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Abstract

This thesis presents an algorithm that autonomously positions recording electrodes inside corti-

cal tissue so as to isolate and then maintain optimal extracellular signal recording quality without

human intervention. The algorithm is used to improve the quality and efficiency of acute (daily

insertion) recordings that are needed for basic research in neurophysiology. It also offers the poten-

tial to increase the longevity and quality of chronic (long-term implant) recordings by controlling

an emerging class of chronic arrays in which the electrodes can be continually repositioned after

implantation.

The challenges encountered in attempting to isolate neurons are studied. A solution is proposed

in which a finite state machine oversees a number of signal processing steps, computes various metrics

of the recording quality and issues commands to move the electrode close to neurons without causing

them damage. A number of metrics of the quality of neuron isolation are compared.

The algorithm has been used to control a number of commercial microdrive systems, including a

single-electrode FHC microdrive and multielectrode microdrives from Thomas Recording and NAN,

as well as a novel miniature microdrive. The autonomous positioning software is used by several

neuroscientists to perform basic neurophysiology research. Analysis of the system’s performance in

isolating neurons is included.
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Chapter 1

Introduction

This thesis presents an algorithm for the autonomous isolation of neurons in extracellular recordings,

including details of its implementation and measures of its performance. This introduction motivates

the development of the algorithm by describing the current practice of manual isolation of neurons

and the potential benefits of autonomous isolation. It concludes with a preview of the chapters to

follow.

1.1 Current Recording Technique and the Potential for Au-

tomation

Information transfer and processing in the brain occurs by the transmission between neurons of

electrical pulses called action potentials or, informally, spikes (as they will be referred to throughout

this thesis for brevity). Studying the patterns of spikes associated with individual neurons while a

subject (e.g., a fly, rat, monkey, or human) is presented with a stimulus or engages in a behavioral

task is a principal means for studying neural function. Noninvasive methods such as fMRI or EEG

recordings can provide gross estimates of activity levels in a given region of the brain, but recording

the spikes of individual neurons, also known as electrophysiology, is necessary to understand how

information is processed in local neural networks.

Recording the activity of individual neurons is achieved by inserting one or more conducting

electrodes into the neural tissue. The electrodes are insulated along their length, except for a re-

gion at the tip on the order of microns. In extracellular recordings, the electrodes are placed near

neurons to detect the disturbance in the extracellular medium caused by a neuron’s spiking activity.

These disturbances are on the order of 100 µV. In intracellular recordings, an electrode is inserted

into a neuron to measure the voltage or current across the cell membrane. Intracellular recording

techniques produce excellent recordings and allow experimental modifications to the neuron’s elec-
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Figure 1.1. Example of a neuron isolation. A) Filtered (High-pass 10 Hz) signal. The dots
show detected events. B) Detected events aligned by their minimum. The black traces are
random samples of noise. The events have been categorized as originating from two neurons.

trical properties, but they are very difficult to achieve and maintain in awake animals and, thus, are

usually used in in vitro preparations. Extracellular recording is the principal technique for in vivo

recordings and will be the focus of this thesis.

Spikes emitted by a neuron are highly stereotyped in shape. It is widely accepted that the

information output of a neuron is encoded not in the shape of its spikes, but in their timing. A

successful extracellular recording, then, is one in which the spikes of individual neurons can reliably

be detected and distinguished from events due to background noise or other neurons; the neurons

are then considered “isolated.” Figure 1.1 shows an example of an extracellular recording with one

isolated neuron and a second neuron with spikes that cannot be reliably separated from background

noise fluctuations.

Extracellular recordings can be described as acute (short-term) or chronic (long-term). In acute

recordings, electrodes are inserted and removed from the neural tissue each recording session. In

chronic recordings, electrodes are surgically implanted and remain in place for weeks, months, or

possibly years at a time. Both practices will benefit from the algorithm presented in this thesis to

autonomously isolate a neuron and then maintain optimal isolation in the presence of perturbations.

1.1.1 Acute Recordings

In acute brain recordings in experimental primate neuroscience, it is common practice to remove

a portion of the skull over the brain region of interest and replace it with a sealable chamber.

During a recording session, a device termed a microdrive is affixed to the opened chamber and is

used to advance one or more electrodes into the neural tissue, usually in a motorized fashion. The

experimenter sends commands to a motor (e.g., with software or a hand-held remote control) to

move an electrode until a neuron is sufficiently isolated. The electrode is positioned close enough to

the neuron for a high quality recording, yet far enough away to avoid damaging the neuron. Visual
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and auditory representations of the signal (e.g. from an oscilloscope and an audio amplifier) are used

to guide the movement of the electrodes; the experimenters look and listen for the characteristic

shapes and “sounds” of spikes. Experimenters rely on intuition gained from experience to predict

the proper direction and magnitude of electrode movement that will improve the signal and isolate

a neuron. After the initial isolation is achieved, the electrode must be periodically repositioned by

the operator to maintain a good quality signal because of relative movement between the tissue and

the electrode tip (discussed in detail in Chapter 3). The process of isolating and maintaining neural

signals consumes a significant amount of the experimenter’s time and focus.

Simultaneous recordings with many electrodes are becoming increasingly important for under-

standing how local networks of neurons process information, as well as how brain areas communicate

with each other. Commercial microdrives with sixteen or more independently movable electrodes are

currently available [2]. As the number of electrodes increases, the task of positioning each electrode

to maintain a high-quality neural signal becomes intractable for a single experimenter to manage.

Data collection in these experiments is currently limited by how many channels an experimenter can

effectively monitor and adjust to maintain acceptable recording quality.

The algorithm presented in this thesis automates the neuron isolation procedure. This will allow

experimenters to fully use the emerging multielectrode microdrive technologies. Also, by continually

monitoring the recorded signal to maintain optimal quality, the resulting recordings should have

higher quality than under manual control. Even for single-electrode experiments, where maintaining

isolation is managable (albeit tedious) for an experimenter to achieve manually, automating the

isolation procedure will allow the experimenter to focus on higher level aspects of the experiment,

including online data analysis and tailoring of the experimental conditions to the currently recorded

data.

1.1.2 Chronic Recordings

In chronic recordings, stationary multielectrode assemblies, which are typically bundles or arrays of

thin wires or silicon probes, are surgically implanted in the region of interest [36,41,56]. Such arrays

are useful in studies of the interactions of large populations of neurons. Also, chronically implanted

recording arrays are the essential front end for future neural prosthetic systems that are aimed at

aiding the severely handicapped [6, 27, 49, 53, 54]. Clearly, in such an application, longevity of the

implanted electrode arrays is necessary, as repeated and frequent surgical intervention to implant

new electrodes is not desirable.

Current chronic recording technology suffers from a number of limitations. The signal yield of

the implant array (measured, for example, by the percentage of the array’s electrodes that record
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active cells), depends upon the luck of the initial surgical placement. The electrodes may be placed

in inactive tissue or the wrong brain region. Even if properly placed, the active recording site may

not sit sufficiently close to an active neuron (the electrically active tip of a recording electrode must

lie, on average, within 40–60 µm of the neuron’s spike initiation area to provide a useful signal [20]).

Moreover, even if the electrode is initially well placed, tissue migrations (due to blood pressure

variations, breathing and mechanical shocks) and local tissue scarring can cause subsequent loss of

signal, thereby reducing or disabling the function of the recording array over time.

Section 6.3 describes initial steps toward a chronic multielectrode implant in which the electrodes

can be continually repositioned after implantation. With such an implant, the overall signal yield

will be improved by moving the electrodes closer to neurons. Also, neurons with activity well

correlated with the desired information output (such as the intended arm-movement direction for a

motor prosthesis) could be actively sought. The lifetime of the arrays could be increased by moving

the electrodes to new tissue areas after the buildup of scar tissue in the initial implantation area

degrades the signal quality. In summary, an implant with motorized electrodes could greatly extend

the signal yield and lifetime of chronic array implants.

In order to be useful in a clinical application such as neural prosthetics, the electrodes in a

chronic motorized array must be autonomously controlled to maintain optimal signal recording

quality, requiring an algorithm like the one described in this thesis.

1.2 Contribution of Thesis and Relevant Other Work

The algorithm presented in this thesis will improve current acute recording practice by increasing

the number and quality of neuron isolations, as well as freeing the experimenter’s focus to more

intelligently manage other aspects of the experiment. Current acute recordings are limited by the

number of electrodes a human experimenter can effectively monitor at a time, which is fewer than

the number of electrodes that current microdrive technology can control. The algorithm will also

be an essential part of the emerging technology of chronic arrays of motorized electrodes.

To the author’s knowledge, this is the first full analysis of the challenges faced in automating the

isolation procedure, as well as the first proposed complete solution. There is little relevant prior work

on the development of control algorithms for automated electrode positioning. Scobey [48] proposed

simplistic algorithms to process neuronal signals for the purpose of providing electrode movement

suggestions to a human operator. Fee [15] developed procedures to stabilize the position of an

intracellular electrode, for durations of a few minutes, against small movements due to intracranial

pressure variations and movements of head constrained animals. In contrast, this work focuses on

acquiring and maintaining extracellular recordings for long time periods.
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Some of the theoretical work underlying this thesis was done by Zoran Nenadic, and some work

was done in collaboration with him, such as numerical simulations (not described in the thesis) that

led to the work on the isolation curves introduced in Chapter 2. The author’s early attempts at

autonomous isolation software relied on Nenadic’s spike detection routine [31] and isolation curve

maximization technique [8], and these have remained an important part of the algorithm. Portions

of Chapter 2 that were developed or adapted by or in collaboration with Nenadic will be noted as

such. In addition to extending the ideas developed by Nenadic, this thesis presents experimental

results of a working implementation of the algorithm, as well as developments in hardware to further

improve extracellular recordings.

1.3 Organization of the Thesis

Chapter 2 presents a simplified version of the autonomous isolation algorithm that would operate

well in an “ideal” recording environment. Chapter 3 discusses how the actual recording environment

differs from this ideal and describes the challenges a successful algorithm must overcome. A super-

visory state machine is presented in Chapter 4 as an answer to those challenges. Several measures

of isolation quality are compared in Chapter 5 for their usefulness in accurately informing the state

machine about the current quality of the isolation. Chapter 6 describes the implementation of the

algorithm in software and the various hardware components it has been integrated with to provide

closed-loop control of electrode depth. Chapter 7 presents some neural recordings obtained using

the algorithm and includes some measurements of the algorithm’s performance. Chapter 8 suggests

directions for future research.

In summary, the principal original work found in this thesis is

• An examination of the challenges faced in autonomous neuron isolation.

• Development of a supervisory finite state machine for acquiring and maintaining neural isola-

tions.

• The extension and application of various metrics of the separation between distributions to

the problem of measuring the quality of neural isolations.

• The implementation in software and hardware of a closed-loop system for autonomous neural

isolations.
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Chapter 2

An Algorithm for an Ideal Case

In order to introduce the key ideas of the algorithm, an algorithm is first presented for achieving

isolations in an idealized extracellular recording environment. Later chapters describe the actual

recording environment and extensions of this algorithm to optimize real-world recordings. Section 2.1

introduces the general extracellular recording environment. Section 2.2 states assumptions for an

idealized recording environment. The remainder of the chapter presents signal processing steps and

an algorithm for optimizing the neural signal in this environment.

2.1 The Extracellular Recording Environment

This section describes the geometry of an acute extracellular recording, illustrated in Figure 2.1.

As described above in Section 1.1.1, access to neural tissue for acute recording is typically gained

through a sealable chamber fitted through a hole in the skull. For recording, a microdrive is placed

in, or affixed to, the chamber. Electrodes extend from the bottom of the microdrive and are usually

protected by a hollow guide tube. In the illustration, the guide tube is sharp and is used to pierce the

tough outer layer protecting the neural tissue, the dura mater or, simply, the dura. The electrodes are

then lowered from the guide tube to record neural activity. There are variations on this procedure,

including using a blunt guide tube, in which case the guide tube is brought flush with the dura

and the electrodes are used to pierce the dura. The method used depends on the strength of the

electrodes, the toughness of the dura and the depth below the surface of the region of interest.

The experimentalist has one degree of freedom in positioning the electrode to isolate neurons, the

electrode depth, labeled x in Figure 2.1. Setting and appropriately adjusting this depth to optimize

the recorded signal is the goal of this thesis. This variable is also commonly called the electrode

position. In this thesis, though, the term electrode depth (or sometimes simply depth) will be used

throughout, as it emphasizes the single dimension along which the electrode moves. The act of

changing the depth, however, will be referred to as positioning the electrode. Increasing x will be
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Figure 2.1. Cross-sectional illustration of the acute extracellular recording environment.

referred to as advancing the electrode or moving forward, while decreasing x will be referred to as

retracting or backing up the electrode.

The area near the electrode tip is represented schematically in Figure 2.2. Each sphere in the

figure represents the soma of a neuron, the bulbous part of the neuron from which spikes originate.

In the isolation procedure, the electrode is moved along its linear track until it reaches its closest

approach to one of the neurons, maximizing the signal quality of the spikes recorded from that

neuron.

Figure 2.2 shows a rather sparsely populated environment. The actual density of neurons is

much greater, around eight neurons in a 100 µm sphere in the cerebral cortex [40]. Combining this

density with Rall’s classic model of the extracellular field surrounding a neuron [39], the electrode

should be able to detect the spikes of approximately ten neurons every 100 µm of linear travel. It

is well documented (e.g., [29, p. 35]) that the number actually recorded is far less; our data show

one to three neurons every 100 µm of travel in active layers of neural tissue. Hypotheses abound for

the discrepancy between the physical density of neurons and the density observed in extracellular

recordings, including that only a fraction of the neurons in an area are active over the time frame

the electrode passes by, or that current flow is restricted to the narrow gaps between neurons, far

from the isotropic medium used in Rall’s model. The schematic in Figure 2.2 is indicative of the

density of neurons actually recorded as the electrode advances through the cortex.

The above recording geometry can be extended to include microdrives that control multiple

electrodes. Each electrode may be carried in its own guide tube, or one large guide tube with

multiple bores may be used.
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Figure 2.2. Illustration of the volume around the electrode tip. The spheres represent the
spike initiation areas of neurons. The goal of the algorithm is to place the electrode along
the dotted line at a point of closest approach to a neuron.
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The presented algorithm will also be used to control the electrodes in future chronic arrays of

motorized electrodes described in Section 1.1.2 and illustrated in Figure 2.3. The algorithm has,

thus far, been tested only in acute recordings (as chronic arrays of motorized electrodes are not yet

available), and Chapter 8 will discuss the future work needed to extend the algorithm to effectively

isolate neurons in chronic recordings.

Figure 2.3. Illustration of the chronic extracellular recording environment.

2.2 Assumptions of the Ideal Case

An algorithm for autonomous neuron isolation is first developed for an idealized recording environ-

ment. The assumptions in the ideal case are as follows:

In the “ideal” neural recording environment:

• Neurons are stationary in position.

• Neurons are constantly active, with an inter-spike interval

(ISI) no longer than 1 sec.

• An electrode’s movement through tissue does not displace

neurons or damage neural tissue.

• Electrode depth within the tissue is known exactly.

These simplifying assumptions will allow the development of an algorithm that will converge to

an isolation. In later chapters, these unrealistic assumptions will be relaxed, and a more complex

algorithm will be presented to achieve isolations in the actual recording environment.
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2.3 Neuron Isolation in the Ideal Case

This section describes an algorithm that will position an electrode to optimize the neural signal in

the ideal case presented above. The algorithm operates in cycles: collecting data at one electrode

depth, analyzing the data to determine the optimal movement to attain or improve isolation of a

neuron, and sending a command to the microdrive to advance or retract the electrode a desired

amount. One repetition of these actions will be referred to as one round of the algorithm. The

depth of the electrode at round k is xk.

In the multielectrode case, one round of the algorithm consists of collecting data from all elec-

trodes, analyzing the data from each electrode sequentially (or in parallel if using multiple proces-

sors), and sending commands to the microdrive to move the proper electrodes the desired amounts.

In this thesis, the movement of one electrode is assumed not to affect the recording on any other

electrodes. Thus, the algorithm will be presented for the single electrode case. In the experimental

results discussed in Chapter 7, the single electrode algorithm is used in parallel for each electrode in

a multielectrode microdrive. As the positioning of each electrode is considered independently and

sequentially, x will refer to the depth of the electrode currently under consideration.

The assumption of independence between electrodes may not hold in some cases. The effect of

moving one electrode on the signal recorded by a second electrode (probably caused by moving the

tissue around the second electrode) has been observed anecdotally, but not yet studied in depth.

Investigating this potential effect remains for future work.

The analysis performed on the data recorded at each electrode depth begins with a series of signal

processing steps described in Section 2.3.1. The output of these steps is then used to determine the

optimal movement command to achieve or maintain an isolation, as described in Section 2.3.2.

