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ABSTRACT
PART ONE

An equation of state has been developed which is a series expan-
sion in orthogonal polynomials., The evaluation of coefficients by least
squares methods is significantly simpler than for the case of a power
series expansion. The values of the expansion coefficients are indepen-
dent of the point of truncation of the series. Additional terms may be
added to the equation without necessitating recomputation of éxieting
coefficients. The Tchebichef and Gram polynomials were used.

The equation of state has been applied to propane for pressures
up to 10,000 psia in the temperature interval 100° to 460° F. Terms
involving eighth and higher powers of reciprocal molal volume'were found
not to contribute significantly to the description. The equation predicts
volumetric behavior, phase behavior, thermodynamic properﬁies, the critical
staie, and the second virial coefficient with an accuracy that is promising.
Limited experience in application indicates that the equation ié easier
to handle with automatic digital computing equipment than is the Benedict

equation of state,



PART TWO

Values of the coefficients for the Benedict equation of state were
determined by least squares methods from experimental data for each of a
series of mixtures of the methane-n-pentane system. In addition, values
were obtained for the interaction constants for groupings of the Benedict
coefficients correspending to the seeond and third virial céefficients.
Corresponding values of the interaction constants predicted by the methods
suggested by Benedict are included for comparison. Measures of the accur-
acy of description for the interaction constants determined by the several
different methods are reported.

Interaction constants were evaluated by least squares methods for
the methane-n~-pentane system in the liquid and gas phases at pressures up
to 5,000 pounds per square inch in the temperature interval between 100°
and 460° F. The accuracy of description of the volumetric behavior was
improved severalfold over that obtained with the constants calculated from
the behavior of the components by the method suggested by Benedict. Such
methods may prove useful in evaluating interaction constants for mixtures

as a function of the characteristics of the system involved.

PART THREE

The isobaric heat capacity at bubble point of n-decane was deter-
mined in the temperature interval 80° to 200° F. Measurements were made in

the two-phase region utilizing a constant-volume calorimeter. The energy



required to change the temperature of the calorimeter and contents was
determined for each of two quantities of n-decane, The effect of the
gross heat capacity of the bomb was éliminated by considering the differ-
ence of these two sets of measurements. The two-phase isochoric measure-
ments were transformed to:'values of the isobaric heat capacity at bubble
point by applying a thermodynamic correction involving the volumetric
properties of the gas and liquid phases and the heat capacity of the gas

phase.
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PART ONE, AN ORTHOGOWAL POLYNOMIAL EQUATION

OF STATE

I, INTRODUCTION

Je. D. van der Waals proposed his now famous equation of state in
1899 (1). His was apparently the first recorded attempt to present an
analytical expression which would account for the departure from perfect
gas behavior of the pressure-volume-temverature behavior of fiuid systems.
Since van der Waals'! contribution, over one hundred investigators have
reported equations of state of varying degrees of complexity and utility
().

These continuing attempts reflect both the need for an acceptable
equation, and, unfortunately, the fact that none of these proposals has
been entirely successful. Some were intended only for use in localized
regions of the PVT surface, Others purported to describe:the surface over
extended ranges of pressure and temnperature but failed to give quantitative
description of the volumetric and phase behavior over the extended range.
Particular difficulties have been encountered in attempts to develop ex-
pressions that would successfully cope with the two phase region and
describe the continuous transition from liquids to gases in the vieinity
of the critical state.

No attempt will be made in the present writing to review the ex-
tensive previous work in this field. The reader who is interested in

detailed discussions of the origin and application of a variety of esquations



of state is referred to the thorough review article by Beattie and
Stockmayer (3) or to the books of Hirschfelder (4) and Taylor and Glasstone
(5).

The type of mathematical surface with which the present investi-
gation is concerned is shown in Figure 1, which has been constructed from
data for propane near the critical state. Projection of this surface
onto the pressure-volume plane 1s given in Figure 2. The boundary of the
two phase region and the critical state have been indicated. In addition
to the actual isotherms, this figure also shows in the two—phﬁse reglion
continuous curves of the type given by equations of state such as the
van der Waals, Beattie-Bridgeman, and Benedict-Webb-Rubin., These two
figures show a part of the PVT surface which usually affords a major pore
tion of the difficulties in attempting to find an acceptable equation of
state. At temperatures and pressures progressively higher than those of
the critieal state, the curves are usually well bshaved.

The present investigation was primerily concerned with pressures
up to 10,000 psia and temperatures from 100° F. to 460° F. We shall
tacitly assume in subsequent discussions that temperatures are nelther so
low that quantum effects are significant, nor so high that a problem in
chemical dissociation is involved. For present purposes solid phases will
also be excluded. Primary emphasis will be on one component systems, for
which a thermodynamically acceptable equation of state must speeify the
interdependence of three intensive (or derived intensive) variables, The

three chosen are pressure, temperature, and molal volume (or its reciprocal).



At temperatures sufficiently high and pressures sufficiently low,
the perfect gas law expresses volume as a function of temperature and
pressure with an accuracy adequate for many engineering computations. It
has no quantitative value except for reference purposes for liquids and
for gases at moderate pressures below the critical temperature. ZEven at
infinite attenuation, the perfect gas law does not predict the correct
interrelation of several thermodynamic quantities which are dependent on
volumetriec derivatives,

The van der Waals equation (1,3), involving two parameters in
addition to the universal gas constant, can he used to give a fairly satis-
factory representation of the volumetriec behavior of gases at low pressures
over a short temperature range, provided that the values of the parameters
are determined from the data in the region of interest. Below a certain
temperature, the isotherms of the van der Waals equation go through local
ninimum~maximum reversal of which the dotted line of Figure 2 would be
typical. At one certain temperature, there exists a volume at which the
first and second derivatives of pressure with respect to volume at constant
temperature are both zero. Hence this equation of state at least qualita-
tively predicts a two phase region and a critical state. Unfortunately
for real substances the description is not guantitative.

The Beattie-Bridgeman equation of state (6,7) involves five param-
eters in addition to the universal gas constant. It gives a satisfactory
representation of the compressibility of non-polar gases and a fair repre-
sentation for most polar gases from low densities up to about the critical

density. Like the van der Waals equation, it predicts qualitatively a



liquid phase and a critical state but fails to yield a quantitative
deseription of these phenomena.

Benedict, Webb, and Rubin (8,9,10,11,12) proposed an extension of
the Beattie~Bridgeman equation involving eight parameters in addition to
the universal gas constani., Unlike the Beattie-Bridgeman equation, the
Benedict equation is not linear in the parameters but involves an exponen-
tial term, which considerably increases the complexity of application.
However this equation is noteworthy in that it has been successful in
quantitatively describing phase behavior and a critical state. These phase
behavior predictions have included satisfactory description of the composi~
tion and partial thermodynamic properties of coexisting phases in multi-
component systems, The coefficients that Benedict has reported for this
equation for a variety of substances (9,10,11) have been largely evaluated
from data in the low and moderate pressure regions. Brough, Selleck, Opfell,
Pings, and Sage (13,14,15,16,17) have reported coefficients bﬁsed on data
extending to preasures of 10,000 psia. With these latter coefficients this
equation of state does not quantitatively describe the phase behavior and the
critical region. A conclusion derived from these latter inveatigations is
that the Benedict equation can be used either for volumetric deseriptlon over
an extended range or for both volumetric and phase behavior deseriptions up to
’moderate pressures, The Benedict equation of state apparently is not the ans-
ver to the quest for an equation which describes both volumetriec and phase beha-

vior over extended ranges of temperature and pressure. Furthermore, it appears



fair to state that at the time of writing none of the equations of state

of closed form has been successful in obtaining this objective.
IT. THE VIRIAL EQUATION OF STATE

Developments of new equations of state, of which those mentioned
in the preceding paragraphs are typical, have usvally involved the ex-
pression of compressibility factor as a polynomial in successively higher
terms in reciprocal molal volume. The van der Waals equation-is approx-—
imately linear in reciprocal volume; the Beattie-Bridgeman, cubic; and the
Benedict, fifth power plus an expohential term., The increasing success of
these equations suggests that a useful relationship might be obtained if
pressure were expressed as a formal power series in reciprocal molal volume
with ﬁemperature—dependent coefficients. As a matter of fact as early as
1901, Kamerlingh Onnes and his co-workers (13) were using expressions of

the following form to represent the compressibility of gaseous systens.

1 1 | -
PY -7 = 4 CBNY ¢ s b

This infinite series in I/Y is commonly known as the virial cquation of
state, and B(T), C(T) -—-- are the second, third --—- virial coefficients,
which as indicated are functions of ‘emperature. The series converges

uniformly to 2 within the cirecle about the origin of 1/V which is free of



singularities of 2 (19,20).

The virial equation of state has attracted rmuch interest for two
reasons, The first was mentioned previously: many successful empirical
equations have had the form of the partial sums of a power series. The
second is that statistical mechanical analysis of molecular models has '
résulted in successful prediction of values of the first several virial
coefficients.

The designation "virial" equation of state for this series is not
particularly appropriate. The association appareutly arose ffom the natural
use of the virial theorem of classical mechanics in one possible derivation
(4). The sane power series may be obtained without employing the virial
theorem as such. Also, the analysis based on the virial theorem might cul-
minate in some other type of infinite series expansion., Although the desig-
natioﬂ "mover series equation of state!" aight be more satisfactory, the
present writing will generally adhere to the entrenched convention, except
in those cases where a definite distinction is necessary.

As mentioned, a number of the existing eguations of state may he
regarded as truncated forms of the virial equation. To take a specific

example, the Beattle-Bridgeman equation may he written in the follovwing form

(3):
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When equations of closed form are grouped so that they may be directly
compared with the virial expansion, it is possibdle to deduce from the
theoretical model some definite limitations of any given equation., To be
precize, it is worth noting in the case above that the temperature depen-
dence of the second virial coefficient has been definitely specified in
terns of three parameters. Although the theory of intermoclecular attrac-
tions is not precise, it does indicate that the temperature dependence of
the virial coefficients should be of a different nature for different types
of molecular species. In a given tenperature ranze, a relation of the type
given in equation 3 imay be quite adequate for describing the tenperature
dependence of non-nolar, nearly spherical molecules. In the sane tempera-

ture interval, however, several mores paramneters may be necessary to describe
2 ] w



(62

the temperature dependence of the second virial coefficient of a polar or
oblate molecule. A4s a matter of fact, the Beattie-Bridgeman equation is
less successful in describing polar gases than it is for non-polar sub-
stances (3). 1In addition there is no a priori reason why the paﬁameters
of the successive virial coefficients should be interrelated as they are
in the above example.

For temperatures below the critical, the power series expansion of
equation 1 will represent the compressibility factor only up to the value
of l/V corraesponding to the dew point. In terns of Figure 2,-a power series
representation may be found for the portion ID of the HBGDL isotherm. The
sane power series about the origin of l/V will not converge to the hori-
zontal portion BGD of this isothsrm. If it should happen that the gas and
liquid isotherms both have the same analytic continuation into the two-
phase region, then it would be possible %o represent the gas phase, liquid
phase, and their mutual continuations by one power series about the origin,
Such a continuation might have the appearance of the dottéd line of Figure 2.
If this continuation into the two-phase region satisfies certain thermody-
namic differeatiation and integration rsstraints, then a power series could
be found which describes correctly both the volumetric and phase behavior
of fluid systems.

These restrictions on the two-phase continuation are stringent,

The author is not aware of any study which would insure that these require-
‘ments may e satisfied. However even if power series representation is not
possible, the Welerstrass theorem (Appendix A) indicates that the non-

analytic isotherms can be uniformly approximated by polynomials.



The success that has been attained with empirical equations of
state which resemble the pértial sums of the virial series might suggest
that the answer to the search for an acceptable equation of state is Ho
use open~ended polynomials in temperature and reciprocal molal volume with
the truncation being made when sufficient terms have been included to re-
duce the approximation error to an acceptable level. This procedure is in
principle a sound one. However real difficulties are encountered in attempts
to evaluate the paramefers from experimental data. The problem is suffici-
ently fundamental that it merits some discussion, |

Consider any smooth pressure-volume isotherm of the pre HBCFDL
shown in Figure 2. There exists a pover series representation of pfeésure
as a function of the volume of the type of equation 1., Suppose now fhat
the series is truncated after n terms and that it is desired to evaluate
the pérameters in the resulting n'th degree polynomial from experimental
PV data., In principle the virial coefficients could be obtained by evalil-,
ating the successive derivatives of the experimental data at the origin,
(V)-l = 0, However the limitations of graphical and numerical differenti-
ation are such that this procedure would be virtually wathlessffor third
and higher derivatives. Consequently the method usually employed in such
circunstances for evaluating the coefficients is either to fix the inter-
,cepts at n selected points or to use a procedure such as the method of
least squares. Unfortunately the numerical coefficients obtained by the
‘latter means are not in general the power series values. For example if,

instead of an n term polynomial, an n+1 term polynomial were employed,

value obtained for the coefficient of any of the lower powers would be



different, and furthermore neither would in general be equal to the value
obtained in the limitihg cage of an infinite number of terms., As a matter
of fact there has recently been some question raised as to the validity

of the second and third virial coefficients reported by several investigators
because of the arbitrary polymomial forms employed in the analysis of ex—
perimental data (21,22).

One night question whether it is really of great concern that the
coefficients obtained in any given case are not the actual power series
values. In order to answer this fully some consideration musi be given to
the methods and problems of evaluation of these coefficients. Suppose the
experimental data were being fitted with an n'th order polynomial in temper-
ature and reciprocal volume. lhether the intercepts of the equation are
fixed at n points or whether the metl:od of least squares is employed, it
is necessary to solve n equations in n unknowns. Anticipating that seven
terms in reciprocal molal volume would be required and that each of the
seven virial coefficients would require four constants to:describe temper-
ature dependence, it would be necessary to solve for twenty-eight unknowns,
This would involve inverting an 341 elewent matrix. If the analysis is by
least squares, it would be necessary to compute 435 unique inner products
to obtain the matrix. The matrix could supposedly be solved numerically
to yield explicit values for the constants. However the practical problems
would likely be significant. 16 x 16 matrices are still themselves subjects
for recent mathematical research (23). Experience obtained in computing the
Benedict coefficients for butane (15) indicates that ill-conditioned matrices

may be encountered; the misery associated with attempts to invert an ill-
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conditioned 28 x 28 matrix w0ﬁ1d not be insignificant,

A further obstacle is apparent: the constants once obtained are
decidedly interdependent. Another arbitrary truncation, say one involving
one additional term in reciprocal molal volume, would have resulted in
an entirely different set of coefficients. In any given case the most
efficient truncation is unknown and would presumably have to be sought
empirically, with each new assumed form of the equation necessitating the
inversion of a complete matrix. Furthermore it would be necessary to worry
not only about the truncation of the reciprocal volume power éeries but
also the truncation of each of the series approximating the temperature
dependence of the virial coefficients., The time required for this tyve
of investigation would be appreciable even with high speed computing equip-
ment .

It might be pointed out further that once the coefficients had been
obtained for a given polynomial approximation to the viriel equation of
state, the interdependence would require that the entire 5et of coefficients
be employed for all prediction purposes, Arbitrary deletion of terms that
had been included in the evaluation procedure would in general lead to sig-
nificant error, Also the finite polynomial would in general be useless for
extrapolation procedures.

The preceding paragraphs have explored a number'of the merits of
the virial equation of state. Comparison with equations of closed form
seems to indicate that there is promise of success in an equation of state
expressing the compressibility factor as an open-ended series of increasing

powers of temperature and reciprocal molal volume. There is a complex but
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workable theory developed from statistical mechanics for such a series.
Values for the virial coefficients are much sought after, both for their
immediate application to the ecuation of state and for their application
to studies of intermolecular attractions, Counterbalancing these advan~
tages and incentives are the formidable computational difficulties dis-
cussed above,

It will be the objective of the present investigation to develop
an equation of state that is an open-ended series in temperatpre and
reeiprocal molal volume, but which eliminates the bulk of the-computational
diffievlties encountered with the orthodox power series expansion. Fortu-
itously the results will be such that the resuvlting equation may be re-
grouped into the virial form, thus maintaining the advantages of associ-
ation with developed theory and at the same time presenting a powerful

method for evaluating the virial coefficients.
III. THERMODYNAMICS

Independent Variables

In many of the applications of equations of state, situations
frequently present temperature and pressure as independgnt variables, a
solution being required for volume. Consequently from the viewpoint of
~application, 1t would be efficient to have an equation of state expressing
volume as an explicit function of pressure and temperature. This would be

quite practicable if only a gas vhase were being described. However if the



equation of state is to represent liquid as well as gaseous regions, the
problem of crossing the two-phase region requires that the pressure be
expressed as a function of the volume and temperature. This may be seen
by a consideration of isotherm HBGDL of Figure 2., The coexisting phases
are characterized by the existence of two values of specific volume at a
specified pressure and temperature. In order to approximate the volumetric
surface adequately with a reasonably small number of terms in the inde-
pendent variables, 1t is desirable to replace the discontinuities of the
two-phase region by a smooth path. In terus of Figure 2, the.horizontal
portion of the BGD isotherm masy be replaced with the smooth curve BCID.
This process results in a surface giving pressure as a single valued
function of volume and temperature. For temperatures below the critical
there are two (as a matter of fact three) values of volune which corres—
pond to the same pressure, a necessary requireansnt for the coexistence of
phases. Ain equation of state consisting of a volynmomial of degree greater
than three nay possess this necessary property of three réots in volume for
a given value of pressure,

By appropriate integration restraints, the substituted sinocoth sur-
face nay be chosen so that it predicts correct changes in ihermodynamic
properties across the two~-phase region. Alsc 1t night he noted that the
substituted path is not entirely devoid of physical association; the por-
tions BC and DF of the isctherm TIRCFDI of Figure 2 may be regarded as repre-
senting the volumetric behavior in the unstable region. It thus appears

that substitution of a smoothed surflace in the two-phase domain nay result



n significant sinplification of an equation of state expressing pressure

e

ag a function of volume and temperature.

However if one attenpts to regard volume as a function of pressure
(for example turn Tigure 2 on its side) the substituted path results in
three values of the dependent variable for certain values of vressure and
ﬁemperature. Funetions, if indeed the designation function-is appropriate,
that demonstrate this type of behavior are not simple analytically and
would likely be impractical for an equation of state. In the_present work,
volume acd temperature are regarded as the independent variabies.

It is convenient to use the recinrocal of the molal volume in place
of the molal volume as one of the independent variables. The symbol

will be employed for reciprocal molal volume.

The Function L{g , T)

The following expressions may be educed for several thermodynanmic
variables as a function of terperature and reciprocal molal volume. £ is

fugacity, I molal enthalpy, S molal entropy, and Z the compressibility

4. i [ Z(€,T) - 1 Je 1] |
(8
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The derivation of these expressions is given in Appendix D. Discussions
of similar derivations are also available (5,24).

lnsPDctlon of the above expressions for fugacity, enthalpy, and
entropy will reveal that a certain grouping of variables appears repeti-
tively, namely (2 - 1)/qr . This function possesses such basic utility
for the present investigation that it will be denoted by & special symbol

Lo, D.

