Towards Engineering Immunity

Thesis by

Lili Yang

In Partial Fulfillment of the Requirements for Degree of Doctor of

Philosophy

California Institute of Technology

Pasadena, California, USA

2004

(Defended on May 10, 2004)

© 2004

Lili Yang

All Rights Reserved

To My Parents

ACKNOWLEDGEMENTS

Before I started to work on my thesis, I thought acknowledgements section would be the easiest one. In reality I found that it was far more difficult than I expected to put together this part of thesis, primarily due to the fact that the bulk of this work would not be completed without the influence of many people in my life. I thank everyone who encouraged me and supported me in many aspects of my life. It is almost impossible to list all names herein and I am sure I have missed some names, for which I apologize.

Foremost, I would like to acknowledge my thesis advisor, David Baltimore, for having guided me into this fascinating area of research, for his constant support and encouragement. I admire his energy, his enthusiasm for science and his good memory. David allowed me to work on several projects. The opportunities I have been afforded in his group were enormous.

I also would like to thank other members of my committee, Prof. Ellen Rothenberg, Prof. Jose Alberola-Ila, Prof. Pamela Bjorkman, and Prof. Paul Sternberg for their contributions to this work. Their patience and insights have helped move forward much of this thesis work. I appreciate their time dedicated to reviewing my thesis results.

I would like to take this opportunity to thank Prof. Luk Van Parijs at MIT. When I joined David's laboratory, Luk was a postdoctoral scholar working for David. He acted as my laboratory mentor and helped me initiate my project. He taught me lots of essential experimental skills, ranging from molecular cloning to animal work. His contribution to my scientific career as well as this thesis is enormous.

The 2-year experience at UC riverside was wonderful. The training and knowledge obtained at Walker's laboratory are very broad and useful. I thank Prof.

iv

Ameae Walker for her supports and guidance and members in her lab, including Benson, Xiaolei and Georgia.

The experience with the entire Baltimore group was wonderful and unforgettable. My progress and accomplishments are always associated with their assistance and ideas. When I first joined the group, Xiaofeng, Wange, Lois, Alex, Matt, Eric, Joe, Mollie had me settle down in the laboratory. I especially appreciate the time I spent working with Mark at our little office. He told me a lot of wonderful and threatening stories about science and Ph.D life. I was always scared by the extremely high citation of his cell paper. I also thank the latter joining Postdocs, including Huatao, Rafael, Konstantin and Shengli for their great time. I certainly enjoyed the company of two other graduate students, Thomas and Jeff. Together, we survived and thrive in the "Postdoc dominant environment".

Special thanks go to Elissa. She was always very helpful when I tried to find lab stuffs. Her on time ordering and delivery for equipments and reagents kept my experiments moving smoothly.

Eric Santiestevan is a wonderful lab manager. I thank him for critical reading of my manuscripts and thesis and helping me on my English writing. If you can understand my written materials, you should realize his contribution on correction of grammar and careful editing.

I also would like to thank the members of Pepe's laboratory, especially Harry, Eric, Susannah, Micheline and Gabriela, and members of Ellen's laboratory, especially Chris, Mary and Shelly. We have wonderful journal club and I have learned lots of immunology from all of you. I am very fortunate to have a very good group of people at animal facility to take care of my mice, especially Ruben. With his care, my immunodeficient mice, particularly those for bone marrow transfer experiments, have been maintained well, which is crucial for lots of work described in this thesis. Of course Janet and Peggy's management on animal facility is outstanding, too. I also thank Shirley at Caltech transgenic center for her help on the lentivirus project.

I would like to thank Susan Kovats at City of Hope for allowing me to use her equipments for the proliferation assay described in this thesis.

Life outside the laboratory at Caltech is truly wonderful. Together with Chunhui Mo, Joe Andrieu, Girish N. Aakalu, Pin Wang, Ying Go, we founded Caltech Consulting Club. Knowledge gleaned from this club and experiences obtained from two summer projects with two different companies are precious. I was fortunate to serve as Caltech C president for one term. This experience was wonderful.

