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Abstract

This thesis is primarily a study of the measurement theory of non-Abelian anyons

through interference experiments. We give an introduction to the theory of anyon

models, providing all the formalism necessary to apply standard quantum measure-

ment theory to such systems. This formalism is then applied to give a detailed analysis

of a Mach-Zehnder interferometer for arbitrary anyon models. In this treatment, we

find that the collapse behavior exhibited by a target anyon in a superposition of states

is determined by the monodromy of the probe anyons with the target. Such mea-

surements may also be used to gain knowledge that would help to properly identify

the anyon model describing an unknown system. The techniques used and results ob-

tained from this model interferometer have general applicability, and we use them to

also describe the interferometry measurements in a two point-contact interferometer

proposed for non-Abelian fractional quantum Hall states. Additionally, we give the

complete description of a number of important examples of anyon models, as well as

their corresponding quantities that are relevant for interferometry. Finally, we give a

partial classification of anyon models with small numbers of particle types.
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Chapter 1 Introduction

“A mathematician may say anything he pleases, but a physicist must be

at least partially sane.” -Josiah Willard Gibbs (1839-1903).

In many ways, we are fortunate to be living in a universe with exactly three spatial

dimensions. It keeps us from falling apart, allows us, if we are willing, to see things

as they really are, makes it possible, perhaps with some practice, to communicate in

a clear and coherent manner, and it provides some of the more advanced members of

civilization with the ability to tie their shoes [1, 2].

Perhaps these frivolous statements deserve some explanation, or at least a trans-

lation from their seemingly nonsensical form into something physically meaningful.

We begin by pointing out that Newton’s 1/r2 force-law [3], which arises for Gaussian

central potentials associated with gravitational and electric point charges, is particu-

lar to three spatial dimensions. As shown in [4, 5], a Gaussian central potential in D

dimensional space generates a 1/rD−1 force law, and this only permits stable orbits

when D = 3. Indeed, this implies that without exactly three spatial dimensions, we

would lose the stable orbits that keep our structure intact from astrophysical scales

down to atomic scales. (Similar results arise from such considerations in the frame-

work of general relativity [6].) Another point of clarification is that transmission of

information signals via light or sound waves is only reverberation-free and distor-

tionless for radiation in D = 1, 3 spatial dimensions [7]. Finally, another seemingly

innocuous, but rather important, fact is that three is the exact number of dimensions

that permits nontrivial knots to exist. Any fewer dimensions, and it is impossible to

form a knot in a strand, since there is no “under” or “over,” just “next to.” Any more

dimensions and there is too much spatial freedom, which will make knots unravel,

since one can always move one strand past another by pushing it into one of the extra

dimensions, where it may pass unhindered.

Knowing that three is an interesting dimensionality for space that grants some
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rather nice properties, one might be inclined to ask whether three might also be

an interesting dimensionality for spacetime. Indeed, this turns out to be the case,

primarily because of the property regarding whether nontrivial knots are allowed to

exist and the effect this has on particle statistics. In fact, it is exactly this property

that requires particles in three (or more) spatial dimensions to exhibit only the well-

known bosonic [8, 9] and fermionic [10, 11] statistics that play such a crucial role in

the structure and interaction of matter in the universe. We will describe this in more

detail in the next section, and then devote the rest of this thesis to systems with two

spatial dimensions.

1.1 Exchange Statistics and Anyons

In quantum mechanics, the state of a system of N particles is given by a wavefunc-

tion Ψ (x1, . . . , xN ) for particle coordinates xj (all internal quantum numbers labeling

the state, such as spin, will be left implicit). In mathematical parlance, the wave-

function is a section of a vector bundle with fibre Ck over the configuration space

of the N particles. The modulus square of a wavefunction |Ψ (x1, . . . , xN)|2 has the

interpretation of probability density [12], so wavefunctions must be normalized (i.e.∫ |Ψ (x1, . . . , xN)|2 dx1 . . . dxN = 1). In order to preserve total probability, quantum

evolutions must be represented by unitary transformations on the state space. The

configuration space CN of N particles living in the spatial manifold M is given by

CN =
MN − ΔN

G
(1.1)

where ΔN =
{
(x1, . . . , xN ) ∈MN : xi = xj for some i, j

}
is subtracted from MN as

a “hard-core” condition that prevents two or more particles from occupying the same

point in space1. To account for indistinguishability of identical particles (a charac-

teristic property of quantum physics), one takes the quotient of MN − ΔN by the

1This condition is dropped for bosons, which are allowed to occupy the same point in space and
have trivial exchange statistics. Without this “hard-core” condition, the configuration space would
always be simply-connected, and hence only permit trivial exchange statistics, as we will see.
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action of the group G of permutations among identical particles. If all N particles

are identical to each other (which we will take to be the case for now), then G = SN

is the permutation group of N objects.

The N strand braid group on M is defined as BN (M) = π1 (CN), the fundamental

group of configuration space [13] (though perhaps it should be called the “N particle

exchange group on M ,” when dim(M) ≥ 3). To understand this terminology, we note

that [α] ∈ π1 (CN ) are (homotopy equivalence classes of) loops in configuration space,

specifying processes that begin and end in the same configuration of particles, up to

interchanges of indistinguishable particles. Projecting the particles’ coordinates2 for

a representative path α (t) in CN , where t ∈ [0, 1] may be thought of as time, into

the spacetime M × [0, 1] gives the particles’ worldline trajectories for the exchange

process α (t). These worldlines look like “braided” strands running from the t = 0

timeslice to the t = 1 timeslice (though for dim(M) ≥ 3, spacetime has enough dimen-

sions to always permit the worldlines to be smoothly unbraided without intersecting

them). Physical systems may be assumed to have configuration spaces that are path

connected and locally simply connected.

Quantizing the system, we find that evolution operators are characterized by uni-

tary representations of the fundamental group of configuration space π1 (CN ). This

fact is laid bare in the path integral formalism [14] of quantum mechanics, where

the physical interpretation as a “sum over paths” makes it clear that the propagator

(evolution kernel) splits into contributions from homotopically inequivalent path sec-

tors labeled by elements of π1 (CN). Specifically, the propagator between the points

Xa, Xb ∈ CN at times ta, tb takes the form [15]:

K (Xb, tb;Xa, ta) =
∑

[α]∈π1(CN )

U ([α])K [αγ] (Xb, tb;Xa, ta) (1.2)

where one must specify some arbitrary path γ in CN from γ (ta) = Xa to γ (tb) = Xb

to define K [αγ]. The “weight factors” U ([α]) must, in general, comprise a unitary

2Actually, one must first lift α (t) from CN × [0, 1] to a representative in MN × [0, 1] and then
project the spatial coordinate of each particle.
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representation of π1 (CN) acting on the state space. From the perspective that [α] ∈
π1 (CN ) parameterizes a particle exchange process, U ([α]) is the operator representing

the “statistics” transformation of states due to the exchange specified by [α]. It

is often assumed that exchange statistics for physical systems correspond to direct

sums of one-dimensional irreducible representations of π1 (CN), but there is no reason

a priori to make such a restriction. We will see that interesting, though so far

empirically unsubstantiated, physical possibilities may occur with higher dimensional

representations.

Since our universe appears very convincingly (to most people) to have three spatial

dimensions, one usually considers dimM = 3, and for most intents and purposes

M = R3 is an accurate description. In this case, π1 (CN ) = SN , since all configurations

of worldlines producing the same permutation of particle positions are homotopically

equivalent. In fact, if M is any simply connected manifold with dimM ≥ 3, then

π1 (CN ) = SN [13]. The one-dimensional representations of SN are simply the trivial

(exchange has no effect) and alternating (exchange of a pair gives an overall sign

change) representations, which, respectively correspond to the archetypal bosonic and

fermionic exchange statistics. Multi-dimensional representations of SN give rise to

what is known as “parastatistics” [16], however, it has been shown that parastatistics

can be replaced by bosonic and fermionic statistics, if a hidden degree of freedom (a

non-Abelian isospin group) is introduced [17].

If the space manifold has dimM = 2, then particles’ worldlines would exist in a

(2 + 1)-dimensional spacetime, where they cannot be continuously unbraided without

intersecting them. Consequently, exchange statistics in two spatial dimensions, which

were first considered in [18], are referred to as “braiding statistics.” When M = R2,

we get π1 (CN) = BN , Artin’s N strand braid group [19], which is the infinite order

group generated by the counterclockwise half twists (and their clockwise half twist

inverses)

Ri =

i i + 1

, R−1
i =

i i + 1

(1.3)



5

exchanging strands i and i+ 1, for i = 1, . . . , N − 1, subject to the relations

RiRj = RjRi for |i− j| ≥ 2 (1.4)

RiRi+1Ri = Ri+1RiRi+1. (1.5)

Diagrammatically, group multiplication is just stacking braids on top of each other,

and the generator relations can be seen to simply require that the group elements

behave as braids do, i.e. (for |i− j| ≥ 2)

. . .

RiRj

= . . .

RjRi

(1.6)

RiRi+1Ri

=

Ri+1RiRi+1

. (1.7)

The one-dimensional unitary representations of BN are simply given by D [Rj] =

eiθ for all j, where the phase can take any value, θ ∈ [0, 2π). Because of this,

particles with exchange statistics governed by the braid group have been dubbed

“anyons” [20, 21]. Exchange statistics described by multi-dimensional irreducible

representations of the braid group [22] give rise to what are referred to as non-Abelian

anyons3 and non-Abelian (braiding) statistics.

In general, using arbitrary space manifolds M may introduce additional group

generators and constraints to π1 (CN ), arising from the topological structure (such as

non-trivial cycles) of M , see e.g. [23]. Additionally, one may also allow for different

particle types by using G = SN1 × . . .× SNm (a subgroup of SN), where the particles

3In this thesis, the term “anyon” will be used in reference to both the Abelian and non-Abelian
varieties.
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fall into m subsets of Nj identical particles that are distinguishable from those of the

other subsets, giving rise to the “colored” braid group on M . Such generalizations

for braiding statistics quickly become cumbersome using group representation theory,

especially for multi-dimensional representations. Furthermore, one would typically

like to consider systems in which there are processes that do not conserve particle

number, a notion unsupported by the group theoretic language. To circumvent these

shortcomings for systems with two spatial dimensions, one may switch over to the

quantum field theoretic-type formalism of anyon models, in which the topological and

algebraic properties of the anyonic system are described by category theory, rather

than group theory. The structures of anyon models originated from conformal field

theory (CFT) [24, 25] and Chern-Simons theory [26]. They were further developed in

terms of algebraic quantum field theory [27, 28], and made mathematically rigorous

in the language of braided tensor categories [29, 30, 31].

Of course, one might wonder whether any of this exotic braiding statistics is at all

relevant to us, since we live in a universe with three spatial dimensions. Amazingly, it

turns out that, even in our three-dimensional universe, we are capable of crafting phys-

ical systems that are effectively two dimensional and have “quasiparticles,” point-like

localized coherent state excitations that behave like particles, that appear to possess

braiding statistics. In fact, some of these are even strongly believed (though, thus

far, experimentally unconfirmed) to be non-Abelian anyons! Physically, anyon mod-

els describe the topological behavior of quasiparticle excitations in two-dimensional,

many-body systems with an energy gap that suppresses (non-topological) long-range

interactions, and hence an anyon model is said to characterize a system’s “topological

order.”

1.2 The Fractional Quantum Hall Effect

The fractional quantum Hall effect is the most prominent example of anyonic

systems, so we will briefly review some relevant facts on the subject. (For a general

introduction into the quantum Hall effect, see e.g. [32, 33, 34, 35].)
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Figure 1.1: Composite view showing the Hall resistance Rxy = Vy/Ix and the magne-
toresistance Rxx = Vx/Ix of a two-dimensional electron gas as a function of magnetic
field (n = 52.333 × 1011 cm−2, T = 85 mK). The filling factor ν is indicated for the
most prominent quantum Hall states (deep minima in Rxx). (From Refs. [36, 37].)

The quantum Hall effect (QHE) is an anomalous Hall effect that occurs in two

dimensional electron gases (2DEGs) formed at the interface of a semiconductor and

an insulator (such as in GaAs/AlGaAs heterostructures) when they are subjected to

strong magnetic fields (∼ 10 T) at very low temperatures (∼ 10 mK). Under these

conditions, the Hall resistance Rxy develops plateaus as a function of the applied

magnetic field, instead of varying linearly, as semiclassical theory would predict.

These plateaus occur at values which are quantized to extreme precision in in-

teger [38] or fractional [39] multiples of the fundamental conductance quantum e2

h
.

These multiples are the filling fractions, usually denoted ν ≡ Ne/Nφ where Ne is

the number of electrons and Nφ is the number of fundamental flux quanta through

the area occupied by the 2DEG at magnetic field corresponding to the center of a

plateau. At the plateaus, the conductance tensor is off-diagonal, meaning a dissipa-

tionless transverse current flows in response to an applied electric field. In particular,
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the electric field generated by threading an additional localized flux quantum through

the system expels a net charge of νe, thus creating a quasihole. Consequently, charge

and flux are intimately coupled together in the quantum Hall effect.

In the fractional quantum Hall (FQH) regime, electrons form an incompressible

fluid state that supports localized excitations (quasiholes and quasiparticles) which,

for the simplest cases, carry one magnetic flux quantum and, hence, fractional charge

νe. This combination of fractional charge and unit flux implies that they are anyons,

due to their mutual Aharonov–Bohm effect. The fractional charge of quasiparticles

in the ν = 1
3

Laughlin state was first measured in 1995 [40]. Recently, a series of

experiments purported to verify the fractional braiding statistics has been reported

[41, 42, 43, 44, 45, 46]. The long-distance interactions between quasiholes in the bulk

of the sample are purely topological and may be described by an anyon model.

Boundary excitations and currents of the Hall liquid are described by a 1 + 1

dimensional conformal field theory whose topological order is the same as that of the

bulk, when there is no edge reconstruction. These boundary excitations provide one

way of coupling measurement devices to the 2DEG. A further connection between

the physics of the bulk and CFT can be established following the observation in [47]

that the microscopic trial wavefunction describing the ground state of the incom-

pressible FQH liquid can be constructed from conformal blocks (CFT correlators). In

particular, the renowned Laughlin wavefunction for the ν = 1/3 state [48] given by

ΨGS =
∏
j<k

(zj − zk)
3
∏
j

e−|zj |2/4 (1.8)

where z = (x + iy)/l with the magnetic length l =
√

�/eB, can be interpreted as

a conformal block of a free massless bosonic field. Without going into details, we

mention that the quasihole wavefunctions (written in terms of electron coordinates)

also have a similar CFT interpretation.

We are particularly interested in non-Abelian statistics, so we bring special atten-

tion to several observed plateaus in the second Landau level (2 ≤ ν ≤ 4) that are

expected to possess non-Abelian anyons, in particular ν = 5
2
, 7

2
, and 12

5
(also, possibly
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Figure 1.2: Rxx and Rxy between ν = 2 and ν = 3 at 9mK. Major FQHE states are
marked by arrows. The horizontal lines show the expected Hall value of each FQHE
state. The dotted line is the calculated classical Hall resistance.(From Ref. [52].)

ν = 19
8
) [49, 50, 51, 52]. See Fig. 1.2.

Predictions of non-Abelian statistics in these states originated with the paper of

Moore and Read [47], which employed a CFT construction to obtain the following

trial wave function for the electronic ground state of ν = 5
2

Hall plateau:

ΨGS = A
(

1

z1 − z2

1

z3 − z4
. . .

)∏
j<k

(zj − zk)
2
∏
j

e−|zj |2/4 (1.9)

with A(. . .) denoting the antisymmetrized sum over all possible pairings of electron

coordinates. Later, this construction was generalized by Read and Rezayi to a series of
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non-Abelian states, which include one at ν = 12
5

[53]. At least for ν = 5
2

(the Moore–

Read state) and ν = 12
5

(the k = 3,M = 1 Read–Rezayi state), these wavefunctions

were found to have very good overlap with the exact ground states obtained by

numerical diagonalization of small systems [54, 55].

Detailed investigations of the braiding behavior of quasiholes of the Moore–Read

state were carried out in Ref. [56], and of the ν = 12
5

state, as well as the other

states in the Read–Rezayi series in Ref. [57]. Owing to the special feature of the

Moore–Read state as a weakly-paired state of a px+ ipy superconductor of composite

fermions [58], alternative explicit calculations of the non-Abelian exchange statistics

of quasiparticles were carried out in the language of unpaired, zero-energy Majorana

modes associated with the vortex cores [59, 60]. (Unfortunately, this language does

not readily adapt to give a similar interpretation for the other states in the Read–

Rezayi series.)

1.3 Overview

In addition to the proposed fractional quantum Hall states that could host non-

Abelian anyons [47, 53, 61], there are a number of other more speculative proposals

of systems that may be able to exhibit non-Abelian braiding statistics. These include

lattice models [62, 63], quantum loop gases [64, 65, 66, 67], string-net gases [68, 69, 70,

71], Josephson junction arrays [72], px + ipy superconductors [73, 74, 75], and rapidly

rotating bose condensates [76, 77, 78]. Since non-Abelian anyons are representative

of an entirely new and exotic phase of matter, their discovery would be of great

importance, in and of itself. However, as additional motivation, non-Abelian anyons

could also turn out to be an invaluable resource for quantum computing.

The idea to use the non-local, multi-dimensional state space shared by non-Abelian

anyons as a place to encode qubits was put forth by Kitaev [62], and further developed

in Refs. [79, 80, 81, 82, 83, 84, 85]. The advantage of this scheme, known as “topo-

logical quantum computing,” is that the non-local state space is impervious to local

perturbations, so the qubit encoded there is “topologically” protected from errors. A
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model for topological qubits in the Moore–Read state was proposed in Ref. [86], how-

ever braiding operations alone in this state are not computationally universal, severely

limiting its usefulness in this regard. Nevertheless, one may still hope to salvage the

situation by supplementing braiding in the Moore–Read state with topology changing

operations [87, 88] or non-topologically protected operations [89] to produce univer-

sality. The greater hope, however, lies in the k = 3 Read–Rezayi state, for which

the non-Abelian braiding statistics are essentially described by the computationally

universal “Fibonnaci” anyon model (see Chapter 5.5). Consequently, the efforts in

“topological quantum compiling” (i.e. designing anyon braids that produce desired

computational gates) for this anyon model [90, 91, 92] may be applied directly.

The primary focus of this thesis is to address the measurement theory of anyonic

states. This provides a key element in detecting non-Abelian statistics and correctly

identifying the topological order of a system. Furthermore, the ability to perform

measurements of anyonic states is a crucial component of topological quantum com-

puting, in particular for the purposes of qubit initialization and readout. Clearly, the

most direct way of probing braiding statistics is through experiments that establish

interference between different braiding operations. In this vein, we will consider in-

terferometry experiments which probe braiding statistics via Aharonov–Bohm type

interactions [93], where probe anyons exhibit quantum interference between homo-

topically distinct paths traveled around a target, producing distinguishable measure-

ment distributions. This sort of experiment provides a quantum non-demolitional

measurement [94] of the anyonic state of the target, and is ideally suited for the qubit

readout procedure in topological quantum computing.

In Chapter 2, we provide an introduction to the theory of anyon models, giving all

the essential background needed to understand the rest of the thesis, and establishing

the connection with standard concepts of quantum information theory. Addition-

ally, we describe methods and a program used to solve the Pentagon and Hexagon

equations, the consistency equations that, in principle, determine all anyon models.

In Chapter 3, we analyze a Mach-Zehnder type interferometer for an arbitrary

anyon model. We consider a target anyon allowed to be in a superposition of anyonic
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states, and describe its collapse behavior resulting from interferometry measurements

by probe anyons. We find that probe anyons will collapse any superpositions between

states they can distinguish by monodromy, as well as remove any entanglement that

they can detect between the target and outside anyons. We show how these measure-

ments may be used to determine the target’s anyonic charge and/or help identify the

topological order of a system.

In Chapter 4, we consider a two point-contact interferometer designed for frac-

tional quantum Hall systems. We give the evolution operator to all orders in tunnel-

ing, and apply the methods and results of Chapter 3 to describe how superpositions

in the target anyon state collapse as a result of interferometry measurements, and

how to determine the anyonic charge of the target. We give detailed predictions for

the Moore–Read state and all the Read–Rezayi states, particularly the k = 3 state.

In Chapter 5, we give the complete description of a number of important examples

of anyon models. For each of these, we also compute details related to the results of

the interferometry experiments as analyzed in Chapter 3. These examples are also

used to construct the anyon models describing the fractional quantum Hall states of

interest.

In Appendix A, we tabulate the results of the program described in Chapter 2

that finds solutions to the Pentagon and Hexagon equations. This provides a partial

classification of anyon models with small numbers of particle types, and may be

helpful for the purposes of identification of topological phases.
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Chapter 2 Anyon Models

In this chapter, we introduce the theory of anyon models, presenting all the relevant

details that will be employed throughout this thesis. In mathematical terminology,

anyon models are known as unitary braided tensor categories, but we will avoid

descending too far into the abstract depths of category theory, and instead follow the

relatively concrete approach found in Refs. [63, 95]. We hope to bring the language

of anyon models into closer contact with the more traditional language of quantum

information and measurement theory, and to fill in the missing concepts necessary for

this connection.

2.1 Fusion

An anyon model has a finite set C of superselection sector labels called topological

or anyonic charges. These conserved charges obey a commutative, associative fusion

algebra

a× b =
∑
c∈C

N c
abc (2.1)

where the fusion multiplicities N c
ab are non-negative integers which indicate the num-

ber of different ways the charges a and b can be combined to produce the charge c.

There is a unique trivial “vacuum” charge 1 ∈ C for which N c
a1 = δac, and each charge

a has a unique conjugate charge, or “antiparticle,” ā ∈ C such that N1
ab = δbā. (1 = 1̄

and ¯̄a = a.) The fusion multiplicities obey the relations

N c
ab = N c

ba = N ā
bc̄ = N c̄

āb̄ (2.2)

∑
e

N e
abN

d
ec =

∑
f

Nd
afN

f
bc (2.3)
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and a theory is non-Abelian if there is some a and b such that

∑
c

N c
ab > 1. (2.4)

The domain of a sum will henceforth be left implicit when it runs over all possible

labels. If
∑

cN
c
ab = 1 for every b, then the charge a is Abelian. To each fusion product,

there is assigned a fusion vector space V c
ab with dimV c

ab = N c
ab, and a corresponding

splitting space V ab
c , which is the dual space. We pick some orthonormal set of basis

vectors |a, b; c, μ〉 ∈ V ab
c (〈a, b; c, μ| ∈ V c

ab) for these spaces, where μ = 1, . . . , N c
ab. If

N c
ab = 0, then V ab

c = ∅ and it clearly has no basis elements. We will sometimes use

the notation c ∈ {a× b} to mean c such that N c
ab 
= 0. Splitting and fusion spaces

involving the vacuum charge have dimension one, and so we will leave their basis

vector labels μ = 1 implicit. The splitting of three anyons with charge a, b, c from the

charge d corresponds to a space V abc
d which can be decomposed into tensor products

of two anyon splitting spaces by matching the intermediate charge. This can be done

in two isomorphic ways

V abc
d

∼=
⊕
e

V ab
e ⊗ V ec

d
∼=
⊕
f

V af
d ⊗ V bc

f . (2.5)

To incorporate the notion of associativity at the level of splitting spaces, we need

associativity constraints that essentially specify a set of isomorphisms between dif-

ferent decompositions that are to be considered simply a change of basis. These

isomorphisms (called F -moves) are written as

|a, b; e, α〉 |e, c; d, β〉 =
∑
f,μ,ν

[
F abc
d

]
(e,α,β)(f,μ,ν)

|b, c; f, μ〉 |a, f ; d, ν〉 (2.6)

and are unitary for anyon models 1. F -symbols that includes vertices that are not

permitted by fusion do not actually occur, since the corresponding splitting space has

1One may think of fusion of anyonic charges as a generalization of tensor products of represen-
tations of groups. (The round brackets are used to group together indices into the multi-indices
labeling each side of the transformation.) From this perspective, the F -symbols are the analog of
6j-symbols.
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no basis elements. The same notion of associativity is, of course, true for fusion of

three anyons, which is denoted in the same manner with kets. The associativity for

fusion is given by F †, and together with unitarity, we have

[(
F abc
d

)†]
(f,μ,ν)(e,α,β)

=
[
F abc
d

]∗
(e,α,β)(f,μ,ν)

=
[(
F abc
d

)−1
]
(f,μ,ν)(e,α,β)

. (2.7)

For fusion and splitting of more anyons, one does the obvious iteration of such de-

compositions. Using the decomposition

V a1,...,am
a′1,...,a′n

∼=
⊕

e2,...,em−1

e′2,...,e
′
n−1

e

V a1a2
e2

⊗ V e2a3
e3

⊗ . . .⊗ V em−1am
e

⊗V e
e′n−1a

′
n
⊗ . . .⊗ V

e′3
e′2a

′
3
⊗ V

e′2
a′1a

′
2

(2.8)

will be referred to as “the standard basis” representation. For this to be consistent

for arbitrary numbers of anyons, one must obtain the same result when two distinct

series of F -moves start and end in the same decompositions. This consistency is

achieved by the constraint called the Pentagon equation

∑
δ

[
F fcd
e

]
(g,β,γ)(l,δ,ν)

[
F abl
e

]
(f,α,δ)(k,λ,μ)

=
∑
h,σ,ψ,ρ

[
F abc
g

]
(f,α,β)(h,σ,ψ)

[
F ahd
e

]
(g,σ,γ)(k,λ,ρ)

[
F bcd
k

]
(h,ψ,ρ)(l,μ,ν)

(2.9)

One imposes the (physically mandatory) axiom that fusion and splitting with the

vacuum charge does not change the state, which is equivalent to the condition that

fusion/splitting with the vacuum commutes with the associativity moves. This is

represented by the condition that F abc
d is trivial (i.e. equal to 1 if allowed by fusion)

when any of a, b, c are equal to 12. We point out, however, that F abc
d need not be

trivial when d is the vacuum charge.

