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Abstract

This thesis describes a procedure for evaluating the Kirchhoff-Helmholtz
integral and presents applications of it which involve the interpretation of
amplitude and travel time anomalies of body waves. The method of integra-
‘tion isAa summation of single point evaluations of the integrand and requires
thai spacing of these evaluations on the surface be small compared to the
wavelength of the incident disturbance. The technique predicts amplitudes,
travel times and waveforms of acoustic potentials that propagate through a
homogeneous medium and interact with three-dimensional curved bounda-
ries. Results from test models compare well with optical solutions for
reflections off planar interfaces and rigid spheres and transmissions through

planar interfaces.

The reﬁected integral solution is used to simulate the effect of an ideal-
ized mountain on the amplitude and waveforms on pP. This structure causes
multiple arrivals, phase shifts, and amplitude anomalies in the synthetic
reflection profile. Also the effects of spall on pP waves generated by explo-
sions are simulated by specifying position dependent reflection coeflicient on
the surface of integration. These experiments predict frequency dependent

amplitude anomalies and travel time delays of the reflections.

The transmitted solution is used to model the éﬁect of several idealized
crust-mantle boundary structures on teleseismic P waves generated by
explosions. The structures are upwarps and produce travel time residuals as
a function of delta and azimuth which have the same magnitude as residuals

observed for NTS tests within Pahute Mesa. The struclures cause early



¢ompliéated low amplitude waveforms and late simple high ampiitude
waveforms. Thﬁs they cause systematic amplitude variations with azimuth,
delta.‘ and Source location. The magnitude of predicted variation is less than
the observgd ab amplitude variation with azimuth of Pahute Mesa tests; how-
ever, it is approximately the same as the observed ab variation at a given

station as a function of test location within the mesa.

The integral method is extended to include a symmetric velocity func-
tion in the medium and is used to model ScS waves which propagate through
a JB Earth and reflect off a bumpy core-mantle boundary. Solutions with this
»extension establish that isovelocity' Kirchhoff solutions are suflicient to
predict the relative amplitude and travel time anomalies of ScS arising from
core-mantle boundary relief. Isovelocity modeling shows that upwarps 300 to
600 kilometers wide and at least 10 kilometers high cause precursors to ScS
and amplitude reductions of the same magnitude as the observations. How-
ever, the height is not mechanically feasible; therefore, the anomalous obser-

vations must originate elsewhere.
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General Introduction

Akproblem confronting seismologists with increasing frequency is assess-
ing the effect of a localized heterogeneity on the waveforms, amplitudes, and
travel times of body waves. Several data analyses indicate that most of the
propagétion‘path is uncomplicated and can be adequately modeled by exist-
ing planar, cylindrical, or spherically symmetric solutions. However, there
are areas along the path which have either warped material boundaries,
lateral changes in density, or lateral changes in P or S wave velocities. Prop-

agation through these regions cannot be modeled by these solutions.

Given evidence of ‘heterogeneity in the Earth, one can resort to finite
difference, finite element, and Rayleigh-FFT techniques to model these
processes. But these three techniques are not feasible for teleseismic prob-
lems because the propagation path is several hundred wavelengths long.
Alternatively one can use geometric ray theory. But this method is only valid
if the wavelength of the disturbance is short. Moreover, obtaining the
geometric ray path through a complicated medium is often a cumbersome
numerical ‘process. Thus an increasing number of workers are turning to
hybrid schemes which exploit boundary integral representations to couple
“the intensive numerical schemes with the sphérical, cylindrical, or planar
solutions (Harkrider, 1981). The numerical codes calculate the eflects of
heterogeneity at short distances and the analytical solutions provide the
Creen's operator which propagates the resultant disturbance through the

longer and simpler parts of the path.

Perhaps the simplest hybrid scheme at present is the one used in this

thesis. It is the numerical evaluation of the inlegral representation of the



scalar wave equation 'with the incorporation of plane wave reflection and
' transrriission‘coéﬁicients‘and geometric ray theory to estimate boundary
vaiues on the surface. Appendix A describes the theory of this technique. In
this appendix we show how the scalar integral representation is obtained
from the scélar wave equation. We also derive the plane-wave geometric
boundary values by‘making a series of approximations to the scalar integral
repfesentation. The technique represents an improvement over ray tracing
because it provides solutions which are valid for longer wavelengths. It
predicts diffracted arrivals and does not become singular. It produces phase
shifts in a physical manner. Rather than tracking the spreading of a ray tube
to determine if the disturbance is tangent to a caustic surface, this scalar
integral method, called the Kirchhoff-Helmholtz integral, produces phase
shifts‘by the destructive and constructive interference of secondary point
sources on the surface of integration. The method is easy to use as there are

no cumbersome numerical calculations.

Of éourse; there are disadvantages. The particular boundary values we
choose do not allow for surface shadowing or multiple scattering caused by
irregularities on the surface. This particular lack can be corrected if the
surface has simplifying characteristics such as periodicity. But we do not
correct for these protlems. Instead we try to insure that they are not
important for ‘the shapes and source-receiver positions we investigate. The
most important deficiency is that the limits of applicability are unknown
because the boundary values on the surface are obtained by analogy.

Rather than solve the exact problem, we solve a simpler one by assigning the



boundary values on the surface based on physical reasoning. The Kirchhoff-
He_lmhéltz soiution is not kan expansion of an accurate solution with respect
to a small parameter. This contrasts with perturbation solutions. Conse-
quently we c;—mnot precisely evaluate the error terms as we can with finite
diﬁerenée, }inite elemerni, or perlurbation zipproaches. So allhough the
Kirchhoﬁ-Helmholtzk integral appears to be a broader band solution than
optics, we cannot precisely quantify this statement. Ultimately, small scale
laboratory modeling and more theoretical work oﬂ the integral representa-

tion theorem {(Meecham, 1958) will quantify the errors of this technique.

With these caveats in mind, we develop a method to evaluate the
Kirchhofl-Helmholtz integral and apply it to problems of interest to global
seismologists. This technique has been applied to problems in exploration
geophysics. Indeed, it was the success of the integral formulation as a tool
for migration and forward modeling in exploration geophysics Which led us to
search for other potential applications. Virtually all small scale laboratory
modeling that 'veriﬁes' Kirchhoff-Helmholtz solutions originates from explora-
tion geophysicists (Hilterman, 1970; Smith, 1981; French, 1975). Because the
applications in this thesis differ from those of exploration geophysicists. the
formalism and approximations differ somewhat. The goal of the exploration
geophysicist is to develop a convolution operator from the scalar integral
representation which rapidly migrates dense arrays of narrow angle
reflection data. Several authors (Berryhill, 1979: Berryhill, 1977; Schneider,
1978) shbw that the Kirchhoff integral collapses Lo such an operator if 1) the

source and receiver are coincident and 2) the Green's function is selected



such that the gradient term in the integral vanishes. The premium in these
v bdevelopr'nents is spéed of the migration operators. Hence the form of a con-
volution is a convenient result. In contrast, speed is not an essential feature
of the work pr_esented in this thesis, although the calculations are not partic-
ulariy lengthy. Because we are modeling rather sparse data sets, we are
more flexible in the selection of the method of evaluation of the integral, the

nature of the surfaces, and the source-receiver positions.

In Chapter 1 we outline in detail the implementation of the Kirchhoff
integral solution for reﬁections off a warped material boundary. The method
of integration throughout this thesis is a summation of single point evalua-
| tions of the integral and, consequently, requires that the grid spacing of the
surface be small relative to the incident wavelength of the source. This
method of integration is simple. We apply the technique toward a quantita-
tive estimation of how free surface topography distorts short period tele-
seismic pP. This phase is used with direct P and sP to infer the details of the
source time his'tory of earthquakes. The question is, then, can topography
contaminate short period seismograms such as to render these data inap-
propriate for source studies. We also simulate the effect of spallation on pP
waves generated by nuclear blasts. The separation of rock layers caused by
severe tensional stresses generated by underground explosions is a
phenomenon clearly seen on near field recordings of accelerations and velo-
cities. Whether this phenomenon degrades the pP phase is still unanswered

but this question is important to workers trying to infer near field processes

of nuclear test with remote data.



Chapter 2 is an extension of the Kirchhofl-Helmholtz methed to calcula-
tions of transAmiss‘ions through warped boundaries. This extended modeling
ability is applied toward the prediction of the effect of near source geologic
strﬁctures‘ on transmitted P waves generated by nuclear blasts. These
phases have both travel time and amplitude anomaiies as a function of delta
and azimuth. We examine to see whether simple shapes on the Moho which
cause travel time residuals can produce the amplitude anomalies.’ These
experiments are important in isolating whether tectonic release or geologic

structure is more dominant in impacting short period waves.

The Kirchhoff-Helmholtz method is further extended in chapter 3 to
allow the medium of propagation to have a JB velocity function. This exten-
sion causes a substantial change in the method of evaluation of the integral
because we must trace rays to the surface of integration. It is a more flexi-
ble way of evaluating the Kirchhofi-Helmholtz integral and can be used to
model waves which travel through a medium with a symmetric velocity struc-
ture and inter;'ict with a warped boundary. With this new technique and the
isovelocity method discussed in Chapter 1, we estimate the size of core-
mantle relief needed to produce the amplitude and travel time anomalies of
ScS waves. Such an estimate provides insight into the nature of core-mantle

boundary and /or D" processes.

This thesis is a beginning in the routine use of the elastic and scalar
bouhdary integral representations to evaluate the impact of heterogeneity
on teleseismic body and surface waves. Clearly there are many manipula-

tions of integral representations, numerical approximations of equations,



and ahalytic solutions yet to be explored. Ultimately we can expect to
deduce>an quuivalentm source representation for neaf source or receiver
heterogeneity with the integral equations (Clayton, pers. comm., 1982). Once
this‘forrnalism is established, then heterogeneity can be put in the synthetic
seismogram much in the way earithquakes sources are convolved into a syn-
thetic. This will greatly étreamliné the modeling process such that inversion

schemes will be feasible.
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Chapter 1

Applications of the Reflected Kirchhoff solution

Introduction

Many observed seismic wave phenomena cannot be adequately modeled

with solutions to plane-layered and radially symmetric media. For example,

amplitude and -3—%— anomalies of teleseismic arrivals at large arrays (Glover

and Alexander, 1989; Walck and Minster, 1982) which vary as a function of
azimuth suggest tf]e existence of velocity heterogeneities at depth. P and S
body waves recorded on short and long period WWSSN stations also have
amplitude and travel time anomalies which might be caused by non-planar
boundaries. The increasing use of body wave amplitude and waveform infor-
mation as well as travel times to infer sources, Q, and average velocity struc-
tures requires a knowledge of the manner in which lateral heterogeneity in
the medium can affect these features of seismic waves. In many applica-
tions, hetercge'neities’ act to contaminate the seismic data and prevent us
from determining the real parameters of interest. For example, we might
wént to correct the relative amplitudes of short period pP and sP for the
presence of the San Gabriel mountains in order to obtain a detailed source
model fﬁr the San Fernaﬁdo earthquake of 1971 (Langston, 1978). In other
»applications, we aré directly interested in predicting amplitudes and travel
times of waves interacting with non-planar structures. For example, we
might wish to know how the Los Angelés sedimentary basin focuses strong

ground motions, which.are potentially destructive to building structures.



Clearly, there is a need for methods of predicting the effect of material boun-
davry shape on seiérﬁic waves.

Numerical schemes which handle material irregularities are in abun-
dance. Finite difference and finite element codes have been used success-
fully (Boore et al., 1971; Smith, 1975) and can be applied to a variety of
materials; however, thé expense of calculating the response at distances
which are large compared to the wavelength of interest is prohibitive. These
methods are altogether unfeasible at teleseismic distances. Rayleigh-FFT
technigues have been exploited for these problems (Aki and Larner, 1970).
Implementation of this technique for prediction of three-dimensional
scattering is also costly. Geometric ray methods are useful for predicting
scattering of signals which have wavelengths that are short compared to the
size of the heterogeneily (Hong and Helmberger, 1978). Geometric ray
methods have the shortcomings that they do not predict frequency-
dependent amplitudes of scattered pulses, they do not handle diffracted

arrivals, and they do 'predict infinite amplitudes at caustics.

In this chapter we develop and implement a method which can be used
to model teleseismic arrivals at finite frequencies. It is based on a numerical
evaluation of the scalar integral representation and incorporates tangent-
plane approkimations to evaluate the boundary values on the surface .of
integration. The method predicts the eflects of non-planar three-
dimensional boundaries on reﬁécted scalar potentials. The medium in which
these poténtials propagate is linear and acoustic. We use the resulting

potentials, which behave analogously to P-wave displacements, to understand
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the effects of structure on P and SH waves. This analogy has been éuccess—
fully aéplied 1n exploration geophysics {Claerbout, 1976) for the interpreta-
tion of r'eﬂectfon profiles. After i'erifying the accuracy of our numerics, we
then use the method to predict the effect of mountains and spallation on pP

waves.
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Discdssion of techniques

The method pr-eserit‘e'd» in this chapter is an integral equation approach
and is bésed on the evaluation of the scalar integral equation variously called
the Kirchhofl, Helmholtz, or Huygen's integral. This equation is a formulation
of the wave equation in terms of a linear surface integral over the boundary
of a continuous volume. That is, the scalar wave equation is

1 2!E
'a—a-gtz —v2¢(§4t)=¢c (1'1)

Here ¢(g,t) is the field at a point £ resulting from a source potential ¢ and a
is the wave speed. Following the formalism discussed by Mow and Pao (1971),
we consider the motion of a homogeneous body V with a smooth boundary 8V

with outward pointing normaln. Thenifze Vandt ¢ (0,x)

elet) = _glc(g,_z,,t-to)é(g,t)dtudxg

+ = {Gcg.;.r)ﬁﬁca_c.onm.ma—‘;—(%r)]au (1.2)
o % i} 4 ot

+
24

o‘-,e

{G(.s_,g,t Weplz.t) — plz.t)¥: Glez.t —to)}

‘n(z) dtodS; .

Here G(e,z.t—tp) is the fundamental singular solution of the scalar wave
equation

3G

VEG(z.z.t~tg) = 6(t—ty)6(e~z) . (1.3)
at?
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Let. us define f{(g,t) as the sum of the first two integrals in equation (1.2).

Then f @,t) can be interpreted as the whole-space solution of the problem
. » s 8

with sources ¢(z.fp) and initial values 35:—(3,0) and ¢(z,0) (Cole, 1980).

Hence, :,o(g,'t) is a sum of the direct pulse and a reflected pulse from the sur-

face which is described by the third integral in equation (1.2).

If £ V., then the left-hand side of equation (1.2) is zero. If £¢ 8V then

Zolet) = (1.4)

fPf {G(«:..Lt ~to)V.p(z.t) - fP(&vt)VzG(i&vt‘to)}

t v
‘n(z) dtedS; + f(et).

Here P denotes the principal value of the integral. A detailed derivation of
equation (1.4) can be found in Cole (1980) for the elastic case. This result
requires that G has a specific asymptotic behavior at its singularity. The
function G used in the Kirchhofl formulation here meets this requirement.
Specifically

8t —to) lz—¢

1] t : [ ] .
amiz—g| ' ° a (1-5)

Gle,z.t—tp) =
and

8G _ 1 or | 6(t—to) &(t-to))
. 8n  4x 8n re or | °

(1.5a)

Substitution of these functions into equation (1.2) gives a familiar optics
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formula v(Born and Wolf, 1954)'
et)= = Flfee] ror o (1), 1orfoe Nog Lo exne
@ rlan] 1on ar |7 “"’l‘J i

where r=|z—g|. the distance from receiver to surface, and

P Viz —£] - n. The square brackets denote the values of the functions

on #V at the time t-‘—i"-—;ﬁ—-‘—

The expressions (1.2), (1.4), and (1.6) are exact if the boundary values
are correct and are a mathematical representation of Huygen's principle;
-thai is, a disturbance at a receiver point is a superposition of secondary
waves proceeding from a surface existing between that point and the source.
Diﬁraction phenomena arise from the mutual interference of these second-
ary disturbances. However, one needs the value of the potential and its nor-
mal derivative on the surface to calculate g(g,t). Equation (1.4) may be
solved for ¢ or V¢ -n on the surface subject to some constraints imposed by
boundary conditions (e.g., continuity of ¢ or V¢ 'n across the boundary).
This approach is taken by Mitzner (1967) who sets V¢ -n equal to zero and

solves for . However, this approach is costly for high frequency scattering.

Alternatively, one may estimate the values on the surface by invoking an
approximation. This approach is used throughout this study. If we assume a

point source at z, . the boundary values on the surface are well approxi-

mated by

olz.t) = ——(—z‘—f—uw) _lzmml (1.7)
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by BTy, [=7(t=t)  fit-t)) o
—Io—-e -51_1—(1~D), 2 - J . (1.8)

a7 g 1

Here roﬁ |z-z,i, the distance from the source to the surface,
——=V|z. —2z,| ‘n. D is the local plane-wave planar interface reflection

coeflicient, and f(t) and f’(t) are the socurce time function and its derivative,
respeétively. The reflection coéﬁ’icient depends on incidence angle. This
approximation is variously called the Kirchhoff, physical optics, or the
tangent plane hypothesis and is widely used by workers studying electromag-
netic scattering {Davies, 1954). It assumes thal the incident pulse is
Asaﬁ'ivcien‘tly high frequency so that locally the amplitude decey is described
Ly both geometric ray theory and plane-wave reflection coefficients. There-
fore, every point cn the suriace reflects the incident pulse as though there
were an infinite picne tangent to the surface at that point. The vaiues of the
potential and its normal derivalive at a point are independent of the bound-
ary values at other points. kence the effects of multiple scattering and

ciflractions along the surface are neglected.

Upon substituting the functions (1.5),(1.5a),(1.7) and (1.8) intc (1.2), one

obtlains for the refiected potential
or 1
C + 1

ar
> : t—t,—t,)dS
i On 1'27-0 on }f ( o=t1)

1 1 8rc 1 or }
+ — 1 + "(t—to—t,)dS . .
An fD {'r’roa an 7o On )f (t-to-t,)d (1.9)
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This equation is similar to those derived by Trorey (1970, 1977), Hilter-
| man (1970. 1975), éhd Berryhill (1977). These authors have derived convolu-
tional forms of thé Kirchhoff integral which make computation rapid. Hilter-
mah (1970) has verified his results with small scale experimental modeling of
a point gource in air impinging on rigid anticlines, synclines, and normal
faults. The agreement between his numerical calculations and experiments
is, in general, excellent. However, these analytical forms of the solution

place restrictions on either the source-receiver geometry or the surface

geometry.

The method presented in this chapter differs from those of Trorey
{1970) and Hilterman (1970, 1975) in that the source and receiver are
allowed to separate, the surface geometry is arbitrary, and the integral is

approximated by the following expression

1 & ‘
er-(&t) = ZTFZD {f(t-—to-—tl)Qk(‘) + ft=t,~t,)@ENAS,  (1.10)
) k=1
where
1 97p 1 or
() =
Qk rrg on + 1'01'2 on
and

=L %o, 1 o
T On TTox On

An important part of the procedure is the discretization of the surface. The

rough surface is specified by a function z (z,.y;) where {z;,y;) is a Jocation on
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a horizontal grid of regularly spaced points separated by a distance Az and

Ay. A schematic diégram_,,is, shown in Figure 1.1. In all the following calcula-

tions, Az = Ay. From this information, one can readily calculate 9z and

oz
‘ 8
Qz_ Then the following formulae are used to calculate AS;, ——TL. and BL:
oy on on
v 0z 2 0z 2
= 1+ +{== 11
85 =~/ (320 + (553 pety (1.11)

]

8z Bz

ar {(-’Cs ‘xi)?’;"‘” (vs —yz')a- (2, “zi)]

= (1.12)

aTD _ [(IQ"I;) + (yo y.‘) gy - (ZO -2, )}

= — . (1.13)
on reV/1+ (G v (B

Here =z, ys, and 2; are the station coordinates and zg, yg and 2z, are the
source coordinates. The integral {1.8) is calculated for a finite surface. How-
ever, the Kirchhofl integral is formally stated for a closed surface. This prob-
lem is circumvented by integrating over a closed surface consisting of the
part of the surface one is interested in (S,) and a portion of a sphere of large
radius (Sa). shown in Figure 1.2. One then argues that the contributions

from the infinitely Iérge sphere vanish because of the radiation condition.

