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Abstract

A configuration of central importance in many areas of engineering application is
a thin film structure composed of one or more materials deposited on a substrate of yet
another material. Stress in the thin film is accumulated during each of the many
processing steps involved in making such a structure. It is necessary to be able to
determine the stress levels and distribution in the thin film, as stress buildup can lead
directly to failure and as such it is ultimately related to reliability and process yield.
Examples of stress-induced failure include delamination, voiding, and cracking of the

thin film.

The easiest and most common way of inferring film stress in a thin film-wafer
substrate system due to some process is to measure the curvature of the system before
and after that process. The change in curvature then can be directly related to the film
stress. The classical relation between film stress and wafer curvature is known as the
Stoney formula. The Stoney formula was derived based on a number of fairly restrictive
assumptions. These assumptions include, but are not limited to, uniform film thickness
and an equibiaxial, spatially uniform misfit strain between the film and substrate. The
assumption of constant misfit strain leads to the requirement of spatial uniformity in
curvature and stress that does not allow the components to vary across the wafer surface.
These assumptions are routinely violated in practice, yet the Stoney formula is still
arbitrarily applied. The accuracy of this formula in determining film stress is expected to

decrease as spatial nonuniformities in the given system grow.
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Recently an analysis was performed in which the assumptions of spatial
uniformity in film thickness and misfit strain were relaxed and Stoney-like relations
between film stress and wafer curvature were derived. These relations, called the HR
relations, have not only terms that relate film stress at a given location to the curvature at
that location, but also include additional terms that relate film stress at a given location to
integrals of the curvature over the entire wafer surface. Therefore, full-field curvature
information is needed in order to accurately determine film stress, even at a single

location on the wafer.

The new analysis was validated by comparison with X-ray microdiffraction
(XRD). The XRD techniques that were utilized for this validation effort allow both the
film stress and the substrate curvature to be measured independently. Since these two
measurements are not related, the substrate curvature was used as an input to the stress-
curvature relations. The resulting film stresses, from both Stoney and the new HR
analysis, were then compared with the film stress data from XRD. It was found that the
accuracy of the HR analysis is much greater than that of Stoney, especially near the film
edges. Near the edge of the film, the film thickness decreases sharply, which leads to a
proportional increase in film stress. This increase is captured by the HR relations but
completely missed by Stoney, which assumes a constant film thickness. Within the film

center, differences as large as 60% were reported.

Next, a full-field curvature measurement was introduced. Coherent Gradient
Sensing is suited to the HR analysis because it produces curvature information over the
entire wafer surface, which is required for this analysis. CGS measurements were taken

of several progressively more interesting test wafers, which feature various geometries of
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W island films on otherwise bare Si wafer substrates. Both Stoney and the HR relations
were then used to determine stress in the film. The difference in film stresses produced
by the two methodologies was discussed. Also, the variations between film stresses of

the different thin film-wafer geometries were examined.

It was found that film stress is not a strictly processing-dependent or an intrinsic
material property, but also depends on the location of a thin film feature on the wafer
surface. Also, features that are close to each other interact so as to change the wafer

deformation and the stress distribution across the film.

Further studies are underway which also consider an additional source of wafer
deformation, namely the effects of temperature gradients which can cause permanent
deformation in a wafer substrate. This effect is completely separate from those caused by

film stress.
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Introduction

A configuration of central importance in many areas of engineering application is
a thin-film structure composed of one or more materials deposited on a substrate of yet
another material. Integrated electronic circuits, integrated optical devices and
optoelectronic circuits, compound semiconductors, micro-electro-mechanical systems
(MEMS) deposited on wafers, three-dimensional electronic circuits, systems-on-a-chip
structures, lithographic reticles, and flat panel display systems are examples of such thin
film structures integrated on various types of plate substrates.

Especially as film thicknesses and other feature dimensions become ever smaller,
film stress plays an important role in the manufacturing process because of its cumulative
detrimental effect on process yield [1]. Stress is accumulated during each of the
hundreds of fabrication and processing steps involved in creating a thin film structure,
e.g., sequential film deposition, thermal anneal and subsequent cooling, and etch steps.
Examples of known phenomena and processes that build up stresses in thin films include
lattice mismatch, chemical reaction, doping by diffusion or implantation, and rapid
deposition by evaporation or sputtering. Film stress buildup can lead to failure through
many mechanisms, including stress-induced film cracking, buckling and delamination for
brittle dielectric films, and through void nucleation and growth for more ductile metal
films. Therefore, the accurate measurement and analysis of the film stress and stress
distribution associated with each processing step, and modification of the processes as

needed, is necessary for establishing appropriate product quality control methodologies.



The easiest, and probably most common, method to determine film stress due to
some process is to measure substrate curvature before and after that specific process. The
resulting change in curvature is then directly related to the film stress caused by that
process. A simple, well-known formula that relates curvature and film stress was derived
by G. G. Stoney [2]. Stoney used plate theory to describe a system composed of a thin
film of thickness h; deposited on a much thicker substrate of thickness hs to derive what is

known as the Stoney relation, or Stoney formula:

f Eshs2
=—K
6(1—-v,)h,

(0.2)

In this formula the subscripts f and s are used to denote the film and substrate,
respectively, while E and v are the Young's modulus and Poisson ratio, respectively [3].
The film stress, oy, is related directly to the change in system curvature, x. This formula
was derived based on several explicit assumptions. These include:

(i) Both the film thickness h; and the substrate thickness hs are uniform and

hi<<hs<<R, where R is the system radius;
(ii) The strains and rotations of the plate system are infinitesimal;
(iii) Both the film and substrate are homogeneous, isotropic, and linearly elastic or
thermoelastic;
(iv) The misfit strain state is in-plane isotropic or equi-biaxial (&; = &nd;j); and
(v) The misfit strain state is spatially constant over the plate system's surface.

The above assumptions naturally result in the following properties of the system:



(vi) The film stress states are in-plane isotropic or equi-biaxial while the out-of-
plane direct stress and all shear stresses vanish (o= oy = oy, oxy = oy = 0);

(vii) The system's curvature components are equi-biaxial, while the twist

curvature vanishes in all directions (x = &« = &y, &xy = kyx = 0); and

(viit) All surviving stress and curvature components are spatially constant over

the plate system's surface.

Assumptions (iv) and (v), of equi-biaxial, spatially constant misfit strain, cannot
be checked directly. However, the system curvature can be measured. An equi-biaxial,
spatially constant curvature, as results from these assumptions, corresponds to a substrate
deformation that is exactly spherical. That is practically never the case for a real thin
film-substrate system. If the deformation is not spherical, the assumptions of
equibiaxiality (iv) and of spatial uniformity (v) must necessarily not be met.

In practice, the Stoney formula is often, arbitrarily, applied in cases where these
assumptions are violated. To deal with this, the Stoney formula is typically applied in a
local fashion, that is, an average stress at each point is determined from the average
curvature at that point. This approximation clearly ignores the assumption of spatial
uniformity and, therefore, its accuracy is expected to deteriorate as spatial
nonuniformities increase.

Over the years, many extensions to the Stoney formula have been derived by
various researchers who have relaxed different assumptions made by the original Stoney
analysis. Such extensions of the initial formulation include relaxation of the assumption

of equi-biaxiality as well as the assumption of small deformations/deflections. A biaxial
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form of Stoney, appropriate for anisotropic misfit strain, including different stress values

at two different directions and non-zero, in-plane shear stresses, was derived by relaxing
the requirement of curvature equi-biaxiality [3]. Related analyses treating discontinuous
films in the form of bare periodic lines [4] or composite films with periodic line
structures (e.g., bare or encapsulate periodic lines) have also been derived [5-7]. These
latter analyses have also removed the requirement of equi-biaxiality and have allowed the
existence of three independent curvature and stress components in the form of two, non-
equal, direct components and one shear or twist curvature component. However, the
uniformity requirement of all of these quantities over the entire plate system was retained.
In addition to the above, single, multiple, and graded films and substrates have been
treated in various large deformation analyses [8-11]. These analyses have removed both
the restrictions of an equi-biaxial curvature state as well as the assumption of
infinitesimal deformations. They have allowed for the prediction of kinematically
nonlinear behavior and bifurcations in curvature states which have also been observed
experimentally [12, 13]. These bifurcations are transformations from an initially equi-
biaxial to a subsequently biaxial curvature state that may be induced by an increase in
film stress beyond a critical level. This critical level is intimately related to the system's
aspect ratio, i.e., the ratio of in-plane to thickness dimension and the elastic stiffness.
These analyses also retain the requirement of spatial misfit strain, curvature and stress
uniformity across the entire system. However, they allow for deformations to evolve

from an initially spherical shape to an energetically favored shape (e.g., ellipsoidal,



cylindrical or saddle shapes) which features three different, yet still spatially constant,
curvature components [12, 13].

The most restrictive requirement of the classical Stoney formulations and its
extensions discussed above was recently relaxed to derive a more general Stoney-like
equation [14-17]. This was done by considering deformations due to a non-uniform
misfit strain distribution, where misfit strain refers to the intrinsic strain in the thin film
that is not associated with the stress. Initially the analysis was performed by considering
a misfit strain due to a non-uniform temperature distribution [14]. The Stoney analysis,
which assumes spatially constant misfit strain, produces a relation between film stress
and substrate curvature in which the misfit strain is eliminated; that is, the dependence of
film stress on substrate curvature is not affected by the origin of the misfit strain.
However, it was found that when considering misfit strain due to non-uniform
temperature distributions, the resulting Stoney-like relations which associate film stress
and substrate curvature did include a term which depended on difference of thermal
expansion coefficients of the film and substrate.

The thermoelastic analysis, discussed above, was subsequently repeated for cases
where the cause of system curvature and film stress was an athermal misfit strain such as
epitaxial lattice mismatch. The first case considered was one of axisymmetric system
geometry and misfit strain distribution [15]. This was followed by a generalization to
arbitrary misfit strain distributions [16] and finally to both arbitrarily non-uniform film
thickness and misfit strain variations. This last analysis is described in detail in chapter 1

of this thesis.



The above analyses produced relations between the dependent variables (film
stress and system curvatures) and the in-plane misfit strain distribution. The dependence
on misfit strain appeared in the form of integrals evaluated over the plate surface
demonstrating the "non-local” nature of the dependence. Elimination of the misfit strain
resulted in Stoney-like relations between film stress and system curvatures (referred to
here as the HR relations) which also involve surface integrals of curvature evaluated over
the place surface. The most interesting feature of the resulting relations is that film stress
in a given location does not simply depend on the curvature at that location in a "local”
manner. Instead, there are additional terms which depend on the curvature distribution
over the entire plate system. This implies a "non-local™ stress/curvature dependence and
demonstrates that a simple, "local” curvature measurement is not sufficient for an
accurate determination of stress in the presence of non-uniform deformations; instead, the
full-field curvature is required.

Note that the term "non-local,"” as used here, applies to the relations between film
stress and misfit strain, curvature and misfit strain, and stress and curvature. The
formulation, however, is strictly local since only linear elasticity is assumed.

In this thesis, the derivation of the HR relations for both the case of arbitrarily
varying non-uniform misfit strains and film thicknesses are summarized and are then
specialized to the axisymmetric case. Once the stress/curvature relations are established,
their differences from the "local" Stoney relations are discussed by means of an analytical
example. In order to validate the non-local HR relations, a micromeasurement technique,

X-ray microdiffraction (uXRD), is introduced. This technique is advantageous because it
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is able to independently measure both film stress and substrate curvature within the same

setup. Measurements of film stress made by uXRD of a highly non-uniform but
axisymmetric wafer specimen are compared with the stress inferred by using the local
and non-local formulas with curvature, measured by monochromatic uXRD, as a
common input. The comparison provides conclusive validation of the axisymmetric
version of the non-local stress/curvature relations.

Next, a full-field, interferometric curvature measurement technique, called
Coherent Gradient Sensing (CGS), is introduced. This full-field measurement allows the
non-local stress formulas, which require knowledge of the entire curvature field over the
wafer surface, to be used appropriately. Finally, the full-field CGS technique is used to
analyze the stress distributions of several interesting thin film-substrate systems. These
systems include various non-axisymmetric geometries of W thin film islands deposited
on single crystal Si substrates.

An ongoing collaborative study with Northrop Grumman Space Technologies is
also briefly discussed. This study is examining the additional thermal effects of certain

processing techniques on wafer deformation and film stress.



1. Theory

The Stoney formula (Eg. 0.1) is commonly used to relate film stress to system
curvature. As mentioned in the introduction, the assumptions of this formula include
spatial uniformity which does not allow the curvature or stress to vary over the plate
system surface. In practice, however, this assumption is rarely met. In order to measure
film stress when the system is not spatially uniform, the Stoney formula is often applied
in a local manner. This is done by relating the first invariant of the film stress to the first
invariant of curvature as follows:

E.h?
+O'f s''s

f _
T T TS (v )h,

XX

(), + Kyy) - (1.2)

Note that this clearly violates the assumption of a single, constant curvature and a single,

constant stress over the entire wafer.