2.3.1 Signal Processing

The input to the control algorithm at each step is a vector of voltage samples like that shown in

Figure 2.4A. A typical sampling period is 20 seconds, long enough to record at least several spikes

from any active neurons in the vicinity of the electrode tip. The signal has usually been high-

pass filtered to dampen low frequency fluctuations due to the so-called local field potential (LFP),

the aggregate activity of many neurons in the region of the electrode [34]. The signal is typically

sampled at a 20 kHz rate, which is a sufficiently high sampling rate to capture the shape of spikes

(the extracellular spike waveform is about 1 ms in duration; 20 kHz yields 20 samples per spike).

Capturing the shape of the spikes is often not essential for the scientific objectives of an experiment,

as only the timing of the spikes is typically of interest. The shape, however, can help distinguish

between two neurons of similar amplitude in the recording, and this aspect of the signal is used in
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Figure 2.4. Example data sample and the results of the data processing routine described
in Section 2.3.1. Panel A shows the raw extracellular recording data stream, high-pass
filtered (10 Hz) and sampled at 20 kHz. First, spikes are detected, extracted and aligned by
their minima (B). The spikes are then projected to their first two principal components and
clustered (C). Panel D shows the aligned spikes colored by their cluster identity. The dots
in panel A show the timing of the detected events, again colored by cluster identity.

the autonomous positioning algorithm.

2.3.1.1 Spike Detection

The signals of interest are the spikes embedded in the voltage trace, and so the first step is to

detect and extract these spikes from the background signal for further processing. In a typical acute

recording, this detection is done by amplitude thresholding, with a threshold set in real-time by the

experimenter. This is a supervised method, as the experimenter must adjust the threshold to capture

the spikes but not the noise fluctuations. Our autonomous algorithm requires an unsupervised

method, and we have chosen an unsupervised wavelet detection method developed by Nenadic and

Burdick [31].

2.3.1.2 Spike Alignment

Once spikes are detected and extracted, they must be aligned so that differences in the size and

shape between spikes originating from different neurons can most readily be recognized. Segments

of 2 ms are extracted around each sample where a spike is detected. The segments are then aligned

by some feature of the spikes. We have several choices of schemes for alignment, including alignment

by the maximum or minimum point [21], alignment by the center of mass [44], alignment which

maximizes the cross-correlation among the segments [1,57] and others. Alignment by the minimum
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point was chosen for the work presented in this thesis for its computational simplicity and because

it gave sufficiently consistent results. Problems can arise when the spike amplitudes saturate the

amplifiers or A/D converters, as the minimum of the signal is no longer well-defined. Otherwise,

alignment by the minimum gave good results. The spikes extracted from the example in Figure 2.4A

are shown aligned by their minimum value in Figure 2.4B.

It is probable that the true minimum of a spike will occur at a time between two sampling instants.

Aligning by the observed minima will thus introduce small differences, or jitter, in alignment of spikes

from the same neuron. This will increase the differences between spikes that originated from the

same neuron, making them harder to distinguish from spikes originating from another neuron. A

standard solution to this issue is to first upsample the detected waveforms (typically by a factor of

ten using cubic splines), align by the interpolated minimum, and then downsample to the original

sampling rate [37].

2.3.1.3 Spike Classification

It was mentioned above that the autonomous isolation algorithm seeks to maximize the signal

quality of the spikes of a single neuron. Often, spikes from several neurons in the neighborhood of

the electrode are present in the recording. It is necessary to identify if there is more than one neuron

present and to determine which spikes originated from which neuron. Cluster analysis attempts to

solve this problem.

The clustering method is adapted by Nenadic from [18] and [19], and details can be found in [32].

A brief description will be given here because deficiencies in the clustering routine create important

issues which are addressed in the complete isolation algorithm discussed in later chapters.

First, the dimensionality of the data is reduced by extracting features. Here, the features are the

first two principal components, a standard choice for classification of spikes [55]. Let S ∈ RNs×Nt be

the matrix of Ns segments containing spikes (extracted from the full 20 s data vector), where Nt is

the number of samples per segment and Ns is the number of detected spikes. The first Nf principal

components of the segments are computed by the transformation F = SE, where the columns of

E ∈ RNt×Nf are the first Nf principal eigenvectors of the covariance of S, and F ∈ RNs×Nf is the

matrix of features.

Next, it is assumed that these features are sampled from a linear mixture of G + 1 probability

density functions (PDFs) (Gaussian components corresponding to G clusters and one uniform dis-

tribution for outliers). In order to find the most likely number of clusters, a range of G is chosen

(typically one to six), and the expectation-maximization (EM) algorithm [14] is used to calculate

the most likely assignment given G clusters. The Bayesian Information Criterion (BIC) [47] is used

as a measure of the likelihood of each number of clusters. The BIC measures the probability of the
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distribution found by the EM algorithm and penalizes a higher number of clusters, by subtracting a

term proportional to ln(G), to avoid overclustering. The number of clusters G which maximizes the

BIC is chosen, and its associated cluster identities found by the EM algorithm are used. The output

of the routine is the vector of cluster identities C ∈ RNs . For example, if C = [1 0 1 2 · · · ]T , the

spikes in the first and third rows in S are attributed to one neuron (labeled neuron 1), the fourth

row to another neuron (labeled neuron 2), and the spike in the second row is considered an outlier.

The extracted features (and their cluster assignments) from the example in Figure 2.4A are shown

in Figure 2.4C, and the spikes are shown color coded by cluster assignment in Figure 2.4D.

2.3.1.4 Signal Processing Summary

To summarize the signal processing procedure, we begin with an interval of raw data, typically 20

seconds in duration, sampled at 20 kHz (Figure 2.4A). Spikes are detected, extracted and aligned

(Figure 2.4B), producing a matrix S whose rows represent the spikes (the number of rows is equal

to the number of spikes detected and the number of columns is the number of samples extracted

for each spike). Next, each spike in S is attributed to a neuron through the clustering algorithm.

The output of this processing consists of the aligned spikes S, the principal components F and the

cluster identities C ∈ RNs , where Ns is the number of detected spikes (Figure 2.4C,D).

2.3.2 Isolation Curves and Their Maximization

A procedure is now given that uses the output of the signal processing steps described above to

position the electrode in the optimal position to isolate a neuron in the ideal recording environment.

This is achieved by defining a metric of signal quality and moving the electrode to the position where

this metric is maximized.

2.3.2.1 The Isolation Curve and Signal Quality Metric (SQM)

In order to find the point of closest approach to a neuron, it is necessary to define a signal quality

metric (SQM). The particular choice of SQM will be discussed below. The graph of any SQM versus

electrode depth as the electrode passes by a neuron would look something like the curve shown in

Figure 2.5. The maximum will correspond roughly to the electrode’s closest approach to the spike

initiation area of the neuron. We call such a curve of signal quality versus electrode depth the

neuron’s isolation curve, as to find its maximum is to “isolate” the neuron.

In practice, true isolation curves are more complex than the simple Gaussian shown in Figure 2.5.

The propagating spikes are a distributed source, and the nonhomogeneity of the tissue between

the electrode and the neuron, packed densely with dendrites, axons and glia, makes the medium
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Figure 2.5. Illustration of a rat pyramidal neuron based on morphology in [38]. The overlaid
curve illustrates the idealized signal quality observed by an electrode as it passes the spike
initiation location on the neuron.

anisotropic [24].

2.3.2.2 Choice and Computation of Signal Quality Metric

There are a number of choices for the signal quality metric. Perhaps the most obvious is the

peak-to-peak voltage amplitude (PTP) of the neuron’s recorded spikes. A similar metric, SNRPTP

— the signal-to-noise ratio formed by normalizing PTP by the noise level, is preferable as it allows

comparison of values across electrode impedances and gain settings. Other choices include the spike

energy (the `2-norm) and its noise-normalized value (SNR`2). SNRPTP was chosen over SNR`2

because spike amplitude is better correlated than spike energy with the ability to discriminate a

neuron’s spikes from noise. SNRPTP will hereafter be referred to simply as SNR.

The SNR of a data sample is computed as follows. First, the raw data are processed according

to Section 2.3.1 above, yielding a set of aligned spikes and cluster assignments. Next, the SNR of

each spike is computed by

SNRi ,
PTPi

VNOISE,RMS
,

where SNRi is the signal-to-noise ratio of the ith spike, PTPi is the peak-to-peak amplitude of the

ith spike, and VNOISE,RMS is the RMS voltage of the background noise at that electrode depth. To

compute the RMS voltage of the noise, N samples are selected from the raw data which are not in the

neighborhood of a detected spike. The RMS value of this vector NOISE is taken as ‖NOISE‖2/
√
N .

To find the overall SNR of each neuron present in the recording, the spikes are then grouped by

their originating neuron, as determined by the clustering algorithm. The mean SNR for spikes from
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neuron C is calculated as

SNR(C) =
1
NC

∑
i∈C

SNRi,

where NC is the number of spikes in cluster C and i ∈ C is the set of spikes associated with cluster C.

At each electrode depth, the cluster having the largest mean SNR is considered to have originated

from the “dominant” neuron in the recording, and the vector of SNRs of the spikes in this dominant

cluster is used as the signal quality metric for that depth.

Examples of observed SNR isolation curves can be seen in Figures 2.6 and 2.7. These figures

show the SNRs of the spikes recorded by an electrode moving in 5 µm increments. At each electrode

depth, the data have been processed (spikes detected, aligned and clustered), and the SNR of each

spike as well as the average SNR of the dominant cluster have been calculated. Both figures clearly

show isolation curves for around eight neurons. Visual inspection of these curves reveals that, despite

the likelihood discussed above that true isolation curves are more complex than simple Gaussians,

these curves can be well modeled by simple polynomials or a mixture of Gaussian functions.

Clearly, SNR is not the only choice of signal quality metric, but was found to be the most effective

at capturing the shape of isolation curves in the vicinity of neurons. In the remainder of the thesis,

the term signal quality metric (SQM) will be used where the metric is referred to in general, and

SNR will be used in specific examples.

2.3.2.3 Isolation Curve Maximization

The task, then, is to position the electrode at the maximum of one of these isolation curves. Due

to background neural noise as well as the inherent noise in the signal recording system, only noisy

observations of the isolation curve are observed at each depth. We are thus seeking the maximum

of a function with observations corrupted by noise, a procedure known as stochastic optimization.

The maximization method used in the algorithm is a model-based approach described in detail by

Nenadic in [32]. A regression function on the observations of signal quality is used to model the

underlying isolation curve. The electrode is moved toward the maximum of the regression function.

The description of the model given here closely follows [32] and is included for completeness.

Observations of signal quality are made at k electrode depths {x1, x2, · · · , xk}. The observations at

electrode depth xj are y(xj , · ) = {y(xj , 1), y(xj , 2), · · · , y(xj ,mj)}, where mj is the total number

of observations at depth xj . In general, m1 6= m2 6= · · · 6= mk. The collection of signal quality

observations at all depths is Y1:k = {y(x1, · ), y(x2, · ), · · · , y(xk, · )}. The regression function after

k iterations (i.e., k electrode depths) is given as

M̂(x, nk, Bk) =
nk∑
i=1

bi,kψi(x)
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where ψi(x) = xi−1 are polynomial basis functions, Bk = [b1,k, b2,k, · · · , bn,k]T are the corresponding

expansion coefficients. The number of basis functions, nk, is not known and must be estimated from

the data, a model selection problem similar to the choice of the number of clusters in Section 2.3.1.3.

Given a family of models {M̂(x, nk, Bk) : nk = 1, 2, · · · , N}, where N is the maximal allowed order,

the goal is to select the model that optimally fits the data.

The “optimal” model order must be defined carefully; simply taking the model order with the

maximum likelihood (ML) will always result in a model of order N , usually over-fitting the data.

A method which avoids over-fitting is to choose the model order which maximizes the posterior

probability of the model given the data Y1:k and some prior information I. This is a Bayesian

approach, and the probability of the model M̂nk
given Y1:k and I follows from Bayes’ theorem

P (M̂nk
| Y1:k, I) =

p(Y1:k | M̂nk
, I)P (M̂nk

| I)
p(Y1:k | I)

∀nk = 1, 2, · · · , N,

where M̂nk
is short for M̂(x, nk, Bk) with fixed nk, P is a probability mass function and p is a

PDF. A minimum number of electrode depths k0 must be sampled before attempting to fit the

regression function. The order of the model is selected that maximizes the posterior probability

P (M̂nk
| Y1:k, I), i.e.,

n∗k = arg max
1≤nk≤N

(M̂nk
| Y1:k, I) ∀k = k0, k0 + 1, · · · .

This maximization requires the calculation of the posterior P (M̂nk
| Y1:k, I) of each candidate

model M̂nk
. Assuming Gaussian noise in the observations of signal quality and polynomial basis func-

tions, this calculation can be performed analytically (thus the choice of polynomial basis functions).

The prior P (M̂nk
| I) at step k is taken to be the posterior from step k − 1, P (M̂nk−1 | Y1:k−1, I).

The recursion is initialized as P (M̂nk
| I) = 1/N at the first permissible depth k = k0, giving equal

probability to all model orders.

Once the optimal order n∗k at depth xk is known, the parameters of the model M̂(x, n∗k, Bk) (i.e.,

the polynomial coefficients) are estimated with a maximum likelihood (ML) method. In this case,

with the assumptions of Gaussian noise and a linear model, ML reduces to the least squares estimate

to find the model parameters Bk. Now, the estimate at depth xk of the underlying isolation curve,

M (k)(x), is fully specified. A variant of Newton’s method is used to approach the maximum of the

regression function, given by

xk+1 = xk + C |Hk|−1ξk, ∀k = k0, k0 + 1, · · ·
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Figure 2.8. Example of the algorithm performing the isolation curve maximization proce-
dure described in Section 2.3.2.3. A) Four panels showing sequential observations of SNR
(in black) along with an inset of the clustered spikes recorded at the current depth. After
three initial samples of SNR, the isolation curve is estimated (in red). The size and direction
of the movement command is shown by the arrow. With each new data point, the isolation
curve is reestimated. The flat estimate in the first panel shows that the isolation curve is not
yet statistically significant and more data is needed to confirm its presence. The five most
recent observations are used (or fewer if five observations have not yet been made) to build
the estimate. B) The isolation curve estimate at the final depth if, instead of five, the seven
most recent observations are used. This estimate misses the current observation’s downward
trend and incorrectly commands a forward movement.

where C > 0 is an appropriately chosen scale factor, and ξk and Hk are the first and second deriva-

tives of the regression function M (k)(x) at the current depth, which can be obtained analytically.

Figure 2.8A shows the algorithm at work, estimating the underlying isolation curve at each depth

and moving towards the estimated maximum. After sampling three points at 20 µm intervals, the

maximization routine begins estimating the isolation curve. Notice that this spatial sampling is

coarser than the 5 µm sampling in Figures 2.6 and 2.7. The spacing of 20 µm between samples was

chosen as a trade-off between accurate estimation of the isolation curve and speed of convergence to

an isolation.

Observations of signal quality made more than kmax rounds ago are not included in the calculation

of the isolation curve regression. This limited memory results in a better estimate of the local

gradient, as it is the local trend in signal quality which matters most in calculating the optimal

movement (as opposed to accurately estimating the entire isolation curve). Typically, kmax is between

five and eight, and it is chosen as a trade-off between using enough observations to achieve accurate

estimation of the isolation curve and not so many observations as to be insensitive to the most recent

data. For example, in the final panel of Figure 2.8A, the leftmost (oldest) data point is not included

in the isolation curve estimate. If this data point and one even older were included (Figure 2.8B),

the overall upward gradient would overshadow the recent downward trend and the electrode would

be (improperly) commanded to continue moving forward.

Figure 2.9 shows a number of isolation curves recorded by the algorithm, along with the estimate

of the underlying isolation curve for the six most recent observations. The flat isolation curve
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estimates in panels D–F show that the presence of an isolation curve in the recent data was not

found to be statistically significant. It would appear in these panels that the order of the isolation

curve has been underestimated; there is probably a true isolation curve and the variation is not due

solely to noise. This “false negative” in finding a significant curve is acceptable, however, because

the isolation curves missed were not of sufficient quality to declare an isolation anyway. It is better

to miss these shallow isolation curves than to become stuck in local maxima due to fluctuations in

the noise. Panels G and H show only a portion of the isolation curves, as the high SNR caused the

algorithm to stop moving before causing damage to the neuron. This need to stop to avoid causing

tissue damage will be discussed in the following chapters, but it is not part of the this chapter’s

algorithm for the ideal case because of the assumption that the electrode cannot damage the tissue.

2.3.2.4 Isolation Quality Metric (IQM)

The above isolation curve maximization technique, when used in the ideal recording environment,

will reliably place the electrode at the optimal recording location for an individual neuron. This may

or may not, however, be an acceptable recording location. There are several reasons why simply

placing the electrode at the maxima of isolation curves might not produce quality isolations, even

in the ideal case. First, the neuron may be far enough from the electrode’s path of travel that the

signal strength is quite low. Then, even at the maximum of the isolation curve, it may be difficult to

distinguish between this neuron’s spikes and fluctuations in the background noise. Also, a number

of scenarios may be imagined in which the electrode is near more than one neuron and placing the

electrode at the top of one neuron’s isolation curve does not make its spikes reliably distinguishable

from those of another neuron. It is for these reasons that a separate metric of signal quality must

be used to determine the quality of isolations, one based not on local variations in signal amplitude,

but on the ability to reliably associate recorded spikes with a particular neuron. Chapter 5 explores

the choice of the isolation quality metric (IQM) in detail. For now it is assumed that an appropriate

IQM has been chosen.