2There is a “gauge” choice that one makes in picking the basis states of the fusion/splitting
spaces (discussed more in Chapter 2.5). If one chooses not to believe in this as a physical axiom, one
may instead recognize that this condition can always be imposed consistently as a “gauge” choice
in defining the basis states.
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An important quantity known as the quantum dimension da of a charge a may

be found from the fusion multiplicities by considering the asymptotic scaling of the

dimension of the fusion space of n anyons of charge a when n is taken to be large

dim

(∑
cn

V cn
a...a

)
=

∑
c2,...,cn

N c2
aaN

c3
c2a . . . N

cn
cn−1a ∼ dna . (2.10)

Though this gives an intuition for its name, the quantum dimension will, however, be

defined by

da = dā =
∣∣∣[F aāa

a ]1,1

∣∣∣−1

. (2.11)

(That Eq. (2.10) follows from this definition may be seen from Eq. (2.36), which, by

the Perron-Frobenius theorem, indicates that da is the largest eigenvalue of N c
ab when

treated as a matrix in the indices b, c.) From unitarity of anyon models, we have

da ≥ 1, with equality iff a is Abelian (i.e. fusion with any other charge has exactly

one fusion channel). The total quantum dimension is defined as

D =

√∑
a

d2
a. (2.12)

It is extremely useful to employ a diagrammatic formalism for anyon models. Each

anyonic charge label is associated with an oriented line. It is useful in some contexts

to think of these lines as the anyons’ worldlines (we will consider time as increasing

in the upward direction), however, such an interpretation is not necessary nor even

always appropriate. Reversing the orientation of a line is equivalent to conjugating

the charge labeling it, i.e.

a = ā . (2.13)

The fusion and splitting states are assigned to trivalent vertices with the appropriately

corresponding fusion/splitting of anyonic charges:

(dc/dadb)
1/4

c

ba

μ = 〈a, b; c, μ| ∈ V c
ab, (2.14)
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(dc/dadb)
1/4

c

ba
μ = |a, b; c, μ〉 ∈ V ab

c , (2.15)

where the normalization factors (dc/dadb)
1/4 are included so that diagrams are in the

isotopy invariant convention throughout this thesis. Isotopy invariance means that

the value of a (labeled) diagram is not changed by continuous deformations, so long as

open endpoints are held fixed and lines are not passed through each other or around

open endpoints. Open endpoints should be thought of as ending on some boundary

(e.g. a timeslice or an edge of the system) through which isotopy is not permitted.

Building in isotopy invariance is a bit more complicated than just making this nor-

malization change, but we will come back to these details later in the chapter. These

normalization factors leave the F -symbols unchanged in the conversion to diagrams

a b c

e

d

α

β
=
∑
f,μ,ν

[
F abc
d

]
(e,α,β)(f,μ,ν)

a b c

f

d

μ

ν
. (2.16)

Any diagrammatic equation, such as this, is also valid as a local relation within larger,

more complicated diagrams. The Pentagon equation (2.9) is expressed diagrammati-

cally in Fig. 2.1.

The property that fusion/splitting with the vacuum is trivial is manifested dia-

grammatically as the ability to move, add, and delete vacuum lines from diagrams

at will. (There is a subtlety in making this compatible with isotopy invariance that

we will describe shortly.) Inner products are formed diagrammatically by stacking

vertices so the fusing/splitting lines connect

a b

c

c′

μ

μ′
= δc,c′δμ,μ′

√
dadb
dc

c

(2.17)

and this generalizes to more complicated diagrams. An important feature of this

relation is that it diagrammatically encodes charge conservation, and, in particular,
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e

g

c d

e

f

c db

e

g

a c db

F
k

a db
e

c db
Fba

l
F

f

e

F F
c

a

a

k
l

hh

Figure 2.1: The Pentagon equation enforces the condition that different sequences
of F -moves from the same starting fusion basis decomposition to the same ending
decomposition gives the same result. Eq. (2.9) is obtained by imposing the condition
that the above diagram commutes.

forbids tadpole diagrams.

In general, operators may be formed by taking linear combinations of fusion/splitting

diagrams that conserve charge, which can be specified in terms of the standard basis

elements of the fusion/splitting spaces V a1,...,am
a′1,...,a′n

:

a1 a2 am· · ·
· · ·

e2

a′1 a′2 a′n

e′2

· · ·

· · ·
e

μ2

μ′2

μm

μ′n
.

The identity operator on a pair of anyons with charges a and b respectively is

Iab =
∑
c,μ

|a, b; c, μ〉 〈a, b; c, μ| (2.18)
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or, written diagrammatically

ba

=
∑
c,μ

√
dc
dadb

c

ba

ba

μ

μ , (2.19)

We introduce the notation

X

. . .

. . .

A1 Am

A′
1 A′

n

= X ∈ V A1,...,Am
A′

1,...,A
′
n

=
∑

a1,...,am
a′1,...,a

′
n

V a1,...,am
a′1,...,a′n

(2.20)

where a capitalized anyonic charge label means a (direct) sum over all possible charges,

so that the operator X is defined for acting on any n anyon input and m anyon

output. The indices on operators will be left implicit when they are contextually

clear (and unnecessary). If one wants to consider operators that do not conserve

anyonic charge, this must be done by introducing anyon charge lines that leave the

system on which the operator acts, which, in fact, is really just considering a larger

combined system in which charge actually is conserved. Conjugation of a diagram is

carried out by simultaneously reflecting the diagram across the xy-plane and reversing

the orientation of arrows.

Tensoring together two operators (on separate sets of anyons) is simply executed

by juxtaposition of their diagrams:

X ⊗ Y

. . .

. . .

. . .

. . .

= X

. . .

. . .

Y

. . .

. . .

(2.21)

The associativity relations may then be used to re-write the resulting tensor product

in the standard basis, however, it is often more convenient not to re-write it as such.
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2.2 Bending and Tracing

The first requirement for isotopy invariance is the ability to introduce and remove

bends in a line. Bending a line horizontally (so that the line always flows upward) is

trivial, but a complication arises when a line is bent vertically. The F -move associated

with this type of bending is

a ā a

1

1

= [F aāa
a ]1,1 a ā a

1

1

= da [F aāa
a ]1,1 a (2.22)

(using Eq. (2.17) twice in the last step). In general, the quantity

[F aāa
a ]1,1 =

κa

da
(2.23)

has a non-trivial phase κa = κ∗
ā, which is why one needs more than just vertex

normalization to generate isotopy invariance for this kind of bending. Though one

may always make a consistent gauge choice such that κa = 1 for all a that are not

self-dual, for the charges a that are self-dual (a = ā), κa = ±1 is a gauge invariant

quantity, known as the Frobenius-Schur indicator. For isotopy invariance, one follows

the prescription that when a vacuum line is removed from the bottom of a splitting

vertex or from the top of a fusion vertex, it is replaced with a right-directed flag

1

āa
=

a ā
= κa

a ā
(2.24)

1

āa
=

a ā
= κ

∗
a

a ā
. (2.25)

where “cups” and “caps” with left-directed flags are defined in terms of those with

right-directed flags by multiplication with the κa. From this, isotopy involving vertical

bending is defined as introducing or removing alternating cap-cup pairs with opposing
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flags:

a ā
a

= a =
a

ā a . (2.26)

In diagrams when cups and caps are paired up with opposing flags, these flags may

be left implicit, and we will do so from now on. (In fact, these important flags are

typically paired up properly, so they usually do not show up explicitly.) Combining

this with Eq. (2.17) with c = 1 we see that an unknotted loop carrying charge a

evaluates to its quantum dimension

a = da. (2.27)

The effect on a splitting vertex of bending a line down is that it is rotated to become

a fusion vertex. More precisely, bending to the left and to the right, respectively, give

the maps

c

a b

ā
μ =

∑
ν

[
Aabc

]
μν

b

cā
ν (2.28)

c

ba

b̄
μ =

∑
ν

[
Bab
c

]
μν

a

b̄c
ν , (2.29)

where

[
Aabc

]
μν

=

√
dadb
dc

κ
∗
a

[
F āab
b

]∗
1,(c,μ,ν)

(2.30)

[
Bab
c

]
μν

=

√
dadb
dc

[
F abb̄
b

]
(c,μ,ν),1

(2.31)

are unitary in μ, ν (though it may not obvious from these expressions).

We can now write the F -move with one of its legs bent down

e
ba

dc

α

β
=
∑
f,μ,ν

[
F ab
cd

]
(e,α,β)(f,μ,ν)

f

ba

dc

μ

ν
(2.32)
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F ab
cd

]
(e,α,β)(f,μ,ν)

=
∑
α′,ν′

[
(Ac̄ae )

−1
]
αα′

[
F c̄ab
d

]
(e,α′,β)(f,μ,ν′)

[
Ac̄fd

]
ν′ν
, (2.33)

which is also a unitary transformation. Combined with Eq. (2.19), this gives

[
F ab
ab

]
1,(c,μ,ν)

=

√
dc
dadb

δμ,ν , (2.34)

[
F ab
cd

]
(e,α,β)(f,μ,ν)

=

√
dedf
dadd

[
F ceb
f

]∗
(a,α,μ)(d,β,ν)

. (2.35)

Using Eq. (2.19) and isotopy, we get the important relation

dadb = a b =
∑
c,μ

√
dc
dadb

a b

c μ

μ

=
∑
c

N c
abdc . (2.36)

Inverting F , we find: [(
F ab
ab

)−1
]
(c,μ,ν),1

=

√
dc
dadb

δμ,ν , (2.37)

∑
c,μ

[
F ab
ab

]
(e,α,β)(c,μ,μ)

√
dc =

√
dadb δe,1 (2.38)

The trace on operators formed from bras and ket is defined in the usual way; e.g.

for a two anyon operator

Tr [|a, b; c, μ〉 〈a′, b′; c, μ′|] = δa,a′δb,b′δμ,μ′ . (2.39)

To translate the trace into the diagrammatic formalism, one defines the quantum

trace, denoted T̃r, by closing the diagram with loops (with properly paired flags) that

match the outgoing lines with the respective incoming lines at the same position

T̃rX = T̃r

⎡⎢⎢⎢⎢⎢⎢⎣ X

. . .

. . .

A1 An

A′
1 A′

n

⎤⎥⎥⎥⎥⎥⎥⎦ = X

. . .

. . .

. . .

A1 An

. (2.40)



23

Connecting the endpoints of two lines labeled by different anyonic charges violates

charge conservation, so such diagrams evaluate to zero. The operator X ∈ V A1...An
A′

1...A
′
n

may be written as

X =
∑
c

Xc, Xc ∈ V A1...An
c ⊗ V c

A′
1...A

′
n

(2.41)

(note that this decomposition is basis independent), which may be used to relate the

trace and the quantum trace via

TrX =
∑
c

1

dc
T̃rXc, T̃rX =

∑
c

dcTrXc. (2.42)

We also need to define the partial traces for anyons. At this point, we only

define them with respect to the planar fusion structure, i.e. in terms of the (1 + 1)-

dimensional diagrams, but after we introduce braiding, we will return to address

issues that arise from the full (2 + 1)-dimensional structure. In order to take the

partial trace of a single anyon B, the planar structure requires that it must be one of

the two outer anyons (i.e. the first or last in the lineup). Physically, this corresponds

to the fact that one cannot treat the subsystem excluding B as independent of B if

this anyon is still located in the midst of the remaining anyons. The partial quantum

trace over B of an operator X ∈ V A1,...,An,B
A′

1,...,A
′
n,B

′ is defined by looping only the line for

anyon B back on itself

T̃rBX = X

. . .

. . .

A1 An

B

A′
1 A′

n

(2.43)

and for X ∈ V B,A1,...,An
B′,A′

1,...,A
′
n

as

T̃rBX = X

. . .

. . .

AnA1

B

A′
nA′

1

. (2.44)
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To relate the partial quantum trace to the partial trace, we implement factors for

the quantum dimensions of the overall charges of the operator before and after the

partial trace

TrBX =
∑
c,f

df
dc

[
T̃rBXc

]
f
, T̃rBX =

∑
c,f

dc
df

[TrBXc]f , (2.45)

where

T̃rBXc =
∑
f

[
T̃rBXc

]
f
,

[
T̃rBXc

]
f
∈ V A1,...,An

f ⊗ V f
A′

1,...,A
′
n
. (2.46)

The partial trace and partial quantum trace over the subsystem of anyons

B = {B1, . . . , Bn} that are sequential outer lines (on either, possibly alternating,

sides) of an operator is defined by iterating the partial quantum trace on the B

anyons

TrB = TrB1 . . .TrBn , T̃rB = T̃rB1 . . . T̃rBn (2.47)

Iterating these over all the anyons of a system returns the trace and quantum trace,

respectively, as they should.

Using Eq. (2.37) and the fact that tadpole diagrams evaluate to zero, we have

T̃rB

⎡⎢⎢⎢⎢⎣ c

ba

b′a′

μ

μ′

⎤⎥⎥⎥⎥⎦ = c

ba

b′a′

μ

μ′ =
∑
e,α,β

[(
F ab
a′b′
)−1

]
(c,μ,μ′)(e,α,β)

a

a′

e
bα

β

=
[(
F ab
ab

)−1
]
(c,μ,μ′),1

a b =

√
dbdc
da

δμ,μ′ a . (2.48)
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Applying this to three anyon standard basis vectors gives

T̃rB [|a1, a2; f, μ〉 |f, b; c, ν〉 〈f ′, b′; c, ν ′| 〈a′1, a′2; f ′, μ′|]
= δb,b′δf,f ′δν,ν′

dc
df

|a1, a2; f, μ〉 〈a′1, a′2; f, μ′| (2.49)

TrB [|a1, a2; f, μ〉 |f, b; c, ν〉 〈f ′, b′; c, ν ′| 〈a′1, a′2; f ′, μ′|]
= δb,b′δf,f ′δν,ν′ |a1, a2; f, μ〉 〈a′1, a′2; f, μ′| , (2.50)

and this similarly generalizes when dealing with more anyons. Since this seems to

indicate that the partial trace has the appropriate behavior with respect to bras and

kets, one might think that it is the usual notion of partial trace, but things are a bit

more subtle than this, since these bras and kets do not have the usual tensor product

structure. On the other hand, when considering tensor products of operators, it is

the partial quantum trace that behaves in the appropriate manner for a partial traces

(i.e. as in the usual basis independent definition of partial trace). Specifically, tracing

over the set of anyons B on which the operator Y acts, we have

T̃rB [X ⊗ Y ] = XT̃rY (2.51)

TrB [X ⊗ Y ] =
∑
a,b,c

N c
abXaTrYb. (2.52)

2.3 Braiding

The unitary braiding operations of pairs of anyons, also called R-moves, are written

as

Rab =
a b

, R†
ab = R−1

ab =
b a

, (2.53)

which are defined through their application to basis vectors:

Rab |a, b; c, μ〉 =
∑
ν

[
Rab
c

]
μν

|b, a; c, ν〉 (2.54)

c

ab
μ =

∑
ν

[
Rab
c

]
μν

c

ab
ν (2.55)
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and similarly for R−1, which, by unitarity, satisfy
[(
Rab
c

)−1
]
μν

=
[
Rba
c

]∗
νμ

. The braid-

ing operator may be represented in terms of planar diagrams as

Rab =
∑
c,μ,ν

√
dc
dadb

[
Rab
c

]
μν

c

ab

ba

ν

μ . (2.56)

For braiding to be consistent with fusion, it must satisfy the Hexagon equations

∑
λ,γ

[Rca
e ]αλ

[
F acb
d

]
(e,λ,β)(g,μ,γ)

[
Rcb
g

]
γν

=
∑
f,σ,δ,ψ

[
F cab
d

]
(e,α,β)(f,σ,δ)

[
Rcf
d

]
σψ

[
F abc
d

]
(f,δ,ψ)(g,μ,ν)

(2.57)

and

∑
λ,γ

[
(Rac

e )−1]
αλ

[
F acb
d

]
(e,λ,β)(g,μ,γ)

[(
Rbc
g

)−1
]
γν

=
∑
f,σ,δ,ψ

[
F cab
d

]
(e,α,β)(f,σ,δ)

[(
Rfc
d

)−1
]
σψ

[
F abc
d

]
(f,δ,ψ)(g,μ,ν)

(2.58)

which essentially impose the property that lines may be passed over or under vertices

respectively (i.e. braiding commutes with fusion), and implies the usual Yang-Baxter

relation for braids. These relations are represented diagrammatically in Fig. 2.2. The

F -symbols and R-symbols completely specify an anyon model, and a theorem known

as Mac Lane coherence [96] tells us that no further consistency conditions are needed

beyond the Pentagon and Hexagon equations.

The fact that braiding with the vacuum is trivial is given by the condition

Ra1
a = R1b

b = 1 (2.59)

which follows from the Hexagon equations combined with the triviality of fusion with



27

F
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F
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e

a cb

d

e

a b c d

c

g

a cb

g

d

f

a cb

d
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R
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f

d

R−1R−1

F

F Fd

ca b d

a cb

d

a cb

ge

e

d

a cb

f
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d

f

a cb

g

d

a cb

Figure 2.2: The Hexagon equations enforce the condition that braiding is compatible
with fusion, in the sense that different sequences of F -moves and R-moves from the
same starting configuration to the same ending configuration give the same result.
Eqs. (2.57) and (2.58) are obtained by imposing the condition that the above diagram
commutes.

vacuum. The braiding matrices satisfy the ribbon property

∑
λ

[
Rab
c

]
μλ

[
Rba
c

]
λν

=
θc
θaθb

δμ,ν (2.60)

where θa is a root of unity called the topological spin of a, defined by

θa = θā = d−1
a T̃rRaa =

∑
c,μ

dc
da

[Raa
c ]μμ = κa [Rāa

1 ]
∗

=
1

da a
. (2.61)

When applicable, this is related to sa, the (ordinary angular momentum) spin or CFT

conformal scaling dimension of a, by

θa = ei2πsa . (2.62)

The topological S-matrix is defined by

Sab = D−1T̃r [RbaRab] = D−1
∑
c

N c
ab

θc
θaθb

dc =
1

D a b
. (2.63)

One can see from this that Sab = Sba = S∗
āb and da = S1a/S11. A useful property for
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removing loops from lines is

a

b

=
Sab
S1b

b
(2.64)

A UBTC is “modular” and corresponds to a TQFT (topological quantum field the-

ory), if its monodromy is non-degenerate, i.e. for each a 
= 1, there is some b such that

RbaRab 
= Iab, which is the case iff the topological S-matrix is unitary. For such theo-

ries, the S-matrix, together with Tab = θaδab represent the generators of the modular

group PSL (2,Z).

The monodromy scalar component

Mab =
T̃r [RbaRab]

T̃rIab
=

1

dadb a b
=
SabS11

S1aS1b
(2.65)

is an important quantity, typically arising in interference terms, such as those occur-

ring in experiments that probe anyonic charge. It is the identity coefficient of the full

braid (monodromy) operation, and so may also be written as

Mab =
∑

(f,μ,ν)

[
Bāba
b

]
1,(f,μ,ν)

[
Bāab
b

]
(f,μ,ν),1

(2.66)

the 1, 1 component of the B2 operator, where

a b c

e

d

α

β

=
∑

(f,μ,ν)

[
Babc
d

]
(e,α,β)(f,μ,ν)

a b c

f

d

μ

ν

(2.67)

[
Babc
d

]
(e,α,β)(f,μ,ν)

=
∑
g,γ,δ,η

[
F acb
d

]
(e,α,β)(g,γ,δ)

[
Rcb
g

]
γη

[(
F abc
d

)−1
]
(g,η,δ)(f,μ,ν)

(2.68)

Braiding the same configuration clockwise instead of counterclockwise (using R−1
bc in-

stead of Rcb on the left hand side), we have
[(
Bacb
d

)−1
]
(e,α,β)(f,μ,ν)

=
[
Bacb
d

]∗
(f,μ,ν)(e,α,β)

.

Because the B-move is a unitary operator, we must have |Mab| ≤ 1. When |Mab| = 1,
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only the 1, 1 element of B2 is non-zero, hence

a b

= Mab

ba

(2.69)

so that the braiding of a and b is Abelian. The monodromy of a and b is trivial if

Mab = 1. If N c
ab 
= 0 and |Mbe| = 1 for some e, then the relation

Mce = MaeMbe (2.70)

follows from the diagram

a b

e

c

μ

μ

= Mbe

a b

e

c
μ

μ

(2.71)

2.4 Physical States

Now that we have the full (2 + 1)-dimensional structure of anyon models, we

finish defining the partial trace and partial quantum trace, which will be used to

help describe physical state in anyonic systems. With the ability to braid, one also

gains the ability to trace over any anyon in a system (not just those situated at one

of the two outer positions of a planar diagram). To do so, one simply uses a series

of braiding operations to move the anyon to one of the outside positions, at which

point the planar definition of partial traces given earlier may be applied. However, an

important point is that the series of braids one applies before tracing is not arbitrary,

and in general, altering the series of braids will give a different outcome. Physically,

the series of braiding operations that is applied before (planar) tracing an anyon

specifies the path (with respect to the other anyons) by which the traced anyon is

removed from the system in consideration. From this perspective, the planar partial

trace is not unique (indeed, even an anyon already at one of the outer positions may
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be given nontrivial braiding with the other anyons). To be uniquely defined, the

definitions of partial trace and partial quantum trace of an anyon B must include the

path by which B is removed from the system. In this paper, the path will always

be specified implicitly (i.e. either it will be the trivial path corresponding to planar

tracing, or we will diagrammatically indicate the removal path of the anyon being

traced out).

The density matrix for an arbitrary two anyon system is

ρ =
∑

a,a′,b,b′
c,μ,μ′

ρ(a,b,c,μ)(a′,b′,c,μ′)
1

dc
|a, b; c, μ〉 〈a′, b′; c, μ′|

=
∑

a,a′,b,b′
c,μ,μ′

ρ(a,b,c,μ)(a′,b′,c,μ′)

(dadbda′db′d2
c)

1/4
c

ba

b′a′

μ

μ′ . (2.72)

which is normalized so that satisfying the trace condition takes the form

T̃r [ρ] =
∑
a,b,c,μ

ρ(a,b,c,μ)(a,b,c,μ) = 1 (2.73)

The factor 1/dc could, of course, be absorbed into ρ(a,b,c,μ)(a′,b′,c,μ′) (as a matter of

convention), but then the dc would appear in the summand of Eq. (2.73). The overall

charge c must match up between the bra and the ket because of charge conservation.

One can understand this, as well as the factor of 1/dc, by thinking of this density

matrix as ρ = T̃rC [ρ′], the partial quantum trace over C of a density matrix that

describes the actual entire system

ρ′ =
∑
a,b,c,μ
a′,b′,c′,μ′

ρ(a,b,c,μ)(a′,b′,c′,μ′) |a, b; c, μ〉 |c, c̄; 1〉 〈c′, c′; 1| 〈a′, b′; c′, μ′|

=
∑
a,b,c,μ
a′,b′,c′,μ′

ρ(a,b,c,μ)(a′,b′,c′,μ′)

(dadbdcda′db′dc′)
1/4

a b c̄

c

a′ b′ c′

c′

μ

μ′

(2.74)
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which only has vacuum overall charge. In other words, the entire system really has

trivial total anyonic charge, but by restricting our attention to some subset of anyons,

we have a reduced subsystem with overall charge c. Tracing over the C anyon (which

imposes c = c′) physically represents the fact that it is no longer included in the

system of interest, and cannot be brought back to interact with the A and B anyons.

Because of this, we are restricted to a subsystem which may only have incoherent

superpositions of different overall charges c (i.e. one must keep track of the C anyon

to allow access to coherent superpositions). The manifestation of this property in ρ

is exhibited by the charge c matching in the bra and the ket (or diagrammatically

as the charge c line connecting μ and μ′). The generalization to density matrices of

arbitrary numbers of anyons should be clear.

When considering the combination of two sets of anyons A = {A1, . . . , Am} and

B = {B1, . . . , Bn}, we say the anyons of system A are unentangled with those of

system B if the density matrix of the combined system is the tensor product (in

some basis, and up to introduction/removal path braiding) of density matrices of the

two systems ρAB = ρA ⊗ ρB (which is represented diagrammatically by there being

no non-trivial charge line connecting the anyons of system A with those of system

B). This essentially means the creation histories of the two different systems do not

involve each other.

2.5 Solving the Pentagon and Hexagon Equations

One may, in principle, find all anyon models with a given set of fusion rules by

solving the Pentagon and Hexagon equations. However, the number of variables and

equations involved grows rapidly with the number of anyonic charges. Even for an

Abelian theory with N charges, the number of variables in the Pentagon equation

(i.e. the number of F -symbols) equals N3, while the number of equations equals

N4. In general, this makes solving the equations by hand impractical. Still, using

Mathematica, we were able to solve the equations for many interesting fusion rules,

including the ones tabulated in Appendix A. In this section, we explain some of the
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techniques we used to do so.

The Pentagon and Hexagon equations are multivariate polynomial equations and

we can use the standard techniques for such systems of equations to attempt a solu-

tion. In particular, it is well known that any system of polynomial equations with only

finitely many solutions can be solved algorithmically by finding a suitable Gröbner

basis [97, 98] which brings the system into an “upper triangular” form. The Pentagon

and Hexagon equations never have a finite number of solutions, because they have

a gauge freedom associated with each distinct vertex that amounts to the choice of

basis vectors. Using the notation where
[
uabc

]
μ,μ′ is the invertible change of basis

transformation for the fusion space V ab
c , i.e. |μ〉 =

∑
μ′

[
uabc

]
μμ′ |μ′〉 for |μ〉 ∈ V ab

c , this

gauge freedom, which takes the form

[
F abc
d

]′
(e,α′,β′)(f,μ′,ν′)

=
∑
α,β,μ,ν

[(
uabe

)−1
]
α′α

[
(uecd )−1]

β′β

[
F abc
d

]
(e,α,β)(f,μ,ν)

[
uafd

]
μμ′

[
ubcf

]
νν′ (2.75)

[
Rab
c

]′
μ′ν′ =

∑
μ,ν

[(
uabc

)−1
]
μ′μ

[
Rab
c

]
μν

[
ubac

]
νν′ (2.76)

preserves the Pentagon and Hexagon equations. If one wants to ensure that the F -

moves and R-moves are always represented by unitary matrices, then one must require

that the bases for the splitting spaces are orthonormal, and the basis transformations

above should be unitary. However, this is not necessary to preserve the Pentagon and

Hexagon equations and we will not require it in the following. The presence of this

gauge symmetry means that whenever a solution to the Pentagon and/or Hexagon

equations exists, there is, in fact, a family of gauge equivalent solutions, parameterized

by
[
uabc

]
μμ′ . A sort of converse to this statement is given by a theorem called Ocnenanu

rigidity [99, 63], which states that for any set of fusion rules, there are only finitely

many gauge equivalence classes of solutions to the Pentagon equations and similarly

only finitely many gauge equivalence classes of solutions to the Pentagon/Hexagon

system of equations. This means that if we can fix the gauge, that is, if we can put

restrictions on the F -symbols and R-symbols which may be achieved by a choice of
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gauge and which eliminate further gauge freedom, then we will have only finitely many

solutions to the Pentagon and Hexagon equations for these gauge fixed F -symbols

and R-symbols and these equations can, in principle, be solved algorithmically.

