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Abstract

The ability to introduce a synthetic amino acid into a fully folded protein allows the

full power of organic chemistry to be applied to protein biochemistry.  Any

functionalized amino acid which can be incorporated by the ribosomal machinery may be

site-specifically introduced.  Through the application of chemical creativity, mimicry of

the natural behavior of protein side chains and the introduction of novel function may

both be attained.

As a class, integral membrane proteins require advanced biochemical tools for their

characterization, since many of the classical methods of biochemistry are not applicable.

These molecules represent an opportunity for the acquisition of unique information

through the use of unnatural amino acid mutagenesis.

Cell-cell communication is fundamental to neurobiology, and leads ultimately to the

phenomenon of consciousness.  The receipt of extracellular stimuli relies on integral

membrane proteins, and membrane-bound ion channels and receptors are the central

proteins of molecular biology.  Just as integral membrane proteins are well-suited to

investigation by unnatural amino acid mutagenesis, molecular neurobiology is an

excellent area for the application of this technology.

In the work presented here, tools for the measurement of physical organic parameters

associated with molecular recognition events and conformational changes of proteins are

developed and implemented in functioning neuroreceptors.  In addition, analytical tools

are introduced and deployed to investigate the real-time modulation of ion channel

function in living cells.
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After the work is introduced in Chapter 1, experiments on the use of fluorinated

tryptophan analogs to serially modulate the electrostatics of particular amino acid side

chains are presented in Chapter 2.  The goal of these investigations is to understand an

interaction between nicotine and tryptophan residues in the nicotinic acetylcholine

receptor.  Nicotine is shown not to experience a cation-π interaction with the side chain

that mediates this interaction between the receptor and its natural agonist, acetylcholine.

Additional studies on analogs of both nicotine and acetylcholine are presented, along

with attempts to extend the fluorinated tryptophan methodology to neuronal receptors of

the same class.

A series of dynamic amino acids are presented in Chapter 3.  The overarching goal of

these studies is to obtain information on ion channel conformation, both in situ and

subsequent to isolation.  A photoactive amino acid which induces proteolysis at the site

of its incorporation is shown to have significant effects on the nicotinic acetylcholine

receptor.  Efforts to extend this methodology to biochemically detect backbone cleavage

in the functionally affected receptors are also presented in this chapter.  Also, the

hydrolysis of an ester linkage introduced by the incorporation of a hydroxy acid in place

of a natural amino acid is attempted to identify the disulfide connectivity of rat P2X2

receptors.  Finally, attempts to utilize photoreactive amino acid side chains to both

crosslink adjacent subunits of the nicotinic acetylcholine receptor and to induce local

conformational perturbations in the transmembrane regions of this receptor are detailed.

In Chapter 4, tyrosine containing a photo-removable protecting group is introduced in

place of a particular tyrosine residue on which the modulation of Kir2.1 channel function

depends.  By this means, experimental control is gained over the chemical identity of this
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side chain.  As introduced, it is neither a substrate for tyrosine kinases nor for protein-

protein interactions.  However, once photolysis has revealed the wild-type residue, these

interactions may occur.  Co-injection of the tyrosine kinase v-Src along with the

irradiation of cells expressing Kir2.1 containing this caged tyrosine residue at position

242 produces a 50% current reduction over a time course of approximately ten minutes.

The roles of phosphorylation and endocytosis in causing this reduction were extensively

investigated.

The final chapter presents progress toward controlling the in situ phosphorylation

state of particular residues in a protein.  A general method for synthesis of caged

phosphoamino acids is developed and applied to the synthesis of analogs of serine,

threonine, and tyrosine.  A variety of routes toward caged non-hydrolyzable

phosphoamino acid analogs are shown, along with the preparation of important synthetic

intermediates.
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