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 ABSTRACT 

Gag, the major structural component of the type 1 human immunodeficiency virus 

(HIV-1), comprises the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 proteins, 

as well as the SP1 and SP2 spacer peptides. In the immature HIV-1 virion, the domains of 

Gag are arranged radially with the amino-terminus of MA at the membrane. Mature viral 

particles are formed when Gag is proteolytically cleaved, allowing CA to reassemble into 

the viral core, which contains NC bound to genomic RNA. While the structures of nearly 

every HIV-1 protein are known in atomic detail from X-ray crystallography and NMR 

spectroscopy, many questions remain about the intermolecular interactions in both the 

immature and mature particles.  

We have obtained three-dimensional structures of individual immature and 

mature HIV-1 virus-like particles by cryoelectron tomography. Reconstructions of the 

mature particles revealed diverse core morphologies with a preference for conical shapes 

consistent with 5,7 fullerene cones. Uniform positioning of the wide end of the cores and 

an internal density likely to be the NC/RNA complex were also observed, as were 

multiple and nested viral cores. Our results support the fullerene cone model for the core 

structure and suggest that specific interactions may occur between the CA, MA, and NC 

layers in the mature virion. These experiments also aided the characterization of a new 

cryostage allowing routine collection of dual-axis tomograms.  

Tomograms of the immature virions revealed patches of hexagonally ordered Gag 

molecules interspersed with regions of disordered or absent Gag. We developed novel 

tools for analysis of locally ordered lattices embedded in curved structures, including a 

method for locating and averaging the Gag unit cell in situ. The unit cell average revealed 

that the CA domains and the SP1 spacer peptides were organized in a hexagonal lattice 

with ring-to-ring spacing of 8 nm in the CA layer and 7.5 nm in SP1. No regular lattice 

was found in the MA or NC layers. Based on the averaged Gag unit cell, we proposed a 

pseudoatomic model for the CA and SP1 domains in the immature virion. 
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 Chapter 1: Introduction 

HIV-1 is the causative agent of AIDS, a disease afflicting ~40 million people 

worldwide [1]. A vast effort has been directed at understanding the structure, function, 

and life cycle of this virus, with substantial results. The atomic structures of all viral 

enzymes, structural proteins, and accessory proteins (except Vif) have now been 

determined by X-ray crystallography, NMR, or both [2, 3]. Many of the most important 

remaining structural questions about HIV concern the higher-order structures of these 

proteins.  

Virion Components  

HIV-1 is a member of the lentivirus subfamily of retroviruses. Its virions contain 

two copies of a 9.2 kb RNA genome bearing the gag, pol, and env genes common to all 

retroviruses, as well as the nef, tat, rev, vif, vpr, and vpu genes, of which rev and tat are 

shared by all other lentiviruses. At the 5’ and 3’ ends of the genome are long terminal 

repeats (LTRs) that are important for integration and transcription. The gag gene encodes 

the 55 kDa Gag polyprotein, which comprises the structural proteins matrix (MA), capsid 

(CA), spacer peptide 1 (SP1 or p2), nucleocapsid (NC), spacer peptide 2 (SP2 or p1), and 

p6. Contained in the pol open reading frame are the viral enzymes protease (PR), reverse 

transcriptase and RNase H (RT), and integrase (IN). The pol gene is not expressed on its 

own, but only after a −1 frameshift at the gag stop codon, leading to the production of the 

160 kDa Gag-Pro-Pol polyprotein. This frameshift is mediated by a 12 bp RNA stem 

loop in the viral genome, and occurs at a rate of about 5% [4, 5]. Both the Gag and Gag-

Pro-Pol gene products are processed by viral protease. Finally, the env gene encodes the 
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envelope proteins gp120 (SU) and gp41 (TM), which are glycosylated in the host 

endoplasmic reticulum and cleaved from each other by host cell proprotein convertases in 

the Golgi apparatus [6-8].   

Viral Life Cycle: Early 

In the early phase of the viral life cycle, the HIV envelope complexes gp120/gp41 

bind to the CD4 receptor on the surface of a host cell, as well as one of the chemokine 

receptors CCR5 or CXCR4 (reviewed in [9]). Through a conformational change in the 

gp41 transmembrane anchor, the host and viral plasma membranes will fuse, leading to 

viral entry into the cell. This is an inefficient process that is accomplished by only about 

one in one thousand retroviruses [10]. It is of interest to the structural biologist to know 

whether this is because most of the viruses are defective from the beginning, or if they 

simply fall victim to rapid decay and a difficult entry process. Results from mathematical 

modeling suggest that a relatively high proportion of the viruses are infective, but that 

adsorption to the cell is limited by the slow rate of diffusion and the short half-lives of the 

particles [11-13].  

Little is known about what happens immediately after viral entry, but it appears 

that the viral core forms a particle known as the reverse transcription complex (RTC), 

which crosses the actin cytoskeleton with the aid of the viral protein Nef [14-16]. The 

RTCs are then transported toward the nucleus using dynein motors and the microtubule 

network [17, 18]. Reverse transcription then occurs in the nucleus, and the capsid is 

dismantled in a process known as uncoating, which leads to the formation of the 

preintegration complex (PIC). Uncoating is regulated by interactions with host factors 

[19]. The role of the structural proteins in these complexes is unclear, although there is 
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evidence that at least some CA protein remains associated with the RTC after entry into 

the cell, and that this must be removed for successful formation of the PIC [17, 20-23]. 

Successful integration of the DNA provirus into the host cell’s genome marks the end of 

the early phase.  

Viral Life Cycle: Late 

The late phase of the replication cycle begins with the transcription of genomic 

RNA via host RNA polymerase II [2]. This occurs through the action of the promoter 

found in the viral LTRs in concert with the host cell transcription factor NF-κB, but may 

also be mediated by the basal activity in the region of chromatin where the provirus 

integrated. In contrast to other retroviruses, transcription of HIV-1 RNA products only 

occurs from DNA integrated into the host genome. The HIV-1 RNA transcripts are 

alternatively spliced into more than 40 different final forms, in addition to the full-length 

copies that will be packaged into new virions. Export of the unspliced genomic RNAs 

from the nucleus is facilitated by the viral protein Rev and the cis-acting sequence RRE 

(Rev Response Element). Translation of gag mRNA appears to be mediated by an 

internal ribosome entry site (IRES) within the gag open reading frame itself [24].  

As Gag molecules are produced, their NC domains bind to genomic RNA, leading 

to multimerization [25-28]. This is important for both genome packaging (reviewed in 

[29]) and particle assembly. The NC domain appears to control the preferential packaging 

of dimeric RNA bearing signals from the 5’ untranslated regions (UTRs) of the HIV-1 

genome [30-32], although its role in particle assembly does not require specific 

interactions with viral RNA [33, 34]. At the same time, Gag molecules are transported to 

the cell membrane by an unknown mechanism, where the MA domains bind to the 
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phospholipids of the membrane, leading to the formation of arrays of Gag (and Gag-Pro-

Pol) bound to genomic RNA. As the Gag arrays assemble they induce local curvature of 

the membrane, eventually forming closed spherical shells that may contain up to ~5,000 

monomers [35]. Also present in the membranes of the budding particles will be the viral 

Env proteins and various host membrane proteins, while the particles will contain in their 

Gag shells two copies of the RNA genome and numerous other viral and host proteins.  

During the budding process, the Gag domain p6 recruits Tsg101, a cellular protein 

that is part of ESCRT-1 (endosomal sorting complex required for transport) [36-38]. 

Tsg101 normally binds ubiquitin during the processing of proteins in multivesicular 

bodies, but can also bind the PTAP motif of p6 [37, 39-44]. Through a mechanism that is 

still unknown, this complex facilitates the completion of the budding process. The viruses 

will then undergo a series of proteolytic cleavages of the Gag and Gag-Pol polyproteins, 

releasing matrix, capsid and nucleocapsid [45]. This leads to the maturation process that 

will be described in the next section.  

Morphology and Maturation 

The morphology of the immature virion is dominated by the roughly spherical 

Gag shell inside of a lipid membrane derived from the host cell [46-50]. The Gag 

molecules are bound to the membrane via their myristoylated N-terminal glycine residues 

as well as basic residues at the upper surface of the MA domains. The RNA genome and 

other viral proteins are contained within this shell, and trimers of Env comprising the 

transmembrane gp41 and extracellular gp120 are distributed throughout the membrane 

[2]. Gag expressed alone in insect and human cells will assemble at the plasma 

membrane and bud off into spherical virus-like particles, with no other viral proteins 
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being necessary for this assembly [46, 48]. These virus-like particles and the immature 

virions appear roughly spherical, sometimes with a faceted appearance. Image processing 

of cryo-EM projections does not indicate icosahedral symmetry, despite some initial 

reports to the contrary [46, 48, 49, 51]. Hexagonal lattices with spacing around 8 nm have 

been observed in the Gag layer of the immature particles. Although the structure of Gag 

monomers at high resolution is not known, radial density averages are consistent with the 

individual domains of the Gag proteins adopting an extended conformation along radial 

spokes, and the same organization has been observed in immature M-MuLV [35, 46-48, 

52]. 

Following budding, the Gag polyprotein is cleaved to yield MA, CA, NC, and two 

spacer peptides [45]. This results in the loss of the radially organized Gag shell and the 

formation of a cone shaped electron dense core of capsid protein, with NC and the 

genomic RNA contained within it [53]. There is evidence that as little as 30% of CA 

protein is used to form the conical core in vivo, indicating that core formation may partly 

be concentration-driven [35, 54, 55]. Although the precise timing of these events is not 

known, it is clear that it is a regulated process. The five protease sites are cleaved at 

different rates in vitro, such that the first cleavage would separate SP1 from NC, then 

MA/CA and SP2/p6, and finally CA/SP1 and NC/SP2 [56, 57]. This, combined with 

mutational analysis, led to a model in which the cleavage of NC from SP1 allows 

condensation of the RNA/NC complex, followed by the reorganization of capsid once the 

MA/CA and CA/SP1 sites are cleaved [45]. The timing and order of the proteolysis 

appears to be regulated in part by the dimerization of PR, which is required for its activity 

[58, 59]. In addition, it has been shown that the cleavage of PR from Gag-Pro-Pol is an 
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intramolecular reaction [60], and that when PR is embedded in the Gag-Pro-Pol 

precursor, its specificity is altered such that it preferentially cleaves itself free before 

processing other substrates [61]. Finally, it is not entirely clear when proteolysis begins. 

It had been reported that PR was active in the cytoplasm of infected cells [62], and 

subsequently that the activity of PR began at the membrane prior to budding and was 

required for optimal budding efficiency [63]. However, other groups have been able to 

obtain large quantities of immature particles by inactivating protease, and assembly was 

not compromised. Additionally, expression of a single-chain PR dimer abolished 

assembly and infectivity, but particle assembly could be restored by a protease inhibitor 

[64, 65]. This suggests that viral assembly requires that the activation of PR be delayed, 

possibly by slowing the rate of dimerization. Interestingly, when particles were produced 

in the presence of protease inhibitors, removal of the inhibitors did not restore infectivity, 

nor did it result in morphological changes associated with maturation, possibly indicating 

that some level of PR activity is necessary during particle formation [66].  

 

Matrix 

Structures of matrix proteins from HIV and several related viruses have been 

solved by X-ray crystallography and NMR (Figure 1-1) [67-69]. The structures are all 

highly similar, even in cases of low sequence identity. HIV MA consists of five helices 

and a three-strand beta sheet, with the N-terminal glycine myristoylated [68]. The protein 

crystallized in three different lattice forms, all as trimers. In the two lattices yielding 

high-resolution diffraction data, the structures and crystal contacts were identical, and 
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they were very similar in the SIV crystal structure; SIV and HIV MA are about 50% 

identical at the primary sequence level.  

As with the Gag shell of the immature virion, the quaternary structure of the 

matrix layer in the mature particle is not known. Evidence for icosahedral symmetry has 

not been obtained [70], leading to the suggestion that the matrix may be globally 

disordered with local order, although it has been suggested that it could be a flexible or 

distorted icosahedron [71]. A model for an MA lattice structure has been proposed based 

on crystal structures, cryo-EM data from the Gag shell, and molecular modeling [71]. The 

model consists of a threefold symmetric lattice of hexagonal rings, with ring spacing of 

7 nm and 4 nm holes in the rings. It is proposed that the transmembrane Env component 

gp41 binds in the rings, which is supported by mutational analysis indicating that some 

ring-lining residues of MA are important for Env binding. However, several lines of 

evidence indicate that MA may not form an ordered lattice in the mature virion. MA has 

been shown to be dispensable for virion assembly [72-74] and replication [75], so long as 

the N-terminal myristoylation is retained. Cryo-EM studies in projection have also failed 

to find evidence of a regular MA lattice in immature particles [47].  

Capsid 

As with matrix, the structure of capsid has been determined in several forms by 

NMR and X-ray crystallography (Figure 1-2) [76-80]. The protein is divided into an N-

terminal domain (NTD) of 145 residues separated by a 15-residue flexible linker from the 

70 residue C-terminal domain (CTD). Gag radial density plots indicate that these 

domains are also separate in the polyprotein. The NTD is a flattened molecule composed 

of seven α-helices in a roughly parallel arrangement, except for helices 5 and 6, which are 
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oriented perpendicularly near the N-terminus. A 17 residue loop between helices 4 and 5 

is the site at which cyclophilin A binds [79]. Upon proteolytic cleavage from the Gag 

precursor, the N-terminus refolds to form a salt bridge between a highly conserved and 

deeply buried aspartate (D51) and the newly N-terminal proline, creating a ß-hairpin 

structure that can act as a dimerization interface [81]. This ß-hairpin appears to be 

important for in vitro assembly of capsid tubes, in vivo capsid formation, and viral 

reproduction, but not Gag shell assembly [82]. In the NMR structure of the Gag fragment 

containing MA and the CA N-terminal domain the ß-hairpin is not formed and the 

corresponding region exists as a disordered linker (Figure 1-3) [83]. The structure of a 

hexamer of CA NTDs from the related N-tropic murine leukemia virus has been 

determined by X-ray crystallography, revealing a ring 90 Å in diameter and 40 Å thick, 

with the oligomerization interface comprising the ß-hairpins and an 18-helix bundle 

formed by helices 1, 2, and 3 (Figure 1-4) [84]. 