In order to expand the Stoney formula to properly incorporate non-uniform
deformations, an analysis was performed which considers a case in which a non-uniform
misfit strain is present in the film [17]. This misfit strain, &y, refers to the intrinsic strain

in the thin film which is not associated with the stress.

In this analysis, a thin film of arbitrary thickness hs (r,8) has been deposited on a
much thicker substrate of uniform thickness hs, and radius R, such that h; << hs << R (Fig.
1-1). The film is modeled as a membrane, since it is too thin to be subject to bending

forces. The thin film is subject to a non-uniform and isotropic misfit strain distribution

g =&,0;, Where &n = e (r,6). The misfit strain provides the "driving force” which is

m“ij 1



ultimately responsible for the creation of both curvature in the system and stress in the
thin film. The substrate, which is subject to bending, is modeled as a plate. A cylindrical

coordinate system (r,6,z) is used, with the origin in the center of the substrate (see Fig.

1-1).

hy

—> | | <

2R

(a) (b)

Figure 1-1. Schematic of the thin film-substrate system, showing the cylindrical coordinates (r, 6, z).

The film has radial (r) and circumferential (8) in-plane displacements of u and
u, , respectively. The strains in the filmare ¢, =ou, /or, g, =u'/r+(@/r)ou, /06

andy,, = (L/r)éu, /60 +ou,) or—u, /. These strains are related to the misfit strain,

&m, and the film stresses by ¢ :i 1+v, o —v,0,0; |+¢&,0: . The stresses in the
1) E f ij f~ kk ~ij m*ij
f

film can now be expressed in terms of the film displacements as follows:

E f f f
ol = i +v, u_r+£8u9 -[A+v)e, |,
or r r o0

E f f f
ol ot [l Uy Uy | (L.2)
+v, )\roe or r
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The membrane forces are now defined as

N/ =ho!, N, =hol, N, =h,. (1.3)

r !

For a uniform misfit strain distribution and uniform film thickness (&m, hs
constant), the normal and shear tractions associated with the thin film-substrate interface
vanish except near the freeedger =R, i.e., oy = o, =o0g=0atz=hgJ2and r <R.
However, for non-uniform misfit strain and film thickness distributions, &, = &x(r,8) and
h = h¢ (r,6), the shear stresses oy, and oy, at the interface may no longer vanish, and are
denoted by 7z and 7, respectively. The normal stress traction o, still vanishes (except at
the free edge r = R) because the thin film cannot be subject to bending. The equilibrium

equations for the film are thus

ON/ . N/ -N, +16Nr; L
or r r o0 "

N 2y 1N,
or r " r o6

—7,=0. (1.4)

The substitution of Egs. 1.2 and 1.3 into Eq. 1.4 yields the governing equations

for the thin film, in terms of u!",u!"),z, and z,, as
0 ou' u' 1eou, )| 1-vihi|o% o ou,
—|h, +—L = + — | =]
or or rror 2 r°| o0 or\ 00
1+v, ahf 0 UHf 1 8urf Zahf £ ﬁugf
+ — ||+ - u +
2 oo |or( r r<o60 | r or 00
1-v,’ a(h,e.)

= 7. +(1+v ,
Ef r ( f) ar




11

10 oul ul 1ou, 1-v, o(1ou') o106, |
——1|h, + L= + hes——| = +—|=—(ru,)
r oo or r r or 2 or\r 06 or|ror

1- oh f f oh f
+ v AR +ri U |20 U, (1.5)
2 or | r 00 ori r r 06 or
1_Vf2 10(h;e,)

= +(1+ — .
E, ' +vi)i—72g

At its neutral axis, z = 0, the substrate has radial (r) and circumferential (@) in-
plane displacements of u; and u,, respectively. Since the substrate undergoes bending, it
also has a displacement, w, normal to the neutral axis. The strains in the substrate are
then denoted by

S 2
S_6ur 0w

£ ,
Tor or?

ror r?o6°

u’  1ou; low 1 0°w
£ +-—l g S —+ ,
r r oo

. _1%+%_u_e_zz§(1@J _ (L6)

ro0 or r r o0

The stresses are

. E, feu ub 1ouy) [éw  (1ew 1 d°w
o, = T V| = I V| - —+5— ||
1-v," | or rr oo or ror r°oé

<

r —_—

+ 2l v,—+
o r r oo or? ror r?o6*

E, ous u’ 1éu; o’'w low 1 9o°w
7| Vs -t 7 ’

E S S S
S S L —u—"—zzi(lﬂj . (L.7)
20+v)|ro0 or r or\rof



The forces and bending moments in the substrate are then found to be

he/2

N, = jarrdz= Eshsz o, +V, u_r+£6u9 ,
12 1-v,S | or r r oo

hy /2

: E.h usoou; ou,
N, = .[a%,dz= — VSa : Jr—r+1 Z 1,

12 1-v, or r r oo

h /2

- ot B (100,25 )

-1 (1.8)
w2 2Q+v)\rog or r
hg /2 3
s E h 2 2
Mrs:_ .[Zo-rrdzz — 2 a\év+vs[1@+iza VZV] !
~hg/2 12(1_1/5 ) or r or r- o6
. E.h° o'w low 1 o*w
M, = 20,0z = Ve t—t 5 —5 |
12 12(1-v,") o ror r°oé
h/2 3
T B . (1@) (L9)
e 12(+v,) or\r 00

The shear stresses 7, and z, at the thin film-substrate interface are equivalent to
the distributed forces z, in the radial direction and z, in the circumferential direction,

and bending moments (h, /2)z, and (h,/2)z, applied at the neutral axis (z = 0) of the

substrate. The in-plane force equilibrium equations for the substrate are then

oN; | Ni=Nj 10N,

+ +7, =0,
or r r oo

N: N>
a—”9+ngg+la % +7,=0,
or r r oe

(1.10)

and the in-plane bending moment equilibrium equations for the substrate are
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oM M_M9+18M'H+Qr—irr=0,
or r r 00 2

oM,, 2 1M h
0 LM - 9 4+ -—=7, =0, 1.11
o r " 00 R 27 -

4 ,Q  1Q,

=0, 1.12
dr r r 00 ( )

where Q, and Q, are the shear forces normal to the neutral axis. Substituting Eq. 1.8

into Eq. 1.10 gives the following governing equation for the substrate, in terms of u’ and

u, (and 7), as

o(ous ut 1au) 1-v, 1|0%us o ous 1-v?
— +—4+— + — - r =— T,
or{lor r roo 2 r*| oo or( 06 E.h,

s s _ _ 2
10 [ou; +u_r+18ug +1 ve | 0flaou; g__( 0) _ 1w r,. (113)
rae or r r oé 2 ar rae or E.h

§°'S

Similarly, substituting Eq. 1.9 into Eq. 1.10, and eliminating Q, and Q, from Eq. 1.11,

gives the governing equations for the substrate, in terms of w (and 7), as

VZ(VZW)=—6(é_hV22) (%+T7' i(?;g} (1.14)

2 2
where V? =a—2+li+i 0

or’ ror r?o0*

Also, from continuity of displacement at the thin film-substrate interface, the

condition is imposed that
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u, =u; —?5—, Uy =y ==~ (1.15)

Equtions 1.5 and 1.13-1.15 constitute seven ordinary differential equations for
seven variables, namely u/, u,}, u, uj,w, 7, and z,. The following discussion

explains how to decouple these seven equations under the limit h, /h, <<1 in order to

solve u® and u; first, then w, followed by u/ and u/, and finally 7, and r,.

(i) Elimination of 7, and z, from force-equilibrium equations for the thin film
(Eq. 1.5) and for the substrate (Eq. 1.13) yields two equations for u, u,}, u®, and u}.
Under the limit h, /hs <<1,u, and u, disappear in these two equations, which become

the following governing equations for u; and u; only:

ofoeu; u® 1oéu;) l-v, 1|0%; o ou;

— 4+ 4= + = ——r

orl or r r 06 2 r?|o06* or| 00

E; 1—1/52 o(h;e,) hf2
+O—2,

1-v, Eh, or h

10(ou u 1louy) 1-v,| o(lou’) 0|10, .
—— +—L+= + -—| = +—| =—(ru,)
rog\ or r r o0 2 or\r 66 ) oriror

E, 1—vf;a(hfem)+o(h?]

(1.16)

“1-v, Eh r 006
The substrate displacements u; and u; are on the order of h /hs.

(ii) Elimination of u and u, from the continuity condition (Eg. 1.15) and
equilibrium equation (Eq. 1.5) for the thin film gives z, and 7, in terms of u;, u, and w

(and &n). The substitution of these 7, and 7, into the moment equilibrium equation (Eq.
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1.14) yields the governing equation for the normal displacement w. For h, /h; <<1, this

governing equation takes the form

Ef 1—1/52
l_Vf E h 2

S 'S

v?(V?w)= -6 v2(he,). (1.17)

This is a biharmonic equation which can be solved analytically. The substrate

displacement w is on the order of h;/ hs.

(iii) The displacements u,' and u, in the thin film are obtained from Eq. 1.15,
and they are also on the same order h¢/ hsas u;, u, and w. The leading terms of the

interface shear stresses z, and z, are then obtained from Eq. 1.5 as

E, olhe,) E, 10(hz,)

- 1.18
1-v, or © 1-v,r 00 (1.18)

Equations 1.16 - 1.18 show that h; always appears together with &,. The interface
shear stress is only proportional to gradients of hi&y,; when the misfit strain and film

thickness are uniform, as is the case for the Stoney analysis, the interface shear stress

vanishes. This result holds regardless of boundary conditions at r = R.

The boundary conditions at the free edge r = R require that the net forces and

moments vanish:

N'+N°*=0and N, +N;, =0, (1.19)

h 10 h
M ——=N'"=0andQ - =—|M_, ——N' [=0. 1.20
r 2 r Qr rae( re ré’j ( )
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Equations 1.16 - 1.18 and boundary conditions 1.19 - 1.20 are solved in the same

way as that for uniform thickness and non-uniform misfit strain [16] by replacing &y, with

htem. Then higy is expanded to the Fourier series as

he,(r,0)= i(hfgm)g‘(r) cosn9+i(hfgm)2(r)sin ne, (1.21)

2
where (hfgm)g(r)zij.hfé‘mde, (hfé‘m)g(r):%
0

2z
jhfgm cosndd@ (n>1) and
0

2z
(h,2,)2(r) == [h,&,sinn0do (n>1)
Z 0

o*w low 1 0w o(1ow
Now the system curvatures «,, =—-, Ky =——+———,and x,, =——— | are
or ror r°oé or\rof
related to higy by
Ef 1-v
K. +x,=-12 s
rr 60 1_Vf Eshsg
1— .
hie, — Ys hfgm—hfgm)
r R 11, (1.22a)
S cosnd|n™ (h &)1 (n)dn
_Vs 0 n
+3 z(n+1) 2n+2 OR
+VS n=1 : n+l n
+sinng[ 5" (h,e,)i(n)dn
L 0 |
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Ef 1—V52
Krr_K%:_Bl_V Ehz
f s'ls
hfgm zj-n(hfgm (c)d77
0
R
, cosn@jn””(hfgm)ﬂdn
1-v. &n+1| " r" 0
+ : n—-(n-1 ,(1.22b
3+vs§Rn+2{ R )R“-Z} R . (1.220)
* +sinnd[n"*(h;&,)idn
0
- n+1 0 n+ n H 0 n+ n
—Z;rmz cosne'[n l(hfgm)cd77+s|nn9.[77 1(hfgm)sdnJ
n= 0 0
0 R R
—Z(n—l)r”2[cosn0j771”(hfgm)g‘dn+sinn9j771”(hfgm);‘dnJ
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where h; g, = ﬂ;z jjhf e, (n,@)dA is the average misfit strain over the entire area A of
A

the thin film, dA=7dnde, and h ¢, isalso related to (h, ¢, )? by

2 R
hf‘gm :?J‘n(hf‘c"m S(U)dﬂ
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The stresses in the thin film are obtained from Eq. 1.2. Specifically, the sum of

film stresses, o' + o, , is related to hysy, by

o' +o) =—1(-2¢,). (1.23a)
1-v

The difference between stresses, o, —o,,, and the shear stress, ¢, are given by

E, 1-v°

S

1-v,? Eh,

f f
Oy —Og _4Ef

2 r
2y == [n(hy 2,)2dn
0

0

-y nizl(cosne'[n””(hfgm)gdn+sin nﬁjn””(hfgm)gdnJ
r 0 0

n=1

- i R (1.23b)
*0=>(n —1)r”‘2[cos nejnl‘”(hfgm)gdn +sin nHJ.nl‘“(hfem)an]
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Ef :I.—V2
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Note that if the film thickness and misfit strain are uniform, the shear stress of Eq.