2.5.1 Fixing the Gauge

To make the task of finding solutions easier, we will restrict ourselves here to

fusion rules for which all fusion coefficients N c
ab are equal to 0 or 1. We will call

such fusion rules multiplicity-free. Most anyon models that occur in physical contexts

are of this type. For multiplicity-free fusion rules, the nontrivial splitting spaces are

all one-dimensional and, as a result, we may drop the Greek indices (basis labels)

from the F -symbols, R-symbols and gauge transformation matrices. R and u now

become nonzero complex numbers Rab
c and uabc . The Pentagon and Hexagon equations,

Eqs. (2.9), (2.57), and (2.58), now simplify to

[
F fcd
e

]
gl

[
F abl
e

]
fk

=
∑
h

[
F abc
g

]
fh

[
F ahd
e

]
gk

[
F bcd
k

]
hl

(2.77)

Rac
e

[
F acb
d

]
eg
Rbc
g =

∑
f

[
F cab
d

]
ef
Rfc
d

[
F abc
d

]
fg

(2.78)

(Rca
e )−1

[
F acb
d

]
eg

(Rcb
g )−1 =

∑
f

[
F cab
d

]
ef

(Rcf
d )−1

[
F abc
d

]
fg
. (2.79)

Under a gauge transformation, the F -symbols and R-symbols become

[
F abc
d

]′
ef

=
uafd u

bc
f

uabe u
ec
d

[
F abc
d

]
ef

(2.80)

[
Rab
c

]′
=

ubac
uabc

Rab
c . (2.81)

Now a simple strategy for fixing the gauge presents itself: we can eliminate the gauge

freedom by setting certain F -symbols and R-symbols equal to a numerical value (for

example, equal to 1). If a (non-invariant) F -symbol is initially non-zero, then we

can set it equal to 1 by appropriately choosing one of the gauge factors appearing

in the equation above. After setting
[
F abc
d

]
ef

= 1, we have to keep the ratio
uafd ubcf
uabe u

ec
d
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fixed in any further gauge transformation in order not to change
[
F abc
d

]
ef

. In this

way, we can proceed to fix more F -symbols until no further gauge freedom for the F -

symbols exists, ensuring there will only be finitely many solutions to these gauge fixed

Pentagon equations. Afterwards, we may do the same for the Hexagon equations, if

there is any applicable gauge freedom left. The only problem with this scheme is that

we must know in advance which F -symbols (if any) are equal to 0. Before dealing

with this issue, let us assume it is known which F -symbols equal 0, and describe the

gauge fixing procedure for the Pentagon equations in a bit more detail.

To fix the gauge for the F -symbols, we look at Eq. (2.80) and pick one of these

which is linear in one of the gauge factors. In this equation, we set the transformed

F -symbol equal to 1 and then we solve for the linearly occurring gauge factor. We

substitute the solution back into the full set of equations, eliminating the fixed gauge

factor. Then we repeat the procedure with another gauge factor which occurs linearly

in a different equation, and continue iterating this step. At any point during this

process, the gauge equations will still be in a form similar to the original: namely

F ′ is seen to be equal to a product of (positive and negative) integer powers of F -

symbols and gauge factors. For many theories with small numbers of particles, this

procedure of solving linear equations and back-substitution can be carried through

until no more free gauge factors appear on the right hand side of the equations. When

this happens, the gauge is completely fixed as far as the F -symbols are concerned

(there may still be gauge factors which have not been fixed, but the ratios of gauge

factors that occur in the F -symbols’ transformations are, indeed, fixed). However,

in general, we may run out of equations that are linear in the gauge factors before

the gauge is fully fixed. In such cases, one can continue the process using quadratic

or higher order equations in the gauge factors. Such equations do not have unique

solutions and so it may be necessary to keep track of the tree of possible subsequent

solutions in order to make sure that a consistent overall gauge fixing emerges. Also,

arbitrary choices of solutions to higher-order equations for gauge factors may lead to a

residual finite gauge group. This is not a problem in solving the Pentagon equations,

since the number of solutions will still be finite, but it must be tracked in order to
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correctly count non-isomorphic (gauge inequivalent) anyon models after obtaining the

solutions. Using this procedure and a similar procedure for the gauge freedom in the

R-symbols, we have been able to automate gauge fixing for all the fusion rules we

have solved using our program.

2.5.2 Finding Zeros

In order to be able to fix the gauge, we need to know which F -symbols are equal

to 0 before solving the Pentagon equations themselves. For unitary anyon models,

this appears to always be possible. In fact, using unitarity, we can write down a set

of equations for the absolute values of the F -symbols which, in all the examples we

have calculated, has only finitely many solutions. We have

∑
e

∣∣∣[F abc
d

]
ef

∣∣∣2 =
∑
f

∣∣∣[F abc
d

]
ef

∣∣∣2 = 1 (2.82)

as a special case of unitarity. Secondly, in unitary anyon models, it is possible [see

Eq. (2.34)] to make a gauge choice so that

∣∣∣[F aāc
c ]1f

∣∣∣2 =
df
dadc

and
∣∣∣[F abb̄

a

]
e1

∣∣∣2 =
de
dadb

. (2.83)

In order to make use of this equation, we must know the quantum dimensions of the

particles (without first calculating the F -symbols). This is not too much of a problem,

since for unitary theories, da is the Perron-Frobenius eigenvalue of the integer matrix

N c
ab. Thirdly, in any unitary gauge, we must have

∣∣∣[F abc
d

]
ef

∣∣∣2 = 1 (2.84)

whenever e and f are the unique labels allowed by fusion (given a, b, c, and d), since

in these cases, the F -move is a unitary map between one-dimensional spaces.

Finally, some of the Pentagon equations Eq. (2.77) have only one term in the sum

over h on the right hand side. Taking absolute value squared on both sides of those
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Pentagon equations we obtain

∣∣∣[F fcd
e

]
gl

∣∣∣2 ∣∣∣[F abl
e

]
fk

∣∣∣2 =
∣∣∣[F abc

g

]
fh

∣∣∣2 ∣∣∣[F ahd
e

]
gk

∣∣∣2 ∣∣∣[F bcd
k

]
hl

∣∣∣2 . (2.85)

The equations for the absolute values of the F -symbols we have mentioned up to now

determine a finite set of solutions for the F -symbols in all examples we have looked

at. We are investigating whether this is true in general. If one is only interested in

anyon models with braiding, one may add extra equations coming from the Hexagons

which have only one term in the summation over f [cf. Eqs. (2.78) and (2.79)]. Note

that these equations will also involve only F -symbols, since in any unitary gauge the

absolute values of all R-symbols equals 1, for multiplicity-free fusion rules.

In solving the equations we have given for the absolute values of the F -symbols,

it is useful to note that many of the equations are of the form

A
∣∣∣[F abc

d

]
ef

∣∣∣2 = B, (2.86)

where A is a numerical factor given in terms of previously fixed F -symbols and B is

an expression that depends only on F -symbols other than
[
F abc
d

]
ef

. After recursively

eliminating variables using equations of this type, we often arrive at a set of equations

that can be solved using Mathematica’s standard equation-solving routines.

Note that any solution found here gives the absolute values of the F -symbols as

they would occur in a unitary gauge. These absolute values are not invariant under

general (non-unitary) gauge transformations. On the other hand, whether or not an

F -symbol in a multiplicity-free theory is zero is a gauge-invariant property.

2.5.3 Solving the Gauge Fixed Pentagon and Hexagon Equa-

tions

Once the gauge is fixed, one may, in principle, solve the equations algorithmically,

using, for example, the techniques based on Gröbner bases that are implemented

in standard algebra packages, like Mathematica. However, the algorithms involved
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scale at least exponentially, both in space and in time, as a function of the number

of variables, the number and degree of the equations, and the number of solutions

to the equations. This means that even after gauge-fixing, some preprocessing is

still necessary before Gröbner basis techniques may be applied. Fortunately, it turns

out that the structure of the Pentagon and Hexagon equations allows for a drastic

reduction of the numbers of variables and equations by elementary means. Two

subtypes of equations are responsible for this. First of all, there are typically many

equations that are linear in at least one of the variables. Heuristically, one would

expect this, because there are many equations and many more variables than can

occur in any one equation (e.g. for the Pentagon equations, an upper bound for

the number of variables in an equation is 2 plus 3 times the maximal number of

fusion channels). Secondly, there are often many equations that have only two terms,

because the sums on the right hand sides of the equations have only a single term.

Both types of equations are very useful in reducing the number of variables, because

they are usually easy to solve. In the case of a linear equation one can always solve

for the linearly occurring variable if it occurs in only one of the terms. Since we use

that we already know which F -symbols are zero, we do not have to worry about the

possibility that the term with the linearly occurring variable is equal to zero. In the

case of an equation with two terms, one may solve for any variable for which the two

terms have different order, again using knowledge that both terms are non-zero.

Linear equations involving more than two terms have the drawback that repeated

back-substitution of the solutions to such equations quickly increases the number

of terms in the remaining equations. This places a heavy burden on the memory,

causing the equations themselves to become very long, and slowing down the search

for a Gröbner basis. Two-term equations which are not linear have the disadvantage

of having multiple solutions, and each solution has to be substituted in order to be

sure that one finds all solutions to the full set of equations. Because of this, we start

the elimination of variables using the equations which are linear and have only two

terms. This reduction step alone turns out to be very powerful, and, for the theories

we have solved, it often reduced the number of variables by as much as a factor 50.
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After this first reduction step, we use Mathematica’s various simplification routines

to bring the equations to a standard form. In this way, dependent equations can

become identical, often leading to a substantial reduction in the number of equations

(for example, for SU(3)7 fusion rules, we have 4911 distinct gauge fixed Pentagon

equations before the substitution step and 280 distinct equations after substitution

and simplification).

We continue the process of variable elimination by solving further linear equations

until we run out. These elimination steps usually consume most of the computer time

involved in solving the equations, since the number of terms per equation tends to

grow exponentially with the number of variables eliminated (the number of equations

simultaneously decreases, but usually not enough to compensate). The speed of this

growth is linked to the maximal (or typical) number of fusion channels allowed by the

fusion rules, since this number determines the number of terms in the summations

that occur in the Pentagon and Hexagon equations. As a result, theories with fewer

fusion channels may be much easier to solve than theories with more fusion channels,

even if the former have more anyonic charges.

After these elementary steps, we usually have only a small number of variables

left (less than 5 for all theories tabulated in Appendix A) and in the simpler cases the

equations may now be directly solved by Mathematica’s standard algebraic equation

reduction routines. For the more difficult theories we have solved, one further trick is

necessary: to select some subset of the equations that is small and simple enough to

be solved, and yet restrictive enough to lead to a discrete set of solutions. This may

take some experimentation, but, due to the reduced number of variables, it is usually

not a difficult task. Finally, one checks to determine which of the solutions of this

subset of the equations actually solves the full equations.

Clearly, improvements to our program can still be made. We intend to extend

the program to take more advantage of non-linear, two-term equations, as we hope

this will improve our success at solving the equations for fusion rules with many

fusion channels. Also, we have not yet made any effort to improve the efficacy of

the more advanced solution algorithms used by Mathematica’s equation-reduction
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routines, for example, by choosing a better ordering on the polynomials. The tables

in Appendix A were all produced using a single Dell Inspiron 6400 laptop computer,

and most of them represent only a modest amount of computing time. With better

computing resources and enough motivation, much more extensive tabulation should

be possible.



40

Chapter 3 Mach-Zehnder Interferometer

In this chapter, we consider, in detail, a Mach-Zehnder type interferometer [100,

101] (see Fig. 3.1) for quasiparticles with (possibly non-Abelian) anyonic braiding

statistics, greatly extending the analysis begun in Ref. [102]. This will serve as a

prototypic model of interferometry experiments with anyons, and the methods used

in its analysis readily apply to other classes of interferometers (e.g. the FQH two

point-contact interferometer considered in Chapter 4). This interferometer was also

considered for non-Abelian anyons in Ref. [103], but only for anyon models described

by a discrete gauge theory-type formalism in which individual particles are assumed

to have internal Hilbert spaces, and for probe anyons that are all identical and have

trivial self-braiding. Unfortunately, this excludes perhaps the most important class

of anyon models – those describing the fractional quantum Hall states – so we must

dispense with such restrictions. We abstract to an idealized system that supports an

arbitrary anyon model and also allows for a number of desired manipulations to be

effected. Specifically, without concern for ways to physically actualize them, we posit

the experimental abilities to: (1) produce, isolate, and position desired anyons, (2)

provide anyons with some manner of propulsion to produce a beam of probe anyons,

(3) construct lossless beam-splitters and mirrors, and (4) detect the presence of a

probe anyon at the output legs of the interferometer.

The target anyon A is the composite of all anyons A1, A2, . . . located inside the

central interferometry region, and so may be in a superposition of states with differ-

ent total anyonic charges. Since these anyons are treated collectively by the experi-

ment, we ignore their individuality and consider them as a single anyon A capable of

charge superposition. We will assume the probe anyons, B1, . . . , BN may each also

be treated as capable of charge superposition (though this would certainly be more

difficult to physically realize). The probe anyons are sent as a beam into the inter-

ferometer through two possible input channels. They pass through a beam splitter
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Figure 3.1: A Mach-Zehnder interferometer for an anyonic system. (These systems
are effectively 2-dimensional, so the 3rd through 9th and/or 10th spatial dimensions
are suppressed in this figure.) The target anyon(s) A in the central region shares
entanglement only with the anyon(s) C outside this region. A beam of probe anyons
B1, . . . , BN is sent through the interferometer, where Tj are beam splitters, and de-
tected at one of the two possible outputs by Ds.

T1, are reflected by mirrors around the central target region, pass through a second

beam splitter T2, and then are detected at one of the two possible output channels

by the detectors Ds. When a probe anyon B passes through the bottom path of

the interferometer, the state acquires the phase eiθI, which results from background

Aharonov-Bohm interactions [93], path length differences, phase shifters, etc., and is

also acted upon by the braiding operator RBA, which is strictly due to the braiding

statistics between the probe and target anyons. Similarly, when the probe passes

through the top path of the interferometer, the state acquires the phase eiθII and is

acted on by R−1
AB.
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✽✽t r r−t
Figure 3.2: The transmission and reflection coefficients for a beam splitter.

Using the two-component vector notation⎛⎝ 1

0

⎞⎠ = |�〉 ,
⎛⎝ 0

1

⎞⎠ = |�〉 (3.1)

to indicate the direction (horizontal or vertical) a probe anyon is traveling through the

interferometer at any point, the lossless beam splitters (see Fig. 3.2) are represented

by

Tj =

⎡⎣ tj r∗j

rj −t∗j

⎤⎦ (3.2)

(for j = 1, 2), where |tj |2 + |rj|2 = 1 [104]. We note that these matrices could be

multiplied by overall phases without affecting any of the results, since such phases

are not distinguished by the two paths.

When considering operations involving non-Abelian anyons, it is important to

keep track of all other anyons with which there is non-trivial entanglement. Indeed,

if these additional particles are not tracked or are physically inaccessible, one should

trace them out of the system, forgoing the ability to use them to form coherent

superpositions of anyonic charge. We assume that the target anyon has no initial

entanglement with the probe anyons, so their systems will be combined as tensor

products, with no non-trivial charge lines connecting them before they interact in the

interferometer.

The target system involves the target anyon A and the anyon C which is the only

one entangled with A that is kept physically accessible. Recall that these anyons may

really represent multiple quasiparticles that are being treated collectively, but as long
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as we are not interested in operations involving the individual quasiparticles, they

can be treated as a single anyon. The density matrix of the target system is

ρA =
∑

a,a′,c,c′,f,μ,μ′
ρA(a,c;f,μ),(a′,c′;f,μ′)

1

df
|a, c; f, μ〉 〈a′, c′; f, μ′|

=
∑

a,a′,c,c′,f,μ,μ′

ρA(a,c;f,μ),(a′,c′;f,μ′)(
dada′dcdc′d2

f

)1/4
f

ca

c′a′

μ

μ′ (3.3)

We will assume that the probe anyons are also not entangled with each other, and

that they are all identical (or, more accurately, belong to an ensemble of particles

all described by the density matrix ρB). We will consider generalizations of the

probe anyons in Chapter 3.4. Such generalizations complicate the bookkeeping of the

calculation, but will have qualitatively similar results. A probe system involves the

probe anyon B, which is sent through the interferometer entering the horizontal leg

s =�, and the anyon D which is entangled with B and will be sent off to the (left)

side. We will write the directional index s of the probe particle as a subscript on its

anyonic charge label, i.e. bs. The density matrix of a probe system is

ρB =
∑

b,b′,d,d′,h,λ,λ′
ρB(d,b�;h,λ),(d′,b′�;h,λ′)

1

dh
|d, b�; h, λ〉 〈d′, b′

�
; h, λ′|

=
∑

b,b′,d,d′,h,λ,λ′

ρB(d,b�;h,λ),(d′,b′�;h,λ′)

(dddd′dbdb′d2
h)

1/4
h

b�d

b′�d′

λ

λ′ (3.4)

The unitary operator representing a probe anyon passing through the interferom-

eter is given by

U = T2ΣT1 (3.5)

Σ =

⎡⎣ 0 eiθIIR−1
AB

eiθIRBA 0

⎤⎦ . (3.6)
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This can be written diagrammatically as

Bs′

A Bs

A

U = eiθI

⎡⎣ t1r
∗
2 r∗1r

∗
2

−t1t∗2 −r∗1t∗2

⎤⎦
s,s′

B A
+ eiθII

⎡⎣ r1t2 −t∗1t2
r1r2 −t∗1r2

⎤⎦
s,s′

B A
. (3.7)

The position of the anyon C with respect to the other anyons must be specified,

and we will take it to be located below the central interferometry region and slightly

to the right of A. (The specification “slightly to the right” merely indicates how

the diagrams are to be drawn, and has no physical consequence.) For this choice of

positioning, the operator

V =

⎡⎣ R−1
CB 0

0 R−1
CB

⎤⎦ (3.8)

represents the braiding of C with the probe 1. We do not bother drawing a similar

diagrammatic representation for V , since it is a simple braid, in this case.

After a probe anyon B is measured at one of the detectors, it no longer inter-

ests us, and we remove it along with its entangled pair D from the vicinity of the

target anyon system. Mathematically, this means we take the tensor product of the

probe and target systems, evolve them with V U (which sends the probe through the

interferometer) to get

ρ = V U
(
ρB ⊗ ρA

)
U †V †, (3.9)

apply the usual orthogonal measurement collapse projection

Pr (s) = T̃r [ρΠs] (3.10)

1If the anyon C was instead located above the central interferometer region, we would have

V =
[

RBC 0
0 RBC

]
,

which leads to a similar evaluation. If it were located between the output legs of the interferometer,
we would instead have

V =
[

RBC 0
0 R−1

CB

]
,

and the resulting evaluation becomes complicated. One could also envision far more complicated sit-
uations, such as having the anyons entangled with A distributed between all three of these locations,
but we will not delve into this.
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ρ �→ 1

Pr (s)
ΠsρΠs (3.11)

with Πs = |s〉 〈s| for the outcome s, and then finally trace out the anyons B and D.

Since the probe anyons are all initially unentangled, we may obtain their effect on

the target system by considering that of each probe individually.

3.1 One Probe

We begin by considering the effect of a single probe with definite anyonic charge b,

i.e. ρb =
∣∣b̄, b�; 1

〉 〈
b̄, b�; 1

∣∣, and return to general ρB immediately afterwards. For a

particular component of the target anyons’ density matrix, the relevant diagram that

must be evaluated for a single probe measurement is

U

U †

Πs

Πs

a

a′

c

c′

b�b̄

b�b̄
b̄ bsf

a

a′

μ

μ′
(3.12)
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For the outcome s =�, this is

U

U †

a

a′

c

c′

b� b�f
a

a′

μ

μ′
=

∑
(e,α,β)

[
(F ac

a′c′)
−1]

(f,μ,μ′)(e,α,β)

U

U †

a

a′

c

c′

b� b�

e

a

a′
α

β

=
∑

(e,α,β)

[
(F ac

a′c′)
−1]

(f,μ,μ′)(e,α,β)

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩|t1|2 |r2|2
a c

a′ c′

e

b

α
β + t1r

∗
1r

∗
2t

∗
2e
i(θI−θII)

a c

a′ c′

e

b

α
β

+t∗1r1t2r2e
−i(θI−θII)

a c

a′ c′

e

b

α
β + |r1|2 |t2|2

a c

a′ c′

e
b

α
β

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= db

∑
(e,α,β)

[
(F ac

a′c′)
−1]

(f,μ,μ′)(e,α,β)
p�

aa′e,b

a c

a′ c′

eα
β

= db
∑

(e,α,β)
(f ′,ν,ν′)

[
(F ac

a′c′)
−1]

(f,μ,μ′)(e,α,β)
[F ac
a′c′](e,α,β)(f ′,ν,ν′) p

�

aa′e,b f ′

ca

c′a′

ν

ν′
(3.13)

where we have defined

p�

aa′e,b = |t1|2 |r2|2Meb + t1r
∗
1r

∗
2t

∗
2e
i(θI−θII)Mab

+t∗1r1t2r2e
−i(θI−θII)M∗

a′b + |r1|2 |t2|2 (3.14)
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and have used Eqs. (2.64,2.65) to remove the b loops. A similar calculation for the

s =� outcome gives

p�

aa′e,b = |t1|2 |t2|2Meb − t1r
∗
1r

∗
2t

∗
2e
i(θI−θII)Mab

−t∗1r1t2r2e−i(θI−θII)M∗
a′b + |r1|2 |r2|2 . (3.15)

From this, inserting the appropriate coefficients and normalization factors, we find

the reduced density matrix of the target anyons after a single probe measurement

with outcome s:

ρA (s) =
1

Pr (s)
T̃rB̄,B [ΠsρΠs]

=
∑

a,a′,c,c′,f,μ,μ′
(e,α,β),(f ′,ν,ν′)

ρA(a,c;f,μ),(a′,c′;f,μ′)(
dada′dcdc′d

2
f

)1/4

psaa′e,b
Pr (s)

× [
(F ac

a′c′)
−1]

(f,μ,μ′)(e,α,β)
[F ac
a′c′ ](e,α,β)(f ′,ν,ν′) f ′

ca

c′a′

ν

ν′

=
∑

a,a′,c,c′,f,μ,μ′
(e,α,β),(f ′,ν,ν′)

ρA(a,c;f,μ),(a′,c′;f,μ′)

(dfdf ′)
1/2

psaa′e,b
Pr (s)

[(
F a,c
a′,c′

)−1
]
(f,μ,μ′)(e,α,β)

× [
F a,c
a′,c′

]
(e,α,β)(f ′,ν,ν′)

|a, c; f ′, ν〉 〈a′, c′; f ′, ν ′| (3.16)

where the probability of measurement outcome s is found by additionally taking the

quantum trace of the target system, which projects onto the e = 1 components, giving

Pr (s) = T̃r [ρΠs] =
∑
a,c,f,μ

ρA(a,c;f,μ),(a,c;f,μ)p
s
aa1,b. (3.17)

We note that

p�

aa1,b = |t1|2 |r2|2 + |r1|2 |t2|2 + 2Re
{
t1r

∗
1r

∗
2t

∗
2e
i(θI−θII)Mab

}
(3.18)

p�

aa1,b = |t1|2 |t2|2 + |r1|2 |r2|2 − 2Re
{
t1r

∗
1r

∗
2t

∗
2e
i(θI−θII)Mab

}
(3.19)
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give a well-defined probability distribution (i.e. 0 ≤ psaa1,b ≤ 1 and p�

aa1,b + p�

aa1,b = 1).

The quantity

t1r
∗
1t

∗
2r

∗
2e
i(θI−θII) ≡ Teiθ (3.20)

determines the visibility of quantum interference in this experiment, where varying θ

allows one to observe the interference term modulation. The amplitude T = |t1r1t2r2|
is maximized by |tj | = |rj | = 1/

√
2. In realistic experiments, the experimental

parameters tj, rj, θI, and θII will have some variance, even for a single probe, that

gives rise to some degree of phase incoherence. Averaging over some distribution

in θ, one finds that eiθ in the interference terms should effectively be replaced by〈
eiθ
〉

= Qeiθ∗ . In this expression, eiθ∗ is the resulting effective phase, and Q ∈ [0, 1] is

a suppression factor that reflects the interferometer’s lack of coherence, and reduces

the visibility of quantum interference. For the rest of the paper, we will ignore this

issue and assume Q = 1, but it should always be kept in mind that success of any

interferometry experiment is crucially dependent onQ being made as large as possible.

We can now obtain the result for general ρB by simply replacing psaa′e,b everywhere

with

psaa′e,B =
∑
b

PrB (b) psaa′e,b (3.21)

PrB (b) =
∑
d,h,λ

ρB(d,b�;h,λ),(d,b�;h,λ). (3.22)

We will also use the notation MaB =
∑

b PrB (b)Mab. That this replacement gives

the appropriate results follows from the fact that we trace out the D anyon, and may
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be seen from

T̃rD
[
ρB
]

=
∑

b,b′,d,h,λ,λ′

ρB(d,b�;h,λ),(d,b′�;h,λ′)

(d2
ddbdb′d

2
h)

1/4 h

b�d

b′�d

λ

λ′

=
∑
b,d,h,λ

ρB(d,b�;h,λ),(d,b�;h,λ)

1

db
b�

=
∑
b,d,h,λ

ρB(d,b�;h,λ),(d,b�;h,λ)

1

db

b�b̄

b�b̄

=
∑
b

PrB (b) T̃rb̄
∣∣b̄, b�; 1

〉 〈
b̄, b�; 1

∣∣
= T̃rB

∑
b

PrB (b)
∣∣b̄, b�; 1

〉 〈
b̄, b�; 1

∣∣ (3.23)

where we used Eq. (2.48) in the first step.

3.2 N Probes

The result for N (initially unentangled) identical probe particles sent through the

interferometer may now be easily produced by iterating the single probe calculation.