The CTD has a globular structure composed of four α-helices. Helix 1 contains 

the highly conserved 20-residue major homology region (MHR), which is essential for 

viral assembly [72]. Constructs comprising CA residues 146–231 and 151–231 

crystallized with different dimer interfaces, both mainly involving helix 2 [77, 85]. The 

CTD also forms dimers in solution [77] and, along with the SP1 spacer peptide at its C-

terminus, has been shown to be absolutely required for viral particle assembly and 

replication [72, 74, 86-88]. A crystal structure of a SCAN (SRE-ZBP, CTfin-51, AW-1, 

Number 18 cDNA) domain revealed a domain-swapped CA CTD homolog, and it was 

proposed that this may represent an intermediate in the process of virion formation [89].  
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Capsid protein appears to form a broad range of higher-order structures, 

indicating considerable flexibility in its self-association. It has been shown that 

recombinant CA protein can form cones and cylinders in the presence of high salt 

concentration, such as 1M NaCl [90]. CA-NC expressed in vitro can also form tubes and 

cones if provided with RNA or high salt [91, 92]. In another experiment, the structures 

showed pH dependence, where a transition from spheres to tubes occurred around pH 6.8 

[93]. Below pH 6.6 the protein existed only as dimers. Such sensitivity to environmental 

conditions is consistent with a model in which capsid protein has multiple quaternary 

structures that are energetically very close to each other.  

A study of in vitro assembled CA-NC tubes using cryoelectron microscopy 

exploited the helical symmetry of the tubes to obtain reconstructions at 20–30 Å 

resolution [92]. Nine reconstructions were obtained with great variability in unit cell 

orientation, as well as hexamer spacing ranging from 100 to 115 Å. By manually docking 

the crystal structures into the electron density from the cryoEM reconstructions, a model 

was made in which the NTDs formed hexamers with helices 1 and 2 and the ß-hairpins at 

the center, with adjacent hexamers connected by CTD dimers. The model agrees well 

with the N-MLV CA NTD hexamer crystal structure solved several years later [84]. Two-

dimensional crystallography of CA from Moloney murine leukemia virus showed a 

similar lattice with 80 Å spacing, and it was proposed that all the observed CA structures 

could be explained by changes in the positions of the CTD dimers relative to the NTD 

hexamers, via the flexible linkers connecting them [94]. A similar lattice with 96 Å 

spacing was found in tubular cores from mature viruses in vivo using Fourier filtration of 

cryoEM projection images [53]. 
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The results mentioned in the previous paragraph were all obtained with CA 

constructs that would correspond to the mature form, and no data about the immature 

lattice is available to that resolution. Membrane-bound CA proteins imaged by two-

dimensional electron crystallography in negative stain have formed hexagonal networks 

with spacings of 64 Å and 91 Å [95, 96]. The construct yielding a spacing of 64 Å 

differed from the 91 Å construct only by the addition of 13 residues at the N-terminus, 

and reconstructions of the more tightly spaced lattice revealed close NTD dimers not 

present in the larger form; it was proposed that the closely spaced lattice represented the 

immature Gag network. Those numbers are reasonably consistent with other results when 

the shrinkage from negative staining is taken into account, which can be upwards of 10%. 

A similar study using a Gag construct truncated after the NC domain, but still containing 

full length MA and CA, found a hexamer spacing of ~80 Å [97]. Electron microscopy of 

immature virions has found evidence of hexagonal lattices with spacings of ~80 Å in vivo 

[35, 47, 48].  

Fullerene Cone Model 

The fullerene cone model has been proposed to explain the capsid structure, in 

which capsid monomers form a hexagonal lattice, which according to Euler’s Theorem 

can be made into a closed surface by the inclusion of exactly twelve pentagonal “defects” 

(Figure 1-5) [91, 98]. Fullerene cones will vary in shape according to the positions of the 

pentons; a cone will have between one and five pentons near its small end, and the others 

at the large end (six would produce a rod). More aberrant shapes may be produced if 

some pentons are near the middle. A prediction of this model is that the angles of cone-

shaped capsids will be quantized into five values depending on their arrangement of 
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pentons, with the most commonly observed 5,7 cone having an angle of 19.2º. Electron 

microscopy of HIV cores shows a Gaussian distribution of cone angles roughly centered 

on this value [53, 99, 100]. However, those measurements were made on projections, 

which can be misleading since the cone angle will appear greater if the viewing axis is 

not perpendicular to the cone’s axis of rotational symmetry.  

Maturation Switches 

Three distinct structural switches have been identified in HIV maturation. The 

best characterized of these is the N-terminal ß-hairpin structure formed after cleavage of 

the CA NTD from MA [81]. The ß-hairpin appears to play a role in stabilizing capsid 

tubes and cones, but mutations in the corresponding region have little effect on viral 

assembly or budding. Indeed, mutational analysis shows that the NTD as a whole is 

important for formation of mature capsid cores, but much less important for the formation 

of immature particles or spherical CA assemblies [74, 82, 101-104].   

The second involves matrix protein, which had been observed to have lower 

affinity for the membrane once cleaved from Gag than in the polyprotein. NMR studies 

then showed that MA exists in two states: a trimer in which the myristyl group is fully 

exposed, and a monomer with the myristyl group partially retracted [105-107]. The 

mechanism is postulated to be an entropic change in equilibrium, rather than a gross 

conformational change. By coupling MA oligomerization and membrane binding, this 

also allows the localization of MA to be regulated by NC RNA binding and Gag 

proteolysis. It is not yet clear whether MA fully dissociates from the plasma membrane 

upon Gag proteolysis, however, as the high local concentration of MA could still promote 

oligomerization and thus stabilize membrane binding.  
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The 14-residue SP1 spacer peptide has been shown to be crucially important for 

viral particle assembly in vivo, and the formation of CA spheres in vitro [72, 74, 88, 101-

103, 108]. Mutation of the cleavage site between CA and SP1 results in assembly and 

budding of particles that fail to undergo the maturation process and instead form a 

somewhat spherical CA layer separate from the membrane/MA [45]. One study found 

that CA-SP1 could form tubes in vitro, although only at high pH and salt concentration 

[34]. Taken together, these results indicate that SP1 may serve to stabilize the spherical, 

immature form of the CA lattice, and therefore to help facilitate the proteolytic regulation 

of the maturation process. It was computationally predicted that SP1 could form an α-

helix, and insertion of helix-breaking residues into the region caused defects in particle 

assembly [88]. Mutation of residues H359, K360, A361, L364, A367, and M368 resulted 

in impaired virus production both in the presence and absence of PR, and also eliminated 

Gag multimerization as assayed by ultracentrifugation [109, 110]. The predicted α-helical 

region was disordered in the crystal structure [85] and an NMR study of the CA CTD-

SP1-NC domains showed a small α-helical propensity, but did not find a significant 

difference in the dimerization affinity relative to CA alone [111]. However, it is not 

known whether those results can be extrapolated to the physiological case, in which the 

full length Gag molecule is present along with RNA. A synthetic peptide composed of 

SP1 along with 21 residues at its N-terminus and 13 residues at its C-terminus was found 

to form an amphipathic α-helix in 30% trifluoroethanol by NMR [112]. Gel filtration 

indicated that the peptide had a tendancy to aggregate, but it appeared to form dimers as 

well. Additionally, the authors found that SP1 promotes RNA binding by NC-p7 and 

showed by molecular dynamics simulations that both dimers and trimers would be 
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favored by the peptide. This is intriguing in light of the important structural role played 

by RNA in HIV assembly.  

Cryoelectron Tomography 

Although X-ray crystallography and electron microscopic single particle analysis 

methods have been used to solve the structures of many viruses with great success, HIV 

presents unusual challenges. Since each HIV particle is structurally unique and lacking 

any global symmetry, techniques based on averaging of whole particles or icosahedrally 

symmetric unit cells cannot be employed.  

Cryoelectron tomography is an ideal method with which to answer many of the 

remaining structural questions about the virus. The native structure of the sample is 

preserved down to the conformations of macromolecules, and the resulting images 

represent the actual electron density of the sample. Electron tomography can obtain three-

dimensional information about structurally authentic virus-like particles by recording a 

series of images with the sample incrementally tilted around an axis perpendicular to the 

beam [113]. These views can then be used to reconstruct the three-dimensional density of 

the original sample through weighted backprojection. According to the dose fractionation 

theorem, a given electron dose spread out over a tilt series will yield the same resolution 

in three dimensions as it would have in a two-dimensional projection, as long as the dose 

for each image in the tilt series is sufficient for alignment [114]. In general, the resolution 

of a tomogram will depend on the tilt increments and range, sample thickness, alignment 

accuracy, and signal-to-noise ratio of images, which is itself fundamentally limited by the 

electron dose [115, 116]. Electron tomography has been used with great success to study 
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the internal structures of other viruses lacking global symmetry [117] and surface 

proteins on retroviruses including HIV [118-120].  

Personal Contributions 

In chapter 2, I present the results of a study of mature HIV-1 virus-like particles. 

This project was intended to catalog the three-dimensional morphologies of viral cores in 

vivo, measure the cone angles in three dimensions in order to test the fullerene cone 

model, and to make other structural observations as they became possible. I began 

working on that project as soon as the lab was running, and through the time that the 

resulting paper was published I was the only person in the Jensen lab primarily working 

on HIV. I traveled to Dr. Sundquist’s lab in Utah along with Drs. Jensen and Tivol, where 

the three of us collaborated in freezing the virus-like particles as they were produced and 

purified by Dr. Ganser-Pornillos (then a graduate student in the Sundquist lab). Drs. 

Jensen and Tivol also assisted in the microscopy. I performed all of the tomographic 

reconstructions and did all of the subsequent computational analysis. This included 

segmentation using Amira (Mercury Computer Systems, Inc., San Diego CA), 

development of all custom modules in Amira using the C++ programming language, 

creating scripts to make measurements and generate figures, and final preparation of all 

figures except for 2-1 and 2-4, which were assembled by Dr. Jensen. In the course of that 

project, I assisted in the evaluation of the flip-flop cryostage and dual axis tomography 

system, resulting in my contribution of Figure A-3 to Appendix A.  

In chapter 3, I present our results from the study of immature HIV-1 virions. (We 

considered these to be virions, albeit noninfectious, because they contained all structural 

proteins including Env. This was in contrast to the mature particles, which lacked Env as 
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well as functional copies of RT.) Improvements to our experience with the microscope, 

along with a better CCD camera, allowed substantial increase in the quality of images for 

this study. That project was carried out in collaboration with Dr. Elizabeth Wright. My 

involvement in the particle freezing, microscopy, and tomographic reconstructions was 

shared equally with Dr. Wright. I wrote all the Amira modules used in the project, 

including the generation of spherical shells, projection of density onto a surface (this was 

later modified by Dr. H. Jane Ding into the version used for most of the analysis), 

location of density extrema, classification of local order, computation of Voronoi cells 

around each unit cell, Voronoi partitioned radial averaging (but Dr. Ding wrote the initial 

version of the radial averaging module), and unit cell alignment and averaging. I carried 

out the averaging of the Gag unit cells and manual docking of crystal structures. Dr. 

Wright wrote the majority of the first draft of the paper, while I wrote the text dealing 

with our computational analysis and also revised the rest of it. Dr. Wright prepared 

Figures 3-1, 3-2, 3-4, and 3-5, and I prepared the others.  
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Figures 

 

Figure 1-1. Matrix protein trimer. 

From PDB 1HIW. Amino termini are in blue, carboxy termini in red.  
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Figure 1-2. Capsid amino and carboxy terminal domains.  

From PDB 1AK4 and 1A43. Colors are after original publications (NTD: ß-

hairpin, red orange; helix 1, orange; helix 2, yellow; helix 3, green; helix 4, blue; 

cyclophilin A binding loop, yellow; helix 5, dark blue; helix 6, magenta; helix 7, pink; 

CTD: helix 1, red; helix 2, pink; helix 3, blue; helix 4, green).  
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Figure 1-3. Capsid NTD maturation.  

Left: Immature. From PDB 1L6N.  

Right: Mature. From PDB 1AK4.  

Colors as in Figure 1-2.  



 

33 

 

Figure 1-4. N-MLV capsid NTD hexamer.  

From PDB 1U7K.  



 

34 

 

Figure 1-5. Fullerene cone model.  

Three penton defects are highlighted in orange. Model courtesy of Dr. Barbie 

Ganser-Pornillos.  
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Abstract 

While the structures of nearly every HIV-1 protein are known in atomic detail 

from X-ray crystallography and NMR spectroscopy, many questions remain about how 

the individual proteins are arranged in the mature infectious viral particle. Here we report 

the three-dimensional structures of individual HIV-1 virus-like particles (VLPs) as 

obtained by electron cryotomography. These reconstructions revealed that while the 

structures and positions of the conical cores within each VLP were unique, they exhibited 

several surprisingly consistent features, including similarities in the size and shape of the 

wide end of the capsid (the “base”), uniform positioning of the base and other regions of 

the capsid 11 nm away from the envelope/MA layer, a cone angle that typically varied 

from 24° to 18° around the long axis of the cone, and an internal density (presumably part 

of the NC/RNA complex) cupped within the base. Multiple and nested capsids were also 

observed. These results support the fullerene cone model for the viral capsid, indicate that 

viral maturation involves a free re-organization of the capsid shell rather than a 

continuous condensation, imply that capsid assembly is both concentration- and template-

driven, suggest that specific interactions exist between the capsid and the adjacent 

envelope/MA and NC/RNA layers, and show that a particular capsid shape is strongly 

favored in vivo. 
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Introduction 

While high-resolution structures of many viruses have now been determined by 

X-ray crystallography, such models will not be obtainable for the type 1 human 

immunodeficiency virus (HIV-1) because virions are individually unique. Instead, 

molecular models for HIV-1 must for now be obtained by combining high resolution 

structural studies of isolated viral components together with lower resolution 

reconstructions of intact virions generated by electron microscopy (EM). Thus our 

understanding of HIV-1 structure has advanced stepwise with the development and 

application of ever more sophisticated EM methods. After the virus was first identified in 

the early 1980s, its gross structure and organization were quickly characterized using the 

traditional EM techniques of thin sectioning and immuno- or negative staining (reviewed 

in1; 2). Structural models of the mature virion have subsequently been refined using data 

from “cryo-” EM3, STEM4, and tomography5; 6.  

