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Abstract

The decay rate of bound muons is calculated and numerical
results are presented for a number of nuclei up to lead. The decay
rate is found to be a monotonically decreasing function of the atomic
number, in contrast with recent experimental results.

The muon is represented by a relativistic wave function for a
point nucleus with parameters adjusted for finite-nuclear-size effects.
The outcoming electron is represented by a Sommerfeld-Maue wave
function. The errors involved in these approximations are discussed.
An estimate of the error in the electron wave function-is obtained by
comparing with an exact calculation for the lowest electron angular
momentum state.

The spectrum and angular distribution of the electrons are also

presented,
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I. INTRODUCTION

The decay of negative muons in matter is complicated by the
formation of mu-atoms. However, in a typical situation almost all
the decays are from the ground state since both the time to slow down
an incident beam and the time of descent to the ground state are neg-
ligibly small compared with the muon lifetime, %

The decay of bound muons differs from the free muon decay rate
for several reasons: The available energy is less, the initial muon has
a different momentum distribution, and there is a strong Coulomb inter -
action between the outcoming electron and the nucleus. For large nuclei
the finite nuclear size is significant.

With the neglect of radiative corrections, which presumably are
less than one percent, one should represent the initial muon and the
final electron by solutions of the Dirac equation with the electric potential
of a finite nucleus. This is rather difficult and we shall find it necessary
to approximate both wave functions.

The main results are presented in Table I and in Figures 5-8,

The bound muon decay rate is a monotonically decreasing function of

*For example, in solid matter the muons from a 100 Mev beam descend
to the ground state in less than 1077 sec. See Reference 1.



atomic number, * This‘ is in conflict with experiments (2) but in agree-
ment with the result obtained by Uberall (3), who used a Born approxi-
mation electron wave function to find the lowest order Coulomb cor-
rection.

The angular distribution of the electrons is also presented.
These results, together with observed asymmetries (4), can be used
to determine the degree'df polarization of bound muons.

The calculation is outlined in Section II, the muon wave function
and the Sommerfeld-Maue (S-M) electron wave function are discussed
in Section III, and the body of the calculation and the results are pre-
sented in Section IV. In order to obtain an estimate of the error in-
volved in using the Sommerfeld-Maue wave function, we also calculate
the partial decay rate fo the lowest angular momentum state of the
electron and this is described in Section V. Section VI is devoted to
estimating the error involved in dropping higher order terms in the
S-M calculation. The result for the total decay rate is compared with

experiments and the results of other calculations in Sections VII and

VIII,

als

*These results were presented by J. Mathews at the December 1959
meeting of the American Physical Society at the California Institute
of Technology.



II. OUTLINE OF THE CALCULATION

A. General Result

In this section we shall outline the calculation for the spectrum

and the angular distribution of the electrons in the process

- v
Hbound etv +v

The matrix element T for bound muon decay is
T= V8a/fa’x I_(® v, 2 (X)) 8, (F)y,a 0, (9) 276(Q,-p k-5
(1)
where the momenta are defined in Figure 1. %
Let us define M by

= N8 G M 276 (Q,-p,-k-s-1) ' (2)

The the total decay rate for polarized muons is

R = SGZ P dtZ (27r4 4(Q- -k-s-t) (3)
/(zuz)(z)/(zw)f ’

spins

We can insert suitable projection operators and take traces to obtain

#*I use the conventions h =c¢c =1 and x+x = x4 —xlz—xzz-x32, and the

y—matrices:

0
vy - L Y, * Ta for a =1, 2, 3.
0 -1 o 0

following representation for the
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a simpler result, ¥%
The neutrinos are unobserved

, S0 1t is convenient to eliminate

them from the calculation atan early stage. The neutrino wave func-

tions are

L]Jv(;) = e ur kIJV(;) = el vV - (4)

Therefore, using the momentum delta function, we have

B e P

) o 1(p+k)
M=/d3x Lpe(;)y(ratpp(x)e (ﬁ?yo_av_s.) (5)

For convenience, let us also define a quantity N(T by

M = N(T(u-{ ¥, v.g). Then

3 3
/ d S3 /—(-i——t—?) Z: [M] 2(271’)4 64(Q—p—k—s-t)
(27) (27) neutrino
spins

n’

/d /d t ! TracetY(raéﬁka(2ﬂ)464(.0_-p—k—s—t)
(z ) (277) 2s 2t

(6)

] 2
NoNx 25 (G,Gy -G8 )

Th : — . 1 . _
e spin projection operator is a _Z(l + 1\:5) where \ Y1Y2Y3 Yy *
The spinor u will denote either or All spinors will

o = o

1
0
0
0

=]



‘where G = Q-p-k. We have made use of the following identity (see

Appendix A):

/ : / S I
27

> ey’

(7

1 2
= — . e b + b
: (2GaG G a-<b)

—>

Let us denote the available energy®¥¥ Q- by W. Then G ={W -k, k).

4Py
The total decay rate for the decay of polarized muons can now

be written

} - 1 | 2
R = / P No— N)L 12 7 (GO' G)L -G8 GA) (8)
( ) electron

spins

This is the general result into which we shall insert successively

better muon and electron wave functions.

+
normalized by U U = 1. T also take mH=l and let Z denote Z/137.0

where Ze is the atomic number. G is the coupling constant of the weak
interaction.

alsals

*%The neutrinos are left-handed, so the integration over momenta im-
mediately takes care of the sum over spins. The mass of the electron
will be neglected so the same thing applies to the electron.

e als ol

*t%We shall neglect the motion of the residual nucleus so that it can take
up momentum but no kinetic energy. Hence W depends only on the
masses and the binding energy.



B. Simple Example

It is instructive to carry through the calculation with simple
wave functions to see how things go and especially to see which regions
contribute most to the integrals. The simplest wave functions we can

choose are

3/2 - T

LPe('f):e u g q;p(;): :tTZ e 110 (9)

where p = Zm/137.0 and Zm is the charge seen by the muon., Itis
useful to keep Z and yu distinct.

We immediately have

ETTEL:
N, = 87 2 2.2
(ptu)

@, y,au) (10)

and after the sum over spins we have, for oriented muons, %

2 5 w krnax 2 2
_ G 256 1 P k
R = = dcoses dp dy dk ———— x
1927 2 (o2t i)
-1 0 -1 0 P T

x [ [3W- 4Wk + 2py (W-2K) - p°] 1y

2 2
+{ W -4Wk - 2py (Wr2k) - p —szyz] cos a }

" . . . .1, 1 )
The projection operator for spin up muons is —2(1+y4)——2- (l +1i YIYZ)'



A A AN
where cos @ = krz, y =p°k, and
2 2
k= W-p (12)
2(W +py)

The muon spin is along Z so the term dependent cos gives the
angular distribution of electrons. The trivial integrations have been
done and the shape of the remaining region in phase space is shown in
Figure 2. The region of integration depends, of course, only on the
kinematics and will be the same for all subsequent integrations. The
kinematics are treated in Appendix B, The traces which arise in this
problem are given in Appendix F. Itis simpler first to contract
NO,N)‘(GU G,- GZ o‘;_} ) and then to perform the trc;a,ces.

For small y the p-integral peaks sharply near p = u/ I3 soto
a first approximation we can simply take p = w3 . When we do this
in the radial integral of Ng ,

47T fdr rZ e"P'r Sin pr
pr

we find that about .7 of the integral comes from the region 1{rp{3,
that is, from between one and three muon Bohr radii.

In general, when expanding various results for small p, we
must remember that p is of the same order as .

The remaining integrals in Ejuation 1l can be performed analytic-

ally for this simple case and the result is



+|
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The region of integration in (k, p,y) space.
22
W -p

(2(w+py)

right by the surface km =

It iz bounded on the
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2
. . A 2 4
R=—-C—}—3—>W5 3?1[ 3 (3 -4A7-15Q")
19271 +A"
(13)
2 4 -1 01
+3(-22"+52) tan” = )
A
where A = \L;T . For small p we have
G2 5 2
RY—— W (1-2p) (14)
192t
1 2 . .
and, of course, W=X1 - L This result is well known (5). The
2
first factor, G , is just the decay rate for free muons,
19217

IIT. . WAV E:EUNCTIONS

Now we shall obtain more realistic wave functions for the muon

and for the electron. In both cases, it is still necessary to use approxi-

mate wave functions.

