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ABSTRACT 

We calculate the coupling constant and energy dependence of the scattering am

plitudes for baryon- and lepton-number violating processes in the context of the stan

dard model, in the semiclassical approximation. It is found that, to leading order in 

this expansion, the spin-averaged total cross sections for these processes grow as a 

power of the CM-energy and thus violate the bound imposed by unitarity. This result 

has a twofold implication: first, perturbation theory in the instanton sector of the 

electroweak theory must break down at high energies and, second, it strongly suggests 

that baryon and lepton number non-conservation might be observed experimentally 

at energies accesible in the near future. 
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Chapter Introduction 

It has been known for some time that baryon and lepton numbers are not ex

actly conserved in the standard model. Due to the chiral- nature of the fermionic 

representations the baryonic and leptonic currents suffer from [SU(2)]2 and [U(1)]2 

anomalies [1]. 

However, any nonvanishing scattering amplitude that violates baryon and lepton 

number conservation must involve (in Euclidean space) topologically nontrivial large 

gauge field configurations with Euclidean actions greater or equal than 81r2 / g2 , where 

g is the SU(2) coupling constant. These instanton configurations [2] describe tunnel

ing events of the gauge field under the potential barrier that separates topologically 

distinct vacua. Thus the rate for any process mediated by tunneling of the gauge field 

is (for g small) suppressed by the exponentially small factor exp(-l61r2 / g2). 

Taking this potential barrier picture seriously, several authors [3-5] suggested 

that these anomalous processes can be unsuppressed ( enhanced considerably) if high 

temperatures or high energies are involved: instead of tunneling through the barrier 

the gauge ( and Higgs) field can pass over the barrier. 

The discovery [5,6] of a static and unstable solution of the classical equations 

of motion for the SU(2) Yang-Mills-Higgs field theory which interpolates between 

topologically distinct vacua and therefore corresponds to the configuration sitting at 

the top of the barrier (the so-called sphaleron), made possible a semi-quantitative 

estimate of the magnitude of the rate of transitions over the barrier at finite tempera

tures [3, 7]. These authors further computed the corresponding dissipation rate of the 

baryonic asymmetry of the universe and concluded that the effect is big enough to 

wipe out an initial baryonic asymmetry generated at an earlier epoch (such as GUT 

baryogenesis). The connection between transitions over the barrier and baryon and 

lepton production is rather ad-hoc in their calculations, however. (In Ref. [8] it is 

claimed that although fluctuations in FF can be unsuppressed at high temperatures, 
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the net rate of baryon and lepton number generation is negligible due to the absence 

of occupation number factors in the rates.) 

In an attempt to reconcile their sphaleron-based calculation of the baryonic asym

metry dissipation with a more conventional one based on individual anomalous scat

tering events, Arnold and McLerran suggest in Ref. [9] that although the scattering 

amplitude for a purely fermionic process like q + q _,. (3n1 - 2)q + 3n1l (n1 is the 

number of families) is exponentially suppressed, an anomalous scattering event con

taining many gauge bosons and/ or Higgs particles in the final state might not be 

suppressed. The motivation to consider the latter kind of processes comes from the 

suggestion that a classical object like the sphaleron with energy Esp rv mw / aw and 

size rv m;1 has typical Fourier components k rv mw and thus is likely to decay into 

rv 1/aw W's with typical momenta mw, They claim that a Green function of the 

type ( ( qqqlr1 An) although proportional to the small factor exp( -81r2 / g2 ) is also pro

portional to (1/gr, the 1/g's coming from the instanton configuration. So naively, 

for large n the latter factor can compensate for the smallness of the former, avoiding 

the exponential suppression. This observation cannot be taken too seriously however, 

since perturbation theory around the instanton breaks down for n too large. 

There is a peculiar point in the previous reasoning however: for a given small 

value of the coupling constant g it seems that the scattering amplitude should be 

largest for largest n. This is not what one would expect for the emission of weakly 

coupled gauge bosons. Furthermore, it would be hard to understand how the unitarity 

equation for a process like 3n1q+n1l-,. 3n1q+n1l that can produce real intermediate 

states containing T¥-bosons could work, for in the equation 

A Ji - Aif = L i(21r)48C4\pi - Pm)AJmAin, (1.1) 
m 

where i = 3n1q+n1l and f = 3n1q+n1l, the LHS carries no factors of 1/g (apart from 

the usual (g-8
)

2 coming from the collective coordinate Jacobian) whereas a term in 

the RHS containing an intermediate state with n gauge bosons would carry a factor 

of (1/g)2n. 
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The purpose of this thesis is to study the coupling constant and energy depen

dence of the baryon and lepton number violating amplitudes involving in general 

also some number of gauge and Higgs bosons, in leading order in the semiclassical 

expansion (g2 ~ 0, keeping mH and mw fixed). It is essential for the feasibility of 

the calculation to introduce a Higgs field that spontaneously breaks the SU(2) gauge 

symmetry completely, since otherwise the S-matrix is not defined due to the severe 

infrared divergences of the theory (reflected in an instanton calculation in the diver

gent integration over the instanton size p ). We also investigate the effects of small 

Yukawa couplings (i.e., fermion masses) on the anomalous scattering amplitudes. 

The main results of our leading order calculation are the following: i) for fixed 

gauge and Higgs boson masses, the amplitude for a scattering process involving n 

gauge bosons and m Higgs bosons is proportional to gn+me-8
1r

2 

f g2. Thus, the emis

sion of an extra gauge or Higgs boson is suppressed by an extra power of g. ii) surpris

ingly enough, amplitudes grow with external momenta as pNtl2qn, where NJ, n are 

respectively the number of fermions and gauge bosons participating in the scattering 

process, and p, q represent respectively typical fermion and gauge boson momenta. 

We find thus that the unitarity bound is not respected by the leading term in the 

semiclassical expansion. 