2.3.3 The Algorithm for the Ideal Case

The algorithm for the ideal case is shown in pseudo-code in Figure 2.10. The algorithm begins by

searching for spikes, moving the electrode forward in steps of ∆search (∼20 µm) until they are found

(lines 1–3). The isolation curve maximization procedure is then carried out (lines 4–9). Once the

maximum of the isolation curve is reached, the quality of the isolation is checked (lines 10–15). If

the isolation is of acceptable quality, the algorithm terminates (in this idealized environment, the

neuron will remain isolated indefinitely and the algorithm can stop). If not, the electrode is moved
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1 while no spikes found % Search Loop
2 move forward Delta_search
3 end
4 while true % Maximize Loop
5 move by stochastic optimization
6 if at maximum of isolation curve
7 GOTO 10
8 end
9 end
10 if isolation quality above minimum acceptable threshold
11 END ALGORITHM % Neuron Isolated
12 else
13 move forward Delta_restart
14 GOTO 1 % Unaccpetable Isolation - restart
15 end % algorithm to find new neuron

Figure 2.10. Pseudo-code algorithm for ideal case.

forward by ∆jump forward (∼50 µm), and the algorithm is restarted to find a new neuron. Given an

endless track of the ideal recording environment, this algorithm will always converge to an acceptable

isolation. Numerical simulations have verified its convergence [32].

This algorithm will be extended in the following chapters to account for the challenges present

in actual recording experiments.



23

Chapter 3

The Challenges of Autonomous
Neuron Isolation

At its simplest, the process of autonomous neuron isolation consists of moving an electrode along

a linear path until it is close enough to a single neuron that the spikes from this neuron can be

unambiguously distinguished from spikes from any other neurons and from the background noise.

In practice, there are a number of challenges that an algorithm must overcome to be successful in this

procedure. Most of the challenges described in this chapter are well known in the field of extracellular

recording but have not been systematically reported or studied. Chapter 4 presents an algorithm to

isolate neurons in the face of these challenges, and, in particular, Section 4.3 summarizes how each

of the challenges enumerated in this chapter is addressed by the algorithm.

3.1 Nonstationarity Due to Tissue Decompression

As described in Section 2.1, access to the brain in acute extracellular recordings is often gained

through a sealable chamber affixed to the skull. In typical chambers, the brain is covered by the

dura, a tough tissue layer about one millimeter thick, as well as up to several millimeters of soft

granulation tissue which grows steadily as a reaction to the removal of a portion of the skull. The

electrode, usually shielded within a hollow metal guide tube, must pass through these layers to enter

the neural tissue (see Figure 2.1). The mechanical resistance of these layers causes them to dimple

significantly (up to several millimeters) before being punctured by the guide tube. Further tissue

compression then occurs as the electrode travels to the depth of the neurons relevant to the scientific

study, perhaps several millimeters below the surface of the brain. Once the electrodes reach the

depth of interest, the tissue decompresses around the guide tube and electrode over the course of

several hours.

This bulk tissue decompression makes the neurons moving targets. The nonstationary signal
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Figure 3.1. Illustration of effect of tissue drift on signal quality. A) Signal quality (SNR)
measured by a stationary electrode over 17 minutes. The signals shown in panels B1-B3 occur
at the times labeled in panel A. Time zero is considered the moment the algorithm declared
the neuron isolated. B1-B3) Plots of the spiking events detected at 0, 6 and 17 minutes
after isolation, showing the improvement and decay of the signal quality as the tissue drifts
relative to the electrode tip. The spikes are colored according to their cluster identities,
where the black traces are samples of noise, blue traces are the dominant neuron, and green
traces originate from a background neuron. It appears that the neuron first drifts closer to
(0–6 min.) and then away from (6–17 min.) the electrode. C-E) Plots, as in A, of signal
quality of various neurons measured by a stationary electrode. C illustrates that the drift
rate is not constant. Considerable drift occurs in the first five minutes, after which the signal
is stable for 20 minutes. The drift in the first five minutes may be due to settling following
large movements of the electrode to isolate the neuron. D shows a very similar profile to
A, although here the rate of decay is twice as fast. E shows a steady drift over 30 minutes,
presumably due to the neuron moving upwards toward the electrode tip.

quality at a single electrode depth is illustrated in Figure 3.1. It is common practice in experimental

neuroscience to wait an hour or more after insertion to let some of the decompression occur before

attempting to isolate neurons. Even after several hours, significant tissue drift is commonly present.

Also, smaller scale tissue drift occurs following electrode movements made to isolate a single neuron

or to move forward a short distance to find a new neuron (Figure 3.1C). The decompression is

proportional to the size of the movement, and evidence of compression and subsequent tissue drift

can be seen after electrode movements of 100 µm or less. In short, tissue drift occurs in most

recordings over several time scales.

Moving neurons are more difficult to isolate (requiring maximization of a nonstationary function)

and to maintain in isolation (since the electrode must be periodically repositioned). The tissue drift
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Figure 3.2. Illustration of a neuron damaged by the electrode. Panel B (recorded ∼20 s
after the sample in Panel A) shows a large increase in firing rate and modulation of the spike
amplitude.

is also not necessarily in a direction parallel to that of the electrode; neurons will often drift away

from the electrode and neither advancing nor retracting improves the signal, implying that the

neuron has drifted some distance away from the electrode’s path.

A successful isolation algorithm will need to account for this bulk decompression, most signifi-

cantly by actively repositioning the electrode in order to maintain isolations. Also, the algorithm

should recognize when the drift is away from the electrode’s path and move on find another neuron

to isolate.

3.2 Tissue Damage Caused by the Electrode

The electrode causes unavoidable damage to the neural tissue. When the electrode tip travels very

close to a neuron (evidenced by the presence of very large spikes in the recording), there is often

a clear change in the shape and frequency of its spikes. The neuron may also discharge a flurry of

spikes and then cease spiking, indicating that contact with the electrode has caused the neuron to

die (Figure 3.2). Such damage may be caused by direct impact of the electrode tip on the neuron’s

soma or possibly by the electrode dragging or severing a number of the neuron’s processes (the axon

and dendrites which carry signals to and from the soma). Damage can occur if the electrode moves

into the neuron, or if the neuron drifts into the electrode (due to the tissue decompression discussed

above). A successful algorithm must detect when the electrode is in danger of damaging a neuron

it is attempting to isolate and act appropriately by retracting the electrode.
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Figure 3.3. Illustration of effect of intermittent spiking activity of a neuron. The voltage
traces were recorded sequentially at the same electrode depth. The one spike detected in
panel A and the two spikes detected panel C are insufficient to estimate the properties of
the dominant neuron, which bursts in panel B. Thus, the precision of the estimate of signal
quality is much lower at depths A and C than at B.

3.3 Intermittent Activity of Neurons

It is generally observed during extracellular recordings that individual neurons have periods of

inactivity; that is, a neuron which is clearly distinguishable in one recording interval may then stop

emitting spikes for a minute or more (Figure 3.3). If the algorithm is attempting to isolate this

neuron, it may be confused by this inactivity. If the neuron does not fire during a recording interval,

the algorithm may, for example, mistake another, lower amplitude neuron’s activity for the neuron

it was attempting to isolate, giving a false estimate of the first neuron’s signal quality at the current

location. The algorithm must be insensitive to these false estimates of signal quality or avoid making

them by, for example, detecting when the neuron of interest has paused its firing.

3.4 Electrode–Tissue Mechanical Interactions

Another class of difficulties in autonomous isolation is caused by what appear to be local mechanical

interactions between the electrode tip and the surrounding tissue (distinct from the bulk compression

and subsequent drift discussed above). There is hysteresis, or a lag in time or electrode displacement,

between electrode movements and changes in signal quality. An example can be seen in Figure 3.4,

in which it takes more than two minutes and 25 µm of electrode movement before a change is seen

in the signal. When the change does happen, it is very rapid (Figure 3.4C). A possible explanation

is static friction between the electrode tip and the tissue. The neuron (or the tissue around it) is

dragged some distance by the electrode before moving rapidly with respect to the electrode. The

static friction, then, causes a delay between the control input of the electrode movement and the

output of the signal quality level. The potential decrease in a control system’s stability due to such



27

Figure 3.4. Illustration of the time delay between electrode movement and signal quality
response. At time zero (A), the algorithm began backing away to avoid damaging the domi-
nant neuron. After backing away 15 µm, very little change in the signal is seen (B), except
for an increase in firing rate which is postulated to indicate that the electrode is contacting
part of the neuron. Finally, after 2+ minutes and retracting 25 µm, a rapid decrease is seen
in the signal quality. This delayed response is discussed in the text.

Figure 3.5. Isolation curves showing hysteresis in relative position between the electrode
and neuron. Each panel shows an isolation curve acquired by the algorithm. After sampling
the points in black by advancing, the algorithm commands the electrode to retract towards
the observed maximum (plotted at depth zero). The electrode retracts, but the signal quality
is lower when moving backwards (in red). The algorithm then gives up on these neurons and
moves forward to find a new neuron.

delay is well known [35].

This hysteresis effect appears also as a lag in the change in signal quality when the electrode

changes direction. Often, as illustrated in Figure 3.5, a downward trend in signal quality is not

reversed by changing the direction of travel. This phenomenon appears to be unreported in the

literature and unstudied. It may be due to the static friction mentioned above. Also, the electrode

tip may shift the positions of the neurons in the surrounding tissue, and they may not return to the

same locations when the electrode is returned to its previous depth.

This apparent hysteresis might also be due in part to mechanical backlash (the error in motion

when gears change direction) in the microdrive mechanism. Tests of several microdrives in our lab

have shown backlash of 10–100 µm. It is clear, though, that this is not the sole cause. If it were,

the signal quality function would not continue its downward trend when changing directions, as seen

in Figure 3.5, but would simply take more backwards movement to move back up in signal quality

than it took to move down (forming a classic hysteresis loop).
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Figure 3.6. Illustration of noise events due to motion of the experimental subject. These
events are “spike-like” and must be ignored by the algorithm if it is to operate successfully.
The events shown in the panels were detected simultaneously by a multiple electrodes with
tips too far apart to be recording the same neuron and were correlated with movements made
by the animal, meaning that, despite appearing to be spikes, they are actually due to noise
in the system.

Whatever the cause, the autonomous control algorithm must compensate for this hysteresis

effect. It can be partially compensated for by detecting the maximum of the isolation curve as

quickly as possible, before moving too far down the downslope and having to make a large backing-up

movement. Backing up the electrode is often unsuccessful in relocating the isolation curve maximum.

Quickly detecting the maximum is achieved in practice by making small electrode movements (so as

not to overshoot the maximum) and by using only the most recent observations of signal quality to

estimate the isolation curve (as discussed in Section 2.3.2.3 and illustrated in Figure 2.8). Another

method for compensation is to detect the presence of hysteresis (by detecting differences in the

signal quality gradient between forward and backward movement) in order to recognize and discard

previous observations of signal quality which are unreliable because the position of the neuron has

probably changed. A full study characterizing the hysteresis effect is left for future work; the

algorithm presented here attempts only to compensate for its effects.

3.5 Noise Artifacts and Discrete Events

The raw data are sometimes corrupted by discrete noise events. For example, movements by the

experimental subject sometimes cause the electrode to vibrate in its guide tube. Also, depending on

the mechanism used in a multielectrode microdrive, moving one electrode can cause noise events to

appear in the signal recorded on other electrodes. Some noise events are very similar to spikes and

may be falsely detected by the detection routine (Figure 3.6). Inevitably, some non-spike events will

be falsely detected as spikes. The algorithm must not be sensitive to these disturbances.

Sometimes the movements of the experimental subject will cause the electrode to suddenly move
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Figure 3.7. Illustration of large change in signal due to motion of the experimental subject.
The disappearance of the large neuron in panel A from the recording immediately followed
a large movement by the subject.

a large distance relative to the tissue. A well isolated neuron may no longer even appear in the

recording (Figure 3.7). The algorithm must be able to recover quickly from these discrete events

(such changes are “discrete” as opposed to relatively “continuous” changes like those due to tissue

decompression).

3.6 Conclusions

The practical recording challenges summarized in this chapter call for a more sophisticated algorithm

than the one presented in the previous chapter. The core steps of detection, alignment, clustering,

computation of signal and isolation quality and estimation of the underlying isolation curve will

remain. The movement decisions based on this analysis are expanded in the following chapter from

the simple pseudo-code of Figure 2.10 to a supervisory finite state machine capable of isolating

neurons under the conditions described in this chapter.



30

Chapter 4

A Supervisory Control System for
Autonomous Isolation in Realistic
Recording Environments

This chapter introduces extensions to the algorithm of Chapter 2 that meet the challenges of actual

recordings described in Chapter 3. In the real recording environment, the neurons are moving

targets, and their motion appears to be neither steady nor predictable. Neurons can stop firing

for extended periods of a minute or more; they may not appear in several consecutive 20 second

observation periods, then release a burst in the next period, only to go silent again in the next.

The electrode interacts mechanically with the tissue, causing damage if approaching a neuron too

closely. This mechanical interaction (as well as backlash in the microdrive mechanism) also causes

hysteresis and uncertainty in the depth of the electrode. Commands to retract the electrode may

not change the relative position between the electrode and a neuron, unbeknownst to the algorithm,

giving a false estimate of the gradient of signal quality in the vicinity of the neuron.

The algorithm must behave differently depending on the current task at hand — finding neurons,

using the stochastic optimization routine of Section 2.3.2.3 to optimize the signal from a neuron,

moving to follow a drifting neuron, etc. It also must deal effectively with discrete events like the

appearance or disappearance of a neuron from the recording. An appropriate framework for dealing

with discrete events and choosing context-appropriate behavior is that of a finite state machine

(FSM) [7]. The proposed FSM that can govern autonomous neuron isolation is shown in Figure 4.1.

This state machine will hereafter be referred to as the Electrode Positioning State Machine (EPSM).

The EPSM functions as a supervisory control system that can coordinate the signal processing and

maximization routines to be effective in the realistic recording environment.

Section 4.1 provides an overview of the EPSM. Section 4.2 delves into the logic behind the

state machine transitions in detail. Section 4.3 summarizes how the proposed algorithm meets the
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Figure 4.1. Finite state machine for neuron isolation.

challenges of autonomous isolation.

4.1 Finite State Machine Overview

After describing the execution of the EPSM in Section 4.1.1, some of its key elements are described

in Sections 4.1.2 through 4.1.5. In the following sections, several typeface conventions are used. The

names of states in the EPSM will be set in Capitalized Italics, variables computed by the EPSM

(e.g., the isolation quality metric (IQM) or the optimal movement amount) will be set in typewriter,

constant parameters set before the algorithm is initiated will be set in CAPITALIZED TYPEWRITER, and

flags used to determine state transitions will be set in SmallCaps. Electrode movement commands

output by the EPSM will be represented by ∆move amount.

The algorithm proceeds in a cyclical manner as follows. First, data is collected with the electrode

in a stationary position. This data is analyzed as described in Chapter 2, detecting, aligning, and

clustering spikes, and computing the signal quality and isolation quality metrics (SQM and IQM).

This analysis is combined with the analysis from previous electrode depths, and the EPSM deter-

mines the proper state transition to be made as well as the optimal electrode movement command.

The electrode is moved, and the steps are repeated. One repetition of these steps will be referred to

as one round of the EPSM.

4.1.1 Description of the Electrode Positioning State Machine

This section summarizes the activity of each state in the order in which they are entered in a typical

neuron isolation. This order is depicted by the state transitions shown in Figure 4.2. A detailed

description of all the possible transitions (i.e.,those shown in Figure 4.1) will be given in Section 4.2.

The EPSM initiates in the Spike Search state (which will be hereafter referred to simply as

Spike Search for brevity). In this state, the electrode is moved in steps of ∆search (∼20 µm) until

spikes are detected, and the EPSM then transitions to Gradient Search. Here, observations of the



32

Figure 4.2. A simple path through the finite state machine.

signal quality metric (SQM) are made at regular intervals of depth ∆sample (∼10 µm). After three

observations, the stochastic optimization procedure described in Section 2.3.2.3 is used to determine

the most likely model order to fit the observations of the SQM. If the optimal order number is

zero, that is, there is no significant slope and thus no statistically significant isolation curve, then

the electrode continues in steps of ∆sample. If a higher order model is optimal, indicating that an

isolation curve has been found, the EPSM transitions to Isolate Neuron.