We now know that the mature HIV-1 virion has a roughly spherical outer lipid 

bilayer 120–200 nm in diameter3, which is studded with trimeric clusters of the 

transmembrane Env protein6. Inside the bilayer, there is a series of structural shells that 

organize the viral RNA genome and its associated enzymes for uncoating and replication 

in a new host cell. These different shells are assembled during the process of viral 

maturation, when the immature Gag polyprotein is proteolytically processed to produce 

the smaller MA, CA, and NC proteins (as well as several smaller peptides). The 

outermost shell of the mature virus (the “matrix”) is associated with the inner face of the 

bilayer and is composed of ~4000–5000 copies of the N-myristoylated MA protein. 

Inside the matrix is an unusual conical particle (the “core”), whose conical outer shell 
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(the “capsid”) is composed of ~1000–1500 copies of the viral CA protein. Within the 

capsid is a ribonucleoprotein (RNP) particle composed of two copies of the positive-

sense RNA genome, thousands of copies of the RNA-binding NC protein, and ~250 

copies each of the reverse transcriptase (RT) and integrase (IN) enzymes4.  

High-resolution structural models are now available for essentially all of the HIV-

1 proteins or their constituent domains, including MA, CA, and NC (reviewed in7). 

Moreover, molecular models for higher-order interactions within the viral matrix8; 9; 10 

and capsid11 lattices have been proposed based upon structural analyses of recombinant 

MA and CA protein assemblies. In the case of the capsid, EM analyses of helical and 

two-dimensional crystals of HIV-1 CA have revealed that the protein preferentially 

assembles into p6-based lattices composed of CA hexamers11; 12. It has been proposed 

that the conical viral capsid assembles on a similar hexagonal CA net following the 

structural principles of a fullerene cone13; 14; 15; 16. In the fullerene cone model, the body of 

the conical capsid is composed of CA hexamers, and the two ends of the cone are 

allowed to close through the introduction of pentameric defects, with five pentons at the 

narrow end and seven pentons at the wide end. The fullerene cone model correctly 

predicts the observed quantization of the cone angles of synthetic capsid assemblies15, 

and is also strongly supported by a series of cryo-EM measurements made on authentic 

viral cores3. However, all of these cone angle measurements were made with simple 

projection images, and this precluded a direct comparison of actual capsid cone angles to 

the quantized values predicted by the fullerene cone model because the authentic capsids 

could adopt variable orientations with the respect to the electron beam3 and because the 
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synthetic capsids were flattened and possibly distorted in other ways when dried onto 

carbon films15.  

The recent development of electron cryotomography provides a new and more 

powerful way to investigate HIV-1 structure. This method offers the advantages inherent 

in cryoEM, in which a sample in solution is spread into a thin film across an EM grid and 

plunged into liquid ethane17. This procedure preserves the sample in a near-native, 

“frozen-hydrated” state, and allows the actual structure of the biological macromolecules 

to be imaged through their inherent contrast against an aqueous background. In 

tomography, a series of images is recorded of a specimen while it is tilted incrementally 

about some axis. Three-dimensional reconstructions of the specimen (“tomograms”) are 

then calculated by merging the images by back-projection in real space, or alternatively, 

by Fourier interpolation in reciprocal space. While the potential advantages of electron 

cryotomography have been discussed for decades, only in the past several years has it 

become practically feasible and effective through the advent of high quality CCD 

cameras, motorized and computer-controlled stages, programmable EMs, and 

development of automatic protocols to control specimen tracking, focusing, and 

exposures18; 19; 20.  

Two tomographic analyses of HIV particles have been reported previously, 

yielding information on the structure of the virion5 and on the shape and distribution of 

envelope glycoproteins on the virion surface6. Both of these studies, however, utilized 

negative staining procedures that limited the accurate visualization of internal core 

structures. Here, we report the first application of electron cryotomography to determine 
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the three-dimensional structure of several tens of individual, unfixed, unstained, whole 

HIV-1 virus-like particles (VLPs).  

 

Results 

Non-infectious HIV-1 VLPs were produced from a proviral expression construct 

with debilitating mutations in the RT and RNase H enzymes and a frameshift mutation 

that prevented Env protein expression. VLPs were produced in cultured human 293T 

cells, recovered from the supernatant, and purified by sucrose density centrifugation. As 

expected, the HIV-1 CA, MA, and NC proteins were the major protein components in the 

sample as analyzed by SDS-PAGE (data not shown).  

HIV-1 VLPs were plunge-frozen onto EM grids and imaged in a 300 kV FEG 

TEM. A variety of particles was seen, including many VLPs with mature cores, a few 

immature VLPs with spherical Gag shells, and some “empty” vesicles without any visible 

core-like internal density (Figure 2-1 top). Energy filtered, dual-axis tilt series were 

recorded of 10 fields of VLPs at high defocus with the new “flip-flop” cryo-rotation 

stage, and three-dimensional reconstructions were calculated using the IMOD 

tomography package 21 (Figure 2-1 middle). Inclusion of the second orthogonal tilt series 

improved the point-spread-function, as could be seen by the circular shape of the defocus 

fringe surrounding the gold fiducials in tomogram slices. Seventy-six mature VLPs were 

selected from the tomograms and denoised with nonlinear anisotropic diffusion 22 

(examples in Figure 2-1 bottom). Despite dual-axis data collection, there is still a 

“missing pyramid” of data in reciprocal space, which causes a loss of resolution in the 

direction parallel to the electron beam. Thus the shapes of the VLP capsids were best 
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resolved when they were oriented with their long axes “vertically” in the thin 

“horizontal” layer of ice. These approximately one-third (26) clearest capsids and their 

corresponding envelopes were segmented in three dimensions using a semi-automatic 

procedure guided by manually identified landmarks. While the majority of the surface of 

each capsid was clearly recognizable, especially across the long, straight edges, there 

were also some gaps arising presumably from noise, which in some unfavorable cases 

can actually be emphasized by the denoising algorithm. The structures of the capsid 

“tips” (narrow ends of the cones) were most difficult to detect, perhaps because their 

surfaces lay perpendicular to the electron beam (and are therefore smeared by the missing 

pyramid of data), but perhaps also because they are small and change abruptly. Following 

segmentation, the three principal axes of each segmented capsid were calculated so that 

the VLPs could be roughly aligned and compared. 

Figure 2-2 shows a montage of all 26 segmented VLPs from the three orthogonal 

viewing directions. Of the 26, 16 exhibited the well-known conical capsid morphology. 

There were also several rod-shaped capsids as well as another class of pleiomorphic 

shapes that, while non-uniform, nevertheless presented corners, edges, and angles similar 

to those seen in the conical capsids. In addition, two VLPs contained multiple capsids: 

“3g” contained one conical and one rod-shaped capsid, and “1g” actually had a total of 5 

capsids. Surprisingly, two VLPs (“10a” and “1g”) presented internal layers of density that 

appeared to be nested capsids, an organization that has not to our knowledge been 

reported previously (Figure 2-3). VLP envelopes were typically spheroidal with a mean 

largest diameter (the largest distance between any two points on the three-dimensional 

surface) of 143nm (standard deviation 10.8nm), but exhibited significant variability and 
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in many cases (VLPs “1k,” “6b,” “1n,” “2f,” “3j,” and “7g”) followed the contours of the 

capsid a consistent distance of 11 nm away (“peak-to-peak” distance from middle of lipid 

envelope/MA layer to middle of CA layer) for a significant portion of their surfaces.  

Knowledge of the three-dimensional shapes of the envelope/matrix and capsid 

layers allowed us to measure volumes and surface areas accurately. The mean external 

surface areas were 49,000 nm2 and 21,000 nm2 (standard deviations 5,200 nm2 and 

9,000 nm2), respectively (Table 2-1). For this calculation, in those cases where VLPs 

presented multiple capsids (“10a,” “3g,” and “1g”), the surface areas of all the capsids 

were summed. The mean volumes of the VLPs and the conical cores were 980,000 nm3 

and 190,000 nm3 (standard deviations 160,000 nm3 and 26,000 nm3), respectively. These 

small volumes imply that even single-copy proteins are present at appreciable 

concentrations (~9 μM) within viral cores, and that the concentrations of the viral RT and 

IN enzymes are quite high (~2 mM).  

Previous studies have demonstrated that the virion diameter does not change upon 

maturation3. Thus, to calculate the number of MA subunits in the matrix shell, the 

packing was assumed to be identical to a recent model for the packing of Gag in the 

immature virus: hexagonal, with six monomers per unit cell and center-to-center spacings 

of 8.0 nm, observed 12.5 nm from the outside edge of the lipid bilayer4. We therefore 

contracted the boundaries of our segmented envelope/matrix layers by 12.5 nm normal to 

their surfaces at every point, and divided the contracted surface area by the presumed 

area per Gag monomer. For CA, we again assumed hexagonal packing, and used the 

measured center-to-center spacing of unit cells at the outside surface of 10.7 nm11. The 

resulting averages of 4,000 and 1,300 monomers in the matrix and capsid shells agree 
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well with previous estimates4. This indicates that in general, only about one-third of the 

available CA protein is involved in an organized capsid layer. In the extreme case of the 

five-capsid VLP “1g,” however, 71% of the total CA protein was incorporated into a 

capsid layer.  

When aligned and compared in three-dimensions, the majority class of capsids are 

more similar than suggested by the projection images found currently in the literature. 

Because the best current model for the organization of the capsid is a hexagonal net of 

CA protein arrayed following the principles of a fullerene cone15, the cone angle, which 

in theory should adopt only certain quantized values (19.2˚, 38.9˚, 60˚, etc.), is of 

particular interest. We measured the cone angle for all the conical capsids rigorously in 

three-dimensional space by considering the intersection of the capsid’s surface with 

planes containing its primary principal axis. In other words, we measured the cone angle 

in sections through the capsid ranging 180° from “sagittal,” past “coronal,” and back to 

sagittal. For each section, the tip and base of the capsid were ignored, and lines were fit to 

the long edges by minimizing squared errors. These two lines defined a cone angle, 

which was plotted as a function of rotation angle around the long axis of the cone (Figure 

2-4). The plots show a pattern of cone angle progression from ~24° to ~18°, which agrees 

well with the predicted 19°, since in fact any real 5,7 fullerene cone with finite unit cells 

cannot be perfectly symmetric. Although the measured angles varied by a few degrees 

depending on the precise boundaries used to exclude the tip and base of each capsid, the 

overall shape of each curve is insensitive to these parameters (data not shown). Most of 

the cones do tend to “flare” slightly (cone angle increases by a few degrees), however, 

towards their base. The observation that some capsids exhibit cone angles that appear 
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more “flattened,” and reach as much as 30°, is robust to perturbations of the procedure. 

For comparison, the corresponding cone angles from three idealized fullerene cone 

models11; 23 are also plotted in Figure 2-4 (black lines). The mean angle across all 

rotations for the 16 actual capsids measured was 20.1°. The mean angle across all 

rotations for the idealized fullerene cone models was exactly the same: 20.1°. 

To compare the cores further and look for other conserved structural features, we 

averaged the VLP densities in three ways. First, guessing that important conserved 

structures within mature HIV-1 would be fixed with respect to the capsid, we aligned the 

VLPs by superposing their capsids’ principal axes as we had done before to measure cone 

angles, and calculated a three-dimensional average. Because the capsids vary in length, 

however, this produced confusing interferences. We next aligned the VLPs with respect 

to either the base or the tip of their capsids. Clear patterns in the resulting VLP averages 

then emerged (Figure 2-5). When bases were aligned, an inherent asymmetry became 

apparent in that their most distal points appeared to the side of their cone axes (panel 

2-5B). The gross shape of the entire base was conserved, as was the 11 nm distance 

between the base of the capsid (green arrow in panel 2-5E) and the envelope/matrix layer 

(magenta arrow in panel 2-5E) surrounding it. When tips were aligned, the conserved 

cone angle and the same conserved distance of 11 nm between the tip and the 

envelope/matrix was again apparent (panels 2-5C and 2-5D), but no clear density in the 

very top of the tip (hereafter referred to as the “cap”) was observed (yellow arrow in 

panels 2-5G and 2-5H). This appears to be a hole and may very well be in many of the 

VLPs, although it might alternatively reflect variability in the shape of the cap or the 

smearing due to the missing pyramid of data. To clarify this ambiguity, we looked 
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carefully at the non-denoised individual reconstructions in this region and observed that 

indeed there were many capsids without clear cap densities. In addition, the smearing 

effect of the missing pyramid would be expected to obscure both the base and the tip 

regions equally, but the base regions and their averages uniformly showed strong density. 

Thus we favor the interpretation that the cap region is variable and in some cases is not 

even completely closed. This would not have been easily observed previously in 

projection images because the lip of density surrounding the cap region would have 

appeared in that location. Finally, when the densities inside the capsids in the VLP 

averages are compared, we observe that more density appears within the base than the tip. 

This density seems to be concentrated in a third concentric layer (yellow arrow in panel 

2-5E) cupped ~10 nm inside the capsid base. 

 

Discussion 

The architecture of the layers of HIV-1 and their morphogenesis are not only 

intrinsically interesting from a structural point of view, but may also lead to novel 

therapeutics that block assembly or maturation. Indeed, several small molecules have 

already been reported to block structural transitions required for the assembly or 

maturation of several viruses, including HIV-124; 25; 26. Unfortunately, the architecture of 

HIV-1 has been difficult to study because each virus is unique, and therefore traditional 

X-ray crystallographic and EM methods are not applicable. For unique specimens, the 

highest resolution structural technique available today is electron tomography. In this 

study we have applied state-of-the-art electron cryotomography to produce the first three-

dimensional structures of whole, native HIV-1 VLPs. 
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Several lines of evidence indicate that the VLPs we imaged were indeed authentic 

structural homologs of wild type HIV-1. Firstly, the point mutations introduced into the 

RT and RNase H proteins would not be expected to have any structural consequence at 

the low resolutions seen here. Similarly, the absence of Env protein is also unlikely to 

impact the internal structure, since in a recent study Env trimers were not observed to be 

distributed uniformly or in any particular pattern6. Moreover, our measurements of viral 

particle size and the general sizes and shapes of the viral core are in excellent agreement 

with recent cryo-EM measurements made on authentic, but chemically inactivated HIV-1 

particles3; 4. 

