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Abstract

The sub-wavelength optical confinement and low optical loss of nanophotonic devices dra-

matically enhances the interaction between light and matter within these structures. When

nanophotonic devices are combined with an efficient optical coupling channel, nonlinear

optical behavior can be observed at low power levels in weakly-nonlinear materials. In

a similar vein, when resonant atomic systems interact with nanophotonic devices, atom-

photon coupling effects can be observed at a single quanta level. Crucially, the chip based

nature of nanophotonics provides a scalable platform from which to study these effects.

This thesis addresses the use of nanophotonic devices in nonlinear and quantum optics,

including device design, optical coupling, fabrication and testing, modeling, and integration

with more complex systems. We present a fiber taper coupling technique that allows effi-

cient power transfer from an optical fiber into a photonic crystal waveguide. Greater than

97% power transfer into a silicon photonic crystal waveguide is demonstrated. This optical

channel is then connected to a high-Q (> 4 × 104), ultra-small mode volume (V < (λ/n)3)

photonic crystal cavity, into which we couple > 44% of the photons input to a fiber. This

permits the observation of optical bistability in silicon for sub-mW input powers at telecom-

munication wavelengths.

To port this technology to cavity QED experiments at near-visible wavelengths, we also

study silicon nitride microdisk cavities at wavelengths near 852 nm, and observe resonances

with Q > 3×106 and V < 15 (λ/n)3. This Q/V ratio is sufficiently high to reach the strong

coupling regime with cesium atoms. We then permanently align and mount a fiber taper

within the near-field an array of microdisks, and integrate this device with an atom chip,

creating an “atom-cavity chip” which can magnetically trap laser cooled atoms above the

microcavity. Calculations of the microcavity single atom sensitivity as a function of Q/V

are presented and compared with numerical simulations. Taking into account non-idealities,

these cavities should allow detection of single laser cooled cesium atoms.
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Chapter 1

Introduction

From afar, fabrication of nanoscale optical components can appear to be predominantly mo-

tivated by the same forces that have driven developments in the microelectronics industry,

where we have become accustomed to equating smaller with more powerful. Unsurpris-

ingly, to a large degree this intuition is correct. Optical chips containing dense arrays of

devices have the potential for high bandwidth data processing, and already play a role in the

telecommunications industry [1, 2, 3]. However, as a scientist, the motivation for minitur-

ization can come from elsewhere: the desire to study optical effects that cannot be observed

easily, if at all, without the help of wavelength scale confinement of light. Reassuringly,

these two views of optical miniturization are not in conflict. Instead, these interests drive

each other: Novel chip-scale optical phenomena often find applications in practical devices,

and the usefulness of a scalable, integrated optical platform is not lost on physicists wanting

to study increasingly complex systems.

The work in this thesis is focused on optical nanostructures, with both of these perspec-

tives in mind. We study chip-based optical waveguides and microcavities, first developing

tools for optically accessing and characterizing them, and then using them in experiments

in nonlinear optics and cavity QED [4, 5, 6]. Each of these experiments is immediately

relevant to applications that leverage the chip-scale nature of the structures. Nonlinear

optical effects in silicon (Si) nanostructures can be used for low power on-chip all-optical

switching, while integrated nanophotonic circuits promise to improve the robustness and

scalability of cavity QED based quantum information processing resources.
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1.1 Microcavities

Optical microcavities [7] confine light to wavelength scale volumes for relatively long times,

and are the cornerstone of nanophotonics. At resonant frequencies, they enhance the local

electromagnetic energy density, and support extremely large field strengths for low input

powers. Generally speaking, the high quality factor (Q) and small mode volume (V ) of

microcavities make them sensitive to intensive and extensive properties, respectively, of

their host environment. For example, a high-Q cavity can be extremely sensitive to small

changes in the bulk susceptibility of its environment, while a small V cavity can be sensitive

to local changes.

While microcavities can be fabricated from a wide range of geometries, including pho-

tonic crystal [8, 9, 10, 11, 12] and whispering gallery mode [13, 14, 15, 16, 17] resonators,

any given microcavity can be characterized by Q and V . These quantities are defined in

terms of the local field supported by the microcavity. For a microcavity resonance excited

by a single photon, the field maxima Emax inside the cavity is simply written as

Emax =

√
�ω

2εV
, (1.1)

where ω is the optical frequency of the resonance, and ε is the dielectric constant of the

microcavity at the field maximum. To maintain this field strength in steady state, it is

necessary to replenish the microcavity with new photons at the same rate at which they

leak out due to imperfections or limitations in the microcavity design. This decay rate is

related to Q:
dN

dt
= −ω

Q
N, (1.2)

where N is the number of photons stored in the cavity at a given time t. From energy

conservation, this indicates that the power required to store N photons in the cavity scales

as 1/Q. Using the above two equations, for a given power dropped into a cavity, the peak

intracavity energy density can be shown to scale with Q/V .

This enhancement is the basis for a large number of recent experiments in microcavity

nonlinear optics, whose power thresholds scale in a nonlinear fashion with V/Q. Examples

includes low threshold Raman lasers [18, 19, 20], parametric down conversion [21], and

radiation pressure induced mechanical oscilation [22, 23]. Recently, low power nonlinear all-
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optical switching [24, 25, 26] has been observed. Large Q/V is also essential for experiments

in cavity QED [4, 5, 6], which study the coherent energy exchange between single photons

and single atoms [27, 28, 29] or quantum dots [30, 31, 32, 33]. Within the cavity, the atom-

photon interaction rate and photon dissipation rate scale with 1/V 1/2 and 1/Q, respectively,

and when the atom-photon interaction rate is sufficiently strong compared to the photon

and atomic decoherence rates, the coupled atom-cavity system can be used in applications

such as single photon generation [34, 35, 36, 37] and quantum state transfer [38, 39] for

quantum information processing.

1.2 Fiber optic coupling at the nanoscale

In addition to requiring large field enhancements and photon lifetimes, any useful application

of microcavities in nonlinear and quantum optics demands an efficient optical interface

between the microcavity and external optics. The mismatch in both spatial dimensions and

refractive index between wavelength-scale photonics and conventional fiber optics is severe,

and without engineering a transition between the macro- and the nano-scale, the loss of

optical fidelity is extremely high.

Fiber tapers [40, 41] are versatile tools that make this transition adiabatically. They

have been used to efficiently excite resonances in whispering gallery mode cavities [42, 43,

15, 44, 45], and as discussed in this thesis, photonic crystal waveguides [46, 47, 48] and

microcavities [11]. The highly integrated nature of chip based photonics also comes to our

aid, as microcavities can be efficiently sourced from on-chip waveguides [25, 49] that are in

turn coupled to the outside world. Using these tools to establish efficient optical channels

between the laboratory and nanophotonic devices, the next challenge is to integrate fiber

coupled devices with more complex experimental systems, such as those used in neutral

atom based cavity QED experiments.

1.3 Organization

Many of the topics discussed above are studied in detail in this thesis. In Ch. 2 and

Ch. 3, we theoretically examine the problem of coupling light into and out of photonic

crystal waveguides, and propose a new technique using fiber tapers. This technique is put
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into practice in Ch. 4, where we demonstrate nearly perfect coupling at telecommunication

wavelengths between a fiber taper and a Si photonic crystal waveguide, and use the taper to

probe the dispersive and spatial properties of the bound photonic crystal waveguide modes.

Efficient coupling between the photonic crystal waveguide and a high-Q, ultra-small V

photonic crystal microcavity is also demonstrated. The nonlinear optical properties of this

Si microcavity are studied in Ch. 5, where optical bistability is observed at sub-mW input

powers.

In Ch. 6, our focus shifts to studying microcavities suitable for cavity QED experiments

with neutral alkali atoms at near visible wavelengths. We show that SiNx is an excellent

material for microcavities operating in this wavelength range, and demonstrate extremely

high Q/V microdisk cavities. These microdisks are integrated with atom chips in Ch.

7, where a method for robust fiber coupling is demonstrated, and the resulting atom-

cavity chip is installed in an atomic physics apparatus used for neutral atom trapping and

manipulation, with the aim of perfoming cavity QED experiments fully “on-chip.” Finally,

the possibility of detecting single atoms delivered to the microcavity using the atom chip

is studied theoretically in Ch. 8, where general scaling laws for single atom sensitivity are

derived and verified numerically.
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Chapter 2

Interfacing photonic crystal waveguides
with fiber tapers: design

The utility of photonic crystal (PC) devices relies heavily upon one’s ability to efficiently

couple light into and out of them. At the outset of the work contained in this thesis, no

efficient technique had been demonstrated for efficiently exciting guided modes of planar

photonic crystal waveguide structures. Initial photonic crystal waveguide experiments [52,

53] relied upon end-fire coupling between single mode fibers and the cleaved facet of a PC

waveguide, and exbited extremely small coupling efficiency (< 20 dB) because of the extreme

spatial and refractive index mismatch between subwavelength high-index PC structures and

optical fibers.

A number of methods for overcoming this problem have been studied. Perhaps the

most obvious approach is to use adiabatic transitions [54, 55, 56] from “standard” ridge

waveguides to source PC waveguides. However, coupling from fibers into high refractive

index ridge waveguides poses similar problems, and requires the use of on-chip spot-size

converters [57, 49, 58, 53] for high efficiency. Other groups have developed free-space grating

assisted coupling techniques [59, 60] that utilize the periodicity of the photonic crystal

waveguide to scatter light at near-normal incidence into bound photonic crystal waveguide

modes, with modest efficiency.

Our approach differs fundamentally from those described above. Rather than design

on-chip coupling interfaces, we decided to bury the transition between fiber optics and

nanophotonics within fiber. Evanescent coupling between a fiber taper [40] and a PC

waveguide, as detailed schematically in Fig. 2.1, makes use of the inherent dispersive prop-

erties of PCs to enable guided-wave coupling between waveguides with nearly ideal coupling

efficiency. A single fiber taper used in this manner can function as an adjustable “wafer
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Figure 2.1: (a) Schematic of the coupling scheme, showing the four mode basis used in the
coupled mode theory. (b) Coupling geometry. In the case considered here, the coupling is
contra-directional. (c) Grading of the hole radius used to form the waveguide, and a top
view of the graded-defect compressed-lattice (Λx/Λz = 0.8) waveguide unit cell.

scale probe” for testing of multiple devices on a planar chip.

Evanescent coupling

In the simplest picture, evanescent coupling between two parallel waveguides requires that

there exist (in the frequency range of interest) a pair of modes, one from each waveguide,

that share a common momentum component down the waveguide (phase-matching), and

for which their transverse profiles and electric field polarizations are similar. A weak spatial

overlap of the evanescent tails of each mode can then result in significant power transfer
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between waveguides. Full power transfer requires that, in addition, no other radiation or

guided modes of either waveguide participate in the coupling, either due to a large phase

mismatch and/or weak transverse overlap. Fiber taper coupling has been shown to be

extremely valuable in this regard (in comparison to simple prism coupling, which involves

a continuum of modes), and was first used to provide near perfect single mode coupling to

dielectric microsphere [61, 42, 62] and toroid [14] resonators for ultra sensitive measurement

of high-Q whispering gallery modes. In a similar manner, fiber taper probes can be used to

couple to two dimensional PC membrane waveguides, thanks to their undercut air-bridge

structure that suppresses radiation from the fiber into the substrate, and their zone-folded

dispersion that enables phase matching between the dissimilar fiber and PC modes. Thus,

by designing a PC waveguide whose defect mode has a transverse field profile that sufficiently

overlaps the fiber taper’s, efficient power transfer between the waveguides can be achieved.

Furthermore, the flexibility in lattice engineering afforded by PCs allows this waveguide to

be designed to couple efficiently to PC defect cavities, providing a fiber-PC waveguide-PC

cavity optical probe.

In the remainder of this chapter, closely following Ref. [63], we discuss the design of a

PC waveguide that satisfies the requirements outlined above. In Sec. 2.1, a simple coupled

mode theory that models coupling between a fiber taper and a PC is presented, and the

desired waveguide properties are illuminated mathematically and discussed in more detail.

In Sec. 2.2, a general k-space analysis of bulk PC bandstructures is used to determine which

types of defect modes have the desired properties. The results from these sections are then

applied to the design and analysis of a PC waveguide in a square lattice in Sec. 2.3, and are

further illustrated with FDTD supermode calculations in Sec. 2.4.

2.1 Coupled-mode theory

It has long been realized that modes in translationally invariant waveguides with differing

dielectric constants can be phase-matched with the aid of a grating, so it is not surpris-

ing that the intrinsic discrete translational symmetry of PC waveguides and the resulting

zone-folded dispersion of their modes allows PCs to be phase-matched with a large class of

dissimilar waveguides, including tapered fibers. Grating mediated phase-matching schemes

have been studied extensively, beginning with the research of microwave traveling wave
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tubes [64], and, more recently, of optical devices such as filters, directional couplers, and

distributed feedback lasers (Ref. [65] and references therein). However, because the dielec-

tric contrast of a PC grating is large, the fiber-PC coupling picture differs from that of

a traditional (weak) grating assisted coupler, and rather than analyze coupling between

plane-waves of the untextured waveguides, we must consider the Bloch eigenmodes of the

PC waveguide. Although rigorous coupled mode theories for Bloch modes have been devel-

oped in the context of non-linear perturbations to Bragg fibers [66], photonic crystals [67],

and coupled-resonator optical waveguides [68], none of these formalisms consider coupling

between parallel waveguides. In order to evaluate the properties of evanescent coupling be-

tween a fiber and a PC defect waveguide, a coupled mode theory is presented in this section

that can approximately predict the power transfer between the PC Bloch modes and the

fiber planewave modes as a function of propagation distance, transverse coupling strength,

and phase-mismatch. More detailed derivations of the following equations, as well as some

useful properties of Bloch modes, are given in Appendix A.

The physical system being modeled is specified by the dielectric constants of the inter-

acting waveguides εμ(r), each of which individually supports a set of modes Eμ
ν (r), where

μ labels the waveguides and ν labels the eigenmodes of each waveguide. For e−iωt time

dependence, Maxwell’s equations require that each of these modes satisfies the eigenvalue

equation

∇ × ∇ × Eμ
ν (r) = ω̃2εμ(r)Eμ

ν (r) (2.1)

where ω̃ = ω/c is the free space wavenumber.

The fundamental approximation of waveguide coupled mode theories is that after some

propagation distance the field of the composite system represented by ε(r) = ε1 ∩ ε2...∩ εn

can be approximated by some linear combination of the modes of the constituent systems

represented by εμ(r):

E(r) =
∑
μν

Cμ
ν (z)Eμ

ν (r) (2.2)

where it has been assumed that the modes are propagating in the ±ẑ direction, or more

precisely that the power flux of the individual modes in the ẑ direction is constant. When

considering continuums of delocalized modes, an integral replaces the discrete sum. If εμ(r)

is periodic in z so that εμ(x, y, z+Λz) = εμ(x, y, z), by Bloch’s theorem [69] the eigenmodes
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have z dependence of the form Eμ
ν (x, y, z + Λz) = eiβνΛzEμ

ν (x, y, z), and Eq. (2.1) becomes

Hβνe
μ
βν

(r) = ω̃2εμ(r)eμ
βν

(r) (2.3)

where

Hβν = (−β2
ν ẑ × ẑ + iβν(ẑ × ∇ + ∇ × ẑ) + ∇ × ∇)×, (2.4)

eμ
βν

(x, y, z + Λz) = eμ
βν

(x, y, z), and −π/Λz < βν ≤ π/Λz (i.e., βν is restricted to the first

Brillouin zone) so that the eigenmodes are not over-counted. Equation (2.3) is often solved

as an eigenvalue problem for ω̃ν parameterized by the wavenumber β, giving a dispersion

relation ω̃ν = ω̃ν(β). In linear media, only modes degenerate in ω̃ have non-zero time

averaged coupling over typical laboratory time-scales, and it is convenient to label the modes

at fixed ω̃ by their wavenumber βν(ω̃). Both conventions are equivalent and interchangeable.

Typically (as discussed below), for weak coupling only modes nearly resonant in β (modulo

a reciprocal lattice vector 2π/Λz) to the exciting field need to be included in expansion

(2.2); this is the basic assumption of the coupled mode theory. For weak coupling, this

assumption that only nearly resonant modes interact is reasonable; however, the question

of completeness is less clear. In general, Eq. (2.2) cannot satisfy Maxwell’s equations since

the eigenmodes of waveguide μ1 do not satisfy the boundary conditions of waveguide μ2,

and vice versa. This issue was debated vigorously in the late 80s, but was not resolved,

and is well summarized in Ref. [70]. In Ref. [71], Haus and Snyder showed that in some

cases the ansatz Eq. (2.2) can be improved by modifying the modes used in the expansion

so that they satisfy the boundary conditions of the composite system. This improvement

is non-trivial in the case of a photonic crystal slab, however, and will not be used here.

This deficiency is minimized for TE-like modes but exists nonetheless if the waveguides lack

translational invariance or planar geometry, as is the case in photonic crystal waveguides

and fiber tapers, respectively. Despite this limitation, we proceed under the assumption

that in the limit of weak coupling the resulting model is a useful design tool that correctly

describes the dependence of the coupling on the physical parameters but whose absolute

results may deviate from the exact values.

In order to formulate coupled-mode equations, we assume that ansatz Eq. (2.2) is a

solution to Maxwell’s equations for the hybrid system and employ the Lorentz reciprocity

relationship [72] which must hold for any two solutions to Maxwell’s equations in non-
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magnetic materials:

∂

∂z

∫
z
(E1 × H∗

2 + E∗
2 × H1) · ẑ dx dy = i ω̃

∫
z
E1 ·E∗

2(ε1 − ε∗2)dx dy (2.5)

where (E,H)1,2 satisfy Maxwell’s equations for ε1,2. Setting

E1 =
∑

j

Cj(z)Ej(r)

E2 = Ei (2.6)

and correspondingly

ε1 = ε

ε2 = εi (2.7)

where the single index, i = (μi, νi), labeling both the waveguide and the mode is adopted

for clarity, and substituting Eqs. (2.6-2.7) into Eq. (2.5), the following power-conserving

coupled mode equations are obtained:

Pij
dCj

dz
= i ω̃KijCj (2.8)

where

Pij(z) =
∫

z
(E∗

i × Hj + Ej × H∗
i ) · ẑ dx dy (2.9)

Kij(z) =
∫

z
E∗

i ·Ej(ε− εj)dx dy (2.10)

and it has been assumed that all dielectric constants are real. Equation (2.8) is similar to

the coupled mode equations given in Ref. [73], with the only differences arising from the

fact that no specific form of z dependence of the eigenmodes has been assumed. When

the mode amplitudes are fixed at some z = z0, Eq. (2.8) can easily be solved numerically,

giving a transfer matrix that maps the amplitudes at z0 to z0 + L. In order to correctly

model an experimental setup, the amplitude of the modes propagating in the +ẑ direction

should be fixed at z0, and the amplitude of the modes propagating in the −ẑ direction
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should be fixed at z0 + L. Since Eq. (2.8) is linear and origin independent, Eq. (2.8) can

be solved with these mixed boundary conditions by first calculating the transfer matrix

(which maps C±
i (z0) → C±

i (z0 + L) where the sign superscript represents the propagating

direction of mode j ) and then transforming it to the appropriate scattering matrix (which

maps C+
i (z0) → C+

i (z0 + L) and C−
i (z0 + L) → C−

i (z0)).

From Eq. (2.5), the diagonal terms, Pii, of the power matrix are constant, and are typ-

ically normalized to plus or minus unity depending on the sign of the group velocity of

mode i. Additionally it can be shown that Bloch modes of the same waveguide are power

orthogonal so that Pij = 0 if εi = εj and Ei 
= Ej . However, modes from neighboring waveg-

uides are not power orthogonal, resulting in non-zero off-diagonal z-dependent components

in Pij which must be retained for Eq. (2.8) to be power conserving. In the fiber taper-PC

system, the PC fields’ z-dependence is the product of a planewave part and a periodic part,

whereas fiber fields have planewave-like z-dependence. Expanding the periodic part of the

PC field as well the PC dielectric constant in a Fourier series, the z-dependence of Pij and

Kij can be written in terms of superpositions of exp [i (βi − βj − 2πm/Λz) z] terms, where

m is an integer. For weak coupling (dCj/dz � 1/λ), only the slowly varying component

(compared to λ) of Kij significantly couples the amplitude coefficients Ci and Cj over lab-

oratory length scales of interest. This reasoning is analogous to (for example) that used in

the time-domain rotating-wave approximation in quantum mechanics, and is often used to

derive approximate analytic solutions to coupled mode equations describing two mode elec-

tromagnetic systems in the presence of weak gratings [3]. Because of the strong dielectric

contrast of the PC, the problem here is more complex; however, the fundamental results

from the simple cases hold: In order to observe significant power exchange between modes,

their wavenumbers’ β must differ by approximately a reciprocal lattice vector 2πm/Λz , and

the larger the phase matched driving terms, the stronger the coupling. The mixing of the

Fourier components of the PC Bloch mode and dielectric constant is the most significant

effect captured by this coupled mode theory compared to standard weak grating theories.

Physically, this allows coupling between PC and fiber modes that is mediated either directly

by a Fourier coefficient of the PC Bloch mode (the dominant effect here) or indirectly by

the PC dielectric acting like a grating (a higher order effect). Optimizing the magnitude of

these coefficients, and as a result, the coupling from the fiber mode to the desired photonic

crystal waveguide mode is discussed in the next section.



12

2.2 k-space design

Photonic crystal defect waveguides are formed by introducing a line of defects into an

otherwise two or three dimensionally periodic PC. Here we consider pseudo-2D membrane

structures whose typical geometry is shown in Fig. 2.1. In absence of the defects, the

eigenmodes of the bulk 2D slab are Bloch modes whose in-plane wavenumber, k, is a good

mode label and who are bound to the slab if ω(k) is below the cladding and substrate light-

lines; i.e., ω(k) < ck/nc, s, where ns and nc are the indices of refraction of the substrate

and cladding respectively. (We will not consider bound modes that exist at special points

in ω − k space above the light-line, as shown in [74].) The air-bridge membrane structures

considered here have nc = ns = 1, maximizing the area in ω − k space where bound modes

exist, and also ensuring that the bound modes of a fiber taper (nf ≈ 1.45) do not leak into

the PC substrate.

The PC modes can be classified as either even or odd, depending on their parity under

inversion about the x− z mirror plane of the slab (see Fig. 2.1 for the coordinate system),

and it can be shown that the lowest order even modes (i.e., modes with no zeros in the y

direction) are TE-like, while the lowest order odd modes (i.e., modes with one zero in the y

direction) are TM-like. We only consider coupling to TE-like modes (the fiber can couple to

either). Furthermore, we assume that the slab is thin enough to ensure that the frequencies

of the second order odd modes (which are also TE-like) are above the frequency range

of interest, so that only the fundamental TE-like mode needs to be considered. Figure

2.2 shows the approximate bandstructure of the fundamental TE-like modes of the bulk

square-lattice PC slab considered in this paper. This bandstructure is calculated using an

effective index 2D planewave expansion model that takes into account the finite thickness

of the slab but neglects the vector nature of the field, providing a useful guide for analyzing

the ω − k space properties of potential PC waveguide modes.

When a line defect is introduced, the discrete translational symmetry of the PC is

reduced from two to one dimension, and consequently only the component β of k paral-

lel to the line defect remains a good mode-label. The corresponding Bloch eigenmodes

must satisfy Eq. (2.3) and the resulting band structure is approximately obtained by

projecting the bulk PC bandstructure onto the first Brillouin zone of the defect unit cell

(ω1D(β) = ω2D(k |k · û = β) where unit vector û is parallel to the line defect) as shown
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Figure 2.2: Approximate bandstructure of fundamental even (TE-like) modes for a square
lattice PC of air holes with radius r/Λ = 0.35 in a slab of thickness d = 0.75Λ and dielectric
constant ε = 11.56. Calculated using an effective index of neff

TE = 2.64, which corresponds
to the propagation constant of the fundamental TE mode of the untextured slab. The inset
shows the first Brillouin-zone of a rectangular lattice.

in Fig. 2.3, and by a discrete set of modes whose field is localized to the defect region.

In k-space the localized and delocalized modes are characterized by β and a transverse

wavenumber distribution. The projection creates continuums of delocalized modes in ω− β

space over which the dominant transverse wavenumber varies smoothly and approximates

that of the bulk mode from which it is projected. For small defects, the localized modes

are superpositions of the delocalized modes at the top or bottom of the continuum re-

gions, depending on whether the defect is an acceptor or donor type. By identifying from

which bulk modes these continuum “band-edges” are projected, we can thus approximately

determine the dominant transverse wavenumber of the defect modes. Given a bulk 2D

bandstructure, the k-space properties of the defect modes associated with any defect ge-

ometry can therefore be approximately determined without resorting to computationally

expensive waveguide simulations.
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Figure 2.3: Projection of the square lattice bandstructure onto the first Brillouin-zone of a
line defect with the same periodicity of the lattice and oriented in the X1 → Γ direction.
Bandedges whose modes have dominant wavenumbers in the X1 → Γ direction (i.e. k = kẑ)
are drawn with solid black lines. Bandedges whose modes have dominant wavenumbers in
the X2 →M direction (i.e. k = kz ẑ + π/Λxx̂) are drawn with dashed black lines.

To determine what PC waveguide k-space properties are desirable for efficient coupling,

it is necessary to consider the fiber taper mode properties. Guided fiber taper modes are

confined to the region in ω−β space bounded by the air and fiber (usually silica, nf ≈ 1.45)

light lines, as shown in Fig. 2.4, which immediately limits the PC modes with which the

fiber can phase match. A suitable fiber typically has a radius on the order of a PC lattice

constant, and the corresponding linearly polarized fundamental fiber mode (HE11±HE1−1)

is broad compared to the PC feature size. As a result, PC modes that are highly oscillatory

in the transverse direction will not couple well to the fiber, since their transverse coupling

coefficients derived in the previous section will be small. PC modes that maximize the

coupling coefficient must thus have a transverse wavenumber distribution that is peaked at

zero (i.e., has a large transverse DC component). This corresponds to defect modes that

are dominantly formed from bulk PC modes whose k is parallel to the defect (the X1 → Γ
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Figure 2.4: Approximate projected bandstructure for (a) donor type and (b) acceptor type,
compressed square lattice waveguides. Possible defect modes and the fundamental fiber
taper mode are indicated by the dashed lines.

direction here).

These ideas are illustrated in Fig. 2.4, which shows a bulk compressed square lattice

band structure projected onto the first Brillouin zone of a line defect in the X1 → Γ

direction. The compressed lattice is used for reasons discussed below and is not essential

for the analysis. The approximate dispersion of localized modes formed by both donor

and acceptor type defects are shown, and modes whose transverse wavenumber distribution

satisfy the requirements discussed above are indicated. It is not required that the defect

modes be in a full photonic bandgap for the coupling scheme considered here. As in the

case of other novel PC devices such as lasers [75] and high-Q cavities [76] that have been

realized in small bandgap square lattice PCs, localized waveguide modes can exist without

a full in-plane bandgap [77]. That being said, for mode selective coupling to be possible it

is necessary that the defect mode exists in a “window” in ω − β space, where the nearest
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mode degenerate in ω is detuned sufficiently in β to suppress coupling, due to its large phase

mismatch. Although lattice compression is not required to achieve this, it is sometimes

advantageous to distort the lattice in order to optimize the window in ω − β space, as was

done here. Compressing the lattice in the transverse direction effectively raises the energy

of the bands at the X2 point and M point in Fig. 2.3, modifying the projection of the full

bandstructure onto the first Brillouin zone of the defect waveguide, as reflected in Fig. 2.4.

Once an appropriate lattice and defect waveguide type have been selected, and the ap-

proximate location of the desired mode in ω−β space determined using these approximate

2D techniques, 3D finite-difference time-domain (FDTD) can be used to numerically cal-

culate the field profiles and exact dispersion of the 3D PC waveguide eigenmodes. The

numerical results are used in turn in the coupled mode theory to model the coupling to the

tapered fiber modes. These design principles are applied in the next section to design a

compressed square lattice PC defect waveguide that can couple efficiently to fiber tapers.

2.3 Contradirectional coupling in a square lattice PC

The PC waveguide modes considered in this paper are formed within an optically thin

(thickness tg = 3/4Λx) semiconductor (n = 3.4) membrane perforated with a square array

of air holes. From the approximate band structure for the bulk compressed square lattice

waveguide shown in Fig. 2.4, there are several potential defect waveguide modes that are

not in a continuum and that can phase match with a fiber taper (whose typical disper-

sion is also shown). Of these modes, only waveguide mode A has the desired transverse

wavenumber components: It comes off a bandedge projected from the X1 → Γ band of the

bulk bandstructure, while the other modes come from M → X2 bandedges. Because mode

TE1 is not in a full frequency bandgap, it is not an obvious candidate in the context of the

existing literature, which focuses on waveguide modes within a full bandgap. However, as

we will show, this mode is confined to the defect region, can be coupled selectively with a

fiber taper, and can be used to probe high-Q cavity modes (Ch. 3).

A 3D FDTD calculation of the even bandstructure for the graded waveguide of Fig.

2.1(c) in a compressed (Λx/Λz = 0.8) square lattice is shown in Fig. 2.5. Modes that are

odd about the x− z mirror plane are not shown in this plot; however, it was verified that

the frequencies of the TE-like odd modes were higher than that of mode TE1 in the region
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Figure 2.5: 3D FDTD calculated bandstructure for the waveguide shown in Fig. 2.1(c).
The dark shaded regions indicate continuums of unbound modes. The dashed lines are the
dispersion of fiber tapers with radius r = 0.8Λz = 1Λx (upper line) and r = 1.5Λz = 1.875Λx

(lower line). The solid black lines are the air (upper line) and fiber (lower line) light lines.
The energies and wavenumbers of modes TE1 and B are ω̃Λz/2π = 0.304 and 0.373 at
βΛz/2π = 0.350 and 0.438 respectively.

of interest (circle “TE1” in Figs. 2.4 - 2.5). Although other donor defect geometries could

have been used, the hole radius grading and the lattice compression used here are important

design features of the waveguide for a number of reasons. As discussed in Ch. 3, the field

profile of Ref. [76]’s graded cavity mode is very similar to that of waveguide mode TE1

suggesting that this waveguide mode is ideal for tunneling light into and out of these cavities.

In addition, the compressed lattice provides for: (i) expansion of the window in ω−β space

supporting defect donor type modes that can phase match with the taper; (ii) an increase

in the slope of the defect mode dispersion, resulting in increased coupler bandwidth; and

(iii) matching of the frequencies of the waveguide mode and the uncompressed defect cavity
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Figure 2.6: Mode TE1 field profiles calculated using FDTD. Dominant magnetic field com-
ponent (a) |By(x, y = 0, z)|; and (b) |By(x, y, z = 0)|; (c) Dominant electric field component
transverse Fourier transform |Ẽx(kx, y = 0, z)|. Note that the dominant transverse Fourier
components are near kx = 0.

donor mode without any stitching of the lattice required. (Choosing ΛPC
x = ΛCav

x requires

that ΛPC
z /ΛCav

z = ω̃Cav/ω̃PC.) The two sets of localized states expected from Fig. 2.4 are

seen to form, one originating from the X1-point in the 2D reciprocal lattice, and the other

from the M -point. The most localized of each set are the fundamental (transverse) modes,

which we label as mode TE1 and mode B in Figs. 2.4 - 2.5. The magnetic field profiles and

the transverse Fourier transforms of these localized modes are shown in Figs. 2.6 - 2.8. The

Fourier transforms confirm that the dominant transverse Fourier components of mode TE1

are centered about kx = 0, while those of mode B are centered about kx = ±π/Λx. Both of

these modes have negative group velocity, indicating that coupling to them from the fiber

will be contradirectional in nature.

Using the FDTD calculated fields for the PC modes, the exactly calculated fields of a
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Figure 2.7: (a) Power coupled to PC mode TE1 from a tapered fiber with radius r = 1.15Λx

placed with a d = Λx gap above the PC as a function of detuning from phase matching and
coupler length. (b) Power coupled at ω = ω0 to the forward and backward propagating PC
and fiber modes as a function of coupler length.

fiber taper, and including only those PC and fiber modes that are nearly phase-matched

(as well as their backward propagating counterparts) in the coupled mode theory, the mode

amplitudes at the coupler outputs were calculated as a function of coupler length and

detuning of ω from the phase matching frequency ω0. Figure 2.7(a) shows the resulting

coupling to mode TE1 from the fundamental mode of a taper with radius r ≈ 1.15Λx

placed d = Λx above the PC. Figure 2.7(b) shows the power in all four modes as a function
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Figure 2.8: Mode B field profiles calculated using FDTD. Dominant magnetic field com-
ponent (a) |By(x, y = 0, z)|, (b) |By(x, y, z = 0)|. (c) Dominant electric field component
transverse Fourier transform |Ẽx(kx, y = 0, z)|. Note that the dominant transverse Fourier
components are near kx = ±π/Λx.

of coupler length at the phase matching condition. For reference, at an operating wavelength

(λ0) of 1.55μm, Λx ≈ 0.5μm, which corresponds to a taper diameter (2r) of roughly 1μm

and a waveguide-to-waveguide gap (d) of 0.5μm in this case. For ω = ω0 and L = 50Λz

the coupled power is greater than 80%, and reaches 95% for L = 80Λz (≈ 40μm). The

remaining power is coupled to the backward propagating fiber mode. Note that because

the PC mode has negative group velocity, this is contra-directional coupling resulting in

monotonically increasing power transfer as a function of coupler length when the transverse

coupling is stronger than the detuning in β [78]. The bandwidth is approximately 1.5% of

ω0, and it was verified that within this frequency range coupling to other modes is negligible

due to large phase-mismatching. It should be noted that shorter coupling lengths and larger

coupling bandwidths could be obtained by reducing the coupling gap, d; however, in the
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model used here this results in stronger coupling to the backward propagating fiber mode

and a decreased asymptotic coupling efficiency. In addition, such strong coupling is best

modeled using a more complete basis within coupled mode theory or using a fully numerical

approach such as FDTD.