While in Isolate Neuron, the stochastic optimization procedure of Section 2.3.2.3 is invoked,

attempting to achieve a neuron isolation and transition to Neuron Isolated. At each electrode

depth, the estimate of the isolation curve is updated with the new observations of the SQM, and the

electrode is moved towards the estimated maximum. The isolation quality metric (IQM) is measured

as well. There are two types of transitions from Isolate Neuron to Neuron Isolated. The first occurs

if the top of the estimated isolation curve has been reached and the IQM is high enough to consider

the neuron isolated. (If the IQM is not high enough at the top of the isolation curve, the neuron is

considered too far from the path of the electrode, and the EPSM moves on to find another neuron.)

An alternative transition to Neuron Isolated occurs when the IQM is very high even though the top

of the isolation curve has not been detected. In this case, it is probable that the neuron lies close

to or on the electrode’s path, and continued advancement may cause tissue damage. The possible

further increase in the quality of the recording that can be obtained by moving the electrode forward

is not deemed worth the risk of losing the signal by damaging the neuron. The various thresholds

on the IQM for these transitions will be discussed in detail in Section 4.1.2.

In Neuron Isolated, the electrode is kept stationary while the signal quality metric (SQM) is

monitored. Inevitably, the SQM drops as the neuron drifts away from the electrode (the SQM may

in fact rise at first if the neuron drifts closer to the electrode, but it will then drop as the neuron

drifts away, see Figure 3.1A and D). When the SQM drops below a percentage (typically 85%)

of its value at the original isolation, the EPSM transitions to Reestimate Gradient in an attempt

to reposition the electrode to maintain the isolation. Reestimate Gradient moves the electrode in
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0 – Isolation quality is too low for reliable measurements.
Do not follow gradient from stochastic optimization.

1 – Isolation quality is high enough to follow gra-
dient, but not high enough for acceptable isolation

2 – The neuron is acceptably isolated if
the maximum of isolation curve is reached

3 – The neuron is well isolated. Immediately stop and
declare isolation. Further movement may damage neuron.

Threshold Name Isolation Quality Region

0

IQM MIN TRACK

IQM MIN

IQM STOP
IQ

M

Figure 4.3. Isolation quality metric (IQM) thresholds and the meanings of the ranges they
define.

steps of ∆resample (∼5 µm) to find the new gradient in the SQM now that the neuron has drifted.

These steps are taken in reverse (retracting the electrode), as the most common neuron drift is due

to decompression and is directed up towards the electrode. Once the new gradient is found, the

transition is made to Reisolate Neuron, where the stochastic optimization procedure is again used

to isolate the neuron and return to Neuron Isolated.

The path described above and shown in Figure 4.2 could be considered the “optimal” case, in

which the neuron is isolated, maintained and reisolated without difficulty. To be effective in the

actual, complex recording environment, the additional transitions shown in Figure 4.1 are needed

to account for discrete events like the appearance or disappearance of neurons from the recording.

The logic of these transitions will be discussed in detail in Section 4.2, after describing some general

design features of the EPSM in the following sections.

4.1.2 Isolation Quality and Signal Quality Thresholds

As discussed above in Section 2.3.2.4, the isolation quality metric (IQM) is used to measure how well

a neuron is isolated and thereby determine state transitions. These discrete state transitions require

hard thresholds on the IQM to declare whether a neuron is acceptably isolated. Three separate

thresholds are used in the algorithm, dividing the IQM spectrum into the four ranges shown in

Figure 4.3. The numerical values of these thresholds are set by classifiers that are the topic of

Chapter 5.

If the IQM is below IQM MIN TRACK, the isolation is of such poor quality that the observations

of signal quality used to estimate the underlying isolation curve cannot be trusted. In this region,
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the electrode continues sampling at a constant interval instead of following the stochastic optimiza-

tion procedure. Between IQM MIN TRACK and IQM MIN, the isolation quality is sufficient to use the

stochastic optimization procedure. The neuron is not yet sufficiently isolated, though, and if the top

of the isolation curve is reached while in this range of isolation quality, the neuron is rejected (either

it is too far from the electrode’s line of travel or it is too close to another neuron to reliably identify

its spikes), and the EPSM moves forward to find a new neuron. Between IQM MIN and IQM STOP, the

isolation is acceptable. If the top of the isolation curve is reached while in this region, the EPSM

transitions to Neuron Isolated. Neurons in this region will be referred to as “acceptably isolated.”

When the value of the IQM is above IQM STOP, the isolation quality is so good that further movement

of the electrode is unnecessary and may even cause damage to the neuron. Even if the stochastic

optimization estimates that the top of the isolation curve has not yet been reached, the electrode is

not moved and the EPSM transitions to Neuron Isolated. Neurons in this top region will be referred

to as “well isolated.”

A separate threshold is needed to determine when the electrode is in danger of damaging the

neuron by coming too close. Here, a threshold on signal quality (such as SNR) is preferable to a

threshold on isolation quality. This is because a neuron can be perfectly isolated from the noise and

any other neurons (and thus the IQM could be very high) and yet not be dangerously close to the

electrode, while excessive SNR is a good indication that the electrode has come too close. Thus, if

the signal quality (SQM) is measured to be above the threshold SQM MAX, the electrode is retracted.

The amount the electrode is retracted is proportional to the difference between SQM and SQM MAX,

i.e.,

∆back away = K(SQM − SQM MAX).

In effect, this is a proportional control loop, with gain K, to keep SQM below SQM MAX [35].

4.1.3 Reducing Sensitivity to Transients

There are a number of situations in which it is best for the EPSM to gather additional data before

transitioning between states. For example, while performing the stochastic optimization procedure

in Isolate Neuron, the neuron may stop firing during one 20 second observation period and no spikes

may be detected. Uncertain whether the neuron has paused in its firing or has moved out of the

electrode’s range, the EPSM should gather more data before prematurely giving up and reinitializing

the system in Spike Search. In cases such as these, the EPSM uses a flag, named Wait, to indicate

that an extra round of data should be acquired before determining the proper state transisition and

movement command. If no spikes are detected, the Wait flag is set high; the electrode is not moved

and more data is analyzed without making a state transition.
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If, on the next round, no spikes are detected once again, the EPSM reinitializes in Spike Search

because the Wait flag was already set high on the previous round. If, on the other hand, spikes

are detected following the round in which the Wait flag was set high, the EPSM makes the proper

state transition based on the data and resets the Wait flag low.

There are other cases in which the estimate of signal quality may be artificially low and in

which the EPSM should gather additional data before transitioning. A common case is that of

misclustering; if two neurons are close in amplitude and waveform shape, the unsupervised clustering

routine of Section 2.3.1.3 may mistake their principal component projections for one cluster on some

rounds. In this case, the signal quality of the dominant neuron may appear to suddenly drop, as

spikes from the neuron with lower signal quality are included in the dominant neuron’s cluster.1

Instead of reacting to this sudden drop, perhaps by immediately attempting to reisolate if the

dominant neuron had been considered isolated, more data should be collected to ensure that the

drop in signal quality is genuine. This is implemented by the Wait flag.

Likewise, declaring isolation (i.e. transitioning to Neuron Isolated) requires two consecutive ob-

servations of the isolation metric above the minimum threshold for isolation. This requirement

prevents the EPSM from declaring an isolation when a spurious transient due to system noise is

mistakenly considered a high amplitude spike (as discussed in Section 3.5), or when the IQM of a

low-quality isolation happens to barely cross the threshold on a single round. Mistakenly declaring

an isolation can significantly slow down the EPSM because it will then spend several observational

rounds attempting to “reisolate” a neuron that was not there. The requirement for two consecutive

observations above the isolation threshold is implemented with the flag PossibleIsolation, which

is set high when a neuron crosses the threshold for declaring isolation. In order to enter Neuron

Isolated, PossibleIsolation must have been set high on the previous round (i.e., this must be the

second consecutive observation above the isolation threshold).

4.1.4 Adapting to Tissue Movements

Due to the hysteresis and tissue drift described in Chapter 3, isolation curves cannot be considered

stationary. If, after advancing some distance, it is determined that the maximum of an isolation

curve was observed, say, 40 µm above the current depth, retracting the electrode 40 µm will usually

not place the electrode at that maximum again. The neuron will probably be in a new location

because of the intrusion of the electrode.

This tissue movement effect is dealt with in two principal ways. First, if the maximum of the
1To be clear, it is not actually the neuron which has a lower signal quality; the spikes recorded from this electrode

depth have lower signal quality, probably because the electrode is farther from this neuron than it is from the dominant
neuron in the recording.
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isolation curve is determined to be in a direction opposite to the electrode’s most recent movement,

the electrode changes direction and the previous observations of signal quality are discarded as

unreliable. New samples of the isolation curve are observed in the new direction of travel.

Second, the signal quality is monitored as a function of time as well as electrode depth. If

there is a consistent downward trend in signal quality over the last five observations (trend< 0),

regardless of the direction of travel, then the estimates of signal quality cannot be trusted because

the stochastic optimization should, if the isolation curve is stationary, increase the signal quality.

The variable trend is calculated by using the adaptive curve fitting technique (see Section 2.3.2.3)

to determine the most likely order of fit of signal quality as a function of time for the last few rounds

of the EPSM. As only the few most recent rounds are used, only polynomial models of zero, one

and two are tested. If the most likely order is one or two and the slope (or curvature) is downward,

then trend is considered to be negative.

The action taken when a negative trend in signal quality is found depends on the current quality

of the isolation. If the neuron is acceptably isolated, then the transition to Neuron Isolated should

be made even though the electrode is not at the maximum of the isolation curve. This is because

electrode movements appear to be shifting the tissue in such a way as to move the neuron away

from the electrode path (thus the drop in signal quality in either direction of travel). In effect, a

suboptimal isolation is accepted because the data indicates that it will only get worse with continued

attempts at improvement. If, on the other hand, the trend in signal quality is downward and the

isolation is not acceptable, the EPSM gives up on this neuron, jumps forward to find a new neuron

and reinitializes in Spike Search.

4.1.5 Minimum Firing Rate Criterion

The first and most basic test in all states is whether spikes were detected in the most recent recording

interval (if so, the flag SpikesDetected is set high).2 It should be noted that there is a minimum

number of events that must be detected for the algorithm to declare that spikes were detected

(typically a number equivalent to a firing rate of 0.5 Hz). In effect, this threshold allows the

system to ignore any noise artifacts caught by the detection routine as well as extremely low firing

rate neurons that are typically not of experimental interest (as well as being extremely difficult to

isolate). For brevity, references below to whether “spikes were detected” actually refer to whether

“more than the minimum number of spikes were detected.”
2Note that SpikesDetected does not represent the actual number of spikes detected, but rather is a flag which is

set high if spikes were detected and low if they were not.
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Figure 4.4. Legend for state activity diagrams.

4.2 State Transition Logic

The electrode movement decisions made by human experimenters during recording experiments

have been codified in the logic behind the EPSM state transitions. As this logic is the heart of the

autonomous positioning algorithm, a full description is given here. The details of the transitions

given in this section are probably only relevant to those trying to replicate or expand this work, or

to an end user trying to understand a particular piece of the algorithm’s behavior. A more concise

summary of how this logic addresses the challenges from Chapter 3 follows in Section 4.3.

4.2.1 State Activity Diagrams

The logic behind the state transitions is represented using Unified Modeling Language (UML 2.0),

a standard modeling architecture for algorithm development in software and business practice [43].

UML specifies a set of diagrams for representing various aspects of algorithms, including variables in

use, user interaction and activity flow. Of the diagrams specified under UML 2.0, activity diagrams

are a convenient representation of the state transition logic.

Figures 4.4 and 4.5 provide a legend and example state activity diagram as a guide for the

diagrams to follow. The example state in Figure 4.5 operates as follows. The state is entered

at the solid circle. First, the data is analyzed (in the Analyze Data action node) as discussed in

Section 2.3.1. Variables such as the SQM and IQM (signal and isolation quality metrics) are also

computed. The diagram proceeds from the Analyze Data action node to the right, where a diamond

indicates a decision node. The test determining which branch to take is shown in brackets over the

arrows downstream from the test node. Here, if the generic Test is true, then the diagram continues
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Figure 4.5. Example state activity diagram showing logic for transitions between states.

to the right, otherwise it continues downward on the else branch. Continuing to the right from the

decision node, an electrode movement action node (labeled by its movement amount, “M0”) is used

to specify the electrode movement command sent to the microdrive. Table 4.1 explains the meaning

of the codes in the movement nodes. After the movement node, a state transition to New State is

made. Alternatively, if Test is not true, following the downward branch from the decision node, a

different movement node (movement “M3”) is passed before restarting the state. Note that this

downward branch makes a “self-transition” and remains in the current state, while the rightward

branch transitions to New State. Table 4.2 describes the variables used in the diagrams to display

the outcomes of decision nodes.

Code Movement Command
M0 Do not move, except back away by ∆back away (1–10 µm) if too close to neuron
M1 Move by ∆search (advance ∼20 µm)
M2 Move by ∆sample (advance ∼10 µm)
M3 Move by amount computed by stochastic optimization
M4 Move by ∆resample (retract ∼5 µm)
M5 Move by ∆jump forward (advance ∼50 µm)

Table 4.1. Electrode movement action node codes.
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Name Meaning
iqm Isolation Quality Metric (IQM) (2.3.2.4)
sqm Signal Quality Metric (SQM) (2.3.2.1)

num_obs Number of observations taken current neuron’s isolation curve
trend Current trend in SQM (4.1.4)

maintain_level Level of Signal Quality at which to maintain isolation (4.2.5)
move_command Electrode move command computed by stochastic optimization
IQM_MIN_TRACK }

IQM Thresholds (4.1.2)IQM_MIN
IQM_STOP
MIN_MOVE Minimum move command amount to assume at top of isolation curve

PossibleIsolation Flag set to wait one round before declaring isolation ( 4.1.3)
SpikesDetected Flag set if enough spikes were detected in current round (4.1.5)

Wait Flag set to wait one round before taking action (4.1.3)

Table 4.2. Variables, constants and flags used in activity diagrams. Sections giving more
detail on each variable are in parentheses. The following typeface conventions are used.
typewriter: internal variables computed by the EPSM, CAPITALIZED TYPEWRITER: constant
parameters, SmallCaps: flags used to determine state transitions.

4.2.2 Spike Search

The EPSM initiates in Spike Search. As shown in Figure 4.6, data is first collected and analyzed

(spike detection, alignment, clustering, calculation of metrics SQM and IQM). This is the first step

in all states and will be assumed in the remainder of the activity diagram walkthroughs. If no spikes

are detected (i.e., SpikesDetected = 0), the electrode is moved by ∆search (labeled “M1” in the

diagram, see Table 4.1 for explanation of these codes) and a self-transition is made, returning to the

Analyze Data node.

Alternatively, if spikes are detected (i.e., SpikesDetected = 1), the IQM is tested against

IQM STOP to see if the neuron can be considered well isolated. If so, the PossibleIsolation flag is

checked to see if it was set high on the previous round. If it was already set high, then the neuron

has been above the threshold for isolation for two consecutive rounds, and the transition is made to

Neuron Isolated. If not, the PossibleIsolation flag is set to high and a self-transition is made to

see if the neuron is still well isolated on the next observation. In either case, if the IQM is above

IQM STOP, the electrode is not moved unless the signal quality metric indicates that the electrode is

too close to the neuron (if sqm > SQM MAX), in which case the electrode is retracted by ∆back away

(as represented by the movement node “M0”).
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4.2.3 Gradient Search

The activity diagram for Gradient Search is shown in Figure 4.7. The first decision node in Gradient

Search tests whether spikes were detected. If not, and if the Wait flag is high, indicating that this is

the second round in a row that spikes were not detected, the EPSM moves the electrode by ∆search

and returns to Spike Search, effectively reinitializing the EPSM. If this is the first round with no

spikes, Wait is set high and a self-transition is made. This structure of waiting one round if no

spikes are detected before reinitializing in Spike Search will be seen often in these diagrams. If spikes

are detected, the remainder of the logic can be summarized as choosing between three outcomes:

• A neuron is well isolated (→Neuron Isolated).

• A gradient has been found, indicating that the electrode is on a neuron’s isolation curve

(→Isolate Neuron).

• No gradient has yet been found (remain in Gradient Search).

In further detail, the logic proceeds as follows. The first step if spikes are detected is to reset

the Wait flag low. Next, a decision node determines if the IQM is high enough to immediately

declare isolation (iqm > IQM STOP). If so, either the EPSM transitions to Neuron Isolated (if this is

the second consecutive round above the threshold) or the PossibleIsolation flag is set high and

a self-transition is made. In either case, the electrode is only moved if it is in danger of damaging

the neuron. If the IQM is not high enough to declare isolation and at least three observations have

been taken of the signal quality, the stochastic optimization procedure is used to determine if there

is a statistically significant gradient. If so, the electrode is moved by the amount calculated by the

optimization procedure and the EPSM transitions to Isolate Neuron. If not enough observations

have yet been made or if no isolation curve is found in the data, the electrode is again moved by the

sampling step ∆sample and a self-transition is made.
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4.2.4 Isolate Neuron

Isolate Neuron (Figure 4.8) begins with a similar structure as Gradient Search — reinitializing in

Spike Search if no spikes were detected on two consecutive rounds or waiting another round if only

the most recent round had no spikes. One slight difference is that, in addition to testing if spikes

are detected, the IQM is tested to make sure the currently tracked neuron is still worth pursuing

(iqm > IQM MIN TRACK). If there are spikes from a neuron worth tracking, Wait is reset low. The

remainder of the logic can be summarized as choosing between five options:

• A neuron is well isolated even if not at the top of its isolation curve (→Neuron Isolated).