Work substantially overlapping with the work presented in this thesis has been 

published in a recent paper [16]. The author of Ref. [16] has performed a calcula

tion very similar to ours, reaching basically the same qualitative conclusions as we 

do. However, he neglects to include the effect of the global isospin orientation of the 

constrained instanton (see chapter 3), which does induce a nontrivial dependence of 

the anomalous scattering amplitudes on momentum transfers. This nontrivial depen

dence of the amplitudes on external momenta makes the corresponding cross sections 

grow faster with energy, which would make the anomalous processes experimentally 

detectable at fairly lower energies than estimated in Ref. [16] (provided, of course, 

higher order corrections, which should be responsible for the unitarization the cross 

sections at high energies, do not make the amplitudes start falling off when they are 

still too small.) 
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The rest of this thesis is organized as follows: after setting up the problem in 

chapter 2, our main calculational tool, the method of constrained instantons developed 

by Affleck [10], is described in some length in chapter 3, and used to obtain a simple 

expression for the relevant momentum space Green functions. In chapter 4 we study 

the fermionic zero modes in the field of the constrained instanton for nonzero Yukawa 

couplings. The result for the total spin-averaged cross section for the process q + q --t 

(3n1 - 2)q + 3n1l + nvV + nH and its high energy behavior, to leading order in the 

semiclassical approximation, are presented in chapter 5. Our conclusions are discussed 

at the end of that chapter. Technical details are relegated to three appendices. 
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Chapter 

Baryon and lepton number non-conserving Green functions 

2.1 Anomalous currents in a simplified standard model 

Our aim is to compute a semiclassical approximation to the baryon- and lepton

number-nonconserving scattering amplitudes in the standard model with n 1 families 

of quarks and leptons. Right from the outset we make several simplifications: 

a) We neglect interfamily mixings, that is, we set the (generalized) Kobayashi

Maskawa matrix equal to the identity. 

b) We neglect strong interaction corrections, that is, we set g8 = 0. 

c) We set the U(l) coupling constant g1 equal to zero. We think this is a reasonable 

approximation since on the one hand the Weinberg angle is small (sin2 0w c::::'. 0.22) 

and on the other, although the anomalous divergence equation for the baryon and 

lepton currents involves g1 in addition to the SU(2) coupling constant g, (F F)u(I) 

fluctuates around zero in the semiclassical expansion. 

The model reduces therefore to a SU(2) chiral gauge theory with the follow

ing matter content: one scalar Higgs doublet H and n 1 identical families of two

component fermions each containing four left-handed doublets lL and qLa and seven 

right-handed singlets eR and uRa, clRa, where a= 1, 2, 3, is the SU(3) color index. 

As we shall soon see, the multiplicity of families as well as of quark colors is 

trivially taken into account. Thus, we only need to consider the role of one lepton 

field lL, eR and one quark field qL, uR, clR in the scattering process. 
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Componentwise, 

The Lagrangian (in Minkowski space) is: 

n1 3 

£ = £YM + £H + L (£z + I: £qa), 
(Jam) a=l 

where 

l pµv £YM = - 2tr Fµv , 

CH= (DµH)t(DI' H) - ¾cHtH - v 2
)
2

, 

£1 = illaµDµlL + ielaµ8µeR - (gzl1HeR + h.c.), 

£q = iqlaµDµqL + iuk<iµ8µuR + idk<iµ8µdR 

(2.1) 

(2.2a) 

(2.2b) 

(2.2c) 

- (guqlcH*uR + gaq1H dR + h.c. ), (2.2d) 

and 

a 

Dµ = 8µ - igA: ~ . 

(2.3) 

(2.4) 

The hypercharge assignments are those of the standard model. In (2c, d) aµ = (l, if), 

cfµ = (l, -if), E = i72 = (_~ ~) and the phases of the fermionic fields have been 

adjusted so that gz, 9u and ga are positive. 



7 

Although lepton and baryon numbers are global symmetries of£, at the quantum 

level the corresponding currents are not conserved [1]: 

where 

and 

(2.5) 

(2.6a) 

(2.6b) 

(2.7) 

We shall calculate the "anomalous" scattering amplitudes by the LSZ procedure: 

we first compute the corresponding multiparticle Green function in Euclidean space 

and after continuing it back to Minkowski space we amputate the propagators for the 

external particles and put the latter on mass shell. 

One must exercise some care when writing down the fermionic piece of the Eu

clidean space Lagrangian if one wants to obtain an SO( 4) invariant object. The 

subtlety here is that complex conjugation does not interchange the two spinor rep

resentations of SO( 4). Defining A- and B-type spinors in SO( 4) (the analogs of R

and L-spinors of the Lorentz group, see appendix A), the correct transition is made 

as follows: if 1/JR and 1/JL are two-component Weyl spinors appearing in (Minkowski 

space) £, then one has to substitute 

(2.8) 

and 

-µ - - ( ➔ ') 0- --+ -0-µ - -a-, i . 

(2.9) 
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In this way the Euclidean counterparts of eqns. (2.2a-d) are: 

~ 1 
£YM = 2tr FµvFµv, 

l,H = (D,,H)t(D,,H) + i(HtH - v 2 )2, 

~ - . t D . t - a 'dt - a d t H* 1-,q - iqAaµ µqB - 'l,UBO'µ µUA + 'I, BO'µ µ A - guqAE UA 

- 9dq1HdA + 9uu1HTEqB - 9dd1HtqB. 

Defining 

Q=GJ, 
L= G:), 

and 
iaµDµ -guEH* -gdH 

iJQ = 9uHTE -iciµ8µ 0 

-g'JHt 0 -icf µ8µ 

( icr,,D,, -91H) DL = 
-ici,t8µ ' -gzHt 

we can write 

and 

(2.10a) 

(2.10b) 

(2.10c) 

(2.10d) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15a) 

(2.15b) 
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2.2 Anomalous Green functions in Euclidean space 

We are interested in the Fourier transform into momentum space of Green func

tions of the type 

(Ol1f'(x1) · · · 1P(xp)A(y1) · · · A(yn)r,(z1) · · · r,(zm)IO) = 

j 1Jµ( ,P, A, H) e-SE ,P(x1) · · · ,P(xp)A(y1) · · · A(yn)1J(z1) · · · 1J(zm) 

j 1Jµ( ,P, A, H) e-SE 

(2.16) 

where we have suppressed all (Euclidean) spacetime and isospin indices and 1/', A, 77 

denote any fermionic field, the gauge field, and the (shifted) Higgs field respectively. 

'Dµ( 11', A, H) denotes the path integral measure including the appropriate gauge fixing 

and ghost terms. 

The fermionic piece of the path integrals in (2.16) can be computed exactly in 

terms of the backgroud bosonic fields A, H since the fermionic fields appear quadrat

ically in SE. More generally, we consider the generating functional 

(2.17) 

where w(x) and wt(x) are, in general, independent multi-component objects, their 

entries being two-component Grassmann spinors. (( x) and (( x) are the external 

sources, and iJ is, in general, a nonhermitian operator (with respect to the standard 

inner product ( 1/', x) = J d4x 1f' t x). 