To illustrate the importance of a mode’s dominant transverse Fourier components for

efficient coupling, Fig. 2.9 shows the power transfer as a function of coupler length and

detuning to mode B in Fig. 2.5 from an appropriately phase matched fiber taper placed

d = Λx above the PC 1.

Although mode B is even about the mirror plane in the center of the waveguide, because

it is constructed from Bloch modes around the M -point it has relatively small amplitude

for transverse Fourier components near zero, resulting in a small transverse overlap factor

(Kij) with the fiber taper mode. This results in a coupler length ≈ 200 times longer than

that for mode TE1, as well as an extremely narrow bandwidth of ≈ 10−4% of ω0 (a property

further amplified by modeB’s low group velocity). Calculations not shown here that studied

acceptor defect modes arising from the valence band edge (M −X2) yield similar results,

despite their very broad field profiles, which would be expected to match well with the fiber.

These calculations demonstrate that by selecting a mode composed from the appropri-

ate regions in k space, efficient power transfer between a tapered fiber and the PC can be

achieved that is mode selective and that (thanks to its contradirectional character) does not

depend critically on the coupling length above some critical minimum. Using a more numer-

ically intensive supermode calculation, we now confirm that the simple coupling analysis

used above is valid.

2.4 Supermode calculations

In order to verify the coupling picture between the individual waveguide modes presented in

the previous section, it is useful to calculate the bandstructure of the hybrid fiber taper-PC

waveguide system. Because this system retains the discrete translational symmetry of the

PC waveguide, the bandstructure of its modes (the supermodes) can be calculated using

FDTD with a combination of Bloch and absorbing boundary conditions in a similar manner
1Besides the very weak coupling between this mode and the fiber taper, higher order odd slab modes may

make coupling in this region of k space impractical. Nonetheless, the calculations shown here demonstrate
the importance of a mode’s transverse Fourier components.
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Figure 2.9: Power coupled to PC mode B from a tapered fiber with radius r = 1.55Λx

placed with a d = Λx gap above the PC as a function of detuning from phase matching and
coupler length.

as the bandstructure of the isolated PC waveguide. The resulting bandstructure provides

information about the coupling between the modes of the individual waveguides. For weak

coupling, it resembles the superposition of the individual waveguide bandstructures (for

example Fig. 2.5), but with anti-crossings where the modes intersect and are coupled. The

amount of deflection at an anti-crossing is related to the strength of the coupling between the

modes, and can be used to back out physical parameters that describe the power transfer.

Figure 2.10(a) shows the bandstructure for a fiber taper of radius r = 1.17Λz = 1.46Λx

placed d = Λz = 1.25Λx above the PC waveguide studied in the previous sections. These

parameters differ slightly from those used in the previous section, but do not change the

results significantly; the larger separation results in a longer coupling length and a smaller

bandwidth, while the larger fiber radius lowers the phase matching frequency slightly. The

mirror symmetry about the y − z plane of the fiber-PC system is used to filter for modes

that are even about this plane, but the fiber breaks the mirror symmetry in the x − z

plane, and the bandstructure contains PC modes that are odd in the vertical direction, and

that are not shown in the bandstructures from the previous sections. The dispersion of the

individual fiber mode and the PC waveguide mode TE1 can be identified, and the anti-
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Figure 2.10: (a) FDTD calculated bandstructure of the full fiber taper photonic crystal
system. The fiber taper has a radius r = 1.17Λz = 1.46Λx, and is d = Λz = 1.25Λx above
the PC waveguide. The TE1-like and fiber-like dispersion is identified, and the symmetric
and antisymmetric superpositions of these modes at the anti-crossing are labeled by the
± signs. (b) The By(x, y, 0) component of the symmetric supermode. (c) The By(x, y, 0)
component of the antisymmetric supermode.

crossing where they intersect indicates that the two modes are coupled. In addition, the

fundamental fiber taper mode couples strongly to a series of PC modes at higher frequencies

than mode TE1, which was not predicted from the analysis in the previous section. These

are the aforementioned second order odd (about the x− z plane) valence band TE-like PC
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modes. These modes can be pushed to higher frequencies faster than the fundamental TE-

like modes by reducing the slab-thickness (i.e., they can be “frozen out” of the frequency

range of interest), and are typically not studied. However, their odd parity in the vertical

direction results in an electric field amplitude maxima near the PC surface, and they interact

strongly with the fiber taper. Figures 2.10(b,c) show the field profiles of the supermodes

from either side of the anti-crossing of interest. The low and high frequency supermodes

closely resemble odd and even superpositions, respectively, of the individual waveguide

modes, consistent with standard results for coupling between degenerate modes in guided

wave optics [3].

Since PC mode TE1 and the fiber mode have group velocities with opposite signs, a

bandgap is formed where they anti-cross. This is consistent with the physical picture of

the coupling: On resonance, a contradirectional coupler acts like a mirror, and reflects the

power from the forward propagating mode into the backward propagating mode. Math-

ematically, this is manifest in a non-zero imaginary part of the propagation constant, β,

inside the gap. Thus, the supermodes propagate evanescently inside the gap, and complete

contradirectional coupling is possible over a bandwidth equal to the size of the gap. The

gap at the anti-crossing of mode TE1 and the fiber mode in Fig. 2.10(a) has a width of

1% of its center frequency ω0. Coupled mode calculations similar to those of the previous

section for a fiber radius and PC-taper gap equal to those used in this section also yield a

bandwidth of 1% of ω0.

2.5 Conclusion

Using the general analysis presented in this chapter, photonic crystal waveguide modes

suitable for efficient coupling to optical fiber tapers can be identified. The photonic crystal

waveguide design presented here is predicted to allow contradirectional fiber-PC power

transfer of 95% after an 80 lattice constant (≈ 50μm) long interaction region. In the

following chapter, it will be shown that this photonic crystal waveguide can be efficiently

integrated with a photonic crystal cavity.
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Chapter 3

Efficient fiber to cavity coupling: theory
and design

Optically accessing PC microcavities is difficult due to their ultra-small mode volume and

their external radiation pattern, which, unlike micropost [36] and Fabry-Pérot [34] cavities,

is not inherently suited to coupling with conventional free-space or fiber optics. However,

the planar, chip-based nature of PC cavities lends itself naturally to integration with other

planar nanophotonic structures, such as PC waveguides [79, 80]. Initial passive studies of

PC cavities took advantage of this, and employed PC “bus” waveguides to probe the cavity

[81, 82, 83]. However, neither the coupling into the waveguide nor the waveguide-cavity

interface were designed carefully, and the total fiber to cavity coupling efficiency of these

studies was very low.

In the previous chapter, we addressed the fiber waveguide coupling problem. In this

chapter, we study how the PC waveguide can be engineered to “mode match” with the

cavity, ensuring efficient and “ideal” [84] waveguide-cavity coupling. The resulting fiber-

waveguide-cavity coupling geometery is illustrated in Figs. 3.1(a) and 3.1(b), and functions

as follows. Light is coupled evanescently from the fiber taper onto the PC chip via a PC

waveguide, where it is guided to the PC microcavity at the terminus of the PC waveguide.

Photons that are reflected from the PC cavity are then recollected into the backward prop-

agating fiber taper mode, where they are separated from the forward propagating input

signal using a fiber splitter. In this way, a single optical fiber is used to both source and

collect light from the PC microcavity.

When presented with this coupling scheme, an obvious question is whether the PC

waveguide is necessary. Can the fiber taper be efficiently coupled directly to the cavity?

Kartik Srinivasan from our group demonstrated [11] that it is possible to couple directly
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Figure 3.1: (a) Schematic of the fiber taper to PC cavity coupling scheme. The blue
arrow represents the input light, some of which is coupled contradirectionally into the PC
waveguide. The green arrow represents the light reflected by the PC cavity and recollected
in the backwards propagating fiber mode. The red colored region represents the cavity
mode and its radiation pattern. (b) Illustration of the fiber-PC cavity coupling process.
The dashed line represents the “local” band-edge frequency of the photonic crystal along
the waveguide axis. The step discontinuity in the bandedge at the PC waveguide - PC
cavity interface is due to a jump in the longitudinal (ẑ) lattice constant. The parabolic
“potential” is a result of the longitudinal grade in hole radius of the PC cavity. The
bandwidth of the waveguide is represented by the gray shaded area. Coupling between
the cavity mode of interest (frequency ω0) and the mode matched PC waveguide mode
(ωWG = ω0) is represented by γe

0, coupling to radiating PC waveguide modes is represented
by γe

j>0, and intrinsic cavity loss is represented by γi.

between fiber tapers and PC cavities, but that because of parasitic losses from the cavity

induced by the fiber taper, this coupling is typically neither efficient nor ideal. To emphasize

the importance of ideality, we begin in Sec. 3.1 with a review of some of the key parameters

describing the loading of a general resonant structure, including coupling efficiency and

ideality, and point out specific implications for planar PC microcavities. In Sec. 3.2 we then

present a design that attempts to optimize these parameters while allowing for efficient

evanescent coupling between a fiber and the waveguide. This work was first presented in

Refs. [63] and [25].

3.1 Efficient and ideal waveguide-cavity loading

As proposed in Ref. [84] in the context of microsphere resonators, the interaction between

a PC cavity and an external PC waveguide can be described by two key parameters, the
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coupling parameter, K, and the ideality factor, I:

K ≡ γe
0

γi +
∑

j �=0 γ
e
j

, (3.1)

I ≡ γe
0∑

j γ
e
j

, (3.2)

where the cavity mode is characterized by its resonance frequency (ωo), its intrinsic photon

loss rate in the absence of the external PC waveguide (γi), and its coupling rates to the

fundamental TE1 mode (γe
0) and higher order (including radiating) modes of the external

PC waveguide (γe
j>0). I describes the degree of “good” loading, via the fundamental PC

waveguide mode in this case, relative to the total loading of the resonator. K is the ratio

of “good” loading to the parasitic and intrinsic loss channels of the resonator.

The on-resonance fraction of optical power reflected by the cavity back into the PC

waveguide mode is determined by the coupling parameter, K,

Ro(ωo) =
(1 −K)2

(1 +K)2
. (3.3)

The remaining fractional power, 1 − Ro(ωo), is absorbed inside the PC cavity or radiated

into the parasitic output channels. The reflection resonance full-width at half-maximum

(FWHM) linewidth is given by the sum of the loss rates for all of the loss channels of the

cavity, δω = γi +
∑

j γ
e
j . From Ro(ωo) and δω, the quality factor of the PC cavity mode due

to intrinsic and parasitic loss (i.e., those loss channels other than the “good” PC waveguide

TE1 channel) can be determined:

Qi+P = 2QT
1

1 ±√Ro(ωo)
= QT (1 +K), (3.4)

where the total loaded quality factor is QT = ωo/δω, and where the ± corresponds to the

under- and over-coupled (K ≶ 1) loading condition. On resonance, full power transfer

(critical coupling) from the “good” loading channel to the resonant PC cavity mode occurs

when K = 1.

Whereas K determines the amount of power dropped by the resonator, the role of I

is more subtle. In the case of an internal emitter, the collection efficiency (η0) of emitted
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photons into the “good” loading channel is given by,

η0 =
γe

0

γi +
∑

j γ
e
j

=
1

1 + 1/K
, (3.5)

which depends only upon the coupling parameter K. However, the cost of obtaining a large

collection efficiency is measured by the drop in loaded quality factor of the resonant cavity

mode, which can be written in terms of K, I, and Qi as

QT

Qi
= 1 − K

I(1 +K)
= 1 − η0

I
. (3.6)

Thus, for a given collection efficiency, to maintain a long cavity photon lifetime, I should

be maximized.

Utilizing a cavity loading method with I ∼ 1 is also important for cavity based nonlinear

optics. A simple argument can be made by studying the stored energy inside a resonant

cavity for a given input power. One can write for the on-resonance internal stored energy,

U ,

U = (1 −Ro(ωo))
Qi+P

ωo
Pi =

4K
(1 +K)2

I −K(1 − I)
I

Qi

ωo
Pi (3.7)

where Pi is the input power in the “good” loading channel. The maximum stored energy in

the resonator occurs at Kmax = I/(2− I), giving a peak stored energy, Umax = I(Qi/ωo)Pi,

which scales directly with I.

3.2 Mode-matched cavity-waveguide design

For integrated PC cavities and waveguides, in order to maximize I it is necessary to restrict

the cavity-waveguide coupling to a single dominant waveguide mode so that γe
0 � γe

j>0.

Parasitic waveguide modes with cavity coupling rates γe
j>0 may come from a number of

sources: (i) radiation modes above the light cone of the PC slab, (ii) bulk PC slab modes

that are not laterally confined, and (iii) other laterally confined PC slab modes. In order

to effectively load the cavity with the waveguide so that I ∼ 1, the cavity mode of interest

must radiate preferentially into a single waveguide mode1. To satisfy this criteria, the design
1Note that a single guided -mode PC waveguide (i.e., a waveguide mode in a full in-plane photonic

bandgap) does not guarantee efficient waveguide-cavity coupling, as the cavity mode may still couple radiate
into leaky modes of the PC waveguide.
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described in this chapter has two important features: (i) the waveguide and cavity modes

of interest have similar transverse field profiles (see Fig. 3.2), which allows the cavity to be

efficiently loaded end-on, and (ii) the end-fire PC waveguide-cavity geometry restricts the

cavity to a single output channel, in a manner analogous to a Fabry-Pérot cavity with a

high reflectivity back mirror and a lower reflectivity front mirror2.

The PC cavity that we wanted to out-couple with a PC waveguide was studied in Ref.

[76]. There, Srinivasan, et al. used a group theoretical analysis to design a cavity in a square

lattice PC slab that supports a high-Q (≈ 105) donor defect mode, whose FDTD calculated

field profile is shown in Figs. 3.2(a,b). The defect cavity was formed by introducing a donor

defect with C2v symmetry in the form of a parabolic grading of the hole radius in both in-

plane directions (the x̂- and ẑ-directions, as depicted in Figure 3.2(a)). Since the first order

bandgap energy minima of the conduction band in a square lattice occur at the X1,2 points

of the IBZ, donor modes from this band are expected to be composed of Fourier components

in a neighborhood of the ±kX1 and ±kX2 points in k space. The high-Q mode transforms

as the A2 representation of the C2v [76], and its dominant k-space components result in a

highly directional mode profile along the ẑ-direction, parallel to the Γ−X1 direction of the

reciprocal lattice. In anticipation of integration with this cavity, the waveguide studied in

Ch. 2 shares an identical grade in hole radius as that in the x̂-direction of the defect cavity.

The resultant similarity in the lateral (x̂-direction) mode profile of the A2 cavity and TE1

waveguide modes is clear from the field plots in Fig. 3.2. The lateral overlap factor of these

two modes is |〈BWG
y |BCav

y 〉xy| ∼ 0.98, where the waveguide and cavity fields are evaluated at

their anti-nodes in the ẑ-direction. This near unity modal overlap suggests that the cavity

mode will radiate dominantely into the TE1 mode, i.e., I ∼ 1.

Because of the similarity between the lateral grade in the hole radius of the PC in

the waveguide and cavity sections, the coupled waveguide-cavity illustrated in Fig. 3.1

can be approximately viewed as a one dimensional system along the ẑ-direction. This

simplified picture is schematically represented in Fig. 3.1(b), where the frequency of the

(local) fundamental “waveguide” mode is plotted versus z for a fixed lateral grading in the

PC hole radius. A buffer region consisting of a variable number of periods of the square

photonic lattice is placed between the end of the waveguide and the defect cavity. As
2This is in contrast to side-coupled [10], in-line [82], and direct taper coupled [11] geometries, in which

the cavity radiates equally into backward and forward propagating waveguide modes (bounding K ≤ 1 and
I ≤ 0.5)
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Figure 3.2: (a,b) High-Q defect cavity mode profiles. Plots of the magnetic field pattern are
shown in (a) the x− z plane (|By(x, y = 0, z)|), and (b) the x− y plane (|By(x, y, z = 0)|).
(c,d) PC waveguide TE1 mode field profiles, taken in the (a) the x − z plane and (b) the
x− y plane.

illustrated schematically in Figure 3.1(b), light tunnels between the cavity and waveguide

through the barrier. In general, the efficiency and strength of coupling between the cavity

and waveguide are tuned by: (i) adjusting the compression and/or the filling fraction of

the waveguide lattice so that the TE1 waveguide mode is resonant with the cavity mode,

and (ii) tailoring the waveguide defect so that the waveguide and cavity modes have similar

transverse field profiles. The frequency of the lateral guided mode is tuned at different

positions in z by adjusting the nominal hole radius (lattice filling fraction) and/or the lattice

constant in the ẑ-direction (lattice compression/stretching). The mode’s dispersion in the
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PC waveguide section results in a finite frequency bandwidth and is represented in the figure

by a shaded region. So as to avoid stitching different lattices, the lateral lattice constant is

kept constant (Λcav
x = ΛWG

x ). In this way, we can engineer band-offsets to produce tunneling

barriers and create localized resonant cavities along the ẑ-direction. In order to couple from

the waveguide to the cavity, the waveguide mode must be in resonance with the localized

cavity mode. For the waveguide and cavity mode system considered here, this degeneracy is

achieved by adjusting the waveguide lattice compression ΛWG
x /ΛWG

z . Additionally, for the

designs studied here there is no discontinuity in the hole size, so that the strength of the

coupling between the resonant cavity and waveguide modes is determined by the band-offset

due to the lattice compression of the waveguide (height of the barrier) and the number of

buffer periods between the waveguide and cavity sections (width of the barrier).

An analysis of the coupling between the waveguide the cavity was performed using a

2D effective index FDTD simulation of the full cavity-waveguide system. Although these

2D simulations neglect vertical radiation loss, this analysis can determine how effectively

the lateral profile of the waveguide mode has been matched to that of the cavity mode, a

major consideration in our waveguide design and a necessity for efficient waveguide-cavity

coupling as discussed above. Figure 3.3 shows the cavity mode in the presence of a series of

waveguides with different lattice compressions. The magnetic field is shown at instants in

time when it is a maximum (confined) and a minimum (radiating) in the cavity. Coupling to

the TE1 waveguide is negligible when the lattice is uncompressed, since its lowest frequency

(which occurs at the X point) is higher than the cavity mode frequency. In this case the

cavity radiates as if it were unloaded and its dominant in-plane radiation is in the kM

directions. When the lattice is compressed, the waveguide mode frequencies are lowered,

and the cavity becomes resonant with the TE1 waveguide mode labeled by some propagation

constant, β (see Fig. 3.1(b)). The loaded cavity couples to the TE1 waveguide mode, but

not into other (degenerate in ω but detuned in β) parasitic waveguide modes. As discussed

above, this mode-selective coupling does not rely on a full photonic bandgap and is due to the

similarity between the transverse profiles of the cavity and waveguide modes of interest. The

simulations also show that because of the TE1 dispersion and its corresponding frequency

bandwidth, the waveguide-cavity coupling does not depend critically on the amount of

lattice compression, so long as the compression is sufficient to lower the frequency at the X

point of the TE1 mode below the cavity mode frequency. By tuning the lattice compression
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Figure 3.3: Coupling from the defect cavity to the PC waveguide for varying waveguide
lattice compression at instances in time when the cavity magnetic field is a minimum (left)
and a maximum (right). The envelope modulating the waveguide field is a standing wave
caused by interference with reflections from the boundary of the computational domain. The
diagonal radiation pattern of the cavity is due to coupling to the square lattice M points,
and is sufficiently small to ensure a cavity Q of ≈ 105. |B| for (a) ΛWG

x /ΛWG
z = 20/20 (b)

ΛWG
x /ΛWG

z = 20/25 (ratio used in the previous section) (c) ΛWG
x /ΛWG

z = 20/29.

beyond this minimum, the propagation constant (and group velocity) of the TE1 mode

when it is resonant with the cavity mode is adjusted. By choosing the compression such

that this propagation constant phase matches with a fiber taper (Λx/Λz = 20/25 for the

case considered in the previous section), an efficient fiber-taper/PC-waveguide/PC-cavity

probe is theoretically realized.

3.3 Conclusion

The fiber-waveguide-cavity coupling technique studied in this chapter provides highly effi-

cient fiber to PC cavity coupling. By designing the PC waveguide so that it is mode-matched

with the PC cavity, nearly ideal loading of the cavity by the waveguide is possible, ensuring

that the cavity-Q is not degraded by parasitic waveguide loss. The resulting fiber-to-cavity
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coupling channel can be used to study nonlinear effects within the PC cavity for low fiber

input power, as shown in Ch. 5, and will also be useful as an efficient photon collector in

future single photon source experiments using PC cavities.
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Chapter 4

Probing photonic crystals with fiber
tapers: experiment

In this chapter, the evanescent coupling scheme described theoretically in Ch. 2 and Ch.

3 is demonstrated experimentally. It is shown that in addition to providing efficient fiber-

to-chip coupling, a fiber taper can be used as a wafer-scale probe to study the spectral

and spatial properties of the optical modes supported by photonic crystal devices. By

circumventing the intrinsic spatial and refractive index mismatch between optical fiber and

PC devices, and taking advantage of the strong dispersion and undercut geometry inherent

to PC membrane structures, efficient power transfer and rapid characterization of optical

modes of a PC waveguide using fiber tapers are possible. This tool significantly simplifies

and accelerates the design and fabrication cycle that must often be iterated in order to

realize high quality nanophotonic elements, and provides an interface between wavelength

scale nanophotonic circuits and fiber optics.

This work was originally presented in Refs. [48, 47, 25]. Section 4.2 presents experimental

results demonstrating that the coherent interaction over the length of the coupling region

between phase matched modes of a fiber taper and Si photonic crystal waveguide manifests

in 97% power transfer. In Sec. 4.3, the fiber taper is used to probe the dispersive and spatial

properties of Si PC waveguide modes. These techniques are then leveraged in Sec. 4.4 to

achieve high coupling efficiency (> 44%) from a fiber taper into a Si PC microcavity that

is integrated with a photonic crystal waveguide.
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Figure 4.1: Schematic of the coupling scheme. (a) Illustration of the fiber taper in the “U-
mount” configuration that is employed during taper probing of the PC chip. (b) Illustration
of the fiber taper positioned in the near field of the PC waveguide, and the contra-directional
coupling between waveguide that occurs on-resonance.

4.1 Experimental details

The optical coupling scheme used in this work is shown schematically in Fig. 4.1. An optical

fiber taper, formed by heating and stretching a standard single-mode silica fiber, is placed

above and parallel to a PC waveguide. The fiber diameter changes continuously along the

length of the fiber taper, reaching a minimum diameter on the order of the wavelength

of light. Light that is initially launched into the core-guided fundamental mode of the

optical fiber is adiabatically converted in the taper region of the fiber into the fundamental

air-guided mode, allowing the evanescent tail of the optical field to interact with the PC

waveguide; coupling occurs to phase-matched PC waveguide modes that share a similar

momentum component down the waveguide at the frequency of interest. The undercut

geometry of the PC waveguide prevents the fiber taper from radiating into the PC substrate.
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4.1.1 Fiber taper fabrication

The fiber tapers are fabricated by simultaneously heating and stretching a standard single

mode fiber until the minimum diameter of the fiber is on the order of a wavelength. A

detailed description of the apparatus and fabrication is given by M. Borselli’s thesis [85];

what follows is a brief outline. Detailed descriptions of the theory of fiber taper formation

can be found in Refs. [40, 41].

A standard single mode fiber designed for operation at the wavelength of interest (SMF

28 for operation at 1550 nm, Nufern 780HP for operation at 852 nm, etc.) is stripped of its

protective acrylate cover over a 1 cm length. This stripped region is then placed between

two magnetic fiber clamps, each of which is attached to a computer controlled single axis

linear translation stage. Care is taken to ensure that the clamped section of fiber is well

tensioned, and that the clamps do not impart any torque. A hydrogen torch flowing a small

amount of H2 is ignited, resulting in a gentle flame. The torch is mounted on a computer

controlled single axis linear translation stage (Suruga Seiki), which controls the separation

between the torch and the fiber in the direction perpendicular to the fiber. A manual three

axis micrometer attaches the torch to the translation stage, and is used to fine tune the

position of the flame.

Using a LabView program, the stages holding the fiber are commanded to begin moving

in opposite directions at a constant speed of 1-2 μm/s, further tensioning the fiber. Simul-

taneously, the stage holding the H2 flame is quickly moved to position the flame directly

below the tensioned fiber. The flame heats the fiber above the glass softening point, allow-

ing it to be stretched by the continuously moving stages holding the fiber. As the fiber is

stretched, its diameter shrinks (by conservation of volume).

During this process, the optical transmission through the fiber is monitored by coupling

a laser source to one end of the fiber and monitoring the output of the other end with

a photodetector. As the minimum fiber diameter shrinks, the tapered region of the fiber

transitions from being single-mode to multimode, often resulting in oscillations in the fiber

transmission as a function of pull length due to coupling and interference between the

fundamental mode and higher order modes within the fiber. However, as the minimum

fiber diameter shrinks below a wavelength, the fiber becomes single-mode once again, and
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the transmission becomes independent of pull length1. This “feature” in the transmission

as a function of pull time can be used to calibrate the size of the fiber taper in situ.

Once the fiber taper has reached the desired minimum diameter (usually between 0.5

μm and 1.5 μm, after ∼ 10-15 mm of pulling) the computer control halts the movement

of the stages holding the fiber, and moves the stage positioning the H2 flame away from

the fiber. The mounts holding the fiber are then released, and the tapered fiber can then

be picked up manually. Despite its small minimum diameter, the tapered region is strong

enough to support the weight of a 1m long fiber tail. The fiber taper is then manually

bent into a “U” shape, before being attached to a flat holder (with specially machined

grooves) using adhesive tape, as illustrated in Fig. 4.1(a). Putting the fiber in a “U” shape

is easily achieved by holding the two fiber tails in one hand, usually by pinching both fiber

tails between the thumb and index finger. The tapered region then naturally takes on the

desired “U” geometry. The fiber can then be spliced into the experimental setup, and is

ready to be used for coupling to PC devices. As long as the taper is adiabatic (compared

to the wavelength of light), the overall insertion loss in the fiber at the end of the pull can

be extremely low, and is typically below 10%.

As discussed in Sec. 4.2, the fiber tapers fabricated as described above can only be used

to probe one-dimensional arrays of devices. Recently our group [45] as well as groups in

Korea [86], and Australia [87], have developed “dimpled” fiber tapers, which require an

additional local heating step after the initial taper formation to create local curvature in

the otherwise straight fiber taper, allowing the taper to be used to probe two-dimensional

arrays of devices. These tapers are not used in the results presented here however.

4.1.2 Fiber probing measurement apparatus

The measurement apparatus necessary for fiber taper probing of PC devices is very sim-

ple. The “U”-mounted fiber taper [Fig. 4.1(a)] is attached to a three-axis stage that has

manual micrometer control in the horizontal axes and a computer controlled 50 nm res-

olution motorized stepper in the vertical axis. The sample is mounted on a micrometer

controlled goniometer (for tip-tilt adjustment) attached to a rotation stage, which in-turn

is attached to a two horizontal axis computer controlled 50 nm resolution motorized stepper

1An air clad fiber with refractive index nf is single mode if its diameter d < 2.405λ/π
�

n2
f − 1 [3]. For

glass, nf = 1.45, requiring d < 0.73λ.
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Figure 4.2: Illustration of the optical path within the fiber optic measurement apparatus.
DT and DR represent photodetectors used to measure the transmitted and reflected signals
respectively.

stage. This allows the fiber taper to be accurately positioned at varying heights and lateral

displacements relative to individual PC devices, as in Fig. 4.1(b).

All of the optics used in the results presented in this chapter are fiber based. A schematic

detailing the optical path within the fiber and PC device is shown in Figure 4.2. To spec-

trally characterize the taper-PC waveguide coupler, an external cavity swept wavelength

source (New Focus “Vidia”) with wavelength range 1565-1625 nm was connected to the

fiber taper input via a polarizer and a 3dB coupler. At the fiber taper output, a photode-

tector (DT) was connected to measure the transmitted power past the taper-PC interaction

region. An additional photodetector (DR) was connected to the second 3dB coupler input

to measure the light reflected by the PC interaction region.

4.1.3 Photonic crystal fabrication

A typical fabricated array of PC waveguides is shown in Fig. 4.3. These PC devices were

fabricated from a silicon-on-insulator (SOI) wafer purchased from Soitec. The Si thickness

was 340 nm, and the underlying oxide was 2 μm thick. Arrays of PC devices are defined
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using electron beam lithography and other semiconductor processing techniques, details of

which are given here and in K. Srinivasan’s thesis [88].

Samples are first spin coated with a thin layer of ZEP-520 (Zeon Corporation, Japan)

electron beam resist (5000 RPM for 60 seconds, followed by a 20 minute 180oC bake).

Electron beamwriting is used to create etch masks on the SOI wafer from the electron beam

resist. The etch masks are defined using AutoCAD generated pattern files that are read by a

computer program called “Bewitch” written by Oliver Dial, a former Caltech undergraduate

student. Bewitch converts the AutoCAD .dxf file into a raster pattern that is output to

a Hitachi S-4300 cold field emission scanning electron microscope (SEM) in the form of a

set of two voltages that control the SEM x and y scan coils. The raster rate is determined

by the desired electron dose per pixel; for doses between 30-60 μC/cm2, speeds ranging

from 10-250 kHz are typical, depending on the pixel size and electron beamcurrent. For the

photonic crystals fabricated here, low beamcurrent (5 pA), low speed (35 kHz) beamwrites

were used, with the SEM accelerating voltage set at 15 kV and the SEM magnification

between 450X-1000X. This beamwriting system does not have stitching capabilities, and the

maximum pattern size is limited by the field of view of the SEM at the desired beamwriting

magnification (up to ∼ 100μm × 100μm). Arrays of patterns are written by moving the

stage after a pattern is complete, and repeating the beamwrite. Often, within an array

of masks employing identical input beamwriting patterns, both the lattice constant and

nominal hole radius are varied by adjusting the “scaling” of the Bewitch output voltages,

and the beamwriting speed (dwell time per pixel), respectively. “Proximity effects”, in which

the post-beamwrite hole size deviates from the desired size due to exposure of neighboring

holes, are compensated for a priori in the pattern files.

For the beamwrite, it is crucial that the sample surface is level along the axis of the

stage movement so that the electron beam remains focused on the surface for the entire

beamwrite. In practice, the SEM sample mount surface has a slight tilt. This sample mount

consists of a 2 cm diameter aluminum sample holder that is screwed into a chuck that, in

turn, is interfaced with the SEM positioning stage. By rotating the position of the top

sample holder surface (by adjusting how far it is screwed into the chuck), the tilt axis can

be rotated relative to the beamwriting stage movement axis. At a unique position, these

axes are aligned, and the height of the sample surface at the beam position does not change

when the sample stage is moved along a desired axis. This setting can be determined by
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Figure 4.3: SEM image of a fabricated photonic crystal array. One of the devices is posi-
tioned below a fiber taper. Also visible is the edge of the “isolation” mesa on which the PC
array is defined.

trial and error, checking each new setting by imaging an array of devices and confirming

that the SEM focus does not need to be adjusted when the sample is moved along the axis

of interest. Once the setting has been determined, it is important to never inadvertently

adjust the sample holder, and to be consistent with the orientation of the sample on the

holder. A better long term solution would be to have a custom sample holder, with a top

flat surface, machined to our specifications.

