrane tension), the set of transition rules discussed in this section

will remain largely an interpretive tool, useful for understanding the set of possible transitions and

resultant morphologies, as well as their underlying physics, but difficult to quantitatively apply to

experiment.

We speculate that the kinetics of these coalescence transitions are either relatively fast, when

diffusion is the limiting time scale, as might be the case in the transitions shown in Fig. 4.14(a–

c,e,g,h,j,`), or relatively slow, limited by elastic interactions (Fig. 4.14(d,i)) or steric hindrance

(Fig. 4.14(f,k)). From the viewpoint of coarsening of a two-phase fluid, these transitions represent

new coarsening mechanisms that are linked to morphology, and likely have profound effects on

the kinetics of phase separation, as demonstrated by the fact that coalescence of dimpled domains

is inhibited by an energetic barrier. Additionally, these transitions suggest interesting biological

possibilities. For instance, a small volume can be encapsulated at a particular location, as a dimple

transitions to a bud. The enclosed volume can then diffuse to other regions of the membrane, and

either engulf more volume (see Fig. 4.14(i)) or deposit its contents at the site of another domain (see

Fig. 4.14(j)). In fact, both of these scenarios play out in Fig. 4.13(c–e). Furthermore, it is possible
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Figure 4.14: Algebra of Morphology. All rows show additive free energies of transition from an

initial state on the left to a final state on the right. a) Two flat domains coalesce via diffusion,

yielding a flat domain. b) Domains, too small to dimple, coalesce to attain a size capable of

dimpling. c) A dimple and a domain too small to dimple coalesce to yield a larger dimpled domain.

d) Two interacting dimples coalescence, yielding a larger dimpled domain. e) A dimple and a bud

coalesce to yield a larger dimpled domain. f) Two buds coalesce to yield a dimpled domain. g)

A flat domain coalesces with a bud, yielding a dimpled domain. h) A flat domain coalesces with

a dimpled domain to yield a bud. i) Two interacting dimples coalescence, yielding a bud. j) A

bud coalesces with a dimple, yielding a larger budded domain. k) Two budded domains coalesce

to form a larger budded domain. l) A flat domain coalesces with a bud to yield a larger budded

domain.
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that careful control of membrane tension [182] could regulate how large a volume is enclosed, and

to which other domains a bud will coalesce and deposit its contents. This has implications for the

size-selectivity of endo- and exo-cytosis where membrane invagination and fusion occur, as well as

regulation of plasma membrane tension [182].

4.3.4 Discussion of Domain Morphology

The transition free energies calculated in the previous section have the intuitively pleasing feature

of being a sum of three simple basis transitions (f → d, f → b and ff → f) . However, this type of

analysis is limited by the fact that it only admits flat, dimpled and budded as valid morphologies.

More general theories and computational models can (and have been) constructed that attempt

to describe all possible shapes of a domain from precisely flat to fully budded, and other more

complex morphologies [205, 252, 253, 206, 199, 208, 261]. Our level of experimental sophistication

is commensurate with the simplicity of the analysis employed in the previous section. Conceptually,

our model simplifies analysis by reducing domain morphology to one of three classes of shapes, at the

cost of excluding other possible morphologies. Though overall an experimental minority, domain-

induced tube formation was the most common of these more exotic morphologies. Normally, thin

lipid tubes are drawn out by external force [262, 263, 264]. However, in a few instances we observed

domains that spontaneously collapse and nucleate a tube that rapidly grows many times longer

than its persistence length, as demonstrated in Fig. 4.15. Oddly, the nucleating domain is of one

lipid phase, but the tube continues to grow from the other, majority phase by a currently unknown

mechanism.

In addition to limiting the class of possible morphologies, our analysis of morphological tran-

sitions also employs the simplification that membrane tension is constant during a morphological

transition. In reality, our experiments take place on a spherical topology with constrained volume

and surface area, such that this approximation has a range of validity. If the membrane area re-

quired to complete a morphological transition is small compared to the total vesicle area (see [246]

for details) the change in membrane tension will be small. However, morphological transitions that

require relatively large areas can result in significant changes to membrane tension, invalidating

the constant tension approximation. Although, at times this can be an advantageous feature of our

experimental system, for instance, when fairly small changes in vesicle area (on the order of 1%)

can reduce the tension enough to cause spontaneous budding, as we showed earlier in this work.

In addition to the limitations mentioned above, our experiments have a number of subtle com-

plications. Notably, the task of measuring the motion and size of lipid domains is complicated by

the fact that the spherical curvature of the vesicle slightly distorts measurements of distance and

size. Additionally, the motion of domains is confined to lie in a circle defined by a combination of

vesicle size and depth of field of the microscope objective. We developed schemes to correct for

these issues, as discussed in detail in the supplementary information of our previous work [246].

We take a moment to address some of the finer details of theory and experiment. Our model
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Figure 4.15: Domain-nucleated spontaneous tube formation. A time series of spontaneous tube

formation, nucleated from a domain (as indicated by the white arrow). This relatively uncommon

morphology is not explained within the context of our simple model. The lipid tube (bright) is

many times longer than its persistence length, yet perplexingly, grows from the tube tip. With

limited optical resolution, we estimate the tube diameter to be ≤ 500 nm. The scale bar is 10 µm.
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membrane system utilizes neutral saturated and unsaturated lipids, to prevent compounded effects

due to lipid charge. Our results indicate that charge is not a major player, simply because mem-

brane tension is the distinction between rapid, flat-domain coalescence and slow, dimpled-domain

coalescence, as shown in Fig. 4.7(c and d). We qualitatively observed the movements of dimpled

domains in the presence of high salt (∼ 300mM), where the Debye length is on the order of ten

nanometers. At low tension the dimpled domains still exhibited significantly slower coalescence ki-

netics, with an interaction length-scale of order hundreds of nanometers (data not shown). Hence,

the dimpled-domain interaction we observe cannot be attributed to a charge-based effect.

4.3.5 Summary of Domain Organization and Morphology

Using a model multi-component membrane, we explored how the interplay between composition

and morphology leads to elastic forces that spatially organize domains and significantly impact

coalescence kinetics. We expanded upon mechanical models that incorporate bending stiffness,

membrane tension, phase boundary line tension, and domain size to show that domains can adopt

(at least) three distinct morphologies: flat, dimpled and budded. We showed that dimpled domains

exhibit measurable translational and orientational order as a function of increasing domain areal

density [249, 250, 251]. Using a spherical budding model, we showed that the transition to a budded

state is a domain size selective process, from which one can estimate the membrane tension, line

tension, and elastic decay length of a phase separated membrane. Additionally, we found that the

large energy scales associated with changes in domain morphology allow us to define morphological

transition rules, where domain size and membrane tension are likely the key parameters that

regulate the morphological transitions.

In the context of our understanding of the physics of phase separation the elastic forces between

dimpled domains that arrest coalescence, and the morphological transitions between flat, dimpled

and budded domains, constitute new mechanisms that govern spatial organization of domains and

the temporal evolution of domain sizes. For cellular membranes, we speculate that the elastic forces

and morphological transitions can be controlled via careful regulation of membrane tension [182],

and our work suggests intriguing possibilities for how small volumes can be encapsulated, moved,

and released in a phase-separated membrane.

4.4 Detailed Analysis of Theory and Experiment

This section presents all of the theoretical and experiment details relevant to previous two sections.

Due to the length of this section, we first provide a summarized version of the materials and

methods.
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4.4.1 Overview of Materials and Methods

Giant unilamellar vesicles (GUVs) were prepared from a mixture of DOPC (1,2-Dioleoyl-sn-Glycero-

3-Phosphocholine), DPPC (1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine) and cholesterol (Avanti

Polar Lipids) (25:55:20/molar) that exhibits liquid-liquid phase coexistence [130]. Fluorescence con-

trast between the two lipid phases is provided by the rhodamine head-group labeled lipids: DOPE

(1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine-N- (Lissamine Rhodamine B Sulfonyl)) or DPPE

(1,2-Dipalmitoyl-sn-Glycero-3-Phosphoethanolamine-N- (Lissamine Rhodamine B Sulfonyl)), at a

molar fraction of ∼ 0.005. The leaflet compositions are presumed symmetric and hence co = 0.

GUVs were formed via electroformation [130, 265]. Briefly, 3 − 4 µg of lipid in chloroform

were deposited on an indium-tin oxide coated slide and dessicated for ∼ 2 hrs to remove excess

solvent. The film was then hydrated with a 100 mM sucrose solution and heated to ∼ 50 C to be

above the miscibility transition temperature. An alternating electric field was applied; 10 Hz for

120 minutes, 2 Hz for 50 minutes, at ∼ 500 Volts/m over ∼ 2 mm. Low membrane tensions were

initially achieved by careful osmolar balancing with sucrose (∼ 100 mM) inside the vesicles, and

glucose (∼ 100 − 108 mM) outside. Using a custom built temperature control stage, the in situ

membrane tension was coarsely controlled by adjusting the temperature a few degrees [258, 259].

Domains were induced by a temperature quench and imaged using standard TRITC epi-

fluorescence microscopy at 80x magnification with a cooled (-30 C) CCD camera (Roper Scientific,

6.7×6.7 µm2 per pixel, 20 MHz digitization). Images were taken from the top or bottom of a GUV

where the surface metric is approximately flat. Data sets contained ∼ 500− 1500 frames collected

at 10-20 Hz with a varying number of domains (usually > 10). The frame rate was chosen to

minimize exposure-time blurring of the domains, while allowing sufficiently large diffusive domain

motion. Software was written to track the position of each well-resolved domain and calculate the

radial distribution function. The raw radial distribution function was corrected for the fictitious

confining potential of the circular geometry. The negative natural logarithm of the radial distribu-

tion function is the potential of mean force plus a constant, as shown in Figs. 4.5 and 4.8. Detailed

explanations of these concepts can be found in the supplementary information for [246].

Morphological transitions were induced by quenching homogeneous vesicles below the de-mixing

temperature and observing those that had many micron-sized domains. Without precise control of

membrane tension or the exact initial conditions (i.e. the exact number and size distribution of

domains) many vesicles had to be sampled to see transitions. Often, a slight increase in temperature

(∼ 2C) was used to increase the available membrane area, and hence decrease the membrane tension

enough to induce morphological transitions.

Our goal in the following few sections is to add detail to calculations already performed or

alluded to earlier in this chapter. We begin by building up the linearized Helfrich functional

and examining how spontaneous curvature, line tension and membrane tension affect membrane

morphology [215, 181, 204].
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4.4.2 Calculating Membrane Curvature and Area

In general, a thin elastic sheet can be described by a surface, S(u, v), embedded in R
3 and written

as a function of the parametric variables (u, v). At each point on this surface, one can calculate

the curvature tensor and pointwise contribution to the total area. As we will show in the next

few sections, the curvature tensor is used to calculate contributions to the elastic energy from

two different modes of bending and the area is used to couple membrane tension, via a particular

ensemble, to membrane energetics.

Our first simplifying assumption is that there is some one-to-one height function (i.e. no folds)

that describes the membrane midplane, h(r), often referred to as a Monge representation. Using

this representation, the exact area of the membrane is a simple, though non-linear, function of h,

given by

A =

∫

S

√

1 + (∇h)2 d2r. (4.31)

In comparison to a completely flat membrane, the increase in actual area due to deformation is

given by

∆A =

∫

S
(
√

1 + (∇h)2 − 1) d2r, (4.32)

which couples to the lateral membrane tension τ by Gtens = τ∆A in a constant tension ensemble2.

In the limit where gradients are small, |∇h| � 1, this simplifies to

∆A =
1

2

∫

S
(∇h)2 d2r. (4.33)

At every point on the surface S, the matrix of second partial derivatives defines the curva-

ture tensor C, whose eigenvalues are the principal curvatures of the surface at that point, and

whose eigenvectors specify the directions of those principal curvatures on the surface, as shown

in Fig. 4.16b. Any elastic energy formulation we construct from the curvature tensor should be

invariant under rotations, reflections and translations and therefore can be written as a function of

the invariants of the curvature tensor, namely the trace, which is the sum of the principal curva-

tures, and the determinant, which is the product of the principal curvatures. To lowest order, these

symmetries dictate that the energy should be linear in the determinant and quadratic in the trace.

The determinant’s contribution is usually called the Gaussian curvature and will be addressed in

subsection 4.4.5. One half the sum of the principal curvatures is called the mean curvature, de-

noted by H , and contributes energy of the form H2. An intuitively pleasing formulation of the

mean curvature is the divergence of the unit normal vector field of the surface [57], as shown in

Fig. 4.16a, that is

H(r) =
1

2
∇ · n̂(r), (4.34)

2See Section 4.5 for an in depth discussion of a variable tension ensemble, applicable to thermal environments.
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from which the mean curvature energy is calculated as

Gbend = 2κb

∫

S
H2√g d2r, (4.35)

where g = 1 + (∇h)2 is the surface metric in the Monge representation. The surface h(x, y) can be

written as an implicit function F (x, y, z), by

h(x, y) = z → F (x, y, z) = h(x, y)− z = 0, (4.36)

from which the unit normal vector is given by

n̂ =
∇F

√

(∇F )2
. (4.37)

On the surface defined by h, the unit normal vector field is the gradient normalized by the size of

the small piece of area associated with the unit vector at the point r, namely

n̂ =
(∂xh, ∂yh,−1)
√

1 + (∇h)2
. (4.38)

Then the mean curvature becomes a straight-forward, though non-linear, function of h, given by

H =
1

2
∇ ·
(

∇F
√

1 + (∇h)2

)

. (4.39)

In situations where the height function is azimuthally symmetric, this can be expanded to

H =
1

2r

∂

∂r




r ∂h

∂r
√

1 +
(

∂h
∂r

)2



 . (4.40)

Application of the small gradient approximation yields a linearized curvature of the well-known

form

H ' 1

2
∇2h, (4.41)

with the linearized metric g ' 1, such that the integral of the mean curvature elastic energy over

the surface is

Gbend = 2κb

∫

S
H2√g d2r ' κb

2

∫

S

(
∇2h

)2
d2r. (4.42)

With azimuthal symmetry this simplifies further to

Gbend = πκb

∫

S

(
∇2h

)2
r dr, (4.43)

and this contribution can now be combined into a linear elastic picture of a stiff membrane under
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Figure 4.16: Curvature on a Monge surface. a) Illustration showing surface with the tangent plane,

normal vector and planes of principal curvature indicated at a saddle point. b) Plot showing a

Monge surface with its corresponding unit normal vector field. c) The same surface, now laid flat

and shown in gray scale. The small green lines indicate the directions of the principal curvatures,

while their lengths indicate the magnitude of the principal curvatures at those points. Zones whose

principal curvatures have the same sign are colored in red (positive Gaussian curvature), while zones

whose principal curvatures have opposite signs are colored in blue (negative Gaussian curvature).

(a) is adapted from an illustration by Eric Gaba under CCL licensor.

lateral tension.

4.4.3 Conservation of Domain Area

Before constructing the full elastic model of a deformed lipid domain and its surrounding membrane,

it behooves us to constrain the class of elastic models by discussing certain properties of the domain.

In particular, if changes in domain morphology were accompanied by significant changes in domain

area, this would require a more complex elastic model. The point of this section is to decisively

show that the relevant elastic model conserves domain area during any morphological transition,

as posited in earlier sections, though strictly speaking, this need not be true. For instance, if the

material parameters were such that the stretch modulus of the domain was very low, while the

line tension around the domain was very high, we would expect a large change in domain area.

However, as we demonstrate in this section, the material properties of a bilayer favor the conserved

area picture, and hence the use of a Lagrange multiplier formulation to impose this area constraint.

To see this explicitly, we estimate the area change induced by the line tension for representative

values of the relevant bilayer properties.

To be rigorous about this statement, we note that the membrane tension (τ) is linearly related

to the areal strain (φ) by the area stretch modulus KA [26],

τ = KAφ, (4.44)
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where

φ =
A−Ao

Ao
(4.45)

and Ao is the domain area at zero tension. Thus a small change in domain area costs free energy

dGarea = τ(φ)dA = AoKAφdφ, (4.46)

and hence upon integration we find the elastic stretch energy of a domain is

Garea = Ao
KA
2

φ2. (4.47)

For simplicity, let us consider the case where the domain is flat and hence the membrane tension

and phase boundary line tension directly compete with each other — this is also the scenario where

we would expect the largest potential area change. In this case, the phase boundary is characterized

by the circumference

` = 2πro = 2π

√

Ao(1 + φ)

π
(4.48)

where ro is the projected radius of the domain. This contributes energy of the form

Gline = γ`, (4.49)

where γ is the line tension and we assume ∂γ/∂φ = 0. The combined energy, Garea + Gline, can be

used to solve for the equilibrium value of φ by evaluating

∂

∂φ
(Garea + Gline) = ω2φ2(1 + φ) − π = 0, (4.50)

where we introduce the dimensionless parameter ω = KA
√
Ao/γ. Using the high estimate of

γ = 1.0 kBT/nm and low estimate of KA = 50 kBT/nm2 [26], corresponds to ω � 1 for all

reasonable domain areas (i.e. one lipid or more), and hence the areal strain is

φ '
√

π

ω
, (4.51)

resulting in a fractional area change of less than 1% for all reasonable domain areas — thus we

work within an approximation in which the domain area is conserved.

4.4.4 The Small Gradient Limit

Using a small gradient approximation is not the most general model for the membrane surface, but

it allows us to state our results analytically, and couches domain dimpling as a linearized buckling

problem. The line tension at the phase boundary of a domain favors a circular geometry, and

hence our model utilizes polar coordinates. Employing a small gradient approximation, valid when
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|∇h| � 1, yields a quadratic approximation to the functional which can be solved analytically

[57, 29, 32]. With no other approximations, the mean curvature and constant membrane tension

give rise to an energy functional of the form

Gel = Gtens + Gbend =
1

2

∫

S

(

τ(∇h)2 + κb

(
∇2h − co

)2
)

d2r (4.52)

where S is the projected surface of integration, τ is the applied membrane tension, κb is the mean

curvature bending modulus, and co is the spontaneous curvature of the membrane comprising the

domain.

However, this only forms part of the complete free energy of a dimpled membrane. In addition

to the elastic components, we must conserve area of the domain through the use of a Lagrange

multiplier. Further, to have any interesting behavior at all, we impose a penalty at the phase

boundary through the use of a line tension, as we did in the estimate of the previous section. Our

strategy is to delineate all of the energy sources, posit a set of length-scales that clearly elucidate

the important parameters, and solve for the constrained minima in free energy.

To be clear about all of the sources of energy they can be listed as follows: the elastic free

energy in the domain region (region 1) is given by

G
(1)
el = π

∫ ro

0

[
τ(∇h1)

2 + κ(1)

b (∇2h1 − co)
2
]
rdr (4.53)

while the elastic energy in outer region (region 2) is given by

G
(2)
el = π

∫ ∞

ro

[
τ(∇h2)

2 + κ(2)

b (∇2h2)
2
]
rdr, (4.54)

where ro is the projected domain radius. The subscripts on h and superscripts on κb refer to the

region of interest. The phase boundary is simply penalized by its length, hence the energy from

line tension is given by

Gline = 2πroγ, (4.55)

where γ is the energy per unit length along the phase boundary. Finally, the area constraint is

imposed through the use of a Lagrange multiplier, τo, written as

Garea = τo

(

2π

∫ ro

0

(

1 +
1

2
(∇h1)

2

)

rdr −A
)

. (4.56)

Our first step is to rearrange the constraint equation to construct what can be thought of as the

‘effective’ tension in the domain τ1 = τ + τo. In particular, we can absorb part of Garea into G
(1)
el ,

resulting in

G
(1)
el = π

∫ ro

0

[
τ1(∇h1)

2 + κ(1)

b (∇2h1 − co)
2
]
rdr (4.57)
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and

Garea = τo

(
πr2

o −A
)
. (4.58)

Our next step is to non-dimensionalize the free energy, with the understanding that if we are to

see dimpling at all, the membrane tension in the domain region must be compressive, in other

words, the sum of the external membrane tension and the membrane tension generated by the

line tension must be negative. Mathematically this is stated simply as τ1 < 0; this will turn out

to be an important fact when choosing admissible solutions to the Euler-Lagrange equations. To

non-dimensionalize the free energy, we first note the two length scales in the problem are

λ1 =

√

κ(1)

b

τ1
and λ2 =

√

κ(2)

b

τ
, (4.59)

and we use these to define the constants

β = i
λ2

λ1
and σ =

κ(1)

b

κ(2)

b

. (4.60)

Given our previous statements, we know that λ2 and β are both positive and real, while λ1 is

purely imaginary with a positive coefficient when τ1 < 0. These length-scales give a notion of

how quickly the perturbed height functions return to a flat state, where λ2 is a constant, but λ1

changes as domain area and line tension are varied. The constant length scale allows us to define

the dimensionless variables

r = λ2ρ , hi = λ2ηi , ro = λ2ρo and λ2co = υo. (4.61)

With these definitions we can redefine the derivatives as

∂

∂r
=

1

λ2

∂

∂ρ
and dr = λ2dρ. (4.62)

Finally, making all of these substitutions gives the elastic contributions

G
(1)
el = πσκ(2)

b

∫ ρo

0

[
−β2(∇η1)

2 + (∇2η1 − υo)
2
]
ρdρ (4.63)

and

G
(2)
el = πκ(2)

b

∫ ∞

ρo

[
(∇η2)

2 + (∇2η2)
2
]
ρdρ, (4.64)

also showing that a natural energy scale is κ(2)

b . The line energy is then written as

Gline = 2πκ(2)

b ρoχ (4.65)

with χ = γλ2/κ(2)

b defined as the dimensionless line tension. This is one of two key parameters
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used to characterize the phase space of dimple morphology. The remaining contribution from the

Lagrange multiplier is then written as

Garea = −κ(2)

b (σβ2 + 1)
(
πρ2

o − α
)
. (4.66)

where the dimensionless area, α = A/λ2
2, is the second key parameter that characterizes the phase

space of dimple morphology. The governing differential equations are distinct in each region; in

region 1 the Euler-Lagrange equation is

∇2(∇2 + β2)η1 = 0, (4.67)

while in region 2

∇2(∇2 − 1)η2 = 0. (4.68)

The solutions to these differential equations, and as we will show in Section 4.4.8, part of the

derivation of the elastic free energy, can be found by splitting these fourth-order equations into two

simpler, second-order equations. In particular, let us view these differential equations as differential

operators acting on ηi

∇2(∇2 + c)ηi = L [ηi] = 0 → L = ∇2(∇2 + c), (4.69)

where c is a constant. To break this down into a set of simpler equations, we call the first differential

operator L1 = ∇2 and the second L2 = ∇2 + c, such that L = L1L2. Each of these simpler

operators defines a familiar differential equation: L1

[

η
(1)
i

]

= 0 is commonly referred to as the

Laplace equation, while L2

[

η
(2)
i

]

= 0 is commonly referred to as the Helmholtz equation. The

solutions to each equation are unique, as indicated by the superscripts. In polar coordinates, the

Laplace equation yields a solution that is the sum of a constant and a natural logarithm, and the

Helmholtz equation yields a sum of Bessel functions whose ‘kind’ depend on the sign of the constant

c. For the moment, let us assume that the full solution to the fourth-order equation is the addition

of the solutions from each of these second-order equations, that is

ηi = η
(1)
i + η

(2)
i , (4.70)

and see what that implies for the operators Li. The fourth-order equation would then be written

as

L [ηi] = L1L2

[

η
(1)
i + η

(2)
i

]

= 0, (4.71)

and since the operators Li are linear, this can be written as

L1L2

[

η
(1)
i

]

+ L1L2

[

η
(2)
i

]

= 0. (4.72)
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With the trivial fact that Li [0] = 0, and recalling that the solutions to each second-order equation

are unique, this can be simplified to

L1 L2

[

η
(1)
i

]

︸ ︷︷ ︸

6=0

+L1 L2

[

η
(2)
i

]

︸ ︷︷ ︸

=0

= L1L2

[

η
(1)
i

]

= 0. (4.73)

If the differential operators commute, that is if [L1,L2] = 0, this can be rearranged to

L1 L2

[

η
(1)
i

]

︸ ︷︷ ︸

6=0

= L2 L1

[

η
(1)
i

]

︸ ︷︷ ︸

=0

= 0. (4.74)

Indeed, one can show that the operators do commute and hence the full solution to the fourth-

order equation is the sum of the solutions from each of the second-order equations. Additionally,

the knowledge that the Euler-Lagrange equations can be broken down into commuting operators

will prove useful for calculating the elastic energy in Section 4.4.8.

The solutions must meet certain physical boundary conditions; symmetry about r = 0 dictates

that

|∇η1(0)| = |∇η2(∞)| = 0, (4.75)

while demanding that the membrane be contiguous demands η1(ρo) = η2(ρo). Finally, as we will

show later, the surface cannot have ridges if the bending energy is to be finite, hence

|∇η1(ρo)| = |∇η2(ρo)| = ε, (4.76)

where ε is the membrane slope at the phase boundary, which acts as an order parameter for the

morphological phase space. Then the general solutions are

η1(ρ) = a
(1)
1 + a

(1)
2 ln(ρ)

︸ ︷︷ ︸

η
(1)
1

+ a
(1)
3 J0(βρ) + a

(1)
4 Y0(βρ)

︸ ︷︷ ︸

η
(2)
1

, (4.77)

and

η2(ρ) = a
(2)
1 + a

(2)
2 ln(ρ)

︸ ︷︷ ︸

η
(1)
2

+ a
(2)
3 K0(ρ) + a

(2)
4 I0(ρ)

︸ ︷︷ ︸

η
(2)
2

, (4.78)

where Jk and Yk are k-th order Bessel functions of the first and second kind, respectively, and Ik and

Kk are k-th order modified Bessel functions of the first and second kind, respectively. The brackets

indicate the contributions from each of the separate differential operators. The constants a
(j)
i are

set by the boundary conditions and the physical constraint that the area change associated with

morphological transitions be finite. Our stated boundary conditions demand that a
(1)
4 = a

(2)
4 = 0,

and to keep the change in the membrane area in both regions bounded we demand a
(1)
2 = a

(2)
2 = 0.

We have a freedom of vertical translation, which we choose to apply to region 2, such that a
(2)
1 = 0.
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Applying the slope boundary conditions at the phase boundary gives the final solutions

η1(ρ) = −ε

[
1

β

J0(βρ)

J1(βρo)
− 1

β

J0(βρo)

J1(βρo)
+

K0(ρo)

K1(ρo)

]

(4.79)

and

η2(ρ) = −ε
K0(ρ)

K1(ρo)
. (4.80)

These solutions can be integrated to give closed-form expressions for the elastic energy in the two

regions, as shown in Section 4.4.8, where in region 1

G
(1)
el = πσκ(2)

b ε2ρoβ
J0(βρo)

J1(βρo)
(4.81)

and in region 2

G
(2)
el = πκ(2)

b ε2ρo
K0(ρo)

K1(ρo)
. (4.82)

The only remaining component of the free energy is the elastic contribution from spontaneous

curvature in the domain. If we explicitly write the terms of the bending elastic energy from

eqn. 4.63 we find

1

2

∫

(∇2η1 − υo)
2√gd2ρ =

1

2

∫

(∇2η1)
2√gd2ρ − υo

∫

(∇2η1)
√

gd2ρ +
υ2

o

2

∫ √
gd2ρ

︸ ︷︷ ︸

domain area (α)

, (4.83)

where
√

g is the surface metric, equal to unity in the current approximation. Here, the term pro-

portional to υ2
o is conventionally added to the elastic functional so that the interplay between mean

curvature and spontaneous curvature is clear, however it is unimportant for determining morphol-

ogy because the spontaneous curvature does not appear in the governing differential equations

(eqn. 4.67 and 4.68), and since the domain area is conserved it does not affect the membrane free

energy.

The domain area itself is calculated with the expression for the height field in region 1, namely

eqn. 4.79, to give

α = 2π

∫ ρo

0

√

1 + (∇η1)2ρdρ ' 2π

∫ ρo

0

(

1 +
(∇η1)

2

2

)

ρdρ, (4.84)

and approximated as

α = πρ2
o

[

1 +
ε2

2

(

1 +

(
J0(βρo)

J1(βρo)

)2

− 2

βρo

J0(βρo)

J1(βρo)

)]

. (4.85)

Let us separate out the term dealing with spontaneous curvature that does affect the free energy,
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namely

Gspont = −2πσκ(2)

b υo

∫ ρo

0

(
∇2η1

)
ρdρ. (4.86)

For the case in which we have azimuthal symmetry, the Laplacian can be written as ∇2 = ∂2

∂ρ2 + 1
ρ

∂
∂ρ ,

and hence we can evaluate this energy by partial integration, where

∫ ρo

0

1

ρ

∂η

∂ρ
ρdρ =

∂η

∂ρ
ρ

∣
∣
∣
∣

ρo

0

−
∫ ρo

0

∂2η

∂ρ2
ρdρ. (4.87)

Upon rearranging, we see that ∫ ρo

0

(
∇2η

)
ρdρ =

∂η

∂ρ
ρ|ρ=ρo (4.88)

and by applying the boundary conditions, we find that the elastic energy from spontaneous curva-

ture is

Gspont = −2πσκ(2)

b ερoυo. (4.89)

Finally, with all contributions accounted for, we can assemble the free energy of the system, with

contributions

G = G
(1)
el + G

(2)
el + Gline + Gspont + Garea, (4.90)

such that the total free energy is

G = πκbρo

[

ε2
(

σβ
J0(βρo)

J1(βρo)
+

K0(ρo)

K1(ρo)

)

+ 2(χ − εσυo)

]

− κb(σβ2 + 1)(πρ2
o − α), (4.91)

with the superscript dropped, κ(2)

b = κb. Before searching for the morphological minimizers of this

equation, let us address one additional issue.