1.18 vanishes. Then the curvatures of Egs. 1.22 become

thf 1-v

&y, K =0, (1.24)

[N
|
=~
m
=
)

and the stresses in the thin film obtained from Eqgs. 1.23 become

E;

(-&,) ol =0. (1.25)

For this special case only, both stress and curvature states become equibiaxial.

The elimination of misfit strain &, from the above two equations yields a simple relation

E,h? I :
o' =——"2_ i which is exactly the Stoney formula in Eq. 0.1.
6(1_Vs )hf

In order to extend such a Stoney-like relation for arbitrary non-axisymmetric

misfit strain distribution, it is necessary to relate curvatures directly to stress. Currently
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both curvature and stress are related to the misfit strain distribution in Egs. 1.22 - 1.23, so

eliminating misfit strain from these equations will produce an extension to the Stoney

formula.

The coefficients C, and S, related to the substrate curvatures are first defined by

1 n
C,= e J'A.[ (k,, + 1y, {%j cosnedA,

1 "
S, = e J'A'[(K” +K69)(%j sin ngdA,

(1.26)

where the integration is over the entire area A of the thin film, and dA=#ndnde. Since

both the substrate curvatures and film stresses depend on the misfit strain &, and film
thickness hy, elimination of these parameters gives the film stress in terms of substrate

curvatures as

4(Krr K )
f thS N n n-2
(o2 = ks ’
T e+v,) |- +1){n(—) —(n —1)(Lj }(Cn cosn@+S, sinné)
n=1
(1.27a)
E.h o n n-2
ol =——= _lax,, +12(n +1 n(Lj —(n —1)(L) (C,sinn@—S, cosnd)s,
61+v,) 23 R R
(1.27b)
1-v, S
Ky + Ky +—(Krr t+ Kgg — Ky +K¢9¢9)
f f Esh52 1+V5
Oy +0g = , (127C)
6h,1-v,)| 1

;i(n +1)(%j (C,cosn@+S, sinng)

1%
1+v, 3
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where «,, +i,, =C, = ”A(zcrr +K,, JJA/ 7R ? is the average curvature over the entire

area A of the thin film, and C,, and S, are given in Eq. 1.26. Equations 1.27, which
directly relate film stress to substrate curvatures, are known as the HR relations. It is
important to note that stresses at a point in the thin film depend not only on curvatures at
the same point (local dependence), but also on the curvatures in the entire substrate (non-

local dependence) via the coefficients C, and S,. It should also be noted that Eq. 1.27b
for shear stress o', and Eq. 1.27a for the difference in normal stresses o — o}, are
independent of the thin film thickness hy, but Eq. 1.27¢ for the sum or normal stresses

o! +ao,, isinversely proportional to the local film thickness hy at the same point.

The interface shear stresses 7, and z, are also directly related to substrate

curvatures via

o0

E.h? | 0 1-v, . r\"
z, =a1—_‘/52){§(’(” +K99)—an:l:n(n +1)(C, cosnd+S, sin nH{Ej }

“6—v?)|r o0 2R &

2 o n-1
., E,h; {li(’(rr +K99)+1_VS Zn(n +1)(Cn sinnd-S, COSHH{%) :l,

(1.28)

which is also independent of the film thickness h;. Equation 1.28 provides a way to
estimate the interface shear stresses from the gradients of substrate curvatures. It also

displays a non-local dependence via the coefficients C, and S, .

Since interfacial shear stresses are responsible for promoting system failures

through delamination of the thin film from the substrate, Eq. 1.28 has particular
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significance. It shows that such stresses are related to the gradients of x,, + x,, and not

to its magnitude as might have been expected of a local, Stoney-like formulation.
Equation 1.28 provides an easy way of inferring these special interfacial shear stresses
once the full-field curvature information is available. As a result, the methodology also
provides a way to evaluate the risk of and to mitigate such important forms of failure. It
should be noted that for the special case of spatially constant curvatures, the interfacial
shear stresses vanish as is the case for all Stoney-like formulations described in the

introduction.

The HR relations (Eg. 1.27) show a non-local dependence of film stress on
substrate curvature, that is, when a non-uniform misfit strain distribution exists, the stress
as a given point is related to not just the curvature at that point but also the difference
between that curvature and the average curvature across the wafer. The presence of non-
local contributions in these relations has implications regarding the nature of diagnostic
methods needed to perform wafer-level film stress measurements. In the presence of
non-uniform curvatures, a local curvature measurement, i.e., a measurement at a single
point, simply does not provide sufficient information to determine the local stress, i.e.,
the stress at that point. The existence of non-local terms in these relations necessitates
the use of full-field methods capable of measuring curvature components over the entire
surface of the plate system (or wafer). Furthermore, measurement of all independent
components of the curvature field is necessary because the stress state at a point depends

on curvature contributions (&, Kgg, and xrg) from the entire plate surface.

The present analysis also provides a very simple way to account for the effect of

non-uniform film thickness on the Stoney formula. The most remarkable result is that for
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arbitrarily non-uniform film thickness, the stress-curvature relations are identical to their

counterparts for uniform film thickness [16, 17] except that thickness is replaced by its

local value.

Axisymmetric HR Relations

In this section, the HR relations (Eq. 1.27) are simplified for a radially symmetric

misfit strain [15]. The axisymmetric case is considered because the deformation of actual

thin film-substrate systems often has radial symmetry, which implies a radially
symmetric misfit strain. This is partially due to the circular wafers, and partially to the
axisymmetric effects from many of the processing steps, such as heating and cooling

processes. A full-field curvature measurement of a typical 300 mm patterned wafer,

which illustrates its axisymmetry, is shown in Fig. 1-2.
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Figure 1-2. Principal curvature, xna. This curvature is axisymmetric, implying that the deformation is

also radially symmetric.

For the axisymmetric case, much of the analysis is simplified. For example, the

radial in-plane displacement becomes u = u(r) for film and substrate. In the subsequent

equations, all partial derivatives with respect to ¢ vanish, as do the cross derivatives.



24
Since a radially symmetric misfit strain has no @ terms, the Fourier series expansion of

Eq. 1.21 reduces directly back to hysy: the leading term (h, &,)%(r) = IOZ”hfgmde I(27) is
h;&,, while the (hfgm)g(r):fohhfgm cosnal@/ = and
(h.e,)(r)= J:”hfgm sinn@@/  terms both vanish.

The curvatures of Eq. 1.22 then simplify to

Eihy 1- 1-
K, +Kpy=—12—" Ys [5m+ s (gm—Em)]

1-v, Eshs2 2
thf l—VSZ 2 er
Ky —Kgg =~ 1—Vf Eshsz |:8m _r_ZJ.O 775m(77)d77} )
K, =0, (1.29)

where Z, = (2/R?)[ 7, (1)dn = [[ £,0AI(7R?).

The stresses of Eq. 1.23 simplify to

2 2
o2 et |

ol =0. (1.30)

The coefficients C,, and S, of Eq. 1.26 also vanish. Thus, the relations between

film stress and substrate curvature (Eg. 1.27) become
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f 2Em5( )
(o2 = K K, y
rr 00 3(1+ f) rr 00
o' +o! _Es—hf K, +K +1_—VS[K' F K,y —K, +K ]
rr 00 6(1 + VS ) hf rr 00 1 + VS rr 00 rr 00 ’
ol =0, (1.31)

while the shear stress Eq. 1.28 simplifies to

Eh’ d

Zm ar (K +5gp)

r

7, =0. (1.32)

Note that there is still a non-local dependence of film stress on substrate curvature

through the average curvature term «,, +x,, .

Both the full HR relations (Eq. 1.27) and the axisymmetric, simplified HR

relations (Eq. 1.31) will be used in this thesis.

An Analytical Example: Stoney vs. HR Relations

To illustrate the difference between the local Stoney formula and the new HR
relations, consider a thin film-substrate system which is assumed to feature an out-of-

plane displacement, w, due to some film stress, where
w:wo(%j cosné, (1.33)

Wy is the maximum displacement, and n is an integer. For n = 2, this displacement

corresponds to a saddle shape (Fig. 1-3).
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Figure 1-3. Wafer deformation from Eq. 1.33, where wo =20, n =2, and R = 37.

Analytically, such a displacement gives curvatures of

n-2
Ky =Kz =0(N —1)%(%} cosnd, «,, =-n(n —1)%(%)

which are shown in Fig. 1-4.
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Figure 1-4. i, kg and ;o from Eq. 1.34
Since the radial and circumferential curvatures are equal and opposite, the

localized Stoney formula (Eqg. 1.1) predicts a vanishing stress state:

2 n-2
_ E.h; n(n —l) Wg (L] cosné x (1-1) (1.35)
6(L—v,)h RT\R

The HR relations (Eg. 1.27), however, infer stresses that do not vanish and are
given by
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2E.h n-2
Gf,”=—0§5f,)=—al+f—;)n(n—1)%(éj cosné, (1.36)
f
2Eh w, (r\"?
(f) _ fi's 0
o, = nin-1 — sinng@ . 1.37
o m ( )RZ(RJ (1.37)
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Figure 1-5. Radial, circumferential and twist curvature from Eqgs. 1.36 and 1.37.
This simple example demonstrates that for a strongly non-uniform deformation

(due to, e.g., a non-uniform misfit strain), the difference between the film stress predicted

by Stoney and by the non-uniform HR relation can be significant.
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Next, the validity of the axisymmetric HR relations, as compared to Stoney, will

be established by comparing experimental results to the stresses predicted by each
analysis. Then both the axisymmetric and the full HR relations will be used to infer film

stress in various thin film-wafer substrate systems.
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2. Measuring Stress: X-ray Microdiffraction (uXRD)

In order to determine the relative validity of the "nonlocal” stress/curvature
relations compared to the "local” Stoney formula, it is necessary to employ a technique
which is able to independently measure both the film stress and the substrate curvature at
the same place on a wafer. The curvature can be used to calculate film stress using both
types of relations (local and nonlocal), and the resulting stresses can be compared. The
stresses from curvature can also be compared with the stresses determined from the direct
measurement. The various implementations of X-ray microdiffraction (uXRD) provide
such an opportunity. In general, X-ray diffraction (XRD) measures the crystalline lattice
spacing in a material and uses the spacing change as a strain gage. Following the strain
measurement, a constitutive law is used to infer stress in the film. In this particular
project, synchrotron X-ray microdiffraction was used for these measurements.
Synchrotron uXRD has several advantages over traditional lab X-rays. These advantages
include higher flux, smaller spot size, and the ability to quickly change between a
monochromatic and polychromatic beam. In our experiment, the monochromatic beam is
used to measure film stress, and the white (polychromatic) beam to measure substrate
curvature. Since the two types of measurements are using different wavelengths, they are
effectively independent of each other. These uXRD experiments were performed at
Beamline 7.3.3 at the Advanced Light Source at Lawrence Berkeley National Lab in

Berkeley, CA.
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X-ray Diffraction: An Overview

In its most basic form, X-ray diffraction consists of an X-ray beam that is shined
onto a specimen and then bounces off, diffracted by the specimen’s crystalline lattice
(Fig. 2-1). The resulting diffraction pattern, known as a Laue pattern, is captured with a
detector. Within this basic framework the specifics of specimen, beam characteristics,
and detector size can vary widely. The diffraction process is governed by the well-
known Bragg's Law, d = A/ 2sing, which relates the incoming wavelength to the lattice
spacing and diffraction angle. In this equation, A is the beam wavelength, d the lattice

spacing, and dthe angle between the beam and the plane of interest.

Incoming diffracted

RN
0

Figure 2-1. X-ray diffraction schematic

The diffracted beam forms Laue patterns, which are captured easily when using
an area detector. Polychromatic diffraction patterns are composed of spots of high
intensity (Fig. 2-2a), while monochromatic diffraction patterns, known as Debye rings,

consist of high-intensity rings (Fig. 2-2b).
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Figure 2-2. Diffraction patterns from (a) white and (b) monochromatic incoming beams.

In a typical experiment, the specimen is held at a known angle to the incoming
beam so that the area detector is able to capture as much of the diffracted beam as
possible (Fig. 2-3). The resulting patterns are analyzed to obtain the desired
measurement at that location on the specimen. The specimen is translated across the
beam in x and y so that a map is obtained, with images (or datapoints) taken at some
specified spacing in x and y. For example, a line scan might have 10 datapoints spaced
0.1mm apart in x, while an area scan might have 5 of these x-lines spaced 0.5mm apart in
y. In this case the total area covered in the line scan is Imm, and in the area scan is
2.5mm?. There are 50 images captured, so after analysis there will be 50 measurements

across the sample surface (note: these are arbitrary numbers for illustrative purposes

only.)

detector

Figure 2-3. The microdiffraction setup at the Advanced Light Source. The incoming X-ray beam is
reflected from the sample surface and captured by the detector.
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This is a pointwise measurement, which scans over the area of interest but does

not get information from the entire surface. Also, it is important to note that the
monochromatic and white beam measurements, though performed using the same
experimental setup, use different portions of the incoming X-ray beam and are effectively

independent measurements.

