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Abstract

In this thesis, the hypothesis that photoautotrophic Fe(ll)-oxidizing bacteria
catalyzed the deposition of Banded Iron Formations (BIFs), an enigmatic class of
ancient sedimentary rocks is explored. Ecophysiological, geochemical, genetic
and biochemical approaches are taken to elucidate the molecular mechanism of
photoautotrophic Fe(ll) oxidation in an effort to identify molecular biosignatures
that are unique to this metabolism and capable of being preserved BIFs. In an
ecophysiological approach, we show that Fe(ll) oxidation by these phototrophs
proceeds at appreciable rates in the presence of high concentrations of H, when
CO; is abundant. These findings substantiate a role for the involvement of these
phototrophs in BIF deposition under the presumed geochemical conditions of the
Archean. In a geochemical approach, we find that although phylogenetically
distinct phototrophs fractionate Fe isotopes in a way that is consistent with Fe
isotopic values found in Precambrian BIFs, it is unlikely that this fractionation can
be used as a biosignature for this metabolism given its similarity to fractionations
produced by abiotic Fe(ll) oxidation reactions. In two distinct genetic
approaches, we identify genes involved in Fe(ll) oxidation in
Rhodopseudomonas palustris TIE-1 and Rhodobacter SW2. Genes identified in
TIE-1 encode a predicted integral membrane protein that appears to be part of
an ABC transport system and a putative CobS, an enzyme involved in cobalamin
(vitamin B1;) biosynthesis. Candidate genes on a cloned fragment of the
Rhodobacter SW2 genome that confer Fe(ll) oxidation activity to a non-oxidizing
strain include those predicted to encode permeases and a protein with potential
redox capability. Finally, in a preliminary biochemical approach, c-type
cytochromes and other proteins that are exclusive or more highly expressed
under Fe(ll) growth conditions in TIE-1 and SW2 are identified in SDS-PAGE
gels. The work described here furthers our search for a biosignature unique to
photoautotrophic Fe(ll) oxidation by providing mechanistic information on this

metabolism.
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1. Introduction

WERE FE(Il) OXIDIZING PHOTOAUTOTROPHS INVOLVED IN
THE DEPOSITION OF PRECAMBRIAN BANDED IRON

FORMATIONS?

Banded Iron Formations (BIFs) are ancient sedimentary rocks
characterized by laminations consisting of the siliceous mineral chert (SiO;) and
various Fe minerals [96]. The Fe minerals in these rocks, which by definition
contain >15 wt.% Fe [80], are generally oxidized minerals, such as magnetite
(FesO4) and hematite (Fe»Os3); however formations containing reduced Fe
minerals including Fe-carbonates, -sulfides or -silicates also exist [94]. Given the
massive volume of these depositions, which can extend laterally hundreds to
thousands of kilometers with thicknesses of hundreds of meters, BIFs are
important from an economic perspective, as they provide the source for
approximately 90% of the Fe ore mined globally [172].

BIFs were deposited during a period of Earth history known as the
Precambrian, with the majority of these rocks having an age that ranges from
~3.8 to 1 billion years (Ga) [96]. Models to explain the formation of BIFs are both
numerous and controversial and hinge on knowing when free oxygen (O5)
appeared on the Earth. Traditionally, the origin of these rocks are explained by

the precipitation of iron oxide minerals that occurred when episodic upwellings
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brought deep, anoxic ocean waters high in ferrous Fe [Fe(ll)] concentration in
contact with more oxygenated surface waters [95]. The source of this O, is
presumed to be oxygenic photosynthetic bacteria (cyanobacteria), however,
whether cyanobacteria capable of producing O, had evolved at the time when
the most ancient of these BIFs were deposited (e.g., 3.8 Ga) remains
questionable [23, 148, 166]. In addition, several lines of geological evidence
suggest that before approximately 2.3 Ga, the Earth’s atmosphere was
essentially devoid of O, and that reducing conditions prevailed [58, 74, 91, 145].
Thus, an open question is whether O, would have been present in sufficient
quantities to form these ancient BIFs. Hypotheses invoking the direct oxidation
of Fe(ll) by UV light under anaerobic conditions have been proposed [24, 32, 62];
however, under the presumed chemical conditions of the Precambrian ocean
[73], it is unlikely that this process accounts for the amount of Fe(lll) required to
explain these depositions [101].