I have been very fortunate to gain many lasting friendships over the last five years at Caltech. These friends have been an important part of my graduate school experience not only on a scientific basis but on a personal level as well. I would like to thank the gang like Ying, Qijing, Nan, Aijun, Xun, Xiang, Chunhui, Hongyu, Qiang, Ying, Lan, Huazhang, Xianglei, Weiwei, Jack, Zhigang, Jun, Hui, Wen, Rena, Zhenrong, Suzie, Yen, Joanne, Fanyong, Shuwei, etc, for all the good times.

The research presented in this thesis was funded by NIH Grant.

ABSTRACT

The aim of engineering immunity is to harness and engineer the immune system to treat infectious diseases and cancer. Towards this goal, accumulating evidence shows that the immune system can be manipulated to achieve the desired and improved functions. In the context of cancer therapy, many strategies have appeared to utilize the principle of immune defense to safely and effectively target tumor cells for destruction. These strategies fall into two categories: active immunotherapy and passive immunotherapy. Active immunotherapy involves activating the effectors in the host immune system to inhibit cancer cell growth and reject tumors (e.g., cancer vaccination), while passive immunotherapy is a term for directly providing the host with effectors to react against cancer (e.g., adoptive transfer of in vitro expanded antitumor T cells).

We propose a concept of instructive immunotherapy for cancer. This concept is to use a strategy to guide the host in developing in vivo effector cells capable of targeting cancer. This strategy arises from combination of gene therapy, stem cell therapy and immunotherapy to program hematopoietic stem cells (HSCs) to develop into lymphocytes with desired antitumor specificity. Therefore, taking advantage of the longevity and selfrenewal of HSCs, life-long supplies of tumor-specific lymphocytes can be generated in vivo, which exceed the current methods of repetitive immunization and adoptive transfer.

To test the feasibility of this approach, I describe in Chapter 2 the procedure of retrovirus-mediated gene transfer of TCR cDNA into RAG1-deficient HSCs. Subsequent transfer of these genetic modified HSCs into RAG1-deficient mice allows the long-term production of functional antigen-specific T cells.

Chapter 3 describes a method to impart anti-tumor specificity to the wild-type mouse T cell repertoire. To achieve this, genes encoding a CD8 T cell receptor with the desired anti-tumor specificity were delivered into wild-type HSCs via a retroviral vector. When transferred into host mice, these genetically modified HSCs generated a large population of anti-tumor cytotoxic T cells, accounting for more than 20% of peripheral CD8 T cells. These cells displayed a normal response to antigen stimulation and had the ability to generate and maintain long-term memory. Significant tumor rejection was observed in mice containing these T cells, demonstrating feasibility of instructive cancer immunotherapy.

In recognition of the important roles of helper T cells in anti-tumor immunity, Chapter 4 elaborates a two-arm model to augment tumor-specific immune responses. In the experiment, the two arms, both anti-tumor CD4- and CD8 T cells, were generated by HSC gene transfer method. The resultant immune system in mice could not only suppress tumor growth, but could also eradicate large, solid and vascularized tumors. Coupled with results described in Chapter 3, we demonstrated the great potential of instructive cancer immunotherapy and expanded the scope of engineering immunity.

Successful immunotherapy relies on understanding the molecular mechanisms that control immune responses. For instance, although IL-2 has been approved by FDA to treat renal cancer and melanoma, many results from mice show that the physiological role of IL-2 is complex and unpredictable, hindering the design of better strategies, that would maximize the therapeutic impact of IL-2. I address the role of IL-2 in negative regulatory function and T cell memory in last two chapters, both of which are important for achieve the overall success of immunotherapy and engineering immunity. Chapter 5

describes the role of IL-2 in maintaining regulatory T cell homeostasis and self-tolerance, and correlates this role with the signaling molecule STAT5. The final chapter (Chapter 6) details the role of IL-2 in generation of CD4 T cell memory.

