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Symmetry, Reduction and Swimming in a Perfect Fluid
by
James E. Radford

In Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy

Abstract

This thesis presents a geometric picture of a deformable body in a perfect fluid and
a way to approximate its dynamics and the motion, resulting from cyclic shape
deformations, of the body and, interestingly, the fluid as well. Emphasis is placed
on the group structure of the configuration space of the body fluid system and the
resulting symmetry in their equations of motion. Symmetry is also used to reduce
a series expansion for the flow of a time dependent vector field in order to obtain
a novel expansion for the path-ordered exponential. This can be used to approx-
imate holonomy, or geometric phase, in a principal bundle when its evolution is
governed by a connection on the bundle and it is subject to periodic shape inputs.
Simple models for swimming in and the stirring of a perfect fluid are proposed and
examined. ‘
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Chapter 1

Introduction

The symmetries present in the description of a deformable body in a perfect fluid
provide a useful structure that can both serve to unify the treatment of their
equations of motion and aid in the analysis of swimming and stirring motions.

In particular, I show the system to be a simple mechanical system with sym-
metry whose configuration space is a principal bundle.! This structure codifies
a natural splitting of its configuration into a shape space, assumed to be under
control, and a Lie group measuring the progress of the system in its environment.
In the case of swimming, cyclic undulations effect net translations and rotations
of the body. In the case of stirring, motion of a paddlc induces swirls of the fluid.

In both cases, the evolution of the system is governed by a connection on the
principal bundle. I provide a series expansion for the geometric phase or holon-
omy generated by a non-Abelian principal connection in terms of the covariant
derivatives of its curvature along with geometric properties of its shape deforma-
tion. This series is an alternative to the path ordered exponential. Though it is
an extension of known results for holonomy in terms of the curvature, it will be
shown to result from the reduction, made possible by the symmetry and periodic
inputs, of a general series for the flow of a time dependent vector field representing
the flow of the full system to a flow on the adjoint bundle and eventually to the
Lie algebra.

It is well known that the BEuler equations for the motion of a rigid body and
for the motion of an inviscid incompressible fluid can be thought of as invariant
geodesic equations. The configuration space of each is a Lie group and their
corresponding kinetic energy, thought of as a metric, are invariant with respect to
that group. The principle of least action implies that the system will evolve along
the geodesics of the metric, and the symmetry implies that the equations can be
reduced to the Lie algebra.

The equations of motion for a rigid body in an irrotational fluid are also known
to have this structure. It is shown here that the irrotational restriction is not nec-
essary. Even with vorticity the combined body fluid system evolves along geodesics
of an invariant metric on what I call the fluid body group. The configuration space

'In these paragraphs my specific contributions have been italicized. A detailed literature
review can be found in the beginning of each of the relevant chapters.



of the deformable body is a principal bundle over the shape of the body with this as
1ts group.

Apart from deformations, the fluid body group itself, the configuration of a rigid
body in a fluid, is shown to be a principal bundle over the position and orientation
of the body. In the context of holonomy and motion generation through cyclic
deformations, this bundle represents the configuration of the stirring problem. In
two dimensions it is shown that this bundle is mathematically non trivial when
the stirring rod is not simply connected. This property captures some of the
well known topological features of flow in two dimensions leading to, for example,
thorough mixing through braid motions. In this case the local motions captured
by the series above only begin to capture the richness of ways in which the fluid
can be swirled.

Deformable bodies in an inviscid incompressible fluid are governed by equations
of the same form as those of an articulated satellite. Both are based on conservation
of angular momentum. Whereas in space the satellite can only reorient itself, the
same system in water becomes a fish that can swim. I examine some of the
features of swimmers in an ideal fluid by approzimating them as mechanically
coupled but hydrodynamical decoupled bodies. These simple models can serve as
the basic building blocks of low dimensional models of swimming that can be
analyzed and controlled given that many features of these systems persist after -
adding viscosity and other complexity.

1.1  Outline of the Thesis

This thesis is presented in the language of differential geometry. Relevant concepts
in manifolds, tensors, Lie groups, principal bundles and Riemannian geometry are
reviewed in Chapter 2.

The equations of motion for a simple mechanical system with symmetry are
derived in Chapter 3. They are the general equations for all the examples in this
thesis. ) ,

Chapter 4 begins with a review of the Euler rigid body and the Euler fluid as
invariant simple mechanical systems on Lie groups. A rigid body in an inviscid fluid
is show to have this same structure. The geometry of its configuration space, the
fluid body group, is then discussed. The group is shown to have a principal bundle
structure itself. This is then discussed as the configuration space for stirring. The
configuration space for deformable body in a fluid is then shown to be a principal
bundle over its shape with the fluid body group as its structure group.

Chapter 5 reviews the structure of driftless control systems governed by a
connection on & principal bundle and previous attempts to compute expansions
for the holonomy of these systems in terms of the curvature of the connection. Then
a review is presented of general series expansions for the flow of time dependent
vector fields. The Lie brackets that appear in these series are shown to reduce
in the presence of symmetry. The controllability conditions are then reduced,
followed by the series themselves, generalizing the previously known results and



giving a new expansion for the path-ordered exponential.

Chapter 6 applies some of the resulis of Chapter 5 to swimming and stirring
examples shown to have the requisite structure in Chapter 4. Simple models for
swimmers in inviscid fluids are proposed that consist of articulated rigid bodies
that are approximated as mechanically coupled but hydrodynamically decoupled.
A simple model of a propeller driven submarine is discussed in the context of
understanding the properties added mass. Then a three link manipulator, which
cant only reorient itself in space is shown to be completely controllable when im-
mersed in a fluid. The idea of controlling a fluid via stirring is then examined in
an example.






