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Abstract

This thesis, comprised of two parts, deals with the flow of suspensions. Part I
concerns specifically with the stability of a single drop translating through a qui-
escent, unbounded suspending fluid at low Reynolds number. The evolution of the
shape of an initially nonspherical drop as it translates is studied numerically and
experimentally. For finite capillary numbers, it is shown that the drop reverts to a
sphere provided that the initial deformation is small enough. However, beyond cer-
tain critical initial deformation, the drop deforms continuously. For initially prolate
shapes, the drop elongates with the formation of a tail; for initially oblate shapes,
the drop flattens with the formation of a cavity at its rear. Experiments extend the
numerical results. It is found that initially unstable prolate drops break up into
multiple droplets, while initially unstable oblate drops deform in double-emulsion
drops.

Part II of this thesis considers the flow of high concentration solid suspen-
sions through a rectangular channel. By adapting the well-known Laser Doppler
Anemometry, an experimental technique is developed to measure the velocity as
well as particle volume fraction of the suspension. A crucial element in these experi-
ments is the reduction of the optical turbidity of the suspension. To accomplish this
goal, a systematic method based on refractive-index-matching of the two phases is
employed. Experimental results show that the velocity profile is blunted while the
concentration profile has a maximum near the center. The qualitative features of
the experimental data compare reasonably well with theoretical predictions based

on the shear-induced particle migration theory.
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The Stability of Drop Shapes for
Translation at Zero Reynolds
Number through a Quiescent
Fluid—Numerical Simulation

Abstract

Boundary integral calculations are used to investigate the evolution of the shape of
an initially nonspherical drop that translates at zero Reynolds number through a
quiescent, unbounded fluid. For finite capillary numbers, it is shown that the drop
reverts to a sphere, provided the initial deformation is not too large. However, drops
that are initially deformed to a greater extent are shown to deform continuously,
forming an elongated shape with a tail when initially prolate, and a flattened shape
with a cavity at the rear when initially oblate. The critical degree of deformation
decreases as the capillary number increases and appears to be consistent with the
results of Kojima, et al. (1984) who showed that the spherical drop is unstable to

infinitesimal disturbances in the limit Ca = oo.



Chapter 1

The Stability of Drop Shapes
for Translation at Zero Reynolds
Number through a Quiescent
Fluid—Numerical Simulation

1.1 Introduction

The motion of a viscous drop translating under the action of buoyancy through an
unbounded and otherwise quiescent fluid is a classical problem with a very long
history in fluid mechanics. Besides being a fundamentally important problem, the
dynamics of viscous drops also provide us with a framework for studying the de-
formation of biological cells as well as the behavior of aggregates of small particles.
A solution in the creeping flow limit was obtained many years ago, attributed to
Hadamard(1] and Rybczynski[2], and based upon the assumption that the shape is
spherical. Later, Taylor and Acrivos[3] considered small inertia effects and showed
that the drop deforms slightly to an oblate ellipsoid shape for small Reynolds num-
ber, but that the sphere is an exact steady solution for arbitrary Capillary number
(Ca) in the limit Re = 0. The Capillary number is the ratio of the viscous force

compared to the interfacial tension and is defined as

u.ra

Ca=

(1.1)

g

where a is the equivalent radius of the drop, o is the interfacial tension, and v is

the kinematic viscosity of the ambient fluid. u. is the translational velocity of a



spherical drop of the same volume, i.e.,

) (1.2)
The stability of the steady, spherical shape to infinitesimal disturbances of shape

was studied more recently by Kojima, et al[4]. These authors showed that the

sphere was a stable solution for arbitrarily small disturbances of shape for all finite

i

capillary number, but was unstable in the limit Ca = oo. The instability was
predicted to appear at the rear of the drop as a growing tail for an initially prolate
shape, and as a growing indentation or cavity for an initially oblate shape, with
a characteristic growth rate that scales as (1 + A)~! with changes in the viscosity
ratio A (i.€., A = drop/ Msuspending fluid). In contrast, the magnitude of the initial
disturbance at the front of the drop was predicted by the linear theory to decay
rapidly to zero, so that the front of the drop returns rapidly to hemispherical shape.
The obvious question that we pursue here is whether the stability of the spherical
shape for nonzero capillary numbers carries over to finite initial deformations.
This investigation is based upon numerical solutions of the free boundary, creep-
ing flow problem of an initially deformed drop rising through a quiescent fluid, using
the well-known boundary-integral method. For brevity’s sake, the details regarding
the implementation of this technique can be found in Appendix A. We will simply
pose the problem and describe the results, with only a few remarks to establish
those details of the simulation that would be necessary to reproduce the results

that are reported here (e.g., the number of surface elements in the discretization).

1.2 Problem Formulation

We consider the translational motion of a viscous drop through an unbounded and
otherwise quiescent fluid in the creeping flow approximation. The two fluids are
Newtonian, immiscible, and the interface is characterized by a finite and constant

interfacial tension. Thus, the governing equations and boundary conditions are

0= —Vp, + V?u, (1.3)
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0 = —Vp, + Vu, (1.4)

u; — 0 as ||x|| = o0 (1.5)
u; = up; at drop interface (1.6)
(1+ =
An-T{—n-Ty= —%V-n——nz—(—l—}%\l at drop interface (1.7)

(subscript 1 denotes the drop phase, and 2 denotes the suspending phase) where
we have non-dimensionalized the velocity with respect to u.. The stresses are non-
dimensionalized with respect to wju./a in Fluid 1 and gsu./a in Fluid 2.

In the present study, the shape of the drop is specified initially as nonspherical,
and we are interested in calculating the evolution of drop shapes as a function of
time after the initial moment. The drop is assumed to translate under the action of
a constant body force. Hence, as the shape of the drop changes, the translational
velocity changes in accord with the change in hydrodynamic mobility. Our present
interest is to determine whether the shape of an initially nonspherical drop returns
to a sphere or deforms further as a function of time. In the latter case, we say that
the initial drop shape is unstable.

The problem formulated above is solved by the boundary-integral method through
numerical implementation. As stated earlier, the details of the numerical simulation
can be found in Appendix A. In this present work, we typically use 50 ring-shaped
elements on the surface of the drop which is axisymmetric in shape, but this num-
ber i1s varied depending upon the evolution of shapes and the need for adequate

resolution in regions of large curvature.

1.3 Results

First of all, in order to check the numerical code, we compute the velocity of a rising
spherical drop and compare the results with the Hadarmard-Rybczynski solution.
Typically, the computed velocity of each of the surface elements is at least within

0.05% of the exact solution when the surface of the drop is divided into 50 elements.



Specifically, this accuracy is attained for the cases of A = 0.1, 1.0, and 5.0 and is
improved when using more surface elements.

In the present study, our primary objective is an investigation of the evolution
of drop shapes as a function of the degree of initial deformation for a number of
fixed, nonzero values of the capillary number, Ca. The initial shape of the drop is

characterized by the parameter A defined as
A=(L-B)/(L+B) (1.8)

As shown in Figure 1.1, L corresponds to the length along the axis of rotation
of the ellipsoid, and B to the breadth in the perpendicular direction. Using this
definition, A ranges from —1 to 1; specifically, a prolate ellipsoid has a positive A
value while an oblate ellipsoid has a negative A value. A set of typical results is
shown in Figure 1.2 for a fixed initial shape, A = 1/3, A = 0.5, and various Ca.
The drop shapes are shown at several specific points in time (non-dimensionalized
by a/u.). The position of the drop is incremented in the figure by the exact amount
of its numerically calculated displacement.

What we can see, qualitatively, from Figure 1.2 is that the drop returns to a
steady spherical shape for Ca < 1.25; but for this initial shape, the initial defor-
mation increases for Ca > 1.5 continuously in time, with the front of the drop
returning to a hemispherical shape, while the rear of the drop develops a tail which
increases in length as a function of time. Eventually, in the cases shown in Fig-
ure 1.2, the tail begins to pinch and it appears likely that the drop will break as the
tail separates from the main parent drop (though, of course, the boundary-integral
method can only be pushed to a very thin neck, but cannot be carried to the point
of actual pinch-off). Thus, for A = 0.5 and A = 1/3, Ca,i lies between 1.25 and
L.5.

If we consider other values of A, similar results are obtained. In particular,
solutions for initially prolate shapes are shown in Figure 1.3 for A = 1/21, and A =

0.5, and Figure 1.4 for A = 0.6 and A = 0.5. Again, we see that for small enough Ca,



the drop returns to a steady spherical shape, but above some critical value of Ca the
drop develops an increasingly elongated tail with increase of time. Comparison of
Figures 1.1, 1.3 and 1.4 shows, however, that the critical Ca for instability increases
as A is decreased. This would seem qualitatively consistent with the prediction
from linear stability theory that the drop is unstable to infinitesimal disturbances
for Ca = oo, but is stable to such disturbances for finite values of Ca. It may also
be noted that the present predictions for finite Ca are qualitatively similar to the
linear stability theory for Ca = oo, in the sense that the initially prolate shape is
predicted, for Ca > Cac,i, to develop a tail at the rear and a hemispherical shape
at the front.

We have also carried out a similar investigation of the magnitude of initial
deformation for a series of oblate initial shapes for several fixed values of the cap-
illary number. Typical numerical results for this series of numerical experiments
is represented in Figure 1.5. Qualitatively, the stability behavior is similar to that
demonstrated above for initially prolate shapes. Specifically, for each nonzero cap-
illary number, there is a critical initial deformation beyond which the drop shape
is unstable in the sense that the drop does not return to a spherical steady-state
shape, but continues to deform with increase in time. As in the case of prolate
initial shapes, we see that as the degree of initial deformation increases, Ca.,;; de-
creases. However, instead of a tail, the initially oblate shape develops a cavity at
the rear. As before, the front of the drop rapidly reverts to a hemispherical shape
for all of the initial conditions that we have considered.

It may be noted that the formation of a cavity from an initially oblate shape is
again qualitatively consistent with the predictions of the linear stability theory. In
fact, a comparison of the solution given by Kojima, et al.[4] (A =5, Ca = o0) and
our numerical solution (A = 5, Ca = 100) is shown in Figure 1.6. We can see that
the evolutions of the drop shape are very similar, especially in the earlier stage of
the simulation. The difference is attributed to different Ca and their assumption

of small deviation from sphericity.
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Several other details of the problem described above can be examined easily
via the boundary-integral technique. One factor that we have considered is the
role of the viscosity ratio A. We illustrate one representative case in Figure 1.7,
where we show results for a fixed value of A = 1/3 and a fixed Ca = 2.0, but two
values of A = 0.5 and 5.0, respectively. The results shown in Figure 1.7 are not
plotted at equal values of time, t, as in the previous figures, but at equal values of
t = t/(1 + A), which is the scaling with A that is suggested by the linear stability
analysis. We see that the results are initially almost identical, thus corroborating
the prediction from the linear theory that the viscosity ratio enters primarily via
the time scale of deformation. Not surprisingly, however, for large times and large
deformations, there are modest qualitative differences for the two values of A.

A second point that we consider via the numerical results shown in Figure 1.8
is the robustness of the behavior described above to variation in the details of the
initial shape. In the results illustrated here, we show the time-dependent evolution

of drop shape for two quite dramatically different initial conditions, i.e.,
r, = 1 — 0.285P;(cosb) (1.9)

and

1, = 1 — 0.5P3(cosf) — 0.176P3(cos) (1.10)

where the P, are the Legendre polynomials. The drop in the latter case has a very
pronounced initial indentation on the front surface, though it is still globally oblate.
The numerical solution shows that this indentation rapidly decays and the upper
surface of the drop again reverts to a hemisphere. Beyond this, there is continued
cavity growth at the rear of the drop which is very similar to that obtained in the
absence of the initial deformation.

One other interesting feature which appears for at least one case, when the drop
develops a very elongated tail, is the appearance of a capillary wave instability that
will presumably cause the tail to break into a large number of roughly equal-sized

satellite drops. This phenomena is illustrated in Figure 1.9, where we show the
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continuation of the case Ca = 2.0, A = 1/3 and A = 5.0 (shown in Figure 1.7)
for larger times. It is well to note that this phenomenon was not observed for the
deformation of prolate drops at lower viscosity ratios (i.e., A = 0.1 and A = 0.5).

Evidently, the breakup of an initially unstable, prolate-shaped drop will occur
by one of two possible mechanisms. When the drop is not very viscous, the tail
thins dramatically at one point directly behind the parent drop, and we infer that
pinch-off will occur in these cases in such a way that the drop breaks into two
parts:the parent and a single satellite. On the other hand, as the tail elongates
for a very viscous drop, pinch-off at a point is inhibited. As the drop continues to
rise, it elongates and thins out more or less uniformly along the whole tail at the
same time. Meanwhile, the amplitude of the capillary waves become finite which
eventually leads to breakup. This transition from pinch-off of the tail at a single
point, to pinch-off at many points due to finite amplitude capillary waves, is highly
analogous to the transition in breakup modes for an elongated drop in a quiescent
fluid from end pinching in which a drop breaks by a sequence of single pinch-off
at the ends of the drop, to a capillary wave breakup mechanism when the drop is
more highly elongated (Stone and Leal[5]).