We wish to evaluate the response at a receiver for an input source func-
tion of a unit‘ramp' function, the integral of a unit step function. We choose a

ramp function to circumvent the problem of numerically simulating a delta
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/L /LY

(XY, (X))

' Figure 1.1. The discretization of the surface over which the Kirchhoff integral is
calculated.
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+ Receiver
()

F:gure 1.2. The closed surface of integration composed of S,. the surface over
which one integrates, and Sy, the remainder. Also shown are the
source and receiver positions and the normal.



-39 -

function. According to equation (1.10) we must sum two contributions from
each point. one whic‘h is multiplied by the source function and one which is
multiplied by the derivative of the source function. To implement this calcu-
]atidn we specify a step function on each element and multiply by the Qk(’“
and @8 termé of each element. We sum the two terms independently. Each

element is illuminated and contributes to the Kirchhoff synthetic at a time

{r +79) . - .
7= ————— The two-way travel time is calculated for each point and

sorted in order of increasing 7. Each of the two terms are then summed
appropriately in time. We define the two summed parts of the solution which
_correspond to the & and @) as &, and &5, respectively. We integrate &,
and add this integrated time function to % to obtain the final ramp
response. A schematic diagram which demonstrates the summation process

is shown in Figure 1.3.

For problems presented in this chapter, the numerical ramp response is
convolved with the analytical third derivative of a Haskell explosion source

function, specifically
[ Lt )2 3 ]
¥t) = %{1—9.-“ [kt + (X, & B(kt)"l] . (1.14)

Ecre ¥, is the' source strength. B is a dimensionless overshoot parameter
and determines the step- like or impulse-like nature of the source. The
parameter k determines pulse width and rise time of the source and has
units of sec"’ (Given and Helmberger, 1980). We set ¥, equal to 1 and only

vary B and k in the ensuing numerical experiments. The convolution is
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Figure 1.3. The summation of the response from each element to obtain the
total response.
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mathematically equivalejnt to the first derivative of the reflected potential
'caused By a source described by (1.14). From trial and error, we find that
such a convolution eliminates the spikiness introduced by simple
differencing and, therefore, is the preferred method for differentiation in
these caléuiatiéns.

We have carried out experiments to determine the grid size required to
produce a smooth seismogram. As an example ;«’e show, in Figure 1.4, the
variation of the waveform and maximum amplitude of a seismogram as a
function of grid size for a sample reflection problem. The reflecting flat sur-
face is specified for seismograms A, B, and C by grid areas of a wavelength of
>4 kilometers. Hence for seismograms A, B, and C the number of grids per
wavelength is 11.4, B, and 4, respectively. Seismogram C shows that the
coarse discrimination of the surface has introduced high frequency noise
which degenerates the waveform and the maximum amplitude. For each
problem we calculate, the grid size is selected by trial and error. The grid is

made progressively finer until the solution is unvarying as shown in Figure

1.4.

Applications

Thie develovprner;t of any numerical procedure necessitates cornparisohs
with known analytic solutions. We first compare results from this code with
an analytical formula derived by Hilterman (1975). This comparison estab-
lishes that wé do il:ldGEd evaluate the Kirchhoff integral correctly. Hilterman

reduces the Kirchhofl integral to a simple convolution product when the
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Figure 1.4. This figure shows the change of response as the element size in-

creases.. The model used here is a free surface with a hole. The
‘source and receiver are directly below this hole. The response is

convolved with a modified Haskell source and a short period WWSSN
instrument to produce these seismograms.
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source and receiver are coincident. This expression is

l
¢,(_t)- i{f(t)‘z dn} {‘2’; dQJ (1.15)

) is the solid avngle subtended at the source-receiver point by the wavefront

intersection with the surface. Hilterman defines %Q— the wavefront sweep

velocity. We use this expression to verify that é’g and $¢p are calculated
correctly by the code. We calculate ¢4 and $5 for a source-receiver point in
a fluid over a rigid hemisphere of radius a imbedded in a rigid infinite plane.
The source-receiver point is at a distance K above the center of the grid.
~'I’he surface geometry and the source-receiver location are shown at the top
of Figure 1.5. For this configuration we derive an expression for the wave-

front sweep velocity. Itis

di} _ 7 |2({R?=-0a? « _
e F{_g—&—t—z—— > H(t —7¢) for o<t <7, (1.18)
on the hemisphere and
dQ _ 4nR '
FTRRT H{(t-7,) forT; <t (1.17)

vn the planar part of the boundary. Here 74 = gﬁﬁa;ﬂ-)_' the minimum two-

' . _ 2{R?*+ a? . . . .
N 1= . .
way travel time, and T - H(t) is the unit step function. We

substitute a unit step function for f{¢) in the first term of equation (1.15) to
obtain an analytical expression for &,. (Recall that ¢, is the @) summed

response before integration.) The convolution product of the first term of
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Source-
Receiver Point
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The geometry of the spherical test. a is the radius of the hemi-

sphere and is equal to 5 kilometers. R is the distance from the
source-receiver point to the center of the grid and is equal to 25
kilometers. The two parts of the solution $,4 and ®p are shown
below the geometry. The dotted line is the analytical solution. The

solid line is the numerical solution.
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equétiony(l.lS) amounts to a simple integration of ﬂ;t %?— We obtain
o (R?*-0?) 1 1, 1 To <
@A——a_z}?—_(‘rf t2)+§§ln( n ) fort, <t <7 (1.18)
and
21 2R
b, = E—RT_ :‘?— forT, =t

Similiarly we substitute a step function for %{—in the second term of equa-

tion (1.15) to obtain &g, yielding

2_ 2
o= Lo L(F-af) 2Ly Ly forr, <t <, (1.19)
a R o*t 4

and

1 2R
$pg= —— Z—forT,<t
B o ot !

The comparison is shown in Figure 1.5. In this calculation, the source-
receiver point is 20 kilometers above the top of the hemisphere with a radius
of 5 kilometers. The velocity of the medium is 6 km/sec. The agreement is
good for T + 15 seconds. The results differ because the integral is calcu-
lated numerically over a finite surface. The conclusion from this experiment

is that the numerical evaluation of the integral is adequate.

We further test the code by comparing the Kirchhoff solulions with
analytical high frequency solutions. Again we calculate the reflected poten-

tials from a point source impinging on a rigid sphere; however, the source
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and receiver are allowed to separate. The numerical results are compared to
those from a first-motion approximation of a transform solution obtained by
Gilbert and Helmberger (1972). They obtain the following solution for a

reflected SE pulse from a fixed and rigid sphere:

- = {s)s* FT B exp[-s (6 + $)]dy 120"
u 2”#(2”"051%)% { (ré 2)1/4( __7'2>1/4 ( . )
8

u and f(s) are the Laplace transforms of u(r,A.t), the Lime domain SH dis-

placement, and f(t), the source time function. § is the shear wavespeed
(B = l;—&). The variable ¥ has the interpretation of a spherical rav parameter

al the geometric arrival time. ¥ can be thought of as an intercept time. The
path of integration C in the complex v plane is the standard Cagniard path
and is displayed in Gilbert and Helmberger {(1972). Helmberger evaluates this

expression at the geometric arrival time and obtains {Helmberger, pers.

comm., 1979)

Yy = -1 a(cos e ){sin i) 1* { {EU___
4T lsinAro(Rg‘r cosi + Rrgcos io)J L

Figure 1.6 defines the angles and lengths of this solution.

If the source and receiver are togethér we can show that the spreading
factor in solution (1.21) and a spreading factor for a spherical surface
obtained from the Kirchhoff integral are identical. Taking the limit of the

spreading factor in eéuation (1.21) as R approaches R, and A approaches 0

vields
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Figure 1.6. Geometry of Helmberger's first-motion spherical solution.
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= —_— 1.22
sy - (2.22)

Now we examihe the Kirchhoff solution when the source and receiver are
together. Following an approach developed by Hilterman (1975), the first

term in equation {1.15) is discarded as a near-field term.

. 1 [ar ,dn
¢r 2nn {at dt |’ (1.23)

Then a first-motion approximation is made.

¢0 4o | _ Hit—mo). (1.24)

Substitution of the value of %at 7, into equation (1.23) yields

e -
T 2(Rgta )R, AR

¢r (1.25)

Hence, the Kirchhofl integral yields the correct spreading factor associated
with a spherical surface when the source and receiver are together. A simi-

lar result is obtained by Filterman (1975) for a rigid planar surface.

We demonstrate the same result numerically for the source and receiver
separated. Thé maximum amplitudes of the synthetic reflections from a
sphere are compared with those amplitudes predicted by the spreading fac-
tbr‘in equation (‘1.21). The time fﬁnction of the input source for this problem
is the third deriva.tivé of equation (1.14) with the overshoot constant B = 2

and k = 10. The medium has a wave velocity of 5 km/sec; thus, the
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wavelength of the input source is approximately 4 kilometers. The grid
length used in these calculations is .1 kilometer, making ihe number of grids
per wavelength eduai to 40. The total grid area needed to describe the sur-
face of the sphere is 400 square kilometers. The grid length was selected to
give an extfemely fine éampl’mg of the surface so that we may investigate the
eflects of a wide range of i)ulse_ widths as input time histories. Six ramp
- responses for this problem required 5985.8 seconds of CPU time on a
PRIME750. Table 1.1 shows the parameters used in these numerical experi-

ments and the numerical and theoretical amplitudes. The results compare

favorably.
’ Table 1.1

R R, < Kirchhoff amp. optics amp.

(km) (km) deg
90.6 80.6 8.3 .02404 .02487
82.2 2.2 125 .02320 .02383
94.9 P49 1B.4 .02202 02257
42.3 §5.2 18B.9 .04567 04667
17.5 105.2 31.0 .07867 .0B218
558 559 265 .08914 .09163

128.1 128.1 38.8 .01228 .01267
62.5 625 36.8 .07253 .07461

The above two experiments indicate that the Kirchhofl code correctly
predicts reflections from curved surfaces with large reflection coeflicients
and far field receivers. Similar efforts have been carried out by workers in
the field 0f electromagnetic scattering. Jiracek (1972) computes the ampli-
tt;des of electromagnetic waves caused by an incident transverse electric
plane wave impinging on a perfectly conducting two-dimensional sinusoidal
surface. He compares results obtained from a Rayleigh-FFT method, an

- integral equation solver, and the Kirchhoff method. The most obvious failure
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of the Kirchhofl technique to predict correct amplitudes occurs when the
jincident ’angle is pést critical angle. This result is not éurprising in light of
assumptions made in estimating the boundary values on the surface. How-
ever, for angles less than critical, the Kirchhoff code is adequate and inex-

pensive for problems invelving three-dimensional rough surfaces.

We can gain further insight into the usefulness of this formalism by com-
parison of the Kirchhoff solutions with optical solutions to problems of geo-
physical interest. First, the technique is applied to the calculation of
reflections from a mountain with a buried source. In the second application,
reflections from a plane where the reflection coeflicient varies as a function
~of position on the surface are computed. In both calculations, particular
attention will be paid to those propagation paths where classical ray theory

fails.

The first application of the code is the calculation of the reflected poten-
tials from an isotropic source underneath an idealized mountain. The topog-
raphy of the mountain is calculated as follows:

Z =

O

Tu'f’

[ 41

{l-coslg-:-(:z:2+y2)”— 1; ]1 X {1.28)
Sl ‘ Ji

Fere ¢, the maximum height, is 5 kilometers, and w, the width, is 33.33

kilometers. The acoustic reflection coefficient is -1 everywhere on the sur-

face. The topography is specified on a 150 x 150 kilometers grid where each

element of the grid is. 0.5 kilometers long.y
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Since the angle be‘tween the normal to the surface and the incident
source fay is Acalculéted_by the code, it is simple to i)lot the path of the
reflected rays. /The‘se rays are traced for two depths below the baseline of
the free surface. In the first plot,»Pigure 1.7, we can see the rays from a
source a( 10 kilometers which reflect off the free surface and travel to a
depth of 50 kilometérs. This figure shows the position of the ray caustic,
focii, and the shadow zone caused by the convex shape of the mountain.

These features will influence the waveforms considerably.

In Figure 1.8 the rays are traced to a depth of 1000 kilometers. The Kir-
chhofl responses are calculated at this depth at the marked positions which
.range from O to 750 kilometers horizontally. Upon closer inspection of Fig-
ure 1.8, one can see slight asymmetries in thevlocation of the rays with
respect to the pousition at O kilomelers. These asymmetries are caused by
the discretization of the surface of the mountain. The error in the value of
the computed normal derivatives introduces about 10 kilometérs of uncer-

tainty into the lécation' of the rays at this depth.

The calculated reflected responses are shown in Figure 1.9. These
pulses are convolutions of the ramp response with the Faskell function with
the parameter B=0 and k=25. Hence, the number of grids per wavelength is
10. As the horizontal distance of the receiver changes, we see systemslic
waveform variations which can be interpreted in terms of rays interacting
with caustics. In the ranges of 0, 580, 100, and 150 kilometers the synthetics
have Com;ﬁlicated pulse shapes caused by the interference of three families

of rayvs. The first arrival is a simple pulse with a 7 phase shift which is a
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Figure 1.7. The rays which reflect off a mountain described by the equation
(1.28) traced to a depth of 50 kilomelers. The source is 10 km

below the baseline indicated by the dashed line. Also shown are
the caustics and the geometric focus formed by the mountain.
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Figure 1.B. The rays traced to 2 depth of 1000 km.
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Figure 1.9. The responées convolved with a modified Haskell source for receivers
at a depth of 1000 kilometers and at horizontal distances ranging
from U to 750 kilometers away irom the center.
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rnnsequence of the reﬁeétion off the free surface. The second pulse is a
reflected fay with a pbath which is tangent to the caustic formed by the
mountain. This path results in a 7 + 1/ 2 phase shift of the pulse. The third
arrival reflects off the mountain and travels through the geometric focus
caused by {he mountain; thus, the phase shift of this arrival is m + m. The
maximum amplitude of these four distances is controlled by the interference
of these rays. Clearly the high amplitude and the'simple pulse of the first
synthet;c at O kilometers is a result of the constructive interference of the
first two rays. Past 150 kilometers, the latter two arrivals arrive closely in
time and their interference controls the amplitude and frequency content of
the second pulse on the record. From Figure 1.B , it is clear that a ray
interpretation of pulses on records past 400 kilometers is no longer valid.
Ray theory predicts only one reflected pulse because the mountain creates a
shadow zone; yet one sees two distinct pulses predicted by the Kirchhoff
method. The second phase shifted pulse decreases in amplitude and fre-
quency conient. As the horizontal distance of the receivers increéses. the
amplitude of the first reflection becomes the maximum amplitude of the
record. If one calculates the maximum amplitudes of reflections off a plane
for the same source-receiver geometry, one can see that the two sets of
amplitudeé merge. This behavior is shown in Figure 1.10 where the ampli-
tudes as akfunction of horizontal aistance for the two geometries have been
célculated. The bsolid line shows the decay of amplitudes calculated for a
planar surface. The tr;angles are amplitudesrcalculated f‘or a mountain with

‘a height of 2 kilometers and a width of 10 kilometers. The two sets of values
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Figure 1.10. The maximum amplitude of the computed reflections from a planar
' surface (solid line) and a 2 kilometer high and 10 kilometer wide
mountain (triangles), shown as a function of horizontal distance
from the center of the grid. The source is 10 kilometers below the
baseline. The receivers are at a depth of 1000 km.
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coincide past 80O kilometers.

The Kirchi’xoﬁ ‘reysul,ts for this experiment are gratifying because this
techn’xquey nicely circumvents the infinite amplitudes or agrupt shadow zones
predicted by optics. This experiment also demonstrates that this technique
‘produces the requisite phase shifts in an extremely simple manner, unlike
existing ray tracing techniques which must track the behavior of a ray tube
along the propagation path.

The second application of the co‘de is the calculation of reflections off an
acoustic planar free surface where the reflection coeflicients are allowed to

vary as a function of position on the surface. These calculations demonstrate
the flexibility of the code and again emphasize the differences between the
Kirchhofl solution and optics. The wavespeed of the medium is 6 km,/sec for

all the following calculations.

Initially the reflection coefficient is zero for elements of the plane within
a circular aperture of‘radius R and is -1 for elements outside this aperlure.
The source is directly underneath the center of the hole. From ray theory
one expects that no reflected energy will arrive at a receiver directly under-
neath the source. Yet one caiculates ﬁon-zero amplitudes for both long and
shori period WWSSN seismograms from the Kirchhoff code. These synthetics
are displayed in Figure 1.11 as a function of the radius of the aperture for a

‘receiver 1000 kilometers below the surface. Only the reflections are shown.

This pulse is systematically delayed as the radius of the hole increases
from 1 to 5 kilometers. There is no change in the waveforms. Only the

amplitudes of both sets of seismograms decrease. However, the amplitude of
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Figure 1.11. lLong (dashed lines) and short (solid lines) period WWSSN seismo-
grams calculated for the geometry shown at the top of the figure.
The radius of the hole varies from 1 to 5 km.
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reflections off an aperture with a five kilometer radius is more than half the
magnitude of the reflections from a free surface without a hole. Clearly ray

theory is not a good approximation to the solution to this problem.

In adVdition, ray theory fails to predict any dependence of the reflected
amplitudes on frequency. Intuitively one expects, for an aperture problem,
thﬁt the higher frequencies of a broad band signal will be reduced relative to
the lower frequencies after reflection. This hypothesis is tested by calculat-
ing the reflected responses from sources of differing frequency content. In
the following calculatiéns the parameter B of the modified Haskell source
representation equals zero; however, k varies from 5 to 25. An increase in k

.broadens the bandwidth of the incident signal (von Seggern and Blandford,

1972)." In this experiment, we compute two responses for a given source
pulse. The first response is a reflection off the plane with a hole and the
second is a reflection off the plane without a hole. The ampiitude of the
latter br“esponse has no frequency dependence; hence, if the reflection from a
hole has no ﬁ'eduency’ (dependehce, one predicts that the ratio of the ampli-
tudes of the two reflections will be independent of the parameter k. How-
ever. if there is a frequency dependence, the ratios should vary systemati-
cally with k.

Numerical experiments confirm the {requency dependence of the
reflected amplitudes. The ratios are shown in Figure 1.12. Specifically, the
amplitude of the reflections from the aperture are always smaller than the
amplitudés of pla.nar reflections. Also the ratio of the two responses

decreases when k decreases if the receiver is located at position 2, 68
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Figure 1.12. Ratio of maximum amplitude of reflections from a surface with and
witbout a hole. The open circles are ratios measured at a receiver
directly underneath the center of the aperture. The triangles are
ratios measured at a receiver BB km away from the center. The
receivers are 1000 km below the free surface. The radius of the

hole R is 2,3, and 4 kilometers. The ratios are plotted for these
radii as a function of k.
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kilometers off the center of the grid and 1000 kilometers directly below the
source. This behavior is displayed for apertures with radii of 2, 3, and 4

kilometers.

