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Abstract

Two arrangement problems in projective geometries over finite fields are studied, each
by imposing the condition that solutions be generated by some cyclic automorphism
group.

Part I investigates cyclic parallelisms of the lines of PG(2n — 1, q). Properties of
a collineation which can act transitively on the spreads of a parallelism are deter-
mined, and these are used to show nonexistence of cyclic parallelisms in the cases of
PG(2n — 1,q) with ged(2n — 1,¢ — 1) > 1 and PG(3,¢) with ¢ = 0 (mod 3). Along
with the result first established by Pentilla and Williams that PG(3, ¢) admits cyclic
(and regular) parallelisms if ¢ = 2 (mod 3), this completes the existence problem in
dimension 3. Cyclic regular parallelisms of PG(3,q) are considered from the point
of view of linear transversal mappings, leading to a conjectured classification. Fi-
nally, some partial results and open problems relating to cyclic parallelisms in odd
dimensions greater than 3 are discussed.

Part II is joint work with B. Schmidt, investigating which subgroups of Singer
cycles of PG(n — 1,¢) have orbits which are two-intersection sets. This problem is
essentially equivalent to investigating which irreducible cyclic codes have at most two
non-zero weights. The main results are necessary and sufficient conditions on the
parameters for a Singer subgroup orbit to be a two-intersection set. These conditions
allow a computer search which revealed two previously known families and eleven
sporadic examples, four of which are believed to be new. It is conjectured that there

are no further examples.
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Chapter 1 Introduction and Summary

1.1 Overview

The setting for these investigations will be projective geometries over finite fields.

Let F = GF(g) be the finite field of order ¢ and let V be an F-vector space
of dimension n. The projective geometry of V', denoted PG(V'), is the poset whose
elements are the proper nontrivial subspaces of V with U < W if and only if U is a
subspace of W. PG(V) is ranked poset, where the rank of U is dim U — 1. Sometimes
the term dimension will be used in place of rank; every effort will be made to avoid
confusion between linear and projective dimensions. Typically, subspaces of rank
0,1,2 are called points, lines, planes, respectively. Hyperplanes are subspaces of rank
one less than the rank of A. Given subspaces U, W <V, UV W denotes the subspace
of V generated by U and W, while U AW denotes the subspace intersection of U and
w.

IV =W, & ®& W then homogeneous coordinates will sometimes be used to
specify points of PG(V'). The notation (z; : -- : zz) denotes the projective point
that is the one-dimensional subspace spanned by the vector (z1, ... ,zg).

The general linear group of V, denoted GL(V), is the group of nonsingular lin-
ear transformations of V. The semilinear group of V, denoted I'L(V), is the group
of invertible semilinear transformations of V. A function o : V — V is semilin-
ear if o is an abelian group homomorphism and there exists f € Aut(F) such that
(Ax)a = f(A)(xa) for every x € V and every A\ € F. The projective general linear
group and the projective semilinear group, denoted PGL(V') and PI'L(V), are the
quotients GL(V)/Z and T'L(V)/Z, where Z = {x + Ax | A € F*} 2 F*. In geomet-
ric terminology, elements of PGL(V) and PI'L(V) are called, respectively, projectiv-
ities and collineations of PG(V'). The following result is known as the Fundamental

Theorem of Projective Geometry; see [1], [19], for example.
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Theorem 1.1. IfdimV > 3, the automorphism group of the geometry PG(V) is the
projective semilinear group PT'L(V).

As each of the objects discussed above is determined up to isomorphism by the
dimension of the vector space and the order of the field, one may write X(n,q) for
X(V), where X is one of GL,I'L, PGL, PT'L; write PG(n, q) for PG(V(n + 1, q)).

Often, PG®™(n,q) (or, when there is no ambiguity as to the order of the field,
Eg‘;)) will be used to denote the set of rank k subspaces of PG(n, ¢). The number of
k-spaces of PG(n, q) is given by

(" =D(¢"=1)--- (" F* 1)

Two important combinatorial designs obtained from PG(n — 1, q) are the point-
line design and the point-hyperplane design. A 2-(v, k, A) design is a triple (P, B,T),
where P is a set of v points, B is a set of blocks, and 7 is an incident relation on
P U B so that each block is incident with & points and any two points are coincident
with exactly A blocks. A design is called symmetric if |P| = |B|. The points and lines

of PG(n — 1, q) form a design with parameters

n_ 1 2_1
2 (L= 21 7° 1)
g—1 qg-—1

The points and hyperplanes form a symmetric design with parameters

o qn_l qn—l_l qn-—-2_1 .
g—1" ¢g-1" ¢qg-1 )’

see [1, 19, 43]. The proof of the following fundamental result on symmetric designs

can be found in [43, Theorem 27.1].

Theorem 1.2. Let S be a symmetric design and let « be an automorphism of S.
" Then the type of the cycle decomposition of a on the points of S is the same as the
type of the cycle decomposition on the blocks of S.

An important class of automorphisms of PG(n, ¢) are the Singer cycles. A gener-
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ator of a cyclic group of automorphisms acting regularly on the points of PG(n, q) is
called a Singer cycle. By Theorem 1.2, Singer cycles generate groups which also act
regularly on the set of hyperplanes. Singer cycles are often useful for combinatorial
problems in projective spaces, as will be the case with the problems considered here.

Each of the next two subsections introduces an arrangement problem in finite
projective spaces. One may seek solutions to each of these problems by imposing some
cyclic automorphism structure on the problem. Section 1.2 summarizes the results of
investigations of these problems. A list of some essential notation is included as an

appendix at the end of the thesis.

1.1.1 Parallelisms

One of the oldest problems in combinatorial design theory is the famous Kirkman
schoolgirl problem: arrange a class of 15 schoolgirls in five rows of three for each
of seven days so that any two girls appear in the same row on exactly one day. A
solution was known to Kirkman in the mid-nineteenth century. Yet, this problem has
given rise to a number of very interesting generalizations. It will appear as a special
case of the problem investigated in Part I.

Another scheduling problem to have in mind is that of 1-factorizations of the
complete graph Kj,. Given a finite set X, the complete graph on X, denoted K(X),
consists of a set of vertices and edges; the vertices of K (X) are the elements of X and
the edges are the unordered pairs of elements of X. Incidence is given by inclusion.
Write K, for K(X) if |X| = n. Now suppose |X| = 2n. A I-factor of K, is a set
of n pairwise nonintersecting edges of Ks,; that is, a partition of X by 2-subsets. A
1-factorization of Ky, is a partition of the set of edges into 1-factors. Ky, consists of
(%") edges; thus, a 1-factorization would contain (2n — 1) 1-factors.

It is easy to see that Ky, admits 1-factorizations. For a nonzero integer m, Z,,
denotes the cyclic group of integers modulo m. Take X = Zj,_; U {oo}. As the
edges of a 1-factor F, take the edge {0,00} and all edges of the form {z,—z} for

t € Zon-1 \ {0}. To obtain the remaining 1-factors of a 1-factorization, take the
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translates of F' by the elements of Z,_;, with the convention that oo is a fixed point

of this action. Below is the example for K.

{0, 00} {1, 00} {2, o0}
{1,2} {0,2} {0,1}

This construction is actually cyclic. The 1-factors of this 1-factorization are permuted
in a single cycle by the cyclic automorphism group generated by z — z + 1.

It is sometimes interesting to view PG(n — 1,¢) as the so-called g-analog of the
Boolean lattice on the n-set {1,... ,n}. One is then interested in which combinatorial
results for the Boolean lattice have analogs in the projective geometries. From this
point of view, edges of Kj, would correspond to lines of PG(2n — 1,q). The 1-
factorization problem has the following analog.

Two lines of PG(n,q) are said to be skew if there is no point coincident with
both lines. A spread of PG(n, q) is a collection S of pairwise skew lines such that each
point of PG(n, ¢) is incident with a line of S. (In general, one may consider spreads of
k-spaces of PG(n, ¢), with the obvious definition. However, the only kinds of spreads
which will be considered here are spreads consisting of lines, and thus the convention
will be that spread always refers to spreads of lines. No qualification will be given.)
As PG(n, q) has (¢"™* —1)/(¢—1) points and each line is incident with (¢ —1)/(g—1)
points, it is necessary for the existence of spreads that (¢* — 1)|(¢"** — 1). This in
turn requires that n be odd. It turns out that the condition n odd is sufficient to
ensure that spreads exist in PG(n, q); see [19] for details.

A parallelism (also called a packing) of PG(2n — 1,q) is a partition of the set of

lines into spreads. As PG(2n — 1, ¢) contains

(" = 1)(¢> 1 —1)
(> -1)(¢g—-1)

lines and spreads consist of (¢*® —1)/(¢% — 1) lines each, then a parallelism consists of
(¢!t —1)/(g — 1) spreads. Note that this number is precisely the number of points

on a hyperplane of PG(2n — 1, q).
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The existence of parallelisms of PG(2n — 1, ¢) is a much more difficult problem
than was the existence of 1-factorizations of the complete graph. It was not until the
early 1970’s that PG(3, ¢) was shown to admit parallelisms. This result was obtained
by Denniston [13] and independently by Beutelspacher [9]. In the same paper, Beu-
telspacher also proved the existence of parallelisms of PG(2* — 1, ¢q). However, these
results do not answer questions about the existence of parallelisms with certain extra
structure.

A parallelism is cyclic if there is a collineation acting transitively on its spreads.
Considering that the complete graphs K, admit cyclic 1-factorizations, it would be
of interest to determine if the projective spaces PG(2n — 1, ¢) similarly admit cyclic
parallelisms. Secondly, a parallelism of PG(3,q) is regular if it consists entirely of
regular spreads. Regular spreads are discussed in some detail in Section 3.2; this use
of regular should not be confused with meaning of the term in the context of group
actions. Interest in regular spreads stems in part from a construction originally due
to M. Walker of a translation plane of order ¢* with kernel GF(q) from a regular
parallelism of PG(3, ¢). See [28], [23], and [36] for more on this correspondence.

In [2], Baker constructed a cyclic parallelism of PG(2n — 1,2) for every n > 2.
Denniston [14] claimed that there are no cyclic parallelisms of PG(3, 3) or PG(3,4). In
[15], he finds six inequivalent cyclic parallelisms of PG(3, 8), two of which are regular.
In [37], Prince shows that there are no parallelisms of PG(3,3) such that any two of
the constituent spreads are projectively equivalent. In particular, there are no regular
parallelisms of PG(3,3), as any two regular spreads are equivalent. Recently, Prince
used a computer search to compile a list of equivalence classes of cyclic parallelisms
of PG(3,5) [38]. There are forty-five of these, two of which are regular. Finally,
another recent result was obtained by Pentilla and Williams [36], who construct two
inequivalent cyclic regular parallelisms of PG(3,¢) if ¢ = 2 (mod 3).

Currently, almost nothing is known about parallelisms of projective spaces of
dimension greater than 3, beyond Baker’s and Beutelspacher’s results. In particular,

there are no known parallelisms of PG(5, ¢) with ¢ > 2,



1.1.2 Two-intersection sets

An easy counting argument shows that there can be no set of points of PG(n — 1, q)
which is met by each hyperplane in the same number of points, except for the set of
all points of PG(n — 1,¢). A set of points of PG(n — 1, q) is called a two-intersection
set if each hyperplane meets the set in one of two numbers of points. This is as close
as nontrivial point-sets can come to being evenly distributed over the hyperplane
sections. Two-intersection sets in the plane have drawn the most interest. There are
a number of configurations of points in planes which give two-intersection sections;
the following are just a few of the more commonly known.

A hyperoval of PG(2, q), q even, is a set of ¢ + 2 points met by each line in 0 or 2
points. A Baer subplane of PG(2, ¢?) is a set of ¢2 + ¢+ 1 points met by each line in 1
or (¢+1) points. These points, together with the lines meeting the set in ¢+ 1 points,
form an embedded PG(2,q). A unitalis a set of ¢® + 1 points of PG(2, ¢?) which, like
a Baer subplane, is met by each line in 1 or (¢+1) points. Each of these arrangements
of points, hyperovals, Baer subplanes, and unitals, have received a great amount of
attention from finite geometers.

Consider the example of a hyperoval for a moment. Let ¥ = PG(2,q) where
¢ = 2° and suppose O is a hyperoval of ¥. Given any point p ¢ O, the nonempty
intersections of the lines on p with the point-set O give a partition of O into pairs of
points. In this way, each point not in O determines a 1-factor of the complete graph
K(O). Now suppose [ is any line of ¥ which does not meet . As each pair of points
of O determines a unique line of ¥, which in turn meets [ in a unique point, it follows
that every edge of K(O) occurs in a 1-factor determined by a point of I. In this way,
each line not meeting O determines a 1-factorization of K(O). Thus, the plane ¥
can be viewed as an extension of the complete graph K(O), for which the additional
points and lines correspond to special collections of 1-factors and 1-factorizations of
K(O), respectively.

An idea due to Bruck for a possible construction of a projective plane of order

q(q + 1) is similar to the above, only replacing the complete graph on ¢ + 2 vertices
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with the design of points and lines of PG(3, ¢). To extend this design to a projective
plane of order (g + 1) requires a very special collection of ¢* parallelisms of PG(3, ),
which will serve as the lines of the new plane which do not meet the points of PG(3, ¢).
The Bruck-Reyer-Chowla Theorem rules out the possibility of this construction for
certain, but not all, values of g. Were it possible, the construction would yield a plane
in which PG(3,q) is embedded as a set of type (0,¢? + ¢ + 1); the lines external to
the embedded PG(3, ¢) would correspond to parallelisms. This idea contains at once
both arrangement problems under consideration, parallelisms and two-intersection
sets, and for this reason it seems appropriate to mention it here.

Returning to the background discussion of two-intersection sets, one curious fact
stands out. Until recently, all known two-intersection sets in planes of odd order,
except the trivial examples of a point and a line, occurred in planes whose orders
were also squares. Furthermore, the difference of the intersections numbers was the
square root of the order of the plane. While it can be shown that the difference of the
intersection numbers must divide the order of the plane, it was not clear if it must
be the case that the difference was always the square root of the order. Note that in
planes of even order, hyperovals provide examples not exhibiting this behavior.

It has long been known that two-intersection sets in PG(n—1, q) are equivalent to a
certain class of codes called projective two-weight codes. A linear code C C GF(q)" is
a projective code if its dual C*, with respect to the usual dot product, has minimum
distance at least 3. See the survey of Calderbank and Kantor [12] for a thorough
treatment of the correspondence between two-intersection sets, two-weight projective
codes, and certain strongly regular graphs.

A coding-theoretic problem that has received a great deal of attention is the
problem of determining the weight enumerators of irreducible cyclic codes; see [5, 7,
24, 31], for example. This problem is equivalent to trying to determine the intersection
numbers of hyperplanes of PG(n—1, ¢) with orbits under a subgroup of a Singer cycle
and in general these are very difficult problems. There has been some recent progress,
however, in areas relating to two-weight codes and two-intersection sets. Langevin

[24] finds several cases of two-weight irreducible cyclic codes (thus giving certain
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two-intersection sets as orbits under subgroups of Singer cycles). His proof relies on
evaluating certain Gauss sums in this special case. Also, a recent paper of Dover
and Batten [4] exhibits, in geometric language, two intersection sets in PG(35%) and
PG(3,7) as orbits under subgroups of Singer cycles of index 19 and 37, respectively.

These examples are exciting because they occur in planes of odd, nonsquare order.

1.2 Summary of results

In these investigations, the aforementioned arrangement problems, parallelisms and
two-intersection sets, are studied by insisting that the solutions arise as orbits of some
cyclic group of collineations. Thus, Singer cycles appear in the problems, affording
the opportunity to state the problems in terms of some quotient of the multiplicative
group of a finite field by a subgroup. Subspaces of projective spaces are linear objects
and thus will correspond to certain additive subgroups of finite fields. Each of these
problems can thus be restated directly in terms of the interaction between the two
group structures, addition and multiplication, of a finite field.

Part I is an investigation of cyclic parallelisms of PG(2n — 1,¢). The point of
view of Chapter 2 is to study cyclic parallelisms by studying the point and line orbit
structure under a collineation which acts transitively on the spreads of a parallelism.
It is first shown (Theorem 2.10) that any such collineation must in fact be a pro-
jectivity which fixes a point and acts on a hyperplane. Furthermore, all line-orbits
under this projectivity have the same length, (¢**~! — 1)/(¢ — 1), and any spread of
the parallelism is a set of orbit representatives. If gcd(2n—1,¢—1) > 1, no element of
PGL(2n, q) has these properties (Lemma 2.9) and thus there are no cyclic parallelisms
in this case. This result extends a result of Denniston [14] that PG(3,4) admits no
cyclic parallelism.

Continuing with the study of the orbit structure of a projectivity with the neces-
sary properties to cyclically permute the spreads of a parallelism leads to a restate-
ment of the cyclic parallelism problem. The problem is cast in terms of a decompo-

sition of the nonzero elements of a finite field in terms of cosets of an additive and a
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multiplicative subgroup. In this case it is not difficult to see from this decomposition
that there are no cyclic parallelisms of PG(3,¢) if ¢ = 0 (mod 3) (Corollary 2.26 to
Theorem 2.25). This extends an earlier result of Denniston [14] which treated only
the case ¢ = 3. The results of this chapter also complete the existence problem for
cyclic parallelisms of PG(3, ¢): they exist if and only if ¢ = 2 (mod 3).

Chapter 3 is devoted to the construction and classification of cyclic regular paral-
lelisms of PG(3, ¢) if ¢ = 2 (mod 3). The construction is in terms of linear transversal
mappings, which are introduced in Section 3.1. A construction of cyclic regular par-
allelisms was given initially by Pentilla and Williams in [36]. The results of this
chapter were discovered independently from their work. The chapter concludes with
the conjecture that up to projective equivalence, there are precisely two cyclic regular
parallelisms of PG(3, ¢) if ¢ =2 (mod 3). An exhaustive search of linear transversal
mappings verifies the conjecture for all such ¢ < 32.

Part I concludes with a discussion of the cyclic parallelism problem in odd dimen-
sions greater than 3. Two partial solutions are presented, which, however, cannot
be merged into a full solution. Some open problems relating to cyclic parallelisms in
higher dimensions are discussed, with emphasis on the case of PG(5, q).