As it turns out, wave-like behavior is also present in the deformation of initially
oblate drops. Although we have not made a comprehensive study, it is apparent, at
least for the cases we studied, that viscous drops are less susceptible to the develop-
ment of wavy shapes. Figure 1.10 compares the deformation of two drops with the
same initial shape and capillary number, but different viscosity ratios. We can see
that the wavy structure is quite pronounced for the less viscous drop but virtually
nonexistent for the more viscous one. We should note that the development of
these “waves” does not alter the overall qualitative behavior of the development of
a cavity at the rear of the drops.

As stated initially, the primary objective of the study reported here is to estab-
lish the conditions for instability of an initially nonspherical drop at finite capillary

number. The results reported above are summarized in Figure 1.11. Here, we plot
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the lower and upper bounds of the critical value of Ca for several fixed values of A.
Results for three different A values, namely 0.1, 0.5 and 5.0, are reported for both
prolate and oblate initial shapes. There are several features that can be extracted
from this figure. First, we can see that for the same initial shape, a more viscous
prolate drop is more stable than a less viscous one (i.e., it has a higher Ca.).
However, the contrary is true for initially oblate drops. Second, it is apparent that
the dependence of the Ca,.;; on A is much smaller for prolate drops than for the
oblate ones. Finally, this plot reemphasizes the point made earlier that drops at
nonzero Ca can be unstable to finite initial deformations; the deformation grows
when Ca exceeds the critical value of Ca, and Ca,; increases monotonically as A
is decreased. This behavior seems qualitatively consistent with the predicted linear
instability for the limit Ca — oo.

Acknowledgment: This work was supported by a grant from the Fluid Me-
chanics Program of the National Science Foundation. C.J.K. wishes to thank Dr.

I. S. Kang for his helpful comments and discussion.
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Figure Captions

10.

. Sketch showing the definition of A.

Evolution of prolate drops with same initial shapes but different Ca. Time

between intermediate shapes = 2.0.

Evolution of prolate drops with same initial shapes but different Ca. Time

between intermediate shapes = 2.0.

Evolution of prolate drops with same initial shapes but different Ca. Time

between intermediate shapes = 2.0.

Evolution of oblate drops with same initial shapes but different Ca. Time

between intermediate shapes = 2.0.
Comparison of the present work with the results of Kojima, et al.

Using the scaling t = t/(1 4+ \) as suggested by the linear stability analysis,
the drop shapes are almost identical, especially during the initial stage of the

deformation.

Comparison of two different initial conditions to show the robustness of the
drop evolution to variation in the details of the initial shape. Time between

intermediate shapes = 3.0.
Development of capillary waves on an elongated tail.

Wavy structure is apparent on the less viscous drop (A = 0.5) but the con-
trary on the more viscous drop (A = 5.0). Note that the positions of the
drops do not correspond to the exact amount of the numerically calculated

displacement.
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11. Cacry vs. A for both oblate and prolate drops. The symbols represent the
lower and upper bounds of Ca,.;. The lines do not correspond to the exact

value of Ca,.;; but are drawn to show the trend.
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Appendix A

In this appendix, we will discuss the details of the implementation of the boundary-
integral method for the drop stability problem. We begin by stating the governing

equations and boundary conditions:

0= —Vp1 + V2u1 (AA].)
0= —Vp,; + Viu, (A2)
u; =0 as ||x}]] = o0 (A3)
u; = u, at drop interface (A4)
n 3(1+ ) ,
An-T;-n-T, = -av ‘n— nz——ﬁ—— at drop interface (A5)

where subscript 1 denotes the drop phase, and 2 denotes the suspending phase (see
Figure Al).
Here, we have non-dimensionalized the velocity with respect to the translational

velocity of a spherical drop of equivalent volume:

_ 12 g 1t

-1 A6
31/2 p2 |(1+'2§X) ( )

C

The stresses are non-dimensionalized with respect to pju./a in fluid 1 and pyu./a
in fluid 2. Furthermore, A = p1/p2, and Ca = pgu./y with ¥ being the interfacial
tension of the system.

The problem as posed by Equations Al and A2 is nonlinear due to the boundary
condition A5. This type of problem can be conveniently solved by the boundary-
integral technique. Since this method has been applied for many similar problems
(see, e.g., [1], [2] or [3] for a more comprehensive description), we will only highlight
the principal ideas and the method of numerical implementation.

Consider the Stokes equation:

0=-Vp+ Vi (A7)



and its corresponding stress tensor
T = —pl+ (Vu+ (Vu)h) (A8)
We shall define the adjoint equation to the Stokes equation as follows:
§(x —x,) = Vq+ Vu (A9)
and its corresponding stress tensor as
T =ql+ (Vv +(Vv)D) (A10)

The adjoint equation can be solved analytically under the boundary conditions that

both q and v vanish at the far-field with solution '

; 1 6 vy
o= 2% T
W o= (4 I (A1)
: 1 r;
I = —(2 Al12
» 3 rirr;
i 2 j
La = 47r( 5 ) (A13)

where r = (x — X,). Here, v; corresponds to the ¢** component of the velocity at
x due to a unit force (stokeslet) located at x, in the direction of e;.

Using simple vector identities, it is straightforward to derive the following equa-
tion:

V- (v.:T-u-E)=v-(=Vp+ Vi) —-u-(Vq+ V) (Al4)
Using Equations A7 and A9, Equation Al4 becomes:

Viv.-T—u-X)=—u-6(x—x,) (Al5)

Integrating Equation A15 over the volume of the domain and applying the diver-

gence theorem to the resulting volume integrals gives:

u(x,) = —/Sn-T(x)-v(x—-xo)d5+/sn-Z(X—-xo)-u(x)dS (A16)

X, €D
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The first integral is usually known as the single layer potential while the second
one is known as the double layer potential. Since we are interested in obtaining the
velocity on the surface of the drop, we need to obtain the limit of Equation A16 as
X, — X, € S. The single layer potential is continuous at the boundary while the

double layer potential suffers a jump condition:

lim [ n-¥(x—x,) u(x)dS = é—u(x,) + /Sn - B(x — x,)u(x)dS (ALT)

Xo—Xs Jg

Therefore, taking the limit of Equation Al6 as x, — x, and using jump condi-

tion A17 gives

—;-u(x,) = -—-/Sn -T(x) v(x —x,)dS + /Sn - B(x —x,) - u(x)dS (AlS)

X, €S8

At this point, we have converted the Stokes equation into an integral equation as
given by Equation A18. The unknowns are u(xs) and T(xg), while v and X are
given by Equations A1l and A13. By applying Equation A18 to both phases 1 and
2, eliminating the stress difference with boundary condition A5 and substituting
the explicit form of v and £ given by Equations A1l and Al3, we obtain

1 1 I r? .3 r
§(1 + Au(x,)) = 5'7?/5(? + 5)-de - Z;(l - A)/S;u.nds (A19)

X, €5

For simplicity, we assume axisymmetry in the problem. Thus, it is convenient
to integrate Equation A19 in the azimuthal direction analytically. Upon such inte-

gration, the surface integrals in Equation A18 are converted to line integrals:
1 ur(X,) ~(n)
- = dl
1+ A) { w(x,) } / Blxm)- { Q.(n)
Qr(n)
A20
i J.oten- [ o (420)

Here, B and C are matrices whose elements are composed of various elliptic integrals

(see Lee and Leal[l]).
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Equation A20 is then discretized over the interface of the drop. This results
in a set of linear and coupled algebraic equations. The velocity of each of the el-
ements is assumed constant. The shape of the drop is described by the arclength
parametrization method (Ascoli[4]). For cylindrical coordinates (r, z), the colloca-
tion points in the discretization scheme are represented by r(s) and z(s), in which
s is the normalized measure of the arclength (0 < s < 1).

Using cubic splines for r(s) and z(s), most drop shapes can be represented
accurately with a modest number of elements in the discretization. For most of the
cases examined, 50 elements are used and found to be satisfactory.

The set of algebraic equation is solved, using Gaussian elimination, to obtain
the velocities for each of the elements on the interface. Knowing the velocities, the
interfacial elements are “moved” after each time step (typically, 0.05 < At < 0.1)
to give the new drop shape. In addition to providing the new shape, this method
of time incrementation also gives the actual amount of movement of the center of

mass of the drop.
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An Experimental Investigation
on the Stability of Viscous Drops
Translating through a Quiescent

Fluid

Abstract

The evolution of the shape of an initially nonspherical drop translating at low
Reynolds number through a quiescent fluid is investigated experimentally. It is
found that the drop reverts to a spherical shape when the degree of initial de-
formation is small enough. However, drops that are highly deformed initially are
shown to deform continuously. Specifically, a prolate drop breaks up into multiple
droplets as it rises, while an oblate drop deforms into a double-emulsion drop as it
translates. The experimental results agree well with results obtained earlier from

numerical simulations (Koh and Leal, 1989).
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Chapter 2

An Experimental Investigation
on the Stability of Viscous Drops

Translating through a Quiescent
Fluid

2.1 Introduction

In an earlier paper (Koh and Leal[l]), we used the boundary-integral method to
investigate the evolution of the shape of an initially nonspherical drop translating in
an unbounded and otherwise quiescent fluid at zero Reynolds number. We showed

that for finite capillary number,
2Apatg(l + )
Ca=
= T+ N

an initially nonspherical translating drop will undergo one of three possible fates.

(2.1)

If the initial degree of nonsphericity is small enough, the drop simply reverts back
to a spherical shape, i.e., the classical solution of Hadamard and Rybeczinski. On
the other hand, if the initial deformation is large enough, the degree of deformation
continues to increase with time. For initially prolate shapes, the drop elongates
with the formation of a tail; subsequently, the numerical results suggest that the
tail breaks off into one or more droplets. For initially oblate shapes, the drop
develops a rear cavity as it translates. In the latter two cases, we say that the
initial drop shape is unstable (see also Pozrikidis[2], who showed similar results).
The purpose of the current investigation is to study the behavior of a trar-lat-

ing drop at low Reynolds number experimentally. Specifically, the objectivi- .." the
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experiment are three-fold. First, we seek confirmation of the two distinct modes
of unstable drop deformation mentioned above. Second, the numerical simulations
were performed mostly for rather idealized initial conditions, i.e., axisymmetric
ellipsoids. It is important to determine if the qualitative behavior of drop de-
formation as well as the stability criteria obtained numerically are applicable to
real systems with less ideal initial shapes (e.g., non-ellipsoidal and slightly non-
axisymmetric drops.) Finally, the computer simulations were terminated when a
thin neck appeared in the prolate cases and when the rear cavity closed up on itself
in the oblate cases. Thus, the present experiments also serve to explofe the drop

dynamics beyond the limit of the numerical simulations.

2.2 Experimental Procedure

The experiments were performed in a Lucite tank of square cross-section (40.6cm x
40.6cm x 91.4cm). A Lucite syringe assembly is attached to a circular opening
(diameter=>5.1cm) located underneath the tank. The Lucite syringe has an L.D. of
5.1cm and length of 15.2cm. As described below, this large syringe is used to “con-
trol” the initial shape of the drop. An aluminum tube (I.D.=0.64cm), connected
at one end to a small syringe, can be inserted into the Lucite syringe for injection
of the drop phase. Figure 2.1 shows the schematic of the experimental setup.

The suspending fluid was Pale 1000 oil (oxidized castor oil available from Caschem,
Inc. of Bayonne, NJ). In order to obtain data for a range of viscosity ratio (A),
four different grades of Dow Corning 200 silicone fluid (1,000cs, 10,000cs, 30,000cs
and 100,000cs) were used as the drop phase. These fluids were selected so that the
Reynolds number was small (Re < 0.01 for all the cases investigated), the capillary
number in the range 1 < Ca < 5.5 (at which the numerical study showed modestly
deformed drops to be unstable), and the drops large enough for simple photography.

Table 1 summarizes the physical properties of these fluids at the temperature

(22°C) under which the experiments were performed. The densities and the vis-
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cosities were measured by a pycnometer and various Cannon-Fenske capillary vis-
cometers respectively. The interfacial tensions were calculated from the small de-
formation theory of Taylor for a drop in a pure-straining flow using data obtained
in a computer-controlled four-roll mill described by Bentley and Leal[3].

The drop was injected into the large syringe assembly from the small syringe;
it then rose to the tank under gravity. The capillary number was varied by ad-
justing the amount of drop fluid injected (Cacc a?, where a is the equivalent drop
radius.) Typically, the size of the drop ranged from lcc to 10cc. After the drop had
completely moved out of the syringe assembly and into the tank, the plunger was
pushed up to produce an oblate drop or pulled down to produce a prolate drop.
The flow field created by the motion of the plunger deformed the drop; the degree
of initial deformation was controlled by the amount of displacement of the plunger.
In most cases, the plunger was displaced between lcm to 5cm.

After the desired initial shape was obtained, photographs of the drop were taken
at intervals ranging from 15 seconds to 4 minutes to capture the evolution of drop
shapes. (The rate of deformation is lower for a more viscous drop; consequently,
the frequency at which pictures were taken depended on the viscosity ratio of the
system under investigation.) A Canon A-1 camera equipped with a Canon macro
lens (model FD 200mm) was used. The films were Kodak Tri-X pan 400. An
exposure time of 1/30 second and automatic aperture control were utilized. A 150-
watt spotlight covered with a plastic light diffuser was place behind the tank to
provide background lighting.