The string of measurement outcomes (s1, . . . , sN) occurs with probability

Pr (s1, . . . , sN) =
∑
a,c,f,μ

ρA(a,c;f,μ),(a,c;f,μ)p
s1
aa1,B . . . p

sN
aa1,B (3.24)

and results in the measured target anyon reduced density matrix

ρA (s1, . . . , sN) =
∑

a,a′,c,c′,f,μ,μ′
(e,α,β),(f ′,ν,ν′)

ρA(a,c;f,μ),(a′,c′;f,μ′)

(dfdf ′)
1/2

ps1aa′e,B . . . p
sN
aa′e,B

Pr (s1, . . . , sN)

× [
(F ac

a′c′)
−1]

(f,μ,μ′)(e,α,β)
[F ac
a′c′](e,α,β)(f ′,ν,ν′) |a, c; f ′, ν〉 〈a′, c′; f ′, ν ′| . (3.25)
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It is apparent that the specific order of the measurement outcomes is not important

in the result, but that only the total number of outcomes of each type matters, hence

leading to a binomial distribution. We denote the total number of sj =� in the

string of measurement outcomes as n, and cluster together all results with the same

n. Defining (for arbitrary p and q)

WN (n; p, q) =
N !

n! (N − n)!
pnqN−n (3.26)

the probability of measuring n of the N probes at the horizontal detector is

PrN (n) =
∑
a,c,f,μ

ρA(a,c;f,μ),(a,c;f,μ)WN

(
n; p�

aa1,B, p
�

aa1,B

)
(3.27)

and these measurements produce the target anyon reduced density matrix

ρAN (n) =
∑

a,a′,c,c′,f,μ,μ′
(e,α,β),(f ′,ν,ν′)

ρA(a,c;f,μ),(a′,c′;f,μ′)

(dfdf ′)
1/2

WN

(
n; p�

aa′e,B, p
�

aa′e,B

)
PrN (n)

× [
(F ac

a′c′)
−1]

(f,μ,μ′)(e,α,β)
[F ac
a′c′](e,α,β)(f ′,ν,ν′) |a, c; f ′, ν〉 〈a′, c′; f ′, ν ′| . (3.28)

In Ref. [102], we obtained the reduced density matrix that ignores the measure-

ment outcomes and describes the decoherence (rather than the precise details of

collapse) due to the probe measurements. We find this density matrix by averaging

over n, giving us the result in Eq. (15c) of [102], though for more general target and

probe systems

ρAN =
N∑
n=0

PrN (n) ρAN (n)

=
∑

a,a′,c,c′,f,μ,μ′
(e,α,β),(f ′,ν,ν′)

ρA(a,c;f,μ),(a′,c′;f,μ′)

(dfdf ′)
1/2

(|t1|2MeB + |r1|2
)N

× [
(F ac

a′c′)
−1]

(f,μ,μ′)(e,α,β)
[F ac
a′c′ ](e,α,β)(f ′,ν,ν′) |a, c; f ′, ν〉 〈a′, c′; f ′, ν ′| (3.29)
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where we used

N∑
n=0

WN

(
n; p�

aa′e,B, p
�

aa′e,B

)
=

(
p�

aa′e,B + p�

aa′e,B

)N
=

(|t1|2MeB + |r1|2
)N

. (3.30)

The interferometry experiment distinguishes anyonic charges in the target by their

values of psaa1,B , which determine the possible measurement distributions. Different

anyonic charges with the same probability distributions of probe outcomes are indis-

tinguishable by such probes, and so should be grouped together into distinguishable

subsets. We define Cκ for κ = 1, . . . , m ≤ |C| to be the maximal disjoint subsets of C
such that p�

aa1,B = pκ for all a ∈ Cκ, i.e.

Cκ ≡ {
a ∈ C : p�

aa1,B = pκ
}

(3.31)

Cκ ∩ Cκ′ = ∅ for κ 
= κ′⋃
κ

Cκ = C.

Note that p�

aa1,B = p�

a′a′1,B (for two different charges a and a′) iff

Re
{
t1r

∗
1r

∗
2t

∗
2e
i(θI−θII)MaB

}
= Re

{
t1r

∗
1r

∗
2t

∗
2e
i(θI−θII)Ma′B

}
(3.32)

which occurs either when:

(i) at least one of t1, t2, r1, or r2 is zero, or

(ii) |MaB| cos (θ + ϕa) = |Ma′B| cos (θ + ϕa′), where θ = arg
(
t1r

∗
1r

∗
2t

∗
2e
i(θI−θII)) and

ϕa = arg (MaB).

If condition (i) is satisfied, then there is no interference and C1 = C (all target

anyonic charges give the same probe measurement distribution). Condition (ii) is

generically2 only satisfied when MaB = Ma′B, but is non-generically satisfied by

2The term “generic” is used in this paper only in reference to the collection of interferometer
parameters tj , rj , θI, and θII.
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setting θ = − arg {MaB −Ma′B} ± π
2
. With this notation, we may write

PrN (n) =
∑
κ

PrA (κ)WN (n; pκ, 1 − pκ) (3.33)

PrA (κ) =
∑

a∈Cκ,c,f,μ
ρA(a,c;f,μ),(a,c;f,μ). (3.34)

We emphasize that if the parameters tj, rj and θ in the experiment are known and

adjustable, then the measurements may be used to gather information regarding the

quantities Mab, which, through its relation to the topological S-matrix, may be used

to properly identify the anyon model that describes an unknown system [105].

In Chapters 3.2.1 and 3.2.2, we show that, as N → ∞, the fraction r = n/N

of measurement outcomes will be found to go to r = pκ with probability PrA (κ),

and the target anyon density matrix will generically collapse onto the corresponding

“fixed states” given by

ρAκ =
∑

a,a′,c,c′,f,μ,μ′
(e,α,β),(f ′,ν,ν′)

ρA(a,c;f,μ),(a′,c′;f,μ′)

(dfdf ′)
1/2

Δaa′e,B (pκ)

× [
(F ac

a′c′)
−1]

(f,μ,μ′)(e,α,β)
[F ac
a′c′ ](e,α,β)(f ′,ν,ν′) |a, c; f ′, ν〉 〈a′, c′; f ′, ν ′| (3.35)

where

Δaa′e,B (pκ) =

⎧⎨⎩ 1
PrA(κ)

if p�

aa′e,B = 1 − p�

aa′e,B = pκ and a, a′ ∈ Cκ

0 otherwise
. (3.36)

Fixed state density matrices are left unchanged by probe measurements. We also

emphasize that the condition: p�

aa′e,B = 1 − p�

aa′e,B = pκ and a, a′ ∈ Cκ is equivalent

to MeB = 1 (which also implies MaB = Ma′B). This gives the interpretation that

the probes have the effect of collapsing superpositions of anyonic charges a and a′

in the target that they can distinguish by monodromy (MaB 
= Ma′B), and removing

any entanglement between the target anyon A and anyons C outside the central in-

terferometry region corresponding to e-channels that they can “see” by monodromy

(MeB 
= 1). Non-generically, it is also possible to collapse onto “rogue states,” for
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which the diagonal density matrix elements are all fixed and some of the off-diagonal

elements have fixed magnitude, but phases that change depending on the measure-

ment outcome (i.e. are “quasi-fixed”). Because rogue states occur only for specific,

exactly precise experimental parameters, they will not actually survive realistic ex-

periments. We note that if MeB = 1 only for e = 1, then the probe distinguishes all

charges, and the fixed states are given by

ρAκa =
∑
c

f,f ′∈{a×c},μ,ν

ρA(a,c;f,μ),(a,c;f,μ)

dadc
|a, c; f ′, ν〉 〈a, c; f ′, ν| , (3.37)

for which the target anyon A has definite charge and no entanglement with C. We

give examples of fixed state density matrices for several significant anyon models in

Chapter 5.

In principle, one may also consider the “many-to-many” experiment described in

Ref. [103], where the target anyon system is replaced with a fresh one (described

by the same initial density matrix) after each probe measurement. For this type

of experiment, the result for each probe is described by the single probe outcome

probability, Eq. (3.17):

Pr (s) =
∑
a,c,f,μ

ρA(a,c;f,μ),(a,c;f,μ)p
s
aa1,B . (3.38)

Thus, for N such probe measurements, the number of measurement outcomes n found

at the horizontal detector will have the binomial distribution: WN (n; Pr (�) ,Pr (�)).

3.2.1 Large N

We would like to analyze the large N behavior of the measurements. This is es-

sentially determined by WN (n; pκ, 1 − pκ) and
WN

(
n;p�

aa′e,B ,p
�

aa′e,B
)

PrN (n)
, so we now consider

these in detail. Of course, WN (n; pκ, 1 − pκ) is just a familiar binomial distribution.

Changing variables to the fraction r = n/N of total probe measurement outcomes in
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the horizontal detector, the distribution in r is given by

WN (r; pκ, 1 − pκ) = WN (rN ; pκ, 1 − pκ)N (3.39)

and has mean and variance

r = pκ (3.40)

Δr = σκ ≡
√
pκ (1 − pκ) /N. (3.41)

Taking N large and using Stirling’s formula, this may be approximated by a Gaussian

distribution

WN (r; pκ, 1 − pκ) � 1√
2πσ2

κ

e
− (r−pκ)2

2σ2
κ . (3.42)

Taking the limit N → ∞ gives

lim
N→∞

WN (r; pκ, 1 − pκ) = δ (r − pκ) (3.43)

(defined such that
∫ 1

0
δ (r − p) dr = 1, when p = 0 or 1), so the resulting probability

distribution for the measurement outcomes is

Pr (r) = lim
N→∞

PrN (r) =
∑
κ

PrA (κ) δ (r − pκ) (3.44)

Thus, as N → ∞, we will find the fraction of measurement outcomes r → pκ with

probability PrA (κ).

Though the probability of obtaining the outcome r which is away from the closest

pκ vanishes as

WN (r; pκ, 1 − pκ) ∼
√
N

(
prκ (1 − pκ)

1−r

rr (1 − r)1−r

)N

(3.45)

for large N , the resulting density matrix should still be well defined for all r (at least

for large, but finite N). In particular, we will use positivity of density matrices, in

the form of the Cauchy-Schwarz type inequality ρμμρνν ≥ |ρμν |2, to evince their large
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N behavior in terms of conditions on psaa′e,B. From the quantity

ΔN ;aa′e,B (r) ≡ WN

(
rN ; p�

aa′e,B, p
�

aa′e,B

)
PrN (rN)

=

⎧⎨⎩∑
κ′

PrA (κ′)

⎡⎣( pκ′

p�

aa′e,B

)r(
1 − pκ′

p�

aa′e,B

)1−r⎤⎦N⎫⎬⎭
−1

(3.46)

we can see that as N → ∞, the e = 1 terms (those that determine the “diagonal”

elements) behave as:

(i) ΔN ;aa1,B (r) → 1
PrA(κ1)

for a ∈ Cκ1 , if PrA (κ1) 
= 0 and prκ1
(1 − pκ1)

1−r > prκ (1 − pκ)
1−r

for all κ 
= κ1,

(ii) ΔN ;aa1,B (r) → 1
PrA(κ1)+PrA(κ2)

for a ∈ Cκ1 ∪ Cκ2 , if PrA (κ1) + PrA (κ2) 
= 0 and

prκ1
(1 − pκ1)

1−r = prκ2
(1 − pκ2)

1−r > prκ (1 − pκ)
1−r for all κ 
= κ1, κ2, or

(iii) ΔN ;aa1,B (r) → 0 for a ∈ Cκ1 , if there is some κ with PrA (κ) 
= 0 and prκ (1 − pκ)
1−r >

prκ1
(1 − pκ1)

1−r.

If a ∈ Cκ1 , where prκ1
(1 − pκ1)

1−r > prκ (1 − pκ)
1−r for all κ 
= κ1, but PrA (κ1) = 0,

then ΔN ;aa1,B (r) → ∞. However, PrA (κ1) = 0 also implies that the density matrix

coefficients involving a are strictly zero, so we need not worry about this case.

We note that for each κ, the variable r has a closed interval Iκ, containing pκ in

its interior, such that prκ (1 − pκ)
1−r ≥ prκ′ (1 − pκ′)

1−r for all κ′ 
= κ (i.e. Iκ satisfies

(i) in its interior and (ii) at its endpoints). We say that r is congruous with Cκ in this

interval Iκ (and congruous to two different Cκ at the intersecting endpoints of such

intervals).

For arbitrary (in particular, the “off-diagonal”) terms, the positivity condition

combined with Eq. (3.46) as N → ∞ tells us that we must have ΔN ;aa′e,B (r) →
0, except when r is congruous with both a and a′, in which case |ΔN ;aa′e,B (r)| ≤
ΔN ;aa1,B (r), and ΔN ;aa′e,B (r) → ∞ should not be allowed (except when the density

matrix elements involving a or a′ are strictly zero, making it irrelevant). From this

we find that either:

(a) there is some κ (possibly even with a and/or a′ in Cκ) with PrA (κ) 
= 0 and

prκ (1 − pκ)
1−r >

∣∣ p�

aa′e,B

∣∣r ∣∣p�

aa′e,B

∣∣1−r, in which case ΔN ;aa′e,B (r) → 0, or
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(b)
∣∣ p�

aa′e,B

∣∣r ∣∣p�

aa′e,B

∣∣1−r =
(
p�

aa1,B

)r (
p�

aa1,B

)1−r
=
(
p�

a′a′1,B
)r (

p�

a′a′1,B

)1−r
with r con-

gruous with both a and a′, in which case |ΔN ;aa′e,B (r)| → ΔN ;aa1,B (r).

Case (b) deserves some further inspection. First, we note that we have

∣∣ p�

aa′e,B

∣∣r ∣∣p�

aa′e,B

∣∣1−r ≤ prκ (1 − pκ)
1−r (3.47)

on the entire interval Iκ congruous with a ∈ Cκ. If there is some point r∗ in the

interior of Iκ for which

∣∣ p�

aa′e,B

∣∣r∗ ∣∣p�

aa′e,B

∣∣1−r∗ = pr∗κ (1 − pκ)
1−r∗ , (3.48)

then in order not to violate the inequality when r is increased or decreased from r∗,

we must have ∣∣ p�

aa′e,B

∣∣∣∣p�

aa′e,B

∣∣ =
pκ

1 − pκ
. (3.49)

It follows that ∣∣ p�

aa′e,B

∣∣r ∣∣p�

aa′e,B

∣∣1−r = prκ (1 − pκ)
1−r (3.50)

on the entire interval Iκ, and, more significantly, that

∣∣ p�

aa′e,B

∣∣ = 1 − ∣∣p�

aa′e,B

∣∣ = pκ. (3.51)

The same argument holds with respect to a′ instead of a, giving the additional condi-

tion a, a′ ∈ Cκ. Hence, even at exponentially suppressed r, superpositions of anyonic

charges from different Cκ do not survive measurement.

Pushing this a bit further, we note that for r ∈ [0, 1] and fixed p ∈ [0, 1]

rr (1 − r)1−r ≥ pr (1 − p)1−r (3.52)

with equality at r = p. The positivity condition gave us (rewriting (a) and (b))

max
κ

{
prκ (1 − pκ)

1−r} ≥ ∣∣ p�

aa′e,B

∣∣r ∣∣p�

aa′e,B

∣∣1−r (3.53)
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with equality for r ∈ Iκ if a, a′ ∈ Cκ and
∣∣ p�

aa′e,B

∣∣ = 1 − ∣∣p�

aa′e,B

∣∣ = pκ. Combining

these, we have

rr (1 − r)1−r ≥ ∣∣ p�

aa′e,B

∣∣r ∣∣p�

aa′e,B

∣∣1−r (3.54)

for all r, with equality occurring at r =
∣∣ p�

aa′e,B

∣∣ only when pa = pa′ =
∣∣ p�

aa′e,B

∣∣ = 1−∣∣p�

aa′e,B

∣∣. If
∣∣ p�

aa′e,B

∣∣+ ∣∣p�

aa′e,B

∣∣ > 1, then there is some r (e.g. r =
∣∣ p�

aa′e,B

∣∣) for which

rr (1 − r)1−r <
∣∣ p�

aa′e,B

∣∣r ∣∣p�

aa′e,B

∣∣1−r, violating Eq. (3.54). If
∣∣ p�

aa′e,B

∣∣+ ∣∣p�

aa′e,B

∣∣ = 1,

then rr (1 − r)1−r =
∣∣ p�

aa′e,B

∣∣r ∣∣p�

aa′e,B

∣∣1−r at r =
∣∣ p�

aa′e,B

∣∣. Hence, we have

∣∣ p�

aa′e,B

∣∣ +
∣∣p�

aa′e,B

∣∣ ≤ 1 (3.55)

with equality only if pa = pa′ =
∣∣ p�

aa′e,B

∣∣ = 1 − ∣∣p�

aa′e,B

∣∣. One should be able to

to show that this condition on psaa′e,b follows directly from the properties of anyon

models, in which case these arguments could be made in the opposite direction, i.e.

that positivity of the density matrix being preserved by these probe measurements

follows from properties of anyon models; however, we have been unable to succeed in

doing so.

For p�

aa′e,B = pκe
iαaa′e,B and p�

aa′e,B = (1 − pk) e
iβaa′e,B , we see that if αaa′e,B =

βaa′e,B, then

|t1|2MeB + |r1|2 = p�

aa′e,B + p�

aa′e,B = eiαaa′e,B (3.56)

implies that either: (a) r1 = 0 and MeB = eiαaa′e,B , or (b) MeB = 1 and αaa′e,B =

βaa′e,B = 0.

One might also find it instructive to consider a large N expansion (using Stirling’s

formula) around pκ to get

WN

(
r; p�

aa′e,B, p
�

aa′e,B

) � WN (r; pκ, 1 − pκ) e
−GN

(
r;p�

aa′e,B ,p
�

aa′e,B
)

(3.57)

ΔN ;aa′e,B (r) � 1

PrA (κ)
e
−GN

(
r;p�

aa′e,B ,p
�

aa′e,B
)

(3.58)

GN (r; p, q) ≈ N

[
pκ ln

(
pκ
p

)
+ (1 − pκ) ln

(
1 − pκ
q

)]
+N (r − pκ) ln

(
pκ
p

q

(1 − pκ)

)
. (3.59)
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Clearly, e−GN (r;p,q) gives exponential suppression in N , unless p = pκe
iα and q =

(1 − pk) e
iβ, in which case

e−GN (r;p,q) = ei[αpκ+β(1−pκ)]Nei(α−β)N(r−pκ) (3.60)

(which is equal to 1, when α = β = 0). We also note that integrating the quantity

WN

(
r; p�

aa′e,B, p
�

aa′e,B

)
over r vanishes exponentially in N , unless αaa′e,B = βaa′e,B = 0,

which is why such quasi-fixed terms do not appear in Eq. (3.29), the density matrix

obtained by ignoring measurement outcomes (except in the case when r1 = 0).

To summarize, we found that, for large N , the quantity ΔN ;aa′e,B (r) vanishes

exponentially unless r is congruous with a, a′ ∈ Cκ and
∣∣ p�

aa′e,B

∣∣ = 1 − ∣∣p�

aa′e,B

∣∣ = pκ.

This means a measurement outcome fraction r exponentially collapses the density

matrix onto one that has support only in Cκ, and consequently will drive r toward

pκ. The resulting target anyon reduced density matrix

ρA (r) =
∑

a,a′,c,c′,f,μ,μ′
(e,α,β),(f ′,ν,ν′)

ρA(a,c;f,μ),(a′,c′;f,μ′)

(dfdf ′)
1/2

Δaa′e,B (r)

× [
(F ac

a′c′)
−1]

(f,μ,μ′)(e,α,β)
[F ac
a′c′ ](e,α,β)(f ′,ν,ν′) |a, c; f ′, ν〉 〈a′, c′; f ′, ν ′| (3.61)

Δaa′e,B (r) = lim
N→∞

ΔN ;aa′e,B (r) (3.62)

is found with the probability distribution

Pr (r) =
∑
κ

PrA (κ) δ (r − pκ) . (3.63)

The resulting density matrices are of two forms:

(1) fixed states, for which all non-zero elements of the density matrix correspond to

p�

aa′e,B = 1 − p�

aa′e,B = pκ, and

(2) rogues states (or quasi-fixed states), for which all elements of the density matrix

correspond to
∣∣ p�

aa′e,B

∣∣ = 1−∣∣p�

aa′e,B

∣∣ = pκ, but for some of the “off-diagonal” elements

(e 
= 1) with p�

aa′e,B = pκe
iαaa′e,B and p�

aa′e,B = (1 − pk) e
iβaa′e,B , where αaa′e,B and
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βaa′e,B are non-zero (unless r1 = 0).

Fixed states have the property that probe measurements leave their density ma-

trix invariant. Rogue states have the property that probe measurements leave their

“diagonal” elements and possibly some of their “off-diagonal” elements invariant,

while some of their “off-diagonal” elements are unchanged in magnitude, but have a

changing phase. We will see in Chapter 3.2.2 that satisfying the conditions for rogue

states requires non-generic experimental parameters.

3.2.2 Minding our p’s

In Chapter 3.2.1, we have shown that performing many probe measurements col-

lapses the target density matrix onto its elements which correspond to psaa′e,B satis-

fying ∣∣p�

aa′e,B

∣∣ = 1 − ∣∣p�

aa′e,B

∣∣ = pκ (3.64)

for a, a′ ∈ Cκ, so we would like to determine when this condition is satisfied.

For completeness, we first list the results for the trivial cases where there is no

actual interferometry (for which C1 = C):

(i) When t1 = 0, we have p�

aa′e,B = |t2|2 and p�

aa′e,B = |r2|2, so all elements are fixed.

(ii) When r1 = 0, we have p�

aa′e,B = |r2|2MeB and p�

aa′e,B = |t2|2MeB, so elements

with MeB = eiϕeB (ϕeB 
= 0) are quasi-fixed, and those with MeB = 1 are fixed.

(iii) When t2 = 0 (and t1 
= 0), we have p�

aa′e,B = |t1|2MeB and p�

aa′e,B = |r1|2, so

elements with MeB = eiϕeB (ϕeB 
= 0) are quasi-fixed, and those with MeB = 1 are

fixed.

(iv) When r2 = 0 (and t1 
= 0), we have p�

aa′e,B = |r1|2 and p�

aa′e,B = |t1|2MeB, so

elements with MeB = eiϕeB (ϕeB 
= 0) are quasi-fixed, and those with MeB = 1 are

fixed.

From here on, we assume that |t1r1t2r2| 
= 0 (unless explicitly stated otherwise).

We begin by considering the more stringent condition necessary for fixed elements.

Using p�

aa′e,b + p�

aa′e,b = |t1|2MeB + |r1|2, and Eq. (2.70), we have:

(v) (When t1 
= 0) An element is fixed, with p�

aa′e,b = 1 − p�

aa′e,b = pκ, iff MeB = 1,
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and this implies MaB = Ma′B and a, a′ ∈ Cκ.
Thus, even without initially requiring a, a′ ∈ Cκ (from positivity), we find that it

is a necessary condition for fixed elements.

Now, we examine the conditions that give quasi-fixed elements. Such terms have

p�

aa′e,B = pκe
iαaa′e,B and p�

aa′e,B = (1 − pκ) e
iβaa′e,B , with αaa′e,B 
= βaa′e,B and a, a′ ∈ Cκ.

(Recall that if αaa′e,B = βaa′e,B and r1 
= 0, then αaa′e,B = βaa′e,B = 0.) Examining

these conditions for MaB = Ma′B, we find

0 = |t2|2
(∣∣p�

aa′e,B

∣∣2 − p2
κ

)
+ |r2|2

(∣∣p�

aa′e,B

∣∣2 − (1 − pκ)
2
)

= |t1|4 |t2|2 |r2|2
(|MeB|2 − 1

)
+ 2 |t1|2 |r1|2 |t2|2 |r2|2 (Re {MeB} − 1) (3.65)

which requires MeB = 1 and, hence, gives us:

(vi) (When |t1r1t2r2| 
= 0) There are no quasi-fixed elements for psaa′e,B with MaB =

Ma′B, only fixed ones. (In particular, this applies to a = a′.)

For MaB 
= Ma′B, we can only have a, a′ ∈ Cκ (i.e. psaa1,B = psa′a′1,B) when the

experimental parameters are tuned to θ = − arg {MaB −Ma′B} ± π
2
, so quasi-fixed

elements only occur non-generically. From the conditions on psaa′e,B, at these values

of θ, we find

0 =
∣∣p�

aa′e,B

∣∣2 − p2
κ −

∣∣p�

aa′e,B

∣∣2 + (1 − pκ)
2

= |t1|4
(|t2|2 − |r2|2

) (
1 − |MeB|2

)
−2 |t1|2 (1 − Re {MeB}) 2 |t1r1t2r2|Re

{
eiθMaB

}
+2 |t1|2 Im {MeB} |t1r1t2r2| Im

{
eiθMaB + e−iθM∗

a′B
}

(3.66)

and

0 = |t2|2
(∣∣p�

aa′e,B

∣∣2 − p2
κ

)
+ |r2|2

(∣∣p�

aa′e,B

∣∣2 − (1 − pκ)
2
)

= |t1|4 |t2|2 |r2|2
(|MeB|2 − 1

)
+ 2 |t1|2 |r1|2 |t2|2 |r2|2 (Re {MeB} − 1)

+
(|t1r1t2r2| Im{

eiθMaB + e−iθM∗
a′B

})2
(3.67)
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which may be rewritten to give:

(vii) Quasi-fixed elements with psaa′e,B only occur non-generically, and the conditions

(when |t1r1t2r2| 
= 0) that must be satisfied for them to occur are:

θ = − arg {MaB −Ma′B} ± π

2
(3.68)

[
Im

{
eiθMaB + e−iθM∗

a′B
}]2

=
|t1|2
|r1|2

(
1 − |MeB|2

)
+ 2 (1 − Re {MeB}) (3.69)

Re
{
eiθMaB

}
=

[ |t1|
4 |r1|

( |t2|
|r2| −

|r2|
|t2|

)(
1 − |MeB|2

)
+

1

2
Im {MeB} Im

{
eiθMaB + e−iθM∗

a′B
}]

(1 − Re {MeB})−1 . (3.70)

To demonstrate that it is, in fact, sometimes possible to satisfy the conditions for

quasi-fixed elements given in (vii), we present the following example:

Consider an anyon model which has at least two different Abelian anyons a and a′,

and some anyon b for which Mab = eiϕab and Ma′b = eiϕa′b are not equal (for example,

almost any ZN model, such as Z
(1/2)
2 or Z

(1)
3 , is sufficient). The difference charge e is

uniquely determined (since a and a′ are Abelian) and has Meb = eiϕeb = ei(ϕab−ϕa′b).