We demand that the membrane surface be free of ridges, that is, we match the slope of the

membrane at the phase boundary (|∇η1(ρo)| = |∇η2(ρo)| = ε), because a slope mismatch would

result in a divergence of the bending energy. This can be shown by direct calculation where the

mismatch energy is calculated in a region, ρo ± δ/2, near the phase boundary

Gmismatch = lim
δ→0

πκb

∫ ρo+δ/2

ρo−δ/2
(∇2η)2ρdρ = lim

δ→0
πκb

∫ ρo+δ/2

ρo−δ/2

(
ε1 − ε2

δ

)2

ρdρ = πκb(ε1 − ε2)
2 lim

δ→0

ρo

δ
,

(4.92)

where the only finite solution occurs when ε1 = ε2, that is, when the boundary slopes are matched

between the domain and the surrounding membrane.

4.4.5 Gaussian Curvature

In line with our calculation of the various elastic energy terms, the following section explicitly

calculates the elastic contribution from Gaussian curvature and makes an argument about its

relevance to our elastic model. As discussed in the first section, the local curvature tensor is given
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by the matrix of partial second derivatives of the surface η, which in Cartesian coordinates takes

the form

C =

[
∂2η
∂x2

∂2η
∂x∂y

∂2η
∂y∂x

∂2η
∂y2

]

. (4.93)

The trace of this tensor is the sum of the principal curvatures, while the determinant is the Gaussian

curvature [57]. Using the typical polar transformations ρ =
√

x2 + y2 and θ = tan−1 (y/x), the

chain rule implies
∂

∂x
=

∂ρ

∂x

∂

∂ρ
+

∂θ

∂x

∂

∂θ
(4.94)

and
∂

∂y
=

∂ρ

∂y

∂

∂ρ
+

∂θ

∂y

∂

∂θ
, (4.95)

and using the equations of the principal curvatures, namely

tr [C] = C1 + C2 =
∂2η

∂x2
+

∂2η

∂y2
(4.96)

and

det [C] = C1C2 =
∂2η

∂x2

∂2η

∂y2
−
(

∂2η

∂x∂y

)2

, (4.97)

it can be shown that the principal curvatures in polar coordinates with azimuthal symmetry are

C1 = ∂2η
∂ρ2 and C2 = 1

ρ
∂η
∂ρ . Then the Gaussian curvature contributes energy of the form

GGauss = κG

∫

S
(C1 · C2)d

2ρ. (4.98)

Splitting the membrane into the domain and its surrounding region, this is written as

GGauss ' 2π

(

κ
(1)
G

∫ ρo

0

(
∂2η1

∂ρ2
· 1

ρ

∂η1

∂ρ

)

ρdρ + κ
(2)
G

∫ ∞

ρo

(
∂2η2

∂ρ2
· 1

ρ

∂η2

∂ρ

)

ρdρ

)

(4.99)

where κ
(i)
G is the saddle-splay (Gaussian bending) modulus in region i. This can be evaluated by

partial integration, writing

∫ ρo

0

(
∂2η1

∂ρ2
· 1

ρ

∂η1

∂ρ

)

ρdρ =

(
∂η1

∂ρ

)2
∣
∣
∣
∣
∣

ρo

0

−
∫ ρo

0

(
∂2η1

∂ρ2
· ∂η1

∂ρ

)

dρ (4.100)

which simplifies to

2πκ
(1)
G

∫ ρo

0

(
∂2η1

∂ρ2
· ∂η1

∂ρ

)

dρ = πκ
(1)
G ε2, (4.101)

and likewise

2πκ
(2)
G

∫ ∞

ρo

(
∂2η2

∂ρ2
· ∂η2

∂ρ

)

dρ = −πκ
(2)
G ε2. (4.102)
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Finally, the contribution from Gaussian curvature is

GGauss = πε2(κ
(1)
G − κ

(2)
G ) = πκbε

2 · κ
(1)
G − κ

(2)
G

κb
. (4.103)

For a linear elastic and incompressible bilayer [60, 61], it has been analytically estimated that

κb ' −κG [57], which has been experimentally supported in some lipid mixtures [57, 58], though

measurements of κG are notoriously difficult due to its topological invariance through the Gauss-

Bonnet Theorem. Given that this estimate shows that the magnitude of the Gaussian and mean

bending moduli should be equal in each region, and that the mean bending modulus does not vary

significantly between regions, we assume the dimensionless difference in the saddle-splay bending

modulus between the domain and surrounding membrane is small (i.e. (κ
(1)
G − κ

(2)
G )/κb � 1),

and hence ignore the contribution from Gaussian curvature altogether. That said, if we take the

implications of this estimate for an incompressible bilayer at face value, we can write the energy of

eqn. 4.103 as

GGauss = πκbε
2(1− σ), (4.104)

and this term can be added to the total free energy, allowing Gaussian curvature to affect the

morphological transition.

4.4.6 Equilibrium Domain Shapes

Having examined the elastic contributions to the free energy and origin of the boundary conditions,

the problem statement is then to find minimizers of the total free energy, eqn. 4.91, where we allow

ε, β, and ρo to vary independently. Hence we generate three simultaneous equations

∂G

∂ε
= 0

∂G

∂β
= 0

∂G

∂ρo
= 0. (4.105)

Physically, the first equation can be interpreted as torque balance at the phase boundary, the

second equation as conservation of domain area, and the third equation as lateral force balance at

the phase boundary. The first equation can be written as3

ε

[

σβρo
J0(βρo)

J1(βρo)
+ ρo

K0(ρo)

K1(ρo)

]

= σρoυo, (4.106)

the second equation is the same as eqn. 4.85

α = πρ2
o

[

1 +
ε2

2

(

1 +

(
J0(βρo)

J1(βρo)

)2

− 2

βρo

J0(βρo)

J1(βρo)

)]

, (4.107)

3The inclusion of GGauss adds the term (1− σ) in the brackets, modifying the quantitative results slightly.
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and the third equation is4

ε2

2

[

ρo

((
K0(ρo)

K1(ρo)

)2

− 1

)

− ρoσβ2

(

1 +

(
J0(βρo)

J1(βρo)

)2
)]

= ρo(σβ2 + 1)− χ, (4.108)

where we have used the first equation to greatly simplify the third. Specifying a particular di-

mensionless area, dimensionless line tension, and dimensionless spontaneous curvature we can use

these three equations to solve for the boundary slope, Lagrange multiplier, and projected radius

that minimize the free energy. Although, it is not that straightforward to find solutions; due to

the oscillatory nature of Jk, there are actually multiple, discrete domain shapes that solve these

equilibrium equations. Examining eqn. 4.106, we note that possible solutions of this equation,

corresponding to discrete domain shapes, are separated by the discrete zeros of J1(βρo). To a good

approximation the nth zero of J1(βρo) is given by

βρo =
π

4
+ (n − 1)π, (4.109)

where n ∈ [1 . . .∞] is an integer. With this knowledge, we can bound the values of βρo for the nth

discrete domain shape to
π

4
+ (n − 1)π < βρo <

π

4
+ nπ. (4.110)

Thus, based on the values of βρo, we know which discrete shape we are solving for, that is, which

n mode shape. As n increases, the bounded values of βρo push the elastic energy to ever higher

levels, such that from the perspective of shapes that are accessible to thermal fluctuations, only the

n = 1 shape is accessible for all reasonable parameter values. Further, the line tensions required

to buckle the domain for n > 1 are outside the range of reasonable values. To demonstrate these

concepts, Fig. 4.17 shows the numerical solutions to the equilibrium equations for n = 1 and n = 2.

Looking at Fig. 4.17e, one can see that our dimpled solutions are within the bounds of eqn. 4.110

for n = 1.

Having picked the regime of lowest energy dimpling, we would also like to know where in the

space of dimensionless area and line tension the dimpled states lie, that is, where is the phase

boundary? We will explore this question in the scenario where υo = 0; in the case where υo 6= 0,

there is no stable flat state and hence no phase boundary for the lowest energy mode.

Approaching the phase boundary from either large domain area or large line tension the bound-

ary slope ε → 0 at some critical value of the membrane parameters, and hence in the above equations

we can ignore terms O(ε2). Not only does this simplify the equations, but precisely at the phase

boundary, the O(ε2) terms are identically zero, such that the first equation gives

σβ
J0(βρo)

J1(βρo)
+

K0(ρo)

K1(ρo)
= 0, (4.111)

4The inclusion of GGauss adds the term 2σ−1
ρo

in the brackets, modifying the quantitative results slightly.
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the second equation gives

ρo =

√
α

π
, (4.112)

and the third equation gives

χ = ρo(σβ2 + 1). (4.113)

The first two equations can be solved numerically to find the critical value βc at the phase boundary

as a function of α, and then the critical line tension for dimpling is χc = (σβ2
c + 1)

√

α/π. In the

regime where the dimensionless domain area is small the relationship between these three equations

simplifies to5

χc ' 8σ

√
π

α
. (4.114)

4.4.7 Scaling and the Critical Exponent

Using an approximation similar to how we derived the morphological phase boundary we can also

derive the critical exponent of the dimpling transition. This exponent gives us a notion of how ‘fast’

a domain dimples once the transition has occurred, which is an important shape characteristic of

the dimpling transition and will be crucial for understanding how domain interactions scale with

domain size and size asymmetry.

It can be shown that the quantity βρo ' βc

√

α/π after the domain has dimpled, as demonstrated

in Fig. 4.17e. This approximation allows us to write the domain area conservation as

α ' πρ2
o

(

1 + δ
ε2

2

)

, (4.115)

where δ = O(1) is a constant determined from eqn. 4.85. Using this equation solved for ρo and

eqn. 4.113 solved for β, we can form a complicated transcendental equation with eqn. 4.111. For

small domain area, this transcendental equation can be used to write the boundary slope as

|ε| '
√

2

δ

(
χ

χc
− 1

)

, (4.116)

or using eqn. 4.114 as

|ε| '
√

1

δ

(
α

αc
− 1

)

, (4.117)

with αc = 64π(σ/χ)2. An additional an O(1), numerically-determined and multiplicative constant

can be employed to make eqns. 4.116 and 4.117 even more accurate. This calculation shows that the

critical exponent is equal to 1/2, whether line tension or domain area is increased, which means that

the domains rise rapidly from the flat state once they have gone through the dimpling transition.

5The inclusion of GGauss changes this equation to χc ' 4(σ + 1)
p

π/α.
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Figure 4.17: Numerical solutions for the equilibrium equations. Plots (a-d) show how morphological

parameters vary as χ increases, with α = π/4 and σ = 1. The red lines are for n = 1, while the blue

lines are for n = 2, the black lines correspond to the flat state. e) This plot demonstrates that the

values of βρo are indeed bounded by eqn. 4.110, and that the product βρo is approximately constant

through the morphological transition. f) This plots shows the domain shapes for the modes (n = 1,

χ ' 17) and (n = 2, χ ' 68).
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4.4.8 Divergence Theorem Solution for the Deformation Energy

We previously made use of the dimensionless functionals

G
(1)
el =

κb

2
σ

∫

S

(

−β2(∇η1)
2 +

(
∇2η1

)2
)

d2ρ (4.118)

and

G
(2)
el =

κb

2

∫

S

(

(∇η2)
2 +

(
∇2η2

)2
)

d2ρ, (4.119)

which describe the contributions to the free energy from bending and membrane tension. Using

the resulting Euler-Lagrange equations in the domain region

∇2(∇2 + β2)η1 = 0 (4.120)

and

∇2(∇2 − 1)η2 = 0 (4.121)

in the surrounding membrane, we apply the boundary conditions |∇η1(0)| = |∇η2(∞)| = 0 and

|∇η1(ρo)| = |∇η2(ρo)| = ε. From these differential equations and boundary conditions we found

solutions for the membrane shape

η1(ρ) = −ε

[
1

β

J0(βρ)

J1(βρo)
− 1

β

J0(βρo)

J1(βρo)
+

K0(ρo)

K1(ρo)

]

and η2(ρ) = −ε
K0(ρ)

K1(ρo)
. (4.122)

It might appear that the only way to solve for the energy given η1 and η2 is to perform a rather

tedious integral, when in fact, there is a much more elegant way using the Divergence Theorem, in

a way similar to previous calculations [32, 31].

We will perform a series of partial integrations in rapid succession, by rewriting the derivatives

in the energy functional. We start by noticing

(∇η)2 = ∇ · (η∇η)− η∇2η. (4.123)

The second derivative term is a bit more challenging, we notice that

∇ · (∇2η∇η) = ∇3η · ∇η + (∇2η)2 (4.124)

and

∇ · (η∇3η) = ∇3η · ∇η + η∇4η. (4.125)

Subtracting these two equations yields

(∇2η)2 = η∇4η + ∇ · (∇2η∇η − η∇3η). (4.126)
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Let us tackle the functionals for the two regions separately; in region 1

−β2(∇η1)
2 + (∇2η1)

2 = ∇ · (∇2η1∇η1 − η1∇3η1 − β2η1∇η1) + β2η1∇2η1 + η1∇4η1, (4.127)

which can be rearranged to

−β2(∇η1)
2 + (∇2η1)

2 = ∇ · (∇2η1∇η1 − η1∇(∇2 + β2)η1) + η1∇2(∇2 + β2)η1. (4.128)

Then recall that the Euler-Lagrange equations demand ∇2(∇2 + β2)η1 = 0, and further, our

condition that the change in area upon dimpling be finite gives (∇2 + β2)η1 = const, hence this

can be simplified to

−β2(∇η1)
2 + (∇2η1)

2 = ∇ · (∇2η1∇η1). (4.129)

Upon substitution into the energy functional for region 1 we find

G
(1)
el =

κb

2
σ

∫

S

(

−β2(∇η1)
2 +

(
∇2η1

)2
)

d2ρ =
κb

2
σ

∫

S
∇ · (∇2η1∇η1)d

2ρ, (4.130)

and then using the divergence theorem

G
(1)
el =

κb

2
σ

∫

S
∇ · (∇2η1∇η1)d

2ρ =
κb

2
σ

∮

∂S
(∇2η1∇η1) · dn̂. (4.131)

This last expression can be fully evaluated without a particular functional form of η1, simply by

applying azimuthal symmetry and knowing the boundary conditions, namely ∇η1(0) = 0ρ̂ and

∇η1(ρo) = ερ̂, resulting in

G
(1)
el = πσκbρoε(∇2η1)|ρ=ρo . (4.132)

The second region surrounding the domain is handled in a similar fashion. We write the

integrand of the functional as

(∇η2)
2 + (∇2η2)

2 = ∇ · (∇2η2∇η2 − η2∇3η2 + η2∇η2) − η2∇2η2 + η2∇4η2, (4.133)

which can be reorganized to

(∇η2)
2 + (∇2η2)

2 = ∇ · (∇2η2∇η2 − η2∇(∇2 − 1)η2) + η2∇2(∇2 − 1)η2. (4.134)

In a similar fashion, application of the Euler-Lagrange equation, ∇2(∇2 − 1)η2 = 0, and the finite

area change condition, (∇2 − 1)η2 = const, yield

(∇η2)
2 + (∇2η2)

2 = ∇ · (∇2η2∇η2). (4.135)

With subsequent application of the Divergence Theorem we get a relation similar to region 1,
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namely

G
(2)
el =

κb

2

∫

S
∇ · (∇2η2∇η2)d

2ρ =
κb

2

∮

∂S
(∇2η2∇η2) · dn̂, (4.136)

where application of the symmetry and boundary conditions, specifically limρ→∞ ρ|∇η2| = 0 and

∇η2(ρo) = ερ̂, yields

G
(2)
el = −πκbρoε(∇2η2)|ρ=ρo . (4.137)

Now we see that the total elastic free energy is a measure of the curvature change at the boundary

between the two regions

Gel = πκbρoε
[
σ
(
∇2η1

)
−
(
∇2η2

)]

ρ=ρo
. (4.138)

Using the solutions from the Euler-Lagrange equation, we recover the previously stated energy

Gel = πκbρoε
2

(

σβ
J0(βρo)

J1(βρo)
+

K0(ρo)

K1(ρo)

)

. (4.139)

4.4.9 Spherical Domain Budding

While the Monge representation of the membrane and domain is useful for understanding certain

kinds of domain morphology, it is a model incapable of representing the budded morphology, due

to the Monge restriction that the membrane cannot fold over itself. In this section we employ

a basis-shape model, where all available domain morphologies are sections of a sphere, while the

surrounding membrane is flat, to show that there is a first-order budding transition. Here we will

work through the zero spontaneous curvature spherical model.

We characterize the bud by a radius R and wrapping angle θ as shown in Fig. 4.10. A simple

geometrical derivation shows that the area of such a domain is

A = 2πR2(1− cos θ) (4.140)

where A is the domain area (for consistency, we will use α as the dimensionless area). The energy

from line tension is

Gline = 2πroγ = 2πRγ sin θ (4.141)

where ro = R sin θ is the projected domain boundary. As ro changes, so does the areal footprint of

the domain, and hence work is done against any applied membrane tension, given by

Gtens = −πτr2
o = −πτR2 sin2 θ = −πτR2(1 − cos θ)(1 + cos θ) (4.142)

Finally, the mean curvature bending energy is written as a fraction of the bending energy of a

sphere

Gbend = 8πκb ·
A

4πR2
(1− 2coR), (4.143)

where co is the spontaneous curvature of the domain. All together, this gives the free energy of a
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spherical domain

G = Gline + Gtens + Gbend. (4.144)

We can now use the expression for the area, A, to eliminate R from the free energy. This leaves θ

as the only free variable, and shows that this variable characterizes budding; θ = 0 is a flat domain

and θ = π is a fully budded domain. Using the relationship between domain area and R we can

simplify the mechanical free energy to

G = 2πRγ sin θ − πτR2 sin2 θ + 8πκb
A

4πR2
(1 − 2coR), (4.145)

and further to

G = 4πκb

[

γ
√
A

κb

√

1 + cos θ

8π
− τA

κb

1 + cos θ

8π
+ (1− cos θ) − co

√
A
√

2(1− cos θ)

π

]

. (4.146)

Upon substitution of our previously defined elastic decay length, λ2 =
√

κb/τ , we retrieve the

familiar dimensionless parameters α and χ as regulators of domain budding, where the mechanical

free energy is written as

G = 4πκb

[

χ
√

α

√

1 + cos θ

8π
− α

1 + cos θ

8π
+ (1− cos θ) − υo

√
α

√

2(1− cos θ)

π

]

. (4.147)

This equation has stable points as defined by the set of equations ∂G/∂θ = 0 and ∂2G/∂θ2 ≥ 0.

In the symmetric situation where υo = 0, there are two points (or more accurately, lines) of

interest in the phase diagram of domain budding. The most interesting is the transition from a

flat-bud coexistence regime with an energy barrier between those states, to a bud-only regime,

defined by
∂2G

∂θ2

∣
∣
∣
∣
θ=0

= 0, (4.148)

which yields the relationship

χbud = 8

√
π

α

(

1 +
α

8π

)

, (4.149)

as shown in Fig. 4.11. Comparing this equation to eqn. 4.114 (with σ = 1), indicates that the

cross-over between dimpling and budding morphologies occurs when α/8π � 1.

The second interesting line in the phase diagram is when it becomes equally favorable to be

in either the flat or budded state defined by G|θ=π = G|θ=0 = 0, which yields simply χbud/2.

Figure 4.18 shows the bifurcation diagrams resulting from various scenarios of ∂G/∂θ = 0 in the

spherical budding model, including cases with spontaneous curvature. Note that in the absence

of spontaneous curvature only the flat and fully budded states are available, while adding domain

spontaneous curvature allows for equilibrium values of θ between flat and fully budded.
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Figure 4.18: Bifurcation diagrams of the spherical budding model. All plots show solutions to

∂G/∂θ = 0, where θ is the domain wrapping angle, χ is the dimensionless line tension, α is the

dimensionless area, and the energy scale is set by 4πκb. The first column shows diagrams with

zero spontaneous curvature (υo = 0), and the second column shows diagrams with a spontaneous

curvature of υo = 0.5; all other parameters are noted on the graph. Solid lines indicate stable values,

dashed lines indicate unstable values, and dots indicate transitions between stable and unstable

solutions.
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4.5 Vesicle Tension and Entropy

To keep our mechanical model of membrane morphology tractable and intuitive, certain assump-

tions were made about the physical state of the membrane. One of our assumptions was that

the addition of membrane area due to domain deformation came at a constant cost per unit area,

thus setting up a constant tension ensemble. In this section we will examine this assumption in

detail, and show that while useful, the constant tension ensemble cannot be blindly employed in

all situations. In particular, if the area change connected to a morphological transition (or set of

transitions) is too large compared to a reference area, we must consider the membrane tension as

a variable, thermally-dependent mechanical attribute of the membrane.

The choice of tension ensemble affects the equilibrium stability of domain morphologies. Our

formulation of the equations of mechanical equilibrium shows that the dimpled domain morphology

is at an energy extremum, however the use of a Lagrange multiplier turns that extremum into a

saddle-point, hence obscuring the exact nature of the shape stability. Some of our preliminary work,

using fully non-linear finite element methods, suggests that the dimpled morphology might only be

a stable shape if the tension is a monotonically increasing function of the additional area required to

deform the membrane. Fortunately, that is precisely the behavior described by a thermally active

membrane - a regime of constant tension if domain deformations are small, and a monotonically

increasing tension regime if the deformations are large.

For a vesicle with conserved volume and surface area, lateral tension may arise from one of

two general sources. At higher tensions, the intrinsic area per lipid increases, corresponding to an

areal strain (φ) and tension (τ) on the vesicle surface given by τ ' KAφ, essentially the bilayer

equivalent of Hooke’s Law. At much lower tensions, this Hookean linear response is not valid;

thermal fluctuations of the membrane absorb free area, generating a small, non-linear entropic

tension. Our goal in this section is to use a common Fourier space technique to construct a model

of this entropic tension [57, 266], namely the equation of state, and determine its implications for

the constancy (or lack thereof) of tension on the surface of GUVs with lipid domains that change

morphology. This analysis informs the generic mechanical model of the limits of the approximation

of the constant tension ensemble. The result of this calculation will also help us form a more

accurate model of membrane elasticity and deformation at finite temperature.

To these ends, the following subsections derive the equation of state in rigorous detail, and

build intuition for how bending and tension regulate the thermal fluctuations of the membrane. An

expression for the contribution to the free energy from a thermally active membrane is derived and

a connection is made between the free energy in this thermal ensemble with the zero temperature,

constant tension ensemble. Lastly, we try to estimate how changes in domain morphology couple

to the thermal fluctuations on a conserved volume and surface area vesicle.



186

4.5.1 Constructing a Thermal Ensemble

Arguably, one of the most important concepts to discuss when constructing a mechanical model of

a membrane is the ensemble in use, which can be loosely defined as the physical or thermodynamic

relationship between the patch of membrane of interest and the external physical world. Looking

back at eqn. 4.52, we see that the tension, τ , is a material constant, independent of the shape of

the membrane itself. This description is a constant tension ensemble, where changes in morphology

add area at infinity, by pulling membrane from an external membrane reservoir at a fixed energy

cost per unit area. This problem statement is strictly a mechanical model, free from the effects of

temperature, or more precisely, it is a statistical mechanical model at T = 0. A real membrane at

finite temperature is bombarded by various small molecules, (e.g. water, ions, and proteins) such

that it is never in a flat state. Instead, the membrane undulates in time, with height fluctuations

having a specific frequency spectrum that will be derived in this section. These undulations store

area that can be surrendered upon application of tension, however the energetic cost of this change

in projected unit area is not constant. This constitutes a new kind of tension ensemble, that links

the tension in the mechanically deformed membrane region to the variable tension in a thermal

membrane reservoir using an equation of state.

The physical reality is that changes in domain morphology (or any change in membrane mor-

phology) and finite temperature bilayer undulations are happening simultaneously on the same

patch of membrane, and are energetically coupled together. This coupling combined with only

a statistical notion of the fluctuations makes this a difficult scenario to model. One avenue of

approach is to construct an entropic tension ensemble as follows. The domain and its attendant

mechanical morphologies exist on an infinite patch of membrane at zero temperature, and hence we

can model domain morphologies within the framework of standard continuum mechanics. We then

construct a thermally active membrane reservoir, with projected area A and total area Ao, that is

able to exchange area with the zero temperature membrane patch, such that the total membrane

area in the system is conserved, as shown in Fig. 4.19. By fixing the total area in the system and

setting A and Ao, the equation of state of the reservoir defines the tension in both membrane re-

gions. As the zero temperature membrane patch deforms, it pulls area from the thermal membrane

reservoir, increasing the tension in both regions according to the non-linear equation of state. This

effectively allows us to calculate membrane shapes with a strictly mechanical model, as we have

done previously, but couples the continuum mechanics to an accurate representation of a bilayer

of finite extent at finite temperature. Additionally, we will show that this analysis clarifies the

relevance of the constant tension ensemble. For a system with a large enough thermal reservoir,

the ratio ∆A/Ao � 1, and hence the initial state of tension remains essentially unchanged when

the zero temperature membrane changes morphology. If this condition is not met, we must consider

the non-linear behavior of the equation of state, and its corresponding effects on the stability of

dimpled and budded domain morphologies. The general result is that the non-linear equation of

state yields a variable tension that tends to stabilize the dimpled state if enough excess area is
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Figure 4.19: Schematic of an ensemble that couples the lateral tension of a zero temperature

deformation field to a finite temperature membrane reservoir. The reservoir (left) has a total area

Ao −∆A and a projected area A, where ∆A ∈ [0 . . .(Ao −A)]. The mechanically deformed region

(right - with dimpled domain) has an infinite projected area and an actual area ∆A above the

projected area, where ∆A is the area required to deform the zero temperature membrane from a

flat state. The small pipe represents a perfect thermal insulator that permits the flow of lipid from

one region to the other, where the total amount of lipid in the ensemble is conserved, resulting in

equal tension in both regions. When the zero temperature membrane is flat, the thermal reservoir

has a projected area A and actual area Ao, which, through the equation of state, defines an initial

resting tension in both regions.

available.

4.5.2 The Equation of State

We calculate the linearized equation of state in this low tension regime by splitting the reservoir’s

deformation profile, denoted here as simply h, into planar Fourier modes and using equipartition

to calculate the amplitude of each mode. To derive the equation of state, we follow the standard

treatment given in [57, 266] with all details shown here for completeness. Recall that the linearized

deformation energy is given by

Gel =
1

2

∫

S

(

τ(∇h)2 + κb

(
∇2h

)2
)

d2r, (4.150)

where S is the planar projected surface. The projected surface area is A, and we assume for now

that we are operating in the entropic tension regime where the area per lipid is conserved. While

a two dimensional path integral formulation,

Z =

∫

D [h] e
−Gel[h]

kBT , (4.151)

which constructs the partition function Z by summing the Boltzmann factors over all possible

membrane configurations, is conceptually most straightforward, we will employ a Fourier space

approach to calculate the equation of state. For any Monge representation of the surface, we can
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write the membrane deformation as the Fourier transform

h(r) =
A

(2π)2

∫

h(q)e−iq·r d2q, (4.152)

with

q =
2π√
A

k, (4.153)

where k = (n1, n2) with n1 and n2 as integer wave numbers. For a sufficiently large membrane,

we are well-justified in using the continuous Fourier Transform, though this approximation breaks

down for patches of membrane with area near the area of a single lipid. Then the vector derivatives

from the energy functional are

∇h =
A

(2π)2

∫

(−iq)h(q)e−iq·r d2q, (4.154)

and

∇2h = − A
(2π)2

∫

|q|2h(q)e−iq·r d2q, (4.155)

such that the terms of the deformation functional become

(∇h)2 =
A2

(2π)4

∫ ∫

(q · q′)h(q)h(q′)e−i(q−q
′)·r d2qd2q′, (4.156)

and

(∇2h)2 =
A2

(2π)4

∫ ∫

(q · q′)2h(q)h(q′)e−i(q−q
′)·r d2qd2q′. (4.157)

Explicitly performing the spatial integrals gives

∫

(∇h)2 d2r =
A2

(2π)4

∫ ∫ ∫

(q · q′)h(q)h(q′)e−i(q−q
′)·r d2qd2q′d2r, (4.158)

and ∫

(∇2h)2 d2r =
A2

(2π)4

∫ ∫ ∫

(q · q′)2h(q)h(q′)e−i(q−q
′)·r d2qd2q′d2r. (4.159)

We recognize that ∫

e−i(q−q
′)·r d2r = (2π)2δ(q− q′), (4.160)

such that these integrals simplify to

∫

(∇h)2 d2r =

( A
2π

)2 ∫

|q|2|h(q)|2 d2q (4.161)

and
∫

(∇2h)2 d2r =

( A
2π

)2 ∫

|q|4|h(q)|2 d2q. (4.162)
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The deformation energy can now be written as a sum of independent Fourier modes

Gel =
1

2

( A
2π

)2 ∫ π√
ao

π√
A

|h(q)|2
(
τ |q|2 + κb|q|4

)
d2q, (4.163)

where we integrate from the smallest q vector magnitude, corresponding to the size of the en-

tire projected membrane π/
√
A, to the highest q vector magnitude, corresponding to the lipid

intermolecular spacing π/
√

ao, where ao is the area per lipid.

