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Abstract

Switching Flow-Graph Model

The Switching Flow-Graph is a unified graphical model of large-signal, small-signal
and steady-state behavior of pulse-width-modulated (PWM) switching converters. Switch-
ing branches are introduced into the flow-graph to represent the switches of the PWM
switching coﬁverters. The Switching Flow-Graph model is easy to derive, and it provides
a \-risua.l physical understanding of switching converter systems. The small-signal Switch-
ing Flow-Graph generates analytical transfer functions and the large-signal Switching
Flow-Graph is compatible with the TUTSIM simulation program. The Switching Flow-
Graphs of PWM switching converters reveal a regular pattern, and they predict right-
half-plane (RHP) zeros, caused by the imbalanced effects of the duty-ratio control signal
on the output of the switching converters. Criteria are found for the design of damp-
ing circuits that are capable of eliminating RHP zeros. General models are derived for
current-mode controlled switching converters. In addition, the large-signal model and

the small-signal model are verified by experiments.

One-Cycle Control Technique

The One-Cycle Control technique is conceived to control the duty-ratio d of the
switch in real time such that in each cycle the average of the chopped waveform at the
switch output is ezactly equal to the control reference. Implementation circuits are found

for any type of switch, constant frequency, constant ON-time, constant OFF-time, and
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N ‘
variable. ‘One-Cycle Control fully rejects the input signal, and linearly all passes the

control signal.v This technique turns a nonlinear switch into a linear one. Experiments
. were condﬁcte;d using the One-Cycle Control technique on the buck converter and the
Cuk converter. One-Cycle Control was found>to reject input perturbations and input
filter aynamics. The diode voltége of One-Cycle Controlled converters follows the control
reference instantaneously in one cycle. One-Cycle Control takes advantage of the pulsed
and nonlinear nature of switching converters to achieve instantaneous control of the
average value of the diode voltage. This technique is suitable for large-signal control of

PWM switching converters and quasi-resonant converters.
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Chapter 1

Introduction

-

1.1 Object

Switching converters, as shown in Fig. 1.1, are power processing units that utilize
lossless components, switches, inductors, and capacitors to convert input power to output
power with 100 percent efficiency in the ideal case. The input power is generally AC or
DC, whereas the output power can be AC , DC, or any desired function. The conversion
capability for a particular application is established by the topology of the converter,
while the function and qﬁality of the output waveformm depends on the control-loop

design.

Power input | Power output

Switchi,
= omerr —>

H

Control signal

Figure 1.1: Switching Converter. It is a power processing unit. The input power may be
AC or DC, the output power may be AC, DC or any desired functions.

In recent years power electronics has been a very active discipline. Many new switch-

ing converter topologies have been and are being discovered in both the pulse-width-
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" modulation (PWM) converter family and the quasi-resonant converter family [1]. The

circuits are becoming more complicated; therefore, the modelling tools and the control

' . techniques are confronting new challenges.

Swit‘ching‘converters are pulsed‘ and nonlinear dynamic systems. There has been no
standard way to model and control nonlinear systems. People usually avoid the pulsed
and nonlinear nature by linearizing the governing equations to obtain small-signal models.
Linear feedbac‘k control structures are used to control nonlinear systems. If a system is
very simple, a satisfactory control loop may be obtained through the use of a small-signal
model, a linear control scheme, some previous design experience and a lot of trial and
error. However, if the circuit is more complicated, this approach may never achieve a
workable solution. First of all, a small-signal model provides only the local dynamic
information around the operating point; if the system is iperturbed, enough to leave
the operating point, the system may not converge. On the other hand, since switching
converters are pulsed and nonlinear in nature, their capability is greatly restricted if
linear feedback control is applied.

The work in this thgsis takes advantage of the pulsed and nonlinear nature of switch-
ing converter systems rather than avoiding it. The goal here is to find a suitable way
to achieve switching nonlinear control. The motivation is that a switching system under
pulsed nature nonlinear control should be more robust, have faster dynamic response
-and better input perturbation rejection than the same system under linear control.

In Part I, a new unified nonlinear modelling tool, the Switching Flow-Graph tech-
nique, is developed and used to reveal the global and local dynamic properties of switch-
ing converﬁers. In Part II, a new pulsed nature nonlinear control technique, One-Cycle

Control, is conceived based on the understanding gained from the model. The One-Cycle

Control technique provides fast dynamic response and good input perturbation rejection.
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It can be used to control PWM converters and quasi-resonant converters. A buck con-

verter and a Cuk converter were built to test both the One-Cycle Control technique and

* . the Switching Flow-Graph model.

1.2 Background

A brief review of the previous work on modelling and control techniques of switching

-

converters is given below for comparison to the present work.

Small-Signal Modeling Techniques

The state-space averaging method [2] is widely used in industry. This method av-
erages and linearizes the pulsed and nonlinear trajectories in state space. This model
provides small-signal predictions with very good accuracy when the signal frequency is
lower than half the switching frequency.

The sampled-data modelling method [3] is another small-signal modelling tool that
provides better accuracy at high frequency. However, the mathematics are much more
complicated than for the state-space averaging method.

The small-signal frequency response theory [4] provides an exact solution to the
frequency response problem of DC-to-DC converter systems; however, it is valid only in
the small-signal limit.

Thé small-signal models are linear and hence easily applied to most practical design
problems. 'However, because of the small-signal assumption, these models do not describe

the behavior of the switching converter during large transients.

Large-Signal Modelling Techniques

Robert Erickson developed a large-signal model for state-feedback switching regula-

tors [5]. The model is provided in two forms, a discrete-time equation for use in com-
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" puter simulations and an analytical matrix expression to enhance physical understanding.

However, the model does not provide a general form for large-signal, small-signal, and

' . steady-state analysis.

Control Techniques

PWM feedback control is a linear error control technique. The output voltage of the
switching converter is compared with a control reference. The error between the control
reference and the output voltage is amplified and compared with a saw-tooth waveform
to adjust the duty-ratio in the direction required to reduce the erfor. In order to obtain
good input perturbation rejection and fast dynamic response to the control reference, the
loop-gain must be very high. Unfortunately, high loop-gain may cause circuit instability.

The current-mode control technique, [6][7], includes some pulsed nature control con-
cepts. The switch current is sensed and compared with a control reference. The‘transistor
is turned ON at clock pulses and is turned OFF when the switch current reaches the
control reference. This method is equivalent to state-feedback control. A stabilizing
ramp is necessary when the system operates at a duty-ratio larger than 0.5. If the slope
of the ramp is equal to the falling slope of the inductor currents which flow through the
transistor when it is ON, this control technique will reject input perturbations. However,
only the buck converters with constant output voltage satisfy this condition.

Sliding-mode control [8]{9] is based on pulsed and nonlinear nature. A sliding line
is defined ﬁhrough the operating point. The switch is turned ON when the trajectories
reach the lower limit, and is turned OFF when the trajectories reach the upper limit. The
system motion is restrici:ed along the sliding line and within the hysteresis, A < ¢ < A,
as shown in Fig. 1.2. Therefore, the system order is reduced by one. However, the switch
operates at a variable frequency.

If a variable hysteresis is used to envelope the system motion, as shown in Fig. 1.3,



Figure 1.2: Sliding-Mode Control Concept. A sliding line is defined through the operating
point. The switch is turned ON when the trajectories reach the lower limit, and
is turned OFF when the trajectories reach the upper limit. Therefore, the system
motion is restricted along the sliding line and within the hysteresis, A < ¢ < A.

Figure 1.3: Constant Frequency Sliding-Mdde Control. A variable hysteresis is used
to envelope the system motion. The switch is turned ON by the clock pulse, and

turned OFF when the trajectories reach the upper limit.
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~ the switching frequency is fixed [10]. In this case, the switch is turned ON by the clock

pulse, and turned OFF when the trajectories reach the upper limit. This control function

- is similar to the one used for current-mode control.

Sliding-mode control is possible only when both the reaching condition and the con-
verging condition are satisfied. When the system order is higher than two, a sliding
surface is very hard to find that satisfies both the reaching condition and the converging

condition.

1.3 Outline of the Thesis

This thesis contains two parts. The Switching Flow-Graph model is discussed in
Part I and the One-Cycle Control technique is presented in Part II. Each Part of the

thesis includes both theory and experiments.

Part I. Switching Flow-Graph Model

The Switching Flow-Graph technique provides a unified graphical representation of
the large-signal nonlinear model, the small-signal model and the steady-state model for
any PWM switching converter.

This technique utilizes some concepts from state-space averaging, and is an extension
of linear circuit flow-graph theory. Though a switching converter is a nonlinear system,
it is eqﬁivalent to a linear circuit, the ON-circuit, when the switch is in the ON state,
apd it is eéuivalent to another linear circuit, the QFF-circuit, when the switch is in the
OFF state. The On-circuit and the OFF-circuit can be described by their respective
flow-graphs. The Switching Flow-Graph is obtained by combining the flow-graphs of the
ON-circuit and the QFF-circuit through the use of switching branches. The switching

branches are the only nonlinear components in the Switching Flow-Graph; therefore,
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the .modell‘ing work. is reduced to the switching branches. Large-signal, small-signal and

steady-state representations of the switching branches are given. The Switching Flow-

' . Graph model is very easy to obtain, and it provides a visual means for the physical

understanding of switching converter systems. It can predict the large-signal, the small-
signal, and the steady-state behavior of switching converter systems. The details are
described-in Chapter 2.

In‘Chapter‘ 3, the Switching Flow-Graph modelling technique is used to model the
most commonly used PWM switching converters in the second-order and fourth-order
families. The Switching Flow-Graphs reveal a regular pattern, and generate deeper physi-
cal insight into the function of switching converters. The large-signal model is compatible
with the TUTSIM simulation program [11]. Users enter the branch transmittances, the
node connections, the initial conditions, and the simulation step size. The small-signal
model gives visual graphs and analytical transfer functions. The Switching Flow-Graph
technique is used to predict the global and local dynamic behavior of switching convert-
ers. Experiments were conducted to verify the large-signal model and the small-signal
model. The measured and the predicted dynamic response are very close.

In Chapter 4, the Switching Flow-Graph model is used to develop a physical expla-
nation of right-half-plane (RHP) zero problems. The duty-ratio control reference has
imbalanced effects on the output of the switching converters, which causes the RHP ze-
ToSs. Deéign criteria are found, for the damping circuit, to eliminate the RHP zeros. The
model can.analytically predict the conditions under which the RHP zeros will appear
and therefore reveals how to eliminate them. Experiments were conducted to generate
and remove the RHP zeros. The experimental results verified the theoretical predictions.

‘The general model for current-mode controlled switching coﬁverters is derived, in

Chapter 5, using the Switching Flow-Graph technique. The current-mode control-loop
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~ does not affect the zeros in the transfer function of the switching converters, while it rear-

ranges the system poles, which is, however, not fully controllable, since the state-feedback

" . coefficients are restricted by the current-mode control function. Current-mode control

may convert RHP zeros into RHP poles; therefore, the loop may oscillate. Experiments

verified the predictions.

Part II. One-Cycle Control Technique

The One-Cycle Control technique is conceived to control the duty-ratio d of the switch
in real time such that in each cycle the average of the chopped waveform at the switch
output is ezactly equal to the control reference. With One-Cycle Control, a switching
converter can rejects the effects of the input voltage, and follows the control reference
quickly. Tlllis technique is suitable for large-signal control of PWM switching converters
and quasi-resonant converters.

The general concept of One-Cycle Control can be summarized as follows: The ef-
fective value of the chopped waveform at the switch output is its average when the
signal frequency is lower than half of the switching frequency. A real-time integrator
is employed to integrate the chopped waveform. If the integrated value of the chopped
waveform in one cycle is exactly equal to the integrated value of the control reference
in one cycle, then the average of the chopped waveform is exactly equal to the control
reference in one cycle. The implementation circuits are found for any type of switch,
constant fréquency, constant ON-time, constant OFF-time, and variable. The key com-
ponent of One-Cycle Control is the real-time integrator. For a constant-frequency switch
example, the real-time integrator starts integrating at the instant when the switch is
turned on, and when the integrated value reaches the control reference, the controller
shuts OFF the switch. Therefore, the output signal of the switch is exactly equal to the

control signal. The details of the One-Cycle Control theory and its implementation are



%
' described in C‘hapter 8.

In Chapter 7, the One-Cycle Control technique is used to control the PWM buck
" - converter. The control processes are analyzed to see exactly how the circuit rejects the
input voltage and the load current perturbations, and how it follows the control reference.
When the converter has an input filter, the dynamics of the input filter do not affect the
dynamic response of the output. The One-Cycle Controlled buck converter with input
ﬁltef behaves 1ike a second-order system. This control scheme is compared with the
PWM feedback control technique and the current-mode control technique. Experiments
were conducted to verify the theory.

In Chapter 8, the dynamic behavior of the One-Cycle Controlled system is investi-
gated, with the Cuk converter as an example. The diode voltage of the Guk converter
is instantaneously controlled by the control reference; therefore, one would assume that
the control-loop has infinite loop-gain. The Switching Flow-Graph model is employed
to study the large-signal stability and small-signal behavior of the One-Cycle Controlled
system. The One-Cycle Controlled Cuk converter is not globally stable. However, the
limitation of the switching duty-ratio may prevent the system from operating in the
unstable region. It is also found that the One-Cycle Control loop-gain is below 0db!
The system dynamics must obey physical laws; therefore, the transients of the capacitor
voltage and the inductor current are not instantaneously controlled. One-Cycle Control
takes a.dvantage of the pulsed and nonlinear nature of the system to achieve instantaneous
control ovér the a&erage value of diode voltage.

The physical limitations, the discontinuous current operating condition, and the de-
sign of the real-time integrator are discussed in Chapt;er 9.

The conclusions and some further discussion are given in Chapter 10.
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Part I

Switching Flow-Graph Model
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Chapter 2

S‘»’Witc‘hing Flow-Graph Modelling Technique

A new modelling tool for switching converters, the Switching Flow-Graph Modelling
Technique, is introduced in this chapter. This technique is developed based on experieqce
with the state-space averaging method and the linear circuit flow-graph method. This
hew technique can be utilized to create the large-signal nonlinear model, the small-signal
linear model, and the steady-sta.té model.

A brief background of flow-graph is reviewed in Section 2.1. The Switching Flow-
Graph is introduced in Section 2.2. The switching functions, constant frequency, constant
ON-time, cﬁnstant OFF-time, and variable, are discussed for the switching branches
mn Section 2.3. The large-signal, steady-state, and small-signal representations of the
Switching Flow-Graph are obtained in Section 2.4, Section 2.5, and Section 2.6, respec-
tively. The linear circuit extra-element theory is extended to the use in flow-graphs and

Switching Flow-Graphs in Section 2.7.

2.1 Flow-Graph Background

Flow-graph [18] is a symbolic language for the description of dynamic systems that
provides a graphic representation of the signal flow within the system. The flow-graph
construction breaks a system into virtually all of its basic components, and thereby
clearly illustrates the effects of input and/or parameter changes upon its signals at all

points in the system. Flow-graphs may be reduced, using standard procedures, to obtain
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' t‘rarisfer characteristics betiveeﬁ arbitrary points in the system. Once the basic concepts
of this techn_ique are understood, the flow-graph can be easily constructed from the
' . system equations or directly from the electrical ‘circuit.

The signals are represented by nodes, which are schematically represented by small
circles in the diagrams. The nodes are connected by branches, line segments with arrows.
The signals flow only in the direction of the arrow on each branch. Each branch has a
transmittance ‘or gain indicated next to it and the signals passing along that branch
are multiplied by the branch transmittance. The signal at a node is the sum of all
signals entering the node. Source nodes, nodes with outputs only, represent independent

-variables. Sink nodes, nodes with inputs only, always represent dependent variables. A
mixed node has both inputs and cutputs.

The procedure for constructing the flow-graph of a system is straightforward. First
each variable of interest is assigned a node on the flow-graph. Next the nodes are in-

terconnected as required by the specific system configuration. Once all of the nodes are

properly connected, the flow-graph is complete.

e

| L
i -
c

Vi R VR

-

Figure 2.1: The RC Circuit. v, is the input voltage, vc is the voltage cross the capacitor,

ic is the capacitor current, ig is the resistor current and vy is the output voltage.

Consider a simple RC circuit as an example. Fig. 2.1 depicts an RC circuit, where
vy is the input voltage, vc is the voltage across the capacitor, i¢ is the capacitor current,

iR is the resistor current, and vg is the output voltage. To create the flow-graph for this
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A

' " RC circuit, first assign five nodes from left to right to denote vg, Vc, iC, iR, and vR,

respectively, as shown in Fig. 2.2 (a). From Kerchhoff’s law, it is found that:

vc = Uy —UR
ic = CSve
iR = i¢

vg = Rig

(2.1)
(2.2)
(2.3)

(2.4)

where C is the capacitance, R is the resistance, and S is the Laplace complex number

S = o + jw. These relations are used to connect the nodes in Fig. 2.2 (a), to produce

the flow-graph shown in Fig. 2.2 (b). The node that represents the input voltage v, is

[o] [} o [ o

Vs Ve e iR VR
(a)

c - LN, 0D

Ve 1 ir R VR

(b)

Figure 2.2: Flow-Graph of the RC Circuit. (a) Five nodes are assigned to the circuit

variables: vy, ve, ic, ir, and vg. (b) The nodes are connected according to the

circuit equations (2.1), (2.2), (2.3) and (2.4).

a source node, while the other nodes are mixed nodes. From the ﬁow-graph, it is very



' easy to obtain the \transfei‘ function for the circuit.

U = UR (2.5)
RCS
= T¥RCS” (2.6)

2.2 Switching Flow-Graph

Flow-graph is a very useful tool for the design and analysis of linear circuits. This
tool is extended to study the dynamic behavior of switching converters.

Switching converters are nonlinear dynamic systems; however, deeper insight reveals
that switchigg converters are systems with variable structure. A switching converter,
in continuous mode, contains two linear subcircuits. The subcircuits share common
elements, such as inductors, capacitors and resistors, connected in different topologies.
The switch of the converter operates at a frequency, either constant or variable, and
alters the system between the two linear subcircuits. This conceptual view provoked the
motivation to model these two linear subcircuits using flow-graphs, then to relate the
flow-graphs to each other using switching branches.

Suppose a switching converter operates at a frequency f,(t) = Ti?; When 0 <t <
Ton the switch S is ON, and when Tpn < 1< T,, the switch S is OFF. For the two
positions of the switch S, in the switching converter, the two switched subcircuits are
obtained. It is clear that a change in the topological structure occurs within each period
;as the circuit conﬁguration is periodically changed from the ON-circuit to the OFF-
circuit. Both switched subcircuits are linear by theméelves, while the converter itself is
a nonlinear circuit due to the periodic structure change. The fact that both subcircuits
are linear enables fhem to be modelled using the flow-graph technique.

During the time when the switch S is in the ON position, 0 < t < Tpn, the converter

1s switched to the ON-circuit. Nodes are assigned to each variable, according to the
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ON-circuit configuration, and are connected to form a flow-graph Gon. During the time

when the switch S is in the OFF position, Tony <t < T, the converter is switched to

' . the OFF-circuit. The OFF-circuit contains the same circuit elements as those in the

ON-circuit; therefore, it preserves the same variables. The same nodes, which were used
for the ON-circuit, are used to represent the OFF-circuit variables. However, the nodes

are connected according to the QFF-circuit configuration to form a flow-graph Gorr.

-t

Figure 2.3: Switching Functions. The k function has a value of “1,” when 0 < t < Tow,
and has a value “0,” when Ton <t < T,. The % function has a value of 1 — k.

The two flow-graphs, Gon and GorF, have exactly the same nodes. However, some
connections that exist in Gony may not e*ist in gopp,’a.nd some branches that exist
in Gorr may not exist in Gon. Consider the switching functions k& and ¥ as shown
in Fig. 2.3. The k function has a value “1,” when 0 < t < Tpn, and has a value
>zero, when Tony < t < -T,. The % function has a ;/alue of 1 — k. With these two
switching functions, the two flow-graphs Gon and Gorr can be topologically merged by

the following equation:

G = kGon + kGorF (2.7)

Two switching branches, the k-branch and its complementary E-branch, are thus
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k k
o——~—"—o o——"—0»
0<t<Ton O0<t<Ton
[ e mmme e ] [ e e ]
Ton< t < Ts Ton<t<Ts
(a) (b)

Figure 2.4: The Switching Branches: k¥ and k. During the time 0 < t < Ton, the k-branch
has a transmittance of “1,” and the k-branch has a transmittance of “0.” During
the time Ton < t < T, the k branch has a transmittance of “0,” and the k-branch
has a transmittance of “1.”

introduced, as shown in Fig. 2.4. The transmittances of the two branches are time
dependent. During the time 0 < t < Ton, the k-branch has a transmittance of “1,” and
the kE-branch has a transmittance of “0.” During the time Tony < t < Tg, the k branch
has a transmittance of “0,” and the k-branch has a transmittance of “1.” These switching
branches physically unite the two flow-graphs, Gon and GorrF, into one flow-graph G.
G is the graphical representation of the switching converter. The flow-graph G contains
switching branches, the k-branch and the k-branch, therefore, it is defined as a Switching
Flow-Graph . The switching control signals are injected into the converter through these
switching branches.

Consider the buckboost converter, shown in Fig. 2.5 (a), as an example, where v,
is the input voltage, L is the inductor, C is the capacitor, R is the load, Ry is the
parasitick resistance of the inductor, and S is the switch. Define vz, vgr,, and v, as

the inductor voltage, the parasitic-resistor voltage, and the output voltage respectively.
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is 1 So
iL ic $ ir
VRLl . RL
(a)
L ir L ir
L L
ve L ve 1
e C—=RS3|" = C=—RZ3|»”
R RL
ON - circuit OFF - circuit
(b)

Figure 2.5: The Buckboost Converter and its Subcircuits. (a) The buckboost converter.

(b) The two subcircuits: ON-circuit and OFF-circuit.
Define iy, iz, and i, as the input current, the inductor current, and the output current
flowing in the same direction as vy, vy, and v, respectively. The quantity i, is the sum
of the load current and the capacitor current ic. The two subcircuits, the ON-circuit
and the OFF-circuit, are shown in Fig. 2.5 (b). When the switch is ON, the buckboost
converter is equivalent to its ON-circuit, and when the switch is OFF, it is equivalent to
its OFF-circuit.