Setting θ = −1
2
(ϕab + ϕa′b) + nπ gives

p�

aa′e,b =
(
|t1| |r2| ei(

ϕeb
2

+nπ) + |r1| |t2|
)2

(3.71)

p�

aa′e,b =
(
− |t1| |t2| ei(

ϕeb
2

+nπ) + |r1| |r2|
)2

(3.72)

p�

aa1,b = p�

a′a′1,b =
∣∣p�

aa′e,b

∣∣ = 1 − ∣∣p�

aa′e,b

∣∣
= |t1|2 |r2|2 + 2 |t1r1t2r2| cos

(ϕeb
2

+ nπ
)

+ |r1|2 |t2|2 . (3.73)

In fact, it turns out this example is the only way to satisfy the conditions for quasi-

fixed elements with |MeB| = 1. Indeed, this can even be shown without initially

requiring a, a′ ∈ Cκ from positivity. It seems rather difficult to satisfy the conditions

for quasi-fixed elements when |MeB| 
= 1, and we suspect (but are unable to prove)
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that it may, in general, actually be impossible. It is certainly not possible to have

quasi-fixed elements with |MeB| 
= 1 for arbitrary non-Abelian anyon models, as one

can check that they do not exist for either the Ising or Fib anyon models, for example.

3.3 Distinguishability

We would like to know how many probe anyons should be used to establish a

desired level of confidence in distinguishing between the various possible outcomes.

For a confidence level 1 − α, the margin of error around pκ is specified as

Eκ = z∗α/2σκ, (3.74)

i.e. the interval [pκ − Eκ, pκ + Eκ] contains c of the probability distribution, where

z∗α/2 is defined by

1 − α = erf

(
z∗α/2√

2

)
. (3.75)

To achieve this level of confidence in distinguishing two values, p1 and p2, we pick N

so that these intervals have no overlap

Δp = |p1 − p2| � E1 + E2 = z∗α/2 (σ1 + σ2)

= z∗α/2

(√
p1 (1 − p1)

N
+

√
p2 (1 − p2)

N

)
(3.76)

which gives the estimated N needed

N �

⎛⎝z∗α/2
(√

p1 (1 − p1) +
√
p2 (1 − p2)

)
Δp

⎞⎠2

. (3.77)

Since p (1 − p) ≤ 1
4
, we could conservatively estimate this for arbitrary pj as

N �
(
z∗α/2
Δp

)2

. (3.78)
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On the other hand, if p1 and p2 are of order |t1|2 ∼ |t2|2 ∼ t2 � 1, and Δp is of order

2t2ΔM , where ΔM = |Ma1B −Ma2B|, (i.e. employing θ such that Δp is as large as

it can be) then we can estimate

N �
(
z∗α/2
tΔM

)2

. (3.79)

We note that for any two outcome probabilities, p1 and p2, there are always two values

of θ (i.e. non-generic conditions) that make p1 = p2, and hence indistinguishable.

Here are the values of z∗α/2 for some typical levels of confidence

1 − α .6827 .9545 .99 .999 .9999

z∗α/2 1 2 2.576 3.2905 3.89059

A special case of interest exists when |t1| = |t2| and |Ma1B| = 1 for one of two

probabilities that we wish to distinguish. In this case, using θ = π − arg {Ma1B}
gives p1 = 0, so any measurement outcome s =→ automatically tells us the target’s

anyonic charge is not in C1. If the alternative outcome has p2 
= 0, 1, then C1 and C2

are said to be sometimes perfectly distinguishable, since a s =→ outcomes tells us

the target’s anyonic charge is in C2. If Ma1B = −Ma2B and we also have |tj |2 = 1/2,

then p2 = 1, and C1 and C2 are always perfectly distinguishable, since any single probe

measurement will indicate whether the target’s anyonic charge is in C1 or in C2.

3.4 Probe Generalizations

In this section, we examine the effects of using probe systems that are even more

general than those used so far. We will first consider generalizing the input direction,

so that probes may enter in arbitrary superpositions of the two input directions. Then

we will consider the use of probes that are not identical, so that each probe system

is described by a different density matrix. For both of these, the probe systems and

target system are all still initially unentangled. One may also consider cases where

there is nontrivial initial entanglement between these systems, or post-interferometer
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charge projections, but these typically lead to qualitatively different behavior, and

greatly increase the complexity of analysis, so we will not consider them here.

3.4.1 Generalized Input Directions

For probes that are allowed to enter the interferometer through either of the input

legs, possibly even in superposition, the probe systems’ density matrices take the

form

ρB =
∑

b,b′,d,d′,h,λ,λ′,r,r′
ρB

(d,br ;h,λ),(d′,b′r′ ;h,λ
′)

1

dh
|d, br; h, λ〉 〈d′, b′r′ ; h, λ′| . (3.80)

Using this, we find the same result as before, except with the values of psaa′e,B instead

given by

psaa′e,B =
∑

d,h,λ,b,r,r′
ρB(d,br;h,λ),(d,br′ ;h,λ)p

s
aa′e,b,r,r′ (3.81)

where

p�

aa′e,b,�,� = |t1|2 |r2|2Meb + t1r
∗
1t

∗
2r

∗
2e
i(θI−θII)Mab

+t∗1r1t2r2e
−i(θI−θII)M∗

a′b + |r1|2 |t2|2 (3.82)

p�

aa′e,b,�,� = t1r1 |r2|2Meb − t1t1t
∗
2r

∗
2e
i(θI−θII)Mab

+r1r1t2r2e
−i(θI−θII)M∗

a′b − t1r1 |t2|2 (3.83)

p�

aa′e,b,�,� = t∗1r
∗
1 |r2|2Meb + r∗1r

∗
1t

∗
2r

∗
2e
i(θI−θII)Mab

−t∗1t∗1t2r2e−i(θI−θII)M∗
a′b − t∗1r

∗
1 |t2|2 (3.84)

p�

aa′e,b,�,� = |r1|2 |r2|2Meb − t1r
∗
1t

∗
2r

∗
2e
i(θI−θII)Mab

−t∗1r1t2r2e−i(θI−θII)M∗
a′b + |t1|2 |t2|2 (3.85)
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and

p�

aa′e,b,�,� = |t1|2 |t2|2Meb − t1r
∗
1t

∗
2r

∗
2e
i(θI−θII)Mab

−t∗1r1t2r2e−i(θI−θII)M∗
a′b + |r1|2 |r2|2 (3.86)

p�

aa′e,b,�,� = t1r1 |t2|2Meb + t1t1t
∗
2r

∗
2e
i(θI−θII)Mab

−r1r1t2r2e−i(θI−θII)M∗
a′b − t1r1 |r2|2 (3.87)

p�

aa′e,b,�,� = t∗1r
∗
1 |t2|2Meb − r∗1r

∗
1t

∗
2r

∗
2e
i(θI−θII)Mab

+t∗1t
∗
1t2r2e

−i(θI−θII)M∗
a′b − t∗1r

∗
1 |r2|2 (3.88)

p�

aa′e,b,�,� = |r1|2 |t2|2Meb + t1r
∗
1t

∗
2r

∗
2e
i(θI−θII)Mab

+t∗1r1t2r2e
−i(θI−θII)M∗

a′b + |t1|2 |r2|2 . (3.89)

It is straightforward to check that

p�

aa1,B + p�

aa1,B =
∑

d,h,λ,b,r

ρB(d,br ;h,λ),(d,br;h,λ) = 1, (3.90)

and one can see that, generically, the only terms in the target anyons’ density matrix

that will survive many probe measurements are those in e-channels with

MeB =
∑

d,h,λ,b,r

ρB(d,br ;h,λ),(d,br ;h,λ)Meb = 1. (3.91)

3.4.2 Non-Identical Probes

When the probes B1, . . . , BN are described by different density matrices ρBj

(though are all still unentangled with each other and with the target system), we

must use

psaa′e,Bj =
∑
b

PrBj (b) psaa′e,b (3.92)

PrBj (b) =
∑
d,h,λ

ρ
Bj
(d,b�;h,λ),(d,b�;h,λ) (3.93)
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for each probe. This gives us the probability for the string of measurement outcomes

(s1, . . . , sN) to occur as

Pr (s1, . . . , sN) =
∑
a,c,f,μ

ρA(a,c;f,μ),(a,c;f,μ)p
s1
aa1,B1

. . . psNaa1,BN , (3.94)

with the resulting target anyon density matrix

ρA (s1, . . . , sN) =
∑

a,a′,c,c′,f,μ,μ′
(e,α,β),(f ′,ν,ν′)

ρA(a,c;f,μ),(a′,c′;f,μ′)

(dfdf ′)
1/2

ps1aa′e,B1
. . . psNaa′e,BN

Pr (s1, . . . , sN)

× [
(F ac

a′c′)
−1]

(f,μ,μ′)(e,α,β)
[F ac
a′c′](e,α,β)(f ′,ν,ν′) |a, c; f ′, ν〉 〈a′, c′; f ′, ν ′| . (3.95)

With this generalization, we find that the order of measurement outcomes does, in

fact, matter. This is obstructive to providing a quantitative description of the large N

behavior; however, the qualitative behavior should be transparent after the analysis in

previous sections for the identical probes. Each probe measurement will execute some

amount of projection, to some extent collapsing superpositions of anyonic charges that

the probe is able to distinguish by monodromy.
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Chapter 4 Fractional Quantum Hall Two

Point-Contact Interferometer

After enduring the detailed analysis of Chapter 3, one hopes that it has application

in physical systems, and not just to the abstract idealizations that exist in our minds.

In pursuing this hope, we turn our attention to fractional quantum Hall systems,

since they represent the most likely candidates for possessing anyons and realizing

braiding statistics (either Abelian or non-Abelian).

Indeed, a setup that is rather similar to the Mach-Zehnder interferometer de-

scribed in Chapter 3 has been experimentally realized in a quantum Hall system [106].

This interferometer has, so far, only achieved functionality in the integer quantum

Hall regime (though, even there, the physical observations are not completely under-

stood [107, 108]), but it should be able, in principle, to detect the presence of braiding

statistics [109, 110, 111], and even discern whether a system possesses non-Abelian

statistics [112]. Unfortunately however, there is a crucial and debilitating difference

between the FQH Mach-Zehnder interferometer of [106] and the Mach-Zehnder inter-

ferometer described in Chapter 3: because of the chiral nature of FQH edge currents,

one of the detectors and its drain are unavoidably situated inside the central inter-

ferometry region. As a result, probe anyons accumulate in this region, effectively

altering the target anyon’s charge. This effect renders the interferometer incapable

of measuring a target charge, and hence, useless for qubit readout in topological

quantum computation.

Fortunately, there is another type of interferometer that can be constructed in

quantum Hall systems which is capable of measuring a target charge: the two point-

contact interferometer. Moreover, such interferometers, which are of the Fabry–Pérot

type [113], involving higher orders of interference, have already achieved experimental

functionality in the fractional quantum Hall regime. The two point-contact interfer-
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Figure 4.1: A two point-contact interferometer for measuring braiding statistics in
fractional quantum Hall systems. The hatched region contains an incompressible
FQH liquid. Ss and Ds indicate the “sources” and “detectors” of edge currents. The
front gates (F) are used to bring the opposite edge currents (indicated by arrows) close
to each other to form two tunneling junctions. Applying voltage to the central gate
creates an antidot in the middle and controls the number n of quasiholes contained
there. An additional side gate (G) can be used to change the shape and the length
of one of the paths in the interferometer.

ometer was first proposed for use in FQH systems in Ref. [114], where it was analyzed

for the Abelian states. It was analyzed for the Moore–Read state [47], the most likely

physical realization of non-Abelian statistics, expected to occur at ν = 5/2 and 7/2

filling fractions, in Refs. [115, 86, 116, 117]. See also [118, 119, 120, 121] for related

matters. It was further analyzed for arbitrary anyon models, and specifically for the

Read–Rezayi state [53] expected to occur at ν = 12/5 filling fraction, in Ref. [105]

(and subsequently analyzed for the ν = 12/5 Read–Rezayi state with homoplastic

techniques in Refs. [122, 123]). In all of these previous analyses for non-Abelian

states, the results were given to lowest order in the tunneling amplitude, and only

for target anyons that were assumed to be in a state of definite anyonic charge (i.e.

already collapsed). In what follows, we provide expressions including all orders of

tunneling, both to explicitly display the unitarity of the quantum evolution and to

account for potentially measureable corrections. Furthermore, we allow the target

to be in a superposition of different anyonic charges, and relate the results to the
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analysis of Chapter 3, so that we now have a proper description of the measure-

ment collapse behavior for these interferometers. Experimental efforts in realization

of the two point-contact interferometer have been carried out for Abelian FQH states

[42, 43, 44, 45, 46]. Whether or not these experiments have conclusively demonstrated

fractional statistics of excitations in the Abelian FQHE regime remains a topic of some

debate [124, 125]1.

The two point-contact interferometer consists of a quantum Hall bar with two

constrictions (point-contacts) and (at least) two antidots, A1 and A2, in between

them, as depicted in Fig. 4.1. The constrictions are created by applying voltage to

the front gates (F) on top of the Hall bar; by adjusting this voltage, one may con-

trol the tunneling amplitudes t1 and t2. In the absence of inter-edge tunneling, the

gapped bulk of the FQH liquid gives rise to a quantized Hall conductance: Gxy =

I/ (VD�
− VS�

) = νe2/h, where the current through the Hall bar is I = (ID�
− IS�

).

At the same time, the diagonal resistance vanishes: Rxx = (VD�
− VS�

) /I = 0.

Tunneling current between the opposite edges leads to a deviation of Gxy from its

quantized value, or equivalently, to the appearance of Gxx ∝ Rxx 
= 0. By measuring

the diagonal conductance Gxx, one effectively measures the interference between the

two tunneling paths around the antidot. The tunneling amplitudes t1 and t2 must

be kept small, to ensure that the tunneling current is completely due to quasiholes

rather than composite excitations. Treating tunneling as a perturbation, one can use

renormalization group (RG) methods to compare various contributions to the overall

current. Such analysis shows that in the weak tunneling regime, the tunneling current

has the dependence I ∝ V 4s−1 where s is the scaling dimension/spin of the corre-

sponding fields/anyons [127, 120, 121]. It follows that the dominant contribution in

this regime is from the field with lowest scaling dimension, which, in FQH systems,

is the quasihole. It should be noted that the quasihole tunneling is actually relevant

1One of the reasons for the uncertainty in interpreting the results of the experiments testing
the Abelian statistics in the FQH regime is the fact that the statistical angle and the conventional
Aharonov–Bohm phase acquired by a charged quasiparticle in a magnetic field are not easy to tell
apart (this point is discussed in Refs. [126, 114]). From this perspective, a non-Abelian FQH state
might have an advantage, being that its effect from braiding statistics dramatically differs from the
charge-background field contribution.
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in the RG sense, which, in more physical terms, translates into the tendency of these

point contacts to become effectively pinched off in the limit of zero temperature and

zero bias. On a more mundane level, the quantum Hall liquid can be broken into sep-

arate puddles by the introduction of a constriction due to purely electrostatic effects

(such as edges not being sufficiently sharp). In this regard, the recent experimental

evidence [128], indicating that it is possible to construct a point contact for which

the ν = 5/2 state persists in the tunneling region, is reassuring.

The two antidots are used to store two clusters of non-Abelian quasiparticles, A1

and A2 respectively, whose combined anyonic charge is being probed. The reason for

two antidots, rather than just one (as has been previously suggested in [114, 115, 116,

117, 105]), is to allow for the combined target to maintain a coherent superposition

of anyonic charges without decoherence from energetics that become important at

short range. In particular, the energy splitting between the states of different any-

onic charge on an antidot is expected to scale as L−1 (where L is the linear size of

the dot) due to both kinetic (different angular momentum) and potential (different

Coulomb energy) effects [117]. On the other hand, for two separated antidots, this

energy difference should vanish exponentially with the distance between them, with

suppression determined by the gap [86].

In order to appropriately examine the resulting interference patterns, we envision

several experimentally variable parameters: (i) the central gate voltages allowing one

to control the number of quasiholes on the antidots, (ii) the perpendicular magnetic

field, (iii) the back gate voltage controlling the uniform electron density, and (iv) a side

gate (G) that can be used to modify the shape of the edge (and, hence, total area and

background flux within) the central interferometry region. The reason for proposing

all these different controls is to be able to separately vary the Abelian Aharonov-

Bohm phase and the number of quasiholes on the antidots. In fact, having all these

different controls may turn out to be redundant, but they may prove beneficial for

experimental success.

The target anyon A, is the combination of the anyons A1, A2, and all others

(including strays) situated inside the central interferometry region. In general, any
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edge excitation qualifies as a probe anyon, but since tunneling is dominated by the

fundamental quasiholes, we can effectively allow the probes to have definite charge b

given by the quasihole’s anyonic charge label. Letting (1, 0) and (0, 1) correspond to

the top and bottom edge, respectively (also denoted as s =�,�, respectively), the

unitary evolution operator for a probe anyon B entering the system along the edge is

given by

U =

⎡⎣ r∗1r
∗
2e
iθIRABWABRCB

1
t∗1

(
1 − |r1|2WBA

)
RBC

1
t2

(−1 + |r2|2WAB

)
RCB r1r2e

iθIIRBCRBAWBA

⎤⎦ , (4.1)

when the C anyons (those outside the central interferometry region that are entangled

with A) are in the region to the right of central, where we have defined

WAB =

∞∑
n=0

(−t∗1t2ei(θI+θII)RBARAB

)n
=

[
1 + t∗1t2e

i(θI+θII)RBARAB

]−1
(4.2)

WBA =

∞∑
n=0

(−t∗1t2ei(θI+θII)RABRBA

)n
=

[
1 + t∗1t2e

i(θI+θII)RABRBA

]−1
. (4.3)

The phases θI and θII are respectively picked up from traveling counter-clockwise along

the top and bottom edge around the central interferometry region, and include the

contribution from the enclosed background magnetic field. We note that when higher

order terms are significant, it might also be the case that tunneling contributions from

excitations other than the fundamental quasiholes (which have different tunneling

amplitudes) are also important, but nevertheless proceed with considering all orders

of tunneling in this manner. The tunneling matrices are

Tj =

⎡⎣ r∗j tj

−t∗j rj

⎤⎦ (4.4)

with j = 1, 2 for the left and right point contacts, respectively. We can perform
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a similar density matrix calculation as for the Mach-Zehnder interferometer, except

with more complicated diagrams in this case. Sending a single probe particle in from

the bottom edge (s =�) (which is effectively done by applying a bias voltage across

the edges), and detecting it coming out at the bottom or top edge gives the same

form for the resulting density matrix as in Eq. (3.28), except with more complicated

psaa′e,b that are determined by using U of Eq. (4.1) for V U in Eqs. (3.9–3.11). To order

|t|2 (for |t1| ∼ |t2| small), we find

p�

aa′e,b � |r1|2 |r2|2
(
1 − t∗1t2e

i(θI+θII)Mab − t1t
∗
2e

−i(θI+θII)M∗
a′b
)

� 1 − |t1|2 − |t2|2 − |t1t2|
(
eiβMab + e−iβM∗

a′b
)

(4.5)

and

p�

aa′e,b � |t1|2 + |r1|2 t∗1t2ei(θI+θII)Mab

+ |r1|2 t1t∗2e−i(θI+θII)M∗
a′b + |r1|4 |t2|2Meb

� |t1|2 + |t1t2|
(
eiβMab + e−iβM∗

a′b
)

+ |t2|2Meb (4.6)

where we have defined β = arg
{
t∗1t2e

i(θI+θII)
}
. We see that

p�

aa′e,b + p�

aa′e,b � |t2|2Meb + |r2|2 (4.7)

(where here we have |t2|2 as the probability of the probe B passing between anyons

A and C, rather than |t1|2). The values for the two outcome probabilities (i.e. the

e = 1 terms) to all orders are

p�

aa1,b =
∑
c

N c
ab

dc
dadb

|r1|2 |r2|2
|1 + t∗1t2ei(θI+θII)ei2π(sc−sa−sb)|2

=
∑
c

N c
ab

dc
dadb

|r1|2 |r2|2
1 + |t1|2 |t2|2 + 2 |t1t2| cos [β + 2π (sc − sa − sb)]

(4.8)

� 1 − |t1|2 − |t2|2 − 2 |t1t2|Re
{
eiβMab

}
(4.9)

p�

aa1,b = 1 − p�

aa1,b. (4.10)
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These are also the values of psaa′e,b to all orders when Meb = 1, but in general psaa′e,b

does not have such a nice form. As before, the target system collapses onto states

with common values of p�

aa1,b, generically producing a density matrix with non-zero

elements that correspond to difference charges e with Meb = 1 (and Mab = Ma′b).

To first order, the behavior is essentially identical to that of the Mach-Zehnder in-

terferometer which we previously obtained, but the higher order terms may require

more stringent conditions for superpositions to survive measurement collapse than

just indistinguishability of monodromy scalar components (since this only guarantees

proper matching to first order). Specifically, for superpositions of a and a′ to survive,

they must have ∑
c

N c
ab

dc
da

(
θc
θa

)n

=
∑
c

N c
a′b
dc
da′

(
θc
θa′

)n

(4.11)

for all n, and some much more cumbersome condition for the survival of coherent

superpositions corresponding to difference charge e. However, it seems that this

condition is often equivalent to indistinguishability of monodromy scalar components

for models of interest. In order to have p�

aa1,b = 0, i.e. producing sometimes perfect

distinguishability 2, we require |t1| = |t2| and cos [β + 2π (sc − sa − sb)] = −1 for all

N c
ab 
= 0. Using Eq. (3.79), we estimate the number of tunneling events (approximately

N |t|2) needed to collapse a superposition of two anyonic charges in the target is on

the order of (ΔM)−2.

From the above results, we find that when the target is in a state of definite

charge a (or, more exactly, fully collapsed by probe measurements), the longitudinal

conductance will be proportional to the probability of the probe injected along the

bottom edge to be “detected” exiting along the top edge:

Gxx ∝ p�

aa1,b � |t1|2 + |t2|2 + 2 |t1t2|Re
{
eiβMab

}
(4.12)

which is exactly Eq. (7) in Ref. [105]. This is a readily measurable quantity, found

by measuring the voltage between S� and D�. Using the side gate (G), one can vary

2One can never have always perfect distinguishability for this interferometer, since it must be in
the weak tunneling limit, which prevents ever having |tj |2 = 1/2.
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β and, from the resulting modulation in the conductance, determine the amplitude

of Mab.

Though this interferometer has been examined for the Moore-Read state in pre-

vious papers, we will re-examine it here, now also providing the higher order terms,

which may be of interest. The anyon model RR2,1 describing this state is given in

Eq. (5.53). We begin by letting the probe anyon be the fundamental quasihole, which

has electric charge e
4

and anyon charge b = (σ, [1]8). If the target anyon is composed of

an even (possibly negative) number n of such quasiholes, its total anyonic charge will

be in some superposition of a = (I, [n]8) and (ψ, [n]8). Defining Nψ = 0, 1 depending

on whether the Ising charge is I or ψ, respectively, for n even, these give rise to

p�

aa1,b = 1 − |r1|2 |r2|2∣∣∣1 + (−1)Nψ |t1t2| ei(β+nπ
4 )
∣∣∣2 (4.13)

� |t1|2 + |t2|2 + (−1)Nψ 2 |t1t2| cos
(
β + n

π

4

)
. (4.14)

The Ising charges I and ψ are in different charge classes when probed by σ, so

interferometry will collapse any superposition of them in the target onto a definite

charge state of one or the other. If the target anyon is a composite of an odd number

n of quasiholes, then its total anyonic charge is a = (σ, [n]8), which gives

p�

aa1,b = 1 − |r1|2 |r2|2
(
1 + |t1t2|2

)∣∣∣1 − (−1)
n−1

2 |t1t2|2 ei2β
∣∣∣2 (4.15)

� |t1|2 + |t2|2 − 2 |t1t2|2
[
1 + (−1)

n−1
2 cos (2β)

]
. (4.16)

Of specific note is that for n odd, the interference is suppressed, giving rise to mod-

ulations in 2β that are fourth order in t. In fact, higher order harmonics enter as

modulations in 2mβ that are 4mth order in t.

If we had sufficiently good precision and control over the experimental variables

to set them exactly to |t1| = |t2| and cos
(
β + nπ

4

)
= (−1)Nψ+1 for n even, then we

would find p�

aa1,b = 0 to all orders (these settings would give p�

aa1,b = 4|t1|2

(1+|t1|2)2 for the

target with the other Nψ). In this way (or perhaps some other) one may effectively
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suppress the tunneling of fundamental quasiholes, and then the next most dominant

contribution to tunneling comes from excitations with anyonic charge b = (I, [2]8),

which are Abelian, and give (with different values of Tj)

p�

aa1,b = 1 − |r1|2 |r2|2∣∣∣1 + |t1t2| ei(β+nπ
2 )
∣∣∣2 (4.17)

� |t1|2 + |t2|2 + 2 |t1t2| cos
(
β + n

π

2

)
, (4.18)

which is actually the value for these b probes for any n. The Ising charges are obviously

indistinguishable when probed by I, so superpositions of I and ψ will not be affected

by these probes.

From the anyon model description in Eq. (5.51), we reproduce the results of

Ref. [105] for the Read–Rezayi states RRk,M (for FQH states, M should be odd

to give a fermionic system), which occur at filling fraction ν = k
kM+2

, most likely

in the second Landau level. We take the probes to be the fundamental quasiholes,

which have electric charge e
kM+2

and anyonic charge b = (Φ1
1, [1]N ). If the target is

composed of n such quasiholes, its total anyonic charge will be in some superposition

of the charges a =
(
ΦΛn
n , [n]N

)
, where [Λn + n]2 = 0. To leading order, these give rise

to

p�

aa1,b � |t1|2 + |t2|2 + 2 |t1t2|
cos

(
(Λn+1)π
k+2

)
cos

(
π
k+2

) cos

(
β − n

Mπ

kM + 2

)
. (4.19)

Finally, the Read–Rezayi state RR3,1 is expected to describe the observed ν =

12
5

FQH plateau, so we give its details more explicitly. Its anyon model may be

described neatly by a direct product as in Eq. (5.54). The probes are fundamental

quasiholes, which have electric charge e
5

and anyonic charge b = (ε, [1]10). If the

target is composed of n such quasiholes, its total anyonic charge will be in some

superposition of the charges a = (I, [n]10) and a = (ε, [n]10). Defining Nε = 0, 1 to

indicate whether the Fib charge is I or ε, respectively, to leading order, these give

p�

aa1,b � |t1|2 + |t2|2 + 2 |t1t2|
(−φ−2

)Nε
cos

(
β − n

4π

5

)
. (4.20)
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The Fib charges I and ε are in different charge classes when probed by ε, so interfer-

ometry will collapse any superposition of them in the target onto a definite anyonic

charge state. By varying β, one can distinguish whether the Fib charge of a target

anyon is I or ε, without needing to know the precise value of the phase involved,

because the interference fringe amplitude is suppressed by a factor of φ−2 ≈ .38 for ε.