Part II is the result of joint work with B. Schmidt and will appear in slightly
different form in [40]. Here, the problem is to understand which subgroups of Singer
cycles of PG(n — 1, ¢) have orbits which are two-intersection sets. The paper [40] is
written from the point of view of irreducible cyclic codes; it is an essentially equivalent
problem to determine when these codes have at most two weights. Investigations of
the weight distribution of irreducible cyclic codes is not a new problem; it has been
understood for some time how these weight enumerators are related to certain Gauss
sums. The new result offered here is that in order to determine when at most two
weights (or hyperplane intersection numbers, in the geometric language) arise, one
need not evaluate the relevant Gauss sums. Enough information can be obtained
from Stickelberger’s result on their prime ideal factorization, together with Parseval’s
identity.

The main result (Theorem 6.1) is a set of three conditions on the parameters
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of a Singer subgroup orbit which are necessary and sufficient for that orbit to be a
two intersection set. There are two known families of two-intersection sets arising
in this way and a computer search reveals 11 sporadic examples. It is believed that
four of these were previously unknown. It is conjectured that there are no further
examples and this conjecture is proved in a special case (Theorem 6.12), subject to

the generalized Riemann hypothesis.



11

Part 1

Cyclic Parallelisms
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Chapter 2 Some Nonexistence Results

A parallelism of PG(2n — 1, ¢q) is called cyclic if its stabilizer in PT'L(2n, ¢) contains
an element o acting transitively on its spreads. The main results of this chapter are

the nonexistences of cyclic parallelisms in the following cases:
e PG(2n—1,q),if n > 2 and ged(2n —1,q—1) > 1;
e PG(3,9), if ¢=0 (mod 3).

These results are obtained by analyzing the necessary orbit structure of a collineation
a which acts transitively on the spreads of a parallelism. The chapter begins with
some basic and most likely well-known facts about Singer cycles, which are then used

in the later sections to more carefully describe the orbit structure of a.

2.1 Singer cycles

This section is primarily concerned with collineations of PG(n — 1,¢) having large
order and, more specifically, with a particular kind of collineation called a Singer
cycle. The main result characterizes Singer cycles as projectivities. This result is put
to use in the next section to characterize collineations which cyclically permute the

spreads of a parallelism.

Lemma 2.1. Let F be a finite field and let K be o subfield of F. If A € GL(n,F)
and its minimal polynomial has degree d and coefficients in K, then the order of A in

PGL(n,F) is at most (JK|? — 1)/(]K| — 1).

Proof. Every power of A is a K-linear combination of I, A, ... , A%!. There are at
most (|K|¢—1)/(JK|— 1) d-tuples from K, no two of which are K* multiples of each
Other. O
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Definition 2.2. For n > 3, a Singer cycle of PG(n — 1,q) is a generator of a cyclic
group of collineations which acts regularly on the set of points.
Remark 2.3. As

¢"—1

PGO(n—1,q)| =
| (n—1,q)| 1

a Singer cycle has order (¢" — 1)/(¢ — 1) in the group PT'L(n,q). As the points
and hyperplanes of PG(n — 1, ¢) form a symmetric design, then Theorem 1.2 implies
that a collineation « is a Singer cycle if and only if (a) acts regularly on the set of

hyperplanes of PG(n — 1, q).

Example 2.4. Let L = GF(¢") and let F be the subfield of L of order ¢q. View L as
an F-vector space. For a primitive element w of L, let 0 € PGL(L) be determined
by the linear map = — wz on L. For z € L*, w'z € Fz if and only if w® € F. Any
such ¢ must be a multiple of (¢" —1)/(g — 1) as w(@~V/@=1) generates F*. Thus, o
permutes the points of PG(L) in a cycle of length (¢" — 1)/(¢ — 1).

It is next shown that, like the above example, all Singer cycles are projectivities.

Thus, Singer cycles are represented by linear transformations of the underlying vector

space.

Theorem 2.5. For n > 3 and q a prime power, Singer cycles of PG(n — 1,q) are

projectivities.

Proof. Let ¢ = p™ with m > 1 and let F = GF(q). PI'L(n,q) is isomorphic to a
semidirect product of PGL(n, q) by Z,,; PGL(n, ¢) is a normal subgroup of PT'L(n, q)
and a complement is {¢* | 0 < i < m}, where (2o, ... ,Zn-1)¢ = (2}, ... ,2"_,). Given
a € PT'L(n, ¢) there exist A € GL(n, q) and 0 < k < m such that « is represented in
I'L(n, q) by ¢*A.

Assume o € PGL(n, g); that is, assume k& > 0. Note that A¢F = gbkA(”k), where
A®) = (af}). In general for ¢ > 1,

af = AP AP 4,
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Let d = ged(k, m) and choose t = m/d. Let § = of. As ¢* = 1, then 8 € PGL(n, q)
and is represented in GL(n, ¢) by the matrix B = A®“™V") ... 46" 4, Using the fact
that the map ® is an endomorphism of the ring of square matrices over a field of

characteristic p, it follows that
B = AT AGTVN 4G = ABATY (2.1)

Suppose f(z) = Y., a;z° € F[z]. Now f(B) = 0 if and only if f(B)®) = 0.

Furthermore,

F(BY¥) =3 (a:B)) = 3 al" (BV)"

Letting pps(z) denote the minimal polynomial of a square matrix M, it follows that
pe(x) =3, a;x’ if and only if pigee (z) =, o zi. That is, a coefficient of gty ()
is obtained by raising the coefficient of up(z) of the same degree to the power p*.

On the other hand, B®) and B have the same minimal polynomials since they
are conjugate by equation (2.1). Hence, the coefficients of xg(z) are fixed by the field
automorphism z — 27", Let E denote the subfield of F fixed by this automorphism.
Note that [E| = p?, where d = (k,m). By Lemma 2.1, the order of 3 in PGL(n, F) is
at most (p™® — 1)/(p® — 1). Therefore, the order of o in PT'L(n, q) is at most

m(p™ — 1)
d(p¢—1) "’

which can be shown to be less than (p"™ — 1)/(p™ — 1). Therefore, no element of

PT'L(n, q) \ PGL(n, q) is a Singer cycle of PG(n — 1, q). O

Lemma 2.6. (i) If A1, Ay € GL(n,q) have the same order in GL(n,q) and each
represent Singer cycles of PG(n — 1,q), then A1 and As generate conjugate

subgroups of GL(n, q).

(it) If there ezists A € GL(n, q) of order (¢"—1)/(q—1) in GL(n, q) which represents
a Singer cycle of PG(n — 1,q), then (n,q —1) = 1.

Proof. By Lemma 2.1, matrices representing Singer cycles of PG(n — 1, ¢) have min-
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imal polynomials of degree n and hence have irreducible characteristic polynomials.
As A; is conjugate to the companion matrix of its minimal polynomial, it may be as-
sumed without loss of generality that A; is a companion matrix. Let L = GF(q") and
let F' be the subfield of L of order ¢g. For i = 1,2, let \; € L be an eigenvalue of A;.
Regarding L as an F-vector space of dimension n, define u; € GL(L) by zu; = \;z.
Let B; denote the ordered basis (A | 0 < j < n) of L. Using the notation Mx(a) to
denote the matrix of a linear transformation o with respect to the ordered basis X,
one has Mp,(u;) = A;.

As A; is conjugate to the diagonal matrix A; = diag[A;, AY, ... ,A;?"‘l], it follows
that the order of A; in GL(n,q) is equal to the order of ); in the group L*. If A,
and A, have the same order, then A; and A, have the same order in L*. Since L* is a
cyclic group, it has at most one subgroup of any given order. Thus (A;) = (As) in L*
and Ay is a power of A1, 50 (1) = (u2). Let C be the matrix representing the change
of basis from B; to Bs. Then,

(A1) = Mp, (1)) = Mp, ({pi2)) = C~" M, ({112))C = C™H{4:)C.

In part (%), as in part (3), the characteristic polynomial of A4 is irreducible and A is
conjugate to the diagonal matrix A = diag[A, \?,... ,\"7!], where ) is an eigenvalue
of A in L. Write ord()) to denote the order of A € F*. As A is conjugate to A, the
order of A in GL(n, q) is equal to ord()). Also, the order of A in PGL(n, q) is equal
to

Under the assumption that each order is equal to (¢ — 1)/(¢ — 1), one has
"1
lcm(q ,q—1>=q"——1.
qg—1

n—2

TS G ent - D —i- i

g—1 0 i=0

Note that
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Hence,

1

Thus, if A has order (¢" — 1)/(g — 1) in GL(n, ¢) and represents a Singer cycle of
PG(n —1,¢), then

" —1 q¢"—1
"—1=1 S — 1 | = ——— 2.2
1 Cm(q——l 4 ) ged(n, g — 1) (22)

Equation (2.2) implies that ged(n,q — 1) = 1, which gives statement (3i) of the

Lemma. O]

2.2 Characterization of the automorphism

The topic of this section is the characterization of collineations which act transitively
on the spreads of a parallelism of PG(2n — 1, ¢). It is of course assumed throughout
that n is at least 2, and this assumption will not always be repeated in each result.
Recall the adopted convention that the term parallelism will always refer to a par-
allelism of lines. Also recall the notation £ used to denote the set of k-dimensional

subspaces of the n-dimensional projective space. Finally, let

qn+1 —1

0(7‘&, q) = ——q-——:-—l———,

the number of points of the geometry PG(n, ¢). Simply write 8(n) where there is no
ambiguity as to the order of the field.

Definition 2.7. A parallelism P of PG(2n — 1,q) is said to be cyclic if there is a

collineation acting transitively on the spreads of P.

Lemma 2.8. If a collineation o € PT'L(2n, q) permutes the spreads of a parallelism
of PG(2n — 1, q) in a single cycle, then o stabilizes a unique hyperplane and a unique
point of PG(2n—1,q). This point and this hyperplane are not incident. Furthermore,
each orbit of lines under a and each orbit of points, aside from the fized point, has

length 0(2n — 2). In particular, o has order 6(2n — 2).
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Proof. Let P be a parallelism whose spreads are cyclically permuted by «; let S € P.
As P={S8a'| 0 <i < 6(2n—2)} is a partition of 5 , and Sa®@®2 = S, then S
contains a set of orbit representatives of the lines of ¥,,_; under the action of (a).
Let l € S. As la’ € S if and only if §(2n — 2) divides t, it follows that the length of
the orbit of [ is divisible by #(2n — 2). The line [ was chosen arbitrarily from S and
S contains a set of orbit representatives; therefore, the length of each orbit of lines
under « is a multiple of 8(2n — 2).

Now suppose a point x is not a fixed point of a. Let [ be the line determined by
x and xa. Let £y denote the length of the orbit of x under «; similarly, let ¢; denote
the length of the orbit of [ under a. By definition, the stabilizer of [ in the group ()
is generated by o’*. On the other hand, xa® = x and (xa)a® = xa; hence, la® = |.
Thus, a® € {(a'') so t; divides t,.

Combining this result with the above fact that 6(2n — 2) divides t;, it follows that
the length of an orbit of points under « is either 1 or else is divisible by 6(2n — 2).
As [25?2_” = §(2n — 1) = 1 4 ¢f(2n — 2), then « must have a fixed point. Then
the automorphism o stabilizes some hyperplane by Theorem 1.2. Necessarily this
hyperplane is not incident with the fixed point, for else a acts on the pencil of lines
incident with both the fixed point and the invariant hyperplane. There are only
6(2n — 3) such lines, contradicting the result that all orbits have length at least
6(2n — 2).

Now let p and II denote a fixed point and an invariant hyperplane of PG(2n—1, q)
under the action of a. Since two points determine a line, if there were a second point
p’ # p fixed by « then the line p v p'’ is fixed by «, a contradiction. So p is unique.
Therefore, II is unique by Theorem 1.2.

The 6(2n — 2) lines incident with p are permuted by «; therefore, they form a
single orbit. As each line incident with p meets IT in a unique point, and each point
of II is incident with some line on p, it follows that o has a single orbit of length
6(2n — 2) on the points of II. That is, a acts as a Singer cycle on II. Therefore,
a®@n=2) fixes every point of IT and hence every line of II. Combining this with the

earlier result that all orbits of lines have length at least 8(2n — 2), it follows that each
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orbit of lines in IT has length exactly 6(2n — 2).

Now suppose [ is any line of PG(2n — 1, q) which is neither a line of II nor incident
with p. Let x denote the point of II which is incident with . Notice that [a?@r—2)
meets I in the point x, as xa?®?~2) = x. Furthermore, [a?@"=1) and [ are either the
same line or else are skew lines, as they belong to the same spread of the parallelism
P. Since they have a common point, then it must be that [a??"~2) = [. Hence, every
orbit of lines under « has length 6(2n — 2).

It remains to show that orbits of points, other than the fixed point, have length
0(2n — 2). It has already been shown that o has a single orbit of length 6(2n — 2) on
the points of II. Let x # p be any point not incident with II. As x # p, it was shown
earlier in the proof that the length of the orbit of x under « is a multiple of 6(2n — 2).
Pick any two distinct lines [ and m which are incident with x. As x = [ Am it follows

that

xa?@n=2) (la0(2n-—2)) A (ma0(2n—2)) =]lAm=x.

Thus, the orbit of x has length equal to 6(2n — 2).

Finally, as a®®"~2) fixes each point, o must have order (2n — 2). O

Lemma 2.9. Suppose « is a collineation of PG(2n — 1,q) each of whose orbits of
lines has length 0(2n — 2). It then follows that gcd(2n — 1, — 1) = 1 and a is a
projectivity. Furthermore, if B is another projectivity each of whose orbits of lines

has length 0(271‘— 2), then (a) and (B) are conjugate in PGL(2n, q).

Proof. Let V = V(2n,q) and suppose that the action of a € PI'L(2n, q) partitions
the set of lines of PG(2n, ¢) into orbits of length #(2n —2). Arguing as in the proof of
Lemma 2.8, it can be shown that «a stabilizes a point and a hyperplane of PG(2n—1, q)
and that these subspaces are not incident. Thus, there exist subspaces U W < V
with UNW = {0}, dimp U = 1, dimp W =2n— 1, Ua = U, and Wa = W. That is,
a stabilizes the direct sum decomposition V' = U @& W. Again arguing as in the proof
of Lemma 2.8, it can be shown that the orbit of o on any point of PG(V') other than
U has length 6(2n — 2). In particular, a|y is a Singer cycle on the projective plane

PG(W). Thus a|w € PGL(W) by Theorem 2.5. It follows that o € PGL(V).
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Now choose a representative & € GL(V') of « such that G|y is the identity map on
U. Pick an ordered basis B of V consisting of a union of bases of U and W. Recall

that Mp(&) denotes the matrix of o with respect to B. Then

Mg (d/) = )
A

where A € GL(2n~1, q). For any vector of the form x = (1,1, ... ,Z9,—1) € V(2n,q)
with some z; # 0, note that xMp(a)* € xF if and only if (z,... , Ton_1)AF =
(z1,- .- ,%an—1). It was argued in the previous paragraph that the orbits under Mp(4)
of projective points of the form (1 : zy : -+ : g, 1), with some z; # 0, have length
0(2n — 2). Thus, for nonzero vectors x’ = (z1,... ,%a,—1), X’ A*¥ = x' if and only
k is a multiple of §(2n — 2). Therefore, the matrix A has order §(2n — 2). Then
(2n — 1,9 —1) =1 by part (i1) of Lemma 2.6.

Finally, suppose (3 is another projectivity of PG(V') each of whose line-orbits has
length 6(2n — 2). As with «, there exists subspaces U’, W’ of V of dimensions 1 and
2n — 1, respectively, such that 3 stabilizes the decomposition V' = U’ & W’ and 8|y~
is a Singer cycle of PG(W’). As above, choose a representative 3 € GL(V) of 8 such
that (3 | is the identity and choose a basis B’ of V consisting of a union of bases of

U’ and W’. Then

Mg (B) = :
B
where B € GL(2n — 1, q) has order #(2n — 2). Now A and B each represent Singer
cycles of PG(n — 1, ¢) and each have order #(n — 1). By part (i) of Lemma 2.6, there
exists C' € GL(2n—1, ¢) such that C~'(B)C = (A). Extending C linearly to V'(2n, q)
by setting (1,0,...,0)C = (L,0,...,0) results in C~1(Mp(B))C = (Mps(&)). Note
that Mg(6) and Mg (B) are conjugate via the matrix representing the change of basis

from B to B'. It then follows that Mp(&) and Mp(&) generate conjugate subgroups of
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GL(V); hence, & and § generate conjugate subgroups of GL(V) and a and [ generate
conjugate subgroups of PGL(V). O

Theorem 2.10. There exists a cyclic parallelism P of PG(2n — 1,q) only if there
exists a projectivity oo € PGL(2n, q) each of whose line-orbits has length 0(2n — 2). If
P is a cyclic parallelism and o is such a projectivity, then P is projectively equivalent

to a parallelism whose spreads are cyclically permuted by .

Proof. Suppose § € PI'L(2n, q) cyclically permutes the spreads of some parallelism
P={S6"|0<1i<6(2n—-2)}. By Lemma 2.9, each orbit of the lines of PG(2n—1, q)
under 5 has length 6(2n — 2), giving the first statement of the Theorem.

Suppose « is any collineation of PG(2n — 1, q) each of whose orbits of lines has
length 8(2n — 2). By Lemma 2.9, o and 3 are projectivities and generate conjugate
subgroups of PGL(2n — 1, ¢). Hence, « is conjugate to a generator of (3), which in
turn also cyclically permutes the spreads of P. Without loss of generality, there exists
v € PGL(2n — 1,q) such that @ = y718v. Let P’ = P-, by definition projectively
equivalent to P. Note that P’ = {Sf'y | 0 <i < 6(2n—2)} and SBiy = Syy 15y =
(SY)(Y1B7) = (Sy)at. So PP = {S§a' | 0 < i < 6(2n — 2)}, where S’ = Sy.
Hence, P is projectively equivalent to a parallelism, P’, whose spreads are cyclically

permuted by a. O

Theorem 2.10 generalizes an observation of Denniston that there are no cyclic
parallelisms of PG(3,4). He writes, “There is no cyclic packing of PG(3,4) because
any collineation of period 21 has some line-orbits of length less than 21; and I should
expect the same difficulty to arise whenever ¢ + ¢ + 1 is not a prime,” [13]. His
observation concerning the orbits of lines under collineations of PG(3, 4) is accurate;
however, its accuracy rests not on the fact that 21 is not prime but instead on the

more specific fact that 21 is divisible by 3.