The fwo subcircuits can be described by their flow-graphs, Gon and Gorr, shown in
Fig. 2.6 (a). These two flow-graphs share the same nodes and share some of the same
branches. By overlapping Gon and Gorr, it is easil§ seen that some branches exist in
both Gonx and Gorp, while other branches exist only in one of them. The branches

that exist in Gon but not in Gorp are replaced by k-branches, and the branches that



20

Gon v.c f
(a)
goﬁ on
(b)
Vs k
G o e

N
ic CS Vo
=1 L
R
ir
Figure 2.6: The Switching Flow-Graph of the Buckboost Converter. (a) The flow-
graph Gon for the buckboost ON-circuit and the flow-graph Gopr for the buck-

boost converter OFF-circuit. (b) The Switching Flow-Graph G for the buckboost

converter.

VRL ig
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Figure 2.7: The Simplified Switching Flow-Graph of the Buckboost Converter.

exist in Gorp but not in Gon are replaced by k-branches. Therefore, Gon and GorF
are combined to form one Switching Flow-Graph G, shown in Fig. 2.6 (b). In addition,
the Switching Flow-Graph G of the buckboost converter can be simplified, as shown in

Fig. 2.7, using the algebraic rules in Appendix A.

2.3 Switches

The Switching Flow-Graph G is linear except for the switching branches. The switch-
ing branches are the signal-flow representations of the real switches. The real switches
in the switching converter have very diﬂ'ereﬁt behavior depending on their voltage, cur-
rent, and load conditions. Therefore, it is very difficult to make a general model for the
real switches. However, when switching converters are transferred into Switching Flow-
éraphs, the switches arev transferred into generalized switching branches: k-branches
and k-branches. The k-branches represent the active switches, whereas the E-branches
represent the passive switches. The active switching branch and the passive switching
branch are complementary.

Switches are classified, according to their operating function, as constant frequency

switches, constant ON-time switches, constant OFF-time switches, and variable switches.



The constant fre‘quency'swi;tch operates at a switching frequency f, = 71-; The switch
remains in the ON state for a variable time duration Toxn(t) and remains in the OFF
+ state for a variable time duration Torr(t), where Ton(t) + TorF(t) = T, as shown in

Fig. 2.8.

< k1)
1
0
~Ton(t} —Torr(t)—|Ton(1} ?T oFF(t) — '

Figure 2.8: The Constant Frequency Switch. The constant frequency switch operates at
a switching frequency f, = 7-.

The constant ON-time switch operates at a variable switching frequency f,(t) = ’1','1('1:7

The switch remains in the ON state for a constant period Ton and remains in the OFF
state for a variable time duration Torp(t), where Ton + TorFr(t) = Ts(t), as shown in

Fig. 2.9.

k(t)
1
0
R JTon M orr(t) - Ton ToFF(t) w— t
. . — T{t) — T(t) .

Figure 2.9: The Constant ON-Time Switch. The constant ON-time switch operates at a
variable switching frequency f,(t) = ’1".'1(?5 The switch remains in the ON state for

a constant duration Ton and remains in the QFF state for a variable time duration
Torr(t)- '

The constant OFF-time switch operates at a variable switching frequency f,(t) =
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: Z'I",II?Y The switch remains in the ON state for a variable time duration Ton(t) and

remains in the OFF state for a constant time duration Torr as shown in Fig. 2.10.

k(t) |
1

0

ToMt) Torr —ToNt) <4— Torr — t
— " T(t) —— T(1) —

Ly
oL

Figure 2.10: The Constant OFF-Time Switch. The constant OFF-time switch operates at
a variable switching frequency f,(t) = 77y. The switch remains in the ON state
for a variable time duration Ton(t) and remains in the OFF state for a constant

‘time duration Topp.

The variable switch operates at a variable switching frequency f,(t) = 31 - The

switch remains in the ON state for a variable time duration Tox(t) and remains in the

OFTF state for a variable time duration Topr(t) as shown in Fig. 2.11.

k(t)
1

0]

['oM(t)\-Torr(t) 4-Ton(t) =T orr(t) — !
Ti(1) Iy —

Figure 2.11: The Variable Switch. The variable switch operates at a variable switching
frequency f,(t) = ’I’.“l(ﬁ The switch remains in the ON state for a variable time
duration Topp(t) and remains in the OFF state for a variable time duration
Torr(t).
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2.4 Large-Signal Model of Switching Converters

Suppose that the signal entering the k-branch is z(t), and that the the output signal
 of the switching branch is y(t). The input signal z(t) is chopped by the switch function,
as shown in Fig. 2.12. The output signal y(¢) of the switching branch is a chopped
waveform with an envelope equal to the input signal z(t), a pulse frequency equal to the

switch fréquen‘cy fs, and a pulse width equal to Toyn.

x(t) \/\ x(t) —\/\

1 A
k(1) ! k(t) 1 1

0 > 0 p—

“>{Ton [T orr——| ‘ [T onle Torr—>{
—. 1. —
) h ]

—

)

i
y(t) = wt)=
x()k(t) x(t)k(t)

(a) ' (b)

Figure 2.12: The Signal Flow of the Switching Branches. The input signal z(t) is chopped
by the switch function k(t) and k(). The effective signal carried in the output
signal is y(t). (a) The signal flow of the k-branch. (b) The signal flow of the
Tc:'-bra.nch. .

Assume that the small ripple condition is satisfied; therefore, the switch frequency

is attenuated in the circuit. Also, assume that the signal frequency is much lower than

the switch frequency. The effective signal carried at the k-branch output is equal to its
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average value over a switch cycle:

Ton(t)
u(t) = 'i% /0 £(t)dt 2.8)
1 Ton(d)
~ 2l /0 dt (2.9)
_ Ton(®)
= z(t)_f(t-i_ (210)
= z(t)d(t) (2.11)

Similé.rly for the k-branch, the input signal z(t), and output signal y(¢) have the relation:

Ts(2)
y(t) = 73%5 [ = (2.12)
2(t) e O (2.13)
T,(t) JTon(t)
= z(t)%f%t—) (2.14)
= z(t)d () (2.15)

where d(t) and d'(t) are the averages of the switch functions k(t) and %(t) respectively,

and they represent the duty-ratio of the switch.

Ton(t)

at) = 28 (2.16)
@) = T‘;’:ggt) (2.17)
F@) = 1-d@) (2.18)

Switches are controlled by their duty-ratio function d(t). The duty-ratio functions are
found for the constant frequency switches, the constant ON-time switches, the constant
OFF-time switches, and the variable switches:
d(it) = Ton(t)fs for the constant frequency switches (2.19)
d(it) = Ton/fs(t) for the constant ON-time switches (2.20)

dit) = 1-Torrfs(t) for the constant OFF-time switches (2.21)
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dt) = Ton(t)fs(t)
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for the variable switches

k k
o—r""——0 o—r” —0
J J

x(t) x(t)
d(t) dat)
(a) (b)

(2.22)

where %9—»—0 is a multiplier

Figure 2.13: The large-signal Models of the Switching Branches. (a) The Large-signal
model of the k-branch. (b) The Large-signal model of the k-branch.

Equations (2.11) and (2.15) indicate that the output signal y(t) from the switching
branches is the product of the input signal z(t) and the duty-ratio control signal d(t)
or d'(t), thus it is directly affected by the input signal z() and controlled by the duty-
ratio d(t) or d'(t). Therefore, the I#rge—signal models of the switching branches are
represented by a single multiplier, as shown in Fig. 2.13. The large-signal model of a
switching converter is obtained by replacing the switchihg branches with the large-signal
models of the switching branches in the Switching Flow-Graph G.

Large-signal models are necessary for studying the global dynamic behavior of the
switching converter systems. Global knowledge makes it possible to design a switching
converter system that operates in the desirable converging region of state space. Inside

this desired converging region, the small-signal model can be employed to investigate the
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t o I3} 4 - O D, O 2> 0
- d(1) {éﬁ‘ d(1)

Figure 2.14: The Large-Signal Model of the Buckboost Converter. The large-signal
mode] of the buckboost converter is obtained by replacing the switching branches
‘with the large-signal models of the switching branches in the Switching Flow-
Graph G.

local frequency response for small-signals.

The large-signal model is shown in Fig. 2.14 for the same buckboost converter dis-
cussed in the previous sectibn. The input to output large-signal response can be obtained
by injecting a signal into node vy, and observing the output at the node v,. In addition,
the input impedance can be determined by detecting the signal at node #;. Injecting a
signal into node d(t) and detecting the output at node v, generates the control to output
large-signal-response. Injecting a signal into the node v,, one can detect the signal at
node %, to get the output impedance.

It is very easy to obtain the global view of the dynamic behavior of the system by
entering the modéel into a computer simulation program. From the study of the large-
signal dynamic behavior, a desired stable operating region is found. Inside this region,
the system can be linearized in the neighborhood of the operating point to obtain the

small-signal frequency response.
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2.5 Steady-State Model
The large-signal models of the k-branch and the k-branch, derived in the previous
‘section, can be modified to generate a steady-state model of the switching branches.
Assume that the input signals and the duty-ratio control signals, z(t), d(t), and d'(t),

entering the switching branches are constant. That is:

) = X (2.23)
dit) = D (2.24)
d{it) = D (2.25)

Then the output signal y(t) of the switch is also constant:
yt)=Y (2.26)

Therefore, the switching branches degenerate to standard branches, as shown in Fig. 2.15.
In the steady-state, the k-branch has only one input signal, X; the transmittance of the
branch is D and the output signal is Y. Similarly, for the k-branch, the input signal is
X, the transmittance of the branch is D' and the output signal is Y.

Substitution of these steady-state models into the Switching Flow-Graph G of the
switching converter for the switching branches and assuming S — 0, immediately yields
the steady-state model of the switching converter. The steady-state model of the buck-
boost converter is shown in Fig. 2.16. |

Relations between state variables, such as the input-to-output gain, the DC relations
between the state variables, and the efficiency, etc., can be read directly off the steady-

state flow-graph model.

V. _ _D/D

= =i 2.27
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(a) (b)

Figure 2.15: The Steady-State Models of the Switching Branches. (a) The steady-
state model of the k-branch. (b) The steady-state model of the k-branch.

L R Ve

Figure 2.16: The Steady-State Model of the Buckboost Converter. Substitution
of the steady-state models into the Switching Flow-Graph G of the buckboost
converter for the switching branches and assuming S — 0, immediately yields the

steady-state model of the buckboost converter.
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Iz, D

Ic DD’
V, = RL+D°R (2.29)
!
D = —— (2.30)
1+ ¥

2.6 Small-Signal Model

For the k-branch and the k-branch, in the large-signal environment, the input and

output signals have the relationships:
y(t) = =z(t)d(t) for the k-branch (2.31)
y(®) = =z(t)d'(t) for the k-branch (2.32)

Define the operating point by X, D and Y, and the associated small-signal perturbations

by £(t), d(t), and §(t), where:

d(t) = D+d(t) (2.33)
d(t) = D —d(t) (2.34)

1 = D+D (2.35)
z(t) = X +i(t) (2.36)
y(t) = Y +§() (2.37)

Inserting Equations (2.33), (2.34), (2.36) and (2.37) into the large-signal switching branch

relations (Q.31) and (2.32), yields the equations for the small-signal perturbations.
Y+3() = (X +&0)D+dw))
= XD+ Di(t) + Xd(t) + £(t)d(t) (2.38)
for the k-branch and

Y+§(t) = (X+2@)D ~d@)
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= XD+ D'é(t) - Xd(t) — 2(t)d(t) (2.39)

for the E-branch.

At the operating point, the k-branch and the k-branch satisfy:

Y

XD for the k-branch (2.40)

Y

XD for the E-branch (2.41)

Neglecting the second-order perturbations, yields the small-signal switching branch equa-

tions:

9(t) = Dz(t)+ Xd(t) for the k-branch (2.42)

3(t) D'#(t) — Xd(t) for the &-branch (2.43)

The small-signal models of the switching branches are shown in Fig. 2.17. Substitution

)

(a) (b)

Figure 2.17: The Smau-Signal Models of the Switching Branches. (a) The small-signal
model of the k-branch. (b) The small-signal model of the k-branch.

of the small-signal models for the switching branches in the Switching Flow-Graph im-

mediately generates the small-signal model.
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The small-signal dynamic model is shown in Fig. 2.18 for the same buckboost con-

verter discussed in the last section. The small-signal model of the buckboost converter,

an L% a)

Figure 2.18: The Small-Signal Model of the Buckboost Converter. Substitution of
the small-signal models for the switching branches in the Switching Flow-Graph
of the buckboost converter, immediately generates the small-signal model.

shown in Fig. 2.18, can be further simplified to Fig. 2.19 using the flow-graph algebraic
rules in Appendix A. The analytic forms of the transfer functions for the buckboost

converter are easily obtained from Fig. 2.19.

an)

Figure 2.19: The Simplified Small-Signal Model of the Buckboost Converter. The
small-signal mode] of the buckboost converter can be simplified using the flow-

graph algebraic rules in Appendix A.
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Vo+ Vo — éﬁ,&u

- = ' (2.44)
d D ((1 + RL/R) + RLC+L/R S+ %’C_;_Sg)

o -}:,—’r

2 = 2.45

The transfer function, shown in Equation (2.44), which represents the relationship be-
tween the small-signal control d(t) and the output ,, can be simplified using the steady-

state relations of Equation (2.27) and (2.28).

V,(1+ D(RD'-Ry /D) _ _LD/D S)

o _ RitRDZ____ R +RDZ (2.46)
d Dl((l + RDLI/QR) + RLC+L/RS+ LC 52)

The small-signal transfer functions, obtained using the Switching Flow-Graph technique,
are the same as those obtained using the state-space averaging technique; however, the
Switching Flow-Graph technique provides a more visible and faster way to obtain the
small-signal models for switching converters. The Switching Flow-Graph models gen-
erate a more physical understanding of the signal processing in switching converters.
For example, it is evident from Fig. 2.7 that a right-half-plane (RHP) zero exists in
the control-to-output frequency response. The physical insight necessary to make this
observation of the RHP zero is further discussed in Chapter. 4.

In addition, the Switching Flow-Graph facilitates the determination of the input and

output impedances:

Zin = gﬁ
g
- REr(+ —/—"52 BucsliRg 4 Lo 52
= 1Y ROS (2.47)
N U
Zout = T
z12I|19=0
Ri(l+#5)

_ (2.48)
D2((1+ BBy + BSR4 LC g2y
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. 2.7 Extra-Element Thebry of the Flow-Graph

The extra-element theory [12] can be applied to the flow-graph and the Switching
‘Flové'-Graph. Suppose B; is i-th branch of the Switching Flow-Graph G. The branch B;
represénts an electrical element Z; of the original circuit. If an extra-element Zg is to be
inserted into the original circuit in parallel with the element Zp, as shown in Fig. 2.20,
then the éxtra—_elemenﬁ Zg = 1/CgS shares the current with the original element Zg.
Therefore, Z4 and Z,, can be‘determined by injecting a current signal into the current
node of branch B; and detecting the voltage at the voltage node of branch B;, as shown

in Fig. 2.20. Let vy = 0, v, = vp,

Ve > .

11 L ———=n

1 in |

C I

1
Ve R lvn —TCe
I
I
I
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[ > >
Ve 1 R VR
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Figure 2.20: The Parallel Extra-Element. Z; and Z, can be determined by injecting a
current signal into the current node of branch B; and detecting the voltage at the

voltage node of branch B;.
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If an extra-element Zg is inserted into the circuit in series with the element Z B, as

shown in Fig. 2.21, then the extra element Zg = LgS shares the voltage with the original

element Zg. Therefore, Z; and Z, can be determined by injecting a voltage signal in to

the current node of branch B;, and detecting the current at the current node of branch

B;, as shown in Fig. 2.21. Let v, = 0 and v, = vR,

Z4

Adjust #inject such that v, = 0,

Uinject
- g =0
ttest

14+ RCS
cs

Vinject
—— |v=0
ltest

0.

The gain %:- with the extra-element Zg is:

v
_?"lZE =

Vg

RCS

1+ RCS + LgCS?’

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)
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Figure 2.21: The Series Extra-Element. Z; and Z, can be determined by injecting a
voltage signal into the voltage node of branch B;, and detecting the current at the
current node of branch B;.

For simple circuits such as those shown in Fig. 2.20 and Fig. 2.21, there is not much
advantage in using the extra-element theory. However, the extra-element theory is of

tremendous help when the circuit is very complicated.

2.8 Summary

The Switching Flow-Graph technique is an easily implemented graphic modelling
tool for switching converter design and analysis. This technique provides a large-signal
model, a small-signal model, and a steady-state model. The large-signal model gives a

global view of the switching converter, thus it can be used to find the convergent operating
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2
region and to design a converter that operates in a desired region. The steady-state model

yields the steady-state relations, which are useful in determining the efficiency and other

' - steady-state properties of switching converters. The small-signal model gives the transfer

functions from one arbitrary state variable to another arbitrary state variable, such as
the input-to-output gain, the control-to-output gain, the input and output impedances,
etc. The Switching Flow-Graph is a graphic realization of the circuit that contains all the

information about the circuit, provides physical insight into the operation of the circuit

and is very easy to obtain.
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‘Chapter 3
Modelling Pulse-Width-Modulated Switching

Converters

The Switching Flow-Graph technique is applied to model the most commonly used
pulsed-width-modulated (PWM) converters in the second-order family in Section 3.1 and
the fourth-order family in Section 3.2. The algebraic rules, outlined in Appendix A, are
employed to simplify the small-signal Switching Flow-Graphs in Section 3.3. Experi-
ments, described in Section 3.4, were conducted to verify both the large-signal and the

small-signal models.

3.1 Modelling Second-Order PWM Switching Converters

The Switching Flow-Graph technique is used to study the dynamic behavior of stan-
dard second-order PWM converters, such as the buck converter, the boost converter, and
the buckboost converter, shown in Fig. 3.1. L is the inductor, C is the capacitor, and R
is the load resistor. A transistor and a diode are employed to implement the switch S.
When the ﬁransistor is ON the diode is OFF and when the transistor is OFF the diode is
ON. Define vy, vr, v, as the input voltage, the inductor voltage, and the output voltage,
respectively. Assume that the input current i;, the inductor current i L, and the output
current i, = ic + i are in the same direction as vg, vr, and v,.

The Switching Flow-Graphs, shown in Fig. 3.2, for the buck converter, the boost
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Figure 3.1: The Basic Second-Order PWM Converter. (a) The buck converter.

The boost converter. (c) The buckboost converter.
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Figure 3.2: The Switching Flow-Graphs of the Second-Order PWM Converters.
The Switching Flow-Graph for the buck converter (a), the boost converter (b),
and the buckboost converter (c).
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Figure 3.3: The Large-Signal Models of the Second-Order PWM Converters. The
large-signal model for the buck converter (a), the boost converter (b), and the
buckboost converter (c).
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Figure 3.4: The Small-Signal Models of the Second-Order PWM Converters. The
small-signal model for the buck converter (a), the boost converter (b), and the
buckboost converter (c). '



44
Y

converter, and the ‘buckbovost converter are very similar. The Switching Flow-Graphs
exhibit an in_téresting Vregularity. The k-branches appear in pairs and the E-branches
*  appear in pairs. In all cases, one switching branch of a given pair is in the voltage path,
while the other is in the current path. The buck converter has only one pair of k-branches,
the boﬁst converter has only one pair of k-branches, and the buckboost converter has
both a k-branch pair and a E-branch pair.

- The large-s}gna] models are shown in Fig. 3.3. Relations between the various state
variables are obtained by simulation. The small-signal models are shown in Fig. 3.4.
Small-signal transfer functions between state variables are read directly from the small-
signal Switching Flow-Graph. Fig. 3.4 also indicates that the duty-ratio signal d injected
into the current path has a negative effect on the output voltage 9,. This negative effect

raises the problem of right-half-plane (RHP) zeros that is discussed in Chapter 4.

3.2 Modelling Fourth-Order PWM Converters

bThe Switching Flow-Graph technique is also well suited for the study of the dynamic
behavior of fourth-order syst.emé, such as the buck converter with input filter, the d°
converter, the Cuk converter, and the Lambda converter, as shown in Fig. 3.5. L; and
L, are the input and output inductors, C; and C; are the input and output capacitors,
and R is the load resistor. In each circuit, a transistor and one or more diode(s) are
used to implement the switch S. When the transistor is ON, diode “1”s are ON and
diode “0”s'are OFF. When the transistor is OFF, diode “1”s are OFF and diode “0”s -
are ON. Define vy as the input voltage, vr; and v, as the voltages across Ly and Lz, vey
as the voltage across Cj, and v, as the output voltagé. Define i, as the input current,
iz1 and irg as the currents through L; and L3, ic) as the curfent through Cj, and

i, = ip2 = iR + ic2 as the output current. All currents flow in the same direction as
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Figure 3.5: The Fourth-Order PWM Converters. (a) The buck converter with input
filter. (b) The d? converter. (c) The Cuk converter. (d) The Lambda converter.



46

&
Vi 1 yu
(a) .

A R
W LS RCzS+I Vo

k k
wm = ™ N
-1
P 1 _R___
A/ vi2 Vo
(€ o LS N\ RGS+I
-1
- k — R
a 2 _ RCS+T v

Figure 3.6: The Switching Flow-Graphs of the Fourth-Order PWM Converters. The
Switching Flow-Graph for the buck converter with input filter (a), the d? converter
(b), the Cuk converter (c), and the Lambda converter (d).
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Figure 3.7: The Large-Signal Models of the Fourth-Order PWM Converters. The
large-signal model for the buck converter with input filter (a), the d? converter (b),
the Cuk converter (c), and the Lambda converter (d).
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Figure 3.8: The Small-Signal Models of the Fourth-Order PWM Converters. The
small-signal model for the buck converter with input filter (a), the d? converter (b),
the Cuk converter (c), and the Lambda converter (d).
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_ their associated voltages.
The Switching Flow-Graphs obtained for the fourth-order converters are shown in
" .Fig. 3.6. The Switching Flow-Graphs illustrate the same regular pattern as seen in the
second-order converters. The k-branches appear in pairs, and the E-branches appear in
pairs. In all cases, one switching branch of a given pair is in the voltage path and the
other is in the current-path.. A loop contains at most one type of switching branch. If
a lodp'has swit::hing branches, it always has two, one in the forward path and the other
in the feedback path. If two adjacent loops both have switching branches, they have
different types. Converters with DC gain IDT': have m pairs of k-branches and n pairs 6f
k-branches in their Switching Flow-Graphs.

The large-signal models in Fig. 3.7 and the small-signal models in Fig. 3.8 are given
to demonstrate the ease with which this Switching Flow-Graph technique can be applied

to generate deeper insight into the operation of PWM converters.

3.3 Simplification of the Small-Signal Switching Flow-Graphs

The Switching Flow-Graph small-signal models are linear. Hence all the linear flow-
graph reducing techniques are applicable, such as the Flow-Graph algebraic rules, shown
in Appendix A, the Mason Formula, etc. The algebraic rules are visual; therefore, they
are more straightforward. The algebraic rules are used here to simplify the Switching
Flow-Graph small-signal models, shown in Fig. 3.4 and Fig. 3.8 to obtain the input-to-
output, the control-to-output transfer functions.

