© 2005

Eric James Fechter

All Rights Reserved

In memory of Ben

Acknowledgments

I want to thank my family for the years of support and understanding. They've seen the highs, the lows, and everything in the middle. Always with encouragement, and always with loving devotion. I'm grateful for the sacrifices they've made and look forward to many years of happiness with them.

I am indebted to my research advisor, Peter Dervan, for his guidance and inspiration. It's remarkable that after more than 30 years of pedagogy, Peter still holds that infectious passion for scientific discovery. I want to thank the members of my committee, Doug Rees, Dennis Dougherty, and Bob Grubbs, for all their patience and advice. To Michael Waring for his brilliant suggestions when many projects stumbled and for the much needed flying expeditions that will stay embedded as memories for years to come. I'm also grateful to my undergraduate advisors, Michael Silvestri and Rod Schoonover, for putting a shine on chemistry that inspired me to continuing in the field.

Upon joining the Dervan lab I was extremely fortunate to work with several talented labmates, particularly, Nick Wurtz, Victor Rucker, Clay Wang, and Bobby Arora, who graciously taught me the group lore and fundamentals of scientific research. Thanks to my fellow recruits, Michael Marques, Ray Doss, Adam Poulin-Kerstein, and Amanda Cashin, for the struggles and accomplishments we've shared. I'm also obliged to many other labmates who've supported me during my early years: Jason Belitsky, Phillip Weyermann, Tom Minehan, Dorte Renneberg, Lenard Prins, Adam Urbach, Pierre Portier, Shane Foister, Nick Nichols, and Tim Best. Many thanks to the more recent members: Justin Cohan, Carey Hsu, Jim Sanchez, Ryan Stafford, Sherry Tsi, Jim Puckett, Britton Boras, Rachel Wang, Claire Jacobs, Dave Chenoweth, Mike Brochu, Michell Farkas, and Steve Fiacco. Best of luck with your minor-grooving adventures! I'm particularly thankful to a friend and coworker, Julie Poposki, whose insight and support have shed much needed light on my final six months at Caltech.

Throughout the majority of this journey I was fortunate to work alongside Ben Edelson. It's impossible to adequately describe the impact of Ben's companionship – he was inspiring in so many ways – his ingenuity, humility, and integrity, were exceptional qualities that I deeply admired. Much of my development as a scientist can be attributed to Ben and I'm grateful for the time he spent with us.

Abstract

Small molecules that bind specific DNA sequences may have powerful therapeutic applications by influencing the mechanisms of abnormal gene expression. Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) specifically bind the minor groove of DNA and have been shown to inhibit many protein-DNA complexes. However, some major groove-binding proteins can co-occupy the same DNA sequences as polyamides. Presented here are polyamide-intercalator conjugates that specifically bind target regions of DNA and deliver a non-specific intercalator to an adjacent site. The studies detail intercalative unwinding of specific DNA sequences to allosterically inhibit any protein:DNA complex. The evolution of sequence-specific polyamides to bisintercalate DNA and cause larger distortion of the helix is described. The success of hybrid molecules containing mixed DNA binding modes led to the development of a bis-polyamide-intercalator motif, modeled after the natural product actinomycin D, which is capable of specifically binding extended sequences of DNA. Also described is a polyamide-intercalator series which shows large fluorescence enhancement upon specific DNA binding and may be useful in detecting specific DNA sequences within living cells.

Table of Contents

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

APPENDIX

	page
Acknowledgements	iv
Abstract	v
Table of Contents	vii
List of Figures and Ta	blesviii
CHAPTER ONE	Introduction to DNA Binding and Recognition1
CHAPTER TWO	Minor Groove-Binding Intercalator Conjugates

Detection of DNA by Sequence-Specific Intercalation......122

Effects of Polyamides on HTLV-I Transcription......147

List of Figures and Tables

CHAPTER ONE

Figure 1.1	DNA base pairs	3
Figure 1.2	Intercalation model	3
Figure 1.3	Intercalating natural products Daunomycin and Actinomycin D	4
Figure 1.4	Distamycin binding modes	5
Figure 1.5	X-ray crystal structure of polyamide homodimer	6
Figure 1.6	Schematic representation of the polyamide pairing rules	7
Figure 1.7	Polyamide binding motifs	9
Figure 1.8	Polyamide binding motifs targeting longer DNA sequences	11
Figure 1.9	Solid phase synthesis of polyamides	13
Figure 1.10	Structures of polyamide-alkylating conjugates	14
Figure 1.11	X-ray crystal structures of DNA binding proteins	15
Figure 1.12	Model of polyamide inhibition of HIV-1 replication	16
Figure 1.13	Model of polyamide inhibition of LSF ₂ /YY1	17
Figure 1.14	Model of polyamide activation by artificial transcription factors	18
Figure 1.15	X-ray crystal structure of polyamides bound to the nucleosome core particle.	19
CHAPTER TW	0	
Figure 2.1	Model for allosteric inhibition of a protein-DNA complex	33
Figure 2.2	Putative hydrogen-bonding model of a polyamide-intercalator conjugate	34
Figure 2.3	Structures of polyamide-intercalator conjugates	35
Figure 2.4	Synthesis of polyamide-intercalator conjugates	36