The result for Z is: 

N N' 

Z[(,(] = IT vi(() IT ttj(()[Det'(iJtiJ)]
112 

exp J d4xd4y((x)S'(x,y)((y), (2.18) 
i=l j=l 
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where 

i = 1, ... ,N', (2.19a) 

i = 1, ... , N, (2.19b) 

N, N' being the number of normalizable zero modes 'l/Joi, <poi of iJ and !Jt respectively: 

chosen such that 

D'l/Joi = o, 
!Jt <poi = 0, 

i = 1, ... ,N, 

i = 1, ... ,N', 

(2.20a) 

(2.20b) 

(2.20c) 

The meaning of the primed objects in (2.18) is explained in appendix B, where a 

rough derivation of formula (2.18) is given as well. 

Green functions are obtained by differentiating Z[(, (] with respect to ( and/or 

( and then putting ( = ( = 0. It is clear that from the sector with no zero modes 

( N = N' = 0, and hence no Ui or Vi factors) the only non vanishing Green functions 

are those containing an equal number of \J! and wt fields which therefore conserve any 

fermionic number. 

Only the sector of the sum over histories over the bosonic fields A, H that leads to 

the existence of normalizable zero modes of either of the operators iJ, !Jt contributes 

to an anomalous Green function. 

It is possible to prove (see Section 3.3) that the index of the operators DQ and 

DL ( recall that index A = dim ker A - dim ker At) is independent of the Higgs field 

configuration and depends only on the Pontryagin index of the SU(2) gauge field as in 

the pure Yang-Mills case. (One might argue that this is a trivial result since the index 

of an operator is unchanged by continuous deformations of the operator. This is not 
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so, however, because finiteness of the Euclidean action implies a nontrivial topology 

for the Higgs field as well [11]. Moreover, the configuration H = 0 has infinite action 

and hence cannot be taken as the "undeformed" configuration.) 

The result above is a reflection of the fact that the anomalous divergence equation 

(2.5) is independent of the scalar Higgs field [12]. 

We shall consider the simplest case: iJ has exactly one (normalizable) zero mode 

and iJt none. Then the simplest nonvanishing Green function is 

J 1)\lf 1)whl!(x) exp{ - J d4x(wtiJw)} = __J:_z[(, (] I -
8((x) (=(=O 

= ¢o(x )Det '(iJtiJ). (2.21) 

In our theory (2.1) we have 4n1 independent fermionic fields to integrate over. 

So the simplest anomalous Green function must contain p = 4n 1 different fermionic 

fields and violates L-number and R-number by n 1 units. It is proportional to 

(2.22) 

where 

(2.23) 

and the subscript v = 1 indicates that we are to integrate over the winding number 

one bosonic configurations. To very good approximation, widely separated instanton

anti-instanton configurations will not contribute to the integration since they imply 

too many zero modes. 

In the following chapter we shall perform a semiclassical evaluation of (2.22). 
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2.3 Index theoren.1 in the presence of Yukawa couplings 

We want to compute the index of the operators DQ and DL defined in (2.13) and 

(2.14). Using the equality of the nonzero eigenvalues of the operators iJtiJ and iJiJt 
(see (B.1-3)), the index of the operator D, 

index iJ = dim ker iJ - dim ker iJ, (2.24) 

can be written as 

A AtA A At 
indexD = Tr e-tD D -Tr e-tDD , (t > 0). (2.25) 

To get a manageable form for (2.25) we write 

£=n,Oi 

where a, /3 are spin indices and a, b are isospin indices. Using the completeness of 

the eigenfunctions of the hermitian operator fJtjJ and a momentum representation 

for the delta function inside brackets in the last formula, we can write 

(2.26) 

and thus the index of the operator iJ can be computed as 

(2.27) 

where the trace is both over spin and isospin indices. 



13 

vVe will first consider 

(2.28) 

where we have absorbed the coupling constants g and gz into the definition of the 

fields. Using formulas ( C.6) one gets 

(2.29) 

(2.30) 

It is seen that !JliJL and !JLiJ1 can be obtained from each other by interchanging 

O" µv +-+ cf µv and aµ +-+ cfµ• 

We will compute (2.27) in the limit t -+ 0, where several simplifications occur. 

First we split -tbl DL = tA + tB and -t!JL!J1 = tA + tB', where 

(2.31) 

and B' can be obtained from B replacing O"µv -+ cf µv, and interchanging O"µ +-+ cfµ. 

Using then the operator identity 

limet(A+B) = limetAetB = limetBetA, 
t-o t-o t-o 

(2.32) 

we can write 

(2.33) 

Since the index of the Dirac operator DL is a gauge invariant quantity, without loss 

of generality we can require the gauge field to satisfy the gauge condition BµAµ = 0, 
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so that the following simple formula holds: 

tD2 ik-x ik-x -t(kµ,-Aµ,) 2 

e e =e e . (2.34) 

Hence, from (2.27, 2.33, 2.34) we have 

(2.35) 

Rescaling kµ = k~/ 0, the k-integral becomes 

which in the limit t -+ 0 has the value (16?r2t2)-1 and is proportional to the identity 

matrix in isospin space. Thus, etB and etB' in (2.35) need to be expanded up to order 

t 2 only: 

I t 2 
tr (etB - etB) = t tr (B - B') + -tr (B2 - B'2) + O(t3). 

2 

B - B' is easily seen to have vanishing trace in isospin space, whereas for the term 

of order t 2 one finds 

tr (B2 
- B'2 ) = tr (aµvO'af3 - aµvaa13)tr FµvFa/3 

+ tr (aµav - aµav )tr (DµH)(DvH)t 

+ 2tr ( aµav - aµav )(DµH/ (DvH) 

(2.36) 

where we have used equations (C.6) and (C.7), and the tracelessness of the matrices 

O' µv and cf µv• 
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We have proven therefore that 

o A 1 ; 4 ~ mdex DL = --2 d x tr FµvFµv, 
l61r 

(2.37) 

where 

(2.38) 

completely independent of the Higgs field H. An analogous calculation for iJQ shows 

that 

index !JQ = index DL. (2.39) 
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Chapter 