Corollary 2.11. Ifged(2n — 1,9 — 1) > 1 then PG(2n — 1,q) admits no cyclic par-

allelism.
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2.3 Line orbits vs. point orbits

The rest of this chapter specializes to the problem in three dimensions. The results
of the previous section have established that the primary components of a cyclic
parallelism of PG(3, q) are a projectivity o, which partitions the lines into ¢?+-1 orbits
of size ¢*> + ¢ + 1, and a spread consisting of one line representing each of the orbits
of ¢. Furthermore, given any such projectivity o, every projective equivalence class
of cyclic parallelisms has at least one representative each of whose spreads represent
the orbits of o. This section begins with a presentation of such a projectivity if ¢ # 1
(mod 3). The question arises as to whether the existence of this automorphism,
which is necessary for the existence of a cyclic parallelism, is also sufficient. It is to
be emphasized that this question is equivalent to asking whether there exists a set
of pairwise skew representatives of the line-orbits of this particular projectivity o.
The approach to this question will be through a more careful study of the interaction
between lines and the point-orbits of o.

With the case ¢ = 1 (mod 3) out of the way, assume for the rest of this chapter
that ¢ is a prime power which is not congruent to 1 modulo 3. It was seen in the
last section that an automorphism of ¥ whose line-orbits all have length ¢% 4+ ¢ + 1
must have a unique fixed point and a unique invariant plane. The choice of the
following coordinates is motivated by the earlier analysis of such automorphisms;
these coordinates provide the framework for much of the subsequent discussion of
cyclic parallelisms.

Let F = GF(q) and let L be the extension of F of degree 3. The ambient four-
dimensional F-vector space for the three-dimensional projective geometry will be
V =F®L. Letw €L be a primitive (¢> + ¢ + 1)st root of unity and define
o : V =V to be the linear transformation o : (¢,z) — (t,wz) for t € F and z € L.
Let II denote the subspace {0} @ L. Note that o fixes the projective point (1 : 0)
and acts on the plane II,.

As a matter of convenience, write N and Tr, without the usual subscripts, to denote

the norm and trace functions, respectively, of the extension L /F. Let G = ker N. Note
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that G is generated by w. It is straightforward to check that L* is the internal direct
sum of F* and G since ¢ #Z 1 (mod 3). Now pick an element £ € L such that Tr(¢) = 1
and set H = {z € L | Tr(éz) = 0}. That is, H = ¢! with respect to the symmetric
bilinear form (z,y) — Tr(zy). It is also straightforward to check that the additive
group of the field L is the internal direct sum of F and H. Note that if (¢,3) = 1,
then one may choose £ = £, in which case H = ker Tt.

It will be good to give names to the following few lines and point-sets of PG(V').

Forz € H, L, =(0:1)V(1:2z);
Lo = {0} & ker Tr;

for A€ F*, Ox ={(1:9) |y € \G};
Ox={(0:9) | g € G}.

Note that y € AG if and only if N(y) = A3, Since (¢ — 1,3) = 1 then the map
A+ A% is a permutation of F* and the sets Oy partition the points of the form (1 : y),

y € F*, according to the value of N(y).

Proposition 2.12. The ¢*> + 1 lines {L, | © € H} U {Lo} comprise a complete
system of representatives for the orbits of o on the lines of PG(V); each orbit has
length ¢* + q + 1. The singleton {(1 : 0)} together with the sets of points Oy, for
A € F* U {oo}, are the orbits of o on the points of PG(V).

Proof. Since 02°t9*1 = 1, then all orbits have length at most ¢% + g + 1. Recall that
L* = FG. It follows that the set O, consists of all the points of II.; o is tranéitive
on O because w is a generator of G. Therefore, o is a Singer cycle on Il and is
transitive on its ¢+ ¢+ 1 lines. The line L., may be taken as a representative of this
orbit.

Note that F @ H is a projective plane of PG(V) which is not incident with the
point (0 : 1). Thus, each of the ¢% lines on (0 : 1) which are not contained in I
meets exactly one point of the form (1:y) for y € H. Thus, the lines {L, | z € H}
are distinct. They belong to different o-orbits, and these orbits have length ¢% +¢q+1,
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by the previous remark that ¢ is a Singer cycle on Il.
Finally, the sets O, are clearly o-invariant. Again, as w generates G, ¢ is transi-

tive on each such set. ]

Remark 2.13. The orbit O is the point-set of a plane, so lines meet it in 1 or g+ 1
points. In how many points do various lines meet the other nontrivial point-orbits?
The answer is simple if ¢ = 2. In this case, there are precisely three point orbits: the
fixed point (1 : 0); O, consisting of the points of the plane II,; and O, consisting
of the remaining points. The lines meet O, in 0, 1, or 2 points: the lines of II,, meet
O, in zero points; the lines incident with the fixed point meet O in exactly one point;
and the remaining lines meet O, in exactly two points.

Suppose now that ¢ > 2. A set of points of PG(3,q) with no three collinear is
called a cap. It is well-known that the maximum size of a cap in PG(3, q), with ¢ > 2,
is ¢* + 1; such sets are called ovoids. Since the orbits Oy contain ¢*> 4+ ¢ 4+ 1 points,
then they cannot be caps and some line must meet each set in at least three points.
What is the maximum number of points of an orbit Oy which are collinear? This

question will be answered shortly.

The data concerning the intersections of lines with point-orbits can be recorded
in an array which gives a decomposition of the elements of the field L with respect to
a subgroup of its additive group and a subgroup of its multiplicative group. Define
A:H xF*— 2V by

Az, A) = (z+F)N)G.

The set-valued array A is somewhat like a double coset decomposition of L*. However,
instead of describing the intersection of the cosets of two subgroups of L*, A describes
the intersection of the additive cosets of F < L and the multiplicative cosets of
G < L*. Note that L/F = H and L*/G = F*. The relevance of A is explained by

the following simple observation.

Claim 2.14. Let z € H, A € F*, and k € Z. The line L,o* meets the orbit O, in
the points {(1:y) | y € w*A(z, \)}.
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Proof. As O, is a o-orbit, then L,0*N Oy = (L, NO,)c* and it suffices to show that
the claim holds for £ = 0. The set of points incident with L., is

{l:z+4s)|seFU{0:1)}.

The result is now immediate from the definition of O,. O

To complete the correspondence between A and the interaction of the line-orbits
and point-orbits of o, the array should be extended by adding another row and

column, each indexed by the symbol oo, say, so that

A(oo,A) =0 for A € F*,
A(z,00) ={1} for z € H,
A(o0,00) = G Nker Tr.

Now, L,o"* meets O in the single point (0 : w*), for £ € H. Loo® meets O in the
set G N ((ker Tr)w*).
Let 7 : L* — G be the homomorphism

i

T~ c
N(z)3

Note that kerm = F* and 27 = z for every z € G. Let p : G — Zgp 44y be
the isomorphism determined by w + 1. Finally, define A(z,)) := A(z, \)r and
Az, \) = Az, \)7p. |

Remark 2.15. By Claim 2.14, L,o* N Oy = {(1:y) | y € w*A(z,\)}. Note that
(W*A(z, X)) = w*(A(z, M)7) = w*A(, N).

Therefore, Lyo* meets the orbit O in the points {(1 : y) | ¥ € A*A(z,A)}. The
upshot is that the G-translates of a row A(x, -) completely describe the intersections of

the (o)-translates of the line L, with the point-orbits. The arrays A and A completely
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describe the incidence of points and lines of PG(V') and the orbit structure of the
collineation ¢ on these sets.

It should be said that moving the cyclic parallelism problem in a sense out of
the geometric language and into this table A doesn’t necessarily make it any easier.
However, the table contains all of the necessary data for the problem in a compact
form. In fact, it will soon be seen that A contains certain redundancies and can
be completely specified by an even smaller set of data. This compact description of
the problem in terms of special subsets of, and arithmetic in, Z;,,4; is a computer-
friendly presentation. Probabilistic searches for solutions, using a method such as

simulated annealing, are particularly appropriate with this presentation.

The following examples concern the arrays A for ¢ = 2,3,5. The indices for
the rows and columns are not shown, but the last row and last column are those
pertaining to Lo, and O, respectively. Braces have been omitted from the subsets
in the cells of the array. In each case, w = a?7!, where « is a primitive element of
the field L = GF(¢?) satisfying the given primitive polynomial. For ¢ = 2 and ¢ = 5,
¢ = % and H = ker Tr. The entries of the tables are subsets of the indicated group G.

Example 2.16. ¢ =2, o® +a+1 =0, G = Z;. The first column of Table 2.1

0] 0
1,3 0
26| 0
45] 0

12,4

Table 2.1: A for ¢ =2

represents the 7 points of O;; the second column represents the 7 points of the plane
Os. Together they account for 14 of the 15 points of PG(3,2); the table does not
represent the fixed point (1 : 0). The Z;-translates of the five rows together give the
35 lines of PG(3, 2).

Example 2.17. ¢=3, o®+a?~1=0, { =a?, G =Zs.
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0 0 0
I |810] 0
411 3 0
2,5,6 0
9 | 7,12 0
8,10 | 1 0
3 | 411 0
256 O
712 9 0
0,2,5,6

Table 2.2: A for ¢ =3

Example 2.18. ¢ =5, a®+2a®>+1 =10, G = Zs;. Notice that each column of
Table 2.3 contains a subset of size at least 3, as was explained in Remark 2.13. Also
note that aside from the orbit O, no point-orbit is met by any line in more than

three points.

Definition 2.19. A collection of subsets {S; C G | ¢ € I} of an abelian group G is

called a hyperstarter for G if, as multisets,

(¢) USz' =g,

€]
@) (He -yl #yeS}t=0\{0}

iel

The following is a list of some of the properties of the tables A and A. Analogous

statements for A are easily obtained by applying the automorphism p.
Proposition 2.20. (7) |A(z, A\)| < 3 for all (x,\) € H x F*.

(i1) The row A(0,-) contains a total of q elements; every other row contains a total

of g+ 1 elements.

(111) For A € F*, the column A(, A) is a hyperstarter for G. Furthermore, for any
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0 0 0 0 0
8,15 17 21, 20 0
5, 24, 2 16 6 0
25, 27, 10 18 30 0
26 11, 1, 19 28 0
14, 3 22 29, 4 0
9, 13 23 12, 7 0
17 21, 20 15, 8 0
16 6 24, 5, 2 0
25, 27, 10 18 30 0
1,11, 19 28 26 0
2 29, 4 3,14 0
23 12,7 13,9 0
17 21, 20 8, 15 0
6 24, 5, 2 16 0
18 30 27, 25, 10 0
1,11, 19 28 26 0
22 29, 4 14, 3 0
23 12,7 9, 13 0
20, 21 8, 15 17 0
5, 24, 2 16 6 0
30 27, 25, 10 18 0
28 26 11, 1, 19 0
4, 29 14, 3 22 0
7,12 9,13 23 0

2,10,17,19,22,23

Table 2.3: A for ¢ =25

A # u € F*U{oo}, it holds that

U Az, Az, )™ = G,

x€HU{oo}
as multisets.

(iv) For X € F*, the column A(-,)\) is a permutation of the column A(-,1). For
s € F* and x € G N H, the row A(sz,") is a permutation of the row Az, ).

(v) The image of any row of A under the map y — y? is again a row of A.

Proof. (i) A(z,A)={z+s|s€F, 2 +scAG}={z+s|seF, Nz+s)=A}.
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Note that

N(z +5) = (z + s)(z? + 5)(z% + s)
= s + Tr(z)s? 4+ Tr(z?™)s 4+ N(z).

So N(z + s) = A? if and only if s € F is a root of the cubic polynomial
2 + Tr(z)t* + Tr(z7™)t + N(z) — A* € F[t].

(i) This statement follows from the fact that lines are incident with ¢ 4 1 points.
The “missing point” from the row A(0, -) is the fixed point (1 : 0), the only point of
the geometry which is not in one of the orbits O), A € F* U {oc0o}.

(iii) These statements follow from the fact that the points and lines of PG(V)
forma 2 — (%;fil—, ﬂq?-_?%, 1) design, together with the fact that the lines of the geometry

arise from taking G-translates of the rows of the table A.

(iv) For A € F*,
Az, \) = (z +F) N (\G) = A((§ +F)NG) = AA(%, 1).

As F* = ker and 7| = 1, it follows that A(z, A) = A(2,1) for every = € H U {co}.
(v) The Frobenius automorphism of the extension L/F acts on the subgroups

F <L and G < L*. Thus
Az N) = (27 +F)N(AG) = ((x +F)nN (/\G))q = Az, \)2.

Note that (z7)? = z97 to obtain the analogous result for A. O

Remark 2.21. The proof of Proposition 2.20 (iv) shows that the column A(-, \) is
a reordering of the column A(-, 1)induced by the permutation z — $ of HU {oo}. If
A is a primitive element of F, then this permutation has two fixed points, 0 and oo,
and g + 1 orbits of length ¢ — 1. Accordingly, a column with A € F* is a shift of the

column with A = 1, where the shift is some cyclic shift of the rows with z # 0, co.
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That is to say, in some ordering of the elements of H and F*, the subarray of A on
just the rows and columns of H \ {0} x F* is a (¢ — 1) x (¢ — 1) block array with
blocks of size (¢ + 1) x 1. Furthermore, it can be arranged that the columns (rows)
are cyclic shifts of the first column (row). The full array A is obtained by bordering
this subarray with the z = 0 and z = oo rows and the A = co column.

Take for example the specific case ¢ = 5. The array A which was presented in
Example 2.3 already appears with this cyclic block structure. Indeed, notice that the
subarray obtained by deleting the first and last rows and the last column of A has

the following structure,

A B C D
B C D A
¢ D A B
D A B C

where A, B, C, and D are 6 x 1 arrays.

2.4 A line-orbit correspondence

The notation of the previous section is continued. By Theorem 2.10, there exists
a cyclic parallelism of PG(V) if and only if there exists a spread of PG(V) which
contains one line from each orbit of o. It has been shown that the array A gives
a representation of the points and lines of PG(V) in a format which conveniently
describes the orbits under o as well as the incidence in the geometry. Choosing a
collection of line-orbit representatives corresponds to choosing a G-translate of each
row of A; two such lines are skew in PG(V') if and only if the entries in each column of
the corresponding shifted rows of A are disjoint subsets of G. The notion of choosing
shifts of the rows of A leads to the following notation.

Given a function ¢ : H — G, write YA to denote the array which arises by
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translating the elements of the row A(z,-) of A by 9(z); that is,

(WA)(z,\) = (x)A(z, ) for z € H, A € F*U {0},
(@DA)(OO, /\) = A(OO’ A).

Similarly, for ¥ : H = Zga4411, YA will be used to denote the array arising from

additive shifts of the rows of A by the elements () in the group Z,z ;.

Lemma 2.22. There exists a cyclic parallelism of PG(V) if and only if there exists
a function v : H — G such that each column of the array YA is a partition of G. An

equivalent condition is obtained by replacing G with Zp2y441 and A with A,
Proof. Combine Theorem 2.10, Proposition 2.12, and Remark 2.15. O

Example 2.23. ¢ = 2. The table A appears as Example 2.1. It is not hard in this
small case to find ways to shift the rows of the table by elements of Z7 so that the
columns of the resulting array are partitions of Z;. In fact, Table 2.4 presents the only

solutions to this problem which leave the last row of A unshifted. It is worth noting

0 0 0 0
46| 3 16| 5
15| 6 251 3
23| 5 34| 6

1,24 12,4

Table 2.4: Cyclic parallelisms of PG(3,2)

that these examples furnish solutions to the original problem of Kirkman. Identify
the 15 schoolgirls with the 15 points of PG(3,2). An arrangement of the 15 girls into
five rows of three girls each corresponds to a spread of PG(3,2). As any two points
of PG(3,2) are incident with a unique line (which is incident with a total of three
points), the final condition of the Kirkman problem corresponds to a set of 7 spreads

which partition the lines; ie, a parallelism.

It is worth noting that both arrays in Table 2.4 contain the same first and last

rows. An examination of Prince’s [38] exhaustive list of forty equivalence classes of
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cyclic parallelisms of PG(3,5) reveals that the base spreads of all those examples
contain the same pair of lines from the orbit of lines incident with the fixed point
and the orbit of lines in the invariant plane. The same can been seen in the six
inequivalent examples found by Denniston [15] for PG(3,8). Theorem 2.25 offers an
explanation for this phenomenon.
For convenience, introduce the notation H = H U {oo} and F = F* U {co}. In

the following results, all arithmetic takes place in the group Zg2 1.

Lemma 2.24. For every A € F* U {oo},

Z Z u = 0.

z€H ueA(x,\)

Proof. By Proposition 2.20 (%), each column of A with A\ € F* is a partition of
Zg2ygr1. Therefore, summing the elements of such a column amounts to summing

the elements of Z,21 1. Since ¢* + ¢ + 1 is odd, then
9*+q
ZkEO (mod ¢ + g+ 1).
k=0

Now suppose A = oco. Note that

DD u= > u= >y 'Up=< 11 v)p.

z€H ueA(z,00) u€A (00,00) vEGNker Tr vE€GNker Tr

Now v € G Nker Tr if and only if {v, v, qu} C GNker Tr. Also, v = v? if and only if
veF. As FNG = {1}, it follows that

H V= H pitere — q,

veGNker Tr {v,v? w2 }CcGnker Tr
The claim follows as 1p = 0. : (]

Theorem 2.25. Let 1) : H — Zgy 1. If each column of A is a partition of g2y g41
then ¥(0) = 0.
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Proof. For simplicity, set 1(co) = 0; recall that (WA)(z,)\) =

v(z) + Az, )). As-

suming that each column of 9A is a partition of Zg2 41, it follows from Lemma 2.24

that
0= Z Z P(z) + u)
z€H ueA(z,)\)
=Y @A+, > wu
zcH zeH ueA(z,)\)
=D v@)A@ V).
zeH
Therefore,

0=>"Y ¢(@)|Az,))|

AeF zecH

=> (@)Y 1A, N)]-

zeH AeR

By Proposition 2.20 (%),

ZIA(w,A)I—{ ¢ He=0

AcE g+ 1 otherwise.

Furthermore, substituting A = oo into equation (2.3) implies

D d(a) =0.

zeH

(2.3a)
(2.3b)

(2.3¢)

(2.4a)

(2.4b)

(2.5)

(2.6)
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Therefore,

0= Z Z¢($)|A($, Al by equation (2.4),

= qp(0) + (¢ + 1) Zw(:z:) by equation (2.5),
z#0

=q9(0) - (¢+1)9(0) by equation (2.6),

= —1)(0).

O

Corollary 2.26. If ¢ =0 (mod 3) then PG(3,q) does not admit a cyclic parallelism.