A alternate hypothesis for the deposition of these formations under anoxic
conditions is that they were formed as a metabolic by-product of anoxygenic
phototrophic bacteria able to use Fe(ll) as an electron donor for photosynthesis

[67, 101, 182]. This metabolism proceeds by the reaction:

HCO® + 4 Fe?" + 10 Hy0O > <CH,0> + 4 Fe(OH); + 7 H

and is likely to represent one of the most ancient forms of metabolism (see

background and [20, 185]). While the majority of isolated Fe(ll) photoautotrophs
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are freshwater strains [52, 69, 70, 182], marine strains have been isolated as well
[163]. Thus, ancient relatives of these bacteria likely inhabited the oceanic

environments in which BIFs were deposited.

RESEARCH OBJECTIVES AND SUMMARY

The goal of this thesis has been to investigate the possibility that Fe(ll)
oxidizing phototrophs were involved in the deposition of BIFs. My approaches
have ranged from the ecophysiological, to the geochemical, to the genetic and
biochemical, with the objective being to characterize Fe(ll) photoautotrophy at
the molecular level in an effort to identify chemical signatures unique to this
metabolism that are preserved in BIFs. The results of these investigations are
described and discussed in detail in the subsequent chapters of this thesis.

In chapter two, further details concerning the search for biosignatures and
their limitations, why we have chosen to focus on Fe(ll)-oxidizing phototrophs
and what is known about the molecular mechanism Fe(ll) oxidation by
Acidithiobacillus ferrooxidans are discussed. Portions of this chapter have been
published in an article entitled “The Genetics of Geochemistry” in Annual Review
of Genetics.

To investigate if the presence of Hy, which is reported to have been
present in the Archean at concentrations of up to 300,000 ppm [170], would have
inhibited Fe(ll) oxidation by these phototrophs in an ancient ocean (potentially
precluding a role for these organisms in BIF deposition), we investigated the

effects of H, on the Fe(ll) oxidation activity of Rhodopseudomonas palustris TIE-
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1 (TIE-1) and Rhodobacter sp. SW2 (SW2). The findings of this work, described
in chapter three, show that Fe(ll) oxidation still proceeds under an atmosphere
containing ~3 times the maximum predicted concentration of H; in the Archean
when COz; is abundant. Additionally, the amount of H; dissolved in a 100 m
photic zone of Archean ocean over an area equivalent to the Hamersley basin
may have been less than 0.24 ppm. We thus conclude that H, would pose no
barrier to Fe(ll) oxidation by ancient anoxygenic phototrophs at depth in the
photic zone and would not have prevented these organisms from catalyzing BIF
deposition. Portions of this work will be submitted to Geobiology.

After demonstrating that Fe(ll) photoautotrophy would have been an active
metabolism in the environments where BIFs were deposited, we undertook a
geochemical investigation to determine if a biologically unique Fe isotope
fractionation was produced during photoautotrophic growth on Fe(ll) of a pure
strain, Thiodictyon strain F4, and two enrichment cultures. This work is the topic
of chapter four and was published in an article entitled “Fe Isotope Fractionation
by Fe(ll)-oxidizing Photoautotrophic Bacteria” in Geochimica et Cosmochimica
Acta. We found that these bacteria produce Fe isotope fractionations of +1.5 +
0.2%o where the *°Fe/**Fe ratios of the ferric precipitate metabolic products are
enriched in the heavier isotope relative to aqueous ferrous iron [Fe(ll)iaq)]. This
fractionation was relatively constant at early stages of the reaction and
apparently independent of the Fe(ll)-oxidation rates investigated. Given that our
measured fractionation is similar to that measured for dissimilatory Fe(lll)-