Monochromatic gXRD

Monochromatic XRD uses a beam that is a single wavelength and diffracts into
patterns called Debye rings. Each ring on the pattern is made up of many spots, and
corresponds to a single lattice plane. Each spot corresponds to a single grain, but not
every grain illuminated in the beam contributes to the diffraction pattern. Only the subset
of grains that are oriented properly, namely whose specific lattice planes are at an angle
to the incoming beam which corresponds to Bragg's law, will interact with the beam in
such a way that it diffracts off of the crystal and impacts the area detector to create a spot.
Therefore, in order to obtain well-populated rings, this technique works best when the
grain size is much smaller than the beam spot size so that a large number of grains are
illuminated at each point.

The average equibiaxial stress in the specimen (e.g., a thin film on some
substrate) can be determined from the diffraction pattern using what is known as the "d vs
sin?y" method [18]. The coordinate system of the images is made up of 26, 7, and v,
where 28 is across the rings, y is horizontally across the image, and w is aligned along the

rings (Fig. 2-4).
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Figure 2-4. Monochromatic pattern with coordinate system

The relevant equation for the d vs sin?y analysis as shown here is for equibiaxial
stress (i.e., ox = oy = 0, oxy = 0).

d-d, 1+v
do

asinzw—%a (2.1)

This stress is related to the lattice strain (d - do)/do via the isotropic version of
Hooke's law. Constitutive isotropy is indeed a very good assumption for certain
polycrystalline films. For example, W, which is used in the present study, was chosen for
its isotropic properties. Linear elasticity is also a good assumption for a material such as
W, since its yield stress is very high compared to most commonly used metallic thin film
materials.

To find the stress, a plot of d vs. sin®y is obtained (thus the technique's name).

The lattice spacing, d, can be obtained from 26 via Bragg's Law. To find 26, the rings are
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divided into small compartments of 26vs.  in a process known as binning. In each bin,

i, the intensity is integrated and fit to a Lorentzian function to find 268 at maximum

intensity, or 26'. Also, the average y forabin, ', isfoundas ' = (i, + ¥, )/ 2.

Assuming the material constants are known, the other variable in this equation
that must be determined in order to complete the analysis is do, or the unstressed lattice
spacing. In practice, it is almost impossible to obtain this value, and the value at =0 is
substituted. This is allowable because elastic strains introduce, at most, a 0.1%
difference between the true do and the d at any . Since do is a multiplier to the slope, the
total error introduced by this assumption is less than 0.1% and is negligible compared to
error from other sources [18].

To determine do, ' vs. 26" is plotted and fit to a function (Fig. 2-5). Then 26 is

found at =0, and dy is calculated using Bragg's Law.
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Figure 2-5. plot of wvs. 26
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Figure 2-6. plot of d vs sin®y
Finally the plot of d vs. sin?y is obtained (Fig. 2-6). For a truly equibiaxial stress
state, the plot should be linear. A linear trend line is fit to the data, and by comparing the
equation of that line with Eq. 2.1, the stress is easily found as

Es
o=———,
@+wv)d,

(2.2)
where s is the slope of the linear fit.

If the stress is not strictly equibiaxial, then this process determines the mean
stress, or o= (ox + oyy)/2. For a complete analysis, this procedure is performed for each
ring in each image in a scan. Each ring corresponds to a given lattice plane in the

specimen, and so the analysis for one ring determines the stress in that direction. For an

isotropic system, such as W, the stress from a single ring is sufficient.
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Polychromatic (White Beam) uXRD

A polychromatic, or white, beam incorporates a range of wavelengths into the
incoming light. In this case, the Laue patterns consist of many high-intensity spots (Fig.
2-7a). Each spot corresponds to a given lattice plane in a given grain. For a single grain
of a known material, a known pattern of spots will be diffracted. If the grain is strained,
the pattern shifts in a predictable manner. When there are several grains illuminated, the
pattern for each grain is superimposed on the image. A sophisticated software program
deconvolutes these images and indexes them, identifying individual patterns from each
grain [19]. The software calculates the orientation matrix for each grain, as well as the
deviatoric strain tensor in that grain. (The deviatoric stress is then found using Hooke’s
law [18].) This technique is used when very few grains are in the illuminated region,
since if there are too many superimposed patterns it becomes impossible for even the

software to match the individual spots with the specific grain that produced them.

In the case of a single crystal specimen, the orientation matrix that is measured is
always from the same grain. Once the crystal orientation is obtained at each location

across the specimen, the relative slope and curvature are then determined by tracking the

z, lab
sample normal sample
projection in, | >~ normal
xz plane |
y, lab
J sample
®)  x lab surface

Figure 2-7. (a) Laue pattern from the single crystal Si wafer. (b) Definition of coordinate system and the projection
angle ¢; slope in xz plane = tan(«).
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changes in the vector defining the grain normal with respect to the lab coordinate system.

For a scan along the x axis (sample diameter), we are only concerned with the slope
changes in the xz plane. This slope is equal to tan(«), where « is defined as the angle
between the projection of the grain normal in the xz plane and the z axis in the lab

reference frame (Fig. 2-7Db).

For a radially symmetric sample on which the scan is performed along the
diameter, where y = 0, cylindrical coordinates can be used. The radial slope, of/or =

tan(«), and the circumferential curvatures xr and xyy are then determined from
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3. Verifying Nonlocal Formulas: Comparison with XRD

In order to begin to verify the new analytical relations which allow for the
inference of film stress from nonlocal curvature measurements (nonlocal relations), the
two different types of uXRD measurements described in Chapter 2 were used to measure
both substrate slope and film stress across the diameter of an axisymmetric thin film-
substrate specimen composed of a circular W film island deposited in the center of a
single-crystal Si substrate [20]. The substrate slopes, measured by polychromatic (white
beam) uXRD, were used to calculate curvature fields and to thus infer the film stress
distribution using both the "local" Stoney formula and the new, "nonlocal" HR relations.
The variable film thickness, which was independently measured, was also an input to the
HR relations. These stresses were then compared with the film stress calculated from
lattice distortions measured independently through monochromatic uXRD, to determine
the validity of the new formula and to quantify the improvement over the commonly

accepted Stoney analysis.

Methodology

The specimen consisted of a circular, 24.8 mm diameter W film island deposited
on the center of a 100 mm diameter, 525 um thick Si <001> wafer (Fig. 3-1). The film
thickness is variable across the island; the thickest portion, in the center of the island, is
approximately 1.85 um. The Young’s modulus for Si and W are 130 GPa and 410 GPa,

respectively, while the Poisson’s ratio is 0.28 for both materials [21].
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top view Cross section
(a) (b)

Figure 3-1. specimen schematic

Measurements were taken along the specimen diameter, X = 0. The spacing
between data points was 0.25 mm for monochromatic beam measurements and 0.1mm
for white beam measurements. Both types of uXRD were used in order to obtain
information about both system orientation (for slope and curvature) and film strain (for
stress).

The axisymmetric form of the nonlocal relations (Eq. 1.31) require full-field
curvature information, in the form of the average of the first curvature invariant, &y + ks,
of the curvature tensor across the entire specimen, in order to determine film stress.
However, uXRD is a pointwise measurement, and as such it does not yield a full map.
Since a circular film is deposited in the center of a circular SI substrate of the 001 type,
the specimen topography (deformation due to misfit strain induced film stress) is
expected to be radially symmetric provided that the film thickness profile and the misfit
strain are also axisymmetric. If this is the case, then a measurement obtained along the
specimen diameter can be used to produce a full-field map of the surface topography and
curvature. An optical slope measurement technique called Coherent Gradient Sensing
(CGS), which will be discussed in more detail later, was used to check the symmetry of
the system. The Cartesian slopes obtained by CGS are integrated to provide the
deformed specimen topography (Fig. 3-2) and to demonstrate that the specimen is, in

fact, radially symmetric. Therefore, the measurements obtained from uXRD along a
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wafer diameter are enough to generate both radial and circumferential curvature maps.
Fig. 3-2b is a cross section of the topography map through the sytem center. It reveals a
shape which features a "strong" negative radial curvature at the location covered by the

film and "weaker" positive curvatures at the uncovered parts.
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Figure 3-2. (a) CGS topography (b) topography at x =0

After the substrate slope and film stress were measured with uXRD, the specimen
was broken into pieces so that the film thickness could be measured using a scanning
electron microscope (SEM). Several images were taken along the film radius. Since the
specimen topography is axisymmetric, the thickness across the island diameter was
extrapolated from these measurements. In each image, the film thickness was determined
by comparing the length of a line drawn through the thickness to the length of the scale
bar (Fig. 3-3). Each image covers approximately 8 um, and five thickness measurements
within each image were averaged to obtain the film thickness at that image location. The
film thickness variation with radial position is shown in Fig. 3-3b. Near the island edge,
the thickness drops off precipitously from an approximate level of 1.85 um in the center
to approximately 0.8 um at the edge of the island. From Eq. 1.31, this is expected to

correspond with a rapid increase in film stress in that location.
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Figure 3-3. SEM images of film cross-section (a) within the central approximately constant thickness
region and (b) near the film edge; (c) radial film thickness measured from the SEM images

White Beam uXRD System Slope and Curvature Measurements

The radial slope, of /0r , across the wafer diameter is shown in Fig. 3-4a. In the

central part of the film-covered region of the wafer the slope appears to be approximately
linear, but it substantially deviates from linearity as the film edges are approached from
within. At the film edges, the radial gradient of the slope (radial curvature x;) suffers a
large but finite jump and changes sign from negative to positive, consistent with the
topography map of Fig. 3-2 obtained by integration of the CGS slopes. As the wafer
edges are approached, the radial curvature decreases gradually to a small but finite value.
The overall shape of the radial slope is antisymmetric about the wafer origin, as would be
expected from the axisymmetry of the topography. To conclusively demonstrate this, the
data from one side were reflected about the origin and overlayed on the data of the other
side. This exercise, shown here in Fig. 3-4b, demonstrates that the reflected slopes from

either side agree to within 5%.
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Figure 3-4. (a) Slope along the sample diameter. (b) Slope from the center, overlapped, to show

antisymmetry.

Since the specimen geometry, shape measured by CGS, and slope measured by
XRD all suggest radial symmetry, the linear slope measurement from pXRD is used to
construct full-field slope data. Indeed, the slope can now be replaced by two piecewise
fits of two polynomials, one taken within the film portion and the other outside it. Figure
3-5 shows the high quality of the polynomial fits of the raw uXRD slope data. It should
be noted that the two polynomial fits are required to pass through the same point

corresponding to the estimated location of the film edge.
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Figure 3-5. Polynomial fit of the XRD data

Figure 3-6 shows the radial and circumferential curvature distributions obtained
when the polynomial fit of the slope, shown in Fig. 3-5, was used to determine the two
independent wafer curvature components through Eqs. 2.3 and 2.4. The circumferential
curvature, kg 1s continuous across the film boundary, but the radial curvature, xir,
suffers a finite jump at the island edges. This is consistent with the observation of Brown
et al. [20]. What is perhaps more interesting is that even within the area of film coverage,

both curvature components vary with radial position.
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Figure 3-6. Curvatures (& and xyy) obtained from the polynomial fit of white beam uXRD slope data

By further invoking axisymmetry, we may also use the film thickness
measurement conducted along the island radius to construct the island thickness profile in
the absence of full-field thickness measurements. The film thickness is considered as an
axisymmetric function of the radial coordinate, r, and can be fitted by the following radial

distribution:

h, =h, (r)=1.85+0.00713(1+%j(r—5.82)2H(r—5.82); r<R, =12.4mm, (3.1)
r—1.2.

where the radius r is in millimeters, the film thickness hs is in micrometers, and H is the

Heavyside step function. Figure 3-7 compares the polynomial fit of Eq. 3.1 with the

actual SEM thickness data and demonstrates their good agreement.
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Figure 3-7. Thickness data compared with fit.
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Monochromatic Beam uXRD Film Stress Measurements

The absolute magnitude of the mean stress, —(o,, +,,)/2, obtained through the

monochromatic uXRD measurement of misfit strain is shown in Fig. 3-8.'
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Figure 3-8. Average equibiaxial film stress from monochromatic X-ray measurement.