ACKNOWL	EDG	GEMENTS	Page iv
ABSTRACT	•		vii
LIST OF TA	BLF	ES	xiv
LIST OF FI	GUR	ES	XV
CHAPTER			
Chapter 1	Int	troduction to Engineering Immunity	1-63
	1	Immunotherapy	2
		New Generation Vaccines	2
		Target the Negative Immunoregulatory Mechanism	4
		Monoclonal Antibodies for Passive Immunotherapy	5
	2	Cancer T Cell Therapy	6
		Adoptive Immunotherapy	8
		Redirecting T Cell Specificity	12
		Chimeric Antigen Receptors	15
	3	The Unique Role of CD4 T Cells in Antitumor Immunity	18
	4	Hematopoietic Stem Cells As Targets for Gene Therapy	22
		Mouse Hematopoietic Stem Cells	22
		Human Hematopoietic Stem Cells	23
		HSC Gene Therapy	26
	5	The Role of IL-2 on T Cell Regulatory Function and	31
	6	Memory	~ .
	6	Research Objective and Thesis Outline	34
	7	References	46
Chapter 2	Ge	enerating Functional Antigen-specific T Cells in Defined	64-
	Ge	enetic Background	95
	1	Introduction	65
	2	Materials and Methods	68
		Mice	68
		MIG-TCR Retroviruses Construction	68
		Generation of the THZ Hybridoma Cell Line and Infection with Retroviruses	68
		Bulk LacZ Assav	69
		Primary CD4+ T Cell Infection and Stimulation	70
		Bone Marrow (BM) Stem Cell Isolation, Infection and Transfer	70
		Immunization of Bone Marrow Recipient Mice	71
		In Vitro T Cell Stimulation and Proliferation Assays	71
		IL-2 and IFN-γ ELISA	72

TABLE OF CONTENTS

	3	Results Functional Expression of the OTII TCR in T Cell Lines and Primary CD4 ⁺ T Cells Using Retroviruses	72 72
		Generation of OTII TCR Transgenic T cells in vivo Following Retrovirus-Based Gene Delivery into Bone Marrow Precursor Cells	74
		Normal in vitro and in vivo Antigen Responses of OTII TCR Transgenic T Cells	76
	4	Discussion	77
		TCR-Expressing Retroviruses Drive T Cell Development Use of Retroviruses to Study T Cell Development and Function	78 79
		Therapeutic and Prophylactic Uses of Retrovirus- Generated T Cells	81
	5	References	92
Chapter 3	Im Re	parting Anti-tumor Specificity to the Mouse T Cell pertoire	96- 123
	1	Introduction	97
	2	Materials and Methods	98
		Mice	98
		MOTI Retrovirus	99
		Hematopoietic Stem Cells (HSCs) Isolation, Infection	99 99
		In vitro T cell Stimulation and Functional Assays	100
		Antibodies and FACS Analysis	100
		T cell Memory Study	101
		Tumor Challenge of Mice	101
		Dendritic Cell Generation, Antigen Pulsing and Mouse Immunization	102
	3	Results and Discussion	103
	4	Conclusion	110
	5	References and Notes	121
Chapter 4	Co Im	nstruction Of The Two Arms Of The Anti-tumor T Cell munity	124
	1	Introduction	125
	2	Materials and Methods	129
		Mice	129
		MOT1 and MOT2 Retrovirus	129
		Peptides	129
		Primary T Cell Infection and Stimulation	130

		Hematopoietic Stem Cells (HSCs) Isolation, Infection	130
		In vitro T call Stimulation and Functional Assays	121
		Antibodies and EACS Analysis	131
		T Cell Memory Study	131
		Tumor Challenge of Mise	122
		Dendritic Cell Generation Antigen Pulsing and Mouse	133
		Immunization	155
	3	Results	134
	5	Tumor Model	134
		Retrovirus Mediates Functional Expression of CD8 and	135
		CD4 T cell Receptors (TCRs)	100
		Generation of Monospecific CD8 or CD4 T cells by	136
		Retrovirus-Mediated Expression of CD8 or CD4 TCR in	120
		RAG1 ^{-/-} HSCs	
		Comparison of the Transgenic TCR Expression and T	138
		cell Development in Mice Receiving Retrovirus-	
		Transduced RAG1 ^{-/-} HSCs with Those in the	
		Conventional TCR Transgenic Mice	
		Generation of Antigen-Specific CD8 or CD4 T Cells by	143
		Retrovirus-Mediated Expression of CD8 or CD4 TCR in	
		Wild-type HSCs	
		Characterization of the CD8 and CD4 T Cells Generated	145
		by Viral Transduction of Wild-type HSCs	
		Imparting into Mouse T Cell Repertoire Both Anti-tumor	148
		CD8 Cytotoxic and CD4 Helper T Cell Specificities	
		Test the Concept of Tumor Immunotherapy in E.G7	149
		Mouse Tumor Model: Suppression of syngenic tumor	
		growth by imparting anti-tumor specificities to mouse T	
		cell repertoire	
		Testing the Concept of Tumor Immunotherapy in E.G7	153
		Mouse Tumor Model: Eradication of the established	
		solid tumor by reversal of the functional tumor tolerance	
		via construction of the two arms of anti-tumor T cell	
		immunity	
			1.5.5
	4	Discussion	155
	3	References	183
5	П	-2 Signals Maintain CD25 ⁺ CD4 ⁺ Regulatory T Cell	188-
U	Ho	meostasis and Self-Tolerance	219
	1	Introduction	189
	2	Materials and Methods	192
		Mice	192
		Abs and Flow Cytometry	193