The major and minor axes of each of the initial shapes were measured by pro-
jecting the negatives onto a screen at approximately 10 X magnification. To quantify
the initial degree of deformation, the classical “Taylor” parameter was used:

_L-B

Aez——————-L+B

(2.2)

It should be emphasized, however, that the initial shapes were rarely ellipsoidal,

as is assumed inherently in A.. Instead, L and B were measured as the maximum
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and minimum dimensions as illustrated in Figure 2.2. Thus, A, gives only a crude
estimate of the initial deformation since drops with the same A, can have quite dif-
ferent shapes; this will influence our ability to compare quantitatively experimental

results with the numerical results obtained in our earlier study.

2.3 Results

As suggested by the results of the numerical simulations, the experiments were
performed for two types of initial drop shapes, namely, prolate and oblate drops.
Let us begin by discussing the experimentally observed behavior from a qualitative
point of view.

Figure 2.3 shows typical results for the deformation of a stable prolate drop.
Here, A = 0.26 (A = ftdrop/ tbulk, the viscosity ratio), Ca = 2.0+ 0.2 and A, = 0.06.
[t is clear that as the drop rose, the deformation decreased. Eventually, the drop
became spherical, as can be seen at t=240s. On the other hand, Figure 2.4 shows
typical results for the evolution of an unstable prolate drop. Here, A = 0.26,
Ca = 2.0 £0.2 and A, = 0.18. For this larger initial deformation, we can see
that as the drop rose, a tail was formed at its rear. The tail elongated and finally
broke off from the parent drop around t=240. After the breakup, the parent drop
became spherical, while the tail broke up through capillary instability as well as an
end-pinching process into multiple droplets as seen at t=420s.

As in the prolate case, the oblate drops were found to be stable provided that
the initial deformation was small enough. The deformation of a stable oblate drop
is shown in Figure 2.5. Here, A = 0.026, Ca = 2.9 + 0.3 and A. = —0.45. The
deformation decreased as the drop rose, and finally reverted back to the steady
spherical shape as shown at t=180s. A more interesting result was found for the
evolution of unstable oblate drops (Figure 2.6). Here, A\ = 0.026, Ca = 3.440.3 and
- Ae = —0.69. Initially, the cavity at the back of the drop was of moderate size. As

the drop rose, the cavity became longer and narrower, and eventually evolved into
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a skirt-like structure. Then, the bottom of the drop closed up on itself (t=307s)
while the middle cylindrical section of the drop elongated and became very thin
(t=422s). Eventually, the top portion of the drop broke off forming an encapsulated
drop, and the bottom portion of the drop broke up into multiple double-emulsion
drops (this cannot be seen in the photographs due to lack of resolution).

It is interesting to point out that drop shapes similar to those shown in Fig-
ure 2.6 have been observed in other experimental studies. For example, Kojima,
Hinch and Acrivos[4] found that miscible drops at moderately low Reynolds number
(0.14 < Re <0.66) can deform into tori. Also, Bhaga and Weber[5] found that bub-
bles at high Reynolds number can have spherical cap shapes or skirt-like structure
(depending on the E6tvdés number and the Morton number). However, no direct
comparisons with the current experimental results have been made since the range
of physical parameters is quite different.

We have also investigated the role played by ) in the evolution of drop shapes.
In the broadest sense, i.e., the formation of a tail for unstable prolate drops and a
rear cavity for unstable oblate drops, the dynamic behavior of the drops are similar
regardless of the viscosity ratio. However, there are some detailed differences, both
qualitative and quantitative, among systems of different viscosity ratios. In the
prolate cases, the tail of a less viscous drop (see Figure 2.7) was thin and short
compared to that of a more viscous drop. This thin and short tail broke off from
the parent drop at a relatively early stage of the evolution. On the other hand, as
illustrated in Figure 2.8, the tail of a viscous drop was thicker and longer. Moreover,
this tail did not break off as early and the total volume of fluid detached from the
parent drop was larger compared to that of a less viscous drop. The last photograph
of the sequence in Figure 2.8 shows the tail of the drop breaking up into small
droplets.

For the oblate cases, the evolution of drops of different viscosity ratios is also
different. The behavior of a low viscosity drop (as shown in Figure 2.3) has already

been discussed in detail. For high viscosity systems, the rear cavity deepened
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- without the formation of a skirt-like structure as the drop deformed. Eventually,
a single double-emulsion drop was formed. Figure 2.9 shows the evolution of such
a drop with A = 2.6, Ca = 1.3 £ 0.1 and A, = —0.65. It should be noted this is
the only case where an initially unstable drop did not break up as it evolved; in
the cases of unstable oblate drops of low viscosity ratio and unstable prolate drops
(regardless of viscosity ratio), drop breakup was always observed.

It is apparent that the qualitative experimental behavior of drop deformations
agree quite well with that predicted by the numerical simulations. However, it is
necessary to be sure that certain experimental conditions, such as the finite size of
the tank, the effects of the plunger flow on the initial condition, and the possibility
of surfactant effects due to impurities in the bulk fluid, have negligible influence on
the deformation of the drop. Consequently, we have computed the drop evolution
of two specific cases using actual experimental initial drop shapes. In order to
compare the drop shapes at different stages of the experiment, it is necessary to
non-dimensionalize the actual time with t. (t. = a/u., where u. is the translational
velocity of a spherical drop with the same volume, and a is the equivalent radius).

In Figure 2.10, we compare the experimental evolution of an unsteady prolate
drop (Ca = 2.1 £0.2, A = 0.74, and t. = 32 £ 2s) with the numerical simulation
using the same initial drop shape and physical parameters. We can see clearly that
the simulation compares well with the actual experiment. The small difference in
the drop shapes, especially in the latter stages of the experiment, is most likely
due to the uncertainty in estimating the various physical parameters and the initial
shape.

As shown in Figure 2.11, we have also performed numerical simulation to com-
pare with the unsteady experimental deformation of an oblate drop (Ca = 3.4£0.3,
A = 0.026, and t, = 22 + 1s). Again, we can see that there is good agreement be-
. tween the drop shapes obtained from experiment and numerical simulation. The
last photograph from the experiment was obtained at t=8.2. However, due to nu-

merical difficulties (i.e., when opposing surface elements become closer than some
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predetermined value, as seen in the “skirt-like” structure near the bottom half of
the drop), the computer program was terminated at t=6.4. From these comparisons
(Figures 2.10 and 2.11), we are confident that the drop behavior observed in the
experiment is not caused by the “extraneous” experimental conditions mentioned
above.

As we have stated earlier, one of the objectives of this study is to determine if
the stability criteria obtained numerically are applicable to drops with initial shapes
different from the idealized ones used in the numerical study. To this end, we have
summarized the stability behavior of initially nonspherical drops obtained from the
experiment in Figure 2.12. Here, we denote initial shapes that revert back to a
sphere as being stable, while those which do not are termed unstable. The open
symbols in Figure 2.12 refer to stable initial drop shapes while the shaded symbols
are for unstable drops. For each of the four viscosity ratios investigated, we expect
the neutral stability curve to lie between the shaded and open symbols. This figure
basically confirms the numerical results (see Figure 1.11). The critical value of
the capillary number increases monotonically as the degree of initial deformation is
decreased. Furthermore, it is quite apparent that the stability criteria for prolate
drops depend only weakly on the viscosity ratio. The stability curves, for the range
of viscosity ratio investigated, all lie within the shaded region as shown on the upper
half of the graph. On the other hand, the A-dependence of the stability of oblate
drops is much more pronounced, and it is evident that a more viscous drop is found
to be less stable for the same initial deformation. To summarize, it is remarkable
that all the qualitative behavior of drop deformation observed in the numerical
studies (for perfect ellipsoids) is preserved in the experiment. This means that the
details of the initial drop shape play a minor role in drop deformation—only the
general shape of the drop (as measured by A.) dictates the overall behavior in the
evolution of initially nonspherical drops.

Acknowledgment: This work was supported by a grant from the Fluid Me-

chanics Program of the National Science Foundation.
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Figure Captions

10.

11.

. Schematic diagram showing the experimental setup.
Sketch showing the definition of A, for a prolate drop and an oblate drop.
Evolution of a stable prolate drop. A = 0.26, Ca = 2.0 £ 0.2, and A, = 0.06.

Evolution of an unstable prolate drop. A = 0.26, Ca = 2.0 £ 0.2, and A, =
0.18.

Evolution of a stable oblate drop. A = 0.026, Ca = 2.9+£0.3, and A, = —0.45.

Evolution of an unstable oblate drop. A = 0.026, Ca = 3.4 0.3, and A, =
—0.69.

Evolution of a low viscosity prolate drop.
Evolution of a high viscosity prolate drop.

Evolution of a high viscosity oblate drop.A = 2.6, Ca = 1.3 4+ 0.1, and A, =
—0.65.

Comparison of the evolution of an unsteady prolate drop with numerical sim-

ulation.

Comparison of the evolution of an unsteady oblate drop with numerical sim-

ulation.

Cacrir vs. A, for both oblate and prolate drops. Open symbols refer to stable
initial drop shapes while shaded symbols are for unstable drops. The stability
curves for prolate drops lie within the shaded region. The stability curves for
oblate drops do not correspond to the exact value of Ca,,;; but arc drawn to

indicate the trend.
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Table Captions

1. Viscosities, densities and interfacial tensions of the fluids used in the experi-
ment. *Values at room temperature (22°C). PInterfacial tension between the

silicone fluid and Pale 1000 oil. “Silicone Fluid.
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Fluids Viscosity® | Density® | Interfacial tension®
(P) (g/cm?) (dyne/cm)
Pale 1000 oil 391 1.021 -
1,000 cs SF< 10.2 0.972 5.8
10,000 cs SF 101 0.972 6.0
30,000 cs SF 291 0.972 5.8
100,000 cs SF | 1.02 x 103 | 0.975 5.8

Table 1
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An Experimental Investigation of
Concentrated Suspension Flows
in a Rectangular Channel

Abstract

An experimental adaptation of the well-known Laser Doppler Anemometry tech-
nique is developed for measuring the velocity and concentration profiles in con-
centrated suspension flows. To circumvent the problem of optical turbidity, the
refractive indices of the solid and liquid phases are closely matched. The residual
turbidity, due to small mismatches of the refactive indices, as well as impurities in
the particles, allows a Doppler signal to be detected when a particle passes through
the scattering volume. By counting the number of Doppler signals in a period of
time, the local particle volume fraction is also measured.

This new technique is utilized to study concentrated suspension flows in a rect-
angular channel. The general behavior of the suspension is that the velocity profile
is blunted while the concentration profile has a maximum near the center. Com-
parisons are made with theoretical predictions based on the shear-induced particle

migration theory.
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Chapter 3

An Experimental Investigation of
Concentrated Suspension Flows in
a Rectangular Channel

3.1 Introduction

The flow of suspensions is relevant to a wide variety of both natural and industrial
processes. Among the most common naturally occurring examples are blood flow
in which the particulate phase is comprised of blood cells, and flows in the sed-
imentation of muddy water and sand storms. Industrial applications can also be
found in abundance—coal slurry flows and fluidized beds are but two examples.

Suspensions, especially concentrated ones, can show interesting, non-Newtonian
behavior because of the interplay among the particles, the surrounding fluid and the
boundaries of the flow. This interaction is governed predominantly by three kinds
of forces. The first one is colloidal force, which can be attractive (e.g., London-van
de Waals force) or repulsive (e.g., electrostatic force). Depending on the strength
of these forces, the particulate phase can either be flocculated or dispersed. The
second is the well-known Brownian force, due to random collisions of the surrouding
fluid molecules with the particles. It affects the spatial distribution of all particles,
and in the case of nonspherical particles, the orientation distribution as well. The
influence of this randomizing force is strongly particle size dependent, and can
" usually be neglected for particles larger than 1um.

When the suspension is at rest, the two aforementioned forces dictate its struc-
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ture. However, when the suspension is subject to flow, hydrodynamic forces become
important (e.g., when the Péclet number Pe = 4a?/Dy > 1, where Pe is the ratio
of shear force compared to Brownian force, 4 is the magnitude of the shear rate and
Dy is the diffusion coefficient of a single particle due to Brownian motion.) In this
study, we will only deal with suspensions of spherical particles that are sufficiently
large so that colloidal and Brownian forces are negligible, but small enough so that
inertia forces can also be neglected.

Some significant experimental investigations|2, 3] have been made of the flow of
dilute suspensions, where interactions between particles are negligible. The best-
known phenomenon identified in these studies is probably the “tubular pinch ef-
fect.” For example, Segré and Silberberg|[3] found, in the flow of a low concentration
suspension through a tube, that solid particles migrate to a preferred location some-
where between the tube axis and the tube wall while the velocity profile remains
parabolic. Numerous theoretical studies [4, 5, 6] have shown conclusively that this
particle migration phenomenon is a consequence of weak inertia effect in the inter-
action of the particle and the suspending fluid.