After the beamwrite, a SF6/C4F8 based inductively coupled plasma reactive ion etching

(ICP-RIE) is used to selectively remove Si material not covered by the ZEP mask. The

ratio of SF6 to C4F8 was optimized to provide smooth and vertical sidewalls; too much

SF6 results in roughness, while too much C4F8 results in angled sidewalls. After this dry

etch, the remaining ZEP is removed using acetone or an acidic H2SO4:H2O2 “Piranha”

cleaning step. Photolithography is then used to cover the etched patterned regions with

a photoresist mask (Shipley 5214); and a SF6 isolation etch, > 10 μm in depth, is per-
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formed to remove unpatterned material surrounding the PC devices (Fig. 4.3). This step

ensures that the fiber taper only evanescently interacts with the PC regions, and not with

the surrounding unpatterned material. The suspended membrane structure is created by

selectively removing the underlying silicon dioxide layer using a hydrofluoric acid wet etch

for approximately three minutes at room temperature. In some cases, a short ICP-RIE etch

is used to uniformly thin the top Si layer, depending on the Si thickness required by the

device design. Finally, a H2SO4:H2O2 cleaning step is used to remove any organic material

(such as ZEP) on the device surface.

4.2 Efficiently coupling into photonic crystal waveguides

Using the fabrication techniques described above, and the design presented in Ch. 2, PC

waveguides were formed in a 300 nm thick Si membrane by introducing a grade in hole radius

along the transverse direction of a compressed square lattice of air holes, as shown by Figure

4.4(a-b). As described in Ch. 2, the coupling of interest for this PC waveguide design occurs

between the fundamental linearly polarized fiber mode and the TE1 PC waveguide mode,

whose field profile is shown in Fig. 4.4(a) and dispersion is shown in Fig. 4.4(c). This PC

waveguide mode has a negative group velocity, resulting in contradirectional coupling, as

depicted in Fig. 4.1(b) and Fig. 4.2.

Although the coupling efficiency of this technique can be inferred by analyzing the signal

transmitted through the fiber taper as a function of wavelength and fiber taper position,

a more direct measurement is to study the power coupled into and then back out of a PC

waveguide. This measurement allows a lower bound for the input-output coupling efficiency

to be absolutely established. In this section, by studying light that is coupled into a PC

waveguide, reflected by an end-mirror at the PC waveguide termination, and then coupled

into the backward propagating fiber mode, as depicted in Fig. 4.2, it is shown that the

coupling has near unity efficiency.

In initial studies of evanescent coupling to such PC waveguides [46], the waveguide

termination consisted of a 2 μm region of undercut Si, followed by an 8 μm length of

non-undercut SOI and a final air interface. The interference from multiple reflections at the

three interfaces within the waveguide termination resulted in a highly wavelength dependent

reflection coefficient, making quantitative analysis of signals reflected by the PC waveguide
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Figure 4.4: (a) Waveguide geometry and finite-difference time-domain (FDTD) calculated
magnetic field profile (By) of the TE1 mode. (b) SEM image of the high (r1) reflectivity
waveguide termination. The PC waveguide has a transverse lattice constant Λx = 415 nm,
a longitudinal lattice constant Λz = 536 nm, and length L = 200Λz . (c) Dispersion of the
PC waveguide mode, and the band edges of the mirror termination for momentum along
the waveguide axis (ẑ). The shaded region is the reflection bandwidth of the mirror.

difficult. In order remove effects from multiple reflections, we engineered the waveguide

terminations to have either high or low broadband reflectivity. On one end of the PC

waveguide, shown in Figure 4.4(b), a photonic crystal mirror with high modal reflectivity

(r1) for the TE1 PC waveguide mode was used. This high reflectivity end mirror was formed

by removing the lattice compression of the waveguide while maintaining the transverse

grade in hole radius. The change in lattice compression results in the TE1 PC waveguide

mode lying within the partial bandgap of the high reflectivity end mirror section (Figure

4.4(c)), while the transverse grade in hole radius reduces diffraction loss within the mirror.

On the opposite end of the PC waveguide, a poor reflector with low reflectivity (r2) was

realized by removing (over several lattice constants) the transverse grade in hole radius while

keeping the central waveguide hole radius fixed, resulting in a loss of transverse waveguiding

within the end mirror section and allowing the TE1 PC waveguide mode to diffract into the

unguided bulk modes of the PC.

In the absence of reflections due to the PC waveguide termination (i.e., r1,2 = 0), the
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fiber-PC waveguide junction can be characterized by

⎡
⎣ a+

F (L)

a−PC(0)

⎤
⎦ =

⎡
⎣ t κ′

κ t′

⎤
⎦
⎡
⎣ a+

F (0)

a−PC(L)

⎤
⎦ , (4.1)

where κ and κ′ are coupling coefficients, t and t′ are transmission coefficients, and a+
F (z) and

a−PC(z) are the amplitudes of the forward propagating fundamental fiber taper mode and the

backward propagating TE1 PC waveguide mode, respectively. The coupling region extends

along the z-axis, with z = 0 corresponding to the input and z = L to the output of the

coupler. As illustrated by Figure 4.2, non-zero r1,2 introduce feedback into the system. This

allows input light coupled from the forward propagating fundamental fiber taper mode into

the TE1 PC waveguide mode to be partially reflected by the PC waveguide termination, and

subsequently coupled to the backward propagating fundamental fiber taper mode. In the

presence of this feedback within the PC waveguide, the normalized reflected and transmitted

powers in the fiber taper are given by [89]

T =
∣∣a+

F (L)
∣∣2 =

∣∣∣∣t+
κκ′t′r1r2

1 − r1t′r2t′

∣∣∣∣
2

, (4.2)

R =
∣∣a−F (0)

∣∣2 =
∣∣∣∣ κκ′r1
1 − r1t′r2t′

∣∣∣∣
2

, (4.3)

for a+
F (0) = 1 and a−PC(L) = 0. By measuring T and R, and considering Eqs. (4.2) and

(4.3), we can determine the efficiency of the fiber-PC waveguide coupling as measured by

|κκ′|.
In the measurements presented here, a fiber taper with 2 μm diameter was used to probe

the PC waveguide of Figure 4.4(b). Figures 4.5(a) and 4.5(b) show T and R as a function

of wavelength when the taper is aligned with the PC waveguide at a height of g = 0.20

μm, and indicate that the phase-matched wavelength is λ ∼ 1598 ± 5 nm. Data for T is

normalized by the taper transmission when it is not interacting with the device. Asymmetry

in the fiber taper loss about the coupling region was taken into account by repeating the

measurements with the direction of propagation through the taper and the orientation of the

PC waveguide sample reversed; the geometric mean of the values for R obtained from the

two orientations takes any asymmetry into account. As described in Section 4.3, coupling
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to the guided TE1 mode of the PC waveguide was confirmed by studying the coupling

dependence upon polarization, lateral taper displacement, and fiber taper diameter. Figure

4.5(c) shows T and R at the resonant wavelength of the PC waveguide nearest the phase-

matching condition [the minima and maxima in T (λ) and R(λ)], as a function of taper

height, g, above the PC waveguide. Included in Figure 4.5(c) is the off-resonant (away from

phase-matching) transmission, T off, through the fiber. A maximum normalized reflected

power Rmax ∼ 0.88 was measured at a height of g ∼ 0.25 μm, where the corresponding

transmission was T < 0.01. As can be seen in the wavelength scans of Figure 4.5(a), at this

taper height the Fabry-Pérot resonances due to multiple reflections from the end mirrors

of the PC waveguide are suppressed for wavelengths within the coupler bandwidth due to

strong coupling to the fiber taper. Ignoring for the moment the effects of multiple reflections

in Eq. 4.3, the maximum optical power coupling efficiency is then |κκ′| =
√
Rmax/|r1|, where

the square root dependence upon Rmax is a result of the light passing through the coupler

twice in returning to the backward propagating fiber mode. Assuming the high reflectivity

mirror is perfect (unity reflection), for the measured Rmax = 0.88 this implies 94% coupling

of optical power from taper to PC waveguide (and vice-versa).

By further comparison of T (g) and R(g) with the model given above, this time including

feedback within the PC waveguide, we find that the high reflectivity PC waveguide end-

mirror is imperfect and that Rmax is in fact limited by mirror reflectivity, not the efficiency

of the coupling junction. For this comparison, we take the elements of the coupling matrix to

satisfy the relations |t|2 + |κ|2 = 1, κ′ = κ, and t′ = t∗ of an ideal (lossless) coupling junction

[89]. For the phase matched contradirectional coupling considered here, the dependence of

κ on g can be approximated by |κ(g)| = tanh [κ⊥,0 exp(−g/g0)L] [78], where κ⊥,0 and g0

are constants. Substituting these relations into Eqs. (4.2) and (4.3), T and R can be fit

to the experimental data with r1,2, κ⊥,0 and g0 as free parameters2. Note that waveguide

loss can also be included in the model; however, it is found to be small compared to the

mirror loss. Figure 4.5(c) shows the fits to the data for g ≥ 0.20 μm; for g < 0.20 μm non-

resonant scattering loss is no longer negligible and the ideal coupling junction model breaks

down. Note that the off-resonant scattering loss is observed to effect the reflected signal at

a smaller taper-PC waveguide gap than for the transmitted signal, indicating that within

the coupler bandwidth 1 − T off is an overestimate of the amount of power scattered into
2We take r1t

′r2t
′/|r1t

′r2t
′| = 1, corresponding to a resonant condition within the PC waveguide..
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Figure 4.5: (a) Reflection and (b) transmission of the fiber taper as a function of wavelength
for a taper height of 0.20 μm. Both signals were normalized to the taper transmission with
the PC waveguide absent. (c) Measured taper transmission minimum, reflection maximum,
and off-resonant transmission as a function of taper height. Also shown are fits to the data,
and the resulting predicted coupler efficiency, |κ|2.

radiation modes. From the fits in Figure 4.5(c), the PC waveguide end-mirror reflectivities

are estimated to be |r1|2 = 0.90 and |r2|2 = 0.52, and the optical power coupling efficiency

(|κ|2) occurring at Rmax (g = 0.25 μm) is approximately 97%.

4.3 Real- and k-space waveguide probing

In this section, we demonstrate that by utilizing the micron-scale lateral size and the dis-

persion of the fiber taper, the evanescent coupling technique can be used for mapping the

bandstructure and spatial profile of PC waveguide modes. A device similar to that studied

in Sec. 4.2 is characterized in this section, but with two important differences: (i) It does
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not have a high reflectivity end mirror, and (ii) the Si slab thickness is varied from 340 nm

to 300 nm during the testing, in order to study the dispersive properties of the waveguide

modes, as described below.

4.3.1 Bandstructure mapping

Figure 4.6(a) shows an approximate bandstructure of the TE-like modes of the host com-

pressed square lattice PC slab whose dominant Fourier components are in the direction of

the waveguide, and that will consequently couple most strongly with the fundamental fiber

taper mode. Superimposed upon this bandstructure are the important donor -type defect

waveguide modes. In addition to the dispersion of the TE1 mode studied in Sec. 4.2, which

has a negative group velocity and originates from the conduction band edge, the dispersion

of a defect mode labeled TE2, which has positive group velocity and originates from the

second order (in the vertical direction) valence band-edge, is shown. A typical fiber taper

dispersion curve is also shown, lying between the air and silica light lines.

In Figure 4.7(a-b), 3D FDTD simulations were used to accurately calculate the PC

waveguide bandstructure in the regions where phase-matching to the fiber taper is expected

to occur. The FDTD-calculated in-plane magnetic field profiles of the TE1 and TE2 PC

waveguide modes (taken in the mid-plane of the dielectric slab) near their respective phase-

matching points are shown in Figs. 4.6(b,c). Although one can couple to either of the TE1 or

TE2 modes, the TE1 mode is of primary interest here because of its fundamental nature in

the vertical direction and its similar properties to that of the high-Q cavity mode discussed

in Ch. 2.

In order to probe the bandstructure of the PC waveguide, the transmitted power through

the fiber taper was monitored as a function of wavelength, taper position relative to the

PC waveguide, and taper diameter. By varying the position along the fiber taper of the

interaction region between the PC waveguide and taper (as measured by lc, the distance

from the fiber taper diameter minimum), the diameter (d) of the fiber taper, and hence the

propagation constant (β) of the fiber taper mode interacting with the PC waveguide mode,

could be tuned. Tuning from just below the air light-line (d = 0.6 μm, neff = βc/ω ∼ 1.05),

to just above the silica light-line (d = 4.0 μm, neff ∼ 1.40) was possible. Figure 4.7(c) shows

the taper transmission as a function of wavelength and sample position (lc) when the taper

is centered above the PC waveguide at a height g ∼ 700 nm from the PC waveguide surface.
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Figure 4.6: (a) Approximate bandstructure of the PC waveguide studied in Sec. 4.3. Only
the TE-like modes that couple most strongly with the fiber taper are shown. The dispersion
of a typical fiber taper is also indicated. (b) FDTD calculated magnetic field profile for the
TE1 mode, taken in the mid-plane of the dielectric slab. (c) Same as (b), but for the TE2

mode.

Resonances corresponding to both the TE1 counter- and TE2 co-propagating modes can be

identified. SEM measurements of the taper diameter as a function of position (lc) were used

to calculate the propagation constant of each resonance, allowing the PC waveguide modes’

dispersion to be plotted [Fig. 4.7(e)]. The measured bandstructure is in close agreement

with the FDTD calculated dispersion of Fig. 4.7(a), replicating both the negative group

velocity of the TE1 mode and the anti-crossing behavior of the odd vertical parity TE2 and

TM1 modes. Figures 4.7(d,f) show analogous data obtained by probing the sample after

the Si slab thickness, tg, has been thinned using a short ICP-RIE dry etch to better isolate

the TE1 mode in ω−β space. As predicted by the FDTD simulation (Fig. 4.7(b)), the TE1

mode is seen to shift slightly higher in frequency due to the sample thinning, whereas the

higher-order TE2 mode shifts more quickly with slab thickness and is effectively “frozen”

out of the laser scan range.

As in Sec. 4.2, the dependence of the waveguide power transfer on coupling strength,
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Figure 4.7: 3D FDTD calculated dispersion of the TE1 (dotted line), TE2 (dashed line),
and TM1 (dot-dashed line) modes for the (a) un-thinned (tg = 340 nm), and (b) thinned
(tg = 300 nm) graded lattice PC waveguide membrane structure (nSi = 3.4). Measured
transmission through the fiber taper as a function of wavelength and position along the
tapered fiber for (c) un-thinned sample and (d) thinned sample (different tapers were used
for the thinned and un-thinned samples, so the transmission versus lc data cannot be com-
pared directly). Transmission minimum (phase-matched point) for each mode in the (e)
un-thinned and (f) thinned sample as a function of propagation constant. In (a-b), the
lightly shaded regions correspond to the tuning range of the laser source used.

and the overall efficiency of the coupling process were studied by varying the gap between

the fiber taper and PC waveguide. Figure 4.8(a) shows the transmission through the fiber

taper, with the coupling region occurring at a taper diameter of d = 1.9 μm for varying

taper heights above the thinned PC waveguide. Figure 4.8(b) shows the same measurement,

but with the coupling region occurring at a taper diameter of d = 1.0 μm, and for a PC

waveguide with slightly smaller nominal hole size. In both cases, the central resonance
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Figure 4.8: Coupling characteristics from the fundamental fiber taper mode to the TE1 PC
waveguide mode of the thinned sample (tg = 300 nm). Transmission versus wavelength for
(a) 1.9μm and (b) 1.0 μm diameter taper coupling regions for varying taper-PC waveguide
gap, g. Transmission in (a,b) has been normalized to the transmission through the fiber-
taper in absence of the PC waveguide.

feature occurring around λ = 1600 nm is the coupling to the TE1 mode of the PC waveguide.

The coupler bandwidth was 20 nm for coupling with small diameter taper regions (d ∼
1.0 μm) and less than 10 nm for coupling to regions of large taper diameter (d ∼ 1.9 μm).

This effect has two main contributions: the variation of the TE1 PC waveguide mode group

velocity at different points in the bandstructure (|ng| = |c δβ/δω| ∼ 4 - 6); and the variation

in the taper diameter and, hence, propagation constant along the length of the 100 μm PC

waveguide, (δβ/δd ∼ (0.084, 0.36)ω/c μm−1, for d = (1.9, 1.0) μm).

4.3.2 Real-space mapping

The micron-scale lateral extent of the fiber taper was also used as a near-field probe of the

localized nature of the PC waveguide modes. Fig. 4.9(a) shows the coupling dependence

of the TE1 PC waveguide mode as a function of lateral displacement of the taper from

the center of the PC waveguide (Δx). The full-width at half-maximum of 1 − Tmin versus

Δx (for a 1.0 μm diameter taper coupling region) was measured to be ∼ 1.84 μm, in close

agreement with the value (2.08 μm) obtained using a simple coupled mode theory from Ch.

2. When the taper is displaced laterally, coupling to a second resonance [see Fig. 4.9(b)] is

observed. This resonance has dispersion that is similar to that of the TE1 mode, but shifted
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Figure 4.9: Coupling characteristics from the fundamental fiber taper mode to the TE1 PC
waveguide mode of the thinned sample (tg = 300 nm). (a) 1 − Tmin versus lateral position
(Δx) of the 1.0 μm diameter fiber taper relative to the center of the PC waveguide (g = 400
nm). (b) Transmission versus wavelength for Δx ∼ 1 μm. Transmission in (a-b) has been
normalized to the transmission through the fiber-taper in absence of the PC waveguide.

∼ 30 nm lower in wavelength, and corresponds to coupling to the odd (about x) counterpart

to the TE1 mode. The coupling is a result of the broken mirror symmetry about x induced

by the taper when |Δx| > 0, and is a further demonstration of the local nature of the taper

probe.

4.4 Efficient coupling into PC microcavities

Having demonstrated above that nearly ideal coupling from a fiber taper into a well char-

acterized PC waveguide mode is possible, the next step was to integrate the fiber-coupled

PC waveguide with a PC microcavity, and efficiently fiber couple light into and out of the

wavelength scale resonator. Following the design presented in Ch. 2, and using the same

fabrication techniques described Sec. 4.1.3 to realize the PC waveguide devices discussed

above, integrated PC cavity-PC waveguide devices were fabricated in a tg = 340nm thick

layer of Si. A typical device is shown in Fig. 4.10, which also shows regions in which un-

patterned silicon was removed to allow taper probing of the device. In addition to isolating

the PC devices on a mesa of height ∼ 10 μm, a trench extending diagonally from the cavity
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Figure 4.10: SEM image of an integrated PC waveguide-PC cavity sample. The PC cavity
and PC waveguide have lattice constants Λ ∼ 430 nm, Λx ∼ 430 nm, and Λz ∼ 550 nm. The
surrounding silicon material has been removed to form a diagonal trench and an isolated
mesa structure to enable fiber taper probing.

was defined. This allowed the cavity to be probed directly by the fiber taper, independently

from the waveguide, as in Ref. [11]. However, as described below, much more efficient cou-

pling to the PC cavity was also performed by aligning the fiber taper along the axis of the

PC waveguide and coupling through the PC waveguide into the PC cavity, as described

theoretically in Ch. 2

Direct taper-cavity probing

With the taper aligned with the etched trench, the spectral and spatial properties of the

PC cavity modes were probed directly [Fig. 4.11(a), taper position (ii)], as in Ref. [11]. The

trench prevented the fiber taper from interacting with the unpatterned silicon, and light

was coupled directly from the fiber taper into the high-Q PC cavity modes. Although this
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Figure 4.11: (a) Illustration of the device and fiber taper orientation for (i) efficient PC
waveguide mediated taper probing of the cavity, and (ii) direct taper probing of the cavity.
(b) Normalized depth of the transmission resonance (ΔT ) at λo ∼ 1589.7, as a function
of lateral taper displacement relative to the center of the PC cavity, during direct taper
probing (taper in orientation (ii)).

coupling is inefficient (ΔT =1-10%, I � 1), it allowed the frequency of the A0
2 cavity mode

to be independently determined.

In the device studied here, when the taper was aligned with the trench and positioned

∼ 500 nm above the cavity, a sharp dip in T was observed at a wavelength of λo ∼ 1589.7

nm. It was confirmed that this was due to coupling to a localized cavity mode by studying

the depth of the resonance as the taper was displaced laterally (|Δx| > 0) relative to

the center of the PC-cavity. The measured normalized resonance depth as a function of

taper displacement is shown in Fig. 4.11(b), and has a halfwidth of 480 nm, consistent

with previous studies of the localized A0
2 cavity mode [11]. To further aid with the initial

differentiation between resonant features in the transmission that are due to cavity modes

from those that are due to delocalized Fabry-Pérot reflections within the PC lattice, it

is useful to monitor the reflected signal in the fiber taper during this step. Because of

their localized nature, PC cavity modes couple into the backward and forward propagating

fiber taper modes with equal efficiency, usually resulting in distinct features in the reflected

signal.
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PC waveguide mediated taper-cavity probing

The fiber taper was then aligned above and parallel to the PC waveguide (Fig. 4.11(a), taper

position (i)). At taper-PC waveguide phase-matching wavelengths, T decreases resonantly

as power is coupled from the taper into the PC waveguide; coupling to the TE1 PC waveg-

uide mode was verified by studying the dispersive and spatial properties of the coupling, as

in Sec. 4.3. The fiber taper-PC waveguide coupling bandwidth was adjusted to overlap with

the wavelength of the A0
2 cavity mode using two mechanisms. Coarse tuning was obtained

by adjusting, from sample to sample, the nominal hole size and longitudinal lattice constant

(Λz) of the PC waveguide. Fine tuning of the coupler’s center wavelength over a 100 nm

wavelength range was obtained by adjusting the position, and, hence, the diameter of the

fiber taper region coupled to the PC waveguide [47]. Different degrees of cavity loading

were also studied by adjusting the number of periods (9-11) of air holes between the center

of the PC cavity and the end of the PC waveguide. In the device studied below (shown in

Fig. 4.10) the PC cavity was fabricated with nine periods on the side adjacent to the PC

waveguide and 18 periods on the side opposite the PC waveguide .

Figure 4.12(a) shows the normalized reflected fiber signal, R, for a taper diameter d ∼ 1

μm, which aligns the taper-PC waveguide coupler bandwidth with the A0
2 PC cavity mode

wavelength. This signal is normalized to the taper transmission in absence of the PC

waveguide, and since light passes through the taper-PC waveguide coupler twice, the signal

is given by R = η2
wgRo, where ηwg is the taper-PC waveguide coupling efficiency. Note that

both Ro and ηwg are frequency dependent. In Fig. 4.12(a), the peak in R around λ ∼ 1590

nm corresponds to the phase-matched point of the fiber taper and the TE1 PC waveguide

mode. From the peak value of Rmax = 0.53, a maximum taper-PC waveguide coupling

efficiency of ηwg ∼ 73% was estimated, where the off-resonant Ro is taken to be unity.

This value is lower than the 97% obtained in Sec. 4.2 due to coupling to additional higher-

order (normal to the Si slab) PC waveguide modes that interfere with the coupling to the

fundamental TE1 PC waveguide mode for strong taper-PC waveguide coupling. This can be

avoided in future devices by increasing the nominal PC waveguide hole size relative to that

in the PC-cavity or reducing the Si slab thickness, effectively freezing out the higher-order

PC waveguide modes [47].

The sharp dip in reflection at λ ∼ 1589.7 nm, shown in detail in Fig. 4.12(b), corresponds
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Figure 4.12: (a) Measured reflected taper signal as a function of input wavelength (taper
diameter d ∼ 1 μm, taper height g = 0.80 μm). The sharp dip at λ ∼ 1589.7 nm, highlighted
in panel (b), corresponds to coupling to the A0

2 cavity mode. (c) Maximum reflected signal
(slightly detuned from the A0

2 resonance line), and resonance reflection contrast as a function
of taper height. The dashed line at ΔR = 0.6 shows the PC waveguide-cavity drop efficiency,
which is independent of the fiber taper position for g ≥ 0.8 μm.

to resonant excitation of the A0
2 PC cavity mode, as confirmed by the direct fiber probing of

the cavity described above. The other broad features in R correspond to weak Fabry-Pérot

effects of the PC waveguide, and weak interference between the TE1 mode and higher order

PC waveguide modes. The reflected fiber taper signal as a function of taper-PC waveguide

gap height, g, is shown in Fig. 4.12(c). For g ≥ 0.8 μm, Rmax increases with decreasing

g as the coupling from the fiber taper to the TE1 PC waveguide mode becomes stronger.

The resonance contrast, ΔR = 1−Ro(ωo) = (Rmax−R(ωo))/Rmax, remains constant, since

the PC waveguide-cavity interaction is independent of the fiber taper to PC waveguide

coupling. For smaller taper-PC waveguide gap heights, g < 0.8 μm, fiber taper coupling

into higher order PC waveguide modes and radiation modes becomes appreciable, and Rmax

decreases for decreased taper height. The corresponding increase in ΔR seen in Fig. 4.12(c)



55

is a result of interference between the TE1 mode and higher-order PC waveguide modes

that are excited and collected by the taper, and is not a manifestation of improved coupling

between the TE1 PC waveguide mode and the A0
2 PC cavity mode. Direct coupling between

the taper and the cavity is negligible here.

From a Lorentzian fit to the A0
2 cavity resonance dip in Ro(ω), the normalized on-

resonance reflected power is estimated to be Ro(ωo) = 0.40, corresponding to an undercou-

pled K = 0.225. The loaded quality factor as measured by the reflected signal linewidth is

QT = 3.8×104. Substituting these values into Eq. (3.4) gives the cavity mode quality factor

due to parasitic loading and intrinsic losses, Qi+P = 4.7 × 104. Previous measurements of

similar PC cavity devices without an external PC waveguide load yielded intrinsic quality

factors of 4×104 [11], strongly indicating that the parasitic loading of the PC cavity by the

PC waveguide is minimal, and I ∼ 1 for this PC cavity-waveguide system. The high ideality

of this coupling scheme should be contrasted with previous direct taper measurements of

the PC cavities [11], whose coupling was limited to a maximum value, K = 0.018, with an

ideality of I ∼ 0.035 (corresponding to a resonance depth of 7%, QT = 2.2 × 104).

The efficiency of power transfer from the fiber taper into the PC cavity is given by

ηin = ηwgΔR ≈ 44%. This corresponds to the total percentage of photons input to the

fiber taper that are dropped by the PC cavity. Based upon these measurements, in the

case of an internal cavity source, such as an atom or a quantum dot, the efficiency of light

collection into the fiber taper for this PC cavity system would be ηout = ηwgη0 ≈ 13%

(η0 ≈ 18%). As the tapers themselves are of comparably very low loss, with typical losses

associated with the tapering process less than 10%, these values accurately estimate the

overall optical fiber coupling efficiency. Finally, note that previous measurements of near-

ideal coupling between the fiber taper and PC waveguide indicate that by adjusting the PC

waveguide as described above to improve ηwg, ηin, and ηout can be increased to 58% and

18%, respectively. More substantially, adjustments in the coupling parameter, K, towards

over-coupling by decreasing the number of air-hole periods between the PC cavity and the

PC waveguide can result in significant increases in ηin and ηout, with minimal penalty in

loaded Q-factor for I ∼ 1.
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4.5 Conclusion

The evanescent fiber taper to PC waveguide coupling technique demonstrated is this chapter

provides unprecedentedly high coupling efficiency, as well as a means to study both the

dispersive and spatial properties of bound photonic crystal waveguide modes, and an optical

channel to source high-Q PC microcavities. These results confirm the theoretical predictions

of the previous chapters, and reinforce the utility of fiber tapers as wafer-scale probes for

photonic crystal devices. In the next chapter, we will leverage this technique to study the

nonlinear optical properties the PC microcavity.
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Chapter 5

Nonlinear optics in silicon photonic
crystal cavities

Owing to the ultra-small mode volume and long resonant photon lifetimes of PC cavities,

the resulting stored electromagnetic energy density can be extremely large even for modest

input powers (< mW), resulting in highly nonlinear behavior of the resonant cavity system.

Having demonstrated in Ch. 4 a technique for efficiently coupling light into a small mode

volume, high-Q, silicon PC cavity, we now have the tools necessary to study nonlinear

optical properties intrinsic to these devices.

In this chapter, we present results demonstrating optical bistability in a silicon PC cavity

for 100 μW dropped CW cavity power. By comparing a model of the relevant nonlinear

optical process within these devices with the observed results, we are able to understand

which nonlinear effects play the largest role, and extract parameters describing physical

properties of Si within nanophotonic devices. In particular, we predict sub-nanosecond free

carrier lifetimes in the cavity, which, due to the small mode volume and large effective

surface area of these devices, are significantly shorter than are found in bulk Si.

Since the publication of these results in Ref. [25], a number of groups have observed sim-

ilar nonlinear effects in PC microcavities, and have taken advantage of them to implement

low-power high-speed optical switches [26, 90, 91, 92]. In addition, from a technological

perspective, the importance of nonlinear absorption and free-carriers effects in nanopho-

tonic devices fabricated from silicon has continued to grow, as recent progress in optical

modulators [93] and wavelength converters [94, 95] has relied upon engineering devices while

taking these effects into careful consideration.

We begin in Sec. 5.1 by generalizing the linear waveguide-cavity coupling theory of Sec.

3.1 to include nonlinear processes that depend upon the magnitude of the internally stored
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cavity energy. Higher power measurements in which nonlinear effects become apparent are

studied in Sec. 5.2, and the model presented in Sec. 5.1 is used to estimate the scale of the

various nonlinear effects within the silicon PC cavity.

5.1 Modeling nonlinear absorption and dispersion in a mi-

crocavity

In order to account for nonlinear effects one may modify the (linear) analysis of Sec. 3.1

by allowing the various cavity and coupling parameters to depend upon the stored cavity

energy, a reasonably easy quantity to estimate from experimental measurements. In this

section, relevant nonlinear processes are explicitly incorporated into the description of the

cavity response through use of carefully defined effective modal volumes and confinement

factors appropriate to nonlinear processes in high-index contrast photonic crystal structures.

We begin with a description of nonlinear absorption, which tends to drive the steady-state

nonlinear response of the PC cavities studied here.

5.1.1 Nonlinear absorption

Nonlinear absorption adds power dependent loss to the photonic crystal cavity, degrading

the quality factor as the internal cavity energy is increased, which in turn modifies the

coupling efficiency from the PC waveguide loading channel. This effect is incorporated into

the formalism presented in Sec. 3.1 by writing the intrinsic cavity loss rate, γi, explicitly in

terms of its various linear and nonlinear components:

γi(U) = γrad + γlin + γTPA(U) + γFCA(U). (5.1)

At low power, the “cold cavity” loss rate is given by γrad and γlin, which represent loss due

to radiation and linear material absorption, respectively. Power dependent nonlinear loss is

given here by γTPA and γFCA, which represent two-photon and free-carrier absorption, re-

spectively; other nonlinear absorption processes can be included analogously. The coupling

parameter K and the quality factor Qi+P depend on γi, requiring the solution of a system

of self-consistent equations for U in order to determine the on-resonance cavity response for
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a given PC waveguide input power Pi:

U =
4K(U)

(1 +K(U))2
Qi+P (U)

ωo
Pi, (5.2)

K(U) =
γe

o

γi(U) +
∑

j>0 γ
e
j

, (5.3)

ωo

Qi+P (U)
= γi(U) +

∑
j>0

γe
j . (5.4)

Before Eqs. (5.2-5.4) can be solved, explicit expressions for the energy-dependent contribu-

tions to γi are required. Beginning with relations for nonlinear absorption in bulk media,

and taking into account the complicated geometry of the PC cavity, we now derive expres-

sions for γTPA and γFCA. These expressions can be written in terms of the internal cavity

energy, known material parameters, and modal parameters that account for the mode shape

and localization of the PC cavity field.

Two-photon absorption

The 1500 nm operating band of the devices studied in this work lies in the bandgap of the

host silicon material. For the doping densities of the p-type silicon membrane used to form

the PC cavity (ρ ∼ 1 − 3 Ω · cm, NA < 1016 cm−3), free-carrier absorption due to ionized

dopants is small (αfc ∼ 10−2 cm−1). Two-photon absorption, however, is significant[60, 96,

97, 98, 99], especially in the highly localized PC cavities. For a given field distribution, the

(time-averaged) two-photon absorption loss rate at position r can be written as

γTPA(r) = β′(r)
1
2
εon

2(r)E2(r), (5.5)

where E(r) is the amplitude of the complex electric field pattern, E(r), of the resonant

mode of the cavity; εo is the permittivity of free space; and n(r) is the local (unperturbed)

refractive index. The real, physical electric field of the resonant cavity mode can be written

in terms of the complex mode pattern as E(r, t) = (E(r)e−iωot + E∗(r)e+iωot)/2. The

material parameter, β′, describes the strength of the two-photon absorption process, and

can be related to the usual two-photon absorption coefficient, β, that relates intensity to

loss per unit length, by β′ = (c/ng)2β, where c is the speed of light in vacuum and ng is the

group velocity index associated with the measurement of β. Typically, for bulk material
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measurements where waveguiding is minimal and material dispersion is small, ng can be

taken to be equal to n.