The structures reported here support the fullerene cone model of the organization 

of the capsid. While the usual variety of capsid morphologies was seen ranging from 

cones to rods to other irregular shapes, all the capsids observed here, including those that 

were pleiomorphic, contain similarly shaped edges, vertices, and angles, giving the 

impression of objects built from the same underlying motifs. The majority were cones, 

and they could be aligned surprisingly well in three dimensions. The fullerene cone 

model predicts that for a cone with five “pentons” in the tip and seven in the base, the 

cone angle should be ~19°, but of course this would only be uniform around the long axis 

of the cone if the distribution of pentons in the base and the tip were perfectly symmetric, 

which is physically impossible for a 5,7 fullerene cone. We observed a conserved 

progression of cone angles from ~24° to ~18°, consistent with the predicted 19° but 

indicating that the cones are slightly flattened and have roughly elliptical cross sections. 

All of these measurements agreed very well with the corresponding cone angle 

parameters observed for idealized fullerene cones. 
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Our data also strongly support the idea that HIV capsid assembly must involve a 

de novo assembly process rather than a concerted condensation of the immature Gag 

lattice. Specifically, we observed VLPs with multiple capsids, and even what we believe 

are nested capsids, both of which are incompatible with a concerted condensation 

mechanism. While it is possible that the most internal, concentric layers of density inside 

VLPs “10a” and “1g” are highly ordered RNP, we favor the interpretation that they are 

nested capsids because they have the same width, shape, and density (contrast) as the 

other capsids. Furthermore, consistent with measurements made by others4; 27, we find 

that only about one-third of the available CA molecules assemble into capsids, which 

again precludes concerted condensation models (Table 2-1). Finally, we note that “simple 

condensation” would require the unreasonable proposition that pentagonal defects, which 

are presumably distributed throughout a spherical immature Gag lattice, could “migrate” 

through the hexagonal lattice to cause cone formation.  

The mechanism of de novo capsid assembly is an important question, and two 

general models can be envisioned: 1) spontaneous, “concentration-driven” assembly 

pathways in which the shape of the viral capsid is ultimately determined by local inter-

CA interactions, or 2) a “template-driven” mechanism in which other viral components 

nucleate assembly of the viral capsid. Our data indicate that both local inter-CA and 

templating interactions likely play important roles in HIV capsid assembly. Spontaneous 

assembly must be possible because pure recombinant CA proteins can assemble into 

conical capsids in the absence of any other viral proteins15 and because we observed the 

formation of nested capsids within VLPs (see Fig. 2-3A–C). On the other hand, it is 

likely that the viral matrix and/or RNP layers play a role in helping to nucleate capsid 
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assembly in vivo because a simple concentration-driven model would not explain the 

observation that up to five total capsids can form in a single VLP (i.e., capsids can form 

even after the majority of free CA molecules have been incorporated into other capsids; 

see VLP “1g” and ref. 4). Further support for a templated assembly mechanism is 

provided by our observations that there are defined spatial dispositions between the viral 

capsid and the adjacent matrix and RNP layers, and by the conserved structural features 

seen in different viral capsids. The latter two points are considered in greater detail 

below. 

Evidence for specific interactions between the capsid and the adjacent 

envelope/matrix and RNP layers is provided by the fact that these different layers exhibit 

similar spacing in multiple VLP structures. The “peak-to-peak” distance between the 

matrix and the capsid was uniformly 11 nm along the base and the tip of the capsid (Fig. 

2-5), and this same spacing was also sometimes observed along the side of the capsid 

(e.g., see Fig. 2-2, VLP 1k, central image). This spacing is not an artifact of denoising, 

since the reconstructions used to calculate the average VLP (which document the 

consistency of the spacing) were not denoised, nor is it an artifact of defocus, because 

while defocus blurs edges, it does not change the separation between density peaks. At 

present, we cannot definitively explain why the matrix and capsid layers are so 

consistently spaced at either end of the capsid, though there must be, of course, some 

physical interaction that promotes this spacing. It is interesting to note that this distance 

matches very well the analogous spacing seen in immature virions (see ref. 28 Figure 

2-2B, measuring from the center of the lipid envelope/matrix layer to the middle of the 

presumed capsid peaks), and it may therefore be a remnant of that structure that is 
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preserved during maturation. It is unlikely, however, that covalent MA-CA linkages are 

maintained in the mature virion, as Gag processing appears to proceed to completion and 

mature viral cores can be isolated away from the matrix/envelope layer 29; 30; 31. We did 

not observe any consistent “20 nm thin structural link,” previously termed the core-

envelope linkage or CEL structure5 between the cap of the viral core and the matrix layer. 

Similarly, we did not see regular “lateral bodies1” along the sides of the viral capsid, but 

instead typically saw scattered and only occasionally aggregated densities between the 

matrix and capsid layers. We suggest that these previous observations could have been 

artifacts of fixation and staining. Finally, we did not observe either an “irregular slit” or 

“cavities or holes…distributed primarily in the wide end” of the capsid structure, as 

previously reported5.  

Others have previously observed a preponderance of density within the base (as 

opposed to the tip) of the core (e.g., see ref3), and it is therefore likely that most of the 

RNP components reside in the wide end of the capsid. Consistent with these 

observations, we observed a third layer of density in the averaged VLP structures, which 

appeared just inside the capsid base (Figure 2-5E, yellow arrow). We interpret this 

density as part of the RNP complex, and speculate that it might have served as a template 

to guide formation of the bases into their consistent shape and size. Interestingly, genetic 

studies also support the idea that the internal capsid surface may make functionally 

important interactions with the RNP complex and its associated enzymes. For example, 

subtle mutations in the internal MHR motif of RSV CA apparently do not compromise 

overall capsid assembly, but nevertheless prevent reverse transcription in the newly 

infected target cell32. Similarly, point mutations that alter the stability of the HIV-1 
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capsid also reduce the efficiency of DNA synthesis33. Thus, it appears that the retroviral 

capsid performs an important functional role in helping to organize the viral RNP particle 

for successful uncoating and reverse transcription in a new host cell.  

Several observations revealed that a special capsid shape is heavily favored in 

vivo. Firstly, while purified CA protein can form sheets, rods, and various cones in 

different ratios depending on environmental conditions15, much less variety was seen here 

in vivo, where the majority of capsids form cones of the 5,7 penton distribution type. If 

capsid assembly were not a directed process, then the hexagonal capsid net would self-

assemble into lattices with pentameric disclinations at random positions. It has been 

shown, however, that the vast majority of such hypothetical self-assembling surfaces 

would not close, and it is clear that the vast majority of those that did would be roughly 

spherical34. The number of cones that would emerge would be small, and those with a 5,7 

penton distribution would be a special class among them. The frequency of finding a 5,7 

cone with a particular size and shape in its base would be, we believe (though without 

specific calculation), essentially negligible. Nevertheless the majority class of actual 

VLPs observed here does in fact share just such an improbable capsid structure, which 

argues strongly for the presence of local and/or templating interactions that promote this 

preferred capsid shape in vivo. 

In this initial tomographic study we used imaging conditions chosen to highlight 

the gross structural features of HIV-1. Higher resolution structures should be achievable 

in the near future through several improvements: the use of smaller defocus values, which 

enhance high resolution features at the expense of low resolution contrast; CTF-

correction across the focal gradients present in the images35; optimization of the process 
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of merging dual-axis tilt series of frozen-hydrated samples36; 37; thinning of the ice and 

reduction of sucrose and other high density, contrast-matching molecules in the buffer; 

and ultimately, detection of the underlying periodicity of the protein layers and 

subsequent “unit cell” averaging until atomic models can be reliably docked. 

 

Materials and Methods 

Preparation of VLP. HIV-1 VLPs were made non-infectious by inactivation of the 

essential Env, RT, and RNase H proteins. An HIV-1NL4-3 R9 proviral vector38 with a 

frameshift mutation in the env gene that blocked Env protein production was obtained as 

a gift from Dr. Christopher Aiken (Vanderbilt University). Although Env deletion alone 

blocks viral infectivity, two additional mutations were added that also independently 

block viral replication. First, the viral RT was inactivated with a D185A (RTD185A) 

mutation. D185 is an RT active site residue that forms part of the catalytic triad. The 

mutation has been reported to block viral replication39; 40 and this was confirmed in our 

laboratory (data not shown). Second, the RNase H protein was inactivated with a H539A 

mutation (RNaseHH539A), which also blocks replication (41 and our data not shown). DNA 

sequencing confirmed the presence of all three inactivating mutations in the 

ΔEnv/RTD185A/RNaseHH539A R9 construct. 

VLPs were produced by transfecting the ΔEnv/RTD185A/RNaseHH539A R9 proviral 

DNA construct into 293T cells. Lipofectamine (Invitrogen) transfections followed 

manufacturers’ instructions (10×10 cm plates; 10 μg R9 DNA/plate), and VLP-

containing supernatants (8 mL) were harvested 24 and 48 h post-transfection. VLP 
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particles were concentrated by ultracentrifugation (30,000 RPM for 1.5 h in a Beckman 

Ti50.2 rotor, 4°C) through 20% sucrose cushions (17.5 mL culture samples overlaid on 

8 mL cushions) in STE buffer (10 mM Tris, pH 7.4; 100 mM NaCl, 1 mM EDTA). 

Concentrated viral stocks were resuspended (250 μL in STE buffer), overlaid on 10 mL 

sucrose gradients (20–60%), centrifuged (34,000 RPM for 16 h in a Beckman SW-41 

rotor), and harvested in 1 mL fractions. Viral fractions were assayed by SDS-PAGE, and 

the major bands visible by Coommassie Blue staining were confirmed to be the viral MA, 

CA, and NC proteins by Western blotting. 4×1 mL VLP-containing fractions were 

combined, diluted with 2 mL STE buffer, and VLPs were pelleted by ultracentrifugation 

(55,000 RPM for 1 h in a tabletop ultracentrifuge). The concentrated pellets were then 

resuspended in ~100 µL STE buffer for EM analyses. 

Cryoelectron tomography. Purified HIV-1 VLPs were flash-frozen onto glow-

discharged Quantifoil grids in liquid ethane using a Vitrobot. Ten nanometer gold 

fiducial markers were both dried onto the grids and mixed into the virus solutions before 

freezing. Frozen-hydrated grids were loaded into the new “flip-flop” tilt rotation holder, 

introduced into a 300 kV, FEG “G2 Polara” FEI TEM, and kept continuously frozen by 

thermal contact with liquid nitrogen. Image tilt series were collected from approximately 

−60° to +60° with a 3° tilt step automatically using the “predictive” UCSF tomography 

package42, and then the grid was rotated ~90° and a second tilt series was collected with 

the same tilt increment through approximately the same tilt range. All images were 

energy filtered with an energy slit width of 20 eV, recorded with a defocus of ~16 µm, 

with CCD pixels representing 0.67 nm on the specimen. 
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Image processing. Images were binned twofold, and then dual-axis tomographic 

reconstruction was performed using the IMOD package21. Briefly, each single-axis tilt 

series was aligned independently and used to calculate a three-dimensional reconstruction 

in real space by standard methods. The second reconstruction was divided into cubes and 

aligned piecewise to the first by cross-correlation, and was then re-interpolated to 

compensate for potential distortions between the two tilt series. The first reconstruction 

and the adjusted second reconstruction were Fourier transformed and merged in 

reciprocal space by simple averaging in those voxels for which structure factors were 

available from both tilt series. From the completed tomograms, individual VLPs were 

manually selected and denoised by 30 rounds of nonlinear anisotropic diffusion22. 

Capsids were selected and segmented semi-automatically along with their corresponding 

lipid envelopes using the Amira software package (Mercury Computer Systems, Inc.). 

Custom Amira modules were written to measure the capsid cone angle as a function of 

rotation about the cone axis and to align VLPs by either the tip or base of the capsid cone. 

Figures were produced with Amira. 
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Figure and table legends 

 

Figure 2-1. Primary data and processing steps.  
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Top: Purified HIV-1 virus-like particles were frozen in thin films across EM 

grids. Series of images were recorded of many such fields of frozen particles as the 

sample was incrementally tilted about one axis and then a second, orthogonal axis. One 

experimental image from one tilt series is shown. The roughly spherical objects are 

mostly HIV-1 VLPs (including those labeled “1B,” “1C,” “1E,” “1G,” “1K,” and “1M”), 

but some apparently “empty” liposomes are also present in the sample (“Empty”) as well 

as other irregular forms (“Irregular”). The small black dots are 10 nm gold fiducials used 

to align the tilt series for reconstruction, and the large arc appearing across the upper right 

corner is the edge of a circular hole in a supporting carbon film. Middle: Three-

dimensional reconstructions of the fields of VLPs were calculated from the various series 

of tilted images. A single section 1.34 nm thick through the middle of the reconstruction 

corresponding to the image above is shown. Because this is a single section, some objects 

that are seen in the projection image above (for instance many of the gold beads) do not 

appear. Bottom: Individual VLPs were selected from the reconstruction and denoised, and 

then the boundaries of the lipid bilayer and capsid were semi-automatically delineated 

(“segmented”). Three examples (“1E,” “1C,” and “1K”) are shown. In each pair, the left 

image shows a single section through the middle of an extracted, denoised VLP. The 

right image shows three-dimensional renditions of our interpretation of the capsids in red, 

shown in place within the denoised section, with the area enclosed by the lipid bilayer in 

blue.  
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Figure 2-2. Montage of all segmented HIV-1 VLPs.  

 Twenty-six VLPs were segmented and aligned along their principal axes. Three 

views are shown for each VLP, presenting from left to right axial, sagittal, and coronal 

perspectives, respectively. Three-dimensional renditions of the capsid surfaces are shown 

in red for cones, orange for rods, and yellow for all others, placed within a denoised two-
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dimensional section through the middle of the VLP, with the area enclosed by the lipid 

bilayer in blue. Because each VLP was extracted as a cube from a larger three-

dimensional reconstruction and then aligned to the others, the boundaries of the images 

appear as randomly oriented, clipped squares. Each capsid is identified by a number and a 

letter, where the number signifies which field of particles it came from. Capsids 3gR and 

3gC are part of the same, double-capsid VLP. The edges of the boxes containing each 

VLP image here and in all other figures represent 160 nm. 
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Figure 2-3. Nested capsids. 