This free energy can now be used in the canonical partition function to calculate various prop-

erties of interest on a fluctuating membrane at equilibrium. The amplitudes of each mode, |h(q)|,
are degrees of freedom over which we can sum the partition function, however, since they are in-

dependent quadratic degrees of freedom, we know that each mode absorbs energy kBT/2 from the

thermal reservoir, such that

kBT

2
=
〈
|h(q)|2

〉 A
2

(
τ |q|2 + κb|q|4

)
, (4.164)

and from the definition of the Fourier transform in eqn. 4.152, a factor of A/(2π)2 remains with

the integral, and this can be rearranged to

〈
|h(q)|2

〉
=

kBT

A (τ |q|2 + κb|q|4)
. (4.165)

Using our previously defined elastic decay length, λ =
√

κb/τ , this can be recast in a form with

fewer effective parameters,

〈
|h(q)|2

〉
= λ2kBT

τA
1

(λ|q|)2 + (λ|q|)4
, (4.166)

useful for making scaling arguments. To get a feel for the magnitudes of these fluctuations, we can

plug in the minimum and maximum wave vectors to find the maximum and minimum, respectively,

root-mean-square height deviations, and find

[√

〈|h(q)|2〉
]

|q|max

' ao

π2

(
kBT

Aκb

)1/2

∼ 10−7 nm (4.167)

and
[√

〈|h(q)|2〉
]

|q|min

'
[

kBT

π2τ

(

1 +
(πλ)2

A

)−1
]1/2

∼ 100 nm, (4.168)

on a vesicle with a 20 µm diameter and resting tension of 10−5 kBT/nm2. Thus we see that on small

length scales, the membrane is locally very flat. To get an idea of the membrane height gradient

over different wavelengths, which helps validate the use of a Monge gauge, we can multiply these
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height deviations by their corresponding wave vector magnitude to find

|∇h|min '
[

|q|
√

〈|h(q)|2〉
]

|q|max

'
(

aokBT

π2Aκb

)1/2

∼ 10−6 (4.169)

and

|∇h|max '
[

|q|
√

〈|h(q)|2〉
]

|q|min

'
[

kBT

τA

(

1 +
(πλ)2

A

)−1
]1/2

∼ 0.01. (4.170)

These estimates give us two important pieces of information. The estimate of the root-mean-

square height fluctuation tells us that in the ‘real’ physical scenario, on the length scales of domain

morphology the thermal fluctuations will be statistically smaller than the height deformations

caused by domain morphology. The second estimate shows that the small gradient approximation

employed through this section is valid for studying membrane fluctuations.

To better understand the nature of the thermal fluctuations, specifically to build intuition for

how the fluctuation modes are regulated, we examine two naturally-arising regimes in more detail.

For small λ|q|, the quadratic term dominates the denominator to give a log-log power law of the

form

ln

[
〈
|h(q)|2

〉 τA
λ2kBT

]

= −2 ln [λ|q|] , (4.171)

while for large λ|q|, the quartic term dominates and to give a log-log power law of the form

ln

[
〈
|h(q)|2

〉 τA
λ2kBT

]

= −4 ln [λ|q|] . (4.172)

Where these two power laws cross is the ‘corner’ frequency, λ|q|c = 1, as shown in Fig. 4.20a. Fre-

quencies below the corner frequency, having a much higher amplitude, absorb the vast majority of

the free area, and hence are almost exclusively regulated by tension. On the other hand, frequencies

above the corner frequency correspond to a high degree of curvature but do not absorb significant

area, and hence are almost exclusively regulated by bending stiffness.

Moving towards the equation of state of the reservoir, as we have shown in previous sections,

the difference between projected and actual area can be written as an integral, and can now also

be represented in Fourier-space as

Ao −A =
1

2

∫

(∇h)2 d2r =
1

2

( A
2π

)2 ∫
〈
|h(q)|2

〉
|q|2 d2q, (4.173)

where upon replacing the formula for the mean mode variances we find

Ao −A =
kBT

4πκb

A
2π

∫
1

τ
κb

+ |q|2 d2q. (4.174)
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By choosing polar coordinates on an isotropic membrane, d2q = 2πqdq, this can be written as

Ao −A
A =

kBT

4πκb

∫ π√
ao

π√
A

q
τ
κb

+ q2
dq. (4.175)

The single greatest contribution to the integrand comes from modes at the corner frequency. The

result of this integral is the entropic equation of state [266]

Ao −A
A =

kBT

8πκb
ln

[

1 + π2

ao

κb
τ

1 + π2

A
κb
τ

]

. (4.176)

This equation of state is the mathematical relationship that, for a given bending modulus, relates

a given total membrane area and tension to the observed projected area, or alternately stated,

it relates the total membrane area and given projected area to the magnitude of tension on the

membrane. This equation of state is the key to deriving the energetic contribution to membrane

deformation free energy from the thermal reservoir. Additionally, it is straight forward to include

membrane stretch because it corresponds to the relatively simple transformation Ao → Ao(1 +

τ/KA), such that the equation of state becomes

Ao

A

(

1 +
τ

KA

)

− 1 =
kBT

8πκb
ln

[

1 + π2

ao

κb
τ

1 + π2

A
κb
τ

]

, (4.177)

and now Ao is interpreted as the full, zero tension area of the bilayer.

From eqn. 4.176, notice that if τ → ∞ or T → 0, the right-hand side goes to zero and A = Ao,

confirming that Ao is the actual area of the membrane, or in other words, the number of lipids

multiplied by the equilibrium area per lipid, and implies A < Ao. Examining the right-hand side of

this equation, two reference tensions emerge, between which nearly all tensions of interest lie. From

the denominator, the lower bound reference tension is set by π2κb/Ao ∼ 10−7 kBT/nm2 � τ for

any sufficiently large piece of membrane (e.g. vesicle with radius 10 µm or more). Likewise, from

the numerator, the upper bound reference tension is π2κb/ao ∼ 400 kBT/nm2 � τ considering that

a nominal membrane will rupture at tensions above ∼ 5 kBT/nm2. Thus within that range the

equation of state can be written as

Ao −A
A ' kBT

8πκb
ln

[
π2κb

aoτ

]

. (4.178)

This also shows that for sufficiently large patches of membrane, the lower bound wave vector plays

almost no role in the equation of state. Likewise, the equation of state is only logarithmically sen-

sitive to any errors in choice of the maximum wave vector. Together, these facts give us confidence

that the equation of state is rather robust, and does not depend on the fine details of lipid structure,

nor large-scale membrane conformations. Looking back at eqn. 4.176, as tension decreases towards

zero, the projected area shrinks to a state where the bending rigidity stabilizes the membrane un-



192

a) b)

0.96 0.97 0.98 0.99 1 1.01 1.02

–8

–6

–4

–2

0

2

4

10
0

10
−1

10
−2

10
1

10
2

10
0

10
−1

10
−2

10
−3

10
1

10
2

Figure 4.20: Regimes of Entropic Tension. a) Log-log plot of the fluctuation RMS height as a

function of the dimensionless wave vector magnitude. The relatively high RMS height of frequencies

below the corner frequency is regulated by tension, while the very low RMS height of frequencies

greater than the corner frequency is regulated by bending. The circle indicates the corner frequency

at which fluctuations switch from being tension regulated to bending regulated. b) Plots of the

entropic tension as a function of frame area relative to total, zero tension bilayer area. The green

line is the exact formula from eqn. 4.181, while the orange and blue lines are the approximations

of eqn. 4.183. The red line is the full entropic and elastic equation of state from eqn. 4.177. The

grey ellipse shows the approximate regime of entropic tension in which our experiments reside,

known from measurements of the elastic decay length λ. The dashed line shows the tension above

which one must account for changes in ao due to stretch. For all plots the bending modulus is

κb = 25 kBT , the lipid size is ao = 0.6 nm2, the stretch modulus is KA = 60 kBT/nm2, and the

nominal vesicle size is Ao = 4π(10000 nm)2.
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dulations. In the limit of zero membrane tension, the difference between the actual and projected

areas increases to a degree defined by

Ao −A
A

∣
∣
∣
∣
τ=0

=
kBT

8πκb
ln

[A
ao

]

. (4.179)

The solution to this transcendental equation for A is the minimum projected area of the membrane,

Amin, where with reasonable values for the bending modulus and area per lipid, it is straightforward

to show that the maximum entropic areal strain is bounded by

0 <
Ao −A

A

∣
∣
∣
∣
τ=0

≤ 0.05, (4.180)

for all reasonable membrane sizes, implying that in many situations we can use A ' Ao - this will

be a useful approximation in calculations that follow. In fact, this upper bound areal strain is not

reached until Ao/ao ∼ 1015! The exact entropic equation of state (eqn. 4.176) can be explicitly

solved for τ , yielding

τ =
π2κb

ao
· 1 − ao

A e

“

Ao−A
A

8πκb
kBT

”

e

“

Ao−A
A

8πκb
kBT

”

− 1

. (4.181)

This equation of state represents a derivative of the free energy with respect to projected area,

namely

Gent =

∫ A

Amin

τ(A′)dA′, (4.182)

with κb, Ao and ao as parameters. The difficulty of this integral is significantly reduced if we

realize that in certain strategic locations, we can substitute A → Ao, justified by the implications

of eqn. 4.179, to get

τ =
π2κb

ao
·
1 − ao

Ao
e

“

Ao−A
Ao

8πκb
kBT

”

e

“

Ao−A
Ao

8πκb
kBT

”

− 1

' π2κb

ao
e
− 8πκb

kBT
Ao−A
Ao . (4.183)

Integrating this equation gives

Gent = Go + kBT
πAo

8ao
e
− 8πκb

kBT
Ao−A
Ao , (4.184)

with Go defined by Gent|A=Amin
= 0. The meaning of this equation is unambiguous; as we increase

the frame area from its zero tension resting value of Amin, the free energy exponentially increases

because the entropic undulations of the membrane are flattened out. Recalling the arrangement we

are using to connect domain morphology to the thermal membrane reservoir, as shown in Fig. 4.19,

we interpret changes in morphology as changes in the actual amount of lipid in the thermal reservoir,

such that

∆A =
1

2

∫

S
(∇h)2 d2r, (4.185)



194

where this height function h resides in the zero temperature region. Substituting this into the free

energy, we can write the elastic functional as

Gel = Gent|Ao→Ao−∆A +
κb

2

∫

S

(
∇2h

)2
d2r, (4.186)

or more explicitly as

Gel = Go + kBT
πAo

8ao
e
− 8πκb

AokBT (Ao−A− 1
2

R

S(∇h)2 d2
r)

+
κb

2

∫

S

(
∇2h

)2
d2r, (4.187)

and the variation is still taken with respect to h, as δGel
δh = 0. This has the pleasing property that if

the morphological deformation field is zero, the membrane system returns to the equation of state

defined by entropic fluctuations.

We can take this calculation a few steps further by asking: In what regime does the constant

tension ensemble match the results of this entropic ensemble? Looking at the first two terms of

eqn. 4.187, the regime where tension would be constant is

8πκb

kBT

∆A
Ao

� 1, (4.188)

yielding the approximation to the entropic component of the free energy

Gent ' Go + kBT
πAo

8ao
e
− 8πκb

kBT
Ao−A
Ao

(

1 +
8πκb

kBT

∆A
Ao

)

. (4.189)

Readjusting the zero of the free energy, this can be written as

Gent ' G′
o +

π2κb

ao
e
− 8πκb

kBT
Ao−A
Ao

︸ ︷︷ ︸

eqn. 4.183 for τ

1

2

∫

S
(∇h)2 d2r. (4.190)

Taking a nominal bending modulus of κb = 25 kBT and vesicle diameter of 20 µm, we can use

eqn. 4.188 to estimate the area change above which we must consider changes to the entropic

reservoir, and find that the tension is approximately constant for the upper bound value of ∆A <

2 µm2. This means that a single domain with flat radius of roughly 800 nm or less can fully bud

without changing the resting tension in the membrane significantly. In another estimate, this

means that on the vesicle surface ∼ 150 domains of area α = π/4 with λ = 1 µm, which in real

units corresponds to domains with a flat diameter 1 µm, can dimple to have a boundary slope of

ε = 0.25 and still maintain an essentially constant frame tension. This is a reasonable estimate

which says that the constant tension ensemble is relevant, although depending on the vesicle size

and the exact composition of the lipid mixture, the domains may be larger and/or more numerous,

and the dimpling process may yield lower values of ∆A per domain than the above estimates

depending on the values of ε. This alludes to a model where it is the total area change of all
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domains that couples to the tension of the thermal reservoir; hence for tension to be constant,

domains must not only be small, but there must be low enough number of them such that their

combined ∆A is less than the values suggested by eqn. 4.188.

To put these results in further experimental context, we explore how the entropic tension changes

when a domain of area AD, on a GUV with area Ao, changes its morphology from flat to budded.

We assume the vesicle is nearly spherical, and hence the volume of the vesicle is V = A3/2/3
√

4π,

where A represents the frame area of the GUV with the flat domain. We assume the domain forms

a spherical bud, in which case, it requires volume VD = A3/2
D /3

√
4π to complete this change in

morphology. This change in volume corresponds to a change in frame area, such that the new

frame area is

An =
(

A3/2 −A3/2
D

) 2
3
. (4.191)

Via the phase boundary, the same morphological change isolates a certain amount of lipid from the

vesicle, such that

A′
o = Ao −AD. (4.192)

This effectively causes a change of variable in eqn. 4.181 from

Ao

A → A′
o

An

=
1 − AD

Ao
((

A
Ao

)3/2
−
(
AD
Ao

)3/2
)2

3

' Ao

A

(

1 − AD

Ao

)

. (4.193)

We can now calculate the tension as a function of the relative frame area (A/Ao) and the budding

domain area relative to the total vesicle area (AD/Ao), as shown in Fig. 4.21.

The end result of these calculations is that there is a regime in which tension is constant and

a regime in which tension rises exponentially as a domain changes morphology. In which regime a

vesicles finds itself depends on the number and size distribution of domains on its surface. It is likely

that for large vesicles with a low number of small domains, the tension is approximately constant,

while for vesicles with larger, more numerous domains the tension cannot be considered constant.

In those cases where the tension is exponentially sensitive to domain morphology, it should not

have an effect on the actual shape of the dimpled domain because one can always readjust the

zero of the free energy about the current state of tension and explore shapes in that region of

phase space under the approximation of the constant tension ensemble. Further, we speculate that

an exponentially rising tension has the effect of stabilizing dimples against budding; in a sense,

complicating the relatively simple phase diagram of the constant tension ensemble, by demanding

that we know not only elastic constants of the membrane and domain size, but extrinsic features

of the membrane, like the total membrane area.
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Figure 4.21: Effects of domain budding on entropic tension. a) This schematic shows how the

budding of a domain from a large vesicle, conserves total membrane area and enclosed volume,

but changes the frame area and actual area available for fluctuations on the vesicle, increasing

the entropic tension. b) Plot of the membrane tension upon budding of a domain whose size is

a fraction of the total membrane area, AD/Ao, where the initial state had a relative frame area

A/Ao, which specifies an initial state of tension. The light blue area indicates tensions below the

minimum tension π2κb/Ao, whereas the light red region indicates tensions where membrane stretch

becomes important.

4.5.3 Simulating Membrane Conformations

In the previous section we showed that the functional, when represented in Fourier space, varied

quadratically with each mode amplitude. The symmetry of the energy functional dictates a zero

mean amplitude for all modes, 〈h(q)〉 = 0, and hence with knowledge of the mode amplitude

variance, we know the probability distribution for detecting a certain mode amplitude with phase

θ is

P (|h(q)|, θ) =
1

2π

e
− |h(q)|2

2〈|h(q)|2〉
√

2π 〈|h(q)|2〉
, (4.194)

where A is constrained, given values for Ao, τ and κb in the equation of state, and h(q) = |h(q)|eiθ.

Recall that the minimum |q| = π/
√
A and the maximum |q| = π/

√
ao, such that the total number

of modes N =
√

A/ao. The actual deformation profile can then be written as

h(r) =
N∑

n1,n2=1

[

a(n1,n2) cos

(
2π√
A

(n1x1 + n2x2)

)

+ b(n1,n2) sin

(
2π√
A

(n1x1 + n2x2)

)]

(4.195)

where the coefficients are

a(n1,n2) = 2<[h(qx1, qx2)] (4.196)

and

b(n1,n2) = −2=[h(qx1, qx2)], (4.197)
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with qx1 = 2πn1/
√
A, qx2 = 2πn2/

√
A, and |q| =

√
q2
x1

+ q2
x2

. The thermal height field in Fig. 4.19

is computed from this scheme.

4.6 The 1D Interaction Potential

As mentioned in our discussion of dilute domain interactions, the 1D interaction potential is an

approximation that makes calculations relatively easy by absorbing all the changes that occur during

interaction into the boundary conditions of the surrounding membrane. The following subsection

will derive the 1D potential in detail and explain the manner in which boundary conditions are

imposed. In addition, these ideas permit us to examine how differences in domain size might effect

the pairwise interaction potential. We explicitly assume that the shapes of the domains are constant

during the interaction; the domains are only allowed to rotate with respect to the flat integration

plane. However, the membrane surrounding the domain is allowed to deform in response to this

rotation. Casting this into a one-dimensional model allows us to easily find analytical solutions for

the interaction potential. In one dimension, there are three regions of membrane to consider: two

regions of membrane which extend from the outer domain edges out to infinity on either side and

an inner region between the two domains from −d/2 to d/2, where d is the separation between

domain edges.

The elastic energy of the 1D membrane deformation, like the 2D case, is a sum of tension and

bending terms. Using Fig. 4.22, let us refer to the blue region to left with the label l, the blue

region in between the domains with the label c, and the blue region to the right with the label r.

Then, similar to the 2D scenario, in the left region the elastic energy is

Gl[ηl(x)] =
κbs

2λ

∫ 0

−∞

((
∂ηl

∂xl

)2

+

(
∂2ηl

∂x2
l

)2
)

dxl, (4.198)

in the right region

Gr[ηr(x)] =
κbs

2λ

∫ ∞

0

((
∂ηr

∂xr

)2

+

(
∂2ηr

∂x2
r

)2
)

dxr, (4.199)

and in the center region

Gc[ηc(x)] =
κbs

2λ

∫ d
2

−d
2

((
∂ηc

∂xc

)2

+

(
∂2ηc

∂x2
c

)2
)

dxc. (4.200)

Then the total elastic energy is the sum of these three parts. The parameter s is the effective one

dimensional length over which the interaction occurs; the exact value is absorbed into the data

fitting routine. In Fig. 4.22, s would be the distance the membrane goes ‘into’ the page. These

functionals generate Euler-Lagrange equations identical in form to those in Section 4.17, however
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+ +

Figure 4.22: A detailed view of the four distinct boundary conditions in the 1D model of interaction

between two dimpled domains. If both domains are the same size, then ε1 = ε2 and φ1 = φ2. The

boundary slopes, εi, are set by the single domain energy minimization described earlier. The inner

domain edge separation is d, and the tilt angle sign convention is shown below each angle φi. The

energy is calculated by integrating the membrane shape over the three blue regions, adherent to

the boundary conditions.

they are now one dimensional. The solutions are all of the form

ηi = a
(i)
1 exi + a

(i)
2 e−xi + a

(i)
3 xi + a

(i)
4 . (4.201)

As we will show, there are two qualitatively different interactions that are distinct realizations of

the same four boundary conditions. The results of this analysis are that we explain the domain

repulsion in terms of elastic parameters and domain morphology and predict as of yet unobserved

attractive interactions for opposite parity domains. Further, we can use results from previous

sections to estimate the effects of domain size and size asymmetry.

4.6.1 Interactions of Asymmetric Domains

We refer to domains whose curvature have the same sign as being of the same ‘parity’, however

their size, boundary slope or elastic properties may differ. The parity itself is encoded by the sign

of the slope boundary condition, whereas size asymmetry or elastic differences are reflected in the

magnitude of the boundary slope and projected domain sizes as demonstrated in the following

calculation.

For the outer membrane regions, the boundary conditions are that the membrane be flat far

from the domain edges, in particular

∂ηl

∂xl

∣
∣
∣
∣
xl=−∞

=
∂ηr

∂xr

∣
∣
∣
∣
xr=∞

= 0, (4.202)

that the change in 1D ‘area’ due to interaction be finite, and we arbitrarily set xl(−∞) = xr(∞) = 0,
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which immediately leads to

ηl = a1e
xl , (4.203)

for the left-hand side and

ηr = a2e
−xr , (4.204)

for the right-hand side. As the domains approach each other, a preferred rotation angle will emerge;

applying the small gradient/angle approximation, namely tan(φi) ' φi, this boundary slope is

∂ηl

∂xl

∣
∣
∣
∣
xl=0

= φ1 − ε1, (4.205)

in the left region and
∂ηr

∂xr

∣
∣
∣
∣
xr=0

= ε2 − φ2, (4.206)

in the right region. Taking φi and s/λ as small allows us to neglect the small contributions to the

interaction energy from the change in domain projected area with the rotations φi. Then the final

solutions for the outer regions are

ηl = (φ1 − ε1)e
xl and ηr = (φ2 − ε2)e

−xr . (4.207)

In the inner region ε2 changes sign and the slope boundary conditions read

∂ηc

∂xc

∣
∣
∣
∣
xc=−d/2

= ε1 + φ1 and
∂ηc

∂xc

∣
∣
∣
∣
xc=d/2

= −(ε2 + φ2). (4.208)

Additionally, for the membrane to be contiguous, we must impose the height boundary conditions

ηc|x=−d/2 = ηl|xl=0 + 2ρ(1)
o φ1 (4.209)

on the left side and

ηc|x=d/2 = ηr|xr=0 + 2ρ(2)
o φ2 (4.210)

on the right side, where again we have applied the small angle approximation. Application of these

four boundary conditions yields a complicated expression for the membrane shape in between the

domains.

The solutions for the membrane shape in the three regions can be integrated in the appropriate

elastic functionals, giving a rather complicated expression for the energy as a function of φ1 and

φ2. The preferred domain tilt is found by minimizing this energy with respect to the available

rotations, ∂G
∂φi

= 0, giving

φ1(d) ' −ε2e
−d and φ2(d) ' −ε1e

−d. (4.211)
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Substituting the exact equations for φi(d) into G(d) = Gl + Gc + Gr gives the 1D interaction

potential in the small gradient limit

G(d) = 2κbε1ε2
s

λ
e−d

(

1 + f(εi, ρ
(i)
o , d)

)

' 2κbε1ε2
s

λ
e−d, (4.212)

where the function f is

f =

(

ρ
(1)
o ε2 − ρ

(2)
o ε1

)2

ε1ε2

[

4ρ(1)
o ρ(2)

o + ed
(

d − 2 + 2(ρ(1)
o + 1)2 + 2(ρ(2)

o + 1)2
)]−1

. (4.213)

Using the relationships for ρ
(i)
o (αi, εi) and εi(αi) from eqns. 4.115 and 4.117, respectively, one can

show that f � 1 for all reasonable parameter values.

In processing the experimental data, we made the assumption that the material properties of all

domains were identical and their areas were approximately equal, hence ε1 = ε2, thus the two outer

regions of membrane are identical, the inner region is an even function, and f = 0. One important

feature to notice about this potential is that ε1 and ε2 are multiplicative factors; if both domains

have the same parity they will repel, whereas if they have opposite parity they will attract. Size

asymmetry is addressed in some detail in the following subsection. The precise fit model used in

data analysis was

G(r) = a1e
−r/λ + a2, (4.214)

where ai are fit parameters, and the distance parameter is r = λ(2ρo + d), where throughout this

section we refer to λ2 = λ. The constant a2 shifts the zero of the potential which is arbitrarily set

when taking the logarithm of the radial distribution function.

Prior to our work, theoretical efforts [117] showed that membrane proteins which deform the

membrane midplane exert a repulsive force on each other of the limiting form

G(r) ' πκb

[
2ε1ε2ρ

2
oK0(r/λ) + (ε21 + ε22)ρ

4
oK

2
2(r/λ)

]
' 2πκbε1ε2ρ

2
oK0(r/λ). (4.215)

Assuming that the dimpled domain shape is constant during interaction, this model maps directly

onto the domain interaction scenario with the effective cross-section of interaction having the intu-

itively pleasing form of projected domain area s ' λπρ2
o. This model and the exponential model can

be fit to the data, and the two models are visually indistinguishable in their fit quality, though there

is a slight change in the measured length-scale of interaction, of about 12%. Fig. 4.23 graphically

compares these two models to experimental data.

Additionally, we used fully non-linear, 2D finite element calculations of the elastic interaction

of domains to validate these analytical models; the results for an example symmetric interaction

are shown in Fig. 4.24.
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4.6.2 Effects of Domain Size Asymmetry

Due to the stochastic nature of how domains initially form, there are always slight (or sometimes

more than slight) size differences between all the domains on a vesicle’s surface. This experimental

reality is demonstrated in the domain area histograms of Figs. 4.29, 4.30 and 4.31. In this subsection

we derive scaling laws that allow us to comment on how mean domain size and size asymmetry

affect the strength of the interaction. We presume that on the surface of a vesicle the domains are

sparse enough that pairwise interactions dominate, that is, multi-body interactions are negligible.

We begin by rewriting the exponential interaction as a function of the domain center-to-center

distance, r = λ(ρ
(i)
o + ρ

(j)
o + dij), such that we can define the interaction between the ith and jth

domains as

Gij = 2κbεiεj
sij

λ
e

“

ρ
(i)
o +ρ

(j)
o

”

e−r/λ, (4.216)

showing that it is the product of a distance-dependent and size-dependent function; we now examine

the size-dependent function, which we will call σij(αi, αj) for ease of notation. To explicitly calculate

how domain sizes affect the strength of the interaction, recall from eqn. 4.117 that the boundary

slope of each domain can be written as

|εi| '
√

1

δ

(
αi

αc
− 1

)

, (4.217)

where it is important to note that αc is not a domain-dependent quantity - it is set by the material

properties of the membrane, and hence for any interaction to take place between domains, both

must have an area greater than αc. For this reason, we define αi/αc = α̂i where α̂i > 1.

To understand the underlying scaling relationship, we must comment on how sij behaves with

changes in αi and αj . Clearly, the potential should scale symmetrically with changes in the size

of either domain, or in other words s(αi + ∆α, αj) = s(αi, αj + ∆α) if αi = αj. If we make the

approximation that s/λ ' πρ2
o in the case of equal domain areas, as indicated by the 2D model

[117], then to lowest order, symmetry dictates that sij/λ ' πρ
(i)
o ρ

(j)
o . Then using eqn. 4.115 we can

relate the boundary slope and domain size to the projected radius by

ρ(i)
o =

√

2αc

π

(
α̂i

α̂i + 1

)

. (4.218)

After a few algebraic manipulations, we can write

σij(α̂i, α̂j) =
4

δ
κbαc

√

α̂iα̂j

√

(α̂i − 1)(α̂j − 1)

(α̂i + 1)(α̂j + 1)
e

q

2αc
π

»r

α̂i
α̂i+1

+

r

α̂j
α̂j+1

–

(4.219)

which characterizes the strength of the pairwise potential given the sizes of the two domains, and

material constants. This also gives us the useful scaling relationship that as the average domain
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size increases, the strength of the potential scales approximately linearly as

σ(α̂) =
4

δ
κbαcα̂ · α̂ − 1

α̂ + 1
· e2

q

2αc
π

α̂
α̂+1 , (4.220)

thus larger domains should repel each other more strongly than smaller domains. We characterize

the difference in domain sizes by writing the mean domain size as

ᾱij =
1

2
(α̂i + α̂j), (4.221)

and their percent difference as

cij =
α̂i − α̂j

ᾱij
, (4.222)

which defines the transformation ᾱij(1 + cij/2) = α̂i and ᾱij(1 − cij/2) = α̂j. We can make these

substitutions to find σij(ᾱij, cij), giving a rather complicated expression for the scaling factor of

the potential as a function of the mean size of the two domains and their size difference. Finally,

these scaling arguments culminate in Fig. 4.227, where we take the ratio of the scaling factor for

some given value of c and ᾱ and normalize it by the scaling factor at the same ᾱ but c = 0 (i.e.

σij/σij|c=0), in essence giving a measure of the relative change in the strength of the potential as size

asymmetry increases. This ratio is relatively insensitive to the value αc, however to be complete,

we show plots for two different values of αc. The result is that the potential remains relatively

unchanged within certain bounds of the size asymmetry. The specific values of this bound are set

by the mean size ᾱ and a specified tolerance p < σij/σij|c=0 < 1. Additionally, this analysis shows

that for conserved mean domain size, increasing size asymmetry tends to weaken the strength of

the interaction, since σij/σij|c=0 ≤ 1.

4.6.3 Corrections from Size Asymmetry

With these results, we can begin to connect the distribution of sizes found in a real experiment to the

manner in which size asymmetry changes the potential of mean force. Specifically, in this subsection

we will derive a correction to the potential of mean force from the width of the distribution of scaling

factors σij.