.However, the ratios are largely independent of k if> the receiver is
located ai position 1, 1000 kilometers directly below the source. This obser-
vation indicates that at this position the reflected amplitudes from the aper-
ture do not depend on the bandwidth of the signal. This result is typical of
analytical solutions of Fraunhofer diffraction from apertures in an opaque
screen {Born and Wolf, 1964). For example, the solution of the intensity of
light transmitted through a rectangular aperture has the functional form of

sin{dwzr)  sin(Bwy)
Avzx Buwy

(1.27)

where A and B are geometric constants and z and y are the rectangular
coordinates of the position of the receiver. The limit of the above function as
z and y appreach zero is 1 and is independent of the value of w, the angular
frequency. Clearly thé interference patterns originating from the edges of

the aperture cancel out due to the symmetry of the problem.

These numerical experiments, which vary the reflection coeflicients on
the free surface, may be applicable to the analysis of the effects of spallation
generated by nuclear blasts on teleseismic P wave reflections. Spall is the
physical separation of near surface layers during the explosion. Material
above the bomb is either ejected or returns to produce an impact signal on
near field instruméﬁts. This npn-linear and non-elastic behavior of the

material surrounding the source may result in amplitude and travel time
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anomalies of reflected sP and pP phases.

The model used to sirnulate spall is one where the reflection coeflicient

is a cosine taper; that is,

D= {cos{g—;} - 1] z< R (1.28)

D=-1 z>R. (1.29)

Here z is distance from the source epicenter on the free surface. One
chooses this behavior of the reflection coeflicient to simulate material
reflecting more energy as the distance from the source increases. The
model introduces complications into the short period waveforms but only
breoadens the long period waveforms. This effect and the source-receiver
geometry is illustrated in Figurek 1.13. The geometry is the same as used in
the aperture calculations. Unlike the first model, this model causes the
amplitudes of both the long and shori period reflections to decay quite
rapidly. The amplituae decay is greater for the short period reflections than
for the long period reflections. Hence the long period energy is insensitive to
the perturbation of the reflection coéﬁicients relative to the short period

energy.

The source-receiver geometry is changed for this particular model to
- test the hypothesis that asymmetries of spalling with respect to the source
locaticn can introduce observable azimuthal variations of amplitudes and
waveforms of telt;:séismic recqrds of nuclear blasts. Such variations have

been documented for teleseismic recordings of Nevada Test Site blasts
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Figure 1.13. Long and short period synthetics for a cosine tapered reflection
coeflicient.



- 44 -

(Helmberger and Hadley, 1981). In addition, photo}graphsv of coilapsed
craters from NI‘S blasts suggest that processes such as spalling and sub-
sidence Qccur along pre-existing planes of weakness which are not symmetri-
cal with respect to the emplacement hole (Springer and Kinnaman, 1971).
Figure 1.14 shows the results for stations at three azimuths. The source is
placed 2 kilometers to the right of the center of the spall aperture and 1
kilometer below the free surface. The receivers are all at horizontal distance
which corresponds to a takeoff angle of 20° for the direct P wave. One sees
azimuthal variations of waveform and amplitudes for both long and short
period reflections. The amplitude variations are not large, but the waveform

changes are dramatic for short period records.

Clearly, this model is crude and one may genuinely guestion its
relevance to the Earth. We do not simulate any conversion of P to S waves.
As a consequence, our model reflects more P wave energy than is reflected
for an elastic éoiid without a hole for incidence angles greater than 55° (A.
Douglas, pers. comm.. 1983). However, Shﬁmway and Blandford (1980)
report observing a systematic delay in arrival times of pP phases from explo-
sions. The simple aperture experirﬁent provides an explanation for that
delay. -In addition the Kirchhoff technique allows one to specify more realis-
tic dynamica! information on the free surface and calcvlate more realistic

models in a straightforward manner.
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Figure 1.14. Long and short period synthetics from receivers located A, B, and
C.
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Conclusions

A rvmmex“i‘cal brocedufe has been presented for the evaluation of the
KirchhofﬂHelniholtz integral assuming the tangent plane hypothesis. The
method is a high frequency one and produces results which compare well
with exisﬁng asymptotic first motion solutions. The technique has been
applied to two problekms and compared to classical ray theory results. First,
the reflections off an idealized mountain are calculated and have phase shifts
consistent with those predicted by optics; however, the amplitudes at tripli-
cations are finite, unlike the classical ray result. In addition, diffracted
pﬁlses are produced in the shadow zones. The second application is the cal-
culation of reflections where the reflection coeflicients vary as a function of
position. For a hole in the free surface, the Kirchhofl method produces
reflections where ray theory predicts no reflections. The method also pro-
duces amplitudes which are frequency dependent. The results are applied
and extended to model the eflects of spallation on teleseismic reflections.
Travel tirﬁe deléys and amplitude anomalies are predicted. These anomalies

are consistent with observations although the observations are not modeled.

In conclusion, the method has a broad range of applications. The
method is inexpensive to run for modeling two- and three-dimensional rough
surfaces. Althoughv the method is appropriate for narrow angles of
reflections and acoustic reﬁectioﬁs, its rénge of applicability can be
extended by assigning potentials on the boundary which are valid at critical
angle. The code can be coupled with existing propagational techniques such

as ray tracing, Cagniard-de Hoop methods, or full wave theory. This coupling
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will enable one to handle more complicated and relevant seismological prob-

lems.
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Chapter 2

Applications of the transmitted Kirchhoff-Helmholtz solution to
transmitted body waves and structural effects at NTS

Introduction

Despite dramatic improvements in the level of sophistication of data
analysis, seismologists still cannot deterministically predict many observed
amplitude and travel time anomalies of body waves. One hypothesis to
explain these anomalies is the presence of non-planar velocity discontinuities
near the source or receiver such as sedimentary basins, mountains and
faults. In order for us to assess the importance of these hypotheses, we need
a technique for predicting the impact of near source and/or near receiver
structural complexity on far field waves. In this chapter, we present such a
rhethod based on the numerical evaluation of the Kirchhofi-Helmholtz
integral with use of modified tangent plane boundary conditipns. This
method calculates the response of a wave which is transmitted through a
warped boundary between two acoustic media. It contrasts from Chapter 1
‘where the reflections from a warped boundary are calculated. Here we
briefly describe the formalism of the Kirchhoffl-Helmholtz method for the
transmitted case. Then, as an example of the methoa, we model the
observed azimuth’al amplitude and travel time anomalies of stort period P

waves from NTS blasts as a result of a geologic structure at the Moho.
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The method in :this W(Of‘,k iskbased on the numerical evaluation of the
Kiréhhoﬁ-Helrﬁholt‘z integral equation. The formalism differs slightly from
that presented in Chapter 1. Recau that we discussed the reflected wave
solution; however. here, we state the Kirchhofi-Helmholtz solution for a

transmitted potential. We also qualitatively discuss the assumptions involved

in its use.

We wish to calculate a transmitted potential g, at point ¢ in a homoge-
neous body V; resulting from an incident source potential located at point z,
in ‘a homogeneous body V. The boundary between the two bodies is V. The
sound speeds and densities of ¥, and V; are a; and ap and p, and p,, respec-
tively. From the scalar integral representation theorem, we write the solu-

tion for ¢, at a point £ off the boundary 6V, within V;, and at a time t as

polest)= [[Golz £,1)*¥8(z.t) - $(z.£)*YGo(z £.t)] < mp(z)dS . (2.1)
o -
Here * denotes convolution and < denotes a vector dot product. &5 is the fun-

damental singular solution of the scalar wave equation.

1 8%Ge
af ot?

- V8Gp = 6(t ~t,)8(e~z) (2.2)

In addition, n; is the outward pointing normal of V,. & and ¥&'n, are the
potential and the normal derivative of the potential on the surface 8V in V,.

We display the geometry in Figure 2.1(a) for Lhis problem.
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Figure 2.1. The geometry of the Kirchhoff-Helmholtz calculations for transmis-
sion across two acoustic media with sound speeds &, and q, and
densities p; and p,. The source is in ¥, at 2, and the receiver is in
Vz at £. b) A close-up of a piece of the boundary which displays the
angles.



Equation (2.1) is exact for the initial conditions that ¢,{£,0) and ¢,(¢,0)
equal zero throughout V. The derivation can be found in Mao and Pao (1971)
or Stratton (1941). To obtain equation {2.1), one requires that 8V is a rea-

sonably smooth surface.

We now specify G, and ¢. For a homogeneous medium, it is sufficient to

8(t=72) o= 22l (2.3)

Golz 2t) = 47|z —¢] ap

If the incident field in V; results from an isotropic point source at z,, then 9

s approximated by

Tf (t—7 lz-z,!
q,:_L_.‘)_; Tl:.':x‘_f_.‘_ . (2.4)
lz—Z, | xy

Here T is the acoustic plane wave transmission coefficient for a flat interface
and is dependent on the local incidence angle at each point. f(t) is the time
function of the incident source function. The function in equation (2.4)
approximates ¢ well if the incident source field is of sufficiently high fre-
quency such that every point on the surface transmits the incident puise as
théugh there were an infinite plane tangent to the surface at that point.
Then the vamplitude and tlie phase on the surface can be described locally by
plane wave trans_miséion coeflicients and Snell’s law. The value of the poten-
tial at one point is independent of the values at other points. Hence, the con-

tributions to the potential of energy traveling along the surface is neglected.
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L Xe
and 2

'We now estimate the normal derivatives .
' < : 6'n2 an

8% . —Tf(t-7)) 87,
dne  lz-z,| Ong (25)

8G, _ —6(t-7;) 07,
dny  4rmle-z| On,

(2.6)

The dot over the functions in (2.5) and (2.8) signifies time derivative. We
approximate the normal derivatives by assuming that the amplitudes of G,

and ® vary slowly on the surface relative to the phase. Hence, we can discard

1
an

: — - 9 T .
anz (L;‘ill ) and f(t T]) a'nz ( L-'E-Zci ) Substitu

6(t —75)

.the terms

tion of equations (2.3), {2.4), (2.5) and (2.8) into equation (2.1) yields

_ 1 Tf (t-1\—72) , 072 087y \
¥2= 41rf0v ToT n, anlds 7

where 7= z—g|, the distance from the surface to the receiver, and

r,=!z—z,!, the distance from the source to the surface. We note that the

discarded parts of normal derivatives are proportional to and . For

problems computed in this study, the distance from the source to the sur-

face averages 40 kilometers and the distance from the surface to the

and terms are

ToT? 77

receiver averages 20,000 kilometers. The

6.25x107!% and 3.1x107%, respectively.' and are small relative to the term o
0

- in equation (2.7), which is 1.25x1077. We therefore discard these terms with

confidence.
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' aT 872
To estimate L and -——2, we recall that the gradient of the phase is
’ 6712 6712

parailel to the normal of the wavefront and has units of slowness. Thus,

T] _ CDS@l
BTLE - oy (28)

872 cosBy
ﬁ'ng e ¥

(2.9)

where cos®,; is the cosine of the angle between the normal to the refracted

wavefront and the normal to the surface n,. It is equal to

2
cos®,; = (1 - %sinz Oi)% (2.10)
oy

where @, is the local incident angle calculated by

z-z
cos@; = ‘(:;:‘_0_)'22 ) ' (2.11)
/]

cos@; is the cosine of the angle between the normal n; and a ray connecting

the surface and the receiver. Thus
cos®, = z-8) . ns . (2.12)

Figure 2.1(b) shows a detailed picture of these angles. Substitution of the

cosine factors (2.10) and (2.12) yields

0s0, cos0®
— L) dS (2.13)

Sl gy c
Pz = 4ﬁJ5ny(t T o T e
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The method for the calculation of equation {2.13) is the same as that of
Chapter 41. We‘simply calculate the integral as a summétion of single point
evaluations of the ihtegrand. This method of integration requires that the
eleménts which comprise the surface be small in length compared to the
incident sﬁurce wavelength. As in Chapter' 1 we obtain the numerical ramp
response from this iﬁtegration and convolve it with the analytical third
derivative of a Haskell isotropic source. Thus we obtain ¢,, the time deriva-

tive of the potential.

These calculations are appropriate for precritical transmissions in a
linear acoustic medium. We do not allow the transmission coefficient to be
complex. When the incident angle ©; exceeds the critical angle, ¢ equals

zero. This boundary value is consistent with geometric ray theory, but is not

a realistic shadowing function. Rather one expects & and to vary

ong
smoothly across the shadow boundary if the surface is reasonabiy smooth.
Eowever, we argue that., under the circumstances considered here, the
pousteritical incidence portions of the integral cvontribute to the summed
response of the transmitted potential at times much later than the specular

portions and are unimportant.

As a check of the method, we compute the transmitted response of a
wave propagating through a planar boundary separating two volumes of
different sound speeds. We then compare the numerical maximum ampli-

tude with that obtained from the following first-motion formula:

i T ,
¢ = TLF(t — ;"T— ;—2) . (2.14)
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Here Lis the spreading coeflicient (Langéton, 1977; Hong, 1978).

1 z %

z z z z

= {( "1+ 22\ = . fn“; )} (2.15)
Nvi Mu2 ViNvi ”2“%2

where 2z, and 2z, are the vertical distances of the source and receiver,

respectively, from the boundary. 7, is

1
7w = (=5 -p2¥* (2.18)

g

where p, is the ray parameter.

Figure 2.2 shows examples of this comparison. We have computed
transmitted potentials for an incident isotropic source which is the first
derivative of a Haskell source with parameters {B=2, K=10). The velocity and

density model used for the comparisons are shown in the top of Figure
2.2(b).

Figure E.E(a,) shows two Kirchhofl synthetics and demonstrates the
nature of truncation phases which can contaminate the synthetics. These
phases arrive approximately 3% seconds after the first arrival in both syn-
thetic A and synthetic B and they are artifacts of the technique. In synthetic
A, the phase is a reéult of the finiteness of the grid. A diagram to the left of
the synthetic shows this effect. The grid’is a square with a length of 150
kilometers. The source is 500 kilqmeters above the center of the grid; the
reéeiver is 1000 kilometers below the source. From this diagram, we observe

Toz T2 . .
>~ +——. The geometric ray arrives

that the edge interferes at a time t,=
' : &y Oz
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Figure 2.2. Two synthetics and the grid geometry used to compute them. Syn-
thetic A is conlaminated by a truncation phase which originates
from the edge of the grid. Synthetic B is contaminated by a phase
which originates from the abrupt change in boundary conditions.
The grid next to synthetic B is gray when ¢ = D on the boundary.
b) A comparison between Kirchhofl-Helmholtz and first-motion
solutions. The input source is the first derivative of a modified

_ Haskell function with parameters (B=2,K=10). The maximum
- dimensionless amplitude of the source input function is 45.1.
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at a time t,= Hence, the truncation phase arrives 3.6 seconds

‘later than the first arrival in synthetic A.

In synthetic B, the phase is a result of the shadowing function. We use
the same grid to calculate synthetic‘ B as for synthetic A; however, the source
is 167 kilometers above the interface. The ‘local angle between the incident
ray and the normal to the surface exceeds critical angle when the distance
from the center of the grid exceedé 50 kilometers for the velocity model. &
cn the surface is 0 beyond this distance. This abrupt change in boundary
conditions introduces a truncation phase into the synthetic. From the
-diagram to the left of synthetic, we can see that this phase will arrive 4
seconds later than the geometric arrival. The truncation phase in synthetic
A cause’d by grid ﬁnitepess does not constitute a problem. If it contaminates
Lthe phase of interest, we can enlarge the grid appropriately. However, the
truncation phase in synthetic B caused by the boundary conditions funda-

mentalily restricts the source-receiver geometries we can investigate.

Figure 2.2(b) shows a profile of Kirchhofl synthetics for a source 500
kilometers above the interface and five receivers 500 kilometers below the
interface. The horizontal distance, x, of the receivers ranges from 0 kilome-
ters, directly underheath the source, to 755 kilometers. Two columns next
to the synthetics contain the numerical peak amplitudes and the predicted
‘ampiitude‘ from‘ egquation 15. The agreement is good. We cannot calculate a
response past x=755 kilometers because a truncation phase resulting from
the boundary condi_tionsA on the interface starts to interfere with the direct

arrival. We must always take care to avoid such contamination.
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NTS Structure (An Example of Near Source Effects)

.We how aﬁply the method by modeling the eflects of idealized Moho
structures on tr;-rmsmitted' teleseismic P waves generated by nuclear tests in
Pahuie Mesa, Nevada Test Site. We wish to ascertain whether focusing-
defocusing by structure on the Moho explains the unusual behavior of ampli-

tudes from these tests.

We review these anomalous observations of short period P waves from
Pahute Mesa. Figure 2.3 is a plot of ab amplitude measurements from 25
tests within Pahute Mesa as a function of station location from Lay et al.
(1983a). The ab amplitudes are measured from the first peak to the first
»irough of the short-period seismogram. They are corrected for geometric
spreading, the instrument gain at 1 second and event size, following a pro-
cedure developed by Butler (1984). The amplitudes are relative to a master
event selected to minimize the overall scatter of the data.

The data have two important features. First, the relative amplitudes
range from .13 at station TRI tc 5.1 at station SEK. This variation is nearly a
factor of 40. Most stations between the azimuths 0° and ©60° have
significantly lower amplitudes than thosre between 80° and i20°. Secondly,
the relative amplitudes at a given station vary by a factor of 2} as a function
of event locatioﬁ within the mesa. The latter variation clearly originates
from a near source meéhanism because the events are separated by, at

mosi, 15 kilometérs.

If one calculates the mean relative amplitude at each station, then the

overall amplitude v,ariationA with azimuth reduces to a factor of 12 (Lay et al.,
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1983z). The next two figures suggest that this large amplitude scatter is also
a produc't of a ‘near's‘ource mechanism. Figure 2.4, frorﬁ Lay et al. {1982a),
shows the azimuthal pattern of relative amplitudes for GREELEY, an event
within the mesa, and FAULTLESS, an event 100 kilometers outside the mesa.
Allhough Both events have comparable yields, their azimuthal patterns differ
substantially. This difference is particularly obvious between 0° and 90°.
Figure 2.5 displays plots from Lay et al. {1983b) which enhance the difference
between patterns of events in the mesa and events outside the mesa. These
plots are ratios of amplitudes of three events outside the mesa {(FAULTLESS,
PILEDRIVER, and BILBY) divided by the average mesa amplitudes. These
ratios are an approximate measure of a near source anomaly if the FAULT-
LESS, PILEDRIVER, and BILBY patterns are only influenced by path and
receiver effects and are, therefore, constant as a function of azimuth. Fur-
thermore, the path and receiver effects must be characterized by multiplica-
tive factors. Because the ratio patterns for all three events are similar,
these assumptions are probably true. Therefore, the factor of 13 variation of
these ratios between 0° and 120° is roughly an estimate of .Lhe near source

anomaly at the mesa.

To see if this amplitude variation correlates with waveform changes, we
display m Figure 2.6 several seismograms at stations between 30° and 100°
which recorded bothkFAULTLFSS and GREELEY. The top and bkottom seismo-
grams are recordings of FAULTLESS and GREELEY, respectively, with their
absolute ab amplitudes in millimicrons, éorrected for instrument gain only.

There is no obvious waveform differences in GREELEY records which
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Figure 2.4. The relative ab amplitudes of GREELEY and FAULTLESS as a func-
. tion of station location (from Ley et al., 1983a).
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correlate with the dramatic ab amplitudes. Furthermore we do not see -any
obivious diﬁerencé in frerqyuﬂe,ncy content and/or complexity between low sta-
tions and high stations for either event. However, there are some systematic
diﬁereﬁces betwgen GREELEY aﬁd FAULTLESS seismograms. A shoxﬂder
veeurs 2 to ‘3 seconds after the first arrival on GREELEY records (e.g., STU,
PTO. MAL. STJ, OTT, GEO. and ATL). Lay has also seen these arrivals for other
mesa events (Lay et al., 1983b). No such arrival is apparent on the FAULT-
LESS seismograms. Also the width of the first pulse of GREELEY seismograms
is narrower than those of FAULTLESS seismograms at a few stations {e.g.,
3JG, ATL, BLA, GEO, SCP, and STU). Both phenomena, though, occur
throughout the azimuthal range and do not correlale with the ab amplitude

changes.