- 1 P ' (11)
| :L(?,T)"%:EW -1

By simple rearrangement of equation 11 the following expression

for pressure as a function of L, Oy, and T may bhe obhtained:
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b= RT[L(@QTXM]Q = RTLe” + RTg

- (12)

Hence instead of using an equation of state which expresses P directly as
a fuaction of & and T, eguation 12 indicates that it wouldlbe equally
acceptable to express L as a function of ¢ and T. 4s a matter of fact,
for reasons that will he discussed in the following section, this is pre~
cisely the procedure adopted in the present investigation,

In terms of L, equations 8 - 10 nay be rewritten.

o)
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At first appearance L(¢, T) appsars to be indeterminate as <
approaches zero for a fixed value of T. Actually the limiting value is

finite, as may be deduced by use of L'Hospital's rule.

o Z-1
Z -1 ( 3 ¢ )T' o)
L - E NNCE
g0 e5o ° i (‘5 ‘7) \O'Tro °9 )
' o aglT

= ‘glih{{'e

An analog; to the residual molal volume might be noted (25).

lim ¥ = CRD [ - lim(ﬂw)@—ﬂ = finte 07

Z-1
P
P—')O P-—-’;o P,_).o
In the two-phase region L has the following form in terms of the

vapor pressure P%:

"

i _ 1 (1)
L (O, T) B R To? o}

It should be noted that,at a fixed temperature, L may exhibit a relative

minimun at

o 2° . (19)
s - & [min




IV, THE EQUATION OF STATE

Range of Independent Variables

In the analysis that follows it will bs necessary that the range
of reciprocal molal volume be the same for each temperature involved. In
other words it is desirable to deal with a rectangular domain in the plane
of the independent variables. It might happen that the experimental data
available satisfy this requirement; in general they will not. Consequently
elther a process of deletion or sxtrapolation is necessary. If the extra-
polation is regarded only as an aid to analysis and computation, it should
be an acceptable procedure. Assuming then that the data have been selected
so as to cover a uniform range in both temperature and volume, it is con-
venient to utilize normalized variables that have a range convenient for
purposes of analysis, For example the dependence on & will Be expressed
in the equation of state by a series of Tchebichef polynomials, Th(x) ’

which are usvally defined for -1% x £ 1. For a given FVT surface, ¢

will range from <& = 0O up to some maximum value which will be denoted by
Cm . Therefore define x by
e}
= 2 — — 1 (20)
X oy

It may be immediately verified that -1 < X £ 1 for 0 £ ¢ ¢ $m .
J

The tenperature dependence will he expressed in two separate ways.
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In one, the Tchebichef polynomials will also be used. Letting Thax and
Tpin denote the maximum and minimum values of temperature, a variable y

may be selected such that -1 £ Y £ 1,

. T - .Tmiv\ (21)
= 2 S
y Tmax— Tm}n l

In the second case the Gram polynomials will be employed for tne temper-
ature dependence. OSuppose there are h evenly spaced isotheras, Define a

variable & as follows:

¢ — T - T\min Uq—-l) _ h——i

T T i

h-1 T = Tun

_ _ | (23)
S b

Reference to equation 149 of Appendix C will show that this is an acceptable

variable for these polynomials,
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Dependent Variable

P?ior discussion indicated the necessity of taking temperature and
recliprocal molal volume as independent variables and pressure as the funda-
mental dependent variable. Actually thers are more efficient.procedures
than expanding pressure directly as a function of ¢ and T. It night be
expected that fewer terms would be necessary to describe thé deviation from
somé idealized behavior than the actual absolute value of the pressure dir-
ectly. In many graphical and numerical evaluations of thermodynamic
properties (25,26) use is made of the compressibility factor and residual
volume, both of which account for deviation from the perfect gas law, As
a matter of fact, for the present work the compressibility factor Z wmight
be expanded as a function of & and T. However regardless of the point
of truncation of the expansion, it is necessary that Z should go to precisely
unity at infinite attenuation. This is desirable in order to maintain con-
tact with the kinetic theory of rarefied systens and in order to ensure that
the integral describing the fugacity, equation &, will remain bounded at
gero values of O . The requirement that 2 go to precisely unity as
goes to zero may be simply met if (Z—l)/g; is expressed as a function of

O and T which remains finite at zero values of & . This is the pro-

cedure adopted.

-1
L(Q,T) - T o T Fo‘ynomiql n T and T (24)

-
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The exact form of the polynomial will be developed in succeeding paragraphs.
If the equation of state is to bridge successfully the two-phase
region thermodynamically, the path of the eguation must satisfy certain re-

quirements., The conditions for phase equilibrium in a one-component system

are the following (27):

- (25)
%'% - %,q
- (26)
b= T

(27)

T -

Combining these expressions with equation 13 for the fugacity, the follow-

ing may be derived:

{ ° 5 (28)
l‘n r - O = ZB—ZA +§L(¢)T)A<? +f\“ % [T] N
a Sy

L (g, T T{T( EA B n crb (29)

O

4 further requirement is necessary. From equation 14,



@
amm) O Re-He Pt L
T(N do = RT RT) 6y & (30)
T

[T ]

Equation 29, which is essentlally an integration restraint on the variable
L{(g, T), may be satisfied in a straight-forward and rather‘precise nanner .,
Since a differentiation is involved in equation 30, the second resiraint

is not easy to satisfy directly for substituted paths which are defined
graphically. However 1f the eguation of state gives a good representation
of the data in the homogeneous regions including the phase boundary, and

if the restraint of equation 29 is met, then the restraint of equation 30
will also be met., This conclusion follows from the faect that satisfaction
of the restraint of equation 29 will result in correct prediction of the
vapor pressure as a function of temperature. If this prediction is suffi-
ciently good so that the derivatives of the vapor pressure curve are accur-
ate, then the correct enthalpies of vaporization will be predicted according

to the Clapeyron-Clausius equation (27).
_ 4P
Ho- W = (M=) T a7 [T ] (31)

Since isothermal clanges in enthalpy, whether in the two-phase or homogen-
eous regions, involve a differentiation, it should be realistically antici-

pated that any finite truncation of the equation of state will yield poorer



predictions of enthalpy than of fugacity or pressure,

Unlessg definitely stated to the contrary the dependent variabie
under consideration in the present work will te the function L{¢, T).
In replacing the actual two-phase data with a smooth path, it will be

assumed that the integration restraint of equation 29 is satisfied.

Tchebichef-Gram Form of the Equation of State

The discussions of the preceding sections and the mathenatical
definitions and theorems of Apperndices i, B, and C present sufficient back-
ground to permit the direct expamsion of L(¢, T) in series of polynomials
in g;' and T. Characteristics of this type of exnansion are indicated in
Appendix A. Properties of the Tchebichef and Gram polynomials are discussed
in Appendices B and C. The Gram polynomials for h = 13 are listed in Table I.
Several each of the Gram polynomials and the Tchebichef polynoﬁials are
shown as a function of their arguments in Figures 3 and 4.

Assume that the ranges of the independent variables have been normal-
ized and that L(ér, T) has been adjusted so that the volumetric surface is
everyvhere smooth. Dxpress the reciprocal molal valume dependeﬁce in
Tchebichef polynomials of ascending order and the temperature dependence
in Gram polynomials of ascending order,

-1
L(‘?ﬁ T) - Z_o-'— - aoo\/;gé)_‘;(x) + q\o\/\(‘z)f) To(a) - -
T 4, L@ la + a'l\A(h)(E)-l‘—(«)Jr ~ -

h) -
MCRAQ RO
P (32)



The eguation is an open-ended series in both the € and x directions.’
Purtheraore Theorens I and II of Appendix A make it possible to approximate
(g, T) uniformly to any pre-assigned accuracy with a finite number of
terms of equation 32. It is pointed out in Appendix C that for the Gram
polynomials, h must be greater than the index of the highest order poly-
nomial., Birge and Weinberg (40) deronstrate that in the linit as h —> &=
the Gram polynomials are closely associated with the classical Legendre

polynonials,

Tehebichef-Tehebichef Form of the Equation of State

Assume that the ranges of the variables & and T have been normal-
ized to convenient standard ranges by equation 20 and 21. Express the
'reciprocal molal volume dependence of L(qy, T) in a series of Tchebichef
polynomials Tj(x) and the temperature dependence in a series of Tchebhichef

polynomials Ts(y) .

Z-1 : _
L(C?)T> " T o - Coot(y)t(x) 2y C,OT,(y)To(x) + - -
tla ) 1+ ¢, Wy) T + - -
o y) Ty * -

+ -~



The equation ig an Infinite series in both the x and y directions which
may be truncated at a point yielding any desired degree of approximation.
Whether these truncations can be accomplished in a number of terms that is
practical for application will be the subject of the study of the applica-
tion to propane.

Different letter designations have been purposely used for coeffi-
cients of the two forms of the expansion, nanely aq for the Tchebichefl-

Gram form and cjj for the Tehebichel-Tchebichef form.

Notation

For the sske of convenience in using the equation of state, abbre-

viations will be used for equabions 32 and 33,

(h)

Lo, T) = &, Vio) T (34)

Lie,T) = < T T

In this notation a repeated subscript is to indicate summation over the
range of the index. In these two cases the range is 0 % ( & <&

and 0 £ j & o2 o This notation is called the Einstein or summation
convention, Equations 34 and 35 are merely abbreviations for eguations 32

and 33 or for the following:
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L(o T) = Z L a, \/(f) T(?() (36)

L (cT) = Z >: c..T(y)T;l(x)

(37)

The actual eguation of state will he finite truncations of either
equation 34 or 35. In order to quite definitely distinguish between the
approxination equaticns and the infinite series, an asterisk superseript
will be used on the coefficient operator, and the equality sign will be

replaced by an approximation indication.

- th)

L(s,T) a V) T () (38)

LT ¥ & Ty Tw (59)

This notation is to be regarded as a warning that the ranze of the summation

is finite. The following identities are used:



N Iy o
a.. Yoe) L) = Z g N6 (@ h >m (40)

'Y)TW (41)

V. THERMODYNAMIC FUNCTIONS IN TERMS OF THE ORTHOGONAL
POLYNOMIAL EQUATION OF STATE

Pressure, Fugacity, Enthalpy, and Entropy

Equations 8, 9, and 10 may be combined with either equation 34 or
35 to give exact expressions for pressure, fugacity, enthalpy, and entropy
as functions of ¢° and T. Approximations to these quantities may be
gimilarily obtained by using the truncated forms, equations 38 and 39.
Since the latter are the actual equations that would be used in practice,
they will be used below for the explicit equations for these thermodynamie
quantities. The equations for the Tchebichef-Tchebichef form of the equa-

tion of state follow.

Pressure:

P= Rlg + RTo™c T L) (2)



Fugacity:

X

§ N . o 7
\Y\ ﬁj = o) Céj —E(Y)-E(X) + — C:T(Y)}' SI_ECQA?% ' (43)

Enthalpy:

H"-Ho ~ (.jm T clT
RT o< T (T T € ; %g TUE)A?%

Entropy:

S =S o] Ory T ATy X
R~ g ¥ C:‘ng:Tm d 77 +T;Q)%§§£(¥)H%(4s)

Equations 42 and 45 are to be used with the following definitions of x and

WA

(20)

G

<y

s

P N TR
y ) l 'T\rwa-x~ -\'\"‘"‘ 1 (21)

The valves of Oy, Tpayxs and Tpin must be precisely those used in the deter~

mination of the coefficients c:}
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For the Tchebichef-Gram form, tlie following equations pertains

Presgsure:
~ . % (h
P = RTe *RTa, Ve 1w (46)
gacity:
Fu, v i N _ “©
\nm‘g = Ga \/(E)T(a
. (47)
o
v al V(ﬂiﬂ]@é)ﬂ%
Enthalpy:
T oH-pe N (W)
RT oa \/(E)T(x)
h-0T 2
S (h- | AV(E)
T 2T o) a: TE STW’%
Entropy:
S =9 G T (T(he1) 4V ’
‘R. = |n c:r‘ ) q:'ZEJTm Te *V%)%%j('\;@d??g (49)

Equations 46 through 49 are %o be used with the following definitions of

x and &
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e} (20)
* T2, T
B o I e
6 B l 2 me TW‘"‘ l (23)

The values of Opny Tpoxs Tpins and h must be precisely those used in the
determination of the coefficients aij.

The factors of q?yﬁ‘ ) 3/15;wx_”ﬁmm) , etc. which appear
in the above expressions are a result of the normalization employed in
equations 20, 21, and 22. To take a specific example, the expression for

enthalpy involves the following integral.

i DL T)
=) () e

N 5 (s 2 v“‘(’eﬂ;@))

o T

d%

o ¢
x )
= 45 42 ) () T
x )
> Lol % (o (49T
o (h—l) Q’“ ¥

(h) X
2<Tm4x - -r\min) a‘: ¥ S T;(E ) d ?
) (50)
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Some care should be taken whenever the equation of state utilizing these
normalized variables is either integrated or differentiated. 4 formal re-
duction as in the above example is a wise precaution.

Several of the above expressions involve integrals and derivatives
of the Gram and Tchebichef polynomials, One method of evaluating these
would be to operate directly upon the polynomials as given by equations
120 - 130 and 150 - 153 (4ppendices B and C). For the Gram polynomials

this is the only convenient method known and was used in the present in-
vestigation. However in the case of the Tchebichef polynomiais, the inte-
gration and differentiation formulas of equations 141 and 142 may be con-
veniently expleited. Application of these relations may be systematized
into simple matrix operations. For the present work the following matrices

were enployed. Omitted terms in the coefficient matrices are identically

Zero.

Integration:

[ I 0.0 o o o o] -Ie\ 5,‘ T IY]
\

‘1% o ¥ o O 0 o 0 o 1@ SZ T,(E’)A’{
1 1

Y “;ll O L O °©0 o O o =

1 i \

2y f 0o g o ©o o o E;)

1 “Z o 16 o 0 o & ~

1 1

3 g o 12 © o || T
b _ 1 A

3 o © & O @

\ 4 s z

% oo ([T | Cuese

(2)




Differentiation:

e —nr— [ ’.—'
O o ©o o o o o o || G-2") L&)
A _1 7
2 © 7 o o o o || Te 0-7) T@

| O =1 o O c O &)
3 3
I o a2 © o o o
2 © 2 o o o =
5 &
2 o 2 © ©
o -3 O
T a /
2 o "2 T;Li) (-2 T7(2)
. — . —
1@ (52)

In the process of predicting thermodynamic properties at a given
value of O and T the values of Tj(x) and Ti(y) were first computed.
These values were then used directly ih equation 42 for pressure. These
values could also be used with the matrices 51 and 52 to 6btain the indi-
cated integration and differentiation vectors, which could in turn be em—
ployed in equations 43 and 44 for the fugacity and enthalpy. In punched
card operations these matrices can be kept on file as standard operatiocnal

decks,

Virial Coefficients

An equation of state has been developed in a form involving orthog-

onal polynomials, TFor rurposes of anplication it may be employed in this



form or it may be regrouped into an orthodox polynomisl., In view of the
extremely useful integration and differentiation formulas available for
the Tchebichef rolynomials, the orthogonal expasnsion form is essentially
as convenient to use as would be the orthodox polynomial. In addition,
the orthogonal expansion possesses the distinet advantage of being suscep-—
tible to arbitrary truncation if only an approximate representation is
desired.

Hevertheless it is desirable to be able corvenlently to revert the
orthogonal polynomial form to the conventional polynomial of the virial
equation of state. This is particuvlarly important if one desires to obtain
explicit expressions for the virial coefficients, as would be the case in
a study of intermolecular forces, Consequently a scheme of regrouping is
given below, The method is general but will be specialized here to a
truncation of the O dependent series at Té(x). Consider first the

Tchebichef=Gran form of the equation of state,

Z-1 (n)

Lo =5 T ¢ V. T 52)

Regroup this as follovs:

(54)

L) = KO) Ty +K®Ter+ - + K@ )



where

Q) (h)
KOLT) - aOO\/O LE) T a\o\/\ (5) t -

K ‘(T) Y

]

) _
a6y +a Vo t - T
}
]
|
|
\
h) 55
K(T) = Ao V. (6) + = = 7 (55)

How it is desired to obtain the virial coefficients B(T), C(T), - - -
of equation 1 in terms of Ky(T), X9(T), -——— Eg(T). The actual algebra is
simple but tedious and has been placed in Appendix E., The final result

follows. Terms below the diagonal in the matrix are identically zero.

N | (56)
ﬂ B o

N
T L I L[ KM B(M
/3 k3 TR g -2z B KM | <O
" g wed -00d 208" : :
42 375 nod ||
g o ||
leﬂf 1928 |

(57)



A similar result may be obtained for the Tchebichef-Tchebichef

form. Let

1—0@) = CooTo(y) T <o T.(v) t -7
]

!
]

\

M 7 .l + ¢ g+ -~
(58)

If in equation 57 the Xi(T) vector is replaced by the J;(T) vector, the
results are valid for the case in which the expansion coefficients have
“een obtained for the Tchebichef-Tchebichef form. Note that the second
virial coefficient involves a particularly simple combination of the Ki(é)
and does not directly depend on /5 or O . The matrix equation 57 gives
the virial coefficients in terms of the K4(€ ) or J4(y), which are linear
combinations of orthogonal polynomials, These combinations could also be
regrouped to yield conventional polynomials in powers of T. Such a proce-

dure was not employed in the present investigation.
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VI. LEAST SQUARES EVALUATION OF EXPANSION COEFFICIENTS

.

The discussion that follows will consider the evaluation of the
expansion coefficients of the equation of state by approximation in the
mean or the method of least squares. In Appendix A certain characteristics
of this method are presented. In Apoendices B and C the proberties of the
Tchebichef and Gram polynomials are discussed, narticularly with reference
to their summation orthogonality, The nature of the present nroblem
virtually assures that the data to be approximated will be available in
graphical or tabular form rather than as analybical expressions. Therefore
it will be convenient to adopt the summation method of evaluating the co-
efficienté.