Chapter 2

Background in Differential Geometry

I will be using the notation and tools of differential geometry. The reader is as-
sumed to be familiar with the concepts of manifolds and tensors, and the standard
methods of integration and differentiation on and of them. In order to make a
self-contained presentation and to establish notation, this section reviews some of
the mathematical concepts and tools used in this thesis. Additional information
can be found in any number of books. This thesis typically uses the notation and
conventions found in [Abraham, Marsden, and Ratiu, 1991]. Topics like principal
bundles and Riemannian geometry not covered therein can be found in {Kolaf,
Slovék, and Michor, 1993, Nakahara, 1992].

2.1 Manifolds and Tensors

On a smooth manifold M, let C*°(M) be the space of smooth functions mapping
M to R, let X£(3) be the space of vector fields on M. Let QF(M, V) be the space
of k-forms, alternating or skew-symmetric multi-linear functions of k vector fields
taking values in the vector space V. The vector space V defaults to R if it is
unspecified.

The interior product ix o of a vector field X € ¥(M) and a k-form o € QF(M)
is a (k — 1)-form, which, when applied to vectors Y1, ..., Y;x—1 € X(M) yields

(ix)(Y1,..., Y1) = (X, Y7, ..., Yi—1).

There is a natural pairing between a space and its dual, denoted (,-), such that
ixa=a(X)=(X,a) for X € ¥(M) and o € Q' (M).

The wedge product of a k-form o € Q%(M) and an I-form B € Q'(M) is a
(k + l)-form a A B. The wedge product is associative and bi-linear. Any m-form
where m is greater than the dimension of the manifold is zero.

2.1.1 A Simplified Notation

Adjacency is adopted for composition and the existence of derivatives is inferred
from an object’s position. Let ¢: M — N, f € C®(N), v € X(M) and u € QY(N).
Since v: M — TM and u: N — T*N, then ug: N — T;M and qu: M — TN



make sense. In both ug and gv adjacency is taken to mean composition and in the
second ¢ is interpreted to mean its tangent map Tyq: T M — Ty N since g itself
cannot be composed before v but T¢g can. The following expressions are then well
defined

qf="fq € C%(M)

g = qug~ ! € X(N)

¢ u = quq c QY(M)
q* (g.v,u) = (v, ¢*u) € C®(M).

This notation is natural for linear operators since they are their own derivatives
and, with the above conventions, it becomes unambiguous even in the nonlinear
case.

2.1.2 Differentiation and Integration

The exterior derivative of a k-form, o € QF(M), is a (k + 1)-form, da. The
operator d is linear and satisfies the relation dod = d? = 0.

The exterior derivative d and the interior product ix are graded derivations.
That is, if & € QF(M) and 3 € QM) and X € ¥(M) then

dlaAB) =danf+(-1)fands

, . ko (2.1)
ix(anB)=((xa) AB+(-1)"aNix b.

The Lie derivative of a vector field YV in the direction of a vector field X is
another vector field defined to be

ZxY = 4 z; Y, (2.2)
dt|,_
where z;: M — M is the flow of X, i.e. the solution of #:(z) = X(z¢(z)) and
zo(z) = z for all x € M. This will often be written X = &;x; . The definition of
the Lie derivative can be extended by replacing Y in (2.2) with any function, form
or tensor.

The Lie derivative of vector fields is also called the Jacobi-Lie bracket, [X,Y] =
SxY. When written this way, the reader should have in mind its equivalent
definition as the commutator of vector fields. It is the unique vector field [X, Y]
such that X, Y f = (XY — YX)f for all functions f € C°(M) where a vector
field acting on a function is defined by X f = %x f.

Theorem (Cartan’s Magic Formula). Cartan’s formulae relates the Lie deriva-
tive, the interior product, and the exterior derivative. For any vector field X &€
X(M) the following “magic” formula holds

Px =ixd+dix. (23)



The exterior derivative, d, commutes with the Lie derivative, Zx, for all vector
fields X € X(M). This can be seen by using (2.3) and d? = 0,

Pxd=ixdd+diyd=ddixy+diyd =d.%. (2.4)

The following is a useful relationship between a one-form w € QYM), two
vector fields X, Y € X(M) and their derivatives,

X(@(V)) - Y (X)) = w([X,Y)) + duw(X, ). (2.5)

2.1.3 Volume and Tangency

On an n-dimensional manitold M, n-forms are particularly important. The clas-
sical determinant is the unique, up to a scaling, alternating (skew-symmetric)
multi-linear function of n vectors on an n-dimensional vector space. n-forms (al-
ternating n-multi-linear tensors) encode orientation and volume, and differ from
each other by no more than a function, i.e. a scalar at each point. The determi-
nant (of the Jacobian) of a map, f: M — M, is the unique function such that
[rw = (det flw for all w € Q" (M). f is said to be orientation preserving if det f is
positive. These properties lead to integration being naturally defined on n-forms.