We conclude from the data that near source anomalies cause a variation
of 2% of relative ab amplitudes at a given station as a function of event loca-
tion within the mesa. Mpreover, near source anomalies also cause part of the
large ab amplitudé variaﬁon with azimuth (or station location) from mesa
~events. We cannot completely eliminate contamination of the azimuthal pat-
tern by path and near receiver effects. Certa’mly, near receiver effects can
be as large as those observed for the Pahute mesa tests (Butler, 1984). Yet
the similarity of the ;atio patterns of FAULTLESS. BILBY, and PILEDRIVER
suggests that the pattern for mesa tests, seen in Figure 2.3, is dominated by
a near source mechanism. Finally the variation of relative ab amplitudes with
azimuth does not correlate with any obvioﬁs waveform changes for a typical

mesa event, GREELEY. There is no definitive evidence to determine whether
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~ ab variations correlate with travel time residuals.

In this study we assume that all the observed amplitude anomalies
result from near source mechanisms. We then test the hypothesis that
structure on’ fhe Moho, consistent with tfavel time residuals, focuses or
defocuses P waves enough to produce the magnitude of the amplitude anom-
aly. We note that there are alternative near source explanations for these
anomalies. In addition, to the focusing-defocusing hypothesis, workers (Lay
et al., 1983; Wallace et al., 1983) postulate that the movement of faults asso-
ciated with nuclear blasts causes a superposition of distributed or point
double-couple sources’ with the isotropic bomb source. The amplitude
anomalies are, then, the rédiation pattern caused by a double-couple source.
Longer period studies of Love/Rayleigh ratios, Pnl, P and S waves (Aki and
Tsai, 1972; Wallace et al., 1983;7 Nuttli, 1989) generated by these blasts sup-
port the latter hypothesis. However, we speculate that, as the frequency
content of the signal increases, the role of lateral near source structure in
distorting amplitudes becomes more important. From travel time residual
studies (Minster et al., 1981; Spence, 1974) workers have deduced that there
is a high velocity zone directly beneath the Silent Canyon Caldera in the
mesa which extends down to 100 kilometers. Such a velocity structure may
cause amplitudes which deviate from those predicted by a spherically sym-

metric Earth model.

To investigate how geology can aflect amplitudes, we presume that the
apparent velocity variations deduced from the travel time residuals are a

manifestation of Moho iopography. We exclude from consideration the
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impact of the Silent Canyon volcanics on transmitted P waves because both
Spence .(1974)'and Minsfgerk et al. (1981) correct the reéiduals slatically for
these low véloéity rocks; thus the residual patterns are not a resull of the
caldera. In any case, we cannot readily model a feature so close‘ to ihe
source. If we place a strong velocity discontinuity, such as that between voi-
canic and granitic rdcks, closer than 10 kilometers to the source, we gen-

erate a truncation phase which interferes with the transmitted P phase.

We describe the Earth with a two-layer crust-mantle velocity model. The
velocity of the upper Iayer is 8.5 km/sec and that of the lower layer is 8

km/sec. The depth of the interface is 45 kilometers. The receivers are

located at distances such that the ;? amplitude decay corresponds to

spreading at teleseismic distances between 60° and 70° for a JB Earth

{Langston and Eelmberger, 1975).

The number of ways to distort the Moho is infinite. We, therefore,
restrict ourselves to a few three-dimensional topographies where the max-
imum height of the anomaly is 10 kilometers and the maximum width is
approximately 25 kilometers. The choice of these values is based on both the
Minster et al. (1981) and Spence (1974) studies. They find an advance of
®.25-.4 seconds for nearly vertical rays from shots within the caldera. As
these rays become shallow, this advance lessens or disappAears completely.
From crude calculations, we estimate that 10 kilometers of upward relief on
tﬁe M;,)ho will produce the required timing anomalies of these rays. Further-
more, we confine thel upwarp laterally so that rays exiting the mesa at shal-

low angles are unaffected by the anomaly. We recognize that these
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structures are extreme. However, if we cannot produce the observed ampli-
tude anomalies with these topographies, we can discard structure on the

Moho as the dominant cause of these anomalies.

Of the infinite number of upwarps, we arbitrarily select four examples
with height ¢ = 10 kilometers and width w = 25 kilometers. These topogra-
phies are described by skimple analytical formulas and are convenient to use.

The topographies with their labels are as follows:

Z = Zpop + o (cosRnr({r—w/2)/ w))-1) ifrs'g)———
Upwarp : (2.17)

. 0%
Z=Zcm1f‘r>—2—-

m'n

-4.6057/ %—

Ezponential :Z = Z,,, — ce (2.17a)

Z = Zgn — € if'rs—;;—

~

Plug : Z = Zgop + -g—(cos(Zﬂ((r-%"—— 5)/w))-1) if %-(7'5 %-+5{2.17b)

Z = Zoon if‘r>-%u—+5

21.991
o[22

Sinc : Z=2Z,,, —C sin
' w

(2.17¢c)

Here r = V(z -z0)* + (y—yo)* and is the horizontal distance of each point on
the surface frorh the center of the grid. Z,;m is the baseline level of the Moho
and is 45 kilometers for all the calculations. The values of the constants in
the exponential and the sinc burnps confine the anomaly’s width Lo approxi-
mately 25 kilometers. A schematic cross section of each topography is

~ shown in Figure 2.7. All the structures are symmetric with azimuth.
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Figure 2.7. Transmitied potentials from sources 35 kilometers above the center
of the structure.' The cross sections of the structure upwarp,
For com-
parison potentials which propagate through a flal boundary are
also shown in the first column. The potentials are from receivers
which are 20,000 kilometers below the source and which vary from
0 to 7000 kilometers horizontally away from the source. All ampli-
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Initially an isotropic source is’directly above the center of the structure;
thus, the transmitted ‘potentkial is only a function of x and‘z. The source is 45
kilometers above the baseline of the Moho. The transmitted potential is cal-
culated at receivers which are 20,000 kilometers below the source. The hor-
izontal distancé of the receivers from the center of the topography ranges
from 0 to 7,000 kilométers. Figure 2.7 shows the transmitted potential and
the peak amplitude as a function of x in increments of 1,000 kilorneters for
each of the four topographies. In addition, the responses for a wave which
transmits through a planar boundary are displayed in the first column. The
corresponding takeofl angle for the flat boundary synthetics are to the left of
the column. By comparing these synthetics with those in Lhe other columns,
we can determine how much distortion of the waveform is caused by each
structure. The synthetics in Figures 2.7 and 2.10 do not include a Q and
instrument operator or a reflected pP phase. Aithough these eflects are
important, we want to examine amplitude and waveform distortions caused
by structufe with a simple input pulse. The ringing caused by an instrument

or pP may mask the presence of multiple arrivals caused by the topography.

All the structures cause intriguing changes in the waveforms and arrival
times of the synthetics. The waveform features originate from timing
changes céused by each topography. Each point of the Kirchhoff synthetic
originates from e}ements which are iliuminated by the source and, in turn,
illuminate the receiver at a total travel time, o=7;+7;. We can associate,
with each element Of, the grid, a value of total travel time, o{z,y). The total

‘travel time function on the surface depends on the source location, Lhe
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receiver location, and the surface geometry. Figure 2.8 shows examéles of
this function. Here we calculate o{z,y) for elements which make up a flat
interface 2.8(a), an upwarped interface 2.8(b), a plug 2.8(c), and a sinc funec-
tion 28((1) In each example the source is directly above the center of the
5tructure‘and i1s 45 kilvmeters above the baseline of the interface. The
receiver is 20,000 kilomeﬁers directly below the source. The contours of con-
stant total travel time are projected onto the topography {(top figure in
2.8(a),(b).(c), and (d)). We also display these contours as a function of x and
y {bottom figure in 2.8(a),(b).{c), and (d)) The contours are circles because
of the particular source-receiver geometry. For the sake of brevity, we only
show that portion of the grid which contributes to the initial second of each
Kirchhofl synthetic. The synthetics which correspond to these total travel
time functions are also shown. {middle figure in 2.8(a),(b).{c),and (d)) These
figures show how structure on the interface distorts the total travel time

contours and, as a result, produces multiple arrivals in the synthetic.

We examine Ithis eﬁect in detail. The contours are in intervals of .125
seconds as are the tick marks below the synthetics in Figure 2.8. The
geometric arrival time occurs at the center of the contour plot. Thus, by
counting the contours, we can estimate the cumulative area of the surface
which contributes to the synthetic at a given time. We deduce. from Figure

A2.8, that, approximately,

Att) o 25|
Att)a =1 . (2.18)

o A(t) is the amplitude of the response at time t. S is the total area of the
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Figure 2.B. Travel time contours for a source 35 kilometers directly above the
: structure and receivers 20,000 kilometers directly below the
eource. The four structures are a) a plane , b) an upwarp, c) a

plug. and d) a sinc function. The vontours are projected onto the

" topographies and flat grids. The synthetics which correspond to

each travel time projection are in between the two projections.

The contour interval is .125 seconds as are the tick marks of the

synthetics. The geometric arrival time is the center of the con-
tours.
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surface which contr‘ibutes to the response at time t. For example, the‘initial
".375 sec>onds 6f the synthetic from a flat Ainterface results from a rapid
increase in the éumulative area of the surface which is illuminated between
1=.125 sec and t=.25 sec. After t=.25 seconds, the area of the surface is
iiiuminated at a constant rate. Thus, the resullant synthetic can be viewed as
a convolution of the soufce time function with a step function which starts

between t=.125 sec and .25 sec.

We quantify this statement by following an approach developed by
Hilterman (1975) and Haddon and Buchen {1981). The symmetry of the
source-receiver geometry and the surface geometry allows us to recast the
~'mtegral (2.13) as a one-dimensional integration with respect to total travel

time, g. If the transmission coefficient varies slowly over the surface, then

- o T . ﬁz Ol\
- 4

fo(=2-—1

2.19
YRT 4n 02 Qg ( )

where

cos®,

dQ);, = as
T
and
cosB,
an, = as
ToT

00, and (), are the time derivatives of modified solid angles. (}; is a modified
solid angle with vertex at the source subtended by the surface S, and (; as a

modified solid angle with vertex at the receiver subtended by S.
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We now examine the origins of the multiple arrivals in the potentials
’v‘vhicb prdpagaté through int‘erface’s with structure. For example, the ampli-
tude and freqﬁericy content of synthetics from the upwarp (column 3 of Fig-
ure 2.7) are controlled by the interference of two pulses. The travel time
contours iﬁ Figure 2.8(b) for the upwarp differ considerably from thuse of a
flat interface 2.8{a). Far less of the upwarped surface is illuminated within
.25 seconds of the geometric arrival time. Furthermore, the upwarp topog-
raphy causes subtle changes of the width between travel time contours.
There are two locations where this change occurs: 1) at the top of the
upwarp and 2) at the edge of the upwarp. The first pulse in this synthetic
‘originates from the elements in the first location while the second pulse orig-
inates from the second location. Because the ring of elements which contrib-
ute to the second pulse has a larger area than that of elements which con-

tribute to the first pulse, the second pulse is larger than the first pulse.

As the receivers move away from the center, the maximum amplitudes
decrease ’as a result of the interference of the two pulses. We destroy the
symmetry of the surface illumination by moving the receivers horizontally.
The illumination of elements, which initially was simuitaneous, now occurs at
slightly different times and causes destructive interference; this destructive
interference causes a reduction in peak amplitudes and the broadening of
‘the pulse widths for beth phases. Moreover, as the receiver moves out
laterally, the planar’ part of the boundary becomes more important in con-
trolling t‘.he‘amplitude of the transmitted pulse. Hence the amplitudes,

travel times, and the waveforms of distorted pulses approach those of a pulse
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- which has propagated through a flat boundary. This phenomenon is present

in almost all the Atop é}’nthetics in Figure 2.7.

Other intriguing features are present in the synthetics shown in Figure
2.7. The pptentials transmitted through the sinc and exponential bumps
shown in columns 3 and 5 have an apparent delay which is not seen in the
other synthetics. These two topographies drop in height near the peak more
rapidly than does the upwarp topography. Consequently, fewer elements are
illuminated and contribute to the transmitted potential at times near the
geometric arrival time. This is illustrated for the sinc topography in Figure
2.8{d). Hence, the amplitude near the geometric arrival time is lower than

amplitudes at later times.

The opposite is true for the synthetics of waves which are transmitted
through a plug. They are displayed in column 4 of Figure 2.7. The topogra-
phy and travel time contours for the bottom synthetic from this column are
shown in Figure 2.8{c). This figure shows that more elements are illuminated
and contribute to the /response near the geometric arrival time for this
topography than for the upwarp, sinc, and exponential topographies. The
resultant synthetic is made up of two pulses of equal size. Each pulse has the
amplitude and shape of a wave which has transmitted through a planar inter-
face. The plug is essentially comprised of two planar interfaces, one at z =
45 kilometers and the other at z = 35 kilometers. The edges of Lthe piug have
been tapered to avoid a shadowing problem. While the difference in the
interface depths does not alter the amplitudes of the pulses, it does change

the arrival times. This slight separation in arrival time causes the observed
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interferénce pattern. As the ’-r,eceiver moves out laterally, the timing
between the two pulses changes. The pulse width of the first arrival narrows
while the v?idth of the second one broadens. By transmitting a wave through
such a étrqcture. we vary the maximum amplitude of the synthetics by a fac-
tor of 2%.

We confirm thét these structures are aﬁproximately producing the
correct travel time anomalies. We plot the residuals, in addition to the peak
amplitudes of the synthetics, as a function of distance to discern any sys-
tematic relationship between the two parameters. We also plot the ampli-
tude of the first pulse if the synthetic is made up of multiple arrivals. This
‘amplitude is measured from the start of the synthetic to the first peak. The
plots are displayed in Figure 2.8. The travel time "residuals” are defined by
the difference between the arrival 'tirnes of transmissions through a bumpy
surface and the times of transmissions through a flat surface. Where there is
an apparent dela}r in the synthetics such as in those from the exponential
and sinc bumps, we measure the arrival time at the start of the upswing. The
amplitudes are uncorrected for geometric spreading. The change of ampli-
tude from spreading, seen in the synthétics in column 1, is negligible in the
distance range of interest; hence no correction is necessary.

The "residuals” in Tigure 2.9 }:;roduced by these structures behave in a
~ predictable fashion. The transmitted potentials which propagate verlically
to‘stations betwe‘en 0 to 4,000 kilometers experience the most advance. The
exceptions to this behavior are r’esiduals from the sinc and expo(nentlal syn-

thetics. We know there is some energy arriving at these necarly vertical
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Figure 2.8. Plots of peak amplitudes, amplitudes of first pulses, and travel time
residuals as & function of distance from synthetics in Figure 2.7.
The diflerent symbols correspond to different topographies and are
at the bottom of the figure. Where first-pulse amplitudes are
different from peak amplitudes, the values of first pulse ampli-
tudes are plotted with open symbols and the peak amplitudes are
plotted with closed symbols. The dotted line corresponds to the

peak amplitudes from synthetics which propagate through a planar
interface.’
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stations with -.3 second advance from the previous discussion. However,

because the energy is so small relative to later pulses, these synthetics

appear to have delays.

When the paths of the potentials become shallower, we see that the
advance disappears. The planar part of the interface begins affecting the
travel times and waveforms. The arrival times of the transmissions through
the bumps approach those of transmissions through a flat interface. The
exception to this pattern is the residuals of the plug synthetics. These syn-
thetics have an advance of .3 seconds which is constant as a function of hor-
izontal distance. This behavior results from the constant height of the plug

across the entire width of the bump.

What is the relationship between the travel time anomalies and the
amplitude anomalies? We predict that as the magnitude of the travel time
anomalies decreases the magnitude of the amplitude anomalies decreases
also. The amplitudes, as well as the arrival times, will be controlled by the
planar part of the surface. This relationship is observable in Figure 2.8. The
amplitudes, except in one case, start to approach the value of .002 at dis-
tarces ranging from 5,000 to 7,000 kilometers. The exception is the max-
unum and ﬁrst-pulse amplitudes of the synthetics from the plug topography.
These values appear to decrease systematicaily with distance. However,

lhese values do approach the planar amplitudes at distances beyond 7000

kilbmeters.

Furthermore, waves which arrive earlier than is predicted by planar cal-

culations aisc have lower amplitudes than is predicted. Contrarily, the
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synthetics from the sinc topography arrive late and have anonialouslf high
,ampl_itudés. Indeed. the pattern of residual variation is precisely mimicked
by the pattern Qf amplitude variation for this structure. The mimicking of
amplitude and ‘travel time anomalies also occurs for synthetics from the

exponential bumps.

This mimicking does not occur for synthetics from the upwarp and plug
topographies. Each of these synthetics consists of multiple arrivals. Thus, if
we take the maximum amplitude as a measure of amplitude anomaly and
compare with travel time anomalies, we do not see an obvious correlation
between the two parameters. The travel time is perturbed by a relatively
émall part of the surface. The maximum amplitude is perturbed by a much
larger part of the surface. It is a less local property of the topography. 1f we
allowed a broader band time function to interact with the surface we would
change the amplitude anomaly but not the travel time anomaly. To improve
the corielation. we measure the amplitude of the first pulse of the synthetic
if it is different from the maximum amplitude. These values are shown in
Tigure 2.9 by the open circles and triangles for the upwarp and plug synthet-

ics. We do not improve the visual correlation significantly.

The modeling nf d symmetric structure demonstrates that such a strue-
ure on the Moho, consistent with travel time residuals, can produce a factor
of 2% in maximum amplitude variation as a function of distance. The varia-
tion of ampﬁtudés of first pulses is somewhat less. Neither variation is as
large as the observ.atiéns of amplitude changes between stations for a given

test at NTS. Furthermore, where there is a large amplitude variation, there
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is significant waveform distortion of the synthetics. For the most part, low
amplitudés are 'produced‘tgy the ubwarps. However, the mesa data set has
both anomalously high and low amplitudes. The low amplitude synthetics
arrive early. However, any relationship between amplitude anomalies and
travel Limé anomalies is dependent on frequency because the effect of a

structure on a wave is dependent on frequency.

The modeling to this point produces anomalies which are dependent
only on distance because the structures are symmetric. We now introduce
asymmetry into the problem by allowing the source to move off the center of
a symmetric upwarp. We do these calculations because observed travel time
and amplitude anomalies are presented as a function of azimuth. Yet we do
not know if these anomalies arise from azimuthal or delta heterogeneities.
We want to examine whether a trend with delta or azimuth is stronger. Addi-
tionally, there is a variation of amplitude at a given station with a change in
source position in the mesa. If we change the source position across a sam-
ple structufe. can we re'produce the factor of 2% seen in Figure 2.3? We also
wish to examine whether there is any systematic relationship between ampli-
tude and travel time anomalies as a function of azimuth as we have done pre-

viously with these parameters as a function of distance.

The modeling experiment is quite similar to lhe previous one. The
receivers are 1000 to 7000 kilometeré horizontally away from Lhe venter o
the topography and 20,000 kilometers below the source. The sources are 45
kiiometers above the baseline of the Moho. To produce the azimuthal

"~ "anomalies in the synthetics, we move the source off the center of the upwarp
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in cne direction in increments of two kilometers. The responses are -calcu—
iated for' seve‘n‘ disténces at five diﬁerent azimuths. We select the topogra-
phy upwarp for this experiment. The choice of topography is somewhat arbi-
trar;y;; however», we make this particular choice because this topography
rauses aul;)stantial variation in amplitudes as a function of distance. If this
topography fails to prbduce much azimuthal variation, then the other topo-

graphies will fail to do so, also.