! Although the mean stress itself is compressive, its absolute magnitude is displayed here for reasons of

clarity of discussion.
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The stress varies slowly throughout most of the island diameter. However, near
the island edge the stress increases very steeply to over five times its central value within
a small (~2 mm) boundary layer from the film edge. This is due to the existence of a
strong thickness gradient near this edge (Fig. 3-3c). It is also due to the eventual
existence of a traction-free boundary at the end of the film. These two geometrical
effects, which result in a substantial stress concentration gradient (huge compressive
stresses developing from 1 to 5 GPa over a few millimeters of length), provide a
substantial prediction challenge to any theoretical model used for the inference of stress
through substrate curvature measurements. In the following sections, we will concentrate
on the ability of various techniques to independently predict this directly measured stress

amplification.

Comparison with Various Analyses of Film Stress Inference

In this section the results of the mean film stress distribution obtained through the
monochromatic uXRD measurement are compared with the stress distributions predicted
via the use of three different analytical stress/curvature relations, one local (Stoney) and
two nonlocal (HR). The common input to these relations is the substrate curvatures (Fig.
3-6) obtained through the independent white beam uXRD substrate slope measurement.

Figure 3-9 illustrates this comparison. The discrete points are the stress
distribution results of the direct monochromatic beam uXRD measurement. The dotted
line shows the prediction of the Stoney equation (Eq. 1.1) with

k(r) =[x, (r)+x,(r)]/2 and o(r) =[o,, (r) + o,(r)]/2 being the mean stress and

curvature, respectively. The Stoney relation assumes that the radius of the film, R, and
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that of the substrate, R, are equal and that the film thickness is uniform. Although the

Stoney equation was derived strictly for constant x and o, it is used here in a "local"
sense in which x(r) as measured (Fig. 3-6) is input into Eq. 1.1 to obtain the dotted stress
distribution shown. The Stoney prediction underestimates the discrete stress data by as
much as 50% in the central portion of the film and completely misses the dramatic 500%

stress increase at the edges.
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Figure 3-9. Monochromatic uXRD stress data compared with calculated stress.

The dashed line shows a prediction of a nonlocal model in which the island film
radius is different from the substrate radius (Rs > R¢) but the film thickness inside the
island is assumed to be constant. The stresses are obtained by using Eq. 1.31, specialized

to the case of constant film thickness h¢ = 1.85 um for r < R¢ and zero thickness for

r >R, (hfis taken to be the approximate film thickness measured at the island center).
This is still a nonlocal calculation since it also involves averaging the curvature field over
the entire wafer (both covered and uncovered parts) to obtain «,, +«,, . However, it

does not take into account the drastic reduction of the film thickness over a distance of a
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few millimeters from the edge (see Fig. 3-3¢). As is obvious from Fig. 3-9, this
prediction approaches the discrete monochromatic uXRD measurement much better than
the result based on Stoney, but still completely misses the severe stress concentration
near the film edges.

Finally, the solid line represents the result of utilizing Eq. 1.31 in its most general
form, in which thickness and curvatures are both allowed to vary with radial position r.
The radial profile of the island film thickness h¢(r) from Eq. 3.1 was used as input in this
calculation. It is evident from Fig. 3-9 that this last calculation, utilizing the most general
axisymmetric nonlocal relation, agrees very well with the monochromatic uXRD stress
measurement over the entire film diameter, including the region close to the film edge.

In particular, the success of the generalized nonlocal stress/curvature relation in capturing
the dramatic compressive stress increase that has been independently measured provides
validation to the generalized nonlocal analysis.

An important by-product of this analysis is its ability to also estimate interfacial
shear stresses acting between the film and the substrate. These shear stresses are a direct
consequence of in-plane nonuniformities. For our radially symmetric experiment, the
only surviving shear stress, 7y, is given by Eq. 1.32 and can readily be evaluated by

differentiating «,, (r)+ x,,(r) of Fig. 3-6. This interfacial shear stress, shown here in

Fig. 3-10, is not nearly as large as the direct film stress, but it climbs to approximately
400 MPa near the film edges. The combined presence of huge direct film stresses (o~
-5 GPa) at the film edge and substantial interfacial shears may be enough to trigger
interfacial delamination [3]. In fact, careful scrutiny of the film/substrate adhesion

through SEM has revealed a well-defined, circular delamination front surrounding the
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island at r = 12.4 mm, very close to its edge. A local, SEM, view of this delamination is

shown in Fig. 3-11.
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Figure 3-10. Interfacial shear stress.
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Figure 3-11. SEM image showing delamination at film edge.

The maximum in-plane shear stress (o, —o,,)/2 can also be calculated from

Eq. 1.31 and from the curvature distributions (Fig. 3-6) obtained through the white beam

pXRD measurement. The in-plane shear stress distribution across the island is shown in
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Fig. 3-12. The maximum absolute value of this stress is less than 7 MPa or 0.2% of the
in-plane mean stress, which suggests that the film stress state of this specimen is, to all
practical purposes, equibiaxial. This fact justifies the assumptions of equibiaxiality used

in the analysis of the monochromatic pXRD measurement.
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Figure 3-12. In-plane shear stress
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An Aside: Necessity of Full-Field Measurement

Thus far, it has been shown that the nonlocal stress/curvature relations introduced
in chapter 1 do a better job of predicting stress in a thin film than the classical "local"
Stoney formula does in the presence of strong nonuniformities in film thickness and
system curvature. However, these nonlocal relations require a full-field measurement of
all curvature components. Consequently, a natural next step is to introduce a
measurement technique which provides a means of determining the stress tensor across
the entire system (in full field). The method of choice in the present thesis is Coherent

Gradient Sensing interferometry, otherwise known as CGS.
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4. Coherent Gradient Sensing (CGS)

The coherent gradient sensing (CGS) method is a self-referencing interferometric
technique that produces fringe patterns of surface slope by laterally shearing an initially
planar wave front which has been reflected from a specimen (e.g., wafer). Figure 4-1
shows a schematic of the CGS setup in reflection [13, 14, 22]. A coherent, collimated
laser beam (300 mm or less in diameter) is directed to a specularly reflecting wafer
surface via a beam splitter. In general, the wafer is nonplanar and its surface shape, or
distortion relative to a flat surface, can be described by the equation z= f(x, y). In this
relation, z provides the wafer surface height for each in-plane wafer position defined by x
and y. The beam reflected from the wafer is distorted by the nonplanar shape of the
wafer. After reflection, the resulting distorted wave form is described by a two-
dimensional surface in space whose equation is given by z= S(x, y), where S(x, y) =
2f(x, y). This distorted wave front is again passed through the beam splitter and is then
incident upon a pair of identical high-density gratings, G; and G, separated by a distance
A. The gratings act to optically “shear” or “differentiate” the incident wave front to
produce a series of diffracted beams. These beams are separated using a filtering lens to
form distinct diffraction spots on a filter plane. An aperture placed in this plane serves to
isolate the diffraction order of interest, which is then imaged onto the photographic film
plane. For present purposes, either of the +1 diffraction orders is of interest, as will be

clear in the following discussion.



54

Specimen Surface, z = f(x,y)

Collimated
Laser Beam

Figure 4-1. CGS schematic

Figure 4-2 is a two-dimensional schematic illustrating the principles of the CGS
method. The figure shows the distorted optical wave front, S(x, ), incident on the two
gratings in which the lines are taken to be oriented along x. At the first grating, G/, the
incident wave front is diffracted into several wave fronts, £y, E;, E_;, E>, E_», etc., of
which only the first three are drawn in Fig. 4-2. Each of these wave fronts, in turn, is
diffracted by the second grating, G, to generate additional wave fronts, such as £y, £y,
and Ey, _;. The diffracted beams are combined by a filtering lens to produce diffraction
spots, such as Dy, D, and D_;, in the focal plane of lens (filter plane). One of the
diffraction spots, typically the first diffraction order, the D+, spot, is chosen with an

aperture for imaging onto the film plane.
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Figure 4-2. CGS schematic describing the optical differentiation

The presence of the two gratings in the path of the optical wave front generates a
lateral shift (or shearing) of the wave front. For example, the diffracted beam E; g, whose
wave front is denoted as S(x, y+®), is shifted from the beam E;, whose wave front is
denoted as S(x, y), by a distance w in the y direction. The shift distance, , is expressed
as Atan @, where 6= arcsin(A/p) is the diffraction angle and A and p are the wavelength of
light and the pitch of the gratings, respectively. For small angles of diffraction, o~ A@ =
A(A/p). The condition for constructive interference of the original and shifted wave

fronts is given by

S(x,y+@)=S(x,y)=n?2, n®=0,41,+2... (4.1)

where n?

is an integer that represents fringes associated with shearing along the y
direction. By dividing Eq. 4.1 by w, taking @ to be sufficiently small, and substituting @

= A(A/p), it is seen that

, n® =0,+1,+2... (42)
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Recalling that S = 2f'and repeating the above analysis for gratings aligned along

the y-direction, it can be shown that the alternating dark and bright interference fringes
correspond to constant values of components of the in-plane gradient of the wafer surface

topography as follows:

(a)
o (x,y) _n"p ’ n'@ =0+1,42... (4.3)
ox 2A

a

where a, f € {x,y}. A relative rotation of the gratings to the wafer allows for both
orthogonal components of slope to be recorded in the form of full-field slope maps. The
three independent components of curvature tensor field, x5, can now be determined
directly from two orthogonal CGS slope maps by partial differentiation along the x- and
y- directions as

Kaﬂ(xﬁy) ~

Ox, Ox,  2A Ox g

O’ Sy p {6n<“)(x,y)} )

In order to determine the full curvature tensor, the gradient fields in two
orthogonal directions must be recorded. Equation 4.4, which applies to the shear (or
twist) curvature component, i, = Ky = O*floxdy = of */dyéx, as well as the direct (or
normal) Cartesian curvature components, i, = 0-//0x° and Kyy=62f/ &y, is the equation
governing the curvature tensor field at any in-plane location (x, y). It enables the global,

full-field measurement of the curvature tensor for the film-substrate system.

It can also be useful to obtain the principal curvature maps, i.e., the maximum and
minimum values of curvature. In order to derive the principal curvatures, first the effect

of an in-plane rotation on the two independent slope and the three independent curvature
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components is derived, i.e., the transformation equations from the original coordinate

system to one that is rotated by some arbitrary angle, . Once these have been
established, the two mutually orthogonal directions of the principal curvatures can be
found by setting the transformed curvature derivative, with respect to the angle of
rotation, to zero. These two angles, defining the principal directions, are then plugged

into the curvature transformation equations to obtain the principal curvatures.

Consider axes x', y’ which are rotated by an angle, S, from the original axes x, y.
The coordinates of some point, P, with respect to the two sets of axes are then

x =x"'cos f—y'sin S,

. (4.5)
y=x'sin f+ y'cos 3,

and the equation of the surface (e.g., wafer) with respect to the two coordinate systems is

z=f{x,y) = g(x"y"). The two independent slope components are related to each other as

GO T Ty T

ox' Ox ox' Oy ox' ox oy 4.6)
g _of ox 8f Y _ 8f ,B+lcos,6’

oy’ ox 6y 8y V' ax oy

The curvature components are found from differentiating the slope components

according to the first part of Eq. 4.4 and using the identities cos28= 1-sin26 and

sin2@= 2sin@cos@. The curvature components, k', &,', and k', in the rotated

coordinate system are then given by:
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K, = PN = 5 =+ ——>-cos2f +«,, sin2p3,
o? K., +tK K, —K .
K, = 8y§ = o 5 =-cos2f— K, sin2f3, (4.7)
: 2 K, —K
K, = 66'5 -=—2 5 =sin2f + K, cos2p.
X0y

The angles corresponding to the two extrema in direct curvature in the rotated

coordinate system are found by setting the following derivatives to zero.

aa’;” =0= —(x, —k,)sin2f+2x cos2f =0
2K i
= b _sin2f tan2 /3
K,—k, Cos2p
o (4.8)
K
—>=0=(x,—k,,)sin2f -2k ,cos2f=0
op “
2K i
= v _sin2f tan2
K. —K, COS2pf

Both equations result in the same relation for . Indeed, the angles defining the

principal direction of curvature are thus £ = tan*1(2lcxy (x, — K‘yy)> and f+7/2. This

clearly shows that the two principal directions are orthogonal. To find the equations for

principal curvature, these angles are plugged back into Eq. 4.7 and the identities

sin20 = tan 20 /~/1+ tan’ 260 and cos26 =1/+/1+tan” 26 are used. The principal

curvatures are then found to be

2 2
_KLtRy Y, —x,) +(2x,)

K.YX

: 2 2

L kgtr, A, —K,) (2K, ,
R ) (4.9)
k. =0
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and the curvature maps determined from CGS using Eq. 4.4 can be used to calculate

principal curvature maps.

For thin film-thick substrate systems, the full-field recording of all system
curvature components is crucial since they can be related to the individual components of
stress acting on the thin film, through analyses of the type presented in chapter 1 or other
types of plate theory [3, 23-25]. This provides an easy and quick way of film stress
measurement that can be instantaneously performed across an entire wafer surface.
Similarly, principal stresses can be related to principal curvatures once these are obtained

from measurement of individual stress component maps via Eq. 4.9.