Theorem (Change of Coordinates). Given a diffeomorphism, o smooth map
whose inverse is also smooth, f: N — M, that is orientation preserving, and an
n-form w € Q*(M), the following relationship holds:

fivefie

This is generally true for compact manifolds and, we assume, true for non-
compact manifolds assuming that at least one of the integrals converges.

n-forms that are everywhere non-vanishing arc called volume forms. Let u be
a volume form and let v be a vector field on a manifold M. If i, u is restricted to
the boundary OM of M then i, y is a volume form on that boundary as long as v
is not zero and is not tangent to the boundary. Notice that if v is tangent to the
boundary, then there cannot possibly be n — 1 independent vectors Xi,...,Xn1
parallel to the boundary such that (i, p)(X,. .., Xp-1) # 0, since v will be parallel
to some linear combination of them. Therefore i, u depends only on the component
of v normal to the boundary as the tangential component will not contribute. This
can be summarized as follows:

ivulayr =0 ©  v||OM.

Since it is linear in v, i, ploar represents the flux of v through the boundary or the
classical expression (v - n)dA, where n is the unit normal to M. The term i, p
arises naturally in the following two classical theorems.

Theorem (Stokes’ Theorem). Let M be an n-dimensional manifold. For any



(n—1)-form w € Q"1 (M),

/dwz/ w. (2.6)
Ju oM

This generalizes the standard theorems of Green, Gauss and Stokes to arbitrary
dimensions. The following statement shows how the divergence theorem is also a
simple consequence of Stokes’ Theorem.

Theorem (Divergence Theorem). Let ¢ € C®(M), v € £(M), and p €
Q" (M) a volume form. The divergence is defined (with respect to ) by (div, v)u =
Sop . It then hold that

[ one= [ onu+ [ @ 2.7)
M aM M

Proof. Using first (2.3) and (2.6) and then fact that (n+1)-forms are zero it follows
that

./M(,%é)u=/M(i,udqﬁ)/ﬁ=/Md¢/\i,uu+/Miv(d¢/\M).

The result is obtained by applying the Leibniz property (2.1) of i, and d

=/Md(¢/\ivﬂ)+/M¢/\divﬂ

and then Stokes’s Theorem (2.6). O

2.2 Lie Groups and Associated Constructions

Objects invariant under the action of a group are said to have a symmetry. Since
this concept is fundamental to this thesis, Lie groups are reviewed.

2.2.1 Lie Groups and Lie Algebras

A Lie group is a manifold G endowed with a smooth, associative and invertible
binary operation called group multiplication. A Lie group G is said to act on a
manifold ¢ from the left if there is a smooth operation L: G x Q — @, written
Ly(q) = gq for g € G and ¢ € Q, such that Ly(Lp(q)) = Lgn(g) = ghg for all
g,h € G and ¢ € Q. Similarly, a right action R: G x Q — @, written Ryq = qg,
satisfles Rg(Rp(q)) = Rrg(g) = ghg. The identity element is denoted by e € G.

A tensor a on @ is said to be invariant with respect to the left {right) action
of Gon Qif Lyja =« (Rja=a) forall g € G.

A Lie algebra is a vector space endowed with a skew symmetric bi-linear op-
eration, called the Lie bracket, that satisfies the Jacobi identity. Each Lie group,
G, has a natural Lie algebra, g, the space of left-invariant vector fields, whose Lie



bracket is the Jacobi-Lie bracket. This is a vector space isomorphic to the tangent
space of (7 at the identity element.

2.2.2 Actions

An action @ of a Lie Group G on a manifold @ is a map ®: G x @ — Q written
(9:9) — ®4(q). A right action ®y(q) = Ryq = gg must satisfy q(gh) = (qg)h.
Similarly, a left action ®4(q) = L4(g) = gg must satisfy (gh)q = g(hq).
Associated to each & € g is a vector field &5 on @ called the infinitesimal
generator defined by
_ d]
" dtl
There is a natural left action Ad: G x g — g of G on its Lie algebra, called the
adjoint action that is the derivative at the identity Ad, £ = T, I of the conjugation
map I: G x G — G defined by I,(h) = ghg~!. The infinitesimal generator of this
action is the (lower case) adjoint action ade = &;. The adjoint action corresponds
to the Jacobi-Lie bracket of the associated left-invariant vector fields, so the same
square bracket notation adg n = [¢, 1] will often be used for it.

£ol9) Pt (q)- (2.8)

2.2.3 Left and Right Actions and Differing Signs

Many expressions involving operators defined with respect to the action of a group
on a manifold have signs that differ depending on whether the associated action is
left, right, or a combination.

To simplify potentially cumbersome notation, this thesis uses the symbol -+
as a sign that changes based on whether the associated action is left, right or a
combination. The symbol -- should be interpreted as plus sign for the component of
the action that is associated with a left action and minus for the component of the
action associated with a right action. The symbol -+ is its negative. The obvious
mnemonic is that when a plus should be plus for a left action the “L”-eft part of
the plus is emphasized. Similarly, the “r’-ight part of the plus is emphasized for
when the plus is a plus for a right action. For example, given the above definitions,
the Lie algebra bracket and the Jacobi-Lie bracket are related by

€. nle = +iéq. Q- (2.9)

2.2.4 Principal Bundles

Given a free and proper action ® of a Lie group G on a manifold @, the quotient
/G is a manifold and the projection 7: Q@ — Q/G is well defined. Such a manifold
Q is called a principal bundle over the base space Q/G with fibre G. @Q is locally
isomorphic to Q/G x G. If there exists a global isomorphism between @ and
Q/G x G, then the bundle is called trivial. A point ¢ is said to be over a point
z€Q/Gifn(q) ==z
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In what follows, expressions are given for the case of a left action. The corre-
sponding versions for a right action often differ by a sign.