Proof. If ¢ = 0 (mod 3) then F C kerTr. In particular, 1 € G N ker Tr; hence
0 € A(oo, o0). Suppose that there exists a cyclic parallelism of PG(3,¢). By Lemma
2.22, there exists ¢ : H — Zgp. 44, such that each column of YA is a partition of

Z,21g1. Theorem 2.25 implies that ¢(0) = 0. Therefore,
(L/)A)(()’ oo) = 1(0) + A(O’ oo) = {0} C A(OO, 00),

contradicting the deduction that the column A(:, 00) is a partition of Zy2,,y;. O

Remark 2.27. In [13], Denniston claimed that an exhaustive search revealed that
there are no cyclic parallelisms of PG(3,3), although he does not give any details
of his search. He then makes the interesting remark that there is a design with the
parameters of the points and lines of PG(3, 3), that is, an 5(2, 4, 40), which admits a
cyclic resolution. He finds reference to this design in a paper of E. H. Moore [33] from
the late nineteenth century. Moore specifies the following as the blocks of a spread

on the point-set Zzg U {o0}:

{0,13,26,00} {1,5,8,25}  {2,10,11,16} {4,20,22,32}
{14,18,21,38} {15,23,24,29} {17,33,35,6}
{27,31,34,12} {28,36,37,3}  {30,7,9,19}
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Developed by the group Zsg, this spread generates a resolution of an S(2,4,40).
Notice that the design automorphism z +— z + 13 stabilizes the above base spread,
fixing one of its blocks and permuting the other nine blocks in three orbits of length 3.
Thus, the automorphism x +— z + 1 cyclically permutes the 13 spreads of a resolution
of the design. This automorphism has order 39, fixes one point, is transitive on the
remaining 39 points, has one line-orbit of length 13 and three line-orbits of length
39. Contrast this behavior with that found in the geometries. By Lemma 2.8, an
automorphism cyclically permuting the spreads of a parallelism of PG(3, ¢) has order
¢ +q+1

The automorphism z — z4-3 has order 13 and also cyclically permutes the spreads
of the above resolution. It has a fixed point, three point-orbits of length 13, and ten
line-orbits of length 13. Table 2.5 is the decomposition of Moore’s design into point-
orbits and line-orbits under this automorphism. The three nontrivial point-orbits are
O; = 13i + 3Z39, i = 0,1,2. Each point-orbit is projected onto 3Zsg by z > 27zx.

Under the isomorphism Zi3 = 3Z39 given by 1 — 3, the decomposition is as follows.

L O | 01 | O, ]
0] 0] 0
49 | 6,7
1,12 | 5,38
310 | 2,11
6,7 4,9
5,8 1,12
2,11 3,10
49 | 6,7
L,i2| 58
3,10 | 2,11

Table 2.5: 5(2,4,40)
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Chapter 3 Cyclic Regular Parallelisms

This chapter begins with an overview of a connection between spreads of projective
spaces of dimension three and a special class of functions on affine spaces of dimension
two, called transversal mappings. The idea to study spreads through these functions
is originally due to Ostrom [35]. His interest in spreads stemmed from an interest in
studying the associated translation planes and their duals; the transversal mappings
provided a means to study the spreads. Here, the use of transversal mappings provides
a method for representing spreads which will turn out to be very convenient for
purposes searching for cyclic regular parallelisms, as regular spreads correspond to
linear transversal mappings.

Using these linear transversal mappings, it is shown that there exists a cyclic
regular parallelism of PG(3, ¢) if ¢ = 2 (mod 3). A second example is obtained from
the first by the application of a polarity of the geometry, and these examples are shown
to be inequivalent under PT'L(4, ¢). A similar result had been obtained by Pentilla and
Williams in [36]. Finally, a computer search for linear transversal mappings which
generate cyclic regular parallelisms of PG(3,¢), ¢ = 2 (mod 3), reveals no further
inequivalent examples for several small values of ¢q. It is conjectured that the same

holds for all ¢ =2 (mod 3).

3.1 Spreads and transversal mappings

The following definition is a generalization of Ostrom’s definition of transversal map-

pings to vector spaces of arbitrary dimension.

Definition 3.1. Let V be a vector space of dimension n over the field F. A function
f:V = Viscalled a transversal mapping or transversal function if for each A € F the
map v — f(v) + Av is a permutation of V. Denote the set of transversal mappings

of V by TM(V).
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Remark 3.2. Vector space isomorphisms induce bijections of the corresponding sets
of transversal mappings. Suppose o : W — V is an isomorphism of GF(q) vector
spaces. Then «a induces a bijection TM(W) — TM(V) by f + afa™!. Indeed, using
the linearity of a, one has afa~'v+Av = a(f(a~'v)+Aa~1v). Since a is a bijection,
then the latter is a permutation of V if and only if w — fw + Aw is a permutation
of W. It is straightforward to check that the map f — afa™! is a bijection. Thus,
one may refer to TM(n, ¢) when dim W = n.

The term transversal mapping, due to Ostrom, is derived from the notion of
transversals in partial geometries. The particular partial geometry here is the net
N defined to have as points the elements of V' x V, where V' = V(n, q), and to have
as lines the sets {(b,x) | x € V}, {(x,Ax+b) |[x €V}, for A€ F and b € V. Given
f:V =V, define the graph of f to be the set of points I'(f) = {(X, f(x) |xe V}.
One can check that f € TM(V) if and only if I'(f) meets every line of A/ in exactly
one point; that is, if and only if I'(f) is a transversal of M. It can also be shown that
any transversal of A is the graph of a transversal mapping of V.

It is worth noting that the definition of transversal mapping is similar to those of
orthomorphism and complete mapping. Given a group G, a permutation f: G — G
is called an orthomorphism of G if the function z — 27! f(z) is also a permutation
(where the group operation is written multiplicatively). A permutation f is called a
complete mapping if the function z — zf(z) is a permutation. Let G = V(n, ¢) and
f:V — V such that z — f(z)+ Az is a permutation of V' for every A €  C F. Then
f is an orthomorphism if {0, —1} C Q and f is a complete mapping if {0,1} C Q.
Notice that all three concepts coincide if ¢ = 2. In general, transversal mappings are
orthomorphisms as well as complete mappings, but not conversely. Orthomorphisms
arise in the constructions of, among others, triple systems, Mendelsohn designs, Room
squares, and group sequencings. See [16] for some background and a survey of many

results on orthomorphisms and complete mappings.

Example 3.3. Transversal mappings with q = n = 2. In this case, transversal

mappings, orthomorphisms, and complete mappings are the same. It is simple to
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check that there are precisely two transversal mappings of GF(4) sending 0 to 0; they
are listed in the following table. The elements of GF(4) are denoted by 0,1, w, w?
where w? +w +1=0.

z [0 1 w o?

film) |0 w w? 1
(@) |0 w? 1 w

Example 3.4. Let L be a field extension of F = GF(q). For any 7 € L \ F, the
function f(z) = 7z is a transversal mapping of L as a vector space over F. Notice
that the functions in the previous example are both of this form. Indeed, f;(z) = wz

and fy(z) = wiz.

Of greatest interest in this chapter will be transversal mappings of two-dimensional
vector spaces, as these are closely connected to spreads of three-dimensional projective
spaces. In order to make this clear, recall some notation introduced in the previous
chapter. Let ¢ be a prime power. Let F = GF(q) and let L be the extension of F of
degree 3. The ambient vector space is V = F @ L; let £ denote the geometry PG(V).
Pick an element £ € L such that Tr(§) =1 and set H = {z € L | Tr({z) = 0}.

It will be particularly useful to distinguish a certain collection of planes of X.. Let

Mo ={(0,2) | z € L};
Iy ={(t,z) | Tx({z) = A}, for A € F.

Note that these ¢ + 1 planes are incident with a common line {(0,z) | z € H}, which
will be denoted by .. Furthermore, each point of I, is represented by a unique

vector of the form (0,z + 1), with € H. Indeed, given y € L'\ H, let

Y

Tr(&y)

Then z € H and (0: 2z4+1) = (0: Titey) = (0: ), so at least one such representation
always exists. On the other hand, if (0:z+ 1) = (0: 2’ + 1) with z,2’ € H, then
x = sz’ for some s € F*. Apply Tr(¢:) to the latter equation to obtain 1 = s, hence
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z = 7’. In a similar manner, it may be shown that each point of ITy\ l,, is represented
by a unique vector of the form (1,z) with z € H.
The first lemma of this section establishes the equivalence between spreads which
contain the line /., and transversal mappings of H. The result is due to Ostrom, [35].
For the convenience of the reader, a short proof is included here in the notation of

this work.

Proposition 3.5. There is a one-to-one correspondence between the set of spreads

of ¥ which contain the line I, and the set TM(H).

Proof. Given f: H — H, define S(f) = {l;(z) | £ € H} U {lo} where [;(z) is the
projective line (0 : z + 1)V (1 : f(z)). As (0 : z+ 1) # (0 : y) for any z,y € H,
then l;(z) and l are skew for every z € H. Now suppose z,y € H and z # y. As
every point of Il \ lo is represented by a unique vector of the form (0, z + 1) with
z € H, then lf(z) and I;(y) do not intersect in a point of II,,. Furthermore, the set
of planes {II, | A € F} partitions the complement of I, in X. Thus, I;(z) and I;(y)
intersect only if they intersect in some point on a plane IIy. The line I;(z) meets the
plane II in the point (1 : f(z) + Az + A). If [;(z) intersects lf(y) at the plane IIy, it
follows that f(z) + Az = f(y) + Ay. Thus, if f € TM(H), then l;(z) and I;(y) are
skew. Therefore, S(f) is a set of ¢ + 1 pairwise skew lines and hence is a spread of
3’ containing /..

It is straightforward to see that the map f — S(f) is injective. To check surjec-
tivity, let S be any spread of ¥ and suppose I, € S. Recall that each point of I1 \ /oo
is represented by a unique vector of the form (0,z + 1), x € H, and each point of
IT \ I is represented by a unique vector of the form (1,v), ¥ € H. Furthermore,
each point of ¥ \ I, is incident with a unique line of S\ {l}. Now define a map
f+H — Hby f(x) = y if there is a line of S which is incident with the points
(0:2+1) and (1 :y). That f is well defined follows from the comments immediately
above. Since S is a spread, it follows as in the previous paragraph that f € TM(H)
and it is straightforward to check that S = S(f). Therefore, S is a bijection. O

It would be very desirable to count the number of spreads of PG(3,¢). This is
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currently an open problem and believed to be quite difficult. A corollary of Proposi-
tion 3.5 is that counting spreads is equivalent to counting transversal mappings. Let
n(q) denote the number of spreads of PG(3,q). As PT'L(4, q) is transitive on Egl) and
maps spreads to spreads, it follows that the number of spreads containing a specific
line does not depend on the choice of this line. Denote by 7/(¢) the number of spreads

containing a certain distinguished line.
Corollary 3.6. 7(q) = (¢* + ¢+ 1)|TM(2,q)|.

Proof. In two ways, count the number of ordered pairs (/,.5), where S is a spread

containing the line [. One obtains

n(@)(@* +1) = [25"1n'(q).
Note that [E{| = (¢ + 1)(¢? + ¢ + 1), and 7'(q) = |TM(2,q)| by Proposition 3.5.
The desired result now follows by substitution. O

The next lemma concerns some groups acting on TM(n, q); the simple proof is

omitted.

Lemma 3.7. The set TM(n, q) is invariant under the following transformations:
(i)f = f+ pl, where p € F and 1 is the identity on V(n,q);
(iW)f — Af + ¢, where A € F* and ¢ € V(n, q);
(ii)f — ot fa, where a is a permutation of V(n,q).

Remark 3.8. For the purposes of counting transversal maps, it suffices, in light of
Lemma 3.7 (41), to count the number of f € TM(n, q) for which £(0) = 0. In Example
3.3 it is remarked that there are exactly two transversal maps of V' (2, 2) fixing 0. Thus,
there are a total of 8 transversal maps of V(2,2), leading to the well known result

that there are 56 spreads of PG(3, 2).
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To close this section, some further basic results on transversal mappings are pre-
sented. While the number of transversal mappings of V' (2, ¢) is unknown and prob-
ably very difficult to determine, the same cannot be said for the number of linear

transversal mappings, which is given by the first of these results.
Proposition 3.9. There are 3¢*(q — 1)? linear transversal mappings of V(2,q).

Proof. A linear transversal mapping is an endomorphism of V = V/(2, ¢) having no
eigenvalues in GF(q). Thus, it suffices to count the number of linear transformations
a : V — V which do have eigenvalues in GF(q). There are three mutually exclusive
and exhaustive cases: (i) a has two distinct eigenvalues in GF(q); (ii) a has one
eigenvalue in GF(g) of algebraic and geometric multiplicity 2; (iii) a has one eigenvalue
in GF(q) of algebraic multiplicity 2 and geometric multiplicity 1. One can check that
the number of invertible a in each of these cases is as follows: (i) 2¢(¢® — 1)(q — 2);

(ii) ¢ — 1; (iii) (¢* — 1)(¢ — 1). The result follows by subtracting these totals from
9(¢> — 1)(g — 1) = |GL(2, ). 0

The final result concerns the representation of transversal maps as polynomials.
Let F = GF(q). For any function ¢ : F — F there is a polynomial f(X) € F[X]
of degree at most ¢ — 1 for which f(z) = ¢(z) for every z € F. If f is in fact
a permutation polynomial, then deg f < ¢ — 2 by Hermite’s Criterion [25]. It was
shown by Niederreiter and Robinson [34] that orthomorphisms of F have degree at
most ¢ — 3 in the case ¢ is odd. The proof is also based on Hermite’s Criterion. The
same result for ¢ even is due to Wan [44]. Proofs of each case may also be found in

[16]. Wan’s proof is easily modified to prove the following more general result.

Proposition 3.10. Let F = GF(q). Let f(z) € F[z] have degree less than q and
suppose that f(z)+ 6z is a permutation polynomial for every 0 in some subset © C F.

Then deg f < q—|9].

Proof. Let ¢ = p® where p is prime. Let 1 < m < |©| and suppose p¢||m, where
0 < e < d. It will be shown that the coefficient of the term of f(z) of degree ¢ — m

is zero.
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Let O be the ring of algebraic integers of some number field such that O/pO 2
F. Let 7 : O — F be the canonical surjective homomorphism and extend 7 to a
homomorphism of polynomial rings O[z] — F[z] by 7(z) = z. Let w be a primitive
element of F and choose a € O such that n(a) = w. Note that a?? =1 mod pO.

If 97t =1+ up' for some g € O and some 1 < i < e, then

q
(@) =1+ pp) =14 (3) /p? =1 mod p*0,
=1
as ¢ > p'. Since m(a?) = w? = w, then without loss of generality it may be assumed
that ! =1 mod peHO.
Let S ={a*|i=1,...,¢g—1}U{0}. Suppose ¥ : F — F is a permutation
polynomial and ¥ : O — O is any polynomial with coefficients in O such that

7(¥(x)) = (z). Note that {n(s) | s € S} = {n(¥(s)) | s € S}. Thus,

D W™= (s +puls)™,

seS s€S

for some p : S — O. Furthermore, (s + pu(s))™ = s™ mod p*™O. Thus,

PR IOED I (3.1a)

sES seS
g—1

= Z o™ (3.1b)
=1

a™(alem — 1)
oam™—1

=0 mod ptO. (3.1d)

(3.1c)

Il

Now suppose f € F[z] is a polynomial of degree less than ¢ such that f(z) + 6z
is a permutation polynomial for every § € ® C F. Without loss of generality, assume

0 € ©. Let F(x) € O[z] such that n(F(z)) = f(z) and let T = {t € S | 7(¢t) € 6}.
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It follows from equation (3.1) that

Z(F(s) +ts)™ =0 mod p*'O

seS

for every ¢t € T'. Note that

m~—1

(F(s)+ts)" =t"s™+ F(s)™ + Z (T) t's'F(s)™

g=]1

Since

Zsm = EF(s)m =0 mod p*™O

ses seS

and p® divides (T) inZfor1<i<m—1, then

m—1
Z Zp_e (T) t's'F(s)™ " =0 mod pO.

s€ES i=1

As s7=s mod pO for all s € S, then there exist cg.i) € O such that

g—1
SF(s)™ " = ch)s" mod pO.

J=0

Furthermore,

Zsj =0 mod pO,

ses
for 1< j<q-—2,and
qu_l = —1 mod pO.

sES



Therefore,

for every t € T'. Thus, the polynomial

B (e

has degree m — 1 and has |T| = || > m — 1 roots in O/pO = F. Thus, it must be
the case that for every ¢ € {1,... ,m — 1},

- (8)
P (z) Cge1 =0 mod pO.

In particular, noting that p¢||m, it follows that c(m1 Y'=0 mod po.

From the definition of the c§. ) ’s, one has

s"1F(s) =™ Vs mod pO.

.7

Let

g—1 q—1
f(z) = Z a;xt, F(z)= szxz
i=0 i=0

Then b, ., = c(ml_l) = 0 mod pO, as m < ¢. Finally, ag—m = 7(bj—rm) = 0 as

claimed. O

The following corollary is immediate from the definition of transversal mapping.
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Corollary 3.11. Let L be a finite extension of a finite field F. If f € Llx] is a
transversal mapping polynomial of L as a vector space over F and deg f < |L|, then

deg f < |L| — |F|.

Example 3.12. The above result says that all transversal mapping polynomials of
GF(9) over GF(3) have degree at most 9 —3 — 1 = 5. The result here is sharp
. as indeed there are transversal mapping polynomials of degree 5. An example is

f(z) = w?z® + 2t + Wbz + 22 + Wiz, where w? + w42 =0.

3.2 Regular spreads

Definition 3.13. A regulus R of ¥ is a set of ¢ + 1 pairwise skew lines with the
property that any line meeting three lines of R meets every line of R. Such a line is

called a transversal of R.

A line of PG(3, ¢) meeting a nondegenerate hyperbolic quadric in three points must
be contained in the quadric. Each hyperbolic quadric admits two ruling families of
g + 1 pairwise skew lines each. As the lines of such a family partition the points of
the quadric, any line on the surface is either a member of the family or meets each
member in a point. These families thus form regulii. In fact, any regulus arises as
the ruling family of lines of a hyperbolic quadric. The following Lemma, lists some

more basic facts about regulii. See [11] for proofs of these and other facts concerning

regulii.

Lemma 3.14. Any three mutually skew lines I, m,n determine a unique requlus which
will be denoted R(l,m,n). There are q+ 1 transversals to a requlus R, they are pair-

wise skew and themselves form another regulus which will be denoted R°PP. Further-

more, (RPP)°PP = R.

Definition 3.15. A spread is called regular if it contains the regulus determined by

any three of its lines.

The proof of the following proposition can be found in [11].
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Proposition 3.16. If a line | is skew to each line of a requlus R then there is a

unique reqular spread containing l and R.