• The top of the isolation curve is reached and the neuron is acceptably isolated (→Neuron

Isolated).

• Recent movements of the electrode have only lowered the signal quality (trend≤ 0) and the

isolation quality is at least acceptable (→Neuron Isolated).

• Recent movements of the electrode have only lowered the signal quality (trend≤ 0) and the

neuron is not acceptably isolated (restart in Spike Search).

• If none of the above, then remain in Isolate Neuron.

In full detail, continuing from the action node resetting Wait, the structure for declaring an

isolation is similar to the corresponding structure described in the previous states. If the neuron is

well isolated for two rounds (iqm > IQM STOP), the transition is made to Neuron Isolated. If only one

round has been above the isolation threshold, PossibleIsolation is set high and a self-transition

is made. The next decision node tests whether the top of the isolation curve has been reached

(indicated by a move command close to zero, move command < MIN MOVE). If so, and the isolation

is acceptable, the transition is made to Neuron Isolated. If not, the next test is whether the recent

movements of the electrode have only worsened the isolation (trend< 0; see Section 4.1.4 for a

discussion of trend and its calculation). If they have only worsened the isolation and the isolation is

acceptable, the transition is made to Neuron Isolated. If they have only worsened the isolation and

the isolation is unacceptable, the EPSM gives up on that neuron and reinitializes in Spike Search. In

all other cases (i.e., if the neuron is not yet isolated, the top of the isolation curve is not yet reached,

and recent movements haven’t worsened the isolation), the EPSM continues moving the electrode

by the stochastic optimization procedure and makes a self-transition.
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4.2.5 Neuron Isolated

The logic of Neuron Isolated (Figure 4.9) is comparably simpler than that of Isolate Neuron. If

the neuron is still isolated (as determined by the tests described in the following paragraph), the

electrode is only moved if it is in danger of damaging the neuron (sqm > SQM MAX). If the neuron is

no longer isolated, the EPSM begins to sample the space by ∆resample to find the new gradient and

transitions to Reestimate Gradient.

There are two tests used to determine if the neuron is still isolated. In the first test, the IQM

must remain above the threshold for acceptable isolation (IQM MIN). If the isolation was initially very

good when Neuron Isolated was entered, it may be a long time before the IQM decays below this

minimum threshold. During this time, the tissue must drift very far, and by then it may be difficult

to reestimate the new gradient and reisolate the neuron (reisolating a neuron after it has drifted

appreciably is considered difficult for human experimenters). Therefore, a more active maintenance

strategy is preferable, and so an additional test is added. In the second test, Reestimate Gradient is

entered if the signal quality drops below some percentage (typically 85%) of its highest value. Note

that the Wait flag is again used here to ensure that two consecutive observations have been made

below the threshold before attempting to reisolate; falsely underestimating the signal quality on one

observation will not trigger an unnecessary reisolation attempt.
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4.2.6 Reestimate Gradient and Reisolate Neuron

Reestimate Gradient (Figure 4.10) is almost identical to Gradient Search, as it also takes samples of

signal quality to find the local gradient of the isolation curve. There are three differences. First and

most obviously, Reestimate Gradient transitions to Reisolate Neuron once a new gradient is found

(whereas Gradient Search transitions to Isolate Neuron once a gradient is found). Secondly, the step

sizes in Reestimate Gradient are smaller than those in Gradient Search and are taken in reverse,

as the neuron has most likely drifted upwards (due to the bulk tissue decompression described in

Section 3.1). Thirdly, the criteria for re-entering Neuron Isolated is based not just on the IQM, but

also on the SQM rising back above the value it was to be held at (∼85% of its highest value). This

is because the desired level of signal quality is known from when the neuron was isolated, and the

EPSM whould attempt to regain this level of signal quality.

Likewise, Reisolate Neuron (Figure 4.11) is almost identical to Isolate Neuron. One difference,

again, is that the criteria for entering Neuron Isolated is based on the SQM rising back above the

value it was to be held at. Also, because the isolation curves can be shallow during reisolation due

to the small electrode movements, the move command being close to zero (or the SQM rising above

its target level) must be observed twice consecutively (to ensure that the top of the isolation curve

has in fact been reached) to trigger a transition to Neuron Isolated.
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4.3 Recording Challenges Revisited

This section summarizes the manner in which the algorithm addresses each of the challenges discussed

in Chapter 3.

Nonstationarity Due to Tissue Decompression

It is reasonably assumed that the tissue drift is slow compared to the movements made by the

electrode during attempts at isolating neurons. The drift can thus be largely ignored while sampling

and maximizing isolation curves. It is while monitoring isolations that tissue drift must be accounted

for. The drift will, obviously, either move the neuron towards or away from the electrode.

If the neuron moves toward the electrode tip and approaches too closely, the signal quality metric

will cross a threshold and the the Electrode Positioning State Machine (EPSM) will back away to

avoid damaging the neuron. The amount to back away is proportional to how far over the threshold

the signal quality is.

If the neuron moves away from the electrode tip, the signal quality will decrease, triggering a

transition to Reestimate Gradient to find a gradient in signal quality and move in the direction of the

neuron’s drift. The path through the algorithm Neuron Isolated→Reestimate Gradient→Reisolate

Neuron→Neuron Isolated seeks to maintain signal quality by finding the new gradient and following

it before the neuron has drifted too far.

Tissue Damage Caused by the Electrode

In order to avoid damaging a neuron that the algorithm is attempting to isolate or hold isolated,

the electrode is backed away, as described above, should the signal quality level indicate that the

electrode is too close to the neuron.

Intermittent Activity of Neurons

Neurons will often stop firing long enough to not be detected on one or more rounds of the algorithm.

If a neuron stops firing for one round while its isolation curve is being sampled, the falsely low

estimate that results could significantly affect the stochastic optimization routine. The principal

safeguard in the algorithm against such a mistake is the Wait flag, which is set high when a

dramatic change has occurred, like when a neuron being tracked stops firing. Setting the Wait flag

high, without making a state transition, allows the algorithm to collect more data to be sure the

dramatic change was not due to a transient effect.
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Noise Artifacts

Noise artifacts can appear spike-like and may be mistaken for activity of neurons. If the algorithm

were to mistakenly declare an isolation when noise artifacts are observed, much time could be lost

then seeking to “reisolate” a neuron which was not actually there. Therefore, in order to make the

transition to Neuron Isolated, two consecutive rounds of high quality signal must be observed. This

is implemented in the state machine as the PossibleIsolation flag.

Hysteresis

In the current algorithm, the effects of hysteresis are compensated for in two main ways. First,

the trend in signal quality is recorded not only as a function of position, but also as a function

of time. If, no matter the direction of movement, the signal quality is decreasing, this is detected

and, depending on the current level of isolation quality, the electrode is either kept stationary to

avoid further lowering the signal quality, or the state machine reinitialized in Spike Search to find

a new neuron to isolate. Second, the need for reversing direction is minimized by using small step

sizes when sampling the isolation curve (to minimize overshooting of the curve’s maximum) and by

only using the most recent values of signal quality to emphasize the local gradient, again to avoid

overshooting the maximum and having to retract. More details on compensations for the hysteresis

effects are given in Section 4.1.4.
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Chapter 5

Metrics of Isolation Quality

Section 2.3.2.4 discussed the need for a metric of isolation quality, and Section 4.1.2 described how

thresholds on this metric guide the state machine transitions. This chapter discusses the choice of

the isolation quality metric (IQM) in detail.

As discussed in Section 2.3.2.4, a metric of the signal amplitude is not sufficient to attain isolations

because it is possible for a neuron to have high signal amplitude compared to the system background

noise and yet not be considered isolated because its spikes cannot reliably be differentiated from

spikes originating from other neurons present in the recorded signal. This is illustrated in Figure 5.1.

The spikes in the cluster with higher amplitude (originating from the dominant neuron) cannot be

reliably distinguished from the spikes in the lower amplitude cluster (from the confounding neuron).

Even thought the dominant neuron has a high signal quality metric (SQM), it should have a lower

isolation quality metric (IQM) because its spikes cannot reliably be distinguished from other spikes

from other neurons in the recording.

Several metrics have been proposed in the literature specifically for measuring neuron isolation

quality and for measuring cluster separation in the general setting as well. As there is currently

no universally accepted metric of isolation, several metrics, adapted for the current application as

needed, were tested on recorded data to see how accurately they measured the isolation quality. The

considered metrics are introduced in Section 5.1, the performance test and its results are described

in Section 5.2, and the suitability of each metric for application in this algorithm is discussed.

Section 5.3 discusses some modifications made to the algorithm’s signal processing steps to make

the isolation quality metric a more accurate measure of how well a neuron is isolated.
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Figure 5.1. Demonstration of the need for a metric of isolation quality in addition to a
metric related only to amplitude. Spikes from the dominant neuron (in green) are separated
from the noise (and thus have high SNR), but are not distinguishable from the confounding
neuron (in blue).

5.1 Description of the Metrics

5.1.1 Signal-to-Noise Ratio (SNR)

The signal-to-noise ratio (SNR) was introduced in Section 2.3.2.1 as a metric of signal quality used

to find the optimal recording depth in the neighborhood of a neuron. Here, its performance as a

metric of isolation quality will be evaluated. Note that “signal quality” here means the level of

signal recorded from a single neuron, and is distinct from “isolation quality,” which considers the

discriminability of a neuron from all other neurons that might be present in the recorded signal.

From the above discussion stating that a confounding neuron can affect the isolation quality without

affecting the signal quality, it is expected that SNR will perform poorly as an isolation quality metric.

Thus, it is included in this chapter primarily for the sake of comparison. The equation for SNR is

repeated here for convenience:

SNRi ,
PTPi

VNOISE,RMS
.

See Section 2.3.2.1 for details of its calculation.

5.1.2 Projection t-Statistic

Whereas SNR measures isolation quality by direct calculations on the spike and noise sample wave-

forms, the remainder of the metrics compute the quality of the isolation using the principal com-

ponent projections of the waveforms, measuring in some manner the separation of the dominant

cluster from the noise and any confounding clusters.
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The projection t-statistic metric (Tproj) is adapted from Pouzat [37]. This method begins with

the following assumptions:

1. The spike waveforms generated by a given neuron are constant.

2. The spikes and noise samples are statistically independent.

3. The spikes and noise samples sum linearly.

4. The background noise in the extracellular recording environment is well described by its co-

variance matrix.

Assumption 1 is documented to hold in many cases [16,21], particularly over the short timespans

(∼20 sec) being considered here. It sometimes fails for neurons releasing bursts (within which the

spikes become successively smaller) or during tissue relaxation after large electrode movements.

Assumptions 2 and 3 are common in spike analysis and generally considered valid. Pouzat shows

in [37] that assumption 4 holds in all of a variety of data tested.

Under assumption 1, spike clusters would appear in the principal components space as single

points were it not for the linear addition of noise (assumptions 2 and 3), which spreads the clusters.

Under assumption 4, this spread has a multivariate Gaussian distribution. As the variance in each

cluster is due only to the variance in the noise, which is assumed to be constant, then all clusters have

equal covariance matrices under these assumptions. Pouzat suggests a whitening transformation be

applied to the principal component projections, removing any correlation between the principal

components. This is achieved by applying the transformation U , where

Γ−1 = UTU,

and Γ is the covariance of the noise cluster in the principal components space. The whitened feature

vectors (principal components), FW , are then

FW = UF,

where F is the matrix of principal components (Section 2.3.1.3).

After applying the whitening transformation, under the assumptions above, all clusters will have

a covariance matrix equal to the identity matrix, and the distance between two clusters can be

taken as the amount of overlap between the cluster’s distributions. Pouzat suggests projecting the

distributions to a line between their centers and finding the distance between the univariate Gaussian

distributions which the projections should form.
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Pouzat’s framework has been applied and extended for the present application as follows. The

t-statistic, as is standard [23], is used to measure the separation between the projected distributions.

Calling the two distributions x and y, the t-statistic is computed as

Tproj(x, y) =
x− y

s
√

1
Nx

+ 1
Ny

,

where Nx and Ny are the number of samples from distribution x and y, respectively and Tproj(x, y)

is the projection t-statistic between the two clusters that were projected. s is the pooled sample

standard deviation, that is, the mean of the standard deviations of x and y, weighted by the number of

samples from each distribution, Nx and Ny. An example of this whitening and projecting procedure

is shown in Figure 5.2.

This metric only considers two clusters at a time (one considered the “dominant” cluster and

the other considered “noise”), and, to be used in the algorithm, it must be extended to the case

in which clusters originating from more than one neuron are present in the recorded signal. First,

the neuron with the largest average signal amplitude is selected as the dominant neuron. After

whitening, a projection t-statistic is computed between the dominant neuron and each other cluster.

For example, if there are clusters originating from three neurons in the recording as well as a cluster

of noise samples, three pairwise projection t-statistics are computed, one between the dominant

neuron and the noise cluster and one between the dominant neuron and each other (confounding)

neuron.

Finally, an overall projection t-statistic Tproj(C) for cluster C is found for the dominant neuron

by averaging these pairwise projection t-statistics, weighted by the firing rate of the confounding

cluster. If cluster C is the dominant cluster and there are N clusters (presumably due to N − 1

neurons and one cluster of background noise events),

Tproj(C) =

N∑
k 6=C

fr(k)Tk,C

N∑
k 6=C

fr(k)

, (5.1)

where fr(k) is the firing rate of the kth cluster and Tk,C is the t-statistic between clusters k and C.

The metric used to measure isolation quality is Tproj(C), where cluster C is the dominant cluster,

and will be referred to simply as Tproj .

The idea behind using the firing rate to weight the distances to the confounding neurons in

Equation (5.1) is that the higher the firing rate of the confounding neuron, the more likely it is to



56

Figure 5.2. Illustration of the projection t-statistic metric, extended from [37]. A) Spikes
(clusters 2 and 3) and noise samples (cluster 1) projected to their first two principal com-
ponents. Cluster 3 is considered the dominant cluster. B) The features after whitening. C)
Example of calculation of t-stat2,3, the t-statistic between the distributions formed by pro-
jecting events to the line containing the centroids of clusters 2 and 3. D) The total separation
of cluster 3 from the other clusters is the average of t-stat1,3 and t-stat2,3, weighted by the
number of events in clusters 1 and 3 respectively.
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interfere with data acquired from the dominant neuron. As the number of observations in the noise

cluster is (almost) arbitrary (see Section 5.3 for more detail on selection of noise samples), a weight

must be assigned for this cluster. It was found that a weight corresponding to 10 Hz gave sufficient

weight to the noise cluster so that the location of the dominant cluster relative to the noise is the

dominant factor in the determining isolation quality, while sufficiently reducing the metric in the

presence of confounding neurons. Alternatively, the noise could be assigned a firing rate equal to

the average firing rate of the other neurons.

5.1.3 L-Ratio

The cluster quality metric LRatio was introduced in [46], and a more detailed description of this

metric can be found in [45]. The authors were principally concerned with tetrode recordings, but their

metrics are equally applicable to single-electrode recordings as well. LRatio uses the Mahalanobis

distance between an observation (the principal components projection of a single spike) and a cluster

(the aggregate spikes emitted by a particular neuron). This statistical quantity is defined as

D2
i,C = (Xi − µC)T Σ−1

C (Xi − µC),

where Xi is the feature vector (here, the first two principal components) for spike i and µC and

ΣC are the mean and covariance matrix of the spikes in cluster C in principal components space.

The Mahalanobis distance is a measure of how likely it is that an observation originated from a

distribution, given the distribution’s first- and second-order statistics.

If the distribution of spikes in the cluster is assumed to be Gaussian, then the distribution of D2

for spikes in the cluster will be χ2 with two degrees of freedom (one for each principal component) [13].

For each cluster, a quantity L is calculated as:

L(C) =
∑
i/∈C

1− CDFχ2
df

(D2
i,C),

where i /∈ C is the set of spikes not associated with cluster C and CDFχ2
df

is the cumulative

distribution function of the χ2 distribution with df = 2. Spikes not associated with the neuron of

cluster C but located close to its center will contribute more to this sum, as they are more likely to

have originated from cluster C. Thus, low values of L indicate that there is empty space separating

cluster C from other spikes. The LRatio for cluster C is then formed by dividing by the number of

spikes in cluster C, NC , as in

LRatio(C) =
L(C)
NC

.
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Dividing by NC allows more contamination (by noise samples or spikes from confounding neurons)

on dominant clusters having a higher firing rate, as the contamination will then have relatively less

of an effect on data recorded from the neuron (e.g., the firing rate estimate will be less affected by

misclassified spikes). In other words, LRatio rewards the robustness of higher firing rate clusters.