For a vesicle with a given number of domains, there are N distinct domain pairs, and hence N

distinct pairwise interactions between those domains. The radial distribution function describes the

probability of finding two domains a distance r apart from domain center-to-center. As explained in

section 4.10.1, the measured potential Veff(r) is the sum of the potential of mean force, here denoted

by Ḡ(r), and a fictitious potential Vfict(r) that is the same for all domains on a given vesicle. Then

the radial distribution function is given by

P (r) =
1

Z̄
e−(Ḡ(r)+Vfict(r)), (4.223)
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Figure 4.23: Comparison of different interaction models. Using the same data presented in the

first section of this chapter, we show graphically that an exponentially repulsive interaction is

indistinguishable from a Bessel function repulsion (eqn. 4.215). The only notable difference is that

for such excellent alignment of the two models, a slightly different length-scale of interaction must

be chosen for each.
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Figure 4.24: Comparison of the 2D interaction model of [117] and fully non-linear finite-element

analysis. a) Plots of the interaction potential between symmetric domains as a function of center-

to-center distance for two different domain sizes, as indicated in the legend. The fit functions are

of eqn. 4.215 with ε1 = ε2. b) Non-linear finite element solution for the membrane shape with two

rigid, interacting domains - the lipid domains are not shown. As the domains get closer, they tilt as

predicted by the 1D theory, and the membrane between them becomes ever more deformed. Each

of the solid blue data points in (a) correspond to a frame in (b). This figure made in collaboration

with and adapted from [267].
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Figure 4.25: Effects of domain size and size asymmetry on the strength of the interaction potential.

Plots (a) and (b) are the ratio of the scaling factor σij normalized by the scaling factor with the

same mean size but zero size asymmetry. The bounded values of c are shown for tolerances of

p = 0.9 (blue), p = 0.7 (green) and p = 0.5 (red), with the white line outlining the extent of

possible values of c for a given ᾱ. If we demand that the change in the strength of the potential be

less than 10%, then the size asymmetry should be between −1/2 . c . 1/2. Additionally, these

plots show that for a given mean size, asymmetry tends to weaken the potential. Plot (a) uses

αc = 0.01 while plot (b) uses αc = 100, showing that the bounds of c are fairly insensitive to the

value of αc.

where

Z̄ =

∫ 2Rfict

0
e−(Ḡ(r)+Vfict(r))dr, (4.224)

Rfict is a parameter in the fictitious potential, and the energies are measured in units of kBT . The

fictitious potential is a property of the vesicle and microscope optics only, and hence is the same for

all pair interactions. The upper bound of the integral is set by the fact that limr→2Rfict
[Vfict] = ∞.

On the vesicle surface the same radial distribution function is given by the sum of the radial

distribution functions from each pair of domains, that is

P (r) =
1

N

∑

ij

1

Zij
e−(Gij (r)+Vfict(r)), (4.225)

where

Zij =

∫ 2Rfict

0

e−(Gij (r)+Vfict(r))dr (4.226)

and i and j span the set of distinct domain pairs. Equating these two expressions and solving for

the measured potential of mean force gives

Ḡ(r) = − ln




Z̄

N

∑

ij

1

Zij
e−Gij



 = − ln




Z̄

N

∑

ij

1

Zij
e−σije−r/λ



 . (4.227)
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The only change in the pairwise potential from one domain pair to another is the value of σij and

the only intrinsic parameter that changes from one domain to another is the size α. Thus for a given

distribution of domain sizes p(α), there is a distribution of the values of σ for domain pairs, p(σ),

that depends on the joint probability distribution p(α1|α2) ' p(α1)p(α2). Finding the connection

between these two distributions is quite complicated, and given the complex functional form of σij

in eqn. 4.219, we would not be able to analytically solve it. That said, using Monte Carlo methods

it is straightforward to generate the appropriate p(α1|α2) and corresponding p(σ) given a measured

p(α).

To derive the relationship between p(α1|α2) and p(σ), we first note that calculating the moments

of p(σ) is straightforward, given by

〈σn〉 =

∫ ∫

p(α1|α2)σ
n(α1, α2)dα1dα2 (4.228)

where the integral spans the appropriate bounds of α1 and α2. Then taking the Fourier transform

of p(σ) we can relate the moments of the distribution to the distribution itself, that is

p(k) =

∫

e−2πikσp(σ)dσ =

∞∑

n=0

(−2πik)n

n!

∫

σnp(σ)dσ

︸ ︷︷ ︸

=〈σn〉

. (4.229)

Then the inverse Fourier transform gives the distribution p(σ), by

p(σ) =

∫

e2πikσp(k)dk =
∞∑

n=0

〈σn〉
n!

∫

e2πikσ(−2πik)ndk. (4.230)

This method can be used to analytically calculate p(σ), however in practice it is likely far easier to

generate the distribution via Monte Carlo methods.

Moving forward with eqn. 4.227, let us assume that the sum can be converted to an integral,

such that we can write

Ḡ(r) = − ln

[∫

p(σ)
Z̄

Z(σ)
e−σe−r/λ

dσ

]

. (4.231)

To make progress, let us posit the form of p(σ) as a Gaussian

p(σ) =
e−

(σ−σ̄)2

2a2

a
√

2π
(4.232)

with a standard deviation a much smaller than the mean, which allows us to make the approximation

Z(σ) ' Z̄, and take the bounds of the integral to infinity such that the potential of mean force can

be written as

Ḡ(r) ' − ln

[∫ ∞

−∞
p(σ)e−σe−r/λ

dσ

]

. (4.233)
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Then examining the integral we find

∫ ∞

−∞
p(σ)e−σe−r/λ

dσ = e

“

a2

2
e−2r/λ−σ̄e−r/λ

”

, (4.234)

and finally we can write the potential of mean force as the mean pairwise interaction plus a correc-

tion term related to the width of the distribution p(σ)

Ḡ(r) = σ̄e−r/λ − a2

2
e−2r/λ, (4.235)

although this result is only valid if the underlying distribution for σ is Gaussian. In general the

correction term can be arbitrarily complex given the possible distributions of p(α), and correspond-

ing distributions of p(σ). The key points of this result are that it makes sense to approximate the

measured potential as a mean pairwise potential, and it shows that asymmetry, here characterized

by a, tends to make the measured potential weaker, a result qualitatively supported by the reduc-

tion in the strength and increase in the apparent length scale of the potentials as size asymmetry

increases, as shown in Figs. 4.29, 4.30 and 4.31.

4.7 Coarse Control of Membrane Tension and Inducing Phase

Separation

As explained earlier in this chapter, there are essentially four main parameters that dictate where

in the space of possible morphologies a particular vesicle will find itself: bending stiffness, applied

membrane tension, phase boundary line tension and domain size. Of those, the bending stiffness

and line tension are dictated by the composition of the membrane, and are not thought to be

independent of each other [138]. Considering the difficulty of changing composition in situ and the

fact that these parameters are not varied independently, we used membrane tension as the ‘knob’

in our experiment when trying to induce different morphologies. However, control of membrane

tension in these experiments is not an exact procedure (as it is, for instance, in micropipette

aspiration [26]).

Multi-component GUVs were formed in a 100 mM sucrose solution via heated electroformation

(∼ 50 C) to be above the phase separation temperature6. The electroformate containing the GUVs

was then aliquoted into a number of glucose solutions that were within a few milli-osmolar of the

100mM sucrose solution found inside the vesicles. For instance, the 100 mM sucrose electroformate

might be diluted into aliquots of 96, 98, 100, 102, 104, 106, 108, and 110 mM glucose solutions

at a dilution of ∼ 1 : 100 sucrose:glucose (v/v). A range of sugar dilutions, and hence a range of

membrane tensions, is employed because precise control of the osmolar gradients between the inside

and outside of the vesicle is not possible. This lack of fine osmolar control is due to measurement

6See the protocol in Appendix E.
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errors in the sugar concentrations at the millimolar level and more importantly there is evaporation

occurring during the electroformation and handling that causes slight variations in sugar concen-

tration. Each of these aliquots would then be examined under epi-fluorescence to determine which

had yielded the proper osmolar gradient and membrane tension, as determined by the resulting

morphologies (i.e. many aliquots have vesicle tensions too high to observe dimpling or budding).

Even with the composition controlled and the tension roughly dictated by the osmolar gradient,

individual vesicle composition varies and the thermal history plays a part in the observed phase be-

havior. Key to observing the described morphologies is a degree of control over the thermal history

of any one vesicle. Above the de-mixing transition temperature, the membrane is a homogeneous

mix of the three molecular components and hence there are no domains. The precise conditions

under which phase separation occurs have some variance from one preparation to another [268, 130],

but once the transition has occurred we consistently observe the same types of domain morpholo-

gies and qualitative kinetics, as shown in Fig. 4.26. Using a custom built, electronically controlled

microscope temperature stage, we were able to dynamically control the temperature of the sample.

Our best results occurred when we ‘rapidly’ decreased the temperature (∼ −10 K/min) through

the transition temperature, but avoided the formation of a gel phase; the gel phase yields distinctly

different morphologies and dynamics, a topic of interest on its own.

4.8 Error Introduced by the Curved Vesicle Surface

Giant unilamellar vesicles are an intrinsically curved surface, whose geometry leads to distortion

of distance measurements in the image plane. Measurements of domain interaction are taken at

the top or bottom of vesicles where the surface is nearly flat, and hence the measured distance is

minimally distorted. However, we can estimate the severity of distance distortion by considering

the error introduced by the curvature of the vesicle surface relative to the projected (i.e. 2D) image

plane. The function f =
√

R2 − (x2
1 + x2

2) is the hemi-spherical height function specifying the

position of the vesicle surface relative to the flat image plane, R is the vesicle radius, and xi are

the Cartesian coordinates in the image plane. The distance between any two points on the vesicle

surface is specified by the ‘great’ circle that connects those two points. This has a particularly

simple interpretation in the case of a sphere; the geodesic is a circle that intersects the two points

of interest and whose center is common with the sphere. Thus given two domains of interest, whose

image plane positions are (x
(j)
1 , x

(j)
2 ), we define their spherical unit vectors by

r̂j =

[

x
(j)
1

R
,
x

(j)
2

R
,

√

1 −
((

x
(j)
1 /R

)2
+
(

x
(j)
2 /R

)2
) ]

, (4.236)

with the origin at the sphere’s center. The resulting geodesic distance on the vesicle surface is given

by

lact = R cos−1(r̂1 · r̂2). (4.237)
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Figure 4.26: Lipid phase separation and domain formation. A multi-component GUV is driven

through the de-mixing transition by a reduction in temperature to form discrete domains, via a

process analogous to spinodal decomposition. The time between frames is 1.6 s. The domains

are fluid, circular, and many are of the dimpled morphology. Due to the stochastic nature of

their formation, the domains cover a range of sizes; the observed distribution of domain sizes

persists (with the occasional coalescence event) on the time-scale of an hour or more, which is

much longer than the minute time-scale for full phase separation on a higher tension GUV. The

radial distribution function of domains on this vesicle would yield a measure of the potential of

mean force between domains. The scale bars are 10µm.
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The error in distance measurement between any two points on the vesicle is

m =
lact − l

lact
, (4.238)

where l is the measured distance (i.e. distance in the image plane), with the explicit formula

l =

√

(x
(1)
1 − x

(2)
1 )2 + (x

(1)
2 − x

(2)
2 )2. (4.239)

For the purposes of estimation and formulaic simplicity, we derive a simple formula for the error as

measured from the projected vesicle center, where we use the azimuthal symmetry and integrate

the error explicitly to find

m = 1 − l/R

cos−1

(√

1 −
(

l
R

)2
) ' 1

6

(
l

R

)2

. (4.240)

The dimensionless quantity l/R ∈ [0 . . .1] quantifies how far a domain is from the projected vesicle

center. The maximum possible error occurs when we measure from the image plane center to

a point on the equator of the sphere (l/R = 1), resulting in an underestimate of ∼ 36% (exactly

1−2/π) in the measured distance. If we demand that at most a 10% error in distance measurement

is acceptable, this constrains our measurements to be within a circle of radius l/R ' 0.71. This

calculation gives an estimate of the error in distance measurement, but in reality, the exact error

introduced by the surface curvature is a complicated function of the precise positions of each domain

relative to the center of the spherical vesicle.

Let us do a sample calculation to make a more concrete connection to our experiments. Given a

nominal vesicle size of R = 15µm, we should be able to measure out to approximately l = 10.6 µm

from the projected vesicle center with an error in distance measurement of less than 10%. On the

surface of the sphere, this maximum allowed l would correspond to a change in the vesicle height

of ∼ 4.4 µm. The depth-of-field of our 20x objective is about ∼ 4µm (a 4x multiplier tube on the

camera effectively increases the magnification to 80x without changing the depth-of-field).

Our domain tracking software was written to reject domains which appeared out of focus and/or

distorted from a circle, as discussed in section 4.10. Hence, if we ensure that the top (or bottom)

of the vesicle is in focus, domains which break our 10% error condition are rejected. The exact

numbers will change with different sized vesicles, but due to the fact that a larger vesicle is relatively

flat over a larger area, this model calculation shows that for any vesicle R & 15 µm our software

automatically rejects domains that do not meet the error criteria.
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Figure 4.27: Examining spatial regions of acceptable distance measurement error. In all plots, the

outer dashed line shows the projected equator of a vesicle with R = 15 µm, and the region defined

by the inner dashed line is where the depth-of-field of the objective will show domains in focus; the

grey region will be out of focus. In all plots, the domain radius is r = 1 µm. a) A domain is placed

at x1 = 2 µm and x2 = 0 µm; other domains that lie inside the red region have a measured distance

error of less than 10%. b) A domain is placed at x1 = 7 µm and x2 = 0 µm; other domains that lie

inside the green region have a measured distance error of less than 10%. c) A domain is placed at

x1 = 10 µm and x2 = 0 µm; other domains that lie inside the blue region have a measured distance

error of less than 10%. In (b) and (c) the smaller white regions indicate regions of measurement

error greater than 10%.



211

4.9 In vitro Selection and Representative Data

In this section, we describe: how we chose vesicles for data collection and analysis, some of the

common problems with selecting vesicles and collecting data, and the generic quality of collected

data.

After the formation of multi-component GUVs, the raw solution of vesicles is diluted in an

osmolar-balanced glucose solution to roughly regulate the membrane tension, as discussed in Section

4.7. A viewing chamber is created using two #1 cover-slips with an O-ring between them, loaded

with ∼ 135 µl of the osmolar balanced vesicle solution. Small density gradients between the glucose

outside and sucrose inside the vesicles sediment them toward the bottom of the chamber, where the

dilution ratio is adjusted such that there is a single, sparse layer of vesicles (i.e. no stacked vesicles).

In all the data shown here, the vesicles were close to the glass substrate (roughly within a vesicle

radius), but had a small z-displacement between the substrate and the lower focal plane of the

vesicle, indicating that the vesicles were not resting directly on the substrate. At approximately

1 cm in diameter, the viewing chamber is small enough that we can scan the entire chamber,

examining hundreds of vesicles relatively quickly.

Within a single field of view we look for vesicles that meet the following criteria:

• Vesicle size needs to be large enough that we can clearly resolve domains, given the optical

limits of the microscope, and large enough that there is an appreciable area of the vesicle

at the top or bottom where we can approximate the surface as flat (see Section 4.8). This

usually corresponds to vesicles with a radius greater than ∼ 10 µm.

• Vesicles need to be ‘clean’, by which we mean the vesicle itself does not have any obvious

tubes, protrusions, or internal structures attached to it, nor should it have other vesicles

nearby obstructing the view of the image plane or excessively polluting the image with light

from outside the image plane.

• While we have recorded vesicles with domains of a wide distribution of sizes, we prefer vesicles

whose domain sizes are in a narrower range, usually with a standard deviation half the mean

size. In cases where we want to observe many closely interacting domains, or disperse domains,

the interaction potentials tend to be less noisy the narrower the distribution of domain sizes.

See the following paragraphs and Section 4.6.2 for more discussion of domain size asymmetry.

• Slight thermally-driven fluid flows in the chamber can cause vesicles to drift in the image

plane, and beyond a certain drift speed (∼ 10 µm/s) it becomes impractical to follow even

the best vesicles that meet the above criteria. That said, most vesicles are quite stationary

in the image plane, with drift speeds of only a few microns per minute.

Figure 4.28 shows a typical microscope view from which vesicles would be chosen for data collection,

and subsequent analysis.
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Figure 4.28: A typical view of phase-separated GUVs in the TRITC fluorescence channel. This

field of view is at 20X magnification, though most measurements were taken at 80X. This particular

combination of field of view and membrane compositions shows dark domains in a light surrounding

membrane. The white squares outline vesicles from which data would likely be collected. The scale

bar is 50 µm.
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Rather than offer our own subjective interpretation of data quality, we present a subset of the

29 total data sets that have a relatively low areal density of domains, showing the range from

very poor data sets up to what we consider very good data sets. We classify a good data set

solely in terms of the noise characteristics of the interaction potential. Data sets with low noise,

whose potentials are relatively smooth, have well-resolved features and are considered to be of the

highest quality. Generally, the noise is related to the chosen spatial resolution of the potential;

increased spatial resolution decreases the number of events in each bin of the histogram and hence

lowers the signal to noise ratio. Higher levels of noise in the interaction potential also arise from a

vesicle whose domains have a widely varying size distribution, as demonstrated in Fig. 4.31. The

qualitative explanation of the correlation between increasing width of the domain area distribution

and increasing noise in the measured potentials is as follows: if all domains are the same size, then

the pairwise potential describing the interaction between each unique domain pair has the same

scaling factor (i.e. eqn. 4.219), and hence each measurement of a pairwise distance is essentially

sampling from the same underlying distribution, thus the signal to noise ratio is high. On the other

hand, if all the domains are different sizes, the scaling factors of the potentials associated with each

unique domain pair are different, hence each measurement of a pairwise distance is sampling from

the distribution describing only that pair’s interaction. All those measurements, describing distinct

pairwise interactions, are then combined to form the potential of mean force, however, being made

up of a large number of slightly different pairwise potentials, the potential of mean force has lower

signal to noise.

The only degree of subjectivity that we will add is a classification system where data sets will

be put into one of three categories according to the quality of their interaction potentials: good

(Fig. 4.29), fair (Fig. 4.30) and poor (Fig. 4.31). In the following figures we give two examples of

each type of data set, and state how many data sets fall within each classification. For each data

set we show a plot of the raw, uncorrected histogram of domain positions, the raw and corrected

potentials resulting from that histogram, a histogram of the number of domains found in each frame,

and a histogram of the identified domain areas. A clear correlation exists between vesicles whose

domains have a wide size distribution and interaction potentials with higher noise, as demonstrated

in the figures.

4.10 Domain Tracking and Data Analysis

Having established that we can measure distances between domains in the image plane to within a

reasonable error tolerance, we are in a good position to begin transforming images into quantitative

data. After a suitable vesicle has been chosen, images are collected in the form of 16 bit TIFF

stack image files. Each stack contains ∼ 500 to 1500 frames collected at a rate such that diffusion

allows the domains to explore their local configuration space during the course of the video — a

typical time scale is 50 – 200 ms between frames. If the domain density is approximately constant
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Figure 4.29: Representative ‘good’ quality domain interaction data. Each column represents a

unique ‘good’ quality data set, in total 12 of 29 data sets. Plots (a) and (e) show the raw distribution

of domain distances, where N is the total number of unique distances measured. Plots (b) and

(f) show the raw (blue), fictitious (red), and corrected (green) potential of mean force. The black

line is a fit to eqn. 4.214, with the length scale indicated on the graph, corresponding to τ '
2 × 10−4 kBT/nm2 with κb = 25 kBT . Plots (c) and (g) are histograms of the number of domains

identified in each frame. Plots (d) and (h) are the distribution of domain areas throughout the

stack. In (c), (d), (g) and (h) the red line is the mean.
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Figure 4.30: Representative ‘fair’ quality domain interaction data. Each column represents a unique

‘fair’ quality data set, in total 6 of 29 data sets. Plots (a) and (e) show the raw distribution of

domain distances, where N is the total number of unique distances measured. Plots (b) and (f) show

the raw (blue), fictitious (red), and corrected (green) potential of mean force. The black line is a fit

to eqn. 4.214, with the length scale indicated on the graph, corresponding to τ ' 1×10−4 kBT/nm2

with κb = 25 kBT . Plots (c) and (g) are histograms of the number of domains identified in each

frame. Plots (d) and (h) are the distribution of domain areas throughout the stack. In (c), (d), (g)

and (h) the red line is the mean.
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Figure 4.31: Representative ‘poor’ quality domain interaction data. Each column represents a

unique ‘poor’ quality data set, in total 11 of 29 data sets. Plots (a) and (e) show the raw distribution

of domain distances, where N is the total number of unique distances measured. Plots (b) and

(f) show the raw (blue), fictitious (red), and corrected (green) potential of mean force. The black

line is a fit to eqn. 4.214, with the length scale indicated on the graph, corresponding to τ '
4 × 10−5 kBT/nm2 with κb = 25 kBT . Plots (c) and (g) are histograms of the number of domains

identified in each frame. Plots (d) and (h) are the distribution of domain areas throughout the

stack. In (c), (d), (g) and (h) the red line is the mean.
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during the stack collection, then the system is in quasistatic equilibrium, and time ordering of the

frames is not necessary. Thus any software that identifies domains need only calculate the distances

between domains in each frame, and combine data from all frames to construct a radial distribution

function for the entire stack - tracking domains through time gives no additional information for

the purposes of our measurement.

Regarding the ‘nuts-and-bolts’ level of image processing required to construct the radial distri-

bution function, each image progresses through three phases of processing: i) background removal

and contrast adjustment, ii) edge detection and brightness filtering, and iii) morphological selec-

tion. Each of these phases has a number of parameters that may be tuned to best fit a particular

data set. The rest of this section discusses each phase in some detail.

It is often easier to process data sets where the vesicles are stationary and closely cropped to

the total image size. We wrote a separate piece of software that translates a vesicle to be stationary

in time - many data sets require such alignment.

Background removal and contrast adjustment are not required to process a stack, however, they

help compensate for brightness changes due to photo-bleaching, and can enhance contrast between

a domain and its background, thereby making edges easier to find. For each data set, we employ

one of two methods. The first method, which is more manual but generally yields better results,

is outlined in Fig. 4.32. The second method is more automated, using so-called ‘adaptive’ contrast

adjustment, briefly:

• a square tile size of n × n pixels is chosen such that the tile fully encompasses a domain and

its local background

• the image is divided into regions of that tile size and the contrast in each region is enhanced

according to standard histogram equalization

• each tile is then bilinearly interpolated with the neighboring tiles to prevent fictitious edges

In regions of the image where no domain is present, the adaptive contrast adjustment enhances

the noise, but such regions neither pass the brightness nor morphological criteria. The tile size is

the only user-specified parameter in this stage of domain tracking. The contrast-adjusted image

from either method is then passed onto the second stage of the algorithm — edge detection and

brightness filtering.

The well-known and robust Canny edge detection algorithm [269], as implemented in MatLab c©,

is used to find domain edges in the contrast-adjusted images, whether the domains are bright in

a dark background or dark in a bright background. The edge detection algorithm requires three

user-specified parameters to find edges, however those parameters need little tuning between data

sets. Our software only examines ‘connected’ objects as potential domains, thus if an edge is found

it must topologically make a circle to be examined further. Once the edge detection has found a

topologically circular element, it examines that element to determine if it has the correct general
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i) ii) iii)

iv) v) vi)

Figure 4.32: Example of manual background removal and contrast adjustment. i) The raw fluo-

rescence image; in this case dark domains in a light background, but the method also applies to

reverse contrast vesicles. ii) Inverted (i) and contrast maximized by 0.5% histogram thresholding.

iii) Gaussian blur of (ii) using a 30 pixel radius. iv) Subtraction of (iii) from (ii), essentially remov-

ing background and increasing the signal-to-noise of the domains. v) Gaussian blur of (iv) using a

1 pixel radius - this decreases high frequency noise that can trigger the edge detection algorithm

without sacrificing spatial resolution. vi) Finally, spatially irrelevant intensities are removed and

the stack contrast is adjusted. The scale bar is 20 µm.
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brightness features — for instance, a light domain in a dark background should be brighter at its

center than in the transition zone at the domain edge. The user specifies a cut-off for the ratio of

the edge-to-center brightness, thereby allowing the edge detection algorithm to be promiscuous in

what edges it detects and connects into circles. Those circular elements are then checked against

the relevant edge-to-center brightness cut-off; only connected objects that meet the criterion are

queried in the next stage for their morphological properties.

Once topologically circular objects have been found that meet the brightness criterion, they

must also have roughly the correct shape, namely a circle. There are many ways to measure how

much a given shape deviates from a circle; our software uses the dimensionless measure of the square

of the perimeter length divided by the area, `2
perim/4πA. Using this measure a perfect circle has a

value of 1, and higher values correspond to less circular objects. The user specifies a cut-off above

which the object is rejected. There are two main reasons why a domain might appear acircular.

First, it could be that the domain is in focus but is near the vesicle equator, and hence lies in

a region where its projection is elliptical and thus our distance measurement error is too high.

Second, it could be that the domain is partially out of focus, such that the point-spread-function

of the microscope warps the shape into something acircular. These domains would not have a

well-defined center, and hence might also break our error tolerance criterion. For domains near the

equatorial regions of the vesicle, these effects often occur simultaneously. The final morphological

criterion is that any putative domain must lie within a certain reasonable size range, the minimum

and maximum of which is specified by the user. For instance, a putative domain with an area of

only a few pixels or an area approaching the size of the entire vesicle would likely be rejected for

being too small or too large, respectively.

Any object that has passed through these three stages is then considered a well-resolved domain.

Each domain’s center is then identified by a simple first-moment calculation, and the centers are

used to calculate the pairwise distances in each image. The pairwise distance data from the entire

stack is then combined and binned into a probability distribution for the separation of two domains.

The natural logarithm of that probability distribution is then the potential of mean force between

domain pairs. Figure 4.33 shows a screen-shot of the program after a data set has been processed.

4.10.1 The Fictitious Confining Potential

Extracting the interaction energy from the statistical distribution of distances between domains is

not entirely straightforward. As we have just shown, we can reasonably assume that the surface

is flat in our measurements, and hence the actual distances we measure are not severely distorted.

However, there is also an effect coming from the circular geometry of our measurement. More

specifically, all of the domains the software detects are confined to lie in a circle of some effective

radius (Rfict), smaller than the radius of the vesicle (R). This means that any two domains we

detect will be maximally separated by 2Rfict. When making a histogram of the pairwise distance

data, we never detect two domains farther apart than this distance, and thus it appears there is a
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Figure 4.33: Screen shot of the domain tracking software. Parameters for contrast adjustment,

edge detection, brightness, and morphological criteria are entered on the left. The top left graph

shows connected-edge objects that have met the brightness criterion in blue (failed in yellow). The

top right graph shows in green the subset of blue objects which have also met the morphological

criteria. The lower left graph is the radial distribution function for the entire stack. The lower right

graph is the natural logarithm of that probability distribution (in blue), the simulated fictitious

potential (in red), and their difference — the potential of mean force (in green).
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Figure 4.34: Flow diagram explaining how the fictitious potential is removed from measured data.

The positions of well-resolved domains are measured, the radial distribution function is generated,

and the effective potential between the domains is calculated as the blue line. Simultaneously, the

radial distribution function for two non-interacting domains in a user-defined circle of radius Rfict

is generated, and the corresponding fictitious potential is calculated as the red line. Subtracting

the fictitious potential from the effective potential leaves only the potential of mean force, Vint(r).

Intervals of r with very low statistics are excluded.
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Figure 4.35: Geometric relationships for the analytical calculation of the fictitious potential. a)

This schematic shows the first contribution to the density of states, P1(r). Two points separated

by a distance r, as shown by the red line, sweep out π radians for every point in the gray region,

contributing a statistical weight proportional to the product of the area of the gray region and the

length of the solid blue line. b) This schematic shows the second contribution to the density of

states, P2(r). If the points lie outside of the gray region in (a), the density of states for a given

value of h is proportional to the product of the length of the dashed blue line and the solid blue

line. Then all such contributions for h ∈ [hmin . . . r/2] must be summed. c) This schematic shows

the geometric origin of the minimum height, hmin, as a function of the separation r.

strong confining potential keeping all domains within 2Rfict of each other. The actual interaction

energy we measure is the sum of this fictitious confining potential, Vfict(r), and the real interaction

potential, Vint(r),

Veff(r) = Vint(r) + Vfict(r). (4.241)

The fictitious confining potential can be easily simulated via Monte Carlo methods. Given a circle

of radius Rfict, we generate a uniform distribution of points within the circle and calculate the radial

distribution function as shown in the upper right of Fig. 4.34. The negative natural logarithm of

this distribution is Vfict(r). All that remains is to pick a proper Rfict for a given data set; that is, to

isolate the correct interaction potential there is one fit parameter for each data set. An example of

processed data is shown in Fig. 4.34.

4.10.2 The Geometric Derivation

Given certain constraints of our analysis software, it is often quicker to generate the fictitious

potential via Monte Carlo methods, though in this section we will show a geometric derivation

that leads to a closed form expression for the fictitious potential. A key result is that the fictitious

potential for any value of Rfict is simply a scaled version of the same underlying function.