Figure 2.10 shows our results. A cross section of the source-receiver
configuration and the geometry of the upwarp is in the center of the figure.
In addition, a topographic map of the center portion of the grid is displayed.
~'I'he contours are in kilometers and the maximum height of the bump is 10
kilometers. The topography map also shows the source locations and the
azimuthal lines along which the calculations are done. The resulting
waveforms and maximum amplitudes surround these diagrams. Each group
of 28 waveforms Is calculated for the corresponding azimuth. The groups are
made up of fourrcolurn'ns of synthetics corresponding to calculations done
with the source location designated at the top of eazh column. Sources A. B,
C, and D are, respectivelyv, 2, 4, 8 and 8 kvilometers from the center. The rows
cor'respon_d to calculations done a2t the horizontal distances shown next to
the row. In Figures 2.11, 2,12, and 2.13 we plot the trave! time residuals. peak
amplitudes, and amplitudes of the ﬁrs‘t pulse obtained from these synthetics

ac z function of azimuth for each distance.

Thereis a change"in overall complexity of the synthetics as a function of

azimuth. The v\’avefofms from the group at 6=0° are simple and impulsive
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Figure 2.10. Synthetics from the topography upwarp calculated for four source
positions, five azimuths and seven distances. The topography map
and cross section with source positions are in the center. The con-
tour interval is 1 kilometer. The corresponding distances angles
and azimuths are also shown.
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Figure 2.11. Travel t_imé residuals for source locations A, B, C, and D plotted as a
. function of azimuth and distance.
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with relatively high amﬁlitudes. Only the stations at 1,000 or 2,000 kilome-
ters have multiple arrivals. As we krotate counter clockwise around the struc-
ture, a greater number of the synthetics in each group have multiple
arrivals, and, cémsequently, low amplitudes. Synthetics at 8 = 135° and 180°
all have nﬁultiple arrivals. The reason for this trend is the same as in the pre-
vious modeling study'. As the sources move in the direction of a line along
€= 0°, a greater proportion of the elements which constitute the planar part
of the grid contribute to the potentials calculated in the direction of this
line. Hence, synthetics of this line become more impulsive as the source
migrates from position A to position D. By contrast, the synthetics at
@=135° and 180°remain complex. The elements which contribute to these

potentials are largely from the non-planar part of the boundary.

We examine the maximum amplitudes, first amplitudes, and travel time
residuals in Figures 2.11, 2.12, and 2.13 for systematics as a function of dis-
tance or azimuth. The behavior of maximum amplitudes with distance and
azimuth ié the most variable of the three parameters. The maximum ampli-
tudes as a function of azimuth do not appear to correlate very well with the
travel time residuals. The rapid change of this parameter with azimuth and
source position reflects the sensitivity of maximum eamplitudes Lc slight
changes in relative timing between the two arrivals which make up the syn-
thetics. We obsyerver the smallest rénge of maximum amplitudes with dis-
tance and azirnuth from synthetics calculated with source position A, the
’ciosest source to th‘e center of the symmétric source. We increase this vari-

ation with azimuth and distance when we remove the source further away
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from the center to positions B, C, and D.

The maximum amplitudes at’ 6 = 135° for source positions B, C, and D
are lower than the amplitudes at other azimuths. This trend is a result of 1)
the degree to which the planar part of the grid contributes to the response
and 2) the degree of symmetry of the source and receiver locations with
respect to the structure. Stations along € = 0Q° and 6 = 180° are in positions
of symmetry with respect to the sources. Elements on either side of a line
which divides the grid contribute simultaneously to the responses at these
stations and ,conseguently, cause higher maximum amplitudes. Stations
along €= 90° and 6= 45° are not symmetrically positioned with respect to
£he source; however, the planar part of boundary largely contributes to these
responses; thus, they have high maximum amplitudes. But receivers along
€ = 135° are placed asymmetrically which causes elements to illuminate at
different times; in addition, these elements are largely in the perturbed part
of the boundary. These two factoré combine to produce the overall lower

maximum amplitudes of receivers at 8 = 135°.

Although we do not discern any relationship between the maximum
amplitudes and the travel time residuals as a function of azimuth, we do see
a cbrx‘elation belween the amplitudes of the first pulses and the travel time
residuals.. Synthetics which have a constant first ampilitude as a function of
azunuth aiso have approximately constant travel time residuals. The travel
timé advances in‘crease as a function of azimuth. Similarly, the first ampli-
tudes decrease with azimuth. Thus, early arrivals have lower first amplitudes

ihan the later arrivals. Recall that this particular topography will not
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produce a delay; all the travel time anomalies are advances. The trend of
early arrivals with low amplitudes and late arrivals with high amplitudes

holds true for all azimuths, distances, and source positions.

The travel time residuals decrease as a function of distance at all
azimuths ex;:ept for 8= 135° and &= 180° for sources C and D. Kere we see
a reversal whereby residuals increase as the distance increases. Clearly if
we pull the source off the center far enough, the shallower rays will interact
with the upwarped part of the topography while the steeper rays interact

with the flat part of the grid.

As we remove the source off the center, the range of variation of first
amplitudes and travel time residuals as a function of azimuth exceeds the
range of these parameters with distance; that is, the trends of these parame-
ters are stronger in azimuth than in distance. Thus, stronger variation of
travel time and amplitude anomaly with azimuth than with distance may be
an indicator of lateral variation with azimuth, as well as with distance.

despite an uneven station distribution of the existing data set.

Yhal conclusions can we draw from this modeling experiment? Firstly,
we cfeate a variation of 2% of first amplitudes as a function of azimuth and
source ﬁositioh. The change of amplitude with source position is largest at
€= 0° and 45° and is the least at &= 1B0°. However, the variation at 0° and
45° is created at the cost of considerable distortion of the waveform. This
feature of low amplitude waveforms with complex or brdadened pulses and
high amplitude waveforms with simple narrow pulses is not apparent in the

mesa data set.
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Secondly,ﬁ we produce a treﬁd in the first pulse amplitudes with azimuth.
Speéiﬁcally, we cause high amplitudes at 9V= 0°, 1357 , and 180°. However,
if we r"ernove.the source far enough away from upwarp, we will produce no
amplitude anomalies. Thus, structure can produce a systematic azimuthal
trend in amplitudes. But we must be cautious about pushing this interpreta-
tion too far. Our azimuthal trend is an artifact of the moveout of the source
in one direction with respect to the lines of receivers. If we imagine distri-
buting sources all over the upwarp and then calculating the averages' of the
first amplitudes at each azimuth for all the sources, we undoubtedly elim-
inate any trend with azimuth. Thus, the stability of the amplitude pattern of
all mesa events with azimuth location is not easily explained by structure on
the Moho or any unusual velocity plug unless the sources are fortuitously

located to one side of the heterogeneity.

Thirdly, we do see a visual correlation between travel time residuals and
amplitudes of first pulses, but do not see any between residuals and peak
amplitudes. This correlation mayv be diagnostic of structure as opposed to

tectonic release.

Discussion and Conclusions

We show from the previous two modeling experiments that we can pro-
duce variations of 2% as a function of delta, azimuth, and source position with
a structure on the Moho that produces travel time residuais compatible witvh
the Minster et al. (1981) and Spence (1974) studies. The variation is created

at the cost of considerable distortion of the waveform. Furthermore, the
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travel time residuals correlate with first-pulse amplitudes but not with peak
‘amplitudes. To determinqv‘\'hether these initial results are applicable to the
Pahute Mesa data, we must now include a pP phase, a Q operator and an

instrument operator in a few Kirchhoff synthetics.

YWe sélect two sets of five Kirchhofl-Helmholtz synthetics calculated pre-
viously for the azimﬁthal study to incorporate a pP, Q and a short period
instrument. They are the responses at a distance of 4000 kilometers. The
two sets correspond to the source positions A and D at five azimuths. This
choice represents two extremes of source positions relative to a structure
and may give us a reasonable idea of what to expect in amplitude and

waveform variation as test sites move within the mesa.

We put pP into the Kirchhoff-Helmholtz synthetics by convolving these
synthetics with a boxcar function of unit height and a width corresponding to
the pP-P lag time. This convolution yields the impulse response of P and pP
if the incident source is a modified Faskell function rather than its time
derivative. We rjustifyAthis simple modeling of pP by assuming that the
reflection coeflicient of this phase is -1. Lay et al. {1983a) estimate the
reflection ceeflicient as .96 for pP. We further argue thet pP interacts with

lie same part of the éurface as does P. This assumption is good for the
depths of the niesa tests which range from .5 to 1.4 kilometers. The width of
Lhe boxcar is .85 seconds; this estiméte of the pP - P lag is taken from Lay et
al. (1983a). We further convolve a short period instrument and a Futterman Q
operator in these synthetics. We use a Héskell function with parameters (B =

2,K = 10) while Lay et al. {1983a) use slightly different values (B = 1,K = 8).
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Tn Pigure 2.14 we display the results of the convolutions. The first
column cbntainé the initial Kirchhoefi-Eelmholtz synthetiés with peak ampli-
tudes taken from Figﬁre 2.10. The second column shows these synthetics
convolved with a WWSSN short period instrument and a boxcar. We introduce
apparent édditional complexity into the waveform but do not change the
range of peak amplitudes significantly when we include an instrument and
pP. The structural complexity of the waveform is masked by the dominant

interference between P and pP.

We next convolve these synthetics with Futterman Q operators with a t*
= .5 and 1. The waveforms and their ab amplitudes are displayed in columns
3 and 4. We plot the ab amplitudes as a function of azimuth for both sources
and t* values in Figure 2.15. We remove the complexity of the waveform for
both sources with the two t‘;‘ values. However, there are some observable
differences in the first and third peaks of the waveforms as a function of
azimuth. The first peak widens as the azimuth increases. The third peak
becomes smaller’and disappears altogether. Moreover, we produce a varia-
tion of ab amplitudes as a function of azimuth of 2% for source D if t* is .5, as
seen in Figure 2.15. However, when t* is 1, this variation reduces to a factor
of 1';’.7 as a function of azimuth. Notice that we also obtain a variation of 2% of
ab ampiit;;des with respect to source position if t* is .5. This occurs at
9‘= 0° and k9= 45°; khowever, the difference between ab amplitudes for the

two sources decreases as the azimuth increases.

Thus we cannot prediét ihe observed ab amplitude variation as a funec-

‘tion of azimuth or station location if we use a structure on the Moho 10
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.85 seconds and a short period WWSSN
(second column) and, then, a Q operator with t* values of .5 (third

Responses are from a distance of
- 4000 kilometers, azimuth range of 0° to 180° and source locations

car of width

column) and 1 (fourth column).

A and D.

instrument
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- Figure 2.15. ab amplitudes from synthetics in Figure 2.14 plotted as a function
' " of azimuth for both source locations A and D and both t* values.
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~ kilometers high and appfoximately 25 kilometers wide. If one believes that
the factors of 12 or 40 in Figures’2.3, 2.4, and 2.5 are ‘true measures of a
purely near séurce phenomena, then one requires a structure several hun-
dred kilometers in scale on a boundary to match these factors. This struc-
ture would distort the waveform considerably. Yel there is no obvious evi-
dence in the seismogréms for a correlation between low amplitudes and com-
plicated and/or broadened waveforms or high amplitudes and simple, impul-
sive waveforms. We speculate that, rather than a large structure on a single
boundary, a small velocity or density perturbation along a several hundred
kilometer ray path may produce the desired amplitude change. However, we

have no way of testing this speculation with our method.

On the other hand, we do predict the factor of 2% in ab variation with
respect to source location if t* is .5. This variation is not accompanied by
any significant waveform distortion. Although we only produce a factor of 2%
at two azimuths, this result is an artifact of the source moveout across the
structure. ’If sources were uniformly distributed over the structure. we
would produce this same magnitude of variation at all the azimuths. Further-
more, no source would be systematically higher in ab amplitudes than
another source at all the azimuths. Unfortunately. we cannot tell from Fig-
ure 2.3 whether there are any syvstematics with respect to source location.

The data should certainly be examined for such trends.

We also note that the travel time residuals do not correlate with the ab
patterns. The convolution with two t* values demonstrates the frequency

dependernce of the plienomena. If t* is larger than 1, we will produce a flat
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p»attern’w‘ith azimuth but the travel time residuals will not change. Thﬁs we
do not expect a systematic relationship between travel time and amplitude
anomalies Because the ab amplitudes are sensitive to @ but the travel times
are relatively stable. This is an unfortunate result because such a correla-
tion would be diagnostic of structure as vpposed to leclonic release. We do
not expect fault slip to produce travel time anomalies. As yet. there has
been no study which definitively demonstrates a relationship or lack thereof.
The data sets of amplitude and travel time measurements do not have a one-
to-one correspondence. Lay et al. (1983a) measure the ab amplitudes off
short period WWSSN instruments while Minster et al. (1981) and Spence
(1974) use culled travel time measurements from the ISC catalogs. We

clearly need a sfudy which compares the travel time and amplitude from the

same seismogram.

The largest overall variation in ab amplitude with azimuth in Figure 2.15
neeurs because of"diﬁ'erences in t* values. Yet any corresponding changes in
the waveform are unnoticeable. Thus the ab amplitudes are far more sensi-
tive than waveforms to Q differences. Perhaps a lateral variation of Q with
path can produce the extreme scatter of ab amplitudes for both tests inside
and‘ outside the mesa. However, it cannot explain the differences in patterns
betwzen these different test site areas. If the near mesa anomalies are at
least a factor nf 10, then structure on the Moho which is compatible with
travel time res‘iduals cannot produce these large variations of amplitude with
azimuth. Fowever, such a structure could explain the observed variation of

ab amplitudes with source position at a given station.
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Chapter 3

The gradient Kirchhofl-Helmholtz solution as a tool for
. modeling CMB relief

Introducﬁon

The degree of irregularity of the core-mantle boundary (CMB) is still
unknown. Short and long period seismic phases which interact with the core,
such as Py, PcP, ScS, PKP, PKIKP, and PKKP frequently have travel time
and amplitucie anomalies or unusual precursors. These anomalies cannot be
interpreted uniquely as a result of CMB topography. The existence and
~extent of undulations of the CMB has implications for understanding of cou-
pling of the Earth’'s magnetic and gravitational field (Hide and Malin, 1970),
the nature of convection in the Earth’s interior (Hager ert al., 1984), and the
history of the Earth’s accretion (Stevenson, 1981; Schloessin, 1974). A more
acute examination of this explanation of the anomalous seismic data requires
an ability to quantitatively model the impact of CMB shapes on seismic
waves. The CMB shapes must be mechanically feasible. If the CMB shapes
inferred from modeling are too extreme to exist, it must be concluded that
the seismic data ﬁnder consideration vare primarily influenced by other fac-

tors and have no bearing on the CMB shape question.

In the present study we investigale the size of CMB undulations needed
to produce observed travel time» and amplitude anomalies of long and short
perioﬁ SHeSH rkeﬂections. The propagation of this phase is relatively simple
to model because thé potentials and displacements in both homogeneous and

inhomogeneous media are governed either exactly or approximately by the
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scalar wave equation. Furthermore, the amplitude and travel time anomalies
of these waves are well dorvcbumer‘xted and, in many cases, the gross upper
mantle and crustal effects have been removed (Jordan and Lynn, 1974; Lay,
1983; Mitchell and Helmberger, 1973; Hales and Roberts, i870b). As in the
previous chaptérs, the Kirchhofl-helmholtz integral is used to model these
waves. In addition to using the half-space reflected Kirchhofl-Helmholtz
method discussed in Chapter 1, we implement a modification of the tech-
nigue that includes a variable velocity in the medium which contains the
source and receiver. The Kirchhoffl-Helmhollz technique integrates potentials
over an intermediate surface between the source and receiver; thus, it is a
natural choice for modeling topography on a major physical discontinuity of
the Earth. Moreover, the technique provides insight into the relative effect of

CMB bumps on short and long period body waves.

Description of the Modeling Technique

This s‘ection' describes the method used to calculate SE waves which
propagate through a medium with a radially symmetric velocity function and
reflect off a distdrted boundarv. A detailed description of the method for an
acoustic isovelocity haif space Kirchhofl-Felmholtz solution can be found in
Chapter 1. The relevant result from that study is that numerical Kirchhoff-
Felmholtz solutions for SH reflections from a rigid sphere compzre well with
high frequency énalytical solutions. Conseguently, we can use this Lechnique

Lo model SE waves interacting with an irregular CMB with confideuce.



-102 -

The previous appréach is extended here to allow an inclusion of velocity
' gradienfs in the pfopaga§ihg médium. Although one cén expect the two XK-E
solutions to give simnilar results for SHeSH phases, such a modification allows
us to model core phases with more complicated propagational paths such as
SKKS and PKIKP. This section outlines a practical procedure for implemen-

tation of the gradieni K-H method.

Sobolev (1930) shows that the Kirchhoff formula can be generalized for
propagation in heterogeneous material. The formalism here is similar to
that of Haddon and Buchen {1981) and Sinton and Frazier {(1982). We differ
from Haddon and Buchen in that we allow the surface over which we
integrate to deviate from spherical symmetry. In conirast to Sinton and
Frasier, we integrate in the time domain. We suppose the existence of a
potential ¢ in a heterogeneous volume V which obeys the wave equation.

1 9%
B(z,y.z)? 8t2

,—Vzgo =9 (3.1)

From the scalar integral represenlation theorem, we write the potential as a
linear surface integral over 8V, the surface of V,
plet) = [[G(zet)*Td(z.t) - $(z.t)* LGz £.t)] n(z)dS + f(et)X3.2)
oV
where ¢(g,t) is not on the surface and f{gt) is the direct wave which is
dependent on the source. The form of this equation is identical to the half-

space Kirchhoff-Helmholtz integral. The difference is that G, the Creen’s

function , is governed by
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1 8%G

By 2 oLt -VG=6(t -¢t,)8(e—2z) . (3.3)

We e'mphasize that the propagation of shear and compressional waves in
a héterogeneous medium is approximately governed by two wave equations if
the fractional variation of p, u, and A over a wavelengtn of the disturbance is
small (Ewing et al., 195‘7) everywhere except over material boundaries. If

these conditions are not met, equation (3.1) and (3.2) are invalid.

We invoke a further approximation and use geometric ray theory to esti-
mate ¢ and G on the reflective surface. This assumption is appropriate for
precritical high frequency SHcSE reflections which are far field disturbances
and have paths with no turning points. The preceding theory does not
exclude phases which go through turning points and are described by WKBJ
solutions. However, for SHcSH, geometric ray theory is sufficient. There-
fore, the Green's function on the surface 8V is approximated by

_ 6t -7,

G 4ans,

{3.4)

where S, and 7, are the spreading factor and travel time . respectively, of a
ray traveling from z, a point on the surface 8V, to g, the receiver. Similarly,
$ on the surface is well approximated by

- Dt —7,)

$ S,

(3.5)

S, and 7, are the spreading and travel time of a ray traveling from z,, the

source location, to z, a point on the reflecting surface. Figure 3.1 shows the
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(R,, 6,,&,)

' (Rn 9‘ !Ee )

Surface 9V

X

Figure 3.1. Display of source-receiver geometry showing the source position

Z, =(R,.6,.t,). the receiver position g = (R,.6,.t,). and the sur-
face position z = (R.6,¢) coordinates. These angles are defined

with respect to the coordinate system shown below the surface. 4,
and A, ere also shown.
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- source, fé;eiver and surface position and the relevant ray‘paths, 'f (t) ié the
source time fun_c-tion and is specified to be the first derivative of an isotropic
Haskell soufce. és in Chapters 1 and 2. D is a plane wave reflection coefficient
dependent on the angle between the local normal to the surface and the
mcident angle of the ray impinging on the surface. Eere we have invoked the

oG 0%

tangent plane hypothesis as discussed in Chapters 1 and 2. a—n-and -aTare
estimated as follows:
8¢ o DF(t-7)
o A V7, ' (3.6)
5(t -7
oG o _(__.L)--V_TE.E . (3.7)

an ~ 4rS,

These estimates are obtained by assuming that the amplitude factors S,, S,.

and D vary slowly over the surface compared to the phase.