CGS at Caltech

The method of CGS was initially developed at the Graduate Aeronautical
Laboratories (GALCIT) and was applied to the study of out of plane deformation
gradients at the vicinity of dynamically growing cracks in structural solids [26, 27]. The
first application of CGS to the analysis of film stress is described in references [13, 14,
22]. The current CGS interferometer used for our experiments is housed in a Class 1
cleanroom in the subbasement of Firestone at Caltech (Fig. 4-3). Since the environment
is quite clean, it is possible to measure wafers in between various steps of processing
without having problems with wafer contamination. The current CGS system, called
ALEX, was a prototype of a production tool donated to GALCIT by Oraxion

Diagnostics, a Caltech start-up.

ALEX is enclosed in an outer shell. This looks quite streamlined, but makes it

difficult to modify the setup or use large specimen stages (as for heating). Therefore, the
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CGS measurements that were performed for our experiments are at room temperature,

and are all made with the same optical setup, including laser wavelength, lens focal

length, grating pitch and grating distance, etc.

Figure 4-3. Cleanroom in the basement of Firestone at Caltech, with ALEX.

The inner workings of ALEX can be seen in Fig. 4-4. ALEX uses a red

collimated laser, expanded to 300 mm in diameter. The diffraction grating pitch is



61
1/40 mm and the distance between gratings is 60 mm. A proprietary software program

called Intelliwave is used to control ALEX and analyze the data.

Figure 4-4. Inner workings of ALEX.

ALEX was intended to be a quality control tool for wafer processing, and
therefore is configured to allow it to measure very small curvatures, or specimens with an

average radius of curvature greater than 50 m. In order for these small curvatures to be
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measured, the beam path length must be rather long. Thus, there are many mirrors

reflecting the beam back and forth to increase the overall path length.

A schematic of the beam path is shown in Fig. 4-5. The practical differences
between this schematic and the one in Fig. 4-1 are to allow for the longer path length.
Figure 4-6 reproduces the photograph of the inside of ALEX, with the beam path traced.
The laser is housed on top of the tool, and although shown in the schematic it cannot be

seen in the images of Fig. 4-6.
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Figure 4-5. Schematic of ALEX.
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The following explanation can be followed using either the schematic of Fig. 4-5

or the images in Fig. 4-6. The beam emitted from the laser is directed down into the tool,
through a beam splitter, to a mirror that functions as a beam expander (Fig. 4-6a). From
here, the beam is reflected up to a collimating mirror (Fig. 4-6b) which directs it down to
the specimen surface (Fig. 4-6¢). The beam which reaches the specimen is collimated
and at near-normal incidence. Once reflected from the specimen surface, the light
follows the same path in reverse until it reaches the beam splitter which is located in the
center top of the figure. The portion of the reflected beam that is deflected by the beam
splitter (rather than passing through it) is then reflected by another mirror that directs it
down to the diffraction gratings, where the optical differentiation is performed (Fig.
4-6d). The diffracted beams subsequently pass through a focusing lens, which focuses
the two diffraction orders of interest into one spot, which is allowed to pass through an
aperture placed at the filter plane. Finally, the camera records the resulting

interferograms.



Figure 4-6. ALEX beam path.
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The data collection process is as follows: First, the wafer is loaded into ALEX by

being placed on an extended wafer stage that is then retracted back into the tool. At this
point a live image is shown on the computer screen. When acquiring data, images are
captured with the wafer stage at 0° and then 90° to get interferograms of x and y slope

(Fig. 4-7 a,b).

(a) (b)
Figure 4-7. Cu film on a 4" diameter Si wafer: (a) x-slope (0f/0x) and (b) y-slope (0f/0y) interferograms.

A process known as phase shifting is used to increase the resolution. Five images
are taken both in x- and y- directions (Fig. 4-8). The diffraction gratings are shifted in a
direction parallel each other by 7 of the grating pitch for each image, so that the first and
fifth images have the gratings aligned with each other. Viewing the five images in quick
succession makes it look as if the fringes are marching across the wafer. The variation of
light to dark of each pixel increases the effective resolution. Also, the direction that the
fringes march indicates the sign of the curvature. This is absolutely necessary since a

single image gives only slope and curvature magnitude, not sign.



Figure 4-8. Phase shifting of 9f/ox from Fig. 4-7.

In order to obtain slope maps from the interferograms, the fringes must be moved
to the center of the image. Since the wafer is placed on the sample stage by hand, there is
no guarantee that the center of the wafer is equal to the center of stage rotation. To center
the images, a circular mask with a diameter equaling that of the specimen is
superimposed on the x-interferogram. The mask is typically off center with respect to the
fringes. First, the mask is moved so that it is centered on the fringes, and the location of
the mask, in pixels, is noted. The difference between the mask location and the center of
the image (in pixels: 512, 512) is subtracted from the fringe location, moving the fringes
to the image center. Finally, the mask is moved to the image center. The same procedure

is then repeated for the y-interferograms.

The mask is at the same pixel location on the x and y images. Intelliwave

assumes the wafer is also in the same location with respect to the mask in the two images
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when doing its calculations; the mask is used as the reference for position on the wafer.

Also, only data points inside the mask are considered when creating the digitized slope
and curvature maps. Therefore, this centering process is an important step in minimizing
error. Part of a screenshot showing the Intelliwave interface with the blue, circular mask
on the centered x and y interferograms is shown in Fig. 4-9. The partial fringes on either
side of the interferogram are due to the aperture in the filter plane being removed; they do

not affect the results for a wafer this size, where they do not overlap the image of interest.

[342] &)
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Figure 4-9. Partial screen shot of Intelliwave program, showing the centered blue circular mask on the x-
slope and y-slope interferogram images. This is the same specimen as in Fig. 4-7.

The interferograms are subsequently digitized in Intelliwave, using Eq. 4.3, to
produce slope maps (Fig. 4-10). During the digitization process, the data are fit to a
polynomial function by a numerical analysis. This is done in order to later obtain the
three curvature components by numerical differentiation of the two slope maps. The
polynomial fitting uses Zernike polynomials, a 5th order polynomial set with 37 terms.

While originally designed to characterize optical aberrations, this polynomial set is often
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used to describe aspheric surfaces from interferometric data. In most cases, where spatial
variations of slope and curvature are gradual, this fitting process is advantageous since it
filters out noise and allows numerical differentiation to be performed. However, in the
case of large nonuniformities, this fitting procedure can oversmooth the data (Fig. 4-11),

and may need to be bypassed and replaced by offline processing.
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Figure 4-10. Slope maps in (a) x and (b) y, digitized from the interferograms in Fig. 4-7.
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Figure 4-11. Example of oversmoothing on a specimen consisting of a 1" diameter W film island on the
center of a 4" diameter Si substrate. (a) x-slope (0f/0x) interferogram and digitized slope maps: (b) with
filtering and smoothing and (c) with no smoothing (raw data).

From here analysis can proceed in two ways: by either integrating the slope maps
to get wafer topography, or differentiating to get the Cartesian curvature components.

The Cartesian curvature maps &, &y, and x;, are calculated by differentiating the slope
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map through its polynomial fit (Fig. 4-12). The principal curvatures can also be found by

using Eq. 4.9 (Fig. 4-13).

0.0351 0.0402
0.0332 0.0367
— 1504 0.0313 1504 0.0333
i 0.0234 i 0.0298
— —160+ 00276 =180+ 01,0263
i ] nozs v ] 0.0225
o 174 oy @ 170 00133
T _ 150 nozie U _qg0] 0.0158
£ i ooz E 0.0123
= =140 00181 = =190 0.0088
] 0.0162 0.0053
— =200 oolaz  — 200 0.0018
n —210 0mMz2e @ —2104 00017
= i omos = i -0.0051
j — 220 0.0085 ;‘f —Z20 -0.0086
] 0.0067 ] 0ma21
—2304 0.0048 —2304 00158
_ 0.0023 _ oo
A0S 0.ooin 240 00226
186G 180 200 220 240 e 180 180 200 220 240 biions
¥ohxia (rillimeters) ¥ odxia  (millimeters)

(a) (b)

0.0205

0.0754

—150 0.0162

i 0.0141

o~ 160 / 00113

a ] 0.0098

@ —170 0.0076

B _ 10 0.0055

E i 0.0033

= —190 0.0012

00010

— —2004 00031

w —210- -0.0053

i i -0.0074

j —220+ 0.0096

] 0017

—230 00133

_zan, , : , , 00160

240 J J J J 00182

183 180 200 2200 240 00203

¥ oAvis  (millimeters)
(©
Figure 4-12. Curvature maps (a) &, (b) &, and (c) &;,, or twist, calculated from the slope maps in Fig.
4-10.
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Instead of using Intelliwave to calculate curvature, processing can be performed

offline by using the program Matlab. In order to do this, the data are first exported from
Intelliwave by saving the slope and curvature data matrices as text files. Then, they are
opened in Matlab and manipulated to remove the headers and to be rotated to the correct
orientation (the x and y vectors in Intelliwave and Matlab are reversed). The slope data
are interpolated to create a much finer map (Fig. 4-14). Finally, this interpolated slope

map is differentiated to obtain the &, x;,, and x;, curvature maps.

(c) (d)

Figure 4-14. Slope maps in (a) x and (b) y from Intelliwave and interpolated in Matlab (c),(d).
This specimen is a 3" diameter GaAs substrate with a InGaAs film.
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In many practical cases, the curvature maps calculated using Intelliwave and

Matlab are the same (Fig. 4-15). The exception to this is when curvature discontinuities
are present and the slope maps are oversmoothed, as explained earlier. When this
oversmoothing occurs, it is fairly obvious to see by eye by comparing the interferograms
and digitized slope maps. When this happens, the raw data (before filtering and fitting)
are exported from Intelliwave and the above procedure is followed in Matlab to obtain
curvature maps. Otherwise, since it is easier to obtain curvature maps from Intelliwave
than it is using Matlab, the curvature data calculated in Intelliwave are used.
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Figure 4-15. k4 (a,c) and kyy (b,d) maps from Intelliwave (top) and Matlab (bottom). The specimen is the
same as in Fig. 4-14.



72

In order to determine stress, two sets of measurements are taken, one before and

one after each processing step of interest. In the present study, this is typically done
before and after film deposition (Fig. 4-16). In Intelliwave, the pre-process slope map
(e.g., bare wafer substrate) is subtracted from the postprocessed map (e.g., wafer with
deposited film) to obtain delta slope maps (Fig. 4-17). These new slope maps are then

differentiated to obtain delta curvatures (Fig. 4-18), which are used as an input to the

stress equations.
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Figure 4-16. Slope maps in x (a),(c) and y (b),(d) of a 3" diameter GaAs wafer. Bare wafer (top) and with
an InGaAs film (bottom).
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Figure 4-18. Delta curvature maps obtained from slope maps in Fig. 4-17: (a) &, (b) &y, and (c) ixy.

Stress can be inferred from delta curvature in Intelliwave only via the local

Stoney relation. In order to use the new nonlocal HR relations, the data must be exported

from Intelliwave and analyzed using Matlab.
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5. CGS Measurements of Island Geometries

Thus far, a methodology which is able to determine film stress in the presence of
nonuniformities has been introduced and verified by comparison to X-ray diffraction
measurements. Since this methodology requires knowledge of curvature information
over the entire wafer, a full-field curvature measurement technique, CGS, has also been
introduced. In this chapter, CGS measurements are taken of several test wafers, and the

HR methodology stress results are compared to those of Stoney.

The thin film-wafer substrate geometry used here consists of various
arrangements of circular film islands on otherwise bare substrates. This generic type of
geometry was chosen because it is fairly idealized, yet can easily cause both radially
symmetric and non-symmetric curvature states in the wafer by just shifting the island
position. Our goal is to examine the effect of island position (e.g., near the substrate

center versus the substrate edge) on the stress state of the film material.

We first examine the general nature of deformation for a film island-wafer
substrate geometry, with a central island. To do so, the radially symmetric specialization
of the HR relations (Eq. 1.31) are further specialized to the case of film thickness
described by a step function (i.e., zero film outside the island, and a constant thickness
within the island) and constant film stress. These simplified relations are then integrated
to find the relationship between wafer deformation and film stress. Although the film
stress is not generally constant for a real system, the correlated slope and curvature

profiles of the idealized constant stress and thickness case provide useful clues as to the
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type of deformation that would be present in a "real" island-substrate system where

neither film stress nor thickness are constant.