2.2.5 Associated Bundles and Equivariance

A principal bundle 7: @ — @/G and an action of G on a vector space V defines an
associated bundle V = (Q x V)/G with respect to that action. A typical element
will be written T = [(g,v)] € V where the equivalence class is defined, for a left
action, by [(¢,v)] = {(g9q,9v) : g € G}.

Given an action of G on @ and a vector space V, a function f: @ — V is
equivariant if for each ¢ € Q and g € G it holds that g(fg¢) = f(gq). This can be

written more concisely as gf = fg.

Theorem (Generators on Equivariant Functions). Given an action of G on
a manifold Q) and on a vector space V' then

fef =&vof (2.10)

holds for every equivariant (fg = gf) function f: Q — V.

Proof.
o)) = 5| =2 g =ev(f(@) = & o N)la)
t=0 t=0
where ¢ € @ and £ € g. O

2.2.6 A Section/Function Equivalence on Associated Bundles

A section of a bundle 7: Q@ — M is a map s: M — @ such that ros=1Idy. A
vector field is a scction of the tangent bundle.

The space of vector valued equivariant functions, f: @ — V, is isomorphic to
the space of sections, s: Q/G — V, of the associated bundle V. A section sf
can be defined from a function f as s¢(z) = [(g, f(g))]. This definition makes
sense for all ¢ € Q over z € Q/G because of the equivariance of f. Conversely an
equivariant function fs can be defined in terms of the section s(z) = [(g,v(q))] by

fs=v.

2.2.7 The Associated Adjoint Bundle

The adjoint bundle, g, is associated with the natural action of Ad on the vector
space g, the Lie algebra of G. Lie algebra valued forms % on () are therefore said
to be Ad-equivariant if for all g € G,

Ly = Adgy

for a left action, or
Ry = Adg-1 ¢
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for a right action.
For a left action, if v is an Ad-equivariant Lie-algebra valued tensor on the full
space @, then

d

‘—(Zé Y= — L*tﬂ/}
@ dt|,_g ¢
= e A_ ]
dt -0 dets (4
= adE b, (211)

2.2.8 Connections and the Horizontal Subspace

On a principal bundle 7: @ — Q/G, the vertical subspace VQ C TQ is defined
as the kernel of the projection = or, equivalently, as the image of the infinitesimal
generator, and is therefore isomorphic to g at each point in Q.

A connection on a principal bundle @Q is specified by an Ad-equivariant Lie
algebra valued one-form w € Q1(Q, g) with the property that wg is the identity on
V Q. This implies that w(§g) =& for all £ € g.

A connection w defines a horizontal subspace HQ via the kernel of w. This
definition together with the defining properties of w imply TQ = VQ & HQ.

There is an isomorphism between the tangent space at a point in the base
and the horizontal subspace at any point in the fibre above it. The horizontal
lift X" € 2(Q) of a base vector field X € ¥(Q/G) is the unique left-invariant
horizontal vector field that projects to X.

The horizontal lift, o: [0,T] — @, of a curve, a: [0,T] — Q/G, is the unique
curve, starting at a given point in the fibre above «(0), which projects to o and
has a horizontal derivative.

2.2.9 Curvature

The curvature Q € Q%(Q, g) of a connection w € Q'(Q, g) on a principal bundle
Q — Q/G is an Ad-equivariant Lie algebra valued 2-form on @ defined to be

Q=h"dw,
where h: TQ — HQ is the horizontal projection h = idrg —wg.

Theorem (The Structure Equation). Given a connection, w, on a principal
bundle, the curvature satisfies

Q= dw— [w,w]. (2.12)
Proof. First (2.12) is verified to hold if one of its arguments is vertical

il = dgg (dw — [w,w]) = Lgow —adgw =0
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by using (2.11) and the Ad-equivariance of both w and Q. Second, If all the
arguments are horizontal, then clearly [w,w] =0 and @ = h* dw = dw. a

2.2.10 The Covariant Derivative

The covariant derivative of a curve 3(t) € V in an associated bundle is the deriva-
tive of the vector V portion of the equivalence class of 5(t) as the @ part is made
to follow a horizontal path. This is easily shown to be independent of the hori-
zontal path that is chosen. Specifically let ¢(¢) € Q be a curve over the projec-
tion z(t) € Q/G of 3(t) and let g(t) € G be defined such that q(t) = g(t)z(1),
then 3(2) = [(a(8), v(®))] = [(g(8)2"(8), v(t))] = [(£*(), 9~ (t}u())]. The covariant
derivative is then

l(zh, L gm10)]

il

._ D
ViS = ;i—t'S(t)

"t
= [(z", 971 — g7 (w(@)v(v))]
= [(q,% — (w(@)v (v)); (2.13)
where
w(d) = w(gz" + g3™) = w(gg™q) + Adgw(d™) = gg™* (2.14)

is used. As a matter of notation, gg7 g = (997 g(g)-

Recall from §2.2.6 that sections of the associated bundle (Q x V)/G are in one-
to-one correspondence with vector-valued equivariant functions f: @ — V. Under
this isomorphism, the covariant derivative (2.13) can be defined on vector valued
equivariant functions on Q. Let f: @ — V be such that fg = gf, with g € G.
Then

Vxf=2Zf - (w(@)v(f), (2.15)

for X € T;M and some horizontal lift Z € T,Q such that n(q) = z and TywZ = X.
This expression is independent of the choice of Z in the fibre above X in the same
way that (2.13) is independent of the chosen representative v. To see this recall
that Z = X" + £ can be decomposed for some £: @ — g so that

Vxf=(X"+£)f - (WX +&))vf=X"f

using Lemma 2.10.
If ¢q(t) € @ is a path above z(t) € Q/G then w{¢) can be thought of as a path
in the adjoint bundle that doesn’t depend on which ¢ is chosen in

w(t) = [(q(t),w(@)] € 8
because w is equivariant.