In high-index-contrast photonic crystals, E, n, and β′ depend strongly on the spatial

coordinate r. Equation (5.5) describes the local two-photon absorption rate; the effective

modal two-photon absorption rate that characterizes the absorption of the entire cavity

mode is given by a weighted average of the local absorption rate [100, 101],

γTPA =
∫
γTPA(r)n2(r)E2(r)dr∫

n2(r)E2(r)dr
= β′

U

VTPA
, (5.6)

where β′ and VTPA are defined as

β′ =
∫
β′(r)n4(r)E4(r)dr∫
n4(r)E4(r)dr

(5.7)

VTPA =

(∫
n2(r)E2(r)dr

)2∫
n4(r)E4(r)dr

. (5.8)

In a photonic crystal formed by air holes in silicon, β′(r) = β′Si inside the silicon, and

β′(r) = 0 in the air, so that Eq. (5.6) can be written as,

γTPA = ΓTPAβ
′
Si

U

VTPA
(5.9)

ΓTPA =

∫
Si n

4(r)E4(r)dr∫
n4(r)E4(r)dr

, (5.10)

for which
∫
Si only integrates over the silicon region of the PC cavity.

Free-carrier absorption

Although, as mentioned above, the (linear) free-carrier absorption due to the ionized dopants

of the silicon layer used for the PC cavities in this work is negligible on the scale of other

losses, two-photon absorption gives rise to a steady-state population of electron and hole

free-carriers far above this equilibrium value. Two-photon absorption induced free-carrier

absorption thus plays a significant role in the silicon PC cavity nonlinear response. At

position r in the cavity, assuming a simple Drude model, the optical loss rate due to free-

carrier absorption is

γFCA = σ′(r)N(r), (5.11)
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where σ′ is related to the material dependent free-carrier cross-section, σ, by σ′ = σ(c/ng),

and N(r) is the free-carrier density. In silicon, it has been demonstrated experimentally

[102] that this model correctly describes absorption by both electrons and holes, albeit with

unique values of σ′e,h for each carrier type. Here we let N represent the number of electron-

hole pairs and take σ′ = σ′e + σ′h. We neglect the small (< 1 × 1016 cm−3) background

free-carrier hole density due to the ionized acceptors of the p-type Si layer used in this

work.

In general, the derivation of the free-carrier density for a given two-photon absorbed

power distribution requires a microscopic theory that takes into account carrier diffusion,

carrier-carrier scattering effects (Auger recombination, for instance), and, in the highly

porous PC cavities, local surface recombination effects. In lieu of such an analysis, we ap-

proximate the free-carrier density distribution by considering the local two-photon absorbed

power,

N(r) =
τpTPA(r)

2�ωo
, (5.12)

where τ is a free-carrier lifetime, and pTPA(r) is the local absorbed power density due to

two-photon absorption,

pTPA(r) =
1
2
εon

2(r)E2(r)γTPA(r). (5.13)

Equation (5.12) neglects non-local effects due to spatial carrier diffusion by assuming that

N(r) depends only on the power absorbed at position r; however, it does correlate regions of

strong two-photon absorption with high free-carrier density. Also, since τ generally depends

on N and on the proximity to surfaces, τ will have a spatial dependence within the cavity.

We neglect this effect here, and let τ represent an effective free-carrier lifetime for all the

carriers in the cavity region1. Combining Eqs. (5.11), (5.12), and (5.13), an effective modal

free-carrier absorption rate can be written as

γFCA =
τ

2�ωo

∫ (
σ′(r)1

2εon
2(r)E2(r)γTPA(r)

)
n2(r)E2(r)dr∫

n2(r)E2(r)dr
. (5.14)

Substituting Eq. (5.5) for γTPA(r), the modal loss rate due to free-carrier absorption in the
1In using the approximate theory above, in which regions of high two-photon absorbed power are cor-

related with high steady-state carrier density, we better approximate the cavity “volume” of interest, and
consequently the effective free-carrier lifetime better represents the average time a free-carrier stays in the
region of the PC cavity mode.



62

porous silicon photonic crystals considered here can be written as

γFCA = ΓFCA

(
τσ′Siβ

′
Si

2�ωo

U2

V 2
FCA

)
, (5.15)

with effective confinement factor and mode volume defined as

ΓFCA =

∫
Si n

6(r)E6(r)dr∫
n6(r)E6(r)dr

(5.16)

V 2
FCA =

(∫
n2(r)E2(r)dr

)3∫
n6(r)E6(r)dr

. (5.17)

Equations (5.15) and (5.9) represent the total loss rate of photons from the cavity due

to free-carrier and two-photon absorption, respectively. These expressions depend only

on material parameters; modal confinement factors, ΓTPA,FCA; effective mode volumes,

VTPA,FCA; and the internal cavity energy, U . The modal parameters take into account the

non-trivial geometry and field distribution of the cavity mode, and can be determined for

a given mode from FDTD simulations. Including expressions (5.9) and (5.15) in γi, Eqs.

(5.2-5.4) can be solved iteratively for Qi+P and K, which characterize the on-resonance

nonlinear response of the cavity for a given input power.

5.1.2 Nonlinear and thermal dispersion

In addition to modifying the cavity quality factor, large cavity energy densities also modify

the refractive index of the cavity, resulting in a power dependent resonance frequency. Here

we consider the role of the Kerr effect, free-carrier dispersion, and heating due to linear

and nonlinear absorption, on the dispersive response of the PC cavity. The refractive index

shift induced through the processes considered here is a function of both space and internal

cavity energy. The corresponding renormalization of the resonant cavity frequency can be

approximated using first order perturbation theory as

Δωo(U)
ωo

= −Δn(U), (5.18)
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where the normalized modal index shift, Δn(U), is given by an average of the (normalized)

local refractive index shift, Δn(r)/n(r):

Δn(U) =

∫ (Δn(r)
n(r)

)
n2(r)E2(r)dr∫

n2(r)E2(r)dr
. (5.19)

This energy dependent frequency shift, together with the energy dependent loss described

in Sec. 5.1.1, modifies the Lorentzian frequency dependence of the cavity response:

Ro(ω) = 1 − 4K(U)
(1 +K(U))2

(δω/2)2

(ω − ωo − Δωo(U))2 + (δω(U)/2)2
. (5.20)

For a given input power Pi and frequency ω, U is given by

U =
Pd

γi+P
= (1 −Ro(ω))

Qi+P (U)
ωo

Pi, (5.21)

where Pd = (1−Ro(ω))Pi is the frequency dependent dropped power in the resonant cavity.

For input powers sufficient to shift Δωo >
√

3δω/2, the frequency response described by

Eq. (5.20) is bistable, and can be exploited for applications including temperature locking

and optical switching [103, 24, 104]. In order to solve Eq. (5.20) for the cavity response, it

is necessary to derive expressions for each of the constituents of Δn as a function of U . We

begin with the Kerr effect.

Kerr effect

The time-averaged local index shift induced by the Kerr effect is

ΔnKerr(r) = n′2(r)
1
2
εon

2(r)E2(r), (5.22)

where n′2(r) is a material parameter, and is related to the usual n2 coefficient relating

intensity to refractive index shift [105] by n′2 = (c/ng)n2. In a silicon PC cavity, neglecting

the tensor nature of the third order susceptibility, the normalized modal index change due

to the Kerr effect can be written as

ΔnKerr(U) =
ΓKerr

nSi

(
n′2,Si

U

VKerr

)
, (5.23)
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with n′2,Si and nSi being the Kerr coefficient and linear refractive index of Si, respectively.

A similar, more general expression, is given in Ref. [106]. As both the Kerr effect and two-

photon absorption (TPA) share the same dependence on field strength, the confinement

factor and effective mode volume associated with the Kerr effect are equal to those of TPA:

ΓKerr = ΓTPA (5.24)

VKerr = VTPA. (5.25)

Free-carrier dispersion

Dispersion due to free-carrier electron-hole pairs is given by2

ΔnFCD(r) = −ζ(r)N(r), (5.27)

where ζ(r) is a material parameter with units of volume. Following the derivation of γFCA,

the normalized modal index change is

ΔnFCD(U) = −ΓFCD

nSi

(
τζSiβ

′
Si

2�ωo

U2

V 2
FCD

)
, (5.28)

with

ΓFCD = ΓFCA (5.29)

VFCD = VFCA. (5.30)

Thermal dispersion

It is also necessary to consider the effect of thermal heating due to optical absorption on

the refractive index of the PC cavity. The normalized modal index shift is given by

Δnth =

∫ (
1

n(r)
dn
dT (r)ΔT (r)

)
n2(r)E2(r)dr∫

n2(r)E2(r)dr
. (5.31)

2Experimental results [102] indicate that this Drude model must be modified slightly to accurately de-
scribe the contribution from hole free-carriers in silicon, which scales with N0.8

h :

ΔnFCD,Si = − �
ζe,SiNe + (ζh,SiNh)0.8

�
. (5.26)

For simplicity, we ignore this in the following analysis, and note that the modification is straightforward,
and is included in later numerical results.
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Here ΔT (r) is the local temperature change due to the absorbed optical power density

within the cavity, and dn/dT is a material dependent thermo-optical coefficient. Neglect-

ing differences in the spatial distributions of the contributions to ΔT (r) from the various

absorption processes, and assuming that ΔT (r) scales linearly with absorbed power density

for a fixed spatial heating distribution, the modal thermal shift can be written as

Δnth(U) =
Γth

nSi

(
dnSi

dT

dT

dPabs
Pabs(U)

)
(5.32)

where,

Pabs(U) =
(
γlin + γTPA(U) + γFCA(U2)

)
U. (5.33)

Γth =
∫
Si n

2E2dr/
∫
n2E2dr is a confinement factor that accounts for the fact that only

the semiconductor experiences an appreciable index shift, and dT/dPabs is the thermal

resistance of the PC cavity, which relates the mean modal temperature change to the total

absorbed power. In what follows, we lump these two factors together, yielding an effective

thermal resistance of the PC cavity.

From Eqs. (5.23), (5.28), and (5.32), the total modal index change and corresponding

resonance frequency shift can be determined as a function of cavity energy. The nonlinear

lineshape described by Eq. (5.20) can then be calculated iteratively as a function of input

power when combined with the power dependent loss model of sub-section 5.1.1. This is

used below in Sec. 5.2 to estimate the scale of the different nonlinear processes in silicon

PC microcavities.

As a final comment, we note that the above analysis has assumed steady-state optical,

carrier, and thermal distributions, whereas the transient response of such structures is of sig-

nificant practical interest for applications such as high speed switching. Although the Kerr

nonlinearity, two-photon absorption, free-carrier absorption, and free-carrier dispersion all

depend on the electronic structure of the semiconductor material, the sub-micron geometry

typical of photonic crystals can also play an important role. For example, the surfaces

introduced by the slab and air hole geometry of planar PC cavities can significantly modify

the free-carrier lifetime, τ , compared to that in bulk material [103, 107, 108]. Similarly,

the thermal response time scales inversely with the spatial scale of the optically absorbing
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region, and depends upon the geometry and the material dependent thermal properties of

a given structure [105]. Although not the focus of the work presented here, an inkling of

these effects is seen in the sub-nanosecond estimated effective free-carrier lifetime in the

silicon PC cavity studied below.

5.2 Nonlinear measurements

The nonlinear response of the PC cavity was studied by measuring the dependence of

the reflected signal lineshape on the power input to the PC waveguide. Figure 5.1 shows

wavelength scans of the cavity response, Ro, for varying power, Pt, input to the fiber taper.

Each scan was obtained by dividing the normalized reflected signal, R, by the slowly varying

taper-PC waveguide coupler lineshape, η2
wg(ω). In all of the measurements, the fiber taper

was aligned near the optimal taper-PC waveguide coupling position, and the wavelength of

the laser source was scanned in the direction of increasing λ. Pt was determined by taking

taper insertion loss into account, and measuring the taper input power with a calibrated

power meter.

Increasing the power in the fiber taper, and consequently the PC waveguide, results in

three readily observable changes in Ro: (i) a decrease in the resonance contrast, ΔRo; (ii)

a shift Δωo in the resonance frequency ωo; and (iii) the broadening and asymmetric distor-

tion of the resonance lineshape, eventually leading to a “snap” in the reflection response

characteristic of bistability [109]. Here we use the theory presented in Sec. 5.1 to show that

these features are due to nonlinear absorption and dispersion in the PC cavity.

Figure 5.2(a) shows Pd, the on-resonance power dropped into the PC cavity, as a function

of Pi, the power incident on the cavity from the PC waveguide. Pd is measured from

Pd = ΔRo(Pi)Pi, and Pi is related to the taper input power by Pi = ηwg(ωo)Pt. For

small Pi, Pd increases with a constant slope equal to the “cold cavity” value of ΔRo = 0.60

measured in Sec. 4.4. For larger Pi, Pd becomes sub-linear versus Pi, as loss due to nonlinear

absorption becomes appreciable compared to the other loss channels of the PC cavity. In

the context of the analysis of Sec. 5.1, γi increases with increasing Pd, degrading K, and

decreasing ΔRo (for K < 1). From the “cold cavity” η0 and QT measured in the previous



67

Wavelength (nm)

1589.5 1589.6 1589.7 1589.8 1589.9 1590.0 1590.1 1590.2

Ro

0.4

0.9

1.0

0.8

0.5

0.6

0.7

1.2E-1 mW

2.0E-1 mW

4.5E-1 mW
6.6E-1 mW

8.8E-1 mW

8.1E-4 mW

2.1E-2 mW

Figure 5.1: (a) Measured cavity response as a function of input wavelength, for varying PC
waveguide power (taper diameter d ∼ 1 μm, taper height g = 0.80 μm).

section, the power dependentQi+P (Pi) can be extracted from ΔRo(Pi) through the relation:

Qi+P (Pi) = K(ΔRo(Pi))
QT (Pi = 0)
η0(Pi = 0)

. (5.34)

Equation (5.34) is useful for powers where nonlinear effects distort the Lorentzian lineshape,

and λo/δλ is not an accurate measure of QT (Pi). Using Eqs. (5.34) and (3.7), the internal

cavity energy, U , can be calculated from Pi and ΔRo.

Figure 5.2(b) shows a plot of the measured Δλo, the resonance wavelength shift, as a

function of U 3. This plot has several noteworthy properties: First, the wavelength shift

is nonlinear in U , indicating that nonlinear processes such as free-carrier dispersion and

heating through nonlinear absorption must be taking effect. Also, for small U , the resonance

wavelength is seen to blue shift. In the 1550 nm wavelength band of operation, both dnSi/dT

and n2,Si are > 0, while d(ΔnFCD)/dU < 0, indicating that free-carrier dispersion is the

3Note that the sharp transition edge associated with optical bistability occurs at the cavity resonance
wavelength when scanning from blue to red, thus an accurate measure of Δλo can be made.
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Figure 5.2: (a) Power dropped (Pd) into the cavity as a function of power in the PC
waveguide (Pi). The dashed line shows the expected result in absence of nonlinear cavity
loss. (b) Resonance wavelength shift as a function of internal cavity energy. Solid blue lines
in both Figs. show simulated results.

dominant dispersive process at low input powers. For U > 0.34 fJ (Pd > 10 μW), the

resonance wavelength begins to red shift, indicating that thermal or Kerr effects dominate

for large internal cavity energy. Also, note that for a stored cavity energy as low as U ∼ 3

fJ (Pd ∼ 100 μW) the cavity response is bistable with Δλo = 35 pm ∼ √
3δλ/2.

In order to estimate the contributions of the various nonlinear processes to the effects

discussed above, the absorptive, Pd(Pi), and dispersive, Δλ(Pi), data were fit using the

model presented in Sec. 5.1. Specifically, Eqs. (5.2-5.4) were solved for Pd and U as a

function of Pi, and Eq. (5.18) was used to calculate Δλo. The free parameters in this model

were taken as: (i) the effective free-carrier lifetime, τ ; (ii) the effective thermal resistance

of the PC cavity, ΓthdT/dPabs; and (iii) the fraction of the “cold cavity” loss that is due

to linear absorption (as opposed to radiation), ηlin = γlin/(γlin + γrad). The material and

modal constants used are listed in Table 5.1.
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Table 5.1: Nonlinear optical coefficients for the Si

photonic crystal microcavity.

Parameter Value Units Source

VTPA 4.90 (λo/nSi)3 FDTDb

VFCA 3.56 (λo/nSi)3 FDTDb

ΓTPA 0.982 - FDTDb

ΓFCA 0.997 - FDTDb

nSi 3.45 - [110, 102]

σSi 14.5 × 10−22 m2 [110, 102]

ζe
Si 8.8 × 10−28 m3 [110, 102]

ζh
Si 4.6 × 10−28 m3 [110, 102]

n2,Si 4.4 × 10−18 m2 · W−1 [96]

βSi 8.4 × 10−12 m · W−1 [96]a

dnSi/dT 1.86 × 10−4 K−1 [111]

a Average of the two quoted values for Si〈110〉
and Si〈111〉.

b Calculated from FDTD generated fields of the

A0
2 cavity mode of the graded square lattice

cavity studied here.

As has been observed in studies of silicon optical waveguides [97], we find that a strong

dependence of τ on carrier density is required for our model, to accurately reproduce both

the dispersive and absorptive data represented in Figs. 5.3(a) and (b). In order to account

for a carrier density dependent lifetime in our model the following procedure was used:

With ΓthdT/dPabs and ηlin held fixed, τ(Pi) was determined for each input power from a

least squares fit to Δλo(Pi) and Pd(Pi). Since there are two data points for each input

power, one dispersive and one absorptive, the optimum τ(Pi) has a non-zero residual error.
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Figure 5.3: (a) Simulated effective quality factors for the different PC cavity loss channels as
a function of power dropped into the cavity. (b) Contributions from the modeled dispersive
processes to the PC cavity resonance wavelength shift as a function of power dropped
into the cavity. (Simulation parameters: ηlin ∼ 0.40, ΓthdT/dPabs = 27 K/mW, τ−1 ∼
0.0067 + (1.4 × 10−7)N0.94 where N has units of cm−3 and τ has units of ns.)

This procedure was repeated for a range of values for ΓthdT/dPabs and ηlin. For a fixed

value of ηlin, the fits were robust in ΓthdT/dPabs with the sum of the least square residual

of τ(Pi) clearly minimized for an optimal value of ΓthdT/dPabs. This procedure, however,

was only found to constrain ηlin > 0.15. Within this range of ηlin the quality of the fits

does not change significantly, with the optimal functional form of τ changing slightly and

the optimal value of ΓthdT/dPabs varying between ∼ 15 − 35 K/mW. Based on estimates

of ηlin from studies of loss in silicon microdisk resonators fabricated using the same SOI

wafers and the same processing techniques [44], and by comparing the etched surface area

seen by the PC cavity mode to that seen by a microdisk mode, we chose to use ηlin ∼ 0.40

for the PC cavity. With this value of ηlin the optimal value of the effective cavity thermal

resistance, ΓthdT/dPabs, was found to be 27 K/mW, of the same order of magnitude as the

result calculated in Ref. [112] for a similar membrane structure. Finally, the point-by-point

least-squared optimum values of τ(Pi) were then fit as a function of the effective free-carrier

density N , using a curve of the form τ−1 = A + BNα . Using this τ(N), smooth fits to

measured Pd(Pi) and Δλ(Pi) were obtained, shown as solid blue lines in Fig. 5.2.

Fig. 5.3 shows the various components of the total cavity loss rate, and resonance shift,
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Figure 5.4: Dependence of free-carrier lifetime on free-carrier density (red dots) as found
by fitting Δλo(Pi) and Pd(Pi) with the constant material and modal parameter values of
Table 5.1, and for effective PC cavity thermal resistance of ΓthdT/dPabs = 27 K/mW and
linear absorption fraction ηlin = 0.40. The solid blue line corresponds to a smooth curve
fit to the point-by-point least-squared fit data given by τ−1 ∼ 0.0067 + (1.4 × 10−7)N0.94,
where N is in units of cm−3 and τ is in ns.

for the parameters used in the fits to the measured data. It can be seen that although TPA

does not dominate the PC cavity response, the free-carriers it generates and the resulting

free carrier dispersion and absorption drive the nonlinear behavior of the silicon PC cavity

at low and high input powers, respectively. The fit effective free-carrier lifetime, shown in

Fig. 5.4, shows similar characteristics to that obtained by Liang et al. [97], demonstrating

a significant fall-off in τ for large N , but with a smaller saturated lifetime. Both the

pronounced decay in τ and the low ∼ 0.5 ns value of the high-carrier density free-carrier

lifetime are significantly different from that found in bulk Si, and are most likely related to

carrier diffusion and surface effects owing to the extremely large surface-to-volume ratio of

the PC cavity, the small length scales involved (∼ 200 nm feature size), and the small size

scale of the optical mode [107]. This small effective free-carrier lifetime is consistent with

other recent experimental results of highly porous silicon optical structures [99, 103, 108].

It should, however, be noted that the bulk Si TPA coefficient was used in modeling the

nonlinear response of the PC cavity, which, given the above comments, may not be accurate
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due to surface modification of TPA. As the effects of free-carrier lifetime and two-photon

absorption on the behavior of the dispersive and absorptive nonlinear response of the PC

cavity are somewhat intertwined, further studies will be necessary to concretely separate

these two phenomena in porous Si structures such as the photonic crystals of this work.

5.3 Conclusion

In this chapter, the evanescent coupling scheme presented in Ch. 4 was exploited to probe

the steady-state nonlinear optical properties of a PC cavity. The influence of two-photon

absorption, free-carrier absorption and dispersion, Kerr self-phase modulation, and thermo-

optic dispersion, on the response of the PC cavity was considered theoretically. Optical

bistability at fiber input powers of 250 μW was measured, and by fitting the theoretical

model to the data, a free-carrier lifetime within the PC cavity as low as ∼ 0.5 ns was

inferred.
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Chapter 6

Silicon nitride microdisk resonators

The ideal microcavity host material should have a high index of refraction and a low intrin-

sic optical absorption rate over the wavelength range of interest. For telecommunications

applications operating in the 1.3-1.5 μm wavelength band, as in Ch. 4 - 5, it has been

demonstrated in recent years that Si exhibits these properties and can be used to form low

loss ultrasmall cavities [11, 12, 16] and waveguides [113, 58]. At shorter wavelengths, where

Si is opaque and other semiconductors such as AlxGaAs1−x have relatively high optical

absorption rates [114], silicon nitride (SiNx) [115, 116, 117, 118] is an excellent substitute.

In addition to sharing the obvious benefits of the maturity of Si based processing, SiNx

has a moderately high index of refraction (n ∼ 2.0-2.5, compared to n ∼ 3.5 in Si and

n ∼ 1.45 in SiO2) and a large transparency window (6 μm > λ > 300 nm) [119, 118]. This

low absorption loss across visible and near-IR wavelengths allows SiNx to be used with a

diverse set of atomic and atomic-like (colloidal quantum dots, color centers, etc.) species

with optical transitions in the visible wavelength range. The high refractive index of SiNx

permits the creation of a variety of wavelength scale, high-Q microcavity geometries such as

whispering-gallery [120, 121] and planar photonic crystal structures [122]. Combined with a

lower index SiO2 cladding and/or substrate, waveguiding in a SiNx layer [117, 123, 124] can

be used to distribute light within a planar microphotonic circuit suitable for high-density

integration. Similarly, SiNx microphotonic devices are well suited to experiments involving

moderate refractive index environments, such as sensitive detection of analytes contained

in a fluid solution [125] or absorbed into a low index polymer cladding [126].

In this chapter, we study SiNx microdisk cavities at wavelengths near 852.34 nm, corre-

sponding to the D2 transition of Cs atoms, and show that they are suitable for cavity QED

experiments operating within the strong-coupling regime. An outline of the chapter is as
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follows. Fabrication of high quality (Q > 3 × 106), small mode volume (9 μm diameter,

V < 15(λ/n)3) SiNx microdisks is described in Sec. 6.1. Finite-element-method (FEM)

simulations of the optical modes of these devices are presented in Sec. 6.2, and fiber tapers

are used to characterize the optical properties of fabricated structures in Sec. 6.3. A tech-

nique for tuning the resonance wavelength of these device is presented in Sec. 6.4, and a

demonstration of multiple microdisks coupled to a single fiber taper waveguide is presented

in Sec. 6.5. Finally, the prospect of utilizing these microdisks in cavity QED experiments

involving Cs atom and diamond nanocrystals is discussed in Sec. 6.6, where it is predicted

that these devices will simultaneously support GHz photon-emitter coupling rates and sub-

GHz photon decay rates. Portions of the work contained in this chapter originally appeared

in Ref. [17].

6.1 SiNx Microdisk fabrication

An advantage of fabricating devices from SiNx is the availability of existing processing

expertise, originally developed for microelectronics, MEMS, and silicon photonics, that

can be applied to SiNx device fabrication. The SiNx devices studied here were fabricated

from Si wafers with a 250 nm thick SiNx layer deposited on the surface. These wafers are

available commercially from, for example, Silicon Valley Microelectronics Inc. (SVMI), at

a relatively low per-wafer cost. In our wafers, the SiNx layer was grown-to-order using

low pressure chemical vapor deposition (LPCVD), and is stoichiometric in composition

(n ∼ 2.0). Higher index, non-stoichiometric films are also available, as are wafers with

multiple dielectric layers.

Some initial devices were also fabricated from plasma enhanced chemical vapor depo-

sition (PECVD) films that were made in our lab using the Oxford Plasmalab tool. How-

ever, as discussed in Sec. 6.3.3, PECVD material has a high impurity density compared to

LPCVD material, and as a result has more optical absorption [127]. This is primarily due

to the lower hydrogen impurity density of the LPCVD material, and can be reduced with a

high temperature (1000 oC) anneal of the PECVD material, so that its optical performance

approaches that of LPCVD material.

Fabrication of the microdisk resonators follows a similar process flow as the Si photonic

crystal devices in Ch. 4 and 5. An array of highly circular electron beam (e-beam) resist
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Figure 6.1: (a) SEM image of a SiNx microdisk after the ICP-RIE dry etching, but before
the resist removal and undercutting of the underlying Si layer. Note the smoothness of the
sidewalls. (b) SEM image of a fully processed SiNx microdisk.

(ZEP 520 spun on at 3500 rpm) masks are created using e-beam lithography. Depending on

the application, the diameter of individual masks within an array can be varied by adjusting

the electron dose, by adjusting the pattern file input to the electron beamwriting software,

or by scaling the software output signal that controls the SEM during the beamwrite. After

developing the exposed resist, a five minute, 160oC bake is then used to reflow and smooth

any roughness in the mask [16]. This reflow also reduces the verticality of the resist profile,

which, while problematic for photonic crystal devices requiring vertical sidewalls, is not

detrimental to the quality of microdisk resonators. A C4F8/SF6 plasma dry etch is then

used to transfer the resist etch mask into the SiNx layer as smoothly as possible. This

etch is similar in chemistry and power to the Si etch, but with a higher C4F8 flow rate.

The increased C4F8 content results in a smoother etch profile, at the expense of sidewall

verticality and etch rate. Figure 6.1(a) shows a microdisk at this stage of the fabrication

process. After this step, the remaining e-beam resist mask is removed using acetone or a

short H2SO4:H2O2 acid bath. Typically, as with the Si photonic crystal devices, to aid with

future fiber taper testing, the array of etched structures is then covered with a photoresist
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mask, and a long SF6 isolation etch is used to remove ∼ 10-20 μm of the surrounding

SiNx and underlying Si, leaving the etched devices on a mesa. This step is not necessary if

the devices are to be tested using a “dimpled” fiber taper [45]. Next, a heated potassium

hydroxide wet etch is used to selectively remove the underlying 〈100〉 Si substrate. This

undercut etch time is maximized, depending on the microdisk diameter, so that the SiNx

microdisks are supported by a sub-micron diameter Si pillar, as shown in Fig. 6.1(b). It is

important to minimize the size of this pillar to prevent it from overlapping with the field of

the microdisk whispering gallery modes, since Si has a higher refractive index than SiNx and

is absorbing at near-visible wavelengths, resulting in significant radiation and absorption

loss. A final cleaning step to remove organic materials from the disk surface was performed

using a H2SO4:H2O2 acid etch, followed by a short (30-60 s) dilute (20:1) HF etch to remove

any surface oxide [128].

6.2 Microdisk mode simulations

Microdisk resonators rely upon total internal reflection to support whispering gallery modes

with extremely small intrinsic radiation loss [129, 15, 44, 16, 85, 130, 14]. Although exact

analytic solutions to Maxwell’s equations for these modes cannot generally be calculated,

an approximate scalar analysis can be employed to gain insight into their properties, as

described in Refs. [16, 85]. The important result from this analysis is that the microdisk

modes can be labeled by indices {m, p, q, σ} corresponding to the azimuthal, radial, ver-

tical, and polarization quantum numbers respectively, and the field has the approximate

functional form

Ez(ρ, φ, z) = eimφψp(ρ)Zq,σ(z), (6.1)

where ρ, z, and φ are the radial, vertical, and azimuthal coordinates respectively. For

microdisks with perfect cylindrical symmetry, the azimuthal exp (imφ) dependence is exact.

The radial mode profile, ψp(ρ) is given approximately by Bessel and Hankel functions inside

and outside the disk, respectively. The vertical field dependence Zq,σ(z) is given by the mode

profiles of a two dimensional slab waveguide [3]. For σ = ±1, the field is even/odd (TE/TM-

like) about the center of the microdisk slab. In practice, the microdisk thickness is chosen

to be small enough such that only the lowest order in z (q = 1) TE and TM modes have

resonance wavelengths, λo, close to the operating wavelength, and for the remainder of the
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chapter we assume that q = 1.
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Figure 6.2: Electric field magnitude distribution of the four highest Qrad modes with reso-
nance wavelengths near 852 nm for a 9 μm diameter, 250 nm thick SiNx microdisk with a 45
degree sidewall profile. The calculated radiation quality factor Qrad, optical mode volume
Vo (assuming a standing wave mode), and normalized peak exterior energy density η are
also indicated for each mode.

This approximate analysis does not allow the microdisk modes to couple to external

“leaky” radiation modes. In order to account for this coupling, and to accurately predict

the radiation limited quality factor, Qrad, of these devices, fully vectorial finite-element
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simulations of Maxwell’s equations can be used to calculate the eigenfunctions and com-

plex eigenfrequencies of these structures. FEMLAB, a commercial software package from

Comsol, was adapted by Sean Spillane [131], and later by Matt Borselli [16, 85] and Kartik

Srinivasan [88] for this purpose.

Using this software, we modeled the microdisks described in Sec. 6.1, and studied the

properties of the whispering gallery modes supported by these devices. In addition to Qrad,

the figures of merit of particular interest are the mode volume, Vo, and the peak normalized

external energy density, η. Both Vo and η are defined in terms of the peak energy density:

Vo =
∫
n2(r′)E2(r′)dr′

(n2(r)E2(r)) |max
=
∫
n2(r′)E2(r′)dr′

n2
oE

2
o

(6.2)

η =
E2(r|n2(r) = 1)|max

(n2(r)E2(r)) |max
=
E2(r|n2(r) = 1)|max

n2
oE

2
o

(6.3)

where Eo and no are the electric field magnitude and index of refraction at the position of

maximum energy density, respectively.

6.2.1 High Q modes of 9 µm diameter microdisks at 852 nm

Figure 6.2 shows cross sections of the electric field magnitude and the relevant modal figures

of merit of the four highest Q modes supported by these devices at wavelengths within a

few nm of 852 nm. The fundamental (p = 1) TE-like mode has Qrad > 1012, indicating

that radiation is not likely to be a limiting loss mechanism for this mode in the microdisk

considered here. However, as discussed below in Sec. 6.2.2, when the disk diameter is

decreased, Qrad falls rapidly, and radiation can become the dominant loss mechanism of

these devices. Similarly, note that as the radial order p increases, m and Qrad decrease.

This is because higher radial order modes have a larger proportion of radial momentum

components, that are not bound to the microdisk volume by total internal reflection. For

the total in-plane momentum of the eigenmodes to remain invariant (for fixed {q, σ}), the

relative azimuthal (“tangential”) momentum, which is proportional to m, must decrease.

The dependence of λo and Qrad on m,n and polarization is illustrated in Fig. 6.3, which

shows that modes with larger m have higher Qrad. Nonetheless, all of the modes shown in

Fig. 6.2 have Qrad > 105.