The first major experimental study for concentrated suspension flow in a tube
was performed by Karnis, Goldsmith and Mason[7]. By using cinematography,
these researchers found that the velocity profiles of the particles are increasingly
blunted at the center as either the particle size or the bulk particle concentration
is increased. By counting tracer particles crossing a plane, they also reported that,
within their experimental accuracy, the particle concentration was uniform across
the tube.

Much more recently, Kowalewski[8] used Ultrasound Doppler Anemometry to
measure the velocity profile for concentrated suspensions of solid and liquid particles
in tube flows. In the case of solid suspensions, he found that the blunting of the
velocity profile can be characterized by the empirical formula v = v,(1 — r?), with
b increasing with the concentration of the suspension and the relative size of the

particles (z.e., a power-law fluid, with b=2 being a Newtonian fluid). For the case
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of droplet suspensions, b also depends on the viscosity ratio of the two phases. The
ultrasonic experimental method is very useful, but it cannot distinguish between
particle and fluid velocities; the measured velocity profile is presumably a mass or
volume averaged value. However, no particle concentration data is given.

Most recently, Hookham(9] used a modified laser Doppler technique to measure
the velocity and concentration profiles for the flow of concentrated suspensions in
a rectangular channel. He measured the Doppler signals from a trace amount of
fluorescent-dyed particles and found that the velocity profiles are similar to the
ones given by previous researchers (i.e., blunted near the center). The degree of
blunting increases as the bulk particle concentration or the particle size-to-gap ratio
increases. By counting the number of fluorescent Doppler signals, he also found that
there are more particles near the centerline of the channel so that the concentration
profile has a maximum near the center. However, the concentration data have a
relatively large degree of scatter and can only provide a qualitative picture of the
particle distribution within the flow channel.

From an analytical point of view, numerous advancements have been made for
dilute systems by analyzing the suspension at the length scale of the particles. The
most celebrated result is that due to Einstein, who showed for a dilute suspension
of solid spheres,

po= uo(l + g@) (3.1)

where yu is the suspension viscosity, go is the suspending fluid viscosity, and @ is
the volume fraction of the particles. Since this pioneering work, many researchers
have extended Einstein’s results for more general cases. Among these, the most
relevant for the present study is the application to more concentrated suspensions,
where particle interactions must be taken into account. For example, Frankel and
Acrivos[10] used lubrication theory to calculate the energy dissipated in the neigh-

borhood of small gaps between sphere to deduce the viscosity of a closely-packed
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suspension. Also, by considering extensional flow, Batchelor[11] showed that
: 2
= po(l + -2~<I> +6.29%) (3.2)

Others have proposed phenomenological relations for higher concentrations, such

as that of Krieger and Dougherty[12]:
®
p=po(l — 2= (3.3)

where @, is the maximum packing volume fraction and [n] is the intrinsic viscosity
(also known as the shape factor).

From the brief discussion above, it is clear that the volume fraction of particles
(®) is critical in determining suspension properties. Of course, in most situations,
the bulk particle volume fraction (®puy) is known. However, there could be local
variations in the particle volume fraction (e.g., due to particle migration). Conse-
quently, one of the intrinsic problems of applying constitutive equations of the type
mentioned above, is the requirement of a priori knowledge of the local particle vol-
ume fraction. Clearly, a comprehensive theory should predict the distribution of the
particles simultaneously with the rheological and flow properties of the suspension.

A more satisfactory approach is the so-called Stokesian dynamics pioneered by
Bossis and Brady[13]. Through numerical experiments, this method can dynami-
cally simulate the motion of a suspension by accurately accounting for the hydro-
dynamic, as well as other possible interactions (such as electrostatic) between the
particles. The advantage of this method is that it can relate the microscopic struc-
ture directly to the macroscopic properties such as the viscosity of the suspension.
Many researchers have successfully applied this technique to elucidate the behaviors
of various suspensions (e.g., the rheology of a monolayer of particles[14, 15]). It
should be pointed out that the simulations are usually computationally expensive,

especially when a large number of particles are involved. Thus, this approach is
not very practical for the study of suspension flows in complicated flow geometries,

such as those encountered in industrially important processes.
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Recently, Leighton and Acrivos[16], motivated by the anomalous experimental
findings of Gadala-Maria and Acrivos [17], proposed a mechanism that can predict
particle distribution of suspensions in shear flows. Specifically, these researchers
found that the measured viscosity of a concentrated suspension of spherical par-
ticles in a Couette viscometer increases initially and then slowly decreases to a
steady-state value. They attribute this variation of viscosity to the diffusive migra-
tion of particles, both in the direction normal to the plane of shear and normal to
the direction of fluid motion within the plane of shear. The premise of their argu-
ment for such shear-induced particle migration is that the collisions of particles are
irreversible. (Irreversible collisions can occur for two-particle collisions of spheres
with finite amount of surface roughness or via three-body collisions.) By using scal-
ing arguments, they suggest that the diffusion coefficients in the directions normal

and within the plane of shear in a shear flow can be estimated as

o2 dy 2
=K, —SE, 4
D, =K, d@ (3.4)
and
$?dy al
Dy =Ky—-3g7 (3-5)

where K and K) can be determined from experimental data. Since the suspension
viscosity depends on the local particle concentration, Leighton and Acrivos success-
fully show that shear-induced particle migration can account for the aforementioned
experimentally observed viscosity variation in a Couette viscometer. In fact, they
have proposed that such particle migration effects can provide a new explanation
for phenomena such as the blunting of velocity profiles in flows of concentrated
suspensions through tubes due to nonuniform distribution of particles across the
tube radius.

Adapting the approach of Leighton and Acrivos, Phillips et al.[18] computed
the velocity and concentration profiles for concentrated suspensions in C'ouette and
Poiseuille flows. This is accomplished by using Krieger’s empirical relationship be-

tween suspension viscosity and particle concentration, and assuming the suspension
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can be modelled as a Generalized Newtonian Fluid such that

T =p(®)y (3.6)

where T is the deviatoric stress tensor and 4 is the rate-of-strain tensor. The spatial
dependence of particle concentration is then calculated using a diffusion equation
developed by following the arguments of Leighton and Acrivos. In the case of Cou-
ette flows, Phillips et al. find that particle migration causes ® to increase from
the inner, rotating cylinder to the outer, stationary cyiinder. These predicted con-
centration profiles agree very well with concentration profiles obtained from NMR
studies of Couette flows for average particle concentration of 50% and 55%(18]. In
addition, their calculations predict that the velocity decreases rapidly from the in-
ner cylinder so that there is a relatively large region of almost stagnant suspension
near the outer cylinder.

For axisymmetric Poiseuille flows, Phillips et al. predict that the particles tend
to migrate towards the center so that the particle concentration is a maximum at the
center and a minimum at the walls. Since the viscosity of the suspension increases
as a function of particle concentration, this particle concentration profile leads to
a velocity profile that is flattened near the center. This is in general agreement
with the experimental results given by Karnis et al.[7] However, no NMR data for
Poiseuille flows are given for comparison.

Clearly, to advance our ability to further understand the flow of suspensions,
especially in flows of concentrated suspensions where particle-particle interactions
are important, it is necessary to understand more about these phenomena through
experimental investigation. The insights that we gain from experimental data will
guide us towards further theoretical development. In particular, to fully evaluate
the applicability of the theory of shear-induced migration of particles to concen-
trated suspension flow, it is necessary to acquire both concentration and velocity
data for a variety of different flows.

Consequently, our objective is to develop an experimental technique that will
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allow us to study the flow of concentrated suspensions. Specifically, we seek to
measure local particle velocity and concentration (volume fraction) profiles for a
suspension flowing in a rectangular channel. This flow configuration is chosen (as
opposed to tube flow) because, as discussed later, it simplifies the experimental
setup. More importantly, this relatively simply flow geometry facilitates the inter-
pretation of the experimental results and the data can be used to compare with

theories such as that of Leighton and Acrivos.

3.2 Experimental Technique

There are various experimental techniques available for the study of the motion
of concentrated suspension flows. For example, as mentioned above, Karnis et
al.[7] employed cinematography to do flow visualization studies of tube flow of
suspensions. They were able to measure the velocity by analyzing the projected
image of the film. The concentration of particles was measured by counting the
number of tracer spheres. This method, being extremely labor intensive, usually
cannot provide very accurate concentration data.

Other experimental techniques have been employed to study the motion of
concentrated suspensions. For example, Kowalewski[8] used ultrasound Doppler
anemometry to measure the velocity of a concentrated suspension flowing in a tube.
The disadvantage of this technique is that it is not capable of measuring the con-
centration of the suspension. McMahon and Parker[20] used a microwave Doppler
technique to measure suspension velocity in a tube flow. However, due to the rel-
atively long wavelengths of microwave, the spatial resolution of their apparatus is
not sufficient to provide local velocity data.

The specific experimental method that we employ here is Laser Doppler Anemom-
etry (LDA). This technique is chosen over other experimental techniques for various
reasons. First of all, it is capable of measuring velocity accurately with compara-

tively good spatial resolution without physically disturbing the flow. Second, the
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LDA technique can be easily adapted to measure the particle volume fraction. Fi-
nally, LDA is now a widely available apparatus and can be easily set up in most
laboratories.

We now proceed to discuss the fundamental principles of the experimental tech-
nique. Subsequently, we will discuss the particular details of the experimental setup
in our laboratory for the study of concentrated suspension flows. LDA is now a
well-known experimental technique; thus, its operating principles are briefly sum-
marized in Appendix A (see Drain[21], and Durrani and Greated[22] for a detailed
account of the principles and operation of LDA. Also, a similar experimental ap-
paratus was used by Hookham[9] to study suspension flows; however, he obtained
Doppler signals from fluorescent dye particles).

In order to study high concentration suspension flows using an optical exper-
iment such as LDA, we must overcome the problem of optical turbidity, which is
absent in the application of LDA to a pure fluid flow. To circumvent this problem,
it is imperative that we minimize the optical turbidity of the suspension—through
refractive index matching of the suspending and particulate phases. As we subse-

quently show, this is a crucial step in LDA measurements in suspension flow.

3.2.1 Refractive Index Match

Optical turbidity presents a major problem in the application of LDA to suspen-
sion flow, especially at high particle concentrations where the intensity of the laser
beams is strongly attenuated. Since the strength of the Doppler signal is propor-
tional to the intensity of the laser beams, attenuation of beam intensity can lead
to lower signal to noise ratios (noise sources include random shot noise of the pho-
tomultiplier tube, spurious signals due to stray laser light, random noise generated
by post-photomultiplier tube electronics, etc.[23]). Beyond the loss of intensity,
multiple scattering can also “deflect” the laser beam from its original optical path;
this can lead to ambiguity on the position of the measurement volume. However,

these detrimental effects can be minimized by matching the refractive indices of the



particles and the suspending liquid.

Currently, we are interested in studying suspensions of neutrally buoyant spher-
ical particles. The constraints of matching the density and index of refraction of
the particles and suspending fluid restrain the type of particles that can be used
in the experiment. The most important requirement is that they are transparent
(t.e., the imaginary part of the refractive index has to be negligible so that light
is not absorbed). Furthermore, the particles have to be spherical and in the den-
sity range of the suspending fluid. The particles we have chosen are monodispersed
polystyrene (with divinylbenzene cross-linkage) particles in the 30um and T0pm size
ranges. These particles, supplied by Duolite and Bio-Rad, are normally used for
ion-exchange chromatography and therefore are available in bulk quantities com-
mercially. Figure 3.1 shows a typical particle size distribution for these particles
(here, the data for the nominally 30 um particles is shown).

As mentioned above, it is necessary to match not only the refractive indices but
also the densities of the particulate and suspending phases. This dictates the use
of a 3-component suspending phase so that the density and the refractive index
can be adjusted independently. For the polystyrene particles, the refractive index
is approximately 1.6 and the density is 1.05g/cm® The liquids chosen for the
suspending phase must have properties “bracketing” these value. The densities of
most liquids are around the value of 1.05g/cm®. However, only a small number of
liquids, such as the liquid phase of various aromatic compounds, have refractive
index values as high as 1.6. Specifically, we have chosen the following liquids, 1-
methylnapthalene(Aldrich catalog number M5,680-8), 1-chloronapthalene(Aldrich
C5,765-0) and UCON-oil(polyalkylene-glycol, Union Carbide product number 75-
H-90,000), to constitute the liquid phase. The first two components are aromatic
compounds with relatively high refractive index. The UCON-oil is chosen because
it is miscible with the napthalenes and has a density and refractive index that
can provide the required properties for this 3-component liquid. The densities

and viscosities of these liquids are measured by a pycnometer and various sizes of
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Cannon-Fenske viscometer respectively. The values are reported in Table 1.

To match the refractive indices of the two phases, several effects must be con-
sidered. First, the refractive index of the liquid used in these experiments depends
strongly on temperature, as seen in Figure 3.2. The refractive indices of these lig-
uids are measured by a Bausch & Lomb refractometer in conjunction with a Neslab
temperature control unit. The temperature coefficient of the 3-component solution
is about —4.5 x 107*°C. On the other hand, the temperature dependence of the
index of refraction of the polystyrene particles is —1.42 x 10~%C[24]. Thus, the
degree to which the refractive indices can be matched depends on how well the
temperature of the suspension can be controlled during the experiment.