reducing bacteria and abiotic oxidation of Fe(ll).q to ferrihydrite by molecular
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oxygen, yet significantly smaller than the abiotic equilibrium fractionation
between aqueous Fe(ll)aqgand Fe(lll) [Fe(lll)aq)], we proposed two mechanistic
interpretations that are consistent with our data: (1) there is an equilibrium
isotope fractionation effect mediated by free, biologically produced Fe ligands
common to Fe(ll)-oxidizing and Fe(lll)-reducing biological systems, or (2) the
measured fractionation results from a kinetic isotope fractionation effect,
produced during the precipitation of Fe(lll) to iron oxyhydroxide, overlain by
equilibrium isotope exchange between Fe(ll)aq) and Fe(lll)aq) species.
Investigations performed by Andreas Kappler concurrent with this work, however,
provided no evidence for the involvement of free biological ligands [89]. Thus,
although these bacteria do fractionate Fe isotopes in a way that is consistent with
Fe isotopic values found in Precambrian BIFs [84], we currently favor an abiotic
mechanism for our measured Fe isotope fractionation. In addition, recent work
with Acidithiobacillus ferrooxidans provides conclusive evidence that the Fe
isotope fractionation associated with Fe(ll)-oxidizing metabolisms is reflective of
abiotic processes [8].

Upon our discovery that Fe isotopes would not be useful in identifying the
activity of Fe(ll)-oxidizing phototrophs in the rock record, we endeavored to
define the molecular mechanism of photoautotrophic Fe(ll) oxidation so that
novel biosignatures for this metabolism might be identified. The results of our
genetic investigations are presented in chapter five where two approaches to
identify genes involved in Fe(ll) photoautotrophy in TIE-1 and SW2 are

described. In the portion of this chapter related to Rhodopseudomonas palustris
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TIE-1, we describe the results of a transposon mutagenesis screen to identify
mutants of TIE-1 specifically defective in Fe(ll)-oxidation. The isolation of this
strain and this screen are the primary work of Yongqin Jiao, a graduate student
in the lab, and this work will be published as an article entitled “Isolation and
Characterization of a Genetically Tractable Photoautotrophic Fe(ll)-oxidizing
Bacterium, Rhodopseudomonas palustris strain TIE-1” in Applied and
Environmental Microbiology. |, however, was a co-author on this paper, as |
developed the assay used to screen for mutants defective in Fe(ll) oxidation and
contributed to the interpretation of the isolated mutants. From this work, we
identified two types of mutants defective in Fe(ll)-oxidation and the disrupted
genes of these stains are predicted to encode an integral membrane protein that
appears to be part of an ABC transport system and CobS, an enzyme involved in
cobalamin (vitamin B1,) biosynthesis. This suggests that components of the
Fe(ll) oxidation system of this bacterium may reside at least momentarily in the
periplasm and that a protein involved in Fe(ll) oxidation may require cobalamin
as cofactor. In the work done on SW2, a genomic cosmid library of this
genetically intractable strain was heterologously expressed in Rhodobacter
capsulatus SB1003 (1003), a strain unable to grow photoautotrophically on Fe(ll)
and four cosmids that conferred Fe(ll)-oxidation activity to 1003 were identified.
The insert of one of these cosmids was sequenced to ~78% completion and
likely gene candidates inferred from the sequence include two genes encoding
predicted permeases and a gene that encodes a protein that may have redox

capability. Sequence data obtained for the portion of this work related to SW2 is
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presented in Appendix 1 and follow up work that | will complete subsequent to
my graduation is described.

In chapter six, we present our biochemical work initiated to identify
proteins upregulated or expressed uniquely under Fe(ll) phototrophic growth
conditions in SW2 and TIE-1. Preliminary results suggest that c-type
cytochromes and other proteins that are exclusive or more highly expressed
under Fe(ll) growth conditions are present in these two strains. Whether these
proteins are involved in phototrophic Fe(ll)-oxidation remains to be investigated,
however, precedent exists for the involvement of c-type cytochromes in Fe(ll)
oxidizing respiratory processes [6, 38, 174, 177, 189].