2.2.11 Local Forms

A principal bundle @Q with projection 7: @ — @/G is locally isomorphic to Q/G x
G. When this holds globally, i.e. when @ = Q/G x G, then the bundle is called
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trivial.
Generically there a unique point in the base 7(g) associated with each point
g € ( but there is no way to globally assign a point g(g) € G in the group to each
Q. A local trivialization of Q) is defined by a local section ¢: U C @/G — @ such
that (7(g),9(q)) € Q/G x G where g: Q — G is defined with respect to the section
by
9(q) o(n(q)) =¢ (2.16)

Henceforth assume that the coordinate function g is always defined with respect
to an unspecified local section so that ¢ = (r,g) = Q/G x G. Note that g is
equivariant.

The local form with respect to a local trivialization, o, of an equivariant object
defined on a principal bundle is its pullback by o to the base @/G. Due to the
equivariance, the object on the full space can be locally reconstructed from it.

__ For example, if f: @ — V is an equivariant function then its local form is
f=0"f € C®Q/G). One can locally recover the function f on Q/G x G because
of the equivariance using the coordinate function g: Q@ — G

f=g7F

The local form of a principal connection w € Q}(()Q, g) is A = o*w € QYQ/G, g).
By equivariance,
w=Ady(g7 dg+w*A)

wherever the section is defined. The covariant derivative of an equivariant function
is again an equivariant function. Its local form is then Vx f = o*(Vx f). The local
form of the covariant derivative,

Vi=df-Avf,
can be found by using (2.15). The curvature can be reconstructed from its local

form, F' = o*Q, by
Q= Adgm = F.

The local form of the structure equation (2.12} is

F=dA-[AA]. (2.17)

2.3 Riemannian Geometry

Riemannian geometry is the study of smooth manifolds that are endowed with a
metric. It provides the manifold with natural structures that are not found on an
unadorned manifold. One is a distance measure, a second is a covariant derivative,
and a third is a natural volume element.

Riemannian manifolds appear here in two contexts. First, the ambient space in
which the problems of interest will be embedded will be Riemannian manifolds. An
example is the Euclidean plane E? which is R? with its standard metric, §. Second,
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the configuration space of a simple mechanical system is a Riemannian manifold
whose metric is its kinetic energy. Unforced, it will evolve along geodesics.

A manifold M with a given metric m, a symmetric positive definite two tensor,
is a called a Riemannian manifold and is denoted by (M, m).

Theorem (The Fundamental Theorem of Riemannian Geometry). A Rie-
mannian manifold (M, m) has a unique covariant derivative V called the Levi-
Civita connection that satisfies the following properties. For all vector fields X,Y, Z €
X(M) and functions f,g € C*(M)

VixigvZ = fVxZ+VyZ, (2.18)
VY = fVXY + (Xf)Y. 2.19)
Vx(m(Y,2)) =m(VxY,Z)+m(Y,VxZ), : (2.20)
VxY — Vy X = %Y. (2.21)

Lo o~

The value of the covariant derivative only depends on the value of its first
argument at a particular point and not its derivatives, and it only depends on its
second argumens locally in the direction of the flow of the first. This allows us to
define the Lagrangian derivative along a curve z(t) of a vector field Y, possibly
only defined along z(t), as %Y =V;Y. :

The derivative of a function, f € C*®(M), in the direction of a vector field,
X € X(M), is another function, X f € C*°(M). Both Vx and #x can be natu-
rally extended to operate on all tensors by specifying that they degenerate to the
directional derivative when acting on functions (0-forms)

Xf=Vxf=2Zxf=ixdf=(X,df),

and that they “commute with contraction” or that they are “Leibniz”. This is
best illustrated by an example. Let m be a 2-tensor and let X,Y,Z € X(M) be
vectors. Then Vxm is another tensor of the same type as m and is defined such
that the following is true for all Y, Z.

Vx(m(Y,Z)) = (Vxm)(Y,Z) + m(VxY,Z) +m(Y,VxZ)

Notice that (2.20) is equivalent to Vxm = 0.
On a Riemannian manifold (M, m) the musical isomorphisms *: TQ — T*Q
and -: T*Q — T'Q are defined with respect to the metric m on M by

(X, Y =m(X,Y)
(@ Y") = (Y,

for all X,Y € %(M) and o« € Q1(M). The gradient of a function f € C®(M) is a
vector field defined in terms of the metric and the exterior derivative d by

grad f = (d ).



15

Theorem (A Relationship Between ., V and d). On a Riemannian man-
ifold (M, m) the Lie derivative &, the Levi-Civita connection V and the exterior
derivative d can be related by

Lh) = Vo’ + %d w2 (2.22)

for all vector fields, v € Z(M)*.
Proof. For all X € X(M),

(X, 2, (v")) = Lo(X,0") — (LX)
=V (X, ") — (Z,X, ")
= (X, V,o") + (Vo X, ) — (L X,
= (X, V") + (Vxv,0°)

, 1_
= (X, V,0’) + 5Vl

because V preserves the metric (2.20) and is torsion free (2.21). a

2.3.1 Isometries

The isometry group
I(M)={b: M —M|bm=m}

on a Riemannian manifold (M, m) is the space of maps that preserve the metric
m. Tt is the space of rigid motions on M. The Lie algebra of Z{M) is denoted
by i(M). It is the space of infinitesimal isometries, or the space of rigid velocities.
For simplicity, Z(M) is restricted to its component connected to the identity.