Figure 2.5	Schematic of pEF10
Figure 2.6	Representative footprinting gels for polyamide-intercalator conjugates38
Figure 2.7	Topoisomer gels and interpretation of unwinding experiments
Figure 2.8	Gel shift experiments with GCN4 and polyamide-intercalator conjugates on DNA containing one match site
Figure 2.9	Gel shift experiments with GCN4 and polyamide-intercalator conjugates on DNA containing two match sites
Figure 2.10	Predicted GCN4 major-groove contacts directly affected by intercalation
Figure 2.11	Gel shift experiments with Sp1/Sp3 and polyamide-intercalator conjugates
Figure 2.12	Topoisomerase II inhibition assay results
Figure 2.13	Synthesis of turn-linked polyamide-intercalator conjugates
Figure 2.14	Footprinting gels for turn-linked polyamide-intercalator conjugates54
Figure 2.15	Gel for transcription run-off experiments
Figure 2.16	Structures of fluorescein-linked polyamide-intercalator conjugates56
Figure 2.17	Representative cellular uptake results for fluorescein-linked polyamide- intercalator conjugates
Figure 2.18	Structures of polyamide-acridine orange conjugates
Figure 2.19	Synthesis of polyamide-acridine orange conjugates
Figure 2.20	Absorbance and Fluorescence spectra of polyamide-acridine orange conjugates
Figure 2.21	Representative cellular uptake results for polyamide-acridine orange conjugates
Table 2.1	Transcription factors inhibited by polyamide binding
Table 2.2	Equilibrium association constants for polyamide-intercalator conjugates37
Table 2.3	Nuclear uptake results for polyamide-acridine conjugates

Table 2.4	Nuclear uptake results for polyamide-acridine orange conjugates59	
CHAPTER THREE		
Figure 3.1	Intercalation models	
Figure 3.2	Putative hydrogen-bonding model of a polyamide-bisintercalator conjugate	
Figure 3.3	Synthesis of mono- and bisintercalator conjugates	
Figure 3.4	DNase I footprinting gels for intercalator conjugates	
Figure 3.5	Topoisomer gels and interpretation of unwinding experiments	
Figure 3.6	Binding isotherms and unwinding plots	
Figure 3.7	Gel shift experiments with GCN4 and polyamide-intercalator conjugates	
Table 3.1	Thermodynamic data and unwinding angles	

CHAPTER FOUR

Figure 4.1	Chemical structure of Actinomycin D	.101
Figure 4.2	Phenoxazone resonance charge distribution	.102
Figure 4.3	Putative hydrogen-bonding model of a bis-polyamide-intercalator conjugate	.103
Figure 4.4	Structures of bis-polyamide-intercalator conjugates	.104
Figure 4.5	Synthesis of bis-polyamide-intercalator conjugates	.105
Figure 4.6	Absorbance and Fluorescence spectra of bis-polyamide-intercalator Conjugates	106
Figure 4.7	Schematic of pEF18 and pEF19	.107
Figure 4.8	DNase I footprinting gels for bis-polyamide-intercalator conjugates	.108
Figure 4.9	Unwinding plot for bis-polyamide-intercalator conjugate	.110

Figure 4.10	Molecular model of bis-polyamide-intercalator conjugate bound to DNA	111
Table 4.1	Equilibrium association constants for bis-polyamide-intercalator conjugate	109
CHAPTER FI	VE	
Figure 5.1	Fluorescence enhancement model for DNA sequence detection	125
Figure 5.2	Thiazole orange fluorescence enhancement model	126
Figure 5.3	Putative hydrogen-bonding model of a polyamide-thiazole orange conjugate.	127
Figure 5.4	Structures of polyamide-thiazole orange conjugates	128
Figure 5.5	Synthesis of thiazole orange-PEG linker	128
Figure 5.6	Synthesis of polyamide-thiazole orange conjugates	129
Figure 5.7	DNase I footprinting gels for polyamide-thiazole orange conjugates	130
Figure 5.8	Unwinding plots for TO-Pro-1 and a polyamide-thiazole orange conjugate	131
Figure 5.9	Sequence of hairpin-forming oligonucleotides	132
Figure 5.10	Absorption spectra and emission profile for a polyamide-thiazole orange conjugate.	133
Figure 5.11	Fluorescence emission experiment with hairpin forming Oligonucleotides	134
Figure 5.12	Cellular localization images for a polyamide-thiazole orange conjugate.	136
Table 5.1	Nuclear uptake results for polyamide-thiazole orange conjugates	135
APPENDIX		
Figure A.1	HTLV-1 promoter	151
Figure A.2	Viral CRE sequences and polyamide structures	152

Figure A.3	DNase I footprinting gels for polyamide targeting CRE 1 and CRE 2	154
Figure A.4	DNase I footprinting gels for polyamide targeting CRE 3	155
Figure A.5	Tax/CREB binding inhibition	157
Figure A.6	Inhibition of <i>in vitro</i> Tax mediated transcription	158
Figure A.7	Inhibition of <i>in vitro</i> CREB mediated and basal transcription	160
Figure A.8	Cellular uptake images	162
Figure A.9	<i>In vivo</i> inhibition of virion production	163
Table A.1	Polyamide equilibrium association constants	156