A, Muon Wave Function

The muons decay from their ground state: the state of j = 1/2

o . + . .
and positive parity. Any 1/2 state can be written in the form

- 1 )
\IJH(_X)= —(—4—11)1/—2 [g(\r)+f(r).106 X]uo (15)

For the case of a point nucleus we have¥*

*See Reference 6, but note that equation 10.13 is incorrect and there

is an error in sign in the subsequent work on the Dirac equation with
a central potential.
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1/2 Yy
2 3/2 _-pr ( ) -1

(1+¥) —— r)
[F(2y+1)]*2 "

g(r)
(16)

_ 1/2
(—i—;—%}-— g(x)

£(r)

2,1/2

yhe,

Even for the lightest elements the singularity at the origin is

with § = (1-p

not realistic and for heavier elements the finite size of the nucleus
becomes important. For example, in ‘iron the nuclear radius is about
one-half the muon Bohr radius, so that the effect of a finite nucleus
must be considered.

For the purposes of this calculation it was found convenient to

take g{r) and £(r) of the form

2 3/2 -pr
gr) = S5 B et f(x) = A elx) (17)

2,1/ 2

1+ A7) - :

It is necessary to have a relatively simple analytic expression for the
radial wave functions so that the integrals remain tractable. The
constants p and A are then adjusted to obtain the best fit to exact
solutions of the Dirac equation with the potential of a uniformly charged

finite nucleus.* This approximation is discussed in Section VI-E.

The radial Dirac equations for G(r) = rg(r) and F(r) = rf(r) are

/3 13

*The nuclear radius is obtained from R = R-oAl with R = 1.2x10 “cm.

In. our units, Ro = 0, 6425,
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[a% -?1] Glr) + [W+1-V(r)] F(r) = 0
(18)

[w-1-v()] G(r)-[d_‘i +-r1-] F(r) = 0

with

N

| IN

r> R

These equations were solved numerically on the Caltech Burroughs 205
and 220 computers,

From our empirical p we can define an effective charge
z = 137.0 p. For instance, at Z = 26, Zrn = 24.2. Other values
are listed in Table I on page 23,

One can obtain a slightly better approximate wave function by
using a different effective charge for the small component, since in a
finite nucleus the small component starts off with one higher power of
r than the large component, and so the peak is slightly displaced.
However, the effect of the small component on the total rate is only
about 3% at Ze = 26, so this improvement is not necessary.

The eigenvalues used here can be compared with values obtained

from other muon calculations. Ford and Wills (7) calculate the 1S



i3

energy.level using a compliéated potential which has been adjusted to
give a good fit to electron scattering data. For Z = 26 and Z = 82,

we have (using m = 105.68 Mev)
M

Z 1S level (Ford and Wills) 1S level (Table I)

26 1.705 Mev 1.783 Mev
82 10.594 Mev 10.483 Mev

The difference is clearly a small fraction of the total energy and can
be disregarded.
Figures 3 and 4 show exact and empirical muon radial wave

functions for the cases Z = 26 and Z = 82.

B. The Electron Wave Function

The Dirac equation with a Coulomb potential cannot be solved in
closed form for scattering states. Since the decay of bound muons
proceeds through many angular momentum states of the outcoming
electron, each of which is not especially easy to handle, it would be
very nice to have a fairly simple approximate solution in closed form.
Sommerfeld and Maue have worked out very useful wave functions (8, 9).
They are most easily arrived at in the following way.

Let us start with the Dirac for a massless electron in the field

of a central potential V(r),
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d1VNIXO0HddV =— —
10VvX3

V
Wz si9jswbpingd |poLsidw3

6800
2’1

G6GGE86°0 = M @njpAusbiz joox3

92 = ¢
suoljoun4 9ADM uonpy 9jpwixoiddy pup }oDx3
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Exact and Approximate Muon Wave

Functions z = 82

Exact Eigenvalue
W=0.9008060

Empirical Parameters
z,=5L4 A =0.5
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(k-V+i&-V) p (x) =0 (18)
" Now let
Lpé('£)= Eli{-(k-v-i?&-?;)e)(;)

Then $(x) satisfies
[(k-v)2+ Vz-i§-(§v)] p(x)=0 {19)

The Cuoulomb potential is -Z/r, so we can write

[3S]

[v2+ %+ 2x

M [N

Jos -[1(VD+ 5] (20)
T
Consider this equation with the right-hand side set equal to zero.

A solution of this truncated equation, with incoming scattered waves, is

e
X

ik
b (X)=e F(-iZ;1; -i(kr + k*x)) {21)

The function F{a;b;x) is the confluent hypergeometric function. ¥

It is now easy to show that the function

X(F)=e 1+ iXV)Fugp (22)

is a solution of Equation 20, with the neglect of the terms

*See Appendix D for a discussion of these functions,
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Z +[16’c-§7’(§—)+z ]—Z%i&’-?}Fu—l; . (23)

The arguments of F are the same as in Equation 21. The approximate

solution to the Dirac equation is now

| iR Lo
p(x)= e U'E i-V)F ug (24)
ikex
Z —— -
+ e '; '1—2 1DC'VF u -
4k

The first part, aside from a normalizing factor, is the celebrated
Sommerfeld-Maue wave function. This is the wave function that we
shall use., Correctly normalized, itis

T ikew

)=z e FQ+iz)e X(l-zl-lziac‘-“v’)F up (25)

Itis easy to show that F(-iz;1; i(kr + kX)) is o(z/r)
asymptotically and O(Zk) at the origin. In bound muon decay, the
spectrum of the outcoming electrons has a maximum at k= 3 and
the integrand in the matrix element has a maximum at r = -E . Then,
roughly speaking, we can say that the significant kr is about kr = .7/.
Since even for lead, Ze = 82, the empirical p is less than 0.7, we

can treat VF as being O(Z/r) for the purposes of this problem.

The terms neglected in Equation 20, i.e., line 23, are then
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O)(ZZ/\(k_r)z) compared with the leading term. Since, at least for small
~ Z, the spatial region of importance is in the neighborhood of two muon
Bohr radii, O(ZZ/(kr)Z) is roughly equivalent to O(Z4/k2) for the
purpose of bound muon decay.

In choosing the Sommerfeld-Maue wave function, we have also
dropped the last term in Equation 24, However, in the region of interest,
it is also O(Zz/(kr)z),

The normalization of the wave function depends only on the leading
term because all the other terms vanish in the limit of large distances.

The wave functioﬁ qJSM( X ) was obtained by approximating the
Dirac equation for an electron in the field of a point nucleus but for-
tunately it turns out to be a slightly better approximation for an electron
in the field of a finite nucleus. Finite size effects will be estimated
later by expanding qJSM( 5;) in angular momentum states and comparing
with the exact solution.

We have been careful to select an electron state with incoming
scattersd waves. However, for calculating the decay rates it is also
permissible to use a state with outgoing spherical waves.

N i

5 Z ikex i - -
$ (X)) =[(-iz)e e (l—ﬁid'V)F(iZ;l;i(kr-k-_:Z))uI{-

A

(26)

Now
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| i (pk) %
N, = [ V() g, () e

Ey

. - 1 g - -
=[ (1-i2z) e’ /d3x uK(l—EEiOC PYF (iZ;1;i(kr+kex)) X
(27)
3/2 iprx
P" _Hr 3 E ;*
X yo_arc——-—l/z e L+ AN i X)uo e
If we put Lpa(i') for ¢e(§) in N, we have
) / . . . i (prk)e X
= | >
N 5 d™x LFJH(X) XA aLIJa(x) e
- %[z/- , -iPX  3/2 " .
- 1 E.__ - T '_’.- -
F(1-iZ) e d'x e 172 e u0(1+/\1oc x)¥,a x
(28)
1 =22 >
X o — 3 R 3 « Fe g . e
(1 Zkloc VYF (iZ; 1; ilkr + k X))uk
Now put X — -x in N)\ . The integral is now, except for a
factor,
3 3 -p,r - i o/\ —]; Lo -
/d X e uo(l-/\lo( x) X}a(l-t- Sk iX-Y)F v (29)

where F has the same arguments as in Equation 27. Now let's trans-

pose the spinors in line 29:

3 -pr T 1 . X
/dxe ug (1+———2k1 X .V)F
(29.1)

-

x (Xla)T(l - A ocT';)uo



18

But = U o , so we have
yu Yyp- y
«T: .0 &o and (J,a)' = -0 a0

A 3 y
and finally we get

3 -ur l . == L2 A ‘
- - ST u' ° ¢ .