For Euclidean space E" = (R",4), that is R™ with the standard metric (the
Kronecker delta), the isometry group Z{R"™) = SE(n) is the special Euclidean
group, the space of rotations and translations. The Lie algebra of the Euclidean
group is, i(R™) = se(n), the space of both rotational and translational rigid veloc-
ities.

2.3.2 The Isometry Action

The isometry group, Z(M), naturally acts on its Riemannian manifold (M,m).
By definition the metric is invariant with respect to this action. The infinitesimal
version of this invariance is that for all £ € i(M)

“%Mm = 0. (2'23)

Note that Vv(vb) = (Vuv)b 50 that leaving off the parenthesis is unambiguous.
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This follows from definitions of the infinitesimal generator (2.8) and the Lie deriva-
tive (2.24).

2.3.3 Transport Theorems

Theorem (Transport Theorems). If z;: M — M is a local diffeomorphism,
then it 1s the flow of the vector field v, = g'cxt_l on M. If T, is a tensor field defined
along x; then the following hold,

d .

EEIJ:Tt = .II;(Tt + (%tTt), (224)
D .

ETtI’Ct = (Tt + vvtTi)ll‘e' (2'25)

2.3.4 A Metric on Diffeomorphisms

A metric m and a volume form p on a manifold M induce a natural metric M on
Diff (M), the space of diffeomorphisms of M. Let X,Y € X(Diff (M)), then

MX,Y)= | m(X,Y)p. (2.26)
M

It is not obvious that this definition makes sense since X ¢ X(M) is not a vector
field on M, but rather is a vector field on Diff (M). Given a point z € M the
change in a diffeomorphism f: M — M restricted to x is a vector at f(z) or an
element of Ty M so that the above means

MpX7Xg) = [ mgia (o), X (@D
zeEM

Notice the volume form and the metric are evaluated at different points: the metric
is evaluated at f(z), and the volume form is evaluated at z.

2.3.5 Variations

Our use of the calculus of variations requires a change in the order of differentiation
of a path with respect to its two parameters, here called s and ¢.

Theorem (Exchanging s and t Differentiation). Let g: R? — Q, then

V40q — Vseq =0, (2.27)
d d

d_tw(6q) - gw(@ = dw({, dq), (2.28)

where §(s,1) = T g © 4. 6q(s,t) = Tispyg o 4 and w € QQ).
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Proof. The vector fields ¢ and 8¢ are g-related and % and ad—s are constant so that

. N d d

and since the connection V is torsion-free (2.21), the first result follows. The
second follows from the above and (2.5). O
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Chapter 3

Simple Mechanical Systems

Simple mechanical systems are completely described by their quadratic kinetic
energy which can be thought of as a metric on their configuration space. This
means that the configuration space is a Riemannian manifold. The equations of
motion for such a system are the geodesic equations for the configuration manifold.
For background in the these system as related to control theory see {Lewis, 1995].

A coordinate invariant splitting of the geodesic equations is presented for the
case when the metric has a symmetry. This work was inspired by the coordinate
version found in [Bloch, Krishnaprasad, Marsden, and Murray, 1996, Ostrowski,
1998]. The key insight to the coordinate invariant formulation presented here is the
use of the adjoint bundle. Though it is just the metric case of general Lagrangian
reduction in the presence of symmetry found in [Cendra, Marsden, and Ratiu,
2001a), this formulation was done in parallel and is presented in a sufficiently dif-
ferent style to justify its presentation here. In addition all our motivating examples
have a metric structure, so it is reasonable to work through this special case in
detail. The results will also be used in Chapter 6.

3.1 General Simple Mechanical Systems

Because a similar technique will be used in the derivation of the Metric Lagrangian-
Poincaré equations the standard formulation of the forced geodesic equations is
reviewed.

Let @ be a Riemannian manifold with metric M and V its associated Levi-
Civita connection. When subject to a force Y” € Q!(Q), the equations of motion
of the associated simple mechanical system with kinetic energy 1|ig||% are

Vi =Y.

This can be shown by using the Lagrange d’Alembert principle

b
5 [ Lials, 1) d(s,0)ds + M(¥,60) =, (3.1)
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where § = 3‘%‘3:0, applied to a Lagrangian of the form

L0,4) = Sl = 5M(4,4).

Recall that for scalars, like the action, & = EdEL;:o = Vsq so that (3.1) becomes

b b
[ Mg = v, [ IM et

because V respects the metric then

b
- / M(Visgd, d)dt
a

and because V is torsion frec

b
- / M(V g — [Sd), d)dt

and here s and ¢ derivatives commute (2.27)

b b

=/ M(qu',()"q)dt——/ V4(M(8g,4))dt
b

=/ M(Vq(},(sq)dt—M(&%(j)[g

and finally since dq vanishes at a,b.

3.2 Partial Symmetry

When the metric that describes the systems is invariant with respect to the action
of a Lie group G with Lie algebra g, then it will have a conserved quantity called
the momentum. The momentum map J: TQ) — g* defined by

(J(X),8) = M(X,&q) (32)
for all £ € g, satisfies Noether’s theorem, which states that

d _,.
5@ =J(). (3.3)
In the absence of external forcing, the momentum J is constant along a trajectory

of the system. (3.3) is a simple consequence of taking the time derivative of (3.2)
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and using the fact that the metric is invariant.