Conclusions, the implications of this work and perspectives for future
research are the subject of Chapter 7.

Ultimately, the work done here provides a basis for understanding the
molecular mechanism of photoautotrophic Fe(ll)-oxidation and it is my hope that
further investigations of this metabolism will lead us to new targets for

biosignature development.
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2. Background

FINDING TRACES OF MICROBIAL METABOLISMS IN THE ROCK

RECORD

Microbial metabolisms contribute to the maintenance of the hydro-, atmo-,
and lithospheres on the Earth and have done so since they first evolved on this
planet billions of years ago [98, 114, 126]. While determining the impact of
microbes in modern environments is a tractable problem, given that the activities
of these organisms can be monitored directly in situ or in pure culture [21, 115,
129, 135], investigating the impact microbes had on the chemistry of the
environment billions of years ago presents a formidable challenge.

When the organisms are macroscopic, relationships between biology and
the geochemical evolution of the Earth can be inferred from morphological fossils
[100]. While this approach can also be applied to microorganisms, when
considering the impact microbes have had during remote periods of Earth history
(e.g., the Archean, >2.5 Ga), the fossil record of these organisms becomes
increasingly poor as the rocks we look at increase in age and even when
microfossils are found, they can be highly controversial [23, 148]. Moreover,
these fossils provide little evidence regarding the physiology of the organisms
they represent.

An alternate, accepted approach to recognizing biological activity in the

ancient rock record is to identify organic or inorganic signatures unique to extant
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microbial metabolisms that are preserved in rocks through time (i.e.,
biosignatures). When biosignatures indicative of a particular metabolism are
identified, inferences regarding the impact the metabolism may have had on the
environment can be made [31, 143, 153, 166, 171]. And while we can never
know the extent to which modern metabolisms are good proxies for ancient ones,
because we cannot study extinct organisms, the assumption that they are is
accepted as a necessary one in this field [3].

It is important to note that, just like morphological fossils, biosignatures are
subject to controversy and misinterpretation [121, 147, 175]. Thus, identifying
robust biosignatures unique to a particular metabolism that cannot be confused
with abiotic processes represents a true challenge. Nonetheless, the
identification of such signatures is a necessary first step towards understanding
how microbial metabolisms have influenced the chemistry of the Earth over time.

To make inferences about the cycling of elements on the ancient Earth, it
is important to identify biosignatures of organisms that carry out an ancient form
of metabolism. A particular metabolism that has had a profound impact on the
chemical evolution of the Earth and that is believed be among the first
metabolisms to have evolved is photosynthesis. The antiquity of the oxygenic
form of this metabolism is supported by the finding of 2-methylhopane
hydrocarbon derivatives of cyanobacterial membrane lipids in rocks as old as 2.7
Ga [25, 166].

Further, phylogenetic relationships between genes that are involved in

bacteriochlorophyll and chlorophyll biosynthesis show that the anoxygenic form
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of photosynthesis evolved before the oxygenic form [185]. If true, the evolution
of anoxygenic photosynthesis would logically predate the evolution of respiratory
metabolisms that are based on oxygen or other highly oxidized species (i.e.,
nitrate) as well. Therefore, the metabolism of anoxygenic photoautotrophic
bacteria is of primary interest in our considerations of the geochemical evolution

of the Earth.

FE(Il) OXIDATION BY PHOTOAUTOTROPHIC BACTERIA

Microbial Fe(ll) oxidation is an important component of the Fe
geochemical cycle [125, 158, 160]. In modern environments, microorganisms
that are able to oxidize Fe(ll) are ubiquitous, inhabiting and affecting a wide
variety of environments where Fe(ll) is present. These environments include:
marine coastal sediments and brackish water lagoons [161, 163], sediments from
freshwater creeks, ponds, lakes and ditches [68-70, 182], low pH environments
associated with acid mine waters [39, 50], groundwater springs [54], sediments
and the rhizosphere of plants from freshwater wetlands [56, 157], the seafloor
near active hydrothermal fields [51, 55], and swine waste lagoons [34].