To demonstrate the procedure, the buck converter with input filter in the fourth-
order family, as shown in Fig. 3.8(a), is used as an e;cample. First, label all the d(t)
control branches, as shown in Fig. 3.9(a). Second, move all the d(¢) control branches to

one node, for example the #z; node. Branch #1 must be moved forward to node ic;
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and then backward. along fhe ‘Switching Flow-Graph path from node i¢; to node vp;;
therefore, the transmittance of Branch #1 is changed after the move. According to the
' . algebraic rules, a factor of _Z—}ﬁ’ which is the total gain of the path to be crossed, must
be divided into the original transmittance. The transmittance of Branch #1 becomes
—~Ir3L1S. In order to move Branch #2 to node V71, it must cross a local loop that has
a gain TFC?W" Therefore the transmittance of Branch #2 becomes thﬁb&‘ﬁ. By
superposition, i3ranch #1 and #2 can be combined into one branch with a transmittance
Ny, as shown in fig. 3.9(b).

14 C1L,5?

- 1
D I12L4S (3.1)

Ng =V

The third stei:; in the simplification involves reshaping of the i1 feedback branch. Move
the feedback point from node iz, to node 9,, and move the injection point from node
ic1 to node 9z, that yields a feedback transmittance of -Q;?-S (1 + RC,S5), as shown
in Fig. 3.9(c)‘. Last, reshape the two local feedback loops. The left loop is reduced to
a branch with transmittance 1—_,_—011—1437;, and the right loop is reduced to a branch with
transmittance W, as shown in Fig. 3.9(d).

The input-to-output transfer function and the control-to-output transfer function of

the buck converter with input filter are read from Fig. 3.9(d).

o D
2 ox 3.2
Bg 1+ 885+ =571+ RS+ 57 G2
0 (S + S+ g5 S+ 5 ‘
i ~ V:‘](l - _D_le;aj,S + Llcls2) (3 4)
d (1+ S+ S+ 8BS + 15?) '
Ki(1+ oS + 25 S?)
- oo 4% (3.5)

I+ 7S+ H)(1+ 35S + 255

where

K, = D (3.6)
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Figure 3.9: Reduce the Switching Flow-Graph of the Buck Converter with Input
Filter. (a) The original Switching Flow-Graph of the Buck Converter with Input
Filter. (b) Move all d(t) control branch to one node. (c) Reshape the iy, feedback
branch. (d) Reduce two local feedback loops.
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Figure 3.10: The Small-Signal Transfer Functions of the Second-Order PWM Con-
verters. The small-signal transfer function for the buck converter (a), the boost

converter (b), and the buckboost converter (c).
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Figure 3.11: The Small-Signal Transfer Functions of the Fourth-Order PWM Con-
verters. The small-signal transfer function for the buck converter with input
filter (a), the d® converter (b), the Cuk converter (c), and the Lambda converter

(d).
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Q@ = —yfE (3.9)
w = JEIIE{ (3.10)
@6 = = f—: (3.11)
Wy = —m (3.12)

&

Q: =

Cs
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Since Q¢ > 0.5, the duty-ratio d to output voltage v, transfer function of the buck

converter with input filter has a pair of RHP zeros:

N(S)=1- S+ LG, S? (3.14)

DL,
R

The output filter of the buck converter has no effect on the RHP zeros, while the input
inductor L;, the energy transfer capacitor Ci, and the load R actually determine the
RHP zeros.

The transfer functions are also found for the buck converter, the boost converter and
the buckboost converter in the second-order family, the d? converter, the Cuk converter,
and the lambda converter in the fourth-order family, using the same simplification tech-
nique. The simplified small-signal models are given in Fig. 3.10 and Fig. 3.11. The
small-signal models show that all the converters, except the basic buck converter, have

RHP zeros. The RHP zero problem is discussed further in Chapter 4.

3.4 Experimental Verification

The Switching Flow-Graph large-signal models and small-signal models were obtained

in Section 3.3 for the second-order family and the fourth-order family. Do these models
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predict the dynamic behavior of the real converters? Experiments were conducted to

verify the models; the results are discussed below.

3.4.’1 The Experimental Circuit

The simplest converter, the basic buck converter, does not have RHP zeros and it is
a second-order system, as shown in Section 3.1. Therefore, it should always be stable.
In practice, héwever, a buck converter may oscillate when a feedback loop is applied.
The oscillation is due to the fact that the input power source is usually obtained from
rectified line power with an output filter. The output filter of the input voltage source is
equivalent to the input filter of the buck converter. The buck converter with input filter
is a fourth-order converter with two RHP zeros, as predicted in Section 3.2. A fourth-
order converter with two RHP zeros is difficult to stabilize when the loop is closed. The

buck converter with an input filter, as shown in Fig. 3.12, was chosen for the experiment.

3.4.2 The Large-Signal Model

The large-signal model for the buck converter with input filter, shown in Fig. 3.12, is
shown in Fig. 3.13. To verify the large-signal model, the results obtained from computer
simulations were compared to the results obtained from experiments. The commercially
available simulation program, TUTSIM, is flow-graph Qriented. The large-signal model,
as shown in Fig. 3.'13, can be entered directly to the TUTSIM simulation program. Users
specifyi the transmittance and the inputs for each branch, define the injecting function
of the duty-ratio, and gi\}e the initial condition, the simulation step size and the starting
and stopping time. vThe file to simulate the step response is shown in Fig. 3.14.

The circuit parameters are as follows: V, = 15V, f, = 30kHz, L; = 0.43mH,

L, = 048mH, Cy = 10.4puF, C; = 30pF, Rry = 0.25Q, Rz = 0.6Q, R = 10.49Q.
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Figure 3.12: The Experimental Buck Converter with an Input Filter. The experi-
mental circuit contains the power stage and the modulator. An electronic switch
18 used for injecting the step exciting signals. Point A is the signal injecting point,
Point B and Point C are test points for v, and ir,.

d(t)
& RC:S 71

Figure 3.13: The Large-Signal Model of the Buck Converter with an Input Filter.
In this model, two parasitic resistor are considered, R;; and Rr,.
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Mode! File: bfstpS96.c10
Date: 4/22/71990
Time: 2:22
Timing: 300.000E-09 ,DELTA ; 0.0050000 ,RANGE
PlotBlocks and Scales:
Format:
BlockNo, Plot-MiNimum, Plot-MAXimum; Comment
Horz: 0, 0.0000 , 0.0050000 ; Time
" 12, 0.0000 , 20.0000 ; V0=VC2
- v2: 10, 0.0000 ,  5.0000 ;L2
¥3: R R H
Y4 . . ;

15.0000 1 CON Y
0.3550000 2 CON ;D0
0.0010000 3 PLS ;D—delts
0.0100000
0.3350000

4 SUn 2 3 ;0-.0+D_delta
S MUL 4 10 JPWM SWITCH
430.000E-06 6L 1 -8 -7 2

01731870
0.2700000 7R 6 R

10.400€~06 ac 6 -S svCt

14.9541

9 MUL 8 4 ;PWH SWITCH
480.000E-06 10L 9 =-t2 -1 ;L2

0.4854770
0.6000000 ttR 10 RL2

10.3000 12 Fi0 10 ;¥0=VvC2

309.000E-06

5.0103

Figure 3.14: The Input Format of the TUTSIM Program. The Switching Flow-Graph
Model can be directly entered to the TUTSIM simulation program. Users specify
the transmittance and the inputs for each branch, define the duty-ratio step func-
tion, and give the initial condition, the simulation step size and the starting and
stopping time.

An electronic switch was built to inject the duty-ratio step excitation at Point A. The

Tektronix oscilloscope 92440 was used to measure the transient responses of the converter

at Point B, for the output voltage v,, and Point C, for the inductor current iz;. The

single shot mode was used, with the external signal from point A, to trigger the data

acquisition to record the transients.

Experiment 3.1 For a large step duty-ratio jump, from d = 0.355 to d = 0.69, the

output voltage jumped from 5V to 9.7V, and the current jumped from 0.48A4 to 0.93A.
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Figure 3.15: The Predicted and Measured Large-Signal Step Response. When the
duty-ratio stepped up from d = 0.355 to d = 0.69, the output voltage v, jumped
from 5V to 9.7V, and the current jumped from 0.48A4 to 0.93A. Operating con-
dition: V, = 15V, f, = 30kHz, L; = 0.43mH, L, = 0.48mH, C; = 10.4yF,
Cy =30uF, Ry; =0.25Q, Ry, = 0.6, R = 10.44.

The measured data and the simulation data are plotted in the same figure as shown in

Fig. 3.15. The measured large-signal response and the iprediction match very closely.

Experiment 3.2 The input capacitor was changed from 10.4uF to 31.4uF, and other
conditions remained the same. The measured data and the simulation data are plotted

together in Fig. 3.16. The prediction and the measurement coincide with each other.

Experiment 3.3 The input inductor was changed from 0.43mH to 1.45mH, and other
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Figure 3.16: The Predicted and Measured Large-Signal Step Response. When the
duty-ratio stepped up from d = 0.355 to d = 0.69, the output voltage v, jumped
from 5V to 9.7V, and the inductor current ir, jumped from 0.48A4 to 0.93A4.
Operating condition: V, = 15V, f, = 30kHz, L, = 043mH, L, = 0.48mH,
Cy=314uF, Cy = 30uF, Rr, =0.25Q, Rry = 0.6Q, R = 10.49.

conditions remained the same as Experiment 3.2. The measured data and the simulation

data are plotted togethel; in Fig. 3.17. The prediction and the measurement are very

close.

The experiments verified the Switching Flow-Graﬁh large-signal model. This model
can be utilized to predict the large-signal behaviors of the PWM switch converters, and

to provide global stability information.
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Figure 3.17: The Predicted and Measured Large-Signal Step Response. When the
duty-ratio stepped up from d = 0.355 to d = 0.69, the output voltage v, jumped
from 5V to 9.7V, and the inductor current iz, jumped from 0.48A4 to 0.93A4.
Operating condition: V, = 15V, f, = 30kHz, L; = 1.45mH, L, = 0.48mH,
Cy =31.4uF, Co, = 30uF, Ry = 0.25Q, Rz = 0.6Q, R = 10.4Q.

3.4.3 The Small-Signal Model

The small-signal linearized model plays an important role in the study of local Small-
Signal dynamical behavior. For the buck converter with input filter, consider the two
parasitic resistors, the small-signal model is shown in Flg 3.18. The small-signal model

predicts the input-to-all state frequency responses.

Pc1 _  N3(S)
d ~—  D(S)
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Figure 3.18: The Small-Signal Model of the Buck Converter with an Input Filter.

In this model, two parasitic resistors are included, Rz, and Rys.

Two experiments were conducted to verify the prediction. The HP 3577 network
analyzer was used to measure frequency respoﬁse. A frequency sweeping signal was
injected at Point A. The responses at Point B were detected to determine the transfer
function %?-, ‘a.nd the frequency responses at Point C' were detected to determine the
transfer function 2. An IBM AT was connected to the analyzer through the HPIB

d

interface to take the measurement data.

Experiment 3.4 A frequency sweeping signal, ranged from 5Hz to 30K Hz, was in-
Jected at Point A. The responses at Point B were detected to determine the transfer
function ﬁdﬂ. For the circuit parameter V, = 15V, f, = 30kHz2, D = 0.27, L; = 0.43mH,
Ly = 0.48mH, Cy = 314uF, Cy = 304F, Ry = 0.25Q, Rrz = 062, R = 10.402. The
model predicts two RHP zeros, when the duty-ratio D > 0.24. The measured transfer
function and the predicted transfer function are plotted in Fig. 3.19. The predicted and
the measured respovnse match closely. Both the prediction and the measurement show

that the phase shifts 540° at 2.4k H z. The measurement proved the prediction.

Experiment 3.5 A frequency sweeping signal, ranged from 5Hz to 30K H z, was in-
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jected at Point A. The responses at Point C were detected to determine the transfer

function ilf-. For the same circuit parameters as that of Experiment 1, the predicted

" . and the measured frequency responses are plotted in Fig. 3.20. The prediction and the

measurement are very close.

3.5 Summary

The Switching Flow-Graphs are found for the commonly used converters in the
second-order and the fourth-order families. A regularity exists in the Switching Flow-
Graphs of the PWM switching converters. This regularity provides a visual and physiéal
understanding of the switching converters. The large-signal Switching Flow-Graphs are
compatible with the TUTSIM simulation program. The user simply specifies the trans-
mittance and the inputs for each branch, defines the duty-ratio step function, and gives
the initial conditions, the simulation step size, the starting and the stopping time. The
TUTSIM program automatically simulates the dynamic transients. The small-signal
Switching Flow-Graph models can be simplified by the flow-graph algebraic rules, shown
in Appendix A. The analytical small-signal transfer function of the switching converters
can be directly read from the Switching Flow-Graph. The Experiments proved that the
large-signal Switching Flow-Graph model and the small-signal Switching Flow-Graph

model are very accurate.



66



67

Chapter 4

Right-Half-Plane Zero Study

Mdst pulse-width-modulated (PWM) converters, such as the boost converter and the
buckboost converter in the second-order converter family, and all the converters in the
fourth-order converter family, have right-half-plane (RHP) zeros, as described in the last
chapter. It is Very difficult to close the feedback loop for PWM control or current-mode
control of converters, especially fourth-order converters with two pairs of complex poles
located close to each other and RHP zeros.

In Section 4.1, a physical interpretation of RHP zeros is revealed by the Switching
Flow-Graph. ‘Imbalanced effects are found for the duty-ratio control signal d(t) to the
output voltage v,, which induce the RHP zeros in the small-signal frequency response.
Experiments were conducted to detect the predicted RHP zeros. The results, discussed
in Section 4.2, are in good agreement with the theory. Proper damping circuit design
criteria are found, in Section 4.3, to eliminate the RHP zeros . By first understanding and
then eliminating the RHP zeros, the fourth-order converters achieve very good close-loop

dynamical response. Experiments verified the theory.

4.1 The Physical Interpretation of Right-Half-Plane Zeros

The Switching Flow-Graph models were found for the second-order converters and
the fourth-order converters, as shown in Fig. 3.4 and Fig. 3.8. The Switching Flow-

Graphs exhibit a unique regularity. The duty-ratio control signals are injected into the



68

_ converters throggh the switching branches. The duty-ratio control signals injected into a
k-branch have a positive effect on the output voltage v, if the k-branch is in the forward
~ path, and have a negative effect the output voltage if the k-branch is in the feedback
path. The duty-ratio control signals injected into a E-branch have a negative effect on
the output voltage v, if the k-branch is in the forward path, and have a positive effect on
the output voltage if the E-branch is in the feedback path. Further observation indicates
that ’th'e duty—r;tio control signals injected into a switching branch in the current path
have a negative effect on the output, and the duty-ratio control signal injected into a
switching branch in the voltage path have a positive effect on the output. The positive
and negative effects of the duty-ratio control signals reach the output voltage through
different dynamic processes; therefore, they are not balanced. The RHP zeros, in the
small-signal models, are the result of this imbalance.

The imbalance affects the second-order family and the fourth-order family in different
ways. To explain how this imbalance affects the performance of a switching converter in
thé second-order family, the boost converter, shown in Fig. 4.1, is utilized as an example.
The small-signal model of the boost converter shows that the duty-ratio control signal
d(t) is injected into two nodes, the i, node and the vy node. The duty-ratio signal
injected at the i, node has a negative transfer function to the output voltage v,:

S

14 z52S + 5552

(4.1)

Whereas the duty-ratio signal injected at the node vy, has a positive transfer function to

the output voltage v,:
Vo
14 7%= S + 5552

(4.2)

According to linear-circuit superposition, these two effects of the duty-ratio can be added
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Figure 4.1: The Boost Converter and its Small-Signal Model. (a) The boost converter.
(b) The Switching Flow-Graph small-signal model.

together to get the whole transfer function:

_ Vo—%fg's
1+ 5525 + $55?

(4.3)

&

Ita is easy to see that there is a RHP zero.

From Fig. 4.1 (b), it is clear that the negative duty-ratio signal injected at the node
i, is closer, in the signal pé.th, to the output signal v, than the positive duty-ratio signal
injected at the nodevuL. Therefore, the negative duty-ratio signal injected at the node
i, affects the output voltage v, faster, by a factor of LS, than the positive duty-ratio

signal injected at the node vy. The Switching Flow-Graph physically demonstrates that
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if the duty-ratio increases, then the time duration for the energy to discharge from the

inductor to the output is reduced. The increase in the duty-ratio directly reduces the

" . output voltage. On the other hand, when the duty-ratio increases, the time duration

for the energy from the input voltage to charge the inductor increases, which increases
the inductor current and evéntually increases the output voltage. However, this process
takes longer than the effect acting to reduce the output voltage because this process
reqﬁir'es two st;ps.

When the duty-ratio ci(t) is at a low frequency, the output voltage 9, is not phase
shifted. However, when the duty-ratio J(t) is at a high frequency, the output voltage v,
is phase shifted by 90°.

To explain how this imbalance affects the performance of a switching converter in the
fourth-order family, the buck converter with input filter, shown in Fig. 3.5, is utilized as
an example. The small-signal model of the buck converter with input filter, Fig. 3.18,
shows that the duty-ratio signal is injected into two nodes, the i1 node and the vy
node. The duty-ratio injected at the ic1 node has a negative effect on the output voltage
v, while the duty-ratio injected at vrz has a positive effect on the output voltage vp.
Physically, when the duty-ratio increases, the charging time of the inductor L3 increases,
which tends to increase the output voltage. However, the increased duty-ratio reduces
the current that charges the capacitor Cy, which tends to reduce the output voltage.
This imbalance causes the RHP zeros in the small-signal model of the buck converter.

The existence of RHP zeros in the PWM converter makes the control-loop design

very difficult. The closed-loop is very hard to stabilize.
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4.2 ' Detection of the’Rnght-Half-Plane Zeros

For a given buck converter with input filter, as shown in Fig. 3.12, the open-loop

transfer function has a numerator:

RD D?L

N(S) = (1~ 1‘2 )+ (RaCr - =5 1)S + L,C1S?) (4.4)
1 1
=1 S+ —5° 4.5
+ Qowo t wd (4.5)
(4.6)
where BhQ << 1, therefore,
o= VLiCy '

Qo (4.8)

1

/C1 D? /Ll
RLI Ll > R Cl, (49)

the buck converter has left-half-plane (LHP) zeros, while when

C, DLy
R“\/L1< R\/Cl, (4.10)

the LHP zeros change to RHP zeros.

When

D?L,

Rp1Cy = 7

(4.11)

Equation (4.11) is the critical condition. If the circuit parameters are constant while the

duty-ratio D is varying, a critical duty-ratio D can be found at which the LHP zeros

Davig = ,/ﬁ%ﬂ (4.12)
1

For the given value of V, = 15V, f, = 30kHz, L, = 0.43mH, L, = 0.48mH,

change to RHP zeros.

C1 = 10pF, C; = 30pF, Ry = 0.25Q, Rry = 0.6Q, R = 10.4Q, the critical duty-ratio
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 Derit is 0.24. Therefore, if D < 0.24 there are no RHP zeros; whereas, if D > 0.24 a pair
of RHP zeros appears. Experiments were conducted, using the circuit shown in Fig. 3.12,

' to detect the RHP zeros.

Expefiment 4.1 The HP 3577 network analyzer was used to measure the frequency
response. A frequency sweeping duty-ratio modulation signal was injected at Point
A. The résponse was detected at Point B to determine the transfer function ldﬂ The
duty-rétio D was varied from a small value to a large value, D(1) = 0.2, D(2) = 0.23,
D(3) = 0.27, and D(4) = 0.4. In all cases, the values for vy, f,, L1, Lz, C1, C2, Rr1, Rr2,
and R were held constant. When the duty-ratio D = 0.2, far below the critical duty-ratio
D¢rit, the freciuency response is only phase shifted by 180°; therefore, the converter has
no RHP zeros. The measured data and the predicted results are plotted together in
Fig. 4.2. The experimental data match the theoretical prediction very closely. When the
duty-ratio D = 0.23, which is a little below the critical duty-ratio D.y;;. The phase shift
of the frequency response still did not exceed 180°. The measured and the predicted
results are plotted together in Fig. 4.3. Therefore, the converter does not have any RHP
zeros; however, the @ value is higher. The duty-ratio was further increased to exceed the
critical duty-ratio Depis, D = 0.27. The measured and the predicted results are plotted
together in Fig. 4.4. The phase shift dramatically crosses over 180° and reaches 540°.
Two RHP zeros appear and the @ value is very high. When the duty-ratio D = 0.4,
which was far above the critical duty-ratio Deis. The phase shift reaches to 540°, with a
more gradual falling slope than the case for D = 0.27. The measured and the predicted
results are plotted together in Fig. 4.5. As predicted, the converter has two RHP zeros

with a lower Q) value than the case when D = 0.27.
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Figure 4.2: The Predicted and Measured Frequency Response when D=0.2. The
duty-ratio D is much smaller than the critical duty-ratio De,4:; there is no RHP
zero. Operating condition: V; = 15V, f, = 30kHz, L1 = 0.43mH, L, = 0.48mH,
Cy=104uF, Co = 30uF, Ry = 0.25Q, Rz, = 0.6Q, R = 10.49.
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Figure 4.3: The Predicted and Measured Frequency Response when D=0.23. The
duty-ratio D is a little smaller than the critical duty-ratio D,,;; there is still no
RHP zero. However, the duty-ratio D is very close to Drit; the Q value is very
high. Operating condition: V, = 15V, f, = 30kHz, L, = 043mH, L, = 0.48mH,
C1=104pF, Cy = 30pF, Ry =0.25Q, Rra =062, R= 10.49.
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Figure 4.4: The Predicted and Measured Frequency Response when D=0.27. The
duty-ratio D is just above D.ri;; the RHP zeros appear. Since the duty-ratio D is
very close to the critical duty-ratio D,p; the Q is very high. Operating condition:
Vo =15V, f, = 30kHz, Ly = 043mH, L, = 048mH, C; = 104uF, Cy = 30uF,
Rp1 =0.25Q, Rrs = 0.6Q2, R = 10.49.
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Figure 4.5: The Predicted and Measured Frequency Response when D=0.4. The
duty-ratio D is much larger than the critical duty-ratio D..;; there are two RHP
zeros. Operating condition: V, = 15V, f, = 30kHz, L, = 0.43mH, L, = 0.48mH,
Ci1 =104pF, C; = 30uF, Ry = 0.25Q, Rr; = 0.6Q, R = 10.49Q.
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4.3 Damping Technique to Eliminate the Right-Half-Plane Zeros

In this section, the damping technique is used to eliminate the RHP zeros and there-
fore il;nprove the dynamic properties of the PWM converter.