The Eikonal e;{uation

Vr-¥1= 1

U= ey (38)

states that V7, and V71, are vectors which are parallel to the normal of the

wavefront at all points along the ray paths and which have lengths of

1 T
—ﬁ(z.y.z)' hencg,
COSY,
VT, = 57— 3.9
— = Blzy.2) (3.9)
VT, °OS¥e (3.10)

" Bz
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where i[/,, and ¢, are the angles between the rays and the local normal and
f{z .y,z) is the velocity just above the surface. Substitﬁtion of expressions

(3.4), (3.5), (3.8), (3.7), (3.9) and (3.10) into the integral (3.2) yields

. th‘)z 41176 b/; S‘,D.Sc f(t—To ~7,.){cosy, + cosy,)dS . (3.11)

We evaluate equation (3.11) numerically. Haddon and Buchen (1981) evaluate
the identical equation but they select the two-way travel time and azimuth to
parameterize V. Their choice reduces integral (3.11) to a one-dimensional
cvonvolution. This transformation can be accomplished only for symmetric
‘ sur-faces. In their approach, the Jacobian associated with the two-wa'y travel
time and azimuth was analytically calculated assuming spherical symmetry
of the surface. This specialization is inappropriate for the problem at hand

and the integral is parameterized using the spatial coordinates on the CMB.

The method of integration is a summation of single point evaluations of
the integrand and requires estimations of D, 75, T¢s So, S¢ COS¥,, and cosy,
as a function of position on 8V. The reflection coefficient is 1 everywhere on
the surface. This value is appropriate for a plane SH reflection from a flat
interface between a solid and fluid. The same reflection coeflicient is used
for the isovelocity half-space Kirchhoff-Helmholtz modeling. This reflection
coeflicient ignores the possibility that £opography on the CMB polarizes SH
vdisplacements into P or SV displacements. This assumption is probably
justified here because the surface normal does not greatly differ from the
radial direction in the topographies we model. If polarization is important. it

is expected that the amplitude anomalies calculated here due to focusing-
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defocusing by the bouﬁdary provide a lower beound on the effect of CMB
topogréphy. ‘ |

The'veldcity of the propagational medium is a function of radigs. Thus,
we ‘can use conventional ray theory for spherically symmetric Earth (Bullen,
1965) to calculate 7,, 7;, S,. S;. cosy,, and cosy, al each point on the sur-
face. Then the travel times, spreading factors, and ray parameters are

dependent only on R, R, . R, . A,, and A,. These parameters are displayed in

Figure 3.1.

We integrate equation {3.11) in the following manner. The surface is
described by a Cartesian function z{x,y) as in previous chapters. AS, the
discretized area element of 85, and n are calculated from z{x,y) with simple
calculus formulas. The topography is converted to spherical coordinates
{R.6,t) . Given these coordinates and the source location (R,,6,.£,) and the

receiver location (R,.6..£,) we calculate A, and A, with these identities:
cosA, = sin{¢, cosé, sin¢ cos@ + sin¢, siné, sin¢ sin@ + cos¢, cos¢3.12)
cos), = sin{, cosf, sinf cosB + sing, sinf, sin¢ sin@ + cosf, cos¢ (3.13)

We next search through a table containing travel times, spreading factors,
and ray parameters as a function of R and A, given the quantities R, 4,, and
A;. R, is equal to R, in all calculations of this study. The table is séarcbed
twice for each surface point; these two searches find 1) the ray which goes
from the source to the surface and 2) the ray which goes from the surface to

the receiver. We b_btain the ray information and compute the two-way travel

time 7=71,+7,, the product of the spreading factors

——— and the sum of
‘:’058
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the cosine factors cosy, +cosy, for all points on the surface. The cosine fac-
tors are calculated from the ray parameters and the direction of the local

normal with the following expressions:

E.BI_)Q]% _ (ﬁpl

COSY, = COSO {1—( - 7

) sina (3.14)

%
cosy, = cosa {1—(%2—)2} + (ﬁ}?;z) sina . (3.15)

The angles ¥,.¥,, and a are shown in Figure 3.2. o is the complementary
angle of n-A. Fofmula (3.15) is based on a coplanar assumption and is
sufficiently accurate for the surfaces and source-receiver positioas in this

chapter.

The ray information is generated by tracing a family of rays through an
Farth comprised of several 100 kilometer thick homogeneous shells. Table
3.1 shows the velocity model used to calculate this information. For all the
calculations in this chapter the density of the receiver and source, p, and p,,

is 3 gm/cc and the density of the medium just above the surface, p, is 5
; ' . dp . : . : :
gm/cc. We obtain an by differencing and using the following expression

from Ben-Menahem and Singh {1981) to compute spreading of tle up and

downgoing ray al a given radius K:

[___p‘ | ap: *

'»i= : 2 _ ,2y-1/2 (2, . 2y-1/2 3.
S; G Sind, dAi\(m P®) (n* -~ p? (3.16)

where
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- Figure 3.2. Close up of angles ¢,,¥,.a and the normal nn.
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Table 3.1

Radius velocity
(km)  km/sec

6371 4.36
6271 4.45
6171 4.60
6071 4.776
5871 4.86
5871 5.10
5771 5.66
5671 5.90
5571 6.13
5471 6.23
5371 6.36
0271 6.45
5171 6.50
5071 6.55
4971 6.62
4871 6.66
4771 6.73
4671 B.78
4571 6.83
4471 €.88
4371 6.93
4271 6.97
4171 7.02
4071 7.07
3971 7.12
3871 7.17
3771 7.21
3671 7.26

3071 7.30
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o dr 1 e | mp I
%= G [Tre | 2™ &= (R |Fun]

R ) ) . R,sini
Here n; = —— and p; is the density. p is equal to ———

i 8

When the local angle between the normal and the incident ray exceeds
the critical angle, the surface is not illuminated. This constraint places a
limit on the area of the integrated surface as a function of source-receiver
separation. Figure 3.3 demonstrates this fact. A ray traveling through a JB
Earth reaches critical at 44°. The maximum area of illuminated surface
occurs when the source and receiver are coincident. As the source and
‘receiver separate, the integrated surface shrinks. We are unable to calculate

a synthetic past a source-receiver separation of 70°.

Thé range of takeofl angles and the increment of angle Ai of the ray
family depend on the source and receiver positions and the density of ray
information needed to produce a smooth solution. The ray information is
retained at a prescribed range of R and increment AR. The range of K is
based on the maximum height of the topography. In practice, we constrain
the topography to be less than or equal to 100 kilometers above the CMB.
The velocity with'uj this 100 kilometer shell is a constant 7.3 km/sec. The
underlying medium' is a fluid core. The increment AR must alsc be fine
enough to produce a smooth answer. The functions S,”1, 5,7}, 7 and takeoff
angle as a function of R and A are shown in Figure 3.4. The ray information is
fetained for 10 kilometer subshells starting at F equal to 3571 kilometers

and ending at R equal to 3471 kilometers and is displayed for every other
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Figure 3.3. A diagram which displays the progressive shrinking of the surface
area over which we integrate geometric ray information as the
source and receiver separate.
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Figure 3.4. Plots of functions of §,7%, §,7%, i°, and T as a function of A and R. R
ranges from 3571 to 3471 kilometers, shown in increments of 20
kilometers. Below the graphs is a schematic diagram demonstrat-
ing how the ray information is determined for each point on the
bumpy surface.
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subshell in this figure. A schematic diagram below these functions shows the
final 100 kilometer shell broken into subshells and the intersection of the
topography: with these subshells.

After obtaiﬂing the spreading factors, the two-way travel times, the
cosine surﬁs, and AS, we calculate the contributions to the integral at each
point. We then sort and add the contributions according to increasing 7 to
construct a numerical ramp response. Finally, we convolve the third deriva-

tive of a Haskell isotropic source with this numerical ramp response to

nbtain the time derivative of ¢ as in previous chapters.

Examples and Comparisons

The modified KirchhofI-Helmholtz method is tested in three ways. First,
we specify an isovelocity model and a spherical CMB. Then the modified K-H
technique should give the same results as the first motion solution of
Chapter 1 for an SE wave reflecting off a rigid sphere. Secondly, we now
allow the SH wave to propagate through a JB Earth: the CMB remains a
sphere. Then the modified K-E solution should be the same as geometric ray
solutions for a core reflection. Finally, we input an isovelocity model but
allow the CMB to deviate from spherical symmetry. Then both the modified
K-H solutién and the half-space K-H solution should be the same. These three
tests are not absoluie measures of accuracy but do verify the self-

consistency of the method. Moreover, the tests highlight some difliculties

with the modified K-H technique.
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"A profile of synthetics generated for the first test is shown in Figure 3.5.
These wéveforfns afé SHcSH reflection which travel thrbugh a homogeneous
Earth with a velocity of 7.3 km/sec. and reflect off a spherical CMB. The
peak source strength, calculated by convolving the third derivative of a
Haskell sc‘)urce (B =0, k =2) with a pure ramp, is 0.448 . The spreading for-
mula used to calculate theoretical amplitudes is taken from equation {(1.21)
in Chapter 1. The parameters of that formula are‘shown in the diagram above
the synthetics. The numerical and theoretical peak amplitudes adjacent to
the synthetics compare well. As the source and receiver separate, the noise

increases until it significantly contaminates the solution at 70°.

There is a simple explanation for the progressive jitter in the synthetics
as the source and receiver separate. Unlike the half-space K-H method, the
modified technique depends on a sufficient number of rays and a fine AR as
well as an adequate discretization of the topography. We calculate a simple
reﬁection off a sphere to assess the relative impacts of the coarseness of the
gridding of thé topoéraphy vérsus the number of rays and increment of
takeoff angle. The source signal wavelength is 35 kilometers which exceeds
the grid length of the surface elements in all cases. Figure 3.8 demonstrates
that the rav densitv controls the numerical noise of the seismogram much
more than thé coarseness of the grid. The seismograms calculated with 167
‘rays at an increment of .1° are all badly contaminated with noise becaus=
the ray family does not illuminate the sphere with a sufiicient density of ray
informatic:ln for a smooth solution. The ylength of an element comprising the

surface wvaries from 4.49 kilometers (seismogram A) to 9.03 kilometers
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CMB radius is 3471 kilometers.

Figure 3.5. Reflections off a sphere which have propagated through a constant
velocity Earth ( B =7.3 km/sec ). Parameters from equation
(1.21) used to calculate the theoretical amplitude are defined in
the top diagram. Source-receiver radius is 6271 kilometers and
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Figure 3.6. Four sets of synthetics which correspond to calculations performed
with the number of rays and increment of takeoff angle shown
below the set. Synthetics A, B, and C corresponds to calculations
done with the number of elements and grid size shown in the upper

right table. Source-receiver radius is 6271 kilometers. CMB radius
is 3471 kilometers.
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(seiémdgram C). However, the increment of arclength subtended by Ai- =.1°
varies from 7 #ilometersfor the surface illu_rninated by near vertical rays tc
50 kilome’ters kfor the surface illuminated by near grazing incidence rays.
For this Vpartvicular source-receiver geometry, the elements which are
illuminated by grazing incidence rays contribute to the response at a later
time. Thus the numerical noise in the synthetic increases as a function of
time. In contrast, synthetics computed with 1970 rays at an increment of Ai
of .01° are smooth. The arclength subtended by .01° varies from .7 kilometer
to 6.8 kilometers. There is also a longer period truncation phase at the end
of all the synthetics in Figure 3.8. This truncation phase originates from the

finiteness of the grid, as discussed in Chapter 2.

We next calculate synthetics which propagate through a JB Earth and
reflect off a spherical CMB and verify that the peak amplitudes of the Kir-
chhoff synthetics are predicted by spreading. The expression for the spread-
ing of a reflected core phase is from Ben-Menahem and Singh (1981). The
amplitude of a reﬁectéd phase at the free surface is, assuming the source

and receiver are several wavelengths away from the CMB,
u = Py ZGF (3.18a)

where P, is the source strength. Z is the square root of the ratio of the
energy transported to a unit area of the CMB by the incident wave and the
energy transported away from the CMB by the reflected wave. F is the radia-
tion function and i;fev'qual to 1 since we specify an isotropic source. Because

there is no mode conversion, Z is also equal to 1. Therefore, the expression
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reduces to

N i, i, P
G = i“ﬁ" sindy, 3% " (3.18b)

" R, |p.B: sinAcosi, dA'
The results of the second test are shown in Figure 3.7. As in the first test,
the source strength is 0.448 . The two sets of numbers agree. Table 3.2 gives

the grid and ray family parameters used to calculate these synthetics.

Table 3.2
A(°) #ofelements element size (km) #ofrays Ai

0 150 x 150 6x6 788 .025

10 150 X 150 6x6 788 .025

20 150 x 150 ‘ 6x6 788 .025

| 30 150 x 150 6x6 788 .025
'; 40 - 150 x 150 6x6 1967 .010 |

| 50 200x200 Bx6 1967  ..010

60 200 x 200 6x6 1967 .010

In addition to prescribing a greater density of rays, we also enlarge the grid
at larger values of A to eliminate a truncation phase. This phase cannot be
avoided when A is equal to 70° because the code computes 4 seconds of

response at this distance.

Finally, the third test establishes that the modified K-E code and the
half-space code produce the same result if the surface deviates from spheri-

cal symfn'etry and the velocity model is constant. The results are shown in
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Figure 3.7. Reflections off a sphere which propagate through a JB Earth.
' Parameters from equation (3.18) are defined in diagram above.
Source-receiver radius is 6271 kilometers. CMB radius is 3471

~ kilometers.



- 121 -

Figure 3.8. The SHcSH synthetic propagates through a medium with a velo-
city of '?;.3 km}’sec‘énd reflects off a plateau 10 kilometers high and 100
kilometers widef The solutions are almost the same at 0°. Eowever, Lhe
peak‘amplitudes differ by 10 to 30% as A increases because of inadequate

interpolation in the modified K-k technique.

These Lhree tests demonstrate the consistency of the modified K-E solu-
tion with geometrical optics solutions and with half-space K-k solutions. We
now present some solutions of SHeSE waves propagating through a JB Barth
and reflecting off a distorted CMB. The first example is shown in Figure 3.8.
The topography on the CMB is described by

{ .. % "w ‘ _
z = {3471< - {z* + y‘)] if (z%+ y%)¥> %— (3.19)

¥ o
z = [34?12 - (z%+ yz)} +c if (z?+y¥)¥< %— ‘

The height, ¢, is 10 kilometers and the width, w, varies from 0 to 200 kilome-
ters. This formula describes an abrupt plateau centered at the midpoint on
an .otherwise spheric‘al CMB. The plateau causes a precursory reflection
_whicljl arrives 2.66 seconds early. The precursor grows in amplitude as the
width of ihe plateau increases. There is no anomaly in amplitude or travel
time n thek Synt‘hetic reflection from the plateau with w equal to 50 kilome-
ters. Thus there if a characteristic size of a shape which is undetectable by
short period data. Cvera}l there is nol much reduction in the peak ampli-

tudes. Clearly. much broader topographies are rcauired to produce
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Figure 3.8. Synthetics computed with isovelocity K-H and modified K-H code for
reflections off a plateau on the CMB 200 kilometers wide and 10
kilometers high. Reflections travel through a constant velocity
medium of 7.3 km/sec. Source-receiver radius is 6371 kilometers

and CMB radius is 3471 kilometers.
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Figure 3.9. Reflections off a plateau 10 kilometers high and 0 to 200 kilometers
wide, propagated through a JB Earth. Source and receiver are
separated by 10° and are at a radius of 6271 kilometers. CMB

radius is 3471 kilometers.
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significant amplitude changes. In Figure 3.10 the shape constant is held con-
stant but the angular separation of the source and receiver varies from 0° to
50°. The center of the topography is always at the bounce point. The

waveforms do not change much with A. The amplitude reduction results pri-
marily from %— decay rather than defocusing. The travel time residuals

decrease from -2.66 seconds at 0° to -1.6 seconds at 50°. Again the
waveform degenerates at the larger values of A because of the lack of
equidistant interpolation of the ray Information. There is also a longer

period truncation phase at 50°.

We also calculate reflections off a gentler relief described by the follow-

ing formula:

ﬁ ¥ \
z = {3471‘ —(z?+ yz)} if (z2% + y2)% > -22& {3.20)

-

and

Y . w
. . (z= + y")’i -3
z =z — (-2—)[005( Y- 1] where W = 2r( " )

Here ¢ is 20 kilometers and, as a result, causes the reflection to arrive 5.48
seconds early. The width, w, varies from 100 to 500 kilometers. The synthet-
ics are shown in Figure 3.11. Such a bump causes similar effects as the pla-
téau. There is a‘bwidth of this relief which cannot be detected by a 5 second

pulse. There is also the development of a precursory reflection. A reflection

off a bump of width 500 kilometers has its peak amplitude reduced by a }3—
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Figure 3.10. Reflections off a plateau 10 kilometers high and 200 kilometers
wide, propagated through a JB Earth. The source-receiver separa-
tion varies from 0° to 50° and the radius is 6271 kilometers. CMB

radius is 3471 kilometers.
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Figure 3.11. Reflections off a gentle bump 20 kilometers high and variable width,
propagated through a JB Earth. The source and receiver are coin-
cident at a radius of 8371 kilometers. CMB radius is 3471 kilome-
ters.
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Unfortunatélfnoise contaminates this same synthetic due to interpolation

probvlems in the integrand.

These exémples of the modified K-H solutions yield promising results but
also highlight some noise problems. This noise stems from an insufficiently
smooth interpolation of the ray information on the surface. This is correct-
able. Synthetics from isovelocity models in Figure 3.8 and JB models in Fig-
ure 3.10 demonstrate that the half-space solutions give similar relative
amplitude and travel time anomalies as the gradient solution for SH waves
reflecting off a bumpy CMB. Thus, from here on, we will use the half-space
technique to model the effect of shape on ScS waves with good assurance

that significant propagalional effects are not being neglected.

Modeling CMB topography with the half-space Kirchhoff-Helmholtz method
What size of CMB topography is compatible with the ScS data set? This
phase has amplitude and travel time anomalies and precursors. Mitchell and
Helmberger (1973). Lay (1983), and lLay and Helmberger {1983a) report
anomalous long period ScS/S ratios which cannot be predicted with a smooth
JB earth model at North American stations for Argentine and Sea of Okhotsk
events. Both data sets are approximately SH polarized. Lay's data are
shown in Figure 3.12 as a function of delta and azimuth. These ratios scatter
from .8 to .1 and appear to be a function of delta and azimuth. Short period
ratios scatter by the same magnitude but do not obviously correlate with the
ilong period patterns. It is not clear whether the anomalous ratios are

caused by heterogeneities along the path of S or ScS. Mitchell and
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Figure 3.12. Observed long period peak-to-peak ScSH/SH amplitudes for Argen-
tine events recorded in North America as a function of delta and
azimuth. Patterns are corrected for radiation pattern only. Solid
lines are ratios predicted for JB values (from Lay and Helmberger,
1983a).
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" Felmberger (1973) place the heterogeneity along the SEcSE path but Lay
places: it along the S path. We explore here the proposition that the

anomalous behavior occurs along the SeS path.

There is a‘further ambiguity as to where the heterogeneity lies along the
ScS path. Mitchell and Helmberger (1973) interpret the anomalous ratios as
a result of a 60 kilometer thick high velocity gradient at the base of the man-
tle. This gradient causes SHeSH to bottom in the transition zone in D' rather
than reflect off the CMB. Long and short period SHcSE waves have precur-
sors which support the view that D" has unusual structure (Lay and Helm-
berger, 1983b). These precursors are observed at A between 70° and 80° for
specific source-receiver geometries. Examples of this phase in the short and
long period band are shown in Figure 3.13, from Lay and Helmberger (1983b).
An alternative explanation for the anomalous ratios and precursors is that

SHcSH reflects off an undulating CMB which causes focusing and,/or defocus-

ing and multiple arrivals.