/dx e wk(l >3 & V)F X/\ a(l+ Al X * %) W (29.2)

where the w spinors have spin down when the u spinors are spin up.
After we sum over spins, this makes no difference and, since we can

also interchange ¢ and A , we find that we get the same result with

b ().

a

IV, CALCULATION AND RESULTS

To obtain the rate of decay, it now remains to do the space
integrals in Ng; , to sum over electron spins, and to do the momentum
integrals.,

The space integrals can be performed anayltically, and for muons
with spin along the z-axis, after summing over electron spins, we are

left with an expression of the form

R=%/dcoso( /dk /dp /dy X

X [ R{k,p,y) + S{k,p,y) cosx ] (30)
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To obtainthespectrum,angular distribution, and total rate, the
three non-trivial integrations over k, p, and y were done numerically.
A method of working out the integrals is presented in Appendix E and
the numerical work is discussed in Appendix C.

We dropped a number of terms and to make this clear let us make

the following definitions. Let

z ikex .
¢G(>?) = e T (1+iZ) e F(-iZ; 1; i(kr+k-x)) ay (31)

iy

where the subscript G stands for Gordon, who first used this wave
function. If we also let U,JO( X ) denote the non-relativistic muon wave

function times a suitable spinor, u , We can write
= +
Ll‘SM LIJG a LJrJC.‘r

(32)
bt Ay

We now have

| . )
N . fdx[¢GXanJo A g Yead

_ _ -(B+k) %
t g dpa A + Ad Yoo Ay ] e (33)
Ng = M +M, +M, +M,
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Ih the resulj:s presented in Table I and the figures, M4,
the last piece in N 5 , is neglected, although it has been calculated
to lowest order in Z(See Appendix G). In the square of the matrix
element we aiso neglected all terms which involved the product of two
small terms. Thatis, we kept the square of the leading term and
cross-terms with the leading term. The validity of the approximation
will bé discussed later. |

Let Rl(k,p,y) and Sl(k, p,y) refer to the leading term in the

rate and angular distribution, i.e., the term arising from Ml alone.

Rl(ks P Y) + Sl(k, P Y) cos &, =

2
27Z tan_l 2
2 5 2 2 2 kp
G 256p" ITZ kp _ € X
1927{3 T sinhTT Z (p2+p2)4 Q4 + (2kp.)2

X {[QZ‘I‘%k(pz-pz)]Z-l-[Zpk-l'Z Zpky]Z} x

(34)
X { [3‘W2— AWk + 2 py (W-2k) "PZ ]
2

+ | W 4wk - 2py {W+2k) - p —2p2y2] cos }

2 2 2
where Q = 2pky +p +p .
Now we add the corrections arising from the cross terms of the
leading term in the matrix element with MZ’ the piece involving A LpG
and \\JO.



2l

2
27 tan_l 9—-—-——
. 2k
GZ_ 256 H_S TZ kzpz e .
. 2. 2,4 4
19270 n sinhTZ (p+p ) Q + (»ZkM)Z

x [ (2uk+ z2pky ] Z (p%4 %) x
2 2
x{[3W—4Wk+2py(W—2k)—p ]

+ [WZ— 4Wk - 2py (W+2k) - pz— szyz ] cos & }

+[o% + Z; K(p%- 1% ) %; % p) x (35)

X { [ 3'W2- 4Wk + 2 py (W-2k) - p2 pr
2 2
+ 2(W-k) p~ (1-y")
+[W2— 4Wk - 2py (W+2k) - pz -2 pZYZJ cos

- 2 p° (ktpy) (1-y7) cos & } }

The following are the additional corrections to Rl(k,p,y) and

Sl(k,p,y) arising from the cross-terms of the leading term with M3,
the term involving LPG and A LPO .
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2
a8
2Z tan 2 kp.
GZ ' 256p5> nZz kzpZ e ‘
192> T sinhmZ (p2+ HZ)4 Q4+(ka,)2
| 2 . Z 2 2 2
[N {(e® s Zutuh) (@ -z 2 ]
+[2p.k+ZZpky]2 } x
_x{[(w2-4vvk)y-zp(w+2ky2)-3p2y] (36)

.+[3W2—4Wk+2py(w —Zk)-pzjy cos }

- ZAE{Zp.k‘l-ZZpky]Z (p2+,¢2) X

2 2 2

!{[Wz—4Wk-2py(W+2k)-p -2py" ]

+[3W2—4Wk+2py(W—2k)—pZJcoso(] )

The small component of ¢ has been neglected in the normaliza-
tion. This introduces an error of less than one percent at Ze = 26
and about two percent at Ze = 82, Recall that the parameters in the
muon wave function are empirical and, for instance, A for Ze = 82
is 0.15. In fact, this improves the result, This will be discussed later.
The final results are presented in Table I and Figures 5-8. The
rates R_, and R are obtained by using LIJG and LpSM, respectively,

G SM

for the electron wave function. Note that the difference between using
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Table I .

Bound Muon Decay Rate

The de.cay rates RG and RSM were obtained by using LLJG
and LPSM , respectively, for the electron wave function, and are given
in units of the free muon decay rate. The total available energy W is

units of the muon mass. Zm and A are the empirical parameters of

the muon wave function.

e m G SM
0 1.0000 0 0 1.000 1.000
16 .9934 15,6 . 057 - . 991
26 . 9836 24.2 . 089 . 889 .962
35 ‘ L9723 30.8 .’10 . 821 .928
50 . 9507 39.6 .14 .703 . 853

82 .9008 51.4 .15 .493 . 684



Fig. 5

Fig. 6

Fig., 7

Fig. 8

23a

FIGURE CAPTIONS

The decay rate of bound muons in units of free decay rate.
The rates RG and RSM are obtained by using LlJG and

qJSM’ respectively, for the electron wave function.

The spectrum of decay electron from bound muons in iron
(Ze = 26). The electron is represented by an S-M wave
function. The free muon decay spectrum is shown for com-

parison. The energy k is in units of the muon mass.

The integrated asymmetry parameter of decay electrons
from bound muons. The asymmetry parameter S is defined
by R(a_)»_ = R+ S cos a. For free muon decay S is - 13 .

The subscripts G and SM have the same meaning as in

Fig. 5.

The asymmetry parameter of decay electrons from bound
muons in iron (Ze = 26). The electron is represented by
an $S-M wave function. The free muon asymmetry parameter

is shown for comparison. The scale is the same as in Fig. 6.
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LpG and’ LLJSM, or )the effect of A LLJG , is about 7% 1in the rate at

7 = 26. The relativistic correction A LIJO to the muon wave function
e
produced about a 3% change in the rate at Z = 26.

In the square of the matrix element, we have kept only

2
]Mll + ZReMlMZ + ZReMlM

3
The other terms wi_ll be discussed later. Another source of error is

our approximate electron wave function. The next section is devoted

to providing a reliable estimate of this error.

V. PARTIAL RATE

Since the Dirac equation separates in spherical coordinates, the
muon decay problem can be solved exactly for a given angular momentum
state of the electron. We can also pick out the corresponding piece of
the S-M wave function, perform the same calculation, and then com-

pare the results.

A. Expansion of LPSM

Let us restrict our attention to the positive parity j = state,

rol

since the error will be greatest in the lowest angular momentum state.

Any such state can be written in the form
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. 1 . -> A .
b+ (X)) = ———= a(r) - b(r) X°x|u (37)

where the radial functions remain to be determined.