It will be necessary to consider separately the two forms of the
equation. Both, however, involve expression of the dependence.on reciprocal
molal volume in terms of the Tchebichef polynomials, Tn(x)f Considering
first the Tchebichef-Gram form, assume that the data are available on h
equally spaced isotherns &, , TV =0, 1,2,3 ~—-—, h-1. Assume now that
the data points along each isotherm are taken at the very definite onints
L%

, %= o)1, 2, —-° -1 . x_. will be given by

Tt x) = © (59)
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_ LAt1 v (60)
.~ Cos T oY oL=012 -- t-1

As h-1 and t are taken very large, the values ohtained for the
expansion coefficients will approach those cbhbtained by integration pro-
cedures. Although for computation it will be necessary totake a practical
number of grid roints, it will be assumed that the number of divisions in
both the x and &€ directions are significantly in excess of the highes
order terms of the avrroximraticn,

The values of the coefficients ajy are desired for which the follow-

ing sum is & ainimuan:

(h)

KQ - ?— LG &) —a, Vi) o) (61)

’U)xoL

The conventional lzast squares analysis leads to the following expression

for the cosfficients a :

£L

(h)

|G 6) VCE,) T &)

&y %

N E Y el

Q

1
~—
o
I
Nt



- 38 -

This is the general expression; a formally identical equation for each of
the ajy of equation 32 may be obtained by permuting the £/ indices of
equation 62. For the terms z {\/212‘2)31 and Z ‘\:(i) , the
indicated summation does not have to be performed for each computation.
These values are obtained from the orthogonality properties of the polynom-
jals. For the Tchebichef system, the values are given by equation 136.
For the Gram system, values are equal to N(:) and may be ob‘baiﬁed from the
tabulations (40,41). |

The sum in the numerator is simply a three-factor innér product
over the points of the ¢ ) x . grid. To every point of this grid

v

on the & =T plane (or the x- ¢ plane), there corresponds a value of

)
L( %, & ) Vzh ({v ) and Ty (xc )« These three factors are multi-

-
plied together and then the resulting products are summed over all points
of the grid. The resulting sum when divided by the product of z V&I
by Z '{;1 gives the value of the coefficient ay, . |
Note that each of the ajj are obtained independently. There is no
matrix inversion. For N coefficients there are (n + 1) inner products
as compared to é—(nz + 3n + 1) that are necessary in fitting an orthodox
polynomisl. ' %
If there are N points on the data grid and if 32 represents the

mean square error of the approximation, then an expansion of equation 61

yields the following expression:

2 - 1 2 (h) (
S - N :L: L_(')S‘,E-U) — dgy L('&;Ev) \i(fv) _E(%) *

Y) <
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Because of the independence of the coefficients this may be coumbined with
equation 62 to yield the following useful expression for the mean square

error of the aprroximation:

> L)V Tooh

, = )9;5V A.é; {Cﬁgg;

2 o= ﬁ;ﬁ(&,%) - —,%;Z: - o 92 ()
e ZN@% Z Toe)

£

-V

Contemplation of equation 64 will reveal that each additional tern, Vg%i)'Txx)
which is added (or included) to the equation of state makes a coniribution

to reducing the mean square error vhich is independent of the coantribution

of the other terms, This affords a powerful means for quickly eveluabting

the adequacy of the approximation ss additional ceoefficients are computed

ong by one,

Tt will Dbe useful to define a quantity 815 28 follows:

() >
_ } 2,: X L(X""’ &) Vc(c‘v) Tj(x‘)% 1
S T )

“ tl NI Z T L6x, &)

v &

-u)?gt
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Conbining with equation 64 the following is obtained:

1 2 6
g - 1‘2—5.. N ZL(D@,EW) )

— <y
“d

Values of 835 may be rapidly computed once a value has been obtained
for ajje If zero terms are included in the equation of state (eguivalent

to assuming that nerfect pas law applies) then the error of the approxima~-
- 153 ol p

tion is given hy

wn
H

1 2 _
W z L (Xot, é—[)) c B & (6!7)

As each additional term is included in the equation of state, this value

diminishes, approaching zero for the limiting case of an infinite number

of terms. By the nature of the expansion leading to equation 64, sy: is
Lo

between 0 and 1. As a matter of fact the following relation holds:

(68)
o = Zsﬁ. £ 1

g

The properties of this expansion are therefore such that additiqapl
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terms may be computed until equation 64 indicates that an average square
error acceptably small has been attained, whereupon the computations may
be stopped. It is apparent that there is no need for recomputation of all
pre~existing coefficients if it is desired to include an additional term
in the equation.

The procedure utilized for the Tchebichef-Tchebichefl form is very
similar. Instead of the data grid being prepared with equally spaced
isotherms, the points are selected at points yp YL:'O,l,Z, --—- T given

by

Tr()’r\) - o (9

in+ 1
YU T <es ax 17 O0L 23,7770 ()

Since the reciprocal molal volume dependence still employs the Tchebichef
polynomials Tj(x), the nature of the division in the x direction remains
the sane, The equatlons in the preceding paragraphs will pertain with
(W
Tk(ym_) substituted for Vy ( &, ) and with the appropriate change of the
2
index of sumation from 51/ to YT . The necessary values of ;%:'Xégm)

can be obtainad from equation 136.
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VII, APPLICATION OF THE EQUATION OF STATE TO FROPANE

Data

Propane was chosen for the initial test of the practicability of
the orthogonal polynomial equation of state. There were several reasons
for this selection. Reliable experimental data are available over an ex-
tensive range of pressure and teuperature including the critieal region,
Thermodynamic properties have also been computed. Furthermore propane was
used as a nmodel for many of the investigations of the applicability of the
Benedict eguation of state made by Brough, Opfell and co-workers (13,14,
15,16)., Propane is not an overly complex molecule, yet it is not trivially
simple. It is non-polar.

The data employed were primarily those of Sage and Lacey (26) in-
volving temperatures from 100° F to 460° F and pressures from zero to
10,000 psia. The only additional data used were those describing the ex-
perimental critical isotherm reported by Beattie, Poffenberger, and Hadlock
(28). This latter information was used only in the second application,
namely in obtaining the coefficients for the Tchebichef-Tchebichef form.

Other experimental data for propane are available in the rangé of
temperature and pressure considered. They were not employed in the present
work because the objective of this initial investigation was to explore

the feasibility of approximating a smooth internally consistent system.
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Tchebichef-Gram Form. BExpansion Coefficients

The data are reported in reference 26 for thirteen isotherms
spaced at.BOO F intervals ranging from 100° F to 460° F. It was the
occurrence of the data in this convenient form that recommended the use
of the Gram polynomials to express the temperature devendence.

The tabulated valuves of pressure, molal volume, and femperature
were key punched into IBM cards. The range and density of points available
are indicated in Figure 5. As nentioned previously, the critical isotherm
of Beattie waé not used in this first computation. From the tabulated
data, values of L(CT, T)‘and S wemw computed. L(¢, T) was then plotted
versus < for the thirteen isotherns on a good quality graph: paper approx-
imately 20 by 36 inches. Several of these isotherms are reproduced in
Figure 6. The 100° F isotherm in the two-phase region exhibits a relative
minimum of the type discussed in section III, equation 19, Thé 100° F iso-
therm extended to a value of reciprocal molal volume of approximately 0,82
1b mole per ftB, wvhich was chosen as the value of O - Ail the remaining
isotherms terminated at smaller values. Rather than delete data, the short
isotherms were all extrapolated to values of & = &, = 0.82 in order
to provide a uniform boundary. The necessity of this procedure was discussed
in section IV. These extrapolations were reguirsd to be smooth both on the
basic plot and on an L versus T cross-plot., Several of the extrapolations
are reproduced in Figure 6.

Four of the isotherms, 100° F, 130° F, 140° F, and 190° ¥, passed

through the two-phase region. In this region the actual data were replaced
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by alternate paths waich were smooth at the phase boundaries, These paths
vere made to satvisfy the integration restraint of equation 29 and in
addition were required to cross-plot smoothly on a L versus T graph. The
integrations between dew point and bubble point were performed numerically.
The path finally accépted is shown by the dotted curves for the 100° F
isotherm in Figure 6, The final values of the integrations are compared
in Table II with the values computed from the experimental data using
equation 29, lo attemnpt was made to satisfy directly the restraint of
equation 30 Tor the enthalpy of vaporization. The difficulties associated
with this latter requirement were indicated in section IV, Needless to
say the two-phase paths thal were used are not unique.

For the points of summation along the O axis the values of x ,

given by the following were used:

~ (71)
Tetx) =0
~ 2+ 1 (72)
X, T Cos T qp m oL = O 2, 4
X, = cos(2+t4a) AT 01,2 - W (73)

Values of X Were read directly from a table of cosines. In corder io

facilitate the reading of wvalues of L(gr, 7) from the working graph, guide



lines were drawn parallel to the L axis at values of O, corresponding to

equations 20 and 73.

o
c, = (?(o(+1)Tm 4]

Values of L(gy, T) were read from the working graph at the inter-
section of the isotherms with the O, guide lines. ZEach valug with
identifying coding was punched into an IBM card. These cards were then
ordered by the o dIndex and the first differences were comiuted for each
isothern. Subsequently the first differences in temperature at ccﬁstant
values of O were calculated., This differencing proved a remarkably
effective means of detecling errors in reading the graph and in key punching.
The final data set consisted of 535 points (13 isotherms, 45 points each).
120 of these were in the high reciprocal molal volume extrapolated region

2

and 79 were in the two~phase region. For coaputational rurposes, the graph
vas thus supplanted with a deck of 535 punched cards, each card corresponding
to one grid point, Each card contained a wvaluve of L(gr, T) and coding
identifiing location of the grid point.

Values of the Gpanm polynomials for h = 13 wers obtained {ron
Delury (41) and Birge and Weinberg (40). The actual numerical values are
éiven in Table I and several of the polynomials are plotted in Figure Z.
These date were checked to verify that the orthogonality requirements of
equation 144 were satisfied,

Values of the Tchebichefl polynomials, Tj(xog) for the grid points x



were obtained from a table of cosines.

1
‘\—j@%) = Cos | Cos Xy (75)

24711
Tj(x,,;) T Cos) g0
z
A =02~ 4t (76)
{445
The cosine data used in these preparations were obtained from reliable
tables (29). For the grid chosen, all the values of Tj(xd~) ﬁere necessar-
ily the cosines of integer multiples of 2 degress. The entire cosine table
(29) was key punched at 2 degree intervals, and the first and second differ-
ences vere computed. Vhen the consistency of these date had been verificd,
the set Tj(ch) was obtained by selection of the appropriate cards as in—
dicated by equation 76. Several members of the resulting set were checked
to verify that the orthogonality relationship of equation 136 was satisfied.
Utilizing the data and polynomials discussed in the previous para-—
graphs, the expansion coefficients for provane were computed according %o
equation 62, Each successive coefficienl required that the 585 card data
set with attendant polynomial cards be passed once through an IR 604 digital
th)
computer. The computer multiplied L{xw ,&,) % Vg (&) X.T;Ch*) for
eazch grid point and provided the sum of this product over all the grid points

on the last card of the deck, These products are listed in Table III. For

each value of k and ,? the product of >L—§\éb)%,.22;41} is also shoun.
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The quotient is the coefficient déﬁ . For each sucecessive coefflcient
a new set of polynomials cards had to be merged with the data set deck.

The value of Lf(x&)gv) is given at the top of Table III.
Exe

Values of

PR
)
%Z& Ltx, €,) Vs (60) m&

Sl T

are also rerorted. TFor each coefficient, s.. is given,

1j
A total of thirty-four coefficients were evaluated. It is inter-
esting to note the rapid decrease in the effectiveness of the coefficients,
65% of the square error that would arise from using the perfect gas law
is absorbed by one tern of the equatic 1 V) Ty =
is absorbed by one tern of the equaticn, namely do V, (£) ) () = dgx
rour terms, those corresponding to ag, , 8.5 9 Bay » and a,, , absorb
98.1% of this error. All 34 coefficients listed absorb 99,9506%. The
perfect gas law would give a root-mean-square error of approxirately 2.42 £
ver 1b mole in L{¢, T). The four terms corresponding to Boe 1 &0 2 2o
and a,, would result in a value of 0,34. For all the 3/ coefficients
listed the root-ncan-~square error would he 0.022 ft3 rer 1b mole,

The relative effectiveness of the coefficients, or more rrecisely
b4 i X

the terms which they represent, is portrayed in Figure 7.

A¥S]



Tehebichef-Gran Form, Predietion

For the jresent case the series was itruncated after twenty-seven
teras. Séven of the computed coefficients in Table III, indicated by
asterisks, were not included in the equation of state. This truncation is
arbitrary. All of the coefficients listed could have been used; more might
have been computed; more might have been deleted, However with the nethod
employed of reporting with each coefficient its associated effeet on the
error, a definite guide to an efficient point of truncation is available,
These computed approximation errors include the deviations in ‘the non-
realistic extrapolated and two-phase regions. Nevertheless the valuss oObm
tained should be a reliasble indication of the error in the region of real
data. TFor the twenly-seven coefficients selected, the computed root-mean—
square error was 0.023 ft3 per 1lb mole,

Predictions of L(QT, T} were made with the equation ofAstate for
each of the 585 points of the oripinal data grid. For a number of the iso-
therms the error of the equation is shown in Figure 8. The most significant
deviations were in the two-pliase region and near the bubble point bvoundary
in the liquid phase, The poorest prediction was obtained on the 100° F
isotherm which is included in Figure 8, It night be reported that the
equation faithfully reproduced a rather peculiar reversion at low values
of ¢ for the 100° T, 130° F, and 160° F isother:ms, an example of which
may be seen in Figure 5, It might also be noted that the error curve for
the 100° F isotherm hears a similarity in form to a Tchebichef polynomial
of seventh or eighth order. Appendix 4 contains a discussion of this prop-

erty.
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The equation of state was used to predict pressure for 377 of the
data grid points corresconding to the region of the original data. The

deviations for several of the isotherms are showmn in Figure 9. The worst

relative error in pressure revealed by this computation was on the 130°

isotherm near the bubble point beundary, amounting to 18.4%. The P versus

0" curves are steep in this region resulting in significant errors for

small displacements of an isotherm. Away from the bubble point boundaries

the prediction was much better. The arithmetic aversge of the absolute

values of these 377 relative errors was 0,505%.

Although the equation of state is explicit in pressure, actual
problems in application will usually present nressure and tempcerature as
independent variables, requiring a solution for molal volume. Although
comparitively Utime consuming, the equation of state can be solved for
volume by an iterative process., Since the majority of applications of the
equation will probably be of this type, evaluation of the utility of the

equation should include an estimate of error in volume with pressure and

temperature as independent varisbles.

For the present purposes, the srrors in volume were estimated from

the computed errors in pressure by the following relations:

e — (77)



For this ccrputation the necessary derivatives were approximated by finite

differencing o the experimental Jata, A sawple of computed relative errors

)

in molal volume is shown in Figure 10. An abnornally large error is associ-

ated with the isotherus immediately above the eritical state. This is a

'3

consenvence of the virtually horizontal n:iture of a P versus € curve in

this region; very snall displacenents of the curve result in large errors
in volume 2lthough the curwes may be "cloze" in the sense of nornal devia-
tion. The actval behavior for the 2200 F, 250° I, and 280° F isotherms is
shown in Figure 11 (eritical temperature is 206,3° ),

The nmzximmm relative error in volume was 2.3 occurring on the
Fa =

)

20° T isotherm., The arithmetic averace cf the absolute value of all these

i\

computed relative errors in volume was 0,275, This average includes the
7 and %5 deviations near the critical statel On the high 4emperature iso-

151

therm 460° T, the maximun relative error in volume was 0,27%.

For each of five temperatures the vapor nressure, iwo-phase fugscity,
and the reciprocal molal volume of the coexisting phases were obtained by
iterative solution of the system of equaticas 25, 26, and 27. IZquations A%
and 47 for the pressure and fugacity were used. The computed values of
the vapor pressure are compared with the experimental data in Table IV. The
maximim deviation is 3.7 psi occurring at the critical temperature, The

Enl .

maylmum relative error is C.79%, at 100° F'. fThe relative errors are shown

in Tigure 12, Also included in this figure are errors in the vanor pressure

A .

predicted by the Benediclt equation of state uvsing two different sets of



coefficlents (30). The present system results in considerably better
vapof pressure predictions than the Benedict equation using Opfelltls co=
efficients, which pertain to the same range of pressure and temperature as
the present work. is a matter of fact, the phase equilibrium prediction
is somewhatl better than obtained with the Benedict equation using coeffi-

cients based on low pressure data.

The equation of state was also used to compute the thermodynamic
properties as a function of O and T for a small nunber of states corres=
ponding to tabulated entries in the source reference (26). Thé states
chosen, 37 in all, are indlcated by the values of O and T listed in
Table V., States were selected from the lowest and highest températures,
lOQ° E and 460° Ty encountered in the evaluation of the coefficients. The
other isotherms included either cut the two-phase region or wefe near the
critical state, the difficult domains to describe. Representative values
of ¢ were selected up to the maximum for which the coefficieﬁts were
valid. For each state pressure, fugacity, and enthalpy were computed,
Equations 46, 47, and 48 were used. The enthalpy computations_ihvolve the
temperéture-dependent reference H°.

The results of the calculations are shown in Table V. Several of
the phase behavior predictions discussed previously have.also been included.
The table includes the relative approximation error of eaéh gquantity. The
.pressure predictions at 100° F again reveal the difficulties encountered

[R]

very close to the bubble point boundary. A4side from the striking 709 error
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at this point, the pressure predictions appear to be acceptable. The
predictions of fugacity are in zood agresment with the values reported in
the source reference (26)., The enthalpy predictions are somevhat poorer;
relatively large errors at low values of reciprocal molal voluwme are
particularly perplexing, It must be borne.in rind however that the enthalpy
prediction depends on a differentiation of the approximaiion surface, which
would be expected to increase the errors. The aritumetic averages of the
absolute values of relative errors recorded in Table V are 0.86% for fugacity
and 1,265 for enthalpy. 4 word of caution is necessary about these aver
ages; namely, that no atteapt was made to select the points by a statistical
ganpling procedure, The resulting averazes consequently may not be repre-

sentative,

The computations given in Table V were also used to estimate the
srrors of prediction with pressure and temperature as independent variables,
The results are shown in Table VI. The experimental values for this case
were graphically or numerically interpolated from the tabulated data of
the source reference. The arithnetic averages of the absolute values of
the recorded relative errors are 0.21% for reciprocal molal volume, 04515
Tor fugacity and 1.22% for enthalpy. The average srror in fugacity is
apparently significantly less with pressure (rather 'hanvmolal volume) as
an inderendent variable., The description of the enthalpy does not improve

narkedly,



The critical state predicted by the Tchebichef-Gram form of the
equation of state was located by solving interatively for the values O
and Tc which resulted in simultaneous varishing of the first and second
partial derivatives of pressure with respect to volume at constant temper-

ature., The predicted critical state is as follows:

b mole o
o, T 0.325 T3 78)
t. = 2160 °F 79
PC = (L B33.48 Fs'\a (80)

The experimental values are the following (28) s

~ b mole (31)
qc - O, 3‘1 5 S__]:g
t. = 2063 F (82)
(83)
FC = G174

Fs\a
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The agreement is not as precise as might be desired. However it
is probably as good as could be expected in the present case considering
the fact that the experimental data employed in evaluating the coefficients
did not precisely identify the critical state. The data used contained a
smooth isotherm at 220° F and an isotherm at 190° F possessing a relative
minimum and a relative maximum. There was consequently a 30° F range of
temperature in which the equation could demonstrate the behavior character-

istic of a critical state.

Tchebichef~-Tchebichef Form. Expansion Coefficients

In preparing the data for the deternination of the coefficients
for the Tchebichelf-Tchebichef form of the squation, the same fuﬁdamental
information was used as discussed above in connection with the Tehebichef-
Gram form. In addition the data of Beattie (28) for a portion.of the
critical isotherm were included,

The variable T was transformed to y by equation 21. The smoothed
data used in the first investigation were then plotted on a large working
graph of L(gf,y’) versus y. 2Tne y axis was then subdivided at the zeros

of T;5(y).