Two VLPs, “10a” (panels A–C) and “1g” (panels D–F), presented nested capsids. 

Panels A and D show sagittal sections, panels B and E show coronal sections, and panels 

C and F show three-dimensional renditions as in Figure 2-2, except that the outer capsid 

surface has been made transparent to reveal the inner capsid, and in the case of VLP “1g” 

(panel F), the surfaces of all five capsids present are rendered. 
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Figure 2-4. Cone angle variation in 3D.  

The cone angle in degrees for the 16 conical capsids is plotted as a function of 

rotation around the cone axis from 0°–180°. The methodology is depicted in the inset. 

For each measurement, straight lines (blue in inset) were fit to the edges of the cone 

between the base and the tip. These lines defined the cone angle as the cone was rotated 

around its long axis. The resulting values were plotted by assigning the rotation position 

corresponding to the maximum cone angle as “0°.” The unique VLP identifiers are 

shown in the legend. The three black curves are the corresponding cone angles for three 

different theoretical fullerene cones modeled to mimic HIV-1 capsids, as described 

previously 11; 23.  
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Figure 2-5. Conserved patterns of density in VLPs.  

The 16 VLPs with conical capsids were aligned using either the bases (panels A, 

B, E, and F) or the tips (panels C, D, G, and H). The top panels show sagittal (A and C) 

and coronal (B and D) sections through the capsids and lipid bilayer surfaces, with the 

same color code for each VLP as in Figure 2-4. The bottom panels show again sagittal (E 

and G) and coronal (F and H) sections through the corresponding three-dimensional 

average VLP. In panel E, the magenta arrow points towards the edge of the average 

bilayer/matrix layer, the green arrow points towards the edge of the average capsid, and 

the yellow arrow points towards the presumed average internal RNP density. In panels G 

and H, the yellow arrows point to the missing average “cap” density. Notable features 

include the surprisingly uniform, asymmetric capsid base (panel B); the uniform cone 

angles (particularly panels B and D); the uniform distance between the capsid base and 

the bilayer/matrix layer (panels A and B); the preponderance of internal density within 

the base as opposed to the tip of the average capsids (panels E–H); the conserved internal 

density lining the inside of the average capsid base (panel E in particular); and the lack of 

clear density in the “cap” of the average capsid tip (panels G and H). The very dark 

density in the upper right corner of panel F outside the VLP is an artifact due to gold 

fiducials in one of the reconstructions.  
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Experimentally 
determined external 
surface areas (nm2) 

Calculated 
numbers of 
molecules  VLP 

envelope/
matrix 

capsid MA CA 

10a* 53,000 27,000 4,700 1,600 
10c 45,000 18,000 3,600 1,100 
1b 46,000 17,000 3,500 1,000 
1c 48,000 17,000 4,000 1,000 
1d 47,000 16,000 3,700 1,000 
1e 52,000 19,000 4,200 1,200 
1g* 62,000 59,000 5,100 3,600 
1k 49,000 21,000 4,300 1,300 
1m 45,000 16,000 3,400 900 
2a 48,000 18,000 3,900 1,100 
3f 52,000 17,000 4,300 1,000 
3g* 54,000 33,000 4,200 2,000 
3i 47,000 17,000 3,900 1,000 
4a 39,000 14,000 2,800 900 
4e 46,000 16,000 3,400 900 
6c 56,000 20,000 4,500 1,200 
6e 45,000 16,000 3,400 1,000 
6b 60,000 24,000 4,900 1,400 
1n 52,000 20,000 4,400 1,200 
2b 48,000 19,000 3,700 1,200 
2f 50,000 21,000 4,000 1,300 
3j 51,000 19,000 4,000 1,200 
4k 45,000 17,000 3,600 1,000 
7g 53,000 23,000 4,200 1,400 
9e 45,000 18,000 3,300 1,100 

mean 49,000 21,000 4,000 1,300 
stddev 5,200 9,000 530 540 

Table 2-1. Surface area measurements.  

The surface areas of each segmented envelope/matrix and capsid shell were 

measured and presented in the same order as they appear in Figure 2-2. Assuming each is 

a hexagonal net, and taking lattice spacings from the literature (see text), the numbers of 
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MA and CA monomers involved were estimated. Asterisks mark VLPs with multiple 

capsids, where the entire capsid surface area was summed. 
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Abstract 

The major structural elements of retroviruses are contained in a single 

polyprotein, Gag, which in HIV-1 comprises the matrix (MA), capsid (CA), SP1, 

nucleocapsid (NC), SP2, and p6 proteins. In the immature HIV-1 virion, the domains of 

Gag are arranged radially with the amino-terminus of MA at the membrane and NC-p6 

facing the particle center. While assembly of the mature virus from the immature form 

has been studied extensively, and the structural elements of both have been identified and 

determined, a complete understanding of the immature virus has remained elusive. Here, 

we report the first three-dimensional structure of individual immature HIV-1 virus-like 

particles (VLPs) obtained by electron cryotomography. We measured the viral particles 

and found the diameters ranged from 115 to 140 nm with a mean of 127 nm. The radial 

spoke arrangement of the Gag polyprotein was clearly visible in the tomograms. The 

thicknesses of the domains of the Gag polyprotein were measured to be: membrane-MA 

78 ± 11 Å, CA 77 ± 12 Å, and NC 43 ± 11 Å. Upon producing surface projections of 

each layer of Gag, it was determined that only the CA and SP1 domains contained 

regions of order within the viral particles. The CA and SP1 layers were arranged in 

hexagonal lattices interspersed between patches of disorder. The ring to ring spacing of 

the CA NTD lattice was 8 nm and the ring to ring spacing of the SP1 lattice was 7.5 nm. 

From our data, we propose a pseudoatomic model for the CA and SP1 domains of 

immature HIV-1. 
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Introduction 

The major structural elements of retroviruses are contained in a single 

polyprotein, Gag, which in HIV-1 comprises the matrix (MA), capsid (CA), SP1, 

nucleocapsid (NC), p1, and SP2 proteins [1]. Each of these folds into an independent 

domain of Gag with the exceptions of SP1 and SP2, which are short spacer peptides, and 

CA, which is itself divided into globular N- and C-terminal domains (the NTD and CTD). 

In the immature HIV-1 virion, the domains of Gag are arranged radially with the N-

terminus of MA at the membrane and NC-p6 facing the particle center [2]. Once the 

immature virus buds from the cell, the maturation process begins as protease (PR) cleaves 

Gag. The individual domains reassemble into the mature viral form, in which MA 

remains associated with the membrane through a myristyl modification and CA forms the 

conical viral core that contains NC, the genomic RNA, and other viral material.  

While assembly of the mature virus from the immature form has been studied 

extensively, and the structural elements of both have been identified and determined, a 

complete understanding of the immature virus has remained elusive. Both immature and 

mature viral particles are roughly spherical in shape and range in size from 100 to 250 nm 

[2-5]. The Gag shell of the immature virus has usually been described as ring-shaped in 

two-dimensional sections or projection images, but asymmetrical crescent-shapes have 

also been reported [2, 3, 6]. It has been difficult to elucidate the structural roles played by 

each of the Gag domains in the immature virion, partly because the assembly process is 

quite robust. However, molecular genetic studies have indicated that the CA CTD and 

SP1 regions are most important to the assembly process, with NC and p6 promoting 

nonspecific interactions through RNA binding [7-11]. It has been proposed that MA 
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forms a trimeric lattice that helps stabilize the Gag shell, although MA is not essential for 

viral budding or replication [12-19].  

The immature HIV particle contains approximately 5,000 copies of Gag as 

measured by a combination of cryo-EM and STEM [5]. Upon maturation, less than one-

third of the CA from Gag forms the core of the mature virus, thereby leaving a large 

amount of CA either free within the virus or able to form multiple cores [4, 20, 21]. 

Models of the CA lattice of mature HIV-1 have been generated based on crystal 

structures and electron cryo-microscopy of isolated viral cores, in vitro assembled CA 

tubes and cores, and two-dimensional crystals of membrane-tethered CA [22-25]. Briefly, 

the mature CA lattice consists of hexameric rings formed by CA NTDs, with adjacent 

rings interconnected by dimers of CA CTDs [23, 26-28]. A CA NTD hexamer from a 

related virus has been solved to atomic resolution, revealing the major interfaces to be an 

18-helix bundle formed by helices 1, 2, and 3, as well as interactions in the center of the 

ring between the N-terminal β-hairpin loops of the NTDs [29]. Several lines of evidence 

suggest this model is not valid for the immature particle. The β-hairpin cannot be formed 

without proteolytic cleavage of CA from MA [30-32]. Several groups have measured the 

spacing of the immature Gag lattice by electron cryo-microscopy and found it to be 

around 8 nm, while the mature CA lattice spacing is reported as 10–11 nm [2, 5, 19, 22, 

33, 34]. To date, visualizations of the immature particle have not resolved the lattice 

structures of individual Gag domains, and no pseudoatomic model has yet been proposed.  

Here, we report the first three-dimensional structure of individual immature HIV-

1 virus-like particles (VLPs) obtained by electron cryotomography. We measured the 

components of the viral particles, observed the arrangement of the Gag polyprotein 
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within the immature virus, visualized locally ordered patches of CA and SP1 arranged in 

hexagonal lattices and measured their spacing, and propose a pseudoatomic model of the 

CA domain.  

 

Results 

Electron cryotomography. Immature HIV-1 VLPs were produced using a proviral 

expression vector containing mutations to the PR, RT, and RNase H enzymes. The 

mutation to PR halted the virus in the immature state; additionally RT and RNase H were 

mutated to insure the non-infectious nature of the viral preparations without altering viral 

structure. The VLPs were generated by transfecting the viral construct into 293T cells, 

harvesting the supernatant, and concentrating the viral particles by ultracentrifugation. 

The viral fractions were analyzed by SDS-PAGE (data not shown). 

Solutions containing the immature HIV-1 VLPs were plunge-frozen onto EM 

grids. The frozen grids were inserted into a 300 kV FEG TEM and imaged at liquid 

nitrogen temperature. In addition to the immature HIV-1 VLPs, small vesicles, cellular 

debris, and other material was occasionally observed on the grids. Tilt series, which were 

energy filtered, were collected on the VLPs at defocus values ranging from 4 to 8 µm. 

Three-dimensional reconstructions were calculated using the IMOD tomography package 

(Figure 3-1) [35]. The immature VLPs were extracted from the tomograms and denoised 

with non-linear anisotropic diffusion (Figure 3-2) [36]. Sixteen of the highest quality 

reconstructions were selected for further analysis.  

Radial Gag shell structure. The diameters of the viruses ranged from 115 to 

140 nm with a mean of 127 nm. The radial spoke arrangement of the Gag protein layer 
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was clearly visible in slices through the tomograms (Figure 3-1). However, the Gag shell 

was not continuous around the diameter of any of the viruses, but rather had sectors 

where no ordered spokes were visible. The empty or disordered regions were substantial, 

comprising up to half of the viral surface. The two bands of the membrane-MA were 

apparent in ordered regions of the Gag shell, but only a single layer could be resolved in 

the disordered or empty regions (Figure 3-3). In areas with a double layer, this dimension 

was subdivided into two regions of density (outer: 32 ± 3 Å, inner: 31 ± 5 Å) separated 

by a space of 21 ± 2 Å. In regions where the Gag shell was discontinuous, a single layer 

with a thickness of 48 ± 6 Å was observed. Radial density profiles of the viruses revealed 

three discrete bands, which were presumed to be the membrane-MA, CA, and NC 

domains (Figure 3-3). The average peak to peak distances between the membrane-MA, 

CA, and NC layers were 39 ± 10 Å and 30 ± 8 Å, respectively. In several viral profiles, 

separate bands corresponding to the N- and C-terminal domains (NTD and CTD) of CA 

were resolved (Figure 3-3). The peak-to-peak distance between the two subdomains of 

CA was approximately 45 Å. 

Gag lattice analysis. Spherical triangle mesh surfaces were generated with their 

radii aligned to the three outer layers identified in the radial density plots for each virus. 

The electron density surrounding those surfaces was then projected onto them by 

summing the density sampled along radial lines at each triangle, with the size of the 

triangles chosen to be less than the voxel dimensions (Figure 3-4). A hexagonal lattice 

was clearly visible in large areas of the projected density from the CA layers of the 

viruses, but no order or pattern was apparent in the other two layers. The lattice appeared 

only on regions of the viruses in which the layers of Gag were clearly visible in slices 
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through the tomograms (Figure 3-5). An automated peak detection procedure was used to 

locate the putative unit cells of the hexagonal lattice. The resulting peaks were then 

ranked according to the standard deviation of the distance to each peak’s six nearest 

neighbors, as a measure of the local hexagonal order (Figure 3-6). There was no 

significant correlation between those standard deviation values and the polar angle from 

the peak to the Z axis (R2 = 0.17). A radial density plot was calculated from only the 

regions of one virus with standard deviation of neighbor distance less than 14 Å, which 

occupied 26% of the virus’ area. Compared to the plot from the whole virus, this plot 

showed stronger and more distinct peaks for the CA and NC domains, as well as a small 

shoulder on the membrane-MA peak (Figure 3-3).  

Real space averaging of Gag unit cells. The 120 peaks with a standard deviation 

of neighbor distance less than 14 Å were chosen from a representative viral surface 

projection. For each peak, the region of the tomogram containing the virus was rotated 

and translated so as to align the unit cells. An average was calculated from the 

transformed regions (Figure 3-7). The membrane-MA layer displayed no order and the 

leaflets of the bilayer could not be resolved in the averaged density. A distinct layer of 

low density at a radius of 525 Å separated the MA and CA domains. The average 

revealed a clear hexagonal pattern in the CA layer with a ring-to-ring spacing of 8 nm. 