For a real switching converter, the input voltage source always has impedance, and
the parasitic resistance of the inductor is always present. The whole input resistance
provides sbme damping to the RHP zeros. To have controllable damping, an effective
engineéring method to eliminate the RHP zeros is to add a damping circuit to the energy-

transfer capacitor.

4.3.1 The Input Resistor Damping

In Section 4.2, the condition is derived for an input resistance that is capable of elim-
inating the RHP zeros of the buck converter with input filter, shown in Equation( 4.11).
The same condition are also found for the d? converter, the Cuk converter, and the

Lambda converter.

2
Ry > D"L for the input filter buck (4.13)
RCy
2
R, > DLy for the d? converter (4.14)
RC,
2
Ry > T)% for the Cuk converter (4.15)
2
Rr, > D—D’C-}'%l}i for the Lambda. converter (4.16)

In practice, however, the converter circuit is designed to minimize the input resistance in
order to increase the power processing efficiency. Therefore, input resistance damping is
usually not enough to eliminate the RHP zeros, and even if the RHP zeros are damped

out, the Q value of the LHP zeros may be very high, as discussed in Section 4.2.
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_ 4.3.‘2‘ The Energy-Transfer Capacitor Damping

A capacitor damping circuit for the buck converter with input filter is shown in

Fig. 4.6. The capacitor damping circuit contains a resistor Bp and a capacitor Cp. To

Ru L: L2 Rez
~AMA 00 ¥ L EEE AN
Cp —— |
= R § =C: A\ C: —— gR

Figure 4.6: The Damping Circuit for the Buck Converter. A capacitor Cp and a
resistor Rp compose a damping circuit.

examine the effect of this damping, neglect the parasitic resistance Ry; for a moment.

The transfer function 3’7‘?- has a numerator:

2
N(S)=1- Dlis, 1cys? , (4.17)
Let:
CpS(1+ C1RpS)
CiS - 1+ CpRpS (4.18)

in Equation( 4.17). Therefore, Equation( 4.17) becomes

DL,
R

D?L,CpRp

—NdamP(S) =14+ (CpRp - 7

)S2 + L1L2CRC, 53, (4.19)

)S + (I.Cp -

Apply Ruth’s law to Ngamp(S); the criterion to have all zeros in the LHP is obtained:

Ci, R
<Rp<(l1- FD_)F (4.20)

DL,
RCp

If the damping circuit is designed with this criterion, all the RHP zeros of the Lambda

converter will be moved to the LHP. Similarly, the damping criteria for the D? converter,
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the Cuk converter, and the Lambda converter are

ZZ’; <Rp< (1- g—; = for the input filier buck (4.21)

f}:é; <Rp< (1- g—;)% for the D? converter (4.22)

D—TRL_CI'D- <Rp< (1- _CC%)% for the Cuk converter (4.23)

- l_): ;})RCD <Rp< (1- 5_2)2'_2@ for the Lambda converter (4.24)

These conditions are derived when the input resistance Rr; = 0; therefore, this is not

exact if the input resistance Rz, is not zero.

4.3.3 Experimental Verification

The buck converter with input filter, as shown in Fig. 4.6, with the same circuit
parameters given in Section 4.2, has RHP zeros when the duty-ratio D = 0.4, as predicted
and detected in Section 4.2.

If the damping capacitor is chosen to be Cp = 100uF; the damping condition for
Rri=0is

0.7 < Rp < 5642. (4.25)

For the real circuit, there is a parasitic input resistance Ryp; = 0.25; therefore, this

condition is not exact.

Experiment 4.2 A damping resistor Rp = 51 was used, which was inside the condi-
tion region. The RHP zeros of the buck converter with input filter should be changed
to LHP zeros. The experimental result is shown in Fig. 4.7. The measured phase shift
is 180°; hence, the measured frequency response shows that no RHP zeros exist; as pre-
dicted. The damping resistor was increased to Rp = 829, which is outside the condition

region. The theory predicts that the RHP zeros of the buck converter may come back.
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Figure 4.7: The Measured Frequency Response when the Damping Condition is Sat-
isfied. The damping capacitor Cp = 100pF, and the damping resistor Rp = 51%2.
As predicted there is no RHP zero. Operating condition: V; = 15V, f, = 30kHz,
Ly = 043mH, L, = 048mH, C, = 104uF, C; = 30uF, Ry, = 0.25Q,
Ry = 0.6, R =104Q.
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Figure 4.8: The Measured Frequency Response when the Damping Condition is not
Satisfied. The damping capacitor Cp = 100pF, and the damping resistor
Rp = 82Q. As predicted there are RHP zerbs. Operating condition: V, = 15V,
fs = 30kHz, Ly = 0.43mH, Ly = 0.48mH, C, = 10.4uF, C; = 30uF, R, =
0.25Q2, Rr» = 0.6, R = 10.4Q.
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The experimental result is éhov;rn in Fig. 4.8. The phase shift crosses over 540°; therefore,

the RHP zeros show up in the measured frequency response as predicted.

4.4 Summary

The duty-ratio control signal d(t) is injected into switching converters through the
switching branches. The Switching Flow-Graph model physically revealed two imbal-
anced effects that the duty-ratio control signal was exerting on the output voltage. This
imbalance is the reason for RHP zeros in the small-signal transfer functions. The Switch-
ing Flow-Graph model provides analytical predictions of the RHP zeros, which direéts
the designer to choose proper circuit parameters to avoid the RHP zeros. The damp-
ing criterion, which is a useful tool for eliminating the RHP zeros, is derived from the
Switching Flow-Graph model. Experiments were conducted to verify the theoretical

predictions.
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Chapter 5

General Model for Converters with

Current-Mode Control

The current-mode control technique is widely used to improve the dynamic properties
of switching converters. A general model of the current-mode control is given in this
chapter. The model physically describes how the current-mode control loop affects the
dynamics of the switching converters, and it explains why the right-half-plane (RHP)
zeros are not removed by the current-mode control loop and under which conditions loop
oscillations will occur. Section 5.1 describes the dynamic structure for a converter power
stage. In Section 5.2 the feedback function is discussed for current-mode control. In
Section 5.3 the general model is found for the current-mode control switching converters.
In Section 5.4 the general model is-used to predict the stability of the switching converters

with experimental verification.

5.1 Switching Converter Power-Stage

. Considér an nth-order converter, shown in Fig. 5.1, that has np, inductors, L,, L;,
.-y Lny, and ng capacitors, Cy, Cy, ..., Cn., where n¢ + n = n. Suppose that i,
1 £ k < ng, is the current flowing through inductof Li, and v, 1 € j < ng, is the
voltage across capacitor Cj.

By apply the Switching Flow-Graph modelling technique, the small-signal transfer
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functions are obtained for control-to-all-states. Let the inductor currents and the capac-
itor voltages be the n state variables. State symbols with hats represent the small-signal

- . perturbation of the associated states. The transfer functions for the converter power

stage are

I . s L e SRR

_ = k=1, ..., 5.1
S*+an St 44 L D)

B; CinS* !+ Cin1S" 24+ cjn =1

- = =1,..4n 5.2

d S" FanS 1+ ta ’ © (5:2)

v, = ﬁncs (53)

where a; > 0 are the coefficients in the denominator and cki, cj; are arbitrary coefficients

in the numerator. For some converters, the numerator ¢in S®*~! + ¢in-1S""2 + - - + ci1,

i=1, ..., n, may contain RHP zeros.
| i1
Ve o n —o
nthorder | _® . o iw
———>0
d Power Stage s Vi
o———>— o
p———>—0V,c
Figure 5.1: The nth-Order Powér Stage. It has np inductors, Ly, La, ..., L,,, and n¢
capacitors, Cy, Cs, ..., Cps, Where ng + np = n. Suppose that 1, 1 < k< ng, is

the current flowing through inductor L, and 95, 1 < j < nc, is the voltage cross
capacitor Cj.

5.2 Current-Mode Control Loop

A schematic diagram of current-mode control is shown in Fig. 5.2. The switch is
turned ON by a fixed frequency clock. The switch current i, is sensed and compared
with a current reference i,.s. The duty-ratio d of the switch is determined by the time at

which the switch current reaches the current reference. Therefore, the current reference
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Tre f',' the inductor currents iy, the rising and falling ramp of the inductor current m; and

my, and thg stabilizing ramp m, directly control the duty-ratio d.
d = F(irefy iL: m‘ls m, mC) (54)

The inductor current i, is the sum of the inductor currents that flow through the active

PWM Converter

Ve ] Vo

d JE

| —
f is
Clock |—{FIF / ,
& Lref
-t ATTTTT"" A TTT™"™ ircf
pe—T, —= ‘
~>|qT sk d'T: >

Figure 5.2: Block Diagram of Current-Mode Control. The switch is turned ON by a
fixed frequency clock. The switch current 7, is sensed and compared with a current
reference i,.y. The switch duty-ratio d is determined by the time at which the
switch current reaches the current reference.

'switch, transistor, during the time when the transistor is ON. The rising and falling

ramps m; and m; of the inductor current are functions of the input voltage v, and the

voltages across the capacitors vj, j = 1,...,n¢c. The small-signal model of current-mode
control is obtained by linearizing Equation (5.4) around the operating point.

R ) nL ne
d= Foiref - 2 Jrik — Z fnL+j ﬁj (55)

k=1 i=1
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F, i'si the control gain and f,-,‘ 1 < 7 < n, is the feedback coefficient of the ith state
variable. Th}e small-signal model Qf current-mode control is equivalent to the state-
+feedback control function. Since the feedback coefficients f;, 1 < i < n are generated by
Equation (5.4), they are not independent. The only control parameters that vary the
feedba;:k coefficients are the stabilizing ramp m, and the switch period Tj.

There are several different analog approximations that yield the small-signal model
(13] [14]. The model given in [14] is not defined when the artificial ramp is zero. Therefore,

the small-signal model suggested in [13] is used as the example in this chapter.

fe—T, —>] ‘
> dTsld'T: =

Figure 5.3: The Geometric Function of Current-Mode Control. m; is the rising slope
of the switch current, m, is the falling slope of the inductor current associated with

the switch current, and m, is the stabilizing ramp.
The geometrical relationship shown in Fig. 5.3 reveals the function of current-mode-

¢ontrol:

. dT, .
ir + m1-2—" = tref — medT, (5.6)

iL is the inductor current, m; is the rising slope of the inductor current, d is the duty-
ratio, T, is the switch period, i,y is the current control reference, and m, is the slope of

the stabilizing ramp. For small-signal operation, suppose the steady-state values are Iy,
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) ‘M, D, and I,.¢ and the associated perturbations are ;'L, my, &, and ;',.ef.

ip = IL+ig (5.7)
my = M+m (5.8)
d = D+d (5.9)
iref = Ief +ires (5.10)

The small-signe;l perturbation model is obtained by linearizing Equation (5.6):

) 9 . . D
- y _. — ~ -11
d anT,(’"f iL) M, (5.11)
where
n=14 M (5.12)
= . .

The rising slope of the inductor current m, is a linear function of the voltage variables,
i.e., the input voltage and the capacitor voltages. The inductor current iz is a linear

combination of the inductor currents. For example, the boost converter has

= %
m = 2 (513)
ir = iL. (5.14)

The lambda converter has

m = Z—”l-a-ﬂcil—l;—"ci (5.15)

iy = ir1+1L2. " (5.18)

Consequently, the duty-ratio perturbation d is a linear combination of the state variables

of the controlled converter.

5.3 General Model of Current-Mode Control

To study the dynamic properties of the general current-mode control system, the

state space analysis tool is employed. For mathematical simplicity, a set of intermediate
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state variables zq, z,, ..., z,, are used

'171 = z (5.17)
Iy = :L" (518)
(5.19)
z, = z(*1. (5.20)

These intermediate states are related to the standard circuit states i and vj,

1 -

= d 5.21
i SP+an STty (-21)
Bk = (kS '+ 1S 24+ cp1)z k=1, ..., ng (5.22)
9 = (caS" ! +cin-1S" 24+ 1)z i=1..,nc. (5.23)

This relation can be expressed in state space, as shown in Fig. 5.4.

C‘l

At) g _3

- = g = - gy — -
Xn-t Xa-2 Xm X3

Figure 5.4: The Converter System. =z, z3, ..., T, are n independent intermediate state
variables. The inductor currents #;, 1 < k < ny, the capacitor voltage 9;,1<5<

nc, can be expressed by a linear combination of the n states z;, 1 < i < n.
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Let
T
X [ z; z zn ] (5.24)
T
Y [ i h, 1 Bng ] : (5.25)
The n states zy, 23, ..., z, aie independent; therefore, the inductor currents i, 1 <kL

nr, the capacitor voltage 9, 1 < j < n¢, can be expressed by a linear combination of

the n states z;, 1 < i< n.

where

The system feedback is:

XI

C11

€21

= AX +Bd
= CX
1 0 0
0 1 0
0 0 1
—az —az - —an
T
1]
€12 Cin
C22 Can
Cn2 Cnn i

d = Folyes+ FY

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)
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90
= Foipey+ FCX

= Fotpes+ F*X

F o= [ -h -f2 -~ =fa ]
F* = [ - -f7 - —fa ]
fi = g;ficik-

Therefore, the closed-loop system is

where

Aﬂ

B*

X' AX + Bd

AX + BF*X + BF,i,;

(A+BF)X + BFogrcf

= A*X 4 Bl

| ~(@+5) —(@+f) - —(a+ )

=100 ... Fo].

The transfer function for the closed-loop system becomes

| & auk® a,lsv

cknS™ ! + Chn1S™ 2+ - Fepr
Se+(an+ )51+ +(a1+ f7)

CjnSn_l + cjn-15“‘2 +:-4+en
Sn+(an + f2)S™ 14+ 4 (a1 + f7)

Une

R

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)
(5.42)

(5.43)
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“The transfer function for the ciosed-loop system has the same numerator as the transfer
function for the open-loop system; therefore, current-mode control does not affect the
. system zeros. However, the poles of the closed-loop system are changed. Notice that the

coefficients of the denominator changed from a; to aj.
a = ai+/f"
n
= a,-—kack,- t=1..,n (5.44)
k=1

where a; > 0. While the value of f; depends on the current-mode control equation, it
could be positive or negative. If the converter power stage has RHP zeros, cx; may be
negative. Coqsequently, a} may be negative; that means RHP POLES!

Furthermore, suppose the system transfer functions are

1 N1(S)

3 = DE (5.45)
(5.46)
iy _ Nag(S)
¥ = s (5.47)
;l _ N'nL-H(S)
T = (5.48)
| (5.49)
bng  _ Na(S)
= Ty (5.50)

The control-to-output transfer function of the current-mode control system are expressed

as
;'ref D(S)+f1Nl(S)+f2N2(S)++an'n(S) .
FoNn’!S!
= RACIE AN INAGE (5.52)
where £33 {5 the loop-gain of the i-th state variable feedback loop, i = 1,...,n. There

are chances for RHP poles to occur for current-mode control. Since the state feedback
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, 'coefﬁ-qients are determined by Equation (5.11), one cannot choose f;, 1 < i < n, freely;
therefore, the pble rearrangement is rather restricted. If N;, 1 < i < n, has RHP zeros,
- and 4the asssciated feedback coefficient f; is negative, the RHP zeros may transfer to
RHP poles.

Frc;m the general model of current-mode control, it is evident that: Property 1.
Current-mode control does not change the numerator of the transfer function for the
converter.

Property 2. Current-mode control rearranges the pole positions of the converter.
However, the rearrangement is restricted by the current-mode control function. Current-
mode control does not necessarily improve the dynamic response of the system; in some

cases, current-mode control may cause system oscillations.

5.3.1 Applying the General Model to Obtain the Closed-Loop Transfer

Functions

The analysis discussed above also provides an efficient tool for finding the transfer

function for the current-mode control loop.

The Buck Converter

A buck converter is shown in Fig. 5.5(a), and its small-signal model is shown in
Fig. 5.5(b).

From the small-signal model, one finds:

it _ _B(1+RCS) (5.53)
d 1+ %S+ LCS? '

o Vv, '

o= : 54
d 1+ S+ LCS? (539

Current-mode control yields the state-feedback function:

‘i = Fo;.rc_f - flgL — fato (555)



(a)
A
Ve
(b)
au)

Figure 5.5: The Buck Converter and its Small-Signal Model.
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(b) The small-signal model for the buck converter.

The closed-loop transfer

fl = +F,
L
= DTV,
D

function of current-mode control is

b v,
iref 1+ %5+LCS?+ 1R(1+ RCS) + faV
— Ve
A+ frg + V) + (B + fiV,C)S + LCS?
Ve

(1+ 5pem — 500) + (& + 357;)S + LCS?

(a) The buck converter.

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

Equation (5.55) shows that current-mode control actually introduces some positive feed-

back through f;, and negative feedback through f;. Since | fic11 |3>| faca1 |, the positive

feedback effect is negligible. Current-mode control improves the frequency response of
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" ‘the buck converter.

The Boost Converter

The boost converter, shown in Fig. 4.1, has transfer functions of control-to-states:

(1 - p&gS)

:-f- 5.62
d 1+ -D—,uLﬁS + ﬁrsq ( )
iL ﬁ"’w (1+52S) (5.63)
d 1+ 5SS+ 5752 .
The current-mode control function for the boost converter is
d = Foirey — iz — fabo (5.64)
hH = F (5.65)
2L
= —ATA (5.66)
fa = 0. (5.67)

Notice that the only feedback state is the inductor current if. The control-to-iz does
not have RHP zeros; therefore, current-mode control of the boost converter will not have

RHP Poles. The closed-loop transfer function for current-mode control is

B _ X:’r(l oHES)
2 = 4 = (5.68)
d oEpS + E55% + fippe(1 + £E5)
= p(1 = pfep) (5.69)
(1+f1§2,‘3,9-)+(73-a—+f1%7§')5+ C 52 .
= - pir(1- Wi)c (5.70)

(1+ zr%mr) + (pfim + F5m)S + pa5?
Current-mode control breaks the high Q complex pole pair; hence, it improves the dy-

namic behavior of the system. However, the RHP zeros still remain.
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5.4 Current-Mode Control of Converters with RHP Zeros

For a current-mode-controlled buck converter with input filter, as shown in Fig. 5.6,

"the power stage has control-to-state transfer functions:

-
Q..)ls

Q..)Io ’

No(S)

D(S)

2%(1+ RC2S)(1+ (CrRra — 252)S + L,C15?) 571
IG) (5.71)

N3(S)

D(5)

Yfu (14 H9)(2 + (B + RC2)S + L2C2S5?) |
- B (5.72)
N4(S)

D(S)
B+ (CiRpy - BJ)S 4+ 1,C,57) (5.73)

D(S)

The control-to-output transfer function has two RHP zeros. The control-to-iz transfer

Vg

Ru YH 2 Roe ®
_I\MM\—__:
L L2

:R§v°

C:

Q
[l
]
<
|

q CS iref + ramp

Comparator

Figure 5.6: The Current-Mode-Controlled Buck Converter with Input Filter. The
two access points, Point A and Point B, are used to inject the control signal and to

detect the output signal, respectively.
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~ function has two RHP zeros. The control-to-vey transfer function is negative.

The current-mode control yields the feedback equation

J = Fa;.ref - f22L2 — fater — fabo (5'74)

fo = F, (5.75)
2

= TMLT, (5.76)

s = —fa (5.77)
D

= o (5.78)

States iL2, 9c1, and v, are fed back, with feedback coefficients, f2, fa, and f;. The

closed-loop transfer function is

FoNys(S

Vo

;'ref - 14 %)gl + _D.(é)_lfsN:’ S + f4N4§5! .

The loop-gain of the current i, feedback loop, the capacitor-voltage vc; feedback loop,

(5.79)

and the output-voltage vg feedback loop are:

JfaN>(S)

Tals=0 Wls:o (5.80)
_
Ni(S
T3ls=0 = %'(?é')-')'ls:o (5.82)
_ 2VuR11 D
= WMiLRE (5.83)
N4(S),
Tyls=0 = —f4D€§)) S=0 (5.84)
V.
= anLg (5.85)

For the circuit parameters V; = 15V, f, = 30kHz2, Ly = 0.43mH, L, = 0.48mH,

C1=104uF, C; = 30uF, Rry1 = 0.25Q, Ry = 0.6, R = 10.4Q.

Dls=o _ L2 _
T = T = 160 (5.86)
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' Tyls=o _ 2L,
T4|s=0 ~ DRT,

=92 (5.87)

The‘loop-g'ainAof the current feedback loop is much higher than the loop-gain of the
| volté,ge feedback loops. Therefore, the current feedback is dominant among all the state
feedbé.cks of c.urrent-mode control. Current-mode control of the buck converter with an
input filter is approximately equivalent to feedback control of the output inductor current -
with ;feedback coefficient of ﬁm This approximation is also true for other converters.
Fig. 5.7 shows that the precise prediction, which considers all the state feedbacks, and
the approximate prediction, which considers only the feedback of the output inductor
current, are very close.

The contfol—to—vol transfer function is negative, and f3 is also negative; therefore,
the local vy feedback ]odp has positive feedback. The transfer functions ;'Lg / d and 0, /J
have RHP zeros, these RHP zeros contribute to the closed-loop pole positions. However,
the main effect of current-mode control is the feedback of the output inductor current.

The closed-loop transfer function is approximately

b Ny(S)
;.rcf B D(S)+f2N2(S)

(5.88)

Prediction 1. For the given parameters, when the duty-ratio D < 0.24, both N,(S)

and N3(S) do not have RHP zeros. Consequently, the closed-loop transfer function -2

tres
does not have RHP zeros or RHP poles.

Prediction 2. When the duty-ratio 0.24 < D < 0.3, both Ny(S) and N,(S) have
RHP zeros. Consequently the closed-loop transfer function f:; has RHP zeros. Since
the negative term of N(S) is not very big, D(S) + faN2(S) cancels the negative term.
Therefore, the closed-loop transfer function :i"; does not have any RHP Poles.