TWS (Y'( ) - ©

A9 +1 gy
y,\ = (os Yo Y

o
.~

;(: 42— - 7 Mt (85



Guide lines were drawn on the graph at the values of y given by equation 85.
The arbitrary selection of 45 points along the y axis appeared to give a
fairly detalled decomposition of the region adjacent to the critical state,
The same subdivision along the O  axis was used as in the preceding deter-
mination; namely, the 45 points of equation 126, The grid thus consisted
of 45 x 45 = 2025 points, Values of L(gT, T) were read from the smoothed
graph and key punched into IBM cards. Again the data were checked by differ-
encing in both the ¢ and T directions.

The procedure used for computation of the coefficients Cij of the
Tchebichef~Tchebichef expansion was essentially the same as deseribed for
the calculations associated with the Tchebichef-Gram form. The coeffici-
ents and their associated error parameters 834 ere reported in Table VII.
The trends of decreasing magnitude and alternating sign of the coefficients
are very similar to those observed in the Tchebichef-Gram investigation,
A total of 33 coefficients were computed. For these 33, the resulting root-
mean=-square error in L(J, T) was 0,01932 13 per 1lb mole.

An interesting phenomenon is observable by inspection of coefficients
€215 €31, €41, and c51. Instead of following an anticipated trend of a
regular decrease in magnitude, €315 ©41s and 53 remain approximately equal
in magnitude, alternating in sign. This behavior may well be a reflection
of statistical fluctuations in L(g, T) arising from rounding errors in

reading data from graphs (38).
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Tchebichef-Tchebichel Form., Prediction

For the purpose of making actual computations, 29 of the coelfici-
ents of Table VII were selected. (The coefficients not used are desighated
with an asterisk). Again this selection was largely arbitrary. The equa—
tion might have been used with more or fewer terms. For the set of coeffi-
clents selected, the corresnonding root-mean-square error of.the approxima-—
tion was 0,01952 £+2 per 1b mole in Lic, T).

The computed vapor pressures are corpared with the experimental data
in Table VIII and Figure 12, The agreement with experiment is even better
than obtained with the Tchebichef-Gram form of the equation and is as good
or better at all points of comparison than the results obtained with the
Benedict equation using phase behavior coefficients.

Pressure, fugacity, and enthalpy were computed for a number of
selected states with ¢ and T as independent variables., The results are
compared with experiment in Table T, TFor the states in this table the
arithmetic averasze of the absolute values of the relative errors is 5,7%
for pressure; 1.1% for fugacity, and 2,77 for enthalpy. This value for the
average error in pressure is again dominated by the very poor vrediction
near the bubble point boundary at 100° F, It would be anticipated that a
more detailed averaging over the entire surface would yield a value close to
the 0.5% computed for the Tchebichel-Gram case.

For the Tchebichef-Tchebichef form of the equation of state the

following critical state was predicted:

HD mole
o, = O.325 T gz (86)



|

t. = 242 F 7

ﬁ = (66,3 psia (59)

The corressonding experinental values ars civen in equations 21 -~ 53, The
description o ths critical stats is somewhat better than obtaiasd with

the Tchebichef-Graa coelfficilents, Towaver the present rrediction still
leaves roon for inmprove-ent., Annarently more tsrms wsuld have to bz in~
cluded in the ecvation of state in order Yo provide the requisite precision
of approxization in the critical region,

o0

Cowmputation of Virisl Cozifficients

Tho coelflcients obitainad for the Tehebichelf-Gran foirn of the equa~
tion of state vere regrovpzd to the conventlonal virial forr:, Tat the
virial cosfticients be expressed in terus of the Gran polimonials wid a set

ol cosfficlents d: 3,

BT) = LM + 0 M+ 4o -

Cy= do Ve + 4 Ve + - - |
(20



€ is ol course the ncrmalized teperaturs variable, scuation 23, Lova-

tion 1 zay nov be evnressed as follove:

Z-1 .
5 T BOYt*t Mo + DOt - - 0)

Z-1 _ (h) (W) ()
o - doo Vo(8)  + 4 N) o + 4, \L©) I+
LI WRRYARE

(h) h) - _
L\l e v -

o - - - (°1)

or

| (o,T) = Z Z 4 \/(2)0.

= d. \/ (5) 'o* (92)

By a transformation of tha tyoe given by equition 57, the coefli-
clents d. . are errressibls ug linsar conbinations of the coeff1c1ents . p
ol the Tehebichel-Gras expansion, The values obtrined Ly regrouning of the

27 coafficlients ay. of Table TII are ziven In Table ¥, Using these coeffi-
g ey

cients and the squation of state in the form of equation 92, prscisely the



same results would be obtained as wit Lhe equation of slate in the forn

- o, - -

of equztion 75, Touever u word of warning should Ye injected, naiely,

that the ccelficlonts of Table I are decidedly irnterdesendeat. 111 the

terns represented Ly the coeflficiente of this table rust Le used to obtain
. e s -

satigfectory predicstion, The arbitrar; deletion of ter-g viich wag vossibls
vith the equation in the Telichichel-lras {orm

By celerring to equation 57 it may be sewn that the virial coeffi-
Tanta ars T4y Al et o ot b vy @m PP et an 17 [t - m R m R
clents are linew eoulinations of the coefficients ¥ (1), L, (T), B (1) =

Tha 2zcond wvipd

s particularly sirple, involving constants

v

of only »lug and minus aity, In gensral, the valuse otbulned Tor any of

Tz_

tre virial co:Plicients will change as more and nore terns are iacluded

the aguation of stats, It nizhit be witicipatsd that as the numbser of terus

included becows larcer and larger the values obtained for 2(T) would change

less and less with sach additional te21m1 and £inally senain essentially

coangtant, IT this is the cage, this method provideg & simﬁle bt poverful

myrocedure for deterniniag the adequacy of the apnroxinction »wlwmowial,
—noorder to emnlore the applicaiticn of this methGQ, the data of

ths sresent study vere ewuplorved to compute the successive approxirmations

te the =econd virial coefficlent., The resulting approzimation curves are

shown as a function of tenperature ia Figurs 12. The experinental noints

.

ireludad on this figure were cbtained fron the data of the source reler—

-

ence (29) by sraphical evaluation of the followinz intercephs:

-1 ,
B(T) = lim L) = lim o (o (92)

o—vo O—o
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The validity of equation 93 is apparent from the fundamental virial equa-
tion of state, equation 1, The final approximation curve and the experi-
nmental values are compared in Table XI. The successive curvesaf Figure 13
correspond to the results obtained as each additional term Ki(T) Ti(x) is
added to equation 54. It appears that beyond ¥, (1) T;(x) the additional
terms do not significantly affect the results obtained for the second
virial coefficient. The final approximation curve is compared with several
sets of experimental investigations in Figure 14. For reference purposes
the second virial coefficients have heen included for the van der Waals
equation {30) and the Benedict equation (30). The present investigation
predicts values which compare favorably with experiment.

These approximations for the second virial coefficient are those .
that would have been obtalned by lsast squares fitting of conventional
polynomials with successively more teras. Fowever in this latter case each
new approximation would have necessitated the solving of progressiVely larger
sete of simultaneous equations. Even if the sole objectivé of an investi-
gation is to solve for the virial coefficients, much time can be saved by
utilizing the ort!ogonal polymomials followed by a regrouping of the type
indicated by equation 92,

In a similar manner, the successive approximations to the third
virial coefficient were computed and are shown in Figure 15. Approxima-
tions 7 and & agree guite well throughout the temperature range. As might
have been anticipated, the oscillations were more versistent than in the

Y- X

case of the second virial coefTicient.



The Lennard-Jones %}6 - 12 E potential

by = wel| ) - ?)6 (%)

has been widely used for the calculation of properties of matter from a
kinetic model (31). In this expression &(r) is the poteﬁtiai energy

of a pair of molecules with centers separated the distance r. e and r, are
parameters characteristic of a particular molecular specieé. Hirschfelder (4)
and Fowler and Guggenheim (32) discuss the computation of the virial co-
efficients for a kinetic model possessing such a potential function.
Hirschfelder includes tabulations of the second and third virial‘coeffi-
cients as a function of T, e, and r,. If one assumes that this theory
applies to a given system, then the intermolecular potential parameters

e .and.ro may be evaluated by comparing the experimental {or equation of
state) and the theoretical second virial coefficients at twb temperatures.
In the present case the theoretical values were compared ﬁith those pre-
dicted by the equation of state at 100° F and 460° F. The resulting values

of e and r, are the following:

I

b bt R (95)

1

5.448 /?\ (96)
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These compare with the following values reported by Hirschfelder for deter-
minations from experimental PVT data and, separately, Jrom experimental

viscosity datas

PVT datas

>
(
-
W
a
o~
x
<
2

., = 5637 A (98)
Viscosity dotas
e o

k is Boltzmann's constant, The Lennard-Jones second virial coefficient
with the parameters assigned the values of equations 95 and 96 has been
included in Table XI. The agreenment with the equation of state is good
over this conparatively short tenperature interval,

The Lennard-Jones third virial coefficient based on these same



parameters is compared with the final approximation of the equation of
state in Figure 16. The data of this figure are reported on a conventional

reduced basis using the variables

+
C (T)

o
and
_— T
T = X (102)
(%)
. e ~ o3 v
bo = T 77 HUry, and N is Avogadro's number. For the ro of equation 96,

\

the correéponding value of by, the so-called co-volume, is 3,270 £ per
1b mdle.

Computations for the virial coefficients beyond the third were
not carried out, although the calculations could be performed using the
data of Tables III or VII and equation 57, Limitations on the accuracy
of the higher virial coefficients may be imposed by statistical fluctua-

tions introduced into the data by the graphical methods employed. Also
it is not clear whether or not the substituted two-phase path will intro-

duce physically unreal behavior in these higher coefficients,

Conparative Computing Time

The equation of state presented in this work may appear somewhat



formidable. An expression involving on the order of 30 parameters would
perhaps be regarded as impractical for any application., However the ex=-
perience gained in the course of the present work definitely indicates
that, if digital computing equipment is available, this new equation of
state is at least as simple to use as is that of Benedict. For example
the following comparisons might be made for the time required. to obtain
the parameters., The actual machine time in the digital computer to obtain
the Tchebichef-Gram exvansion coelficients of Table ITI was & hours. Ve
might estinmate the following machine time for fitting the Benedict eG18-

tion to propane.

Inner products 6 hours
Matrix inversion 1-2 hours
7-8 hours

This would give a solution for only one assumed value of the parameter in
the exponential term of the Denedicet equation. If the process were re-
peated a number of times to obtain the optimum set of coefficients (13),
the time required could easily be increased by a factor of four or five.

An orthodox polynonial of 32 terms might require

Inner products 100 hours

Matrix inversion 20=25 hours
120-125 hours
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These latter figures assume no difficulties such as ill-conditioned
matrices (15).

The linear nature of the new equation of state greatly fadilitates
the use of formal systematic matrix operations. This linearity is particu-
larly advantageous in the expressions for the thermodynamic properties in-
vblving derivatives and integrals, With a digital computing installation,
the éompuﬁing time involved in applications is estimated to be less than
for the Benedict equation of state, which involves only 1/3 as many param—

eters.

VIII. SUMMARY AND RECOMMENDATIONS

New Concepls

1. The présent work used a particular grouping of FVT variables
so extensively thal it was found convenient to introduce the symbol
L(o, T) and regard it as a fundamental thermodynamic variable;

2. As in previous work on eguations of staﬁe, in the two-phase
region the actual data were replaced by a smooth surface, waéver in this
case this surface was made to satisfy very definite thermodynamic integra-—
ﬁion restraints,

3. The equation of state was presented as an open-~ended series,
with the truncation being made at wvhatever point yielded an acceptable
approximation,

I}

/4« The series expansion utilizes orthogonal polynomials,



Conclusions

1. The orthogonal polynomial expansion results in acceptable
approximations with a workable number of terms in the equation of state,

2., With a truncation of the expansion at about 30 terms, the average
relative error in pressure as a function of volume and temperature is about
0.51%. The corresponding error in volume as a function of pfessure and
temperature is about 0.27%. The description of the vapor pressure curve
is excellent.

3. The orthogonal polynomial offers a powerful method of obtaining
the virial ecoefficients,

4. The equation of state is practical. With digital computing
equipment, both the evaluation of the expansion coefficients and the appli-
cation of the equation are less time consuming than use of the Benedict

equation of state.

Limitations

1. The particular truncations examined in the présent work ine
volved significant errors in pressure as a function of volume and tempere
ature very close to the bubble point boundary in the liquid phase.

2. For these truncations the descriptions of the critical state
and the enthalpy of the system were only moderately successful.

3. The reported expansion coeffilcients were obtained from data which

included sizeable regions of substitution or extrapolation. Although these



auxiliary data do not impair the utility of the equation in the region of
actual data, they may impose some definite limitations on correlation of
expansion coefficlents from substance to substance and on the association
of the virial coefficients with intermolecular potential functions.

4. THE EQUATION OF STATE CANNOT BE EXTRAPOLATED BEYOND THE RANGE

OF THE EXPERIMENTAL DATA UPON WHICH IT IS BASED.

Svggestions for Further Research

1. Some consideration should be given to the selectioﬁ of the
value of &, used In the normalization of the reciprocal molal volume.

A consistent and physically realistic system should be employed, varticu-
larly if it is hoped to correlate the expansion coefficients from substance
to substance,

2. There may be more elegant nethods of specifying the smooth two-
phase surface than employed here,

3. Some investigation should be given to the 1imiﬁations imposed
on the significance of the virial coefficients owing to the smoothed two-
phase surface., The author suspects that, if this péth is thermodynamically
consistent, it may not vitiate the computed values for intermoiecular
force parameters,

4o Other truncations of the equation for propane  involving more
terms might be inspected to see if the description of the critical state
and the enthalpy of the system improve markedly.

5« In prineiple the equation of state should be immediately adapt-

able to the study of mixtures. For a binary system each of the coefficients



aij of the Tehebichef-Gram expansion may be assumed to have an expansion
in a serles of orthogonal polynomials which are functions of the mole
fraction of one of the conetituents, For exanple the following might be

used:

(h)

L, Tn) = b, V() T Tun (103)

“it

The computational advantages of the orthogonal systems may render feasible
the study of multicomponent molecular iInteraction over an extended range
of pressure and temperature. It would Le particularly interesting to
deternine whether or not the quadratic forms in nole fraction predicted

by kinetic theory are adequate for the description of the second virial
coefficients of ixtures (4,5,17,31,39,40).

6. The nethods presented here have heen sufficiently general so
that it should be pecssible to describe a systen exhibiting:two phase
transitions with an orthogenal polynomial equation of state. Apparently
nobody has reported an equation of state which embraces the gas, liquid,
and solid regions. The work of Yang and Lee (19,20) indicates qualita-
tively that one intermolecular force function is sufficient to describe
a system in all three phases. (The volume change anomaly associated with
the liquid-solid transition in water would meke this substance a difficuli
one to cope with).

7. The usefulness of the Gram polynomials would be greatly increased

if sinple integration and differentiation formulas were available.
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APPENDIX A

MATHEMATICAL PRINCIPLES

In this appendix several of the basic principles of orthogonal
expansions will be indicat_ed. More detailed discussions of the methods
have been described by Churchill (35), Szego (36), end Courant and Hilbert
(37).

Orthogonality

It will be convenlent for present purposes to use the definitions
of orthogonality given by Szego.
Definition 1. lLet « (x) be a non-decreasing function
in the interval a < x £ b, Ifa=-<° (or b=+ <2)
we require that «(-0)=1lim < (x) and «((+=¢) = 1lim < (x)
Xy —oo x-7t b
should be finite. The scalar product of two real functions

£(x) and g(x) where x ranges over the real interval a< x< b

is defined by

b
(%.4) = Sw 96 & (a) A

The assumption is made that f£(x) g(x) is Stieltjes -
Lebesgue integrable with respect to < (x) over a £ x < b.

For a fixed function oL (x) the orthogonality with respect
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to the distribution d < (x) may be defined by the require-

ment that the sealar product be zero.

(54) = o0 o

Definition 2. An orthogonal set of functions C‘%(x).,
P (x) —— & (x); { finite or infinite is de-

fined by the relations

© 4, nEm

b
(CPN ¢m\) = gd%\(x) CtD"gx)c\oL(x) -

(106)

oK {x) 1s a fixed non-decreasing function which is not
consfant. in the interval a £ x < b, d)i(x) is Stieltjes -
ILebesgue integrabls. Qn is a non~zero constant, de-

pending on K (x) and the index nj; it is not a function of x.
For the present discussion we have adopted these rather general

definitions because they embrace a class of orthogonal polynomials for



which, by choosing = (x) as an appropriate step function, the scalar
integration may be replaced by summation over discrete values of the in-
dependent variable x. Thus the concept of the Stieltjes integral will
be useful. No use will be made of the Lebesgue integral as such in this
work.

As an illustration of these definitions, we nmight select the

interval 0< x < L, o (x) = x, end

2 . nhx

B x) = L sinT | h=yo - —- 107

In this case
|
Py NNx © m :F " (108)
- SN2 X _ _

(‘bnﬂ’m) L S ety dx = é.'mh i m =N

o .

This example is, of course, a well known orthogonal set employed in cone
ventional Fourier expansions. It will be shown shortly that certain

classes of polynomials satisfy Definitions 1 and 2.

Function Expansion

Given e complete set of orthogonal functions {d}n(x)?g ’
n <= 1,2, === , it may be possible to represent an arbitrary function

in a fundamental interval a< x < b as a linear combination of the func-

tions ¢, (x).
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F& T CQhdlw * Qe F - - Tk )t ~ -

ya < b (109)

If the series converges and if after being multiplied by Cbn(x),
it can be Stieltjes integrated term by term with respect to the distri-
bution d<{(x) over the fundamental interval a < x b, the coefficients

¢, can be directly obtained,

("f, $, ) = ) G, &) - -+ G, B~ - (1)

(%) d)“ ‘ b Cr\(cbm Cb'n)

(111)
All the scalar products except (&, dp,) vanish.

b .
. (5 %) %&«) o) dottx) 12)

n (‘Pm dPn) S 43‘3(,() d o)

o
b

S S%m Rix) d o) (1)

n Qna
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The numbers e, are frequently referred to as the Fourler constants
or expansion coefficients of f(x) corresponding to the orthogonal system

SZCP n(x)i and the distribution dX(x).,

Approximation in the Mean

Let Fm(x) repregent a finite linear combination of m functions

of an orthogonal set {Cbn(x) % s B = 1,2, @ , 84 X £ D,

Fm@() S HNER Y LA+ -0 Y, dx) (114)

The values of the constants 3’1 can be easily found for which
F,(x) is the best approximation in the mean to any given function £(x);
this means the best approximation in the sense that the value of the

integral

b 2

1' - S §xy — En(x) }Ao&(x)

(115)

is to be minimized. It 1is also the approximation in the sense of least

squares. The resulting expression is the following:



b

1
5 o $6) &) d i)

L

o<
O
I
M
Il

(63

=12, -~ -
Y YY\ (116)

If the integrations can be performed, the coefficients are obe
tained directly without the necessity of solving m equations in m un-
knowns. Furthermore the value for ¥ j, the coefficient of <¥5{x) in the
approximation function Fh(x), is precisely the value cy, the coefficient
of d)i(x) in the infinite series expension. Finally the coefficients

¥4 are independent one of the other,

Expansion Theorems

The results of the previous paragraphs are dependent on a) the
convergence of the series of equation 109, and b) the validity of the
term by term integration. But the integration is justified if fhe con=
vergence of the series is uniform. Hence requirements a and b are met if
the series on the right side of equation 109 converges uniformly to the
funetion £(x) in the interval a < x £b. This may be proved true for

those complete orthogonal sets which are the eigenfunctions of a large
.class of second order differential equations with specified boundary con-

ditions., The interested reader is referred to chaptera II, V, and VI of



Courant and Hilbert, from which the following theorem is quoted:

Theorem I. "Every piecewise continuous function

in the fundamental domain with a square-integrable
first derivative may be expanded in an eigenfunction
series which converges absolutely and uniformly in
all subdomains free of points of discontinuity; at
the points of discontinuity it represents (like the
Fourler series) the arithmetic mean of the right

and left hand limits.®

We might note in passing that the elgenfunction expansions may be
used to approximate certaln discontinuous functions; this is not possible
with the power series expansion.