The analysis shows that the wafer curvature within the film-covered region is
spatially constant and equibiaxial, i.e., &, = kg9 = Kk, where x is independent of the radial
position 7. (The radii of the island and substrate are denoted by Rrand R;, respectively,
while their respective thicknesses are /irand 4,.) In the film-covered region the sample
curvatures are given by

6h.o (1-v,) . 1-v,
Eh’ 2

K, =Kp =K=

R
(1 R-;)], 0<|A<[R,|, (5.1)

and the system deforms as a sphere.

Outside the film covered region, however, the system curvatures x;, and &g are
not equal and are strong functions of the radial position ». Despite the fact that this
region is not covered by the film, its curvature components are non-zero and their

magnitude depends on the magnitude of the stress of the film island as

ey, R?

0’ 1-v. r?

Krr= ]:: 5 7

or 1+v, R;

1+ R

l-v R;

1+v, R]

tor v
Kgg=——=k———, R |<|r<|R|. (52
“ yor 1_'_1+VSRSZ ‘f‘ |7 <|R|] (5.2)

2
l1-v R
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Comparison of the expressions for x;, from within and outside the film-covered

region reveals a finite jump in radial curvature which involves a change of curvature sign

across the circular interface » = Ry.

The radial slope component 0f/0r can now be computed from Egs. 5.1 and 5.2 and

is given by the following relations for the two regions:

%ZK‘%I":KWFIKT, 0£|r|£‘Rf , (5.3)
1+v, R}
of oy
E:K%,I":KWF, ‘Rf‘S|F|S|R‘| (54)
l-v, R;

In this idealized case, the theory predicts that within the film-covered region,
there is a linear variation of slope with position while the variation of slope outside the
film-covered region is more complex. At the interface » = Ry, the slopes are, as expected,
continuous. Figure 5-1 shows the predicted variations of the two non-zero curvature
components and the radial slope component, based on the geometry and material
parameters of the W-Si system described in chapter 3 and an assumed constant film
stress, oy, of -1.5 GPa. The theoretically predicted features discussed above are obvious

from the figure.
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Figure 5-1. The curvature (a) and slope (b) profiles across the diameter of a wafer with a central film
island of constant thickness. The film stress is assumed to be a constant -1.5 GPa.

An example of the CGS slope-interferograms from a real wafer with a central film
island is shown in Fig. 5-2. This wafer was the specimen used in chapter 3 for the
verification of the HR relations as compared to uXRD measurements. The film island is
distinctly visible on the x- and y- interferograms as a circle in the middle of the image.
The fringe pattern in that region consists of dense, straight, more or less evenly spaced
lines that correspond to a constant equibiaxial curvature, as predicted by the analysis.
Outside the film island, there is still a less dense but more complex fringe pattern, since
there is a non-zero curvature in that area due to the circumferential constraints on the Si

wafer. This is also qualitatively consistent with the analysis.

(a) (b)
Figure 5-2. CGS slope interferograms of a wafer with a central film island, (a) 9f70x and (b) 0f/0y.
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Figure 5-3. CGS digitized slope maps of a wafer with a central film island, (a) 9f/0x and (b) df/0y.

The slope maps are shown in Fig. 5-3. These maps feature the expected straight,
evenly spaced lines of constant slope within the island. Also, the transition between film-
covered and bare substrate regions is quite sharp; the outline of the island can be easily

traced out on these maps.

The topography of a wafer with a central film island can be obtained by direct
integration of the two slope maps of Fig. 5-3 and is shown in Fig. 5-4. Consistent with
theory (as visualized in Fig. 5-1), the sign of the radial curvature component x;, changes
across the film edge. The film region has a negative, constant curvature; there is a jump
in curvature from negative to positive at the film edge; and there is a non-zero curvature

outside the film.
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Figure 5-4. Wafer with a central film island. Shape: (a) full map and (b) profile across the wafer
diameter.

Although the experimentally obtained wafer slopes and shape have the general
shape predicted by the idealized case of constant stress and film thickness, the CGS
measurements vary in detail with the predictions and suggest the presence of a
nonuniform stress state in the island. Indeed this was already shown to be the case
through the pXRD measurements described in chapter 3. In what will follow, CGS
measurements will be used to extract the film stress distribution and to study the effect of

film location on its magnitude and spatial distribution.

In general, to determine stress from CGS measurements, interferograms are taken
before and after film deposition, and the delta (difference) slope maps are used to obtain
delta curvature maps, and then film stress through the stress/curvature relations as
described in chapter 1. From here on, the terms "slope" and "curvature" will actually
refer to the delta slope and curvature, 1.e., the difference between the postdeposition and

predeposition maps.
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Extracting Stress from CGS Measurements

The specimens used in this study consist of I mm thick, 100 mm diameter <111>
Si wafer substrates with W film islands. It is important to note that the deposition was
performed in a system without active heating or cooling. The substrate is thus not
expected to incur deformation due to thermal effects. This particular orientation Si wafer

was used because it is in-plane isotropic, as is W.

The island thickness is approximately 1.8 um in the central part of the island, and
decays near the island edge. The island diameters are all approximately 20 mm. The
film and the in-plane substrate Young's moduli are 411 GPa and 160 GPa, and the

Poisson ratios are 0.28 and 0.27, respectively.

Three specimens were examined. The first has a central film island. This is not,
however, the same wafer that was examined earlier (Fig. 5-3), since that particular wafer
was heavily damaged before the measurements could be completed. Instead, the wafer
examined here is one of a new batch of wafers which have progressively more interesting
island film geometries. The second specimen has an off-center film island, located
approximately 20 mm from the wafer centerline. The third specimen consists of an array
of four islands, equally spaced approximately 25 mm from the wafer center. All islands

have an approximate radius of 20 mm.

For each island, the film thickness is approximately constant over the central
region. Atabout 1.5 mm from the island edge, however, the film thickness begins to
decrease, until it eventually drops to zero. The thickness profiles are very similar to that

of the wafer measured in chapter 3.
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For each wafer, slope and curvature maps are obtained, from CGS interferometry.

The curvature maps are then used in conjunction with both the Stoney and the HR

methodologies to determine film stress in the film islands.

Central Film Island

The new specimen featuring a central W film island is considered first. The slope

map of this wafer is shown in Fig. 5-5. The island location and wafer radius are indicated

in this figure and all of the following CGS maps.
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Figure 5-5. Slope maps of centered island: (a) 0f/0x, (b) 0f/0y.

As expected, within the island radius the lines of constant slope are straight and

evenly spaced. Since this island lies in the center of the wafer, the wafer has radial

symmetry. This is conclusively illustrated by using the Cartesian slope of Fig. 5-5 to

construct the radial slope map, of/0r.

The axisymmetric shape of that map, shown here in

Fig. 5-6, illustrates the axisymmetry of the film/substrate system.
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Figure 5-6. Radial slope map, df70r, of centered island.

A dataset corresponding to the straight line running through the diameter of the
wafer, x = 0, was first extracted from the map of df/0y. This diameter was chosen in
order to compare results with the off-center wafer in a later section, and the resulting
slope is shown in Fig. 5-7. Within the film island, the slope is relatively linear. Outside
of the island, however, the slope changes direction (curvature changes sign) and then
drops back to zero, as qualitatively expected based on the highly idealized analytical

prediction in the first part of this section (Egs. 5.3 and 5.4).
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Figure 5-7. Plot of slope (6f/0y) through wafer diameter.

Curvature maps are displayed in Fig. 5-8. These include x,, x;,, and the principal
curvatures Ky and k. Recall that for the stress analysis both curvature components
are required for the evaluation of stresses (Eq. 1.31). As expected, the maximum
curvature map is also radially symmetric, with a slowly varying negative curvature within
the film island which jumps to a narrow band of positive curvature just outside the island

and then drops to zero as the distance from the island edge is increased.
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Figure 5-8. Curvature maps for a central film island: (a) &, (b) &, (€) Knar and (d) K-

Since the wafer is only covered in film within the island, that is obviously the
only location where film stress exists. The magnitudes of the sum of stresses (oi + Gyy)
obtained from the Stoney and HR methodologies are shown in Fig. 5-9." As expected,
the HR stresses are of a higher magnitude than Stoney predicts, since there is curvature
outside the film that is not considered by Stoney. Also, only the HR methodology takes
into account the varying film thickness. Near the island edge, where the film thickness

drops drastically, the stress magnitude increases precipitously.

! The stress sum is compressive, so the negative of the stress is shown for reasons of clarity of discussion.
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Figure 5-9. Stoney and HR stress sum ( oy +0;,) maps for a central film island.

The stress concentration near the film edge is also shown in Fig. 5-10. This figure
compares the Stoney and HR stresses along the same diameter as was used to display the
earlier slope and curvature distributions. Figure 5-10a shows the actual (raw) data points,
while Fig. 5-10b displays a smoothed fit to the data, which becomes useful for
comparison purposes later. In the center of the island, the two analyses reveal similar
spatial distributions, though the HR methodology predicts a higher magnitude of stress.
Near the island edge, the HR methodology captures a strong increase in film stress. This
is undetected by the Stoney analysis. Qualitatively the stress distribution measured by
CGS is very similar to those measured in a similar wafer through uXRD as discussed in

Fig. 3-9.
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Figure 5-10. Stoney and HR stress sum (o, +g;,) line plots through the diameter x =0 for a

central film island, (a) data and (b) fit to data, for ease of comparison.

From the HR analysis, the interfacial shear stresses, 7. and 7y, can also be

calculated, and are shown in Fig. 5-11. Both shear stresses are extremely small compared

to the in-plane stresses. It is interesting to point out, however, that the radial shear stress

exists mostly near the film edge and is related to the strong radial gradient of x;, + xps. It

should also be noted at this point that the formula relating this stress to the curvature

gradients does not explicitly depend on /.
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Figure 5-11. Interfacial shear stress in a central film island, (a) 7. and (b) 7z,

%10



87
Off-center Film Island

The next specimen to be examined has an off-center W film island, located

approximately 20 mm below the centerline, y = 0. The slope maps, 0f/0x and 0f/0y, are
shown in Fig. 5-12.

While the lines of constant slope within this film island are still approximately

straight and evenly spaced, the global radial symmetry of the first case is now broken.

This is illustrated by the radial slope map, of/0r (Fig. 5-13), which no longer has the

constant slope rings which indicate axisymmetry and were seen in Fig. 5-6.
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Figure 5-12. Slope maps (a) f/0x and (b) 0f/0y of an off-center island wafer.
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Figure 5-13. Slope map Jf/0r of an off-center island wafer.

The data from a straight line running through the wafer diameter (x = 0) were
extracted. This diameter was chosen so that the line would run though the island
diameter, and the data are displayed in Fig.5-14. The film island is centered
approximately at y = -20 mm, and once again the slope is approximately linear within the
island. Outside of the film island, the slope changes direction and goes back toward
being constant (i.e., zero curvature). Since this island is near one side of the wafer, the

slope is able to reach a constant value. It takes approximately 20 mm for this to happen.
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Figure 5-14. Slope line through the diameter, x = 0.

Curvature maps for this wafer, including x, x;,, and the principal curvatures .
and x,, are displayed in Fig. 5-15. The maximum curvature map shows that within the
island, the curvature is approximately constant. Outside of the island, there is a faint ring
of high curvature, but then far from the island the curvature drops to zero. The effects of
the film island on the wafer deformation are thus qualitatively consistent to those of the
central film island wafer, even though symmetry is broken and the location of the

curvature maxima is now changed.
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Figure 5-15. Curvature maps k., &y, and principal curvature maps &, and ., for the off-center film

island wafer.

The sum of stresses obtained from the Stoney and HR analyses are shown in Fig.

5-16. In Fig. 5-17, the stresses are displayed along the same diameter as the one that was

used to display the slope in Fig. 5-14. Once again, near the film edge there is an

varying, while the HR methodology shows stronger variations throughout the film.

intensification of film stress. The stress sum predicted by the Stoney analysis is slowly
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Figure 5-17. Stress along the diameter x = 0, a) data and b) polynomial fit for ease of comparison.

The interfacial shear stresses, 7 and 7y, were also calculated, and are shown in

Fig. 5-18.
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Comparing the results of these two sets of measurements reveals some interesting

characteristics. The slopes of the centered and off-center island wafers along the y-

diameter are plotted in Fig.5-19. Negative y corresponds to points at the bottom of the

wafer, while positive y corresponds to points at the top.
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Figure 5-19. Comparison of slope (9//0y) of centered and off-center islands.

Although the basic shape of the slope profile is consistent between the two

wafers, note that the region of linear slope is not in the same location on the two wafers.

Indeed, the slope linearity occurs where the island film is located, which is in the center
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of one wafer but near one edge of the other. Also, the amount of slope change over the

wafer diameter is much less for the off-center wafer than it is for the central one.

The maximum curvature maps are shown in Fig. 5-20. The magnitude of the
maximum curvature is much larger in the case of the central film island. Also, there is
more of a pronounced jump in curvature at the ring located just outside the edge of the
central island. By inspecting these maps, and considering that the film thickness profile
which was used in the analysis is the same for the two wafers, the average stress in the

central island is expected to be larger than in the off-center island.
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Figure 5-20. Maximum curvature maps for the central (a) and off-center (b) film island wafers.