For convenience in comparing to other metrics, the negative LRatio is used so that measurements

with increasingly positive value mean greater isolation quality.

5.1.4 Isolation Distance (ID)

Isolation distance (ID) was first used as a metric of neuron isolation in [22] and is described in more

detail in [45]. For a cluster with NC spikes, the ID is the Mahalanobis distance D2 of the NC
th

closest spike not in cluster C. That is, it is the radius of the smallest ellipse (with shape defined by

ΣC) containing all the spikes in cluster C and an equal number of spikes not in cluster C. It is, in

effect, a measure of the “moat” around cluster C.

5.1.5 Silhouette Ratio

The silhouette ratio is a cluster validation technique introduced by Rousseeuw [42]. It is widely

used for testing the validity of variable relationships in genomic expression data (e.g., [4]) and was

recently used in categorizing neuronal responses in [12]. No reference was found for the silhouette

ratio being used to measure the quality of isolation of neurons. For each spike, the silhouette ratio

is a confidence indicator of the spike’s cluster assignment in cluster C, defined as

s(i) =
b(i)− a(i)

max {a(i), b(i)}
, (5.2)

where a(i) is the average distance between the ith spike and all of the other spikes in cluster C, and

b(i) is the minimum average distance of the ith spike to another cluster (i.e., the average distance to

the closest other cluster). It follows from Equation (5.2) that −1 ≤ s(i) ≤ 1. When s(i) is close to

1, the ith spike is well clustered. When s(i) is close to 0, the ith spike could just as likely belong to

a different cluster that is close to cluster C, and when s(i) is close to −1, spike i has probably been

misclassified and does not belong in cluster C. A measure of the overall confidence in the cluster

identities of the spikes in cluster C is the average silhouette value of its spikes,

SC =
1
NC

∑
i∈C

s(i).

SC is used as an isolation quality metric for cluster C.
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5.1.6 K-L Divergence

The Kullback-Leibler divergence (K-L divergence, also known as the relative entropy) appears in

information theory as a natural measure of the difference between two probability distributions [10].

For two continuous distributions with densities p and q, the K-L divergence is defined as

DKL(p‖q) =
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx.

A closed-form solution for the multivariate normal case, where q and p are d-dimensional Gaussian

such that q(x) = N(x;µq, σq) and p(x) = N(x;µp, σp), is (by [33])

DKL(q‖p) =
1
2
(log

(
detΣp

detΣq

)
+ Tr(Σ−1

p Σq) + (µq − µp)T Σ−1
p (µq − µp)− d). (5.3)

The K-L divergence is not a distance metric, as it is not symmetric (DKL(p‖q) 6= DKL(q‖p)) and

does not satisfy the triangle inequality. To symmetrize it, the two divergences are added,

DKL(p, q) = DKL(q‖p) +DKL(p‖q).

Substituting Equation (5.3) and simplifying gives

DKL(p, q) =
1
2
(Tr(Σ−1

p Σq + Σ−1
q Σp) + (µp − µq)T (Σ−1

q + Σ−1
p )(µp − µq)− 2d). (5.4)

Like the t-statistic above, this symmetric K-L divergence is a pairwise metric (operating on two

distributions at a time). Thus, to compute the overall K-L divergence of the dominant cluster C

from all other clusters, a weighted average is taken,

DKL(C) =

N∑
k 6=C

fr(k)DKL(k,C)

N∑
k 6=C

fr(k)

,

where there are N clusters and fr(k) is the firing rate of the kth cluster.

5.2 IQM Performance Testing

The IQM is used to guide electrode movement decisions by providing a discrete evaluation of the

current isolation quality. Figure 4.3 shows the regions into which observations must be divided.

Case zero (isolation quality too low to follow) is detected as a preprocessing step, described in detail



60

Figure 5.3. Comparison of isolation quality metrics (IQM). Each plot shows a particular
metric computed for the 690 test samples plotted against the manually assigned isolation
quality level: 1) not isolated, 2) acceptably isolated and 3) well isolated (see text for more
detail). For each metric, a classifier was built which minimized the total error. The sample
observations correctly labeled by the classifier are in color, which the incorrectly classified
observations are in black. The correctly classified samples from isolation quality level 1 are
plotted in blue, level 2 in green and level 3 in red. For example the black dots above the blue
dots in the leftmost column in each plot are observations which the classifier assigned the
sample to levels 2 or 3, while the correct (i.e., human proscribed) level assignment is level 1.

in Section 5.3, leaving three cases to distinguish (those labeled 1–3 in Figure 4.3).

In order to measure the power of each proposed metric to distinguish among these three cases,

a representative sample of 20 second neural recordings was selected. In total, 690 samples were

chosen from ten separate electrophysiology experiments. Each sample was manually classified in

one of the three categories of isolation quality (not isolated, acceptably isolated or well isolated) by

examination of the aligned waveforms and principal component projections. In current practice, in

almost all electrophysiology experiments, the experimenter is the arbiter of isolation quality, i.e., it

is those recordings which contain a neuron the experimenter considers isolated which are used in

scientific investigations. (This manual selection, firmly rooted by decades of use in the field, causes

a well-known bias in data collection [29].) As this manual judgement of isolation quality will be

made in practice to judge the algorithm, the same criteria that are used by experimenters to gauge

the quality of their recordings were used here as the “groundtruth” that should be emulated by the

IQM.
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SNR Tproj LRatio ID Silhouette K-L MR WMR

46% 23% 24% 16% 20% 19% 15% 14%

Table 5.1. Comparison of error rates among isolation metrics. MR (majority rule) and
WMR (weighted majority rule) are described in Section 5.2.7

The metrics were computed for the 690 samples (230 samples in each of the three categories of

isolation quality). A classifier was computed for each metric which gave the minimum number of

misclassifications on the training set. A classifier for each metric built using the entire sample set

as the training set is shown in Figure 5.3. The error rate for each metric was computed with a

10-fold cross-validation [25,51] (i.e., randomly partition the data into ten sets, build the classifier on

90% of the data, calculate the error rate on the other 10%, repeat for all ten partitions and average

the error rate over the ten partitions to find the overall error rate). These error rates are shown in

Table 5.1. The results of each metric are discussed below.

5.2.1 Signal-to-Noise Ratio (SNR)

SNR is not a reliable metric of isolation quality, and its inadequacies are illustrated in Figure 5.4.

In Figure 5.4A, a neuron with a very spread out cluster in principal components space, and thus

a higher chance of misclassification and low isolation quality, still has a high SNR. In Figure 5.4B,

although the dominant neuron’s spikes are clearly separated from the noise, thus yielding a high

SNR, they are not reliably distinguishable from those emitted by the other neurons in the recording.

This ignorance of confounding neurons and of cluster shape and size causes the high error rate in

isolation quality classification for SNR.

5.2.2 Projection t-statistic

The projection t-statistic metric (Tproj) is an improvement over SNR, incorporating both the size

and shape of all clusters in the recording. It compares poorly, however, to other evaluated metrics.

Recall from Section 5.1.2 that, to compute Tproj , the clusters are whitened, and then each pair of

clusters is projected to the line connecting the means of the clusters. The projections are assumed

to be Gaussian, and the separation between these projected distributions is computed. Examining

the samples for which the isolation quality was misclassified when using Tproj as the IQM points to

two recurring sources of error. First, the metric is based on the assumption that, in a noise-whitened

space, the clusters are equal in both size and shape. When the clusters are either not the same size

or not the same shape, the events projected to the line connecting the means of the clusters may

not form Gaussians that are representative of the full clusters. This can be seen in Figure 5.5B.
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Figure 5.4. Sample buffers of data that were misclassified when using SNR as the metric
of isolation quality. The left column shows the detected, aligned and clustered spike events
and noise samples. On the right are the events projected to principal components space and
clustered. A) Classification: well isolated. Correct classification: not isolated. The dominant
cluster (in green) is not well localized, and thus the detection of its events is prone to errors
(confusion with the other neuron in dark blue or noise events in black). The average SNR
of the cluster, is quite high, however, making SNR a falsely high estimate of the isolation
quality. B) Classification: well isolated. Correct classification: acceptably isolated. The
dominant cluster (again in green), has a high SNR because it is well separated from the
noise samples. This neuron is not well isolated, however, because its spikes are close to being
confused with either of the other two neurons (light and dark blue) present in the recording.
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Figure 5.5. Sample buffers of data that were misclassified when using the projection t-
statistic as the metric of isolation quality. A) Classification: well isolated. Correct classifi-
cation: not isolated. The confounding cluster (in dark blue) is not weighted heavily in the
overall t-statistic because of its low firing rate and sparse distribution. B) Classification: not
isolated. Correct classification: well isolated. The dominant cluster is clearly well localized
and separated from the noise and confounding cluster. Its spread, however small, is directly
along the line towards the mean of the noise cluster. Thus the projected events have an
artificially high variance, lowering the t-statistic. If the cluster were rotated a quarter-turn,
the t-statistic classifier would correctly declare the neuron isolated, showing the undesired
over-sensitivity of the metric to cluster orientation.

The effect is particularly prevalent during tissue relaxation following large electrode movements.

Such tissue relaxation causes drift in the waveform shape, violating the nonstationarity assumption

for the underlying spikes and distorting the cluster shapes from spherical Gaussians. Second, the

weighted averaging of the pairwise t-statistics (Eq. 5.1) is somewhat ad-hoc, and, at times, over- or

underestimates the effect of a confounding cluster. Figure 5.5A shows a confluence of both effects –

a non-spherical Gaussian confounding cluster (dark blue) that was not weighted heavily due to its

low firing rate does not lower the t-statistic as much as it should.

5.2.3 L-Ratio

The LRatio performs similarly to the projection t-statistic. Errors made while using this metric

arise from its dependence on the estimate of the covariance matrix of the dominant cluster. This
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Figure 5.6. Sample buffers of data that were misclassified when using the LRatio as the
metric of isolation quality. A) Classification: well isolated. Correct classification: not iso-
lated. The low firing rate of the dominant cluster led to a very low estimate of the covariance
in the direction of the confounding neurons, increasing their Mahalanobis distances and pro-
ducing an artificially low LRatio. B) Classification: not isolated. Correct classification: well
isolated. Overclustering of the dominant cluster dramatically reduces the metric. LRatio is
particularly sensitive to this error.

estimate is used to calculate the Mahalanobis distances of the noise spikes and confounding spikes

from the dominant cluster. At low firing rates or in the case of nonstationarity of the spikes due to

tissue drift, this estimate may be unreliable. Such a case can be seen in Figure 5.6A. The metric is

also very sensitive to overclustering (when one true cluster is incorrectly separated into two by the

unsupervised clustering routine) as illustrated in (Figure 5.6B). The spurious cluster greatly lowers

the LRatio, while other metrics that weight confounding clusters by firing rate (t-statistic and K-L

divergence) are not as greatly affected.

5.2.4 Isolation Distance (ID)

The isolation distance (ID) outperformed all other metrics. Its use of the Mahalanobis distance

made it (properly) sensitive to the shape of clusters, and its counting of confounding events closely

mimicked the experimentalist’s practice of measuring isolations by the amount of “empty space”

surrounding a cluster. It was difficult to find cases which were misclassified by using ID and cor-
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Figure 5.7. Sample buffers of data that were misclassified when using the isolation distance
(ID) as the metric of isolation quality. A) Classification: well isolated. Correct classifi-
cation: not isolated. ID’s counting method lowers its sensitivity to sparse, low firing rate
confounding neurons. Here, the confounding neuron is ignored and the sample is classified
as well isolated. B) Classification: not isolated. Correct classification: acceptably isolated.
ID underestimates the isolation quality because the covariance of the sparse dominant neu-
ron is directly aligned towards the noise and confounding clusters, lowering the Mahalanobis
distance in that direction. This estimate of the covariance is not reliable at low firing rates.

rectly classified using other metrics. One source of error, however, is that the method of counting

confounding events, similar to the troubles with averaging for the t-statistic, can underestimate the

effect of sparse, low firing rate confounding neurons, as demonstrated in Figure 5.7A. ID also shows a

similar sensitivity to cluster orientation as LRatio (Figure 5.7B), as it depends heavily on an estimate

of the cluster covariance.

5.2.5 Silhouette Ratio

The silhouette ratio showed comparatively medium performance. Examining its misclassified sam-

ples suggests that sources of error include its averaging of intracluster distances and its sensitivity

to overclustering. Figure 5.8A illustrates the problem of averaging; a poorly localized confounding

neuron is discounted because its average distance from the dominant cluster is high, although there

is no separation between the clusters. The silhouette ratio is thus a measure more of dissimilarity
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Figure 5.8. Sample buffers of data that were misclassified when using the silhouette ratio
as the metric of isolation quality. A) Classification: well isolated. Correct classification:
not isolated. The poorly localized confounding cluster (dark blue) is discounted because the
average distance to the dominant neuron is large, even though the clusters show no separation.
B) Classification: not isolated. Correct classification: acceptably isolated. The dominant
neuron(green) is overclustered (the line of dark blue through its center), dramatically lowering
the metric and misclassifying the sample.

(as it is most commonly used [4]) than of separation. Also, the minimum function in the denomina-

tor of the ratio implies that only the closest confounding cluster is considered in the metric. This

makes the metric particularly sensitive to overclustering (which produces two very close clusters) as

illustrated in Figure 5.8B. Again, metrics which average the distances to confounding clusters are

not as sensitive to overclustering.

5.2.6 K-L Divergence

The K-L divergence showed the second best performance. Like the t-statistic, LRatio and ID, its

errors mainly arise in its estimate of the covariance. The metric is inflated when one cluster’s axis

is perpendicular to the line connecting the means of the clusters (Figure 5.9A) or artificially lower

the metric when one cluster’s axis is parallel. Clusters with a well defined mean but large variance

are also penalized too heavily (Figure 5.9B).
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Figure 5.9. Sample buffers of data that were misclassified when using the K-L divergence
as the metric of isolation quality. A) Classification: well isolated. Correct classification: not
isolated. Skewed dominant cluster (green) overestimates distance to the confounding cluster
as it lies along the minor principal axis of the covariance (dark blue) B) Classification:
not isolated. Correct classification: acceptably isolated. Separation of sparse, but clearly
separated, cluster is underestimated because of K-L metrics primary dependence on the
estimate of the covariance.
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5.2.7 Combination of Metrics

It is common practice [28, 52] to combine several “weak” classifiers into a multiple classifier system

(MCS). There are several methods of combining classifiers, including uniform and weighted majority

rule (also called bootstrapping and aggregating, or “bagging” [5]). Combining all of the above

classifiers by uniform majority rule reduced the error to 15%, and by majority rule weighted by each

metric’s individual success rate (bagging) reduced it to 14%. Such a modest increase through bagging

is to be expected given the large size of the training set (230 samples per class). As noted in [50],

the large training set decreases diversity among the classifiers, leading to only modest increases in

performance from bagging.

5.3 Signal Processing Adjustments for Increased IQM Per-

formance

The signal processing steps described in Section 2.3.1 provide the inputs to the calculation of the

isolation quality metric. These steps have been adjusted in several ways so that the calculation of

IQM will better represent the true isolation quality.

Good measurement of isolation quality requires a good representation of any neurons present in

the recording as well as of the noise. The first difficulty is in defining what is meant by “noise.”

There are two principal sources of noise in these recordings. First, there is electrical noise due to

interference from external fields (e.g., 60 Hz noise from the building power system). Second, and

usually of greater magnitude, there is “neural noise,” the aggregate activity of neurons in the local

area. The optimal signal processing procedure would seem to be to detect and extract a large number

of possible signal events, let the clustering routine decide which events are separable signal and which

events represent samples of background noise. The problem is that any known robust unsupervised

clustering routine scales poorly with the number of events. Including enough events to ensure a good

estimate of the noise characteristics would make the clustering routine computationally prohibitively

expensive.

The approximation implemented here (illustrated in Figure 5.10) is to extract putative signal

samples (i.e., events which are likely separable from the background noise) and separately extract

samples of the noise (Figure 5.10A). Then only the putative signal samples are clustered with the

unsupervised routine. The samples of the noise are assigned to their own cluster (Figure 5.10B).

If some of the putative signal samples were actually part of the background noise, this procedure

will produce two noise clusters (one cluster consisting of the extracted noise samples and another

cluster consisting of the extracted signal samples which were actually background noise). To prevent
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this double clustering of the noise, the projection t-statistic is calculated between the assigned noise

cluster and each of the potential signal clusters (Figure 5.10C). If there is no significant difference

between the noise and a given cluster (α = 0.05), then the cluster is combined with the noise cluster

(Figure 5.10D). This procedure produces robust estimates of the noise without significantly slowing

down the clustering routine with a large number of samples.