In the course of the present work it waas found convenien# to en=
ploy the Gram polynomials, which are orthogonal but which in general cone-
stitute a'finite set. Theorem I therefore does not apply directly to ex-/
pansions in a series of these polynomials. However if the functions which
are to be approximated are restricted to continuous functions,Athe follow=
ing approximation theorem of Welerstrass pertains (37): |

Theorem 1II., %"Any function which is continucus 1n.

the interval a £ x £ b may be approximated uniformly
by polynomials in this interval.®
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APPENDIX B

TCHEBICHEF POLYNOMIALS (38,39)

Definition

The Tchebichef polynomials are defined by the following equation:
T ( ) = -t —. = -
o b cosni cos X 1 ¢ < 1
n= o2, ~---- (117)

Orthogonaiity
For this case an appropriate distribution function is

A(x) = -~ Cost( (118)

Substituting into equation 106, the following result is obtained:

| \

_ - d x
(T.T.) = - g Teo T dleos =) = ngw 19 =

-1 —\

“’
& ) mZE n
= CoOSNO Cosmo 46 = <1 ; m= n o
o r
ES ) m -

(119)



Thus the Tchebichef polynomials are orthogonal with respect to

~ (x) = = cos™lx in the interval -1< x < 1. Tn(x) is a polynomial of

degree n in x. It contains only even or odd powers of x accordlng as n

is even or odd. Consequently Tn(-x) = (~1)" Tn(x). The first ten
Techebichef polynomials are listed below.

T

=1
Ty = x
Lo = 22 1

T 7 4 " 3x

-E(-x) = 87\1"’ '—8);1 + 1

3+5'X

T = 16x" ~ 20
Tyr) = 320 - 48T ¥ gt 1
T_p() A SV R T R sbx ~ 7x

_ L
Ty = \28-2 “256% 4 1boxT —32x> 4 1

T - 9 7
lq(:x) = A56x " 5T7bx +L}317x5” 205 + 4%

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)



2 (130)

' | 3 4
T &)= 52271280~ + 120" ~hoon +50x" = 1

Tys Tpy T3, and Ty are plotted as a function of x in Figure 3. T,(x) has
exactly n zeros in the interval =1 = x ¥ 1. The maxima are equal tp
.unity in magnitude and alternate in sign.

| The Tchebichef polynomials, y = Tn(x) are the eigenfunctions of
the following second order differential equation, with the boundary cone
ditions that the solution be regular at x = 'iil,vthe singulafities of

the equation.

(T=y ) o+ —-—-—-——(-—v—ﬁiil =o o

Tchebichef Polynomial Expansions

In order to examine the expansion of an arbitrary function; let
us assume that the range of the variable is normalized to the fundamental

intefval -1% x £1. Now expand f(x) as a series in the T,(x).

' (132)
fe) T & 'F“:\_[Cx) + C}—T;(&)ﬁ-"'-- *=<:h‘{;6x)-+ - =

Suppose that the series is truncated after n terms, and that this partial

sum is employed as an approximation to the function f(x).
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n-1

| %(*) = jg:. Q@T%GQ

4=o (133)

The error of the approximation is given by

o0

E(x) = z Cﬁ'&;@()

fmn

(134)

If the convergence is sufficiently rapid, we obtain an acceptable esti-

mate of T (x) with one term.

e 2 Co (%) (135)

The error of the approximation is then approximately of an oscil-
latory nature; the maxima are approximately equal in ma.gnitude and oscillate
between bounds of ¥ c,+ Hence we have a fit in the "Tchebichef sense",
i.e. in the sense of minimizing the maximum error. Clement (39) discusses
the use of these polynomials to approximate functions by this criterion.

If the series in the T,(x) is cut off at the m*2 term, it will
represent the function f(x) more closely than the power series if cut off
after the same number of terms.

If the data being fitted contain statistical fluetuations, the
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coefficients up to a certain ¢y Will Qecrease with a certain regularity,
Then from this ¢, on the coefficients remain small but irregular in sign

and magnitude.

Summation Orthogonality

A previous paragraph noted the orthogonality of the Tnﬁx) when
integrated with respect to the weighting funection (1 - xz)‘%. It also
happens that if data are being fitted with a series in Tjy(x), then the
expansion coefficients may be obtained by summing inner products over the
zeros of Tk(x), where k is any integer greater than the index of highest

order term of the approximation polynomial. Use is made of the following

relationshipz
At Y L={-o
2 W) = AE iy
~T:(?%k) ‘Y;C%k) B 2 , ¢ -y T°
d-o .
o , #\3
AT J%

(136)

The x _, are given by the roots of the following equation:



T B (137)
ALCX)~) -0
Thus the expansion coefficients of an arbitrary function f£(x) may be
approximated by the following: |
, & |
T 5 PERR T.xa) - (138)
K=o
A1 o
— 2 N ”
<G T §62) 1:6x,) 14 ¢ b1
| H=0 (139)

Recalling that there are precisely k zeros of Tk(x) in the-fundamentﬁl

interval, the numbe: of points x.( of the summation grid increases directly

with the index k. The actual numerical value obtained for the expansion

coefficients from equations 138 and 139 will ehangé someﬁhat as: the grid

is varled. However if there are a large number of grid pointé compared

to the degree of the approximating polynomial, then it would bé expected

that the values obtained for the expansion coefficients would vary but

little with increasing grid density. |
Recalling the definition of equation 117, the zeros x. are given

by



_ 2+ 1
X\ = cos T T <=1y - A1 (W)

The points x_, are thus not evenly spaced along the x axis but are bunched
more closely together in the vicinity of * 1, than at the middle of the
range. |

If the function f(x) to be approximated is given graphically,
there are two possible methods of obtaining the coefficients for the approx-
imation polynomial. One involves the use of equation 119, which requires
evaluation (1~x2)"% at sach point of the interval. If the funétipn is only
known graphically or tabularly, it would presumably be necessary to employ
some approximation technique to evaluate the integrals involved. The weli—
known graphical and numerical integration methods approximate the integrals
by a finite sum. In this case it is probably somewhat simpler. to employ
directly the summation procedure which is made available by. the summation
orthogonality over a special grid. The latter procedure anlso eliminates
the necessity for introducing the factor (1 - x2)"t. As in the case of
the numerical approximation of integrals, this approximation may be refined
to anj pre-assigned accuracy by taking finer and finer grids. This summa~

tion technique was the one employed in the present work.

Analytical and Algebraic Properties

Below are listed several of the properties of the Tchebichef poly-

nomials which greatly facilitate the application of approximation curves
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involving Tp(x).

Integration

Te)dx = 7 ar w1 | T congtant
n= 23 - - - (111)
Differentiation
o f (142)
T;(") T o201~ ) —‘—Y\(T\) - Tv\(?\) :

Recursion formula

N+

The latter equation is a very useful formula for generating numerical
values. For a given value of x, one may start with T, = 1 and T, (x) = x,
and work up to successively higher indexes. 1In the process of the present
investigation a comparatively simple procedure_was devised for an IBM

digital computer which permitted this recursion to be performed automatically



at electronic speeds, giving values of T,(x) up to n = 999 starting from
the value of x.

Equations 141 and 142 were used in section V to reduce differ-
entiation and integration of the partial sums of f(x) to comparstively

simple matrix operations.



APPENDIX C
GRAM POLYNOMIALS

Class I Gram Polynomials

In many operations involving the approximation of functions or
experimental data by polynomials, the data are available at:evenly spaced
values of the independent variable. In such cases the computations associ-
ated with fitting the polynomials can be greatly simplified if one employs
a class of polynomlels which have the characteristiec that they are orthog-
onal with respect to summation over integer values of the independent
variable. Although these polynomials are much employed in applied mathe-
matics and statistics, there is considerable confusion over the name associ=-
ated with them. We wlsh therefore to point out that we are here referring
to the class of polynomials which Birge and Weinberg (40) cali *Pchebichef
Polynomials" and which De Lury (41) calls "The Orthogonal Polynomials*,
Neither of these designatione is particularly apt. We shall adopt the
suggestion of Lanczos (38) and use the name Gram polynomials,

The polynomials are perhaps best defined by the orthogonality
requirements. Pick an integer h. Reqnire that Péh)(x) be a polynomial

of degree t in x for 0 X x% h - 1. Then the equations



Z RIS © 0y
- ﬁ»(x) (T .

(h)
S M, =

(144)

define the polynomials BA™ (x) and the values of M{™) within multiplica-

tive factors. If it is further required that the coefficlient of x% in

the polynomial Péh)(x) be unity, then the set of polynomials Péh)(x) and

their summed squares Méh) are uniquely specified. These polynomials with

lead coefficient unity will be called Class I Gram polynomials,
Equation 40 is consistent with the general definition of orthogon-

ality since

CRERY ~ z ww 4 b F
Poco P day = PoPe =4 0 . @)
Z s d xX=G ! PL s L=

1,2-- N
- h-



if K (x) is taken as a step function with unit jumps at the points
x T 0,1,2, ====h = 1,
The reader's attention is called to the use of a superscript
integer in parenthesis to indicate the order of the summation grid,
Care should be taken to avoid confusion with powers or derivétives.
Birge and Weinberg (40) in a recent work have derived many of
the pertinent properties of this class of polynomisls and have given ex-
tensive examples of applications.

( )(x) is e polynomial of degree t in x. For example

(W)
(146)
Po (xy = 1
i‘j(h) _ _ h" 1 (147)
=) - X 2
o et Y hot (148)
(><) T - 2

It is convenient to introduce a shifted variable ¢ .

E = x - T (149)
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As x runs from 0,1,2, === h =~ 1, corresponding to h observations, &
will range symmetrically about zero in unit steps from «#(h-1) to #(h-1),

Equations 146 - 148 assume the following form.

(h)
Py =4 (150)
(h)
L€) T & (151)
) h*-1
ey = ¢ - 73 (152)
) 3h*-7
E(E) = et - Y (153)

Note that Péh)( € ) contains only odd or even powers of &£ acecording as

+ is even or odd. Also Péh) (=¢) = (-)t P.gh)(i). Ift 7 h,-P.gh) (¢)
may be regarded as undefined or taken equal to zero for all values of £ .
As in the case of the Tchebichef polynomials, there exists a recursion

formula for the Class I Gram polynomials,

(h) (h) £2(h*—-+7) (h) (154)

(¢) = —
ECH ) ¢ E(E) E (412 -1) -t
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This bears a formal similarity to equation 143 but is lacking in the
simplicity of the latter. There also exists an explicit expression for

the symmetric inner product.

€ =3(h-1) L2 2 (¥‘+t>
(h) (h) 1) \at+1
Z f Ft (s)} =M, = () - (155)

E:‘é(h‘l) t (D:t-t >

The terms in parentheses in this expression are conventional binomial

cocefficients.

Gram Polynomials

For particular values of h and t there is usually a pdrticular
integer factor that can be removed from the Class I Gram pdlynomial,

(h) .. (n)
Py (£ ). Values obtained by factoring the set P

(£) will be called
eimply the Gram polynomials and will be denoted by.Véh)(S ). véh)(g )

is related to Péh)(g') by the symbol Ség) as follows:

) 0
— (156)
Vie)y = S, Fe

h
The polynomials Vé )(E ) have the advantage that their values at

the integer coordinates are all integers of the lowest possible order.



In the Pi(;h)( £ ) system the lead coefficient (i.e, the coefficient of & t)
was unity. However in the Véh)(é ) system, the coefficient of & twinl
be Sﬁ(_‘h) and will not in general be unity.
Sﬂ(;h) is obtained by empirical factorization. In most applications
the V:gh)(é ) system is preferred because of the numerical simplieity;
most available tableas for Gram polynomials report values in this system.
For h : 13 several of the polynomials are listed below and are

plotted in Figurs 4.

(43)

ey =1 (157)
\/,0385) = ¢ (158)
:‘(Be)) =L - 42 o¢ (160} .

In this system the symmetiric inner product is denoted by N‘gh)
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and is related to Méh) by the following equation:

a ()
Nt % uﬂ! M(m (m% e

(i)

Tabulations of the polynomials are available (40,41). However
to illustrate the numerical simplicity, a brief tabulation of'Véh)(e )

and Stéh) for h = 13 is given in Table I.

Relative Merits of Tchebichef and Gram Polynomials

The primary advantage offered by the Tchebichef polynomials is
their analytical simplicity. They possess convenient integration, differ=—
entiation and recursion formulas. In addition to the racursion relations,
they may be quickly generated with the aid of cosine tables. Numerically
their values are always between plus and minus unity, & qonxenience in
planning computations on digital computers. For function approximation
they result in ideal error curves. A possible disadvantage is that their
summation orthogonality is with respect to an unevenly spaced grid.

The Gram polynomials are unwieldy analytically.' Their derivatives
and integrals are apparently not expressible in terme of simple combin-
ations of Gram polynomials. The recursion formula 154 contains a variable

factor, and even this formula does not apply to the factored Véh)(éi) set.
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The primary advantages are the summation orthogonality with respect to
an evenly spaced grid and, for the factored Vgh)(é ) set, comparative

numerical simpliecity.
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APPENDIX D
THERMODYNAMIC DERIVATIONS

Fugacitys

1
vV o~ &
X
dv = ~ 52 do
4V do
N
Py P

Integrating 163 at constant T.

RTSA\Y\@ = 5 V4P

(163)

(164)

(165)

(166)

(167)

(168)
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d(Pv) = Pdv + Vvip- (169)

SA(F\() - gPA\_/ N
Afv) - S PV T
= A(PV) + RT §2/o do

RT Jdub

1 tl

- Z-1 do
= APY) +P\T53A<? +P\TST{ 7o)

o
RTInf = RTIf" + PV V) + §*Z(‘;?”‘ 4t

+ RTlho = RTln o (171)

1 T
~RTlhe = P\T\na = RT la R_____PZ

1
= RTInRT + RTInZ + RTIn P (172)
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g
RT\V\‘ = RT \h‘fi + P\_/"(PY)* + RT{M%Edﬁ
-O_I'
+ RTlno + RTIWRT + RT[n 2

1

FRTIn'p (173)

2% |
ny = ) * Z-7) +RTl,zZ
RTInf = RT(F) + gT(z-7) g
=
+ RT[WRTo + RT S 26D 4 am
- ), °
Now let the atarred state approach infinite attenuation.
o e
(7)) —
ln(%);‘ —> 0
7 =1
\n —Zﬂ — 0
. o
T T)-
In RTo Z-1 S Z(’?) 14? (175)
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Enthalpy:

dE = Tds — P4V

SHARICRIES

2Ff 5 22
3T>YA\_/ p -RT“(B f)ég + PV

Substituting into equation 178:

(176)

(177)

(178)

(179)

(180)

(181)

(182)
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o=+ Py

H_Ho Z(.‘(T)"l
RT C Z-t S( )

Entropy:

TS = H ~RTIWS + w(T)

Using equations 175 and 185 the following is obtained:

X

N
5
Q [_Q

o
-1

< L AET
fle -
2T i1
t

s

(183)

(184)

(185)

(185a)

(186)
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APFENDIX E
VIRIAL REGROUPING

From equation 54,

Z -1

s~ KM Teo + KMot - == +KM T B

Now decompose the Tn(x) according to equations 120 - 130 of Appendix B.
Substitute into 54 and collect terms,

Z-1

g } KD - K;L t Kq _k@ %
t 2 K, - 3%, +5K, ?Ix
+%2‘k2 _8k4 +]8K¢, i'xl

+ 3K, 2ok, £
+ SZBKW “48 K, qu
+ %l(ok,-, ?(xs'
+ 332)(@ %XG

(187)

CCE ) LG o

- m
-0
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Letﬁ = - Con (56)

Then -

x = -~ (1t o) (189)

- — pott — pr —
-1 -l o o o o o | A
2
i 2 1 o o © o AS x
2 2 3
- =3-°3 -1 o o o]l||AQ x
30_‘5 = %
I $ L 4% | o o < X
P ;
-1 -5 -1 -lo 5 -l o ! X
b
l L 15 26 15 6 | ' X

- — 6 ¢ . -

/3 ()

(190)

If equations 190 are substituted into equation 187 and the terms collected
the following is obtained:
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T

-1 l K{T) o)
-25 26 K.(D A ‘{51
- 210 \ * ?
100 \ /3 c |
~Mo 448 \ | = 7-1
-80 %32 | \

[
~lb 192 ‘ \

32| | K ‘o
O

(191)



Special Notation

[e]

(£,8)

Abbreviations

Btu
£t
1b
psi
paia

wT
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NOMENCLATURE

Restrictions on equations are occasionally
indicated by a bracket following the equation.
Appearance of a variable within the bracket is
to indicate that the variable is held constant
during the process indicated by the equation.
Absence of a bracket does not necessarily imply
that an equation is free of restriction.

This symbol is used for the scalar or inner
product of the two functions £ and g. See
Definition 1 and equation 104.

An asterisk on a coefficient tensor indicates
that the range of summation is finite. See
equations A0 and 4l.

T  appearing as an upper right superscript

on & matrix is to be regarded as a transpose
operator,

British thermal unit

cubic feet

pound

pounds per square inch

pounds per square inch, absolute

pressure-~volume-temperature



Symbols

aij

B(T), C(T) -—

Bys4ysa,b,c

bo

cij

e
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coefficient tensor of Tchebichef-Gram
e?gansion; the coefficient of

vy “(€) Tj(x); 43 per 1b mole.
second, third ==~ virial coefficients

parameters of Beatiie-Bridgeman equation of
state. '

% r N rOB; the co-volume, ft3 per 1lb mole.

coefficient tensor of Tchebichef-Tchebichef
exgansion; the coefficient of T4(y) Tj(x);
£4%7 per 1lb mole,

expansion coefficients,

coefficient tensor of virial-Gram expansion;
the coeffieient of

Wiy o,

molal internal energy, Btu per 1b mole.
truncation srrer

parameter of Lennard-Jones potentiél, Btu.
See equation 94.

approximation function comprised of a linear
combination of m members of an orthogonal set.

degrees Fahrenheit.