It turns out that if a spread is not regular, then it must be missing quite a few
regulii. As the next lemma shows, a spread which contains every possible regulus on

a given line must already contain too many regulii to avoid being regular.

Lemma 3.17. Let ¢ > 2 and let S be a spread of PG(3,q). If there exists some line
lo of S such that the regulus R(ly,11,15) is contained in S for every pair of distinct
lines l1,ls € S\ {lp}, then S is regular.

Proof. Let R be any regulus of S which contains [, and let m € S\ R. By Lemma
3.16 there exists a unique regular spread 7" containing R and m. For each ! € R\ {ly},
the regulus R(lp,l,m) is contained in S N'T by hypotheses on S and 7. Note that
R N Rp,l,m) = {lo,1} and R(ly,l1,m) N R(ly,lz,m) = {lp,m} for distinct I; €
R\ {lo}. Thus, for each of the ¢ lines of R \ {lo} we find ¢ — 2 distinct lines of
(SNT)\ (RU{m}). Together with m this accounts for (¢ — 1)? lines of (SNT)\ R.

Suppose S # T. Let m' € S\T and let 7" be the unique regular spread containing
R and m'. As above, |(SNT")\ R| > (¢ — 1)?. Furthermore, by Proposition 3.16,
T NT =R. Therefore

gD =IS\RIZ|(SNT)\R[+[(SNT)\R| > 2(q - 1)?,

a contradiction if ¢ > 2. Hence S =T and S is regular. O

In the notation of the previous section, the next result characterizes regular
spreads in terms of their associated transversal mappings. Recall L = GF(¢%),
F = GF(q), ¢£ € L such that Tr(¢) = 1 and H = {z € L | Tr(¢x) = 0}. Furthermore,
V=FoL Il,={0}oL, IIy=F®H, and |, = {0} ® H.

Proposition 3.18. Given f € TM(H), the spread S(f) is a regular spread if and

only if f is an affine map over F.



46
Proof. By Lemma 3.17, it is enough to show that S(f) contains each regulus of the
form R(l,ls(x),1;(y)) if and only if f is affine. Let z,y € H with  # y. Let
R = R(leo, (), ls(y)). For A € F let

my= (1, f(z) + Az + X)) V(1 fly)+ Ay + )

and let
Mee=(l:z+1)V(1:y+1).

It is simple to check that R°PP = {m, | A € F°}.
The points of m., have as representatives the vectors (0, rz + (1 —r)y+ 1), where
r € F° and the usual conventions regarding oo are adopted. The points of m, have

as representatives the vectors

(L,r(f(2) +dz) + (L =) (f(y) + Ay) + A).

For each fixed r, there exist unique s, € F such that the following three projective

points are collinear:

(O:rz+(1—r)y+1),
(L:sf(z)+(1-s)fy)),
(1:t(f(z) +2)+ (1 =) (f(y) +y) +1).

Furthermore, this line is an element of R, as it is a transversal of R°PP. Note that with
r = s = t, the sum of the first two of these vectors equals the third and hence these
projective points are collinear. This line meets I, in the point (0,7z + (1 —r)y + 1)
and meets Iy in the point (1,7 f(z)+ (1 —r)f(y)). Hence, it is an element of S(f) if
and only if f(rz + (1 —r)y) =rf(z) + (1 —7r)f(y). O

Remark 3.19. Together, Lemma 3.7, Proposition 3.9, and Proposition 3.18 count
the number of regular spreads of ¥ which contain the line I,. Indeed, by Proposition

3.9 there are 5¢°(¢—1)? linear transversal mappings of H. Thus, there are 1¢*(g—1)?
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affine transversal mappings by applying Lemma 3.7 part (ii). By Proposition 3.18,
there are the same number of regular spreads containing l.,. This gives the well
known result that there are q*(q — 1)*(¢> + ¢ + 1) regular spreads of ¥, arguing as
in Corollary 3.6.

One great benefit of the representation of spreads by their transversal mappings
is that it is extremely easy to restrict one’s attention solely to regular spreads. This
feature allows a convenient computer search for regular spreads which would generate
cyclic parallelisms under the application of a certain automorphism. Indeed, choosing
a basis for H, one need only run through the 2 x 2 matrices over GF(q), omitting
those with eigenvalues in GF(q), and allowing arbitrary affine translations. This
search revealed a family of cyclic regular parallelisms when ¢ = 2 (mod 3) which is

the subject of the remaining sections of this chapter.

3.3 The construction

It was shown in Chapter 2 that if ¢ = 0,1 (mod 3) then PG(3,¢) admits no cyclic
parallelisms. Thus, a standing assumption for the rest of this chapter is that ¢ =
2 (mod 3). In [36], Pentilla and Williams give a construction of two inequivalent
cyclic regular parallelisms of PG(3,¢) when ¢ = 2 (mod 3). Their construction is
given in terms of the hyperbolic polar space O1(6,¢q) via the Klein cdrrespondence
between the lines of PG(3,¢) and the singular points of this quadric. This section
presents a construction of a cyclic regular parallelism of PG(3, ¢) which was discovered
independently of the result of Pentilla and Williams. The question of the equivalence
of this construction with those of [36] is not addressed here. However, in Section
3.5 it is conjectured that there are exactly two equivalence classes of cyclic regular
parallelisms of PG(3, ¢) when ¢ = 2 (mod 3). This conjecture of course implies the
equivalence of the example here with one of those of [36].

The construction presented here is given in terms of a linear transversal mapping
with the notation introduced in Chapter 2. Since ¢ # 0 (mod 3), one may take
&= % and thus it will be the case that H = ker Tr. As before, let w be a primitive
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(¢*> + g + 1)st root of unity in L. Note that w generates G. Let o : V — V be the
linear transformation o : (t,z) — (t,wz). Recall Proposition 2.12, which shows that

o partitions the set of lines of PG(V) into ¢* + 1 orbits of length ¢ + ¢ + 1.

Lemma 3.20. As a projectivity of ¥, the map o has a unique fized point and a unique

invariant plane. Furthermore, all orbits of o on the lines of X have length ¢*> +q+ 1.

Proof. 1t is straightforward to see that o fixes the projective point (1 : 0) and acts
on the projective plane II,, = {0} & L. As w has order ¢> + ¢ + 1 in L*, it follows
that o has order ¢® + ¢+ 1 in PGL(V). Thus, the orbits of lines have length at most
¢* + q¢ + 1. Next, note that o, is a Singer cycle of PG(Ils,), since G N F* = {1}.
Therefore, all line orbits of ¢ must have length exactly ¢ + ¢ + 1. It is now trivial

that there are no further fixed points or invariant planes. O

Given f € TM(H), it is natural to ask whether the spread S(f) consists of a full
set of orbit representatives under (o) and thus generates a cyclic parallelism under
the action of (o). Let P(f) = {S(f)o’ | i = 0,...,¢* + ¢} be the set of spreads
generated by S(f) and o.

Proposition 3.21. P(f) is a parallelism of ¥ if and only if

8@y Y gy - _DU@Y)
(e 1) == o (2

has no solutions (z,y) € H x G\ {1} with Tr((z + 1)y) # 0.

Proof. Since o acts as a Singer cycle on the plane II, the orbit of the line I, is
precisely the set of lines of II,. A parallelism results from the action of ¢ on S(f)
if and only if the orbits of the lines l;(z), x € H, are disjoint. It suffices to check
whether or not the orbit of each I;(x) meets S(f). Suppose I;(z)o* = I;(z') for some
pair z,z’ € H and 0 < ¢ < ¢*+¢+1. With y = " it then follows that Tr((z+1)y) # 0

and
3z + 1)y
Il =T Y
T T W@+ )
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Furthermore,

3z + 1)y — (s .
f(m—l) = fx)y+ Az + 1)y

for some A € F. Take the trace of each side of the above equation to see that

Te(f(z)y)

A== Tr((z + 1y)’

yielding the desired result. O

The following will be used as the base spread to generate a cyclic regular paral-

lelism. Define § : H — H by 0(z) = 27 — z.
Lemma 3.22. §(0) is a regular spread of X.

Proof. Note that
0(z) — 6(y)

L ML ()T L
pr—y (z—y)

If z,y € H and z # y, then the above expression cannot lie in F. Indeed, 27! € F
implies z € F as (¢ — 1,¢* + ¢+ 1) = 1 when ¢ # 1 (mod 3). Further, 2 —y € F
implies z = y as H N F = {0}. Now the above condition on the slopes of secants to
the graph of 6 is easily seen to be equivalent to the condition that 8 is a transversal
mapping of H. Therefore, S(9) is a spread of ¥ by Proposition 3.5. Regularity follows

from Proposition 3.18 and the fact that 6 is a linear map. 0

Substituting f(z) = 29 — z into equation (3.2) and collecting the resulting terms

in powers of y, it follows that P(0) is a parallelism if and only if the equation
((w+1)q2+q—(x+1)2>yq2+1-— ((m+1)q2+l—(z+1)2‘1> Yy —3(z+1) %7+ 3(z+1)y = 0

has no solutions (z,y) € H x G\ {1} with Tr((z + 1)y) # 0. Applying the Frobenius

automorphism of the extension L/F to the above equation results in the equation

¥(z,y) = 0, where ¥(z,y) = ¢(z,y) — ¢(z,y)? and

oe9) = ((o+ D = (@4 %)%+ 3+ 1y
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Thus, P(0) is a parallelism if and only if the bivariate polynomial ¥(z,y) has no zeros
with (z,y) € H x G\ {1} and Tr((z + 1)y) # 0. The following characterization of
the zeros of ¥ will be more than sufficient to establish that P(6) is a parallelism of

Y. Its proof will occupy the next section of this chapter.

Theorem 3.23. For each z € L\ {—1}, if ¥(z,y1) = ¥(z,y2) = 0 and y1 # v», then
N(y1) # N(y)-

Corollary 3.24. P(0) is a parallelism of ¥..

Proof. Suppose x € H. Expand the polynomial ¥(z,1) in powers of z and reduce

modulo z%° + 79 + z to obtain

U(z,1) = (z+ 1T — (2 + 1) — (2 + 1) + (2 + 1) = 3(z + 1) + 3(z + 1)
=gl L p 1 -2 229 1 gt g1
+22 4227 41— 327 —3+329+3
= Ot _ g2 el 27
= —z(2? + 1) — 227 — 3T 4 (27 + 2)?

= (.

Thus, ¥(z,1) = 0 whenever z € H, so Theorem 3.23 implies that ¥(z,y) # 0 for
(z,y) € H x G\ {1}. Therefore, P(6) is a cyclic parallelism. Regularity was shown
in Lemma 3.22. O

3.4 The proof of Theorem 3.23

This section contains two technical lemmas needed to prove Theorem 3.23.

Lemma 3.25. Ifa € L\ {1} then the polynomial 297! + 22+ a has at most two roots

in L. Moreover, these roots are of the form

. u—l—aq2
 (a—-1)7’
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where n € F and p? — (1 — Tr(a))p + N(a) = 0.

Proof. If a = 0 then the roots of the polynomial are 0,1 and the given formula holds.
So assume a € L'\ {0,1}. Note that (¢ + 1)(¢> — ¢+ 1) =2+ (¢® — 1). Thus,

22— ( Zq+1)q2~q+1

o)

— zq+1(zq2 + aq)q—l

a?
= 21 (-1 — — 4+ a9)7!
z

. ((a 1)1 a'f)q_l.

Since z cannot equal 0, it must be that (a — 1)%z — a? = p for some pu € F*.
2
Thus, z = % Now substitute this expression for z into the original equation

29T + 29+ a = 0 to obtain the desired quadratic satisfied by u. O

Recall that ¥(z,y) = ¢(z,y) — ¢(z,y)?. Let

a(z) = (z + )T = (z + 1)%

Alz) =3(z + 1)

so that ¢(z,y) = a(z)y?*! + B(z)y?.

The first case for the proof of Theorem 3.23 is to assume z € F\ {-1}. In
this case, a(z) = 0 and B(z) € F*. Thus, ¥(z,y) = B(z)(y? — y?’) = 0 if and
only if y € F. Distinct elements of F have distinct norms relative to the extension
L/F, as (¢ — 1,3) = 1. Thus, the claimed characterization of the zeros of ¥ holds if
z e F\{-1}.

For the remainder of this section assume z € L \ F. Note that a(z) # 0 in this
case. Indeed, a(z) = 0 if and only if (z + 1)@* = 1. Using the fact that u?~! € F*
if and only if w9~ = 1, it follows that a(z) = 0 if and only if z € F.
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Thus, it is the case that a(z), 5(x) # 0. For the sake of notational simplicity, the
arguments to « and @ will, where reasonable, be omitted. As ¥(z,y) = ¢(z,y) —

#(z,y)?, it follows that ¥(z,y) = 0 if and only if ¢(z,y) € F. Suppose that
ay?™ + ByT+ A =0, (3.3)

for some A € F.
Let z = % Multiplying equation (3.3) by ﬁ‘;‘—L results in

22 4y =, (3.4)
where
) — Aa(x)? a
v =1, = S (3.59)
=3 (@ s @ ). (3.50)

Note that expression (3.5b) implies that Tr(y) = 0; in particular, v # —1. Therefore,
Lemma 3.25 applies to equation (3.4), yielding

_ptT
z = =1y (3.6)
where p € F and
#* = p+N(y) =0. (3.7)

Lemma 3.26. With z and p as in equations (8.6) and (3.7), N(2) = —p.

Proof. Note that
N(ps+7)
N(z) = —/——=.
) N(y—-1)
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Furthermore, as Tr(y) =0 and p? — pu + N(v) = 0, one has

N(p+7) = (u+ )+ +77)
= 4+ p?Te(7) + pTe(y) + N(v)
=<1+Tﬂf“)—NFﬁ)u

= —N(y - Dp.

The result is now immediate. O

To complete the proof of Theorem 3.23, suppose z € L\ F and ¥(z,y;) =
U(z,ys) = 0. It has been shown that then there exist A\;, As € F such that

a(z)yf ™ + B(z)yd + X =0,

for i = 1,2. Let z; = g‘—ﬂ%);% and v; = y(z, \;) = [’;(:T(fﬂ Then there also exist
i1, pig € F such that
2
pi +f
2= —1—
(vi — 1)1

and 7 — p; + N(v;) = 0.
Suppose N(y1) = N(y2). By definition of z;, one has N(z;) = N(z3). By Lemma
3.26, one has N(z;) = —p;. Thus, py = po. Therefore,

N(’Yl) = H1 M% = M2 — M% = N(Vz)-

Furthermore, by definition of ;, one has

A3N(a)
N(B)*

N(v) =

Hence, N(y1) = N(y,) implies that A3 = A3 from which it follows, since (3,q—1) = 1,
that Ay = A;. But then y; = v, and hence y; = uo. Now it follows that z; = 2z,

hence y; = ¥».
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In summary, if ¥(z,y1) = ¥(z,y2) = 0 and N(y;) = N(y3), then 4, = 3o and the

proof is complete. 0

3.5 Other examples

This section concerns the investigation of further examples of cyclic regular paral-
lelisms. Of course, it is easy to see that there are at least ¢ — 1 additional cyclic
regular parallelisms, given by F* multiples of the transversal mapping 6. However,
these examples are equivalent under the group of projectivities PGL(V) of ¥. An
inequivalent example is produced by applying a polarity of ¥ to the original example.
This idea for producing a new example was also used in [36]. It is conjectured that
there are no further examples of cyclic regular parallelisms, up to projective equiva-
lence. Some reductions are offered which slightly simplify the scope of work remaining
to prove such a classification.

To obtain some additional cyclic regular parallelisms, note that f : H — H is
a transversal mapping if and only if A\f is a transversal mapping for every A € F*.
Furthermore, combining Proposition 3.21 with the fact that the trace function of the
extension L/F is F-linear, it follows that P(f) is a parallelism if and only if P(\f) is a
parallelism for every A € F*. Thus, one obtains a family of cyclic regular parallelisms
P(A0), A € F*, from the single example constructed in the previous sections.

However, as mentioned above, these new parallelisms are essentially the same as
~ the original example, in that they are equivalent under the group of projectivities of
the geometry. Indeed, for A € F* define 7, : V' — V by (¢, )7\ = (¢, Az). Note that
(0:u)=(0:Au) = (0: u)7, for every u € L*. That is, 7\ fixes each point of II..
Therefore, for f € TM(H),

l)\f(iL‘) = (O x4+ 1) \V4 (1 . /\f(a:)) = lf(:L’)T)\.

Since Ty = le then S(Af) = S(f)7\ for every A € F* and every f € TM(H).
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Finally, the projectivities ¢ and 7, commute. Therefore, for f € TM(H),

PAf) ={S(\f)o* | 0<i< ¢* +q}
={S(f)mo* | 0<i< ¢+ ¢}
={S(f)o*n | 0<i< ¢+ g}
=P(f)7x-

Thus, P(f) and P(Af) are projectively equivalent. One is a parallelism if and only
if the other is. Hence, the members of the family {P(A0) | A € F*} of cyclic regular
parallelisms mentioned above belong to the same equivalence class under the action
of PGL(V).

An inequivalent example can be obtained by considering the following polarity of

Y. Let {-,-) : V x V — F be the symmetric bilinear form
1
((t1,21), (t2, 22)) = b1ty — -gTr(xlmz).

That this is indeed a symmetric bilinear form is straightforward to check and merely
makes uses of the F-linearity of the trace map Tr. It is also straightforward to see that
this inner product is nondegenerate. Define the polarity L: V — F by vt = (v, v).
An important property of this particular polarity is that it interchanges the point,
(1:0), and the plane, II.,, which are stabilized under the action of o. Furthermore,
IL = (0:1)Vv(1:0). Since polarities send the points, lines, and planes of ¥ to
the planes, lines, and points, respectively, and preserve incidence in X, it follows
that the dual of any spread which contains the lines I, and [, is itself another spread
containing these two lines. Thus, if f is a transversal mapping of H and f(0) = 0 then

there exists a unique transversal mapping of H, call it f*, such that S(f)* = S(f4).

Proposition 3.27. Let f € TM(H) and suppose f(0) = 0. Then P(f) is a paral-
lelism if and only if P(f*) is a parallelism.

Proof. Tt is straightforward to check that (vo)* = vio~! for every v € V. Thus
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(S(flo')t = S(f)to™ = S(f*)o". Hence,

P ={S(fe") 10<i< P +q}
={S(fY)e|0<i< ¢ +q}
={S(fNe" |0<i< @ +q}

=P().