We emphasize that this provides the RR3,1 state with a distinct advantage over the

Moore-Read state with respect to being able to distinguish the non-Abelian anyonic

charges that would be used in these systems as the computational basis states for

topological qubits (i.e. I and ψ for RR2,1 vs. I and ε for RR3,1).
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Chapter 5 Examples

In this chapter, we consider some important examples of anyon models. All of

these will have N c
ab = 0, 1, so we will drop the fusion/splitting spaces’ basis labels

(greek indices), with the understanding that any symbol involving a prohibited fusion

vertex is set to zero. Also, for these particular models, it is more convenient to label

the vacuum charge by 0, (so, we let 1 = 0). Anyon models are completely specified

by their F -symbols and R-symbols, so we will provide these, as well as list some

additional important quantities that can be derived from them, for convenience. To

relate these examples to interferometry experiments, we also give the corresponding

fixed state probabilities pκ and density matrices ρAκ , as described in Chapter 3.2.

5.1 ZN

The (Abelian) ZN anyon models [25] have the anyonic charges C = {0, 1, . . . , N − 1},
and defining [a]N ∈ C as the least residue of a mod N , they are described (only

writing the bracket [ ]N when the distinction is significant) by:

Z
(n)
N for all N and n = 0, 1, . . . , N − 1:

[a]N × [b]N = [a+ b]N[
F a,b,c
a+b+c

]
a+b,b+c

= 1 Ra,b
a+b = ei

2πn
N
ab

Sa,b = 1√
N
ei

4πn
N
ab Ma,b = ei

4πn
N
ab

da = 1 θa = ei2π
n
N
a2

c
((N−1)/2)
N = N − 1 (N odd) D =

√
N
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and

Z
(n+ 1

2)
N for N even, n = 0, 1, . . . , N − 1:

[a]N × [b]N = [a + b]N[
F a,b,c
a+b+c

]
a+b,b+c

= ei
π
N
a([b]N+[c]N−[b+c]N) Ra,b

a+b = ei
2π
N (n+ 1

2)[a]N [b]N

Sa,b = 1√
N
ei

4π
N (n+ 1

2)ab Ma,b = ei
4π
N (n+ 1

2)ab

da = 1 θa = ei2π
(2n+1)

2N
[a]2N

c
(N−1)/2
N = N − 1, c

(1/2)
N = 1 D =

√
N

In these tables, we have given the central charge c
(n)
N only for the values of n which

correspond to the SU(N)1 and the U(1)N/2 CFTs. For SU(N)1 the corresponding

anyon models are Z
((N−1)/2)
N for N odd and Z

(N/2−1)
N for N even. For U(1)N/2 it

is Z
(1/2)
N , with N necessarily even. In general, the central charges of ZN theories

are integers whenever they are defined (i.e. when the theory is modular). More

information on the central charges of theories of type ZN may be found in Ref. [25].

Of course, for Abelian anyon models such as these, each physical quasiparticle

excitation has a specific anyonic charge and all fusion channels are uniquely deter-

mined, so superpositions of anyonic charge are not actually possible, but one may

still perform interferometry experiments to determine the charge of a target anyon.

Also, such models might occur as a subset of a non-Abelian anyon model, in which

case superpositions of these charges could potentially occur. For Z
(w)
N with w = n or

n+ 1
2

1, using b probes, we have:

pa = p�

aa0,b = |t1|2 |r2|2 + 2 |t1r1t2r2| cos

(
θ +

4πw

N
ab

)
+ |r1|2 |t2|2 (5.1)

and

PrA (κ) =
∑
a∈Cκ,f

ρ(a,f−a;f),(a,f−a;f) (5.2)

ρAκ =
∑

a,a′∈Cκ,f
ρ(a,f−a;f),(a′,f−a′;f) |a, f − a; f〉 〈a′, f − a′; f | (5.3)

1If we write w = n or n + 1
2 for n /∈ {0, 1, . . . , N − 1}, it should be understood that we really

mean [n]N instead of n.
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For Z
(n)
N with N odd and gcd(n,N) = 1 and for Z

(n+ 1
2)

N with N even and gcd(2n +

1, N) = 1 (i.e. the modular ZN models), the charge classes are singletons Ca = {a},
so a = a′ in the fixed state density matrices.

5.2 D(ZN)

The Abelian anyon models derived from the quantum double D(ZN ) of Z
(0)
N describe

certain orbifold CFTs [129, 130], topological ZN gauge theories [131], and also Kitaev’s

toric code [62] based on the group ZN . These models have the anyonic charges

a ≡ (a1, a2), with a1, a2 ∈ ZN . We can think of a1 and a2 as ZN charge and flux

quantum numbers.

D(ZN ) for all N

[a1, a2]N × [b1, b2]N = [a1 + b1, a2 + b2]N[
F a,b,c
a+b+c

]
a+b,b+c

= 1 Ra,b
a+b = ei

2π
N
a1b2

Sa,b = 1
N
ei

2π
N

(a1b2+a2b1) Ma,b = ei
2π
N

(a1b2+a2b1)

da = 1 θa = ei2π
a1a2
N

c = 0 D = N

Using b probes, we have:

pa = p�

aa0,b = |t1|2 |r2|2 + 2 |t1r1t2r2| cos

(
θ +

2π

N
(a1b2 + a2b1)

)
+ |r1|2 |t2|2 (5.4)

and

PrA (κ) =
∑
a∈Cκ,f

ρ(a,f−a;f),(a,f−a;f) (5.5)

ρAκ =
∑

a,a′∈Cκ,f
ρ(a,f−a;f),(a′,f−a′;f) |a, f − a; f〉 〈a′, f − a′; f | . (5.6)

For these quantum double theories, the charge classes Cκ for any probe b always

contain multiple charges a. For example, Ma,b = Ma′,b for a′ = (a1 + b1, a2 − b2). On
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the other hand all D(ZN ) theories are modular, so by using multiple types of probe

particles, one may always completely determine the charge of the target.

5.3 D′(Z2)

The D′(Z2) model occurs in the description of the non-Abelian quantum Hall states

proposed in Ref. [61]. It is an Abelian anyon model which, like D(Z2) has anyonic

charges labeled by elements of Z2 × Z2 and fusion rules given by Z2 × Z2 group

multiplication. It also has the same S-matrix as D(Z2).

D′(Z2)

[a1, a2]2 × [b1, b2]2 = [a1 + b1, a2 + b2]2

[
F a,b,c
a+b+c

]
a+b,b+c

= 1

R
(1,0),(1,0)
(0,0) = R

(0,1),(0,1)
(0,0) = R

(1,1),(1,1)
(0,0) = −1,

R
(1,0),(0,1)
(1,1) = R

(0,1),(1,1)
(1,0) = R

(1,1),(1,0)
(0,1) = 1

R
(0,1),(1,0)
(1,1) = R

(1,1),(0,1)
(1,0) = R

(1,0),(1,1)
(0,1) = −1

Sa,b = 1
2
eiπ(a1b2+a2b1) Ma,b = eiπ(a1b2+a2b1)

da = 1 θ(1,0) = θ(0,1) = θ(1,1) = −1

c = 4 D = 2

Using b probes, we have:

pa = p�

aa0,b = |t1|2 |r2|2 + 2 |t1r1t2r2| cos (θ + π(a1b2 + a2b1)) + |r1|2 |t2|2 (5.7)

and

PrA (κ) =
∑
a∈Cκ,f

ρ(a,f−a;f),(a,f−a;f) (5.8)

ρAκ =
∑

a,a′∈Cκ,f
ρ(a,f−a;f),(a′,f−a′;f) |a, f − a; f〉 〈a′, f − a′; f | . (5.9)

For this model, the charge classes Cκ for any nontrivial probe b contain two charges.

Specifically, given b, Ma,b = Ma′,b for a′ = (a1 + b1, a2 − b2). However, one may
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always completely determine the charge of the target using any two different types of

nontrivial probes.

5.4 SU(2)k

The SU(2)k anyon models (for k an integer) are “q-deformed” versions of the usual

SU(2) for q = ei
2π
k+2 , which, roughly speaking, means integers n are replaced by [n]q ≡

qn/2−q−n/2
q1/2−q−1/2 . These describe SU(2)k Chern-Simons theories [26] and WZW CFTs [132,

133], and give rise to the Jones polynomials of knot theory [134]. They have the

anyonic charges C =
{
0, 1

2
, . . . , k

2

}
, and are described by:

j1 × j2 =
min{j1+j2,k−j1−j2}∑

j=|j1−j2|
j

[
F j1,j2,j3
j

]
j12,j23

= (−1)j1+j2+j3+j
√

[2j12 + 1]q [2j23 + 1]q

⎧⎨⎩ j1 j2 j12

j3 j j23

⎫⎬⎭
q

,⎧⎨⎩ j1 j2 j12

j3 j j23

⎫⎬⎭
q

= Δ (j1, j2, j12)Δ (j12, j3, j)Δ (j2, j3, j23) Δ (j1, j23, j)

×∑
z

{
(−1)z[z+1]q !

[z−j1−j2−j12]q![z−j12−j3−j]q ![z−j2−j3−j23]q![z−j1−j23−j]q !

× 1
[j1+j2+j3+j−z]q ![j1+j12+j3+j23−z]q![j2+j12+j+j23−z]q!

}
,

Δ (j1, j2, j3) =

√
[−j1+j2+j3]q![j1−j2+j3]q![j1+j2−j3]q !

[j1+j2+j3+1]q!
, [n]q! =

n∏
m=1

[m]q

Rj1,j2
j = (−1)j−j1−j2 q

1
2
(j(j+1)−j1(j1+1)−j2(j2+1))

Sj1,j2 =
√

2
k+2

sin
(

(2j1+1)(2j2+1)π
k+2

)
Mj1,j2 =

sin
(

(2j1+1)(2j2+1)π
k+2

)
sin( π

k+2)
sin

(
(2j1+1)π

k+2

)
sin

(
(2j2+1)π

k+2

)
dj =

sin( (2j+1)π
k+2 )

sin( π
k+2)

θj = ei2π
j(j+1)
k+2

c = 3k
k+2

D =
√
k+2

2 sin( π
k+2)

where { }q is a “q-deformed” version of the usual SU(2) 6j-symbols. Notice that for

k even, the S-matrix always has vanishing elements, e.g. S 1
2
, k
4

= 0. Using b = 1/2

probes, each anyonic charge is distinguishable by monodromy, forming the singletons



82

C2j = {j}, and so we have

p2j = p�

jj0, 1
2

= |t1|2 |r2|2 + 2 |t1r1t2r2|
cos

(
(2j+1)π
k+2

)
cos

(
π
k+2

) cos θ + |r1|2 |t2|2 (5.10)

PrA (2j) =
∑
c

f∈{j×c}

ρ(j,c;f),(j,c;f) (5.11)

ρAκ =
∑
c

f,f ′∈{j×c}

ρ(j,c;f),(j,c;f)

PrA (2j) djdc
|j, c; f ′〉 〈j, c; f ′| (5.12)

5.5 Fib

The Fibonacci (Fib) anyon model (also known as SO(3)3, since it may be obtained

from the SU(2)3 anyon model by restricting to integer j)2 is known to be universal

for topological quantum computation [135, 136]. It has two charges C = {0, 1} (these

are also often denoted as I and ε, respectively) and is described by (listing only the

non-trivial F -symbols and R-symbols, i.e. those not listed are equal to one if their

vertices are permitted by fusion, and equal to zero if they are not permitted):

0 × 0 = 0, 0 × 1 = 1, 1 × 1 = 0 + 1

[
F 1,1,1

1

]
e,f

=

⎡⎣ φ−1 φ−1/2

φ−1/2 −φ−1

⎤⎦
e,f

R1,1
0 = e−i4π/5, R1,1

1 = ei3π/5

S = 1√
φ+2

⎡⎣ 1 φ

φ −1

⎤⎦ M =

⎡⎣ 1 1

1 −φ−2

⎤⎦
d0 = 1, d1 = φ θ0 = 1, θ1 = ei

4π
5

c = 14
5

D =
√

1 + 2φ

where φ = 1+
√

5
2

is the Golden ratio.

2As a Chern-Simons or WZW theory, this is properly denoted as (G2)1, since SO(3)k is only
allowed for k = 0 mod 4.
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For b = 1 probes, we have C1 = {0}, C2 = {1} and

p1 = p�

000,1 = |t1|2 |r2|2 + 2Re
{
t1r

∗
1r

∗
2t

∗
2e
i(θI−θII )}+ |r1|2 |t2|2 (5.13)

p2 = p�

110,1 = |t1|2 |r2|2 − 2φ−2Re
{
t1r

∗
1r

∗
2t

∗
2e
i(θI−θII)}+ |r1|2 |t2|2 (5.14)

PrA (1) =
∑
c

ρ(0,c;c),(0,c;c) (5.15)

ρA1 =
∑
c

ρ(0,c;c),(0,c;c)

PrA (1) dc
|0, c; c〉 〈0, c; c| (5.16)

=
1

PrA (1)

{
ρ(0,0;0),(0,0;0) |0, 0; 0〉 〈0, 0; 0|
+φ−1ρ(0,1;1),(0,1;1) |0, 1; 1〉 〈0, 1; 1|} (5.17)

PrA (2) =
∑
c,f

ρ(1,c;f),(1,c;f) = ρ(1,0;1),(1,0;1) + ρ(1,1;0),(1,1;0) + ρ(1,1;1),(1,1;1) (5.18)

ρA2 =
∑
c,f,f ′

ρ(1,c;f),(1,c;f)

PrA (2) d1dc
|1, c; f ′〉 〈1, c; f ′| (5.19)

=
1

PrA (2)

{
φ−1ρ(1,0;1),(1,0;1) |1, 0; 1〉 〈1, 0; 1|
+φ−2

(
ρ(1,1;0),(1,1;0) + ρ(1,1;1),(1,1;1)

)
× [|1, 1; 0〉 〈1, 1; 0|+ |1, 1; 1〉 〈1, 1; 1|]} (5.20)

We note that one can sometimes (approximately 69% of the time, when the target

charge is not vacuum) perfectly distinguish the charges 0 and 1 with a single b = 1

probe measurement by setting the experimental parameters to: |t1|2 = |t2|2 = 1/2

and θ = π, which give p1 = 0 and p2 = 1 − 1
2φ

� .69.

5.6 Ising

The Ising anyon model, which is derived from the CFT that describes the Ising model

at criticality [25], is closely related to SU(2)2, so we use the charge labels 0, 1
2
, and 1

(which are respectively I, σ, and ψ in the conventional Ising model notation). It is
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described by (listing only the non-trivial F s and Rs):

0 × a = a, 1
2
× 1

2
= 0 + 1, 1

2
× 1 = 1

2
, 1 × 1 = 0[

F
1
2
, 1
2
, 1
2

1
2

]
e,f

=

⎡⎣ 1√
2

1√
2

1√
2

− 1√
2

⎤⎦
e,f

R
1
2
, 1
2

0 = e−i
π
8 , R

1
2
, 1
2

1 = ei
3π
8

[
F

1
2
,1, 1

2
1

]
1
2
, 1
2

=
[
F

1, 1
2
,1

1
2

]
1
2
, 1
2

= −1 R
1
2
,1

1
2

= R
1, 1

2
1
2

= e−i
π
2 , R1,1

0 = −1

S = 1
2

⎡⎢⎢⎢⎣
1

√
2 1

√
2 0 −√

2

1 −√
2 1

⎤⎥⎥⎥⎦ M =

⎡⎢⎢⎢⎣
1 1 1

1 0 −1

1 −1 1

⎤⎥⎥⎥⎦
d0 = d1 = 1, d 1

2
=

√
2 θ0 = 1, θ 1

2
= ei

π
8 , θ1 = −1

c = 1
2

D = 2

where e, f ∈ {0, 1}.
For b = 1 probes, we have C1 = {0, 1}, C2 =

{
1
2

}
, and define CΔ = (C1 × C1) ∪

(C2 × C2), to give us

p1 = p�

000,1 = p�

110,1 = p�

011,1 = p�

101,1

= |t1|2 |r2|2 + 2 |t1r1r2t2| cos θ + |r1|2 |t2|2 (5.21)

p2 = p�
1
2

1
2
0,1

= p�
1
2

1
2
1,1

= |t1|2 |r2|2 − 2 |t1r1r2t2| cos θ + |r1|2 |t2|2 (5.22)

PrA (1) =
∑
c

[
ρ(0,c;c),(0,c;c) + ρ(1,c;1−c),(1,c;1−c)

]
(5.23)

ρA1 =
∑
a,a′∈C1

(c,c′)∈CΔ

f∈{a×c}

ρ(a,c;f),(a′,c′;f)

PrA (1) df
|a, c; f〉 〈a′, c′; f | (5.24)
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PrA (2) =
∑
c

f∈{ 1
2
×c}

ρ( 1
2
,c;f),( 1

2
,c;f) (5.25)

ρA2 =
∑

(c,c′)∈CΔ

f∈{ 1
2
×c}

ρ( 1
2
,c;f),(1

2
,c′;f)

PrA (2) df

∣∣1
2
, c; f

〉 〈
1
2
, c′; f

∣∣ (5.26)

For b = 1
2

probes, we have C1 = {0}, C2 =
{

1
2

}
, C3 = {1}, and

p1 = p�

000, 1
2

= |t1|2 |r2|2 + 2 |t1r1r2t2| cos θ + |r1|2 |t2|2 (5.27)

p2 = p�
1
2

1
2
0, 1

2
= |t1|2 |r2|2 + |r1|2 |t2|2 (5.28)

p3 = p�

110, 1
2

= |t1|2 |r2|2 − 2 |t1r1r2t2| cos θ + |r1|2 |t2|2 (5.29)

PrA (1) =
∑
c

ρ(0,c;c),(0,c;c) (5.30)

ρA1 =
∑
c

ρ(0,c;c),(0,c;c)

PrA (1) dc
|0, c; c〉 〈0, c; c| (5.31)

PrA (2) =
∑
c

f∈{ 1
2
×c}

ρ( 1
2
,c;f),(1

2
,c;f) (5.32)

ρA2 =
∑
c

f,f ′∈{ 1
2
×c}

ρ( 1
2
,c;f),( 1

2
,c;f)

PrA (2) d 1
2
dc

∣∣1
2
, c; f ′〉 〈1

2
, c; f ′∣∣ (5.33)

=
1

PrA (2)

{
1√
2
ρ( 1

2
,0; 1

2),(
1
2
,0, 1

2)

∣∣1
2
, 0; 1

2

〉 〈
1
2
, 0; 1

2

∣∣
+

1√
2
ρ( 1

2
,1; 1

2),(
1
2
,1; 1

2)

∣∣ 1
2
, 1; 1

2

〉 〈
1
2
, 1; 1

2

∣∣
+

1

2

(
ρ( 1

2
, 1
2
;0),(1

2
, 1
2
;0) + ρ( 1

2
, 1
2
;1),( 1

2
, 1
2
;1)

)
× [∣∣ 1

2
, 1

2
; 0
〉 〈

1
2
, 1

2
; 0
∣∣+ ∣∣1

2
, 1

2
; 1
〉 〈

1
2
, 1

2
; 1
∣∣]} (5.34)
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PrA (3) =
∑
c

ρ(1,c;1−c),(1,c;1−c) (5.35)

ρA3 =
∑
c

ρ(1,c;1−c),(1,c;1−c)
PrA (3) dc

|1, c; 1 − c〉 〈1, c; 1 − c| (5.36)

We note that one can always perfectly distinguish the charges 0 and 1 with a

single b = 1
2

probe measurement by setting the experimental parameters such that

|t1|2 = |t2|2 = 1/2 and θ = π, which give p1 = 0 and p3 = 1.

5.7 Constructing New Models from Old

Given some known anyon models A, A1, and A2, there are several ways to construct

new anyon models from them. We will briefly describe a few of these here:

(i) By applying charge conjugation C to A, we obtain the theory AC defined by

making the replacements

[
F abc
d

]C
(e,α,β)(f,μ,ν)

=
[
F āb̄c̄
d̄

]
(ē,α,β)(f̄ ,μ,ν)

(5.37)[
Rab
c

]C
μν

=
[
Rāb̄
c̄

]
μν
. (5.38)

(ii) By applying parity P to A, we obtain the theory AP defined by making the

replacements [
Rab
c

]P
μν

=
[(
Rba
c

)−1
]
μν
. (5.39)

(iii) By applying time reversal T to A, we obtain the theory AT (often denoted in

the literature as A−1 or A) defined by making the replacements

[
F abc
d

]T
(e,α,β)(f,μ,ν)

=
[(
F abc
d

)−1
]
(f,μ,ν)(e,α,β)

(5.40)[
Rab
c

]T
μν

=
[(
Rab
c

)−1
]
νμ
. (5.41)

We note that this also gives MT
ab = M∗

ab.

Note: The models obtained by applying constructions (i), (ii), and (iii) are not nec-

essarily distinct from each other, and in fact sometimes not even distinct from the
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original anyon model. In particular, it is often true that the F -symbols are real and

Rab
c = Rba

c (at least in some preferred gauge) for examples of interest, e.g. Chern-

Simons theories and all the examples given above, except D(ZN ) and D′(Z2), in which

case AP = AT and the model is invariant under PT .

(iv) If the label set C of A has a proper subset C′ that gives a closed fusion subalgebra,

then the restriction A|C′ to this subset of charges is a subcategory of A, and, hence,

also an anyon model. We note that Mab of A|C′ is simply given by Mab of A restricted

to the charges C′.

(v) A direct product A1×A2 of anyon models is an anyon model, defined, with charge

and basis labels a = (a1, a2) and μ = (μ1, μ2), by

N c
ab = N c1

a1b1
N c2
a2b2

(5.42)[
F abc
d

]
(e,α,β)(f,μ,ν)

=
[
F a1b1c1
d1

]
(e1,α1,β1)(f1,μ1,ν1)

[
F a2b2c2
d2

]
(e2,α2,β2)(f2,μ2,ν2)

(5.43)[
Rab
c

]
μν

=
[
Ra1b1
c1

]
μ1ν1

[
Ra2b2
c2

]
μ2ν2

. (5.44)

We note that Mab = Ma1b1Ma2b2 .

(vi) If an anyon model A has an Abelian subcategory Z (the “extending fields” in

CFT) such that

[
F abc
d

]
(e,α,β)(f,μ,ν)

=
[
F

(a×z)bc
(d×z)

]
((e×z),α,β)(f,μ,ν)

=
[
F
a(b×z)c
(d×z)

]
((e×z),α,β)((f×z),μ,ν)

=
[
F
ab(c×z)
(d×z)

]
(e,α,β)((f×z),μ,ν)

(5.45)

and [
Rab
c

]
μν

=
[
R

(a×z)b
(c×z)

]
μν

=
[
R
a(b×z)
(c×z)

]
μν

(5.46)

for all z ∈ CZ , and all a, b, c, d, e, f ∈ C (this also requires a cooperative choice of gauge

to work), then identifying charges into the equivalence classes 〈a〉 = {a× z : z ∈ CZ}
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and defining

N
〈c〉
〈a〉〈b〉 ≡ N c

ab (5.47)[
F

〈a〉〈b〉〈c〉
〈d〉

]
(〈e〉,α,β)(〈f〉,μ,ν)

≡ [
F abc
d

]
(e,α,β)(f,μ,ν)

(5.48)[
R

〈a〉〈b〉
〈c〉

]
μν

≡ [
Rab
c

]
μν

(5.49)

for representative charges on the right hand sides that give non-zero symbols if such

exist (otherwise the symbol is defined to be zero) defines a reduced anyon model 〈A〉.
We note that Mab = M〈a〉〈b〉.

For many coset conformal field theories, one may describe the associated anyon

model by application of identification to a subset of a product theory [i.e. using (iv),

(v), and (vi)] [137, 138]. For a G/H coset, one first forms the product A×B−1, where

A and B are anyon models corresponding to the G and H WZW-theories. Then, one

takes a subset of this product to implement the branching rules of the coset. Finally,

one identifies modulo some simple currents (the “identification currents”) that may

exist and this should take care of the field identifications of the coset. This procedure

does not work for all cosets (e.g. it fails for conformal embeddings and maverick

cosets), but it works for the ones we will consider.

Here are some interesting and/or useful examples of relations that employ these

constructions:

(a) Z
(w)T
N = Z

(−w)
N for w = n or n+ 1

2
.

(b) Z
(n)
2m = Z

(2n)
m × Z

(n)
2 and Z

(n+ 1
2)

2m = Z
(2n+1)
m × Z

(i(2n+1)m−1/2)
2 for m odd, via the

isomorphism:

[a]2m �→
([

a +m [a]2
2

]
m

, [a]2

)

(a change of gauge is needed to see this from the description of Z
(n+ 1

2)
2m given in

Chapter 5.1).

(c) Z
(2n)
m = Z

((m+n)/2)
m for m and n odd, via the isomorphism: [a]m �→ [2a]m.

(d) SO(3)k = SU (2)k|C′ where C′ =
{
0, 1, . . . ,

⌊
k
2

⌋}
.
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(e) SU(2)k =SO(3)k × Z
(ik−1/2)
2 for k odd, via the isomorphism:

j �→
⎧⎨⎩ (j, [0]2) for 2j even(

k
2
− j, [1]2

)
for 2j odd

(a change of gauge is needed to see this from the description of SU(2)k given in Chap-

ter 5.4; in particular, the gauge transformation specified by: u
k
2
−j1,j2

k
2
−j = (−i)j1−j (−1)j2,

u
j1,

k
2
−j2

k
2
−j = ij2−j (−1)j1, and u

k
2
−j1, k2−j2

j = ij1−j2 (−1)j , for integer j1, j2, and j makes

this property manifest).