In order to predict the interaction strength between a microcavity field and a dipole or
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microdisk with a 45 degree sidewall profile.

other perturbation within its near field, it is necessary to calculate the per photon electric

field envelope. In general, since the time averaged energy stored by the electric field of

a single photon is �ω/2 (the magnetic field stores another �ω/2 of energy), the spatially

varying single photon electric field amplitude for a given microcavity mode can be written

as:

E(r) =

√
�ω

2εon2(r)Vr(r)
(6.4)

where Vr(r) is a generalized position dependent mode volume, and is given by

Vr(r) =
∫
n2(r′)E2(r′)dr′

n2(r)E2(r)
=

n2
oE

2
o

n2(r)E2(r)
Vo. (6.5)

For many applications it is also often convenient to define an “exterior” mode volume, which

is determined by the maximum field strength outside of the microdisk, and is given in terms
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of η and Vo by

Ve =
1
η
Vo, (6.6)

so that the maximum field strength outside of the microdisk is given by

Ee =
√

�ω

2εoVe
. (6.7)

TE vs. TM: mode volume

Of the high-Q modes shown in Fig. 6.2, one is dominantly TM polarized. Although this

mode has a relatively low Qrad compared to the fundamental TE mode, it is potentially

useful for applications that place a premium on maximizing the field strength near the

surface, since the electric field exterior to the microdisk is larger for this mode compared

to the fundamental TE-like mode. Comparing the “exterior” mode volumes of the TE and

TM p = 1 modes,
V TM

e

V TE
e

=
ηTE

ηTM

V TM
o

V TE
o

. (6.8)

For the values of η and Vo given in Fig. 6.2(a) and 6.2(c), Eq. 6.8 gives,

V TM
e

V TE
e

∼ 0.38, (6.9)

confirming that although Vo of the TE mode is smaller than that of the corresponding TM

mode, the maximum local field outside the microdisk is more intense for the TM mode

than for the TE mode. Because of this, depending on the requirements placed on Q, the

TM mode may be suited for applications studying coupling between the cavity field and

emitters located on or near the surface of these microdisks.

6.2.2 Scaling of Qrad and V with microdisk diameter

As shown in Fig. 6.4, FEM simulations were also used to calculate the variation in Qrad, Vo,

and Ve of the fundamental (p = 1) TE and TM modes as a function of microdisk diameter,

d. The microdisk thickness, h, was fixed at 250 nm for these simulations, as this is the

thickness of our commercially purchased LPCVD SiNx films. As a result, the microdisk

is not scaled isotropically when d is varied, and Qrad and Vo are not independent of λ for

a given λ/d. For the simulations presented here, we considered λ ∼ 852 nm and 637 nm,
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corresponding to optical transitions in Cs [132] and diamond NV centers [133].
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Figure 6.4: FEM calculated Vo and Qrad of the p = 1 TE and TM modes as a function of
microdisk diameter, for h = 250 nm. (a) Qrad at λ = 852 nm. (b) Vo at λ = 852 nm. (c)
Qrad at λ = 637 nm. (d) Vo at λ = 637 nm. In all of the mode volume calculations, it was
assumed that the microdisk supports standing wave modes.

From Figs. 6.4(a-d) it clear that Qrad falls exponentially as d decreases, while Vo falls

more slowly. Comparing the dependence of Vo and Ve of the TE and TM modes on d and

λ in Fig. 6.4(b) and 6.4(d), we see that at the longer wavelength, the difference in Vo and

Ve of the TE and TM modes is significant, whereas at the shorter wavelength it is small.

This is due to the TM mode being increasingly strongly confined to the microdisk as h/λ

is increased.

This effect is illustrated by considering specific value of Vo and Ve for each mode, when

d is chosen such that Qrad is fixed at some threshold. In the case of the TE (TM) mode at

λ ∼ 852 nm, Qrad drops below 106 for d < 5 μm (9 μm). The corresponding mode volume

given by Fig. 6.4(b) is Vo ∼ 7(λ/n)3 (22(λ/n)3). However, since the TE mode field is largely
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confined inside the microdisk, while the TM mode has field maxima close to the surface of

the disk, the exterior mode volume for Qrad ∼ 106 of the TE mode is larger than that of

the TM mode: Ve ∼ 75(λ/n)3 for the TE mode, while Ve ∼ 60(λ/n)3 for the TM mode. At

λ ∼ 637 nm, for the TE (TM) mode, from Figs. 6.4(c,d), Qrad drops below 106 for d < 3.2

μm (4.0 μm), where Vo ∼ 6.5(λ/n)3 (10(λ/n)3). In this case, the exterior mode volume,

Ve ∼, 35(λ/n)3 of the TE mode is smaller than Ve ∼ 55(λ/n)3 of the TM mode.

6.3 Microdisk testing using a fiber taper

As with the photonic crystal devices studied in Ch. 4, fiber tapers can be used to excite

optical resonances in microdisks [42, 15, 44, 43, 84]. When a fiber taper is placed within

the near field of the microdisk, as illustrated in Fig. 6.5(a), efficient coherent fiber-cavity

power transfer can be realized. In this section, fiber tapers are used to efficiently couple

light into and characterize the LPCVD SiNx microdisks described above.

γi

γ e
Fiber taper

Microdisk

β γi(a) (b)

γ e
γ e

γ e

ts

s

t

Figure 6.5: (a) Schematic of fiber taper coupling to a microdisk traveling wave mode. (b)
Generalization of the coupling process depicted in (a) to represent a microdisk that supports
standing wave modes. s and t are the input and output field amplitudes of the fiber taper
field, respectively (see Ch. 8).

6.3.1 Waveguide microdisk coupling

This section gives a brief overview of waveguide-microdisk coupling basics, sharing similar

notation as used in Sec. 3.1 and Ch. 8. Derivations of the basic equations presented below

can be found in a number of references, including [89, 134, 135, 84, 85, 88], and Ch. 8 of

this thesis.
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As indicated in Fig. 6.5(b), the fiber-microdisk coupling is characterized by coupling

rate γe
0. Phase matching between the fiber taper mode and the whispering gallery mode

plays an important role in the determining the magnitude of γe
0, and the degree of phase

matching can vary considerably depending on the refractive index and the thickness of the

microdisk, as well as on the m number of a given microdisk mode [85]. Generally, the fiber

couples preferentially to co-propagating traveling wave microdisk modes. The transmission

through the fiber taper in this case is similar to Eq. 3.3 for the waveguide coupled PC cavity

response, and is given on resonance by

To(ωo) =
(1 −K)2

(1 +K)2
, (6.10)

where

K =
γe

0

γi +
∑

j �=0 γ
e
j

. (6.11)

In the limit that there is no parasitic loss, K → γe
0/γ

i, and critical coupling (K = 1, To = 0)

can be achieved when γe
0 = γi [43]. Off-resonance, the transmission is given by

T (ω) = 1 − 4K
(1 +K)2

(γt/2)2

(ω − ωo)2 + (γt/2)2
. (6.12)

where γt = γi +
∑

j γ
e
j .

In practice, for imperfectly smooth microdisks, the degenerate (±m) clockwise and

counter-clockwise traveling wave modes are coupled within the microdisk at a rate, β, due

to surface roughness induced coherent backscattering [15, 136, 44, 16]. The coupled modes

are standing wave superpositions of the clockwise and counter-clockwise traveling wave

modes, and have renormalized eigenfrequencies, ωo ±β. In the regime that β � γt, the two

standing wave modes, treated individually, accurately describe the microcavity response.

In this limit, the on-resonance transmission for each of these modes is again given by

To(ωo ± β) =
(1 −K)2

(1 +K)2
. (6.13)

However, since standing wave modes couple equally to each of the forward and backward

propagating waveguide modes1, in the limit that there is no additional parasitic loss K →
1In the same way as side-coupled photonic crystal cavities [83].
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γe
0/(γ

i + γe
0) < 1, and To = 0 can never be achieved.

6.3.2 Microdisk testing at 852 nm

In order to characterize the microdisk resonances at 852 nm, near the D2 transition of Cs,

a swept wavelength source (New Focus Velocity) covering the 840-856 nm wavelength band

was coupled into the fiber taper waveguide, and the transmission spectra was measured for

varying fiber taper position relative to the fabricated microdisks. Figure 6.6 shows a typical

spectra when the fiber taper is positioned such that it is significantly loading the cavity.

In this wide wavelength spectrum, obtained by using a DC motor to scan the external

grating of the diode laser, at four resonant wavelengths a significant fraction of the power

in the fiber taper is dropped into the cavity. As indicated in the figure, these resonances

correspond to the TE-like microdisk modes discussed in Sec. 6.2. The different coupling

depth and linewidth of each mode is due to differences in their γi and γe
j , and, as a result,

K and γt.
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Figure 6.6: Taper transmission when the taper is aligned close the perimeter of a 9 μm
diameter microdisk. This wide wavelength scan was obtained by performing a DC motor
sweep of the laser diode grating position. This data shows a typical “family” of microdisk
modes. The high frequency noise on the off-resonance background is due to etalon effects
in the laser.
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Figure 6.7: Fiber taper transmission when the taper is positioned in the near field of a
9 μm diameter microdisk, for two fiber taper positions. The data in (a), (b), and (c) are for
different nominally identical microdisks fabricated simultaneously on the same chip. The
red lines are fits using a model that includes coupling between the microdisk and the tapers,
as well as between traveling wave modes of the microdisk.

Figure 6.7 shows typical narrow range wavelength scans, obtained by using a piezo to

scan the external grating of the diode laser, of the lowest radial order (p = 1) TE-like mode of

three 9 μm diameter SiNx microdisks, for varying taper positions. When the taper is weakly

coupled to the microdisk, the resonances in Fig. 6.7 have linewidths, δλo, ranging between

0.26-0.56 pm, corresponding to intrinsic quality factors Q = 1.5 × 106 − 3.5 × 106. From

Fig. 6.6(a), the free spectral range between modes of the same radial order but different

azimuthal number (m) was measured to be 5.44 THz (13 nm), resulting in a finesse of
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F = 5 × 104 for the fundamental p = 1 mode measured in Fig. 6.7(a). The doublet

structure in the transmission spectra is due to mode-coupling between the clockwise and

counter-clockwise modes of the disk due to surface roughness induced backscattering, as

described above. For these devices, as well as other microdisks from the same sample, the

splitting between resonances varies between Δλ = 0.5-12 pm, and no correlation between

δλo and Δλ is observed. When the taper is positioned more closely (∼ 200 nm) to the

microdisk so that the on-resonance transmission decreases, the loaded Q decreased non-

ideally. Although the degree of non-ideal loading depends on the taper diameter, as does

the coupling strength, the loaded resonances in Fig. 6.7(a-c) are typical, with I ∼ 0.4-0.6

for K ∼ 0.25-0.6, corresponding to 65%-95% input coupling efficiency from the fiber taper,

and 20% − 40% collection efficiency into the fiber taper. Reaching critical coupling, where

To = 0, is increasingly difficult and non-ideal as Δλ increases. However, for microdisks

supporting resonances with low intrinsic splitting, such as that shown in Fig. 6.7(c), it is

possible to approach To = 0 for loaded Q ∼ 8 × 105.

Comparing the measured values of Q ∼ 106 for the fundamental p = 1 mode presented

here with the FEM simulated radiation loss (Qrad = 1012) results in Sec. 6.2.1, it is clear

that the measured values are not radiation limited. Tests of less surface sensitive, larger di-

ameter microdisks showed similar or reduced doublet splitting but no reduction in linewidth,

indicating that Q is most likely limited by material absorption and not surface roughness

[16].

6.3.3 Comparison with PECVD microdisks

The first SiNx microdisks fabricated in our lab were made from “home-grown” PECVD

deposited films. The processing of these device is identical to that of the LPCVD microdisks,

with the exception that PECVD SiNx is etched approximately twice as fast by the ICP-

RIE dry etch as the LPCVD material, somewhat reducing the difficulty of the fabrication.

However, PECVD SiNx has a much higher impurity density (primarily H2), and generally

has higher optical absorption [127]. Devices fabricated from this material typically had

Q ∼ 3 × 105 for wavelengths in the 852 nm range. Tests of larger microdisks at 1550 nm

had similar results. However, it was observed that by annealing the microdisks at 900oC

temperatures, the quality of the material could be improved dramatically, andQ > 106 could

be observed in the 1550 nm range. Not surprisingly, the annealed PECVD material has
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similar dry etching characteristics as the LPCVD material. A shortcut to fabricating high

quality devices without etching the “hard” LPCVD material is to anneal devices initially

fabricated from “soft” PECVD SiNx. This is not necessary for the microdisks studied here,

but may be useful for fabricating photonic crystal devices in the future.

6.4 Resonance wavelength positioning

Using the above fabrication procedure, the resonance wavelength of the microdisk modes

could be positioned with an accuracy of ±0.5 nm. In order to finely tune λo into alignment

with the D2 atomic Cs transition, or any other wavelength of interest, a series of timed

etches in 20:1 diluted H2O:49% HF solution can be employed [116, 137, 138]. As the HF

slowly etches the SiNx, the resonance wavelength of the high-Q, 9 μm diameter disk modes

was observed to blue shift at a rate of 1.1 nm/min (Fig. 6.8(a)). With this technique, the

cavity resonance could be positioned with an accuracy of ±0.05 nm without degrading the

Q factor (Figs. 6.8(b,c)). Further fine tuning can be accomplished by heating and cooling

of the sample; a temperature dependence of dλo/dT ∼ 0.012 nm/oC was measured for the

p = 1, TE-like microdisk modes.

dλ / dt = -1.14 nm / min
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Figure 6.8: (a) Shift in resonance wavelength as a function of HF dip time. Resonance
lineshape (b) before, and (c) after a 60 s HF dip. Note that the Q of the resonance has not
degraded.
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6.5 Multidisk arrays

As stated throughout this thesis, a driving force behind the development of optical micro-

cavities has been their promise of inherent scalability and compactness. An example that

takes advantage of these properties is the integration of many microcavities with a single

waveguide. Multicavity devices have applications in wavelength division multiplexing [139],

in creating “slow light” optical buffers [140, 141, 142], and in nonlinear optics [143, 144, 68].

Future cavity QED experiments incorporating multiple coupled atom-cavity systems also

stand to benefit from these devices.

From a practical perspective, these devices also have an immediate application in mi-

crocavity experiments that simultaneously require a large density of modes and a small

microcavity mode volume. An example of such an experiment is given in Ch. 7, where a

device is installed in a vacuum chamber used for cavity QED experiments with Cs. Once the

microcavity is installed in the chamber, its resonance wavelength drifts away from the de-

sired set point due to Cs accumulation on the cavity surfaces. For a cavity with a small free

spectral range, this drift would not be a problem if it was guaranteed that a “new” cavity

mode were always within tuning range of the desired wavelength. However, wavelength-

scale microcavities are characterized by large mode spacing, or, in the case of photonic

crystal cavities, are essentially single mode. By coupling with the same waveguide to an

array of cavities with a range of resonant frequencies, we can effectively realize a device

with ultra-small mode volume and small mode spacing.

Arrays of ten nominally identical microdisks were fabricated using the procedure de-

scribed in Sec. 6.1 for individual microdisks. The spatial alignment of each microdisk was

ensured by incorporating the entire array in a single e-beam mask. Figure 6.9(a) shows an

optical image of part of an array, aligned with a fiber taper. A typical transmission spectra

through the fiber taper is shown in Fig. 6.9(b). The spectrum looks similar to ten offset

copies of a single microdisk spectrum (Fig. 6.6). “Families” of resonances, corresponding

to coupling between the fiber taper and the same mode in different microdisks within the

array, are clearly identifiable. By monitoring the scattered light from the array when the

source laser is tuned onto one of the resonances, individual resonances can be identified

with a unique microdisk. The variation in resonance wavelengths of a given mode family

is due to the microdisk size dispersion inherent to the fabrication process. For the device
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Figure 6.9: (a) Optical microscope image of part of an array of 10 microdisks, aligned with
a fiber taper. (b) Transmission spectra of the fiber taper when it is aligned with an array
of 10 microdisks.

tested here, the set of resonance wavelengths of a given mode varies over Δλo ∼ 0.5-1.0 nm,

and typical spacing between resonances is ∼ 0.1 nm, corresponding to ΔT < 10oC of

temperature tuning. Larger variation can be realized by slightly adjusting the microdisk

diameter in the e-beam mask definition. The broad resonance features in Fig. 6.9(b) are

a result of coupling to low-Q microdisk modes; that then bleed together, forming a broad

“coupled-cavity” resonant feature.

The maximum number of microdisks that can be incorporated in an array is currently

limited by the field of view of the SEM. If a dedicated beamwriter (as opposed to our

modified SEM) with stitching capabilities were used, larger arrays could be fabricated.

Also, the larger write speeds and better beamcurrent stability attainable with dedicated

beamwriters would possibly reduce the size dispersion of the microdisks, enabling the precise

spectral alignment of resonances required for slow-light experiments.
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6.6 Predicted microdisk cavity QED parameters

As we are particularly interested in studying interactions between the microcavity field and

single atoms or solid state quantum emitters, it is useful to calculate expected parameters

governing the dynamics of cavity-QED systems [5, 4] employing the devices discussed above.

The key physical parameters are the cavity field decoherence rate, κ; the atom-photon inter-

action rate, g; and the atomic decoherence rate, γa = γsp+γnr, where γsp is the spontaneous

emission rate and γnr is the non-radiative decoherence rate. The atomic decoherence rate,

γa, is a property of the quantum emitter of interest, and the cavity field decoherence rate

is determined entirely by the cavity quality factor, Q:

κ =
ωo

2Q
=
γt

2
. (6.14)

The single photon coupling rate, g, depends on both the local cavity field strength, and the

dipole moment of the quantum emitter. In general, g can be written in terms of the electric

field, E, and dipole moment, d:

g(r) =
〈E(r) · d〉12

�
=

E(r) · d12

�
=
ζE(r)d12

�
(6.15)

where d12 = 〈d〉12 is the dipole matrix element connecting the excited and ground state

eigenfunctions of the atom-like system of interest, and ζ is determined by the polarization

of E relative to d12. We take ζ = 1 in the following.

For a single photon confined to a microcavity, the local field strength can be written in

terms of a position dependent mode volume, Vr, as in Eq. 6.4. Although d12 is tabulated for

some atoms and solid state emitters of interest, it is often more convenient to express d12

in terms of the more routinely measured spontaneous emission lifetime, τ . From quantum

mechanical perturbation theory, it can be shown [145] that τ (measured in volume V with

index of refraction ne), is given by

1
τ

=
2π
�2

|Ed12|2ω
2n3

eV

3π2c3
. (6.16)
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Substituting for the single photon field strength,

E =

√
�ω

2εon2
eV

, (6.17)

gives an expression for d12 in terms of τ :

d12 =

√
3πεoc3�

τneω3
. (6.18)

Using Eqs. 6.4 and 6.15, g can be written in terms of τ and the cavity mode volume:

g(r) =

√
3πc3

2τneω2n2(r)V (r)
=

1
2

√
3cλ2

2πτnen2(r)V (r)
. (6.19)

In the case of an emitter placed inside the microdisk (e.g., an embedded quantum dot), the

maximum interaction rate, assuming the emitter in aligned with the field maxima, is

go =
1
2

√
3cλ2

2πτnen2
oVo

. (6.20)

When the emitter is placed at the field maxima exterior of the cavity (e.g., in the case of a

neutral atom or nanocrystal near the surface of the cavity), the interaction rate is given by

ge =
1
2

√
3cλ2

2πτneVe
=

√
η

2

√
3cλ2

2πτneVo
. (6.21)

Two regions of parameter space of particular interest in cavity QED experiments are

the strong-coupling regime and the bad-cavity regime. The strong-coupling criterion is

satisfied when the atom-photon coupling rate exceeds the decoherence rates of the system:

g � [κ, γa]. In this regime, energy can be coherently exchanged between the atom and

the cavity mode, and the system can be approximated by the dressed-state solutions of

the Jaynes-Cummings Hamiltonian [146]. The bad cavity limit is realized when the cavity

decay rate exceeds the atom-photon interaction rate, but the Purcell enhanced [147] atomic

radiative decay rate into the cavity mode exceeds the free space atomic decoherence rate:

κ � g2/κ � γa. In both of these regimes, the atom decays predominantly into the cavity

mode, permitting efficient photon collection. In practice, g2
e/κγa > 1 and ge/max [κ, γa] > 1
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are useful criteria for determining whether the Q and V of a given microdisk will permit

it to operate in the bad cavity or strong-coupling regimes when interacting with a given

quantum emitter.

6.6.1 Cavity QED with Cs atoms

The 62S1/2 → 62P3/2 (D2) hyperfine transitions of atomic Cs occur at wavelengths centered

around λCs = 852.34 nm, and the excited states have spontaneous emission lifetimes of

2π/γsp = τ ∼ 30 ns [132]. There is no non-radiative decay of excited D2 states in atomic

Cs, so γa = γsp. Figures 6.10(a) and 6.10(b) show the predicted values of κ and ge for the

fundamental TE-like and TM-like microdisk modes simulated in Sec. 6.2 at λCs, as well as

γsp. Equation 6.21 was used to calculate ge using the Ve values from Sec. 6.2.2 and the value

for τ given above (with ne = 1). The cavity decay rate was calculated assuming that the

cavity Q is limited to 4×106, as per the measurements in Sec. 6.3. For microdisk diameters

with simulated Qrad < 4 × 106, it was assumed that Q = Qrad, i.e., material losses were

neglected. The validity of this assumption is discussed in Sec. 6.6.3.

Encouragingly, for the TE-like fundamental mode, we can see from Fig. 6.10(a) that

ge/2π associated with these microdisk modes can approach 2 GHz with a radiation limited

κ ∼ 0.1 GHz. In particular, ge/2π ∼ 1.3 GHz is expected for the p = 1 TE mode of the

9 μm diameter microdisks studied experimentally in Sec. 6.3.2; this was measured to have

κ/2π ∼ 0.05 GHz. By reducing the diameter of the microdisk, it is possible to increase

ge/2π to 1.8 GHz without radiation loss degrading Q below this value. Clearly, this cavity

should be able to operate in the strong-coupling regime when interacting with a single

Cs atom. This is illustrated in Fig. 6.10(c), which shows ge/max [κ, γsp] as a function

of microdisk diameter. For the experimentally demonstrated 9 μm diameter microdisks,

ge/max [κ, γsp] > 25, and could increase further for smaller microdisks. Additionally, as

shown in Fig. 6.10(d), the bad-cavity parameter, g2
e/κγsp > 103, indicating that the cavity

will serve as an extremely efficient photon collector, even with a significant degradation in

κ.

For a given microdisk diameter, the p = 1 TM-like mode has slightly larger ge than the

TE-like mode; however, κ becomes radiation limited for much larger diameter microdisks

than does the TE-like mode. Nonetheless, it should also be possible to reach the strong-

coupling regime with this mode.
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Figure 6.10: Cavity QED parameters for a Cs atom in the microdisk near field, as a function
of microdisk diameter. The Cs atom is taken to be at the field maximum outside of the
microdisk. The microdisk thickness is h = 250 nm, and λ ∼ 852 nm. In calculating κ,
Q = min

[
4 × 106, Qrad

]
. (a,b) Interaction and decoherence rates for the fundamental (a)

TE mode, (b) TM mode. (c) Strong-coupling parameter. (d) Bad cavity parameter.

6.6.2 Cavity QED with diamond NV centers

Single nitrogen-vacancy (NV) defects [133] in diamond share many properties associated

with atomic systems. Namely, they emit single (non-classical) photons at well defined

wavelengths [148], and have relatively large dipole moments. The NV defect center, formed

by an N substitutional defect adjacent to an empty lattice site, has attracted significant

interest because it is relatively abundant in most diamond samples, it emits photons in the

easily detectable visible wavelength band (λNV ∼ 637 nm), and it can be varied in density by

subjecting the sample to MeV electron irradiation in order to damage the diamond lattice
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and create vacancies. By forming the NV centers in diamond nanocrystals [149], it should

be possible to place these “artificial atoms” within the near field of the SiNx microcavities

discussed here.

An analysis identical to that used above with Cs atoms can be applied to predict the

cavity QED parameters when the microdisk interacts with an NV center. Although NV

centers have a spontaneous emission lifetime of 2π/γsp = τ ∼ 12 ns [150] when formed in

bulk diamond, and 2π/γsp = τ ∼ 20 ns when formed in diamond nanocrystals [149], at room

temperature, γnr in NV centers is very large due to coupling with phonons. At liquid-He

temperatures (2 K), γa/2π as low as 13 MHz has been measured [151] in bulk diamond, but

results vary, depending on material quality. In the following, we take γa = γsp = 2π/20 ns−1.

Figures 6.11(a) and 6.11(b) compare γsp with the predicted values for ge and κ for the

TE- and TM-like p = 1 modes at λ ∼ 637 nm of the microdisks simulated in Sec. 6.2.2, as

a function of microdisk diameter. For both the TE- and TM-like modes, ge = 2-3 GHz is

predicted before the microdisk becomes radiation limited, and Q < 4× 106 (κ > 0.1 GHz).

As shown in Fig. 6.11(c), the coupled NV-center cavity system should be able to reach the

regime of strong-coupling, with ge/κ > 20. In Fig. 6.11(d), the bad cavity factor, g2
e/κγsp,

exceeds 103. This factor is of particular importance when considering NV-centers or other

solid-state emitters with potentially large γnr, as it indicates how large γa can be with the

system remaining in the bad-cavity regime. For g2
e/κγsp = 103, the system can tolerate

γa ∼ 103γsp ∼ 50 GHz while remaining in the bad cavity regime. Finally, note that at this

wavelength the TM-like mode performs equally, if not better, than the TE-like mode.

6.6.3 Practical limitations

The above analysis assumes that the cavity Q is limited by either material or radiation

loss. In practice, effects such as surface roughness and surface state absorption can become

the dominant microcavity loss channels [16]. Although experimental evidence in Sec. 6.2.1

indicates that this was not the case for the microdisks studied there, surface effects be-

come increasingly pronounced as the microdisk diameter shrinks and the field becomes less

confined. Similarly, the TM-like mode is a comparatively better sensor of the microdisk

surface than is the TE-like mode, and is more sensitive to surface related loss mechanisms.

Further systematic experimental studies of Q vs. microdisk diameter and mode polarization

are needed to better understand the impact of these effects.
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Figure 6.11: Cavity QED parameters for an diamond NV center interacting with the mi-
crodisk near field, as a function of microdisk diameter. The NV center is taken to be at
the field maximum outside of the microdisk. The microdisk thickness is h = 250 nm, and
λ ∼ 637 nm. In calculating κ, Q = min
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. (a,b) Interaction and decoherence

rates for the fundamental (a) TE mode, (b) TM mode. (c) Strong coupling parameter. (d)
Bad cavity parameter.

Wavelength dependent material absorption was also ignored in the analysis of the mi-

crodisk modes at 637 nm. A difference in the intrinsic material optical loss rate at 637 nm

compared with that at 852 nm would modify the maximum obtainable Q for devices in

this wavelength range. However, based on existing literature [119, 118], we expect the

optical attenuation coefficient of SiNx to fall within the same order of magnitude at both

wavelengths.
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6.7 Conclusion

In this chapter, we have shown that microdisk optical cavities fabricated from SiNx have

sufficiently low optical loss rates and sufficiently large single photon peak field strengths

for cavity QED experiments with Cs atoms operating within the strong-coupling regime.

These cavities should allow GHz atom-photon coupling rates, which are higher than any

other high-Q microcavity operating at λ = 852 nm demonstrated to date. Because of the

low optical loss of SiNx in the visible wavelength range, these cavities should also be useful

for experiments studying a wide class of solid state quantum emitters, such as diamond

NV centers. Ultimately, by taking advantage of the planar, CMOS compatible nature of

the SiNx material system, fully integrated photonic chips for visible wavelengths, consisting

of many cavities connected through on-chip waveguides, can be designed and fabricated.

In the next chapter, we will show how these devices can be integrated with atom chips,

eventually promising fully “on-chip” cavity QED and quantum information processing with

neutral atoms.
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Chapter 7

An atom-cavity chip

Atom chips [152, 50, 51, 153] have rapidly evolved over the last decade as a valuable tool in

experiments involving the cooling, trapping, and transport of ultra-cold neutral atom clouds.

Fabricated using standard semiconductor processing techniques, atom chips are formed by

conducting microwires lithographically patterned on a planar insulating substrate. For

modest microwire currents, extremely high magnetic field gradients can be formed close to

the atom chip surface [154], and by combining appropriate microwire configurations with

externally generated magnetic bias fields, magnetic traps for cold atoms can be realized

[155, 156, 157]. Crucially, the position of the magnetic trap, and hence the atoms, can be

moved dynamically by varying the current through the microwire configuration.

Examples of experiments that leverage the planar, scalable, micron-sized features of

atom chips include studies of Bose-Einstein condensates [158, 159] and degenerate Fermi

gases [160] “on-chip”, “portable” Bose-Einstein condensates [161], atom waveguides [162]

and conveyer belts [163], and atom interferometers [164, 165, 166, 167]. The field of

cavity QED [6, 5, 4] and, in particular, cavity QED with neutral atoms and micropho-

tonic devices [168, 169, 170, 171, 172, 173, 131, 29] is poised to significantly benefit from

atom chips. Integration of atomic and microphotonic chips [170, 173, 171, 174, 175] of-

fers several advancements to the current state-of-the-art Fabry-Pérot cavity QED systems

[176, 34, 177, 178, 179], most notably a scalable platform for locally controlling multiple

quantum bits. Ultimately, the atom chip can be used to deliver and possibly trap single

atoms within the near field of a microcavity.

In this chapter, we describe and demonstrate a technique for integrating the fiber coupled

microcavities studied in previous chapters with atom chips developed by Benjamin Lev [180].

Integrated “atom-cavity” chips fabricated using this technique can be installed in atom
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trapping vacuum systems while maintaining an efficient fiber input and output channel

between the microcavity and the outside world. By taking advantage of the small size of

the microcavities, we show that they can be directly integrated with the metal layer used

in optically and magnetically trapping atoms near the surface the atom chip, and hence,

the cavity. In Sec. 7.1, we describe the fiber mounting technique, and in Sec. 7.2 use a

fiber coupled device installed in the atom trapping UHV system to study the sensitivity of

a SiNx microdisk to a dilute cesium (Cs) vapor. In Sec. 7.3, we show how Cs atoms can be

trapped directly above an array of microdisks integrated with a mirrored surface attached

to an atom chip. Much of the work presented in Sec. 7.1 and Sec. 7.2 first appeared in Ref.

[17].

7.1 Fiber coupled microcavities for atom chips

7.1.1 Robust fiber mounting

The ability to align fiber tapers within the near fields of microcavities is crucial for estab-

lishing an efficient optical channel into and out of these devices. As described in Ch. 4 and

6, this can be achieved using computer controlled positioning stages. However, these stages

are not compatible with ultra-high vacuum (UHV) systems required for atomic physics ex-

periments. Rather than attempt to integrate vacuum-safe piezo [181] or mechanical [29]

positioning stages with the atom chip apparatus, our solution to this problem was to de-

velop a technique to permanently attach an optimally aligned fiber taper to the microcavity

chip.

A practical fiber-to-microcavity mounting technique must (i) permit high resolution

(< 100 nm) positioning of the fiber relative to the microcavity for optimal coupling, (ii) not

create significant optical loss, and (iii) be robust to any mechanical impulses imparted during

the installation of the device in the experimental apparatus. In addition, for experiments

with atom chips, the mounting technique must (iv) be UHV compatible, (v) be able to

withstand elevated temperatures (∼ 150 oC) required during vacuum chamber bakes, and

(vi) not interfere with the atom cooling and trapping optics.

The solution discussed here is to use UV curable epoxy to permanently and robustly fix

the position of a fiber taper that is initially aligned with the microcavity using computer

controlled stages. The critical features of this technique are epoxy “microjoints” that fix
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Figure 7.1: Illustration of a fiber taper mounted in a “U” configuration to a glass slide. The
fiber taper is bonded to the glass slide using UV curable epoxy.

the position of the taper in the immediate vicinity of the microcavity, in addition to epoxy

“macrojoints” that fix the position of the fiber pig-tails relative to the atom chip. A brief

description of the mounting procedure follows.

The microcavity chip (3-5 mm × 3-8 mm × 0.3 mm) is first aligned and bonded using

polymethyl methacrylate (PMMA) to the desired location on a rigid planar substrate, which,

for the purpose of the experiments being considered here, is an atom chip. The fiber taper is

placed in a self-tensioning “U” configuration, and is bonded to and supported by a glass slide

(1 cm × 1.5 cm, ∼ 200 μm thick) as illustrated in Fig. 7.1. The top surface of the glass slide

is suctioned to a vacuum chuck that is attached to a computer controlled vertical positioning

stage. The substrate supporting the microcavity (i.e., the atom chip) is positioned on the

computer controlled horizontal positioning stage used in Ch. 4. Using these high resolution

stages, the taper is aligned with the microdisk. Adjustment in the lateral gap between the

taper and the microdisk is used to optimize the level of cavity loading. As shown in Fig. 7.2,

the fiber taper and microdisk are then permanently attached using UV curable epoxy in

two regions: (i) Microscopic glue joints between the fiber taper and lithographically defined

supports fix the position of the taper relative to the disk, and (ii) macroscopic glue joints

between the taper support slide and the atom chip fix the position of the taper support

relative to the chip and serve as stress relief points for the fiber pig-tails. The glue for each
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Figure 7.2: (a) Illustration of a fiber coupled photonic chip integrated with an atom chip. (b)
SEM image of a fiber taper permanently mounted to a microdisk using epoxy microjoints.

of these joints is dispensed in advance, prior to the taper alignment.