-

The proposed relief on the CMB should produce the travel time residuals
of Sc8-8. The<e residuals are not contaminated by crustal and upper mantle
slructure 'fmd vriginate from the £ and/or ScS paths. Again we assume that
these ancmalies arise from S¢S interacting with a bumpy CMB. Tigure 3.14
shows examples of SeS-S residuals as a function of azimulh and delta from
Lay (1983). The maximum scatler’ of the residuals is approximately 8
seconds. The mean value of the residuals scatter by 2 and 4 seconds as a

funclion of deita and azimuth, respectively.



T-A-8.3, sec

Sad Scd ScS
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Figure 3.13. a) Observed profile of long period SH seismograms for a Sea of
Okhotsk event recorded at North American stations. b) a typical
short period record from this area (from Lay and Helmberger,
1883b).
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We assume that the residuals are caused by a bump described by equa-
tion (3.20). The choice is arbitrary; however, this gentle shape is rn-ore physi-
cally réasonable than an abrupt plateau. TFigure 3.15 displays reflections at
se?eral distances from upwarps with heights of 10 kilometers and widths
frorn 100 to 700 kilometers. No instrument is included. The cenler of the

bump is always at the bounce point of the reflections. The travel time resi-

duals range from -2.7 seconds at 0° to 2 seconds at 40°.

This figure Ihas two important features. First, an upwarp with a width of
100 kilometers creates no amplitude or travel time anomalies in the synthet-
ics. The Kirchhoff-Felmholtz code predicts some energy arrives early
because of the upwarp. However, this energy is significantly lower in ampli-
tude than the later pulse. Thus, the synthetics have an apparent delay. This
pulse arrives at the time of an ScS reflection off a spherical CMB. Clearly,
this upwarp is too small laterally to cause the perturbation of the two-way

travel time of many elements which comprise the CMB.

The two-way travel time of an increased number of elements are altered
as the upwarp widens., More elements are illuminated and contribute to the
initial portion uf the refleclion. The vverall impact of these liming changes is
the broad.en'mg .of the pulse until it is made up of two arrivals. Simulta-
weously, the peak amplitude decreases. The pulse slarts Lo lose its multiple
arrival appearance when the width of Lhe bump exceeds 400 kilometers.
Enough elements contribute to the response at an early time so that the first
pulse is larger than the second one. For upwarps 600 and 700 kilometers

wide, the resulting reflection is simple and has a slight Jong period tail. Also,
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Figure 3.15. Reflections off a 10 kilometer high bump as a function of A and
width. Peak amplitudes are adjacent to synthetics (isovelocity

Kirchhoff model ).
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the peak amplitude increases. The upwarp is so wide that, in effect, it acts
like a spherical surface. The trend of amplitudes indicates that reflections
from a large enough width would have only a travel time anomaly and not a

waveform anomaly.

The second f;éatuire is that the waveforms vary only slightly as a function
of source-receiver separation. The maximum amplitude decreases with dis-
tance because of géometric spreading. Then we need only calculate the
responses to a bump when the source and receiver are coincident. The
impact of the topography at wider angles is easily extrapolated from synthet-

ics at this source-receiver position.

To better assess the relative effect of CMB relief on the observable
bands, we calculate long and short period synthetics for reflections from a
wide variety of bump sizes, shown in Figures 3.16 and 3.17. In all cases, the
source and receiver are coincident. The range of heights is designed to
reproduce the range of scatter of ScS-S residuals. These upwarps produce
negative residuals whereas the observed ScS-S residuals are both positive
and negative. Fowever, a simple model is sufficient because we are

interested in length and height scales rather than precise shapes. These syn-

+

hetics are distorted in the same way as the synthetics i Figure 3.15. There
is always an upwarp with a width below which long and short period synthet-
ivs reflections cannot detect. As the upwarp widens, a precursor develops
and is especially obvious in the short period band. At widths of 300, 400, 500,
and 600 kilometers, there are two arrivals of equal magnitude and the peak

amplitude is at a minimum. Then, as the bump widens further, the peak



-135-

- c=i0km
(km) '"‘:"‘55"" mu: Sr‘pl
900 538 j\/—\——. 114
800 -S06 f\/—~———- 107
700 458 /\/_,-———.099
600 -403 '/\/./-—.oes
500 435 /\_\/-—.077
40 254 A\/—‘.(m
300 221 /\/'\.oas
200 A3 ‘/\/\ 13
P A\ —

0 —'V\’_—"” —/\/—‘ 151

Ssec
c=20km

S -
%00 827 /\/_\_o%
820 377 /\/\/.oez
700 325 /\/\/—.072
600 274 ‘/\/\/-.oet
500 215 /\/\/—‘.osz
400 183 /\/\/‘.oes
300 291 /\/\/—\.%4
200 493 «-/\/—§., 19
100 666 ___/\/~. 144

Seec

Figure 3.16. Short and long period reflections from relief with height 10 to 20
kilometers and widths 50 to 900 kilometers (isovelocity Kirchhoff

model ),
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Figure 3.17. Short and long period reflections from relief with height 30 to 40
kilometers and width 50 to 900 kilometers (isovelocity Kirchhoff
model)..
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- amplitude increases until the synthetics have only travel time anomalies.
The ratios of the peax amplitudes of these synthetics divided by peak ampli-
tudes of reflections from a spherical CMB in Figure 3.18 suggest that the

topography impacts both frequency bands similarly. The long period synthet-

ics is only sligi'ntly less depleted in energy than the short period synthetics.

These experiments show that upwarps with widths less than 100 or 200
kilometers fail to cause either a travel time or amplitude anomaly in SHeSH
reflections in the long afxd short period band. Upwarps with widths exceeding
600 or 700 kilometers do not cause any obvious waveform distortion in these
syntheties. The trend of the amplitude ratios suggests that a broad enough
bump on the CMB will cause no amplitude defocusing. Furthermore, the
peak amplitude of the ScS reflections can be reduced to .2 of the peak ampli-
tude predicted for a reflection off a spherical CMB. Thus, if the predicted JB
ratio of ScS/S is approximately .5 at teleseismic distances, then we can
reduce it to .13 with a bump 40 kilometers high and 500 kilometers wide by
defocusing. This number is almost the lowest ratio observed by Lay and

FHelmberger (1983a.b).

- The modelinz also predicts precursors Lo ScS reflecticons, a phencmenon
vbserved b\ Lay and Eelmberger {1983a,b). If we interprel the observalions
as a result from an upwarp on the CMB, then we must conclude from ligures
3.16 and 3.17 Lhat the height of the bump is at ieast 20 kilomelers and the
width of the bump ranges from 300 to 500 kilometers. Such upwarps pro-
duce a precursor which is less than half the size of ScS and which arrives 10

Lo 15 seconds before ScS; these characteristics roughly match Lhose of the
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. observed precursors. We caution, though, that the synthetics are for a coin-
cident source-receiver while the actual precursors are observed for A

between 65° and 75°.

Certainly, we must examine the CMB relief question in light of the varia-
tions- of ano‘malies as a function of delta and azimuth. Any systematic
changes provide a powerful constraint for the lateral extent of the topogra-
phy. Unfortunatély the systematics of these anomalies are difficult to glean .
from the data as Figures 3.12 and 3.14 show. If the timing scatter in Figure
3.14 is explained by CMB topography, the resultant relief will not cause any
changes in the reflection amplitudes. We can only match the gradual changes
of residual or amplitude ratio with delta or azimuth with these large scale
bumps. Thus we must model how anomalies caused by CMB topography per-
sist in azimuth or delta. For this preliminary study, we assume the
anomalies to be a function of delta. We cannot model the effects of relief in
the A range of interest because of the‘ contamination by truncation phases.
However, the results from the narrower range of angles may be relevant for

the interpretation of the anomalies of SeS/S in the range of 55° to 85°.

Tﬁe bump is positioned on the surface so that at 30° it is at the bounce
point of >the reflection. The choice of heights and widths of the bump is
designed to maximize the waveform and amplitude distortion. The resultant
synthetics are shown in Figure 3.19 and 3.20. ‘Notably, precursors appear
and disappear as a function of A, a result of the finite exteht of the relief on
the CMB. This fea.ture may be present in profiles of ScS. For instance, we

see a distinct precursor to ScS at ALQ which disappears at FLO in Figure
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Figure 3.19. Long and short period reflections off an upwarp of height 20 kilome-
ters and widths 300 and 400 kilometers as a function of A (isovelo-

city Kirchhoff model).
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Figure 3.20. Long and short period reflections off an upwarp of height 40 kilome-
ters and widths of 400 and 800 kilometers as & function of delta

(isovelocity Kirchhoff model).
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3.13. Associated with the appearance of the precursor is the occurrence of
'the 'amplitude minimumni, seen in Figure 3.21. This figure shows the ratios of
the péak um;ﬂitudes of Lhe reflections from a bump divided by the predicted
peak amplitudes of a reflection from a sphere. All the graphs have a
minimurﬁ which devélops over a 20° range. This dip in the ralio curve resem-
bles a similar plot of Mitchell and Eelmberger (1973). We also note that
reflections from a bump 40 kilometers high and 400 kilometers wide have a
precursor which has the appropriate height and time separation from the
main phase; Alternatively we can argue that reflections from bumps 800
kilometers wide and 40 kilometers high match the observations in that they

appear to be ScS waves with a negative residual.

Conclusions and Discussion

We accomplish two goals in this study. First, we establish the feasibility
of computer implementation of the Kirchhoff-Helmholtz solution for a
medium with a radially symmetric velocity gradient. This method requires a
new computational approach because we must trace two sets of rays for
everv point on the surface. There are problems with jitter in the synthetics
;because of an inadequéte interpolation scheme. The current implementation
traces rays and retains information at ecqual increments of Ai°. Unfor-
tunately, equal increments of Ai° do not correspond to equal increments of
horizontal and vertical distance along the integration surface. There are
areas which have a high density of rayvs and other areas which have a paucity

of ray information. A remedy for this uneven distribution is the higher order
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a function of A.
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. interpolationh of the ray informétion. The amplitudes, travel times and ray
parar_neters in Figure 3.3 are well-behaved and readily approximated by low
ordef polynomials as a function of A and F. Only a few rays must be traced
through coarse subshells to obtain enough synthelic data for interp&ation.
Furthermore, the interpolation has to be done only once for a given velocity
model. The criterion for fitting would be either a least squares one or a min-
max one rather than a Taylor series because we do not have the analytic first
or second derivatives with respect to A or B of the ray information. Unce one
has interpolated the synthetic data, all the ray information can be described
with only a few coeflicients. Furthermore, one can calcuilate the ray informa-
tion at each point with a formula rather than search through a large table.
Finally, the smoothness of the synthetic seismogram will depend on the

fineness of the surface discretization only.

With improvements the gradient technique enables us to model any high
frequency precritical core phase which transmits or reflects through a
bumpy CMB. It is a distinct alternative to scattering theory (Chernov, 1960;
Bass and Fuks, 1979) currently used by seismologists. Scattering theory and
;Kirv:hh'off theory constitute. in a sense, two limiting cases. Both methods
assume ordinary ray theory to calculate the amplitude and travel times of
the incident wave before it interacts with the anomalous region. After this
assumption, the simiiarity ends. The scattering method prescribes the sta-
tistical properties of the medium to infer the statistical properties of the
wavefleld, such as the meen square fluctuation of the amplilude and the

phase. The deterministic material properties are not specificd. Yowever, the
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mean value of the property, the mean square of the deviation, and the éorre‘
lation function as a function of position are specified. If the property is ran-
dom ;\*ith a hormal or Gaussian probability function, then these three func-
tions are a complete statistical description of the medium (Bass and Fuks,
1979). tsualky only the correlation function is specified in seismological
scattering studies. |

The spatial correlalion function is a measure of how deviations of velo-
city and density from the mean values correlate from place to place. If the
fluctuations of the velocity and density are random, the correlation
coeflicient should vanish at a large enough distance. The correlation

coefficient with zero separation is the mean square fluctuation and is normal-

Ay

ized to 1. The correlation function used by Chernov {1960) is eithere % or

_r®

e 2%, The quantits' a is called the correlation distance or radius and is a
measure of the linear dimension of the longest irregularity. For distances
beyond a , the correlation céefﬁcient is zero. Scattering theory requires
that o <<< L where L is the length of the scattering volume or surface. In
most discussions there is no stated assumption regarding a and the defor-
mation wavelength. This model is statistical and ‘does not allow for a deter-
ministic variation of parameters. We cannot discover from these models how
the average radius of the core or how the average £ wave velocity in D”
varies. In contrast, the Kirchhoff-Helmholtz method prescribes a determinis-
tic propertv. the topography of the core-mantle boundarv, to caleulate the
deterministic properties of the wavefield. With this method we cannot

predict the eflect of random fluctuations superimposed cn the large scale
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variations of the material properties because of the restrictions of the
tangent plane approximations. A real surfaece can have both kinds of varia-

ticns and waves can be affected by both of them.

There is another obvious difference between the two approaches. The
seismologica{ scattering studies assume that the deviations of material prop-
erties occur in a three dimensional volume with symmetry in one direction.
However, the Kirchhoff-Helmholtz studies assume surface deviations. This
difference makes the results of the two methods, a correlation distance and
a topographic profile, diflicult to compare. Detailed discussions of the simi-

larity between the two quantities is unjustified.

The final difference is significant. The random scattering solutions (Aki
and Richards, 1980) presume 1) the deviations of material properties p and
éa, are small compared to the mean value of these properties p and a and 2)
the solution consists of two parts U and u where [’ is the solution to the
unperturbed medium and v is the scattered wavefield. u is much smaller
than U. If these conditions are met, 2 obeys a wave equation.

1 8%u

o 2
Gg - 0%

-V =470 (3.21)

Here & is a body force-like term containing the relationship between 6p, da
and . We can write the solution to the above equation as an integral over
the volume of the scatterer and it will bear a strong resemblance to the K-H
solutions. Eowever, it is onlv correct if u is small. Moreover, £ is not a true
source term but a first-order perturbation result. To solve the integral equa-

tion involving @. workers assume that the primarv wave is a plane wave or a
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spherical wave and evaluate the integral. This solution is the Born approxi-
mation {Morse and Feshbach, 1953) but it is occasionally and erroneously
calle;i the Kirchhoﬁ solution; thus, one might incorrectly deduce that the
Kirchhoff solution is appropriate for long wavelength incident waves and
small pérturbations. We stress that the Kirchhofl solution is valid when the
radii of curvature of surface deviations are large relative to the incident
wavelength. In addition, the perturbation solution is valid for all angles of
incidence if the incident wave is a good approximation at these angles.
Because of the tangent plane approximations assumed in the Kirchhofl-
Helmholtz method, we cannot model the impact of topography on critical

angle waves.

Despite this disadvantage, the preliminary K-H modeling predicts that
important featurgs of the ScS data set are compatible with upwarps with
heights of 10 kilometers or more and widths of 300 to 600 kilometers. Are
these scales too extreme to exist? Virtually all core phases have anomalies
- that are dependent on station-source geometries which can be interpreted in
terms of CMB relief. However, the seismological community in the past {Cox
and Cain, 1972) has concluded that deviations from the CMB can be no larger
than 1 kilometer. Fox; example, the strongest argument against significant
topography is the existence of 1 FHertz PnKP and SnKS, n > 2 and <9. Bolt
{1972) infers from statistics on PnKP a bound of 1 to 2 kilometers of relief.
Other studies of these phases differ substantially from Bolt’'s. Chang and
Cleary (1578,1981) and Doornbos (1980) use array analysis on 1 Fertz PKKP

phases to infer the existence of precursors with unusual slownesses and
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o azimuths.' Ci)ang and Cleary aléo find that certain PKKP phases themselves
ha§e anomalous slownesses, azimuths, and amplitudes which the authors
interpret asA a focusing phenomenon from significant topography from the
underside of the CMB. Doornbos estimates that a 7° dip on the boundary can
account for these observations. Our cosine bumps have dips which vary from
1° to 7°.

Array analysis of precursors of PKP,, PKP, and PKIKP (King et al., 1974;
Doornbos and Husebye, 1972; Haddon and Cleary, 1974) also yield estimates
of CMB topography. These precursors are 1 Hertz wavetrains with root mean
square amplitudes which vary from .1 to .75 of the peak amplitude of the
main phase. They are interpreted as scattered arrivals of PKP; and PKP;
interacting with a random slightly heterogeneous region on or about the CMB
; their characteristics are used to deduce a and L. But these parameters
have no clear quantitative relationship to the height or width of the upwarps.
It is uncertain whether the features of these precursors are compatible with

large scale gentle bumps. Other studies gquantify deterministic features of

PKP,
. < . ———— WWSSN short
PKP and PKIKP. Sacks et al. {1979) find that FRIKP S ort and long

- period amplitude ratios vary from .2 to 10 as a function of A. kowever, Clark
and Pearce (1981) argue that these anomalies are largely a result of Sacks'

failure to correct for radiation effects.

The amplitudes of long and short period Py, and Sgiyy vary logarithmi-
cally as a function of A. In addition, the rate at which the amplitudes of
these phases decay into the shadow scatters with station-source location

(Ruff and Helmberger, 1982; Doornbos and Mondt, 1979a.b; Mondt. 1977:
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Phinney and‘Ca‘thles, 1969). Genefally. unusual velocit;y and /or Q structure
in D" is .'mvoked to explain these anomalies. Shimamura (1962) demonstrates
that pefiodic irregularities on the CMB can cause anomalous decay ampli-
tude spectra with small scale laboratory modeling. He argues that irregular
. structures with heights of 30 to 100 kilometers can account for some of the

anomalous behavior of Pyyp.

Long and short period PcP/P ratios scatter by an order of magnitude.
{Muller et al., 1977; Lay, 1983; Chowdbury and Frasier, 1973). Occasionally
this scatter can be attributed to source-station effects (Frasier and
Chowdhury, 1974). Currently the consensus among workers is that long and
short period PcP phases are impulsive with no obvious phase distortion
despite the large amplitude variation. This observation argues for a sharp
CMB boundary (Kanamori, 1967) but it does not argue againsi an undulating
boundary. Notably, unlike ScS, PcP has no precursors. Whether bumps could

produce precursors to PcP is a subject for future modeling studies.

The analysis of PcP travel times yields estimates of CMB relief. Bufe and
Cardner (1972) use PcP and P times to infer 10 kilometers of relief. Engdahl
and Johnson (1974) invert for P velocity structure and the CMB radius by
minimizing‘PcP—P» residuals. They interpret the remaining error after the
inversion as CMB relief and obtain no more than 5 to 1C kilometers of relief.
However, this estimate constitutes, in some sense, a lower bound because
they are choosing the CMB radius which minimizes the sum 6f the square of
these residuals. Another feature is thal the absolute level of scatter of PcP-P

residuals of 2 seconds (Buchbinder and Poupinet, 1%73) 1s significantly less



- 150 -

than the overall scatter of ScS-S residuals. This difference cannot be
explained by the difference in velocities alone, which suggests that the travel

time anomalies arise from different paths.