2 ((0),8) = V4(M(, &)
= M(Vy4,¢q) + M(4,Viq)
= (J(V),8)

where (2.23) and the lemma 2m(VxY, X) = (K M)(X,X) were used. If the
configuration space is completely invariant, @ = G, then (3.3) completely describes
the system.

3.3 The Mechanical Connection

A simple mechanical system with symmetry described by a metric M on a manifold
@ that is invariant with respect to the action of a Lie group (¢ has a natural
principal connection w: T'Q — g called the mechanical connection defined on the
bundle 7: Q@ — Q/G. This connection is defined for all X € X(Q) and all § € g
by,

M(X, &) = M(wg(X),&)- (3.4)

The horizontal subspace is therefore normal, with respect to the metric, to the
vertical subspace defined by the infinitesimal action of G. w, is naturally Ad-
equivariant because M is invariant. The mechanical connection diagonalizes the
metric M on @

M =71"m + 'L

Here m is a metric on /G defined by
m(X,Y) = M(X",Y")
and I, an Ad-equivariant metric on g, is defined by

(¢, n) = M(&q,mq)- (3.5)

I, because it is Ad-equivariant, can also be thought of (2.2.6) as

I=((g, )],

a metric on the adjoint bundle §. The momentum map J and w are then related
by
J =1Iw (3.6)
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3.4 The Metric Lagrange-Poincaré Equations

A connection w, in this case the mechanical connection, splits the derivative of a
time dependent path ¢(t) on Q) into a horizontal and vertical part

g = + we(q)

where r(t) = w(q(¢)). This is a choice of connection, while convenient, is not
necessary [Cendra, Marsden, and Ratiu, 2001b]. The external force can be split
as follows 4

J(Y) = ZJ(D) = (" +wq(d) 1 (a).

The covariant derivative on the dual of the adjoint bundle (2.13) can be written
as #t =V, = % so this becomes

Do =
=7 —adyT = J(¥)

or
D
ZE(]IE) —ads o = Iw(Y)

using §2.2.6 where @W(t) = {(¢(t),w(¢))] is a path in the adjoint bundle g, T is
defined by (3.3) and _

J(t) =T
is its momentum, a path in the dual g*. This is the vertical part of the Lagrange-

Poincaré equations {Cendra et al., 2001a] for a quadratic Lagrangian. The hori-
zontal part can be obtained by going back to Hamilton’s variational principal.

Theorem (Metric Lagrange-Poincaré Equations). The Lagrange equations
for a quadratic Lagrangian on e manifold Q defined by a metric M that is invariant
with respect to the action of Lie group G can be reduced and split with respect to
the mechanical connection w into a vertical

D T * T
d—t(llw) ~adilo=0 (3.7)
and horizontal )
Vir — -2—<VE)(LU, @)+ 1(@,i: ) =0 (3.8)

piece where @(t) € § and M = *m + w*L as above (3.3). Note that the first V is
the Levi-Civita connection associated with the metric m on Q/G and the second
V is the covariant derivative (2.13) on the adjoint bundle § associated with the
connection w and that Q € Q*(Q/G, §) is defined by QX,Y) = [(g, UX", V)]

Proof.

b b b
QL%A«@@ﬁ=g£%ﬂd®wwn+§ﬁ%mﬁﬁmt
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where 7 = 7(g). The second term on the right is just the usual variation (3.1)

on the base space and will give — f; m(Vzr, 6r)dt. Continuing with the first term
leads to

b b
5 / sHe@.w(@) = [ SED6@w@) + [ 16@),w(@),

a

The order of s and ¢ differentiation can be changed using (2.28). {oI = —adf I —
Tadg because I is Ad-equivariant so 61 = dg(I) = 57"l + swpl = VI — ad}, I —
Tads,. With this the previous equation becomes

b b
= 5 | 0Tt + [ TE (60 +do(sa,d), (@)

and after applying the structure (2.12) equation Q = dw — [w, w]

1 s N
=5 [ (Verl = odi, T~ Tadsu)(d),(a)dt

b
+ [ W60 + 259, 6) + o(60) (@), (@)

define 6@ = [(¢,w(8q))] and dr = T'r(dq) so that

b b
| 5(T5DE2) + (@), 26", )i+ [ g e

Now apply the usual technique of the variational calculus by first doing integration
by parts on the second term and then setting the integrands to zero. The m term
we neglected above is returned.

d =
6wa(ﬂw) =0

m(5r, Vi) — -;-(véri)(w,w) + 1@, 507, 6r)) = 0

the second of which is G-invariant. Then of course, since the v&rlatlons are arbi-
trary, the result is obtained. a



24



Chapter 4

A Deformable Body in Fluid

Symmetries play a fundamental role in mathematics and physics. In physical sys-
tems, they lead to conserved quantities called momenta and to simplified evolution
equations. In Chapter 3 the specific form for the momenta and the reduced equa-
tions of motion for a simple mechanical system with symmetry were presented. In
this chapter the equations of motion are derived for a deformable body in a perfect
fluid by showing the system fits this form. When the submersed body is rigid, the
system further reduces to become an invariant one on a Lie group. This group is
a combination finite/infinite dimensional one which is slightly complicated by its
behavior at infinity.