The microjoint glue (Dymax OP-4-20632) is applied to the supports using a sacrificial

fiber taper as a “brush.” When a fiber taper “brush” is dipped in epoxy, beads of glue

whose diameter are on the same order as the taper diameter are formed. These beads can

be transfered onto the supports on the optical chip by contacting the taper “brush” with the

supports using the high precision stages. Only glue with a low enough viscosity (∼ 500 cP)
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can be transfered in this way. To minimize optical loss, it is important to minimize the

quantity of glue deposited in the anticipated bonding region. In the example shown in Fig.

7.2, the epoxy was actually deposited on the supports adjacent to the eventual bonding

region; from there it was transfered using the fiber taper that ultimately was bonded to

the chip. The macrojoint glue (Dymax OP-4-20663) is applied to the atom chip manually

using a syringe or sharp point.

The glue is cured using a UV spot lamp (Dymax BlueWave 50, 3000 mW/cm2) coupled

to a lightguide that directs the light onto the sample. The macrojoints cure after a few

seconds of direct exposure. Somewhat surprisingly, the microjoints take much longer: Typ-

ically, a cure time of at least 5 min is used. During this process, it is important that the UV

source have an unobstructed line of sight to the microjoint regions. Once the macrojoints

have cured, it is difficult to non-destructively test the strength of the microscopic joints.

Test trials with no macrojoints, in which the stages are used to raise the fiber taper to stress

the microjoints after curing, indicate that a correctly bonded microjoint will not fail before

the SiNx support breaks.

To guarantee robustness, it is important that the microcavity array be isolated on a

mesa by > 10-20 μm, as described in Ch. 4. This ensures that in the case of a mechani-

cal impulse, the fiber taper does not contact the edge of the photonic chip, which would

result in significant insertion loss. To avoid blocking trapping laser beams or obscuring

imaging, the entire fiber taper mount must lie below the plane of the optically and magnet-

ically trapped atoms (∼ 600 μm above the atom chip surface). A sufficiently low-profile is

achieved by aligning and bonding the taper support slide parallel to and below the plane of

the microcavity top surface. Geometric requirements of the trapping beams are discussed

further below.

During the taper mounting procedure, the taper-microdisk coupling is monitored by

measuring the microdisk resonance wavelength (λo) and contrast (ΔT ) through the fiber

taper, with no noticable change being observed during the curing of the epoxy joints. The

microjoints incur taper diameter dependent broadband insertion loss; approximately 10-

15% optical loss per joint is optimal. Post-cure, the fiber-cavity alignment is extremely

robust, withstanding all of the vacuum installation procedures described below.
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7.1.2 Installation in a UHV chamber

The ultimate test of the robustness of the fiber coupled device is its installation in the

vacuum chamber used for performing atom chip trapping experiements. This installation

requires that the atom-cavity chip be transported across the Caltech campus from Oskar

Painter’s photonics lab to Hideo Mabuchi’s atomic physics lab. There, the atom chip is

mounted onto a copper chassis that also holds several wire coils used for generating the

magnetic fields required for atom trapping [180]. The chassis is then turned upside down,

so that the atom chip top surface is facing down, and installed in the vacuum chamber.

Once in the vacuum chamber, a number of wires used to pass current to the microwires

are connected to the atom chip. Vacuum-safe fiber feedthroughs [182] are used to pass the

fiber-pigtails out of the chamber. The chamber is then evacuated to the 10−3 Torr range

using a turbo pump backed by a mechanical roughing pump. Following this initial pump

down, the chamber is heated to 120 oC for 24-48 hours. During the bake, when the pressure

reaches ∼ 10−4 Torr, an ion pump is turned on. Finally, when the chamber pressure reaches

∼ 10−7 Torr, the chamber is slowly cooled to room temperature where the final chamber

pressure is typically in the 10−9 Torr range.

During this installation process the fiber coupled atom-cavity chip is manipulated sig-

nificantly, and sometimes jostled. In order to be sure that the taper-cavity coupling is not

disturbed as a result, the microcavity resonance is monitored continuously during these

procedures. For a successfully mounted device, the fiber-cavity coupling, as measured by

the fiber off-resonance transmission Toff and ΔT , is impervious to these disturbances, il-

lustrating the robustness of this technique. In fact, tests have shown that the atom-cavity

chip can be dropped centimeters onto the optical table without disturbing the coupling, so

long as the fiber taper is not contacted directly.

In contrast, the resonance wavelength λo of high-Q small V microcavities is very sensitive

to the microcavity environment, and to sub-monolayer changes to the microcavity surfaces.

In the case of the SiNx microdisks used in the experiments to date, after the initial pump

down but before the chamber bake, λo typically blue shifts by −0.1 nm. This shift is due

in part to the difference between the refractive index of air and vacuum (Δn ∼ 10−5), and

in part due to the desorption of molecules that may have accumulated on the microcavity

surface before it was installed in the vacuum chamber. As the chamber is heated during the
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bake, the resonance shifts reversibly at a rate of ∼ 0.012 nm/oC. Additionally, while the

chamber is in steady state at an elevated temperature, λo can be observed to red-shift slowly

at a rate that depends on the recent history of the chamber. This shift, Δλo,bake ∼ 0.1−0.3

nm is not reversible, typically saturates over the course of the bake, and is presumed to

be due to contaminants on the chamber sidewalls and in the pumping system that outgas

during the bake and collect on the cavity surface.

7.2 Microcavity surface sensitivity to Cs vapor

Of significant concern is the effect of Cs and other related compounds on the optical prop-

erties of microcavities installed in the vacuum chamber. Cs and other contaminants are

introduced into the chamber from a heated Cs source (“oven”) attached to the chamber via

a UHV valve. During a typical lifetime of a microcavity installed in the UHV system, the Cs

valve is opened in two scenarios: periodically during the inital pump down and/or bake, to

equilibrate the pressure in the Cs oven with that in the chamber, and during the operation

of the atom trapping experiments in order to source the atom trap with Cs atoms. In both

scenarios, opening the Cs valve is observed to be directly correlated with a red shifting of

λo. This is problematic when using microcavities in atomic cQED experiments, where it

is required that the microcavity resonance wavelength be maintained close to that of the

atomic transition of interest. Ultra small mode volume microcavities are either single mode

(in the case of PC cavities) or have a large mode spacing (∼ 13 nm for the microdisks

studied in here and in Ch. 6). Since thermal tuning of the cavity resonance is typically

limited to ∼ 0.1− 0.2 nm, lacking another high bandwidth tuning technique, it is necessary

that Δλo be minimized and/or controlled during the experiment.

During the chamber pump-down, the most successful protocol in practice is to open the

Cs valve for ∼ 30 minutes prior to beginning the bake, and for several ∼ 10 minute intervals

during the bake, once the chamber pressure is below 10−4 Torr. This allows the Cs oven to

be “pumped on,” and maintained at a pressure close to that of the main chamber. When

the Cs valve is opened during the bake1, it is usually possible to observe a shift in λo at

rate of roughly 1-10 pm/min. In some instances, opening the Cs oven during the bake has

resulted in rapid deterioration of the microcavity resonance Q, accompanied by a rapid shift
1The Cs oven is tyically at 60 oC during the bake.
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Figure 7.3: Resonance wavelength shift of the 9 μm diameter SiNx microdisk studied in Ch.
6 as a function of time exposed to Cs. The Cs partial pressure was 10−9 − 10−8 Torr.

in λo. Trials indicate that initially pumping on the Cs oven at room temperature before

beginning the bake is important in order to avoid this problem.

During the operation of the experiment, it is necessary to operate the Cs oven at 40-50
oC with the valve open completely in order to reach a sufficiently high Cs partial pressure

(∼ 10−8 − 10−9 Torr) in the chamber to enable formation of a relatively large MOT. Atoms

from this Cs vapor adsorb on the microcavity surface with a logarithmic time dependence,

i.e., in a “glassy” manner [183], where interactions between deposited atoms quench the

rate of adsorption. As shown in Fig. 7.3, typical “saturated” shifts in λo are Δλo,Cs ∼ 0.5

nm; however, Δλo,Cs can vary depending on the conditions of the Cs oven.

Quantitatively, a shift, Δλo, of the disk resonances can be related to a deposited surface

film of thickness, s, by

s = Δλo/(λo(nf − 1)Γ′), (7.1)

where Γ′s represents the fraction of modal energy in the film [85] and nf is the refractive

index of the film. From finite element simulations of the 9 μm diameter microdisk used in

collecting the data in Fig. 7.3, Γ′ = 0.0026 nm−1 for the p = 1 TE-like mode. Assuming a

film index of refraction equal to that of SiNx, the measured wavelength shift at the longest

measured time (t = 450 h) corresponds to roughly a half-monolayer coverage of Cs on the
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disk surface (monolayer thickness ∼ 4 Å [184]).

The time dependence of this film growth can be approximately modeled as follows.

Roughly,
ds

dt
= Pe−ks (7.2)

where s is the fractional number of monolayers coating the microcavity surface, P is pro-

portional to the Cs partial pressure, and k is a constant describing a repulsive interaction

between adsorbed Cs atoms. According to this model,

s(t) =
ln(kPt+ c)

k
, (7.3)

where c is determined by s(t = 0), and is equal to 1 for s(0) = 0. A saturated film

thickness, ssat, can be defined in terms of the rate of accumulation, ṡ: When ṡ is lower than

a practical threshold, ṡsat, changes in s (and therefore λo) can be ignored over the course

of the experiment. Using this definition, ssat is given by

ssat =
1
k

ln(
P

ṡsat
). (7.4)

Equation (7.4) clearly indicates that for a given ṡsat, ssat scales logarithmically with P .

This indicates that working in a UHV systems with a lower non-Cs background pressure,

which would enable the formation of a MOT with a similarly lower Cs partial pressure,

would reduce ssat. Ultimately, a two chamber atom trapping system, comprised of a MOT

chamber connected to a magnetic trapping chamber, could be used to significantly reduce

P in the vicinity of the microcavity.

Interestingly, assuming that the model described above is valid, this background pres-

sure dependence potentially can be exploited to semi-permanently tune a microcavity into

resonance after installing the cavity in the vacuum chamber but prior to beginning the ex-

periment. This tuning mechanism is in the spirit of work that used noble gas condensation

on low temperature semiconductor microcavities to tune their resonances [185, 186]. The

envisioned tuning procedure is illustrated in Fig. 7.4: By initially elevating the Cs partial

pressure significantly, for example, to 10Po, where Po is the normal operating Cs partial

pressure, a film of thickness � ssat|P=Po can be deposited. The Cs partial pressure can then

be reduced to Po, at which point the rate of Cs accumulation is predicted to be slow on the
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Figure 7.4: Simulated accumulated Cs film thickness as a function of time for varying
background pressure. For the upper curve, at the time indicated by the dashed vertical line
the Cs partial pressure is reduced by an order of magnitude.

time scale of the lifetime of the experiments (ideally, hundreds of hours). In practice, exper-

imental efforts to realize this tuning have been unsuccessful, due to a tendency for the Q of

the microcavity resonance to degrade when the Cs oven is opened at elevated temperatures.

This Q degradation is not always observed (it was not noticed for the device from which

the data in Fig. 7.3 was taken), and is currently thought to be related to contamination of

the Cs oven. The use of atom “dispensers” as an alternative source of Cs [187] is currently

being investigated.

A potentially simpler alternative to the above techniques for reducing the effects of Cs

is to investigate treatments of the microcavity surface. In Ref. [188], Ghosh et al. coated

the inside surfaces of a photonic crystal fiber with an organosilane, which in combination

with light induced atomic desorption (LIAD), prevents room temperature Rubidium atoms

from interacting with the photonic crystal fiber walls. It is possible that a similar process

can be used with the microcavities studied here.
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7.3 Atom trapping on the atom-cavity chip

Atom chips employ a combination of external optical cooling and on-chip magnetic trapping

to assemble clouds of cold atoms from a dilute thermal gas. When integrated with a fiber

coupled cavity, it is crucial that the cavity not interfere with these trapping fields, and that

the atom chip have the ability to deliver the trapped atoms to the vicinity of the cavity.

Experiments with cold atoms and Fabry-Pérot cavities typically source atoms from free

space MOTs, formed far from the cavity and transfered to the cavity via either gravity

[176] or an optical potential [178]. When the cavity is integrated with an atom chip, the

atoms can be transfered from a mirror-MOT [50], formed near the surface of the atom chip,

into a purely magnetic trap, and then magnetically waveguided into the cavity [175, 173].

Compared to Fabry-Pérot cavities, microcavities are a much smaller geometric obstacle. By

taking advantage of microcavities’ small size, it is possible to directly integrate them with

the atom chip, and to form a MOT within tens of microns from the cavity surface. In this

section, after a brief overview of the operation of the atom chip used in these experiments,

a fully integrated atom-cavity chip that permits trapping directly above a microdisk cavity

is presented.

7.3.1 Atom chip basics

This subsection briefly reviews the basic operation of the atom chips fabricated by Benjamin

Lev with which the microcavities were integrated. A detailed description can be found in

B. Lev’s thesis [180], and an excellent general overview of this type of atom chip is given in

Ref. [50].

Ultimately, the atom chip confines atoms within a purely magnetic trap that is formed

by a superposition of magnetic fields generated by currents in microscopic (on-chip) and

macroscopic (external) wires. An example of a canonical microwire magnetic trap is illus-

trated in Fig. 7.5(a): A two dimensional trap is formed by superimposing a homogeneous

bias field with the radially decaying field of a microwire, resulting in a field minima at a

fixed height above the wire. By dynamically varying the microwire current and the magnetic

bias field, the height of the trap above the microwire can be adjusted. Three dimensional

magnetic trapping can be achieved by breaking the translational symmetry of the wire, and

patterning “u” or “z” shaped microwires, as illustrated in Fig. 7.5(b). More complicated
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Figure 7.5: (a) Illustration of a magnetic trap formed by superimposing a homogeneous
magnetic bias field with the magnetic field generated from current in a wire directed out of
the page. This trap offers confinement in the 2D plane of the page. (b) Top view of two
wire configurations that provide 3D magnetic trapping when combined with a homogeneous
bias field.

microwire circuits permit the atom trap position to be adjusted in all three dimensions by

dynamically reconfiguring the current path.

However, in order to magnetically trap a significant number of atoms, it is first necessary

to cool and trap them in a MOT [189]. A generic MOT is formed when the intersection

of three sets of red-detuned counter-propagating and orthogonally polarized laser beams,

oriented along orthogonal axes, is aligned with an externally generated magnetic quadrapole

field. The surface of an atom chip cuts off optical access from the half-space below it,

necessitating the use of a “mirror-MOT”, in which a surface on the atom chip is used to

reflect a pair of orthogonal 45o beams that intersect a pair of counter-propagating beams

aligned parallel and close to the surface of the atom chip, as illustrated in Fig. 7.6. This

geometry provides three dimensional optical cooling at the point where all of the beams

intersect; when combined with a magnetic quadrapole field, this allows the formation of

a MOT. The magnetic quadrapole field can either be supplied by microwires on the atom

chip surface, or by macroscopic wires. The resulting traps are referred to as “micro mirror-

MOTs” and “macro mirror-MOTs”, respectively.

In the atom trapping apparatus used here, atoms are first collected in a macro mirror-

MOT, then transferred into a micro mirror-MOT, before undergoing optical pumping and

sub-Doppler polarization gradient cooling, and finally being transfered into a purely mag-

netic trap. A “u” shaped microwire, positioned below a mirrored region of the atom chip, is
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Figure 7.6: Illustration of the laser beam and microwire geometry used to form the atom
chip mirror-MOT. During the MOT formation, current flows through the “u” section of the
“h” microwire circuit.

used to generate the quadrapole field for the micro mirror-MOT. After sub-Doppler cooling,

the temperature of the trapped atoms is < 10 μK, and they are optically pumped into the

mf = |l| state, where the quantization axis ẑ is defined by a bias field. The optical fields

are then turned off, and since the potential energy of an atom in a magnetic field H is given

by

Vm(r) = −μmfHz(r), (7.5)

atoms in the mf = |l| state are trapped in magnetic field minima. If the magnetic trap

position and shape are closely matched with those of the micro mirror-MOT, and if the

sub-Doppler cooling and optical pumping are optimized, a large fraction of the atoms in

the micro mirror-MOT can be transfered into the purely magnetic trap. The magnetic trap

position can then be adjusted by dynamically varying the path of current flow through the

microwire circuit on the atom chip. Practically, the degree and extent to which this position

can be controlled is limited by the microwire geometry, the maximum current allowed by
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the microwires, and the trap lifetime.

7.3.2 Integrating cavities with atom chips

The initial proposal in Ref. [173] to integrate microcavities with atom chips anticipated using

atom waveguiding [162, 163] to move atoms from a magnetic trap formed at the micro

mirror-MOT location to a microcavity positioned several mm away. As the experiment

progressed, however, it was realized that because of the small size of the microdisks, the

atom delivery could be simplified by initially trapping the atoms in a micro mirror-MOT

directly above the microcavity. The atoms could then be moved into the cavity near-field

from either a magnetic trap or directly from the mirror-MOT, without requiring the extra

waveguiding step. However, in order to form the initial micro mirror-MOT directly above

the cavity, it is necessary that the cavity not disrupt the mirror region. In the case of

“macroscopic” cavities, this is not possible. Conversely, the small footprint of microcavities

(1- 100 μm) has a minimal effect on the comparatively large (1 cm) MOT beams being

reflected by the mirror, and it is possible to form a mirror-MOT directly above them. As

illustrated in Fig. 7.7(d), so long as the MOT is formed at a height above the surface greater

than the microcavity footprint, it should be largely unaffected.

Implementing this experimentally requires that the cavity be integrated with the mir-

rored region of the atom chip, so that the cavity region forms a small “defect” in the

otherwise uniform mirror, and is aligned with the microwire that sets the micro mirror-

MOT position. Ultimately, this could be achieved by fabricating the cavity from the same

substrate as the atom chip, creating a monolithic atom-cavity chip. A simpler short-term

solution is illustrated in Fig. 7.7: Incorporate a mirror on the same chip as the microcavity,

and then bond the resulting cavity-mirror chip to the desired location on the independently

fabricated atom chip. Note that the fiber mounting technique described in Sec. 7.1 is com-

patible with this scheme, and that the low profile of the mounted fiber ensures that it does

not interfere with any of the optical beams.

It is straightforward to modify the fabrication process of the SiNx cavities described in

Ch. 6 to include a mirror layer. Briefly, the procedure is as follows. The lithography, dry

etching, and isolation steps are unchanged. After the isolation etch, before removing the

photoresist that masks the device mesa, an optically thin layer of gold is evaporated onto

the entire microcavity chip. A gentle acetone bath is then used to lift-off the gold coated
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Figure 7.7: Illustration of the laser beam and microwire geometry used to form a mirror-
MOT when the cavity-mirror is integrated with the atom chip. (a) Top view, (b) end view,
(c) side view. The zoomed-in detail (d) shows how a MOT can be formed above an array of
cavities on an otherwise uniform mirror. The shadow from the cavities only extends above
the surface as high as the cavity footprint.

photoresist mask. This leaves the device mesa uncovered, while the rest of the chip surface

is coated with gold. The final undercutting and cleaning steps are unchanged.

A device fabricated using this process is shown in Fig. 7.8. This device consists of a

3× 10 array of 9 μm diameter SiNx microdisks that are isolated on a mesa ∼ 20 μm above

the gold coated Si substrate surface. The microdisk array dimensions are 100 μm × 100

μm, and the chip dimensions are 4 mm × 6 mm × 0.3 mm. The device was bonded to the

atom chip, as described in Sec. 7.1.1, positioned so that the microdisk array was aligned

above the “u” microwire, as illustrated in Fig. 7.7. A fiber taper was mounted to the device,

and the resulting fiber-coupled atom-cavity chip was installed in B. Lev’s atom trapping

UHV system.

Using this device, and following the MOT operation and magnetic trapping procedure

described in Ref. [180], it was confirmed that ∼ 106 Cs atoms could be trapped ∼ 200 μm
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Figure 7.8: SEM images of a cavity-mirror chip. The mesa contains a 3 × 10 array of 9
μm diameter microdisks, and is isolated by ∼ 20 μm above the surrounding gold coated Si
substrate.

above the surface of the microdisk array in macro mirror-MOT, then transferred to a micro

mirror-MOT ∼ 100 μm above surface, and finally lowered into the device array using a

purely magnetic trap. Figure 7.9 shows fluorescence images of the laser cooled atoms being

delivered to the microcavity array in this way. The images were generated by precisely

halting the experiment at the instant of interest, zeroing the magnetic fields, exciting the

atoms using the MOT beams, and measuring the resulting photoluminescence and scattered

light with a CCD camera. Sub-ms timing relative to the beginning of the transfer from the

macro-MOT to the micro-MOT was realized using computer controlled external delayed

pulse generators, as described in Ref. [180]. Scattering of the excitation (MOT) beams

by the surface of the atom-cavity chip made it difficult to identify the position of the
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Figure 7.9: Photoluminescence images of laser cooled atoms being delivered to the micro-
cavity array on the atom chip. The red-colored area highlights the position of the cavity
array. The atom-cavity chip is oriented as in Fig. 7.7(b). Each image is taken by halting
the experiment at the specified time after the transfer from the the macro mirror-MOT to
the cavity has begun, zeroing the magnetic fields, and exciting the atoms using the MOT
beams. The resulting photoluminescence, as well as light scattered by the atom chip surface,
is imaged using a zoom lens, and is collected by a CCD camera.

cavity array in Fig. 7.9, so it has been highlighted in red. This position was confirmed by

extinguishing all of the excitation beams and coupling light into the cavity via the mounted

fiber taper. The light radiated by the cavity and scattered by the microjoints fixing the

taper to the device could be imaged with the CCD, providing an accurate indicator of the

cavity position. In addition, top view images [same perspective as in Fig. 7.7(a)] were used
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to verify that the atom cloud was positioned directly above the cavity array. It was also

confirmed that when the light input to the cavity was tuned close to resonance with a Cs

transition, for sufficiently high input power (∼ μW), the scattered light destroyed the Cs

magnetic trap, further confirming that the microcavity is positioned near the trap.

7.4 Conclusions and outlook

With the fiber mounting and cavity-mirror integration techniques presented in this chapter,

it is possible to integrate efficiently fiber-coupled microcavities with an atom chip, and

deliver MOT and/or magnetically trapped atoms to the cavities. These techniques are

not specific to the types of microcavities and atom chips considered here, or to any of

the atom trapping apparatus. For example, this technology could easily be adapted to

work with fiber coupled photonic crystal devices integrated with atom chips designed for

vacuum glass cell systems [161]. A particularly exciting direction for future work on atom-

cavity chips is the monolithic integration of the cavities studied in this thesis with the

atom chip substrate. This could be easily realized by fabricating the atom chip from a

Si/SiO2/SiNx wafer underlying an Au microwire layer. The SiNx layer would provide optical

waveguiding, with the lower refractive index SiO2 layer suppressing optical radiation loss.

Advances in atom chip technology may eventually allow single atom [190] magnetic trapping

and manipulation, enabling the controlled interaction of atoms with arrays of individually

addressed optical microcavities.

Of immediate importance is to understand the interaction between Cs vapor in the

UHV system and the microcavity surfaces. A technique for decreasing or compensating for

this interaction is necessary if large FSR (free spectral range) or single mode micro- and

nanocavities are to be used for cavity QED with alkali atoms. Installing arrays of fiber

coupled microcavities, whose resonances are distributed over a range of frequencies, as in

Ch. 6, is a short term solution. Possible long term approaches for addressing this issue are (i)

passivation of the microcavity surface, (ii) investigation of LIAD of accumulated Cs atoms,

(iii) “deterministic” saturation induced tuning of the Cs film thickness (Sec. 7.2), and (iv)

design of an atom trapping system that operates with a lower Cs background pressure in

the vicinity of the microcavity. Additionally, on-going studies are examining whether Cs

dispensers provide improved repeatability of Cs accumulation on the microcavity surface,
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which may allow a-priori biasing of the microcavity resonance wavelength, assuming that

the Cs accumulation saturates. Simultaneously, work developing high bandwidth tunable

cavities and integrated multicavity devices may relax the tolerances on the microcavity

resonance frequencies.
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Chapter 8

Microcavity single atom detection

Detection and trapping of single atoms within the vicinity of an optical cavity is a critical

tool in the effort to realize the canonical system of cavity QED: A single trapped (spatially

localized) atom interacting with the quantized photon field of an optical cavity [6, 5, 4].

By continuously monitoring the optical field of a cavity, it is possible to sense the presence

of an atom if the interaction rate between the cavity field and the atom is sufficiently high

relative to the decoherence rates of the system [176]. Using the cavity itself as a single

atom detector, pioneering work with Fabry-Pérot cavities has succeeded in trapping single

atoms within the cavity field using optical forces [191, 178, 179], enabling implementation

of quantum information processing resources such as the controlled generation of sequences

of single photon pulses [34, 35], as well reversible quantum state transfer between photonic

and atomic states [38, 39].

As mentioned elsewhere in this thesis, compared to state-of-the-art Fabry-Pérot exper-

iments, microcavity-based cavity QED systems offer, in addition to the possibility of being

scaled to more complex configurations, orders of magnitude higher atom-photon interaction

rates, leading directly to higher bandwidth and more robust operation [173, 169, 170, 171,

172, 192, 180, 131, 29]. While these advantages stem directly from the ultrasmall mode

volume and associated sub-wavelength length scale of the microcavities considered in this

thesis, their small size also introduces further technical challenges from an atom detection

perspective: It becomes increasingly difficult to localize atoms within the cavity near-field

as the cavity volume shrinks. This fact is exemplified by comparing recent [29] single-atom

detection signals obtained using a microtoroid [14] cavity with those observed using much

larger mode volume Fabry-Pérot systems [176, 27, 193, 28].

In this chapter, we theoretically examine the technical feasibility of detecting single laser
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Figure 8.1: Depiction of microdisk atom detection experiment.

cooled atoms, moving with ultra-cold velocities, as they “transit” through the near field of

the microcavities studied in Ch. 4 and 6. The single atom detection experiment that we

are analyzing is depicted in Fig. 8.1: By monitoring changes in the transmission through a

fiber taper that is coupled to a microcavity, in this case a microdisk, we hope to observe

single atoms passing through the near field of the microcavity. In the experiment, clouds of

cold atoms are delivered to the microcavity using a magnetic trap, as described in Ch. 7,

and single atoms are expected to be moving at thermal velocities of ∼ 2.5 cm/s [173]. For a

250 nm thick microdisk, the transit time over which an atom moving in a vertical trajectory

senses the cavity field will be on the order of a few μs, so that the necessary detection

bandwidth is > 1 MHz. This, combined with the relatively low light levels necessary for

single-photon single-atom experiments, makes single atom detection technically non-trival.

This work extends results presented in Refs. [173, 180] to study the sensitivity of mi-

crocavities to single atoms. The central result, presented in Sec. 8.1, is that the maximum

atom-induced change in waveguide output signal scales, to a very good approximation,

with Q/V . This analysis includes non-idealities, such as coupling between degenerate cav-
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ity modes, non-ideal fiber-cavity coupling, and operation of the system in the bad-cavity

regime. In Sec. 8.2, suitable photodetection schemes are analyzed, and an atom-detection

figure of merit is calculated for realistic detector noise figures and atom transit times, as a

function of microcavity and experiment parameters.

8.1 Atom induced modification of fiber coupled cavity re-

sponse

In this section, we use a quantum master equation [194] formalism to calculate the trans-

mission through a waveguide coupled to a microcavity when an atomic dipole is interacting

with the cavity near field. A semiclassical [195, 196] analysis in the weak driving regime

is also used to derive analytic expressions that provide insight into the maximum expected

change in waveguide output power that can be induced by an atom interacting with the

cavity, as a function of cavity parameters. We begin in Sec. 8.1.1 by considering a single

mode microcavity before analyzing a whispering gallery mode microcavity with degener-

ate travelling wave modes in Sec. 8.1.2. Finally, simulation results for realistic cavity and

atomic dipole parameters are given in Sec. 8.1.3.

A note on notation: Thoughout this analysis, we use similar notation as in Ch. 3, with

some simplifications. Here, we write the intrinsic cavity loss rate as γi, the waveguide-cavity

coupling rate as γe, and the total cavity loss rate as γt. We do not explicitly include parastic

waveguide loss, but it is straighforward to modify the analysis to include it. The cavity and

atomic decay rates used in this chapter are related to the standard cavity QED notation as

follows: γt = 2κ, γa = γ‖ + γ⊥.

8.1.1 Single mode cavity

For a given cavity field amplitude, a, the amplitude of the fiber field transmitted past the

cavity is given by

t = s+ i
√
γea, (8.1)

where s is the amplitude of the fiber input field, and γe is the fiber-cavity coupling rate

(see Fig. 6.5) [134]. In this formalism, |s|2 has units of power (i.e., photons per unit of

time), and |a|2 has units of energy (i.e., photons). The magnitude of γe is determined by
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the evanescent field overlap and the degree of phase matching between the waveguide and

cavity modes.

Writing the cavity field amplitude as ac when there is no atom in the cavity, from

standard cavity-waveguide coupled mode theory [89, 134, 84], the equation of motion for

ac(t) is
dac

dt
= −

(γi

2
+
γe

2
+ iΔωc

)
ac + is

√
γe, (8.2)

where γi is the loss rate of the cavity in the absence of the waveguide, and Δωc is the

detuning between the input field and the cavity resonance frequency. In steady state, this

gives for the empty cavity field amplitude

ac =
is
√
γe

iΔωc + γt/2
, (8.3)

where γt = γi + γe is the total energy decay rate of the cavity. On-resonance, Δωc = 0, and

ac,o = i
2s
√
γe

γt
. (8.4)

The corresponding intracavity photon number is

nc,o = |ac,o|2 =
s2

γt

4γe

γt
=
s2

γt

4K
1 +K

=
s2

γi

4K
(1 +K)2

(8.5)

where K is the coupling parameter defined in Ch. 3. If the cavity only radiates into a single

waveguide channel (e.g., as is the case with the photonic crystal cavity studied in Ch. 3 and

Ch. 4), then K = γe/γi. The above expression for ac,o, combined with Eq. 8.1, gives the

usual result for the empty cavity, on-resonance, normalized transmission:

Tc,o =
∣∣∣∣ ts
∣∣∣∣
2

=
∣∣∣∣1 − 2

γe

γt

∣∣∣∣
2

=
∣∣∣∣1 −K

1 +K

∣∣∣∣
2

. (8.6)

When an atom is present in the cavity, the equation of motion for the cavity field is

modified, as it is necessary to consider coupling between the electric field and the atomic

states. We will do this, and then calculate the modification to the waveguide transmission

when there is an atom in the cavity, by first writing the fully quantized master equation for

the atom-cavity system, and then considering the semiclassical limit.
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Quantum master equation

In the rotating frame of the input optical field, the Hamiltonian for a two level atom coupled

to a quantized cavity mode is

Ĥ = Δωaσ̂+σ̂− + Δωcâ
†â+ ig

(
â† σ̂− − â σ̂+

)
+ i
(
ε â† − ε∗ â

)
, (8.7)

where σ̂± are the raising and lowering operators of the two level atomic system, g is the

atom-photon coupling rate (which can be written in terms of the cavity mode volume and

the atomic dipole strength: see Sec. 6.6), ε = is
√
γe is the amplitude of the incident field

driving the system at frequency ωp, Δωa = ωa − ωp is the detuning between the driving

field and the atomic transition, and Δωc = ωc−ωp is the detuning between the driving field

and the cavity resonance, as in Eq. 8.2.

In order to calculate the steady state expectation value of â in the presence of dissipation,

we can employ a quantum master equation [194]:

dρ̂

dt
= −i

[
Ĥ, ρ̂

]
+ L̂ρ̂, (8.8)

where L̂ permits decoherence to be taken into account. For the atom-cavity system studied

here, it is

L̂ ρ̂ =
γt

2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
+
γa

2
(2σ̂−ρ̂σ̂+ − σ̂+σ−ρ̂− ρ̂σ̂+σ̂−) , (8.9)

where γa is the atomic decoherence rate due to spontaneous emission. Solving Eq. 8.8 for

ρ̂ss in steady state (setting dρ̂/dt = 0), we can calculate the steady state expectation value

of â when there is an atom interacting with the cavity field:

aa = 〈â〉ss = Tr (ρ̂ssâ) . (8.10)

The taper transmission, Ta, in the presence of an atom is then simply given by

Ta =
∣∣∣∣1 + i

aa

s

√
γe

∣∣∣∣
2

, (8.11)

and the change in photon flux exiting the fiber taper when an atom is coupled to the cavity
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with interaction strength, g, is,

ΔP = s2
∣∣Ta − Tc

∣∣. (8.12)

In general, we can caculate aa numerically from Eq. 8.8 for a finite-sized photon Fock-

space using tools such as the Quantum Optics Toolbox [197]. However, we can also gain

some valuable intuition by considering the semiclassical equations of motion.