Chapter

		T Reg Purification and Functional Assays	193
		Generation of Inducible STAT5 Transgenic Mice	194
		Statistical Analysis	195
	3	Results	196
		IL-2 Signals Maintain CD25 ⁺ CD4 ⁺ T Reg Homeostasis and Self-Tolerance	196
		Bcl-2 Is Not a Target of IL-2 Signals that Establish Normal CD25 ⁺ CD4 ⁺ T Reg Numbers in the Periphery and Maintain Solf Telerance	197
		cD25 ⁺ CD4 ⁺ T Reg Numbers and Function Are Defective in STAT5-Deficient Mice, Leading to Deregulated Lymphoid Homeostasis	198
		STAT5 Activation Increases CD25 ⁺ CD4 ⁺ T Reg Numbers in the Absence of IL-2	200
	4	Discussion	201
	5	References	216
Chapter 6	IL-2 Regulates CD4 T Cell Memory Generation		220-
-			270
	1	Introduction	221
	2	Materials and Methods	224
		Mice	224
		FUGW, FUIGW-AKT* and FUIGW-STAT5* Lentiviruses	225
		Peptides	225
		In vitro OT2 T cell Stimulation and Functional Assays	225
		Naïve OT2 CD4 T Cell Infection and Stimulation	226
		Antibodies and FACS Analysis	226
		T Cell Memory Study	227
	3	Results	228
		Generation and Characterization of Naïve IL-2 Deficient CD4 T-cells	228
		An IL-2 Signal Supports CD4 T-cell Memory Generation But Is Not Required for Memory Maintenance	231
		Development of a Lentiviral Gene Delivery Method as a Tool to Study IL-2 Signaling in CD4 T-cells	234
		Activation of the AKT Signaling Pathway During Primary Response Cannot Rescue CD4 T-cell Memory Failure Caused by IL-2 Deficiency	238
		Activation of the STAT5 Signaling Pathway During Primary Response Is Able to Rescue CD4 T-cell Memory Generation Caused by IL-2 Deficiency	240
	4	Discussion	242
	5	References	263
			-

LIST OF TABLES

Table 1-1	History of immunotherapy	37
Table 1-2	Mechanisms that account for failure of efficient immune responses	
	against tumors	
Table 5-1	CD25+CD4+ regulator T cell numbers in mouse strains with	205
	defects in IL-2 and key IL-2 signaling molecules	

Page

LIST OF FIGURES

Figure 1-1	A schematic presentation of adoptive T cell transfer therapy for	Page 39
0	patients with cancer	
Figure 1-2	Engineering redirected antitumor specificity into mature T cells from PBL via retrovirus-mediated gene transfer of TCR cDNA	40
Figure 1-3	Engineering mature T cells from PBL with antitumor specificity by retrovirus-mediated gene transfer of chimeric antigen receptor	41
Figure 1-4	Cartoon structure of natural antigen receptors and chimera antigen receptors	42
Figure 1-5	The schematic presentation of the model for CD4 T cells to orchestrate multiple effector arms of antitumor immunity	43
Figure 1-6	The schematic presentation of a model for multipotent HSCs to differentiate into different cells in hematopoietic system	44
Figure 1-7	The schematic representation of bone marrow transplantation of genetic modified HSCs into lethal or sub-lethal irradiated mice to regenerate the hematopoietic system	45
Figure 2-1	Functional expression of the OTII TCR in a T cell hybridoma line and primary CD4+ T cells using retroviruses	83
Figure 2-2	Schematic of our strategy to generate OTII monoclonal T cells <i>in</i> <i>vivo</i> using retroviruses	85
Figure 2-3	Development of functional wild type and IL-2-deficient OTII monoclonal T cells derived from retrovirally-transduced hematopoietic precursor cells	87
Figure 2-4	<i>In vivo</i> responses of wild type and IL-2-deficient OTII monoclonal T cells upon immunization with cognate antigen	89- 90
Figure 3-1	Imparting a desired antigen specificity to the mouse T cell repertoire by retrovirus-mediated expression of TCR cDNAs in hematopojetic stem cells (HSCs)	112
Figure 3-2	Functional expression of the OT1 TCR in primary CD8 T cells using MOT1 retroviruses	114
Figure 3-3	Characterization of the OT1 T cells generated by viral transduction of wild-type B6 HSCs	115
Figure 3-4	Suppression of syngenic tumor growth by imparting anti-tumor specificity to the mouse T cell repertoire via viral tranduction of HSCs	117
Figure 3-5	Comparison of TCR expression in OT1 T cells from B6/MOT1 mice with those from OT1 Tg mice	119
Figure 4-1	Retrovirus mediated functional expression of OT1 CD8 and OT2 CD4 T cell receptors (TCRs)	159