The expansion of is simplified by the use of the well-known

SM
identity proved by Gordon (10):
Iz ikz - -
o2 [@+iz) e F (-iZ; 1; -i(kr + k- x))
(38)

= (4n)1/2 Z (24 Jrl)”zi’Z L, (r) Yzo(é\;) ,
]

where

TC
2% (1414 2)

- -ikr
Ly(r}= e (22+0).

(2kr) Lo F(L41+i Z; 20+2; 2i kr)

This immediately gives the expansion of LIJG. The second part, 4 LpG,

is rewritten as

_—

Z
.- k. - e
M+iz) e T F(-i2; 1 -krtk%)) u o
(39)
We then use the Gordon identity, apply the gradient in spherical form,

and then make use of some of the identities connecting confluent hyper-

geometric functions listed in Appendix D. The resultis
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T

_ /2 27 [TQ+iz) |
Agyg (2m) e e
. -ikr . . ikr . .
X [_(1 +iZ) e F(2+1Z; 3; 2ikr) t e F(2-12;3;—21kr)]
Xz
Boyg = - (2myt/2 2 TlLriZ) +zlz) x (40)

ES

[(Q+iz) KT B2 1iz; 3 2ike) —e T F(2-12:3;-2ikr) ]

It is interesting to compare these functions with the radial func-
tions of the exact solution of the Dirac equation for the case of a point
nucleus. The-exact solution with incoming spherical waves is

Lz . 1 Z(Y-1 Y -1
: (zr{)l/Z ez rr:(zyy_l—.: ]_Z).) e 2 {2 kr) X

*E

k

<[(+i2) ST R +1412; 2041 21k) + o F(Y41-iZ;2f +1;-2i k)

Tz , i Ty -1y
b - (amt % &2 ([%{i%))- e 2 rn? b« (41)

[ (+iz) e KT p(y st zi2Y Hi2ike) o B{Y41-i Z;2)f +1;-2ikr) ]

where X = (1 - ZZ 12 .

1+
The S-M radial wave functions for the 5 state are obtained by
replacing X by 1 in the exact solution. In general, for higher

angular momentum states, the prescription for obtaining the S-M radial
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’ ' 2 2,1/ 2
function from the exact radial function is: replace ¥ = (i “-2z7) !

by |Kl where K is the eigenvalue of the operator - X4(1 + i'g)
That is, we neglect the ZZ inside the square root defining § , but
nowhere else. Of course, to get the rgdial functions of a plane wave
we simply set Z equal to zero everywhere,

We can obtain a state of j = —;? and negative parity by multiply-
ing‘ LIJ1+ by XS This holds only for zero mass particles, but we have

2
used this approximation throughout. The two states of opposite parity

contribute equally to the rate. In each of these states, we make an
1 2 . .
error of order 5 Z in the electron wave function. However, for

2

: ) 1 2
higher angular momentum states, theerroris of order = Z /X =~ , so

it drops off rapidly with increasing | K {.

1+
B. Rate to the > Electron State

: 1
Using the j = > part of the S-M wave function, we obtain the

1+

— ) for several atomic

partial rate to that state. The rates RSM( >

1+
numbers are listed in Table II along with the rates RP(--2 ) obtained
when the electron is represented by plane wave. In calculating these
rates, the small component of the muon wave function was neglected.

We are no longer dealing with oriented muons.

1+

The analytical expression for RSM(_Z

) is
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Table II.

1+
Bound Muon Decay Rate to the > Electron State

The small components of the muon wave function have been
neglected here. The rates Rp and RSM are obtained by using

plane waves and S-M wave functions, respectively. The last column

gives the fraction of the total number of decays which proceed through

the .]; electron state. The same fraction proceeds through the %_
state.
1+
z R (=) R_ (5% RS”J?LE_
e (%) e R

0 0 0 0

16 - 094 . 101 .102

26 151 .176 . 181

35 .179 . 223 . 240

>0 - 191 L2606 .312

82 : . 159 . 274 ‘ .400
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i, . G° ’

G 32 217 . 2 2
R . (=)= /dk/dp/dykp X
SM ‘2 192n3 T 1_e-anz

. { [-KZ +L2+MZ+N2].{ 3(W-K)%- g2 ] (42)

-[KM + LN} 4q (W-K) }
where

. eZIO(+(3—n:)
2

K+il, =

8k2q 1+ Z

X {[zc+(2+zz)19-2sin¢]}i[-zzc-ZD+zz sin § ] }

L ez(o<+[5-n)
M+iN = x

8k “q 1472

. 2 k 2 v 2 . )
)({ (Z.E+(Z+Z)F+ 3 Z(Z+ZI<-+ Z -E)s.mm]

+i[zZE+ZF+2§ (Z+-E)sin0] }

and
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qZ = 1<2-’l-2.k;py+p2
-1 -
0.4 = B = B < Tt
_ tan g 3 tan s 0</3
1 2, 291/2 1 2, 211/2
A =—2-1;[(k+q)+u] B='2§[(k—q)+u)
B
0 = Z 10g K
C = 1 cos {P+8) - 1 cos (f-o)
B A
D =2 sin (0 +8) + 1 sin {f-)
B A
E == cos (6 +8) + 1 cos (9-o)
B A
Foo= 1 sin (§ +8) - i sin (0 -«)
B A
In the limit of Z -0, we have
-2 3
R(—1+)- G3 32 /dk/dp /dykzpz x
{ [ K% + MZ} [ 3(W—k)2— qz_] - KM 4q (W-k) }
where now
2
K -
(qZ._kZ_l_HZ)Z + 41{2“2
2,2, 2 2 2
M = L[— 4 tk +H‘ + — 1lo (q+k) + [t ]
k 2 .2 2,2 2 2 4k 2, 2
R S G Ty R 4 (q-k) ™+ p
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. - 1+
C. Error Estimate for 3 State

We need to compare these results with the rates obtained with
exact electron wave functions., In using S-M wave functions, we make
two types of errors: we neglect part of the Coulomb effect and we ignore
the finite size of the nucleus. Fortunately, these errors cancel to some
extent, but it is still interesting to separate them, Ultimately, we want
to know how well the S-M wave function approximates the exact solution
for a finite nucleus.

Making this comparison presents a difficulty. The exact solutions
for a point nucleus are known analytically, but they are difficult to deal
with, and the exact solutions for a uniformly charged finite nucleus
are not known in closed form. However, it is easy to obtain exact
numerical solutions for any central potential and then to perform the
radial integrals. Unfo‘rtunately, machine calculation of tlhese integrals
takes too long for it to be practical to perform the integrals over
k, p, and y, butitis practical to compaere the integrands:at-a number
of points (k, p,y) in the neighborhood of the maximum. This has been

done for Ze = 26 and Ze =82, At Ze = 26, using a generous estimate

of the error, the rate obtained with the S-M wave function for the

H
NI

state is about 3% low when compared with the exact solution for a point
nucleus and 2% low when compared with the exact solution for a finite

nucleus. The finite nuclear size has a rather small effect.
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At large Ze, say 82, the S-M approximation is also not bad
becauseéhe negleéted Coulomb effects and the finite size effects cancel
each other to some extent, and the result is that the total decay rate is
low by about 10%. One can make a firm statement here about the total

1
— state because about 80% of the electrons

rate from looking at the j =
decay to this state. We do not reap the full benefits of the accuracy
because we have not kept the higher cross-terms in the numerical
integration.

The error in states of j = 3/2 will be about one-quarter of the
error in the j = 1/2 states, so, roughly speaking, the total percent
error is approximately the percent error in the j =1/2 states times
the fraction of the rate which proceeds through these states plus one-
quarter of the percent error in the j = 1/2 states times the fraction of
the rate which proceeds through j = 3/2 states and higher. This is a
generous estimate of the error.

It is of some interest to see the effect of a potential on the con-

tinuum electron wave functions. Figures 9 and 10 show radial wave

functioﬁs for the }——;— state for. Ze = 82.