Saddle point expansion of the bosonic functional integral 

3.1 Constrained instantons 

Our strategy is to perform a semiclassical evaluation of the integral (2.22). From 

now on we will drop the prime in S~ so that SE will stand for the right-hand-side of 

equation (2.23). It is convenient to work in terms of the rescaled fields 

so that 

where we have defined 

and 

and now 

1 
Aµ--+ -Aµ, 

g 

1 
H--+ y'AH, 

Fµv = OµAv - OvAµ - i[Aµ, Av], 

Dµ = 8µ-iAµ-

(3.1) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

From (3.2) it is seen that the semiclassical approximation, n --+ 0, corresponds 

to taking g2 --+ 0, keeping K, and (ef>) fixed. (This is, mH = v'Av = (ef>) and mw = 
gv/./2 = #(ef>) should stay fixed as g2 --+ 0.) 
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The following analysis has been given by Affleck [10]. We want to expand SE 

around some stationary field configuration and approximate ( for g small) the full 

integral by its Gaussian approximation. When (</>) -::j; 0, SE has no nontrivial sta

tionary points, however. This is seen from a simple scaling argument: for a given 

finite action configuration Aµ(x), H(x) we consider the rescaling Aµ(x)-+ aAµ(ax), 

H(x)-+ H(ax) (which preserves the finite action boundary conditions), under which 

SE scales as 

Thus, given any field configuration we can always rescale it to get a smaller action 

(except in the trivial case Aµ== 0, H == constant). 

From the point of view of the Euler-Lagrange equations of motion, 

Ta -H- K, 

(DµFµv t - iKHt 2 8vH - 2A~HtH == 0, 

(D2 H)a - ½(HtH - (¢,) 2 )Ha = 0, 
(3.7) 

the situation is peculiar, however. We know that for (</>) == 0 a finite action solution 

with unit winding number of (3. 7) exists, namely the instanton 

2xv 
Aµ= 2 2Tµv, 

X + p 
H = 0. (3.8) 

(For the definition and properties of the matrices Tµv and r µv, see Appendix C.) 

For (</>) small enough ( (</>) ~ 1/ p) we should expect to find a solution of (3.7) in 

perturbation theory in p( </>) that reduces to (3.8) ( actually, a gauge transformation 

of it, as explained below) when ( </>) -+ 0. 

The finite action boundary conditions (Fµv -+ 0, DµH -+ 0, HtH -+ (</>) 2 faster 

than 1/ x 2 as x -+ oo) take different forms in different gauges. In the particularly 
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convenient gauge where H -+ (cp)h_ at infinity, where h.. is a constant isospinor with 

h..th.. = 1, finiteness of the action requires Aµ -+ 0 faster than 1/x2 at infinity. The 

solution (3.8) does not have this asymptotic behavior; it actually approaches a pure 

gauge at infinity: 

(3.9) 

where 

(3.10) 

To obtain the desired asymptotic behavior of the instanton, we have to recast it in the 

so-called "singular gauge" ( obtained from (3.8) by the gauge transformation singular 

at the origin n-1 ): 

2p2 
Aµ = 2 ( 2 2 ) XvAµ 11 , 

X X +p (3.11) 

where Aµv = T µ 11 for the instanton ( T µ 11 and T µv get interchanged when one goes from 

the regular gauge to the singular gauge and vice versa) but in general Aµv will stand 

for Urµ 11 Ut or UrµvUt, where the SU(2) matrix U represents the orientation of the 

instanton. Aµ 11 satisfies the commutation relations of the so( 4) Lie algebra. 

If we neglect terms of order (p(cp) )2 then equations (3.7) are approximately solved 

by (3.11) and 

. 1/2 

H = ( 2 x2 2) (cp)h_. 
X +p (3.12) 

(In fact, (3.11,3.12) satisfy DµFµv = 0, D 2 H = 0 and render the source terms 

negligible.) 

A perturbative solution of (3.7) around the zeroth-order solution (3.11,3.12) does 

not exist because the appropiate finite action boundary conditions for the higher order 

terms cannot be enforced. The operators that act on higher order terms possess zero 

modes that determine a priori the behavior of these terms at infinity ( which is not 

the required one). 
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A way of getting around this difficulty is to extremize SE subject to a constraint. 

We follow Affleck [10] who chooses to constrain the spacetime integral of the sum 

of two gauge invariant local operators of dimension greater than four and vanishing 

rapidly enough at infinity, one depending only on the gauge field and the other only 

on the Higgs field. If we insert the identity 

(3.13) 

in the functional integral (2.22), then the relevant stationary configuration will be a 

solution of the constrained Euler-Lagrange equations 

(3.14) 

Given OA and OH, the Lagrange multipliers aA and aH are to be determined order 

by order in perturbation theory in p( cp) in order to enforce the correct boundary 

conditions for the higher order terms. The "constrained instanton" A, fl is the 

unique solution of (3.14) obtained by this procedure that reduces to (3.11,3.12) when 

p(cp) -t 0. 

It is easy to see how the constrained inst an ton behaves at large distances ( x ~ p). 

Since the extra terms added to (3. 7) decay more rapidly than the linear mass terms as 

H -t (c/J)h. and Aµ -t 0, at infinity A, fl - (c/J)h. become proportional to the solutions 

of 
K, 2 

8µ(8µAv - 8vAµ) - 2(c/J) Av= 0, 

oµoµiI - (c/J) 2 iI = o. 
(3.15) 

In terms of the function 

(3.16) 
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( where K1 is a modified Bessel function) which satisfies 

(3.17) 

the solutions to (3.15) can be written as 

(3.18) 

where mw =#,(cf>)= gv/0, and mH =(cf>)= v'Xv are the gauge boson and Higgs 

masses respectively. 

Gm ( x) decays exponentially at infinity and has the series expansion 

1 1 ? 2 
Gm(x) = x2 + 2m--lnmx + (const.)m + • • • 

1 1 2 2 1 = x2 + 2m lnmp + m (const. + 2 lnx/ p) + .... 
(3.19) 

From (3.19) one can determine the constants of proportionality in (3.18) and 

the asymptotic behavior of the terms in the correct perturbative expansion of the 

constrained inst an ton ( which contains logarithms of m). One finds 

Aµ ( x) = Aoµ ( x; p) + ( p (cf>)) 2 A 1 µ ( x; p) + • • • , 
fl ( x) = Ho ( x; p) + (p (cf>)) 3 ln p (cf>) H 1 ( x; p) + · · · , 

(3.20) 

where Aoµ(x; p) and Ho(x; p) are given by (3.11,3.12). The higher order terms in 

these expansions generally diverge at infinity and therefore (3.20) is useful only at 

small distances ( x /f> p). 
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For large distances ( x ~ ( </> )-1) one finds expansions of the type 

where 

Aµ(x) = p2 [A~(x; (</>)) + (p(</>) )2 At(x; (</>)) + • • •], 
fl ( x) = p2 

[ H0 
( x; ( </>)) + (p( </>) )2 H 1 

( x; ( </>)) + • • •], 
(3.21) 

(3.22) 

All the terms in these expansions vanish exponentially at infinity but blow up as 

x~o. 