As the notation suggests, it happens that P(f) and P(f*) are duals of each other

under the polarity L. Therefore, one of them is a parallelism if and only if both of

them are parallelisms. O

Thus, P(0)* = P(61) is a cyclic regular parallelism. It turns out that it is not
equivalent to P(6); establishing this fact is the subject of the next proposition. The
proof will use the fact that 6+ (z) = —2(27+ 2z). The details of the calculation of f+
from a transversal mapping f with f(0) = 0 will be given in an appendix following

this section.
Proposition 3.28. P(0) and P(61) are not projectively equivalent.

Proof. For notational simplicity, let P denote the parallelism P(6). Suppose to the
contrary that P+7 = P for some 7 € PTL(V). Let Stab(P) denote the group of
collineations of ¥ which act on the set of spreads of P. It follows that (o) and
771{o)7 are subgroups of Stab(P) N PGL(V). Note that ¢*> + ¢ + 1 is relatively
prime to |PGL(V)|/(¢®* + ¢+ 1) = ¢%(¢*> + 1)(g + 1)(¢ — 1)?, since (¢ — 1,3) = 1.
It follows that any two subgroups of Stab(P) N PGL(V) with the same maximal
prime-power order dividing ¢? + ¢ + 1 are Sylow subgroups and hence are conjugate.
Therefore, for some 1 < r < ¢% + g + 1, there exists h € Stab(P) N PGL(V) such
that (0") = h~'771(0")Th. Note that 7h € Nprra)((o")) and P+rh = Ph = P.
Furthermore, Tho® shares these two properties. Without loss of generality it thus
may be assumed that 7 € Nprpy)((07)) and S(6+)7 = S(0).

Note that o" has a unique fixed point (1 : 0) and a unique invariant plane, I1..

Since 7 normalizes {o") it follows that 7 fixes the point (1 : 0) and acts on the plane
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II.. Define f € PTL(L) so that (0 : z)r = (0 : f(z)) for x € L*. Note that
(0:z)0" = (0 : az) where a = w"@~Y. Since 7 normalizes {o"), it follows that there

exists k£ > 0 such that
flaz) = of f(z) for all z € L. (3.8)

Let ¢ = p™. All functions from L to L are polynomials and the F-linear polynomials
are those of the form g(x) = &z +&x9+£27, with coefficients & € L. The semilinear
polynomials all have the form g(zF™) for some linear polynomial g(x) and 0 < m < n.
From equation (3.8), it can be seen that at most one coefficient of f(z) is nonzero;

hence,
f(z) = £z”™™" for some i € {0, 1,2}. (3.9)

Recall that S(6+)r = &(6). Since 7 fixes the projective point (1 : 0) and stabilizes
the plane II.,, it must be the case that 7 fixes the lines [, and ly.(0) = [4(0). Hence,
&= f(1) € F* and f(H) = H. Furthermore, for z € H,

lor(z)7 = (0: fz+1)) Vv (1: f(6"(2)))
=(0: f(z)+ &)V (1 : ;f(qu) - gf(w))-

This line meets I, in the point (0 : @ + 1). Therefore ly. (z)7 = lg(f%@) for each

x € H, from which it follows that

f(@) +2f(z) _ f(z)— f(z)?
: = : Vz € H. (3.10)

Since f is a permutation of H, introduce the new variable y = f(x). Note that
f(z?) = f(z)? = 9, as £ € F. Substituting equation (3.9) into equation (3.10) and

changing variables yields

€+3)y!+ (26 -3)y=0 vy e I (3.11)
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Since ¢ = 2 (mod 3), it cannot be that both coefficients of the above polynomial are
zero. Thus, equation (3.11) gives a nonzero polynomial of degree less than ¢? vanishing

everywhere on H, a contradiction as [H| = ¢%. Therefore no such 7 exists. O

For ¢ = 2 (mod 3), there are thus at least two projective equivalence classes of
cyclic regular parallelisms of PG(3,q). The question arises whether there are any
more. The characterization of regular spreads by affine transversal mappings gives an
efficient way to answer this question by computer search for sufficiently small values
of gq. This section concludes with some remarks about this search and its results.

The search for cyclic regular parallelisms is based on Propositions 3.18 and 3.21.
Recall that Proposition 3.18 says that regular spreads are of the form S(f) for some
affine f € TM(H). Proposition 3.21 gives a necessary and sufficient condition for
the set of spreads P(f) to be a parallelism. The problem is thus to determine which
affine transversal mappings satisfy the condition of Proposition 3.21. The place to

start is to give a description of affine transversal mappings in terms of polynomials.

Proposition 3.29. Fvery affine transversal mapping of H is uniquely of the form
(az)?+ bz + ¢, for a,b,c € L, where

(i) a+beF,
(i) c € H, and
(iii) the polynomial A? 4+ Tr(a)A + Tr(a?*?) has no roots in F.

Proof. Homg(H,L) is an L-vector space of dimension 2 spanned by {z,z?}. Given
an affine map f : H — L, there exist unique a,b, ¢ € L such that f(z) = (ax)?+bz+c
for all z € H. Conditions (i) and (i) of the Proposition arise from requiring that

f(H) C H. As f(0) = ¢, it follows that ¢ € H. In general,

Tr(f(z)) = Tr((az)?) + Tr(bx) + Tr(c)
= Tr(az) + Tr(bz) + 0
=Tr((a + b)z).
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The condition Tr(f(z)) = 0 for all z € H implies that @ + b € H- = F under the
trace inner product. Thus, f : H — H if and only if conditions (i) and (%) are met.
Finally, condition (iii) arises from the requirement that f be a transversal mapping

of H. As
f(z) = f(y)
-y

and a + b € F, then f € TM(H) if and only if

=al(z—y)T " +b

alz? ' —a g FVazeH\{0}
Furthermore, for any z € L*,
alz?™l —a=XeF
if and only if

Tr(z) = z + 27 + z¢

=z+z- 29 4zt (297h)1

q
:$+m(/\+a> +$<)\+a> <)\+2a >
a4 a4 ad
axr

= Na) (aq2+q +al A4 a)+ A +a)(A+ aq))

o 2 a r(a?t1)) .
N(a) ()\ + Tr(a)A + Tr( ))

Therefore, there exists z € H \ {0} such that a?2%"! —a € F if and only if there exists
A € F such that A? + Tr(a)\ + Tr(a??) = 0. Thus, f € TM(H) if and only if the
quadratic polynomial X? + Tr(a)X + Tr(a?*?) € F[X] has no roots in F. 0

Theorem 2.25 limits the search for transversal mappings f generating a cyclic
parallelism P(f). With the choice lo, = {0} & ker Tr, Theorem 2.25 implies that
a necessary condition for P(f) to be a parallelism is that f(0) = 0. That is, one
need only consider linear transversal mappings when searching for cyclic regular par-

allelisms. An exhaustive computer search over all linear transversal mappings, using
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the characterization of Proposition 3.29, for those which generate cyclic parallelisms
revealed only the two examples 6(z) and 6+(z), along with their F*-multiples, for

q €{2,5,8,11,17,23,29,32}. Thus, the following conjecture has been verified for all

prime powers g < 32.

Conjecture 3.30. If ¢ = 2 (mod 3), there are ezxactly two projective equivalence

classes of cyclic regular parallelisms of PG(3, q).

3.6 Appendix: calculating f+

Recall from the previous section the inner product (-,-) : V' x V' — F given by
1
((t1,31), (t2, 32)) = tata — é—Tr(cleg)

and the polarity L: V — F given by vt = (v,v). Since L maps lines of PG(V)
to lines of PG(V), interchanges the lines I, = {0} @ H and F & F, and preserves
incidence, it follows that L acts on the set of spreads containing F @ F and /... By
extension, one can define an action of L on the set of transversal mappings of H
which fix 0; namely, set f* to be the transversal mapping such that S(f+) = S(f)*.
This section contains the details for calculating f.

Let f € TM(H) with f(0) = 0. Since IZ = (0:1)V (1 :0) then f+(0) = 0. Let
z € H and z # 0. Note that I;(z)* is skew to 1;(0) = IZ; therefore, [;(z)" is skew to

—~

loo- So Is(z)* meets the plane II,, in a unique point, and this point is not incident
with the line /.
Let u=u(z) = 2f(z)?+ f(z). Note that u € H and

Tr(uf(z)) = Tr(2f () + f(z)?) = Tr(f(z))2 = 0.

Therefore,

((0,cu+1), (1, f(z))) = 0 for every c € F.
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Suppose Tr(uz) = 0. Then
1

Since
1
this assumption implies that the point (0 : u) is incident with the line [;(z)+. However,

this is impossible as (0 : u) is a point of l,,. Therefore, Tr(uz) # 0 and

Li(z)t Ny = (0:%“).

Now let y = y(z) = 229+2. Arguing as above, it can be shown that Tr(y f(z)) # 0

(@) NI = (1 : %)

and

Thus, for every z € H \ {0},

o ( —3(2f(2)? + £(2)) ) 3(22% + @)

Tr(2sf(z)7 +af(2) ] Te(29f(z) + 2f(2))

If it is further assumed that f is linear, then a more explicit expression for f+ may
be given. Indeed, if f is linear then S(f) is a regular spread. Hence, S(f1) = S(f)*
is a regular spread, as it is easily seen that polarities preserve the regularity property
of spreads. Thus, f* is an affine transversal mapping. But f1(0) = 0, so f* is also

linear. Therefore,

Tr(2zf(z)? + 2 f(z))

Tr(229f (z) + 2 f(z)) (227 +2z) Vz e H\ {0}.

F2f (@) + f(z)) = -
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Note that for each x € H,

Tr(22f(z)? + 2 f(z)) + Tr (229 f (z) + zf(z))
= 2Tr(zf(z) + zf(2)? + 29f(z))
= 2Tr(zf(z) + 2 f (2)? + z f(z)?)
= 2Tr («Te(f(2)))
= 2Tr(z) Tt (f(z))
= 0.

Therefore,

Tr(2xf(x)‘1 + xf(w)) = —1 for every z
Tr(2mqf(x) - xf(x)) ——1f y z € H\ {0}.

Let 6(z) = 229+ z. Then

fL(é(f(:c))) =6(x) Vz € H. (3.12)
Since f and ¢ are permutations of H, equation (3.12) can be rewritten as
fHz) =60 f1oéz) V€ H. (3.13)

It remains to calculate the inverse of linear transversal mappings of H.

By Proposition 3.29 a linear transversal mapping of H has the form f(z) = (az)?+
(XA — a)z, where A € F and the polynomial X2 4 Tr(a)X + Tr(a?"!) has no roots in
F. Write f~(z) = (bz)? + (u — b)z for some b € L and A € F. The equations

(fo f )= (f"of)(z) =z yield

b:v—ﬁmﬁ+ﬁwﬂ) (8:14)
A — Tr(a)

A=z Tr(a)A 4+ Tr(aatl)

(3.15)

Note that A>—Tr(a)A+Tr(a?*?) # 0 by Proposition 3.29 (4). In particular, §~!(z) =
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—36(z). Finally, one obtains f(z) = —3d 0 f~ 0 §(z) = (cz)? + (1 — ¢)x where p is

given by equation (3.14b) and

. 3a — 2Tr(a)
~ 3(A2 — Tr(a)A + Tr(agt1))’

C

Note that for §(z) = 29—z, one has a = 1 and A = 0. Thus, 6+ (z) = —%(27+2z)

as claimed in the previous section.
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Chapter 4 Beyond Dimension Three

As always, parallelism refers to a parallelism of the lines of PG(2n + 1, ¢). Projective
spaces of dimensions greater than three may admit spreads of subspaces of dimensions
greater than 1; one may wish to consider parallelisms consisting of these subspaces.
However, the concern here will be confined to parallelisms of lines and thus the term
parallelism will remain unqualified.

Surprisingly little is known about parallelisms of projective spaces of odd dimen-
sion greater than 3. Despite being among the most well-known designs, and possessing
the basic numerical parameters necessary to admit resolutions, the design of points

and lines of PG(2n + 1, ¢) is only known to be resolvable in the following cases:
e PG(2n — 1,2) is resolvable for all n > 2, due to Baker [2];

e PG(2° — 1,q) is resolvable for all ¢ > 2 and any prime power ¢, due to Beu-

telspacher [9].

There is no instance for which it is known that PG(2n—1, ¢) fails to admit parallelisms.
In particular, the question of resolvability for PG(5, ¢) is open for every prime power
q> 2.

Beutelspacher’s construction [9] does not result in cyclic parallelisms. On the other
hand, Baker’s constructions of parallelisms of PG(2n — 1, 2) are cyclic. In fact, in [3],
a variant of his construction of [2] yields a pair of orthogonal cyclic parallelisms of
PG(2n—1,2) if n # 2 (mod 3). Two parallelisms P and P’ are said to be orthogonal
if |SNS’'| <1 for any pair of spreads S € P and S’ € P'. These examples of Baker
appear to be the only examples of cyclic parallelisms in dimensions greater than 3.

Section 4.1 contains a construction of a set of skew line-orbit representatives un-
der the action of a Singer cycle on projective spaces of even dimension. A second
construction, this time in PG(2n — 1, 2), gives a partial spread consisting of represen-

tatives of all line-orbits not contained in the invariant hyperplane of an automorphism
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of order 8(2n—2,2). Section 4.2 concludes the chapter with a discussion of some open

problems relating to parallelisms in dimensions greater than three.

4.1 Partial solutions

Suppose a € PI'L(2n, q) acts transitively on the spreads of a parallelism of PG(2n —
1,q). By Lemma 2.8 and Theorem 2.10, ¢ # 1 (mod 2n — 1), « is a projectivity,

2n—1__
! = L Furthermore, o fixes a

and all line-orbits under o have length 6(2n —2,q) =

point and acts as a Singer cycle on some hyperplane II. As there are

(@ =g - 1)
(@ —1(g-1)

lines of PG(2n — 1, ¢), then there are

- 9(7’1, - 17 q2)

orbits of lines under «. The number of orbits of lines which are not lines of II is
(2n —2,q) — 0(2n - 3,9) = ¢*"*.

The number of orbits of lines of II is then

q2n—2 -1

po) =0(n — 2,q?).

Constructing a parallelism of PG(2n — 1,¢) with n > 3 involves a new problem
which did not arise in the construction of parallelisms of PG(3, q). Essentially, there
are two kinds of line-orbits under a: orbits of lines of IT and orbits of lines which are
not lines of II. In dimension 3, there is only one of the former. It is thus trivial to
select a collection of pairwise skew representatives of the orbits in the invariant plane;
any line of the plane will do. However, in the case n > 2, the automorphism now

has a plurality of line-orbits in the invariant hyperplane and the selection of pairwise
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skew representatives is no longer trivial. What follows are two partial solutions, one
for each of the two types of line-orbits. Unfortunately, the two solutions together do
not form a spread and hence do not furnish a construction of a cyclic parallelism.

Let F = GF(g) and let L be the extension of F of degree 2n — 1. Regarding L as
an F-vector space, the geometry ¥ = PG(L) will serve as the model of PG(2n—1, ).
The elements of L represent the points of the geometry, with z,y € L* representing
the same point if and only if £ € F*. As usual, let N and Tr denote the norm and
trace functions of the extension L/F. Let G = ker N and note that |G| = 0(2n—1, q).
Let w be a primitive element of L and define 0 € PGL(L) to be determined by the

linear map x + wz. Note that o is a Singer cycle of X.

Lemma 4.1. The automorphism o partitions the lines of X into q::__ll orbits each of

q2n—1_1

length o

q2n—1_1

Proof. As the order of ¢ is (2n — 1,q) = 1 it suffices to show that there are

no short orbits of lines. Suppose x,y € L* represent distinct projective points; that
is, £ ¢ F. Suppose further that o* fixes the line z V y of . With o = w*, it follows

that for some a,b,c,d € F, one has

ax = ax + by (4.1a)

oy = cx + dy. (4.1b)

As x # 0, dividing by z results in a = a + b%. Substituting this expression into

equation (4.1b) and again dividing by z results in the equation
v\’ y
bl = —d)=—c=0. 4.2
(1) +a-a2- (12)

Since £ is a root of this quadratic polynomial, £ ¢ F, and L is an extension of F
of odd degree, it must be that each of the coefficients of the polynomial in equation
(4.2) is 0. Therefore, b =c =0 and @ = a = d € F. The result follows as a € F if
and only if 6(2n — 2, q)|k. O
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Remark 4.2. If it is further assumed that (2n—1,¢—1) = 1, then it is the case that
q2n

q2:11 orbits each of

length 123_31—1. All that is used to show this fact is that (w?!) N F* = {1} under this

the automorphism ¢9! also partitions the set of lines of ¥ into

assumption.

The following construction reduces, upon restriction to the case ¢ = 2, to that
given by Baker for a partial spread of PG(2n — 2, 2) representing each orbit under the
action of a Singer cycle [2]. Define v : L x L — L by

v(z,y) = 2% — 2y’

Let S ={zVy|v(z,y) € F*}.

Proposition 4.3. S is a partial spread of PG(L) containing exactly one line from

each orbit under o.

Proof. Let x,y € L* such that £ ¢ F. It holds that v(z,y) =t € F if and only if

q
3;- - (g) =tz (4.3)

T

The equation z — 2 = u has solutions in L if and only if Tr(u) = 0, in which case

the solutions are given by

2n—3 k
z=s+ qukZuqz, for s € F, (4.4)
k=0 =0

where £ is an element of L such that Tr(¢) = 1; see [21, Theorem V 7.6]. Hence,
v(z,y) € F* if and only if Tr(z~@*+Y) = 0 and y = sz +tf(x) for some s,t € F, where

2n—3 k

flz) = Z gq’“ Zml—qi(qﬂ)_
k=0 =0

That is to say, v(z,y) € F* if and only if Tr(z~@™V) = 0 and y € spang{z, f(z)}.

Now suppose S contains two lines, I; and [y, with a common point z. Choose a point
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y; on l; so that [; = spang{z,y;}. By the above, y; € spang{z, f(z)}, for i = 1,2.
But then l; = [, proving that S is indeed a partial spread.

It remains to show that for each line PG(L) there is some power of o which maps
that line to a line of S. Note that (zVy)o* = (w¥z)V (w*y). Thus, given any z,y € L*
with £ ¢ F, it suffices to show that there exists o € L* such that v(az, ay) € F*.
But v(az,ay) = a®v(z,y). Also, v(z,y) # 0 as z,y # 0 and £ ¢ F. Setting

o = v(z,y)?™24) one checks that
a™u(z,y) = v(z,y) 3 = N(v(z,y)) € F*,

as desired. [

Remark 4.4. If v(z,y) € F* then the points of the line z V y are represented by
{z+ Ay | A € F°}. Thus

H(:L’Jr)\y):zy H(x+Ay):qu—a;yq€F*.