Another issue is the selection of these noise samples. The noise which is of interest is not the

continuous background noise, but rather the low amplitude events emitted by nearby neurons because

these events are the most likely to be confused with spikes emitted by the neuron of interest. To

isolate these events, the wavelet detection algorithm by Nenadic [31] is run in two passes. The first,

with a high detection threshold, detects putative signal events. The second, with a lower threshold,

detects the spike-like background events most likely to be confounding to the signal clusters. The

putative signal events are also detected in this second round, but any event detected within a

refractory period (±1 ms) of a putative signal sample is ignored. This second round should produce

only samples of the background neural activity.

At times, a large likely signal event is missed in the first round and detected in the second, when

only noise samples should be detected. This adds signal outliers to the noise cluster. Several of

the metrics are very sensitive to these outliers (for example, they contribute greatly to the sum in

the LRatio calculation). The outliers are removed using the standard technique of computing the

Mahalanobis distances of each of the noise samples from the overall noise distribution. As discussed

above when introducing the LRatio, these distances should have a χ2 distribution with df = 2. Any

samples beyond the χ2
2,0.98 level are considered outliers and removed from the noise cluster [17,42].

5.4 Conclusions

This chapter has discussed the choice of an isolation quality metric (IQM) in detail. Several of the

considered metrics appear in the literature to determine isolation quality (SNR, LRatio and isolation

distance). The projection t-statistic Tproj metric has been extended from its initial use as a pairwise

metric of isolation quality to the multiple neuron case. Two other metrics not previously used (to the

author’s knowledge) to measure neuron isolation quality (K-L divergence and the silhouette ratio)

were also considered. The isolation distance (ID) metric was found to have the best performance

under the algorithm’s recording conditions. A very slight increase in performance was found by

combining the metrics in a multiple classifier system. Examining the behavior of these metrics has

lead to adjustments in the data analysis performed by the algorithm in order to more accurately

measure the isolation quality.

It should be noted that the metrics were tested under conditions particular to the online au-
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Figure 5.10. Illustration of the procedure for determining noise and signal clusters. A)
Putative signal events (blue) and noise samples (black) are extracted and projected to their
principal components. B) The signal events are clustered using the unsupervised routine.
The noise samples are all assigned the same cluster identity. C) The t-statistic is computed
between each signal cluster (clusters 2, 3 and 4) and the noise cluster (cluster 1). Here,
t-stat1,2 is close to zero since cluster 2 (green) is very similar to the noise. D) Cluster 2 is
combined with the noise cluster.
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tonomous electrode positioning algorithm. Thus, the results of the tests may not be applicable

under other situations in which isolation quality is measured. For example, in offline analysis of

recorded neural data, experimentalists are concerned with the quality of the isolations over a period

on the order of minutes, whereas the algorithm requires an accurate estimate of the isolation qual-

ity on only about 20 seconds of data. Thus, the metrics which, when used in the algorithm, were

sensitive to errors in the estimate of the cluster covariance will perform better in the offline case, in

which a longer data sample will give a more robust estimate of the cluster covariance.

Other limitations imposed by the algorithm include

• Computation time limitations on the clustering algorithm (metrics must therefore be less sensi-

tive to clustering errors produced by nonoptimal but computationally less expensive clustering

routines).

• The requirement of a definitive classification (ambiguous cases cannot be flagged to be settled

by a user).

Thus, the extension these results comparing various isolation quality metrics to other situations in

which isolation quality in measured should be done with care.
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Chapter 6

Algorithm Implementation:
Software and Hardware

The algorithm presented in the previous chapters has been implemented in software and used by

neuroscientists to autonomously position electrodes in a number of electrophysiology experiments.

This chapter describes the details of the software (Section 6.1) and hardware (Section 6.2) used

in the complete electrode positioning systems. Section 6.3 describes a novel microdrive that was

developed as a step towards autonomous positioning of electrodes in chronic recording implants.

6.1 Software

This section describes the implementation of the autonomous isolation algorithm presented in the

previous chapters, including a qualitative discussion of design requirements and details of the soft-

ware package. The software has been designed for acute extracellular recordings. Future extensions

for controlling chronic motorized arrays are discussed in Chapter 8. Even though the algorithm is

designed to run autonomously, there will be some degree of interaction (discussed below) with the

neuroscientist using the software to control electrodes. This interaction ranges from simply turning

on and off the algorithm, to adjusting the algorithm’s parameters (thresholds for isolation, step sizes,

etc.) and overriding its movement commands (6.1.2).

6.1.1 Software Design Requirements

Safety

Mistakes made in the positioning of electrodes during a recording session can seriously damage brain

tissue, lowering the quality of subsequent recordings made in the same brain area or even causing

potentially fatal harm to the animal. Thus, safeguards must be in place to catch potentially harmful
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electrode movement commands (e.g., moving very far at a large velocity), and the user must be able

to quickly override any questionable commands.

Ease of Use

Obviously, as the experimentalist will use the software intensively for up to several hours a day, it

should be easy to use and informative in its display. It must also give the user maximal control over

the movement of the electrodes.

Customizable Hardware Interface

Neuroscientists use a variety of microdrives and data acquisition systems. The software must be

able to interface with these various systems. Selecting which system is in use and modifying the

code to interface with a previously unknown system must be simple.

6.1.2 Implementation

The algorithm has been implemented (by the author) as the SpikeTrack Toolbox in MATLAB (The

Mathworks). The toolbox consists of a number of graphical user interfaces for controlling electrode

depth, setting algorithm parameters, testing the algorithm with simulated data and offline analysis

of recorded data. Several aspects of the software and how they meet the above requirements are

discussed in this section.

“Shared Control” and Multi-Threaded Operation

The algorithm presented in this thesis is designed to be fully autonomous, operating without any

human supervision or interaction. In many cases, however, the neuroscientists using the software

wish to use the algorithm to provide “assistive control,” augmenting the neuroscientist’s own manual

electrode control. The software can be switched easily between fully automatic control mode, manual

control mode (purely human commands) and “shared control” mode, in which the user can override

the algorithm’s movement commands. This shared control enables the user to control many more

electrodes than would be possible manually. The user oversees the algorithm’s isolations and corrects

any movements which the user considers suboptimal in complex recording situations. The user can

focus on aiding the algorithm during the difficult isolations, guided by the software’s graphical

displays of the data analysis (the principal component projections, the estimated isolation curves,

etc.), while the algorithm autonomously manages the easier isolations.

To achieve this flexibility, the user must be able to control the electrodes at all times, whether in

manual mode or in shared control mode. The user interface must be able to receive and carry out
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movement commands even while processing data. Such parallel operation (simultaneously analyzing

data and moving electrodes) and continual responsiveness to user input could not be achieved in a

single MATLAB session. MATLAB is single-threaded, meaning only one function can be executing

at a time. If the user commands an electrode to be moved, for example, in 1 µm increments every 0.2

seconds, the movement would stop unacceptably while the algorithm is busy detecting or clustering

spikes on the other electrodes. To mimic multi-threaded behavior, the software opens a separate

MATLAB session in the background. This second session (the electrode movement engine) sends

the required periodic movement commands to the microdrive to move at the rate specified by the

user. The operating system then ensures that the movement commands are sent at the proper rate

(to within an acceptable tolerance) even while the primary MATLAB session is busy analyzing data.

The two MATLAB sessions communicate through a memory-mapped file to which both have access,

passing between them electrode movement commands and current electrode depths.

Options Control

The user can control the behavior of the algorithm by setting a list of options in a graphical user

interface. The user has control over the isolation quality thresholds discussed in Section 4.1.2,

adapting the criteria for quality isolations depending on experimental needs or prior knowledge of

conditions (e.g., lowering the thresholds for a low quality electrode or if multicellular recordings are

acceptable in the experimental paradigm). The user can also control various step sizes to more or

less thoroughly search a brain area for activity (lowering the step sizes if the user is more certain of

the location of the neurons of interest and thus desires a more targeted search of an area).

Hardware Interface: External Function References

To interface the software with a particular microdrive and data acquisition system, the user provides

a set of MATLAB functions for various tasks, such as initializing the data acquisition, acquiring data,

initializing the microdrive, moving the electrodes, reading the current depth of the electrodes, etc.

For example, to control microdrive X, a function with the prototype move X(motor number,steps)

might be written. The set of functions to control a system is called the system’s external functions

(i.e., functions external to the main algorithm code). Functions have been written for several common

microdrives and data acquisition systems, as discussed below.

6.2 Hardware

The algorithm has been used to control a number of electrophysiological recording setups. After

describing the general experimental setup, the particular setups are discussed.
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6.2.1 The General Closed-Loop Electrode Positioning System

A diagram for the full system in which electrodes are autonomously positioned to optimize the

neural signal is shown in Figure 6.1. The microdrive is placed over the brain region of interest

and its electrodes are lowered to the depth of the targeted neurons. The electrical signals from the

electrodes are typically routed first to a headstage. The purpose of the headstage is to lower the

impedance of the signal pathway from the high impedance (∼1 MΩ) of the electrode, making the

pathway less susceptible to interference from electromagnetic noise sources such as the building’s 60

Hz power system [30]. Next, the signal is high-pass filtered to dampen 60 Hz and local field potential

(LFP) activity [34] in order to accentuate the spikes.

The filtered signal is sampled (at 20 kHz) by an analog-to-digital (A/D) card, for example, the

PCI-MIO-16-E-4 multifunction data acquisition (DAQ) card by National Instruments (Austin, TX).

The input signal to the DAQ card is the difference between the signal potential and a reference

potential. The reference point (i.e., ground) of the signal varies across systems. Typically, the guide

tube, which surrounds the electrodes and is used to protect them during insertion through the dura,

is used as a reference. It is a low impedance pathway with a large uninsulated area (compared to

the electrode tip) that is theoretically at the brain’s average “resting potential,” and so differences

in potential between the guide tube and the electrode tip should be due to local activity near the

electrode tip. Measuring this difference should eliminate the common influence of electromagnetic

noise on the signal and reference pathways (common-mode rejection [30]). In practice, noise may be

inserted between the electrode signal and the guide tube reference by large currents such as those

used to control the microdrive. Given the complex geometries of the current pathways, using multiple

reference points might be necessary to reduce noise. Thus, in common experimental practice, the

optimal referencing to minimize noise must be found through trial and error.

The system shown in Figure 6.1 could be considered a feedback control system for positioning

the electrodes. The plant includes the electrodes, microdrive and neural tissue. The controller is

the software described above, implementing the algorithm of the previous chapters. The filtered

and sampled voltage signal and the electrode depths are the sensor inputs to the controller. The

output (actuating signal) of this controller is an electrode movement command for each electrode

being controlled. These commands are typically sent to a motor control unit which translates the

movement commands into the proper voltages to move the electrodes, closing the feedback loop.

6.2.2 FHC Single-Electrode Microdrive

The control system was first used to control a single-electrode hydraulic microdrive by FHC, Inc.

(Bowdoin, ME), as it is a standard microdrive in use by electrophysiologists. The system I used is
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Figure 6.1. System diagram for the closed-loop electrode positioning system. The spe-
cific microdrive shown is the Movable Array Testbed described in Section 6.3, but could be
replaced with any other microdrive described in the text.

typically controlled by a hand-held remote control (Figure 6.2A). The remote control sends voltage

pulses to a motor control unit, which in turn advances or retracts the hydraulic drive mechanism. In

order to use the autonomous algorithm to control the microdrive, it must somehow be controlled by

a computer instead of the remote control. To achieve this, the voltage pulses emitted by the remote

control are mimicked by a Digital I/O card (National Instruments) connected to the motor control

unit in place of the remote control.

The algorithm also requires the current depth of the electrode as an input. This position cannot

be obtained simply by integrating the movement commands sent to the motor control unit for several

reasons. First, the electrode depth must be initialized when the algorithm starts up. Also, commands

to move the electrode beyond the end of its stroke will not be executed, and this must be known by

the algorithm. There must be some feedback from the motor control unit about the current position

of the electrode. As there is no depth output signal built into the FHC motor control unit other

than the visual LED display, the voltage signals from the LED depth display were routed to the

Digital I/O card on the computer running the algorithm. A MATLAB function was written which

decodes these voltage signals into the digits displayed on the LEDs, thus giving the depth of the

electrode. The complete interface with the FHC motor control unit is shown in Figure 6.2B.
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Figure 6.2. System diagram for the FHC microdrive. A) The system as it is used under
manual control. The remote control is used to send movement commands to the motor control
unit, which in turn moves the hydraulic actuator in the microdrive. B) The system modified
for closed-loop computer control. Inside the motor control unit, wires carrying the voltages
to light the LEDs on the depth display are diverted to the digital I/O card on the computer.
The computer decodes these voltages to determine the current electrode depth. The same
digital I/O card is connected in place of the remote control and voltage pulses are sent to
mimic the remote control to advance or retract the electrode. These two signal pathways
(depth reading and motor control) are hardware hacks to make the manually controlled FHC
microdrive computer controlled.

6.2.3 Thomas and NAN Multielectrode Microdrives

Two commercial multielectrode microdrives have also been controlled using the closed-loop system,

the NAN electrode drive (NAN Instruments, Israel) and the Thomas Mini-Matrix System (Thomas

Recording, Germany). They can hold sixteen and five electrodes, respectively, and, to date, a maxi-

mum of five electrodes have been controlled autonomously at a time. Both systems were designed to

be manually controlled using a computer interface, and so interfacing with the autonomous control

software did not require hardware modifications as with the FHC system. For these microdrives,

MATLAB functions were written to send movement commands through the computer’s serial port.

6.3 Movable Array Testbed

Section 1.1.2 described the current limits of chronic neural recording technology, including low yield

of relevant neurons and short lifetimes due to tissue reactions. One possible solution to these

problems is an array in which each electrode can be independently repositioned after implantation.

In such an array, electrodes could seek out task-relevant neurons and move to areas of fresh tissue

after scar tissue fills the local area.

The development of a chronic motorized array is currently underway. The eventual device will

require extensive development in microelectromechanical systems (MEMS) for actuating electrodes

at small scales. We have developed a conventional (non-MEMS) prototype device, the movable

array testbed (MAT), for testing various aspects of the eventual device, including the use of the
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Figure 6.3. Exploded sketch and photograph of the first version of the movable array
testbed. Drawing by J. Cham from [8].

autonomous positioning algorithm over long periods of time. The goal was to build a device which

could be used “semi-chronically,” that is, not implanted, but capable of remaining inserted in a

standard recording chamber for weeks at a time.

The principal mechanical design and fabrication of the MAT was done by Jorge Cham. I collab-

orated on the mechanical and electrical system design and was responsible for integrating the drive

into the full recording and control system as well as getting the system to work in actual recording

experiments (i.e., finding proper grounding to reduce noise and proper insertion technique to safely

penetrate dura). Further details can be found in [8, 9].

Several prototypes have been built and tested; Figure 6.3 shows an early version of the MAT,

Figure 6.4 shows the most recent version and Figure 6.5 shows samples of data recorded by the most

recent MAT. The MAT has been used to isolate neurons in rat and monkey cortex under both man-

ual and autonomous control. The novelty of the design is its small size compared to commercially

available microdrives. The small size was accomplished by closely packing three piezoelectric linear

actuators into the recording chamber. The body of the microdrive was manufactured with stere-

olithography and coated with Parylene for biocompatibility. Hall-effect sensors provide knowledge

of electrode depth to 1 µm precision. The final assembled microdrive weighs 26.1 g.
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6.4 Conclusions

In conclusion, the autonomous positioning algorithm presented in the previous chapters has been

implemented in software and integrated into a variety of hardware systems, showing its generality.

The following chapter will show example recordings to demonstrate the use of one of these complete

electrode control systems to isolate neurons in a multielectrode extracellular recording.

Figure 6.4. Exploded sketch and photograph of the latest version of the movable array
testbed. Drawing by J. Cham from [9].
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Figure 6.5. Simultaneous recording of neurons using the prototype microdrive. Column a)
shows the raw filtered data stream. Column b) shows the detected and aligned spikes. The
diagram on right shows to relative scale the positions of the electrodes when the recording
was made, as well as sample spikes recorded along the trajectory of electrode 3.
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Chapter 7

Demonstration of the Autonomous
Control System

This chapter presents neural data acquired using the autonomous electrode positioning system. As

discussed in the previous chapter, the closed-loop system has been used (and is used, as of this

writing) to autonomously position electrodes in a number of electrophysiology experiments. One of

these experiments was chosen to demonstrate the performance of the system. The data presented

was collected by a member of the laboratory of Richard Andersen as part of an electrophysiology

experiment (and not specifically for validation of the autonomous electrode control system). After

describing the procedure used to gather the data in Section 7.1, results are presented in Section 7.2.

7.1 Method

Surgical Procedure

All surgical and animal care procedures were in accordance with National Institutes of Health Guide-

lines and were approved by the California Institute of Technology Institutional Animal Care and Use

Committee. Sterile surgery was performed on a rhesus monkey (Macaca mulatta) in which a stain-

less steel head post (for head restraint during experiments) and an acrylic head cap were implanted

onto the skull of the animal. The animal was trained on the behavioral task (described below).