Fonction. of x.

fugacity, psia.

function of x,

molal enthalpy, Btu per lb mole.

an integer; order of summation grid for Gram
polynomials.



1,3,k,1

Ky (7)

34(T)

.P-g
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dummy indices; integers.

temperature dependent coefficients, See
equation 55.

Boltzmann's constant,

temperature dependent coefficients. See
equation 58.
25; ’ £t per lb mole.

symmetric inner product for Class I Gram
polynomial of degree t and grid order h.

total number of points on a data point grid.
Avogadro's number.

symnetric inner product for Gram polynomial
of degree t and grid order h.

mols fraction.
pressure, psia,

Class I Gram polynomial of argument 6
degree t and grid order h,

symmetric inner product of orthogonal funetion
of index n., See equation 106, '

t(noliversal gas constant, (psia) (ft3 ) per (1b mole)
R)

order of data grid for Tchebichef polynomials
To(y).
n

distance variable in lLennard-Jones potential
parameter in Lennard-Jones potential,

molal entropy, Btu per (1b mole)(°R).

empirical integer factor converting Class I
Gram polynomial of degree t to Gram polynomial
of degree t; both for an h order grid.



sij

Tn(x)
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mean square error of approximation.

error parameter corresponding to the
coefficient 84§ OT Ci5. See equation 65,

thermodynamic temperature, °r.

Tehebichef polynomial of argument x and
degree n.,

temperature, °F,

order of data grid for Tchebichef polynomials
T (X)o
n

specific volunme, £ per 1lb,
molal volume, £t per 1b mole.
residual molal volume, £t° per 1lb mole

Gram polynomial of argument & , degree %
and grid order h.

a variable; normalized ¢ variable. See
equation 20, o

a variable; normalized T variable. See
equation 21.

compressibility factor,

a variable

a function of x. See equation 104.
indices; integers.

=2/ Tpe

coafficients in approximation function,
Kronecker's delta operator.

normalized T variable. See equation 23.

variable of integration.
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) reciprocal molal volume, 1lb mole per ft3.

On maximum value of & .

4>n(x) set of orthogonal functions; nth member of

set of orthogonal functions.

d(r) Lennard-Jones potential function, Btu.

w(T) a function of temperaturs,
Subscripts

b refers to bubble point,

c refers to critical state.

d refers to dew point.

e. refers to value of property predicted by

equation.

g refers to gas phase,

{ refers to 1iquid phase.

max refers to maximum value of a variéble.

min : refers to minimum value of a variable,
Superscripts

" refers to two-phase state,

¥ indicates reduced variable,

o refers to value of a variable at infinite

attenuation
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TABLE I

GRAM POLYNOMIALS FOR h = 13

¢3) 3 (13

LE) Ve Ve
1 6 22
1 5 11
1 4 2
1 3 -5
1 2 ~10
1 1l -13
1 0 -1/

% Note that é:?(—f ) = (-1)% ‘;:)(5 )

(3}

V.®

1

0
-6
-8

Q3)
\AG)

29
-66
-96
=54

i1

64

84

3)

s (&)

22
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TABLE II
TWO PHASE INTEGRATION

Tz-1 LEL_A o,
g = o, (7 —_— 0
< RT 9:; b \V\ Q-A (3 )
I
Substituted
Path
Temp., I Graphical
oF Eqn. 30 Integration
100 -2.0745 -2.,0736
130 ~-1,6825 -1.6820
160 -1.2884 -1,2878

190 -.8225 ~-.8232



T ndex

PHO WO WMHFO WIHO WO FWNHO WOHO MiIhWwHO .

NI~ OO VTV AR WWWW OO HEEE OCO0O000 O .

Y Clx,e,) = 3438.313261

25&.\Jfﬂ1} }:tvf%%g1?

1,912.59115
~1,094.13732

116.23603
"'174»87602
«2459905

810.49380
~191.95504
97.29029
-13.16190

178.04847
85.31456
-198.73986
52.29347
~141.,49890

100.42343
-83.23777
5.42023
578696

24..40526
-86,10122
87.48971
'4 . 9009 3

-10.33068
29.60233
-82.38807
14.76260

1.80149
60,81777
"‘140 76508

=0.53050
5.03045
-12,35343

# Coefficient not used for prediction purposes
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TABLE III
EXPANSION CQEFFICIEN@S. TCHEBICHEF-GRAM FORM

585

8,190
90,090
25,740
3,063,060
278,468

292.5

4,095
45,045
12,870

202.5

4,095
45,045
12,870

1,531,530

292.5

45095
45,045
12,870

292.5

4,095
455045
12,870

292.5

4,095
45,045
12,870

29245

4,095
45,045
12,870

292.5

4,095
45,5045

iy
H?/h>mak Z%f&EZT?
-0,987126 570.035
04233528 446,644
=0,012145 13.288
0.004516 525
«0,000057 010
-0 ,000009% 000
2.770918 2,245,812
~0.046875 8.998
0.0021.60 -~ «210
-0.001023 013
0.608712 108.380
0.020834 1.777
-0,004412 .876
0.004063 «212
-0.000092 013
0.343328 34,478
«0,020327 1.692
0.000120% .000
0.000450% 002
0.083437 2.036
-0,021026 1.810
0.001942 170
-0,000381* ~  .002
-0.035319 .35
0.007229 214
"‘0.00188 0151
0.001147 017
0.006159 011
-0.006485 o172
0.001350 082
-0.001814* .001
0.001228% .006
=0,000274% .003

oy
0.165789
+129902
003865
.000153
000003
000000

«653173

" .002617

.000061
.000004

.031521
.000517
000255
.000062
-000004

.010028

000492

000000
000001
.000592
000526
000049

~.000001

.000106

. .000062

.000044
- 000005

.000003
.000050
.000024
+000005

.000000
000002
000001
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TABLE IV
ERROR IN PREDICTED VAPOR PRESSURE. TCHEBICHEF-GRAM FORM

" "

Temp. Exper:l':mental Equition P:LP: A—i“
oF psia psia psia

100 188.7 190.2 -1.5 -0.0079

130 273.5 2744, 0.9 -0.0033

160 383.8 38443 0.5 -,0013

190 524.8 5245 +0.3 +.0006

206.3 617.4 621.1 -'3.7 “'.0060



Temp.

100

130

160

190

220

460

c

1b.mole/ft.> Exp

0.66934
0.69396
0.76511
0.81500
3} 4
BP

0.03926
0.65790
0.74349
0.79936
DpP
BP

0.03571

0.72098

0.78125
Dp
-BP

© 0.03311

0.56593

0.69881

0.76453
Dp
BP

0.03086
0.49628
0.67613
0.74738

0.02053
0.12315
0.50429
0.62775

- 114 =

TABLE V

P P
psia psia
erimentel Equation
200 340.8
1,000 1,055.9
5,000 byTlhe5
10,000 9,909,110
188.7 190.1
188,7 189.8
200 199.9
1,000 1,089.8
5,000 4,989.9
10,000 .10,175.7
273.5 274.3
273.5 273.2
200 199.9
1,000 1,007.1
59000 5’02707
10,000 10,080.3
383.8 384.2
383.8 384.1
200 200.3
1,000 1,001.9
5,000 5,029.8
10,000 10,076.8
52448 524.6
524.8 524.6
200 199.9
1,000 988.6
5,000 44991.3
10,000 9,981.7
200 200.0
1,000 999.4
5,000 5,011.1
10,000 10,075.0

PREDICTION OF THERMODYNAMIC PROPERTIES.

P -P
e

psia
140.8
55.9

-225.5

.9009
1.4
1.1
"'Ool
89.8
""1001
175.7
00.8

-00.3

TCHEBICHEF-GRAM FORM

 Fe P

P

0.704000

© 0.055900

~0.045100
-0.009900
0.007459
0.005829

~0,000500
0.089800
-0,000202
0.017570
0.002925
«0.001097

-0.000500
0.007100

. 0.005540

0.008030
0.001563
0.001303

0.001500
'0.,001900
0.005960
0.007680
-0,000381
-0.000381

~0.000500
~0,011400
-0.005780
~0.001830

0.000000
-0,000600
0.002220
0.007500



Temp.
oF,

100

130

160

190

220

460

<

1b.mole/ft.3 Exper

0.66934
0.69396
0.76511
0.81500
Dp
BP

0.03926
0.65790
0.74349
0.79936
Dp
BP

0.03571
0.61463
0.72098
0.78125
DP
BP

0.03311
0.56593

0.69881 -

0.76453
DP
BP

0.03086
0.49628
0.67613
0.74738

0.02053
0.12315
0.50429
0.62775

- 115 -

TABLE V (continued)

f b f
psia psia
imental Equation
155.82 161.82
189.41 192.69
469,56 448,03
1,344.1 1,318.30
155439 155.80
155.39 155.83
168,32 167.97
255,19 261.02
624432 624,456
1,736.3 1,801.22
213.42 213.42
213.42 213.42
172.89 172,71
329.52 330.56
800.62 807.65
2,172.0 2,213.71
281.96 282.03
281.96 282.03
176.55 176.83
409,42 £11.06
994.16 1,004.79
2,641.4 2,692-79
360.46 361.25
360,46 361.25
179.57 179.61
492.51 492,50
1,205.7 1,207.49
3,145.9 3,144.96
192.49 192.54
830.50 830.75
3,004.0 3,017.72
7,275.6 7,388,93

6.00
3.28
-21.53
-25 080
0.41
O.44

~0.35
5.83
0.24
64.92
0.00
0.00

0,18
1.04
7.03

41.71
0.07
0.07

0.28
1.64
10.63

51.39

- 0.79
c.7

0.04
-0.01
1.79

-0.94

0.05
0.25
13.72
113.33

0.037078
- 0.017022
-0.045851

0.002638

0.002832

~-0.002079
0.022846
0.000384
0.037390
0.000000
0.000000

«0,001041
0.003156
0.008781
0.013149
0.000248

- 0.,000248

0.001586
0.004001
0.010692
0.019455
0.002192
0.002192

0.000223
-0 .00%20
0.001485
"'O 0000299

0.000260
0,000301
0.004567
0.015577
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TABLE V (continued

H-H° H-H°
o H *? EETE

Btu/lb.mole Btu/lb.mole "=

Temp, :
OF,  1lb.mole/ft.> Experimental Equation  Btu/lb.mole (H-10)
100 0.6693/ ~6,721.4 -6,561.2 160.0 -0.023805
Oo69396 ‘6,733.2 "6’ 579 07 15305 . "0.022797
0.76511 w6,384.7  -6,366.4 18.2 -0.002882
0.81500 =5y ThheT  =5,769.4 =247 0,004,300
DP -833,4 -830.8 2.6 ~0.003120
130 0.03926 =713.5 =735.7 =22.2 0.03111%
0.65790 ~6,418.3 -6,331.6 86.7 -0.013508
0079936 "5,56907 ,-5, 531-5 38.2 .00006859
- DP =1,157,5 = «1,177.4 «~19.9 0.017192
BP "‘6’33704 "6, 256.4 8100 "'00012781
0061463 "’6’956-0 -6,035‘5 2005 ) "0.003385
0.72098 -5,953.7  =5,919.0 34e1 -0.005728
0,78125 =55359.7 ~5,341.6 18.1 =0.003377
DP <1,602.  =1,b44.d 46,7 0.026023
BP -5,860.2 ~54871.9 -11.7 0.,001997
190 - 0,03311 =519.9 ~536.4 ~16.5 0.031737
0.56593 ~55642.4 ~5,648.5 -6.1 0,001081
0.69881 . =5,728.9  =5,709.2 19.7 -0.003439
DP -2, 271(..4 -2, 295.9 -2105 00009453
220 0003086 "‘466.1 -46906 "3.5 0.007509
0049628 '5,10705 -5,97703 3002 "0.005913
0.74738 =44988,5 ~4,962.5 26.0 -0.005212
460 0.02053 -283.6 -285.6 =2.0 0.007052
0.12315 ~1,441.1 -1,469.7 -28.6 0.019846
00504—29 "'3,963 07 -4,01807 ‘55 00 00013876
0062775 "3,748.1 -3’84607 . “'98.6 ' 0.026307
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TABLE VI
PREDICTION OF THERMODYNAMIC PROPERTIES, VOLUME AS DEPENDENT VARTABILE.
TCHEBICHEF-GRAM FORM

¢ <] :

Temp P 1b.mole/ft.”  1b.mole/ft.> G - ¢

°F ‘psia Experimental  Equation G- C &
100 340.8 0.67476 0.6693/ -0,00542 - 0.008098
l ’055 09 069541 '69396 -0.00145 0 0002089
41745 76278 L76511 0.00233 0.003045
9,909.10 «81300 «81500 0.00200 - 0.002454
130 199.9 «03924 .03926 0.00002 0.000509
1,089.8 66138 +65790 -0,00348 0.005290
4,989.9 «T4LT94 74349 «0,00445 0.005985
16,175.7 .280128 +79936 =0,00192 0.002402
160 199.9 «03569 03571 0.00020 0.000560
1 ’007 - 1 L 61652 L 61463 -0 . 00189 -0 0003066
190 . . 200.3 03316 03311 -0.00005 -0.001508
1,001.9 56721 56593 -0.00128 =0.002257
5,009.8 «'70028 69881 -0,00147  -0,002099
10,076.8 # 76511 76453 -0.00058 =0.000758
220 199,.9 +0308% 03086 0.00002 0.000648
988,6 49480 49628 0.00148 0.002991
4,991,3 67568 67613 0.00067 0.000992
9,981.7 «74683 « 74738 0.00055 - 0.000736
460 200.0 «02053 02053 0.00000 0.000000
999.4 12315 +«12315 0.00000 0.000000
5,011.1 «50479 50429 -0.00050 «0,000990
10,075.0 62854 62775 =0,001257



- 118 -

TABLE VI (continued)

£ £

Temp P psia psia fo-f fo-f

oF. psia Experimental  Equation psia f
100 340.8 157.4 161.82 hed 0.0280
1,055.9 192.2 192.69 0.5 0.0026
4’77405 43903 MBOOB 8.7 0.0198
9,909.10 1,298.1 1,318,30 20,2 0.0156
130 199.9 168.3 167.97 ~0,3 ~-0.0018
1,089.8 259.4 261.02 0.6 0.0023
44989.9 623.1 624,56 1.5 0.0024
10,175.7 1,811.3 1,801.22 -10.1 -0.0056
160 199.9 172.9 172.71 =0.2 -0.0012
1,00701 33109 330056 -103 -000059
5,027.7 805.1 807.65 2.5 0.0031
10,080.3 25197.5 2,213.71 16,2 0.0074
190 200,3 176.6 176,83 0.2 0.0011
1,001.9 410.2 411.06 0.9 0.0022
5,009.8 1,000.1 1,004.79 47 0.0047
10,076.8 2,700.6 2,692.79 =-7.8 =0.0029
220 199.9 179.6 179.61 0.0 0.0000
988,.6 £92.3 4£92.50 0.2 0.0004
4,991.3 1,203.6 1,207.49 3.9 0.0032
9,981.7 3,140.1 3,1414..96 " 49 0.0016
460 200.0 192.5 192.54 0.0 0.0000
999.4 830.0 830,75 0.8 0.0010
5,011.1 3,010.7 3,017.72 10.0 0.0033
10,07500 7]330.2 7,388.93 58.7 0.0080



Temp.
OF,

100

130

160

190

220

460

P
psia

1,055.9
hyT7he5
2,909.10

199.9
1,089.8
45989.9

10,175.7

199.9
1,007.1
5,027.7

10,080, 3

200.3

1,001.9

5,009.8
10,076.8

199.9
988.6
44991.3
9,981.7

200.0
999.4
5,011.1
10,075.0
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TABLE VI (continued)

E;Hb

Btu/lb.mole
Experimental

"6,72104
"6’7330 2
-6’40909
'5,765 06

=713.5

‘ -6’418.3

6,180.0
5,547,0

-593.5
—6’05606
=55952.5
‘5,34901

"'519 09
~5,642.4
"'5 ’727 . 3
-5,164.0

~466,1

| -5 ’06606

~5505.0
-4,990.6

-283.6
-1,441.1
-3,963.3
-3,740.8

Btu/1b.
Equation

B’Ho

"‘6, 56104
-6’ 57907
"'6, 36604
"5,76904-

~6,331.6
"6,130.6
=5,531.5

"'62008
-6,035.5
=5,919.0
-5,34106

~536.4
‘5’64805
=5,709.2
=55144e2

~469 .6
-540773
~5,493.1
"‘4’96205

"285.6
-1,469.7
-4y018,7
~3,846.7

nole

~105.9

EQ.E BQ-H

Btu/1b.mole  (H-Ho)
160.0  <0.0238
153.5 =0,0228
22,2 0.0311
86.7 -0,0135
15.5 -0.0028
"2703 000460
20.5 -0.0034
33.5  =0,0056
7.5  -0.0014
“16.5  0.0317
18,1 -0,0032
19.8 -0.0038
-3.5 0.0075
-10.7  0.0021
11.9 -0.0021
28,1 -0.0056
-2.0 0.0071
-28.6 - 0.0198
*55-4 000140
0.0283
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TABLE VII

EXPANSION COEFFICIENTS.

2L T T

~2,098.073000
1,430.206540
-222. 408704,
39.779805
-3.664356
-0.253901

2,814.223513
~143.556373
19.930367
~44193405
5.176313
~3.833536

'599.305008
67.892090
- =41.432895
19.500120
"'4 o9889 04

347.115278

1.721439

93.638614
17.494953
-1.277598

~42.819115
22.476748
"160 660693
50257033

11.050566
"20 . 369060
12,760142
~5.854205

STEY

2,025

1,012.5
1,012.5
1,012.5
1,012,5
1,012.5

1,012.5
506.25
506,25
506,25
506,25
506.25

1,0120 5
506425
506,25
506.25
506,25

1,012.5
506425
506425

1,012.5
506425
506,25
506,25

1,012.5
50625
506.25
506425

1,012.5
506,25
506,25
506,25

1,012.5

TCHEBICHEF-TCHEBICHEF FORM

Cij {SLL WY
Fb mole T T LT
-1.03608543  2,173.782866
1.41254967  2,020.237785 .
0.03928870 1.562897
-0.00361912 0.013262
-0.00025077% 0.000064
2.77948001  7,822.077995
-0.28356814 40708014
0.03936863 0.78463
~1.00828327 0.034735
0.01022482 0.052927
0.59190618 354.732338
0.13410783 9.104861
-0,08184276 3.390982
0.03851876 0.751120
-0,00985463 0.049164
0.34282990  119,001496
-0.118€3567 7.149220
0.00340037% 0.005853
0.09248258 8.659942
-0,12817554, 8.317165
0.03455793 0.604589
-0,00252365* 0.003224
~0.04229048 1.810841
0.04439851 0.997934
-0.03291001 0.548304
0.01038426 0.054590
0.01091414 0.120607
-0.04023518 0.819553
0.02520522 0.321622
-0.01156386 0.067697
~0.00246580% 0.006156

S Vlorg) = 12,625.412097

# Coefficient not used for prediction

Sij

0.160014

--0.003870

0.000124
0.000001
0.000000

 0.619550

0.003224
0.000062
0.000003
0.000004
0.000002

0.028097
0.000721
0.000269

0.000059

0.000004,

0.009426
0.000566
0.000000

10.000686

0.000659
0.000048

0,000000

0.000143
0.000079
0.000043
0.000004

0.000010
0.000065
0,000025
0.000005

0.000000
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TABLE VIII

ERROR IN PREDICTED VAPOR PRESSURE. TCHEBICHEF-TCHEBICHEF FORM

p P P".P AP

Temp Experimental Equation e B

OF psia psia psia - P
100 188.,7 190.2 -1.5 -0.0079
130 273.5 | 273.9 ~0.4 -0.0015
160 383.8 383.3 +0.5 ~ +0,0013
190 5248 5244 0.4 +0,0008

206.3 617.4 617.4 0.0 - 0,0000



PREDICTION OF THERMODYNAMIC PROPERTIES.