Semiclassical analysis

The equations of motion for the expectation values of â and σ̂±, σ̂z can be derived from

d〈Â〉/dt = d/dt
(
Tr
(
ρ̂ Â
))

, the canonical commutation and completeness relations that

define â and σ̂±, σ̂z, and Eq. 8.8. In the semiclassical approximation, expectation values

of operator products are evaluated as products of the expectation values of the individual

operators [196, 195]; for example, 〈σ̂zâ〉 = 〈σ̂z〉〈â〉. This analysis gives the semiclassical

optical Maxwell-Bloch equations,

daa

dt
= −

(
iΔωc +

γt

2

)
aa + gσ− + ε, (8.13)

dσ−
dt

= −
(
iΔωa +

γa

2

)
σ− + gσzaa, (8.14)

dσz

dt
= −2g (σ−a∗a + σ+aa) − γa (1 + σz) . (8.15)

which can be solved in steady state for aa as a function of drive strength, ε, and detunings,

Δωc and Δωa. Because of the gσzaa term in Eq. 8.14, the solution is nonlinear in aa, and

is typically refered to as the optical bistability equation. Note that when g → 0, Eq. 8.13

is identical to Eq. 8.2 with ε = is
√
γe. For a weak driving field, ε, we will find that the

semiclassical equations acurately predict the intracavity photon number.

Weak driving regime

Further simplification can be obtained by limiting ourselves to the weak driving regime,

where we assume that the atomic state is never inverted, i.e., σz ∼ −1. In this limit, the

optical Maxwell-Bloch equations are linearized [196], and give

aa =
ε (γa/2 + iΔωa)

(γt/2 + iΔωc) (γa/2 + iΔωa) + g2
. (8.16)
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Equation 8.16 can be used to illustrate the effect of the atom on the fiber coupled cavity

response. Note that in the limit that g → 0, aa → ac given by Eq. 8.3, as expected.

To illustrate the effect of the atom on the cavity response, consider the special case

where the cavity, atom, and driving field are all on resonance: Δωc = Δωa = 0. In this

case,

aa,o =
2ε

γt + 4g2/γa
=

2is
√
γe

γt + 4g2/γa
, (8.17)

and

Ta,o =
∣∣∣∣1 − 2γe/γt

1 + 4g2/γtγa

∣∣∣∣
2

. (8.18)

In the limit that 4g2/γt � γa,

Ta,o →
∣∣∣∣1 − 2γe

4g2/γa

∣∣∣∣
2

∼ 1, (8.19)

and the relative change in the waveguide transmission due to the atom is

Ta,o

Tc,o
∼
(

1 +K

1 −K

)2

(8.20)

which can be abritrarily large as K → 1.

We can also predict what the maximum absolute change in waveguide output power

induced by the atom. From the Maxwell-Bloch equations, it can be shown that

1 + σz ∼ 2s2
γe

g2
, for 4g2/γt � γa, (8.21)

so that the weak driving condition σz ∼ −1 is satisfed when

s2 � Ps = s2s =
g2

2γe
=

1
K

g2

2γi
, for 4g2/γt � γa. (8.22)

where we call Ps the saturation input power. Subsituting Eqs. 8.19 and 8.6 into Eq. 8.12,

the change in the power exiting the waveguide when an atom is coupled to the cavity is

approximately given by

ΔPo = s2

∣∣∣∣∣1 −
(

1 −K

1 +K

)2
∣∣∣∣∣ , for 4g2/γt � γa, s� ss (8.23)
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which is simply the power dropped into the empty cavity from the waveguide. From Eq.

8.22, the maximum atom induced change in power is

ΔPo � 2g2

γi

1
(1 +K)2

. for 4g2/γt � γa (8.24)

It is also convenient to write this in terms of the maximum on-resonance empty cavity

intracavity photon number, ns, at which the weak driving approximation is valid:

ΔPo � γi ns, for 4g2/γt � γa (8.25)

where ns = 2g2/γ2
t .

From Eq. 8.24, we can clearly see that the maximum atom induced change in power

increases as the intrinsic loss rate (γi) and the mode volume (∝ g−1/2) of the cavity decrease.

Another important observation is that the above analysis does not require the atom-cavity

system to be in the strong coupling regime. Rather, it is sufficient for the system to be in the

“bad-cavity” regime for single atom detection. Finally, recall that the example considered

above is on resonance (Δωc = Δωa = 0), and that full quantum simulations are required to

predict the cavity response for larger drive fields. Later in this section, we will examine the

dependence of Ta on detuning for cavities in both the strong and weak coupling regimes,

using both the semiclassical solution and fully quantum simulations.

8.1.2 Whispering gallery mode cavity

The presence of a degenerate or nearly denegerate mode significantly affects the cavity

response to an atomic dipole [198]. Even when the cavity modes are exactly orthogonal, if

the atom interacts with each mode, the modes become coupled. In the case of whispering

gallery mode cavities such as microdisks, a dipole scatters light from a single travelling

wave mode into both the clockwise and counterclockwise travelling modes, in a manner

analogous to surface roughness induced modal coupling [16, 15, 136, 198]. In this section,

we will augment the analysis given above to include a second cavity mode.

Assume that the cavity supports two degenerate, counter-propagating, whispering gallery

modes whose fields have amplitude a and b. Here we label a and b as the ccw (counter-

clockwise) and cw (clockwise) propagating modes, respectively. Because of the necessity of
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phase matching, the waveguide will only couple to the co-propagating mode, which we will

assume is a. As in the single mode case, the normalized transmission through the waveguide

is

T =
∣∣∣∣1 + i

a

s

√
γe

∣∣∣∣
2

. (8.26)

Any photons scattered into the counter-propagating mode b will couple to the backward

propagating waveguide mode; the normalized reflected waveguide signal is

R =
∣∣∣∣i bs√γe

∣∣∣∣
2

. (8.27)

In absence of coupling to an atom, the equations of motion for the empty cavity mode

amplitudes, ac(t) and bc(t), are

dac

dt
= −

(γi

2
+
γe

2
− iΔωc

)
ac + iβbc + is

√
γe, (8.28)

dbc
dt

= −
(γi

2
+
γe

2
− iΔωc

)
bc + iβ∗ac, (8.29)

where β is the coupling rate between modes intrinsic to the cavity (e.g., due to surface

scattering), and we have assumed that both modes have equal γi and γe.

In the limit that |β| � γt, we say that the cavity supports degenerate whispering gallery

modes. In this limit, ac and Tc are identical to those obtained for the single mode cavity.

However, as we will show below, when an atom interacts with a cavity in this limit, aa and

Ta are modified significantly relative to the single-mode result obtained above.

In the limit that |β| � γt, the cavity eigenmodes are most intuitively represented by

standing waves formed by even and odd supperpositions of the cw and ccw modes [16,

15, 136, 198]. These standing waves are uncoupled, and have resonant frequencies ωc ± β.

Because the standing waves have no azimuthal momentum, they radiate equally into both

the forward and backward waveguide modes, and the waveguide-cavity coupling is modified.

For ωp = ωc ± |β|, Tc,o can be calculated using the identical expression (Eq. 8.6) for the

single mode cavity, but with K → K ′ = γe/(γi + γe) = K/(K + 1).

The following analysis is valid for all values of β. However, we only consider limiting

on-resonance cases when β → 0, since in the |β| � γt limit, the single mode cavity results

with K → K ′ can be used.
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Quantum master equation

The quantum master equation for a two-mode cavity is a simple generalization of the result

for the single mode cavity presented in Sec. 8.1.1 [198]. In the rotating frame of the input

optical field, the Hamiltonian for a two level atom coupled to the two quantized cavity

modes is

Ĥ = Δaσ̂+σ̂− + Δc

(
â†â+ b̂†b̂

)
+ ig

(
â† σ̂− − â σ̂+

)
+ (8.30)

ig
(
b̂† σ̂− − b̂ σ̂+

)
+ i
(
ε â† − ε∗ â

)
.

We have assumed that the atomic coupling strength, g, is equal for both modes of the cavity;

this is valid for degenerate whispering gallery modes that only differ in their direction of

propagation, but is not generally true.

For the degenerate whispering gallery mode cavity, L is given by

L̂ ρ̂ =
γt

2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
+
γt

2

(
2b̂ρ̂b̂† − b̂†b̂ρ̂− ρ̂b̂†b̂

)
(8.31)

+
γa

2
(2σ̂−ρ̂σ̂+ − σ̂+σ−ρ̂− ρ̂σ̂+σ̂−) . (8.32)

After calculating the steady state master equation,ρss, from Eq. 8.8, the amplitudes of the

forward and backward propagating waveguide fields are:

aa = 〈â〉ss = Tr (ρ̂ssâ) , (8.33)

ba = 〈b̂〉ss = Tr
(
ρ̂ssb̂
)
. (8.34)

As in the single-mode case, aa and ba can be calculated numerically and substituted into

Eqs. 8.26 and 8.27 to determine R and T when an atom is coupled to the cavity.
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Semiclassical analysis

The semiclassical equations of motion for an atomic dipole coupled to a degenerate whis-

pering gallery mode cavity are [198]

daa

dt
= −

(
iΔωc +

γt

2

)
aa + iβ ba + gσ− + ε, (8.35)

dba
dt

= −
(
iΔωc +

γt

2

)
ba + iβ∗ aa + gσ− (8.36)

dσ−
dt

= −
(
iΔωa +

γa

2

)
σ− + gσz(aa + ba), (8.37)

dσz

dt
= −2g (σ−(a∗a + b∗a) + σ+(aa + ba)) − γa (1 + σz) . (8.38)

Note that these equations do not reduce to the equations of motion for an atom coupled

to a single mode cavity when |β| = 0, except in the limit that g = 0, i.e., when the cavity

modes do not interact with the atom.

Weak driving regime

In the weak driving regime, where 〈σz〉 = −1 for all time, the semiclassical equations of

motion can be solved for aa and ba,

aa =
ε(θc + g2/θa)

θc(θc + g2/θa) + g2/θc (iβ + iβ∗) + g2θc/θa + |β|2 , (8.39)

ba = aa
iβ∗ − g2/θc

θc + g2/θa
, (8.40)

where θc = iΔωc + γt/2, and θa = iΔωa + γa/2.

We can make further simplifications in the special case that |β| = 0, where Eq. 8.39

simplifies to:

aa =
ε(θa + g2/θt)
θaθt + 2g2

. for |β| = 0 (8.41)

Comparing this expression with the analogous expression (Eq. 8.16) for the single mode

cavity, we see that they are only equal in the limit that g → 0. If the atom and cavity are

on resonance with the drive field (Δωa = Δωc = 0), Eq. 8.41 reduces to

aa,o =
2ε
γt

4g2/γtγa + 1
8g2/γtγa + 1

, for |β| = 0 (8.42)
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and in the limit (g2 � γtγa),

aa,o =
ε

γt
=
is
√
γe

γt
. for 4g2/γt � γa, |β| = 0 (8.43)

The corresponding waveguide transmission is

Ta,o =
(

1 − γe

γt

)2

=
1

(1 +K)2
. for 4g2/γt � γa, |β| = 0 (8.44)

For no-zero waveguide-cavity coupling (K > 0), Ta,o for the degenerate whipering gallery

mode cavity is clearly less than the unity transmission that was calculated in the single mode

case (Eq. 8.19). The maximum relative change in the waveguide transmission induced by

the atom is
Ta,o

Tc,o
∼ 1

(1 −K)2
, for 4g2/γt � γa, |β| = 0 (8.45)

and the change in waveguide output power is

ΔP = s2
K(2 −K)
(1 +K)2

. for 4g2/γt � γa, |β| = 0 (8.46)

Note that as K → 1, ΔP → s2/4.

From the optical Bloch equations, the input power below which σz ∼ −1 in the degen-

erate whispering gallery mode cavity is

s2 � Ps = s2s =
2g2

γe
, for 4g2/γt � γa, |β| = 0 (8.47)

and the maximum absolute change in waveguide output power induced by the atom is

ΔPo � 2g2

γi

|2 −K|
(K + 1)2

= γi ns
|2 −K|

4
, for |β| = 0 (8.48)

where ns = 8g2/γ2
t for the degenerate whispering gallery mode cavity. Note that for K = 1,

this is the same result as in the single mode cavity case, i.e., Eqs. 8.48 and 8.24 are equivalent.

Although the atom induces a smaller change in cavity transmission in degenerate whispering

gallery mode cavities than in single mode cavities, the saturation input power is higher, so

that the maximum atom induced change in output power is equal for both cases.

As with the single mode cavity analysis, from Eq. 8.48, we can clearly see that the
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maximum atom induced change in power increases as the intrinsic loss rate (γi) and the

mode volume (∝ g−1/2) of the cavity decrease. Again, to observe single atom effects, the

above analysis does not require that the atom-cavity system be in the strong coupling

regime, but only in the “bad-cavity” regime.

Finally, recall that the above analysis assumes |β| = 0. In the limit that |β| �
{g, γt,Δωc,Δωa}, it is more intuitive to analyze the cavity in the renormalized standing

wave basis, with detunings measured relative to the “new” modes. As discussed above,

in this case one finds that the atom-cavity system dynamics are similar to those of the

single-mode cavity presented in Sec. 8.1.1, with a modification to the coupling parameter

K to account for coupling between the standing wave modes and the backward propagating

waveguide modes.

8.1.3 Simulations

In this section, we simulate the effect of an atom on the waveguide coupled cavity response

for varying system parameters, by both numerically solving the quantum master equation,

and using the analytic expressions obtained from the semiclassical equations of motion in

Secs. 8.1.1 and 8.1.2. We find that at low powers is it sufficient to rely upon the semiclassical,

weak driving solution; but for powers approaching Ps = s2s, it is necessary to solve the fully

quantized quantum master equation. First we consider the behavior of a single mode cavity,

before studying a degenerate whispering gallery mode cavity.

Single mode cavity

Figure 8.2 compares the transmission, Tc, through a waveguide coupled to a bare cavity with

Q = {104, 105, 106} (γt/2π = {0.35, 3.5, 35} GHz), with the transmission Ta when an atom

is coupled to the same cavity. For these simulations, g/2π = 1 GHz and γa/2π = 0.005 GHz,

representing a Cs atom coupled to a cavity similar to the ∼ 9 μm diameter SiNx microdisk

studied in Ch. 6. As expected from the analysis in Sec. 8.1.1, at Δωc = 0, an atom induced

change in the waveguide transmssion is observed for input power Pi less than Ps. As the

input power increases above s2s, the change in transmission, |Ta −Tc|, decreases. It is useful

to note that when Pi � Ps, the semiclassical, weak driving regime solution given by Eq. 8.16

gives essentially indentical results to those obtained from a numerical solution of the density

matrix for the fully quantized systems (Eq. 8.8). For varying Q, the spectra of Ta(Δωc)
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Figure 8.2: Effect of an atom on the response of a fiber coupled single-mode cavity as a
function of (left) on-resonance waveguide input power (Δωc = Δωa = 0), and (right) drive
field detuning Δωc with Pi � Ps and Δωa = Δωc, for varying cavity quality factor: (a)
Q = 106, (b) Q = 105, (c) Q = 104. In all of the simulations, λo = 852 nm, g/2π = 1 GHz,
γa/2π = 0.005 GHz, K = 0.52 (Te,o = 0.1), and both fully-quantum and semiclassical
solutions were used, as indicated. For the spectra on the right, the semiclassical and fully-
quantum results cannot be differentiated by eye.

differ dramatically, consistent with the atom-cavity system being in the strong-coupling,

bad-cavity, and weak coupling regimes, as shown in Fig. 8.2(a-c), respectively [5].

In strong coupling [Fig. 8.2(a)], the coupled atom-cavity system forms dressed-states

that are shifted in frequency by ±g from the bare cavity resonance frequency, and the
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waveguide transmission spectrum is dramatically modified. As γt increases [Fig. 8.2(b-c)],

the dressed states no longer form spectrally distinct features in the waveguide transmission.

However, on-resonance, the waveguide transmission continues to be affected by the atom,

due to coherent reflection by the atomic dipole. The resulting electromagnetic induced

transparancy-like feature persists even for very large γt. Using the semiclassical analysis

from Sec. 8.1.1, it can be verified that the spectral width of this feature is approximately

Δω ∼ γa + g2/γt, i.e., the Purcell enhanced spontaneous emission rate.

Degenerate whispering gallery mode cavity

As discussed in Sec. 8.1.2, the cavity response is significantly modified by coupling between

degenerate counter-propagating cavity modes, mediated by the atomic dipole as well as by

cavity imperfections. Figure 8.3 compares the waveguide transmission past a degenerate

whispering gallery mode cavity with no intrinsic mode-coupling (|β| = 0), with and without

an atom, for the same parameters as in Fig. 8.2.

The atom-cavity spectrum is most dramatically modified by the coupling from the atom

into both the cw and the ccw cavity modes when the system is in strong coupling. As

shown in Fig. 8.3(a), three resonant dips in the transmission are predicted. Notably, the

resonant frequencies of the outer dips are split by ±√
2g relative to the center dip. The

factor of
√

2 is due to the standing wave nature of the coupled cw and ccw modes, and the

resulting enhancement of the maximum field strength. From an atom detection perspective,

note that the maximum atom induced change in transmission, ΔT , is smaller than in the

single mode cavity case. Also, note that a non-zero reflected signal is generated, which

potentially can be used for atom detection. The power dependence and onset of saturation

of ΔT is consistent with predictions from Sec. 8.1.2. Note that because of the large Fock

space associated with simulating two cavity modes at large drive strengths, the less memory

intensive stochastic Schrödinger equation (SSE) technique [199, 200, 201, 197] was employed

to calculate ΔT (Pi).

In the bad cavity limit, shown in Figs. 8.3(b,c), the effect of the degenerate cavity mode

on the atom-cavity spectrum is less dramatic: The spectra has a similar shape as in the single

mode case [Fig. 8.2(b)], with a notch in the transmission centered at Δωc = 0. However,

as in the strong coupling case, Ta,o does not reach unity, and the maximum atom induced

change in transmission is smaller than in the single mode cavity. Again, the reflected signal
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Figure 8.3: Same simulations as in Fig. 8.3, but including a degenerate whispering gallery
mode (|β| = 0). Also shown is the reflected waveguide signal. Both fully-quantum and
semiclassical solutions were used, as indicated. For the spectra on the right, the semiclas-
sical and fully-quantum results can not be differentiated by eye. The power dependent
calculations in (a) were limited to Pi < Ps for computational reasons.

is non-zero.

Standing wave whispering gallery mode cavity

Fig. 8.4 shows typical waveguide-coupled cavity response spectra when β = 9 GHz, and

the atomic dipole is on resonance with the standing wave cavity mode at ωo − β. In the
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Figure 8.4: Same simulations as in Fig. 8.3, but with microcavity induced coupling between
the degenerate whispering gallery modes (|β|/2π = 9 [GHz], β real). The atomic dipole
is detuned by −|β| from the uncoupled cavity resonance frequency, so that is spectrally
aligned with the lower frequency standing wave mode. Although γe is unchanged from the
simulation results in Figs. 8.3 and 8.2, in the standing wave basis K → K ′ = K/(K + 1) =
0.34. Also shown is the reflected waveguide signal. The semiclassical and fully-quantum
results cannot be differentiated by eye.

presence of an atom, the cavity mode responds nearly identically to the single-mode cavities

studied in Sec. 8.1.1, in both the strong- and bad-cavity regimes (Fig. 8.4(a,b), respectively).

Notably, the on-resonance transmission when an atom enters the cavity, Ta,o, recovers to

unity. The principle differences are that g → √
2g, due to the standing wave nature of

the modes, and that for a given γe and γi, Tc,o is larger, as expected from the discussion

above. Additionally, the reflected waveguide signal is non-zero for the empty cavity, as the

standing wave mode radiates into both the forward and backward propagating waveguide

modes. The power dependence is not shown, but is similar to the single mode case, but

with Ps renormalized to take into account the modified waveguide coupling.

8.2 Single atom detection: signal to noise

In the preceding section, we showed that a single atom interacting with the field of a

microcavity can significantly alter the cavity response, so that in principle the presence of

an atom can be detected as it transits the cavity field. However, to determine whether single
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atom transits are observable in the laboratory, the photon detection bandwidth and noise

floor must be taken into account. In this section, we consider practical photon detection

schemes, including single photon counting (SPC), avalanche photodiode (APD) detection,

and heterodyne (HD) detection, using specifications for commercially available detectors.

We quantitatively evaluate their suitability for single atom detection by calculating the

maximum expected signal to noise obtainable with them, given the expected atom-induced

change in cavity response and saturation cavity input power calculated in the previous

section.

8.2.1 Signal to noise ratio

The signal to noise ratio (SNR) for single atom detection using a fiber-coupled microcavity

can be defined in terms of the change in the observed waveguide output signal induced by

one or more atoms interacting with the cavity relative to the amplitude of the noise on the

output signal when there are no atoms interacting with the cavity. Writing Sc and Sa as the

measured signal (e.g., voltage or number of photons) when there are no atoms and when

one or more atoms are interacting with the cavity, respectively, a suitable definition for the

SNR is

SNR =
ΔS
σS

=
|Sa − Sc|

σS
, (8.49)

σS =
√
σ2

t + σ2
sn (8.50)

where σt and σsn are the standard deviations of S due to technical noise and shot noise

(SN), respectively. Note that this SNR is defined in terms of optical power, and not elec-

tronic power. Technical noise is independent of S, and is determined by the detector and

the operating bandwidth. Shot noise depends on the output signal, and one can present

arguments for whether the shot noise on Sc (during the atom transit) or Sa (when the cavity

is not interacting with an atom) should be considered. As in Ref. [173], here we take

σsn =
√
σ2

sn,a + σ2
sn,c, (8.51)

where σsn,a and σsn,c are the shot noise on Sa and Sc, respectively. This definition provides

an accurate measure of the fidelity with which atom-cavity dynamics can be observed. An
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alternate definition, in which σsn = σsn,c, provides an exagerated measure of whether a

change in signal can be prescribed to an atom transit, but does not take into account the

possiblity of missing a transit due to shot noise fluctuations in the atom-induced signal.

Bandwidth requirements

In general, both the noise and signal amplitudes depend upon the detection bandwidth,

Δν. For the experiment considered here, Δν is determined by the time that an atom

spends within the near field of the cavity. Atoms that are laser cooled such that they travel

with mean thermal velocities of ∼ 2.5 cm/s [180] will transit the 250 nm thickness of a

typical microdisk or photonic crystal microcavity in 10 μs [173]. This requires a detection

bandwidth of Δν = 0.1 − 1 MHz, corresponding to integration times of τ = 1/2Δν ∼
0.5 − 5 μs.

Photon collection efficiency

Using the waveguide-cavity coupling formalism presented above, imperfect cavity-waveguide

coupling efficiency due to intrinsic cavity loss (“bad-loss”) is taken into account by the cou-

pling parameter K. However, broadband “insertion-loss” associated with scattering, radia-

tion, or absorption within the waveguide needs to be taken into account. This insertion loss

can be lumped together, and the transmission between the waveguide-microcavity coupling

region and the photon detection apparatus can be simply expressed as ηw. In practice,

ηw ∼ 0.5-0.8 is typical for a fiber taper permanently coupled to a microdisk and installed

in the atom cooling vacuum chamber, as described in Ch. 7.

Idealized SNR

In a perfect photodetector, there is no technical noise, so that the SNR is only limited by the

quantum fluctuations in the detected signal (shot noise), the transmission of the waveguide

(ηw), and the quantum efficiency of the detector (ηd). Generally, the measured signal is the

change in the measured number of photon counts per time bin when an atom interacts with

the cavity (Na) compared to when there is no atom interacting with the cavity (Nc). For

a given integration time τ , S and σS are expressed in terms of the waveguide powers, Pa

and Pc (in units of photons per unit time), transmitted past the waveguide-cavity coupling
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region:

S = τηwηd|Pa − Pc| = τηwηdΔP, (8.52)

σS =
√
τηwηd(Pa + Pc). (8.53)

The SNR is then simply given by

SNR
∣∣
SN

=
ΔP√
Pa + Pc

√
ηwηdτ =

ΔN√
Na +Nc

√
ηwηd, (8.54)

where ΔN = |Na −Nc|. For on-resonance detection, in the case that Pc = 0 (K → 1), Eq.

(8.54) reduces to

SNR
∣∣
SN

=
√

ΔN
√
ηwηd. (8.55)

In practice, technical noise will always be present. Next, we discuss the limitations of

practical photodetection schemes.

8.2.2 Photon detection schemes

Below we briefly review the noise properties of photodetection schemes in the context of

single atom detection experiments.

Single photon counting

Commerically available single photon counting modules (SPCM) offer essentially shot noise

limited detection “out of the box” for very low light levels. With dark count rate of less than

25 photons per second (Perkin Elmer SPCM-AQP-16), SPCMs have almost no electronic

noise on the time scales over which atom transits are expected to occur. Their primary

limitation from an atom detection point of view is their large dead time between successive

photon counting events, which typically limits the maximum photon flux that they can

measure to ∼ 107 photons per second. Assuming that {ηwPc, ηwPa} ≤ PSPCM, where PSPCM

is the saturation power of the SPCM, the SNR is simply given by Eq. 8.54. However, for

{ηwPc, ηwPa} > PSPCM, the saturation power limits the SNR:

SNR
∣∣
SPCM

< PSPCM ×
√

ηdτ

Pc + Pa
. (8.56)
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If PSPCM = 107 photons/second and Pc = 0, for a τ = 1 μs integration time,

SNR
∣∣
SPCM

<
√

10 ηd. (8.57)

APD detection

Avalanche photodiodes (APD) can provide high-bandwidth, low noise photodetection at

low light levels. As with SPCMs, they are fabricated using reverse biased photodiodes, and

rely upon avalanche multiplication of photo-generated electrons to provide gain without

adding significant electronic noise. Unlike SPCMs, they are not reverse biased past their

breakdown point, and can operate at higher powers and bandwidths.

For a given atom-induced change in optical power ΔP (photons per unit time), the

signal measured using an APD-amplifier module is

S = R ηwΔP, (8.58)

where R = Ro�ω, and Ro is the lumped responsivity of the APD detector module (i.e., APD

quantum efficiency, APD gain, and electronic amplifier transimpedance), usually expressed

in units of V/W. The noise has contributions from both the APD (shot noise) and the

amplifier electronics, and is written as σAPD and σt, respectively. The total noise is:

σSc =
√
σ2

APD + σ2
t . (8.59)

The amplifier noise is typically quoted as a spectral density, w, in units of W/
√

Hz, so that

σt = R w
√

Δν = R
w√
2τ
, (8.60)

where w = w/�ω. The APD noise,

σAPD = R
√
FPsn, (8.61)

is fundamental, as it is proportional to the photon shot noise power [3]:

Psn =

√
ηw(Pc + Pa)

ηdτ
. (8.62)
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The F term is the “noise factor” characteristic of any stochastic avalanche amplification

process [202]; generally F ≥ 1. Combining the above expressions, the APD SNR for atom

detection is

SNR
∣∣
APD

=
ΔP ηw√

F (Pc + Pa)ηw/ηdτ + w2/2τ
. (8.63)

In the limit that electronic noise is small compared to shot noise, Eq. 8.63 becomes

SNR
∣∣
APD

=
ΔP√
Pa + Pc

√
τηwηd

F
, for ηw(Pa + Pc) � w2ηd/2F (8.64)

which is the “ideal” shot noise limited result, Eq. 8.54, scaled by F−1/2.

Heterodyne detection

Ideally, optical heterodyne detection [3, 203] can reach the shot noise limit at high band-

widths, even using photodetectors with large σt compared to the the signal of interest.

Heterodyne detection measures the amplitude of a beat note formed by two spatially over-

lapping but frequency detuned optical beams incident on a photodetector. Given a signal

with optical power, Ps (photons per unit time), the heterodyne signal is,

S = R 2ηh

√
PsPlo, (8.65)

where R is the responsivity of the detector being used, and Plo is the power of a frequency

detuned local oscillator (LO) that is spatially overlapped with the Ps beam, and ηh is the

heterodyne efficiency. In practice, ηh depends on the mode matching of the LO and the

signal beams, and the mix-down electronics that filter for the beat note. If the LO is not

phase locked relative to the signal, ηh ≤ 0.5.

For Plo � Ps, the noise of the heterodyne signal is given by

σSc =
√
σ2

h + σ2
lo, (8.66)

where σh is the technical electronic heterodyne noise, and σlo is the LO shot noise. Ideally,

the electronic noise is determined by the measurement bandwidth and the noise power
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spectral density, w, of the detector at the frequency of the beat note, νh:

σh = R w(νh)
√

Δν. (8.67)

The LO shot is given by,

σlo = R

√
Plo

ηdτ
, (8.68)

and the heterodyne SNR for atom detection is,

SNR
∣∣
HD

=
2ηh|

√
ηwPaPlo −

√
ηwPcPlo|√

Plo/ηdτ + w2/2τ
. (8.69)

In the limit that Plo � ηdw
2/2, usually achieved by increasing Plo,

SNR
∣∣
HD

= 2ηh|
√
Pa −

√
Pc|√ηwηdτ . for Plo � ηdw

2/2 (8.70)

If Pc ∼ 0, this is simply

SNR
∣∣
HD

= 2ηh

√
Pa

√
ηwηdτ , (8.71)

= 2ηh

√
ΔN

√
ηwηd, (8.72)

where ΔN is the atom induced change in photon counts per time bin, τ . Again, this

corresponds to the “ideal” shot noise limited SNR, Eq. 8.54, scaled by 2ηh.

8.2.3 Simulations

Using the expressions for SNR for the detectors described in Sec. 8.2.2, as well as the power-

dependent atom-cavity response calculations from Sec. 8.1.3, we now calculate the SNR for

realistic single atom detection, for varying cavity parameters and drive strength. Table 8.1

lists the detector parameters used in the calculations in this section. All of these parameters

correspond to commercially available components, as listed in the table.

Figure 8.5 shows calculated atom-detection SNR for a single mode microcavity and a

degenerate whispering gallery mode microcavity, assuming on-resonance detection, atom-

photon interaction rate, g/2π = 1 GHz, and a τ = 3 μs integration time, for Q = ω/γt =

[106, 105, 104], as in Sec. 8.1.3. As discussed in Ch. 6, [g/2π,Q] = [1 GHz, 106] should be
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achievable for a Cs atom interacting with a silicon nitride microdisk cavity [17]. In addition

to considering APD, SPCM, and HD detection, the “ideal” shot noise limited SNR (for ηw

and ηd given in Table 8.1) is shown as function of waveguide input power. Each of the

detection schemes has an optimal input power at which the SNR is maximized. In the case

of the SPCM, the SNR is maximized when the waveguide output power is ∼ PSPCM/ηd

as expected from Eq. 8.57. So long as ηdηwPs > PSPCM is satisfied, the maximum SPCM

SNR is largely unaffected by g and γt. For the other detectors, with saturation powers far

above ηdηwPs, Ps is a very good prognosticator of the input power at which the SNR is

maximized. The maximum SNR obtainable with the degenerate whispering gallery mode

cavity is essentially equal to that in the corresponding single mode cavity, albeit at a

higher input power (recall that Ps|2-mode = 4Ps|1-mode), confirming our intuition from Sec.

8.1.2. The smaller change in cavity response characteristic of the degenerate cavity is

only deterimental for the SNR for SPCM detection, where ΔP is limited by the detector

saturation.
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Table 8.1: Photodetector parameters

Detector Parameter Value Units Source

APDa ηd 0.7 - Specification

w 30 fW/
√

Hz Measuredd

F 7 - Specification

SPCMb ηd 0.35 - Specification

PSPCM 15 × 106 photons/s Specification/Measured

HDc ηd 0.7 - Specification

ηh 0.5 - Ideale

Plo 1 mW As setup.

w 30 pW/
√

Hz Specificationg

Ideal SN ηd 0.7 - -

All ηw 0.5 - -

a Analog Modules 712A-4 (Perking Elmer 30902E APD)
b Perkin Elmer SPCM-AQR-16-FC
c In-house setup built around a New Focus 1801 detector
d Measured for a Δν = 1.9 MHz bandwidth; specification is 20 fW/

√
Hz.

e Without phase stabilization, assuming perfect mode matching.
f For a beatnote of frequency > 10 MHz

Given shot noise limited detectors with ηw and ηd specified in Table 8.1, from Fig. 8.5 we

see that when g = 1 GHz, single atom detection should be possible for Q > 105, as SNR � 1.

However, given the practical detectors under consideration here, the optimum obtainable

SNR is far below the shot noise limited maximum. For microcavities with low Ps (e.g., the

cavity with Q = 105), SPCM detectors offer the best performance. Although their small

dynamics range limits SNR
∣∣
SPCM

∼ 5, this should be sufficient for single atom detection,

though the situation worsens as K decreases and the resonance contrast is reduced. The

higher Q = 106 cavity supports stronger driving powers without saturating the atom. As

a result, single-atom signals, ΔP , from these cavities can overcome the electronic noise
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Figure 8.5: Calculated SNR for a fiber coupled single mode (left) and degenerate whispering
gallery mode (right) microcavity with g/2π = 1 GHz and (a) Q = 106, (b) Q = 105, (c)
Q = 104. In all of the calculations, λo = 852 nm, γa/2π = 0.005 GHz, Δωa = Δωc = 0,
K = 0.52 (Te,o = 0.1). The various detector parameters are given in Table 8.1. The power
dependent calculation in (a) was limited to Pi < Ps for computational reasons.

of the APD and HD detectors and provide improved performance: SNR > 10 should be

achievable.