As we have shown previously, the measured potential of mean force is the sum of the interaction

potential and the fictitious potential, which, in terms of the underlying probability distributions
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can be written as

Veff(r) = − ln [Pint(r) · Pfict(r)] , (4.242)

where the distribution Pfict(r) is somehow related to the geometry of the space available to two

non-interacting domains, essentially ‘counting’ up the number of states with a separation r. This

geometric relationship can be found exactly for a circle as follows. First, consider two points a

distance r apart connected by a line segment, whose center lies at some position inside the circle

defined by (Rfict − r/2) as shown in Fig. 4.35a. For every point inside this region we can rotate

the line segment about its center point to find the density of states with separation r, where the

rotation is restricted to π radians to avoid double counting. We refer to this contribution to Pfict(r)

as

P1(r) = π
r

2
︸︷︷︸

rotation

· π
(

R − r

2

)2

︸ ︷︷ ︸

region area

. (4.243)

For those states with separation r whose connecting line segment has its center outside the region

defined by (Rfict − r/2) not all rotations of the line segment are available. Referring to Fig. 4.35b,

the rotation of the line segment is now defined by the angle φ, which depends on the distance, h,

from the outer circle, Rfict. Determining this angle is then only a matter of geometry, where using

the law of cosines and the fact that φ = 2θ − π, one finds

φ(r̄, h̄) = 2 cos−1

[
(1− h̄)2 + (r̄/2)2 − 1

r̄(1− h̄)

]

− π, (4.244)

where for ease of notation we now define r̄ = r/Rfict and h̄ = h/Rfict. Then for each value of h the

density of states with rotation φ and separation r is simply the product of r/2, the angle φ, and

the circumference of the circle defined by (Rfict−h), as shown by the dashed blue line in Fig. 4.35b.

Summing these contributions for all available values of h we find the second contribution to Pfict(r),

P2(r) =

∫ r
2

hmin(r)
2π(Rfict − h)
︸ ︷︷ ︸

circumference

r

2
φ(r, h)
︸ ︷︷ ︸

rotation

dh. (4.245)

For a given value of r there is some value of h below which there are no available states, or in other

words φ = 0, as shown in Fig. 4.35c. This value can be found by solving φ = 0 for h̄ giving

h̄min = 1 −
√

1 −
( r̄

2

)2

. (4.246)

Then the total density of states for a separation r̄ is given by the sum

Pfict(r̄) =
1

a
(P1(r̄) + P2(r̄)) =

πR3
fict

a

[

π
r̄

2

(

1− r̄

2

)2

+

∫ r̄
2

h̄min

(1 − h̄)r̄φ(r̄, h̄)dh̄

]

, (4.247)
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Figure 4.36: Comparison of the fictitious radial distribution function from analytical and Monte

Carlo methods. The fictitious radial distribution function generated by Monte Carlo methods is

shown in the blue histogram, while the distribution calculated from Pfict(r̄) is shown by the orange

points, both plotted as a function of the point separation r̄.

where a is a normalization constant defined by

a = πR3
fict

∫ 2

0

[

π
r̄

2

(

1 − r̄

2

)2

+

∫ r̄
2

h̄min

(1− h̄)r̄φ(r̄, h̄)dh̄

]

dr̄. (4.248)

Then finally, the properly normalized distribution is

Pfict(r̄) = ν

[

π
r̄

2

(

1 − r̄

2

)2

+

∫ r̄
2

h̄min

(1− h̄)r̄φ(r̄, h̄)dh̄

]

(4.249)

where ν ' 2.4675 and Pfict(r) = Pfict(r̄)/Rfict. Fig. 4.36 compares this analytical result to the

fictitious radial distribution function generated by Monte Carlo methods, showing excellent agree-

ment between the two methods. Additionally, this analytical result shows that the fictitious radial

distribution function for any value of Rfict, is simply a scaled version of Pfict(r̄).

4.11 Plasma Membrane Domains

This section briefly outlines our efforts to understand the phase separating properties, and domain

morphologies, of native membranes from RAW macrophages. A number of recent studies have

shown that certain kinds of eukaryotic cells can be coaxed into blebbing large unilamellar vesicles

or membrane appendages from their plasma membrane [245, 270, 271]. While the process itself is

fatal to the cell, it presents an interesting bridge between in vitro and in vivo systems. These giant

plasma membrane vesicles (GPMV) contain a representative mix of the actual lipids and proteins
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found in the plasma membrane, and hence are of great interest as an arena in which to explore

lipid phase properties and bilayer morphology from real cells.

4.11.1 Experimental Methods

A detailed list of reagents and the blebbing protocol are found in Appendix F, however we will

discuss some experimental details here. Our group had (and has) an active branch of research

to understand the membrane biophysics of phagocytosis in RAW macrophages. Conveniently, we

figured these cells probably have a large amount of extra membrane, considering that phagocytosis

requires large degrees of membrane invagination, and therefore would they make good candidate

cells to form giant plasma membrane vesicles. This turned out to be a good hunch, and after

honing an experimental protocol, we can reliably produce large GPMVs from macrophages that

are grown under standard mammalian cell culture conditions to ∼ 50% confluency. Blebbing of the

plasma membrane is induced by a change of media, from their normal Dulbecco Modified Eagle

Medium (DMEM7) to a simple phosphate–buffered saline (PBS8) solution with addition of 10%

glucose (w/w), the addition of ∼ 5% dimethylsulfoxide (DMSO9) (v/v)10 is also required. As

a weakly amphiphilic solvent, DMSO is used to solubilize the lipophilic dyes used to visual the

different phases in the GPMVs. We use a number of different fluorescent small molecules to label

the two membrane phases, however the clearest labeling occurs with two different sets of dyes.

In one set of experiments, the liquid ordered domains are labeled with the green fluorescent lipid

DPPE-NBD11 and the liquid disordered phase is labeled with the red fluorescent lipid DOPE-

Rhodamine12. This gave excellent fluorescence contrast, and indicated that the two phases were

indeed liquid ordered and liquid disordered. This is somewhat surprising considering that the

plasma membrane is a complex and varied mixture of lipids and proteins. Although, it should be

noted that if other phases exist that are characterized by properties other than their acyl chain

order, the aforementioned probes might be insensitive to the presence of such lipid phases. The

second set of probes again uses DOPE-Rhodamine to label the liquid disordered phase, but uses a

non-polar blue fluorescent small molecule, perylene13, to label the liquid ordered phase. Examples

of GPMV labeling with both sets of probes are shown in Fig. 4.37.

4.11.2 Plasma Membrane Domain Interactions

Like the in vitro phase separating vesicles we have already discussed, we observed that domains

in distinct GPMVs had qualitatively different kinetics. Unlike the in vitro experiments, we do not

7Invitrogen PN: 12430
8Invitrogen PN: 10010031
9Sigma Aldrich PN: D8418

10The experiment also works with either acetone or ethanol at approximately the same fractions, however our best

results are with DMSO.
11Avanti Polar Lipids PN: 810144C
12Avanti Polar Lipids PN: 810150C
13Sigma Aldrich PN: 77341
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a) b)

Figure 4.37: Labeling giant plasma membrane vesicles. a) A background subtracted equatorial view

of giant plasma membrane vesicles from RAW macrophages. The liquid ordered phase is labeled

with green fluorescent lipid, and the liquid disordered phase is labeled with red fluorescent lipid. b)

Epi-fluorescence view of two giant plasma membrane vesicles. The liquid ordered phase is labeled

with a blue fluorescent non-polar small molecule, while the liquid disordered phase is labeled with

red fluorescent lipid. In both images, the diffuse intensity comes from fluorescent label inside the

cells, that is out of the focal plane. Scale bars are 10 µm.

have direct control over the osmotic environment inside the vesicle, and hence control of membrane

tension was difficult at best. We also have no control of the lipid composition of the GPMVs,

more specifically, the degree of spontaneous curvature in the membrane is unknown. In a number

of instances we observed the volume of GMPVs changing over the time scale of minutes (data

not shown), indicating that there was some amount of exchange of osmolytes with the external

aqueous environment. In Fig. 4.38 we show a group of six GPMVs, each on different cells but all

originally in the same field of view, where a temperature quench initiated the formation of lipid

domains, hence their phase separation is approximately synchronized. Over the course of a few

minutes, domains in two of the GPMVs rapidly coalesce such that there are only a few (∼ 2)

domains left, indicating a lack of the kind of coalescence inhibiting interactions we measured in

the in vitro system. On the other hand, four other GPMVs in this same field of view experience

arrested coalescence on the same time scale, indicating that the domains on their surface might be

interacting. To quantitative whether the same kinds of interaction we observed in vitro were present

in this system, we measured the thermal motion of the domains in the arrested coalescence setting,

and calculated the potential of mean force, as shown for instance in Fig. 4.39. Interestingly, it seems

that domains in GPMVs that exhibit arrested coalescence indeed have an interaction very similar

to the repulsive interaction observed in vitro, despite the fact that this membrane has a complex

mixture of lipids and proteins. In general, with no control of membrane composition or tension,

it is difficult to known which GPMVs will exhibit coalescence inhibition, and only a few data sets
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Figure 4.38: Kinetics of domain coalescence in GPMVs. Each pane shows six GPMVs, each from

a different cell, but all are located in the same field of view, and were temperature quenched at

the same time. Each frame is 20 s apart; each pane has a time stamp in the lower right. The left

hand four GMPVs in each pane exhibit arrested coalescence as compared to the two right hand

GPMVs, which nearly completely phase separate over the course of ∼ 3 minutes. In the last pane

(lower right), the difference is clearly visible as each of the four left hand vesicles have a distribution

of domains that are small in comparison to the vesicle, as compared to the domains in the right

hand vesicles whose length scale is comparable to the size of the vesicle itself. The saturated bright

regions are the parent cell, which contains a high concentration of fluorescent label. Scale bars are

10 µm.
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Figure 4.39: Domains repulsively interacting on the surface of a GPMV. a) Background subtracted

image of a GMPV with interacting domains. Using precisely the same methods as the in vitro

experiments, the interactions of domains on the surface the GPMV in (a) were measured, and are

shown to be of a similar repulsive nature as the in vitro system, as shown in (b), where the length

scale of interaction is λ2 ' 140 nm. If we assume the same bending stiffness as the in vitro bilayer

(κb = 25 kBT ), the length scale of interaction can be used to estimate the tension, and is found

to be τ ' 1 × 10−3 kBT/nm2, a value about twice that of the in vitro measurements. Scale bar is

10 µm.

were taken. However, on those GPMVs that did exhibit coalescence inhibition, the domains appear

to be of the dimpled morphology. Further, it appears that, similar to the in vitro system, these

interactions can stabilize the domain size distribution even when the domains are densely packed,

as demonstrated in Fig. 4.40. These results are a good start, but much work remains to properly

characterize the mechanics of GPMVs, their resulting phase properties, and the attendant bilayer

morphologies. Likewise, as an experimental bridge between in vitro and in vivo systems, we need

to devise ways to create a more controlled experiment, ideally with the ability to measure bilayer

mechanical properties, like tension and spontaneous curvature, and even biochemical techniques to

quantitate the protein and lipid composition of GPMVs.

4.12 Concluding Remarks

This chapter examined in detail the biophysical nature of lipid domain morphology and resulting

interactions. Among the main insights, we found that: i) depending on mechanical properties,

domains can take on a (at least) three morphologies, termed ‘flat’, ‘dimpled’ and ‘budded’, ii)

for a single domain, transitions between these morphological states are determined by the bilayer

mechanical properties and domain size, and in the case of dimpled domains, the morphological tran-

sition turns on a membrane mediated elastic interaction that tends to inhibit domain coalescence

and spatially organizes the domains, iii) upon coalescence, transitions between these morphologies
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Figure 4.40: Dense domains on the surface of a GPMV. Two cells each with an attached GPMV

are shown. The GPMV on the left has many domains on its surface (dark circles) whose repulsive

interactions stabilize the domain size distribution. The GPMV on the right has a more dilute set

of domains (dark circles) that are more difficult to see. The aspherical intensities are the parents

cells. Scale bar is 10 µm.
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should obey certain rules derived from an analysis of the mechanical free energy.

A number of directions of further research are available. On the modeling front, there are both

analytical and non-linear numerical efforts underway to better understand the full phase diagram

of the three domain morphologies discussed in this chapter, in part to better understand the na-

ture of transitions between the morphologies, and in part to understand their mechanical stability.

Additionally, stochastic simulations have been started that will be used to better understand the

expected coalescence kinetics in a phase separated giant unilamellar vesicle under different physical

conditions, where the interactions between domains are taken into account. On the experimental

front, new model systems should be developed to better control membrane mechanical properties

during an experiment. For instance, it might be possible to use free floating planar bilayers to

better control the state of tension as well as ameliorate issues from the curved geometry of gi-

ant unilamellar vesicles. Additionally, it would be interesting to test our predictions about the

difference in qualitative behavior of dimpled domain interactions in the presence and absence of

spontaneous curvature. Notably, in the giant unilamellar vesicle system, lysolipids and/or spe-

cific proteins could be introduced into the aqueous phase outside the vesicle, that preferentially

segregate into the domains, imbuing them with spontaneous curvature and hence changing their

morphological properties. Finally, it would be helpful to conduct precise kinetic measurements of

domain coalescence to further bolster our understanding of these phase-separated systems, as well

as test predictions from analytical theory and stochastic simulations of the connection between

various mechanical properties and the resulting phase separation.
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Chapter 5

Membrane Adhesion by Homophilic Protein Binding

“Some laws are unwritten, but they are better established than all written ones.” – Seneca

5.1 Introduction

For many organisms and cell types it is crucial that they stick together. Clearly for multi-cellular

organisms, cellular adhesion is a simple mechanism (conceptually) by which cells make direct physi-

cal contact, allowing cell-to-cell transfer of materials and signals, and in many cases the formation of

connective tissues [272]. One common theme uniting the varied morphologies of epithelia in higher

organisms is that these structures rely on the adhesion of adjacent cells, as shown in Fig. 5.1. Even

organisms classically considered as single cells participate in cell adhesion, sometimes with members

of their own species, such as in biofilms [273, 274], and sometimes in a non-obligatory manner with

very different species [275], and in all these cases, at some scale there are molecules mediating this

adhesion. In this chapter, we will narrow our view down to a single homophilic membrane adhe-

sion protein known as ‘L1.’ Using an approximate analytical model and results from preliminary

experiments, we will discuss how one can understand the biophysics of homophilic binding using

giant unilamellar vesicle shape as a mechanical read out of adhesion.

5.2 Physiology of L1 Binding

The protein L1 is a transmembrane, immunoglobulin superfamily (IgSF) member known to mediate

homophilic and heterophilic adhesion events in neuronal cell growth [276, 277, 278]. Composed of

six Ig-like domains followed by five fibronectin domains, a transmembrane domain and a short, but

well-conserved, intracellular domain, L1 interacts with various distinct binding partners and plays

important roles in neural development as well as in the adult nervous system; including neurite

outgrowth, neuronal migration and survival, and synapse organization [279, 280]. Mutants of L1

have been found to cause mental retardation, hydrocephalus, impairment of sensorimotor control,

abnormal cerebellar development, and other pathological phenotypes [281, 282].

Evidence shows that the first four Ig domains of L1 form a horseshoe-shaped structure [283],

believed to be critical in L1 homophilic adhesion. Based on homolog studies, two models, the

domain-swapped dimer model and the domain-swapped multimer ‘zipper’ model, have been pro-
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a)

b)

Figure 5.1: Representations of different adhered cell morphologies in epithelia. a) A gallery of the

varied kinds of adhered cell morphologies found in the tissues of higher multi-cellular organisms. b)

Depiction of a nerve cell with synapses shown by the black arrows. In a zoomed view, the synapses

are schematically shown being held together by the homophilic binding of membrane-anchored

proteins. Image (a) is in the public domain under federal licensor and (b) is modified from an

image originally under Creative Commons licensor.



233
closed 

monomer

open

monomer

domain-swapped

dimer

domain-swapped

multimer

(a) (b) (c) (d)

Figure 5.2: Proposed models for the homophilic adhesion interaction of L1. This cartoon shows the

approximate domain structure of the homophilic binding protein L1 in two different mechanisms

of homophilic adhesion. a) The closed monomer conformation of a single L1 protein. b) The

open monomer conformation, now able to engage in homophilic binding. c) The domain-swapped

dimer configuration for the homophilic binding of two L1 proteins in a trans configuration. d)

The domain-swapped multimer configuration (aka the ‘zipper’ model) of the homophilic binding of

multiple L1 proteins. The gray region represents the bilayer, and the green regions of the proteins

are the transmembrane anchoring domains.

posed to explain this homophilic interaction [276, 284]. The proposed mechanism of homophilic

binding is shown in Fig. 5.2, though no direct observation has yet been obtained to support either

model.

Overarching the discussion that will follow, there are three basic questions we would like to

answer:

1) What is the per subunit binding energy of L1?

2) Is binding between distinct L1 proteins cooperative (or anti-cooperative) in any way?

3) Are the known disease phenotypes related to homophilic binding energy differences? If so,

do they bind generically weaker, stronger or does it depend on disease genotype?

The basic plan to answer these questions is to create giant unilamellar vesicles that, after suitable

preparation, contain a controlled density of L1. From there, a number of vesicle geometries can be

used to relate vesicle shape, bending stiffness of the bilayer, and the vesicle area and enclosed volume

to the adhesion strength between L1 proteins. The first, and arguably the simplest, geometric

configuration we will explore theoretically is the azimuthally symmetric binding of giant unilamellar

vesicles to a glass substrate, coated with a known density of L1 binding protein. The bound shape



234

of the vesicle, in particular the shape of the toroidal bilayer transition zone, between the spherical

vesicle and binding patch, acts as a reporter of adhesion strength. The second case we will explore

in some detail is a variation on this setup, where an optical tweezer is used to pull a membrane

tether, whose force extension curve can report on the adhesion strength.

5.3 The Adhered Vesicle Shape

The shape of an adhered vesicle depends heavily on its mechanical properties as well as the strength

of adhesion. In particular, the fluidity of the bilayer translates into the simplification that we need

not consider shear stresses in our mechanical model. Bending stiffness is the key intrinsic attribute

of the bilayer that resists changes in shape from a sphere, while the various constraints (discussed

below) extrinsically affect vesicle shape. Our model assumes azimuthal symmetry which greatly

simplifies the problem and will allow us to state nearly all our results in closed form.

In terms of our physical intuition, it would be incorrect to consider this problem as ‘simply’ a

problem of finding shapes that are extrema of the vesicle surface area. Such analysis does describe

the adhered shapes of typical thin liquid films, like soap bubbles composed of mixtures of water

and amphiphilic molecules (e.g. detergents) as shown in Fig. 5.3 and discussed in an excellent book

by Isenberg [285]. However vesicles have a unique constraint that distinguishes their mechanics

from the mechanics of typical thin liquid films. Like bubbles, vesicles do have a conserved volume

enclosed by the two dimensional fluid, however, unlike bubbles, the total area of a vesicle is a

conserved quantity for the tensions we consider here. This difference is due to the detailed molecular

architecture of these two materials. Whereas the thickness of a typical liquid film can change to

expose more or less surface area and hence regulate the surface energy by changing the number of

amphiphilic molecules at the material interface, the alignment of amphiphilic lipids into a bilayer

means that the number of molecules at the interface is fixed. This is in some sense unfortunate

— our analysis would be much simpler, and microscopy more informative, were it not the case.

Another key difference is that, although not strictly zero1, the bending stiffness of thin liquid films

is not a major determinant of shape, whereas the bending stiffness of a bilayer affects vesicle shape

in a way that makes our proposed measurement possible.

In addition to azimuthal symmetry, we will also assume that the vesicle contour is described

by three basis shapes: an upper spherical section with circular contour, a lower toroidal dish with

circular contour, and a flat, circular adhesion zone. While one can construct models that describe

shapes beyond those described by this basis set [252, 286, 287], this formulation has two advantages,

in addition to being relatively simple in a mathematical sense. First, given that homophilic binding

is adhesive, and hence corresponds to a reduction in free energy, we expect the equilibrium shapes

of adhered vesicles (i.e. those near the shape free energy minimum) will not have tubes, necks or

buds, as these shapes unnecessarily use area that could be adhered. The second reason is that in a

1For instance, bending stiffness due to surface area differences between the two film-air interfaces of a bubble.
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a)
b)

Figure 5.3: Similar appearance different physics. The free floating, adhered soap bubbles in (a)

look very similar to the free floating, adhered vesicle ‘bubbles’ in (b). While both conserve volume

of the enclosed regions, and adhesion between those bubbles drives them to adopt their overall

shapes, a critical difference exists between these physical scenarios in that soap bubbles (a) do not

have conserved area, but vesicles (b) do. The scale bar in (b) is 20 µm.

real experiment it is difficult to reliably measure more than two radii of curvature on the adhered

vesicle, and in fact, two radii of curvature — one for the spherical region and one for the toroidal

region — encode the necessary information to extract the adhesion strength from shape analysis.

Free of constraints, the azimuthally symmetric adhered shape is specified by five parameters:

the radius of curvature (R1) and angle (θ1) of the spherical section, the principal radius of curvature

(R2) and angle (θ2) of the toroidal region, and the radius of the adhesion contact zone (R3), all

schematically shown in Fig. 5.4.

5.3.1 Shape Constraints

If our model is to describe a physically reasonable shape, certain shape constraints must be imposed.

In particular, we will demand that the shape is free of holes or rips and that our surface is smooth

all over, that is, it does not have ridges or points (so-called C1 continuity). Physically speaking, the

first constraint is reasonable because we know that holes in lipid bilayers are severely energetically

discouraged via a hydrophobic line tension [165]2. The second constraint is physically reasonable

because any material with a finite bending stiffness (like lipid bilayers) will have infinite bending

energy density on ridges and points.

Imposing these constraints relates the shape parameters shown in Fig. 5.4. The condition that

the surface lack ridges requires

tan(θ1) = − tan(θ2), (5.1)

which can be recast as

θ2 = π − θ1, (5.2)

2With an interesting and notable exception of very small vesicles composed of charged lipid species, that form

polyhedra structures with stable pores [288].
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Figure 5.4: Schematic of the parameters needed to construct the basis shape model of vesicle

adhesion. While the fundamental parameters required do not change from one vesicle to another,

the observed vesicle shape can be very different - in this case the vesicles have a significant difference

in their surface area to volume ratio. The small black dots demarcate where one basis shape ends

and another begins. The gray regions on the bottom represent an adhesive glass substrate.

implying that θ1 ∈ [0 . . .π]. Further imposing that the surface be continuous gives

R1 sin(θ1) = R3 + R2 sin(θ2), (5.3)

which is further simplified to

R3 = sin(θ1)(R1 − R2) = R2 sin(θ1)(α − 1), (5.4)

with α = R1/R2. These two relations effectively eliminate θ2 and R3 from our equations, leaving

only the variables R1, R2, and θ1.

5.3.2 Calculating Surface Area

When we attempt to minimize the free energy in a few sections it will only be meaningful if certain

extrinsic constraints are imposed. In particular, for a given equilibrium shape, the area of the lipid

bilayer is conserved. By extrinsic we mean that we must now introduce the total vesicle area (Ao)

as a new parameter related to vesicle geometry; we will calculate the area for each basis shape and

then sum those contributions to find the total vesicle area [57].

The spherical section has an area given by

A1 = 2πR2
1

∫ θ1

0
sin(θ1)dθ1 = 2πR2

1(1 − cos(θ1)). (5.5)

The area of the toroidal section is a bit more complicated. To calculate this contribution, we first

rotate the toroidal section by π/2 and write the function describing this surface as

z(r) = R3 +
√

R2
2 − r2. (5.6)
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The area can then be written as

A2 = 2π

∫ R2

R2 cos(θ2)

z(r)
√

1 + ż(r)2dr, (5.7)

which can be evaluated as

A2 = 2πR2R3

(

θ2 +
R2

R3
(1 − cos(θ2))

)

. (5.8)

As a quick sanity check, letting R3 → 0 and θ2 → π, should give the area of a sphere with radius

R2, and indeed it does. This can be re-written as

A2 = 2πR2
2 (sin(θ1)(α − 1)(π − θ1) + 1 + cos(θ1)) . (5.9)

The final, and easiest piece, is the adhesion zone, whose area is

A3 = πR2
3 = πR2

2(α − 1)2 sin2(θ1), (5.10)

such that the total area is

Ao = A(R1, R2, θ1) = A1 + A2 + A3. (5.11)

5.3.3 Calculating Volume

As with the vesicle area, any attempt to minimize the equilibrium free energy must also conserve

volume3. This is physically reasonable because: i) the nominal membrane tensions are low compared

to the bilayer rupture tension and hence no spontaneous holes open in the membrane to exchange

volume; ii) osmotic pressure across the membrane is balanced (given a brief equilibration time),

and hence no net volume permeates across the membrane; and iii) the water enclosed by the vesicle

is essentially incompressible.

The volume of the spherical section is given by

V1 = π

∫ R1(1−cos(θ1))

0
r1(z)2dz (5.12)

with

r1(z) =
√

2zR1 − z2. (5.13)

This integral can be simplified to

V1 =
π

3
R3

1(1− cos(θ1))
2 (2 + cos(θ1)) . (5.14)

3To be precise, we note that the volume and area only need be conserved on time scales appropriate for vesicle

shape to reach equilibrium. The slow removal of volume or surface area, relative to the shape equilibration time,

scale does not affect these results.
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The volume in the toroidal section is given by a similar function

V2 = π

∫ R2(1−cos(θ2))

0

r2(z)2dz (5.15)

with

r2(z) = R3 +
√

2zR2 − z2. (5.16)

This can be solved analytically to give

V2 = πR3
2

[(
R3

R2

)2

(1− cos(θ2)) +
R3

R2
(θ2 − sin(θ2) cos(θ2)) +

1

3
(2 + cos(θ2)

3)− cos(θ2)

]

, (5.17)

and re-written as

V2 = πR3
2

[
(α − 1)2 sin2(θ1)(1 + cos(θ1)) + sin(θ1)(α − 1)(π − θ1 + sin(θ1) cos(θ1)) (5.18)

+
1

3
(2 − cos3(θ1)) + cos(θ1)

]

.

A quick sanity check shows that if we let θ1 → 0, we recover the volume of a sphere with radius

R2. Then the volume constraint equation is

Vo = V (R1, R2, θ1) = V1 + V2. (5.19)

5.3.4 Protein Conservation and Surface Energy

The final conserved quantity is the number of L1 proteins in the vesicle as a whole. We presume

that due to membrane fluidity, diffusion, and the energetic benefit of homophilic binding there will

be a difference in L1 density between the adhered and non-adhered zones. To conserve the number

of proteins, we impose the conservation equation

Aoρ1 = ρ2(Ao − πR2
3) + ρ3πR2

3, (5.20)

where ρ1 is the areal density of L1 in the free floating vesicle, ρ2 is the density in the unadhered

zone, and ρ3 is the density in the adhered zone. Quantitating the protein density in the two regions

is necessary for calculating both the binding energy per protein and the degree of cooperativity

between proteins.

In the absence of a direct readout of protein density in the membrane, we must rely on fluorescent

protein reporters, where L1 is fused to GFP4. The ratio of fluorescence intensities in the adhered

and non-adhered zones is the ratio of the protein density in the two regions5. This ratio-metric

measurement still leaves an undetermined constant necessary to actually calculate the protein

4The Bjorkman Lab at Caltech, with whom we collaborate, has produced such fusions.
5With the background properly subtracted.
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Figure 5.5: Schematic of L1-GFP fluorescence intensity differences for bound and unbound vesicles.

a) The fluorescence intensity of a free floating vesicle is greater than the fluorescence intensity of

the unadhered zone of an adhered vesicle (b), but less than the fluorescence intensity of the adhered

zone of the vesicle. Measurements of the fluorescence of free floating and adhered vesicles can be

used to calculate the constant of proportionality between fluorescence intensity and actual protein

concentration, f .

density in the two regions. For the moment, let us ignore the effects of photo-bleaching; then the

integrated fluorescent protein intensity (Ip) during a set exposure time texp from a bilayer patch of

area A has the relationship

Ip = Afρtexp, (5.21)

where f is the rate of intensity counts coming from each labeled protein. The constant f depends on

everything from sample preparation to the optical properties of the microscope, fluorescence lamp

and camera in use, and hence needs to be determined uniquely for each experiment. However, in

concept it is fairly easy to measure this number. As we will discuss later in this chapter, we have a

degree of control over the density of L1 in the membrane. If all of the L1 is labeled and we know

the density of L1, then the fluorescent intensity of a free floating vesicle allows us to calculate the

constant f . Figure 5.5 shows a schematic of what the fluorescence intensity of a free floating and

adhered vesicle might look like. While entropy plays a role in the distribution of proteins between

the two regions, as we will explore below, the fact that the free energy of binding is favorable means

that the proteins will be enriched in the adhesion zone. The degree of enrichment depends on the

strength of adhesion, the total number of proteins, the size of the adhesion zone, and the possibly

the steric constraints of densely packed L1 binders.

For a large adhesion zone, where fluctuations in the number of binding partners is small in

comparison to the mean, the enthalpy of binding can be written as an ensemble quantity given by

Gbind = −πR2
3(γρ3 + cρ2

3), (5.22)

where γ is the homophilic binding energy per L1 oligomer. The quadratic term is a simple way to

account for possible cooperative effects, similar to how a Virial expansion is written [111]. If the

coefficient c is a positive, then the interactions between multiple L1 proteins are cooperative; if c is

negative then there is anti-cooperativity between L1 proteins. A single measurement of vesicle shape

is not enough to determine γ and c, multiple vesicle measurements will be needed. Determining c
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is slightly confounded by the fact that there is a chemical potential penalty to increasing the L1

density in the adhesion zone, due to the loss of configurational entropy. Presumably, this imparts

a generic anti-cooperativity to adhesion, since the creation of a concentration gradient, in this case

between the adhered and non-adhered zones, costs free energy.