Temp.

oF

100

130

160

220

o

1b.moie/ft.3

0.66934
. «69396

76511
«81500

.03926
.65790
74349
.79936

08571
61463

J72098
.78125

.03086

49628
67613
74738

.62053’
'012315

50429
10775

- 122 -

TABLE IX

P P
psia psia
Experimental Equation

200 37345
1,000 1,087.3
5,000 4,805.6

10,000 9,958.9

200 200,0
1,000 - 1,053.0
5,000 4£9929.7

10,000 10,103.2

200 199.9
1,000 974.7
5,000 499743

10,000 10,021.2

200 199.9
1,000 991.6
5,000 4,998.1

© 10,000 10,014.3

200 200.0
1,000 998.7
5,000 5,007.8

10,000 10,079.2

Pe-P

psia
173.5

87.3
’ —19404

-flel

0.0
53.0
-70.3
103.2

-0.1

21,2

-0.1 )
-84
-1.7

14.3

0.0
~0.3
7.8

79.2

TCHEBICHEF-TCHEBICHEF FORM,

PP

P

0.867500
0.087300

- =0,038880

~0,004110

0.000000
0.053000
-0.012060
0.010320
~0.000500

-0:025300
-0,005200

. 0.002120
-0.000500

’0.008400
-0,000380
0.001430

0.000000
-0.003000

- =0,001560

0.007920



Temp.
oF.

100
130
160
220

460

o
1b.mole/ft.> Expe
0.66934

69396
J76511
+81500

.03926
-65790
< 74349

79936

.08571
.61463
72098
.78125

.03086
.49628
“67613

74738

.02053
«12315
«50429
10775
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TABLE IX (continued)

£
psia

155.82

189.41

469.56
1,344.1

168.32

255.19

624,32
1,736.3

172.89

329.52

£00.62
2,172.0

179.57

492.51
1,205.7
3,145.9

192.49

830.50
3,004.0
7+275.6

rimental

f
psia

Equation

163.05
194.07
451.20
1,332.73

168,10
258.13
615.19
1,769.78

172.85
327.25
795.92
2,179.30

179.52
491.23
1,204.92
3,154.79

192.58
830.81
3,016.44
74395.99

£o-f
Tt

0.046400
0.024603

- =0.039100

=0.001307
0.012696

-0 [ ) 011)624
0.019282

-0.000231
-Oo 006889
-0.005870

© 0,003361

-0.000278

-0.002599
~0,000647
0.002826

0.000468
0.004141

© 0.016547



1 o)
Temp. =
OF,  lb.mole/ft.>

100 0.66934
«69396
.76511
.81500

130 +03926
.65790
«T4349
»79936

160 08571
«61463
72098
.78125

220 .03086
49628
67613
74738

460 .02053
.12315
+ 50429
10775
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TABLE IX (continued)

B8,

Btu/lb.mole Biu/lb
Experimental Eguation

"6,72104
-6,73302
-6, 38[&07
‘5 ’744-7

~713.5
”6941803
-6, 180 oly
“5,56907

«593.5
-6,056,0
~5,953.7
"5’35907

"46601
‘53107.5
"5, 505 07
"4’988. 5

"28306
~1,441.1
=3,963.7
"3)74801

H—Ho

"6’ 56601
~6,562.7
"6’384~3
"5,62805

-6,314.0
-6,100,2
"5)49402

-6,005.5
~5,907.6
~59345.9

"464 o7
«5,072.7
~54515.9
’A’99405

"29104
~1,519.3
"4’ 157 .8
-3,981.6

J0le

H -H
oe'

Btu/lb.molé

155.3

170.5 -

0.4

116.2

104.3
80.2
75.5

"19 - 3
50.5
46.1
13.8

1.4

4.8

-10.2
‘6.0

"7.8

-78,2
"'194-1
=23345

0

-0.,023652
-0.025322
-0,000063
-0.020227

0.175473
-0,016250
-0,012976
~0.013555

0.031495
~0.008339
-0.007743

~0.002575

-0,003004
~0,006814
0.001853
0.001203

0.027504

0.054264
0.048969
0.062298
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TABLE X

See equation 92

d; 3
« 28682400
+0073080C

~-.00014900

2.40568497
-+25753410
»12851705
00089756

»31292421
-.15706108
.03184151
- .02066889
- 0000109 5

=1.30592428
«65420727
-+13392197
09785634
»00000000

«2A777141
-.12556071
02636655
-e 0 2078249
«00000000

11745447
~.02489843
«02059241
+000000C0

«04149126
.00909453
~e 0077 2698
»00000000
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TABLE XI

SECOND VIRIAL COEFFICIENT

Equation of
State -
Experimentel Tchebichef-Gram Lennard-Jones
Temp Date Form Potential
Op See Eqn. 93 See Sect. VII See Sect. VII
100 -5.549" -5.483 ~5.46
130 -4, ¢928 ~4e942 =499
160 ~4 487 ~bodBl | =454
150 ~4.097 -4.091 VA
220 -3.783 ~3.756 -3.77
250 =3.466 =3.458 =3.46
280 -3.191 ~3.190 ~3.19
10 -2.933 -2.943 -2.94
340 -2,687 -2.711 -2.71
370 «-2.483 «=2.490 2449
400 =-2.264, «2.277 - =2.28
430 -2,070 -2,073 -2.07
460 -1.893 -1.880 -1.88

% Second virial coefficient, B(T), ft> per 1b. mole
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Fig. 1. FVT Surface. Propane



-129 -

PRESSURE

VOLUME

Fig. 2. Isothermal Projections of PVT Surface
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Tchebichef Polynomials

Fig. 3.
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PART TWO. APPLICATION OF THE BENEDICT EQUATION OF STATE
T0 THE METHANE-n~FENTANE SYSTEM

I. INTRODUCTION

Benedict, Webb, and Rubin (3,4,5,6,7) developed an empiricel
equation of state which deseribes the volumetric behavior of lgaseous
hydrocarbons with satisfactory accuracy at pressures up to _4,000 pounds
per square inch and gives a good prediction of the phase behavior of
many hydrocarbon mixtures. Brough (8) proposed a.n enelyticel method
based on least squares techniques for evaluating the coefficients, which
extended earlier proposals of Benedict (2). Selleck and coworkers. (15)
extended the application of this equation for propane to pressures up
to 10,000 pounds per square inch in the temperature intervai between
40° and 460° F. and included e deseription of the behavior of the liquid
phase, Similerly Opfell (12, 13) evaluated coefficients of the Benedict
equation for nine of the lighter hydrocsrbons from methane through
n-decane for describing the wvolumetric bebavior in both the liquid and
gas phases for the same renge of pressures and temperatures as was
covered by Selleck (15). It should be emphasized that the coefficients
suggested by Selleck (15) and Opfell (12,13) are suitable only for the
prediction of the volumetric behavior whereas the coefficients suggested
by Benedict, while they are of primary utility in describing the volu-
metric behavior of the gas phase at lower pressures, are suitable for

estimation of phase behavior as well,



-] 4G
For present purposes the Benedict equation may be written with
pressure or compressibility factor as an explicit function of temperature
and volume. The latter form of the equation may be written in the follow-

ing way:

PV [- A C ~1 1 1
= = = — 2 _ Le - aq
£TRT T YRR RV ‘L[ TRV

ot 1 d 1 Y ¥
T VET RT”[\(* *VLXFQ'@ -

In applying the equation to 2 one-component system, the values of
the coefficients A, Bo, Co» 25 b, ¢yon, and ¥ are found to be character-
istic of the substance. The values of the coefficients for a multicom-
ponent.system would vary in a regular fashion with composition and they
would approach the values of the coefficients for the individual coﬁ-
ponents as the respective mole fraction approached unity. Little has been
reported concerning computatior of coefficlents from experimental data for
mixtures. The applications of the equation to mmlticomponent systems has
for the most part (3) depended on coefficients obtained by averaging the

coefficients of the constituents of the mixture.

Benedict!s extension (3,4,6) of the equation to mixtures was based
on two primary assumptions. The coefficients for the mixture were described
as specific contimuous functions of composition involving the coefficients

for the comporents and a set of interaction constants.
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= % 2
A'o A Aoa +‘2\05Y5.§A°c; A A°i (2)
3 2
b= b + 3“505\3&;‘5 + 3{\5\0?5‘«3; ¥ K‘? by SN &)

In equations 2 and 3, the single subseript symbols Aoi’ bojs 'bi,‘ bj, are
the coefficients for the components. The double and triple subseript
symbols, A°1 j? biiy, bijj, are the interaction constants. These mixture
coefficients becomq equal to the coefficient for & given molecular species
vhen its mole fraction equals unity.

Benediét's second assumption was that the interaction constants
could be satisfactorily approximated by averaging the coefficienté of the

components. Two general types of expressions were suggested.:

'

A°L.i N [A"“A%'_-F | - “

b = [obeh]” | )

LLJ

In later work (7) Benedict apparently preferred a linear average for B°ij'
Benedict's first assumption is suggested by comparison of his
equation with the virial equation of state predicted by statistical mechen-
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icel analysis of a system of particles with intermolecular potentisl func-
tions. The single subscript constants in this analysis represent inter-
action of molecules of the same type whereas double and triple subscript
constants correspond to interactions between unlike molecules (10). The
second assumption, which sﬁggests an approximation for the interaction
constants, has no apparent foundation in theory or from experimental data,
although it has ylelded results which have proven useful (3,4,7).

Guggenheim (9) computed the interaction constants for six binary
gaseous systems at low pressures and showed that for these systems the
constants may be predicted with fair accuracy from a universal reduced
second virial coefficient determined by data from pure substances.
Hirschfelder and coworkers (10) suggested semi-empirical methods of pre-
dieting the equivalent of interaction constants which should be suitable
for applicétion at low pressures. Beattie and Stockmayer (1) investigated
a variety of methods of predicting the interaction constants of the second
virial coefficients for the gaseous methane-butane system. Redently
Stotler and Benedict (17) indicated that an empiriecal adjustment of the
interaction constant AolZ for the nitrogen-methane system materially'in-
creased the accuracy of the description by the Benediet equation.

The present discussion deseribes the application of least squares
methods to the evaluation of mixture coefficients and selected interaction
constants in the Benedict equation of state for the methane-n-pentane sys-
tem. The mathematical procedures employed were similar to those described
by Brough (8) and extended by Selleck (15,16), and no details of the ex~

tended calculations associated with this work will be presented. The
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program was divided into three steps. First, independent sets of coeffi-
cients were obtained for each of six mixtures. Secondly, the data for all
six mixtures were used in the computation of the interaction constants
assocliated with the coefficients Ay, By, and C,. Finally, the interaction
constants assoclated with 4 , By, Co, a, b, and ¢ were computed simul-

(o]

teneously.

II. EXPERIMENTAL DATA

The experimental date for the methane-n-pentene system were based
on an experimental investigation (14) which extended to a pressure
of 5,000 pounds per square inch in the temperature interval between 100°
and 460° F, The study included six mixtures varying from 0,03 to 0.92
weight fraction methane. All the experimentel data involving states in
the heterogeneous regions were excluded, leaving a totel of 733 stétes in
the homogeneous regions. Of this totel, 132 states were in the liquid
phase. For simplicity of description the term "liquid" will indicate a
state with a temperature below the critical temperature and with a pres-
sure in excess of the bubble point pressure, Representative samples of
the experimentsl polnts employed in this investigation is presented upon
the temperature-~pressure diagram of Figures 1 and 2,

The coefficients used for methane and n-pentane were those recently
obtained by Opfell (13). They were based upon velues of ¥ giving the best
volumetric description of the experimentel data. The coefficients for
methane were based upon experimentasl date extending up to 10,000 pounds

per square inch in the temperature interval between -100° and 500° F. The
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~ data used to establish the coefficients for n-pentane were limited to
temperatures between 100° and 460° F. end to pressures up to 10,000 pounds
per square inch. The values of the coefficients employed are recorded

in Table I for the convenience of the reader.

ITI. COEFFICIENTS FOR INDIVIDUAL MIXTURES

The coefficients of the Benedict equation of state with the excep-
tion of ¥ were computed for each of the six individual mixtures. The
velues of ¥ were determined in accordance with Benedict's suggestion (4,6)

as indicated in the following expression:

\

2 B
o= oy sann ]+ ol (6)

Values for each of the other coefficients of equation 1 were established
by minimizing the sum of the squares of the residuals in compressibility
factor, with temperature and volume as the independent variables. The
unsmoothed, unweighted experimental data (14) were employed for this
evaluation. The results are shown in Table II.

The root-mean-square error for the combined six data gets was
0.00705. The average relative error in pressure, which is defined by

the following expression, was 0.00461:

N

1 \F. - Pl (7)
NS s
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For many applications the error in volume with pressure and temperature
as the independent variables is more indicative of the utility of the
equation of state. The relative error in volume at each state was esti-

mated from

|
|

\./e\/“\./ Pe %;P \[; (3\/)‘;”;

(8)

The values of the derivative of volume with respect to pressure at constant
temperature and composition were computed from the Benedicet equation. The
average relative error in volume, which is defined by the following expres-

sion, was estimated to be 0,00298:

Ve -V |
1 Ye =
N Z A% (9)

v,

A more detailed review of the accuracy of agreement of the Benedict equa-
tion with the coefficients evaluated for each mixture is set forth in a
part of Table II. The deviations indicated for each individual mixture
represent the minimum deviations to be expected with the continuous veri-
ation in ¥ employed. Mixture coefficients which are the continuous func-
tions of composition will yield deviations from the experimental data

which are at best equal to those recorded in Table II.
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The variations in several of the coefficients with composition are
shown in Figure 3. The experimental data yield rather smooth variations
in the coefficients with composition except for the mixture near 0,12
mole fraction methene. This mixture appears to deviate markedly from the
behavior found for the other mixtures. Since these coefficients are not
continuous functions of composition, they do not permit the equation to
be used to obtain partial thermodynamic properties (11), to obtain deriva-
tives with respect to composition, or to interpolate with respect to compo-

sition.

IV, EVALUATICN OF INTERACTION CONSTANTS

As a guide to the study of the interaction constants, the Benedict
equation was compared with the virial equation of state by expanding the
exponential term of equation 1 in a power series.

A G |2 a ¢ |L , ax 1
Z=1 ‘“[Bo"RT”RT‘]VJ’ [E_R_W""*RTJ\/* PRTVE

Expressed in this form, the term involving the coefficients 4,,

B and Co is seen to be similar to the second virial coefficient. The

o X

term involving b, a, and ¢ is similar to the third virial coefficient.

In keeping with this analogy we shall refer to these groupings as the
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second and third viriel coefficients of the equation, bearing in mind that
the pre-assigned form of the equation may result in poor approximation to
the virial coefficients of a substance predicted by other means.
Benedict's expressions similar to equations 2 and 3 for the mixture
coefficients may be substituted in equetion 1 resulting in an equation of
state with twelve interaction constants. Interaction constants involved
in the coefficients (A« ) and ¥ appear only in the higher order terms
of the virial analogy given in equation 10, For these, the approximations
of Benedict (2) similar to equations 4 and 5 were assumed to be adequate.
In order to study the remaining nine interaction constants, two
separate approaches were employed. In the first the suggestions of
Benedict (6) typified by equation 5 were assumed to be adequate for the
terms appearing in the third virial coefficient. A least squares solu-
tion was then found for Aols’ B015, and 0015, which appear in the segond
virial coefficient. In the second evaluation, the least squares solution
wes found for all nine of the interaction constants in the second and
third viriael coefficients. Since the constants of the equation are inter-
would ﬁot be ex-

dependent, the values obtained for 4, s and C

157 Poys °15
pected to be the same in the two methods of evaluation, In both cases
the entire data set comprised of mixtures of six different compositions
and a total of 733 points was employed. Interaction constants were de-
termined by minimizing the sum of the squares of the residuals in com~
pressibility factor with temperature, molal volume, and mole fraction as
the independent variables.

The results of the calculations for the interaction constants
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Ablﬁ’ B°15’ and 0015

cient based on these least squares values is plotted as a function of

are shown in Table I¥I. A second virial coeffi-

temperature in Figure 4. For comparison the values of the interaction
constants predicted by Benedict's averages have been included in Table
I1I. Using the least squares interaction constants, an average rela-
tive error in volume of 0.66% was computed for the 733 point data set.
Predictions employing Benedict's interaction constants yielded average
relative errors in volume of 1.2% and 3.2%, depending on whether a
square root or linear averasge was used for B°15'

Figure 5 depicts the average relative error in volume with pres-
sure and temperature as the independent varisbles. This diagram indi-
cates that Benedict's interaction constants for the second virial coef-
ficient yield relatively large errors near the center of the composition
interval. Least squares interaction constants for the second virial
coefficient yleld relatively uniform everage relative error in volume
throughout the composition interval.

In the second study of interaction constants, it was necessary to
solve for a totel of nine constants: }

Bo15? o150 Coys0 P11s? Pyssr 21152

a155, 0115’ and 0155. The results are shown in Table III., The average

relative error in volume was 0,54% as compared to 0.,66% with only AolS’
B015,,and C015 established by least squares methods. In the case of the
evaluation of the coefficients for the individual mixtures, the average

relative error in volume was 0.,29%., Using the continuous combining fune-
tions typified by equations 2 and 3, it thus appears possible to describe

the volumetric behavior of mixtures with an uncertainty only about twice
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as large as that found with the use of the Benedict equation to deseribe
the volumetric behavior of each individual mixture,

Figure 5 shows the average relative error as a function of COmpO-
sition when the interaction constants of both the second and third virial
coefficients are evaluated by least squares techniques. In this instance
the average error is relatively uniform throughout the composition interval
and is only slightly greater than that obtained with the evaluation of
the coefficients for each individuel mixture. Figure 6 depicts the average
error in pressure, with volume and temperature as the independent variables,
for each of the several methods of predieting the interaction constants.