Alternately, since Ps = s2s scales with g2/γt (∝ Q/V ), the SNR can be improved by using

a smaller mode volume cavity, so long as Q does not degrade too quickly as the mode volume

shrinks. Figure 8.6 shows calculated SNR for a microcavity with g/2π = 10 GHz, and
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Δωa = Δωc = 0, K = 0.52 (Te,o = 0.1). The various detector parameters are given in Table
8.1.

Q = [104, 105]. These parameters should be achievable using a high quality photonic crystal

nanocavity [11, 12], such as that studied in Ch. 4, but fabricated from a material suitable

for near-visible wavelengths. As expected, when [g/2π,Q] = [10 GHz, 104] [Fig. 8.6(a)], the

microcavity performs similarily to the [g/2π,Q] = [1 GHz, 106] microcavity [Figure 8.5(a)].

Figure 8.6(b) shows the expected performance of a cavity with [g/2π,Q] = [10 GHz, 105].

Shot noise limited SNR ∼ 100 should be possible, and SNR > 30 is expected using direct

APD detection. This is a significant improvement over the higherQ, but larger mode volume

cavity, and promises high-quality single atom transit measurements. Beyond the benefit of

improved single-atom sensitivity, an advantage of pursuing the route of miniturization,

rather than working to further increase Q, is robustness. Mode volume is largely unaffected

by fabrication imperfections, and lower Q cavities are less sensitive to surface contamination

and spectral detuning.

8.3 Summary

In this section, we have shed light on the role of mode volume and quality factor on the

sensitivity of a microcavity to single atom transits. In particular, through analytic analysis

and verification with numerical simulations, we have shown that the relevant figure of merit
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is g2/γt, which is proportional to Q/V . Using realistic detector noise parameters, we have

studied the expected performance of a range of microcavities, and determined that single

atom transits should be observable with the microdisk cavities studied in this thesis, but

that larger Q/V devices, and/or longer atom-cavity interaction times, are necessary for

high quality signals. It is expected that photonic crystal nanocavities will offer significantly

improved detection fidelity.



144

Appendix A

Bloch modes and coupled mode theory

A physical problem of practical interest is the coupling between Bloch modes in seperate

interacting electromagnetic waveguides. This problem arises when considering strongly

periodic waveguides, such as those formed by line defects in high refractive index contrast

photonic crystals [204, 52, 113, 58]. In these structures, it is not accurate to represent

the fields of the unperturbed waveguides using a plane wave basis; a Bloch mode basis

must be used. In this appendix an approximate coupled mode theory suitable for studying

coupling between strongly period waveguides is derived. Additionally, some mathematical

identities useful for working with and understanding the physical properties of Bloch modes

are presented.

A.1 Formulating Maxwell’s equations

In absence of free charge and current, and for fields with eiωt time dependance, Maxwell’s

equations are given by

∇ ·D = 0 (A.1)

∇ × H − iωD = 0 (A.2)

∇ × E + iωB = 0 (A.3)

∇ · B = 0, (A.4)
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where, for non-magnetic material,

D(r) = ε(r)E(r) (A.5)

B(r) = H(r). (A.6)

It can be shown [69] that solutions to Maxwell’s equations corresponding to a structure

whose dielectric constant, ε(r), is periodic in ẑ with lattice constant Λ,

ε(x, y, z + nΛ) = ε(x, y, z) (A.7)

n = 0,±1,±2, . . .

can be written in Bloch form

Ek(r) = e−ikzek(r), (A.8)

where

ek(x, y, z + nΛ) = ek(x, y, z), (A.9)

and a eiωt time dependance is assumed. Writing the field in Bloch form, taking the curl of

(A.3) and substituting (A.2), we get

∇ × ∇ × Ek =
ω2

c2
ε(r)Ek, (A.10)

or, more explicitly,

Hkek(r) =
[−k2z × z×−ik(∇ × z × +z × ∇×) + ∇ × ∇×] ek(r) =

ω2

c2
ε(r)ek(r).

(A.11)

Equation (A.10) is often solved as an eigenvalue problem for ω parameterized by the

wavenumber, k, giving a dispersion relation, ω = ω(k). In general (A.10) will have multiple

solutions for a given ω. Each of these solutions is a mode of the structure described by

ε(r) and can be labeled by a wavenumber, k = km. To be explicit, Ek can be labeled

as Ekm to distinguish between modes. For radiating modes, km will form a continuum,

while for bound modes, km will form a discrete set. It is important to note that for each

mode Ekm, by time reversal symmetry, there is a corresponding eigenfunction, E−km, with

eigenvalue ω(−km) = ω(km), which represents a mode propagating in the −ẑ direction.
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The relationship between the forward and backward propagating modes will be examined

in subsequent sections. Additionally, for each km′ = km + nG where the reciprocal lattice

vector G = 2π
Λ and n is any integer, there corresponds a mode that is physically identical

to the mode labelled by km [69, 205]. As a result, in considering the space of eigenmodes,

it is sufficient to restrict k to the first Brillouin zone: |k| ≤ G
2 .

A.1.1 Orthogonality of Bloch modes

Before deriving coupled mode equations, it is useful to derive an orthogonality relationship

between modes. In [68] it is shown that Hk is Hermitian, so that for fixed k and varying

eigenfrequencies, ωm, equation (A.11) gives

∫
V
dr ε(r) e∗k(ωn)(r) · ek(ωm)(r) = δωn, ωm , k(ωn) = k(ωm) (A.12)

where the integration is over a single unit cell defined by V = {r | z0 ≤ z ≤ z0 + Λ}. In

coupling between modes in linear dielectrics, however, ω is typically fixed to ensure non-zero

time averaged power transfer between modes, while k varies between modes as described

above.

Another othorgonality relation can be derived using a reciprocity theorem similar to

that used in [72]. Define F as

F = Ekn × H∗
km

+ E∗
km

× Hkn , (A.13)

where Ek(n,m)
and Hk(n,m)

are solutions to Maxwell’s equations (A.1-A.4) for some ε(n,m).

Using Maxwell’s equations and standard vector identities, the divegence of F is:

∇ ·F = −iωEkn · E∗
km

[εn(r) − ε∗m(r)]. (A.14)

From (A.14), if εn = ε∗m, then ∇ · F = 0, and integrating over a unit cell:

∫
V

∇ ·F dV =
∫
S
F · dS (A.15)

=
[ ∫

z=z0

−ẑ +
∫

z=z0+Λ
ẑ
]
·F dx dy +

∫
S∞

F · dS (A.16)

= 0,
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where S is the surface bounding V, and S∞ represents the surface of V at ρ =
√
x2 + y2 →

∞. Since the area of S∞ ∝ ρΛ and |F| ∝ 1/ρ2 (at most for physical fields) on S∞, the

last term in (A.16) does not contribute. Recalling that Bloch modes are eigenvectors of the

translation operator:

TΛẑ(Ekm ,Hkm) = e−ikmΛ(Ekm,Hkm), (A.17)

equation (A.16) becomes

[
1 − e−i(kn−km)Λ

] ∫
z=z0

(
Ekn × H∗

km
+ E∗

km
× Hkn

) · ẑ dx dy = 0. (A.18)

By Bloch’s theorem, the Bragg condition,

kn − km =
2πj
Λ
, j = ±1,±2... (A.19)

can only be satisfied by modes that are identical moduolo a reciprocal lattice vector label.

By restricting our eigmodes to the first Brillouin zone, Eq. (A.19) can never be satisfied,

requiring that if km 
= kn,

∫
z

(
Ekn ×H∗

km
+ E∗

km
× Hkn

) · ẑ dx dy = 0, (A.20)

for Eq. (A.18) to hold. Equation (A.20) is a power orthogonality relationship that has the

advantage of not requiring integration in the propagation direction.

If km = kn, assuming there are no degeneracies, modes n and m are identical and the

“power” defined by the left hand side of (A.20) is non-zero; however, it can be shown that

it is independant of z. We have:

F = Ekm × H∗
km

+ E∗
km

× Hkm. (km = kn) (A.21)

Integrating ∇ ·F over a plane of constant z, and using (A.14) as well as the 2-D divergence

thereom (see [72])

∫
z
∇ · F dx dy =

∂

∂z

∫
z
F · ẑ dx dy = 0 (A.22)
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or

∂

∂z

∫
z

(
Ekm × H∗

km
+ E∗

km
× Hkm

) · ẑ = 0. (A.23)

This is simply a statement of power conservation: For modes propagating in the z direction,

the power flux through any x-y plane is independent of z. Equations (A.20) and (A.23)

state that the eigenmodes of a periodic ε(r) can be normalized by their power, and that

they are power orthogonal. These relations will be critical in the developement of a coupled

mode theory below.

A.1.2 Additional properties of Bloch modes

Because of the lack of translational invariance in a periodic ε(r), the standard relationships

between forward and backward propagating modes derived in [72] do not hold for Bloch

modes. Fortunately, by considering the symmetries of the system, some useful relationships

can be derived.

First, consider time reversal symmetry. Since the operator defining E(r, t) obtained

from Maxwell’s equations is invariant under time reversal t → t′ = −t, the time reversed

E(r,−t) is also a solution. From this, one can show that [69]

E−k = E∗
k (A.24)

H−k = −H∗
k.

We can arrive at this result directly from the eigenvalue equation for ek without specifically

considering time-reversal. From (A.11), it is clear that H−k = H
∗
k, so that the eigenvalue

problem for e−k can be written as

H−k e−k =
ω2

c2
ε e−k (A.25)

H
∗
k e−k =

ω2

c2
ε e−k (A.26)

Hk e∗−k =
ω2

c2
ε e∗−k (A.27)

for real ε. This implies that e∗−k is an eigenmode of Hk, but we know that the eigenmode
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of Hk is given by ek, so that

e∗−k = ek (A.28)

or

e−k = e∗k (A.29)

which is the relationship we are want. Next consider the Bloch part of the magnetic field

which from Maxwell’s equations is related to he Bloch part of the electric field by

hk =
1
i ω

(−ikẑ + ∇) × ek = B k ek. (A.30)

Clearly B −k = −B
∗
k, so that

h−k = B −k e−k (A.31)

= −B
∗
k e∗k (A.32)

= − (B k ek)
∗ (A.33)

= −h∗
k (A.34)

which is again the desired relation.

Next consider spatial inversion symmetry. Unlike translationally invariant waveguides,

a periodic structure such as a photonic crystal waveguide only has inversion symmetry

about a finite number of high symmertry points, and in some cases may not have inversion

symmertry at all in the direction of propagation. If it does, i.e., if

ε(x, y,−z) = ε(x, y, z) (A.35)

for z = 0 defined at an appropriate high symmetry point of the structure, then (see [69])

[
Oσz ,

1
ε(r)

∇ × ∇×
]

= 0 (A.36)
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and, as a result,

1
ε(r)

∇ × ∇ × (OσzEk) = Oσz

(
1
ε(r)

∇ × ∇ × Ek

)

=
ω2

c2
(OσzEk); (A.37)

i.e., OσzEk is an solution to the original eigenvalue problem (A.10). Next, it can be shown

that OσzEk is a Bloch mode:

TΛẑ(OσzEk) = Oσz(TσzΛẑ Ek)

= Oσz(e
−ik(−Λ)Ek)

= Oσz(e
−i(−k)ΛEk)

= e−i(−k)Λ(OσzEk) (A.38)

i.e., OσzEk is a Bloch state with wave number −k:

OσzEk = E−k. (A.39)

But we can also operate directly on the eigenvector with the inversion operator:

OσzEk(x, y, z) = σzEk(x, y,−z). (A.40)

These last two equations combine to give

E−k(x, y, z) = σz Ek(x, y,−z). (A.41)

Since the electric field E is a true vector [fundamentally defined by a vector (position) times

a scalar (charge)] [206], under inversion it transforms as

σz E · (x̂, ŷ, ẑ) = E · (x̂, ŷ,−ẑ) (A.42)
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finally giving

E−k(x, y, z) · (x̂, ŷ, ẑ) = Ek(x, y,−z) · (x̂, ŷ,−ẑ) (A.43)

e−k(x, y, z) · (x̂, ŷ, ẑ) = ek(x, y,−z) · (x̂, ŷ,−ẑ).

A similar derivation can be followed with the magnetic field, with the only difference re-

sulting from the fact that H is a pseudovector [fundamentally defined as the cross product

of two vectors (postion and current density)] [206] so that under inversion

σz H · (x̂, ŷ, ẑ) = H · (−x̂,−ŷ, ẑ), (A.44)

giving

H−k(x, y, z) · (x̂, ŷ, ẑ) = Hk(x, y,−z) · (−x̂,−ŷ, ẑ) (A.45)

h−k(x, y, z) · (x̂, ŷ, ẑ) = hk(x, y,−z) · (−x̂,−ŷ, ẑ).

Since ek and hk are periodic functions of z, at the edges and center of the unit cell, zn =

±nΛ/2, we have ek(−zn),hk(−zn) = ek(zn),hk(zn) and

e−k(x, y, zn) · (x̂, ŷ, ẑ) = ek(x, y, zn) · (x̂, ŷ,−ẑ) (A.46)

h−k(x, y, zn) · (x̂, ŷ, ẑ) = hk(x, y, zn) · (−x̂,−ŷ, ẑ).

These are the same relations that hold for all z (as opposed to the set of zn, given here) in

translationally invariant waveguides [72]. Combining these relations with the time reversal

relations allows the phase of the components of the Bloch modes at these high symmetry

points to be fixed. From (A.46) and (A.29, A.31) at the high symmertry points, zn, we get

ek(x, y, zn) · (x̂, ŷ, ẑ) = e∗k(x, y, zn) · (x̂, ŷ,−ẑ) (A.47)

hk(x, y, zn) · (x̂, ŷ, ẑ) = h∗
k(x, y, zn) · (x̂, ŷ,−ẑ)

i.e., the transverse parts are purely real and the longitudinal parts are purely imaginary at

zn. This property can be used to obtain a more compact orthogonality relationship at these
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points:

∫
zn

(e∗km
× hkn) · ẑ dx dy = 0 (A.48)

∂

∂z

∫
zn

(e∗kn
× hkn) · ẑ dx dy = 0. (A.49)

These equations are obtained by rewriting (A.20) and (A.23) with km → −km, and adding

the resulting equations to the originals using the properties presented above.

Since ek and hk obey the spatial inversion relations (A.43, A.45), we can more generally

use the time reversal properties (A.29, A.31) to fix the parity of the real and imaginary

parts away from the high symmetry points zn. From (A.43, A.45) and (A.29, A.31)

ek(x, y, z) · (x̂, ŷ, ẑ) = e∗k(x, y,−z) · (x̂, ŷ,−ẑ) (A.50)

hk(x, y, z) · (x̂, ŷ, ẑ) = −h∗
k(x, y,−z) · (−x̂,−ŷ, ẑ)

i.e., under inversion:

1. The real (imaginary) parts of {ek,hk} · (x̂, ŷ) must be even (odd).

2. The real (imaginary) part of {ek,hk} · (ẑ) must be odd (even).

A.2 Coupled mode equations: Lorentz reciprocity method

This section shows how to use the Lorentz reciprocity relation to derive approximate but

self-consistent coupled mode equations describing two periodic waveguides. Each waveguide

is defined by its dielectric constant, εa(r) for waveguide a and εb(r) for waveguide b. Assume

that the modes of waveguides a and b in isolation are known,

Eka
m

= e−ika
mzeka

m
(r)eiωt (A.51)

Ekb
m

= e−ikb
mzekb

m
(r)eiωt, (A.52)
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where ea
ka

m
and eb

kb
m

are periodic as in (A.9) and are solutions to the eigenvalue equation

(A.11):

Hka
m

eka
m

(r) = εa(r)
w2

c2
eka

m
(r) (A.53)

Hkb
m

ekb
m

(r) = εb(r)
w2

c2
ekb

m
(r)

To solve Maxwell’s equations for the two waveguide system described by

ε(r) = 1 + [εa(r) − 1] + [εb(r) − 1] (for (εa − 1) ∩ (εb − 1) = 0)

= 1 + Δεa(r) + Δεb(r) (A.54)

write the total field as a linear combination of the individual waveguide modes:

E(r) =
∑
m

[
Am(z)Eka

m
(r) +Bm(z)Ekb

m
(r)
]
eiωt. (A.55)

Recall the reciprocity relation used in the previous sections. Let

F = E1 × H∗
2 + E∗

2 × H1 (A.56)

where E1,2 and H1,2 are solutions to Maxwell’s equations for some ε1,2. Using Maxwell’s

equations and standard vector identities, the divegence of F is:

∇ ·F = −iωE1 · E∗
2 (ε1 − ε∗2) . (A.57)

Integrating (A.57) over a plane of constant z and using the two dimensional form of the

divergence theorem gives the desired relation:

∂

∂z

∫
z
(E1 × H∗

2 + E∗
2 × H1) · ẑ dx dy = −iω

∫
z
E1 · E∗

2 (ε1 − ε2) dx dy, (A.58)

where it has been assumed that ε1,2 are real. Now let

E1 =
∑
n

[
An(z)Ea

n(r) +Bn(z)Eb
n(r)

]
(A.59)

E2 = Ea
m (A.60)
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and, corespondingly, let

ε1(r) = ε(r) (A.61)

ε2(r) = εa(r), (A.62)

so that E1 represents the approximate field in the two waveguide structures, while E2

represents the field in a single isolated waveguide. Subsitituting these equations into (A.58)

gives:

∑
n

[
dAn

dz

∫
z
(Ea

n × Ha∗
m + Ea∗

m × Ha
n) · ẑ dx dy+ dBn

dz

∫
z
(Eb

n ×Ha∗
m + Ea∗

m ×Hb
n) · ẑ dx dy+

An
d

dz

∫
z
(Ea

n × Ha∗
m + Ea∗

m × Ha
n) · ẑ dx dy + Bn

d

dz

∫
z
(Eb

n × Ha∗
m + Ea∗

m × Hb
n) · ẑ dx dy

]

= −i ω
∑
n

∫
z
(AnEa

n +BnEb
n) ·Ea∗

m (ε− εa) dx dy (A.63)

Recalling from (A.58) that

d

dz

∫
z
(Ea

n × Ha∗
m + Ea∗

m × Ha
n) · ẑ dx dy = 0 (A.64)

d

dz

∫
z
(Eb

n × Ha∗
m + Ea∗

m × Hb
n) · ẑ dx dy = −i ω

∫
z
Eb

n · Ea∗
m (εb − εa) dx dy, (A.65)

equation (A.63) can be written as

∑
n

[
dAn

dz

∫
z
(Ea

n × Ha∗
m + Ea∗

m × Ha
n) · ẑ dx dy+ dBn

dz

∫
z
(Eb

n × Ha∗
m + Ea∗

m × Hb
n) · ẑ dx dy+

]

= −i ω
∑
n

[
An

∫
z
Ea

n ·Ea∗
m (ε− εa) dx dy +Bn

∫
z
Eb

n ·Ea∗
m (ε− εb) dx dy

]
. (A.66)

Repeating this for E2 equal to each possible E(a,b)
m , we obtain a set of self-consistent coupled

mode equations. The notation can be cleaned up considerably by replacing the set of

indices ({a, b}, n) with a single index, j, and rewriting the amplitude coefficients as Cj(z) =

{An, Bn}(z). Then, (A.66) becomes

∑
j

dCj

dz

∫
z
(Ej ×H∗

i + E∗
i × Hj) · ẑ dx dy = −i ω

∑
j

Cj

∫
z
Ej ·E∗

i (ε− εj) dx dy, (A.67)
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which can be written in matrix form as

Pij
dCj

dz
= −iKijCj (A.68)

or

P
dC
dz

= −iKC (A.69)

where

Pij =
∫

z
(E∗

i × Hj + Ej × H∗
i ) · ẑ dx dy (A.70)

Kij = ω

∫
z
E∗

i · Ej (ε− εj) dx dy. (A.71)

Note that, in general, the matrix elements, Pij , can depend on z. However, as shown by

(A.64) and (A.65), only elements corresponding to modes of different waveguides are z

dependent, which is a consequence of power conservation.

A.2.1 Coupling between two periodic waveguides

We will now formulate the coupled mode equations for the specific case of coupling between

periodic waveguides, each with a single forward and backward propagating mode. In this

case, the electric field in the two waveguide system is approximated by

E(r) = A+(z)E+
a (r) +A−(z)E−

a (r) +B+(z)E+
b (r) +B−(z)E−

b (r) (A.72)

and the coupled mode equations become (in a less general notation)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 P++
ab P+−

ab

0 −1 P−+
ab P−−

ab

P++
ba P+−

ba 1 0

P−+
ba P−−

ba 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

d

dz

⎛
⎜⎜⎜⎜⎜⎜⎝

A+

A−

B+

B−

⎞
⎟⎟⎟⎟⎟⎟⎠

= −i

⎛
⎜⎜⎜⎜⎜⎜⎝

K++
aa K+−

aa K++
ab K+−

ab

K−+
aa K−−

aa K−+
ab K−−

ab

K++
ba K+−

ba K++
bb K+−

bb

K−+
ba K−−

ba K−+
bb K−−

bb

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

A+

A−

B+

B−

⎞
⎟⎟⎟⎟⎟⎟⎠

In calculating the matrix elements, Pij , properties of Bloch modes in periodic structures

derived earlier have been used. Specifically:

1. Modes of the same waveguide whose propagation constants do not differ by a reciprocal
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lattice vector are power orthogonal (A.20).

2. Forward propagating modes can be normalized to carry unity power, so that P++
aa =

P++
bb = 1, independent of z (see (A.64) or (A.23)).

3. Backward propagating modes are related to their forward propagating counterparts

by E−(r) = E+(r)∗ and H−(r) = −H+(r)∗ (see A.24)), so that backward propagating

modes are normalized to carry negative unity power (i.e., P−−
aa = P−−

bb = −1).

The exact form for the coupling coefficients is given by (A.71) in simplified notation. As

discussed earlier, solutions to Maxwell’s equations in period structures can be written in

Bloch form (A.8). As a result, they can be expanded as a plane wave times a Fourier

series. This aids in solving the coupled mode equations numerically, since, as a result, the z

dependence of the coupling coefficients can be approximated as an easily evaluated Fourier

series. The coupling coefficients in the specific notation used in the matrix expression are

given by

K+−
ab (z) = ω

∫
z
E+∗

a · E−
b (ε− εb) dx dy (A.73)

= ei(k
+
a −k−

b )z ω

∫
z
e+∗

a · e−b (ε− εb) dx dy (A.74)

= ei(k
+
a −k−

b )z
∑

n

(K+−
ab )n ei(2πn/Λ)z , (A.75)

(K+−
ab )n =

1
Λ

∫ z0+Λ

z0

e−i(2πn/Λ)z

(
ω

∫
z
e+∗

a · e−b (ε− εb) dx dy
)
dz (A.76)

for the various permutations of {a, b} and {+,−}. Note that k−a,b = −k+
a,b.

The cross terms in the “power matrix” on the left hand side of the matrix expression

can be expanded in a similar manner:

P+−
ab =

∫
z
(E+∗

a × H−
b + E−

b × H+∗
a ) · ẑ dx dy (A.77)

= ei(k
+
a −k−

b )z

∫
z
(e+∗

a × h−
b + e−b × h+∗

a ) · ẑ dx dy (A.78)

= ei(k
+
a −k−

b )z
∑

n

(P+−
ab )n ei(2πn/Λ)z , (A.79)

(P+−
ab )n =

1
Λ

∫ z0+Λ

z0

e−i(2πn/Λ)z

(∫
z
(e+∗

a × h−
b + e−b × h+∗

a ) · ẑ dx dy
)

(A.80)
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Often these cross terms will be small compared to the diagonal elements of the Pij matrix

and can be ignored.

Before solving the coupled mode equations numerically it is useful to analyze the form

of the coupled mode equations. From the coupling matrix, in absence of power matrix cross

terms, it can be seen that coupling between two modes depends primarily on the magnitude

of the DC component of the corresponding coupling term. If k+,−
a,b and k+,−

a,b do not differ by

some reciprocal lattice vector, 2πn/Λ, then there will be no DC component, and coupling

between these modes modes will suffer.

A.2.2 Power conservation

Physically, we require the total power in the field to be conserved. For coupling between two

waveguides, this total power includes the power in individual modes as well as “cross terms”

that arise due to the non-power orthogonality of modes of differing waveguides. Specifically,

we require that
dPtotal

dz
=

d

dz
(C†PC) = 0 (A.81)

giving

dC†

dz
PC + C†P

dC
dz

+ C†dP
dz

C = 0. (A.82)

It can easily be seen that P is Hermitian, so that

dC†

dz
P =

dC†

dz
P† =

(
P
dC
dz

)†
. (A.83)

Using the coupled mode equation (A.69), this gives

dC†

dz
P = (−iKC)† (A.84)



158

and the power conservation relation becomes

(−iKC)†C + C†(−iKC) + C†dP
dz

C = 0 (A.85)

iC†K†C− iC†KC + C†dP
dz

C = 0 (A.86)

C†
(
iK† − iK +

dP
dz

)
C = 0. (A.87)

Writing the terms in the matrix explicitly

C∗
m

(
iω

∫
z
En · E∗

m (ε− εm) dx dy − iω

∫
z
E∗

m · En (ε− εn) dx dy +
dPmn

dz

)
Cn = 0 (A.88)

and, once again recalling the reciprocity relation (A.58),

dPmn

dz
=

d

dz

∫
z
(E∗

m × Hn + En ×H∗
m) · ẑ dx dy (A.89)

= −i ω
∫

z
En ·E∗

m(εn − εm)dx dy, (A.90)

we get

i ω C∗
mCn

∫
z
En ·E∗

m [(ε− εm) − (ε− εn) − (εn − εm)] dx dy = 0 (A.91)

i ω C∗
mCn

∫
z
En ·E∗

m [(ε− ε) + (εn − εn) + (εm − εm)] dx dy = 0, (A.92)

which clearly holds for all C, indicating that power is conserved.
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Appendix B

Emitter-waveguide coupling

The goal of this calculation is to estimate the efficiency with which optical fiber tapers

collect photons from a radiating source. Texts by Jackson [206] and by Snyder and Love

[72] were refered to in deriving the following expressions. SI units are used throughout.

B.1 Coupled-mode analysis

Maxwells equations for a harmonic field (time dependence e−iωt) are

∇ ·D = ρ (B.1)

∇ × H + iωD = J (B.2)

∇ × E − iωB = 0 (B.3)

∇ · B = 0, (B.4)

with

D(r) = ε(r)E(r) (B.5)

B(r) = μ(r)H(r). (B.6)

In the problem that we are concerned with, there is no free charge (ρ = 0), and the material is

assumed to be non-magnetic (μ(r) = μ0). The fiber taper dielectric constant is represented

by ε(r), and the radiating dipole source (for example a quantum dot, or nanocrystal) is

described by the source current J(r). This source current can be related to a polarization

source P(r) oscillating at frequency ωp by J(r) = iωpP(r).
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From Maxwell’s equation, we can derive the Lorentz Reciprocity theorem, which relates

two solutions to Maxwell’s equations:

∇ · (E1 × H∗
2 + E∗

2 ×H1) = iωE1 ·E∗
2(ε1 − ε∗2) − E1 · J∗

2 − E∗
2 · J1 (B.7)

Integrating both sides over a two dimensional plane perpendicular to the waveguide axis,

and invoking Gauss’ theorem,

d

dz

∫
(E1 × H∗

2 + E∗
2 × H1) · ẑ dxdy = (B.8)

iω

∫
(E1 ·E∗

2(ε1 − ε∗2) − E1 · J∗
2 − E∗

2 · J1) dxdy. (B.9)

Now, let ε1(r) = εf (r) and J1(r) = 0 describe the dielectric constant of the fiber, and

ε2(r) = εf (r) and J2(r) = J(r) represent the combined fiber-polarization source. If the

eigenmodes of Maxwell’s equations for ε1 = εf (r) are given by

E1 = En(r), (B.10)

we can write solutions for the combined fiber-polarization source systems as

E2 =
∑
m

am(z)Em(r). (B.11)

In the case of a translationally invariant waveguide such an optical fiber, the eigenmodes

can be expressed in the form En(r) = eiβnzen(x, y), and we write am = am(z). Subsituting

Eqs. (B.10) and (B.11) into Eq. (B.8), we get

d

dz

∑
m

ei(βn−βm)zam(z)
∫

(en × h∗
m + e∗m × hn) · ẑ dxdy = −

∫
eiβmzem · J∗ dxdy. (B.12)

Using the Lorentz reciprocity relation for the case that ε1 = ε2 and J1 = J2 = 0, one can

show that for m 
= n, ∫
(en × h∗

m + e∗m × hn) · ẑ dxdy = 0. (B.13)
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As a result, the coupled mode equations given above simplify to

dam

dz
= − 1

P o
m

∫
Em · J∗ dxdy (B.14)

where

P o
m =

1
2
Re
[∫

(em × h∗
m) · ẑ dxdy

]
, (B.15)

is the power in mode m for am = 1. Integrating Eq. (B.14), we arrive at the following

expression for the amplitude of mode m excited by the source, J, assuming that z is past

the source in the direction of propagation:

am(z) = − 1
4P o

m

∫
Em · J∗ dxdydz. (B.16)

If J is a current source which is small compared to the wavelength of light and positioned

at ro, then we can approximate it as J = Ioδ3(r− ro) and the the above equation simplfies

to

am(z) = − 1
4P o

m

Em(ro) · Io∗. (B.17)

B.2 Field normalization

Next, we aim to write Eq. (B.17) in terms of normalized field strength and typical waveguide

parameters. Note that P o
m is the power propagating in mode m for am = 1. This can also

be expressed as

P o
m =

vg

2

∫
εf (r)|em(r)|2 dxdy =

1
2
vgAmε

o
f |em|2max (B.18)

where εof is the dielectric constant of the fiber material, vg is the group velocity, and where

the modal area Am is a two dimensional analogue to mode volume given by

Am =
∫
εf |em|2 dxdy
εof |em|2max

. (B.19)

Note that we have assumed that the field maximum is located in the fiber.

The power radiated by J into mode m is then given by

Pm = |am|2P o
m =

|em(ro) · Io∗|2
16P o

m

=
ē2m(ro)

8vgAmεof
I2
o |n̂∗

J · n̂m|2 (B.20)
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where ē2m(ro) = |e2
m(ro)|

|e2
m(r)|max

is the normalized field intensity, and where n̂J and n̂m are the

polarization unit vectors of J and em(ro), respectively.

B.3 Coupling efficiency

The metric that we are most interested in is the coupling efficiency between the total power

radiated by Jo and mode m of the waveguide. From Jackson (3rd edition, Eq. (9.24)), the

total power radiated by a dipole p in free space is

Pr =
1

12π
ω4

c2
|p|2. (B.21)

A current source oscilating at frequency ω is related to p by p = iIo/ω. This gives

Pr =
1

12π

√
μo

εo

ω2

c2
|Io|2. (B.22)

The collection efficiency of the fiber taper mode m is given by

ηm =
Pm

Pr
=
(

ē2m(ro)
8vgAmεf

|n̂∗
J · n̂m|2

)(
12π
√
εo
μo

c2

ω2

)
(B.23)

=
(

ē2m(ro)
8vgAmεf

|n̂∗
J · n̂m|2

)(
12π
√
εo
μo

λ2

4π2

)
(B.24)

=
(

3
8π

ē2m(ro)λ2

vgAmεf
|n̂∗

J · n̂m|2
√
εo
μo

)
. (B.25)

Writing vg = c/ng, where ng is the group index of mode m, and εof = n2
f εo, where nf is the

fiber index of refraction, gives

ηm =
3
8π

(λ/nf )2

Am

ē2m(ro)
c/ng

|n̂∗
J · n̂m|2

√
1

εoμo
(B.26)

=
3
8π
ē2m(ro)

(λ/nf )2

Am
ng|n̂∗

J · n̂m|2, (B.27)

which is a satisfyingly simple expression for the fraction of radiated power emitted into

mode m.

However, this expression has the disturbing property that for large ng and small Am

(achievable in, for example, a photonic crystal waveguide), ηm > 1. The coupled mode

equations derived from Lorentz reciprocity are implicitly power conserving, and the problem
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is related to Eq. (B.21). Equation (B.21) is valid for a dipole radiating in free space, but

needs to be modified for a dipole located in a non-trivial environment with an altered density

of states. The cylindrical symmetry of the fiber taper permits exact, albeit complicated,

formulations of the local density of states in terms of the various fiber taper modes. This

calculation requires solving for the radiation modes as well as for the usual guided modes

of the fiber taper, and can be found in Refs. [207, 208]. Nonetheless, Eq. B.26 can be used

as an initial estimate of the coupling efficiency, and is expected to be valid for ηm << 1.
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