It turns out that the ansatz 

Aµ(x) = XvAµvA(x 2
), 

H(x) = cp(x2)h., 
(3.23) 

where Ji is a constant isospinor and A, </> are real functions of x 2 , reduces the con

strained Euler-Lagrange equations (3.14) to two coupled real nonlinear equations for 

A and </> (at least for the particular choice DAA) = i tr F 3 = i tr FµvFv>.F>,.µ and 

OH ( H) = ( ntH - ( </> )2 )3, but this should be true in general). 

The perturbative expansions for A and</> are analogous to (3.20) and (3.21) with 

2p2 
Ao= 2 2 ' 

X (x2 + p ) 'Po = (x2: p2) 
112 

('P), (3.24) 

q,o = ('P) - lp2mH('P) K1(:Hx). (3.25) 

The constrained instanton resembles the instanton (3.11,3.12) at short distances but 

decays exponentially at large distances (recall that I<n(z) ~ e-z /~ as z ~ oo). 
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The action of the constrained instanton can be calculated using expansions (3.20) 

and (3.21 ). One finds 

so that 

j d4x tr F 2(A) = 16Jr2 + 0 ((p(<f,) )4
], 

J d4x IDµH12 = 2Jr2 p2(<f,)2 + 0 [(p(<f,) )4 ln p(ql)], 

j d4x (HtH - ( <f,) 2)2 = 0 [ (p( <p) )4 In p( <f,)], 

(3.26a) 

(3.26b) 

(3.26c) 

(3.27) 

For ,\ (and g) small, only those values of p such that p(</>) ~ ~ ~ 1 will contribute 

appreciably to the p-integral present in (2.22) after we use (3.13). In what follows 

we shall work to lowest order in p(cp). To this order the operators OA and OH play 

a role in the integration over the constrained bosonic fluctuations ( see (3.34)), but 

otherwise they drop out of the calculation altogether. 

3.2 Collective coordinates 

It has been noted that A and ¢> satisfy a set of equations that is independent of 

the matrix U appearing in Aµv and of the isospinor /J.. This is because the action 

SE(Aµ = xvAµvA(x 2
), H = ¢>(x2 )!J.) is invariant under independent global rotations 

of Aµ and H. In fact, the possibly noninvariant Higgs kinetic term takes the form 

independently of U and fl., where the prime denotes d/ dx 2 • 

Thus we see that in the constrained instanton the gauge field and Higgs field 

orientations are not correlated. The latter, however, is completely fixed once we 

choose our spontaneously-broken vacuum state. Conventionally we take h_ = (~). 
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The orientation of Aµ remains a symmetry of the constrained instanton action and 

therefore has to be treated as a collective coordinate along with the position xo of the 

constrained instanton ( of course we are assuming that the gauge choice is invariant 

under independent global rotations of the gauge field). 

The size of the instanton is no longer a collective coordinate, but it acts like one 

since it parametrizes a family of local minima of the action when the constraint is 

imposed. 

3.3 Momentum space Green functions in the Gaussian approximation 

Schematically we have 

(,P(x1) · · · 1J(zm)) ~ J d!xo J dU J dp !':-,.(p, (¢,) )J(p, (¢,)) j 'Dµj_(A, H)8(C(A, H)) 

[Dee .z)tb(A, H)] 2n1 e-SE(A,H)'l/Jo(x1 - xo) · · · rJ(Zm - xo), 

(3.28) 

where J(p, (cp)) is the Jacobian factor coming from the transition to the collective 

coordinates xo, U, the measure 'DµJ_ does not include fluctuations along the zero 

modes associated with the collective coordinates, and C(A, H) denotes the constraint 

in (3.13). 

The Gaussian approximation gives 

(,P(x1) · · · 1J(zm)) = j d!xo j dU j dp !':-,.(p, (¢,) )J(p, (¢,) )e-SE(A,H) 

F(p, (¢>); µ)'l/Jo(x1 - xo) · · · 77(zm - xo), (3.29) 

where F(p(ef>); µ) includes the (regularized) contributions coming from the fermionic 

determinants and the quadratic fluctuations about the constrained instanton, µ being 

the renormalization point. 
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When we go to momentum space, the integration over the position of the constrained 

instanton xo ( which ensures translational invariance) produces a total momentum 

conserving delta function. Defining 

4 4 ~ ( ) ( 21r) 8 (p1 + · · · + q1 + · · · + k1 + · · ·) G {p}, { q}, { k} = 

j d4x1 · · · d!yl : · · d4z1 · · · ein-x, · · · iq,-y, · · · eik,-z, · · · ( if,( x1) · · · A(y1) · · · 17(z1) · · ·), 

we can write for G: 

G( {p}, { q}, { k}) = j dU j dp ii(p, ( ¢,) )J(p, ( ¢,) )e-8E(A,H) 

F(p, (</>); µ)'l/Jo(p1) · · · A(q1) · · · 'fJ(k1) · · ·, (3.30) 

where 'l/Jo(p), Aµ(q) and 'fJ(k) are the Fourier transforms of the zero mode and the 

constrained instanton respectively: 

(3.31) 

etc. 

Dimensional analysis requires 

f),.(p, (</>) )J(p, (</>) )F(p, (</>); µ) ~ P2n1-s f(p(</>), pµ) 

~ p2n,-5 [fo(pµ) + (p(</>))2 fi(pµ) + .. ·]' (3.32) 

where f, Jo, Ji, etc., are dimensionless functions of the indicated variables. 

The coupling constant dependence of the factors in (3.30) is obtained as follows: 

i) from the Jacobian factor J we pick up a factor g-7 [13], g-4 coming from the zero 
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modes associated with translational invariance, and g-3 coming from the zero modes 

associated with global isospin invariance. ii) ~(p, (c/>)) defined in (3.13) is given by 

(3.33) 

Thus ~ carries no factors of g; iii) The integration over constrained bosonic fluctua

tions in (3.28) is of a form analogous to the finite dimensional integral 

(3.34) 

( only linear fluctuations need to be kept inside the delta function in the Gaussian 

approximation) where A is proportional to g-2 . The powers of g2 coming from the 

determinant get cancelled out against powers of g present in the (rescaled) measure, 

but a factor g-1 coming from A-1 survives ( this factor corresponds to the one coming 

from the collective coordinate pin the case (c/>) = O); iv) finally, we get n factors g- 1 

and m factors ,\-112 = y!K,g-1 from the external gauge and Higgs fields. In fact, in 

(3.30) A(q) and ry(k) are the Fourier transform of the gauge and Higgs components 

of the constrained instanton respectively. The rescaled fields appearing in (3.2) do 

not have the correct normalization to create relativistically normalized one particle 

states. To get these fields we have to undo the rescaling (3.1), which has the effect 

of multiplying the expressions for A and cf> in (3.24), (3.25) by the factors g- 1 and 

,\-1/ 2 respectively. 