Prediction 3. When the duty-ratio D > 0.3, both N4(S) and N3(S) have RHP zeros,

and the negative term of N3(S) cannot be cancelled in D(S) + f2N2(S). Consequently,
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Figure 5.7: Frequency Response of the Current-Mode-Controlled Buck Converter
with Input Filter. The approximate prediction and the precise prediction,
when D = 0.2. The operating condition: V, = 15V, f, = 30kHz, Ly = 0.43mH,
Ly =0.48mH, C; = 104pF, C; = 30uF, Rry = 0.25Q, Ry = 0.6Q2, R = 10.4Q.
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“the closed-loop transfer function ff; has RHP zeros and RHP poles. The system is not
stable.
Predictic'm 4. If the damping circuit is used to eliminate the RHP zeros of N4(S) and
N2 (S ), the closed-loop transfer function :":‘; will not have RHP zeros or RHP poles.
Experiments were conducted to verify the predictions for the current-mode controlled
buck converter with an input filter. The HP 3577 network analyzer was used to measure

the frequency ;esponse. A frequency sweeping signal, from 5Hz to 30kH z, was injected

at Point A and the responses at Point B were detected to determine -:’-’-9;

Experiment 5.1 The measured and the predicted frequency response, for the circuit
parameters V;, = 15V, f, = 30kHz, L, = 043mH, L, = 0.48mH, C; = 10.4uF,
C2 =30uF, Rry = 0.25Q, Rre = 0.6, R = 10.4Q2, and D = 0.2, are plotted in Fig. 5.8.

Both the measurement and the prediction show that no RHP zeros exist, therefore, the

system is stable.

Experiment 5.2 For the same circuit parameters, the duty-ratio D was increased to
0.29. The measured and the predicted frequency response are plotted in Fig. 5.9. Both
the measurement and the prediction illustrate the existence of two RHP zeros. Since
there is no RHP pole, the system is stable; The window" in which the RHP zeros were

detected was very small, from D = 0.24 to D = 0.3.

Experiment 5.3 For the same circuit parameters, the duty-ratio D was further in-
creased. When D > 0.3, the prediction shows two RHP zeros and two RHP poles. The

real circuit oscillated.

Experiment 5.4 A damping circuit was added to the experimental circuit shown as
Fig. 4.6. Cp = 100uF and Rp = 51Q. The open-loop buck converter does not have any

RHP zeros, as predicted and detected in Chapter 4. The prediction and measurement,



100

60

— measurement
» ---- prediction
40 :

20

Amplitude (dB) ‘
D
7
7

10 100 1000 10000
Frequency (Hz)

180

A1

/

.

£
FH

i
-
LI

Phase (deg)
3

10 100 1000 10000
Frequency (Hz)

Figure 5.8: The Frequency Response of the Current-Mode-Controlled Buck Con-
verter with Input Filter. The measurement and prediction, when D = 0.2.
The operating condition: V, = 15V, f, = 30kHz, L1 = 0.43mH, L, = 0.48mH,
Cy =104uF, Cy = 30uF, Rry = 0.25Q, R = 0.6, R = 10.40.
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Figure 5.9: The Frequency Response of the Current-Mode Controlled Buck Con-
verter with Input Filter. The measurement and prediction when D = 0.29.
The operating éondition: Ve =18V, f, = 30kHz, L, = 0.43mH, L, = 0.48mH,
C1=10.4pF, Cy = 30pF, Rpy = 0.25Q, Rrs = 0.6, R = 10.4Q.
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Figure 5.10: The Frequency Response of the Current-Mode Controlled Buck Con-
verter with Input Filter. The measurement and prediction, when D = 0.44.
The operating condition: V; = 15V, f, = 30kHz, L, =043mH, L, = 0.48mH,
C1=104pF, C; = 30uF, Ry = 0.25Q, Rrz = 0.6Q, R = 10.4Q.
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~ Fig. 5.10, show that the closed-loop transfer function :1.’-“- does not have RHP zeros or

ref

RHP poles when the duty ratio D > 0.44.

The experiments verified the theoretical predictions. Conclusion: For a converter
in the fourth-order family, if the operating region requires a very small D such that
the resistor of the input inductance is large enough to eliminate the RHP zeros, then
the currerit-mo‘de control loop is stable. If the operating region requires a large D such
that the input resistor cannot eliminate the RHP zeros, the current-mode control loop
may oscillate. However, if a damping circuit is used to eliminate the RHP zeros, the

current-mode control loop is stable, even when D is large.

5.5 Summary

The small-signal model of current-mode control is equivalent to the state-feedback
control function. The RHP zeros of the switching converters are not removed with
current-mode control. The poles of the switching converters are relocated. However, the
poles can not be relocated to arbitrary positions, because the choice of the coefficients
is restricted by the control functions. Among all the feedback states, the switch-current
feedback is dominant, whereas others can be ignored for quantitative understanding. The
RHP zeros in the transfer functions of control-to-inductor currents may be converted to
RHP poles, by increasing the feedback coefficient. The RHP poles cause loop oscillations.
ﬁence, if the RHP zeros are eliminated by a damping circuit using the damping criteria
found in Chapter 4, switching converters with current-mode control loops can be made

stable. Experiments verified the prediction.
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Part II

One-Cycle Control Technique
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Chapter 6

One-Cycle Control Technique

-

Switches are pulsed aqd non-linear elements, yet they have found wide use in the
signal processing and the power processing, that is because digital signal processing has
a much better signal-to-noise ratio than analog signal processing, and because switching
power supplies have much lower power losses than analog power supplies. Switches are
very important components in science and technblogy appli;:ations.

Switches usually operates at a much higher frequency than the information signal or
the power signal that they modulate. The effective signal, the average signal, carried
in the switch output is the product of the input signal and duty-ratio control signal;
therefore, switches are non-linear components. In this chapter, a new switching technique
is conceived, which fully rejects the input signal and linearly all-passes the duty-ratio
control signal. This new switchihg technique changes the dynamics of the switching
circuits. It can be applied to power processing and may be useful for signal processing
as well.

The general concept of One-Cycle Control is introduced in Section 6.1. The im-
plementation technique is discussed for the constant frequency switches, the constant
ON-time switches, the constant OFF-time switches gnd the variable switches in Sec-
tion 6.2. Among these four switches, the constant frequency switch is most commonly
used; therefore, it is used as an example to further describe the One-Cycle Control process

in Section 6.3 in order to achieve deeper physical understanding.
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6.1 General Concept of One-Cycle Control

A switch, constant frequency, constant ON-time, constant OFF-time, or variable, as

defined in Chapter 2, operates according to the switch function k(t).

1 0<t<Ton
k(t) = (6.1)

0 Ton <t < T
In each cycle, the switch stays ON for a time duration of Tox and stays OFF for a time
duration of Torpr. The duty-ratio d = Iff’- is modulated by an analog control signal
vres(t). The input signal to the switch is z(t). The switch chops the input signal. The
frequency and the pulse width of y(t) is the same as that of the switch function k(t),

while the envelope of y(t) is z(t), as shown in Fig. 6.1.

Switch

y (t) = .‘.‘u ’ "

. .
x(t) = o = X(t)kt)

O’T onteTorr —>
fe—T,—

t

Figure 6.1: The Switch. The input signal to the switch is £(t) and the switch chops the input
" signal. Therefore, the output signal of the switch is y(t) = k(t)z(t).

Suppose the switch frequency f, is much higher than the frequency bandwidth of
either the input signal z(¢) or the control signal v,.7(t). According to the analysis in

Chapter 2, the effective signal carried in the switch output is

Ton
y(t) = Ti /0 2(t)dt (6.2)
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s a:(t)Ti’ /0 ToN (6.3)
= z(t)d(t) (6.4)
= z(t)vres(t) (6.5)

The output signal y(t) of the switch is the product of the input signal z(¢) and the control
signal v,.z(t); therefore, the switch is nonlinear. If the control signal v,e(t) is constant,
for ekample v,e;(t) = D, the output signal of the switch is Dz(t), which is the case when
the switch is used for digital signal processing. In power processing applications, for
example a power amplifier, the input z(t) usually represents the power, while the control
signal v,.s(t) represents the signal to be amplified. In ideal case the input power z(t) is
constant X; therefore, the output signal y(t) = Xv,.s(). However, in reality there are
always perturbations in the input power z(t), hence the output signal y(t) contains the
power disturbance signal as well.

If the duty-ratio of the switch is modulated such that in each cycle the integration
of the chopped waveform at the switch output is exactly equal to the integration of the

control signal, ie.
Ton T,
/ 2(t)dt = / vres(t)dt, (6.6)
(i 0

then the average value of the chopped waveform at the switch output is exactly equal to

the average value of the control signal in each cycle.

1 (Ton 1 T
= /O 2(t)dt = 7 /0 vres(2)dt. (6.7)

Therefore, the output signal is instantaneously controlled within one cycle, ie.

Ton T,
y(t) = Ti /0 2(t)dt = Ti /0 vres ()t = vpes(t) 6.8)

The technique to control switches according to this concept is defined as the One-Cycle



110

>y

~ Control technique. With One-Cycle Control, the effective output signal of the switch is

‘y(‘t) = vpes(t). (6.9)

The switch fully rejects the input signal and linearly all-passes the control signal v,.y;

therefore, the One-Cycle Control technique turns a non-linear switch into a linear switch.

6.2 One-Cycle Controlled Switches

The implementation circuits are found for any type of switch, constant frequency,

constant ON-time, constant OFF-time, and variable.

6.2.1 One-Cycle Control of Constant Frequency Switches

For a constant frequency switch, T, is constant. Tile object of One-Cycle Control is
to adjust the switch ON-time Ton in each cycle, such that the integrated value of the
chopped waveform is constant.

The implementation circuit for One-Cycle Control of constant frequency switches is
shown in Fig. 6.2. The key component of the One-Cycle Control technique is the real-time
integrator. The real-time integration is started the moment when the switch is turned ON
by the fixed frequency clock pulse. The integration value, vip; = i— fg z(t)dt, is compared
with the control signal v,.s(¢) in real time. At the instant when the integration value Vint
reaches the control signal v,.f(t), the controller sends a command to the switch, which
forces the éwitch to change from the ON state to the OFF state. At the same time,
the controller resets the real-time integrator to zero to prepare for the next cycle. The

duty-ratio d of the present cycle is determined by the following equation:

dT,
71’;/0 z(t)dt = vy.5(t) (6.10)
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One-Cycle Controlled
Constant Frequency Switch

x(1) - T (1)
1 L ]
Yo
Controller |Cine
Rr
Vine A

Clock

/I ,
—

Comparator  Integrator

Figure 6.2: The One-Cycle Controlled Constant Frequency Switches. This circuit con-
tains a real-time integrator, a comparator, a constant frequency clock, and a con-
troller. The controller can be implemented by an RS Flip-Flop. The real-time
integrator is the key component.

Since the switch period T, is constant and the duty-ratio is controlled, the average value

of the waveform at the switch output y(t) is guaranteed to be

dT,
y(t) = 71,- [) 2(£)dt = vres(2) (6.11)

in each cycle. Fig. 6.3 shows the operating waveforms of the circuit.

6.2.2 One-Cycle Control of Constant ON-Time Switches

For a constant »ON-tim’e switch, Ton is constant. The object of One-Cycle Control is
to adjust the OFF-time TorF in each cycle, such that the average value of the chopped
waveform is constant.

The implementation circuit for One-Cycle Control of constant ON-time switches is

shown in Fig. 6.4. The real-time integration is started at the moment when the switch
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Figure 6.3: The Waveform of One-Cycle Controlled Constant Frequency Switches.
The real-time integration is started at the moment when the switch is turned ON
by the fixed frequency clock pulse. The integration value v, = i— fot z(t)dt is
compared with the control signal v..;(t) in real time. At the instant when the inte-

- gration value v;p,; reaches the control signal v,.;(t), the controller sends a command
to the switch that forces the switch to change from the ON state to the OFF state.
At the same time, the controller resets the real-time integrator to zero to prepare

for the next cycle.
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One-Cycle Controlled
Constant ON-Time Switch

X(1) 7t 1)
turn on l
Monostable |C|“ R
Multivibrator L A (1)

Viat / ‘VIS/\"'— ~Vref
H i
r

Comparator l Integrato

Figure 6.4: The One-Cycle Controlled Constant ON-Time Switches. This circuit con-
tains a real-time integrator, a comparator, and a monostable multivibrator. The
real-time integrator is the key component.

is turned ON. From t = 0 to t = Ton, the switch is ON, so the integration value

Vint = /0 ' Vpes(t)dt — /0 ‘et)dt (6.12)

deceases. The monostable multivibrator has a constant pulse width. When the monos-
table multivibrator changes its state from high to low, the switch is turned OFF. From

t = Ton to T, the switch is OFF, so the integration value

Ton
Vint = /Ot Ve s(t)dt --/0 z(t)dt (6.13)

increases. At the instant when v;,; reaches zero, the comparator changes its state from
low to high, which triggers the monostable multivabrator to high and turns the switch
ON. The present switching cycle is completed. The switch starts the next cycle.

The OFF-time TorF of the present cycle is determined by the following equation:

/0 o z(t)dt = (Ton + ToFF)vres (t) (6.14)
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Figure 6.5: The Waveform of One-Cycle Controlled Constant ON-Time Switches.
The real-time integration is started the moment when the switch is turned on. The
integration value vin; = [; 2(t)dt — [ v,es(t)dt starts to decrease. The monostable
multivibrator has a constant pulse width. When the monostable multivibrator

" changes its state from high to low, the switch is turned OFF. Then the integration
value v, = fo' Vpey(t)dt — f:' ON z(t)dt increases. At the instant when vin, reaches
zero, the comparator changes its state from low to high, which triggers the monos-
table multivibrator to high and turns the switch ON. The switch starts the next
cycle.
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The waveform at the switch output y(t) is guaranteed to be
1 Town
y(t) = T z(t)dt = vypes(t). (6.15)
s JO
where T, is time dependent and Ton is constant. Fig. 6.5 shows the operating waveforms
of the circuit.
6.2.3 One-Cycle Control of Constant OFF-Time Switches

For a constant OFF-time switch, Torr is constant. The object of One-Cycle Control
is to adjust the ON-time Tpn in each cycle, such that the average value of the chopped

waveform 1s constant.

One-Cycle Controlled
Constant OFF-Time Switch

x(1) ~ - 1)
turn off l
l Cins R
Monostable } } y(t)
Multivi R
ultivibrator . / g
+ \
Comparator Integrator

_—
—
—

Fxgure 6.6: The One-Cycle Controlled Constant OFF-Time Switches. This circuit
conta.ms a real-time integrator, a comparator, and a monostable multivibrator.
The real-time integrator is the key component.

The implementation circuit for One-Cycle Control of constant OFF-time switches is
shown in Fig. 6.6. The real-time integration is started the moment when the switch is

turned OFF. From t = 0 to t = TpFrF, the integration value

t
Vit = /0 Upes (t)dt (6.16)
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Figure 6.7: The Waveform of One-Cycle Controlled Constant OFF-Time Switches
The real-time integration is started the moment when the switch is turned off.

The integration value vi,; = fo' Urey(t)dt starts to grow. The monostable multivi-

brator has a constant pulse width. When the monostable multivibrator changes

its state from high to low, the switch is turned ON. The integration value

Vint = j: Vpey(t)dt — ,_,’{;’: : + z(t)dt is compared with zero in real-time. At the

instant when v;,, reaches zero, the comparator changes its state from low to high,

which triggers the monostable multivibrator to high and turns the switch OFF. The

switch starts the next cycle.
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' grovgvsv. The monostable multivibrator has a constant pulse width. When the monostable
multivibrator changes its state from high to low, the switch is turned ON. From t = Torr

" tot = Ty, the integration value

t Torp+t
Ving = / Ures (t)dt — / 2(t)dt (6.17)
‘ 0 Torr

decreases. At the instant when vin; reaches zero, the comparator changes its state from
low to high, which triggers the monostable multivabrator to high and turns the switch
OFF. The present switching cycle is completed. The switch starts the next cycle.

The ON-time Ton of the present cycle is determined by the following equation:

/OdT. z(t)dt = (Ton + ToFF)vre£(t) (6.18)

Since the OFF-time TogrFr of the switch is constant and the ON-time Tpon is controlled,

the average value of the waveform at the switch output y(t) is guaranteed to be

Ton
y(t) = Ti,/; z(t)dt = vres(1) (6.19)

in each cycle. Fig. 6.7 shows the operating waveforms of the circuit.

6.2.4 One-Cycle Control of Variable Switches

For a varié.ble switch, there are two adjustable dimensions, Tony and Torp. Usually,
one dimensions is governed by the particular application. If a particular application
;-equires the ON-time va.r-y in a particular pattern, thén the One-Cycle Control can be
implemented in an approach similar to the one described for the constant ON-time
switches. If a particular application restricts the OFF-time by some function, then the
Ong-Cycle Control can be implemented in an approach similar to the one described for

the constant QFF-time switches.
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6.3 One-Cycle Control Operating Process

The most commonly used constant frequency switch is used as an example to demon-
strate the operating process of One-Cycle Control. The principle control function can

be described by a speed, time, and distance triangle rule, as shown in Fig. 6.8.

Vref

-
3
X

T: e

Figure 6.8: The Triangle Rule of Constant Frequency One-Cycle Control. The am-
plitude of the input signal z(t) determines the slope, which is the speed of the
integration. The control signal v,.; determines the distance that the integration
value must travel to reach the control signal. The speed and the distance determine
the time d7, required for the integration to reach the control signal.

Suppose the control signal is constant while the input signal changes. The waveform
at the switch output is the same as the input signal, when the switch is in the ON
state; and the signal at the switch output is zero, when the switch is in the OFF state.
Any input signal perturbation that occurs during the ON state immediately influences
the slope of the real-time integration. Consequently, it affects the speed at which the
integration value reaches the control signal. Since the control signal is constant, the time
dT,, for the real-time integration value to reach the control signal, is directly controlled
by the input signal. No matter how the input signal changes, the chopped waveform at
the switch output has a constant average value that is equal to the control signal in each

cycle, as shown in Fig. 6.9.

Suppose the input signal is constant, and the control signal changes; for example,
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Figure 6.9: Input Signal Perturbation is Rejected by One-Cycle Control. The input
signal perturbation directly controls the slope of the real-time integration and con-
sequently controls the time dT, for the integration value to reach the control signal.
The average value of the chopped waveform is always equal to the control signal.
It rejects the input signal perturbation in one cycle.

............. --x(t)
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Vint : Vr ef
. 1 .

Figure 6.10: Follow the Control Signal in One Cycle. When the control signal steps up,
the integration value takes a longer time to reach the control signal. The duty-
ratio d is determined when the integration value reaches the control signal, so that
the average value of the chopped waveform keeps up with the new control signal

in one cycle.
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N
a stép up. The rea.l-time’integration keeps the same slope since the input signal is
constant; therefore, the speed at which the integration value reaches the control signal is
~ -constant. However, when the control signal changes to a higher value, the distance that
the integration value must travel to reach the control signal is increased. As a result, a
longer time dT, is required for this cycle. The average value of the chopped waveform, in
this cycle, is exactly equal to the stepped-up control signal. No matter how the control
signé.l ‘changes, the average value of the chopped waveform follows the control signal

immediately, within one cycle; as shown in Fig. 6.10.

x( t)
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Figure 6.11: Follow the Control Signal and Reject the Input Signal Perturbation.

The control signal steps up. Under the circumstance the input signal is perturbed.
The slope of the integration is changing with time. When the integration value
reaches the new control signal value, the switch changes its state. The average
value of the chopped waveform y(t) is changed such that is remains exactly equal
to the new control signal.

Suppose both the input signal and the control signal are varying. According to the
triangle rule of Oné—Cycle Control, both the speed and the distance are varying. The
average value of the chopped waveform is not affected by the input signal perturbation,

and it follows the control signal in one cycle, as shown in Fig. 6.11. One-Cycle Control
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, comﬁletely rejects input diéturBances and enables the output to immediately follow the
control signal within one cycle.

The pulse width of the One-Cycle Controlled constant frequency switch is modulated
by a combined effect of the control signal v,.¢(t) and the input signal z(¢). The One-Cycle
Controlled switch fully rejects the input signal z(t), and all passes the modulation signal
Vref(t). As a result, the control signal and the output signal of One-Cycle Controlled

switches are linearly related.

6.4 Summary

The general concept of One-Cycle Control is to adjust the duty-ratio in real time such
that the average value of the chopped waveform at the switch output is exactly equal to
the control reference in each cycle. The implementation technique is found for any type
of switch, constant frequency switches, constant ON-time switches, constant OFF-time
switches, and variable switches. The One-Cycle Control technique converts a nonlinear
switch into a linear switch that fully rejects the input signal and all-passes the control
signal.

The most direct applications of the One-Cycle Control technique are found for the
control of switching converters, both the pulse-width-modulated (PWM) converters and
the quasi-resonant converters.

The One-Cycle Controlled switch is a useful component for power amplifiers. The
perturbations frorr; the power supply would be fully rejected, and the control signal would
be linearly transfered to the switch output.

The One-Cycle Controlled switches would also be \;ery useful for motor driving. The
input power would be converted to a pulsed voltage for the motor. The pulse voltage

would carry a signal exactly equal to the control signal v,.;(¢). The switching frequency
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- harmonics would be attenuated by the armature inductance. Any perturbation from the
power line would be fully rejected.

One-Cycle Control might also find some use in signal processing systems.
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Chapter 7
Oh'e-Cycle Control of Pulse-Width-Modulated

Switching Converters

The most direct applications of the One-Cycle Control technique are found in the
control of switching converters, which includes both the pulse-width-modulated (PWM)
converters and the quasi-resonant converters. According to the analysis in Chapter 6,
any switches 6perating with a switching function k(t) can be One-Cycle Controlled. For
a given switching converter, the diode-voltage and the transistor current naturally satisfy
this condition. In this chapter, the One-Cycle Control technique is used to control the
constant frequency PWM switching converters, with the buck converter as the example.
The most desirable properties of the control loop are described in Section 7.1; these are
the goals of control-loop design in the following sections. The One-Cycle Controlled buck
converter is analyzed, in Section 7.2. The effects of the input filter on the One-Cycle
Control function are discussed in Section 7.3, and the effects of the output filter on
One-Cycle Control function are discussed in Section 7.4. In Section 7.5, the One-Cycle
Control function is compared with the PWM feedback control and the current-mode

control schemes. Section 7.6 outlines the experimental results.
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7.1 Task of Control Loof)s

The capability to reject input-voltage perturbations, to recover from load distur-
Bancés, and to follow the control reference are the most important evaluations of the
control technique of switching converters.

Most electrical equipment uses DC power that is converted from the line power,
which contéins perturbations, such as line-frequency harmonics, neighbor-load transients,
a.nd/orv high frequency electromagnetic field disturbances, etc. A desirable switching
converter must have the capability to reject the input-voltage perturbations so that its
loads are not subjected to input perturbations. This rejection is especially important
for power supplies used in scientific experiments. For example, a particle accelerator
ring uses magnetic fields to provide centripetal force which enables the particle beams
to travel around the ring. The ring needs very stable DC power supplies for its magnets.
Any ripple in the output of the power supplies will generate perturbations in the magnetic
field. These perturbations cause the particles to become unstable inside the accelerator
tube. Consider a switching converter that has power conversion v, = M(d)v,, where
v, is the output voltage, v, is the input voltage, and M(d) is the DC gain that is a
function of the duty-ratio d. If theb input voltage v, is perturbed, the duty-ratio d should
be adjusted such that the output voltage v, is not disturbed. To reject an input voltage
perturbation, the control circuit must diagnose the perturbation quickly before it sends
its command to the duty-ratio. Since switching converters are dynamical systems, the
design of the control circuit is very subtle. Different control schemes have very different
rejection capabilities.