We demonstrate from this data review that seismic evidence alone does
. not eliminate the possibility of large scale relief on the CMB. Thus, we must
examine other lines of evidence to determine whether bumps of height of at
least 10 kilometers and a width of several hundred kilometers are reason-
able. To date the only other evidence which supports this kind of relief is a
correlation between the Earth’'s gravitational and magnetic field (Hide and
Forai, 1968; Hide, 1969). Heights of B kilometers over a lateral extent of
several thousand kilometers are inferred. Even larger heights occur over
shorter wavelengths. There is a mechanical basis for objecting to heights of
this magnitude. The deviatoric stresses required to support these heights
are large. Because shear waves do not propagate through the outer core, the
rigidity and the strength of the outer core is low. It is unlikely, then, that
these bumps can be supported statically. However, they could be supported
dynamicallyv. There is no current convection model which allows relief higher
than 3 kilometers (Hager et al, 1984; Robinson, 1974). The existing mechani-
ce;I reasoning points to Burnps smaller than one reéuired by the SEcSE data
set. Smaller bumps are more compatible with the PcP dats set. This sug-
gests that possibly PcP waves see the topography of the CMB and that the
anomalies in SHeSH/SH data are primarily a result of the S wave path rather

than the ScS wave path.
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Appendix

The Scalar Integral Representation for the Receiver off the Surface

This appendix consists of the derivation of the scalar integral represen-
tatiqn and a‘derivation of the Kirchhoff-Helmholtz boundary conditions from
the scalar integral equations. Although the former part of this appendix con-
stitutes a review, the latter part may be original. Nowhere in the literature
‘are there clear presentations of the scalar representation integral and its

relationship to the Kirchhofl-Helmholtz boundary conditions.

From Officer (1958) we obtain the governing displacement equations of
motion for small displacements and velocities in a linear elastic medium

without body forces. They are

8° aA

P 6;: =+ p) g+ wVu (A1)
A% + BA
’a—;z)_= (A + ) 53-/-+ MEy (A2)
ok 8A

p 6:: =(A+ p,)-a—z—+ uViw - (A3)

where u, v, and w are the Cartesian components of displacement. p is the
density, A is Lamé’s constant and u is the rigidity. A is the dilatation and is
defined by the following equation:

ou  Bv , w

b= oz * 0y 8z (A%)
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Following Officer (1958) we simplify the system of equations (A1), {A2),

and (A3) by letting 4 = 0, an assumption appropriate for gas or a liquid. The

governing equations reduce to

Pu _ 08
P ot? oz
NS
"at2 dy
ow _ 08
pat2 8z

Furthermore, the stress-strain relationship reduces to

Opy = Oy =0, =6kA=—p

(A5)

(A8)

(A7)

(A8)

where 0., 0, 0,, are the normal stresses, k is the bulk modulus and p is

the hydrostatic pressure.

We solve the governing equations (A5), (A6} and (A7) by defining a velo-

city potential (Officer, 1958).

This potential obeys the wave equation

(A9)

(A10)

(A11)
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= £ (A12)

where o = (%;—)’6 - Solutions to equation (A11) are used to construct solutions

to the displacement eguation with the relationships (A9), (A10), and (A11).
The relation between hydrostatic pressure and the potential, as a result of

equations (A9), (A10), and {A11), is
P=9. (A13)

We now derive the scalar integral representation for a potential which
obeys the scalar wave equation (A12). A similar proof, for potentials obeying
the Helmholtz equation, is in Mow and Pao (19’71). Let us assume two such
potentiais %1 and p; exist in volume V with wavespeed a. They are the result

of two source potentials $, and ®; in the volume. Thus,
2 1 .. _
Ve, = PEA N , (A14)

:
V2¢2 - a_z?z = @2 . (A15)

We define two vectors r and r, within the volume. Figure A.1 displays the
volume V and these two vectors. We manipulate (A14) and (A15) in the follow-
ing way: a) multiply ‘(A14) by ¢, and multiply (A15) by ¢, , b) subtract (A15)
fforn equation (A14), c) integrate the resulting equation over all time and the

volume with respect to coordinates r, and t,. We obtain, after these manipu-

lations,
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Receiver

Figure A.1. The geometry for the scalar integral representation.

1>
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- , 1. 1 ‘
S 19201 — 912 — —-92i6) + —5-9,42)dV, dt, = (A16)
o V . o o

J Jiwed, — p1820dV, dt,
o V
We simplify equation (A18) with use of the chain rule.
0 . o ./,
a5 P192 = 9261) = 9192 — g2, (A17)
Thus

1 r . .
'aT f f {919¢2 — 029,1dV, dt, = (A18)
o v

1 . . }
F{Wﬂ’z“%%; .0V
We prescribe the condition that l‘,imqpl. ¢z = 0 and Lt;im{pi, @2 = 0. The remain-

ing integral (A16) reduces to

]

= 1 . .
I J t9e¥%; — 91 V3e:}dV,dt, + “—gfifpzso; - 91¢2} dV, = (A19)
a ¥V v

f.{;i‘ﬁz‘l’;—,w,@g}dlgdto

We now use Gauss' theorem to reduce the first term of the left-hand side

from a volume integral to a surface integral.

J 4 {92¥0, — ¢,Ygs) - ndS,dt, + (A20)
s 8V
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1 . .
;g_fy-i‘ﬂz%“wsﬂei 1{ _d% =

ffS’z'bx p1%23dV, dt,
o V

Here n is the unit outward pointing normal of the surface 8V (see Figure

A1)

We next define the potential ¢, as the Green's function where

G{r .1, .t —t,) is the fundamental singular solution of the scalar wave equation.
VO Lt —t,) = — Gzt —t,) = 8(z-.)5(t -t,) (A21)

Thus we can identify the vectors z and 7, as the receiver and source coordi-

nates, respectively. Substitution of the Green's function into (A20) yields

fuf (G(T.2s .t =1, )Ve(Ts.ts) — p(To 10 )YG(T.15.t —t,)} - m(7, )dS, dt, HA22)

oV

—12—V (G(T Lot =t )P T, t,) — 9 GT. Tyt ~1, )} _odVo =

f J G zo b —to)e (Touto) — ¢1(T0 Lo )6(z 1, )8(t —t,)}d V, dt,
o V

<

We use the property of the delta function

hiz).zeV
4)&(;")6(;-;_'):11;':{ %>§§V (A23)

to obtain the resuli. forreV
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olwt)= [ [Gedv,dt, - ;‘z—fy {Go—¢ G} l oot (A24)

[ J 1GYe—p¥G} - ndS, dt,
o 9V

Now let f(r,t) equal the sum of the first two terms on the right-hand side of
(A24). In the absence of material boundaries, we obtain from (A24) that

¢{r.t) = f{r.t). Thus we can identify f (r.t) as the whole-space solution with

specified initial conditions. Thus, forr e V

plet) = f@t) ~ [ [(GTe—pTG}  ndS,dt, . (A25)

The second term is the reflected part of the solution. If;r_fV. then the left
side of (A24) is zero. If r £ 8V, then we obtain an integral equation which

couples ¢ at r,, a station position on the surface 8V, with all other values of ¢
and on on the surface. This integral equation contains a singularity when

r, =1, therefore, we must evaluate the integral as a limit as r,~r,, a

receiver position on the surface.

The Scalar Integral Representation for the Receiver on the Surface

There are several derivations of the limits of integral representations as
the receiver point approaches the surface. Cole (1980) derives the limit for
the elastodynamic integral representation. Banaugh (1982) derives the limit
for the two dimensional Helmholtz representation. Mow and Pao (1971) dis-

cuss the limit for the three dimensional Helmholtz representation. For
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completeness, we include a derivation of the limit of equation (A25) as the

receiver approaches the surface.

We first specify a Green's function. For a linear homogeneous medium,
it is sufficient to choose

-1

e T =
— )

lr-7, |
5(i—to—-—7;——ﬁ . (A26)

Let ¢(r,.t) be the potential on the surface. We want to evaluate the fol-

Jowing equation:

Lim f [1GVe—¢VG)} - ndS,dt, . (A27)
oV

Iy T,

This integral is singular at one point on the surface. Let us break up the
integral into an integration over two surfaces, one which contains the singu-
lar point as the receiver approaches the surface. . and one which does not.

oV-Z.

[ {GVg—pVG} - ndS,dt, = [ [1GVg—¢VG) - ndS,dt, (A28)
"o o I

@
e

+ f J 1GVg—¢VG} ndS,dt,
o B8V-T

We now evaiuate the limit of the integral over X as the receiver approaches
the surface L and as I shrinks to zero size. The second integral becomes a
principal value. The first term of the integral containing the singular point is

Lim Lim f GJ—(_,t )dS,dt, . (A29)

€0 oz <,
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Here § is the maximum chord of . Substitution of (A28) into (A29) yields

(ot~ Lv_'-:m)

@
anlr -1, |

LtmLzm{an

d+0 x-x,

ds, . (A30)

Following Cole (1980) and Kellogg (1953), we require that the functions ¢ and

gi—satisfy the Holder condition in space and time; that is,

| pzot)—p(rt) | <A lx —z2,|™ for |z —1,| <6 (A31)

N
1 ‘P(Z'.-tz)_¢(2-tl)}$.8 ]tz-tll.’ forltz—tll < :X— :
We specify that 0 < n <1 and 0 < ¥ <1. Similar conditions hold for -g—f:— There-

fore,

(22,001 = 2@ t) 4 Alz —p 1" + Bl —1, 17 for Iz —x, | <8 (A32)

llere the brackets denote the retarded values of g%— We substitute (A32)

into the integral (A30). We also allow r to approach the surface to the singu-
lar point r,. Thus we obtain
t’/

: IQ& 4S5, rlm-mite o Iz,
%1:21 1571 (Ll’t)‘{ lr, -z, | A‘v{ lz;) — 1o | dS°+Bf

-7
) -1, |

dSO}ABB)

We now invoke a theorem from Kellogg (1953). This theorem states that the

integral

daS
ff}'?'? L0<B<2 (A34)
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where S'is a regular region of the plane, is convergent, and, for all regions S

of the same area, it is greatest when S is a circle about P.

We can choose the surface I, containing the singular point r;, to be
small énough sqch that it can be described as a regular region of a plane
which is taﬁgent to the point r,. We also choose the region to be a circle.
Thus, all three terms in (A33) converge. Let us evaluate the first and most

singular term.

& en
R,dR,d0,
Lim —*-(__;-t)ff———— = Isizl[-g%-(z,.t).?nd] =0  (A35)

If the most singular term vanishes, then the other two terms must also van-
ish. Thus, the integral {A29) gives no contribution to the singular integral in

(A28).

¥We next evaluate the second term of the singular term.

Limn Lim f f {¢VG] - ndS,dt, (A36)

$20 x~x, %,
The gradient is comprised of two terms.

-S(I"'ta— 3!. _201}

o
VG = Vir —7v, | + A37

s(t—t, L Taly
w0

41

where
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1, __ r1
AT L

lr -7, ! lr -1, |
—pLt-——=)  plmt-———)
Lim Lim | . - cosAdS, (A39)
6~0 Tor g 4T alr -1, | r-rl? ]
where
cosA=n (£,
lr -z, |

If ¢ and y obey the Holder condition, the term involving ¢ vanishes as we

take the two ordered limits. The remaining term is

: T .
. |elzit)  cosAdS, Iz = 7,1
Lim L'i,m,i f =+ AI -E——-——-!——coskds, . {A40)

§+0 r=z;| 47 g lr -7, |

From prior arguments, the second term vanishes. To evaluate the first term,
we set up a local cylindrical coordinate system on the area surrounding the
singular point and specify z to be parallel to n ( see Figure A.2). Then

1, = (0.R,.6) andr = (2,R,0). Then
lr -r,1®=R®+ R,® - 2RR,cos6 + 22 (A1)

and
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E;(o, R.,8)

Figure A.2. Thg :ocal cylindrical coordinate system centered on the singular
point.
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2

COSA = f £
lze‘-i- R?® + R,® - 2RR, cosej

Without loss of generality we set R = 0; that is, the receiver point approaches

the surface along the normal n. Therefore,

wlr,t) %0 .
Lim Lim 211 ff z R,dR, . (A42)
[ U]

To obtain the final result, we take the following ordered limit:

8

Yp(r,.t) = LimLim

et
—_— A43
0 z 0 (zz-;-Roz)* ‘o ( )

Evaluating this ordered limit yields %p(r,,t).

The Derivation of the Kirchhoff-Helmholtz Boundary Conditions

We now tieriv'fus the Kirchhoff-Helmholtz boundary values from the scalar
integral representation. We specify two volumes V; and V, with velocities g,
and ap and densities p; and pp;. The two volumes are welded together at a
surface 8V. The source is in V|. Applying the representation theorem for a
potential off the surface yields

pilr.t) = [1G*Vg; — 9*VG] - ni dS, + fil(z.t) (r44)
- I'12

wherei= 1or 2and
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Furthermore f;(r.t) = Owheni= 2. Onthe surface (r, £ V) the potential is

Houeat) = [1GVed mdS,~PflpuVG]  ndS, + Sulznt) - (A49)

The following boundary conditions are specified on the interface : 1) con-

tinuity of particle velocity normal to the surface 2) continuity of pressure.

1
—Vg, n, = __1_v22 P {A46.a)
I3 P2

= @2 {A46.b)

The surface is described by a function z{z,y). Then the normals and dS in

cartesian coordinates are

—i + =5
;= 8z By {A47.a)
{ny]
‘ -~ - -~
- Bieh
n,= —= 24 {A47.b)
iILai
A %
1S = !(93—)2 + (‘f—z-)2 + 1} dzdy . (A47.c)
| 0z oy
- B¢, Bps .
We wish to solve for ¢;, =—— g2, and using expressions (A45) and {A46).
ani 617.2

Once we obtain the values of the potentials and their normal derivatives on
the surface, we substitute them into equations {A44) and obtain the values of
the potential off the surface. We proceed by taking the time Fourier

transform of equation (A46). The convolutions become multiplications.
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. Bo; . 8G; ‘
Yoou (13, 0) = _/;Gi(_tll'n-&?)‘é%(ra'm)dso =P f pi(rs,0) 511,75 .w)dS, (A48)
' 1 A (24

+ fulry0)

Consider the case of p,. Equatioh (A48) describes a complex coupling

B¢,

between ¢, at r, and the values of ¢, and at all other points on the sur-

)
face. To gain insight as to the method of decoupling, we evaluate equation

(A48B) for an infinitely flat surface. Then

ds, = dz, dy, (A49.2)
_ 0y
Vg, = 32 (A49.b)
—iu;:i-
G =-& (A49.c)
1 4nR '

Fere R = (z, - zo')z + (Y1~ Ve )2. The integral (A48) reduces to

®

o —

beoryo) = fj z&‘ﬁ*a—;{xo.yo)dzadzo (A50)

—T0 — W0

+ [aiw)

The principal value coniribution vanishes because VG'n on a flat surface is
zero everywhere. Expression (A50) is a two-dimensional spatial convolution.

Upon taking the two spatial transforms, one obtains

| I 83 o
¥2(k,w) = Glk,.w) ‘%’*‘ AT (A51)
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We obtain the two-dimensional spatial transform of G,{r,,&) where

—‘iv—g—

- - “l : A
Glew) = [ [ Smge™ ™ dnay (A52)

by transforming the Cartesian coordinates into angular coordinates
z + iy = Re'® (A53)
k, + ik, = qe'f
k,x = Rgcosgpcosf
k,y = Rgsingsin@

Therefore, the integral (A52) simplifies to

~ ' e : .
G = {{—We‘ﬁ'"”ﬂﬁ dR df . (A54)

Here § = ¢ — 6. We next apply the identity

2n
Jo(z) = —-]——fe zcosfy g (A35)

2n g
te reduce eguation (A54) to a one-dimensicnal Fourier transform of the

Bessel function.

fid

e TAE

_re_*
= { T Jo(gR)R (A56)

974



- 172 -

We look up the Fourier transform of the Bessel function and obtain the final

result that

1 8¢, ~
o (L N — T o
7ilk1w) oent 2f (kw) . (A57)

Similarly we obtain the transmitted potential

1 92
iUz 6112 )

Folle ) = (A58)

2 b
Here v; = {2 — k% + k,% . Now along with the transformed boundary con-
1 a‘ Yy y

ditions

1 0%, - _ 1 9%
p1 8Ny pz Ong

(A59)

and

& =P

we have an algebraic system of four equations and four unknowns. Solving
these equations yields the standard plane wave refiection and transmission

solutions.

= (1+R)F (AB0)
Pe=TF
a’ ’ o~
H i (1-R)F

on,
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a‘wg . -~
8‘n2 =TS
where
Vi Vg
R= 2
s =2
P Pz
and
2v,
T = P
4 123
—+
P Pz

These solutions are in the Fourier domain. The solution in x-y space, for ¢,,

is

Tww)= [ 1+ R) Fe ™ e ™V ar, ax, (A61)

“i1

- —0

The solution is a summation of weighted plane waves. If we assume that f is

~ point source,

R,
ft- = )
fzt)= —R—’— (AB2)

where R, = |z—r,|, then the spatial and time fourier transform is

-~ e Yy lz]
= — AB3
7= (183)
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Substitution of this expression into equation (AB0) yields the Wey! integral.

: = vilel -
ei(rw) = ff(1+ R)—e—;——e *e® o~ HV gk, dk, (AB4)
) e 00 1

This is the expected result for an infinitely flat surface. Several authors (Aki
and Richards,1980) show that the two dimensional Weyl integral can be

transformed into the one dimensional Sommerfeld integral.

- lz|
J(1+ Rk, J, (k,r)ﬁ-—v—dk, (AB5)
1
where
[, 2 ¥
V, = fl— - kra

A stationary phase evaluation, valid for high frequencies, yields {Aki and

Richards, 1980)

R
(1+R(p,)) ~va-
—_—e

¢i(r0) = 7 (A66)

This is the Kirchhoff-Helmholtz boundary value. A similar expression can be
obtained for ¢2({r,.w). We substitute these boundary values into equation
(A44) to obtain the potential off the surface. To complete the discussion for
the planar case.“we include a further identity. We note that the whole-space

solution f{(r.t) is a valid solution of equation (A44). Substitution of f(r.t)

for ¢ and %-anor %%yields the identity
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‘ 3G B ' :
{; Ue2Z - EEL—’G)dS, =0 . (A67)

Thus the incident part of the reflected Kirchhoff-Helmholtz boundary values
vanishes when substituted into the representation integral for a receiver off

the surface.

Ciearly the Kirchhofi-Helmholtz boundary values for the potentials g,
and y; are independent of the tilt of the plane. Thus we can use these results
to decouple the integral eqguation {A45) for an arbitrary surface. Let us

expand equation {A45) out for an arbitrary surface.

| . { | 1
Holzee) = [ S 6RO G ) + ZEg 1) - G, iz dufase)

| l ]
PIT¢ gf e 5ot imwe) o= (@awn) = 2(zowa)|dzoay,

Here R = (Az% + Ay® + Az?)%. If we could discard terms of Az, we could
reduce this integral to a spatial convolution and solve for the boundary
values as in the infinite plane example. We justify discarding these terms by

supposing that the frequency content.of the incident source field is high.
8G . . . .
Therefore & and ﬁ-osculate rapidly but have a slowly varying magnitude as

a function of distance away from the receiver point. We also assume that

(i

gaa—-%- and n VR on the surface vary slowly. Given these assumptions, we

argue that the major contributions to the integral (A87) come from points
ciose to the receiver ‘point 1, and not from points on the surface which are

remote from the receiver. Therefore we may replace z(z,.y,) with a simpler
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function lwhich apprpximates the actual topography well near 7, =_1;;. In
fact, by discarding terms of Az in (A67), we replace z(x,.y,) with a plane
which is taﬁgent to the surface at r, { see Figure A.3). In addition to substi-
tuting the tangent plane for the actual surface, we change the limits of the
integration in (A87) from a finite surface to an infinite surface. We may do
this without introducing much error if the integral is dominated by contribu-
tions close to the receiver. Then a simple coordinate transformation of the
integral {A87) yields (A50). This completes the derivation of the Kirck;hoﬂ-

Helmholtz boundary conditions.
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Figure‘ A.3. The tangent plane surface.
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