The root-mean-square error in the compressibility factor with volume and
temperature as the independent variables is shown in Figure 7. The general
nature of the deviations is similar to that shown in Figures 5 and 6.

’Figure 8 presents a bar chart showing graphically the variation
in the average relative error in volume for the different interaction
constants. In the first column, the interaction constants were determined
by the methods suggested by Benediet utilizing a linear averagg for B°15'
The second column used the same interaction constants except that a
square root average for B°15 was substituted. In the third columm is
reported the behavior with the interaction constants A, , B

157 °15
established by least squares techniques. In column 4, Benedict's sug-

s &8nd C015
gestions for interaction constants for only ¥ and act were utilized;

least squares techniques were employed in establishing the remaining inter-
action constants. In column 5 no interaction constants as such were em-

ployed except those for ¥ ; the coefficients for each individual mixture
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were determined by least squares techniques. The effect of composition
upon the accuracy of description of the experimental data is summarized
in Table IV. Both this table and Figure 8 indicate separately the
behavior of the gas and liquid phases. The improvement effected by the
least squares interaction constants is particularly apparent for the
1iquid phese.

It appears that the use of interaction constants established
by least squares techniques affords an improved method of describing
the volumetric behavior of mixtures for which experimental data afe
available. Much additional work upon other binary mixtures will be re-
quired before it will be possible to predict interaction constants frbm
the nature of the components of the mixtures. In any event it appears
that the interaction constants suggested by Benedict for all the coeffi-
cientskexéept those of the second virial coefficient are adequate for
deseribing the volumetrie behavior of mixtures. No information bhas been
presented in this discussion as to the improvements to be realized by
use of empirically evaluated values of ¥ . However, experiepce (13,15)
with variations in this exponential coefficient indicates that the’improve-

ment would be small,
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NOMENCLATURE

s 8 b, ¢y % , ¥ coefficients for the Benedict equation of state

exponential function

number of states represented

mole fraction

pressure, lb. per sq. inch, absolute

universal gas constant, (1b,/sq.inch)(cu.ft.) per (1b.mole)(°R.)
absolute temperature, ©R.

molal volume, cu, feet per lb. mole

compressibility factor

partial differential operator

average relative error

sumiation operator

value of property predicted using the Benedict equation of state
refers to component i

refers to component j

differentiation at constent By

pressure as dependent variable

differentiation at constant T

volume as dependent variable
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TABLE 1

CONSTANTS OF BENEDICT EQUATION FOR METHANE AND n~-PENTANE®

Constant
R

Ao x 10 3
By

Co x 2077
a x 10~
b

¢ x 10~9
A

¥

M

a Reference 14

Methane

10.73147
4491053
0.455158
0.448753
4455118
1.03508
0.619147
0.332260
1.200000

16.042

Pentane

10.73147
60,2155
3.69003
19.6289
203.9410
16.0875
116.0610
6.67703
10.50000
72.146

b The values recorded are dimensionally consistent when uged in
the equation of state with pressure
square inch, temperature in degrees Rankine, and volume in
cubic feet per pound mole,

expressed in pounds per
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PART THREE. ISOBARIC HEAT CAPACITY AT BUBBLE
POINT OF n-DECANE

I. INTRODUCTION

Available experimental information concerning the iscbaric heat
capacity of n-decane in the liquid phase is limited to temperatures be-
tween 0° F. and 110° F, Huffmen, Parks, Barmore, and Thomas (1,2) deter-
mined the heat capacities of the solid and 1liquid pheses at temperatures
up to 75° F. Osborne and Ginnings (3) reported values of the heat capac-
ity at bubble point at.temperatures up to 110° F, Sehultz (4) and Pitzer
(5) proposed a generalization of the heat capacity of hydrocarbon gases
atilou_pressures. The thermodynamic properties of the lighter hydro-
carbons were critically reviewed by Rossini (6).

The present investigation was carried out in order to extend the
knowledge of the isobaric hsat capacity of liquid n-decane to 200° F.

The measurements were made in the two-phase region utilizing a constant
volume calorimeter. The energy required to change the temperature of the
calorimeter and contents wes determined for each of two quantities of
n-decane, The effect of the gross heat capacity of the sample bomb was
eliminated by considering the difference of these two sets of measure-
ments. The two-phase isochoric determinations were transformed to values
§f the isobaric heat capacity at bubble point by applyiﬁg a thermodynamie
correction involving the volumetric properties of the gas and liquid phases

end the heat capacity of the gas phase.
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II. THERMODYNAMICS

F:_'om_ the first and second laws of thermodynamics and a material
balance, the following equation may be derived relating the isobarie heat
capacity et bubble point to measurable heat exchanges, temperature changes,

and the differences in weights of the two samples.

3 _ &
A A (b\/) 4P
ST Y T\oT ) aT
7 Avb J\é
4PN gt — NaT
+ 14T \

M _ (e\/\ 4P
T N\ e TBT}gAdT

(1)

Detailed derivations of this relationship have been presented by
Schlinger and Sage (7) and Auerbach (8). The quantity g/dT represents
‘the net heat transferred to the system per unit temperature change of the
calorimeter and its contenta, It can be reliably measured over a range of

temperatures with two different welghts, my and m,, of material in the bomb,
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Thege weights or their difference can also be obteined experimentally. The
remsining terms in equation 1 demand a knowledge of the volumetriec behavior
of the liquid and gas phases and the isobaric heat capacity of the dew
point gas.

Fortuitously in the case of n-decane the total contribution of
these terms does not at any temperature in the range of intereat exceed
0.% of Cpp, » Consequently approximate values of the required properties
may be employed satisfactorily if ﬁecassary. The volumetric behavior of
the liquid phase of n~decane has been investigated in some deiail; for
the present purposes the messurements of Reemer, Olds, Sage, Lacey, and
Lavender (9,10) were employed. Volumetric derivatives of the gaé phase
were estimated from the perfect gas law. Schultz's generalization was
adopted for the heat capacity of the dew point gas. The magnitude of
these corrections to the two-phase isochoric data may be advantageously

studied by rewriting equation 1 as follows.

& _2
4T 4T 1
By M, Ty (1 ~ <)

{2)

The correction parameter ¢ appearing in equation 2 is shown as & funetion

of temperature in Figure l. The maximum value of ¢, at 200° ¥, is £ 0.002.
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III., APPARATUS

The calorimeter used for these measurements has been described in
some detail by previous investigators (7,8). The equipment consisted of
g8 ¢ylindrical steel container with hemispherical closures within ﬁhich
the hydrdcarbon liquid was confined. Energy wes added electrically to the
interior of the calorimeter by means of a short length of glé.ss-insulated
constantan wire encased within a stainless steel tube approximetely 0.05
inches in dlameter. A potentiometer and standard resistor umit were used
to measure the electromotive force applied and the current flowing through
this bheater. The rate of elecirical energy addition to the calorimeter
was known with an uncertainty of less than 0.05%5. Energy was added to /
the calorimeter in periods of approximately 1000 seconds; the examct length
of thege intervels was determined with an electrical timer. The uncer-
tainty of the totel emergy thus added to the equipment was less than 0.1%.

In order to decrease the thermal losses, the calorimster was sure
rounded by an ediabatic jacket and the space between the jacket and the
calorimeter was evacuated. It was possible by calibration to establish
the magnitude of the thermal losses as a function of the measured tempera-
ture difference between the calorimeter amd well of the jacket., For the
measurements on n-decane the energy losses to the wall of the Jacket were
in all cases less than 1% of the energy added electrically. Uncertainties
resulting from thermal losses are believed not to exceed 0,15% of the
corrected values of energy added to the calorimeter. |

Temperatures of the contents of the calorimeter and the walls of

the adiabatic jacket were determined with # 0,005° F. from the electro-



- 178 -

motive force of calibrated copper-constatan thermocouples.
The n-decane was introduced into the calorimeter by high vacuum
end liquid air trap techniques (11). The difference in weight of the

two samples was known within 0.02%

IV. SAYPIE

The n-decane was obtained from Research Project 44 of the
American Petroleum Institute and was reported to be substantially pure.
The sample as received was subjected to a single fractionation at re-
duced pressures to eliminate the air dissolved. The fractionated semple
had a refractive index of 1.,4119 for the D-lines of sodium at 6é8° F, as
compared with a value of 1.41203 reported by Shepherd (12) and a value
of 1.41189 reported by Forziati (13). On the basis of the measured
value of the refractive inmdex it is probable that the impm‘itiés were
not greater in amount than in the sample used by Forziati (13), which
was reported as 0,003 mole fraction. On the basis of ideal solutions,
Schlinger and Sage (14) have estimated that the presence of 0,003 mole
fraction impurity would result in only 0.03% error in the heat capaeity,
which is less than 1/25 of the standard deviation of the heat capacity
measurements and gbout 2% of the estimated total uncertainty of measure-

ment.,

V. EXPERIMENTAL MEASUREMENTS

With a fixed amount of sample in the calorimeter the temperature

of the system was raised in steps of approximately é° F. from room
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temperature to 210° F. by the addition of electrical energy. Each

six degree rise took approximately 1000 seconds and was followed by a
1000 second celming period to allow the system to come to thermsl
equilibrium, The rate of energy addition was measured at short ihtervals
by standard resistor and potentiometer as discussed previously. The
total energy for each period was obteined by numerical integration of
these rates. The thermal losses to the surrounding jacket were deter-
mined from periodic measurements of temperature differences. _Thé net
thermal transfer to the calorimeter and contents, Q, during an energy
addition period was taken as the sum of the electrical energy, EE’ and

transfer from the surroundings, Qs. (@S wes always Dositive Ye

Q = Q. + O, )

If Tp end T denote respectively the temperatures at the beginning
and end of an addition period, the following estimate was used for the net
thermal energy per unit tempersture change of the calorimeter bomb amd

its contents.

% Q Q. + O
4T Ts— T; ) Tg _—U\ (@

e

The left hand side of equation 4 was agsumed to apply at the mean of
Tp and T « As indicated previously Qg was never larger than 1% of O .
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The experimental values of Q/ T are recorded in Table I and plotted as
a function of temperature in Figure 2 for two different sample weights
of n=decane. The curveé shown were fitted by eye. The standard devi-
ation of the differences of these two sets of measurements was 0.0020
Btu per °F. or approximately 0.0090 of the difference between the two
curves. The 95% confidence limits for the difference was approximately

0.0008 Btu per °F. or 0,0036 of the difference.

VI. COMPUTATION OF C%b

Values of C?)b were computed from equations 1 and 2 using the
thermodynamic correction term of Figure 1 and the smoothed wvalues of
Q/ T shown in Figure 2. The results are presented in Table II and
Figure 3. These values probably do not involve combined undertainties
greater than 1%4. The work of Osborne and Gimnings and that of Haffmen,
Parks, and Barmore have been included in Figure 3 for comparison.
Agreement with Huffman is satisfactory. The values from these two in-
vestigations are é.pproximately 1% lower than those reported by Osborne
and Ginnings.

The results of the present investigation have been presented in
the literature in conjunction with the results of two similar projects

carried on in this laboratory (14).
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NOMENCLATURE
¢, isobaric heat capacity, Btu per 1b./°F,
m | weight of material in calerimeter, 1lb.
P pressure, lb./sq. in., absolute
Q heat associated with process, Btu
q heat assocliated with infinitesimal change in staﬁe, Btu
T thermodynamic temperature, °R
\ specific volume cu. ft./1b.
Subseripts
A,B state A and state B
b - bubble point
d . dew point
E - energy added elsctrically
S energy added from surroundings
1,2 conditlons with different quantities of sample in calorimeter
Superseript |

" two-phase state
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TABLE I

HEAT GAPACiTI OF CALORIMETER AND CONTENTS

m,

Temp. QAT
oF, Btu/°R
78.03 0.3286
82.94 0.3299
85.20 0.3320
94.20 0.3347

101.56 0.3360

109,27 0.3402

116,87 0.3440

124,38 043443

131.83 0.3479

139.27 0.3461

146,72 0.3473

154.11 0.3498

161.47 0.3503

168,83 0.3504

176.17 0.3494

183,46 0.3517

190.69 0.3538

197.89 0.3540

205,01 0,3585
83.39 0.3312
98,07 0.3391

112,83 0.3412

119.99 03445

127.11 0.3449

134.21 0.3460

1/1.31 0.3493

148,40 0.3479

155.47 0.3480

162.46 0.3516

169.42 0.3475

176.39 0.3515

183.36 0.3503

190.28 0.3543

197.12 0.3563

n=-DECANE

m, + 0.40188 1b.

Temp. Q/AT
oF, Btu/°R
107.25 0.5493
114,37 0,5601
121.41 0.5574
128,37 0.5702
135.25 0.5671
142.15 0.570%
149.05 0.5715
155.94 0.5741
162.76 0.5772
169,52 0.5797
176.20 0.5881
189,30 0,5890
83.96 045455
99.57 0.5503
107,15 0.5519
114.65 0.5584
122,06 0.5629
129.41 0.5667
136,70 0.5683
144,.06 0.5670
158,78 0.5771
165.96 0.5775
173.09 0.5843
180,18 0.5823
187.24 0.5846
194.24 0.5898
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TABLE II
ISOBARIC HEAT CAPACITY AT BUBBLE POINT OF

n--DECANE

Tenp. -cpr,‘.b

oF. Btu per(1b)(°R)

80 0.5242

90 5279
100 .5318
110 +5359
120 «5405
130 o5454,
140 5510
150 5568
160 «5630
170 <5696
180 5762
190 5831

200 +5901
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FROPOS ITTONS

1. 2., The presswre~volume isotherms of both the gas phase and liquid phase have
analytic contimuations imto the two phese region. Effort should be devoted to
esteblishing whethor or not these continuations are the same and whether or not
they possess thermodynamic significance, ,

bs In fitting en equation of state to & FVT surface, only one analytie res-
:.raint %s necessary in order to assure precivce vapor pressure prediction at a given
emperature, : _ . ’ '

¢s Lacey and Sage (1) have presented explicit expressions for the paths of a
number of thermodynaric processes for substances conforming to the van der Waals
equation of state. It would be worthwhile to develop similar expressions in terms
of the vigial equation of state. ' : A ‘ : :

d, Pitzer (2) has proposed an extension of the law of corresponding states which
utilizes two fundsmental reduced FPVT surfaces, In order to facilitate interpolation
and estimation of thermodynamic properties, these surfeces might be advantageously

‘represented by an orthogonal polynomial equation of states

es Metropolis, Rosenbluth, and co-workers (3,4) have presemted a Monte-Carlo
equation of state, For the statistical model which they employ, occesional regions
of low density, or holes, are evident in the fluid, This behavior might provide
useful information regarding the phenomena of nucléstion and bubble formation,

2. lewls, Gilliland, and Bauer (5) have suggested a correlation funotion for des-
cribing the behavior of fluidized beds. Their proposal was based on expsrimental
data obtained for fluidization of glass beads in air and water. Unpublished exw
perimental data (6,7) indicate that this correlation can be used with moderate suc
cess to deseribe the fluldization of lead and steel spheres in oil, '

3. Preliminary computations indieate that a system of predicting the critical
state of mixtures might be bused on the use of quadratic forms invelving the
properties of the pure substances, the composition, and a set of interaction para-
meteras. For example,

' 2 2
. To T B Ry *2mby Byt ¥y Roy

L. Jenkins (8) has suggested a modification of the momentum and vortieity transport
hypotheses for turbulent floy., A further modification is proposed,

5, In certain sresg,precipitation of asphaliic residues from crude oils results
in troublesome and exrensim clogging of sand bodles, separators, and pipe lines,
L survey of available litsraturs (9310,1012,13,14,15) indicates that decreasing
the pressure ox a crwdie oil systam cansses a dascreass in solubility of the bitumi-
pous precipitate; decreasing the sclutlon gzs eil ratlo causea an increase in
golvbility. Consequantly thewe may exist optimum operating pressures which mini-
mize ths precipitation, N )
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6i The molecular theory of transpoit phencmena in dilute gases indicates that for
8 water-air mixture the viscosity decrsases with increasing moisture content
between 100 and 500°K (16). Above 800°K, viscosity increases with increasing
moisture, This reversion shovld be investigated experimentally,

7« Widom (7) has proposed that the jdeal Nose-Einstein gas would be & useful protos
tyre for classieal fluid systems exnhibi*ing condensstion phenomena, He conjectures
that the virial series of the Dose-Hinstein gag has a radius of convergence vhich

is infinite. The radius of convergeuce may well be infinite; however, this power
.geries will cease to represen® the physical behavior of the system for densitles
greater than the condensction deunsity,

8." In one step in the commers’al production of titanium metal, gaseous TiCl, is

reduced with molten magnesitm “n a batch process (18)s This reaction might be edap-
table to a flow process utilizing impinging fluid streams.

9+ &, Conventional least squares methods used in curve fitting are hased on a
minimi zation of the sum (or integral) of the squares of deviations (19,20).  In
many instances a more useful approximation would be obtained if the fitting were
based on minimization of the sum of the squares of the relative deviationa, Suoh
an svaluation is formlly no more difficult than widely used methods,

b, Consider the expansion of an arbitrary function £(x), a “x = b, in an
infinite series of a set of orthogonal i‘unctlons, y (x). _

() = Ty B RS
k=o
The n’c'h partial sum, Sn(*c), of this series affords an approximation to £(x) with

an assoclated mean-square error,E 65 (x) ?, £(x) may also be approximated by
P(x) =s (x) * A (fn-!'l(x) .
where A oy is an arbitrary constant, The increase in error caused by the addition

of this arbitrary multipls of 4’ (x) is a quadratic in the coefficient A .
2 2
E {S (x) + A ¢n+l(x)(' - B {S (x); ¢ %A 2An+l
The increase in error hss a minimm at the Fourier valus, a y 8nd has zeros at
. % h 0 and A n+l 28 - This may serve as a guide to impos%ng restraints on

approximation curves in a simpler manner than possible with the method of une-
determired miltipliers,
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ce The expansion of 2 simple step irunciion in a series of Tchebichef polynomials
has been investigated for Gibbs phenomenoms The nature and magnitude of the “"overw
~shoot" at the point of discontinuity is the same as for the Fourier expansion (21).

10. Given a five card draw poker game w:.th a deck containing a joker good in aces,
straights, and flushes. Suppose a player is dealt a non-ace pair and one ace (or
the jolnars Iet H denote the play of holding the ace and taking two cards in the
draw. Let D denote the play of discarding the ace and drawing three cards, The
probability of making two pair or better is 0,2899 for play H and 0,2854. for play.D.
The chances of making a full hand are 23.47 greater for play H than for play De

Nomﬁciature
Ax;x aq arbitrary constant
ak‘ & constant
e, & constant |
BR mean square error of approximation

£(x) an arbitrary funotion of x
ni . mile bfraction of component 1
eriticel pressufe

1 78 13 iﬁteracﬁion pafame‘ber

S, (%) }t parhial sum of an 1nfinite series
¢an () a set of orthogonal functions; n t rember of set of orthogonal functions
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