(f) The Zk-Parafermion model [139, 140] is a CFT described by the coset SU (2)k /U(1)k.

The corresponding anyon model is

Pfk =
〈

SU (2)k × Z
(−1/2)
2k

∣∣∣
C′

〉
C′ = {(j, [m]2k) : [2j +m]2 = 0}
CZ =

{
(0, [0]2k) ,

(
k

2
, [k]2k

)}
(5.50)

(i.e. Z = Z
(0)
2 ). The Pfk fields are conventionally written as ΦΛ

λ where Λ = 2j

and λ = m (and thus have the restriction [Λ + λ]2 = 0 and field identifications

ΦΛ
λ = ΦΛ

λ+2k = Φk−Λ
λ+k ). The previously alluded to relation between Ising and SU(2)2 is

precisely given by Pf2 =Ising. For k odd, one can show [141], using (b) and (e), that

this results in the direct product Pfk =SO(3)k × Z
(−1)
k .

5.8 Anyon Models in the Physical World

The best hope for finding anyons in physical systems lies in the fractional quan-

tum Hall effect; therefore, in this section, we describe the anyon models corresponding

to the leading candidates states for experimentally observed filling fractions. How-

ever, before proceeding, we would like to say a few things about the ZN models and

their relation to U(1) Chern-Simons theory and CFT. For N an integer, the U (1)N

Chern-Simons theory [142, 143, 144, 26] is related to a chiral CFT which is called the
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“rational torus”. This is a CFT with one scalar field ϕ which takes its values on a

circle of radius
√

2N . This theory has 2N primary fields Va (a = 0, . . . , 2N − 1) with

conformal weights ha = a2

4N
, given by Va = ei2πaϕ/

√
2N . The anyon model correspond-

ing to this theory is Z
(1/2)
2N . If we were to forget about taking the least residue mod

2N in these models, we would find the charge a = 2N which is a boson (i.e. Raa = 1)

and which (in an appropriately chosen gauge) has trivial monodromy with all other

fields, so we could perform an identification with Z = {2mN : m ∈ Z} to reobtain

Z
(1/2)
2N . For N = m/2 with m odd, one can still have a U (1)N theory, however, there

is some additional subtlety. The “extending field” a = 2N = m that one would

normally identify with the vacuum in this case is a fermion, so to describe it by a

Zm anyon model, one must introduce spin structures on the spacetime manifold and

augment the chiral current algebra to a Z2-graded chiral current superalgebra [145]

(in CFT, the fermion becomes a descendant field in the vacuum sector). However,

since these fermions can actually be created and manipulated in manners that expose

their fermionic nature, it is more accurate to describe U (1)N for N = m/2 with m

odd by the anyon model Z
(1)
2m = Z

(2)
m ×Z

(1)
2 , which is not modular. More generally, for

systems with fermions that have trivial monodromy with all other anyons (e.g. any

fractional quantum Hall system), there will always be a similar sort of Z2-grading.

However, it does not always manifest as the anyon model simply being a product

of some anyon model with a Z
(1)
2 , and, in fact, it is sometimes not even possible to

produce an anyon model for the fusion rule where the fermion (electron) has been

identified with the vacuum, as we will show in Appendix A.1.25.

The Abelian fractional quantum Hall states can all be constructed from ZN mod-

els. The general formulation in terms of K matrices may be found in Ref. [146], but

we will describe the Laughlin and hierarchy states [48, 147, 148, 149] that occur at

filling fractions ν = n
m

(m odd and n < m). As shown in Ref. [47], the statistical

factor of the quasihole in these states is θ = πp
m

where p is odd and np ≡ 1 mod

m (which uniquely defines p modulo 2m). It follows that these states are described

by Z
(p)
2m = Z

(2p)
m × Z

(1)
2 , where a fundamental quasihole has anyonic charge [1]2m and

electric charge e
m

, and an electron has anyonic charge [m]2m (and electric charge −e).
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Apart from these fractional quantum Hall states described by Abelian anyon mod-

els, there are also believed to be a number of quantum Hall plateaus which host non-

Abelian anyons. These are more interesting from the point of view of measurement

theory and also for possible applications to quantum computing, since they would

allow for superpositions of different overall anyonic charges on clusters of quasiholes.

There is an important point to keep in mind when considering such superpositions for

non-Abelian FQH states, which is that the anyonic charge is coupled to the electric

charge, and consequently some superpositions of anyonic charge may be prohibited

by superselection of electric charge.

The Read-Rezayi states [53] (which include the Moore-Read state) for filling frac-

tion ν = k
kM+2

are the most prominent series of Hall states with non-Abelian anyons

(for FQH, M should be odd to give a fermionic system). They are formed by com-

bining Pfk with U(1)k(kM+2)/2 in the following manner

RRk,M =
〈

Pfk × Z
(1/2)
N

∣∣∣
C′

〉
C′ =

{(
ΦΛ
λ , [λ]N

)
: [Λ + λ]2 = 0

}
Z =

{(
Φ0

0, [0]N
)
,
(
Φ0

4, [2 (kM + 2)]N
)}

(5.51)

where N = 2k (kM + 2) if k and M are odd, and N = k (kM + 2) otherwise. The

fundamental quasihole has anyonic charge (Φ1
1, [1]N) and electric charge e

kM+2
. The

electron has anyonic charge
(
Φk
kM+2, [kM + 2]N

)
. When k and M are odd, one can

show [141], using (b) and (f) from Chapter 5.7, that this results in the direct product

RRk,M = SO(3)k × Z
((k(kM+2)−M)/2)
2(kM+2)

= SO(3)k × Z
(k(kM+2)−M)
kM+2 × Z

(1)
2 . (5.52)

In addition to the Read-Rezayi states there are a number of other proposed series of

non-Abelian quantum Hall states. This includes the non-Abelian spin singlet (NASS)

states for filling fractions ν = 2k
2kM+3

, proposed in Ref. [61]. These states are based on

the parafermionic CFTs constructed as SU(3)k/(U(1)×U(1)) cosets [150]. To generate
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the FQH states, these cosets are then combined with two U(1) factors that respectively

account for the electric charge and spin quantum numbers of the quasiholes.

We now focus more on three specific proposed non-Abelian FQH states, since they

correspond to observed filling fractions. The Moore-Read state (MR = RR2,1) [47] is

the expected description for the plateaus at ν = 5
2

and 7
2
, and currently represents

the best hope for discovering non-Abelian statistics. Its corresponding anyon model

is

RR2,1 = Ising × Z
(1/2)
8

∣∣∣
C′

C′ = {(I, [2n]8) , (σ, [2n+ 1]8) , (ψ, [2n]8)} (5.53)

(for n ∈ Z). The fundamental quasihole has anyonic charge (σ, [1]8) and electric

charge e
4
. The electron has anyonic charge (ψ, [4]8).

The Read-Rezayi state expected to describe the ν = 12
5

plateau is RR3,1, the

particle-hole conjugate (i.e. parity or time reversal) of

RR3,1 = Fib × Z
(7)
10 = Fib × Z

(1)
5 × Z

(1)
2 . (5.54)

The fundamental quasihole has anyonic charge (ε, [1]10) and electric charge e
5
. The

electron has anyonic charge (I, [5]10). Being a direct product of Fib and an Abelian

theory, universal topological quantum computation could be achieved through braid-

ing quasiholes of this system.

The first fermionic non-Abelian state (k = 2,M = 1) in the NASS series is a

candidate for the FQH plateau observed at ν = 4
7
. For k = 2, the parafermionic coset

SU(3)k/(U(1) × U(1)) is equal to Fib−1 × D′ (Z2). Hence, the anyon model that de-

scribes the resulting NASS state is a subcategory of Fib−1×D′(Z2)×Z
(1/2)
28 ×Z

(1/2)
4 (the

Z28 factor is for the electric charge and the Z4 factor for the spin). The electrons in this

state have anyonic charges (I, ([1]2, [0]2), [7]28, [1]4) and (I, ([0]2, [1]2), [7]28, [−1]4) for

those with spin up and spin down, respectively. The two quasiholes with minimal elec-

tric charge e
7

form a spin doublet, and their anyonic charges are (ε, ([0]2, [1]2), [1]28, [1]4)
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for spin up, and (ε, ([1]2, [0]2), [1]28, [−1]4) for spin down. The quasihole with mini-

mal scaling dimension (which dominates weak tunneling currents) is spinless and has

anyonic charge (ε, ([1]2, [1]2), [2]28, [0]4) and electric charge 2e
7
. It may be formed by

combining a spin up and a spin down quasihole. Though we will not write them

explicitly, the restricted charge set C′ is that generated by the minimal charge quasi-

holes, and the identification set CZ is given by the anyonic charges of all pairs of

electrons. Since the quasiholes of this anyon model carry a nontrivial Fib charge, this

state also would allow for universal topological quantum computation by braiding

quasiholes.
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Appendix A Tabulating Anyon Models

A.1 Key to the Tables

In this appendix, we tabulate a number of gauge invariant quantities for a list of

anyon models (UBTCs)1 that we have found using the Pentagon and Hexagon solving

program described in Chapter 2.5. This list includes:

(i) All multiplicity-free anyon models with 4, or fewer, particle types. In particular,

these include all modular anyon models with up to 4 particle types (and arbitrary

fusion multiplicities), as indicated by the TQFT “periodic table” of Ref. [151].

(ii) All multiplicity-free anyon models with 5 and 6 particle types with fusion rules

that permit modular solutions and have no fusions with more than 4 channels. These

fusion rules are contained in the list given in Ref. [152] of fusion rules with up to 6

particle types (and limited fusion multiplicity) that can give rise to modular tensor

categories.

(iii) Anyon models for several additional fusion rules that are relevant for proposed

non-Abelian quantum Hall states.

While we have calculated full solutions to the Pentagon and Hexagon solutions for

the anyon models listed, we will not tabulate their F -symbols and R-symbols, since

most of these are not gauge invariant and they would take excessive space. Instead,

we have used them to calculate a number of characteristic and physically interesting

gauge invariant quantities for these anyon models. In particular, for every theory we

give the central charge c, total quantum dimension D and a CFT or Chern-Simons

theory that realizes that theory or its image under parity reversal. For each particle

type ψ in these models, we give the quantum dimension dψ, the topological spin θψ and

the Frobenius-Schur indicator κψ. In most cases, we also give the topological S-matrix

1In a forthcoming paper [141], we will also include non-unitary braided tensor categories that are
modular. We caution the reader that some of the formulae in this section are only true for unitary
theories.
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(though it can always be calculated from the other data). Since we already gave the

analytic expressions of these quantities (as well as the F -symbols and R-symbols) for

the ZN , D(ZN), D′(Z2), SU(2)N , Fib, and Ising anyon models in Chapter 5, when

these appear we will refrain from giving full tables and instead refer back their analytic

expressions. The list of anyon models are ordered by the number of particles types,

and then by their fusion rules. We now give some details on how the data in the tables

are calculated from the F -symbols and R-symbols, and on the conventions used in

the tables.

From the F -symbols alone we can calculate the quantum dimensions of the par-

ticles and their Frobenius-Schur indicators. We have

dψ =
1√[

F ψψ̄ψ
ψ

]
1,1

[
F ψ̄ψψ̄

ψ̄

]
1,1

(A.1)

κψ =

⎧⎨⎩
[
F ψψψ
ψ

]
1,1
dψ (ψ = ψ̄)

0 (ψ 
= ψ̄)
(A.2)

The Frobenius-Schur indicator only has a gauge invariant meaning for self dual parti-

cles, and it is conventional to set it to zero for other particles. When ψ = ψ̄, we have

κψ = κψ = ±1, where κψ is the phase introduced in Eq. (2.23). Given the quantum

dimensions of the particle types, we can also calculate the total quantum dimension

D =

√∑
i

d2
i . (A.3)

More exotic quantities that we can calculate from the F -symbols are the Frobenius-

Schur indicators for a vertices. If ψ̄ ∈ {ψ × ψ}, then there is a map from the cor-

responding splitting vertex space to itself given by clockwise 2π/3 rotation, i.e. by

bending the top right leg down to the right and the bottom leg up to the left. The

eigenvalue κψψ
ψ̄

of this map is a third root of unity called the Frobenius-Schur indicator
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of the trivalent vertex, and it is given by

κψψ
ψ̄

=

[
F ψψψ̄
ψ

]
ψ̄,1

[
F ψ̄ψψ
ψ

]
1,ψ̄[

F ψ̄ψψ̄

ψ̄

]
1,1

(A.4)

We will mention κψψ
ψ̄

only when it does not equal 1, which rarely happens. If it does

happen, then the anyon model A in question has the property that AP 
= AT ; in other

words, it is not PT -invariant (or, given CPT -invariance, not C-invariant). None of

the other quantities listed in the tables signal the lack of PT -invariance, because T

conjugates the F -symbols, whereas P does not, and none of the other quantities listed

actually depend on the phase of the F -symbols.

Using R-symbols in addition to F -symbols, we may calculate the topological spins

of the particles. We have

θψ =
1

dψ

∑
a

Na
ψψR

ψψ
a da. (A.5)

This also gives us the central charge modulo 8, by the formula

e
2πi
8
c =

1

D
∑
a

d2
aθa (A.6)

and the S-matrix

Sab =
1

D
∑
c

N c
ab̄

θc
θaθb

dc. (A.7)

In the tables, we will actually give the quantities sψ ∈ R/Z defined by

θψ = e2πisψ , (A.8)

which give the fractional parts of the conformal weights of the fields in a CFT real-

ization of the anyon model.

In the following sections, we will often refer to “mirror pairs” of anyon models, by

which we mean an anyon model A and its image under parity AP .
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A.1.1 Z2

For the Z2 fusion algebra, we find 2 solutions to the Pentagon equations, each of which

gives rise to 2 solutions to the Hexagon equations, for 4 solutions in total. These are

precisely the Z
(w)
2 theories with w ∈ {0, 1

2
, 1, 3

2
} (cf. Chapter 5.1). Only Z

(1/2)
2 and

Z
(3/2)
2 are modular, and these correspond to the SU(2)1 CFT and its image under

parity. The modular theories have κψ1 = −1, the non-modular theories have κψ1 = 1.

A.1.2 Fib, or SO(3)3

For the SO(3)3 fusion algebra, we find one unitary solution to the Pentagon equations,

which gives rise to a mirror pair of modular Hexagon solutions. These solutions are

just the parity orbit of the Fib theory, which corresponds to the (G2)1 CFT. See

Chapter 5.5 for details.

A.1.3 Z3

For the Z3 fusion algebra, we find 3 solutions to the Pentagon equations. Only

one of these, the trivial solution (all F-symbols equal 1), allows for solutions to the

Hexagon equations. The other two Pentagon solutions have nontrivial Frobenius-

Schur indicators for the (ψ1, ψ1, ψ2) and (ψ2, ψ2, ψ1) vertices. The indicators for these

vertices are both e
2πi
3 for one theory and both e

4πi
3 for the other. This shows that

these solutions correspond to non-isomorphic fusion theories which are each other’s

image under T . The trivial Pentagon solution allows for 3 Hexagon solutions, giving

three unitary anyon models. These are just the Z
(n)
3 models with n ∈ {0, 1, 2} (see

Chapter 5.1). Only Z
(1)
3 and Z

(2)
3 are modular and they correspond to the SU(3)1

CFT and its image under parity.
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A.1.4 SU(2)2

ψ0 ψ1 ψ2

ψ1 ψ0 + ψ2 ψ1

ψ2 ψ1 ψ0

(A.9)

For the SU(2)2 fusion rules, we find 4 solutions to the Pentagon equations. Two

of these allow for solutions to the Hexagon equations, giving 4 Pentagon/Hexagon

solutions (in two mirror pairs) for each solution to the Pentagon. Out of the 4 mirror

pairs, 2 are the Ising and SU(2)2 theories and their images under parity. Details for

these are given in Chapters 5.6 and 5.4. We tabulate one theory from each of the

other two pairs.

c = 5
2

D = 2 SO(5)1

ψ0 ψ1 ψ2

d 1
√

2 1

s 0 5
16

1
2

κ 1 −1 1

DS =

⎛⎜⎜⎜⎝
1

√
2 1

√
2 0 −√

2

1 −√
2 1

⎞⎟⎟⎟⎠ (A.10)

c = 7
2

D = 2 SO(7)1

ψ0 ψ1 ψ2

d 1
√

2 1

s 0 7
16

1
2

κ 1 1 1

DS =

⎛⎜⎜⎜⎝
1

√
2 1

√
2 0 −√

2

1 −√
2 1

⎞⎟⎟⎟⎠ (A.11)

The SO(5)1 model is based on the same Pentagon solution as SU(2)2 while SO(7)1

model is based on the same Pentagon solution as the Ising model.
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A.1.5 SO(3)4

ψ0 ψ2 ψ4

ψ2 ψ0 + ψ2 + ψ4 ψ2

ψ4 ψ2 ψ0

(A.12)

This is the only multiplicity-free fusion rules with three particle types that does not

occur on the list in [152]. It has three solutions to the Pentagon equations. These all

have
[
F ψ2ψ2ψ2

ψ2

]
ψ2ψ2

= 0. One of these allows for 3 solutions to the Hexagons, which

come as one parity invariant solution (tabulated below), and a mirror pair, which

is the (non-modular) SO(3)4 model given by the restriction of SU(2)4 tabulated in

Chapter 5.4, and its image under parity. The other two pentagon solutions are not

braided, but have nontrivial Frobenius-Schur indicators for the (ψ2, ψ2, ψ2) vertex

(they are each other’s parity conjugates).

not modular D =
√

6

ψ0 ψ2 ψ4

d 1 2 1

s 0 0 0

κ 1 1 1

DS =

⎛⎜⎜⎜⎝
1 2 1

2 4 2

1 2 1

⎞⎟⎟⎟⎠ (A.13)

A.1.6 SO(3)5

For the SO(3)5 fusion algebra, we find one unitary solution to the Pentagon equation

and one mirror pair of unitary, modular solutions to the Hexagons. This is the SO(3)5

model obtained from restriction of the SU(2)5 model given in Chapter 5.4, and its

image under parity.
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A.1.7 Z4

For the Z4 fusion algebra, there are 4 solutions to the Pentagon and 2 of these allow

for solutions to the Hexagon, with 4 solutions each. This gives 8 total solutions

to the Pentagon and Hexagon equations, precisely the eight Z
(w)
4 models given in

Chapter 5.1. The modular theories are Z
(1/2)
4 and Z

(3/2)
4 and their parity images

Z
(7/2)
4 and Z

(5/2)
4 . Conformal field theory realizations are U(1)2 for Z

(1/2)
4 and SU(4)1

for Z
(3/2)
4 . All Frobenius-Schur indicators for self dual particles equal 1 in all 8 anyon

models.

A.1.8 Z2 × Z2

For the Z2 ×Z2 product fusion algebra, we find 8 solutions to the Pentagon equation,

in 4 different classes up to permutations of the nontrivial particles. Of the 8 solutions,

2 are invariant under such permutations and the other 6 split up into two orbits of 3

solutions each (this may be read off from the Frobenius-Schur indicators). Of the 8

solutions to the Pentagon equations, 4 give rise to solutions of the Hexagon, so there

are 8 solutions to the Hexagon for each Pentagon solution. The Pentagon solutions

which allow for Hexagon solutions all have an even number of particles with nontrivial

Frobenius-Schur indicator, while the ones which don’t all have an odd number of such

particles.

The 32 solutions of Pentagon/Hexagon form 10 distinct classes up to permutations

of the particles. Of these 10 classes, 4 are paired up into 2 mirror pairs and 8 can

be obtained as products of two Z2 theories. The product theories are modular only

if they are the product of two modular theories. The two theories which cannot be

obtained as products are the modular D(Z2) and D′(Z2) theories, with central charges

c = 0 and c = 4 (modulo 8). The 10 classes of theories are listed below.

• 4 bosons. Z
(0)
2 × Z

(0)
2 .

• 3 bosons, 1 fermion, obtained in 3 ways. Not a product of Z2 theories. D(Z2).

• 2 bosons, 2 fermions, obtained in 3 ways. Z
(0)
2 × Z

(1)
2 or Z

(1)
2 × Z

(1)
2 .
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• 2 bosons, 2 semions of weight 1
4
, obtained in 3 ways. Z

(0)
2 × Z

(1/2)
2 .

• 2 bosons, 2 semions of weight −1
4
, obtained in 3 ways (parity image of the

previous). Z
(0)
2 × Z

(3/2)
2 .

• 2 bosons, 2 semions of weights 1
4

and −1
4
, obtained in 6 ways. Modular. Z

(1/2)
2 ×

Z
(3/2)
2 .

• 1 bosons, 3 fermions. Not a product of Z2 theories, quantum double of the

non-braided Z2 fusion model. Modular. We denote it D′(Z2).

• 1 boson, 2 semions of weight 1
4
, 1 fermion, obtained in 3 ways. Modular. Z

(1/2)
2 ×

Z
(1/2)
2 .

• 1 boson, 2 semions of weight −1
4
, 1 fermion, obtained in 3 ways (parity image

of the previous). Modular. Z
(3/2)
2 × Z

(3/2)
2 .

• 1 boson, 2 semions of weights 1
4

and −1
4
, 1 fermion, obtained in 6 ways. Z

(1)
2 ×

Z
(1/2)
2 or Z

(1)
2 × Z

(3/2)
2 .

The data for the product theories can simply be obtained from the various Z2 data

and we have given the data for D(Z2) and D′(Z2) in Chapters 5.2 and 5.3, respectively.

A.1.9 SU(2)3, or Fib × Z2

The SU(2)3 fusion algebra is the product of those of Fib and Z2. From them, we find

2 unitary solutions to the Pentagon equations. These are just the products of the 2

solutions of the Z2 theory with the solution of the Fibonacci theory. Each solution

of the Pentagon gives rise to 4 solutions of the Hexagons. The 8 solutions we find in

this way are again precisely the products of the 2 Fibonacci solutions with the 4 Z2

solutions. Modularity is inherited from the parent theories (if they are both modular,

then the product will be modular). The 8 theories occur in 4 mirror pairs. The anyon

model for the SU(2)3 CFT (see Chapter 5.4) corresponds to the product Fib×Z
(3/2)
2 .

The other modular theories are its parity image and the mirror pair represented by

Fib × Z
(1/2)
2 ≡ (G2)1 × SU(2)1.
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A.1.10 D5

ψ0 ψ1 ψ2 ψ3

ψ1 ψ0 ψ2 ψ3

ψ2 ψ2 ψ0 + ψ1 + ψ3 ψ2 + ψ3

ψ3 ψ3 ψ2 + ψ3 ψ0 + ψ1 + ψ2

(A.14)

This fusion algebra describe the tensor product decomposition of the representations

of the 10 element dihedral group D5 (i.e. the symmetry group of a regular pentagon).

Because of this, there is at least one solution to the Pentagon and Hexagon equations

that just describes exchange of the tensor factors in the products of D5 representa-

tions. However, it turns out that there are additional solutions. There are 5 solutions

to the Pentagon equations. Of these, only one allows for solutions to the Hexagon

equations (necessarily the one which corresponds to the representation theory of D5).

This Pentagon solution has the following 6 F -symbols equal to zero:
[
F ψ2ψ2ψ2

ψ2

]
ψ3ψ3

,[
F ψ2ψ3ψ2

ψ3

]
ψ2ψ2

,
[
F ψ2ψ3ψ2

ψ3

]
ψ3ψ3

,
[
F ψ3ψ2ψ3

ψ2

]
ψ2ψ2

,
[
F ψ3ψ2ψ3

ψ2

]
ψ3ψ3

, and
[
F ψ3ψ3ψ3

ψ3

]
ψ2ψ2

. It

gives 5 Hexagon solutions (tabulated below), one from the D5 representation theory

and 2 mirror pairs. These 2 mirror pairs of solutions may be obtained as charge spec-

trum restrictions of the 2 mirror pairs of solutions of the SO (5)2 fusion algebra given

in Appendix A.1.19. It would be interesting to determine whether their braiding is

universal for topological quantum computation.

not modular D =
√

10

ψ0 ψ1 ψ2 ψ3

d 1 1 2 2

s 0 0 0 0

κ 1 1 1 1

DS =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 2 2

1 1 2 2

2 2 4 4

2 2 4 4

⎞⎟⎟⎟⎟⎟⎟⎠
(A.15)
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not modular D =
√

10

ψ0 ψ1 ψ2 ψ3

d 1 1 2 2

s 0 0 2
5

−2
5

κ 1 1 1 1

DS =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 2 2

1 1 2 2

2 2 2/φ −2φ

2 2 −2φ 2/φ

⎞⎟⎟⎟⎟⎟⎟⎠
(A.16)

not modular D =
√

10

ψ0 ψ1 ψ2 ψ3

d 1 1 2 2

s 0 0 1
5

−1
5

κ 1 1 1 1

DS =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 2 2

1 1 2 2

2 2 −2φ 2/φ

2 2 2/φ −2φ

⎞⎟⎟⎟⎟⎟⎟⎠
(A.17)

A.1.11 Fib× Fib

For the Fib×Fib product fusion algebra, there is 1 solution to the Pentagon equations,

which is just the product of the solution for Fib with itself. There are 4 solutions to

the Hexagon, in two mirror pairs. These solutions are again just products of the 2

solutions to the Pentagon/Hexagon that we found for Fib. All solutions are modular.

A.1.12 SO(3)6

The SO(3)6 fusion algebra has 2 solutions to the Pentagon equations. Each gives rise

to a mirror pair of Hexagon solutions, neither of which is modular. One of the mirror

pairs is unitary, and is just the (non-modular) SO(3)6 model given by the restriction

of SU(2)6 tabulated in Chapter 5.4, and its image under parity.
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A.1.13 SO(3)7

The SO(3)7 fusion algebra has one unitary solution to the Pentagon equations and this

gives rise to one mirror pair of unitary, modular solutions to the Hexagon equations.

These are just the SO(3)7 model given by restriction of the SU(2)7 model tabulated

in Chapter 5.4, and its image under parity.

A.1.14 Z5

The Z5 fusion algebra is invariant under relabelings of the particles that correspond

to a new choice of canonical generator for Z5 (instead of [1]5). In particular, sending

[a]5 to [2a]5 leaves the fusion rules invariant. As a result of this permutation symme-

try, different solutions to the Pentagon and Hexagon can correspond to isomorphic

(braided) tensor categories.