The lattice extended beyond the single unit cell used for alignment and spanned a 

diameter of five hexamers, after which it became more diffuse until no order was 

discernable. Closer to the center, around 444 Å, was a featureless shell of relatively high 

density, followed by another hexagonal lattice with a center-to-center spacing of 7.5 nm. 

The density of this second lattice was inverted from the upper layer, comprising balls of 
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high density isolated by networked rings of low density (Figure 3-8). The high density 

regions of the second lattice were exactly beneath the holes of the first lattice. Beneath 

the second lattice was another undifferentiated high density layer, followed by the 

relatively uniform density of the viral center. A similar average computed from the 120 

lowest ranked peaks showed only the low density hole and one dense ring in the CA layer 

used to generate the alignment, with no lattice structure apparent in that layer or any 

other.  

 

Discussion 

The structural characterization of immature HIV-1 has relied heavily upon 

standard negative stain and cryo- electron microscopy methods [2, 3, 5, 6, 33]. With the 

advent of electron cryotomography, automated data collection, and software 

developments; many questions concerning the structural details of large, non-symmetrical 

biological materials including viruses, cells, and macromolecular complexes are 

accessible. Efforts in the study of mature HIV-1 viral particles have already benefited 

from electron cryotomography. Several articles have described the morphology and 

position of the CA core within the mature virus using this method [4, 20].  

A striking morphological element of immature viral particles illuminated through 

this study was the asymmetry of the Gag shell (Figure 3-2). Discontinuity within the Gag 

shell had been observed previously [2, 3, 6], but this was only seen in a minority of the 

two-dimensional slices and projections then available. All the immature particles 

analyzed in our study contained both ordered and disordered regions within the Gag shell. 

If this were an artifact of the virions’ positions within the ice layer, or of the missing 
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wedge of information in the tomograms, we would expect to see a correlation between 

the degree of order observed and the position on the viral shell relative to the plane of the 

ice. That we did not find such a correlation suggests that the patchwork nature of the Gag 

lattice was a true feature of the viral structures. It is possible that the Gag shell does not 

close completely during the budding process. If this is the case, the formation of spherical 

Gag shells may not require the incorporation of pentamers, since the lattice is not closed 

[37].  

The thickness of the three domains comprising the Gag shell of the immature viral 

particles were measured and were found to be consistent with the literature [3, 5]. A 

novel finding was that the membrane-MA domain had variability in its thickness 

depending on its location with respect to the ordered areas of Gag. When associated with 

ordered regions, it was thicker and maintained the double leaflet appearance. At regions 

where the Gag shell was not observed, the membrane-MA layer was substantially thinner 

(Figure 3-2). This may reflect the absence of MA protein at the membrane [3].  

Using the radial surface projections, we were able to directly visualize the 

organization of each protein layer. We saw no repeating lattice in the MA shell 

projections, nor in the three-dimensional average, which lends further support to the idea 

that MA-MA contacts do not play a significant role in the structure of the Gag shell [8, 

12, 13, 33, 38]. In the CA layer, a hexagonal lattice was easily discerned in the surface 

projections and even in slices through the tomograms. By applying what we believe is a 

novel procedure for real space averaging of repeating lattices embedded in curved 

surfaces, we were able to calculate an ensemble average from 120 unit cells. 

Interpretation was facilitated by comparison of the radial density plot to the 
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corresponding positions in the average (Figure 3-8). Hexagonal lattices were observed in 

both the CA NTD layer and, surprisingly, the SP1 spacer peptide between CA CTD and 

NC.  

The 8 nm spacing and overall appearance of the NTD lattice were consistent with 

previous observations of the immature Gag lattice or in vitro equivalents [2, 5, 19, 22, 33, 

34, 39]. While our reconstruction does not have sufficient resolution to unambiguously 

place crystal structures of CA, it does provide useful constraints for modeling. The 

relatively large (~40 Å) central holes in the NTD hexamers are incompatible with the 

structure observed in the mature lattice, in which helices 1 and 2 point toward the center 

of the ring. The spatial constraints favor a model in which NTDs from neighboring 

hexamers form dimeric interactions [22]. A crystal structure of Rous Sarcoma Virus CA 

NTD bearing an N-terminal extension has been solved [32]. That structure had a dimeric 

crystal contact along a twofold axis in the region of helix 6, and it was proposed that this 

dimer interface may be present in the immature particle. However, it was not possible to 

orient the NTDs to preserve that dimer interface and still fit the resulting hexamers into 

our density. We found that the NTDs could fit well with helix 5 lining the central hole in 

the hexamer (Figure 3-9). Although the CTD layer was poorly resolved, there was room 

in the electron density for the crystallographically defined CTD dimer connecting 

adjacent hexamers.  

We observed a second hexagonal lattice in the averaged structure that was similar 

to the NTD layer, but with the density inverted. Examination of the radial density plot 

showed that this second lattice was formed by the SP1 spacer peptides between CA CTD 

and NC. The protein density associated with SP1 is directly below the central pore of the 
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hexameric lattice of the NTD. The SP1 peptide is required for viral assembly [40, 41] and 

forms an α-helix that may assemble into dimers or trimers [42]. There is evidence that 

SP1 preferentially stabilizes the Gag shell [40]. We found that a hexamer of SP1 α-

helices docked perfectly into the second lattice layer in the averaged reconstruction, with 

NC and viral RNA presumably making up the disordered layer beneath (Figure 3-9, 

3-10). Our model could allow the bundles of SP1 to help hold together CTDs from each 

hexamer, maintaining the tighter lattice characteristic of the immature particle.  

 

Materials and Methods 

Preparation of Immature VLPs. Mutations in the PR, RT, and RNase H genes of 

the HIV-1NL4-3 R9 proviral vector were made to render HIV-1 VLPs non-infectious and 

immature. The point mutations PRD25N/RTD185A/RNaseHH539A were introduced via 

QuikChange PCR mutagenesis and confirmed by DNA sequencing (Stratagene). 

VLPs were produced by transfecting the proviral DNA construct into 293T cells. 

293T cells were grown in DMEM (Gibco/Invitrogen) + 10% FBS (Gibco/Invitrogen) in 

10 cm plates (30 plates seeded with 6×106 cells per plate) and incubated for 24 hours 

(37° C at 5% CO2). The cells were transfected with 12 µg of the proviral DNA construct 

and 50 µL Fugene6 transfection reagent (Roche) per plate. Six hours post-transfection, 

the media was replaced with 7 mL DMEM + 10% FBS and the cells were incubated for 

40 hours. The supernatant containing VLPs was collected and filtered through a 0.45µm 

SFCA syringe filter (Corning) to remove cell debris. The filtered supernatant (~200 mL) 

containing the VLPs was placed onto 6 separate 5 mL 20% sucrose cushions (20% 

Sucrose W/V in STE Buffer (10 mM Tris, pH 7.4; 50 mM NaCl, 1 mM EDTA)) and 
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centrifuged (25,000 RPM for 2.5 hours at 4° C in a Beckman SW28 Large 

Ultracentrifuge Rotor) to concentrate the VLPs. The viral pellets were resuspended in 

1 mL of STE buffer, pooled, and centrifuged (1 hour at 41,000 RPM at 4° C in a 

Beckman SW41 Small Ultracentrifuge Rotor). The final VLP pellet was gently rinsed 

with 100 µL STE buffer, resuspended in 30 µL STE, and dialyzed in 1 L STE buffer for 

2 hours in a 50 µL micro equilibrium dialyzer (10,000 MWCO / Harvard Apparatus) to 

remove excess sucrose from the preparation. The dialyzed solutions were gently 

centrifuged (5,000 RPM for 5 min in a microcentrifuge at 4° C) with the supernatants 

containing the purified VLPs used for freezing and imaging. The presence of VLPs at 

specific stages of the protocol was evaluated by SDS-PAGE and western blot with α-CA, 

α-MA, and α-Env antibodies. 

Electron cryotomography. Solutions of the purified HIV-1 VLPs were flash-

frozen onto glow-discharged Quantifoil grids (Quantifoil, Germany) in liquid ethane 

using a Vitrobot (FEI, The Netherlands). 10 nm colloidal gold was both combined with 

the viral solutions and applied separately on the grids before freezing.  

All images were captured on the GIF CCD (Gatan) using a silt width of 20 eV, a 

defocus range of 4–8 µm, and CCD pixel size of 0.46 or 0.56 nm on the specimen. Tilt 

series were collected from approximately −70° to +70° with 1° and 2° tilt steps 

automatically using the predictive UCSF tomography package [43].  

Analysis of viral particles. Tomographic reconstructions were performed using 

the IMOD package, images were binned twofold within IMOD [35]. Individual immature 

VLPs were selected manually from the completed tomograms and were denoised by 

nonlinear anisotropic diffusion as implemented in the BSOFT suite [36, 44]. Radial 
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density profiles were generated by sampling spherical shells of the tomograms and 

plotting the density per unit area as a function of radius. Measurements of the domains of 

Gag were made from the tomograms and the radial density profiles. Within the 

tomograms, central Z slices were selected and viewed and the width of each domain was 

measured. From the radial density profiles, the central slices were examined and the 

thicknesses of the domains were measured from the point halfway along the rising edge 

to the point halfway along the falling edge of the density. Surface projections were 

created by sampling the density in the tomogram along vectors normal to a triangle mesh 

surface of spherical shape, then assigning to each vertex on the surface the summed 

density along the vector at that point. To locate the unit cells, the points on the projected 

surfaces having the lowest values within a specified radius were selected. Those points 

were then labeled with the standard deviation of the distance to their six nearest 

neighbors, as a measure of the local degree of order in the hexagonal lattice. Amira 

extension modules created within our lab executed the preceding functions. For unit cell 

averaging, the set of extrema on the projected surface layers having the least variation in 

the distance to their neighbors was selected. For each of the selected points, a local 

coordinate system was established comprising the normal vector to the surface (the Z 

axis), the vector from the point to its nearest neighbor (the X axis), and their cross 

product (the Y axis). The entire volume containing the VLP was then rotated into 

alignment with the global axes and translated so as to superimpose all of the selected 

surface extrema. 
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 Figures 

 

Figure 3-1. Primary data and tomogram.  

(A) The central image from a tilt series of an immature HIV-1 VLP. (B) A 5.6 nm 

slice through the middle of the reconstruction. Scale bar 100 nm. 
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Figure 3-2. Gag sectors and associated membrane structure.  

11 nm slices through tomographic reconstructions. Scale bar 100 nm.  
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Figure 3-3. Immature HIV-1 VLP and radial density plot.  

At left: 11 nm slice through a three-dimensional reconstruction of an immature 

HIV-1 VLP. The arrows denote the layers of density associated with the Gag domains 

NC, CA CTD, CA NTD, and MA (left to right). At right: radial density plot of the virion. 

Bars indicate layers projected onto surfaces in Figure 3-4.  
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Figure 3-4. Gag shell surface projections of an immature HIV-1 VLP.  

One representative immature viruse was used to display the protein densities 

associated with each layer of the Gag polyprotein (left to right: NC, CA CTD, CA NTD, 

MA). It was observed that only the CA layers contained regular patterning attributed to 

the protein densities. Red is more dense.  
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Figure 3-5. Ordering of the Gag polyprotein within the immature HIV-1 

VLP.  

One representative reconstructed immature VLP in which the internal 

organization of the Gag polyprotein is observed. In A, the discontinuous nature of the 

layers of the Gag polyprotein is evident (arrows mark the boundaries of the ordered 

region). B and C, are the surface projections of the CA (capsid) layer in which the regular 

patterning is only observed within the ordered region shown in A. Scale bar 50 nm. 
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Figure 3-6. Analysis of the surface projection of the CA protein within 

one immature HIV-1 VLP.  

(A) Surface projection from the densities of the CA protein layer of Gag. (B) The 

points of lowest density selected from the surface projection. (C) The local extrema color 

coded to denote the local order associated with each point (red, greatest degree of order; 

light blue, least degree of order). (D) Surface area associated with each point (color code 

is same as C). 
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Figure 3-7. Montage of the averaged unit cell of an immature HIV-1 

VLP.  

Slices are 1.12 nm thick. Radial positions, from left to right, top to bottom: 526.4, 

515.2, 504.0, 492.8, 481.6, 470.4, 459.2, 448.0, 436.8, 425.6, 414.4, 403.2, 392.0, 380.8. 

Scale bar 8 nm.  
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Figure 3-8. Averaged unit cell with radial density plot.  

1.12 nm slice through Z axis. Peaks were aligned to position near center of image.  
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Figure 3-9. Top view of Gag components docked into the averaged 

density.  

CA NTD is red, CA CTD is green, and SP1 is blue.  
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Figure 3-10. Side view of Gag components docked into the averaged 

density.  

Only two monomers from each hexamer are displayed, for clarity.  
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Figure 3-11. Comparison of immature and mature lattices.  

Left: Top and side views of immature lattice model. CA NTD is green, CA CTD 

mauve, and SP1 blue.  

Right: Top and side views of mature CA model. Colors are the same as in the left 

panels.  
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Abstract 

Electron cryotomography can be used to solve the three-dimensional structures of 

individual large macromolecules, assemblies, and even small intact cells to medium (~4–

8 nm) resolution in a near-native state, but restrictions in the range of accessible views 

are a major limitation. Here we report on the design, characterization, and demonstration 

of a new “flip-flop” rotation stage that allows facile and routine collection of two 

orthogonal tilt-series of cryosamples. Single- and dual-axis tomograms of a variety of 

samples are compared to illustrate qualitatively the improvement produced by inclusion 

of the second tilt-series. Exact quantitative expressions are derived for the volume of the 

remaining “missing pyramid” in reciprocal space. When orthogonal tilt-series are 

recorded to ±65° in each direction, as this new cryostage permits, only 11% of reciprocal 

space is left unmeasured. The tomograms suggest that further improvement could be 

realized, however, through better software to align and merge dual-axis tilt-series of 

cryosamples.  
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Introduction 

The highest resolution technique currently available for three-dimensional 

structural studies of unique objects is electron tomography, in which a specimen is 

imaged multiple times in an electron microscope (EM) while being incrementally tilted 

through a range of views. The method has the potential to couple the exquisite spatial 

resolution of modern electron microscopes, which in some cases can now be even sub-

Angstrom [1, 2], with three-dimensional structure determination through a variety of 

reconstruction algorithms. Thus electron tomography is emerging as a powerful new 

technique in both materials and life science research [3-5].  