Microorganisms that are able to oxidize Fe(ll) are diverse in their
phylogeny and overall physiology (Table 2-1). Representative examples of
bacteria and archaea capable of coupling Fe(ll) oxidation to growth include
psychro-, hyperthermo- and mesophiles that couple Fe(ll) oxidation to the

reduction of nitrate at neutral pH [14, 162], or to the reduction of oxygen at either
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low [50, 169], or neutral pH [54], and the anaerobic Fe(ll)-oxidizing phototrophs

[52, 70, 182].

Table 2-1: Metabolisms where Fe(ll) is the electron donor and the genes that

have been implicated in these processes.

Metabolism Reaction Genes
Acidophilic iron oxidation 4Fe* + 4H" + O, > 4Fe** + 2H,0 iro, cyc1, cyc2,
coxA,B,C,D,

rus

Phototrophic iron oxidation 4 Fe* + HCO; + 10H,0 = 4 Fe(OH); + None known
(CH,0) + 7H"

Neutrophilic iron oxidation 4Fe’" + 10H,0 + O, > 4Fe(OH); + 8H" None known
Nitrate-dependent iron 10 Fe®" + 2 NO; + 24 H,0 > 10 Fe(OH);  None known
oxidation +N, + 18H°

The use of Fe(ll) as an electron donor likely arose early in Earth history
given the abundant availability of Fe(ll) in the ancient oceans, relative to today
[57, 72, 184] and of the organisms able to grow on Fe(ll), it is thought that the
anoxygenic phototrophs are the most ancient [20, 41, 185]. Thus, in addition to
contributing to Fe cycling in modern environments, Fe(ll)-oxidizing bacteria have
likely affected the Fe cycle over geological time. Indeed, both direct
photoautotrophic Fe(ll) oxidation and indirect Fe(ll) oxidation mediated by
cyanobacteria [37] have been proposed as being responsible for the deposition
of Banded Iron Formations as discussed in the introduction [67, 101, 182]. To

distinguish these two biological processes from each other, as well as from other
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proposed abiotic mechanisms of Fe(ll) oxidation, biosignatures that uniquely
represent the activity of Fe(ll)-oxidizing organisms must be identified. An
informed search for such biosignatures and their rigorous interpretation requires
a detailed understanding of the mechanism and products of Fe(ll)
photoautotrophy. To date, very little is known about the mechanism of this
metabolism. Therefore, our studies have been focused on elucidating the

molecular basis of Fe(ll) oxidation by these bacteria.

MECHANISMS OF FE(Il) OXIDATION BY ACIDITHIOBACILLUS

FERROOXIDANS

Although little is known about Fe(ll) oxidation in phototrophic bacteria at
the mechanistic level, a substantial body of knowledge concerning the
mechanism of this metabolism exists for the acidophilic, Fe(ll)-oxidizing
organism, Acidithiobacillus ferrooxidans. Members of this species are gram-
negative, mesophilic, obligately autotrophic and acidophilic bacteria capable of
aerobic respiration on Fe(ll) and reduced forms of sulfur (H2S, S°, S,05%) [53,
139]. Because they can grow chemolithoautotrophically on sulfide ores, these
bacteria are able to solubilize a variety of valuable metals such as copper,
uranium, cobalt, and gold that are embedded within the ores [138]. Given this
property, understanding the metabolism of these bacteria is particularly
interesting to industries wishing to use this strain (or genetically modified

derivatives) for leaching purposes [7, 137, 183].
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Most of what is known about Fe(ll) oxidation by A. ferrooxidans stems
from biochemical studies, yet how the different components of the electron
transport pathway (Figure 2-1) work together is uncertain and controversial [7,
19, 77, 186]. Comparatively little is known about the genetics of Fe(ll) oxidation
in A. ferrooxidans as genetic analysis has been constrained by the culturing
requirements for this organism. For example, a number of antibiotics are
inhibited by low pH and high Fe(ll) concentrations [183], resulting in a dearth of
suitable selective markers. To circumvent this problem, toxic metal resistance
genes have been used as selective markers, but only with limited success [103].
Additionally, while some of the standard tools required for genetic studies (e.g.,
appropriate shuttle vectors and transformation methods) have been developed
and/or optimized for various strains of A. ferrooxidans [103, 130, 138], until
recently [109], these methods have not been used for the construction of
mutants. Consequently, no defined mutants defective in Fe(ll) oxidation exist,
although spontaneous mutants that have lost the ability to oxidize Fe(ll) have
been identified [149]. The recent report of the construction of a recA mutant of A.
ferrooxidans strain ATCC 33020 via marker exchange mutagenesis represents a

step towards improved genetic analysis of this strain [109].