A€F° AEF*
Under the isomorphism L*/F* 22 Zg,_5) determined by wF* — 1, the lines of
Theorem 4.3 are thus the so-called zero-sum base blocks of the associated cyclic

IR P

difference family in Zg(3n,—9)-

For the next construction, one must return to odd dimensional projective spaces.
The construction applies only to PG(2n — 1,2), however. Again, let F = GF(2),
L = GF(2*1), and let w be a primitive element of L. As in the previous chapters,
set V =F ®L and define o : V — V by (t,z) = (t,wz). Let H = ker Try,/p and let
II={0}®L.

Given a transversal mapping f of H, let S(f) = {l;(z) | = € F} where

() =0:24+1)Vv(1: f(z),

as in Chapter 3.
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Proposition 4.5. Let f(z) = 22+ z. Then f € TM(H) and S(f) is a set of orbit

representatives under (o) of the lines of PG(V') which are not contained in II.

Proof. 1t is straightforward to check that f is a transversal mapping of H. Note
that [L : F] odd implies that 1 ¢ H; this is needed in order that f(z) itself is a

permutation.

To see that lines of S are from different orbits of (o), note that
{(0:1)v(1l:2)|z€ H}

is a set of representatives of the orbits under ¢ which are not contained in I1. Finally,
if £ + 1 = w*, then
Li(z)o™*=(0:1)v(1:2),

completing the proof. O

It was shown in the proof of Theorem 4.3 that a point of ¥ = PG(L) represented
by z € L* is on a line of S if and only if Tr(z~@*+V) = 0. Note that

Tr(xq2+q3+...+q2n) Tr(m1+q+...+q2n—2)
Ne)  N@

Tr(z~@tY) =

Thus, the set of points of L* covered by lines of S is H7~!, where 7 is the automor-
phism of L* given by z ~— z1*9++2"™"  Note that Hr # H. In particular, it is
not possible to combine the constructions in Proposition 4.3 and Proposition 4.5 to

obtain a spread of V =F @ L generating a cyclic parallelism of PG(V).

4.2 Open problems

The following example can be combined with the construction in Proposition 4.3 to

obtain a cyclic parallelism of PG(5, 2).

Example 4.6. Let L = GF(32), F = GF(2) and let w be a primitive element of
L satisfying w® + w3 +1 = 0. Work in Zs; rather than L*, under the isomorphism
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p:wr 1. Then

(ker Tr)p = {1,2,3,4,6,8,12, 15,16, 17, 23, 24, 27, 29, 30}

The following sets are obtained from a spread of ker Tr containing one line from each

of the five orbits of lines under the Singer cycle z — wa:
{1,3,29},{2,6,27},{4,12,23}, {8, 24,15}, {16, 17, 30}.

This motivates the following interesting question, which was raised by Fuji-Hara,

Jimbo, and Vanstone in [18].

Problem 4.7. Is it possible to partition the lines of PG(2n, q) into sets each of which
is a spread of some hyperplane and so that each hyperplane is partitioned by one of

these sets?

Example 4.6 gives a cyclic solution of this problem in PG(4, 2) and is among those
presented in [18]. These authors, with the help of a computer search, find solutions

to this problem for PG(2n, ¢) with
e ¢ =2andne€{l,2,3,4,5}
e ¢g=3andne€{l,2,3}.

The examples with ¢ = 2 can be combined with the construction in Proposition 4.5
to obtain cyclic parallelisms of PG(2n,2), 1 < n < 5, which are not equivalent to

those constructed by Baker.

Trying to complete the other partial solution of Section 4.1 to a cyclic parallelism

raises the next question.

Problem 4.8. Can the construction given in Proposition 4.3 be extended to a cyclic

parallelism of PG(2n — 1, q) for any values of ¢ > 2 and n > 2?

The smallest case for Problem 4.8 is PG(5,3). In this case, one might also try
to extend the example of [18] for PG(4, 3) to a parallelism of PG(5,3) by finding an
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appropriate transversal mapping of ker Trgp(ss)/qr(s)- As there are 81 orbits of lines
which are not contained in the invariant hyperplane of an automorphism with line-
orbits of length 121, an exhaustive search is not feasible. A random search based on
the method of simulated annealing produced no examples extending either of these

sets of lines.
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Part 11

Singer Subgroup Orbits As

Two-Intersection Sets
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Chapter 5 Background

The material in this part is based on a joint paper with B. Schmidt, [40]. That paper
presents most of these results from the point of view of irreducible cyclic codes; here
the presentation is in terms of two-intersection sets. While the problems are essentially
equivalent, the geometric language seems more appropriate in light of Part 1.

A two-intersection set of PG(n — 1,q) is a set of points which is met by every
hyperplane in one of two numbers of points. The aim of these investigations is the
classification of subgroups of Singer cycles whose point-orbits are two-intersection sets.
A basic identity due to McEliece relates the sizes of the hyperplane intersections with
Singer subgroup orbits to certain linear combinations of Gauss sums via the Fourier
transform. Parseval’s identity for Fourier transforms and Stickelberger’s Theorem on
the prime ideal factorization of Gauss sums suffice to establish “simple” numerical
conditions on the parameters of these orbits which are necessary and sufficient for
the orbits to be two-intersection sets. Finally, a classification of two-intersection sets
which are orbits of subgroups of Singer cycles is conjectured; the classification is based

upon classifying the corresponding solutions to the necessary numerical conditions.

5.1 Definitions and equivalent problems

Definition 5.1. A subset X consisting of h points of PG(m — 1, q) such that every
hyperplane meets X in hy or hy points is called a projective (h,m, hy, hy) set. Other

common terms for X are a set of type (hy, ha) or projective two-intersection set.
Here are several common examples of two-intersection sets in projective planes.

Example 5.2. Any subspace of PG(m — 1, ¢) is a two-intersection set. Indeed, a di-

mension k subspace is either contained in a hyperplane, or else is met by a hyperplane
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in a dimension k — 1 subspace. Thus, a dimension k subspace is a set of type

qk__lqk——l_l
¢q—-1" ¢-1 )

Example 5.3. A Baer subplane of PG(2, ¢?) is a set of g2 + ¢+ 1 points met by each

line in 1 or ¢ + 1 points. This set of points, together with the lines incident with
g + 1 of its points, forms a projective plane of order q. One obtains an example of
such a set by considering the GF(q)-subspace of V(3,¢?) consisting of vectors whose

coordinates each live in GF(q).

Example 5.4. The singular points of a nondegenerate Hermitian form on PG(2, ¢?)
is an example of a set of ¢°> 4+ 1 points met by each line in either 1 or ¢ + 1 points.
Such sets are called unitals; those arising in this manner from a Hermitian form are

called Hermitian, or classical, unitals.

Example 5.5. An oval of PG(2,q) is a set of ¢ + 1 points, no three of which are
collinear. An example of an oval is a nondegenerate quadric. If ¢ is even, then
the tangents to an oval are coincident with a point called the nucleus of the oval.

Together, an oval and its nucleus form a (g + 2)-set of type (0, 2) called a hyperoval.

Let o be a Singer cycle of PG(m — 1,¢q). It turns out that the sets described in
Examples 5.2 and 5.3 can sometimes arise as an orbit under a subgroup of (o). It
will shortly been seen that orbits of subgroups of Singer cycles are good candidates
for examples of sets with few intersection numbers. The idea to consider these Singer
subgroup orbits as a source of such examples for isn’t particularly new; see [4], for
example. What is new is the main result of the next chapter which characterize the
parameters of those Singer subgroup orbits which are two-intersection sets. Before
proceeding further, some notation is needed.

Let g = p* for some prime p and some ¢t € Z,. Let F = GF(q) and let L = GF(¢™).
Let ¥ denote the geometry PG(L), which will serve as the model of PG(m—1, ¢). The

points of 3 are then of the form zF, for x € L*. Two elements z,y € L* represent
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the same projective point if and only if ;’5 € F*. For a € L* let
Ha = {x €L | TrL/F(am) = 0}

The collection {H, | & € L*} is then the set of hyperplanes of 3. Note that if z = My
with A € F* then H, = H,. Finally, let 0 € PGL(L) be determined by the linear
map = — wz, where w is a primitive element of L. Thus o is a Singer cycle of X.
The order of o is (¢™ — 1)/(¢ — 1). The main problem is the determination of
conditions on the parameters ¢,m,u so that the orbits under the subgroup (o) of
index u in (o) are two-intersection sets. Suppose u divides (¢™ — 1)/(q — 1) and let

U be the subgroup of L* of index u. Set
s(¢,m,u) = {zF | z € U},

a collection of points of . Note that w" generates U and that F* < U. Thus,
s(g,m,u) is an orbit under the action of (o).
Let h(a) = [{zF | z € H, N U}|, the number of points of s(q, m,u) incident with

the hyperplane H,.

Proposition 5.6. h(a) = _15|Hi N (al).

Proof. Simply note that H; N (aU) = H,NU. Also, x € H, NU if and only if
Ax € H,NU for A € F*, as H, is an F-subspace of L and U < L*. O

Here is a simple but important corollary. It explains why the sets s(g, m,u) are
good candidates for sets with few intersection numbers, motivating in part these

investigations.

Corollary 5.7. The number of distinct values of the hyperplane intersection function

h s at most the number of orbits of x — pzx on Z,.

Proof. The field automorphism z — zP acts on each subgroup of L*, hence U? = U.
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Also, Try p(2P) = Trp(z)?, so HY = H;. Therefore,

1 1
Py — PU| = —— -
h(a®) q_1|Hlﬂa U| p llﬂlﬂaUl h(a).
As h(a) = h(az) for every z € U, it follows that h can be regarded as a function on
L*/U 2 Z,. O

The rest of this section is devoted to a brief description of two problems which

are equivalent to the one considered so far.

5.1.1 Two-weight irreducible cyclic codes
For the necessary terminology from coding theory, see [42].

Definition 5.8. Let f be an irreducible divisor of 2™ —1 over GF(q) where (¢,n) = 1.
The cyclic code of length n over GF(q) generated by (™ — 1)/f is called a minimal

cyclic code or an irreducible cyclic code.

The following definition is narrower, but essentially equivalent to Definition 5.8,
see Remark 5.10 below. It will prove to be more useful in understanding the corre-

spondence between these codes and projective two-intersection sets.

Definition 5.9. Let L/F be an extension of finite fields of degree m where F has

order g. Let n be a divisor of ¢™ — 1, write u = (¢™ — 1)/n, and let w be a primitive

yEL}.

nth root of unity in L. Define

n—1

ela,m,0) = {ety) = (Tru())

c(g, m,u) is called an irreducible cyclic code over F.

It can be shown that the dimension of ¢(q,m, u) is ord,(q), cf. [42, Thm. 6.3.1].

Remark 5.10. If w is allowed to be an arbitrary nth root of unity in Definition
5.9, then by the argument of [42, Thm. 6.5.1], the two definitions above would be

equivalent. However, in the case where w is a non-primitive nth root of unity, the



77
codewords of ¢(q,m,u) are periodic with period ord(w). Thus it suffices to consider

the case where w is a primitive nth root of unity.

Definition 5.11. Let w(y) denote the Hamming weight, or number of nonzero co-
ordinates, of c¢(y) € ¢(g,m,u). If w takes at most two nonzero values, c¢(q,m, u) is

called a two-weight irreducible cyclic code.

Important contributions to the determination of the weight distributions of irre-
ducible cyclic codes can be found in [5, 7, 24, 31]. In general, this is a very difficult
problem. Even the two-weight irreducible cyclic codes have not yet been classified.

The following simple fact establishes the equivalence of two-weight irreducible

cyclic codes and cyclic two-intersection sets.

Proposition 5.12. Let o be a Singer cycle of PG(m — 1,q) and suppose u divides
(¢™ —1)/(q — 1). Then the irreducible cyclic code c(q, m,u) has at most two nonzero
weights if and only if each orbit under (c®) on the points of PG(m — 1,q) is a two-

intersection set.

Proof. The definitions of the functions w and h immediately imply that

gr—1

w(a) = — (¢ = Dh(a).

5.1.2 Sub-difference sets

Recall that a (v, k, A)-difference set in a finite group G of order v is a k-subset D of
G such that every element g # 1 of G has exactly A representations g = dyd;* with
di,dy € D. The parameter k — X is called the order of D. For a detailed treatment
of difference sets, see [8].

Let L and F be as before and let G = L*/F*. It is a well-known fact that
Ly = {zF* € G | Trp/p(z) = 0} is a difference set in G with parameters

mo__ | m—l_l m—2_1
(0,k,0) = (L=, —-,1 ,
g—-1" ¢-1 q—1
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called the Singer or trace zero difference set.

The following observation is basically due to McFarland [32].

Proposition 5.13. Let D be a (v, k, \)-difference set in a group G, and let N be a
normal subgroup of G. If |D N Ng| € {a,b} for some nonnegative integers a, b and

all g € G, then
E:={Ng:|DNNg|=a}

is a difference set in G/N.

In the situation of Proposition 5.13, call E a sub-difference set of D in G/N. It is

straightforward to prove the following.

Corollary 5.14. Let q be a power of a prime p, let F = GF(q) and let L = GF(¢™).
Let U < L* of index u. Finally, let Ly be the Singer difference set of G = L*/F*. The
set s(q,m,u) is a two-intersection set in PG(L) if and only if Lo has a sub-difference

set E in G/(U/F*) = L*/U. Furthermore, p is a multiplier of E.

5.2 The role of (Gauss sums

An identity of McEliece [31] expresses the weights of irreducible cyclic codes as linear
combinations of Gauss sums. Under the correspondence discussed in Section 5.1.1,
an analogous result holds for orbits of powers of Singer cycles and their hyperplane
intersection numbers.

Before stating the result, the definition of a Gauss sum is recalled, along with one
very basic fact. For a proof, see [26, Thm. 5.11]. The notation & = e*™/* will be

used.

Definition 5.15. Let 7 = p* be a prime power, F' = GF(r), and let x be a character
of F*. We define
Gr(x) = ZX(CU)Q?(E)

zeF

where Tr denotes the absolute trace map from F' to GF(p).
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Lemma 5.16. If x is nontrivial, then

IGr(x)]* = .

The following is essentially McEliece’s identity from [31]. Here it has been trans-
lated into the geometric language from the language of irreducible cyclic codes. For

the convenience of the reader, a proof is included.

Lemma 5.17 (McEliece). Let L/F be an extension of finite fields of degree m where
F = GF(q). Let u be a divisor of (¢ — 1)/(¢ — 1). Let U be the subgroup of L* of
indez u and let I' be the subgroup of characters of L* which are trivial on U. For

a € L*, the number of points of s(q,m,u) incident with H, is given by

h(a)zl(ﬂj‘—“r1 > GL<x>x<a>>; (5.1)

u\ ¢-1 XET\(1}

for x e P\ {1},

Grx)=q > ha)x(a). (5.2)

acl*/U

1 sy

Proof. Note that (5.1) follows from (5.2) by Fourier inversion, see Lemma 5.27 of

the Section 5.3, and the fact that
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Using Lemma 5.25 of Section 5.3, one obtains

Gulx) = ) x(@)g®

zel*

= Y g

a€L*/U zelU

= X x@ X gt Y )

a€L* /U xeUNH, z€U\H,

= Y x@(UnHl- |Uq\__Hla|>

ael*/U

= Y x@) (o) - L)

acL*/U u(q N 1)

= q¢ Y Max(a)

aclx /U

O

Remark 5.18. With U = F* above, one has h(a) = 1 if a € H; and h(a) = 0

otherwise. Hence,

GL(x) = ex(L),

where L is the Singer difference set in L*/F*. This result, relating character values

of the Singer difference set to Gauss sums, is due to Yamamoto [46],[17].

Corollary 5.19. Suppose p is prime and u divides (p™ —1)/(p—1). Then s(p*, m, u)
is a two-intersection set in PG(m—1, q) if and only if s(p, mt,u) is a two-intersection

set in PG(mt — 1,p).

Proof. By equation (5.1), there are exactly two distinct hyperplane intersection num-

bers if and only if the map

a Y Gu(x)x(a)

xel'\{1}

is two-valued. Simply note that this sum depends only on the field L and u, parame-

ters which are the same for s(p?, m,u) and s(p, mt, u). O
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Remark 5.20. In view of Corollary 5.19, for the classification of which sets s(g, m, u)
are two-intersection sets, it is enough to consider the case where ¢ is prime. Of course,

it is always assumed that u divides (¢™ —1)/(¢ — 1).

The following are some facts concerning Gauss sums which will be needed later.
A well known result of Stickelberger [41] completely determines the factorization of
Gauss sums into prime ideals. As a preparation for the formulation of Stickelberger’s
theorem, it is worth recalling the factorization of rational primes in certain cyclotomic
fields. A proof of this result can be found in [22, pp. 196-198]. Let ¢ denote the

Euler totient function.

Result 5.21. Let p be a prime and q = p/. Then p factors in Q(&,-1) as

(p) = Hﬂ'i,

where t = ¢(q — 1)/ f and the m; are prime ideals. Furthermore, in Q(&,-1,&,), each
7; 1s the (p — 1)th power of a prime ideal.

The next result is known as Stickelberger’s theorem. For a proof, see [45, Prop.

6.13]. For a positive integer z, let S,(z) denote the sum of the p-digits of z.

Result 5.22. Let p be a prime, and g = p® be a power of p. Let w be a prime ideal of
Q(&,—1) above p, let 7@ be the prime ideal of Q(&g-1,&p) above w. Let v; denote the 7-
adic evaluation. Let w = w(w) be the Teichmiiller character of GF(q)* corresponding

to w (see [45, p. 96] for the definition of w). Then
vi(G(w)) = Sp(7)

for1<j<qg-—1.

The final background result is the Daveport-Hasse Theorem, see [26, Thm. 5.14],

concerning values of Gauss sums relative to field extensions.
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Result 5.23. Let r be a prime power and let E be an extension field of F = GF(r)
of degree s. Let x be a character of F* and define a character X' of E* by x/'(z) =
X(Ng/r(z)) where Ng/p denotes the norm function of E relative to F. Then

Ge(xX) = (=1)""'Gr(x)"-

The above results yield the following corollary which will prove to be quite useful

in later analysis.

Corollary 5.24. Let p be a prime u be a positive integer with (u,p) = 1. Write
f == ord,(p). Define

0(u,p) == I%min{sp(i(ﬁi—_-ll) |1<j< u}

Let s be a positive integer. If u divides (p°f — 1)/(p — 1), then p**®P) s the largest
p-power dividing G(x) for every nontrivial character x of GF(p*/)* such that x* is

trivial.