In many applications, the output voltage of the switching converters needs to be
controlled. For example, the output power of the DC power supplies for the magnets of

the particle accelerator must be increased as the particles gain energy in order to keep
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. the ﬁarticles inside the beafn t;xbe.
Load disturbance rejection is another important aspect of a switching power supply.
" -Some loads, such as computers, have pulsed current that influences the output of the
switching power supply. A good control technique should enable the output voltage to
recover from load disturbances quickly.

The One-Cycle Control technique is conceptually different from the classical PWM
feedBa'ck contr(;l and the current-mode control. With One-Cycle Control, a converter
is able to reject the input-voltage perturbations, to quickly follow the control reference,

and to recover from a load disturbance.

7.2 One-Cycle Control

The simplest configuration, buck converter, shown in Fig. 7.1, is used as an example
to study the features of One-Cycle Controlled PWM converters. The switch S is operated
repetitively with constant frequency f,. It is in position 1, defined to be the ON state,
for a fraction d of the period T, = }}: Consequently, a voltage equal to the DC line input
voltage v, appears at the switch output. When the switch is in position 0, defined to be
the OFF state, the voltage at the switch output is zero. The DC line-input voltage is
chopped by the switch S resulting in a chopped waveform v, at the switch output. The

average, or DC, of this waveform is V.

: 1 Ts p 1 dT, 4 .
= — sdl = — 14 .
V=g [ wdt=g [ ™D

The LC low-pass filter transmits this value to the output while rejecting most of the
undesired switch frequency f,. Therefore, the output voltage contains the desired DC
value dvy and a small residual switch ripple. Here d is defined as the duty-ratio. The buck
converter has a conversion rate equal to its duty-ratio d. By controlling the duty-ratio

d, the output DC voltage is controlled, as shown in Fig. 7.2.
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Figure 7.1: The Buck Converter. The DC line input voltage is vy. The Switch S is operated
at a fixed frequency f, and with a duty-ratio d. The waveform at the switch output
is v,. The inductor L and the capacitor C compose a low-pass filter. The output
voltage is v,.

The buck converfer has one switch in its signal path, from the duty-ratio control
signal to the output voltage, as shown in Fig. 3.2. This signal switch is implemented
by a transistor and a diode in the real circuit. The input signal of the switch is the
input voltage. The output signal of the switch is the diode-voltage. One-Cycle Control
is designed to control the duty-ratio d in real time, such that in each cycle the average
value of the diode-voltage is ezactly equal to the control reference.

Fig. 7.3 shows the One-Cycle Controlled buck converter. The diode-voltage is fed
back to the real-time integrator. The integration is started when the clock turns the
transistor ON. The integration value is compared with the control reference in real time.
When the output voltage of the integrator reaches the control reference, the transistor

is turned OFF. Fig. 7.4 shows the chopped waveform at the switch output, which is the
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Figure 7.2: The Working Waveforms of the Buck Converter. The switch operating
duty-ratio is d. The input voltage waveform is v;. The switch pulsed waveform is

v, with its average waveform V, iq the dashed line. The output voltage v, equals
V.
voltage across the diode v,. When the transistor is on, the diode is off, and the diode-
voltage v, is equal to the input voltage. When the transistor is off, the diode is on, and
the diode-voltage v, is zero.

In each cycle, the diode-voltage waveform may be different; however, as long as the
area under the diode-voltage waveform in each cycle is the same as the control reference
signal, the instantaneous control of the diode-voltage v, is achieved, as shown in Fig. 7.4.

The control strategy is as follows: The transistor is turned ON at the clock pluse and

it is shutted OFF when the diode-voltage integration reaches the reference value, i.e.,
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Figure 7.3: One-Cycle Control Buck Converter. The diode-voltage is fed back to the real-
time integrator. The integration is started when the clock turns the transistor ON.
The integration value is compared with the control reference in real time. When
the output voltage of the integrator reaches the control reference, the transistor is
turned OFF.
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Figure 7.4: Diode-Voltage Waveform of the Buck Converter. When the transistor is on,
the diode is off, and the diode-voltage v, is equal to the input voltage. When the
transistor is off, the diode is on, and v, is zero.



 Vint = Vres. The integratioxi is iinmediately reset to zero when the transistor turns OFF,

to prepare for the next cycle.

7.2.1 The Input-Voltage Perturbation Rejection

Suépose the control reference and the load are constant. When the input voltage
vy is perturbed, by an arbitrary pattern, the diode-voltage is equal to the input voltage
while the transistor is ON. This changing diode-voltage is integrated in real time. The
slope of the integrated diode-voltage changes exactly and immediately corresponding
to changes in the diode-voltage. The input voltage directly and instantly adjusts the
duty-ratio d such that the integration of the diode-voltage is constant in each cycle as

shown in Fig. 7.5. In Fig. 7.5(a) the input voltage is changed twice while the transistor
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Figure 7.5: Rejection of Input-Voltage Perturbations. (a). The input voltage jumps
twice while the transistor was ON. The slope of the integration immediately changes;

- therefore, the speed to reach the control reference is adjusted instantaneously in
“order to ‘keep the integration value of the diode-voltage the same as the control
reference. (b). The input voltage decreases linearly during the time when the
transistor is ON. The integrator adjusts its integration slope continuously to adjust
the duty ratio so that the integration of the diode-voltage is equal to the control
reference.

is ON. The slope of the integration immediately changes; therefore, the speed to reach

the control reference is adjusted instantaneously in order to keep the integrated value of
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_ the diode-voltage the same as ﬁhe control reference. In Fig. 7.5(b) the input voltage is
decreased lin'eaxily during the time when the transistor is ON. The integrator adjusts its
" Integration slope _continuously in order to adjust; the duty-ratio so that the integration
of the diod&voltage is equal to the control reference. No matter how the input-voltage
changes, the output voltage does not see the input perturbation. Theoretically, this
control technique completely rejects input-voltage perturbations. Since the integrator
adjusts its inteération slope in real time, the One-Cycle Control technique is able to

reject all frequency perturbations, even perturbations at frequencies higher than the

switch frequency, as shown in Fig. 7.6.
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Figure 7.6: High Frequency Input-Perturbation Rejection. Since the integrator adjusts

its integration slope in real time, the One-Cycle Control rejects all frequency per-
turbations, even perturbations with frequencies higher than the switch frequency.

One-Cycle Control of buck converter can also be understood as a feedforward buck
converter wi_th special designed feedforward circuit, as shown in Fig. 7.7. The motivation
behind the feedforward method is that the input voltage directly controls the duty ratio
before the output voltage error occurs. When the input voltage steps up, the saw-tooth
becomes steeper and the duty-ratio changes immedialtely in an attempt to reject the
input voltage perturbation. The input voltage is sensed and integrated to generate the

saw-tooth. When the input voltage is perturbed, the so called “saw-tooth” is no longer
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Figure 7.7: Integrated Input Voltage Feedforward Control of Buck Converter. The
input voltage directly controls the duty ratio before the output voltage error occurs.
When the input voltage steps up, the saw-tooth becomes steeper and the duty-ratio

changes immediately in an attempt to reject the input voltage perturbation.

linear as shown in Fig. 7.8.
For feedforward control of the buck converter, the slope of the saw-tooth is determined

by the integration of the input voltage.
t
Saw = / vydt 0<t<T, @)
0

When the saw-tooth and the voltage reference cross each other, the transistor is turned
off. The duty-ratio is determined such that the input voltage integration in each cycle is
constant. This function is identical to the One-Cycle Control technique. However, this

feedforward scheme does not work for other types of switching converters.
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Figure 7.8: The Saw-Tooth of Feedforward Buck Converter. The input voltage is sensed
and integrated to generate the saw-tooth. When the input voltage is perturbed,
the so called “saw-tooth” is no longer linear.

7.2.2 Load-Disturbance Rejection

Suppose the control reference and the input voltage are constant, whereas the load
current is perturbed. If the input voltage source has some output impedance, the am-
plitude of the diode-voltage will be perturbed because the disturbing current generates
a voltage disturbance across the input impedance. This disturbance is equivalent to the
case when the input voltage is perturbed. One-Cycle control completely rejects load
disturbances at the diodefvoltage, and keeps the average of the diode-voltage cénstant.
However, the output voltage is-disturbed because the dynamics of the output filter. The

effect of the output filter is discussed in more detail in Section 7.4.

7.2.3 Following the Control Reference

Suppose the input voltage and the load are constant, while the control reference

changes sinusoidly. Since the input voltage is constant, the slope of the real-time inte-
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o gratibn remains constant; however, the integrated value, at which the transistor is shut

OFF, is exactly equal to the sinusoid control reference, in each cycle . Therefore, the
- -average of the diode-voltage follows the control signal immediately, within one cycle, as

shown in Fig. 7.9.

Vins

Figure 7.9: Following the Control Signal in One Cycle. When the control reference
changes sinusoidly, the integration value follows the control reference in each switch-
ing cycle. The duty-ratio d is determined when the integration value reaches the
control signal, so that the average value of the diode-voltage keeps up with the

sinusoid control reference in one cycle.

Suppose the input voltage and the control reference are changing at the same time.
For example, the input voltage has a step up perturbation while the control reference
changes sinusoidly. The integration changes its slope as the amplitude of the input
voltage changes. The slope becomes steeper after the input voltage steps up. No matter
how the integration slope changes, the integration value still keeps up with the sinusoid
control reference in each cycle. Therefore, the average value of the diode-voltage does
not see the input perturbation and it follows the control reference in one cycle, as shown
in Fig. 7.10.

Suppose the load resistance suddenly steps up, and the control reference is changing
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Figure 7.10: Following the Control Signal and Rejecting the Input Voltage Pertur-
bation. The input voltage is perturbed with a step up function and the control
reference changes sinusoidly. The slope of the integration is changing according to
the input voltage. When the integration value reaches the control signal value, the
switch changes its state. The average value of the diode-voltage is exactly equal

to the sinusoid control reference.

with time in a sinusoid pattern. Due to the input impedance of the converter, the
envelope of the diode-voltage changes. Therefore, the slope of the integration changes
corresponding to the load change. The integration value keeps up with the sinusoid
control reference. Hence, the average of the diode-voltage is fully controlled by the

control reference, as shown in Fig. 7.11.

7.3 The Effect of the Input Low-Pass Filter

The pulsed input current of the basic buck converter. produces electromagnetic distur-
bances on the line pdwer. In order to prevent the line power from pulse current pollution,
a low-pass input filter is necessary in practice, as shown in Fig. 7.12.

The input current for the buck converter with input filter is continuous. The am-
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Figure 7.11: Following the Control signal and Rejecting the Load Disturbance. The
load resistance is stepped up, and the control reference changes sinusoidly. The
slope of the integration changes due to the change of the envelope voltage of the
diode caused by the load resistance change. When the integration value reaches
the new control signal value, the switch changes its state. The average value of

the diode-voltage is exactly equal to the sinusoid control reference.

plitude of the diode-voltage v,, when the switch is ON, is no longer the same as the
input voltage; therefore, the input voltage does not directly control the amplitude of
the diode-voltage. However, the relationship in Equation (7.1) is still preserved. The
working waveform of the buck converter with input filter is shown in Fig. 7.13.
One-Cycle Control of buck converter with an input low-pass filter is shown in Fig. 7.14.
The input filter L, C; of the buck converter can be considered as the output filter of the
line input voltage v,; then the capacitor voltage vc1 can be considered the input voltage
of the buck converter. One-Cycle Control of the buck converter, with vp; as its input

voltage, has the same structure as the one discussed in Fig. 7.3 of Section 7.2. Any
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Figure 7.12: Buck Converter with Input Filter. A low-pass filter L;C) is used to prevent
the line power from electromagnetic disturbances. The system becomes fourth
order.

Figure 7.13: The Working Waveform of the Buck Converter with Input Filter. The
amplitude of the diode-voltage, when the switch is ON, is no longer the same as
the input voltage. However, the relationship in Equation. 7.1 is still preserved.
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Figure 7.14: One-Cycle Control of the Buck Converter with input Low-Pass Filter.
The input filter of the buck converter can be considered as the output filter of the
input line voltage v,. . Therefore One-Cycle Controlled buck converter with the
capacitor voltage vy as its input voltage has the same structure as the circuit
discussed in Section 7.2.

perturbation of the input voltage v, causes a dynaﬁﬁc response in the capacitor voltage
vc1. According to the analysis in Section. 7.2, One-Cycle Control of the buck converter
rejects any perturbation in vcy; therefore, it also rejects any perturbation of the input
voltage v,. The average value of the diode-voltage at t'fhe switch output rejects the load
perturbation and follows the control reference instantaneously within one cycle. The
input low-pass filter does not have dynamic effect on the One-Cycle Controlled buck

converter.
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As discussed in the last section, the diode-voltage of the buck converter with One-
Cycle' Control is instantaneously controlled by the control reference in one cycle. There-
fore, the diode-voltage is equivalent to a controllable voltage source that provides desired
DC and undesired switching frequency AC. The LC low-pass output filter of the buck

converter is designed to block the switch frequency, as shown in Fig. 7.15. However, the

R -
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voltage #V: | FCi RV
source ' ; i
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Figure 7.15: The Equivalent Circuit for Buck Converter with One-Cycle Control.
The diode-voltage of buck converter with One-Cycle Control is equivalent to a
controllable voltage source with desired DC and undesired AC. The low-pass filter
is designed to block the undesired AC. The whole system behaves like a second-
order linear system.

existence of the low-pass filter introduces an additional frequency response from the v,.¢
controlled voltage source V, to the output voltage v,. The whole system behaves like a

second-order linear system:

Vo _ £ 2
v, = 1+R5'+LCS | (7.3)

The input-voltage perturbation does not have effect on the output voltage v,, since
it is rejected by the One-Cycle Control loop. Though the load change does not have

any effect on the DC value V, of the diode-voltage, it does perturb the output voltage



139
R

Vo because of the energy sforagé elements in the low-pass filter that prevent the load
current and/qr voltage from changin_g suddenly, as shown in Fig. 7.16. Although the
" control refefence Ures is able to adjust the average of the diode-voltage instantaneously,
the output voltage still has a second-order transient response to the control reference
because of the low-pass filter, as shown in Fig. 7.16.

3

) A
R Vref —
. \
o ~—— __/\"—
‘ Vo

Vo \/\

(a) (b)

Figure 7.16: Second-Order System Responses. a) When the load resistance R steps down.
The load current ir does not change to its new steady state immediately and the
output voltage v, is disturbed. b) When the control reference v,y changes, the
output voltage v, has a second-order response.

From the above analysis, it is clear that the input-voltage perturbations and the
dynamic response of the input low-pass filter are isolated by the One-Cycle Control loop
so that they do not affect the output voltage. The dynamics of the output low-pass filter
remain the same. Therefore, a One-Cycle Controlled buck converter is equivalent to a

linear controllable voltage source with an output low-pass filter.



140

A

7.5 “Comparison with Puise—Width-Modulation and Current-Mode Con-

trol

The open-loop PWM buck converter has nonlinear dynamics from its input voltage

and duty-ratio control signal to its output voltage.

£(d vy)
1+ 5S+ LCS?

L(v) = (7.4)

where ihe symbol £ represents the Laplace transformation. From above equation, it is
clear that the open-loop PWM buck converter does not have any capability to reject the
input voltage perturbation. When the input voltage is conétant, the output voltage has
a second-order response to the duty-ratio control signal. If the buck converter has an
input filter, the dynamics of the con;rerter become more complicated. The converter does
not reject the input perturbation. In addition, the existence of the input filter produces
the right-half-plane (RHP) zeros. Details are discussed in Chapter 3.

The PWM feedback buck converter is shown in Fig. 7.17. The transistor and the
diode operate at a fixed frequency. During the time 0 < t < dT,, the transistor is ON
and the diode is OFF. During the time d7, < t < T}, the transistor is OFF and the diode
is ON. The buck converter has input voltage vy and output voltage v,. The conversion

of the buck converter is the same as its duty-ratio:
vo = dvyg (7.5)

The control circuit contains an output voltage sensor, a control reference, an error con-
troller, and a PWM modulator. The error controller is a PID (proportion, integration,
and/or differential) amplifier that is designed to impréve the frequency response of the
closed-loop system. The PWM modulator is a saw-tooth comparator that adjusts the

duty ratio in each cycle by comparing the control signal with the saw-tooth wave.



R o 141
. . ,

The output voltage v, is sensed and compared with the control reference to generate
the error signal v, = v,.s—v,. If the error signal is zero the duty-ratio remains unchanged.
+ If the error is not zero, the controller sends a control signal to the modulator to change
the duty-ratio d in the direction necessary to reduce the error signal. The modulator
compares the control signal v, with the saw-tooth wave and generates a square-wave

drive signal with an adjustable duty-ratio d.

-

L
AN 4
Ve L. ' =C 5 % v
- + Ve
H— | v
pad

Comparator  Amplifier

Figure 7.17: Feedback Control of The Buck Converter. The buck converter has input
voltage v, output voltage v,, and conversion rate d. The output voltage is sensed
and compared with the control reference v,.y, and the error signal v. = v,.y — v,
is processed to control the duty-ratio d.

To examine the capability of the circuit to reject input-voltage perturbations, sup-
pose that the load and the control reference are constant. When the input voltage is
perturbed, for example by a large step up, the duty-ratio controller does not see the
change instantaneously sinée the error signal must ch.ange first. Therefore, the output
voltage jumps up. The feedback signal is compared with the reference, and the error

between the reference and the feedback signal is amplified to control the duty-ratio. The
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~duty ratio is then ac‘:ljusted,' through a number of switching periods, to the new steady-
state value tha.f. provides the correct conversion ratio to regulate the output voltage.
- The ‘duratio'n of the transient is dic.tated by the loop-gain bandwidth and by the con-
verter’s output impedance. Large changes in tﬁe input voltage cause large changes in

the duty-ratio as well. The duty-ratio is corrected by the output voltage error; therefore,

Vo ——/\———-

Sawtooth Waveform ’
1/ A/
I"Tr ) =,
k(1) | E
TOonoom .

Figure 7.18: Transient Response Caused by Input-Voltage Perturbation. The duty-
ratio is corrected by the output-voltage error; therefore, the output voltage is
‘always influenced by the input-voltage perturbation.

the output voltage is always influenced by the input-voltage perturbation. The control
process is shown in Fig. ?.18. In addition, input voltage perturbations also perturb the
loop-gain and cause some nonlinear frequency response.

If the buck converter has a low-pass input filter, (see analysis in Chapter 3) the
dynamic model of ﬁhe system is shown in Fig. 3.11. The system is nonlinear, its linearized
small-signal model has RHP zeros. The control loop is very difficulty to stabilize.

Current-mode control utilizes some pulse and nonlinear nature of the switching con-
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verter. The switch current is sensed and compared with the control reference. The clock
pulse, which runs at constant frequency, turns the transistor on. When the switch current
. tea.ches the coﬁtrol reference the comparator changes its state and turns the transistor
off. There is no PWM modulator in the control loop, because the pulse signal in the
circuit éontrols the duty-ratio directly. A schematic of current-mode control of the buck

converter is shown in Fig. 7.19. The control function for this circuit is shown in Fig. 7.20.

Comparator

Figure 7.19: Current-Mode Control of the Buck Converter. The current-mode control
loop of the buck converter contains a current reference i,.;, a comparator, and a

switch current sensor.

~ When the input voltage is perturbed, by a step up for example, the current ramp
immediately increases to control the duty-ratio. The duty-ratio correction is dependent
not only on the current ramp, but also on the last state of the current; the transient
is shown in Fig. 7.21. Suppose the input voltage changes from vg; to vg. In order to
maintain a constant output voltage, the duty-ratio d must change from its old steady

state doig = ;";— to a new steady state dp., = ;‘;’2-. The duty-ratio d jumps from d,;4 to
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Figure 7.20: Current-Mode Control Function. The switch current is sensed and compared
with the control reference. The clock pulse, which runs at constant frequency and
turns the transistor on. When the switch current reaches the control reference the

comparator changes its state and turns the transistor off.

Vg2
Vgl

Vg

Figure 7.21: The Response of Current-Mode Control to the Input Perturbation.
When %:- < 0.5, the transient process converges, however, it takes several cycles
for the system to reach the new steady state. When %‘: > 0.5, the transient process
does not converge; the system oscillates. Nevertheless, an artificial ramp can be

employed to stabilize the system.
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dy immediately in the first cycle. The transient can be found as

Vo
dny1 —dn = *m(dn —dn-1) (7.6)
, dpew ¥ < 0.5
d, |n=oo = Y9 . (7.7)

oscillates 2 > 0.5
g

When %: A< 0.5, the transient process converges, however, it takes several cycles for
the system to reach the new steady state. When %: > 0.5, the transient process does
not converge; the system oscillates. Nevertheless, an artificial ramp can be employed
to stabilize the system. In addition, if the artificial ramp is chosen to be exactly equal
to the falling slope sy of the switch curfent, the system fully rejects the input voltage
perturbations. However, only the buck converter operating at a constant output voltage
satisfies this condition. Fig. 7.22 shows how the artificial ramp affects the function of
the current-mode control. The falling slope of the switch current of the buck converter

is determined by the output voltage:
8§ =+ (78)

where L is the output filter inductance. When the output voltage changes, the artificial
ramp must change accordingly, such that sy = . For converters other than the buck
converter, however, the falling slope of the switch current may be a function of the input
voltage, the voltage across the energy-transfer capacitor, and/or the output voltage.
Therefore, the falling slope of the switch current dynbarnically responses ’to the input
voltage, and the artificial ramp can no longer match the falling slope of the switch
current. Due to this mismatch, current-mode control is unable to reject input-voltage
perturbations.

Current-mode control is equivalent to state-feedback control. Therefore, it rearranges

pole positions of the system. Current-mode control may improve the dynamic response
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Figure 7.22: Current-Mode Control of Buck Converter with Artificial Ramp. If the
artificial ramp is chosen to be exactly equal to the falling slope s; of the switch
current, the system will fully reject the input voltage perturbation. However, only
the buck converter working at a constant output voltage satisfies this condition.

of a converter. It is necessary to have an output voltage feedback control. With output-

voltage feedback control, the system is still an error amplified system. Therefore, the

ability of the converter to follow the control reference is similar to that of the PWM

feedback converter.