Putting everything together we can write, using (3.27) and (3.32) 

(3.35) 

where now g and 11, are understood to be running coupling constants at the scale µ. 
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The function fo(pµ) was computed by 't Hooft [14]: 

43-8nf 

fo(pµ)=c(pµ) 6 , (3.36) 

ensuring the RC-invariance of the scattering amplitudes ( to lowest order). The con

stant c is given by 

(3.37) 

( c '.'.:'.::'.'. 1.03 x 1019 for n 1 = 3). In the following chapter we give the explicit forms of 

the zero modes of DQ and DL in the field of the constrained instanton. Their Fourier 

transforms, as well as the Fourier transform of the constrained instanton, are given 

in chapter 5. 
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Chapter IV. 

Fermionic zero n-iode in the constrained instanton background 

4.1 The fermionic zero mode 

We shall consider the slightly more general case of DQ first ( the result for DL can 

then be obtained by letting 9d --1' gz and gu --1' 0). We want to solve the following 

system of simultaneous differential equations: 

( 4.la) 

( 4.lb) 

(4.lc) 

in perturbation theory in p(cp). Here ?Ju,d = A-112gu,d and Aµ, Hare given by (3.20). 

We assume that 9u,d are small ( at least of order A 1/ 2 ) so that ?Ju,d are of order one. 

The ansatz 

(4.2) 

where <.p carries spin and isospin degrees of freedom, reduces equations ( 4.1) to the 

simpler 

where 

Du<.p(u) + i?Juc/J(u)uA(u)c!l/ + igdcp(u)dA(u)h_ = 0, 

?Juc/J(u)h_Tc<.p(u) - 2iu:(u) = 0, 

-gdcp(u)h_tc.p(u) - 2id~(u) = 0, 

( 4.3a) 

( 4.3b) 

( 4.3c) 

( 4.4) 

u = x2 = xµxµ and the prime denotes d/du. Upon substituting A= Ao and¢= ¢a 
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(see (3.24)) it is seen that to lowest order in p(c/>) (4.3a-c) are solved by 

<p = <po, (4.5) 

( 4.6a) 

( 4.6b) 

Here xµcf µ<po is the (normalized) zero mode of the Dirac operator iJ = O"µDµ in the 

field of the pure Yang-Mills instanton (in the singular gauge) Aµ = AoxvUTµvUi". 

The explicit form of <po is 

(4.7) 

where <p8 is the singlet in the coupled spin-isospin space, satisfying (cf• f)<ps = -3<p8 

and <p!<ps = 1, and the matrix U acts on isospin indices. From ( 4.6a, b) we find 

where ut is now acting on the two-component spinors indicated. 

( 4.8a) 

( 4.8b) 

As with the constrained instanton, the correct forms of the perturbative series 

for <p, uA and dA are obtained analyzing the behavior of the solutions of ( 4.3a-c) at 

infinity. In this limit uA-* 0 and cf>-* (cf>) so that (4.3a-c) reduce to 

( 4.9a) 

( 4.9b) 

(4.9c) 
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From (4.9a) we can solve for uA and dA (at infinity): 

( 4.10a) 

( 4.10b) 

Substituting these expressions in ( 4.9b, c) respectively, we find equations for the be

havior of h/e.<p and h. t <p at infinity: 

u(b/E<p)" + 3(b/E<p) 1 
- ~m~ (!J/E<p) = 0, 

1 
u(h.t <p)" + 3(h.t <p), - 4m~(h.t <p) = 0, 

(4.11) 

where we have identified mu,d = 9u,d(cp). The solutions of these equations that vanish 

at infinity and match the leading x ~ p term of h_Te.<po and h.t <po respectively, when 

(cp) -+ 0 can be written as 

(4.12a) 

and 

( 4.12b) 

and consequently 

(4.13a) 

and 

(4.13b) 

We note that uA, dA are correctly suppressed by mu, md respectively. 
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We have shown, therefore, that the zero mode of Dq in the field of the constrained 

instanton, as in the case of the latter, can be expressed perturbatively in p(c/>) by 

means of two series expansions analogous to (3.20) and (3.21 ). The respective leading 

terms in these series are given by (4.8a) and (4.13a) for uA, and (4.8b) and (4.13b) 

for dA. For uB = -l{EqB and dB = h_tqB we have, putting together (4.2),(4.7) and 

(4.12a, b): 

( 4.14a) 

( 4.14b) 

The expressions for the components eB, eA, vB of the zero mode of DL can read

ily be obtained from (4.14b), (4.8b,4.13b) and (4.9a) respectively. For the massless 

neutrino the large distance expansion becomes: 

( 4.14c) 

with a power law falloff. 
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Chapter V. 

Cross section for anomalous processes 

5.1 Fourier transforms of the fermionic zero mode and the constrained 

instant on 

The Fourier transforms we need to compute are of the generic forms 

(5.la) 

(5.lb) 

where p = (PµPit) 112 • For high energies, IPµI ~(¢),we expect the integrals (5.1) to 

be sensitive to the form off for small values of r. As we shall see, however, the pole 

term of these integrals turns out to depend only on the long range tail off. 

The functions f are integrable at the origin and decay exponentially at infinity. We 

cannot use the perturbative expansion 

f ( x 2 ) = f o ( x 2
; p) + (p ( cp)) 2 ln p ( cp) Ji ( x 2 ; p) + ( p ( cp)) 2 h ( x 2 ; p) + · · · ( 5. 2) 

in the whole integration range since the functions Ji, h, . .. do not decay to zero at 

infinity (in fact, all but a finite number of them diverge there). The correct thing to 

do is to arbitrarily split the integration range into the two intervals (0, R) and (R, oo) 

and use (5.2) in the first, but the large distance expansion of f in the second. It is 

clear that the first integral will have no singularities in the finite complex p-plane. 

The only singularities in p may come from the integration over the second interval. 