The second factor is the wavelength dependence of the refractive index. It is
crucial that the refractive indices be matched at the particular laser wavelength
used in the experiment, namely 488 nm. Thus, it is not sufficient to simply match
the refractive indices of the two phases by selecting the “clearest” suspension with
the naked eye under ambient lighting. A more accurate and systematic method is
necessary.

As far as we know, there is no known method to measure the refractive index
of small particles accurately and conveniently. Thus, it is not possible to measure
the refractive index of the polystyrene particles first, then find a solution of the
correct composition so that it has the same refractive index. Nouri, Whitelaw and
Yianneskis[25] demonstrated an ingenious way of matching the refractive indices
of Diakon particles and a solution of tetraline and turpentine. They aimed a laser
beam into the solution containing a large Diakon rod. By varying the composition
of the solution (thus varying its refractive index), the laser beam passed through
the system with different degrees of deflection. The point of perfect match was
ascertained when the beam passed through the system without any deflection.

Unfortunately, we do not possess any bulk polystyrene sample that has the
same molecular structure (hence the same refractive index) of the polvstyrene-

divinylbenzene particles. Thus, we were not able to match the refractive indices
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at the specific laser wavelength using the experimental procedure described above.
However, Conaghan and Rosen[26] developed a theory that quantifies the degree
of light scattering in a suspension as a function of the refractive indices of the two

phases. The transmittance of light through a sample of thickness z is defined as:

T

-[I—o =e 7F (3.7)

where [, is the intensity of the incident light and I is the intensity of the transmitted
light. For a perfectly matched system, T = 1; otherwise, T < 1.
The turbidity, 7, is given by
JoK
= 3.8
=5 (3.8)

where ¢ is the particle volume fraction, d; is the particle diameter and K is the

scattering coefficient. Normally, it is necessary to solve Maxwell’s equation to obtain
K. However, for large particles (d, > A, the wavelength of the incident light), Van
De Hulst[26] derived the following relationship

K=2-—ésinp+—%—2—(l—cosp) (3.9)
p p
where
5= zl-‘ip.-’iz;m— 1] (3.10)
and
m=— (3.11)
No

Here, n, and n are the refractive indices of the particle and the suspending fluid
respectively.

We now discuss an experimental procedure that measures the transmittance
of suspensions. Figure 3.3 shows the schematic diagram of the experiment. By
measuring the intensity of the laser after it passes through the solution and the
suspension, we can calculate the transmittance. In order to take into account the
inherent turbidity and light absorbance of the solution, I, is actually the transmitted

intensity of the laser after it passes through the particle-free solution. Figure 3.4
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shows the experimental results for @y = 0.1%, d, = 30um, A\ = 488nm and
various solution refractive indices.
To find the refractive index of the polystyrene particles (n,), we choose n, such

that the following quantity

o 12

E= Z[Tc(fj—Tt(—-—) (3.12)

O,
is minimized. Here, Te(n/n,) is the experimental transmittance, T\(n/n,) is the
theoretical transmittance and n is the refractive index of the solution. As expected,
n, should be the refractive index that the maximum transmittance occurs. The
exact value of n, that minimizes E is 1.5867 (at 20°C). The composition (by
weight) of the liquid with this refractive index is 6;7.7% 1-methylnapthalene, 10.4%
1-chloronapthalene and 21.9% UCON-oil.

Using this value of n,, a theoretical transmittance curve is plotted against the
expermental data in Figure 3.5 for comparison. We can see that the experimental
data fit the theoretical prediction quite well. It is clear, however, that Temax <
Timax = 1. This is due to small but finite mismatch of the refractive indices and
possibly a trace amount of impurities within the particles. In fact, it is this residual
turbidity that allows a particle to produce a Doppler signal when it passes through
the laser beams.

It should be pointed out here that, in the context of LDA, a refractive-index-
matched suspension of (relatively) large particles is somewhat different from a fluid
seeded with a large number of submicron particles (as in many LDA measurements
of fluid flow). In the former, the particle size is of the order of the measurement
volume so that the Doppler signal comes from a single particle. In the latter, many
small particles could be present in the measurement volume and they all contribute
to the signal both coherently and noncoherently (see Drain[27] for a more detailed
discussion).

As stated earlier, the temperature coefficients of the refractive index of the solu-

tion and the polystyrene particles are different. Therefore, even when the refractive
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indices of the two phases are matched (i.e., n/n, = 1) at a specific temperature,
say 20°C, n/n, will deviate from unity as temperature fluctuates during the course

of the experiment. If the temperature is controlled to within +0.5°C, then
n = 1.5867 £ 0.0002 (3.13)

and

n, = 1.5867 % 0.00007 (3.14)

As a result, the variation in m becomes
m=10+8x10"° (3.15)

Using Equations 3.7 and 3.8 , and assuming ¢ = 0.3 and z = 1.0mm (a typical gap
width of the flow device), we find that the transmittance is reduced from unity to
0.99. Of course, the actual transmittance will be lower than this theoretical figure,
due to impurities contained in the particles. In practice, it is found that controlling
the temperature of the suspension to within +£1°C is sufficient.

As we have shown, the refractive indices of the two phases are matched at
n=1.5867 at 20°C. However, the turbidity of the suspension slowly increases over
a period of several days. In fact, the refractive index of the filtrate (i.e., the
suspending liquid) of an old suspension decreases with the age of the suspension. We
believe that the polystyrene-divinylbenzene particles selectively absorb the lower
molecular weight 1-methylnapthalene and 1-chloronapthalene, thus slowly changing
the refractive indices of the suspending liquid and the particles. Consequently, the
experiments are performed with fresh suspensions within a five-hour period, during

which the turbidity of the suspension does not increase significantly.

3.3 Experimental Setup

The experimental setup is shown in Figure 3.6. The whole setup is secured on a

pneumatically elevated optical table (Newport Research MST-48) for isolation from
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vibration. The laser is a Spectra-Physics model 165 argon ion laser operating at
488 nm. All the optical elements are coated with antireflection coatings (for lenses
and optical windows) or maximum reflection coatings (for mirrors), all optimized
for the argon ion laser wavelength. After the laser beam exits the laser cavity, it is
deflected by various mirrors (el and e2) to the appropriate position before entering
the beam splitter (element e3). At the output end of e3 are two laser beams of
equal intensity . Element e4, an integral optical element consisting of two mirrors
and a reflecting prism, allows for easy adjustment of the beam separation through
the movement of the prism. The final element (e5) before the beam enters the
flow device is a plano-convex lens with a focal length of 120.8 mm. The beam
separation distance is approximately 50 mm and the beam intersection angle is
measured to be 26.6°. This lens serves to focus the two beams onto the same
point (constituting the measurement volume mentioned in Appendix A) in the flow
device. The LDA system operates under the forward-scatter mode. Therefore,
the light collection optics are located on the other side of the flow device. The
collection lens (e6) has a focal length of 50 mm (operating at £5.6). This lens focuses
an image of the measurement volume onto the photomultiplier tube (Hamamatsu
model R1617 operating at a potential of 0.85 kV). A pinhole is placed in front of
the photomultiplier tube to prevent stray light from entering.

To calculate the effective size of the measurement volume, it is necessary to
trace the size of the laser beam from the output of the laser. The beam radius
at the output of the laser cavity is 0.21 mm and it has a beam divergence angle
of 0.78 mrad[28]. The distance between the laser and the focusing lens (e5) is
approximately 2.0 m. Thus, the beam radius at the front of lens e5 is 1.2 mm.
Using the following equation derived from Gaussian optics[29],

_ M

T}

(3.16)

Io

(A is the wavelength, f is the focal length of a lens, r; is the input beam radius and

I, is the output beam radius at the focal point) the beam radius at the focal point



i1s 15.6 pm.
Using Equations A9, A10 and A1ll, the effective size of the measurement volume

is given by

A:c,,ff = 109 73081
Ay = 44 pm (3.17)

Az.py = 48 um

When a particle passes through this volume, it scatters light that is collected by
the collection lens onto the photomultiplier tube. Although the refractive indices of
the two phases are closely matched, the small but finite difference allows the par-
ticles to scatter laser light at a detectable level for LDA. The photomultiplier tube
in turn sends a signal to a TSI Model 1980B Counter-Type Signal Processor(see
[30] for details of its operation). This signal processor has a built-in amplifier (with
an overall gain that can be varied from -31 dB to +34 dB) to amplify the signal
from the photomultiplier tube. As mentioned in Appendix A, the Doppler signal
consists of both an ac-term and a dc-term. The dc-term is eliminated with a 1 kHz
low limit filter; a 100 kHz high limit filter reduces high frequency noise produced
by the photomultiplier tube and the amplifier. The signal processor then measures
the time taken for a certain number of cycles in a Doppler signal burst using a high
resolution clock with a resolution of +2ns. The exact number of cycles depends on
the strength of the signal; the stronger the signal, the higher the number of cycles.
Typically, the number of cycles ranges from 10 to 20; also, the signal processor will
ignore signals with less than 5 cycles/burst. An IBM PC-AT is interfaced with the
signal processor to obtain the raw data (which consist of the number of cycles,n.,
the duration of the signal,t,, and the time between successive signals,t4). This data
1s stored in the computer and converted to useful data at the end of each experi-
. ment (see Appendix B for a flow chart of the FORTRAN program that collects and
interprets the data).
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3.3.1 Calculation of average particle velocity and volume
fraction

In a typical experiment, 500 to 1000 data points are obtained for each point in
the flow channel. For each Doppler signal processed by the signal processor, the
computer receives 3 pieces of information: n., t, and t4. n. is the number of cycles
in the Doppler burst, t, is the duration of this signal, and tq is the time between

the current and the previous signal. The Doppler frequency is simply given by

nC
fDoppler = ' (3.18)

8
Referring to Equation A7, the Doppler frequency can be converted into the z-

component of the velocity as follows

A

Uz(l‘) = 2sin %fDoppler (319)
where = denotes a specific point in the flow device. Using A = 0.488um and
a = 26.6°, we obtain

v.(mm/s) = 1.06 fpeppier(kHz) (3.20)
The average velocity is given by
N .
valz) = izl lz (3.21)

N

and the standard deviation of the velocity is also calculated

Tv, = Ty (v — ?7?)2}%
vs (N = 1)

(3.22)

To obtain the particle volume fraction, recall that the size of the measurement
volume is of the order of a particle, as shown in Figure 3.7. The local particle

concentration is proportional to

(3.23)
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where A,,, is the cross-sectional area of the measurement volume and Ad is the
particle separation. The particle separation can be deduced from the experiment

as follows

Ad = U, td (324)

The average local concentration is then given by

1
A Thtg
N

0 8 m (3.25)

Clz) «

where we have used

7 = Z?:l tdl '
N

é_f:

N

(3.26)

Thus, if V, is the volume of a particle, the particle volume fraction is given by

®(r) x C(z)Vp
k
v (x)At

(3.27)
The proportionality constant, k, is determined by satisfying the following condition

- (3.28)

3.3.2 Test of experimental system

In order to ascertain that the LDA system as well as the data collection system are
functioning properly, the velocity profile in a rectangular channel flow of a New-
tonian fluid (water) is measured. The flow channel has a gap width of 0.062 inch
and an aspect ratio of 1:16. Figure 3.8 shows a schematic of the flow channel.
The details of the flow system are explained in Section 3.4; since the aspect ratio
of this channel is 1:16, the flow field at the center of the channel across the nar-

row dimension is approximately parabolic). The Doppler signals are obtained from
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5um seeding particles. Figures 3.9-3.11 show the experimental data and theoretical
(parabolic) profiles for three different pump speeds. For each of the three experi-
ments, the velocity data is non-dimensionalized with the corresponding velocity at
the centerline of the flow channel (i.e., the maximum velocity). x is the location
in the flow channel non-dimensionalized with half the gap width of the flow chan-
nel. In general, there is good agreement between the experimental data and the
parabolic profile. However, we can see that the measured velocities are consistently
higher than the theoretical values near the walls. We can offer two possible expla-
nations for this observation. First, the signal to noise ratio near the walls is lower
due to laser light reflected by the glass walls. This causes extraneous laser light to
enter the receiving optics, thus increasing the noise level. More importantly, the
TSI signal processor is equipped with a high pass filter to eliminate the d.c. (low
frequency) part of the signal (see Section 3.3). This filter eliminates frequencies
below 1 kHz, which corresponds to velocity of approximately 1 mm/s. The velocity
near the wall is the lowest and the velocity gradient is the highest. Since the low
frequency (velocity) signals are eliminated electronically, only the high frequency
(velocity) signals are processed. Consequently, the average velocity obtained at a
point near the wall is biased toward a higher value. (It should be pointed out that
this problem can be resolved by using a Bragg cell to shift the frequency of one of
the laser beams [22]. At present, however, our experimental setup is not equipped
with a Bragg cell).