There are 5 solutions to the Pentagon equation. Only 1 of these (the trivial one)

allows for solutions to the Hexagon equations, 5 in total, which are just the Z
(n)
5

models with n ∈ {0, 1, 2, 3, 4}. The 5 Pentagon/Hexagon solutions fall into 3 classes

under permutations, giving three anyon models. One of these is just the non-modular

Z
(0)
5 theory with 5 bosons, the other two are modular. We have Z1

5 ≡ Z4
5 with central

charge c = 0 (modulo 8) and Z2
5 ≡ Z3

5 with c = 4 (modulo 8). The c = 4 theory is

realized by the SU(5)1 CFT.

A.1.15 SU(2)4

ψ0 ψ1 ψ2 ψ3 ψ4

ψ1 ψ0 + ψ2 ψ1 + ψ3 ψ2 + ψ4 ψ3

ψ2 ψ1 + ψ3 ψ0 + ψ2 + ψ4 ψ1 + ψ3 ψ2

ψ3 ψ2 + ψ4 ψ1 + ψ3 ψ0 + ψ2 ψ1

ψ4 ψ3 ψ2 ψ1 ψ0

(A.18)

This fusion algebra has 2 solutions to the Pentagon equations. These both have[
F ψ2ψ2ψ2

ψ2

]
ψ2ψ2

= 0. Each solution leads to 4 Hexagon solutions in 2 mirror pairs.

However, the fusion rules are symmetric under the exchange of ψ1 and ψ3 and the
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two pairs are sent into each other under this exchange, so that they correspond to

isomorphic anyon models. Hence, we find two pairs of anyon models with these

fusion rules, both of which are modular. One of these is the SU(2)4 theory given

in Chapter 5.4 and its parity image. A representative of the other pair is tabulated

below. Note that all theories with these fusion rules occur at c = ±2 (modulo 8).

c = 2 D = 2
√

3

ψ0 ψ1 ψ2 ψ3 ψ4

d 1
√

3 2
√

3 1

s 0 −1
8

1
3

3
8

0

κ 1 1 1 1 1

DS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√

3 2
√

3 1
√

3 −√
3 0

√
3 −√

3

2 0 −2 0 2
√

3
√

3 0 −√
3 −√

3

1 −√
3 2 −√

3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.19)

A.1.16 SO(3)8

The SO(3)8 fusion algebra has 2 solutions to the Pentagon equations. Each of these

has a mirror pair of non-modular solutions to the Hexagon equations. One of the

mirror pairs is unitary, and is just the SO(3)8 model given by restriction of SU(2)8

tabulated in Chapter 5.4, and its image under parity.

A.1.17 Z6

The Z6 fusion algebra has 6 solutions to the Pentagon equations and 2 of these allow

for solutions to the Hexagons, 6 solutions each, giving precisely the 12 Z
(w)
6 solutions

tabulated in Chapter 5.1. These are also precisely the products of the 4 Z
(w)
2 models

with the 3 Z
(n)
3 models. For Z

(n+ 1
2
)

6 , we have κ[3]6
= −1. There are 4 modular theories

(2 mirror pairs), corresponding to the SU(6)1 and U(1)3 CFTs and their parity images.

We have SU(6)1 ≡ Z
(5/2)
6

∼= Z
(1/2)
2 × Z

(2)
3 and U(1)3 ≡ Z

(1/2)
6

∼= Z
(3/2)
2 × Z

(1)
3 .
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A.1.18 SU(2)2 × Z2

The SU(2)2 × Z2 product fusion algebra is invariant under the exchange of
(

1
2
, [0]2

)
with

(
1
2
, [1]2

)
. Hence, the SU(2)2 in this product may be thought of as correspond-

ing to either the charges
{
(0, [0]2) ,

(
1
2
, [0]2

)
, (1, [0]2)

}
, or

{
(0, [0]2) ,

(
1
2
, [1]2

)
, (1, [0]2)

}
.

When investigating solutions to Pentagon or Hexagon to see if they are product so-

lutions, we must consider both of these factorizations. There are 16 solutions to the

Pentagon equations. These are precisely twice the 8 products of the 4 solutions for

SU(2)2 with the 2 solutions for Z2 fusion rules, each product occurring for both fac-

torizations. These 16 Pentagon solutions each give rise to 4 Hexagon solutions and

the resulting 64 Hexagon solutions are just the products of the eight SU(2)2 anyon

models with the four Z2 anyon models, each occurring in two ways, according to the

two different factorizations of the fusion rules. Of course, the solutions corresponding

to the different factorizations give isomorphic anyon models, so the number of anyon

models for these fusion rules up to isomorphism is 32 and all of these are products of

theories tabulated before.

A.1.19 SO(5)2

ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

ψ1 ψ0 ψ5 ψ3 ψ4 ψ2

ψ2 ψ5 ψ0 + ψ3 + ψ4 ψ2 + ψ5 ψ2 + ψ5 ψ1 + ψ3 + ψ4

ψ3 ψ3 ψ2 + ψ5 ψ0 + ψ1 + ψ4 ψ3 + ψ4 ψ2 + ψ5

ψ4 ψ4 ψ2 + ψ5 ψ3 + ψ4 ψ0 + ψ1 + ψ3 ψ2 + ψ5

ψ5 ψ2 ψ1 + ψ3 + ψ4 ψ2 + ψ5 ψ2 + ψ5 ψ0 + ψ3 + ψ4

(A.20)

This fusion algebra has 4 solutions to the Pentagon equation. In all of these the

following 6 F -symbols are equal to zero:
[
F ψ3ψ3ψ3

ψ3

]
ψ4ψ4

,
[
F ψ3ψ4ψ3

ψ4

]
ψ3ψ3

,
[
F ψ3ψ4ψ3

ψ4

]
ψ4ψ4

,[
F ψ4ψ3ψ4

ψ3

]
ψ3ψ3

,
[
F ψ4ψ3ψ4

ψ3

]
ψ4ψ4

, and
[
F ψ4ψ4ψ4

ψ4

]
ψ3ψ3

. Each Pentagon solution allows for

4 solutions to the Hexagon equations, in 2 mirror pairs. However, these solutions

are related to each other by the automorphism of the fusion rules that exchanges ψ2

with ψ5 and/or ψ3 with ψ4. As a result, there are only 4 mirror pairs of solutions,
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giving 8 anyon models in total, all of which are modular. Note that we have two

more examples of unitary theories with c = 0 (mod 8) here. It would be interesting

to find a CFT or Chern-Simons description of these. We also note that restricting to

particles types C′ = {ψ0, ψ1, ψ3, ψ4} gives the four nontrivial D5 theories.

c = 0 D = 2
√

3

ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

d 1 1
√

5 2 2
√

5

s 0 0 1
4

1
5

− 1
5

− 1
4

κ 1 1 1 1 1 1

DS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
√

5 2 2
√

5

1 1 −√
5 2 2 −√

5
√

5 −√
5 −√

5 0 0
√

5

2 2 0 −2φ 2/φ 0

2 2 0 2/φ −2φ 0
√

5 −√
5

√
5 0 0 −√

5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.21)

c = 4 D = 2
√

3

ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

d 1 1
√

5 2 2
√

5

s 0 0 0 2
5

− 2
5

1
2

κ 1 1 1 1 1 1

DS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
√

5 2 2
√

5

1 1 −√
5 2 2 −√

5
√

5 −√
5 −√

5 0 0
√

5

2 2 0 2/φ −2φ 0

2 2 0 −2φ 2/φ 0
√

5 −√
5

√
5 0 0 −√

5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.22)

c = 0 D = 2
√

3

ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

d 1 1
√

5 2 2
√

5

s 0 0 0 1
5

− 1
5

1
2

κ 1 1 −1 1 1 −1

DS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
√

5 2 2
√

5

1 1 −√
5 2 2 −√

5
√

5 −√
5

√
5 0 0 −√

5

2 2 0 −2φ 2/φ 0

2 2 0 2/φ −2φ 0
√

5 −√
5 −√

5 0 0
√

5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.23)
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c = 4 D = 2
√

3

ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

d 1 1
√

5 2 2
√

5

s 0 0 1
4

2
5

− 2
5

− 1
4

κ 1 1 −1 1 1 −1

DS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
√

5 2 2
√

5

1 1 −√
5 2 2 −√

5
√

5 −√
5

√
5 0 0 −√

5

2 2 0 2/φ −2φ 0

2 2 0 −2φ 2/φ 0
√

5 −√
5 −√

5 0 0
√

5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.24)

A.1.20 SU(2)5, or SO(3)5 × Z2

The SU(2)5 fusion algebra is the product of the SO(3)5 and Z2 fusion algebras. We

find 2 unitary solutions to the Pentagon and 8 unitary solutions to the Hexagon, 4 for

each Pentagon solution. These solutions are all products of the SO(3)5 and Z2 type

solutions tabulated before. Products of two modular theories are modular, giving 4

modular theories in 2 mirror pairs. The anyon model for the SU(2)5 Chern-Simons

theory, which we tabulated in Chapter 5.4, corresponds to SO(3)5 × Z
(1/2)
2 .

A.1.21 Fib× SU(2)2

For the Fib × SU(2)2 fusion algebra, there are 4 unitary solutions to the Pentagon

equations. These are precisely the products of the 4 solutions for SU(2)2 with the

solution for the Fib fusion rules. Out of these 4 solutions, 2 allow for solutions to the

Hexagon equations, giving 8 each, for a total of 16 Pentagon/Hexagon solutions in 8

mirror pairs. These are precisely the products of the 2 unitary Fib models with the

8 solutions we got for SU(2)2 fusion rules.
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A.1.22 Z3-Parafermions, or Z3 × Fib

ψ0 ψ1 ψ2 ε0 ε1 ε2

ψ1 ψ2 ψ0 ε1 ε2 ε0

ψ2 ψ0 ψ1 ε2 ε0 ε1

ε0 ε1 ε2 ε0 + ψ0 ε1 + ψ1 ε2 + ψ2

ε1 ε2 ε0 ε1 + ψ1 ε2 + ψ2 ε0 + ψ0

ε2 ε0 ε1 ε2 + ψ2 ε0 + ψ0 ε1 + ψ1

(A.25)

The fusion algebra is the product of those for Fib and Z3, and it turns out that this

product structure also holds for the F -symbols and R-symbols. We find 3 unitary

solutions to the Pentagon, which are the products of the Fib solution with the 3

solutions for Z3 fusion rules. One of these allows for Hexagon solutions: namely,

the solution which has trivial F -symbols for the Z3 factor. This yields 6 unitary

solutions to the Hexagon equations, in 3 mirror pairs. These 6 solutions are gauge

equivalent to products of the pair of Pentagon/Hexagon solutions for Fib with the

3 Pentagon/Hexagon solutions for Z3. There are 4 modular solutions, which come

from the 2 modular Z3 solutions. The anyon model for the Z3-Parafermionic CFT is

Fib×Z
(2)
3 . Because of its interest in the description of the Read-Rezayi state for the

ν = 12
5

quantum Hall plateau, we tabulate this anyon model explicitly.

c = 4
5

D =
√

3 (φ+ 2)

ψ0 ψ1 ψ2 ε0 ε1 ε2

d 1 1 1 φ φ φ

s 0 −1
3

−1
3

2
5

1
15

1
15

κ 1 0 0 1 0 0

DS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 φ φ φ

1 ω2 ω φ ω2φ ωφ

1 ω ω2 φ ωφ ω2φ

φ φ φ −1 −1 −1

φ ω2φ ωφ −1 −ω2 −ω
φ ωφ ω2φ −1 −ω −ω2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.26)
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A.1.23 The (10 particle) k = 3,M = 1 Read-Rezayi State, or

Z5 × Fib

ψ0 ψ1 ψ2 ψ3 ψ4 ε0 ε1 ε2 ε3 ε4

ψ1 ψ2 ψ3 ψ4 ψ0 ε1 ε2 ε3 ε4 ε0

ψ2 ψ3 ψ4 ψ0 ψ1 ε2 ε3 ε4 ε0 ε1

ψ3 ψ4 ψ0 ψ1 ψ2 ε3 ε4 ε0 ε1 ε2

ψ4 ψ0 ψ1 ψ2 ψ3 ε4 ε0 ε1 ε2 ε3

ε0 ε1 ε2 ε3 ε4 ε0 + ψ0 ε1 + ψ1 ε2 + ψ2 ε3 + ψ3 ε4 + ψ4

ε1 ε2 ε3 ε4 ε0 ε1 + ψ1 ε2 + ψ2 ε3 + ψ3 ε4 + ψ4 ε0 + ψ0

ε2 ε3 ε4 ε0 ε1 ε2 + ψ2 ε3 + ψ3 ε4 + ψ4 ε0 + ψ0 ε1 + ψ1

ε3 ε4 ε0 ε1 ε2 ε3 + ψ3 ε4 + ψ4 ε0 + ψ0 ε1 + ψ1 ε2 + ψ2

ε4 ε0 ε1 ε2 ε3 ε4 + ψ4 ε0 + ψ0 ε1 + ψ1 ε2 + ψ2 ε3 + ψ3

(A.27)

This is the fusion algebra for the anyonic charge sectors of the k = 3,M = 1 Read-

Rezayi state, if we identify the sector containing the electron with the vacuum sector.

There are 5 unitary solutions to the Pentagon equations, corresponding to the prod-

ucts of the 5 solutions for Z5 with the Fib solution. Of these Pentagon solutions, only

1 allows for solutions to the Hexagon equations, giving a total of 10 unitary anyon

models with these fusion rules, in 5 mirror pairs. These 10 models are precisely the

tensor products of the 5 Z5 theories with the 2 Fib theories. Modular products are

modular, so we have 8 modular solutions. The model that describes the k = 3 Read-

Rezayi state is Fib×Z
(1)
5 . Identifying the electron’s anyonic charge with the trivial

anyonic charge is a bit suspect because the electron is a fermion and, hence, has

nontrivial (topological) exchange interactions. If we do not identify the electron’s

anyonic charge sector with the vacuum sector, but instead declare the anyonic charge

of pairs of electrons (which, of course, form bosons) to be equivalent to the trivial

charge, then we obtain an anyon model for the Read-Rezayi state which has one extra

Z
(1)
2 factor, namely Fib×Z

(1)
5 × Z

(1)
2 . This simple way of taking the fermionic nature

of the electron into account will only work for the RR-states with odd k, since the

even k states are not products and, in fact, we will show that there is no anyon model
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for the k = 2 RR-state with the electron identified with the vacuum. We give the

quantum dimensions, spins and Frobenius-Schur indicators for Fib×Z
(1)
5 explicitly.

c = 14
5

D =
√

5 (φ+ 2)

ψ0 ψ1 ψ2 ψ3 ψ4 ε0 ε1 ε2 ε3 ε4

d 1 1 1 1 1 φ φ φ φ φ

s 0 1
5

−1
5

−1
5

1
5

2
5

−2
5

1
5

1
5

−2
5

κ 1 0 0 0 0 1 0 0 0 0

(A.28)

A.1.24 The (12 particle) Moore-Read State

ψ0,0 ψ0,2 ψ0,4 ψ0,6 ψ1,1 ψ1,3 ψ1,5 ψ1,7 ψ2,0 ψ2,2 ψ2,4 ψ2,6

ψ0,2 ψ0,4 ψ0,6 ψ0,0 ψ1,3 ψ1,5 ψ1,7 ψ1,1 ψ2,2 ψ2,4 ψ2,6 ψ2,0

ψ0,4 ψ0,6 ψ0,0 ψ0,2 ψ1,5 ψ1,7 ψ1,1 ψ1,3 ψ2,4 ψ2,6 ψ2,0 ψ2,2

ψ0,6 ψ0,0 ψ0,2 ψ0,4 ψ1,7 ψ1,1 ψ1,3 ψ1,5 ψ2,6 ψ2,0 ψ2,2 ψ2,4

ψ1,1 ψ1,3 ψ1,5 ψ1,7 ψ0,2 + ψ2,2 ψ0,4 + ψ2,4 ψ0,6 + ψ2,6 ψ0,0 + ψ2,0 ψ1,1 ψ1,3 ψ1,5 ψ1,7

ψ1,3 ψ1,5 ψ1,7 ψ1,1 ψ0,4 + ψ2,4 ψ0,6 + ψ2,6 ψ0,0 + ψ2,0 ψ0,2 + ψ2,2 ψ1,3 ψ1,5 ψ1,7 ψ1,1

ψ1,5 ψ1,7 ψ1,1 ψ1,3 ψ0,6 + ψ2,6 ψ0,0 + ψ2,0 ψ0,2 + ψ2,2 ψ0,4 + ψ2,4 ψ1,5 ψ1,7 ψ1,1 ψ1,3

ψ1,7 ψ1,1 ψ1,3 ψ1,5 ψ0,0 + ψ2,0 ψ0,2 + ψ2,2 ψ0,4 + ψ2,4 ψ0,6 + ψ2,6 ψ1,7 ψ1,1 ψ1,3 ψ1,5

ψ2,0 ψ2,2 ψ2,4 ψ2,6 ψ1,1 ψ1,3 ψ1,5 ψ1,7 ψ0,0 ψ0,2 ψ0,4 ψ0,6

ψ2,2 ψ2,4 ψ2,6 ψ2,0 ψ1,3 ψ1,5 ψ1,7 ψ1,1 ψ0,2 ψ0,4 ψ0,6 ψ0,0

ψ2,4 ψ2,6 ψ2,0 ψ2,2 ψ1,5 ψ1,7 ψ1,1 ψ1,3 ψ0,4 ψ0,6 ψ0,0 ψ0,2

ψ2,6 ψ2,0 ψ2,2 ψ2,4 ψ1,7 ψ1,1 ψ1,3 ψ1,5 ψ0,6 ψ0,0 ψ0,2 ψ0,4

(A.29)

This is the fusion algebra for the 12-particle anyon model that describes the Moore-

Read quantum Hall state. The fusion rules may be obtained as a restriction of the

product SU(2)2 × Z8 to those fields ψi,j for which i+ j = 0(mod 2). Hence, we may

also obtain solutions to the Pentagon and Hexagon equations by restriction of the

product solutions to this subset of particles. It turns out that all solutions to the

Pentagon and Hexagon are, in fact, obtained in this way. One way to see this is by

brute force solution of the equations combined with a simple counting argument.

There are 16 solutions to the Pentagon equations. Only two of these allow for

solutions to the Hexagon equations, with 16 solutions in 8 mirror pairs for each, giving

a total of 32 Pentagon/Hexagon solutions. None of these solutions are modular. The

quantum dimensions and Frobenius-Schur indicators of the particles are the same for
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all solutions:

ψ0,0 ψ0,2 ψ0,4 ψ0,6 ψ1,1 ψ1,3 ψ1,5 ψ1,7 ψ2,0 ψ2,2 ψ2,4 ψ2,6

d 1 1 1 1
√

2
√

2
√

2
√

2 1 1 1 1

κ 1 0 1 0 0 0 0 0 1 0 1 0

(A.30)

It turns out that all 32 anyon models for these fusion rules can be distinguished by

their spin factors. On the other hand, when we produce solutions to the Pentagon and

Hexagon as charge spectrum restrictions of product of the SU(2)2 and Z8 solutions,

then we can see, using the spins for SU(2)2 type theories given in Chapters 5.4, 5.6,

and A.1.4 and the spins for the Z
(w)
8 theories, that we get precisely 32 classes of

solutions which can be distinguished using only their spin factors. This means that

the 32 solutions we find by brute force solution of the Pentagons and Hexagons are

precisely the restrictions of product solutions that we knew we would find, and there

are no further solutions.

The anyon model for the Moore-Read state is a charge spectrum restriction of the

product Ising×Z
(1/2)
8 [see Eq. (5.53)]. We give the S-matrix and spins for this model

explicitly.

ψ0,0 ψ0,2 ψ0,4 ψ0,6 ψ1,1 ψ1,3 ψ1,5 ψ1,7 ψ2,0 ψ2,2 ψ2,4 ψ2,6

s 0 1
4

0 1
4

1
8

−3
8

−3
8

1
8

1
2

−1
4

1
2

−1
4

(A.31)

DS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
√

2
√

2
√

2
√

2 1 1 1 1

1 −1 1 −1 i
√

2 −i√2 i
√

2 −i√2 1 −1 1 −1
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A.1.25 “Projection” of the MR state to 6 particles

The anyon model for the Moore-Read state described in Appendix A.1.24 is not

modular. In fact, looking at the S-matrix, we see that the particles occur in pairs

which are not distinguishable by full monodromies (these particles have identical rows

in the S-matrix). The non-modularity of the theory is an obstruction to the existence

of a modular invariant partition function in any CFT realization of these 12-particle

fusion rules. Conventional CFT wisdom says that, in order to obtain a CFT with

such a partition function, we must identify the fields which have identical rows in

the S-matrix. This really means that the primary field which is identified with the

vacuum must be added to the chiral algebra. The characters of the new chiral algebra

are then in one-to-one correspondence with the classes of identified fields and these

new characters should have the proper behavior under modular transformations (in

particular, the S-matrix will be invertible). Here, this invertible S-matrix would be

given by

DS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
√

2
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2
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2
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2 i
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2 0 0
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2 i
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2 −i√2 0 0
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(A.33)

In this case, the field ψ2,4, which corresponds to the electron, is the field that behaves

like the vacuum under monodromy with other fields. Since this field is fermionic, it can

actually be distinguished from the vacuum by looking at processes involving exchange,

rather than full monodromy and so it is not right to think of the field that creates

the electron as physically trivial. Also, if we want to describe the full topological

interactions of the theory using an anyon model then it is clear that we must have

a charge other than the vacuum corresponding to the electron. Nevertheless, one

might hope that the full structure of the 12-particle anyon model may be described

conveniently in terms of a 6-particle TQFT whose S-matrix is given by Eq. (A.33),
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and some contributions coming from the electron that has been forgotten in that

theory. If this is the case then the 6-particle theory involved has to have the fusion

rules

ψ0,0 ψ2,0 ψ1,1 ψ0,2 ψ2,2 ψ1,3

ψ2,0 ψ0,0 ψ1,1 ψ2,2 ψ0,2 ψ1,3

ψ1,1 ψ1,1 ψ0,2 + ψ2,2 ψ1,3 ψ1,3 ψ0,0 + ψ2,0

ψ0,2 ψ2,2 ψ1,3 ψ2,0 ψ0,0 ψ1,1

ψ2,2 ψ0,2 ψ1,3 ψ0,0 ψ2,0 ψ1,1

ψ1,3 ψ1,3 ψ0,0 + ψ2,0 ψ1,1 ψ1,1 ψ0,2 + ψ2,2

(A.34)

which are obtained from the table in Appendix A.1.24 by replacing each particle by

its class under the field identifications.

When trying to solve the Pentagon and Hexagon equations for the fusion rules

above, one finds an interesting and, perhaps, surprising result: the fusion rules admit

8 solutions to the Pentagon equations, but none of these allow for a solution to the

Hexagon equations. In other words, there is no anyon model compatible with the

fusion rules given above.

In terms of conformal field theory this means that the primary operators of the

theory do not form a closed set under fusion; descendants at odd grades necessarily

pop up as the dominant terms in some of the operator products. Here, the important

descendants are obviously those created by the electron field, which has been added to

the operator algebra. In order to represent the topological properties of the CFT by an

anyon model, one must introduce separate anyonic charges for the primary fields and

for these descendants. Physically, it seems clear that the topological charge spectrum

of the theory is, in fact, that of the anyon model presented in Appendix A.1.24,

rather than that of the CFT, which puts bosonic and fermionic states together into

supersymmetric sectors, while the anyon model has separate sectors for particles

which differ by fusion with a fermion.
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A.1.26 SU(3)2 Parafermions, or Z2 × Z2 × Fib

ψ0,0 ψ0,1 ψ1,0 ψ1,1 ε0,0 ε0,1 ε1,0 ε1,1

ψ0,1 ψ0,0 ψ1,1 ψ1,0 ε0,1 ε0,0 ε1,1 ε1,0

ψ1,0 ψ1,1 ψ0,0 ψ0,1 ε1,0 ε1,1 ε0,0 ε0,1

ψ1,1 ψ1,0 ψ0,1 ψ0,0 ε1,1 ε1,0 ε0,1 ε0,0

ε0,0 ε0,1 ε1,0 ε1,1 ε0,0 + ψ0,0 ε0,1 + ψ0,1 ε1,0 + ψ1,0 ε1,1 + ψ1,1

ε0,1 ε0,0 ε1,1 ε1,0 ε0,1 + ψ0,1 ε0,0 + ψ0,0 ε1,1 + ψ1,1 ε1,0 + ψ1,0

ε1,0 ε1,1 ε0,0 ε0,1 ε1,0 + ψ1,0 ε1,1 + ψ1,1 ε0,0 + ψ0,0 ε0,1 + ψ0,1

ε1,1 ε1,0 ε0,1 ε0,0 ε1,1 + ψ1,1 ε1,0 + ψ1,0 ε0,1 + ψ0,1 ε0,0 + ψ0,0

(A.35)

This is the fusion algebra of the SU(3)2 parafermionic model that describes the topo-

logical interactions of the quasiholes of the ν = 4
7

spin singlet Hall state proposed

in Ref. [61], up to Abelian contributions from U(1) factors for spin and charge (see

Chapter 5.8). There are 8 unitary solutions to the Pentagon equations. These cor-

respond to the products of the Fib solution with the 8 solutions for Z2 × Z2. Of

these 8 Pentagon solutions, 4 allow for solutions to the Hexagon equations, with 16

Hexagon solutions each, for a total of 64 unitary Pentagon/Hexagon solutions. These

are precisely the products of the 32 solutions we obtained for Z2 × Z2 with the 2

solutions we obtained for Fib. As with Z2 × Z2, many of these solutions correspond

to the same anyon model, because they can be obtained from each other by the per-

muting the particles with nontrivial Z2 ×Z2 charge. Taking this into account, we see

that there are 24 non-isomorphic anyon models, in 12 mirror pairs. As usual, only

products of modular theories are modular, yielding 6 non-isomorphic unitary modular

theories, in 3 mirror pairs. The SU(3)2 parafermionic CFT itself is described by the

D′(Z2)×Fib−1 anyon model. We tabulate the dimensions, spins, and Frobenius-Schur
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indicators for this model (the S-matrix can also be calculated from this data).

c = 6
5

D = 2
√
φ+ 2

ψ0,0 ψ0,1 ψ1,0 ψ1,1 ε0,0 ε0,1 ε1,0 ε1,1

d 1 1 1 1 φ φ φ φ

s 0 1
2

1
2

1
2

3
5

1
10

1
10

1
10

κ 1 1 1 1 1 1 1 1

(A.36)
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