Fig. 9

Fig. 10

36a

FIGURE CAPTIONS

The radial function G{(r) = r g{r) for a massless electron of
1+
energy k = .3 mp ina 5 state in the field of a nucleus of

2
-1/2
Z = 82. The electron wave function is ¢e(§) = (47) {g(r)

e

+if{r) a- ﬁ]uo. We show two cases: {(a) a point nucleus,
and (b) a uniformly charged finite nucleus. The correspond-
ing radial function of a plane wave, i.e. r jo(kr), is shown

. . o . -1
for comparison. The distance is in units of mp .

The radial function F(r) = r f(r) for a massless electron for
the same cases as in Fig. 8. The corresponding radial
function of a plane wave, i.e., r jl(kr), is shown for com-

parison.
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Vi. THE NEGLECTED TERMS

A. Tiny Piece M

4

The tiny piece of the matrix element - that is, the piece which
involyes | VA LIJG and A liO - is difficult to evaluate exactly because
the method which worked in the /fir st three cases fails. However, it
can be worked out to first order in Z by a procedure which is straight-
forward, though tedious, The method i's outlined in Appendix E,

I have worked out the integral to lowest order in Z and then com-
puted the contribution to the rate from the cross—ferm with the leading
term, again the first order in Z. The expression is very long {it can
be fbund in Appendix G) but the result is that the contribution to the
rate is about 0.002 at Z = 26, so we can safely forget about it.

It is worth noting that this correction to the rate contains no
pieces larger than O(sz). This agrees with what one would intuitively

expect, since Z/r is effectively O(Zp) and A =~ u/2.

B. Other Terms O(Zp,z)

We have now accounted for all terms of order ZlJ.Z which arise
from the large component, but terms of the same order could arise

from the product of M, and M. Strictly speaking, these would be

of order Zp A, However, it can be easily shown by direct calculation
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that these terms vanish to this order and contribute only in higher

order. Details appear in Appendix H,

. We have neglected the square of the term

) 3 - i(pHk)- %
M, = /d x bo Yg a8y e

3
(o]

but it is easy to show that to lowest order it exactly cancels the neglected
term in the normalization.* Notice that the square of this term and the

cross-term with the leading term are of the same order, O(pz).

This is because the leading piece in the larger term, which is O(u)

inthespectrum, vanishes in the total rate,

There are no terms of order 2Z /\Z.

D. Higher Order Terms

The main source of error is probably the square of the term
_ 3 - - i(pik) e x

We can expect that the contribution to the rate is O(Zzpz), which would

make it something less than a percent at Ze = 26. The other higher

order terms are certainly quite small,

If one could calculate the entire matrix element exactly,

#*See Reference 3,
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‘there vs;Quld be this ad\}antage in keeping all terms, even though they
~are smaller than the error involved in using S-M wave functions: One
could then b¢ certain that the comparison in a given angular momentum
state of the S-M rate and the exact réte gave a true estimate of the

error. At present, there is still some play.

E. Error in Muon Wave Function

The parameters in the muon wave function are those that mini-
mize the squared differences between the exact and empirical wave
fumc‘cions.;ﬁ< These are not necessarily the best parameters for this
problem. To estimate the error in the rate arising from the error in
the muon wave function, I made the following comparison.

At a number of points (k,p,y), I compared the partial rates
computed with exact and empirical wave functions. (For the purposes
of this check, I used plane wave electrons.) The rate computed with
exact wave functions was slightly higher, about 0. 6% at Z,* 26, 3.09,

at _Ze='50, and 5. 6% at Z,= 82..‘ The effect is very smooth,

v . 2 . .
*Actually, the comparison was made for r times the wave function.
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VII CQMPARISON WITH EXPERIMENTS

The results presented here are in marked disagreement with
experimental resultg (2) both in the region 20< Ze< 30 and for large
Ze. In the first fegion we do not obtain a sharp peak in the rate, and
for large Ze - say near lead - we obtain rates considerably higher than
the experimental rates. Both of these disagreements are far beyond
our estimates of the error in the calculation.

The disagreement at large Ze is perhaps less serious because
the experiments are very difficult to perform and the calculation is less
reliable., However, at Ze = 26, the error in the calculation is less
than 2 percent. The only possible conclusions are: (a) there is some
property of muons which has not been taken into account, or (b) the

experiments are wrong. In any case, the experiment should be repeated.

Experimental Procedure

A beam of muons is stopped in a target and the outgoing electrons
are counted. .If M muons are stopped at t = 0, then the rate at which

electrons come out is

an :
dt

where R is the decay rate and Rt is the total disappearance rate
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which includes ‘ch'ej ‘capture rate. The total rate Rt is easy to obtain
from the decrease in the counting rate with time, and if we know N/M
we can find R.

In practice, N/M is hard to measure and the quantity measured
is y = n/M = fLN/M, where L) is a factor which depends on the
counfér efficiency and the geometry. Since {1l is almost the same for

different targets Z and Z', we have

v(Z) .: N(z) M(z)) (45)
y(z") N(z1) M(z)

and
R(z) ~ wz) RdE) (46)

R(z)  y(z) R(Z)

In the calibrated efficiency method, electron and positron yields

from identical negative and positive muon beams are compared with

the same target. In the sandwich method, a stack is made up of dif-

ferent materials Z and Z', and the electron rate is fitted to

- - 1
dn Rt(Z) t Rt(Z )t
T - A e + A' e + B (47)

since



44

-R (Z) t -R(z")t

N - Rz Mz) e + R(ZYM(Z) e ° (48)

B represents the background. The quantities Rt(Z), Rt(Z Y,

M(z), and M(Z'") are known from other experiments.

~ VIII. COMPARISON WITH BORN APPROXIMA TION

Uberall (3) has used the Born approximation to calculate the
coefficient of the leading term in the Coulomb correction to the rate,
His result is that

GZ
192 T‘C3

Rz w° (- ZP.Z— }.1.2 + 5 Zy) (49)
The first two terms are familiar from Equation 14, The next term is
the lowest order contribution of the small component of the muon,
which is easily obtained. The last term is the leading piece of the
Coulomb correction.

It might et first be thdught that there is a linear term, O(Z),
which could produce an initial increase in the rate as a function of Z.
‘It can, however, be easily shown that there cannot be such a term or
any other term in Z alone. To see this, imagine that we let p — 0.
Then the muon is spread uniformly over all of space, and the probability

that it will decay within range of the Coulomb field of the nucleus (say,
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screened) is zero. Hence, és p > 0, the decay rate must tend to the
free decéy rate, and so there cannot be any terms in Z alone. This
remark simplifies the calculation in Born approximation.

The aBove result, ‘Equation 49, is also obtained from our ex-
pression for the rate (Equations 34-36). Itis instructive to examine
this in detail.

In the S-M result (Equations 34-36), the term linear in Z is

2 5
R =23 3 256y /dp fdy /dk ———-—-—2—4 X
192~ T (p +H)
2 2 2,2 2
[ { 2 tan—l 2 + 2 k (Q -2p. J(p o) ] X
2 kp e 4 2
Q + {2kp)

X [3W2- AWk + 2py (W-2k) - p‘2 ]

(50)

AWk + 2py (W-2K) - p° ]

+‘{ py (@° 'ZH )p° +u) [ 3w2-
S AL
2, 2 2
+ 1 QpTHp) 2 (W -2Kk) 201 o2
Bo% (2K o) }

2 2, 2 2 2
+ 2N { (2 tant & kB 2 gz -3p )+28p. kpy ) x
2kp. : Q"+ {2ky)

X 5 [ (w2 4WK) y - 2p(W+2kyZ) - 3ply ]

2; 2
) %Q_t&_g [ W2- 4 Wk - 2py (Wi2K) - p°- 2p%y” ) } J
Q7+ (2kp)
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The terms have been separated in the same way as Equations

34-36. To expandinp, recall that p is O(p). Then

2 2 2
-1 : -
tan T 2 L patRY . P tp (51)
2kp. B

pZy Z+ HZ
and the other terms are expanded in a straightforward way, keeping
only Q(Zu). At this point, the integrals over k, y, and p can be
done analytically (ghd most easily in that order). The resultis that
the first term in Equation 50 contributes —g— Zy., the second term con-
tributes -1—39— Zu, and the last term contains no corrections to the rate
of O(Zu).