7.6 Experiments of One-Cycle Controlled Buck Converter

The experimental One-Cycle Controlled buck converter is shown in Fig. 7.23. The
clock triggers the RS flip-flop at a constant frequency to turn ON the transistor. The
diode-voltage. is integrated and compared with the reference voltage v,.;. When the in-
tegrated value of the diode-voltage reaches the control reference, the comparator changes
;ts state, which resets the. RS flip-flop and consequently turns off the transistor. A junc-
tion FET is used to reset the integrator when the transistor turns off. Five access points
are set. Point A, Point B, and Point C are used to inject the control signal, the load dis-

turbance, and the input perturbations, respectively. Point B, Point D, and Point E are

used to detect the output voltage, the diode-voltage, and the integrated diode-voltage.
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Figure 7.23: The Experimental Buck Converter with One-Cycle Control. Five access

' points are set. Point A, Point B, and Point C are used to inject the control signal,
the load disturbance, and the input perturbations, respectively. Point B, Point
D, and Point E are used to detect the output voltage, the diode-voltage and the
integrated diode-voltage.
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Experiment 7.1 Measure the ability of the diode-voltage to follow a step change in

the cﬁntrol reference. A step-up function from 3V to 4.6V was injected into the control
. reference a.t‘Pohint A, while the inp.ut voltage and the load were held constant. The
output response of the integrator was measured at Point E. The experimental results are
shown vin Fig. 7.24. Since the load and the input voltage are constant, the integration
slope is also constant. When the control reference stepped up, the integration took a
longer time to reach the control reference. Therefore, the duty-ratio was increased and

the average value of the diode-voltage jumped to its new steady state in one cycle.

Experi.ment‘ 7.2 Measure the response of the diode-voltage to a step-up perturbation
of the input voltage. A step-up function from 10V to 20V was injected into the input
voltage at Point B, while the load and the control reference were constant. The output
response of the integrator was measured at Point E. The experimental results are shown
in Fig. 7.25. There are spikes on the input voltage, because the buck converter has pulsed
input current and the output impedance of the power source is not zero. These spikes did
not influence the average value of the diode-voltage, because the spikes also contributed
to the integration that kept the average value of the diode-voltage constant. The input
voltage stepped up while the transisto; was én. The slope of the integration of that cycle
immediately éhanged; therefore, the duty-ratio was adjusted instantaneously.

iExperiment 7.3 Measux-'e the response of the diode-vbltage to a sinusoid perturbation
in the input voltage. A sinusoid wave v, = 20 + 7sinwt, f = 10kH z, was injected into
the input voltage at Point B, while the control reference and the load were held constant.
The integrator outﬁut response was measured at Point E. The experimental results are
shown in Fig. 7.26. Since the input voltage was not constant, the slope of the integration

was changing all the time. Near the peak value of the input voltage the integration took
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Figure 7.24: The Response of the Buck Converter to a Step-Up of the Control Ref-
erence. A step-up function from 3V to 4.6V was injected into the control
reference at Point A; the integrator output response was detected at Point E. Op-
erating condition: Vj = 15V, f, =30kHz, L1 = 0mH, Ly = 048mH, C, = 0uF,
C; =30pF, Ry = 1.8Q, R, = 0.6Q, R = 25Q.

about 10usec, whereas near the valley of the input voltage the integration took about

20usec. The average value of the diode-voltage was constant in each cycle.

Experiment 7.4 Measure the capability of the diode voltage to reject a step-up input
voltage perturbation while following a sinusoid varying control reference. A step-up
function from 10V to 20V was injected into the input voltage at Point B, while the

control reference was varied with a sinusoid wave v, = 3.1 + 1.2sinwt, f = 10kHz, at
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Figure 7.25: Buck Converter Rejects a Step-Up in the Input Voltage. A step-
up function from 10V to 20V was injected into the input voltage at Point B, the
integrator response was measured at Point E. Note that the input voltage has been
reduced by a factor of two in order to fit it into the plot. Operating condition:
Vo = 15V, f, = 30kHz, Ly = OmH, Ly = 0.48mH, C, = 0uF, C2 = 30uF,
Rp1 = 1.8Q, R = 0.602, R = 25Q2.
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Figure 7.26: Buck Converter Rejects a Sinusoid Change in the Input Voltage. A
sinusoid wave v, = 20 + Tsinwt, f = 10kH z, was injected into the input voltage
at Point B. The integrator output response was measured at Point E. Note that
the input voltage has been reduced by a factor of two in order to fit it into the
plot. Operating condition: V; = 15V, f, = 30kHz, L; = OmH, L, = 0.48mH,
C1=0uF, Cy =30uF, Ry = 1.8Q, Rr; = 0.6Q2, R = 25Q.
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Figure 7.27: Buck Converter Respohse to a Step-Up in the Input Voltage and a
Sinusoid Change in the Control Reference. A step up function from 10V
to 20V was injected into the input voltage at Point B, while the control reference
was varied with a sinusoid wave vg = 3.1+ 1.2sinwt, f = 10kH z, at Point A. The
integrator output response was measured at Point E. Note that the input voltage
has been reduced by a factor of two in order to fit it into the plot. Operating
condition: V; = 15V, f, = 30kHz, Ly = OmH, L, = 0.48mH, C; = OuF,
Co = 30uF, Rr; = 1.8Q, Rrs = 0.6Q, R = 25Q.
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_Point A. The integrator output response was measured at Point E. The experimental
results are shown in Fig. 7.27. The slope of the integration changed immediately when
' the input voltage stepped up. The envelope of the integration waveform kept up with the

control reference exactly. Therefore, the average of the diode-voltage was not influenced

by the input disturbance and was fully controlled by the control reference.

.

Experiment 7.5 Measure the capability of the diode-voltage to simutaneously reject
an input voltage perturbation and a load disturbance. A sinusoid wave vy, = 20+ 7sinwt,
f= 10kH z, was injected into the input voltage at Point B, while the load resistor was
changed from 25Q to 7.19. The integrator output response was measured at Point E,
while the control reference was constant. The experimental results are shown in Fig. 7.28.
When the resistance stepped up, at + = 200usec, the input current became smaller. Asa
result, the spikes on the input voltage, caused by the pulse input current going through
the input impedance, becafne smaller. However, the average value of the diode-voltage

waé not affected.

Experiment 7.6 Measure the control-to-diode-voltage frequency response. A sweeping
frequency signal was injected at Point A, while the diode-voltage response was measured
at Point D. Since the average value of the diode-voltage was fully controlled by the control
reference, it was predicted that the frequency response of the diode-voltage to the control
reference was flat. The detected frequency response had a very flat amplitude response
and phase lag. There was a bump at f = 2.4kHz that was the corner frequency of the
input filter. Since the diode-voltage was not exactly zero when the transistor was ON,
as a result, the frequency response was not completely flat. The experimental result is

plotted in Fig. 7.29.
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Figure 7.28: The Response of the Buck Converter to a Sinusoid Change in the Input
Voltage and a Step-up in the Load Resistance. A sinusoid wave v, =
20 + Tsinwt, f = 10kHz, was injected at Point B to the input voltage and the
load resistor was changed from 250 to 7.1Q2, at t = 200usec. The integrator output
response was measured at Point E. Note that the input voltage has been reduced
by a factor of two in order to fit it into the plot. Operating condition: V, = 15V,
fs = 30kHz2, L, = 0OmH, Ly = 0.48mH, C, = 0uF, C; = 30uF, R1, = 1.8Q,
Ris =0.62, R = 25Q. '
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Figure 7.29: Control-to-Diode-Voltage Frequency Response of Buck Converter with
Input Filter.
diode-voltage response was measured at Point D. Operating condition: V, = 15V,
fs = 30kHz, Ly = 0.43mH, Ly = 048mH, C; = 104uF, C; = 30uF, Ry; =
0.25Q, Rr2 = 0.6Q, R = 25Q.

A sweeping frequency signal was injected at Point A and the
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Figure 7.30: Control-to-Output Frequency Response of Buck Converter with Input
Filter. A sweeping frequency signal was injected at Point A and the output
voltage response was measured at Point B. Operating condition: V=15V, f, =
30kHz‘, Ly =043mH, Ly = 0.48mH, Cy = 104uF, Cy = 30uF, Rr, = 0.25Q,
Ri2 = 0.6, R = 25Q.
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Figure 7.31: Input-to-Output Frequency Response of Buck Converter with Input
Filter. A sweeping frequency signal was injected at Point C and the output
voltage response was measured at Point B. Operating condition: V, = 15V, f, =
30kHz, Ly = 0.43mH, Ly = 0.48mH, C; = 10.4uF, Cy = 30uF, Rry = 0.259,
Rp2 = 0.6Q2, R = 2540
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~ Experiment 7.7 Measure the control-to-output frequency response. A sweeping fre-
quency signal vfras injected at Point A, and the output voltage response was measured
- at Pqint B. 'i‘he experimental result is plotted in Fig. 7.30. As predicted in the previous
section, the freAquency response of the buck converter with input filter is equivalent to a

second-order system.

Exp‘erimént 7.8 Measure the input-to-output frequency response. A sweeping fre-
quency signal was injected at Point C, while the output voltage response was measured
at Point B. The experimental result is plotted in Fig. 7.31. It was expected that the
system should completely reject the input voltage perturbation. However, the experi-
mental data show that there were leakages of the input perturbation, especially when
the sweeping frequency was near the corner frequency of the input filter. This leakage
is caused by the fact that the real diode has a non-zero conducting resistance, and also

because the wire wrap circuit has some AC coupling.

7.7 Summary

The buck converter with PWM feedback is an error control system. A high loop-
gain is required in order to have fast response and good input-perturbation rejection.
However, this high gain may cause oscillations due to the influence of the input filter.
The current-mode control may improve the system dynamics. When the stabilizing
l:amp is equal to the falling slope of the switching current, the buck converter can reject
input-voltage perturbations; however, this is only possible when the output voltage is
constant.

The One-Cycle Control technique is used to control the constant frequency PWM
buck converter. The diode-voltage of the buck converter is One-Cycle Controlled. The

diode-voltage follows the control reference instantaneously and rejects the input-voltage
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~ perturbations and the load disturbances quickly. The dynamics of the input filter are
blocked by One-Cycle Control, while the dynamics of the output filter remains the same.
* The Buck converter with One-Cycle Control behaves like a controllable voltage source

with an output filter. Experiments verified the theoretical predictions.
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.Chapter 8
Stability of One-Cycle Controlled

‘Pl}lse-Width-Modulated Converters

For a given switching converter, suppose the diode-voltage is One-Cycle Controlled,
the diode-voltage instantaneously responds to the control reference and fully rejects input
perturbations. One might assume that this system has infinite loop-gain, however, a
physical system is usually unstable with infinite loop-gain. How dqes the One-Cycle
Control loop work? This chapter explains the stability problem of One-Cycle Control.
A Guk converter is used as an example. The Switching Flow-Graph model is derived for
the One-Cycle Control Cuk converter, in Section 8.1. The global dynamic behavior of
the One-Cycle Controlled Cuk converter is examined in Section 8.2 and the small-signal

loop-gain is studied in Section 8.3. Experimental results are discussed in Section 8.4.

8.1 One-Cycle Controlled Switch in Converters

The One-Cycle Control technique converts a non-linear switch into a linear switch,
as discussed in Chapter 6. A converter sometimes contains more than one switch in
its signal path, as shown in Fig. 3.6. All the signal switches are either synchronized or
complementary since they are implemented by one transistor and one or more diode in the
real circuit. Therefore, only one signal switch can be One-Cycle Controlled. The other

switches are turned ON and OFF according to the state of the One-Cycle Controlled
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switch. A basic buck convérter, discussed in Chapter 7, has only one signal switch in
the signal path from the control reference to the output voltage. Therefore, this basic

' converter can be completely One-Cycle Controlled. However, a Cuk converter contains
four switches in its signal path, yet only one can be chosen as the One-Cycle Controlled
switch. If the signal switch, in the path from Node vc: to the Node vz, is chosen as the
One-Cycle. Controlled switch, the forward signal path is broken into two. The resulting

system is decoupled into two second-order systems, the input loop and the output loop,

as shown in Fig. 8.1. The output of the One-Cycle Controlled switch is the diode-voltage;

hence, this is One-Cycle Control of the diode-voltage.

Figure 8.1: Diode-Voltage One-Cycle Control. The signal switch, in the path from Node
ve1 to the Node v, is chosen as the One-Cycle Controlled switch. The forward
signal path will be broken into two. The resulting system is decoupled into two
second-order systems, the input loop, and the output loop. The output of the One-
Cycle Controlled switch, the diode-voltage, is instantaneously controlled within one

cycle.
The output loop is fully controlled by the control reference. Any dynamics changes
in the input loop are blocked by the One-Cycle Controlled switch. It is equivalent to a
linear second-order system from the control reference to the output voltage. The output

loop has some influence on the input loop through the switch in the path from Node if;

to Node ic;. Since the signal iz is independent of the input loop dynamics, the path
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 from Node i3 to Node ici is not inside the loop. Hence, the stability of the input loop

is not affected by the dynamics of the output loop.

8.2 Global Stability of the One-Cycle Controlled Cuk Converter

The One-Cycle Control breaks the Cuk converter into two second-order systems, the
input loop and the output loop; therefore, the stability of the One-Cycle Controlled
Cuk c’onverter‘depends on the stability of the two loops. The output loop, which is a
second-order linear system, is always stable. The input loop is a non-linear second-order
system.

From the large-signal switch model, it is found that
vg = dvey. (8.1)

Since the One-Cycle Controlled switch all passes the control reference v,y and fully
rejects its input signal vy, that is

Vd = Uref. (8.2)
Therefore, the duty-ratio of the One-Cycle Controlled switch is modulated by the fol-
lowing equation:

d= ‘;mf (8.3)

The duty-ratio signal of the One-Cycle Controlled switch is a nonlinear function of the
voltage across the input capacitor. Since all the other switches are either synchronized
or complementary with the One-Cycle Controlled switch, their duty-ratio is determined
by the non-linear feedback signal d = Z—'cff- The input loop and the output loop have
the structure shown in Fig. 8.2. The system state-space equations are obtained from

Fig. 8.2.

di .
Ll-}ﬁl = v, = Ryiy — (1= d)ven (8.4)
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Figure 8.2: The Large-Signal Model of the One-Cycle Controlled Cuk converter.
The duty-ratio signal of the One-Cycle Controlled switch is a nonlinear function
of the voltage across the input capacitor. Since all the other switches are either
synchronized or compensated with the One-Cycle Controlled switch, their duty-

ratio is determined by the non-linear feedback signal d = =L.

d . .
=t = (1-d)in — dira (8.5)

Uref
d = 8.6
— (8.6)

Let Equation (8.4) and (8.5) equal zero, that is

vg—Riii—(1—-d)vey = 0 (8.7)
(1-d)ipy—dipz = 0 (8.8)
© Uref
d = 8.9
or (8.9)

Equation (8.6), (8.7) and (8.8) generate two singular points, P, and P;, and a singular
region vcy = 0.

The global dyné.mic behavior, simulated by TUTSIM program, is shown in Fig. 8.3.
There are two singular points, P; = (V4, ;) and P, = (V3, I3), and a singular region, the

whole ip;-axis. P is a stable spiral point. P is an unstable saddle point. The lower
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Figure 8.3: The Global Dynamic Behavior of the One-Cycle Controlled &uk Con-
verter. The global dynamies is simulated by TUTSIM program. The x-axis
represents the voltage across the input capacitor and the y-axis represents the in-
put inductor current iz;. There are two singular points, P; and P,, and a singular
region, the whole y-axis. P, is a stable spiral point. P, is an unstable saddle point.
And the lower part of the y-axis is an unstable region, and the upper part of the
ir1-axis is stable. The system is not globally stable. The region around the spiral
point P, is the desired working region.

part of the iz -axis is an unstable region, and the upper part of the iz;-axis is stable.
The system is not globally stable. The region around the spiral point P, is the desired
working region.

In practice, there is physical restrictions on the duty-ratio, Dyip € d € Doz When
vor < ﬁfnﬁt’;, the system operates at the maximum duty-ratio Dpaz; therefore, the system

becomes a linear system:

di :
Ll-%l- = vy — Ryi1 — (1 = Dpmaz)vcn (8.10)
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Figure 8.4: The Global Dynamic Behavior with Duty-Ratio Limitation. The x-axis

represents the voltage across the input capacitor and the y-axis represents the input

inductor current. When vgy < D"—:f:, or vc1 > -,—?ff;':, the system becomes a linear

second-order system. If the maximum duty-ratio is artificially restricted such that
Dmaz < "—",;L, the unstable saddle point P; = (V2 < Ip) is avoided. Therefore, the

system will be globally stable.

dvcy

Cy at = (1 - Dmaa:)iLl = Dmazir2 (811)

When vy > lvf:‘f:, the system operates at the minimum duty-ratio dm;n; therefore, the

system becomes a linear system:

di .

Ll% = vy — R1i1 — (1 — Dmin)vcn (8.12)
d . : .

G ';f‘ = (1= Dmin)iL1 — DrminiLa (8.13)

If the maximum duty-ratio is artificially restricted such that D, < 2{721-, the unstable

saddle point P, = (V2 < I3) is avoided. Therefore, the system will be globally stable. The



. .

~ global dynamics is found By TUTSIM program as shown in Fig. 8.4. The small-signal

model is obtained to study the local dynamic behavior.

8.3 Local Dynamic Behavior

For a linear feedback system, an infinite loop-gain is required in order to have instan-
taneous control over some variables. In practice, all physical systems have limited band
width. Conseqliently, when the loop-gain is higher than certain value, the loop becomes
unstable. Therefore, it is impossible to have instantaneous control for a linear feedback
control system.

However, instantaneous control does exist in One-Cycle Controlled converters. For
the One-Cycle Controlled Cuk converter, the average value of the diode-voltage actually
has an instantaneous response to the control reference. To further understand One-Cycle
Control, a study of the linearized local dynamic behavior and the loop-gain is neces-
sary. The large-signal model of the One-Cycle Controlled switch, from Equation (8.3),
is fewritten as follows:

d=ref (8.14)
v

Suppose the One-Cycle Controlled switch operates around the steady-state point, V..y,

Vei, and D with small-signal perturbation, ¥,.¢, 9c1, and d.

Uref = V;'ej + 'bref ‘ (815)
ve1 = Vei+ e (8.16)
d = D+d (8.17)

The linearized small-signal model of the One-Cycle Controlled switch is:

N 1 D
d= —Upef — —10 8.18
Ver tref Ve e (8.18)
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~ The duty-ratio signal of the input loop is determined by the control reference and the
feedback of the voltage across the input capacitor, as shown in Equation (8.18). The out-
- put loop doés not contain any switching branch therefore, it is a stable linear second-order
system. The lipearized small-signal model of thé One-Cycle Controlled Cuk converter is

shown in Fig. 8.5.

A
input loop lo d(t) output loop
-]
a -~
A1z c1 :
A A 1 R
Ve 1 Vi vz LS RC:S+T1
-
A
Voo

Figure 8.5: The Small-Signal Model of One-Cycle Controlled Cuk Converter. The
duty-ratio signal of the input loop is determined by the control reference and the

feedback of the voltage across the input capacitor, cf(t) =d= %ﬁ,d - %ixm.

The output loop does not contain any switching branch, therefore, it is a stable

linear second-order system.

Consider the parasitic resistance of the input inductor and the the input capacitor,
the linearized small-signal transfer function of the One-Cycle Controlled Cuk converter

is found

D(RD™ — Ry D) (1 — gp255)(1 + C1R2S)
RD® 14 GEID?Rg Lo

A digital injector [15] was built to measure the loop-gain. The predicted and the mea-

G= (8.19)

sured loop-gains are plotted in Fig. 8.6. The loop-gain of the One-Cycle Controlled Cuk
converter is not infinite; it is actually lower than 0db!

One-Cycle Control instantaneously controls the average value of the diode-voltage.
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Figure 8.6: The Loop-Gain of the One-Cycle Controlled Cuk Converter. The pre-
diction is obtained by the Switching Flow-Graph model. The experimental data
were measured with the digital injector. It is lsurprising that the loop-gain is less
than zero db, though the diode-voltage has instantaneous response to the control

reference.
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Figure 8.7: Take Advantage of the Pulsed and Nonlinear Nature. When the control
reference steps up, the voltage across the input capacitor undergoes an attenuating
oscillation. The input signal of the One-Cycle Controlled switch is the capacitor
voltage vcy. The output signal of the One-Cycle Controlled switch is the diode-
voltage v4, which has an envelope equal to the capacitor voltage vcy. One-Cycle
Control takes advantage of the pulsed and nonlinear nature of the switching con-
verter, and adjusts the average value of the diode-voltage instantaneously. The real
transient of the diode-voltage is not instantaneously controlled.

Nevertheless, the loop-gain is not infinite. All the other state variables inside the loop

obey the physical laws. The variables actually move along the state-space trajectory

shown in Fig. 8.4. As a matter of fact, the voltage across the diode has a finite transient.

One-Cycle Control takes advantage of the pulsed and nonlinear nature of the switch-

ing converter, and adjusts the average value of the diode-voltage instantaneously. For

example, when the control reference steps up, the voltage across the input capacitor un-

dergoes an attenuating oscillation. The input signal of the One-Cycle Controlled switch

is the capacitor voltage vc1. The output signal of the One-Cycle Controlled switch is
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the'diode-'voltage vd, which has an envelope equal to the capacitor voltage vci. The
real-time integrated value is compared with the control reference in each cycle. There-
- fore, the duty-ratio is precisely adjusted such that the average of the diode-voltage is
exactly equal to the control reference. The real transient of the diode-voltage is not

instantaneously controlled, as shown in Fig. 8.7.

8.4 Experiments

The experimental One-Cycle Controlled Cuk converter is shown in Fig. 8.8. The clock
triggers the RS flip-flop with constant frequency to turn ON the transistor. The diode-
voltage is integrated and compared with the reference voltage vy.;. When the integrated
value of the diode-voltage reaches the control reference, the comparator changes its state,
which resets the RS flip-flop and consequently turns OFF the transistor. A junction FET
is used to reset the integrator when the transistor turns off. Five access points are set.
Point A, Point B and Point C are used to inject the control signal, the load disturbance,
and the input perturbations, respectively. Point B, Point D, and Point E are used to

detect the output voltage, the diode-voltage and the integration of the diode-voltage.

Experiment 8.1 Measure the effect of a step response of the control reference on the
diode-voltage. A step up function from 2.3V to 5V was injected into the coﬁtrol reference
at Point A, while the input voltage and the load were constant. The integrator output
“responses were dgtected at Point E. The experimental results are shown in Fig. 8.9. Since
the load and the input voltage are constant, the integration slope is constant. When the
control reference stepped up, the integration took longer to reach the control reference.