- Figure 4-2 Generation of monospecific CD8 or CD4 T cells by retrovirus- 161mediated expression of CD8 or CD4 TCR cDNAs in RAG1^{-/-} 162 hematopoietic stem cells (HSCs)
- Figure 4-3 Comparison of the transgenic TCR expression and T cell 164development in mice receiving retrovirus-transduced RAG1^{-/-} HSCs 165 with those in the conventional TCR transgenic mice
- Figure 4-4 Generation of antigen-specific CD8 or CD4 T cells by retrovirus- 168mediated expression of CD8 or CD4 TCR cDNAs in wild-type 169 HSCs
- Figure 4-5 Characterization of the CD8 and CD4 T cells generated by 171retrovirus-mediated expression of CD8 or CD4 TCR cDNAs in 174 wild-type HSCs
- Figure 4-6 Imparting to mouse T cell repertoire both anti-tumor CD8 cytotoxic 177 and CD4 helper T cell specificities
- Figure 4-7 Suppression of syngenic tumor growth by imparting anti-tumor 179 CD8 cytotoxic or/and CD4 helper T cell specificity/specificities to mouse T cell repertoire
- Figure 4-8 Reversal of tumor tolerance and eradication of the established solid 181 tumors by constructing both arms of the anti-tumor T cell immunity
- Figure 5-1 Jak3 is required to establish normal CD25⁺CD4⁺ T reg numbers in 206 the periphery and to prevent the accumulation of activated CD4⁺ T cells
- Figure 5-2 IL-2 and STAT5, but not Bcl-2, are required to establish normal 208 $CD25^+CD4^+$ T reg numbers in the periphery and to prevent the accumulation of activated $CD4^+$ T cells
- Figure 5-3 Tg expression of Bcl-2 does not rescue $CD25^+CD4^+$ T reg numbers 210 or prevent the accumulation of activated $CD4^+$ T cells and the development of splenomegaly in *IL*-2-deficient mice
- Figure 5-4 Adoptive transfer of $CD25^+CD4^+$ T regs prevents the development 212 of autoimmunity in *STAT5*-deficient mice
- Figure 5-5 Transient activation of STAT5 increases CD25⁺CD4⁺ T reg 214 numbers in *IL-2*-deficient mice
- Figure 6-1 Generation and activation of OT2 CD4 T cells with IL-2 deficiency 249
- Figure 6-2Analysis of IL-2 requirement on CD4 T cell memory generation251
- Figure 6-3 Evaluation of the potential of using FUGW lentiviral vector to 253 genetically modify naïve T cells
- Figure 6-4 Potential of lentivirus-mediated gene transfer for study of IL-2 255 signaling
- Figure 6-5 Evaluation of possibility of activation of AKT signaling pathway to 257 rescue CD4 memory failure caused by IL-2 deficiency
- Figure 6-6 Evaluation of possibility of activation of STAT5 signaling pathway 259 to rescue CD4 memory failure caused by IL-2 deficiency
- Figure 6-7 Summarized results from study of the role of IL-2 in CD4 T cell 261 memory

Figure 6-8 Schematic representation of the proposed "Paths to STAT5" 262 memory model.