The integral over the last two pairs of brackets in Equation 50

has the limits

In the integral over the first term, we must use

1 1/2 (1-py)

+1
[o [ |  «
-1

0 0

and we find that no matter how small yu is, there is a finite contribu-
tion, -2Zpu, to the rate from the region 2k + p ) 1, which becomes

infinitely small as p — 0. This can be interpreted in the following
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way. As p— 0, the entire spectrum tends to the free spectrum
except at k = W/2. This one point approaches the free spectrum only
when Z = 0. Of course, one point cannot affect the rate, and R— R
as p - 0. If is interesting, however, that the Coulamb effect tends
to increase the rate for low momentum electrons, but it depresses

the rate for electrons with momentum k = w/2.

Born Approximation

For completeness, we shall outline here the direct calculation
of the Born approximation result as done by 'T:Tberéll (3). This is
equivalent to using, in Equation 5, an electron wave function which is
obtained by iterating the Dirac equation.

From the Dirac equaition,

V4K ¢ (%) = V() ¢ () (52)
we get

. R . . _ N

LPe(x)=kpo(x)+ fdz G(x - 2) V(z)qu(z)-g-... (53)

where LLJO is a plane wave and G 1is the appropriate Green's function.

We shall only consider the first Born approximation.
. AT
Explicitly, for V(X)) =-Z = , we have
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R

- - 3 1 ‘-E -
: iksx /d s € stk
%) = - 2 — 54
V(%)= e ugp ATz 3 2.2 >3 g (59
(2m)” s7-k"+e (s-k)"+ A

Now we just have to work out Ny  and then compute the rate
from Equation 8. It is necessary to evaluate a number of integrals,

all of which, however, can be expressed as derivatives of the integral

S 1 1
L= /d3s Z 2 =2 2 z, 2 (55)
s -k -ie  (3-k) + A (-9 +n

In fact, we need only the real part, and this is given by Uberall (3).

2
_ 1 -1 Q - ;
Rel = 5% tan m—- ( A =0) (56)

To order Zyu, the result obtained by performing the indicated
operations is, of course, identical with that obtained by expanding

Equations 34, 35, and 36.
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APPENDIX A

. The Sum over Neutrino States

We use a method due to Feynman to evaluate the following

integral which arises in the sum over neutrino states:

» 3 3 S
I(a,b) = /.d s / d’t SZS t21ta (2m)’ 6'4 (G-s-1)

(zm® 7 (em)’ o
Al
Now
3
/(;.ss _ /d4s J(SZ)
4 4
I{a,b) = /, d 54 zmS'(sz) 51—1:—4 sz(tz) stat'b (er)4 54(G-s-t)
(2m) (2r)

(a2)

, 4
= /d =, 2T £(s%) 2né((G-5)%) s-a (G-s) b
A2m)

It is convenient to orient the coordinate system so that G has

only a time-like component. Then

1
I(a,b) = 2 /d4s J(sz) §(G (G -28))(s a - E)N(G -5 )b + 5-D)
(2m) o' o oo o o o

{A3)

But /d4s = /‘dsO fgz ds /dﬂ_s , and
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(A4)

50

) e L c240 L flaes ) oL 1
Ha.P) = T /d-so fs ds 2s [(S So) ZGOJ(SO—Z Go) *

a-b ) | (A5)

Clearly, the result in an arbitrary coordinate system is

I(a,b) = gy [2Gea Grb+G ath) (A6)

The sum over the neutrinos is

3
1 /d s /d t 1 ) 4 4
Ty = . 4(s_t, +t s -s-t d _ )2m) £(G-s-t)
oA T A g A

2/ am)3 Y3 202t CEN

(A7)

Since

;r(,.'A = -12 [81{0,2) -41(a,b) &, 8., ] (A8)

we have the final result
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o1 2
Tor = T35 (GoG, -G &;.,) (A9)

The antisymfnetric part of the trace which comes from the X5

is easily seen to ¥anish upon integration,
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APPENDIX B

Kinematics and Integration over Momenta

The rate R involves an integration over all momenta of the
interacting particles. The neutrino momenta are eliminated early in
the calculation but the integrations over the recoil momentum p and

the electron momentum k remain until the last step. We have
= [d [ [RER+SER ) (B1)

where R(P, k) gives the rate and s(3, k) the angular distribution.
Actually, R(P, k) depends only on p, k, and ﬁ./l;, while S(f)’, _12)
A AN ~ A
also depends on k+z and p. z. For the moment let us forget about

S and consider the integration of R(p,k,y). Itis clear from rotational

invariance that we can write

3
/&% Jade - 4Tl/k2dk zn/dy /pzdp
- an/dk /dy /dpkzpz

\
The limits of the integrals come from an application of energy

(B2)

and momentum conservation. We can safely disregard the kinetic

2
energy of the recoiling atom. For example, for iron —%/[— < 10—4 Mo

The electron mass is neglected so that the available energy in the decay

simply goes into electron and neutrino momenta. Let EI be the sum
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of the two neutrino momenta. Clearly, for a given k and y, p will
have a maximum, or minimum, when the two neutrino momenta are in

the same direction. See Figure ll.

qgtk= W
pmcos{} +k = gcosy (B4)
‘n G - o
p,, sin q sin i
and-so
2.1/ 2
p_ = -ky i(wz_-ka + kzy ) f »p 0. (B5)

The region of integration has a rather complicated shape and

it is best understood by drawing a picture of the three-dimensional
. . . . . w w

region. The situation is quite differentfor k ( > and k> 5 Let
us consider k and y as fixed, and then find the limits on p. (See
Figure 13.4nd also Figure 2.)

Since we shall be interested in the electron spectrum, we must
leave the k-integration until the end. The limits on the y-integration

. w w )

are trivial for k¢ 5t -1¢y {(+l. For k) > we need to find the
equation of the line in the (k,y) plane which is the projection of the line

of turning points of the parabolas in the (p,k) plane. At a turning point

(kzyz + w2 ZkW)l/2 = 0
max

or
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< > =2k
< k> Pmin~ - W

KINEMATICS

13



57

Lo mwew? 12 (55)
anax kZ

If we needed only the total rate, it would be simpler to perform
the k-integration first, for then the p and y limits are trivial.
N

— T A
Now consider the integration over S(P, k). Let k+z = cos

We replace Equation B2 by

/d3p /d3k_ = 21 /d cose /kzdk /d{D /dy /pzdp (B6)

where § is the angle indicated in Figure 12. The dependence of

S(3, k) on z is linear. But
A A v . .
p*rz =cosBcos™® + sin9 sin &« cos § (B7)

so that the f-integration can be performed easily., The resultis that

| A AN AN
we can simply replace p+z by pe.k k+z. With this in mind, .

. |
/&% [ - snz—z fdcosrx/dk fdy [apx® . (88)
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APPENDIX C

*Numerical Methods and Computation
1. Machine Solution of the Dirac Equation.

1
1f we write the solution to the Dirac equation with j = >

and positive parity in the form

7) "‘LT/‘Z [ el) + =) i &% Ju_ (c1)

y(xX) =
| (4m)

then the solutions for G(r) = r g(r) and F(r) = r £(r), written in

dimensionless form, satisfy

(a‘-i};- ——]};]G(X)‘l' [W+M+v(x)]F(x)=o (cé)
[W—M+V(x)]G(x)-(€d;§- +—L ] F(x) = 0

For the muon M =1, and for a massless electron, M = 0. We use the

potential
Z 3-t L t-1 XZ
X 2 2 2 XX,
o . X
v{x) = (C3)
Z‘ Xy X
< o

where x = ROA.1/3 and Ro = 0.6425. By varying t between 0 and
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1, we can go from a surface charge distribution to a uniform charge

distribution.