It is easy to see that if f decays at infinity as ra e-M r, then the second integral will 

exist for all p inside the circle of radius M in the complex p-plane but will diverge 
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for p = ±iM, since Jn(±iz) = (±it In(z), n integer, and In(z) grows as ez / vz as 

z -+ oo. This singularity is actually a pole ( as expected): in general, in 

(n == 1, 2), to low~st order in p(</>), f will have the form 

(see (3.25,4.13,4.14)) and the relevant integral will be 

the second integral being again an entire function of p2 (I<n(z) rv z-n, Jn(z) rv zn as 

z -+ 0). Ref. [15] gives us 

(5.3) 

After amputating the propagators for the external particles and putting the latter 

on mass shell, only the residue of the pole piece of the Fourier transforms survive. 

These are given by: 

[Aµ(P)Lmp = 47f" 2i p2pvUTµ11ut, 

[ 11(p) Lmp == - 27["
2 p2 ( <1>), 

[7PA(P)Lmp = -27f"i pm fut X, 

[7PB(P)Lmp = 27f"i ppµaµut X, 

(5.4a) 

(5.4b) 

(5.4c) 

(5.4d) 

where [f(p)]amp - lim (p2 + m 2 )f(p) and X = (~1) for 7P = u, v, X = (~) for p2_,._m2 
7,b = d, e. 
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5.2 The scattering amplitude for anomalous processes 

The p-integral appearing in (3.35) can now be explicitly calculated. Collecting 

all the factors of p we have: 

(5.5) 

where 

19 · 7 
t = 12 + n + m + 3n1. 

A note on the applicability of equation (5.5) is in order. Although (5.5) is true for any 

values of the particle multiplicities n, m, the approximation of neglecting the terms of 

higher order in p(</>) in the action of the constrained instanton (3.27) will be justified 

only if the dominant contribution to the p-integral in (5.5) comes from the region 

where p(</>) ~ 1. Now, the function 

( a = 21r2 Kj g2 = 21r2 
/ A, N = 1l + 2n + 2m + \4 n 1) appearing in the p-integration (5.5) 

is peaked at p( </>) = ( fcJ 112
. Hence, if we want to treat the constrained inst an ton in 

perturbation theory in p( </>), we must require that 

13 14 41r2K 
N = - + 2n + 2m + -n ~ --6 3 f g2 . (5.6) 

The amplitude for a scattering process that violates lepton and baryon numbers by 

n I units, involving the least possible number of fermions ( 4n 1) in addition to n gauge 
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bosons and m Higgs particles (n, m satisfying (5.6)), will therefore be equal to 

(5.7) 

where 

19 7 
c1 = 1.26 X 106 e6

·
516nif(- + n + m + -n ) 

12 3 1 
' 

(5.8) 

and all the information about spins, polarizations and momenta is encoded in the 

function h: 

Here x~ is a two-component spinor representing the spin of the i-th fermion, the xi's 
were defined in (5.4), and Pj is the 2 x 2 matrix that projects out the charge state of 

the j-th gauge boson (with polarization c(j)). 

5.3 High energy behavior of anomalous cross sections and violation of 

unitarity to leading order 

After analytically continuing back to Minkowski space by means of p4 = -ipo, 

po = E > 0, and performing the U-integration (which enforces charge conservation), 

one can perform the average and summation over initial and final spins and polariza

tions respectively of the quantity If dU h(U)l
2 

to obtain 

(5.10) 

where the ci's are numerical constants and each 7ri is a relativistically invariant func

tion of the momenta Pl, ... , P4n 1 , q1, ... , qn, consisting in a product of factors ki • kj 
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and/or €µvo:J3kf kJkf k!/n (k = p or q), such that each fermion momentum appears once 

and each gauge boson momentum appears twice. 

For a scattering process of the type 

(5.11) 

the phase space integral for the total unpolarized cross section will be 

where S is the symmetry factor for identical particles in the final state. We can extract 

the dependence of D on the total energy in the extreme relativistic case (E = I.Pl). 
In terms of s = (p1 + p2)2, we can rescale Pi = VSXi, etc., to obtain 

D _ D(n n m) 86n1+2n+m-4 
- ,, ' ' (5.13) 

where 

To calculate the total cross section for the process (5.11), we need to give a value 

to the renormalization pointµ. Normally this is chosen in order to minimize the error 

introduced by neglecting higher order corrections of the type g~ ln sf µ 2 , which vanish 

if we set µ = VS· In the case at hand, however, we have two energy scales, vs and 

( <p), and we expect to get possibly large additional logarithmic corrections of the type 

g~ ln(</>)2 / µ2 . We choose to set µ = (¢) = mH. Therefore, large logarithms will be 

unimportant only up to moderately large s, i.e., if g;,m ln s/miJ stays less than some 

number of order one. 
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Our result for the total unpolarized cross section for the process ( 5.11) in the 

extreme relativistic case is then 

(5.15) 

where 

II ) 11 13 On [ ( 19 7 )] 2 ~ ( ) c (nt, n, m = 7.94 x 10 e · f r - + n + m + -nf D nJ, n, m , 
12 3 

(5.16) 

and we have rewritten (</>) as mH and substituted "-mH = g;m/ AmH = 2m!/ m'fr. 

From (5.15) we see that the emission of an extra gauge boson or Higgs particle 

in an anomalous scattering process costs an extra power of g2 in the cross section, 

and not an extra factor of g-2 as conjectured in Ref. [9]. Therefore, as far as 

the semiclassical expansion is concerned, the unitarity equation (1.1) for anomalous 

processes has a chance to work. 

However, it is apparent from (5.15) that for s high enough a can be big even 

to the point of violating the boundedness requirement imposed by unitarity. Can 

this unphysical result be attributed to the breakdown of our approximations when 

s is very large? Only a detailed analysis of higher order corrections can tell us the 

answer. These should include corrections to the stationary point approximation of the 

path integral (2.22) in the one instanton sector, as well as contributions from multi

instanton-anti-instanton configurations, treated beyond the dilute gas approximation. 

5.4 Conclusions 

We have calculated in the semiclassical approximation the energy and coupling 

constant dependence of cross sections for baryon and lepton number violating pro

cesses involving the least possible number of fermions and an arbitrary number of 

gauge and Higgs bosons. 
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The calculated cross section displays the unphysical behavior of growing like a 

power of the total CM-energy squared s, in contradiction with the unitarity-bound. 