As discussed above, we match the refractive indices of the suspending and par-
ticulate phases to reduce multiple scattering of the laser. The exact quantitative
difference between the Doppler signals obtained from suspensions with or with-
out refractive index matching is difficult to predict. However, we have observed
qualitative differences between the two cases. Figure 3.12 shows typical Doppler
~ signals from a refractive-index-matched suspension as observed from a storage os-
cilloscope. The top trace shows a single Doppler burst that is free of noise and has

a well-defined envelope. The bottom trace, obtained at a higher sweep rate, shows
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a series of Doppler signals. On the other hand, Figure 3.13 displays Doppler signals
from a suspension whose refractive indices are not matched. Here, the refractive
index of the solution is 1.5858 (recall that the refractive index of the particles is
1.5867). The bulk volume fraction of the suspension is 15%. From the top trace, we
can see that signal does not have a well-defined envelope and that a high frequency
noise is present. The bottom trace is obtained at a higher sweep rate; compare to
the trace shown in Figure 3.12, it does not show any well-defined Doppler bursts

and appears to be noisier.

3.4 Experimental Procedure

In this section, we discuss the procedure for the operation of the experiment. (For
readers who are interested in the finer points of performing the experiment, we have
provided a step-by-step guide on the detailed operation of the experiment in Ap-
pendix C). First, we discuss the flow system employed in the experiment to study
suspension flow in a rectangular channel. Figure 3.8 shows the detailed dimensions
of the flow channel while Figure 3.14 shows the schematic diagram of the cross-
section of the flow channel. The optical quality pyrex glass walls (available from
Rolyn Optics, West Covina, California) are coated with a broad band multilayer
dielectric coating and have a refractive index of 1.474. Besides the glass, the flow
channel is made of black anodized aluminum (the black anodization reduces reflec-
tion of stray laser light). The precise gap width of the flow channel is determined
by the thickness of the Lucite spacers, machined to within +0.001 inch. Two sets
of twelve set screws are used to secure the glass plates to the aluminum pieces and
to provide pressure to seal the two sides of the channel. To seal the top and bottom
of the flow channel, rubber gaskets (1/16 inch thickness) are placed in between the
top and bottom of the flow channel and the exit and entry blocks respectively. The
exit and entry blocks have openings so that thermocouples can be placed inside to

monitor the temperature of the suspension.



83

Figure 3.15 is a schematic of the overall flow system. A Harvard Apparatus
model 951 infusion-withdrawal pump is used to maintain a (nearly) continuous flow
through the closed-loop system (the flow is briefly interrupted when each stroke of
the pump changes direction). Two precision-bore Robb infusion glass syringes of
50 cm® capacity each are used for the pump. All the connection tubings are teflon-
coated to provide chemical inertness. The reservoir is constantly stirred with a
magnetic stirrer for the duration of the experiment.

For a typical experiment, the suspension is prepared by mixing the necessary
amount of particles (depending on the desired bulk particle volume fraction of the
suspension) in the liquid. Approximately 150 ml of suspension is required for the
capacity of the overall flow system. The suspension is stirred manually to assure
good mixing. It is then allowed to stand for 15-45 minutes so that any bubbles
present in the mixture rise to the top. Since the turbidity of the suspension increases

with time, the suspension is discarded after about 4 hours of experimentation.

3.5 Experimental Results and Discussion

To explore different possible phenomena associated with this experiment, we have
performed the experiment for a range of values of the various important dimension-
less parameters, namely, the bulk particle concentration (® ), the particle size to

gap ratio («), and the particle Reynolds number. They are defined as follow:

particle volume

= 3.29
bale particle + liquid volume ( )
a
=2 3.30
e=3 (3.30)
and

Re, = 2022 (3.31)

Hliquid

Here, a is the radius of the particle, d is the gap width of the flow channel, v,z is

the centerline (maximum) velocity of a Newtonian fluid under the same flowrate, p
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is the density of the suspending liquid, and pyquiq is the viscosity of the suspending

liquid. The Reynolds number of the overall channel flow (Re) is simply given by:

_Re

Re (3.32)

K

In Figure 3.16, we show the coordinate system of the experiment. The length scales
are non-dimensionalized with half the gap width of the flow channel (d/2). All the
data reported here were obtained from a point approximately 12.7 cm from the
entrance of the flow channel. (Data obtained from approximately 12.7 cm and
7.6 cm from the entrance are identical within experimental error; thus, the data
shown here are the steady profiles. Also, to study the evolution of the velocity
and concentration profiles, we show preliminary data obtained at various positions
downstream from an obstruction in Appendix D.)

To characterize the velocity profiles obtained in this study, we fit the data by

the least square method using the empirical formula (see Kowalewski[8])
v, = v,0(1 — |z|?) (3.33)

Here, v, is the particle velocity at the centerline (i.e., z = 0). The exponent b is
the adjustable parameter which we shall denote the bluntness factor. As with any
empirical data fit, there is no a priori way of determining whether this formula is
appropriate. Its applicability is judged solely by comparing the actual data with
the best fit. As we have mentioned earlier, the velocity data deviate from the
actual velocity near the wall due to the apparatus’ inability to measure velocity
below 1 mm/s. The deviation becomes apparent at z & +0.8 (see Figures 3.9-11).
Inclusion of these data points when curve-fitting the data to Equation 3.33 would
systematically increase the bluntness factor, especially for the low flowrate cases.
To maximize the reliability of the bluntness factor (b), we therefore arbitrarily
ignore data obtained for || > 0.8 when performing the least square data fit.

In Table 2, we list the parameters for each of the experiments reported here.

The bulk particle volume fraction ranges from 0.10 to 0.30, & ranges from 0.010 to
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0.057, while Re, ranges from 2 x 1072 to 1.2 x 1072, At this point, we are only
able to obtain reliable data for volume fractions up to 0.3. This limitation exists
for several reasons. First, the bulk viscosity of suspensions increases with particle
concentration; we found that the syringe pump employed in our experiment cannot
provide a smooth flowrate at particle concentrations higher than 0.3. Second, we
did not observe (from the oscilloscope) distinct and well defined Doppler bursts at
such high particle concentration. As explained earlier, it is necessary to allow the
suspension to stand for a period of time so that any small bubbles created after stir-
ring the suspension can rise to the top. We found that, for such high concentration,
an exceedingly long duration of standing time is required. Apparently, the quality
of the refractive index match degrades beyond a,nb acceptable level within this pe-
riod for a high concentration suspension. (For this same reason, we did not report
any particle volume fraction profiles for the case of @ = 0.3 and x = 0.010 since
we did not observe distinct Doppler bursts from the oscilloscope.) We believe that
a new combination of particles and suspending fluid, in which refractive indices of
both phases remain constant, should improve this situation.

We will first discuss one specific set of data to highlight the general features.
Figure 3.17 shows the particle velocity and volume fraction profiles for the case of
Rep, = 4.0 x 1073, x = 0.010 and @y = 0.10. On the top half of the figure, the
ordinate is the particle velocity non-dimensionalized with v, g. The symbols (o) are
the experimental data and the solid curve is obtained from the data curve fit using
Equation 3.33. The bottom graph in the same figure displays the particle volume
fraction data. The solid line is obtained from a general data curve fit. The error
of the volume fraction data is estimated to be about £10% of its value. (Recall
that these data are obtained by measuring the time, At(z), required to obtain a
certain number of Doppler signals at position z in the flow channel. It is observed
from the experiments that the volume fraction obtained from two consecutive sets
of 1000 data points at the same location can differ up to about 10%).

For completeness, the velocity and volume fraction data obtained from all the
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experiments listed in Table 2 are placed in Appendix E. We shall concentrate our
effort on understanding the general phenomena exhibited in these experiments with
variations of the three aforementioned parameters (®pux, %, and Re,). The first
and foremost feature of channel flow of suspensions is the blunting of the particle
velocity profile, as indicated by the value of the bluntness factor, b. The results
are graphically shown in Figure 3.18. Qualitatively, b increases as the bulk particle
volume fraction increases. Furthermore, the amount of blunting increases only
slightly when @y increases from 0.1 to 0.2, but more dramatically when @y
increases from 0.2 to 0.3. The blunting also increases when the particle radius to
gap width ratio («) increases. For the case of k = 0.010, b ranges from about 1.9
to 2.6 as ®pyy increases from 0.1 to 0.3. For « = 0.057, b ranges from about 2.5
to 3.5 as Ppuy increases from 0.1 to 0.3. Finally, for the small range of Reynolds
number explored in this experiment, cursory observation of the data shows that
the bluntness factor remains approximately constant within experimental error for
different flowrates.

In addition to the average velocity, we also report the standard deviation of the
velocity. The magnitude of the standard deviation of the velocity is governed by
various effects. The variation in velocity measured at each point in the flow channel
is partially due to the velocity gradient within the finite-size measurement volume.
In some cases the velocity profiles are highly blunted near the center, which indicates
the absence of any significant macroscopic velocity gradient. However, we can still
measure a finite standard deviation of the velocity. This is an indication of the
presence of local velocity fluctuations due to interactions (e.g., collisions) among
the particles. In fact, some of these interactions (i.e., the irreversible collisions)
lead to the particle migration discussed in Section 3.6. Currently, we are in the
process of obtaining other statistical information pertaining to the experiment. For
example, in addition to velocity fluctuation, a time correlation of t, (the time
- between successive valid Doppler signals, c.f. Section 3.3.1) would provide a more

detailed picture regarding the mechanisms of particle migration due particle-particle
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interactions. This will be reported in a future paper.

The next question we wish to address is the volumetric flowrate of the solid and
liquid phases through the flow channel. Since a constant volumetric flowrate pump
is utilized for the experiment, the dimensionless volumetric flowrate can be given

by

1

= 1 —z]*)d
Q= [ (1-leP)e
4
= 3 (3.34)
The particle volumetric flowrate, Q,, is given by
1 —
Q, = / 0(z)o,(2)da (3.35)

If the particles are uniformly distributed in the flow channel (i.e., ®(z) = ®pu) and
the fluid velocity is identical to the particle velocity, then the particle volumetric

flowrate is simply

Qp = PruQ (3.36)

In Figure 3.19, we show the quantity Qp,/®puxQ vs. Ppux for various values of «.
We can see that Q,/PpuxQ > 1 at Ppux = 0.1 and decreases below unity as Ppun
increases to 0.3. Furthermore, comparing data for various x shows that Q,/®puxQ
is generally higher for smaller values of x. The reason Q,/®puxQ can be greater
than unity is because at low concentration, the particle velocity profile is quite
similar to the Newtonian parabolic profile. Since more particles are found near the
center of the flow channel where the velocity is highest, the overall transport of the
particulate phase becomes higher. However, when the bulk particle concentration
increases, the quantity Qp/®puxQ can become as low as 0.6. This means that there
is a significant difference between the velocities of the particle and the fluid. We
can offer one possible explanation that can contribute to this relatively large slip
velocity. In a high concentration suspension, the particles are packed close to each

other; because of their close proximity, they can be considered moving together as
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a larger entity composed of a group of small particles. We know that the speed of a
finite size, neutrally buoyant particle in Poiseuille flow decreases as the ratio of the
size of the particle to the radius of the tube (or channel gap width) increases. Thus,
it is possible that the ensemble of particles moves together at a slower speed than
when the particles are isolated in a more dilute suspension. It should be pointed
out here that since Q,/PrLuxQ # 1, the reciprocating nature of the syringe pump
causes small fluctuation in the particle concentration in the reservoir between each
stroke of the pump. However, since the capacity of the syringe is only a small
fraction of the overall capacity of the flow system, a simple mass balance shows
that this fluctuation is negligible.

The general observation regarding the particle volume fraction is that the par-
ticles tend to concentrate near the center of the flow channel. In order to quantify
this phenomenon, we plot the quantity ®q/ Py as a function of &y, as shown in
Figure 3.20 for four different values of x. Here, ®, is the particle volume fraction
at the centerline of the flow channel. Since more particles are found near the center
of the channel, it is obvious that ®/®y > 1 for all the experiments performed.
However, the most striking behavior observed in these figures is that ®4/®y,y has
a maximum near ®p g = 0.2 but decreases towards P = 0.3. We believe that
this apparent anomaly can be explained by the following qualitative argument. For
a suspension of monodispersed particles, there is a maximum particle volume frac-
tion (known as the maximum packing fraction) that depends on the structure of
the suspension. The maximum packing fraction can range from 0.52 (for a simple
cubic structure) to 0.637 (random close packing) to 0.74 (face-centered cubic or
hexagonal close pack)[l]. The maximum particle volume fraction measured in the
experiments for @y, = 0.3 ranges approximately from 0.4 up to 0.6. This means
that at @y = 0.3, the particles near the center of the flow channel are very closely
packed and approach some maximum possible packing. Consequently, ®o/®pui is

* lower for Sy = 0.3 than $pyy = 0.2



89

3.6 Comparison with theory

We have applied the approach of Phillips et al.[18, 31], based on the sheared-induced
particle migration theory of Leighton and Acrivos, to calculate the concentration
and velocity profiles in a rectangular channel flow (modelled as flow between two
infinite plates). Since the extension from cylindrical Poiseuille flow to rectangular
channel flow is straight forward, we will simply state the basic ideas here and refer
the readers to the paper of Phillips for more details. They assume that the sus-
pension can be modelled as a Generalized Newtonian fluid such that the deviatoric

stress tensor

"~

= n(®)

where 7 is the rate-of-strain tensor and 7 is the viscosity. The dependence of the

(3.37)

I 2

viscosity on the particle volume fraction is given by Krieger’s empirical formula[19)

I _ (1- __(_}f__)—l.sz

7]0 (I)m

where @, is the maximum packing volume fraction, assumed to be about 0.68.