PERI

Figure 2-1: Cartoon representation of the components implicated in electron
transfer for Fe(ll) oxidation by Acidithiobacillus ferrooxidans strain ATCC 33020.
The product of the iro gene is not thought to play a role in this strain, but may in

others.

Despite these limitations, several genes thought to be involved in Fe(ll)
oxidation are known. The majority have been identified using degenerate
primers derived from N-terminal sequences of purified proteins. The first of these
genes to be identified using reverse genetics was the iro gene of A. ferrooxidans
strain Fe1. This gene encodes a high potential Fe-S protein that is homologous
to the soluble ferredoxins commonly found in purple photosynthetic bacteria.
Additionally, Northern blot and RNA primer extension analyses suggest that this
gene is transcribed on its own, but expression studies under different growth

conditions have not yet been conducted [104]. Because of its high redox
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potential, Fe(ll)-cytochrome ¢-552 oxidoreductase activity and acid stability in
vitro, it has been proposed that the product of this gene catalyzes the first step in
the transfer of electrons from Fe(ll) to O, [63, 104, 187]. However, this does not
appear to be the case for all strains of A. ferrooxidans [7] and genetic evidence to
support this function in A. ferrooxidans Fe1 does not exist.

A second gene thought to encode a protein involved in Fe(ll)-oxidation by
A. ferrooxidans is the rus gene. Again, using reverse genetics, the rus gene was
cloned from A. ferrooxidans ATCC 33020 [13, 66]. This gene encodes the small
type 1 blue copper protein, rusticyanin; a protein that has received much
attention in biochemical studies given that it represents up to 5% of the total
soluble protein of A. ferrooxidans cells when grown on Fe(ll), displays a high
degree of acid tolerance and has a high redox potential [40, 76]. In the region
upstream of the rus gene, a sequence similar to a rho-independent terminator
and two potential Escherichia coli-like, o”°-specific promoter sequences are
present. Downstream of the gene are two putative stem loop structures, one of
which is followed by a T rich region. This suggests that the rus gene can be
transcribed from its own promoter [13]. Further investigations of rus gene
transcription by Northern, RT-PCR and primer extension analyses have shown
that this gene is part of an operon comprising eight genes, of which rus is the last
[7, 13]. Putative promoters in this operon have been identified both by sequence
and primer extension analyses. Primer analysis with RNA extracted from cells
grown on sulfur or Fe(ll) indicates that two promoters upstream of cyc2 and one

promoter upstream of rus are active in cells grown on sulfur whereas only one of



34

the promoters upstream of cyc2 is active in Fe(ll)-grown cells [7]. Additionally,
while it has been observed that the rus transcript is present in both Fe(ll) and
sulfur grown cells, it is more abundant in Fe(ll)-grown cells and present
throughout all growth phases (in contrast to sulfur-grown cells, where it appears
only in exponential phase) [188, 191].