The average value of the diode-voltage jumped to its new steady state in one cycle.

Experiment 8.2 Measure the response of the diode-voltage to a sinusoid wave of the

control reference. A sinusoid wave v,y = 3.4 + 2.2sinwt, f = 10kHz, was injected
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Figure 8.8: The Experimental Cuk Converter with One-Cycle Control.

Point A,
Point B and Point C are used to inject the control signal, the load disturbance,

and the input perturbations, respectively. Point B, Point D, and Point E are used

to detect the output voltage, the diode-voltage and the integration of the diode-
voltage.

into the input voltage at Point A, while the input voltage and the load were constant.
The integrator output response was measured at Point E. The experimental results are
shown in Fig. 8.10. Since the input voltage and the load are constant, the slope of the

integration is constant. The integration time is changing with the sinusoid waveform, as

a result, the average value of the diode-voltage changes sinusoidly.
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Figure 8.9: Cuk Converter Follows Step-up of the Control Reference. A step up
function from 2.3V to 5V was injected into the control reference at Point A, and
the integrator output responses were detected at Point E. The input voltage and the
load were constant. Operating condition: V; = 20V, f, = 50kHz, L, = 2.39mH,
Ly =234mH, C, = 100uF, C; = 1000uF, Ry, = 1Q, R, = 1Q, R = 10Q.

Experiment 8.3 Measure the control-to-diode-voltage frequency response. A sweeping

frequency signal was injected to the control reference at Point A, while the diode-voltage

response was measured at Point D. The experimental result is plotted in Fig. 8.11. Since
the average value of the diode-voltage was fully controlled by the control reference, it
was predicted that the frequency response of the diode-voltage to the control reference

should be flat. The detected frequency response has a very flat amplitude response and

phase lag. Since the diode-voltage is not exactly zero when the transistor is ON, the



174

12
10
8
< 6
by
3 4 A’(ﬁ.?\ Vref
3 \ i / f X
AN 1
= o L]
| |
Vint
-2
4
0x10°® 40 60 80 100 120 140 160 180 200

Time (Sec)

Figure 8.10: Cuk Converter Follows Sinusoid Change of Control Reference. A
sinusoid wave v,y = 3.4 + 2.2sinwt, f = 10kHz, was injected into the input
voltage at Point A and the integrator output response was measured at Point E.
. The ihput voltage and the load were constant. Operating condition: Vg = 20V,
Js =50kHz, Ly = 2.39mH, Ly = 2.34mH, C, = 100uF, C; = 1000uF, Rz, =
19, Rr» = 1Q, R = 10Q.
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Figure 8.11: The Control-to-Diode-Voltage Frequency Response of the One-Cycle
Controlled Cuk Converter. A sweeping frequency signal was injected to the
control reference at Point A, and the diode-voltage response was measured at Point
D. Operating condition: V; = 20V, f, = 50kHz, Ly = 2.39mH, Ly = 2.34mH,
C1 = 100uF, C, = 1000uF, Ry1 = 1Q, Ry = 12, R = 10Q.
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Figure 8.12: The Control-to-Output Frequency Response of the One-Cycle Con-
trolled Cuk Converter. A sweeping frequency signal was injected to the con-
trol reference at Point A, and the output-voltage response was measured at Point
B. Operating condition: V; = 20V, f, = 50kHz, Ly = 2.39mH, L, = 2.34mH,
C1 = 100pF, C2 = 1000puF, Rr1 = 1Q, Rr2 = 122, R = 1092.
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Figure 8.13: The Input-to-Output Frequency Response of the One-Cycle Controlled

Cuk Converter.

A sweeping frequency signal was injected to the input voltage

at Point C, and the output-voltage response was measured at Point B. Operating
condition: Vg =20V, f, =50kHz, Ly = 239mH, Ly = 2.34mH, C; = 100uF,
C2 = 1000uF, Rr1 = 1, R12 = 19, R = 10Q.
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The Input-to-Output Step Up Response of the One-Cycle Controlled
¢uk Converter. The input voltage v, was stepped up from 15V to 20V.

~ The output voltage of the Cuk converter was almost not affected. Note that the

input voltage has been reduced by a factor of five in order to fit it into the plot.
Operating condition: V, = 20V, f, = 50kHz, L; = 2.39mH, L, = 2.34mHA,
C1=100uF, C2 = 1000uF, Rry = 19, Rr2 = 192, R = 10Q.
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frequency response is not cbmpletely flat.

Experiment 8.4 Measure the control-to-output frequency response. A sweeping fre-
‘quenéy signal was injected to the control reference at Point A, and the output-voltage
responée was measured at Pqint B. The experimental result is plotted in Fig. 8.12. As
predicted in the previous section, the frequency response of the One-Cycle Controlled

Cuk converter is equivalent to a second-order system.

Experiment 8.5 Measure the input-to-output frequency response. A sweeping fre-
quency signal was injected to the input voltage at Point C, while the output-voltage
response was measured a.tbPoint B. The experimental result is plotted in Fig. 8.13. It
was expgcted that the system should completely reject the input-voltage perturbation.
However, the experimental data show that there were leakages of the input perturbation,
especially when the sweeping frequency was near the corner frequency, 300H z, of the
input filter. This was becaﬁse the real diode has a non zero conducting resistance, and

also because the wire wrap circuit had some AC coupling.

Experiment 8.6 Measure the input-to-output step response of the One-Cycle Con-
trolled Cuk converter. A step-up function, from vy = 15V to v, = 20V, was exerted on
the input-voltage at Point C, while the output-voltage response was detected at point B.
The experimental result is plotted in Fig. 8.14. The One-Cycle Control Cuk converter

has very good input-voltage rejection.

8.5 Summary

The Switching Flow-Graph model is employed to study the large-signal stability and
small-signal behavior of the One-Cycle Controlled system. The large-signal dynamic

simulation shows that the system is not globally stable. However, if the duty-ratio
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limitation is properly set, the éystem will be globally stable. The small-signal model
shows that the One-Cycle Control loop-gain is below 0db! The fact is that the system
» dynamics must obey the physical laws. The transients of the capacitor voltage and the
inductor current are not instantaneous. The One-Cycle Control takes advantage of the
pulsed %md non-linear nature and achieves the instantaneous control over the average
value of the diode-voltage.

The experirr;ents show that the One-Cycle Controlled Cuk converter is stable with
the duty-ratio limitation. The diode-voltage follows the control reference instantaneously,
and has good rejection of the input perturbations. The input dynamics are blocked by

the One-Cycle Control. The system is equivalent to a second-order system.
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Chapter 9

One-Cycle Control Circuit Design

In practice, the components of the electrical circuits are not ideal. For example,
the turn-on time and the turn-off time of transistors and diodes are not instantaneous.
Also, the transistors and diodes have non-zero conducting resistances, the operationél
amplifiers have limited bandwidth, and the comparators have finite speed. In addition,
the circuit layout may have AC coupling, etc. Some practical design aspects are discussed
in this chapter. The possible effects caused by the physical limitation of the duty-
ratio is analyzed in Section 9.1. The condition of discontinuous conduction of switching
converters is discussed in Section 9.2. The design procedure for the key component, the

real-time integrator, of the One-Cycle Control technique is described in Section 9.3.

9.1 Limitation of the Switching Duty-Ratio
In practice, the duty-ratio d has physical limitations that is
0<d< 1. (9.1)

If the switch turn-on and turn-off time are taken into consideration, the duty-ratio lim-
itation is more limited. In addition, the control circuit must be designed to avoid the
unstable operating regions, as the Cuk converter in Chapter 8. As a result, the duty-ratio

limits are

Dunin € d € Drnag. (9.2)
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- Therefore, the One-Cycle Control function disappears when the input signal z(t) and

the control signal v,.s of the switch exceed the limits of Equation (9.2), that is

%l S Dimazy, oF -4 < Diin. (9.3)

z(t) z(t)
Take the basic buck converter as an example. If the required output voltage is con-
stant, the allowable variation of the input voltage is found from Fig. 9.1. The integration
slope is

Yg
- —. .4
Slope T (9.9)

L]

The maximum slope and the minimum slope are determined by the limitation of the

duty-ratio limitations:

. _ Vref
Slopemer = _DminTs (9.5)
Uy
Slopemez = ﬁ (9.6)

If the input voltage is higher than ]'5-'"—::":, the time for the integration to reach the control

Vin

Dma:Ts

DT

Figure 9.1: The Allowable Operating Range of the Input Voltage of Buck Converter.
One-Cycle Control is possible, when the input voltage is inside this range.

reference is shorter than D,,;;nT,. In this case, the transistor does not turn OFF until

t = DminT,. I the input voltage is lower than .ﬁ;—“{:, the time for the integration to
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Figure 9.2: The Allowable Range of the Control Reference of Buck Converter. Sup-
pose the input voltage is constant, the control reference has a finite range of varia-

tion. If the control reference is outside this range, it can not be attained.

reach the control reference is longer than Dyq,T,. Hence, the transistor turns OFF at
t = DpmazT,; which is before the integration reaches the control reference. Therefore, the

allowable range of the input voltage for One-Cycle Control is

v v
ref <, < ref

— Do’ (9.7
One-Cycle Control is possible when the input voltage is inside this range. If the input
voltage is outéide this region, the One-Cycle Control no longer exists.

If the input voltage is constant, the control reference has a finite range of variation,
as shown in Fig. 9.2

Dmgnvg < Urcf < Dmaa:vg (9'8)

When the control reference is lower than Dp,i,v,, the integration reaches the control
reference before t = DminTs, however, the transistor does not turn OFF until t =
DminTs. When the control reference is higher than Dyo,vy the transistor turns OFF

at t = Dy,0:T,, before the integration value reaches the control reference. Therefore
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it is not possible to\obtain‘the’ desired output if v,.s is outside the range specified in
Equation (9.8). The allowable operating region for One-Cycle Control of buck converter

* is shown in Fig. 9.3.

Vref

0 Py

Figure 9.3: One-Cycle Control Operation Region of Buck Converter. One-Cycle

Control is possible within this region.

For some converter, such as the Cuk converter or the buck converter with input filter,
the input signal of the One-Cycle Controlled switch is a dynamic function of the other
variables in the circuit. For example, the input signal of the One-Cycle Controlled switch
of the Cuk converter is the voltage across the input capacitor vc; that is nonlinearly fed
back to control the duty-ratio of other signal switches. Therefore, the voltage of the
input capacitor has nonlinear dynamics. If the changes of the control reference and/or
the input volf.a.ge are to fast or to large, that will cause a dynamics on the voltage
across the input capacitor. If vo; < ﬂ—:ﬁ:, the converter is restricted by its maximum
c{uty-ratio Dyaz, as shown in Fig. 94. If veq > %, the converter is restricted by
its minimum duty-ratio Dy,n, as shown in Fig. 9.5. In these two cases, it takes more
than one cycle for the diode-voltage to follow the control reference or to reject the input

voltage perturbation.
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Figure 9.4: One-Cycle Controlled Cuk Converter Operates under the Maximum
Duty-Ratio. When the control reference steps up too fast, the integrated value
v may not reach the control reference in one cycle. Therefore, the maximum
duty-ratio limitation shuts the transistor OFF at ¢t = Dy,4,7,. The input voltage
of the One-Cycle Control switch increases gradually, which causes the slope of the
integration to increase. After several cycle, the integrated value reaches the control

reference.

e

M e

5 )

L

Figure 9.5: One-Cycle Controlled Cuk Converter Operates under the Minimum
Duty-Ratio. = When the control reference steps down too fast, the integrated
value v;,; may reach the control reference before t = DyinT,. Therefore, the min-
imum duty-ratio limitation keeps the transistor ON until ¢t = D,,;,,T,. The input
voltage of the One-Cycle Control switch decreases gradually, which causes the slope
of the integration to decrease also. After several cycle, the integrated value reaches

the control reference.
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9.2 Condition of Discontinuous Conduction
One-Cycle Control is still preserved, when the converter operates under the condi-
tion of discontinuous conduction, provided the diode-voltage is used to control the reset
switch. Take the buck converter, shown in Fig. 7.23 as an example. The diode-voltage in

the discontinuous mode is shown in Fig. 9.6. At t = t;, the transistor is turned OFF, the

. A
A
_______ Vg
Vs I e _[Va
C ol

»Torr1|Torrz <
»Ton te—Torr—>
I"—""‘ Ts

Figure 9.6: One-Cycle Control of Buck Converter at Discontinuous Conducting Con-

dition. The transistor is turned OFF as t = t;, the inductor current starts to
decrease, the diode is conducting, therefore, the diode-voltage is zero. At t = ¢,
-the inductor runs out of current, the transistor is still OFF, the diode current drops
to zero; therefore, the voltage of the diode is equal to the output voltage. The
integration is started no sooner than the inductor current drops to zero. At t = i3,
the transistor is turned ON by the clock and the diode-voltage jumps to the input
voltage level. The integration slope jumps up accordingly. When the integration
value reaches the control reference, the transistor is turned OFF. Any voltage across

the diode is integrated.

inductor current starts to decrease. During the time from t; to ts, the diode conducts;
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- therefore, the diode-yoltage'is vs = 0. At t = 15, the inductor runs out of current, while
the transistor is still OFF. During the time from ¢, to t3, the diode-voltage is equal to
- the output voltage. The integration is started immediately after the inductor current
drops to zero. At t = t3, the transistor is turned ON by the clock, the diode-voltage
jumps l';o the input voltage level, and the integration slope jumps up accordingly. When

the integrated diode-voltage reaches the control reference, the transistor is turned OFF.

1 ta is
vine = =([ vodt+ / vydt) (9.9)
= TY, e

]

= Upey (9.10)

The output voltage vg equals the average value of the diode-voltage over the switch cycle;
therefore, One-Cycle Control remains valid even if the switching converter operates in

the discontinuous mode.

9.3 Integrator Design

The real-time integrator is the key component in the One-Cycle Control technique.
Fig. 9.7 shows an integrator for the One-Cycle Control of constant frequency switches.
The integrator is composed of an operational amplifier, a resistor R;,; and a capacitor
Cint- The switch output signal v, is integrated and the integrated value is v;;;. The
choice of the operational amplifier is very important, because it directly influences the
accuracy of the integration. Suppose the operational amplifier is ideal, ie. the bandwidth

and the DC gain are infinite, then the transfer function of the integrator is

v,-,.t(.S') _ 1
'Ud(S) - R-intCintSa

(9.11)

In the time domain the relationship is

1 t
Vint = m/o ‘Ud(t)dt (9.12)
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Figure 9.7: The Real-Time Integrator. The operational amplifier, the resistor R;n: and
capacitor Cj,; compose an integrator. The switch output signal v, is integrated
and the integrated value is v;n:. The junction FET is used to reset the integrator

in each cycle.

However, the real operational amplifier has finite gain and finite bandwidth, ie. the

transfer function of the operational amplifier is:

AS) =< f°_s_ (9.13)

wo

where Ag is the DC gain and wg is the corner frequency. Therefore, the transfer function

of the integration becomes

vint(s) - 1 1
vd(S) ~ RintCintS (1 + o + mpo—3)

(9.14)

where ﬁ is due to the finite bandwidth wg and m-s is caused by the finite gain

0dtintint
Ap. The finite bandwidth affects the integration accuracy at high frequency, whereas

finite gain affects the integration accuracy at low frequency. At low frequency, the

transfer function of the integfation is

v(3) 1 C— (9.15)
vd(s) Rintcints (1 + m)
The step response in the time domain is .
Vint = Ao(l— e FoFemTinr) (9.16)
2
v —t ¢ (9.17)

Rn'nt Cint B 2AO R?nt C:'znt '
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Figure 9.8: Integration Error due to Finite DC Gain. The finite DC gain of the

operational amplifier causes non-linear behavior of the integration.

The step response of the integrator is shown in Fig. 9.8. The maximum integrating time

of the One-Cycle Control circuit is Dy,,,Ty; therefore, the ini:egra.tion error is

D mazr TS

—_— .1
Ao Rini it (0-18)

Avips =

Vins 0‘( ,°

Figure 9.9: Integration Error due to Finite Bandwidth. The finite bandwidth of the
operational amplifier causes the integration delay.

At high frequency, the transfer function of the integration is

vint(s) _ 1 1
vd(S) ~ RimCimS (1+ 1)

(9.19)
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The time domain frequency ‘resp40nse 1s

1 1
: t— .
R-int Cint ( AOUO )

(9.20)

Vint =~

The step response of the integrator is shown in Fig. 9.9. The finite bandwidth causes a
time delay TOITEI; therefore, the integration error is

1
DimazTs Aowo '

Avint =

(9.21)

Further consider the input impedance R; of the operational amplifier, the step re-

sponse of the integrator is:

t 12
Viny = - 9.22
nt Rintcint 2A0(Ri'nt ” Ri)RintC?nt ( )
The error is foﬁnd
error = DrmazTs (9.23)

2A0(Rint ” Ri)Cint '

If the resistor Rin: > 10R;, the error due to the finite input impedance can be ignored.
From the above analysis, it is clear that the operational amplifier must have high
input impedance, high DC gain, and high bandwidth. The operational amplifier must

satisfy the following conditions.

DrazT's
A, 2
2RintCint Avin: (9 5)
1
—_— .2
“w > Doz Ts Aving (9 6)

A low loss capacitor and a low inductance resistor are required for the integrator.

The junction FET is used to reset the integrator each cycle. In order to achieve a
fast reset, a junction FET with low conducting resistance must be used. It is necessary
to complete the reset before the transistor turns ON for the next cycle. Therefore, the

on-resistance R,, of the junction FET must be

Roncint < Ta(l - Dmaz)- (9.27)
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The reset control signal co‘mes‘ directly from the diode-voltage; therefore, One-Cycle
Control still 'funhbctions when the switching converter is operating in discontinuous mode.
* For different polarity of the diode-voltage, different type of junction FET is used. For
positively biased diode-voltage, a P-channel junction FET is required, whereas for the

negatively biased diode-voltage, a N-channel junction is required.

9.4 Summaty

In a real circuit design, the operating condition of the switching converter and the
physical limitations of the electrical elements affects the quality of the One-Cycle Control.
One must aware that One-Cycle Control may not function properly if the circuit is
operating near its duty-ratio limits. One-Cycle Control function is still preserved even if
the switching converter is in discontinuous mode, provided the reset switch is designed
such that the reset signal comes directly from the diode-voltage. For the integrator
design, the choice of operational amplifier is very important. High input impedance,
high DC gain, and high frequency bandwidth of the operational amplifier yield high

accuracy.
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Chapter 10

Conclusion

The work in this thesis was directed toward the developement of the Switching Flow-
Graph modelling tool and the conception of the One-Cycle Control technique.

The Switching Flow-Graph technique provides a unified graphical representation of
the large-signal non-linear model, the small-signal model, and the steady-state model
for any given pulse-width—modulat.ed (PWM) switching converter. The graphic models
are very easy to obtain and they yield a visual and physical understanding of switching
converter systems. The large-signal model and the small-signal model are verified by
experiments. The measurements and the theoretical predictions are very close. This
technique can be used to model very complicated switching converters, such as the cou-
pled inductor converter, linear feedback systems, and nonlinear feedback systems, etc.

The modelling procedures are as follows: First, find the two subcircuits, the ON-
circuit, switch ON, and the OFF-circuit, switch OFF, for the given switching converter.
Second, draw the flow-graphs for the two subcircuits and combine them using the switch-
ing branches. Then, replace the switching branches with the large-signal model to obtain
the large-signal Switching Flow-Graph, replace the switching branches with the small- -
signal model to obtain the small-signal Switching Flow-Graph, or replace the switching
branches with the steady-stafe model to obtain the ste;dy~state Switching Flow-Graph.
Finally, the algebraic rules of the flow-graph can be used to simplify the small-signal

model or the steady-state model.
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With this Switching Flow-Graph model, one can easily obtain the input-output gain

and the power processing efficiency for the steady-state design. The large-signal model
. is compatiblé with the TUTSIM simjula.tion program. By simply entering the flow-graph
branches, the interconnections, the step size fox; the simulation, and the initial condi-
tions, fhe program automatically generates the large-signal dynamical responses.” The
large-signal model gives a global view of the system dynamics, which enables the de-
signer to understand the limits of the system, and helps the designer to achieve robust
control. The small-signal model provides the analytic and graphic frequency response
relations between each variable. This enables the designer to do small-signal perfor-
mance adjustments. These procedures may need to be repeated before a satisfactory
closed-loop switching converter design is obtained. However, the approach using Switch-
ing Flow-Graph technique is faster, easier, and more robust than any other modelling
'tool.

The One-Cycle Control technique is designed to control the duty-ratio d of the switch
in real time, such that in each cycle the average of the chopped waveform at the switch
output is ezactly equal to the control reference. With One-Cycle Control, a switching
converter rejects the input voltage perturbations, and can follow the control reference
quickly. Implementation circuits are found‘for any type of switch, constant frequency,
constant ON-time, constant OFF-time, and variable. Therefore, the One-Cycle Control
technique is suitable for large-signal robust control of PWM switching converters and
quasi-resonant converters, inverters, and rectifiers. This technique may also useful for
signal processing and other applications.

Under ideal conditiohs,' converters with One-Cycle Control are capable of rejecting

the input-voltage perturbations, and the diode-voltage is able to follow the control signal

instantaneously, within one cycle. Therefore, the One-Cycle Controlled converter is
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_equivalent to a controllable vvolt‘age source with an output filter. However, in practice,
the switches, thé transistors, and the‘diodes are not ideal switches. Also the integration
* is not instantaneous. Therefore, the accuracy of One-Cycle Control is greatly dependent
on the circuit design. The experimental circuits of a buck converter and a Cuk converter
in this work show a very close match between the measurements and the theoretical
predictions. The dynamic behavior, for both the large-signal and the small-signal cases,
of One-Cycle Control is analyzed for the Cuk converter. The Switching Flow-Graph
model shows that the One-Cycle Control Cuk converter is not globally stable. However,
imposing a limitation on the duty-ratio Dmin € d € Dmqz prevents the converter from
operating in the unstable region. As a result, the system is globally stable and behaves
like a second-order linear system.

The One-Cycle Control concept is straightforward and its implementation circuits

are simple; yet it provides very good control of switching converters.
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The Algebraic Rules of the Flow-Graph
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Appendix A

ORIGINAL EQUIVALENT
(1) 1 R 1 R 1 A-B+C |A 1 ) 1 ~ 1 A-B+C
-] 1 1 -1
oC C
Ce
1
(2) é 1 1 A -‘B +C é 1 " 1 N 1 A —.B +C
-] -1 1
oB C
(3) a_ G [ G AGe |14 G G AGG
(4) A G G: AG1G A GG AGG:
(5) A G: A(G1+G3) |A Gi1+G: AG1+Ga)
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1 AG+B 1
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