There are several practical limitations for biological samples, however, including 

radiation damage and the typically restricted range of tilt-angles from which images can 

be recorded. The tilt-angle limitation arises because most EM samples are thin disks of 

material approximately 3 mm in diameter and ~30–500 nm thick, and as these samples 

are incrementally tilted, the depth of material the electron beam must pass through 

increases as one over the cosine of the tilt-angle. At high tilt-angles, most samples 

become prohibitively thick. In addition, the edges of standard sample holders block the 

electron beam at high tilt-angles. Because each projection image provides the amplitudes 

and phases of just one central section of the specimen’s three-dimensional Fourier 

transform, this data collection constraint translates into a “missing wedge” of information 

in reciprocal space. 

Early in the development of electron tomography, this missing wedge problem 

was significantly reduced for room temperature samples by collecting two tilt-series 
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about orthogonal axes, thus reducing the missing “wedge” to just a missing “pyramid” [6, 

7]. This procedure was relatively straightforward because room-temperature samples 

could be removed from the microscope and the specimen holder, manually rotated 90°, 

and replaced for collection of the second tilt-series without much challenge. Despite 

complications due to the shrinking and warping of plastic-embedded sections during data 

collection, dramatic improvements in the quality of the tomograms were realized by 

inclusion of the second tilt-series, and dual-axis tomography became the recognized 

standard, best practice [8].  

Concurrently, various improvements in microscope technology and sample 

preparation made it possible to image biological materials in a life-like, “frozen-

hydrated” state. Such samples are produced by either plunge-freezing thin films [9] or 

cryosectioning high-pressure-frozen bulk samples [10, 11]. These developments have 

made it possible to study the three-dimensional structures of unique objects including 

even whole cells in their near-native states [5], and strong efforts are now being invested 

to maximize resolution and interpretability.   

One of the challenges has been the development of a cryostage that allowed facile 

collection of two perpendicular tilt-series. Because frozen-hydrated samples must always 

be kept at very low temperatures (standard practice is to maintain better than −160° C) to 

prevent ice crystallization, they cannot be simply removed from the microscope, rotated 

90° and replaced unless it is done under cold nitrogen gas. This is awkward at best, and is 

not routinely successful because of the difficulty of fine grid manipulations under these 

conditions and the frequency of grid contamination. In an attempt to allow grid rotation 

within the microscope column, the Martinsreid group in collaboration with Gatan 



 

103 

modified a standard cryostage and then used it to collect dual-axis tilt-series of at least 

one frozen-hydrated sample [12], but the stage was not described and seems not to have 

been used in recent work from the same group [13-16]. A motor-driven tilt-rotation 

holder (the Gatan CT3500RT) has also been developed for standard side-entry 

goniometers, but no results of its use in this context are yet available. Here we report on 

the design, characterization, and experimental benefit of a new “flip-flop” cryorotation 

stage that allows routine dual-axis cryotomography in the FEI Polara transmission 

electron microscope, and identify new image processing challenges this type of data 

presents.  

 

The flip-flop rotation stage 

The “flip-flop” rotation stage was an experimental product designed and built by 

Gatan UK (RCM) in consultation with Caltech (GJJ) and others. The prototype was then 

tested and characterized experimentally at Caltech, as reported below. The stage is a 

derivative of the new cartridge-based, multispecimen stage system implemented to 

accommodate liquid-helium sample-cooling in the new Polara series of TEMs from the 

FEI Company. Frozen-hydrated grids are first clamped into cartridges, and then up to six 

cartridges at a time are loaded into a multispecimen holder. The holder is sealed, 

evacuated, mounted on the microscope column, and then opened to the column vacuum. 

Individual cartridges are picked up with an insertion tool and introduced into the column 

proper, where they are threaded onto a permanently-inserted specimen rod.  

The flip-flop rotation stage consists of modified cartridges and a special rotation 

tool in the multispecimen holder. The modified cartridges house an inner, rotationally 
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mobile cup into which the grid is clamped (Fig. A-1A). This mobile cup has two 

protrusions extending out beyond the edge of the cartridge in opposite directions. The 

rotation tool is like a two-car garage, in that it can house cartridges in either side, but 

unlike a garage, it moves over and around the cartridges while they remain fixed (Fig. 

A-1B). When a cartridge is docked in the multispecimen holder, the rotation tool can be 

pushed over the cartridge (Fig. A-1C) in such a way that it catches one of the protrusions 

on the inner cup and causes the cup to rotate 90°. Depending on which docking position 

the cartridge occupies in the multispecimen holder, pushing the rotation tool causes the 

cup to be rotated into either the “flip” position or the “flop” position, 90° away. 

Collection of a dual-axis tilt-series proceeds as follows. A cryosample is clamped 

into the cup of a flip-flop cartridge and loaded into the multispecimen holder. The 

multispecimen holder is mounted onto the microscope, the flip-flop cartridge is moved to 

position 5 in the multispecimen holder, and the rotation tool is pushed over the cartridge 

to ensure the cup begins in the “flip” position. Then the cartridge is introduced into the 

column, threaded onto the specimen rod, and a suitable specimen is located and imaged 

through one tilt-series. The cartridge is then retrieved from the column and placed into 

position 6 of the multispecimen holder, all the while protected by the microscope’s 

column vacuum. The rotation tool is once again pushed over the cartridge, this time 

rotating the cup and grid into the “flop” position. The cartridge is again threaded onto the 

specimen rod, the object of interest is re-located, and the second, orthogonal tilt-series is 

recorded.  
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Technical characterization 

One of the challenges for any cryostage is to minimize thermal drift. The grid 

must be in good, uniform, thermal contact with the cryoholder. There was concern that 

the rotating cup in the flip-flop cartridge would make poor contact with the rest of the 

cartridge and cause drift. Fortunately, no more drift was observed with the flip-flop 

cartridges than with regular cartridges, and both are impressively stable. A simple test 

grid with colloidal gold on carbon was allowed to equilibrate in the column at liquid 

nitrogen temperature for several hours. The drift rate was then measured at one-minute 

intervals for five minutes, manifesting displacements of 0.7, 0.8, 0.4, 0.3, and 0.3 nm 

(average 0.5 nm per minute).  

Next, the actual rotation realized and the vertical displacement of the grid effected 

by the rotation were measured by setting eucentric height, recording a nominally untilted 

image, rotating the sample with the flip-flop mechanism, refinding the target region, 

resetting eucentric height, and recording a second nominally untilted image. In nine trials 

involving three different flip-flop cartridges, the rotation angle ranged from 87.0° to 

88.8°, with an average of 87.7° and a standard deviation of 0.6°. The vertical 

displacements ranged from 0.15 to 2.65 µm, with an average of 1.07 µm and a standard 

deviation of 0.73 µm.  

The dose needed to re-center the target region under the beam after rotation can 

be reduced to arbitrarily low values, including zero. The grid coordinate system can be 

re-oriented by imaging markers around the target region, for instance, which allows 

objects to be re-centered simply by moving to their new coordinates. Fine re-centering 

can be done by finding “focus” spots close to but on either side of the target. More 
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routinely, however, we have re-centered targets directly with low dose, low magnification 

images that deliver less than 1 electron/Å2. All other preparative steps can be performed 

on peripheral areas, including resetting the eucentric height and re-centering the energy 

filter slit if necessary.  

 

Qualitative comparisons of single- versus dual-axis tomograms 

Using the flip-flop stage, dual-axis tomograms of a variety of representative 

frozen-hydrated specimens were produced including whole bacterial cells, virus-like-

particles, bacterial carboxysomes, and solutions of purified proteins. The whole cell 

chosen was the bacterium Mesoplasma florum, a very small and simple cell that inhabits 

citrus plants. M. florum cells were plunge-frozen on Quantifoil grids into liquid ethane 

using an FEI Vitrobot. A tilt-series was collected from −66° to +62° with a 1° tilt step, 

and then the grid was rotated ~90° about the z-axis and a second tilt-series was collected 

from −62° to +66°. The total dose used for each tilt-series was 60 e−/Å2, the defocus was 

~15 µm (first CTF zero at ~1/5.5 nm), and the magnification was set such that each CCD 

pixel represented 1.34 nm on the specimen. All images here and below were energy-

filtered (slit width of 20 eV) and recorded on a 300 kV FEG “G2 Polara” TEM with the 

sample cooled by liquid nitrogen to ~82 K. 

Three-dimensional tomograms of the first and second tilt-series were calculated 

and combined using the IMOD package [7], and then the individual and combined 

tomograms were denoised by 40 rounds of nonlinear anisotropic diffusion [17]. Fig. A-2 

shows slices through the centers of three tomograms of a M. florum cell: one from each 
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of the two independent tilt-series and one from their combination. All the XY slices (left 

column) are comparably well-defined, and many individual large protein complexes are 

resolved within the cell. Nevertheless, while the tomogram from the first tilt-series (top 

row) shows some detail in the XZ slice (albeit smeared in the Z direction), the YZ slice is 

quite poor. The tomogram from the second tilt-series (middle row) is the opposite, 

showing some detail in the YZ but not the XZ slice. Only in the dual-axis tomogram 

(bottom row) are particles resolved in all three directions. The residual missing pyramid 

of data is still evident, though, in the membrane’s lack of closure over the top and bottom 

surfaces of the cell. 

Next, the impact of including a second tilt-series was observed on a purified, 

HIV-1 virus-like particle (VLP). HIV-1 is an enveloped retrovirus whose outer layer 

consists of a lipid bilayer and a matrix protein shell. In these VLPs, the Env protein was 

removed to eliminate infectivity, so no surface “spikes” are seen. Inside the lipid/matrix 

layer there is a typically conical capsid shell [18]. An HIV-1 VLP was plunge-frozen, 

imaged through orthogonal tilt-series, reconstructed, and denoised as described above for 

M. florum, except that the tilt-series were from −57° to +60° and −60° to +60° with a 3° 

tilt step, the defocus was ~16 µm (first CTF zero at ~1/5.6 nm), the image pixel size was 

1.34 nm, the total dose was 240 e−/Å2 and only 20 rounds of denoising were performed 

(Fig. A-3). Although still not complete, the dual-axis tomogram resolved significantly 

more of the viral layers’ morphologies than either single-axis tomogram. This was made 

particularly obvious in the three-dimensional renderings of the viral envelope isosurface. 

The improved but still imperfect point-spread-function was also evidenced by the gold 
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fiducial, which appeared nicely round in the XY plane, but still elongated in the Z 

direction. 

In the two previous cases (MF and HIV-1), comparisons were made between 

single-axis tomograms and their dual-axis combinations. While this eliminated structural 

differences between the compared objects, the dual-axis tomograms unfairly profited 

from twice the dose. Two additional samples were therefore tested where single- and 

dual-axis tomograms could be calculated from separate but very similar objects, using the 

same total dose. The first such sample was purified carboxysomes from the prokaryote 

Synechococcus species. Carboxysomes are ~100 nm microcompartments consisting of a 

proteinaceous shell surrounding many tens of copies of the enzyme ribulose1,5-

bisphosphate carboxylase/oxygenase (RuBisCO), as well as other, smaller enzymes [19]. 

Carboxysomes were plunge-frozen and imaged through either a single tilt-series or 

through two orthogonal tilt-series, in every case to ±64°. The dose (total) was 120 e−/Å2, 

the tilt step was 2°, the defocus was ~10 µm (first CTF zero at ~1/4.5 nm), the image 

pixel size was 6.7 Å, and 200 rounds of denoising were performed. The protein shell and 

many individual RuBisCO molecules can be resolved in the tomograms (Fig. A-4). Again 

the resolution of the dual-axis tomogram is clearly more isotropic, but still not as good in 

the Z direction as in the X or Y directions.  

Finally, several different purified protein complexes were imaged, including the 

molluscan hemocyanin from Megathura crenulata. This hemocyanin is an ~8 MDa 

complex that forms a double-layered, hollow barrel approximately 30 nm in diameter and 

35 nm in length. Hemocyanin was plunge-frozen and imaged through single- (−66° to 

63°) and dual-axis (−66° to 63° first axis, ±63° second) tilt-series with an angular step 
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size of 3°, a defocus of 8 µm (first CTF zero at ~1/4.0 nm), and a pixel size of 6.7 Å. 

Single- and dual-axis tomograms were recorded with the same total dose (110 e−/Å2) 

from different holes in the same square of a single grid with as similar ice thicknesses and 

other characteristics as possible. Three-dimensional renderings of particles that froze with 

their long axes in the plane of the sample and either parallel or perpendicular to the tilt-

axis, and with their long axis perpendicular to the sample (“vertical”) are shown (Fig. 

A-5) after 20 rounds of denoising and alignment to a reference [20] using the BSOFT 

software package [21] The particles were not symmetrized before rendering. While the 

dual-axis tomograms are perhaps just slightly better, the improvement was more modest 

than expected. As discussed below, this is probably due to non-optimal merging of the 

two tilt-series, which was most challenging in this case of isolated protein complexes. 

 

Novel data processing challenges 

The IMOD software package [7] was used to produce all these tomograms. The 

procedure begins by calculating two independent, real-space tomograms from the two 

tilt-series, and then the second tomogram is transformed into approximate alignment with 

the first using the coordinates of corresponding gold fiducials. The second tomogram is 

then sampled with an array of subvolumes (“patches”), and each patch is cross-correlated 

with a corresponding patch from the first. A map of the resulting displacement vectors is 

fit to a smooth function, and a new, “dewarped” version of the second tomogram is 

calculated. The dewarped second and the first tomograms are Fourier transformed and 

averaged in reciprocal space, and then a final, dual-axis tomogram is produced by inverse 

transformation. While these algorithms have been used and refined extensively to merge 
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tilt-series of plastic sections, the data from cryosamples can be different in important 

ways: (1) the gold beads are typically distributed throughout the sample rather than just 

on the top and bottom surfaces; (2) no shrinkage or distortion during data collection is 

expected; (3) images are more noisy due to the stringent dose limitations; and (4) 

contrasty objects can be more sparse, as, for instance, the isolated hemocyanin molecules 

were against the feature-less background of vitreous ice.  