(3.38)

Using the theory of Leighton and Acrivos, Phillips et al. derived a diffusion

equation for the particles

K.2V(5®) + I{W(&QZ)%%VQ =0 (3.39)
Here, 7 is the local shear rate, K. is a proportionality constant related to the flux
of particles caused by particle concentration variation in the suspension, while K,
is related to the flux of particles due to viscosity variation of the suspension (see
(18] for a more detailed discussion on the derivation of Equation 3.39). Applying
Equation 3.39 to the simple geometry of our problem (see Figure 3.21), it is easy
to show that
e _ (T 7=

YuwPu n
Here, the subscript w refers to values evaluated at the wall and K, and K, are

(3.40)

proportionality constants. From experimental data obtained from Couette flows,

Phillips et al.[18] found that K./ K, = 0.66.
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Using the momentum equation and Equation 3.37, we can show that

Y=

=&

(3.41)

Combining Equations 3.40 and 3.41, and using the simplifying assumption that
1.82(1 — K,/ K.) = —1, we find

(3.42)

where

6, -0,
a = T (343)

and it is related to the bulk volume fraction(®yuy) as
1
o . od
bulk /o z
= -qi'ﬁln(l + a) (3.44)
a

Equation 3.42 predicts the particle distribution in the flow channel. Combining this

equation with the momentum equation and Krieger’s viscosity formula, we obtain

dv z )1.82

7 = kel (3.45)

Equation 3.45 is solved by the fourth-order Runge-Kutta method and k is a pro-

portionality constant determined by the volumetric flowrate requirement

1
/vd:c:
0

Figures 3.22-24 show the theoretical predictions as well as the experimental data

(3.46)

Wit

for three bulk particle concentrations (®pyy = 0.1, 0.2, and 0.3) for the case of x =
0.019. We have already discussed in the previous section the qualitative difference
in the behavior of suspension flow for different values of x. (For completeness,
~ however, we have also included plots of comparison with data for other x values
in Appendix F.) The top half of each graph displays the velocity data and the

bottom half shows the particle volume fraction data. We first discuss about the
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velocity predictions and data. The dotted-line shows the theoretical velocity profile
as calculated by Equation 3.45. It is apparent that it does not agree with the
experimental data. As we have discussed earlier, we find that the particles are
moving, on the average, slower than the fluid. However, the theory here assumes
that the suspension can be treated as a Generalized Newtonian fluid and makes no
distinction between particle and fluid velocities. We know that, from theoretical
studies of single neutrally buoyant particle travelling in Poiseuille flow[32], there is
a slip velocity between the particle and the fluid. For isolated particles, the slip
velocity is of the order of the ratio of the particle size to gap width (or tube radius);
for the relatively small particles used in the current experiment, it is only a few
percent of the particle velocity. However, from the experimental results obtained
here, it is clear that the slip velocity in the case of concentrated suspensions can be
much higher. Thus, a more comprehensive theory should also take this phenomenon
into account.

We now turn our attention to the bottom part of the graphs. Here, we show the
particle volume fraction data compared to the theoretical prediction (i.e., Equa-
tion 3.42). One observation is that the predicted ® always equals the maximum
value, ®,, (=0.68) at the center. As discussed in detail in Phillips’ paper, the dif-
fusion of particles is based on the idea of particle collisions. The model assumes
that the particles diffuse in the direction of lower shear rate with an opposing flux
proportional to yV®. In our current geometry, the particles tend to diffuse toward
the center of the gap. However the opposing flux vanishes at the center because the
shear rate, 7, also vanishes there. This effect is a manifestation of characterizing
the particles as points instead of finite size entities which leads to the unrealistic
assumption of no particle collisions at the center. This can be improved with refine-
ment of the theory by taking into account the finite dimensions of the particles[18].
. By doing so, the theory would allow for particle collisions even when the shear rate
vanishes; thus, there would still be an opposing flux at the center of the flow chan-

nel. This would lead to a lower particle concentration near the center and a particle
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concentration profile more similar to those obtained from experimental data.

To summarize, we find that the flow of concentrated suspensions in a rectangular
channel is characterized by a blunting of the particle velocity profile. The magnitude
of this blunting increases with the increase of either the bulk particle concentration
of the suspension or the ratio of the particle size to the gap width of the channel.
We are also able to measure the local particle volume fraction. It is found that
the local particle volume fraction is not uniform across the gap width of the flow
channel; in general, the particles tend to concentrate near the center of the flow
channel. In certain instances (i.e., @y = 0.3) the local particle concentration at
the center approaches some maximum packing value near 0.65. One of the most
interesting phenomena found in this study is that there exists a relatively large
slip velocity between the particle and the fluid, as indicated by the calculation of
the particle volumetric flowrate (cf. Figure 3.19). This slip velocity increases as
the bulk particle concentration increases. Consequently, it is important that any
comprehensive theory for the flow of suspension should take this phenomenon into

account.
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Figure Captions

10.

11.

12.

13.

. Particle size distribution curve for the nominally 30 um particles.

. Temperature dependence of refractive indices.

Schematic diagram of turbidity experiment.

. Experimental results from a typical turbidity experiment: @y = 0.1%, dp =

30pum, A = 488nm.

Comparison of theoretical transmittance curve with experimental data as-

suming n, = 1.5867.

Schematic diagram of LDA experiment.

[llustration for explanation of calculating the particle volume fraction.
Schematic diagram of flow channel.

Comparison between experimental data and parabolic velocity profile. V. =

8.0 mm/s and channel gap width = 0.062 inch.

Comparison between experimental data and parabolic velocity profile. V., =

15.9 mm/s and channel gap width = 0.062 inch.

Comparison between experimental data and parabolic velocity profile. V. =

31.5 mm/s and channel gap width = 0.062 inch.
Oscilloscope traces obtained from a refractive-index-matched suspension.

Oscilloscope traces obtained from a suspension whose refractive indices are

not matched.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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Schematic diagram of cross-section of the flow channel.
Schematic diagram of flow system.
Coordinate system of the experiment.

Particle velocity and volume fraction data for Re, = 4.0 x 1073, x = 0.010

and Py = 10%.

Bluntness factor (b) vs. ®pyy for x = 0.010,0.019,0.032and0.057.
Qp/ PoukQ vs. Ppux for « = 0.010,0.019,0.032and0.057.

Oo/Prux vs. Ppux for £ = 0.010,0.019,0.032and0.057.

Geometry for solving the diffusion problem.

Comparison between predicted and experimental velocity and concentration

data for Qbulk = 0.1

Comparison between predicted and experimental velocity and concentration

data for ®pyx = 0.2

. Comparison between predicted and experimental velocity and concentration

data for @,y = 0.3
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Table Captions

1. Viscosities and densities of the fluids used in the experiment at various tem-

peratures.

2. List of experiments performed.
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Viscosity(cP) | Density(g/cm?)

1-Chloronapthalene

16.0°C 3.79 —

20.0°C 3.42 1.191

24.0°C 3.13 —
1-Methylnapthalene

16.0°C 3.70 e

20.0°C 3.29 1.017

24.0°C 2.97 —

UCON oil 75-H-90,000

16.0°C 6.89 x 10* —

20.0°C 5.11 x 104 1.094

24.0°C 4.18 x 104 —
Suspending Liquid

16.0°C 148 —

20.0°C 124 1.052

24.0°C 106 —

Table 1
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Experiment No. K o Re,
160 0.010 | 0.10 | 4.0 x 1073
158 0.010 | 0.10 | 2.0 x 1073
215 0.010 | 0.20 { 4.0 x 10~3
217 0.010 { 0.20 | 2.0 x 1073
172 0.010 | 0.30 | 2.0 x 103
186 0.019 | 0.10 | 4.0 x 10~°
187 0.019 | 0.10 | 2.0 x 1073
191 0.019 | 0.20 | 4.0 x 1073
189 0.019 [ 0.20 | 2.0 x 1073
194 0.019 | 0.30 | 4.0 x 1073
192 0.019 | 0.30 | 2.0 x 1073
199 0.0320.10 | 6.6 x 1073
198 0.032 | 0.10 | 3.3 x 1073
204 0.032 { 0.20 | 6.6 x 1073
202 0.032 1 0.20 | 3.3 x 1073
207 0.032 | 0.30 | 6.6 x 1073
205 0.032 | 0.30 | 3.3 x 1073
246 0.057 | 0.10 | 1.2 x 10~*
245 0.057 | 0.10 | 5.9 x 1073
224 0.057 | 0.20 | 1.2 x 1072

1223 0.057 | 0.20 | 5.9 x 1073
226 0.057 | 0.30 | 5.9 x 1073

Table 2
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Appendix A: Laser Doppler Anemometry

The LDA method is based on the principle of Doppler shift—the frequency of
light scattered by a moving scatterer is shifted by an amount proportional to the
velocity of the scatterer. Consider a particle moving at speed v across laser beam

1 at A (see Figure Al). The frequency shift of the scattered light is given by
An

— = %(00391 + cos9) (A1)
where v is the frequency of the laser beam and ¢ is the speed of light in vacuo.
It is clear that the maximum shift is of the order of (v/¢); for most fluid flows,
especially those we encounter in chemical engineering processes, this ratio is of
the order of 1078, From a technical point of view, this relatively small frequency
shift is extremely difficult to measure directly. However, consider an optical system

consisting of two laser beams (beams 1 and 2). Similarly, the frequency shift of the

scattered light due to the same particle passing through beam 2 is

Arz = E(cos92 + cos¢) (A2)
c

14

When the particle passes through the region of intersection of beams 1 and 2,
scattered light due to both beams can be mixed and the resulting mixture consists
of signals equal to the the harmonics, the sum as well the difference of v; and v,
(where vy = v+ Avy and v, = v + Av,). Ignoring signals with frequencies too high

to be detected, we can define the beat frequency as

fDc:ppler = V] — V2
2v «a
— migin{— 3
3 sm(2)cosﬁ (A3)

This beat frequency, denoted by fpoppler, is directly proportional to the component
~ of the velocity in the z-direction of the particle and is usually in a frequency range
that can be readily detected by various types of detector (such as a photomultiplier

tube used in this experiment).
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The optical system discussed above is known as the real-fringe mode LDA. It is
customary to explain its operational principle by the following physical interpreta-
tion (see Figure A2). The photomultiplier tube is a nonlinear device in the sense
that its current output is proportional to the square of the electric field. Conse-
quently, the quantity of interest is the light intensity distribution due to the two
laser beams. It is given by

1 = (B +Ey)?

z2cos?a + z?sin?a + y?

= Io{exp (— T2 ) X
Tzsin2a 4mzsina
[cosh(——;—;—;——-—) + cos(——-j‘-—-)]} (A4)
where
I,/2 = intensity of each of the laser beam
o = half-angle of the beam crossing
A = wavelength of laser light
and
r, = beam radius of incident laser beam (A5)

The cosine term in the square brackets is due to constructive and destructive inter-
ference of the two laser beams. This interference produces alternate light and dark
“fringes” at a fringe spacing equal to

A

£= 2sin(g)

(A6)

Consequently, as a particle passes through this region of fringes at a velocity v, it
scatters light that is modulated at a frequency determined by the component of the

velocity normal to the orientation of the fringes

v
fDoppler = '('1';
= %\gbm(g-)cosﬁ (AT)
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It is clear that the result derived from this physical interpretation is the same as
that given by Equation A3 .

Additional information can be extracted from Equation A4. The cosh term,
compared to the cosine term, varies slowly in space. In fact, this relatively constant
term produces a low frequency signal as a particle passes through the laser beams.
Since this signal does not contain any velocity information, it is usually eliminated
electronically with a high pass filter, as shown in Figure A3. The exponential term,
due to the Gaussian intensity distribution of the laser beams, governs the size of the
measurement volume. The light intensity, with its maximum at the origin, decays

to 1/e* of maximum intensity (I,) on the ellipsoid (Figure A2)
z?cos’a + r¥sin*a + y? = 2r,° (A8)

The effective size of the measurement volume can be defined as the boundary of

this ellipsoid:

Az.; = 2V2r,/sina (A9)
Ayeff = 2\/2’7'0 (AlO)
Azep = 2V2r,/cosa (All)
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Figure Captions

1. Frequency shift for laser Doppler anemometry.
2. Fringe pattern at the intersection of the laser beams.

3. LDA signal before and after high pass filter.
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Appendix B

Flowchart of FORTRAN program EXPT that collects and interprets data from
the LDA experiment:

Initiate Program EXPT

'

subroutine PARAM

to input experimental
parameters

&

subroutine GETDATA

call DMA®* driver to initiate
and transfer data from TSI
model 1998 signal processor

* Direct Memory Access

Y

subroutine CALC

call C1998 to convert raw data
to velocity and flux data

Y

subroutine OUTPUT

write data in output file

Obtain more

Yes
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Appendix C

In this appendix, we discuss some of the details relevant to the operation of the
LDA experiment. It will be presented as a set of step-by-step instructions to aid

those who wish to perform the experiment.

e Preparation of the suspending fluid. As mentioned in Chapter 3, the refractive

indices and the densities of the suspending fluid and the particles are matched.