The configurational entropy is relatively straight-forward to calculate. Let AL1 denote the

effective area of a single L1 protein projected on the bilayer (i.e. the steric area), then the total

number of sites on a vesicle is

N1 = Ao/AL1 (5.23)

while the number of sites in the unadhered and adhered zones, respectively, is

N2 = (Ao − πR2
3)/AL1 (5.24)

and

N3 = πR2
3/AL1, (5.25)

with the obvious condition N1 = N2 + N3. Then the number of indistinguishable proteins in each

zone is

M2 = ρ2(Ao − πR2
3) (5.26)

and

M3 = ρ3πR2
3. (5.27)

The configurational entropy of the free floating vesicle is given by

So = k ln

[
(N2 + N3)!

(M2 + M3)!(N2 + N3 − M2 − M3)!

]

, (5.28)

whereas the entropy of the bound state is given by

Sb = k ln

[
N2!N3!

M2!M3!(N2 − M2)!(N3 − M3)!

]

. (5.29)

The entropic component of the free energy is then

Gk = −T (Sb − So). (5.30)

What this means is that once the protein density in the two regions has been measured, and the

vesicle area calculated, we can calculate the free energy cost of the loss of configurational entropy of

the L1 proteins. This free energy penalty directly competes with the enthalpic benefit of homophilic

binding. Hence if we know how many proteins are in the adhered zone (from our measurement

of protein density), the binding energy between the bilayer and the substrate per unit area (from

shape analysis), and the configurational entropy cost to create the adhesion zone, we can solve for
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the binding energy per L1 oligomer.

Before finishing our discussion of configurational entropy, we should be able to put an upper

bound on the importance of this effect. For instance, from measurements of the spacing of L1

tight binding in liposomes [284], AL1 ' 100 nm2, and then consider a vesicle whose area is Ao =

4π(10 µm)2, such that the maximum number of potential, configurational sites is ∼ 107. The

maximum initial configurational entropy,So, occurs if half of those sites are occupied. To get an

upper bound on the change in configurational entropy, let us assume the unrealistic scenario where

one third of the total vesicle area is adhered to the substrate, and all possible sites in that region

are filled. This gives an upper bound because filling all sites in the adhesion zone corresponds

to the greatest reduction in configurational entropy. This is unrealistic because not all sites will

be filled in such a region, and having a full third of the vesicle area adhered is a relatively large

adhesion zone (e.g. see the most deformed shape in Fig. 5.6). This estimate indicates that going

from the free floating vesicle to the adhered vesicle state raises the free energy per protein by

∼ 0.5 kBT , independent of vesicle size (Ao) and protein area (AL1). Again, this is an upper bound,

and more precise estimates can be made with exact figures of protein density and vesicle shape

from experiment. This estimate indicates that protein entropy will be an unimportant effect the

binding energy per oligomer is much larger than this entropic contribution; whether that is true

remains to be seen [105].

5.3.5 Vesicle Bending Energy

The only source of membrane elastic energy in this problem comes from the mean curvature bending

of the bilayer. From the Gauss-Bonnet Theorem, as discussed in Chapter 4, we know that Gaussian

curvature does not contribute to the free energy budget because the vesicle topology (genus) remains

fixed throughout the adhesion process.

The spherical section of the vesicle contains a fraction of the total bending energy of a sphere,

written as

G
(1)
b = 8πκb

A1

4πR2
1

= 4πκb(1 − cos(θ1)). (5.31)

The toroidal section is more difficult — to tackle this region we will use a combination of cylindrical

coordinates and the parametric equations that define a torus. First, we generically write the

curvature energy in cylindrical coordinates as

G
(2)
b = (2π)(2κb)

∫

S
H2√g rdr, (5.32)

where
√

g is the surface metric, and we have already made use of the azimuthal symmetry. Using

the parametric equations for a torus, the boundary of the toroidal region is given by

r(θ2) = R3 + R2 sin(θ2), (5.33)
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with the coordinate transformation written as

dr =
∂r

∂θ2
dθ2 = R2 cos(θ2)dθ2. (5.34)

The surface metric in cylindrical coordinates is written as

g = 1 +

(
∂z

∂r

)2

, (5.35)

with

z = R2 −
√

R2
2 − (r − R3)2 = R2(1− cos(θ2)). (5.36)

Then the surface metric in toroidal coordinates is

g = 1 +

(
∂z

∂θ2

∂θ2

∂r

)2

= [cos(θ2)]
−2. (5.37)

The mean curvature of a torus can been calculated [289], and when translated into our notation

gives

H = − 1

2R2
· R3 + 2R2 sin(θ2)

R3 + R2 sin(θ2)
. (5.38)

Using a dummy variable, θ, the integrand has a pleasingly simple form, given by

H2√g|J|r =
1

4

(β + 2 sin(θ))2

β + sin(θ)
, (5.39)

with β = R3/R2 = (1 + α) sin(θ1). The mean curvature energy is then given by

G
(2)
b = 4πκb

∫ θ2

0
H2√g r|J|dθ, (5.40)

which has the relatively simple closed form

G
(2)
b = 2πκb

[

2(1− cos(θ2)) +
β2

√

β2 − 1
tan−1

[

sin(θ2)
√

β2 − 1

sin(θ2) + β(1 + cos(θ2))

]]

, (5.41)

which can be written as a function of θ1 as

G
(2)
b = 2πκb

[

2(1 + cos(θ1)) +
β2

√

β2 − 1
tan−1

[

sin(θ1)
√

β2 − 1

sin(θ1) + β(1 − cos(θ1))

]]

. (5.42)

As a check, letting β → 0 and θ1 → 0 turns the torus into a sphere of radius R2 giving the expected

bending energy G
(2)
b = 8πκb. Being a flat disc, the adhesion zone has zero bending energy for all

values of R3, and hence the total bending energy is the sum of the bending energy in the spherical

and toroidal regions.
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5.4 Free Energy of Adhesion

With basis shapes chosen, shape and extrinsic constraints applied, and mechanical sources of en-

ergy calculated, we are now in a position to calculate the equilibrium shape of an adhered vesicle.

The general prescription is to minimize the free energy subject to the area and volume constraints,

however, application of those constraints may take on multiple forms. The first method one might

employ is to use Lagrange multipliers to impose the constraints, which would require functional

minimization over five independent variables — the radii R1 and R2, the angle θ1 and the Lagrange

multipliers for area and volume, that is the tension and pressure, respectively. We will employ an

alternate method, where we treat the membrane area and the enclosed volume as linear elastic me-

dia. This requires knowledge of the area stretch modulus of the membrane (KA = O(100) kBT/nm2

[26]) and bulk modulus of water (KV = 520 kBT/nm3 [155]), but advantageously does not require

two more optimization variables. Then sum of all the contributions to the free energy is

G = G
(1)
b + G

(2)
b − πR2

3ρ3γ + Ao
KA

2

(
A − Ao

Ao

)2

+ Vo
KV

2

(
V − Vo

Vo

)2

, (5.43)

where the bending modulus of the membrane is nominally κb = 20 kBT [26]. This free energy is

now minimized with respect to the two radii of curvature and solid angle, generating the three

equations
∂G

∂R1
= 0 ,

∂G

∂R2
= 0 and

∂G

∂θ1
= 0, (5.44)

which must be solved simultaneously. Given the minimized values of the three shape parame-

ters, our use of an elastic penalty makes calculating the membrane tension and pressure gradient

straightforward, where the tension on the membrane is

τ = KA

(
A − Ao

Ao

)

(5.45)

and the pressure gradient across the membrane is

p = −KV

(
V − Vo

Vo

)

. (5.46)

Measuring these two quantities is less straightforward in practice, because measurements from

microscopy give us A and V via measurements of R1, R2 and θ1, not precisely Ao and Vo as we

would like. However, this is not a serious issue considering that the fractional change in area and

volume due to adhesion will be very small, and knowing the pressure and tension are not required

to perform the shape analysis.

We have ignored the effects of configurational entropy, although, it is in a sense encompassed in

the parameter γ, since any oligomeric binding energy we measure is the sum of the enthalpic and

entropic free energy contributions [105]. The configurational entropy imparts a chemical potential
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that penalizes proteins which enter the adhesion zone, however, for a given protein density this

simply means there is some ‘effective’ binding energy, which we will assume is the same as γ.

That said, recall in Section 5.3.4 we explicitly discussed how to handle the contribution from

configurational entropy. With the protein density of the free floating vesicle specified, we could

also minimize the free energy of the adhered vesicle shape treating the ratio of the densities of the

protein in the two regions as a free variable, hence adding a fourth minimization equation. In the

numerical simulations that follow, we chose not to implement this because it does not change the

class of available shapes. Although, in future theoretical work it could be added as a useful tool for

estimating desired, nominal protein densities in an experiment for a given L1 oligomeric binding

energy.

5.4.1 Connection to Experiment

A typical experiment is, in some sense, precisely the opposite of searching for the shapes that mini-

mize the free energy. In an experiment, an image or images of an adhered vesicle give a measure of

R1, R2, R3, θ1, and θ2, thus allowing us to calculate V and A, as well as the bending energy of each

region (to within a constant), as prescribed by the formulas that incorporate these shape parame-

ters. The assumption is that this measured shape is the result of mechanical equilibrium. Hence,

upon measuring vesicle shape, the only ‘free’ parameters in our energy functional are the bending

modulus (κb) and the adhesion energy (γρ3 or γ depending on whether one takes into account

configurational entropy). As we stated earlier, the adhesion energy has an entropic component,

making it difficult to tease out the exact oligomeric binding energy in the absence of measure-

ments of the protein density in the adhered and unadhered zones. If one calibrates the phL1-GFP

fluorescence, as discussed earlier, and calculates the density and hence number of proteins in the

adhesion zone, then only the bending modulus and the enthalpic oligomeric binding energy are

free parameters. Looking back at eqn. 5.43, since both E
(1)
b and E

(1)
b have a pre-factor of κb, from

any one measurement of vesicle shape we can only determine the ratio of the bending energy to

the adhesion energy. If, however, a vesicle is imaged at different reduced volumes this changes the

shape parameters in such a way that we can untangle κb from γ. Thus to properly calibrate the

results, either multiple vesicles, or multiple shapes from the same vesicle must be measured, from

which one can determine the bending modulus and the adhesion strength uniquely.

5.5 Simulating Adhered Vesicle Shape

In our numerical simulations, whose results are qualitatively discussed below, we explored the effects

of changing different material and extrinsic parameters on vesicle shape. In most cases that follow,

we adopt a scheme where an area, Ao, is chosen in accordance with vesicles in the size range of

microns, and the corresponding volume is slightly less than a sphere with the same area. One key
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parameter we use to characterize vesicle shape is the reduced volume, s, defined by

Vo = s · A
3/2
o

6
√

π
, (5.47)

where this parameter falls in the range 0 < s < 1. In the following figures, we simulate how the

shape, tension, pressure, and overall energy vary as we adjust either: i) the reduced volume for

fixed vesicle area with bending moduli of κb = 5 kBT as in Fig. 5.6, κb = 20 kBT as in Fig. 5.7, or

κb = 80 kBT as in Fig. 5.8; or ii) the vesicle area and hence overall vesicle size for fixed reduced

volumes of s = 0.8 as in Fig. 5.9, and s = 0.93 as in Fig. 5.10.

After spending arduous hours writing, troubleshooting and stabilizing a numerical MatLab c©
routine, we explored how reduced volume, vesicle size, bending stiffness, and adhesion strength

affect the vesicle shape. Many of these effects are complementary, that is, changing one parameter

is similar to inversely changing another. Likewise, distinct regions of parameter space may yield

very similar shapes, which we refer to as ‘limiting shapes.’ One can understand this with a simple

thought experiment. Consider what happens if either the adhesion strength is very high or the

bending modulus is very low. In either case the toroidal transition zone shrinks leaving only the

circular adhesion zone and spherical vesicle above it. This type of shape is only determined by

the vesicle area and enclosed volume. This is an important conclusion because it means that if

we cannot experimentally distinguish the adhered vesicle shape from the limiting shape with the

same surface area and volume, we learn nothing about adhesion. Hence, as we discuss below, it

behooves us to use either relatively stiff membranes or a relatively low density of phL1 proteins in

the membrane.

Increasing the bending modulus generically increases all radii of curvature subject to the con-

straints, however its effect becomes more pronounced at lower reduced volumes. Naturally, this

is because as reduced volume grows close to one (s = 1), we approach the limiting shape of a

sphere, with little freedom for changes in shape. As the reduced volume of a relatively stiff bilayer

decreases, the shape remains more spherical. At relatively low bending modulus, we approach the

class of limiting shapes.

Reduced volume is the most sensitive knob we have to turn, and luckily it can be adjusted

relatively easily in experiment, where an adhered vesicle can have volume added or removed by

osmotic conditioning. As the reduced volume approaches one, we reach the limiting shape of a

sphere. However, as we decrease from s = 1, a range distorted shapes become available to the

vesicle. Depending on the bending modulus and adhesion strength these shapes may remain rather

spherical or approach the limiting shape. For low adhesion strength and/or high bending modulus

the spherical shapes are preferred. For lower reduced volume with high adhesion strength and/or

low bending modulus we approach the limiting shape.

We also explored the effect of overall vesicle size, by fixing the reduced volume and adjusting

the total surface area. Related to our comments above, for fixed bending modulus and adhesion
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strength, smaller vesicles are more spherical and larger vesicles approach the limiting shape, as

shown in Figs. 5.9 and 5.10.

Lastly, augmenting adhesion strength has a very similar effect to decreasing bending modulus.

While varying adhesion strength, we explored how the shape changes for a fixed volume, surface

area and bending modulus. This seems to be the least sensitive parameter with many shapes close

to the class of limiting shapes.

5.5.1 Note on Linearity of Tension and Pressure

Additional results showed that when volume and surface area are fixed increasing adhesion strength

linearly increases both tension and pressure. The fluidity of the membrane allows surface energy,

created by adhesion, to be directly and uniformally translated into an increase in membrane tension.

In the scenario of fixed volume and surface area, where we are approaching the limiting shape, the

adhesion zone size is approximately independent of adhesion strength. Thus linearly increasing

adhesion strength means linearly increasing membrane tension. The corresponding linear increase

in pressure is merely a reflection of the fact that given a fixed volume and surface area, and

approaching the geometrically limited shape, the radius of curvature is also independent of adhesion

strength. In such situations, where the free energy of bending is small in comparison to the work

done by changes in area and volume, increasing adhesion strength is related to increasing pressure

via the membrane tension through the Laplace-Young relation

p = 2
τ

R1
. (5.48)

This relationship only holds true in regimes where the bending energy is small in comparison to the

surface (τ(A − Ao)) and volumetric (−p(V − Vo)) energies. In our numerical analysis, we verified

that this independently derivable law holds true in such regimes, as shown in all the subsequent

figures by the blue dashed lines in the plots of vesicle pressure.

5.6 Tether-Based Assay of Vesicle Adhesion

In addition to passively measuring the mechanical properties of adhered vesicles, that is, by simply

looking at the adhered shape of a vesicle, we can also design experiments that allow us to apply

well-controlled forces that deform the vesicle in such a way that we can measure its mechanical

properties. The tethered vesicle shape is such a case, where in the simplest model we presume there

are two vesicle regions: i) a large spherical section defined by radius R1 and angle θ1, ii) a thin

tubule region defined by R2 and L. As shown in Fig. 5.11, a force F is applied to the tube’s end

to distort the shape. In this section we derive the constrained volume and area of this geometry,

and minimize the energy to better understand its force–extension properties.

It should be noted that much work has been done, both theoretically [264, 263] and experimen-

tally [182, 290, 262], to understand the shape and force extension properties of membrane tubes.
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Figure 5.6: Simulations of adhered vesicle shape for fixed area with effects of decreasing the reduced

volume on shape, tension, and pressure with κb = 5 kBT . The green dots in the upper-left plot

demarcate the basis functions. The blue dashed line in the lower right plot is the approximate

result from the Laplace-Young relation in eqn. 5.48.
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Figure 5.7: Simulations of adhered vesicle shape for fixed area with effects of decreasing the reduced

volume on shape, tension, and pressure with κb = 5 kBT . The green dots in the upper-left plot

demarcate the basis functions. The blue dashed line in the lower right plot is the approximate

result from the Laplace-Young relation in eqn. 5.48.
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Figure 5.8: Simulations of adhered vesicle shape for fixed area with effects of decreasing the reduced

volume on shape, tension, and pressure with κb = 5 kBT . The green dots in the upper-left plot

demarcate the basis functions. The blue dashed line in the lower right plot is the approximate

result from the Laplace-Young relation in eqn. 5.48.
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Figure 5.9: Simulations of adhered vesicle shape for fixed reduced volume with effects of increasing

total vesicle area, and hence overall vesicle size, on shape, tension, and pressure with s = 0.8 and

κb = 20 kBT . The green dots in the upper-left plot demarcate the basis functions. The blue dashed

line in the lower right plot is the approximate result from the Laplace-Young relation in eqn. 5.48.
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Figure 5.10: Simulations of adhered vesicle shape for fixed reduced volume with effects of increasing

total vesicle area, and hence overall vesicle size, on shape, tension, and pressure with s = 0.93 and

κb = 20 kBT . The green dots in the upper-left plot demarcate the basis functions. The blue dashed

line in the lower right plot is the approximate result from the Laplace-Young relation in eqn. 5.48.
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a)

b)

Figure 5.11: Schematic of the parameters needed to construct the basis shape model of tethered

vesicle adhesion. a) A diagram showing the geometric parameters that characterize the shape of

an adhered vesicle with a membrane tubule. A known force F is applied to the tether end via

an optical tweezer, and the force extension properties of the tether can, in certain regimes, give a

readout of the adhesion strength. The small black dots demarcate where one basis shape ends and

another begins. b) A phase contrast image of membrane tether being pulled from a GUV by a bead

in an optical trap, as outlined by the dashed line. The scale bar is 10 µm. This image adapted

from [262].

As we will see later, one of the generic features that arises in a system with fixed surface area and

volume is that for large tube lengths, as compared to their diameter, the force–extension properties

are linear and do not encode specific information about substrate adhesion.

5.6.1 Tethered Vesicle Area

Calculating vesicle area is relatively simple compared to the previous geometry. Using eqn. 5.5, we

know the area of the spherical region is

A1 = 2πR2
1(1 − cos(θ1))− πR2

2, (5.49)

while the area of the of the tether region is

A2 = 2πR2L + 2πR2
2. (5.50)



253

Finally, the area of the adhesion zone is

A3 = πR2
3 = πR2

1 sin2(θ1). (5.51)

Together, these form the area constraint equation

Ao = A(R1, R2, θ1, L) = A1 + A2 + A3. (5.52)

5.6.2 Tethered Vesicle Volume

Likewise, calculating vesicle volume is relatively simple compared to the previous geometry. Using

eqn. 5.14, we can write the volume in the spherical region as

V1 =
π

3
R3

1(1− cos(θ1))
2(2 + cos(θ1)) −

π

3
R3

1(1 −
√

1− (R2/R1)2)
2(2 +

√

1 − (R2/R1)2), (5.53)

where the angle sin−1(R2/R1) is used to remove double counted volume. In the tether region, the

volume is given by

V2 = πR2
2L +

2

3
πR3

2. (5.54)

Then the volume constraint is given by

Vo = V (R1, R2, θ1, L) = V1 + V2. (5.55)

5.6.3 Bending Energy of a Tethered Vesicle

The bending energy of the spherical and tether region are relatively easy to calculate in the ge-

ometry. We already calculated the bending energy of the spherical region in eqn. 5.31, giving

us

G
(1)
b = 8πκb

A1

4πR2
1

= 4πκb(1− cos(θ1)) − 2πκb

(
R2

R1

)2

(5.56)

The bending energy in the tether region is then

G
(2)
b = 2κbH

2A2 = 2κb

[
2πR2L

(2R2)2
+ 2π

]

, (5.57)

which simplifies to

G
(2)
b = 4πκb

[
L

4R2
+ 1

]

. (5.58)

The bending energy of the hemispherical cap of the tube is constant and hence does not affect the

vesicle shape.
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5.6.4 Free Energy of Tethered Vesicle Adhesion

As force is applied to the membrane tether, an increase in tether length does work against the

force lowering the free energy. Thus, this geometry has one new energetic term connected to the

externally applied force,

GF = −F
[

R1[(1− cos(θ1))− (1 −
√

1 − (R2/R1)2)] + L + R2

]

(5.59)

where F is the applied force and the term in brackets is simply the distance from the substrate

to the tether tip. As we did earlier, we treat the membrane and enclosed volume as linear elastic

media, and apply the surface area and volume constraints using an elastic penalty, yielding the

total free energy of a tethered vesicle as

G = G
(1)
b + G

(2)
b + GF − πR2

3ρ3γ + Ao
KA

2

(
A − Ao

Ao

)2

+ Vo
KV

2

(
V − Vo

Vo

)2

. (5.60)

Given the set of relevant parameters, namely κb, F and γ, this energy is minimized with respect

to the four shape variables R1, θ1, R2 and L, using the system of equations defined by the partial

derivatives of G. Again, we have neglected the specific contribution from configurational entropy,

however it does not affect the class of possible vesicle shapes.

Numerical solutions for the geometric parameters, and the resulting vesicle shapes, are shown in

Fig. 5.13. Initially, as force increases and the tether elongates, the majority of the area required to

elongate the tether is coming from delamination of membrane in the adhesion zone, and hence this

initially nonlinear rise in the force encodes information about the adhesion strength, as shown in

Fig. 5.12. At relatively high forces, the tether is very thin and many times longer than the spherical

vesicle diameter. For tethers much longer than they are wide, that is L/R2 � 1 and consequently

R1/R2 � 1, one finds that the tether length is proportional to the force and is independent of

the adhesion strength. To see this, consider that the free energy in eqn. 5.60 can be written in a

simplified form if R1/R2 � 1. Then examining the equilibrium equation for L, that is ∂G/∂L = 0,

results in an equation that has no dependence on R1 and R2, and the force extension relationship

is given by

L = F · Ao − (36π)
1
3 V

2
3

o

4π2κb
, (5.61)

which clearly has no dependence on the adhesion strength, γ. Thus it is only the low force regime

that reports on adhesion properties.

5.6.5 Connection with Experiments

As with the previous geometry, the experiment provides values for geometric parameters of the

vesicle, namely R1, R3, θ1, L, and in this geometry measurements of the pulling force F as measured

by the optical trap. Before the bead is attached to the membrane, we have the same adhered



255

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 5.12: Force extension properties of a tether pulled from an adhered vesicle with reduced

volume s = 0.8. The blue shows the numerical simulation of force extension. At sufficiently high

force the tube is very long in comparison to its diameter and the force-extension is linear (red),

hence the tether behaves like a spring. The effective reduced volume, shown in black, is defined

as the reduced volume of the spherical region without the tether. Pulling a tether removes both

volume and area, but with a scaling such that the vesicle itself approaches a sphere (i.e. s = 1).

It is the (brief) nonlinear portion of the force extension curve that encodes information about the

adhesion strength. 1 kBT/nm = 4.14 pN.

vesicle geometry that we explored in the previous section, and it is straightforward to measure the

conserved vesicle volume and surface area in that geometry. By measuring the R1, R3, θ1 and L,

and knowing the surface area and volume, we can calculate the value of R2 for all values of F . It is

difficult to directly measure R2 because membrane tubes are often quite thin and hence difficult to

resolve optically and measure accurately under the microscope [262]. With all the shape parameters

known, we can minimize the shape energetics with respect to the material parameters κb and γ as

we discussed in Section 5.4.1. Additionally, as we discussed earlier, multiple vesicle measurements

need to be performed to tease apart the contributions to the nonlinear part of the force extension

curve from bending stiffness and adhesion.

5.7 Experimental Setup

In the following few subsections we will discuss some progress that has been made in forming

giant unilamellar vesicles with incorporated L1 protein. This work progressed first by examining

whether we could achieve vesicle-vesicle adhesion, and has recently moved on to confocal microscopy

experiments of vesicles on adhered glass substrates, in correspondence with our theoretical analysis.
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Figure 5.13: Effects of increasing tether force on vesicle shape, tension, and pressure with s = 0.8

and κb = 20 kBT . In the upper-left plot, the green dots demarcate the adhesion zone and light

blue region is the approximate range of vesicle shapes whose force extension properties encode

information about adhesion. The blue dashed line in the lower right is the result from the Laplace-

Young relation of eqn. 5.48.
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The experimental setup will be discussed in some detail, along with certain challenges and future

directions.

5.7.1 Controls and Vesicle-Vesicle Binding

Lipid head groups can be tailored to take advantage of a number of molecular interactions, and in

particular certain phospholipids have been made with coordinated Ni+2, such that a poly-histidine

purification epitope will bind tightly, though reversibly, by chelation to the lipid head group, in

a way chemically identical to standard poly-histidine affinity chromatography [291]. The lipids

themselves are hydrophobically anchored in the bilayer, hence this gives us a method for securing

proteins to a bilayer at a known concentration. In short, as the experimentalists, we control the

exact composition of the bilayer, and in particular we used a standard DOPC phospholipid bilayer6

and ‘dope’ it with a small mole fraction (0.5%) of the Ni+2 containing lipid DOGS-NTA7, to whose

head group the epitope will bind. Truncation mutants of the wild type L1 were made that lack the

transmembrane and cytosolic domains, but have an added poly-histidine epitope (we call this form

of the protein ‘phL1’)8.

Throughout this thesis, we have discussed experiments that make use of giant unilamellar vesi-

cles, formed by electroformation [265], as discussed in detail in Appendix E. The GUVs in this ex-

periment are formed with a molar mixture of 99:0.5:0.5 (DOPC:DOGS-NTA:DOPE-Rhodamine9),

such that the GUVs are easy to form, are fluorescently labeled, and have a surface to which phL1

will adsorb. The structure of the acyl chains of all three of these lipids, and hence their hydrophobic

properties, are identical, thus we neither expect nor observe any lipid immiscibility [130].

After formation, GUVs were split into control and adhesion groups. No phL1 was added to the

control group, and phL1 was added at a concentration of ∼ 25µg/ml to the adhesion group, and left

to incubate at room temperature for one hour. This protein concentration leads to nearly complete

coverage of the glass substrate (data not shown). Figure 5.14 shows images of unadhered vesicles

in the control group, and adhered vesicles in both bright field and fluorescence in the adhesion

group. The density of vesicles in the control was kept relatively high to ensure that vesicles were in

direct contact. The density of vesicles in the adhesion group can be adjusted such that either most

vesicles are unadhered and free floating, vesicles occasionally adhere to one another to form groups

of two, or at the highest density vesicles form large, adhered multi-vesicle aggregates, as shown in

Fig. 5.15.

With a good handle on how to form doped vesicles, adhere the phL1 to the vesicles, and control

its density, we began to look for ways realize our experimental setup, where the deformation shape

of an azimuthally symmetric vesicle adhered to a substrate could serve as a reporter of adhesion

properties.

6Avanti Polar Lipids, Inc. PN: 850375C
7Avanti Polar Lipids, Inc. PN: 790404C
8Thanks goes to Fan Yang and the Bjorkman Lab at Caltech for constructing these mutants.
9This head group labeled fluorescent lipid is also available from Avanti Polar Lipids, PN: 810150C.
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a) b) c)

Figure 5.14: Control and adhesion vesicle groups. a) This bright field image shows the control

group of GUVs, composed of a mixture of DOPC, DOGS-NTA and DOPE-Rhodamine, with no

phL1 introduced. Though the vesicles are at high density, they remain separate as indicated by

their perfectly spherical shape. b) Vesicles with the same composition as those in (a), except these

have been incubated with phL1 for one hour at room temperature, and adhesion between vesicles

is ubiquitous, in contrast to the control group. c) The same set of adhered vesicles as in (b), except

viewed in epi-fluorescence. The scale bars are 20 µm.

a)

b)

c)

d)

Figure 5.15: Adhered vesicles at varying density. a) This fluorescent picture shows a collection of

adhered vesicles when the overall vesicle density is high. b–d) Examples of two adhering vesicles

that have different surface area to volume ratios. Notice in (b) the vesicles are roughly the same

size and have the same surface area to volume ratio, and hence have roughly symmetric adhered

shapes, whereas in (c) and (d) one vesicle is spherical and hence incapable of deforming, while the

other vesicle severely deforms upon adhesion. The scale bars are 20 µm.
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5.7.2 Azimuthally Symmetric Vesicle Adhesion

Having shown that we can control the density of L1 in a bilayer through the use of lipids with co-

ordinated Ni+2, we set out to produce the substrate-adhered vesicle geometry, as described earlier.

Again, the poly-histidine epitope on the otherwise wild type protein, comes in handy. Recently, pro-

tein microarrays have made use of professionally fabricated substrates that link coordinated ions,

specifically Cu+2, such that poly-histidine epitopes tightly bind to the coated glass substrate10.

The phL1 is incubated in Tris-buffered saline solution (TBS) with the glass substrate for approx-

imately one hour at room temperature. The substrate is then washed with the same buffering

solution that does not contain phL1, to remove any unadhered protein. Vesicles that have been

separately incubated with phL1 are then introduced into the chamber and allowed to settle to the

bottom, where they will adhere.

For the first round of experiments, confocal microscopy was used to image the adhered vesicle

shape, as shown in Fig. 5.16. These first experiments present us with some encouragement and a

number of challenges. Vesicle adhesion to the glass substrate, forming shapes that report on the

properties of adhesion, is certainly possible. That said, at least two challenges still remain. First,

we need to titrate the concentration of phL1 incubated with the substrate, so that the density is

high enough that vesicles adhere, but low enough that their shape deviates from the limiting shape,

discussed in Section 5.5. Second, we need to ensure that the substrate directly under the vesicle

is clean and free of small adhered vesicles that will block formation of a circular adhesion zone.