We must conclude therefore that perturbation theory in the instanton sector 

breaks down for large energies, although we have no idea as to what the mechanism 

responsible for this might be. (That perturbation theory may be completely unreliable 

when high energies are involved was suggested in Ref. [6], in an analogy with the 

quantum pendulum. If this were so, the most we could expect is that our results 

are valid only when vs is much less than the height of the potential barrier between 

topologically distinct vacua, that is, the sphaleron energy Esp f"-.1 (1.5-2.7)41rv'2v / g = 
(1.5-2.7)81rmw/g2). This breakdown of perturbation theory has nothing to do with 

the high multiplicity of particles that would be expected in a high energy ( B + L )

non-conserving process: the unitarity bound is also violated in a purely fermionic 

anomalous process (n, m = 0). 

Our approach, however, is limited by the condition (5.6) to small multiplicities 

of gauge and Higgs bosons, and cannot be expected to apply to processes involving 

f"-.1 1/ aw W's or H's, claimed to be the relevant ones at high energy [9], although it 

strongly suggests that these processes may be, in fact, unsuppressed in this regime. A 

different method to calculate amplitudes at high energy and high multiplicity seems 

to be needed if one wants to draw any reasonable conclusions about the many particle 

processes that possibly play a role in baryon number violation at high energies. 

We would also like to point out, disagreeing with Ref. [8], that our calculation 

shows that the fermions involved in an anomalous scattering event can be in arbi

trary momentum states ( consistent with four-momentum conservation), and therefore 

should carry the corresponding occupation factors that arise due to the Pauli exclu

sion principle in a given physical situation. 
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APPENDIX A 

For a rotation R in S0(4) we define SU(2) matrices A(R) and B(R) such that a 

four-vector in R4 , Vµ, transforms as 

R 
--j, (A.l) 

where aµ is defined in (2.9). ((A.l) is an explicit realization of the group homomor

phism S0(4) ~ SU(2) x SU(2).) A-type and B-type spinors transform then as 

(A.2) 

One can verify that the fermion bilinears 1/-Jl/J A, 'l/Jl'l/JB are SO( 4) invariants, whereas 

'l/Jla µ"PA, 'l/J !a-µ'1/)B transform as SO( 4)-vectors. 
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APPENDIX 

We want to sketch the derivation of formula (2.18) for 

(2.17) 

In general, \J! is a "multi-spinor" like Q or L in (2.11, 2.12), containing both A

type and B-type spinors. The operators iJ, iJt do not have well-defined eigenvalue 

problems since they take A-spinors into B-spinors and vice versa. The hermitian 

operators !Jt!J and fJ !Jt, on the other hand, preserve the spinor type and thus have 

the well-defined eigenvalue problems, 

(B.1) 

(B.2) 

their eigenfunctions forming complete orthonormal basis sets for the objects \J! and 

(wt)t respectively. One can adjust the relative phase of 7Pn and c.pn such that for 

An -=I=- 0 the latter is given by 

1 A 

c.pn = An D'l/Jn• (B.3) 

The zero modes of fJ and fJtiJ are the same ( and therefore this also holds for !Jt 
and iJiJt): 

We expand 

iJtiJ'l/Joi = 0 

D iJt c.poi = 0 

N 

D'l/Joi = o, 
iJt c.poi = 0, 

i = l, ... ,N, 

i = 1, ... ,N'. 

\J!(x) = L ai'lpoi(x) + L bn'l/Jn(x), 
i=l An#O 

(B.4) 

(B.5) 

(B.6) 
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N' 

wt(x) = Laicphi(x) + L bncpl(x), (B.7) 
i=l An#O 

and define the fermionic measure as 

N N' 

'.D\J!'.Dwt = II dai II daj II dbndbn. (B.8) 
i=l j=l n 

Upon substituting (B.6,7) into (2.17), the integration over nonzero modes results in 

[ 
,., t,., ] 1/2 4. L -Det'(D D) exp J d xd y ((x)S'(x, y)((y), 

where 

I "t" II 2 Det (DD)= ,\n, 

An#O 

and 

S'(x,y) = L 'Pn(xl<pl(y) 
An;ifO n 

satisfies 

DxS'(x, y) = 5(4)(x - y)l Po(x, y), 
N' 

Po(x, y) = L <poi(x)cpt(y) 
i=l 

being the projector onto the subspace spanned by the zero modes of !Jt. 

The integrations over the zero modes are 

(B.9) 

(B.10) 

(B.11) 

(B.12) 

(B.13) 

(B.14) 
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N' ( N' ) N' Jg da;exp ~?iu;(() = g u;((), 

u;(() = j d4xcpbi(x)((x) 

V;(() = j d4x((x),f,o;(x) 

i == 1, ... , N', 

i == 1, ... , N. 

Equation (2.18) is now obtained putting together results (B.9,14,15). 

(B.15) 

(B.16) 

(B.17) 
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APPENDIX C 

Throughout this thesis the 2x2 matrices denoted by the letters a and T represent 

the same numerical matrices, but they act on spin and isospin spaces respectively. 

\Ve define 

where 

Here cf are the Pauli matrices and the indices µ, v run from 1 to 4. 

a µ 11 and cf µ 11 are antisymmetric in µ, v. Explicitly they are: 

1 
O'ij = ciij = -r=,ijkO'k, 

1 
O'i4 = -O'i4 = 20'i, 

(C.l) 

(C.2) 

(C.3) 

(C.4) 

for i,j = 1,2,3, which also shows that they are traceless. 0'µ 11 is selfdual and cfµ 11 

antiselfdual: 

1 
0'µ11 = 2Eµ110:f30'0:f3, 

1 
cf µ11 = - 2Eµ110:t3cf o:t3• 

There are a number of useful properties: 

cf µ0'11 = 8µ 11 + 2iaµ 11 , 

(J' µ cf 11 = 8 µ11 + 2i cf µ11' 

(C.5) 

(C.6) 
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1 1 
tr(crµvCia,B) = 2(8µaDv,a- 8µ,aDva) + 2cµva,8, 

1 1 
tr (cfµvcfa,a) = 2(8µaDv,B - Dµ,BDva:) - 2sµva:,8· 

(C.7) 

The matrices er µv and 7J µv satisfy the commutation relations of the so( 4) Lie algebra, 

e.g., 

(C.8) 

The 't Hooft symbols 'T/aµv [14] relate the S0(4) generators CTµv , aµv to the SU(2) 

generators era /2: 
era 

CTµv = 'T/aµv 2 , 
- - era 
CTµv = 'T/aµv 2 • 

(Recall that S0(4)=SU(2)xSU(2).) 

(C.9) 
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