These differences introduced novel image processing problems. First, while no 

evidence for shrinking or warping was seen, a small fraction of the gold fiducials used to 

align the two tilt-series moved by up to several nm during acquisition of the data. 

Because no reproducible pattern was recognized, this mismatch is likely caused by the 

fiducials diffusing randomly within the vitreous ice. Thus their movements were 

sometimes significant, but not correlated with movements of neighboring objects of 

interest (unlike fiducials on the surface of a shrinking plastic section).  

Next, the strategy of mapping local distortions between the first and second 

tomograms seemed non-ideal in this context, especially for the isolated protein 

complexes. In the case of hemocyanin, for instance, the best results were obtained when 

exceedingly large patches and high “warping residual limits” were used. This is probably 

because small patches sometimes contained only vitreous ice, and were therefore nearly 

featureless, and yielded misleading distortion vectors. To solve this problem, IMOD 

already allows users to identify specific regions to be included in the dewarping 

procedure, and discard anomalous vectors, but superior results would likely be obtained 

by using each reconstructed macromolecular complex as a “patch.” An iterative 

refinement procedure in which all the images from both tilt-series were re-aligned to 
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projections of the reconstructed object of interest (as in standard “single particle 

analysis,” see [22], might be best of all. In principle, the structure of cryosamples should 

not be changing during data collection, and thus no dewarping at all should be necessary. 

Slight changes in the electron optics, non-idealities of the tilt-axis, and distortions caused 

by the energy filter are still probably introducing slight distortions which can and should 

be corrected.   

Finally, it was observed that in the three-dimensional power spectra of the final 

tomograms, the average intensity in regions where data was combined from both tilt-

series was lower than the average intensity in regions covered by just one or the other 

(Fig. A-6a). The algorithm used in IMOD to merge tilt-series was a simple average: in 

regions of reciprocal space where there was data from both or neither tilt-series, the two 

values were simply averaged vectorially, whereas in regions where there was data from 

just one tilt-series, that single value was used. While this seems entirely reasonable, the 

reduced amplitudes in doubly-measured regions can be explained simply by the fact that 

the average length of two vectors is always larger than the length of their vector average, 

except in the rare case that their directions (phases) are identical. While this difference 

may not be large for well-aligned data with a high signal-to-noise ratio, it was apparent in 

these cryotomograms. D. Mastronarde therefore introduced an IMOD option to simply 

attenuate the amplitudes in the singly-measured regions to match those in the doubly-

measured regions within shells of reciprocal space (Fig. A-6b). Whether this is the 

optimal procedure has yet to be explored. 
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Size of the missing pyramid in single- versus dual-axis data collection 

The potential benefit of dual-axis tomography can be assessed quantitatively by 

calculating the percentage of reciprocal space covered by single- and dual-axis tilt-series. 

While isolated results of similar calculations already appear in the tomography literature, 

the formulas and their derivations do not to our knowledge, and because they involve 

principles of spherical trigonometry unfamiliar to most investigators in this field, they are 

presented here. In spherical trigonometry, lengths and areas are quantified in degrees and 

“spherical” degrees, respectively, and by “spherical polygon” is meant a region on the 

surface of a sphere whose borders are defined by planes passing through the sphere’s 

origin. The area of a spherical polygon in spherical degrees is equal to its angular excess; 

i.e., the amount by which the sum of its angles exceeds that of an analogous polygon on a 

plane. For example, on a globe the spherical triangle formed by a segment of the equator 

and two meridians of longitude has an area equal to the angle between the meridians, 

since the angles between each meridian and the equator is 90°, and account by 

themselves for the sum of the three angles of a planar triangle. 

Making the assumption that the flip-flop holder yields two tilt-series that are 

indeed orthogonal, but allowing different maximum tilt-angles in both the positive and 

negative direction for both tilt-axes, one can calculate the size of the missing pyramid 

using Fig. A-7. The view is down the direction of the electron beam, or Z axis, and the 

four large arcs (two splitting away from and rejoining the X axis and two splitting away 

from and rejoining the Y axis) represent the limits of the two tilt-series. Thus the first tilt-

series (along X) is from αmin to αmax, and the second tilt-series (along Y) is from βmin to 

βmax. These arcs should be thought of as lying on the surface of a sphere in reciprocal 
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space, while the X and Y axes lie within an “equatorial” plane below, such that they do 

not intersect with the arcs except at the endpoints. Since the totality of information out to 

any specified resolution is a sphere, and since the solid angle of the missing pyramid is 

the same regardless of the sphere’s radius, the fraction of missing information is the ratio 

of the area of the spherical quadrilateral bounded by the planes of maximum tilts (shaded 

region) to the area of the full hemisphere, or 360 spherical degrees. The missing area is 

equal to its angular excess, or (180° − θ++) + (180° − θ−+) + (180° − θ−−) + (180° - θ+−) − 

360°. Napier’s rules for right spherical triangles state that the cosine of one of the non-

right angles is equal to the sine of the other non-right angle times the cosine of the 

opposite side length. Thus cos(θ++) = sin(90°−αmax)cos(βmax), or cos(αmax)cos(βmax). 

Similarly, cos(θ−+) = cos(αmin)cos(βmax), cos(θ−−) = cos(αmin)cos(βmin), and cos(θ+−) = 

cos(αmax)cos(βmin). Given αmin, αmax, βmin, and βmax, the percentage of missing 

information can be found by calculating the angles θ, and then the angular excess of the 

missing region. Note that the formulas are symmetric with respect to which angles are 

called α and β, which directions are called “max” and “min,” and give correct results at 

limiting values including the case of single-axis tilting.  

Several key results are listed in Table A-1. In order to reduce the missing 

information to just 10% (an arbitrary example target) with single-axis tilting, ±81° must 

be obtained. This is of course fundamentally problematic, because thin films are 6.4 times 

thicker parallel to the electron beam at 81° than they are untilted. For dual-axis tilting, 

reducing the missing pyramid to 10% requires reaching just 67°, where the sample is only 
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2.6 times thicker. The flip-flop cartridges allow imaging to ±65˚, so that all but 11% of 

the data can be gathered for a thin sample.  

 

Discussion 

From this work we conclude that (1) the new flip-flop holder succeeds in making 

the collection of dual-axis tilt-series of cryosamples convenient and routine, (2) including 

the second tilt-series does result in more isotropic resolution as expected, but (3) further 

gains should be realizable through better software to merge the data. The flip-flop holder 

has been used to collect more than a hundred dual-axis tilt-series of various samples now, 

of which only a few examples were shown here. These demonstrated that inclusion of the 

second tilt-series clarified the morphology of membranes, protein shells, and individual 

protein complexes. We have since observed other cases where dual-axis tilting has 

proven critical, including one dramatic case where a key bacterial cytoskeletal filament 

was essentially invisible in the tomogram of the first tilt-series, but was clearly resolved 

in the second. Except for the 90° rotation, the two tilt-series were otherwise identical in 

defocus, etc., and of course radiation damage does not explain the difference, since the 

filament was seen in the second tilt-series but not the first. Instead, this filament 

exemplified how long, tubular features that lie perpendicular to the tilt-axis are nearly 

invisible to single-axis tomography.  

Despite these encouraging improvements, the results also suggest that better 

methods for alignment and merging are needed. This study is the first attempt to our 

knowledge to merge dual-axis tilt-series of isolated macromolecules suspended in 

vitreous ice. Considering the range of views used in the hemocyanin tomograms, the 
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dual-axis tomograms theoretically profited from an additional 15% coverage of reciprocal 

space (72% for the single-axis tomograms, 87% for the dual). The gains experimentally 

realized in this particular case (as seen in Fig. A-5) were only modest. We attribute this to 

non-optimal alignment and merging, which should be improved by more customized 

software.  

Finally, the cartridge-based specimen holder system was originally designed to 

allow samples to be cooled with liquid helium rather than liquid nitrogen, in hopes that 

radiation damage could be further slowed or restrained. One of the potential 

disadvantages of the flip-flop stage design was that the sample had to be warmed to 

approximately −190° C between tilt-series for rotation because the multispecimen holder 

is only nitrogen-cooled. Thus the potential advantages of helium-cooling would be lost 

mid-way. Disappointingly, this is no longer a concern. Only disadvantages have been 

observed for liquid helium-cooling in cryotomography, and we now routinely use only 

liquid nitrogen. As part of the present investigations, however, the effects of warming 

helium-cooled samples to −190° C for rotation in the multispecimen holder were 

extensively explored. While the results will be reported in full alongside related 

experiments evidencing phase transitions in vitreous ice (manuscript in preparation), we 

note here that the warming associated with rotation did indeed relax some radiation-

induced strains. The relaxation was a net advantage, however, if anything, as it tended to 

restore lost contrast and delay the appearance of small bubbles.  
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Figure and table legends. 

 

 

Figure A-1. Flip-flop rotation stage.  

Panel A: photograph of a flip-flop cartridge. The lower (non-pointed) end houses 

threads used to mount the cartridge to the end of the specimen rod, which resides 

permanently in the microscope. The inner cup can be rotated, and has two protrusions 
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seen here at “2-” and “8-o’clock.” For scale, the cup circumscribes grids 3 mm across. 

Panel B: a drawing of a flip-flop cartridge positioned in front of the rotation tool 

(courtesy FEI Company and Gatan UK). The rotation tool is like a two-car garage in that 

it could house the cartridge in either of two positions, here seen as “left” and “right” 

sides. If the rotation tool were pushed over the cartridge as aligned in the drawing, its 

front edge would catch the right cup protrusion and cause the cup to rotate 90°. Panel C: 

a photograph of the part of the multispecimen holder that houses the rotation tool. 

Through the circular glass window on top, cartridge docking positions 3 (top) through 6 

(bottom) are visible on the right, and the front edge of the rotation tool is visible on the 

left (green arrows in panels B and C point to rotation tool in the same orientation). 

Pushing the bellowed piston (red asterisk) seen on the left side of the photograph moves 

the tool over and around cartridge docking positions 5 and 6, rotating any cartridges that 

may be present into either the flip or flop orientation, depending on their position. 
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Figure A-2. Single- and dual-axis tomograms of an intact cell.  

On the top, middle, and bottom rows are shown single slices of the first single-

axis tomogram, the second single-axis tomogram, and the combined dual-axis tomogram, 

respectively, of an intact M. florum cell. The left, middle, and right columns show XY, 

XZ, and YZ slices, respectively. While individual macromolecular complexes are visible 

in the XY slices of all three tomograms, only in the dual-axis tomogram are the densities 

resolved (punctate) in all three directions. The extended but still not complete definition 
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of the membrane clearly reveals the improved but still anisotropic point-spread-function. 

Scale bar is 150 nm. 
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Figure A-3. Single- and dual-axis tomograms of an HIV-1 virus-like 

particle.  

XY, XZ, and YZ slices from the first single-axis tomogram (top), the second 

single-axis tomogram (middle), and the combined dual-axis tomogram (bottom) of an 

HIV-1 virus-like particle are shown as in Fig. A-2. The outer bilayer/matrix layer and the 

capsid are visible. A single gold fiducial also appears at the bottom of the XY slices and 

on the right side of the YZ slices, which shows well the asymmetry of the point-spread-

function in the single-axis tomograms. Dual-axis tilting makes this point-spread-function 

round in the XY slice, but it is still elongated in the Z direction. Three-dimensional 

renditions of the continuous envelope density are shown on the far right (note that the 
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view in the second row has been rotated 90° relative to the others to show its missing 

wedge). These isosurfaces were defined by the “Magic Wand” tool in the Amira software 

package, which marks voxels that are both connected to an initial seed voxel and have 

densities higher than a user-specific value. For scale, the diameters of the gold fiducial 

and virus-like particle are 10 and ~125 nm, respectively. 
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Figure A-4. Single- and dual-axis tomograms of prokaryotic 

carboxysomes.  

XY, YZ, and XZ slices through the tomograms of two different carboxysomes are 

shown. The outer protein shell can be seen enclosing many tens of RuBisCO enzymes 

inside. Each tomogram used the same total dose, so the improvements in the dual-axis 

tomogram are due to data collection geometry rather than any increase in dose. Scale bar 

is 50 nm. 
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Figure A-5. Single- and dual-axis tomograms of individual protein 

complexes.  

Surface renderings of seven independent reconstructions of the barrel-shaped 

hemocyanin protein complex are shown. Each row presents one reconstruction, seen from 

three different points-of-view. The top row displays the 12 Å “single-particle” 

reconstruction obtained by averaging hundreds of projection images [20], and is shown 
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for comparison and orientation. The even- and odd-numbered rows show single- and 

dual-axis tomograms, respectively, generated with the same total dose. The particular 

particles shown were chosen to control for and reveal how orientation in the ice, as 

depicted on the right, influenced the results. In the schematic, the dotted line represents 

the tilt axis (or the first tilt axis in the case of the dual-tilt tomograms), and the plane of 

the schematic represents the plane of the grid. Simple isosurfaces are shown, contoured at 

2.5 standard deviations above the mean. For scale, hemocyanin is ~35 nm in length. 
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Figure A-6. Missing pyramid and intensity scaling.  

Sections from the three-dimensional power spectrum of a reconstructed M. florum 

cell are shown. Both are the fortieth XY section above the central “Z = 0” section, so that 

the missing pyramid is visible as a square in the middle. In (a), the overweighted 

intensities in the singly-measured regions of reciprocal space appear as a bright cross. 

The same section is shown in (b) after application of the new intensity scaling function. 
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Figure A-7. Diagram used to find the area of the “missing pyramid.”  

The four large arcs delineate the angular limits of data collection in the two 

orthogonal tilt-series (αmin, αmax, βmin, and βmax) on the surface of a sphere in reciprocal 

space. The area of the missing pyramid is equal to the “angular excess” of the shaded 

spherical quadrilateral, and is found as described in the text. 
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Percent of reciprocal space unmeasured Tilt 
range 

Thickness 
increase at 
angular 
extreme 

Single-axis data 
collection 

Dual-axis data 
collection 

±60° 2.0× 33% 16% 

±67° 2.6× 26% 10% 

±70° 2.9× 22% 7.5% 

±81° 6.4× 10% 1.6% 
 

Table A-1. Percent coverage of reciprocal space in single- and dual-axis 

tomography. 
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