Figure 5.16a, for instance, shows an adhered vesicle whose adhesion zone is disturbed by smaller

vesicles, such that the adhesion zone is slightly acircular. In Fig. 5.16b, the azimuthal projection

of the adhesion zone is distorted by the acircularity of the adhesion zone.

5.7.3 Possible Extensions and Complications

Once the issues in the previous section have been addressed, there are new directions to be taken

and complications to be considered. One potential complication is that it may be that phL1 proteins

that engage in homophilic adhesion do so in groups or patches. Hence there would be no reason to

expect the adhesion zone to be perfectly circular. This would present a problem for shape analysis

since one of key assumptions is azimuthal symmetry. On a related note, while the author has no

precise thoughts on this topic, future bearers of this torch should consider whether by additional

measurements or new experiments more detailed information about the structure of the bound

oligomeric state of L1 can be gleaned from mechanical analysis of membrane shape; conceptually

this is akin to the kinds of bounds that have been explored for structural rearrangements during

the gating of ion channels [68].

There are at least four other experimental directions to pursue. First, the experiment could be

10We purchased Cu+2 coated glass substrates from Microsurfaces, Inc., Minneapolis, Minnesota;

http://proteinslides.com/HisTAG.html). Their web site contains numerous scholarly references and useful techni-

cal data on this product.
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Figure 5.16: Vesicle adhered to a glass substrate. a) This montage shows consecutive confocal

microscopy slices through a vesicle adhered to a glass substrate, starting from the spherical top

down past the flat adhesion zone. Notice in the last few frames that small vesicles can be seen on

the glass substrate that interfere with the formation of a circular adhesion zone, some of which are

shown by the small red arrows. b) Images from the same vesicle in (a) are processed to form this

side view of the adhered vesicle. Again, the adhesion zone shows intensity aberrations from the

small vesicles that disturb it. The circular dashed line indicates the spherical portion of the vesicle,

while the flat dashed line indicates the flat adhesion zone. The vertical white line is a ‘blind’ region

in image processing.
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performed in a flow chamber, where external osmolarity could be adjusted and hence the internal

volume of the vesicle could be controlled. This would give an easy knob to adjust the vesicle shape

and perform multiple measurements on the same vesicle. One could also perform the experiment

hysteretically to ensure that adhesion shapes accurately portray the underlying mechanics. Addi-

tionally, this makes it easy to wash out the unadhered phL1 and free floating small vesicles that

might otherwise adhere to the substrate. Second, while confocal microscopy is a way to gather three

dimensional vesicle shape data, the resolution in z, which is essential for reconstructing an accurate

shape, is lower than the x − y resolution. Additionally, data from confocal microscopy must be

post-processed to form the vesicle side view that is necessary for shape analysis (see Fig. 5.16).

Both of these issues could be remedied if the vesicle were rotated after substrate adhesion, such

that the z−y or z−x plane became the x−y plane. This has the effect of putting a side view of the

vesicle, necessary for shape analysis, into the image plane, hence increasing spatial resolution and

reducing the required post processing. In fact, we are in the initial stages of doing precisely that;

we cut small pieces of the substrate glass and orient them perpendicular to the image plane. Using

a micropipette, we pick up the vesicle and put it in contact with the vertical substrate, to encourage

adhesion. As of yet, no useful data have yet come from these experiments. The third direction is

an assay similar to the tether-based shape analysis assay discussed here, that uses micropipettes

and vesicle aspiration instead of beads and optical tweezers, to actively deform the adhered vesicle,

and use deformed shape as a reporter of adhesion properties [292]. If the aforementioned version of

the experiment that has the vesicle equator aligned with the image plane can be made to work, it

is straightforward to employ his micropipette aspiration technique to measurements of membrane

adhesion. Finally, all of these experimental techniques can, and where applicable, should be em-

ployed to better understand the properties of homophilic adhesion in the mutated forms of L1 that

are associated with the aforementioned disease phenotypes.

5.8 Concluding Remarks

This chapter derived in detail basis shape models for vesicle adhesion that will be used as a tool

for studying the biophysical properties of protein-mediated adhesion. We outlined a few questions

that motivate this research, and while much work remains before they are adequately answered,

we have made encouraging progress on both the experimental and theoretical fronts. Contingent

upon working out the experimental kinks, this author looks forward to seeing if this system can be

applied to other proteins or other systems of membrane adhesion. On a broader note, rarely do

we as biophysicists get a chance to make a conceptually straightforward measurement that might

inform us as to the roots of such a broad range of issues in human health.
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Appendix A

Detailed Derivation of Bilayer Thickness Deformation

This section performs in detail the calculation of the thickness deformation of a bilayer and the

resulting deformation free energy; these results were used and/or alluded to in Chapters 1 and 2.

Rescaling the radial coordinate and the deformation profile by the elastic decay length of the

system

λ =

(
κbl

2

KA

)1
4

, (A.1)

and translating the deformation profile by the tension-induced thinning

u(r) → u(r)− χ, (A.2)

we can non-dimensionalize the energy functional to read

G = πκb

∫ ∞

ρo

(
u2 + (∇2u)2

)
rdr (A.3)

yielding the parameter-free governing differential equation

(∇4 + 1)u = 0. (A.4)

We think of this differential equation as a linear operator, L = ∇4 + 1, such that

L[u] = 0. (A.5)

In reality L is actually the multiplication of two other linear operators

L± = ∇2 ± i, (A.6)

where these operators obey the commutation rule [L+,L−] = 0, such that

L+L− = L−L+ = ∇4 + 1. (A.7)

Since the equation is linear, the independent solutions for L± are added to find the full solution.
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To show this, assume there is a solution for L±[u] = 0, say u(r) = u+(r) + u−(r), such that

L+[u+] = 0 (A.8)

and

L−[u−] = 0, (A.9)

then

L[u] = L+L− [u+ + u−] = L− L+[u+]
︸ ︷︷ ︸

=0

+L+ L−[u−]
︸ ︷︷ ︸

=0

= 0. (A.10)

The differential equations defined by L± are known as the ‘Complex Bessel Equations.’ The roots

of the secular equations, n, generated by L± will be complex, and the solutions are given by J0(nr)

and K0(nr), as one can verify by substitution. L+ generates the secular equations

J0(nr) → n2 − i = 0 → n = ±k (A.11)

K0(nr) → n2 + i = 0 → n = ±ik (A.12)

while L− generates the secular equations

J0(nr) → n2 + i = 0 → n = ±ik (A.13)

K0(nr) → n2 − i = 0 → n = ±k, (A.14)

with k =
√

i, for what is initially a total of eight solutions. Immediately we can make use of the

fact that J0(kr) = J0(−kr) to reduce the solution set to

J0(nr) → n2 − i = 0 → n = k (A.15)

K0(nr) → n2 + i = 0 → n = ±ik (A.16)

and

J0(nr) → n2 + i = 0 → n = ik (A.17)

K0(nr) → n2 − i = 0 → n = ±k. (A.18)

One can also show that

J0(kr) =
i

π
(K0(ikr)− K0(−ikr)) (A.19)

J0(ikr) =
i

π
(K0(kr) − K0(−kr)) , (A.20)

for r > 0 and any k. Since, the solution already contains J0(kr) and J0(ikr), we can use these
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Figure A.1: The normalized deformation profile u(r)/uo that solves L[u] = L+L−[u] = 0, with the

stated boundary conditions at r = R.

relationships to write the general solution as only a function of K0,

u(r) = c1K0(kr) + c2K0(−kr) + c3K0(ikr) + c4K0(−ikr), (A.21)

or

u(r) = c1K0(kr) + c2K0(−kr) + c3K0(−k̄r) + c4K0(k̄r), (A.22)

where −ik = k̄ and the coefficients, cj, are complex. Now we are prepared to apply the four

boundary conditions

lim
r→∞

u(r) = 0 (A.23)

lim
r→R

u(r) = uo (A.24)

lim
r→∞

∂ru(r) = 0 (A.25)

lim
r→R

∂ru(r) = 0, (A.26)

that generate four equations which can be solved simultaneously to find

c1 = −uo
k̄K1(k̄R)

kK1(kR)K0(k̄R) − k̄K1(k̄R)K0(kR)
(A.27)

c2 = 0 (A.28)

c3 = 0 (A.29)

c4 = uo
kK1(kR)

kK1(kR)K0(k̄R) − k̄K1(k̄R)K0(kR)
(A.30)

A plot of this function with R = 0 is shown in Fig. A.1.

The last thing we will do is solve for the energy. We will take the elegant route of calculating the

energy by partial integration and conversion to a boundary integral. Recall the energy functional

has the form

L[u] = u2 + (∇2u)2 (A.31)

yielding the differential equation

∇4u + u = 0. (A.32)
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We can re-write the functional using the chain rule as

∇(∇2u∇u) = ∇3u · ∇u + (∇2u)2 (A.33)

and

∇ · (u∇3u) = ∇3u · ∇u + u∇4u. (A.34)

Subtracting these two equations yields

(∇2u)2 = u∇4u + ∇ · (∇2u∇u − u∇3u), (A.35)

allowing us to write the functional as

u2 + (∇2u)2 = u (u + ∇4u)
︸ ︷︷ ︸

=0

+∇ · (∇2u∇u − u∇3u) (A.36)

u2 + (∇2u)2 = ∇ · (∇2u∇u − u∇3u), (A.37)

where we have made use of the Euler-Lagrange equation to eliminate the first term. Then using

the Divergence Theorem, the integral for the energy can be written

G =
κ

2

∫

S

(
u2 + (∇2u)2

)
d2r =

κ

2

∮

∂S

(
∇2u∇u − u∇3u

)
· dn̂. (A.38)

Due to the azimuthal symmetry, the integrand is constant on the contour defined by ∂S, both at

r = R and r → ∞, and the unit normal to the contour always points in the r̂ direction, hence this

integral is reduced to

G = πκb r̂ ·
[

lim
r→∞

r
(
∇2u∇u − u∇3u

)
−
(
r
(
∇2u∇u − u∇3u

))∣
∣
r=R

]

. (A.39)

To handle the term that goes to infinity we examine the solution to find that

lim
r→∞

u(r) = c1

√
π

2kr
e−kr + c4

√
π

2k̄r
e−k̄r. (A.40)

The exponential asymptotic behavior guarantees that u and all of its derivatives go to zero faster

than the growth of any polynomial, hence

lim
r→∞

r
(
∇2u∇u − u∇3u

)
· r̂ = 0, (A.41)

reducing the energy to

G = −πκbR r̂ ·
(
∇2u∇u − u∇3u

)∣
∣
r=R

. (A.42)
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Using the boundary conditions ∂ru(R) = 0 and u(r) = uo this further simplifies to

G = πκbuoR
(
r̂ · ∇3u

)∣
∣
r=R

. (A.43)

The gradient of the Laplacian of u can be written out explicitly along the r̂ coordinate with

knowledge of the differential operators in cylindrical coordinates

∇2 = ∂2
r +

1

r
∂r (A.44)

and

∇ = r̂∂r (A.45)

such that

∇3 = ∇∇2 = r̂

[

∂3
r +

1

r
∂2

r − 1

r2
∂r

]

. (A.46)

Then explicitly, the energy is

G = πκbuoR ·
[

∂3
ru +

1

r
∂2

r u

]∣
∣
∣
∣
r=R

, (A.47)

where again we have made use of ∂ru(R) = 0. The solution for u can be written

u(r) = c1K0(kr) + c4K0(k̄r), (A.48)

yielding a relatively simple expression for the energy

G = 2πκbu
2
oR

iK1(kR)K1(k̄R)

kK1(kR)K0(k̄R) − k̄K1(k̄R)K0(kR)
(A.49)

Finally, an accurate and even simpler form can be written for the physiologically relevant cases

where R > 1 via series expansion

G ' πκbu
2
o

(

1 +
√

2R
)

. (A.50)

Putting the dimensions back into this equation the energy becomes

G ' πκb

(uo

λ

)2
(

1 +
√

2
R

λ

)

. (A.51)

A comparison of the energy in eqns. A.49 and A.50 is shown in Fig. A.2.



268

4

8

12

16

20

1 42 30

Figure A.2: Plots comparing the energy of thickness deformation as a function of channel radius.

The normalized energy is plotted as a function of the dimensionless protein radius. The red line

is the exact result from the Bessel function solution in eqn. A.49, and the blue line is the linear

approximation from eqn. A.50.



MscL Expression, Purification and Reconstitution (with DOPC or Azolectin) 
 
MscL STRAINS 
Strain Name: Tag / Selection Description: 
WT – 6His  6-His / Amp Wt Ec MscL 
V23D – 6His * 6-His / Amp GoF Ec MscL  
V23T – 6His  6-His / Amp Severe GoF Ec MscL  
(wt MscL - 14.96 kDa, MscL-6HIS – 15.78 kDa) 
*toxic at purification levels 

 
BUFFERS 
 
LB (~2 L) and LB + Amp (5 mL – made fresh)  
Component Amount to Add Final Concentration 
Ampicillin (Sigma A9393) 4 mg 0.05 mg/mL (in LB) 
ddH20 1 mL  
64 uL aliquots for 5 mL LB   
   
Ampicillin (Sigma A9393) 16 mg 0.2 mg/mL (in LB) 
ddH20 1 mL  
64 uL aliquots for 5mL LB   
 
IPTG (Syringe filter with 0.2 μm pore size) 
Component Amount to Add Final Concentration 
IPTG (Sigma I5502) 1 g 1 M  (245 mg/mL) 
ddH20 4196  μL n/a 
 
20x MscL Buffer: need 1 L per prep 
Component Amount to Add Final Concentration 
NaCl 116.88 g 2 M 
Tris-HCl (Sigma T5941) 72.84 g 600 mM 
ddH20 1L n/a 
pH to 7.42, where upon dilution to 1X will be pH ~7.3.  
 
Lysis Buffer: need 30 mL per prep 
Notes: pH to 7.2-7.3 w/ HCl before adding protease inhibitor, DNase, lysozyme 
Component Amount to Add Final Concentration 
20x MscL Buffer 1.5 mL 1x 
Complete EDTA-free protease inhibitor  
(Roche 11873580001) 

1 tablet n/a 

DNase I (Sigma DN25) 30 mg 1 mg/mL 
Lysozyme (Sigma L6876) 30 mg 1 mg/mL 
ddH20 28.5 mL n/a 
  
Elution Buffers: 
Note: pH to 7.2-7.3 w/ HCl after adding imidazole; see Lipid Preparation 
Component Final Concentration 
20x MscL Buffer 1x 
 n-Octyl-β-D-glucopyranoside (βOG) 
(A.G. Scientific  O-1036) 

1% by mass 



Lipid  
(DOPC – Avanti 850375C) 
(Azolectin – Sigma P7443) 

1:50 lipid:OG molar ratio; ~0.54 
mg/mL of typical 800 g/mol lipid 

4 M imidazole 
(Sigma I5513 or I0125) 

10 mM  /   100 mM   /   500 mM 

ddH20 n/a 
 
 
To make fresh Elution and Extraction buffers in the aforementioned amounts:   

1) Blow out and evaporate two glass vials. Put 37 mg of desired lipid in each (assuming MW 800 
per lipid), and evaporate the solvent in an inert gas stream until no chloroform remains (~30 
mins). 

2) To each dried lipid film add 20 ml of 1x MscL Buffer and 1.85 g of OG, tumble mix and 
sonicate until all lipid has been solubilized (may require additional OG). 

3) In 4 x 10mL Falcon tubes and 1 x 50 mL Falcon tube prepare: 
 

Buffer: Lipid Soln: DDH2O: 20X MscL Buffer: 4M Imidazole: Total Volume: 
Bead Wash (BW) 1.5 mL 3.237 mL 250 μL 13 μL  (10mM) 5 mL 
Low Elution (L) 3 mL 6.475 mL 500 μL 25 μL  (10mM) 10 mL 
Med Elution (M) 3 mL 6.25 mL 500 μL 250 μL (100mM) 10 mL 
High Elution (H)  3 mL 5.25 mL 500 μL 1.25 mL  (500mM) 10 mL 
Extraction (E) 9 mL 19.425 mL 1.5 mL 75 μL  (10mM) 30 mL 

 
a. Add an additional 1.0 g (~3%) OG to the extraction buffer above. 

 
4) Use NaOH and HCl to pH all buffers to 7.3 (this will take some time). 
5) These are now your elution and extraction buffers, necessary for 1ml of beads in column. 

 
 
Dialysis Buffer:  pH 7.2-7.3, 4L per prep 
Component Amount to Add Final Concentration 
20x MscL Buffer 200 mL 1x 
SM-2 Absorbent BioBeads (BioRad 152-8920) ~2 g n/a 
ddH20 3800 mL n/a 
 
2x Gel Loading Buffer:  10 mL* 
Component Amount to Add Final Concentration 
1M TRIS HCl (pH 6.8)  (Sigma T5941) 1.6 mL 160 mM 
β – mercaptoethanol** (Sigma M6250) 1 mL 10% (w/w) 
SDS (electrophoresis grade) (BioRad 161-0301 ) 0.2 g 2 % (w/v) 
Bromophenol blue  (Sigma B-0126) 5 mg 0.05% (w/w) 
Glycerol  (Sigma G6279) 4 mL 40 % (v/v) 
ddH20 3.4 mL n/a 
* ~180 μL + ~20 μL βME aliquots freshly combined (~ 20 lanes) 
** Gel Loading Buffer can be stored at RT, βME is added immediately before use. 
 
 
Gel Running Buffer (for 1-2 gels) 
Component Amount to Add Final Concentration 
10x Gel Running Buffer (BioRad 161-0732) 100 mL 1x 



ddH20 900 mL n/a 
 
Dessication Buffer (10 mL) 
Component Amount to Add Final Concentration 
MOPS (Sigma M1254) 21 mg 10 mM (pH 7.3) 
Ethylene Glycol  (Sigma 102466) 1 mL 10% v/v 
ddH20 9 mL n/a 
 
Rehydration Buffer / Recording Buffer (50 mL) (~430 mOsm) 
Component Amount to Add Final Concentration 
KCl 756 mg 200 mM 
MgCl2 24 mg 5 mM 
HEPES (Sigma H3375) 119 mg 10 mM (pH 7.3) 
ddH20 50 mL n/a 
 
 
Lipid Preparation:  
Only use syringes made of steel, Teflon and glass. 
Removing oxidized lipids from lyophilized lipid stock: 
1.  Blow out and evaporate a Teflon-capped glass vial. 
2.  Put ~150% of desired lipid in the glass vial. 
3.  Fill the vial with two lipid volumes of acetone, and vortex for 30 seconds. Let this sit for 5 minutes. 
4.  Pour off the free acetone, and repeat step 3, pour off the free acetone. 
5.  Dry the lipid in an Argon or N2 stream for at least 30 minutes – there should be no scent of 

acetone. 
6.  Seal and store the dry lipids under Argon or N2 at -20 C – OR – emulsify the lipids in pure 

chloroform and seal and store under Argon or N2 at -20 C. 
 
Drying Emulsified Lipids: 
1.  Blow out and evaporate a Teflon-capped glass vial. 
2.  Deposit desired amount of emulsified lipid in the glass vial. 
3.  Run Argon or N2 over lipid while rotating and ‘heating’ the tilted vial with your hand.  This does not 

require a heavy stream of gas. 
4.  Once all visible liquid has evaporated, leave the vial in the gas stream for ~30 minutes.  There 

should not be any detectable scent of chloroform. 
5.  Lipid can be stored dry if under Argon or N2 at -20C. 
 
Days 1 and 2: Growing up Cells 
Use over expression strain from Rees lab: BL21 Gold(DE3) cells for wt protein. 
Grow GoF mutants on plates first at high Amp (0.4 mg/ml) for 24 hrs, scrape and inoculate culture. 
 
1.  Grow a 5 mL starter growth in LB + 62.5 μL Amp (4 mg/mL stock) for 11 hrs. 
3.  Inoculate 2 x 1L LB no Amp cultures with 5 mL starter culture. 
4.  Grow to OD600 2; induce each 1L culture with 1 mL 1 M IPTG (=1 mM final concentration) , then 

grow 3-4 more hours.  Will grow slowly after induction. 
5.  Put in cold room ~30 min, spin 8500 rcf 10 min, scrape pellet out and store in cold room/freeze.  

Yields ~ 8 g cells. 
 
Day 3: Cell Lysis and Centrifugation 
 



1.  Resuspend 8 g pellet in 30 mL Lysis Buffer in 50 mL falcon tube (sets the correct liquid level for 
Rees Lab tip sonicator). 

2.  Tumble mix in cold room 30 min. 
3.  Lyse cells via tip sonication: place falcon tube in 0.5 L bottle full of ice + water; use high power tip 

(short stubby one, not long thin one); cycle is 3 s on / 9 s off, for a total of 4 min; use max 
power (level 100).  Follow tuning instructions on wall!  The light tan lysate becomes a more 
translucent liquid after sonication. 

4.  Ultracentrifuge: Add Lysis Buffer w/cells so that volume in centrifuge tube is 90% full if there is 
not enough volume; balance to within 0.01 g; spin 40,000 rpm w / Ti-45 rotor (~186000 rcf), 1 
hr 10 min, 4° C.  Should result in 1) clear supernatant*, 2) dark gel-like pellet, 3) grey-brown 
opaque pellet below gel-like pellet.   

 * Take 20ul of this supernatant for SDS gel analysis. 
5.  Carefully pour off supernatant and store at 4C until SDS gel analysis shows protein is in pellet. 
6.  Scrape the pellet onto the end of glass piston homogenizer and add 30 mL Extraction Buffer, 

homogenize by slowly pushing the piston up and down ~ 20 times – avoid creating foam.  
Make sure all of the material is homogenized. 

7.  Tumble mix homogenate in falcon tube in cold room overnight (~12 hrs). 
 
Day 4: Ni-NTA Column Purification (6xHIS tag chelating columns) 
 
1.  Spin homogenate at 15000 rcf 10 min, store supernatant at 4°C until column is ready, discard 

pellet. 
2.  Prepare column: 

Spin 2 mL bead stock solution (QIAGEN 30410) (1 mL beads) for 2 min at 1000 rcf, pipette off 
supernatant, carefully so as not to lose any beads!, add 2 mL Low Imidazole Elution 
Buffer, vortex, spin, pipette off supernatant and repeat. 

Add homogenate, vortex to resuspend beads, tumble mix in cold room at for 2 hours. 
3.  Gravity column (BioRad 7311550) (do not allow the column to run dry!) 

Carefully pour bead + homogenate mixture into column and collect into 50 mL falcon tube. 
Run 10 column volumes (~10 mL) Low Imidazole Elution Buffer - use this to get the rest of 

the beads out of the original tube before pouring it over the column. 
Add 10 column volumes Medium Imidazole Elution Buffer, collect 10 1 mL fractions in 

eppendorfs (~46 drops); repeat for High Imidazole Elution Buffer  
Recommended flow rate: 1ml/min            Binding capacity ~1uMol (@20KDa) 

4.  Take 20ul samples from each of the first four fractions of the medium and high imidazole fractions 
for SDS gel analysis.  Immediately snap freeze all medium and high fractions and store at -
80C so as not to precipitate the protein.  Fractions can be kept indefinitely at -80C. 

 
Day 4-5: Protein Gels, Bradford assay, Dialysis 
 
1.  Protein Gels: 

Use 4-15% Tris-HCl linear gradient gels, precast, from BioRad (ReadyGel 161-1104):  
Make sure to expose bottom of gel by cutting along black line with razor blade. Set up gel 
apparatus and fill with ~0.5 L of 1x Gel Running Buffer (BioRad 161-0732). Gently pull out the 
comb while under running buffer so as to fill lanes with buffer. 
 
Lane Sample Prep:  
All lanes contain 20 μL. 

 
11 μL of each sample + 11 μL 2x Gel Loading Buffer.  Heat at 95C for 5 mins with cover on 
top, then spin down tubes to pull down condensate.  Run 20 μL on the gel per lane. 



 
At the same ratio, prepare 22 μL of Mass Standard (MS), load 20 μL on the gel, which contains 
5 μg/band of the following:  Lysozyme (14.7 kD), Carbonic Anhydrase (29 kD), and Bovine 
Serum Albumin (~66 kD). 
 
In one lane, run the white-light visible protein ladder (GE Healthcare RPN756E or BioRad 161-
0734) - Dilute by a factor of 2 and load 20 μL. 
 
In another lane, run the UV visible protein ladder (Sigma S8445) – Dilute by a factor of 2 and 
load 10 μL. 
 
 
Run gel for ~1 hr at ~160 VDC, 500 mA.  Check every 15 minutes to make sure lanes do not 
overrun.   The blue dye should reach the bottom of the gel. 
 
Carefully remove gel from plastic casing (tears easily), using green gel removal tool. 
 

                                  
          BioRad 161-0734                    GE Healthcare RPN756E 
 
  
Calibration Gel 
Lane 1:  10ul 0.5X Protein Ladder 
Lane 2:  10ul 2X Loading Buffer + 10ul 0.0005 mg/ml Lysozyme MS (5ng / band) 
Lane 3:  10ul 2X Loading Buffer + 10ul 0.005 mg/ml Lysozyme MS (50ng / band) 
Lane 4:  10ul 2X Loading Buffer + 10ul 0.05 mg/ml Lysozyme MS(500ng / band) 
Lane 5:  10ul 2X Loading Buffer + 10ul 0.5 mg/ml Lysozyme MS (5ug / band) 
Lane 6:  10ul 1X Protein Ladder 

 
 



           
 
Figure 1:  Protein gels from the MscL purification prep.  In both gels the protein ladder in lane 1 

is not visible in fluorescence staining, and the lack of BSA purity is evident in the lane 10 protein 
standard by the presence of superfluous bands near the main BSA band.  a) Gel #1:  Notice the huge 
reduction in protein going from the ultra-spin (lanes 2 and 3) to the first column purification step (lanes 
4 and 5).  The medium imidazole fractions (6-9) have even less protein per fraction.  Lane 10 is the 
BSA / Lysozyme mass standard.  b) Gel #2:  Lanes 2-5 and 6-9 are the high imidazole fractions from 
the DOPC and Azolectin preparations, respectively.  Notice that we have pure 16KDa MscL 
monomers.  Other very faint bands appear, which are most probably some combination of 
contaminating protein and higher oligomers of MscL.  Lane 10 is the BSA / Lysozyme mass standard.   

 
Gel Staining: 
1. Dilute SYPRO Red© stock solution 1:5000 (12 uL / 60 mL Gel Stain) in a solution of ddH2O 

with 10% Glacial Acetic Acid (v/v).  Use approximately 60ml of staining solution per gel – 
the gels may be combined into one dish. 

2. Cover the dish with aluminum foil to prevent signal damage from light.  Stir slowly for ~60 
minutes (longer is fine) to stain gel. 

3. Destain for ~5 mins in same volume of ddH2O with 10% Glacial Acetic Acid (v/v). 
4. Image the gel using UV trans-illumination; band quantitation is performed using custom 

written MatLab© software and the protein concentration standards.  
 
2.  Dialysis:  

Desired ratios:  60 μg protein to 10 mg lipid all in 1ml (1:20000 molar ratio protein:lipid).   
 
1.  Dry 10 mg lipid in glass vial. 
2.  Calculate appropriate amount of High Imidazole fraction to meet ratios (call it ‘X’). 
3.  Add ‘X’ of High Imidazole fraction to the dried lipid. 
4.  To dried lipid, add 1 - X mL Dialysis buffer. 
5.  Slowly add OG detergent so that the minimal amount is used until all lipid is dissolved and 
solution has gone clear.  Add ~ 2mg detergent at a time and bath-sonicate to maximally 
dissolve lipid.  
6.  Rinse the dialysis membrane with ddH20 inside and out allowing the membrane to soak for 
~15 minutes at 4 C in a suitable size beaker. 
7.  Rinse the dialysis membrane with Dialysis Buffer twice. 
8.  Using fine-tipped pipettes (VWR 14670-327 PIPET TRANS EX FT STERL) gently add all 1 
mL of dialysis sample and put membrane holding device in 4 L of Dialysis Buffer at 4 C with a 
gentle stirring action. 
9.  Add ~ 2g of BioBeads SM-2 (BioRad 152-8920) to 4L Dialysis Buffer. 



10.  Allow to sit (at least) overnight, or until the solution becomes cloudy (up to one week).  
DOPC becomes very cloudy. Azolectin becomes translucent / ‘smoky’. 
11.  One can also add beads in 1X Dialysis buffer directly to the lipid and protein emulsified 
mixture, and stir in original glass vial gently overnight.  The solution should begin to go cloudy 
within minutes of bead addition.  This method is much faster than full dialysis. 
12.  In either case, the dialysate may be aliquoted and snap frozen for later use. 

 
Day 6: Post Dialysis and Lipid Film Deposition 
 
1.  Carefully remove all of the cloudy liquid from dialysis.   
2.  Put all 1ml of this liquid + 9 mL of 1x Mscl Buffer into a 10 mL Ti-70.1 ultracentrifuge tube. 
3.  Balance the tubes to within 0.01 g and run for 15 minutes at 70000 rpm and 4 C. 
4.  A milky white, lipid + protein pellet will form.  This pellet is very delicate. 
5.  Carefully pour off the supernatant and discard.  Resuspend the pellet in 2x the pellet volume of 

Dessication Buffer. This resuspended pellet may be snap frozen for later use. 
6.  Onto a clean, dry glass slide deposit 5 μL of this solution and vacuum desiccate for ~12 hours.  
7.  Once desiccated, deposit enough Rehydration Buffer to complete cover the desiccate, and allow 

to sit in a 100% relative humidity environment for ~12 hours or until lipid forms vesicles. 
 