Proof. By (5.2), G(x) € Z|[¢,]. Thus Stickelberger’s theorem and Result 5.21 imply
that 6(u,p) is an integer. Now the assertion follows from Stickelberger’s theorem

together with the Davenport-Hasse theorem. (W

5.3 Appendix: Fourier analysis

This appendix lists some very basic facts about Fourier analysis on finite abelian
groups. See [29] for proofs. For an abelian group G, let G denote its character group,
and for a subgroup W of G, write W+ for the subgroup of all characters which are
trivial on W. Identify G with é by g <+ 7, where 7, is the character of G with

T4(x) = x(g). The following orthogonality relations are extremely useful.

Lemma 5.25. Let G be an abelian group, let U be a subgroup of G, and let W be a
subgroup of G. Then
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(a) ¥ ,er x(9) =0 for all x € G\ U*; and

() > ewx(g) =0 for allge G\ W+.

As a consequence of the orthogonality relations, one gets the so-called Fourier

1wersion formula.

Lemma 5.26. Let G be an abelian group, and let A =3 _,a,9 € Z[G]. Then

ag = ]"CIT| > x(4g™)

xe@G

forallg e G.

Sometimes it is convenient to express Lemma 5.26 in terms of Fourier transforms.
Let G be an abelian group, and let f : G — C be a function, where C is the field of

complex numbers. The Fourier transform of f is a function f : G = C defined by

Foo=161"2 )" f(9)x(9)-

ge@G

Lemma 5.27. Let G be an abelian group, and let f: G — C. Then f = f.

One consequence of Lemma 5.26, is Parseval’s identity. Note that 3 . |f(g)/?
is the coefficient of 1 in AACY if we let A = >gca F(9)g-

Lemma 5.28. Let G be an abelian group, and let f : G — C be a function. Then

SR =Y 1f00r

g€G xe@@
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Chapter 6 Necessary and Sufficient

Conditions

The main result of this chapter gives necessary and sufficient conditions in order that
orbits under a subgroup of a Singer cycle are two-intersection sets. In addition to
furnishing a computationally more efficient method to determine if an orbit s(g, m, u)
is a two-intersection set, these conditions also furnish a method for classifying the
resulting two-intersection sets according to properties of the corresponding solutions
to the necessary equations. The two known infinite families of two-intersection sets
which are of the form s(g, m, u) can be identified among all solutions to the necessary

equations, leaving what is conjectured to be a small list of exceptions.

6.1 The main result

In light of Remark 5.20, it suffices to consider the sets s(p, m, u), where p is prime.

Theorem 6.1. Let p be a prime, and let u, m be positive integers such that u divides
(p™ —1)/(p — 1). Let 0 denote 6(u,p), let f = ord,(p), and let fs = m. Then

s(p, m,u) is a two-intersection set in X if and only if there exists a positive integer k

satisfying
klu—1 (6.1a)
kp*® = 41 (mod w) (6.1b)
E(u—k) = (u—1)p*/~20), (6.1c)

Proof. As usual, L denotes GF(p™). Let U be the subgroup of L* of index u and let
I' be the subgroup of characters of L* which are trivial on U. Let G = L*/U.
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Necessity. Define v(a) = p(h(a) — h(1)). Note that v, like h, may be considered as a
function on G. Also note that ' 2 G.

As .
Sota) = i =,
ac@
it holds that
v(x) = % —puzh(1), by Lemma 5.25 (6.2a)
— u"3GL(X), by Lemma 5.17. (6.2b)

Now suppose s(p, m,u) is a two-intersection set. Then there exists some nonzero

integer ¢ such that v(a) € {0,6} for all a € G. For x € '\ {1}, it was just seen that

Gi(x) = Y v(a)x(a). (6.3)

acG

As ¢ divides v(a) for each a € G, then ¢ divides the right side of equation (6.3) in
the ring Z[&,]. Thus, ¢ divides Gy,(x) in Z[¢,] for each x € '\ {1}. By Lemma 5.16
and Corollary 5.24,

0 =p° for some e < s6. (6.4)

On the other hand, equation (5.1) of Lemma 5.17 implies that for each a € G,

wla)= Y Gu()(e) - 1). (6.5)
xel\{1}
Recall that p*®|GL(x) in Z[&,] for every x € '\ {1}, by Corollary 5.24. Therefore,
as (u,p) = 1, it follows that p*|v(a) in Z[&,] for every a € G. Hence, p*® divides 4.
Combine this fact with equation (6.4) to obtain § = £p*’.
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Next, define D = {a € G | v(a) = 6}; d = |D|. Thus,

(1) =u"2 Z v(a) = +dp*u~ 3.
aclG

Comparing this with the previous expression for 7(1) given in equation (6.2), one

obtains

dp® =41 (mod u).
Finally, Parseval’s identity applied to the function v yields

d2 2560 u—1 sf
dp250 — 4 + ( )p ,
u U

by Lemma 5.16. This expression simplifies to
d(u —d) = (u— 1)p=2,

If f =26, take k = u — 1. Otherwise, p divides exactly one of d and u — d; the other
must divide u — 1. Take k equal to the latter.

Sufficiency. Suppose conditions (6.1) hold. Let

psf -1 p30—1(ps(f—0) . 816)

m:u(p——l) - " , (6.6)
where € € {£} is determined by (6.1b) so that
ekp =1 (mod w). (6.7)
Define
h(a) —z
v(a) = psg—_l
It is claimed that y(a) € Z for every a € G. Note that
uh(a) — 2= s(f=0) _ ¢k
) = O p ek (6.8)

upse— 1 u
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By equation (6.7) and the fact that p*/ = 1 (mod u), it follows that u divides
(p*¥=9 — ek). Next, note that by equation (5.1)

sf__ sf—1 __
wi) - E =T (Y aon@) -2 oo

-1 p—1 x€T\{1}
= —p*1 41 > GL)x(a). (6.9b)
x€T\{1}

= 1, it remains only to show that p**—! divides

Since u divides uh(a) —

uh(a) — & e 21 This fact follows from equation (6.9), since f > 6, and also from the
fact that psa divides Gy(x) for every x € I' \ {1}, by Corollary 5.24. Hence, the

function v is integer-valued.

Since >, .o h(a) = (p° —1)/(p — 1) then

LI it SR
ZW’(CL sa 1( —1) pti(p—1) +p ek (6.10a)

= —¢k. (6.10Db)

e

Hence, §(1) = —eku~3. For x € I'\ {1},

b Griy)
Y00 = o1 = o1

Applying Parseval’s identity results in

L (=D

> v(a) = ”

a€G

As it is assumed that k(u — k) = (u — 1)p*¥=29) it follows that

> (e =k

a€eG

Since + is integer-valued, then y(a) € {0, —¢} for every a € G. Thus, s(p,m,u) is

met by hyperplanes of ¥ in one of two numbers of points. O
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Corollary 6.2. Suppose the set s(p,m,u) is a two-intersection set of . With k and
€ as in Theorem 6.1, the hyperplanes meet s(p, m,u) in one of the following numbers

of points:

b psf -1 B p30-—-1(ps(f—0) _ Ek‘)
YT ulp-1) u ’

hg - hl - €p30_1.

6.2 On the classification

Theorem 6.1 can be used to classify those two-intersections sets arising as orbits under
subgroups of Singer cycles by classifying the corresponding solutions of (6.1). In the

following, only the sets s(p, m,u) with p prime are considered; see Remark 5.20.

6.2.1 Subspaces and semiprimitive sets

There are two known infinite families of two-intersection arising as orbits under sub-
groups of Singer cycles: the subspaces and the semiprimitive sets. The corresponding
solutions of (6.1) are described in this section.

The most obvious two-intersection sets of the form s(p, m,u) arise if the index
u subgroup of L* is the multiplicative group a subfield of L, see Example 5.2. U
is the multiplicative group of a subfield K = GF(p®) of L = GF(p™) if and only if
u = (p™ —1)/(p* — 1) for some a|m. From the proof of Theorem 6.1, one can see

that k = (p™™*—1)/(p* —1) in (6.1) and thus 6(u, p) = a for a subspace of the form
s(p, m,u).

Proposition 6.3. The subspaces which arise as s(p,m,u) exactly correspond to the

solutions of (6.1) of the form

u=@@"-1)/(p*—-1)
k=@""-1)/(p"-1)

s=1.
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The next class of two-intersection sets arising as orbits under subgroups of Singer
cycles is the class of semiprimitive sets. A prime p is called semiprimitive modulo u
if —1 is power of p modulo u. The orbit s(p, m,u) will be called a semiprimitive set
if p is semiprimitive modulo u. Note that (6.1) has a solution with k¥ € {1,u — 1}
if and only if (u,p) = f/2. By [6, Thms. 1,4], 8(u,p) = f/2 if and only if p is

semiprimitive modulo u, giving the following result.

Proposition 6.4. There is a solution of (6.1) with k € {1,u — 1} if and only if p is

semiprimitive modulo u.

Remark 6.5. If p is semiprimitive modulo u, then it follows from Corollary 6.2 that
the difference of the intersection numbers for the set s(p, m,u) is equal to p%"l, the
square root of the order of the geometry. In particular, these examples occur only
in geometries whose order is a square. Until recently, and aside from the subspace

examples, all known two-intersection sets in geometries over fields of odd order shared

this property.

6.2.2 The exceptional sets

Those sets s(p, m,u) which are two-intersection sets but do not fall into either the
family of subspace sets or the family of semiprimitive sets will be called ezceptional.
The corresponding solutions of (6.1) will also be called ezceptional. Theorem 6.1
makes possible a computer search for exceptional sets. A search can be conducted as
follows. For every proper divisor k£ > 1 of u — 1, compute k(u — k)/(u —1). If it is a
prime power, say p", check whether f — 26 divides r. If so and the quotient is s, then
as long as condition (6.1b) of Theorem 6.1 holds, s(p, fs,u) is a two-intersection set.
Table 6.1 lists all exceptional solutions of (6.1) with « < 100, 000.

The two-intersection sets from corresponding to the parameters in Table 6.1 with
u € {11,19,67,107,163,499} were already found by Langevin [24], although his re-
sult is stated in terms of the corresponding irreducible cyclic codes ¢(p, m,u). His
proof relies on the fact that the Gauss sums in McEliece’s identity can be evaluated

if u is prime and f = (u — 1)/2. Batten and Dover [4] verified by direct calcu-
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lulpls| f16]Fk][c]
1L[3]1]5[2]5[n
9 [5[1] 9|49+
35 |3 [1]12] 5 |17 | +1
37| 7|19 [4 ]9 |+
B [|1] 7 | 3|21 |+
67 [17|1] 33 | 16 | 33 | +1
1073 [1] 53 | 25 | 53 | +1
335 (1] 18| 8 | 33 |1
163 41| 1| 81 | 40 | 81 | +1
323 3 [1]144| 70 [ 161 ] +1
199 5 | 1| 249|123 | 249 | 11

Table 6.1: Exceptional solutions

lation that s(5,9,19) and s(7,9,37) are two-intersection sets. The author believes
that s(3,12, 35), s(11,7,43), s(5,18,133) and s(3, 144, 323) are new examples of two-
intersection sets.

By Remark 5.20, it was enough to classify two intersection sets in geometries over
fields of prime order. However, one can see many more examples from the data in
Table 6.1. Indeed, for any parameters (u,p,s, f) in the table, s(p’,d,u) is a two-
intersection set in PG(d — 1,p%) where td = sf and u divides (p —1)/(p* — 1).

Example 6.6. As 5° — 1 = 2219 - 31 - 829, then s(5%,3,19) is an 829-set of type
(4,9) in PG(2,5%) and s(5,9, 19) is a 25,699-set of type (5074, 5199) in PG(8,5).

The fact that there are no exceptional solutions with 500 < u < 100,000 and the

results of the next section provide evidence for the following.

Conjecture 6.7. An orbit under a subgroup of a Singer cycle, s(p,m,u), is a two-
intersection set of PG(m — 1,p) if and only if it is a subspace set, a semiprimitive

set, or appears in the above table of exceptional sets.

Remark 6.8. All exceptional sets s(p, m,u) share the interesting property that the
difference of the intersection numbers is strictly less than the order of the geometry

in which they arise. It is worth noting that s(53,3,19) and s(73,3, 37) were the first
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known examples of two-intersections sets of any kind, not just those arising as orbits

under Singer subgroups, in planes whose orders are odd and not square.

Finally, see [40] for a short discussion of the classification in terms of sub-difference
sets, as well as for a list of the sub-difference sets arising in L*/U for each of the
exceptional solutions to the necessary equations. The language of difference sets is

perhaps the most satisfying in which to state the classification.

6.3 Partial proof of the classification

This section gives a partial proof of Conjecture 6.7, conditionally on the general-
ized Riemann hypothesis (GRH). As usual, only the sets s(p, m,u) with p prime are
considered; see Remark 5.20.

One of the tools that will be used is a bound on class numbers of imaginary
quadratic fields due to Louboutin [27]. Let K be an imaginary quadratic number
field, and let (k(s) denote its Dedekind zeta function; see [10, p. 309]. Recall that
the generalized Riemann hypothesis for K asserts that s = 1/2 for all zeros s of

Ck(s) with 0 < Rs < 1.

Result 6.9 (Louboutin [27]). Let d be a square-free positive integer and let h(—d)
denote the class number of K = Q(v/—d). Assuming GRH for K, then

mV/d
3elogd’

h(~d) >

To prove the following Theorem, Louboutin’s bound is combined with work of

Baumert and Mykkelveit [7] and recent work of Mbodj [30] on Gauss sums.

Theorem 6.10. Conditionally on GRH, no two-intersection set in % is of the form

s(p, m,u) for which the triple (p, m,u) satisfies any of the following conditions.

(a) u=0 (mod 3), u# 3, p=1 (mod 3) and

3log((u+1)/4)
m > oy (6.11)
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(b) There is a prime divisor r =3 (mod 4) of u with r > 3,

ordy(p) = (r —1)/2 (6.12)
and
_ 3er—1) ;?rg\;?fg(;u +1)/4) .13
(c) There are two odd prime divisors r, s > 3 of u such that
ordr(p) =1 — 1, ordrs(p) = (r — 1)(s — 1)/2 (6.14)
and
_ Be(r = 1)(s = 1) logrslog (u+1)/4) 6.15)

27y/rslogp

Proof. (b) Assume that s(p,m,u) is a two-intersection set. Write f = ord,(p), m =
ft, g = (r—1)/2, and let x be a character of GF(p9) of order r. By [7], the exact power
of p dividing the Gauss sum G(x) is p9~"/2 where h is the class number of Q(+/—r).
Thus, by the Davenport-Hasse theorem and Corollary 5.24, 26(u,p) < f — hf/g.
Recall that k(u — k) = (u — 1)ptf=2@P) for some divisor k of u — 1 by Theorem 6.1.
Note that k(u — k)/(u — 1) < (u+ 1)/4. Putting this together, one obtains

“112PW4WW»Zﬁmm

Now assertion (b) follows by taking logarithms and using Result 6.9.

The proof of part (c) is similar. If s = 3 (mod 4) and ord,(p) = (s — 1)/2 then
the bound from part (b), with s in place of r, implies the bound in (¢). Otherwise,
we may use Proposition 3.8 of [30] applied to a character of GF(pY) of order rs in the
estimation of 8(u,p). Here g = (r — 1)(s — 1)/2. Proceed as in part (b).

To prove (a), note that sp(’%) = f(p—1)/3. By Corollary 5.24, t0(u, p) < m/3.
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As in part (b), the result follows by Theorem 6.1. O

Following Mbodj [30], the pair (u,p) is said to fall under the indez 2 case if u is
odd and ord,(p) = ¢(u)/2. Note that u can have at most two distinct prime divisors
in this case. The corresponding sets s(p,m,u) will be called index 2 sets. Index 2

sets are promising candidates for two-intersection sets because of the following.

Proposition 6.11. The number of different hyperplane intersection numbers for a

set s(p, m,u) is at most the number of orbits of x — zP on ZZ.

In particular, an index 2 set with u prime has at most three different nonzero
weights. Note that eight of the eleven exceptional two-intersection sets listed in
Section 6.2.2 are index 2 sets. Thus it is desirable to verify Conjecture 6.7 for index

2 sets.
Theorem 6.12. Conditionally on GRH, Conjecture 6.7 is true for all index 2 sets.

Proof. Let & = s(p,m,u) and suppose that S is a two-intersection index 2 set. If
S is a semiprimitive set, then there is nothing to show. Thus assume that p is not
semiprimitive modulo u. First suppose 3 divides v and p=1 (mod 3). If u = 32s°,

for a prime s > 3, then Theorem 6.10 (a) implies

Q]nn‘{/n:_L 1\//1\
30,—1(5_ 1)31)—1 < 2os\u T L)/%)
- logp
Hence,
ulog7 u+1
<1
12 =%

a contradiction. The case u is a power of 3 is similar and once again there are no
admissible values of u by Theorem 6.10(a).
Next suppose that (u,3) = 1. It is claimed that
my/ulogp u+1
——2= <log —. 6.16
delogu — © 4 (6.16)

The proof of equation (6.16) will be carried out only for the case where u has two

distinct prime divisors r, s. The case where u is a prime power is similar. Write
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u = r%s® where a,b > 1. As ord,(p) = ¢(u)/2, equation (6.12) or equation (6.14)
holds for the pair (u,p). If (6.12) holds, then

ro~lgb=l(s — 1)  3elogrlog (u+1)/4
2 - 27/r logp

by Theorem 6.10. If (6.14) holds, then

r*~1gb=1  3elogrslog(u+1)/4
<
2 - 2m+/rslogp

by Theorem 6.10. Each of these implies (6.16).

Note that equation (6.16) implies u < 86,909 if p > 2. Since the table in Section
6.2 contains all exceptional sets with u < 100,000, this shows that Theorem 6.12 is
true for p > 2. If p = 2, then (6.16) implies u < 125,383. A computer search shows

that there are no exceptional sets with p = 2 in this range. O
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Appendix A Notation

V(n,F)

V(n,q)

PG(V)
PG(n,q), Zn
PG®(n, q), HE
6(n, q)

GL(V)

TL(V)

PGL(V)
PTL(V)

the integers

the rationals

the complex numbers

the cyclic group of order n

Galois field of order ¢

the multiplicative group of nonzero elements of the field F
F U {0}

vector space of dimension n over the field F

V(n,F) with F = GF(q)

the classical projective geometry of the vector space V
PG(V(n+1,q))

the set of k-dimensional subspaces of PG(n, q)

the number of points of PG(n, q)

the group of nonsingular linear transformations of V'
the group of invertible semilinear transformations of V'
the projective general linear group of V'

the projective semilinear group of V'
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