Since the discovery that rus is co-transcribed with several other genes in
an operon (Figure 2-2), the genes in this operon have been analyzed [6, 7, 190].
Strikingly, seven of the eight genes in this operon appear to encode redox
proteins. The cyc2 gene encodes a high molecular weight, outer membrane, c-
type cytochrome [6, 190] while cyc1 encodes a cs-type cytochrome with a signal
peptide sequence indicative of translocation to the periplasm [6]. coxB, coxA,
and coxC encode proteins with homology to subunits Il, I, and Ill, respectively, of
an aas-type cytochrome c oxidase. The protein encoded by coxD shares
similarity with nothing in the database, however, given the position of this gene
relative to the other cox gene homologs and what is known about the
organization of these genes in other organisms, it was assumed that coxD
represents subunit IV of an aas-type cytochrome c oxidase [7]. Lastly, ORF1
encodes a putative protein of unknown function with a terminal signal sequence
suggesting that it is translocated to the periplasm. Given that biochemical
studies have implicated proteins of these types in Fe(ll) oxidation [17, 38, 40, 63,
76, 174, 177], it is assumed that the products of this operon are involved in the

Fe(ll) respiratory pathway of this organism (Figure 2-1) [7].
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cyce cycl ORF1 coxB COXA coxC coxD rus
1 kb

Figure 2-2: Genes proposed to encode the components of Fe(ll) oxidation in

Acidithiobacillus ferrooxidans strain ATCC 33020.
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3. Fe(ll) photoautotrophy under a H, atmosphere:

implications for Banded Iron Formations

ABSTRACT

Both H, and Fe(ll) can serve as electron donors for anoxygenic
photosynthesis and are predicted to have been present in the atmosphere and
ocean of the Archean in quantities sufficient for energy metabolism. If Hp, given
its more favorable redox potential, is the preferred substrate for anoxygenic
phototrophs, this may preclude the involvement of phototrophs capable of Fe(ll)
photoautotrophy in Banded Iron Formation (BIF) deposition. Here we investigate
the effect of H, on Fe(ll) oxidation by cell suspensions of two strains of Fe(ll)-
oxidizing purple non-sulfur bacteria. We find that Fe(ll) oxidation still proceeds
under an atmosphere containing ~3 times the maximum predicted concentration
of Hz in the Archean when CO; is abundant. Additionally, the amount of H>
dissolved in a 100 m photic zone of Archean ocean over an area equivalent to
the Hamersley basin may have been less than 0.24 ppm. Therefore, H, would
pose no barrier to Fe(ll) oxidation by ancient anoxygenic phototrophs at depth in
the photic zone and would not have precluded the involvement of these bacteria

in BIF deposition.
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INTRODUCTION

Recent debates in the literature have called into question the idea that
evidence for the earliest life in the rock record can be inferred from morphology
[23, 148] or chemical composition alone [59, 107, 121]. The value of a search
strategy that considers not only morphology and chemical analyses (e.g., isotopic
compositions or REE (rare earth element) analyses), but also the
ecophysiological context of the fossils in question is becoming increasingly
appreciated. An illustration of the power of such a search strategy comes from a
recent analysis of the carbonaceous laminations preserved in the shallow water
facies of the 3.4 billion year old (Ga) Buck Reef Chert in South Africa [171]. In
this work, a synthesis of data from the morphology of the mats as well as
sedimentological, petrographic and geochemical investigations allowed for a
reconstruction of the environmental setting in which these mat structures were
found. This ecological reconstruction enabled the authors to convincingly argue
that the mats found in this chert were formed in a euphotic zone that was anoxic,
and conclude that the organisms that formed the mats were likely anoxygenic
phototrophs, rather than oxygenic.

Further, the authors found a lack of ferric oxide or ferrous sulfide minerals
present in the depositional environment of these mats. H,, however, is thought
to have been present in the Archean atmosphere at concentrations between
1000 and 300,000 ppm as a result of volcanic emissions and atmospheric
photochemistry [33, 90, 170]. Given the paucity of possible electron donors for

photosynthesis in the depositional environment of this ancient mat, Tice and
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Lowe deduced that these anoxygenic phototrophs likely used H; as their electron
donor for carbon fixation, rather than Fe(ll) or S* and thus, H,-based
photoautotrophy was the active metabolism in this environment [111].