The solutions are started by means of power series. Near the

origin
- 3 5 . 7
‘G(x)—\,Glx+G3x +G5x +G7x
2 4 6 8
Flx) = Fx +F,x +F x +Fgx (c4)
V{x) = V_+V, x°
o 2
Let
A=W+M+V B=W-M+V_ (C5)
then we have
G arbitrary
L 1
. R
. ¥ 32 G
G3= —EAFZ 1
1 F, = E[B.G3+V2Gl] (C6)
G, = -Z[AF4+V2F2]
, 1
1 F, = —7—[BG5+VZG3]
G, = -—6[AF6+VZF4] 1
- Fg = §[BG7+V2G5]
= - = +
Gy S[AFS VZF6]

The derivatives G'(x) and F!{x) are computed in a similar way.

The solution is then continued by using the extrapolation formula
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G(m+i) = G(m) +.2—};[ 55 GY{m) - 59 G'{m-1) + 3% G'(m-2) - 9 G'(m-3) ]
| {c7)

F(m+1). = F(m) + %;;[55 F?(m) - 59 F'(m-1) + 37 F'(m-2) - 9F '(m-3) ]

where h is the interval. The derivatives at x =m + 1l are then com-
puted from the di;fferential equations, and so on.

To obtain bound sblutions, W{¢M, itis necessary to vary W
to find the eigenvalue for which the solution doesn't blow up.* Con-
tinuum solutions for all values of W > M and some of these are shown
in Figures 9 and 10for a massless electron.

All the radial wave functions corresponding to higher angular
momentum states can be obtained in a similar way.

The question of the error involved in using this approximation
scheme is best settled in any given case by decreasing the interval
until the desired accuracy is obtained. For the calculations in work

the interval h - 0.10 was found satisfactory.
2. Numerical Integration over Phase S'pace

The numerical integration over the region shown in Figure 2

was performed with the following intervals.

*A.ctuélly, the values of W listed in Table I were obtained previously
by Prof. Mathews using a different program.
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1 1 1
Ay=-8' s AP:EZWJCOZZ W,

and 4k = —1% W. The accuracy was checked by doubling the number
of points for a sample case. In general, the error is about 1/2 percent.
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APPENDIX D

Confluent Hypergeometric Functions {11)

These functions are discussed in many references. We will
merely list some properties that are useful in this calculation.
The confluent hypergeometric function F(a;b;x) is defined

by the series

F(a;b;x) = 1 +

%1: T Bor1) 2 +”  (P1)
where b £ 0, -1, -2. The function satisfies the differential equation
x u'+(b-x)u' -au=0 (D2)
Direct substitution shows that this equation is satisfied by

W(x) = c /dt ™ 2l (t-l)b'a—1

if the path of integration in the complex t plane is such that the func-

tion

v(t) = R (1:-1)10-5’L

returns to its initial value. This integral is then a representation of
the confluent hypergeometric function if we fix the constant ¢ so that

U(o) = 1.
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* We have occasion to use the integral representation for
F(iz; 1; i(kr + k * _32)). For integer b the function V(t) returns to its

original value along the contour C.

t-plane

/ C
ko :
The integral representation is then
- ilk - hna V2 . _ ' s
FiZ; 1;i(kr+k- %) = Zlm 9{ d ikrtkex)t iz-1 (t-1) "%
C (D3)

In general, for integer b, we have

b-1 [(1-2a)[{b) % g & 1:a—]_‘,'é'(t_l)b—a—l

F(a;b;x) :Erl—[-i- (—1) —-FO—JT—

C - (D4)

Another representation, which is suitable when b is not an

integer, is
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| 1
F(a;his) = _—_F(a)’r-'((bg-a) [ at &XF 271 eyl D5)

The integral can be taken over any contour connecting 0 and 1.
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APPENDIX E
Integrals

The matrix-element for the total decay rate contains the four

integrals:

L
H = /d3x e BT P pizihi (kr + k ¢ %))

1 /3 cur iPeR A D o - -
L= 3% d'x e e as V WNiz;Li(kr+ k - x))
(E1)
- I . prvia — - N
7= _/d3x e T P E pliziLi(kr +Re%) brk
Kz — fd3x e BT APE 3 V FZ;ki(ket k+x)) b+ x
ab 2ik T

For the moment, let us consider the first three integrals because they
are much easier to deal with than Kab° Notice that all three integrals

can be obtained from

_p'r . ..:... i - -
I= fd3x -3 e P°F Rz i(kr+ k- %)) (E2)

since

- ) 1 A = ~r &
- - ——— I - — L] = .
H p L3 &Vt J bV I (E3)

where the subscript on the gradient indicates the variable it operates on.

To perform the integral I use the integral representation of
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FGZ 3 1; ilkr + K - X))

e w0 1 1 —1 _.Z ,. -‘o >
F(iz;L ifkrt k%) = 5o /’ at £27 ey 7 S t(kr+ k » %)
C

The closed contour C encircles the points t=0and t =1 once

counter -clockwise. We can now write

1 iZ -1 i _ . ) B 5 ".-"
I= — /dt £ (t-1) iz /drr e M elktr /dﬂ. P ¥ eltk *
2mi
(E4)
Now
i(p + kt) °% :
dfl e = 47T iy (Qr) (E5)
where 5 = E-&-i(.t, and, with & = gy -ikt,
4711 /dr roe o F j (Qr) = am S (E6)
o 2,2
K HQ
so the integral I can be written
1 - iy
I= 41T 5= /dt gzt (t-1) 1z : ! (E7)
21i . 2, "2
| 2(pky-ipk) t + p +
We can now expand the contour to infinity and it is clea# that the only
contribution comes from a simple pole at
2
- - -—————L——p +
% 2(pky ~ipuk) (£8)

In terms of to, we have
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47T iz -1

-iZ
L= - Zipky—ipk) to (to—l)

and finally"

2,iZ-1

- z
1= 4m (p+ )

2 2 - ‘
(p™+ p + 2pky - ipk) (E9)

It remains to show that the pole is always outside the original
contour. Consider E-4 and imagine that we do the radial integral

first. This will converge only if

Re [ p-ikt (1+u)] > 0

A el
where u = ke¢x, so we must have

I
Imt > - ok

Since this must hold for all u, -14 u£1, we have finally

.
Imt > o

But from E8 we see that

2 2

- _ bty < 'S .

Im ¢ 2 2 2. 2k = 2k 4
(p"y +p)

so the pole is-always outside the initial contour.

I have been unable to evaluate Ka exactly. The following

b

shows how Kab may be evaluated to first order in Z.
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First notice that

k =L 2.9 g§ K(w) (E10)
ab  2i a k P *
where
3. e ™M g ke x |
K(l-l-) - /d x = 5 e F(lz, 1; i(kl"l‘ k- )) . (Ell)
r

The method used to evaluate I fails here; the last integral over t

cannot be done by the method of residues. But notice I = - —&(-i- K,
V)
or, if we put I =I(w) and K = K{p) , |
(ot :
K(p) = - / ds I{s) (E12)
00
From E9, we have
a-v  1I(s) = 4Tl‘(p2+sz)lz-l iZ a- {2p - lea -
k > 2 iZ+1
(p"4s™+ 2pky -isk)
' (E13)
A>T
= Mz —— (p'mk)z S+ o(z%
(p+s )[(s-ik) + (3 + k)
Put § = P + . Then to first order in Z i
a-V 1(s) = 8nz (s - ip) (E14)
k (s-ip)(stip) [s-i(ktq) ] [s-i(k-q)]

The integer over s can now be done easily using the method of
partial fractions and then the final gradient can be taken to yield Kab

to lowest order in Z.
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; 1+ .
The matrix element for the rate to the > electron state involves

integrals which can be obtained by differentiation from

-pr N ad LT .
1, = fd3x e e1(p+k) x  ikr

T

F(2-iZ;3;-2ikr) (E15)

We again write the confluent hypergeometric function in terms of the

integral representation D4 and we have

. iy 1 2 1-iZ iZ -2ikrt
-iZ} 1; -2ikr) =- -
F(2-iZ) ikr) ML 1Z(17) /dt t (t-1)" e
(E16)
and
! 2 1-iZ iZ/ -pr —ikr(Zt-l)/ i{p+k)x
L= ot 1Z(137) /dt t (t-1) dr r e e d e
(E17)
1 2 / 1-iZ iZ 4w 1
z - - - dt t (t-1)
271 - - -
ami iZ(1-iZ) 4k2 (t ta)(t tb)
where
t = - (ktqt+ip) = L '(k- +ip)
a 2k tb 2k gl
Finally, Y ;
¥ . - iz
¢ 1 1Z(t _1)1Z t 1-iZ (tb'l)l
I, = - ___-__—._2 E_ a b (E18)
i -i 2 -
iz(1-iZ) K t -ty

To evaluate the matrix element when Z = 0, that is, for a plane wave

electron, we use the representation D5 and do the integrals directly.
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Of coﬁrse, we can simply take the limit Z - 0 of the integrals for
finite Z.

| Prof. Mathews has worked out another method for doing integrals
of the type obtainable from L(12). The method follows from the remark
that the Laplace transform of a product of two functions can be expressed
. as a convolution integra.l over the individual Liaplace transforms of

the two functions.
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APPENDIX F.