1. The 3-component suspending fluid consists of 1-methylnapthalene, 1-

chloronapthalene, and UCON-oil 75-H-90,000.

2. An initial “guess” of the composition of the suspending fluid is obtained
by assuming linear relationships of the density and refractive index be-
tween the components and the resulting fluid. After mixing the fluids,
the refractive index and the density are measured. Small adjustments
in the composition are then made to ensure the required density and

refractive index are obtained.

3. The suspending fluid is then filterized through 0.22um filter to remove

any impurities and dust particles.

e Preparation of the flow channel. As in any other optical experiments, it
1s important that the optical surfaces be clean and free of defects (such as

scratches).

1. Two pieces of optical quality glass with multiline anti-refractive coatings

are used for the flow channel.

2. After a set of experiments, the flow channel is taken apart and cleaned
thoroughly. This is facilitated by the use of a sonic bath filled with
cleaning solution (Micro Cleaning Solution).

3. The flow channel is then rinsed with filtered and deionized water and

allowed to air-dry.
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4. The two pieces of glass are cleaned once more by wiping with spectro-

scopic grade methanol and acetone.
e Preparation of the flow pump.
1. Teflon-coated tubings are utilized to connect the syringe pump to the
flow channel. These tubings are cleaned by the use of the sonic bath.
2. Small amount of the suspending fluid is used to lubricate the glass sy-
ringes of the pump.
e Preparation of the suspension.
1. Approximately 125 ml of suspension is required for the capacity of the
flow system.

2. The necessary amount of particles and suspending fluid are mixed to-
gether and stirred carefully to minimize the formation of bubbles in the
suspension. The suspension is then allowed to stand for about 15-45

minutes for the bubbles to rise to the top.

3. The suspension is carefully poured into the reservoir of the flow cell.

4. The pump is turned on and the suspension is circulated through the flow
system.

o Operation of the laser and electronics.

1. The laser is a Spectra-Physics model 165 argon ion laser. It operates at a
wavelength of 488 nm; the power is 0.05 W. Before each experiment, the

laser is turned on and allowed to warm up for approximately 30 minutes.

2. The photodetector is a Hamamatsu model 1617 photomultiplier tube.
The power supply is a DISA model L55 PM exciter which operates at
0.85 kV.
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3. The signal processor is a TSI Model 1980B Counter-Type Signal Pro-
cessor operating under the TBM mode. The built-in amplifier is set at
maximum gain (+34 dB) and the minimum cycle per burst is 4. The low
and high cut filters are set at 1 kHz and 100 kHz respectively. It is con-
nected to a Tektronix Type 503 oscilloscope for viewing of the Doppler
signals.

4. Digital data is sent to a IBM AT computer. This data is processed and
analyzed using the FORTRAN program EXPT. A flowchart of this

program can be found in Appendix B.
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Appendix D

The experimental data given in Chapter 3 are steady state profiles. It is inter-
esting to investigate the behavior of the suspension before it reaches its steady
configuration. In this appendix, we show some preliminary data of the evolution of
velocity and concentration profiles downstream of an obstruction. The flow channel
geometry is shown in Figure D1. The obstruction is a piece of Lucite machined to
half the gap width and 2.54 cm long. The z-coordinate is non-dimensionalized with
the gap width of the flow channel.

From Figure D2, we can see that the velocity profile quickly returns to a sym-
metric shape downstream from the flow obstruction. Similarly, the concentration
profile becomes symmetric in a distance less than one gap width. The particles can
redistribute from an unsymmetric shape to the symmetric shape in such a short
distance not because of the shear-induced particle migration effect mentioned in
Chapter 3, but most likely because the particles convect along in the same direc-
tion of the fluid. Due to the presence of the obstruction, there is a component of
the velocity in the gap-wise direction that causes the particle to move from the
opening of the obstruction towards the center of the channel.

It should be pointed out that with an obstruction made of Lucite, it is not pos-
sible to obtain data closer to the obstruction because the opaque Lucite material
blocks the laser beams when the measurement volume is moved too close to the ob-
struction. This shortcoming can conceivably be minimized by using an obstruction
made of optical quality glass (and glued to the glass wall of the flow channel with

optical cement).
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Figure Captions

1. Flow channel geometry.

2. Velocity and concentration data downstream from obstruction.
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Appendix E

Experimental particle velocity and volume fraction data.
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Appendix F

Comparison of theoretical prediction with experimental data.
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Chapter 4

Thesis Summary

This thesis consists of two parts; Part I deals with the stability of drop shapes in
creeping flow and Part II concerns the flow of high concentration suspensions in a
rectangular channel.

Chapter 1 is a numerical studies on the stability of drop shapes for translation
through a quiescent fluid. Besides being a problem of fundamental interest, this
study is motivated by the observation that the motion of viscous drops can provide
a framework for understanding the dynamics of the deformation of biological cells
and the behavior of aggregates of small particles. The specific problem we consider
here is the translational motion of an initially nonspherical viscous drop through an
unbounded and otherwise quiescent fluid in the creeping flow approximation. The
two fluid phases are Newtonian, immiscible and the interface is characterized by a
constant interfacial tension. The most important parameter in this problem is the
capillary number

Ca=ucva/o (4.1)

It is the ratio of two competing effects: viscous force which tends to deform the
drop, and interfacial tension which tends to minimize deformation. The initial drop
shapes are ellipsoidal and the magnitude of the deformation is characterized by the

Taylor parameter

-

L-B (4.2)

A +B

=
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where L corresponds to the length along the axis of rotation and B to the breadth
in the perpendicular direction.

The basic result of the numerical simulation is that for a given Ca, an initially
nonspherical drop reverts back to a sphere as it translates provided that the initial
deformation is small enough. However, if the initial deformation is above a critical
value, the drop deforms continuously; we refer to such a drop as unstable. In
particular, if the drop is initially a prolate ellipsoid, the front of the drop returns to
a hemispherical shape while the rear of the drop develops a tail which increases in
length as a function of time. Eventually, the tail begins to pinch and it appears likely
that the drop will break as the tail separates from the parent drop. On the other
hand, for initially unstable oblate drops, the type of deformation is qualitatively
different. It is found that the front of the drop returns to a hemispherical shape;
however, the rear of the drop develops a cavity which closes up on itself as the drop
moves.,

By performing simulations for various combinations of initial drop shapes and
viscosity ratios, neutral stability curves as a function of viscosity ratio are con-
structed. The key features of the behavior of nonspherical viscous drops as they
translate can be extracted from these stability curves. First, it is clear that for the
same initial deformation, a more viscous prolate drop is more stable than a less
viscous one; the contrary is true for initially oblate drops. Second, we find that
the critical capillary number, above which the drop becomes unstable, depends on
the viscosity ratio more strongly for initially oblate drops. Finally, these stability
curves reemphasize the point that drops at nonzero Ca can be unstable to finite
initial deformation. For a given Ca, the drop is unstable provided that the initial
deformation is larger than some critical value (or vice versa, for a given initial de-
formation, the drop is unstable if the capillary number is above the critical capillary
number.

In Chapter 2, we study the behavior of viscous drops translating in a quiescent

fluid experimentally. The motivation of this investigation is three-fold. First. we
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seek confirmation of the two distinct modes of unstable drop deformation discussed
in Chapter 1. Second, the numerical studies only consider idealized initial drop
shapes (axisymmetric ellipsoids); it is important to ascertain whether the quali-
tative behavior of drop deformation as discovered by the numerical studies would
apply to real systems with non-ideal initial drop shapes. Finally, the limitation
of the computer simulations precludes the analysis of drop dynamics beyond the
point when a thin neck appears in the deformation of prolate drops or when the
rear cavity closes up on itself in the deformation of oblate drops. Thus, the current
experiment serves to explore the behavior of drop deformation beyond the limit of
numerical simulations.

The experiments were performed with two types of fluids. Pale 1000 oil was
used as the suspending fluid while various grades of Dow Corning 200 silicone fluid
were used as the drop phase. These fluids were chosen so that the Reynolds number
was small (to approximate the creeping flow limit of the numerical studies) and the
capillary number in a range such that modestly deformed drops are unstable as
found in Chapter 1 (i.e.,, 1 < Ca < 5.5).

The basic results of the experiments echoed those of the numerical studies.
We found experimentally that the critical value of the capillary number increases
monotonically as the degree of initial deformation is decreased. Furthermore, the
experiments showed that for an initially unstable prolate drop, a tail was formed
which eventually broke off from the parent drop. For the oblate case, a cavity was
formed at the back of the drop as predicted by the numerical simulation. As the
drop translated, the cavity became longer and narrower, and evolved into a skirt-
like structure. Then, the bottom of the drop closed up on itself and eventually, the
top portion of the drop broke off and multiple double-emulsion drops were formed.

From this study, the most remarkable result is that all the qualitative behavior
of drop deformation discovered in the numerical studies (for perfect ellipsoids) is
preserved in the experiments. This shows that the details of the initial drop shape

play a very minor role in the drop deformation; only the overall shape (whether
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prolate or oblate) determines the general behavior of an initially nonspherical drop
as it translates.

In Chapter 3, we demonstrated that an adaptation of the well-known Laser
Doppler Anemometry can be utilized to measure the particle velocity and concen-
tration in a suspension flow through a rectangular channel. The key element in this
experimental technique is that the refractive indices of the liquid and particulate
phases are closely matched to reduce the optical turbidity of the suspension. Since
we are interested in studying neutrally buoyant suspensions, a 3-component (1-
chloronapthalene, 1-methylnapthalene and UCON oil) fluid mixture is required so
that the density and the refractive index can be adjusted independently to match
the properties of the solid polystyrene particles. By varying the composition of
the fluid mixture, the refractive index of the suspending fluid is adjusted so that
the turbidity of the suspension is minimized. Specifically, this is accomplished by
performing optical turbidity experiments on bulk samples of the suspension.

We have measured particle velocity and concentration profiles of suspensions
flowing through a rectangular channel. This specific geometry (as opposed to, say,
a cylindrical tube) is chosen because it simplifies the optical setup of the experi-
ment. Also, this relatively simple geometry can facilitate the interpretation of the
experimental results. We have performed experiments for a range of relevant pa-
rameters: particle radius-to-gap size ratios (0.01 < & < 0.057), particle Reynolds
number (0.002 < Re, < 0.012) and bulk particle concentration (0.1 < ®py < 0.3).
The basic observation from the experiment is that the particle velocity profile is
blunted near the center of the flow channel. The degree of this blunting increases
as either the bulk particle concentration or the particle radius-to-gap size ratio in-
creases. The shape of the velocity profile is found to fit the following empirical
formula quite well

v: = v,0(1 — |2|?) (4:3)

b, the bluntness factor, increases as the velocity profile becomes more blunted. It

ranges from about 1.9 to 3.5 for the experimental results reported here; its specific
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value depends on both @y and k. For the relatively small range of particle
Reynold number explored here, the data shows that the bluntness factor remains
approximately constant within experimental error.

With respect to the local particle volume fraction, we found that it is generally
nonuniform across the flow channel. Specifically, we find that the particles tend to
concentrate near the center of the channel. In fact, it is observed that for the case
of @y = 0.3, the particle volume fraction at the center approaches a value near
0.6. This particle volume fraction is approximately the maximum packing value, so
that the particles are almost as close to each other as possible (the specific value
of maximum packing depends on the way the particles are arranged; for example,
it varies from 0.52 for a simple cubic structure to 0.74 for a hexagonal close pack).

We have also calculated the particle volumetric flowrate, Q,, and compared it
with the quantity @, Q. This latter quantity is the particle volumetric flowrate
if the particles are uniformly distributed in the flow channel and the fluid velocity
is identical to the particle velocity (i.e., the slip velocity vanishes). The most
interesting result from this comparison is that the the ratio Qp/®,uxQ can be
significantly less than unity (as low as about 0.6). This means that the particles
are moving, on the average, slower than the fluid and consequently, there must be
a relatively large slip velocity between the particles and the fluid.

Finally, we have compared our experimental data with theoretical velocity and
particle concentration profiles predicted by the shear-induced particle migration
theory of Leighton and Acrivos (cf. Section 3.6). Quantitatively speaking, the
theoretical prediction does not agree with the experimental data very well. As we
have explained above, we found that there is a significant slip velocity between
the particle and fluid. On the other hand, the theory assumes that the suspension
can be treated as a Generalized Newtonian fluid and makes no distinction between
particle and fluid velocities. However, it should be pointed out that the theory does
predict a blunted velocity profile that becomes more blunted as the bulk particle

concentration is increased, as qualitatively found in the experiment.
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Comparison of the concentration profiles also shows that there is quantitative
difference between the theoretical prediction and the experimental data. Although
the theoretical concentration profiles also have a maximum at the center of the flow
channel, as found in the experiment, it is shown that the theory predicts that ® at
the centerline always equals the maximum possible value, ®,, = 0.68. This effect
is a manifestation of the assumption that the particles are mathematical points.
By taking into account the finite dimensions of the particles, this artifact of the
theory can be eliminated and the comparison with the experimental data should

be improved.