After successfully learning the task, a second surgery was performed, in which a portion of the skull

was removed and replaced with a cylindrical, sealable acrylic chamber (discussed in Section 2.1).

This chamber allowed access to the medial bank of the intraparietal sulcus. The intraparietal sulcus

divides the parietal lobe, which integrates information from various senses [26].
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Behavioral Paradigm

In the behavioral task, the animal used a joystick to move a cursor on an LCD display. The animal

was required to fixate on a central dot on the LCD display while moving the cursor from the center of

the screen to a target which appeared in different locations on each trial. Each trial of the task lasted

approximately two to five seconds, followed by a variable length pause. The animal was rewarded

for each correct trial with a small amount of juice from a solenoid-activated tube placed close to

the animal’s mouth. The subject performed anywhere from 500 to 1500 trials in an experimental

session.

Recording System

A microdrive by NAN Instruments was used to position three or four electrodes, and the signal from

the electrodes was acquired through filters (Plexon, Inc) and an analog-to-digital card (National

Instruments). More details on the hardware setup can be found in Chapter 6.

Recording Procedure

To begin a recording session, the animal was sat in a specially designed primate chair and was

head restrained. The animal was placed in a darkened room facing an LCD display. A tray with an

integrated joystick was placed within the animal’s reach. An infrared camera monitored the animal’s

eye position.

The microdrive was loaded with three or four glass-coated metal microelectrodes of impedance

in the range 0.5–2 MΩ at 1 kHz. Each electrode was placed in its own protective guide tube, and

the electrodes were retracted into the guide tube to avoid damaging them during insertion. The

microdrive was mounted to the recording chamber, and electrical connections were made to route

the signal from the electrodes to the data acquisition system as described in Chapter 6.

The guide tubes were advanced into the tissue until all guide tubes pierced the dura (the tough

outer layer surrounding the neural tissue). The guide tubes then remained stationary until the

end of the recording session. The electrodes were advanced at 5 µm/s, while the experimentalist

monitored the signal on a graphical display and through an audio amplifier. Each electrode was

stopped when spikes were detected by the experimentalist on that electrode’s signal channel, as this

indicated that the electrode was in the neighborhood of active neurons. The experimentalist then

waited for about one hour before continuing the experiment in order to allow some of the tissue

decompression (discussed in Chapter 3) to occur.

After waiting one hour, the SpikeTrack electrode positioning software (Section 6.1) was initial-

ized. All electrodes were placed under autonomous control, and the software attempted to isolate
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and hold neurons. Whenever a sufficient number of electrodes were recording isolated neurons, the

experimentalist turned on the behavioral task. Neural data were streamed to disk along with be-

havioral variables (joystick position, eye position, etc.). If there were not an acceptable number of

isolations, the task was paused, as the animal was only motivated to perform a limited number of

trials per recording session, which should not be wasted if no isolated neurons were being recorded.

The computer running the SpikeTrack software also logged the neural data to disk, along with de-

tails of the analysis and state transisitons performed by the EPSM. Recording sessions lasted until

the subject was no longer motivated to perform the task, from one to four hours.

7.2 Results

7.2.1 The Isolate, Isolated and Reisolate Modes

For convenience in discussing and graphically displaying the performance of the algorithm, the states

of the Electrode Positioning State Machine (EPSM) are grouped into “modes.” When the current

state of the EPSM is in any of the states Spike Search, Gradient Search or Isolate Neuron, then the

EPSM is attempting to acquire an isolation, and, thus, these three states taken together are referred

to as the Isolate mode. (Boldface type is used to distinguish modes from states, which are set in

italic type. See Chapter 4 for a full description of the EPSM.) Neuron Isolated is in its own mode,

the Isolated mode. Reestimate Gradient and Reisolate Neuron are grouped in the Reisolate mode.

Thus, the status of the EPSM can be divided into the three major activities of Isolate a neuron,

hold an Isolated neuron, or Reisolate a previously isolated neuron. This grouping is used simply

because it is convenient for displaying the activity of the EPSM.

7.2.2 Example Isolations

This section shows examples of neurons isolated and held in isolation by the autonomous positioning

algorithm.

Figure 7.1 shows the isolation curve of a neuron, along with the spike waveforms detected at

several depths on the isolation curve and their principal component projections. The observations

were taken as the electrode was advancing, shown left to right in Figure 7.1. The first four obser-

vations were taken while the EPSM was in the Gradient Search state, moving with a constant step

size (here 5 µm). After the fourth observation, a statisctically significant gradient was detected and

the transition was made to Isolate Neuron (for more detail on the state transitions, see Chapter 4).

The step size was then computed by the isolation curve maximization technique described in Sec-

tion 2.3.2.3. By the final depth, the shallowness of the estimated isolation curve (in red) indicated
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Figure 7.1. An isolation acquired under autonomous control. A) The blue dots are the
SNRs of the spikes detected at each position. The black arrows show the direction of travel
of the electrode (here always advancing). The red curve is the estimated underlying isolation
curve. In Panel B, spikes detected at various points along the isolation curve are plotted,
along with their principal component projections.

that the electrode was very close to the maximum of the curve. As the isolation quality was good

enough to declare that the neuron was isolated, the transition was made to Neuron Isolated and the

electrode was not moved. The plots of the principal component projections of the detected events

show the dominant cluster (the only signal cluster in this case) moving away from the noise cluster

as the quality of the signal improves.

After the initial isolation, this neuron was held isolated, as seen in Figure 7.2. Figure 7.2 shows

the mode of the EPSM, the signal quality and the electrode position over the time course of the

isolation. The EPSM mode is conveyed both by the top plot and the background color of the plot.

In this plot and in several plots throughout the chapter, the background color of the plot represents

the current mode of the EPSM with the following conventions:

• Attempting to Isolate a neuron colored red.

• Holding an Isolated neuron colored green.
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• Attempting to Reisolate a previously isolated neuron colored yellow.

The portion colored red (indicating that the EPSM is in Isolate mode) shows the same observations

as in Figure 7.1, only here plotted against time. For the remainder of the plot, the neuron is held

isolated (indicated by the green background). The electrode is periodically retracted, as can be seen

from the downward slope in the plot of electrode depth (the lowest of the three stacked plots), to

avoid damaging the neuron. The proportional control used to keep a safe distance from the neuron

(Section 4.1.2) is effective at maintaining a relatively stable level of signal quality. The neuron was

still isolated when the recording session was terminated.

Often, holding an isolation is more challenging than the case shown above. Figure 7.3 shows

the system actively repositioning the electrode to maintain an isolation for two hours. In the yellow

bands, the EPSM is attempting to reisolate the neuron (either in the state Reestimate Gradient

or Reisolate Neuron depending on whether a gradient in signal quality has yet been found, see

Section 4.2.6 for details). The EPSM attempts to reisolate when it detects that the signal quality

has dropped significantly from its value when the neuron was first considered isolated. The EPSM

attempts to estimate the new isolation curve (since the neuron has most likely drifted) and raise

the signal quality. Figure 7.3 shows a clear pattern of decay in signal quality when the electrode is

stationary (in green) and then improvement in Reisolate mode (in yellow). Panels B1 and B2 show

detected events before and after a successful attempt to raise the signal quality. After approximately

two hours, the reisolation attempt finally is unsuccessful (Panel B3). Either the neuron has drifted

away from the electrode’s line of travel, or it has moved far enough along the line of travel that

the steps taken in Reestimate Gradient are not large enough to detect the gradient of this curve.

The EPSM reinitializes in Spike Search to find a new neuron. In the case shown in Figure 7.3,

the electrode is advanced approximately 100 µm and isolates another neuron (Panel B4). It then

retracts to avoid damaging this neuron.

It should be noted that the neuron isolated near the end of Figure 7.3 could possibly be the

same neuron as the one isolated for the first 110 minutes. This is unlikely, though, as the direction

of improvement during the reisolation attempts was generally backwards. This indicates that the

neuron has drifted behind the electrode tip, while this second neuron was isolated by moving the

electrode forward approximately 100 µm.

7.2.3 Algorithm Performance

The performance of the algorithm is displayed for two complete recording sessions in Figures 7.4

and 7.5. Each of the four panels displays the isolation quality metric, position and EPSM mode

(attempting to Isolate, neuron Isolated or attempting to Reisolate) for one electrode over one
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Figure 7.2. A combination of plots showing the neuron from the previous figure being held
in isolation. A) Plots of the EPSM mode, the SNR and the electrode position over time. The
background color also shows the current mode of the EPSM, corresponding to the top plot.
In this isolation, the electrode is periodically retracted to avoid damaging the neuron while
still keeping it isolated. B) Detected spikes and principal component projections at the times
indicated by the arrows. Comparison of the three columns shows a stable isolation over the
50 minutes.
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Figure 7.3. Example of a neuron being held in isolation for 110 minutes. B1 and B2 show
spikes and PC projections before and after a successful reisolation attempt, indicated by the
rise in SNR across the yellow Reisolate band. Between B3 and B4, the neuron is lost, and
the algorithm moves forward to isolate another neuron.



88

recording session. Each panel is identical in form to Figure 7.3A, except that the isolation distance

(ID) is plotted in place of SNR to give a better indication of the isolation quality.

In Figure 7.4, the electrodes represented in Panels A, C and D recorded isolated neurons for most

of the session. In panel B, the EPSM does not find a stable isolation until eighty minutes into the

session, but the isolation it eventually achieves is quite stable. The recording session in Figure 7.5 is

not as successful, which is immediately apparent by the increase in red area and the corresponding

decrease in green area. Large differences in the number and quality of isolations from day to day is

not an uncommon experience for electrophysiologists. Replacing electrodes or entering tissue in a

slightly different location can seriously affect recording quality.

Figure 7.6 summarizes the isolation quality achieved in one month of recording sessions. Each

set of bars (there are sixteen sets in the figure) represents the recording session of one day, each

bar representing one electrode. Each set is formed by removing the line plots from the panels in

Figures 7.4 and 7.5 (leaving only the background color representing the EPSM mode) and vertically

compressing them. A missing bar indicates that one of the electrodes was not used during that

recording session.

Some simple performance statistics for the example month can be computed from these data.

• Electrode-hours under autonomous control: 153

• Percentage of time with neuron isolated: 56%

• Percentage of time attempting to isolate: 32%

• Percentage of time attempting to reisolate: 12%

• Number of isolations over 30 minutes per electrode per day: 1.2

• Number of isolations over one hour per electrode per day: 0.65

7.3 Discussion

Examples have been shown of the autonomous positioning system operating in an electrophysiol-

ogy experiment. To date, the system has been used to control electrodes for about one thousand

electrode-hours (that is, the number of electrodes controlled multiplied by the number of hours),

achieving and maintaining hundreds of isolations in at least four experimental setups.

It is difficult to conclude much about the performance of the algorithm from the statistics item-

ized above, as the comparable human performance has not been studied. A controlled comparison

between the algorithm and a human operator would be complicated by the variability in recording

quality across electrodes, areas of electrode insertion, recording hardware and other factors.
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Figure 7.4. Plots of the isolation quality on all four electrodes over the course of an entire
recording session.
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Figure 7.5. Plots of the isolation quality on all four electrodes over the course of another
recording session.
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Figure 7.6. Plots showing the mode of the EPSM for all recordings in one month. Each
set of four bars represents the EPSM state on the four electrodes for a given day’s recording
session. Missing bars (on 2/8, 2/14 and 2/17) represent electrodes which were not used on
that day. The overall performance of the algorithm can be seen by examining the proportion
of green and red area. The plots in Figure 7.4 have been compressed to form the set of bars
labeled “2/06”.
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The above statistics, however, along with the fact that the software continues to be used by neu-

roscientists to increase their yield of isolations, demonstrate that the algorithm has achieved at least

acceptable performance in acute recordings. If use of the software has been deemed advantageous

when using three or four electrodes, its usefulness will only grow as multielectrode microdrives grow

in the number of electrodes they can control.
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Chapter 8

Conclusions and Future Work

This thesis has presented an algorithm for the autonomous positioning of electrodes to isolate neurons

in extracellular recordings. Details of its implementation in software and integration with commercial

hardware have been given. Novel hardware was presented as a step towards a new class of devices

– motorized chronic recording arrays. The challenges inherent in the task of autonomous electrode

positioning were discussed. Good performance of the proposed solution has been demonstrated.

8.1 Opportunities for Future Work

8.1.1 Tracking Neurons: The Data Association Problem

In the algorithm presented, individual neurons were not tracked across time or electrode depth.

At each step the dominant neuron was chosen, without regard for the properties of the dominant

neuron at the previous step, as the neuron with the largest signal quality metric. This strategy can

sometimes lead to poor algorithm performance.

In particular, if a neuron being tracked pauses firing, a background neuron may be used calculate

the non-firing neuron’s signal quality at that electrode depth. This will affect the estimate of the

isolation curve and lead to non-optimal movement commands.

Also, the algorithm can be sensitive to errors made in determining the number of clusters present

in an observation. Underclustering (underestimating the true number of clusters) can give a falsely

low estimate of signal quality because lower amplitude spikes are mistakenly included in the dominant

cluster. Such errors in clustering may be avoided or corrected for by tracking individual neurons

across time.

It is desirable, then, to be able to track neurons across observational periods, that is, to determine

which clusters in sequential observations originated from the same neurons. This is closely related

to the motion correspondence problem in computer vision, in which it is determined whether two
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measurements taken at different times originate from the same geometric figure [11]. In the target

tracking and surveillance community, this widely studied topic is known as the data association

problem [3]. Work has begun and will continue on solving the data association problem for tracking

neurons across time.

8.1.2 Distributable Software

The SpikeTrack software could serve as a useful tool for neuroscientists currently performing acute

extracellular recordings. Given the wide array of recording setups in use, as well as the requirement

to ensure safe movement of the electrodes, further software engineering is needed in order to offer a

stable and easy to install software package to the neuroscience community.

8.1.3 Electrode-Electrode Interactions

As discussed in Section 2.1, in the multielectrode case it has been assumed that the motions of the

electrodes are independent. That is, the motion of one electrode does not affect the signal observed

by a neighboring electrode. This assumption has yet to be rigorously tested, and, to the contrary,

it is commonly observed by neuroscientists that moving one electrode can indeed affect the signal

observed on neighboring electrodes by moving the neural tissue.

Controlled experiments are suggested which could detect the effect. One electrode could be held

steady with a neuron isolated while a second electrode either moves or remains stationary. The

rate of drift in the isolation observed by the first electrode could be measured as a function of the

movement of the second electrode. Given the large variance in the rate of drift in signal quality from

isolation to isolation, such an experiment could take many trials to show a statistically significant

effect. The size of the effect could be studied as a function of electrode movement speed, movement

direction, inter-electrode distance, electrode shaft size or a number of other variables.

Without a clear understanding of the effect of one electrode’s movement on another electrode’s

signal, it is difficult to postulate an adaptation of the algorithm to account for the effect. In general,

increasing the algorithm’s ability to react quickly to changes in signal quality will decrease sensitivity

to the disturbance caused by the electrode-electrode interactions.

8.1.4 Extension to Repositionable Chronic Arrays

As has been mentioned throughout the thesis, a possible application of this algorithm is as the

control system for a chronic array in which the electrodes can be repositioned after implantation.

There are a host of issues which must be addressed to adapt the presented algorithm for chronic

application, some of which are probably still unknown. Several of the challenges are clear already.
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First, the amount of on-board processing power may limit the signal processing that can be

accomplished. This limiting factor may be balanced by the fact that more processing time will be

available in the chronic case. This is because the time scale over which it will be necessary for

the algorithm to compute the optimal movement and move the electrode will be much longer in the

chronic than in the acute case, given, among other factors, that there is no bulk tissue decompression

present in the chronic case. The speed of the decompression in the acute case means that processing

time must be limited to allow the algorithm to react quickly as neurons drift.

Second, a key feature of the proposed motorized chronic implants is their ability to record from

the same neuron for long periods of time, perhaps over the course of days. Such recordings would

be very useful, for example, in studies of the neural basis of learning. New analysis tools must be

developed to track a neuron over long periods of time, including statistical tests to determine if the

same neuron is indeed being tracked, or if it has been replaced with a new neuron that may be

similar in spike shape, amplitude or response to external stimuli.

Third, it is unknown how local tissue reactions may affect algorithm performance, as well as

how to adapt the algorithm to minimize tissue damage caused by excessive movements. It can be

imagined that, in addition to seeking the maximum of a neuron’s isolation curve, the algorithm would

simultaneously be attempting to minimize a cost function relating to the electrode’s movement.

8.1.5 The First Steps. . .

In conclusion, the work in this thesis is among the first steps in automating neural recording technol-

ogy. As advances in microdrive technology increase the number of electrodes, the experimentalist is

becoming the limiting factor in the amount of useful data extracted from the brain. Automating the

isolation procedure, bringing some science to the “art” of isolating neurons, is beginning to remove

this limitation.
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