Traces

Since all the traces in this problem contract with GG,y G'2¢S'o,;k

it is simpler first to contract and then to take the trace of the contracted

quantity.
. 1+ L
The projection operators El—;- and 84 project out electron
14 Y. Y . .
and muon states. The operator 172 projects out spin-up muons,
' 2
1+i Y :
and the other operator, 5 , comes from the coupling.
2

The traces we need are

£ 4, ° Tracek J, (1 X4)(1+1X1X2) Y, (1+5_XS)
22,0'1 = Trace ¥ Xo, Xp(1+?}4)(1+i)!12(2) XP 3’1 (1+i XS)
f, 4y = Tracek Y, ¥, (¥ )0 lez) ¥ ¥, (i XSA)

2,05 = Trace k¥ (1 ¥)(+¥ Y ) Xp Y, (1+i‘35)
Iy g, = Tracek Y, (1+ X4)(1+.1'.Xlx2) NN (1+5.X5) (F1)
’Ze,m Z-Trace k YU XP(1+ x4)(1+ixlxz) Xk Jl (l+iX5)
R 1
2 = Trace ¥ § (1+ 84)(1+iXIXZ) ¥, ¥, 8,043

J = Trace k 3‘6 (1+X4)(1+13182)X1 pr4(1+ix5)

The matrices X and Xk are spacelike.

) - 43 ), - ik
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We can eliminate many terms in the traces because the trace
of an odd number of X -matrices vanishes and all pseudo-tensors
will vanish after contraction with the symmetric quantity GoG, - GZJ"”
and integration over momenta.

Let

1 2
Li 7 2k ti,ea (GG, -G 655 ) (F2)

The explicit expressions for the Li's are:

L= [3W2- AWK + 2py (W-2k) - p° ]
+[W2- 4Wk - 2py (W+2Kk) - pz— szyz]cosu
(F3)
- 2 2
L, = [3W°- 4Wk + 2py (W-2k) - p° ]
—[WZ— 4Wk - 2py (W-2Kk) - pz— szyz]cos(x
Ly = 4
L, = [/_(WZ— 4Wk)y - 2p (W+ Zkyz) - 3p2y ]
2 2 |
+[3W“- 4wk + 2py (W-2K) - p“)y cos &
4
Ly = (WZ— 4Wk - 2py (W-2k) - pz- szyz ]

+[3W2- AWk + 2py (W-2K) - p° ] cos «
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2 2
L = [3W“- aWk + 2py (W-2k) - p~ ]

+[~{W2- 4WKk)y - 2p (W+2ky2) - 3p2y ]} cosx

2 2
Lg  =-yL; - 2p (1-y" ) (W-k) - 2p (1-y") (ktpy) cos «

In writing out the Li‘s f) z was replaced everywhere by

A

K.%2. Thisis explained in Appendix G.
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APPENDIX G

The Cross Term Ml_l\fl4

To first order in Z the contribution to the rate from the cross

term M1 M4 is given by

2 2
G 256
. —— l-L X
AR = 19503 /dp /dy /dk 2)2 -

4

, ZA Z
2p.

i=0

where 2 Ki z Ji(k) + Ji(_k)

and the t.'s and J.'s are defined below.
i i

¢ = 3W%- 4Wk + 2py (W-2K) - p°

t = Wo- 4Wk - 2py (W-2K) - p>- 2p°y”
2, 2

2 (Wk-p)(1-y")

2 2
(W™~ 4WKk)y - 2p (W42ky ) - 3p2y

ot
1

+ 2p (W-k) (1-YZ)

Ll
1

2 2 2
(W™~ 4Wk)y - 2p (W+2ky ) - 3p'y

2 2 2
Wwo- 4wk - 2py (W+2k) -p - 2p vy

[l
1]



1 1 -1 1 1 -1 gtk
— > tan - — > p) tan T
P (p-x)"-q 1 p%-(a+k)
-—1- ‘12 > tan_l P + 2k 12 53 ta.n_1 I;
P (p-k)"-q " [ (p-%)"-q")
2 ‘
1 1 1 -1 g+k
" 2 2 2 v z e qp.
(p-k)"-q p tu a p -(qtk)
Z.kpZ 1 tan -1 gtk p,pz 1 1
2 2 2 ) 2 2 2 2
q [ p -(qtk) ] " a”  p Aagtk)" (qtk)+p
-1 ' 1 -
[(p-1)%-q°) v P g7 pT-(atk) "
2p(gtk) 1 tan_l gtk ppk 1 1
p) 242 2 2 2 2 2
4 [ p°~(qtk) ] B q® patk)” (k)
1 -1 p T 1
2k ——————=gan = = +
2 22 b 2 2 2 2
[(p-k) -q ] H (p-k)"-q P tp
5 kp(gﬂ() . 1 — tan Lt Atk
q [p°-(ax)”] H
pp(atk) 1 1
p) p) p) 2 2
q p -(qtk) (qtk) “+p
pk 1 -1 gtk ¥ ]
—§ —__Z > tan _——]..L
q p -(qtk)
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2k ! > 3.2 tan—l P
((p-x)"-q7] "
2
2k{q+k) 1 anl THK
2 2 292
q [p"~(ati)”] .
wk(g+k) 1 o1
2 p z
q p -(gtk)” {atk) "+p
K% 1 -1 gtk
— tan —r—
3 2 o
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APPENDIX H

The Cross Term MZ—M3

Aside from a common overall factor, the matrix element

(N1+N2+N3)o,

. Z =
_[1-.1% - (1+;k)to ] (u—lzxo_a u )
1 1 Pz
+[212t g ¥y ¥ ¥y 2u) zztop‘(ukx‘iypxoau)]
+ [_ A .E(l_iz -to) (ﬁﬁxa axpuo} ‘ (1)

+ iz A to (Spdpald u)]

N
where
2. 2
to=-—15 1 " (#12)
(P k-ipk)
We need 2Re M_M_ to lowest order in —Eﬁ N
n 273 137 = W
N 1 _
2ReN, N, = ZRe[leto(uEX‘LXk(Yo, au )
. . X X b 4
-5 ZtoE UEX4 O](—l)/\;(uOXPYZ auz)
(F13)

_ -/\ﬁ('zb) (aE X4kad auo) (ﬁoyp X;\ au

_A;PL- (- Za -E)(G.—EX4 XPXO’ auo) (ﬁoxp Xl au
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2 .
If we now contract with GgG,- G b5 and sum over spins,

the spinor terms are replaced by traces and we get for the cross-term

M2M3 to lowest order

2 5 2.2
6 .

G B S fa fa By

19210 T (p7+n")

x[ zAb ﬁ (-1) (W2- 4Wk)y SR (H4)

2
+ ZAa 112— (W2-4Wk)]
V)

Since a and b are O(u), this term would be O(ZA ), but upon integra-

tion it vanishes to this order since it is odd in y {(a is odd and b is

even).
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APPENDIX I

Experimental Data

Figures 14 and 15 show the experimental points obtained by

Yovanovitch (2). For comparison we also show R Since we

SM*
estimate that the curve RSM is a little lower than the true R (about

15% low at Z = 82) the disagreement with experiment at high Z is

even worse than it appears.
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