Recharging the NTA Resin 
 
Handling 
Ni-NTA matrices are stable under a wide variety of conditions and need not be refrigerated, except to inhibit growth of microorganisms 
for long-term storage. After use they should be washed for 30 minutes with 0.5M NaOH. Ni-NTA matrices should be stored in 30% 
ethanol to inhibit microbial growth. The matrix can be stored for up to one week in any of the denaturing buffers. 
 
Reuse of Ni-NTA Resin 
The reuse of Ni-NTA resin depends on the nature of the sample and should only be performed with identical recombinant proteins. 
Based on the experience of Hoffmann-La Roche Ltd. (Basel, Switzerland), who have purified more than 100 different proteins on Ni-
NTA resin, we recommend a maximum of 5 runs per column. If the Ni-NTA Agarose changes from light blue to brownish-gray, the 
following regeneration procedure is recommended. 
 
Procedure: 
1. Wash the column with 2 volumes of Regeneration Buffer (6 M GuHCl, 0.2 M acetic acid). 
2. Wash the column with 5 volumes of H2O. 
3. Wash the column with 3 volumes of 2% SDS. 
4. Wash the column with 1 volume of 25% EtOH. 
5. Wash the column with 1 volume of 50% EtOH. 
6. Wash the column with 1 volume of 75% EtOH. 
7. Wash the column with 5 volumes of 100% EtOH. 
8. Wash the column with 1 volume of 75% EtOH. 
9. Wash the column with 1 volume of 50% EtOH. 
10. Wash the column with 1 volume of 25% EtOH. 
11. Wash the column with 1 volume of H2O. 
12. Wash the column with 5 volumes of 100 mM EDTA, pH 8.0. 
13. Wash the column with H2O. 
14. Recharge the column with 2 volumes of 100 mM NiSO4. 
15. Wash the column with 2 volumes of H2O. 
16. Wash the column with 2 volumes of Regeneration Buffer. 
17. Equilibrate with 2 volumes of a suitable buffer (e.g., Buffer A or B). 
 
 
 
 
 
 
 
 
 



1-24-09 
Grew 5 mL starter cultures in LB + 0.2mg/ml Amp 
Used starter cultures for lawns on 10cm plates (11ml media /plate) 
Plate growth:  0.05 mg/ml  0.2 mg/ml   0.4 mg/ml  Amp for each strain (WT, V23T, V23D) (9 plates 
total) 
 
1 plate worth scraped cells per 1L media.  Grew WT in 0.2 mg/ml Amp and both mutants at 0.4 mg/ml 
Amp.   
 
Innoc. Liquid cultures at 3:30pm 
Amp Conc: Strain: 6:10pm 7:10pm 9:00pm 
0.2 mg/ml WT #1 0.881 2.09 (induced)  
0.2 mg/ml WT #2 1.322 2.156 (induced)  
0.4 mg/ml V23D #1 0.165 0.596 2.073 (induced) 
0.4 mg/ml V23D #2 0.127 0.458 1.85 (induced) 
0.4 mg/ml V23T #1 0.402 0.999 2.283 (induced) 
0.4 mg/ml V23T #2 0.425 1.115 2.341 (induced) 
 
 
All gels below: 
Lane 1:  Mass Standard 
Lane 2:  First High Fraction 
Lane 3:  Second High Fraction 
Lane 4:  Third High Fraction 
Lane 5:  First Medium Fraction 
Lane 6:  Second Medium Fraction 
Lane 7:  Third Medium Fraction 
Lane 8:  Low Fraction 
Lane 9:  White-light Ladder 
Lane 10:  UV Sigma Ladder 
 
 

 
 
  WT     V23D     V23T 
 
Strain: Fraction H1: Fraction H2: Fraction H3: 
WT 0.9 mg/mL 2 mg/mL 2.6 mg/mL 
V23D ~50 μg/mL ~50 μg/mL n/a 
V23T 140 μg/mL 425 μg/mL 100 μg/mL 
 
 



277

Appendix C

Micropipette Preparation Protocol
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1) Align the freshly pulled pipe�e per-

pandicular to the cold glass bead.

2)  Heat up the bead un!l it melts, and 

plunge the pipe�e into the molten glass to 

a pipe�e diameter less than the desired 

final diameter.

3)  Allow the bead to cool, and pull the pi-

pe�e out of the hardened glass, crea!ng a 

jagged but open pipe�e !p.

4)  Melt the bead and carefully bring the pi-

pe�e into contact with the molten glass.

5)  Rapidly push the pipe�e about 2-3 di-

ameters into the bead.  Allow capillary 

ac!on to pull molten glass into the pipe�e 

up to the desired inner diameter (d).

7)  Gently pull the pipe�e away from the 

glass bead - the !p should neatly fracture at 

the point where the molten glass solidified, 

crea!ng a hollow cylindrical !p. 

8)  Pull the !p away from the bead, and 

heat up the bead to absorb the part of the 

!p le# in the bead, the surface should be 

spherical a#erwards.

9)  With the bead s!ll molten, quickly but 

carefully bring the !p close to the bead sur-

face - do not make contact.

10)  Slowly bring the !p towards the bead.  

Get to within ~1 !p diameter of the bead 

and wait a few seconds for the !p to ‘fire 

polish’ - i.e. round its edges.

11)  Pull the !p away from the bead and 

allow the molten glass to cool.  The !p is 

now ready for use.

6)  Being careful not to jostle the now con-

joined pipe�e and bead, let the molten 

glass cool.d

Figure C.1: Flow chart, with instructions, showing in detail how to form a vesicle aspiration

pipette. Prior to the steps shown here, the pipette is pulled from stock boro-silicate glass tube

(Kimble Glass, Inc. PN: 46485) using a Flaming-Brown Pipette Puller (Sutter Instruments Inc.)

in a single pulling step to create a long tapered tip. After these steps, the tube is carefully filled

with the appropriate, filtered (0.2 µm) chamber solution, using a MicroFil needle (World Precision

Instruments, Inc. PN: MF34G-5), and is ready for use.



279

Figure C.2: Electron micrographs showing detailed view of well-formed micropipette tips. With

the exception of some small dust particles, these tips show the desired cylindrical shape of a

micropipette tip, onto which an aspirated vesicle will (hopefully) seal well, allowing for an accurate

pressure reading and low leakage. The scale bars on the left are 10 µm and on the right are 4 µm.
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Figure C.3: Electron micrographs showing detailed views of malformed micropipette tips. In both

cases, major imperfections in the tip, as denoted by the red arrows, are caused by poor breakage

during steps 6 and 7 in Fig. C.1, and poor fire-polishing. These kinds of imperfections will lead

to poor sealing upon aspiration, and hence inaccurate pressure readings. Additionally, aspirated

vesicles will be distorted by fluid leakage. The scale bars on the left are 10 µm and on the right are

4 µm.
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Appendix D

Basics of 2D Phase Separation

D.1 Background

A great many systems, both physical and abstract, have constituents with specific energetic in-

teractions. When a system of such interacting particles is subject to fluctuations of a well-defined

spectrum (e.g. an exponential distribution of energy, like Boltzmann statistics) the system attempts

to maximize the degree of disorder in a way that is proportional to the magnitude of these fluctua-

tions (i.e. the temperature). This is, of course, the notion of entropy, and the origin of the energetic

term −TS in thermodynamic potentials. Simultaneously, each particle in the system is trying to

minimize its energy of interaction with neighboring particles, setting up a competition between the

entropy of mixing and the enthalpic benefit of having certain preferred neighbors, though in some

sense both are manifestations of the system’s desire to maximize entropy. This competition leads

to a temperature-dependent phase transition. Parts of this derivation, and excellent discussion of

the background as well as more advanced methods can be found in [197, 111].

In the case explored below, this is a so-called ‘order-disorder’ transition, closely related to

a ‘second-order’ transition. Effectively, this means that below a certain critical temperature (or

critical value of some other parameter in the system) particles in the system will organize themselves

such that enthalpy is minimized. Most often, the specific interactions are such that like-likes-like,

hence particles organize spatially by similar type to form unique phases. This is the basic physical

mechanism behind lipid phase separation model (and presumably biological) membranes, where

the enthalpic component of interaction derives from the hydrophobic mismatch between lipids that

prefer the liquid ordered (Lo) phase and those that prefer the liquid disordered (Ld phase.

The purpose of this appendix is both to understand some aspects of this entropy-enthalpy

competition and subsequently the kinetics of phase separation in a simple 2D system.

D.2 Derivation of the Cahn-Hilliard Equation

For the purposes of this discussion, let us assume we are modeling a 2D binary fluid composed of

A and B particles in the limit where diffusion is the major transport mechanism (as opposed to

hydrodynamics or other more complex mechanisms). Let us define the order-parameter field φ such

that φ = 1 is a phase completely made of A particles, and φ = −1 is a phase completely made of B
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particles, with a linear interpolation between those two phases. We assume the interactions of AA

and BB are favorable relative to the AB = BA interaction. If a particle A and a particle B are

interacting, this means there is an unfavorable energy associated with a gradient in the field ∇φ.

Obviously, the direction of that gradient does not matter (i.e. we have rotational symmetry) and we

want energy and its derivatives to be well-defined, thus gradients in the field must be energetically

penalized by |∇φ|2 to obey that symmetry.

Many entire text books have been written on the theory of phase transitions, hence we will not

dwell on that topic here. We assume that due to the inter-molecular interactions, and interactions

with any external fields there is a potential energy landscape, V (φ, T ), that has a temperature

dependent transition from a random, high temperature phase, to an ordered, low temperature

phase. In the Landau formalism, this can be approximated by a potential of the form

V (φ, T ) = c1(T )φ2 + c2(T )φ4, (D.1)

where the coefficients ci are connected to the precise Hamiltonian of the system, but are unimportant

for our analysis. Clearly, when (∂2V/∂φ2)|φ=0 = 0, or in other words when c1 switches sign,

something interesting happens — the one minimum at φ = 0 vanishes, and yields a state with two

distinct minima at non-zero field values — this is the phase transition. With no loss of generality,

we rewrite this potential as

V =
1

4
(a − (bφ)2)2. (D.2)

The stable phases, given by ∂V/∂φ = 0, are

φ∗ = ±
√

a

b
, (D.3)

with the clear interpretation that real values of φ∗ are always stable (i.e. a > 0); the energy barrier

between those fixed points is at φ = 0. Thus the interpretation is that values of a > 0 correspond

to systems whose temperature is below the phase transition temperature, and values of a < 0

correspond to an entropy dominated system.

We combine this potential with the boundary penalty to form an energy functional for the entire

field φ in space and time

F [φ(x̄, t)] =

∫ [
1

4
(a − (bφ)2)2 +

γ

2
|∇φ|2

]

dā (D.4)

where γ is a constant that penalizes phase boundaries, akin to the line tension, though with units of

tension, since the phase boundary exists over some area, not simply along a line. The microscopic

origins of γ are in the interactions between the A and B particles. If φ is understood as a measure

of particle number, and F is the energy of a particular configuration of φ, then the variation in F

with respect to φ is quantifying how the energy changes when particles change position, or in other
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words, it defines the chemical potential of the system

δF

δφ
= µ. (D.5)

From that one simple idea, a quick series of steps bring us to the Cahn-Hilliard equation. All

we need to do is remember that Fick’s First Law states that the flux of particles in a system is

proportional to the gradient of the chemical potential

J̄ = −D∇µ, (D.6)

where D is the diffusion coefficient of the particles. We assume that the system cannot create,

destroy or switch particles types (as we have currently set things up), which means this flux must

obey a continuity equation
∂φ

∂t
+ ∇ · J̄ = 0, (D.7)

or
∂φ

∂t
= D∇2µ. (D.8)

To finish off the derivation we need only calculate the chemical potential

µ =
δF

δφ
= (b4φ3 − ab2φ) − γ∇2φ. (D.9)

Finally
∂φ

∂t
= D∇2

[
(b4φ3 − ab2φ) − γ∇2φ

]
, (D.10)

where D is playing the role of an effective diffusion coefficient, and in the next section we will

extract out a natural length and time scale, such that there is only one free parameter in the

Cahn-Hilliard equation.

D.2.1 Deriving a Natural Length and Time Scale

Let us make the assumption that this system has a natural length scale λ and natural time scale

τ , such that t = τ t̂ and x̄ = λx̂. Then the differentials can be rewritten

∂

∂t
=

1

τ

∂

∂t̂
(D.11)

and

∇n =
1

λn
∇n

x̂. (D.12)

Then the Cahn-Hilliard equation can be written (leaving the subscript off ∇)

∂φ

∂t̂
= ∇2

[
Dτab2

λ2
(α2φ3 − φ) − Dτγ

λ4
∇2φ

]

(D.13)
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with α = b/
√

a. This leaves us with two equations and two unknowns, hence we find

τ =
γ

a2b4D
(D.14)

and

λ =
1

b

√
γ

a
. (D.15)

The Cahn-Hilliard equation is now

∂φ

∂t̂
= ∇2

[
α2φ3 − φ −∇2φ

]
. (D.16)

Already we notice two things; first, we retrieve the well-known result that the length scale diverges

at the phase transition (i.e. limλa→0 = ∞). Second, we see that the nonlinearity in the PDE is

strongest near the phase transition (i.e. limαa→0 = ∞).

For a given initial condition, φ(x̂, 0), this equation can be numerically solved, however to make

analytic headway, we will employ the so-called ‘strong-segregation’ limit. This simply means that

we are far from the phase transition where particles A and B strongly seek their own kind, such

that α � 1. Hence the Cahn-Hilliard equation is written in a linearized form

∂φ

∂t̂
= −∇2

[
φ + ∇2φ

]
. (D.17)

The next section will use this linearized equation to derive wavelength-dependent dynamics and

the general linearized solution.

D.3 Kinetics in Fourier Space

Given the orthonormality and completeness relations, we know that we can represent φ by its

Fourier Transform

φ(x̂, t̂) =

∫

Ak(t̂)e−ik̄·x̂dk̄. (D.18)

We can also represent derivatives in space and time using the Fourier Transform, such that

∂φ

∂t̂
=

∫

Ȧk(t̂)e−ik̄·x̂dk̄ (D.19)

and for n = 2, 4 the gradient of φ can be written as

∇nφ =

∫

Ak(t̂)(−i)n(k̄ · k̄)n/2e−ik̄·x̂dk̄ =

∫

Ak(t̂)i
n|k|ne−ik̄·x̂dk̄. (D.20)

Using these two relations, we can write an independent dynamic equation for the evolution of each

Fourier component

Ȧk = (|k|2 − |k|4)Ak. (D.21)
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This is the classic ‘spinodal decomposition’ result, stating that instabilities with wavelengths near

|k| = 1/
√

2 grow fastest, and that all wavelengths with |k| > 1 are exponentially damped, while

all wavelengths with 0 < |k| < 1 grow exponentially. Physically this results in a rapid evolution of

features on a certain length scale, followed by a long-time evolution of long-wavelength features, as

shown in Fig. D.1a. Interestingly, the dynamics show a kind of ‘scale-invariance’, whereby evolution

of the system in time is equivalent to increasing the spatial scaling, as shown in Fig. D.1b.

Lastly, the general solution for the linearized equation is found by solving the dynamics for each

wave vector

Ak(t̂) = Ak(0)e(|k|2−|k|4)t̂. (D.22)

The initial condition, φ(x̂, 0), specifies the initial conditions for each wavelength

Ak(0) =
1

2π

∫

φ(x̂, 0)eik̄·x̂dx̂, (D.23)

such that the general solution is written

φ(x̂, t̂) =

∫

Ak(0)e(|k|2−|k|4)t̂e−ik̄·x̂dk̄. (D.24)

Phrased differently, if we use a δ-function, then

Ak(0) =
1

2π

∫

δ(x̂ − x̂′)eik̄·x̂dx̂, (D.25)

and

Ak(0) =
1

2π
eik̄·x̂′

. (D.26)

Substituting this into the general linearized solution gives the Green’s Function

G(x̂, x̂′, t̂) =
1

2π

∫

e(|k|2−|k|4)t̂e−ik̄·(x̂−x̂′)dk̄, (D.27)

and the general solution

φ(x̂, t̂) =

∫

G(x̂, x̂′, t̂)φ(x̂′, 0)dx̂′. (D.28)
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Figure D.1: Phase kinetics in simulation and experiment. a) Progression of phase separation in a

diffuse Monte Carlo simulation in two dimensions with A (white) and B (black) particles at 〈φ〉 = 0,

that is, equal mounts of A and B particles. The frames correspond to pre-quench, 20, 100, 400,

1000, 3000, and 5000 Monte Carlo steps, respectively. Notice short wavelengths disappear quickly,

and long wavelengths evolve slowly. Ostwald ripening is also visible during the simulation, as small

domains ‘evaporate’ and join larger domains, shown by the small blue arrows. b) A qualitative

demonstration of scale invariance showing the similarity between frames 20, 400, 1000, and 3000.

The scale factors are listed below each frame, and a plot of scale factor vs. time shows a power law

relationship with an exponent ' −1/4. To demonstrate the scale invariance, the three scaled images

are then embedded in the original image, showing they are almost indistinguishable. The scaled

images are color coded for clarity. c) Phase separation on a spherical lipid vesicle of the mixture ex-

plore in chap. 4. See the video on YouTube at http://www.youtube.com/watch?v=kDsFP67 ZSE.
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Appendix E

Electroformation of Giant Unilamellar Vesicles

Materials

• Ethanol, DI water and Kimwipes for cleaning

• 5–10 µl glass syringe (Hamilton Co.)

• 200 µl pipette (with wide mouth tips)

• two Eppendorf tubes (1.7 ml)

• vacuum desiccator

• One of the following:

· nitrile O-ring (9.25 mm ID x 1.78 mm radius)

· vacuum grease required

· ∼ 134 µl fill volume

or

· Grace Biolabs FW9-2.0 FastWell

· no grease required

· ∼ 96 µl fill volume

• appropriate buffer

· low salt (< 10mM)

· DDI H2O, sugars (sucrose and glucose) and other anionic compounds work up to ∼ 500mM.

• desired lipid or lipid mixture; concentration such that there are ∼ 100 bilayers for a typical

lipid film deposition (typically 2 mg/ml seems to work well)

Notes on cleanliness

The strength of bilayers, their elastic properties, as well as their phase separating properties (with

multiple lipid species) are all quite sensitive to contaminants. Hence, everything in the procedure

is made of metal (steel or copper), Teflon or glass. Polyethylene pipette tips and Eppendorf tubes

can only be used in aqueous conditions, not during stages that use solvents. Adhesives, cleaning

agents, and other surfactants often lead to anomalous behavior.
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Preparation

• Clean the chamber with ethanol and DI water using Kimwipes, alternating the water and

ethanol at least twice to make sure any grease or sugars are removed from the slides

• Make sure the ITO slides in the chamber are firmly in place and the copper conductor gasket

is in contact at the top and bottom of each slide, check the resistance from BNC to slide, it

should be no more than ∼ 50 Ω

• Using the 10 µl glass syringe apply a 2−3 µl (@ 2 mg/ml conc.) droplet of the lipid/chloroform

solution in the center of the ITO slide on the shorter side of the chamber. The layer should

appear greenish under white light reflection (corresponding to ∼ 100 bilayers thick).

• We find that film deposition is one of the most crucial steps depositing a uniform green(ish)

film is key to high yield electroformation.

• Quickly (within a minute) place the whole chamber in the vacuum desiccator, desiccate for

∼ 2 hrs. This removes excess solvent (chloroform) from the lipid film.

• Meanwhile, clean the nitrile O-ring or FastWell using a Kimwipe and ethanol. If using an

O-ring, use a Que-tip or grease slide to apply a thin layer of vacuum grease to one side of the

O-ring.

• Remove the chamber from the desiccator and place the O-ring (greased side down) or FastWell

approximately in the center of the short side of the chamber, directly over the greenish film.

• Using the 200µl pipette, place the appropriate fill volume (see Materials) of buffer solution

in the O-ring or FastWell.

• Secure the top half of the chamber onto the bottom using the alignment pins, ensure there

are no bubbles (very small bubbles are okay).

• Carefully bring the chamber over to the microscope and position over objective (20X is fine).

Procedure

• Place the chamber on the microscope stage, lipid coated side down.

• Secure the chamber with the spring clips on the microscope stage.

• Carefully attach the BNC connector to the chamber.

• Set the voltage amplitude between 1V and 4V, never exceed 5V as this will damage the ITO

coating. Set the driving frequency to ∼ 10Hz. One can vary the amplitude and frequency to

suit the lipid/buffer composition (vesicles have been formed with frequencies as low as 2Hz

and as high as 20Hz and 1–4 V).
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• Our general formation recipe is 120 minutes, 1V, 10Hz; 60 minutes,1V, 2Hz

• Note: multicomponent membranes need to be formed at higher temperatures (∼ 50 C). A

special chamber, shown below, is used to simultaneously heat and electroform.

• Wait and watch as vesicles begin to form over the course of 2–3 hours. Blistering of the lipid

layer should be noticeable within a few minutes.

• When the formation is done, turn off the equipment and remove chamber from microscope.

Using a wide-mouth tip, pipette out the ∼ 100 µl of the solution from the chamber into the

Eppendorf tube already filled with ∼ 1ml desired buffer. Slowly mix this solution in the

centrifuge tube. Depending on the yield, a 10:1 dilution of this solution may be in order. The

vesicles are now ready! They are good for ∼ 24 hours.

Tension in the membrane

Regulating the internal and external osmolarity is the key to having tense or floppy vesicles. My

experiments usually require floppy vesicles which requires careful control of the difference in osmo-

larity between the inside and outside of the vesicle. If the vesicles are too floppy, protrusions, tubes,

buds and other nasties form. I usually form vesicles with 100 mM sucrose inside and 102–108 mM

glucose outside. Additionally, this will cause the vesicles to sediment upon viewing.

Lipid Storage

Many lipids can be oxidized, and hence ruined if exposed to improper conditions. All lipids should

be stored in Teflon capped, glass vials, under argon at -20C. When you are about to use a lipid

mixture, wait until it has reached room temperature before opening this will prevent water con-

densation inside the vial from damaging the lipid. Labeled lipids should have minimum exposure

to light. The shelf-life of a properly stored lipid is about a year.

Chamber Construction

ITO slides can be purchased from Sigma-Aldrich (∼ 400$ per 10, AN: 578274) and the rest of

the materials are widely available. The body of the formation chambers are made of machined

Teflon. Teflon tape is used to hold on copper gasket to the ITO slide. Occasionally, lab quality

masking tape is used. A function generator or computer controlled DAQ card (we use LabView)

are suitable for applying the AC electric field. Technical drawings of the simpler room temperature

and heated electroformation chambers are shown in Fig. E.1 and E.2. The latter figure also shows

the dimensions of the custom build temperature control stage using during various experiments.

Photo-Induced Phase Effects A number of studies [130, 268] and our experience with phase

separating membranes indicates that fluorescence visualization of a labeled, multi-component bi-

layer affects the phase transition temperature. The observational consensus is that, upon fluorescent
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a) b)

Figure E.1: Simple electroformation chamber. a) Technical drawing of small electroformation cham-

ber with dimensions in millimeters. The preferred construction material is Teflon. b) Photograph

of the assembled, functional electroformation chamber with annotations.

viewing, labeled membranes shift to a higher demixing transition temperature, nominally by about

∼ 5C. Our hypothesis, which is supported by a number of papers in the photochemistry litera-

ture [293, 294], as well as our, albeit preliminary, NMR experiments, is that the double bond in

the acyl chain of the thinner mono-unsaturated lipid, in our case DOPC, undergoes a cis-trans

isomerization, photo-catalyzed by the presence of the labeled lipid. This has the effect of slightly

thinning these lipids (as shown schematically in Fig. E.3), hence creating a greater hydrophobic

mismatch between the two lipid phases and thus raising the transition temperature [177]. One set

of relatively simple experiments that could bolster this idea, is to make ternary lipid vesicles from

different mixtures of the cis1 and trans2 forms of the unsaturated lipid, and verify that increasing

molar fraction of the trans lipid increases the transition temperature. Coupled with a detailed

carbon NMR study of the changes in lipid structure upon fluorescence viewing, we are poised to

answer the nagging issue of photo-induced effects in model membranes systems.

1Avanti Polar Lipids PN: 850375
2Avanti Polar Lipids PN: 850376
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a) b)

I/O side return side

c)

Figure E.2: Heated electroformation chamber and temperature stage. a) Technical drawing of the

heated electroformation chamber used in forming multicomponent vesicles, with dimensions are in

millimeters. The preferred material is Teflon. b) Technical drawing of the water heat exchanger for

the temperature control stage, with dimensions in millimeters. The material is 6061 aluminum. c)

Technical drawing of the temperature control led viewing chamber used in a variety of experiments,

with dimensions in millimeters. The material is 304 stainless steel.
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Figure E.3: Photoisomerization of lipids. This schematic shows the photo-induced structural

changes in a mono-unsaturated lipid from a cis configuration to a trans configuration upon ex-

posure to green incident light. This isomerization process has the effect of taking the thinner

disordered phase, and further thinning it, hence raising the phase transition temperature. Part of

our hypothesis is that this process is photo-catalyzed by the presence of the rhodamine head group

labeled lipids used for visualization.
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Appendix F

Protocol for Giant Plasma Membrane Vesicles

Cell type: NIH 3T3 Fibroblast or RAW Macrophage

Reagents and Dyes

• Vesiculation Buffer

· 200 µg/ml DOPE-Rhodamine (Avanti Polar Lipids) (TRITC)

· 50 µg/ml Naphthopyrene (or Perylene) (Sigma-Aldrich) (CFP) in Ethanol, Acetone or

DMSO (preferred)

· Remove chloroform with argon stream, then resuspend in solvent.

• GPMV Buffer (∼ 315 mOsm) [100 ml]

· 2 mM CaCl2 (0.022g)

· 10 mM HEPES (pH 7.4) (0.238g)

· 150 mM NaCl (0.878g)

• GPMV Reagent (∼ 342 mOsm) [100 ml]

· 2 mM CaCl2 (0.022g)

· 10 mM HEPES (pH 7.4) (0.238g)

· 150 mM NaCl (0.878g)

· 25 mM formaldehyde (0.075g) in solution (Sigma PN: 5016), Specific gravity 1.08, m/m

HCHO 37.5%)

· 2 mM DTT (0.031g)

• PBS/G

· PBS +10 mM Glucose

• (Pre-Bleb) Cholesterol Depletion and Repletion Reagent (30x)

· DME (3ml)

· M-βCD (1.18g) (∼ 300 mM)

· (Repletion) (58mg) (∼ 50 mM)

· Incubate in full media for 15-30 min at 37C.

• (Post-Bleb) Cholesterol Depletion and Repletion Reagent (30x)

· PBS/G (3ml)
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· M-βCD (1.18g) (∼ 300 mM)

· (Repletion) (58mg) (∼ 50 mM)

• Osmotic Up-shock Reagent

· PBS/G (20ml)

· Sucrose (2.74g) (∼ 400 mM / ∼ 440 mOsm)

Cell Culture

NIH 3T3 or RAW macrophage cells are grown to confluency in DMEM with Penn/Strep and FBS,

then passaged and plated at a density of ∼ 5×104 cells per square centimeter in a four-well chamber

(Nalgene-NUNC) with 2 cm2 of area per well and a #1.5 borosilicate glass coverslip bottom. The

cells are then incubated at 37C in phenol–red free media for 2.5 hours and subsequently rinsed in

PBS plus 10 mM glucose (PBS/G) before addition of solvent/dye solution to induce formation of

cell-attached GPMVs as described below.

Procedure

• Cell-attached

· GPMVs are prepared by addition of 1–5% vol/vol of Vesiculation Buffer to adherent NIH

3T3 or RAW macrophage cells in four-well chambers. Cells are incubated for ∼ 15 minutes

before imaging.

• Cell-free

· Cells are grown to confluency in a 25 cm2 tissue-culture flask and washed twice with GPMV

Buffer (∼ 2 ml). Then ∼ 1.5 ml of freshly prepared GPMV Reagent is added to the flask

and incubated for 1 hour at 37C with slow shaking (60 cycles per minutes). After incubation,

GPMVs that have detached from cells are gently decanted (∼ 1 ml) into a 15 ml conical tube.

The conical tube is put on ice for ∼ 30 minutes. Using a wide-mouth pipette tip, the lower

∼ 20% of liquid is removed from the conical tube.

· Depending on the GPMV yield, 1-5% vol/vol of Vesiculation Buffer is added and allowed to

incubate with the vesicles at 37C.

• Imaging

· Free GPMVs are aliquoted into 60 µl samples and osmolarity is sampled in increments of

∼ 2 mOsm by addition of low glucose solution (< 25 mM) or high glucose solution (> 350

mM). Each aliquoted is viewed in a 47µl Grace-Biolabs FW-9. DOPE-Rhodamine is viewed
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in TRITC and Perylene or Naphthopyrene in CFP. Images can be taken using either confocal

or standard epi-fluorescence microscopy.

• Short Protocol1

· Grow cells to 50% confluency in phenol–red free media.

· Remove media, and replace with equal volume of PBS/G buffer.

· Add ∼ 5% (v/v) dying solution, and slowly stir to make sure the solution is properly mixed.

· Incubate the cells at 37C for 30 minutes, they are now ready for imaging.

1After experimenting with the more complicated protocol above [245], we developed a much easier protocol for

cell attached GPMVs, that uses only a few steps. All the data in Chapter 4 was collected with this short protocol.
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