The sum of stresses obtained from the HR analysis for the central and off-center

film island wafers are shown in Fig. 5-21. As expected, the magnitude of stress is much

greater for the central film island.
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Figure 5-21. HR stress sum maps for the (a) central and (b) off center film island wafers.

A line through the same diameter (x = 0) was also extracted from both the HR and
Stoney stress maps. The comparison is displayed in Fig. 5-22. As the curvature within
the island-covered region of the wafer was greater for the central film island than that for
the off-center island, so is the general level of stress inferred by both analyses.
However, the stress profile across the island itself varies between the two wafers. Both
wafers exhibit strong variations in stress. This is mostly the case near the film edge,
where the film thickness decreases quickly. However, even within the middle portion of
the film island there is a varying stress distribution. The differences in average stress
levels between the two cases (central versus edge islands) could be attributed to the
location of the island in relation to the substrate boundary. It can perhaps be
hypothesized that the higher stresses of the central island are a result of the higher level

of in-plane constraints experienced by the film in this case.
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Figure 5-22. HR and Stoney stresses along x=0 for the central and off-center film island wafers.

Figure 5-23 displays the difference between the stress states inferred by the
Stoney and HR stress/curvature relations. Near the film edge, of course, the difference
between the two methodologies is quite large and is due to the fact that only the HR
analysis is capable of including the effects of thickness change. Over the rest of the film
island, however, the difference between the Stoney and HR stresses is not simply a fixed
percentage of the stress magnitude, but also depends on the location of the island on the
wafer. Not only is the stress inferred from the HR analysis greater in the central film
island than in the off-center island, but also the difference between the HR and Stoney

stresses is greater in this case.
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Figure 5-23. Maps of the difference between the stress sum determined by the HR and Stoney analyses
for (a) the central and (b) the off-center film island wafers.

The comparison between these two wafer geometries shows that stress is not

>

simply an intrinsic material parameter which is only determined by deposition conditions

and processing. Instead, stress is a film/substrate system property and there is an
additional relationship between the location of a specific feature on the wafer and the
stress in that feature. For this reason, it is imperative to have a measurement technique
such as CGS which can measure full wafer curvatures and can be used in conjunction

with non-local stress/curvature relations such as the HR relations.

Examples from a More Complex Film Geometry

In addition to the effects of the location on a wafer of a single film feature, there
are additional interactions that may occur when features are placed in proximity to each
other. In order to examine these effects, the final idealized specimen geometry chosen
for this study consists of a wafer with an array of four film islands. The resulting slope

maps are shown in Fig. 5-24.
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Figure 5-24. Slope maps (a) 0f/0x and (b) of/0y.

The horizontal slope, 0f/0x, of this wafer is displayed in Fig. 5-25, and is overlaid

with a line that represents the linear dataset which was extracted from this map for

comparison with the first two wafers. Since the four islands are not located on either

centerline of the wafer, a line through the island diameter was chosen. This slope profile

is also plotted in Fig. 5-25b. This line spans two film islands. The slope of each can

clearly be identified as the linear portions of the profile.
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Figure 5-25. Horizontal slope map, df/0x, of four island wafer with line indicated where data was
extracted, and the extracted slope at y = 20 mm.

The horizontal slope map of the off-center island wafer is shown in Fig. 5-26. In

order to compare a linear dataset with the slope plotted in Fig. 5-25b, a line was chosen
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that is the same distance from the wafer centerline and also goes through the island

diameter. Note that in this case the island is in the center of the extracted dataset. In Fig.

5-26b, the slope of the off-center island wafer is compared with the slope extracted in

Fig. 5-26b.
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Figure 5-26. Horizontal slope map, 9f/0x, of the off-center island wafer and comparison of extracted slope
line at y = -20 mm with slope from four island wafer.

The horizontal slope map of the central island film wafer is shown in Fig. 5-27.
Since this island is in the center of the wafer, a line through the wafer diameter was
extracted to compare with the four island wafer. The two datasets are at different

locations on the wafer, but both pass through their respective film island diameters.
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Figure 5-27. Horizontal slope map, 9f/0x, of centered island wafer and comparison of extracted slope line
at y = 0 mm with slope from four island wafer.

Note that in all cases the shape of the slope profile within each film island is

similar. Outside each film island, however, the slopes differ from one geometry to

another. For a single film island, the slope at the island edge changes abruptly, and then

curves back down to a constant value. In the space between the two islands that lie on

the line of extracted data from the four island array wafer, however, the slope is not

allowed to develop in a similar manner. The slope profile does display the distinctive

sharp change in direction, and the line begins to curve away from the islands as expected,

but the slope never reaches a constant value. Instead, the two islands interfere with each

other to produce a close to linear region of slope between them.
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Figure 5-28. Comparison of the HR stress sum for the central island, off-center island, and four island
array wafers.

The stresses from the three wafers along the extracted linear datasets are
compared in Fig. 5-28. The stress intensifications near the film edge, which exist for all
the film islands due to the decreasing film thickness in that region, are present in all
cases. The stress level and distribution across the middle of the island, however, vary
with position on the wafer, with the central island always featuring the higher average

stress levels.

In this chapter, three wafers with varying geometries of W island films were
studied using CGS. The delta slope and curvature maps were first obtained. From these,
the stress was determined using both the Stoney and the new HR methodologies. The HR
analysis generally produces an intensified stress as compared to Stoney. Near the film
edge, where the thickness 1s greatly reduced, the differences between the Stoney and HR

analyses are dramatic. This study shows that there is a noticeable effect of film feature
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geometry on wafer deformation. Also, both the stress intensity and film stress profile

reveal a strong dependence on the location of the feature on the wafer with higher
stresses developing in islands deposited at the wafer center. Finally, a more complex
case was chosen to consider the interactions between features which lead to additional

changes in wafer deformation and film stress.



102

6. Ongoing Work: Collaboration with Northrop Grumman
Space Technologies

A study in collaboration with Northrop Grumman Space Technologies, furthering
the investigation the effects of spatial non-uniformities on the measurement of film stress,
is currently underway. The original goal of this study was twofold: to compare CGS
measurements with the NGST standard measuring techniques, and to utilize the new HR
relations, instead of just using the classical Stoney formula, to determine the stress
distribution in "real," industrial standard, wafers. Ideally, this could also culminate in the
modification of the standard measurement methodologies to eventually incorporate the
HR relations in new metrology tools.

The specimens used in this study consist of 625 um thick, 3" diameter GaAs
wafer substrate with blanket InGaAs films deposited on them. Varying the thickness and
composition of InGaAs changes the amount of relaxation in the film, and specimens with
different amounts of film relaxation were produced.

The initial stress analysis results were quite unexpected and seemed physically
impossible. Since the lattice parameter of InGaAs is greater than that of the GaAs
substrate, the film should only be negatively strained. The preliminary stress results,
however, indicated a large variation in film stress across the wafer that ranged from
negative to positive values. The specimens and processing conditions were, therefore,
examined more closely.

The analysis of film stress due to some process requires full-field delta curvature

maps, i.e, the difference in curvature before and after that particular process is performed.
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It is implicitly assumed that the resulting change in curvature is caused solely by the film

stress.

However, when temperature gradients exist in a wafer, stresses are induced by the
uneven thermal expansion within the substrate itself. If the gradients are large enough,
the resulting stresses can surpass the yield stress of the material and be locked in, i.e.,
cause permanent deformation in the wafer even without the action of a film. This effect
would occur individually in both the film and the substrate even if these two constituents
were not bonded together, and the resulting wafer deformation is in addition to that
caused by stresses induced in the film due to a difference in coefficients of thermal
mismatch between the film and substrate.

In compound semiconductors, film deposition often occurs at high temperatures.
There may be non-uniformities in the thermal chambers that result in temperature
gradients during the heating process. Even if such non-uniformities in heating do not
exist, the cooling process is often uncontrolled, and is inherently non-uniform.

For the GaAs wafers being studied, it was hypothesized that the thermal effects
due to processing, which were not being considered in the analysis, might be an
additional cause of substrate deformation. This would throw off the film stress results,
since that analysis only allows for deformation caused by film stress. To determine
whether this was the case, a bare GaAs wafer was put through the same processing
conditions (i.e., the same thermal environment) as the other specimens, using the exact
same equipment, but without actually depositing a film. The wafer was measured with
CGS before and after processing to see whether there was deformation of the substrate

apart from that caused by the film.
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(b)

(d

Figure 6.1. CGS slope interferograms of the bare substrate before and after processing: (a) of/0x before,
(b) of/oy before; (c) 0f/0x after, (d) 0f/0y after.
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Figure 6.1. CGS principal curvature maps of delta curvature, (a) K.y and (b) pin.
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The CGS slope interferograms demonstrate that the processing was, in fact,

causing permanent deformation in the substrate wafer itself. This permanent deformation
which is clearly due to thermal gradients must also be considered in determining film
stress on the affected wafer.

This study, therefore, has morphed from one examining only the effects of a
partially relaxed film, i.e., a spatially varying misfit strain, to one that also must consider
effects of a temperature gradient on the substrate deformation. Relations between
curvature and stress have been derived for the case of temperature gradient-induced
stresses [14]. The ongoing work consists of merging this analysis with the methodology
considered elsewhere in this thesis, to consider the effects of temperature gradients in
addition to those of misfit strain in the thin film-wafer substrate system deformation and

resulting stress distribution.
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Conclusions

This thesis has focused on establishing a validated methodology for inferring thin
film stresses in the presence of spatially non-uniform film thickness and misfit strain. A
configuration of central importance in many areas of engineering application consists of a
thin film structure composed of one or more materials deposited on a substrate of yet
another material. Especially as feature sizes continue to grow smaller, buildup of stresses
in the thin film causes deleterious effects on process yield, since stress can lead directly
to film failure. Film stress is accumulated during each of the many processes required to
build a film structure. Some mechanisms by which stress causes failure include

delamination, voiding, and cracking of the film.

Since stress cannot be measured directly, a common method for quick stress
inference is to measure the change in substrate curvature due to some process and apply
appropriate relations that connect curvature to stress in order to determine the film stress
from that process. The relation generally used for this is called the Stoney formula,
which has been derived based on several quite restrictive assumptions. The assumptions
include, among others, constant film thickness, and constant misfit strain over the entire
wafer surface. A spatially constant film thickness and misfit strain implies spatially
constant curvature and stress components which are not allowed to vary over the wafer
surface. In practice, these assumptions are rarely met, and yet the Stoney analysis is still,

arbitrarily, applied.

Recently an analysis was performed which relaxed the assumptions of spatial

uniformity, and Stoney-like relations between film stress and system curvature were
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established. An interesting outcome of this analysis was that the relation connecting film

stress and curvature at a given in-plane location depends not only on the curvature at that
particular location, as expected by the Stoney analysis, but also involves important terms
that include integrals of curvature across the entire wafer. Therefore, full-field curvature

information is absolutely necessary to determine film stress, even at a single location.

This methodology was validated by comparison with uXRD measurements. The
uXRD technique used here involved two independent types of measurements: one that
estimates film stress from measurements of lattice spacing change, and one that estimates
substrate curvature. Since these two measurements are not related to each other, they can
both be used as both input to the analysis and the benchmark against which to test it.
Specifically, the uXRD measurement of substrate curvature was used as an input to the
HR relations, and also to Stoney, to determine film stress based on each of the two
methodologies. These film stresses were then compared with the uXRD measurements
of film stress to determine whether the HR relations were an improvement over Stoney.
It was found that, indeed, the stresses determined using the HR methodology are much
closer to the uXRD data, both in predicting general level throughout the film feature and
in capturing the stress increase near the film edges. Near the film edges, where the film
thickness drops drastically, the HR relations were able to capture the resulting increase in

film stress which Stoney completely misses.

The HR relations require curvature information over the entire system. Following
their validation, Coherent Gradient Sensing, an optical measurement technique, was

introduced as a convenient alternative to uXRD measurements. This technique is
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uniquely suited to the HR methodology since it has the ability of capturing instantaneous

full-field information.

Finally, CGS measurements were made of several test wafers with increasingly
more complex geometries. The location of a feature in relation to the substrate center or
boundaries was found to have an effect on the stress level and spatial distribution within
that feature. Also, it was found that neighboring film features interfere with each other,
which has an effect both on the wafer deformation and film stress distribution within the
features. This indicates that film stress is not simply an intrinsic material or film
processing property. Instead, it depends strongly on details of geometry of the entire thin

film - substrate system.

Further studies are underway which also consider an additional source of wafer
deformation, namely the effects of temperature gradients which can cause permanent
deformation in a wafer substrate. This effect is completely separate from those caused by

film stress.
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