In ancient environments where the chemistry is more complex, however,
can the dominant active physiologies still be inferred? To address such
questions, knowledge concerning the molecular mechanisms of how a particular
physiology of interest is regulated must be taken into account. For example, it
has been suggested that anoxygenic photoautotrophs able to use ferrous iron
[Fe(ll)] as an electron donor for photosynthesis were involved in the deposition of
the Banded Iron Formations (BIFs) that appear in the rock record prior to the
advent of atmospheric O, [67, 101, 182]. This model assumes that these
bacteria used Fe(ll) as an electron donor for photosynthesis; however, if the
atmosphere of the early Earth contained quantities of H, sufficient to support H,-
based photoautotrophy, would Ha, given its more favorable redox potential [113],
be preferred over Fe(ll)? If so, would this diminish the likelihood that these
bacteria were involved in BIF deposition in certain environments? Coupling an
understanding how Fe(ll) based photoautotrophy is regulated with
biogeochemical/ecological reconstructions of environmental setting can help
refine models that consider whether these phototrophs could have catalyzed BIF
deposition.

A key assumption that we must make to integrate such physiological and
geological information, however, is that the activities of modern organisms are

representative and comparable to those of ancient organisms and this
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assumption is accepted as a necessary one in this field [3]. Recent studies of
the isotopic record of sedimentary sulfides where such assumptions were made
have given new insights into when microbial sulfate reduction evolved and the
concentrations of sulfate and O in the early Archean ocean and atmosphere [31,
153]. In addition, carbon isotopic studies have revealed traces of autotrophy in
the rock record [99, 142, 143]

Here, making the assumption that Fe(ll) phototrophy is an ancient
metabolism [41] and that extant organisms capable of this metabolism are
representative of their ancient relatives, we investigate the effects of H, on the
Fe(ll) oxidation activity of two strains of Fe(ll)-oxidizing purple non-sulfur
anoxygenic phototrophs and show that Fe(ll) oxidation can occur in the presence

of Hz under conditions broadly similar to an Archean ocean.

EXPERIMENTAL PROCEDURES
Organisms and Cultivation

Rhodobacter sp. strain SW2 (SW2) was a gift from F. Widdel (MPI,
Bremen, Germany) and Rhodopseudomonas palustris strain TIE-1 (TIE-1) was
isolated in our lab [83]. Cultures were maintained in a previously described
anoxic minimal salts medium for freshwater cultures [52] and were incubated 20
to 30 cm from a 34 W tungsten, incandescent light source at 30°C for TIE-1 and
16°C for SW2. Electron donors for photosynthetic growth were added to the
basal medium as follows: thiosulfate was added from an anoxic filter sterilized

stock to a final concentration of 10 mM and H; was provided as a headspace of
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80% Ha: 20% CO,. For growth on Fe(ll), 4 mis of a filter sterilized, anoxic 1 M
Fe(I1)Cl2-H20 stock solution was added per 1 liter (L) of anaerobic, basal medium
(final concentration ~4 mM). To avoid the precipitation of ferrous Fe minerals
that results upon addition of Fe(Il)Cl>-H2O to the bicarbonate buffered basal
medium and the precipitation of ferric Fe minerals that form during the growth of
these bacteria on Fe, the metal chelator, nitrilotriacetic acid (NTA, disodium salt
from Sigma), was supplied from a 1 M filter sterilized stock solution to a final
concentration of 10 mM. This NTA addition greatly facilitated the harvesting of

cells, free of Fe minerals, from Fe(ll) grown cultures.

Cell suspension assays

All cell suspension assays were prepared under anoxic conditions in an
anaerobic chamber (Coy Laboratory Products, Grasslake, MI) to minimize
exposure of the cells to oxygen. Cells of SW2 or TIE1 grown on Ha, thiosulfate,
or Fe(ll)-NTA were harvested in exponential phase (ODggo ~0.15 to 0.18) by
centrifugation (10,000 rpm on a Beckman JLA 10.5 rotor for 20 min). Pellets
were washed once with an equal volume of 50 mM Hepes buffer containing 20
mM NaCl at pH 7 (assay buffer) to remove residual medium components and
resuspended in assay buffer containing the appropriate amount of NaHCO3; and
Fe(I1)Cl2-H20 to a final ODggo of 0.1. Resuspending the cells to the same final
ODeoo ensured that the assays were 