I feel that the presentation here of the group structure of a deformable body in
a perfect fluid is a fundamental contribution. Birkhoff [1950, p. 164], referring to
the classical chapter of hydrodynamics [Lamb, 1945, Chapter VI| concerned with
a rigid body in a perfect fluid accelerated from rest (a requirement dispensed here
as vorticity is included), said

... 1t has great historical importance, and to this day no better model of
comparable simplicity is known. I therefore feel justified in presenting
a new mathematical treatment of it, ultimately in terms of the ideas
of group theory, whose importance for other hydrodynamical questions
has already been shown.

I proceed in the same vein and with a similar sentiment though my treatment is
closer to that of Arnold and Khesin [1998].

A review is first presented of Arnold’s invariant formulation of the Euler equa-
tion [Arnold and Khesin, 1998] for an incompressible inviscid fluid as a right in-
variant mechanical system on a Lie group, the group of volume preserving diffeo-
morphisms of the reference configuration. Then the analogous equations for the
generalized rigid body, invariant with respect to the left action of the isometry
group, are shown to yield Euler’s rigid body equations.

When started from rest, the equations for a rigid body in a fluid are known to
be symmetric geodesic equations [Birkhoft, 1950]. It will be shown here that the
equations for the combined rigid body fluid system in the generic rotational case
are also symmetric geodesic equations for what I call the fluid-body group. They
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are coupled versions of the Euler fluid and Euler rigid body which, when the fluid
component of the momentum is zero, reduce to Kirchhoff’s equations.

The idea of using the particle relabeling and metric symmetries to compute
reduced equations for a rigid body in a perfect fluid is due to Kelly {1998]. His
work is presented here in a more geometric framework and is expanded upon by
relating the derived equations to the standard versions, by considering the effect
of the constraints at infinity, and by investigating the geometry of the resulting
fluid body group. This exposition will provide the background necessary to tackle
the deformable body and will provide the necessary framework to approach the
stirring problem.

I show that the deformable case is again geodesic, but this time the fluid body
group is only a partial symmetry over the shape space. The equations of motion
on the resulting principal bundle are then the metric Lagrange-Poincaré equations
(3.7), (3.8).

I show that the fluid body group has a natural principal bundle structure over
the group of rigid motions. Conservation of momentum and the conditions at
infinity connect the motions of the fluid to given motions of the body. This bundle
is quite complicated, in particular in two dimensions with a multiply connected
body, it is mathematically non trivial. This means that it has a structure that
is a generalization of a M&bius strip where global motions returning to the initial
point can leave the fluid mixed in way that, without moving the body, cannot
be undone. This is a model for stirring. With this in mind the curvature of the
mechanical connection on fluid-body group is computed with the intention of using
it in Chapter 6 as a means to approximate the holonomy or “stir” resulting from
cyclic motions of a body.

While the group formulation presented here may seem obvious in retrospect,
others schooled in the formalism of the reduction, symmetries, mechanical systems
and fluids have had trouble seeing it. Vladimirov and Ilin [1999a,b] say that they
had to extend Arnold’s technique for fluid stability analysis to systems that are
not Lie groups because “for the system 'body -+ fluid’, however, the flow domain
changes with time, so that the configuration space does not form a group”. It
does, as we shall see.

4.1 A Geometric Framework

We will be discussing the locomotion of objects in an ambient space M that is
assumed to be a Riemannian manifold with metric m. This formalism is adopted,
despite the fact that in the examples M will be either R? or R3, because, among
other things, it facilitates dealing with the rotational and translational components
of equations in R™. At the same time, the formalism allows a formulation that is
independent of coordinates and helps avoid the historically pervasive, but notori-
ously hard to generalize, cross product. Additionally, while the ambient space is
usually Euclidean, its isometry group and diffeomorphism group are, in the con-
text of the mechanics of a rigid body and a fluid, Riemannian manifolds as well
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and by themselves justify the formalism.

4.1.1 The Diffeomorphism Group

Let Diff (M) be the space of diffeomorphisms n: M — M of an n-dimensional
manifold M. This space is the configuration space a compressible fluid confined to
a volume modeled by M. Diff (M) is a Lie group with composition as the group
action. Its Lie algebra is diff (M) = {v € X(M) | v || @M} the space of vector
fields v on M that are parallel to the boundary &M on the boundary. The adjoint
action Ad,v = nqun~! = n,v is the push forward and the Lie algebra bracket is
ad, = —%, is minus the Jacobi-Lie bracket of vector fields.

The dual of diff () is diff* (M) = Q*(n), the space of one-forms o on M. The
natural pairing between elements of diff (M) and diff*(M) is (v,o) = [,; a(v)p
where the integral with respect to p € Q*(M), a given volume form (the density)
on M, times the standard pairing pairing between v € Diff (M) and o € diff*(M)
at each point. The co-adjoint action, Ad; = 7", is the pullback. The dual Lie
algebra bracket, ad; = .%,, is the Lie derivative.

The space of volume preserving diffeomorphisms

Diff (M) = {n € DIff (M) | n"p = p}

is a sub-group of Diff (M). It is the configuration space of incompressible fluids.
The Lie algebra of this group, the space of fluid velocities

Aiff, (M) = {v € diff (M) | div, v = 0},

is the space of divergence free vector fields v € X(M) (parallel to the boundary
oM). Its dual
diff ;" (M) = QY(M)/ dQ°(M)

is the space of one-forms modulo exact one-forms. This is the space of momenta.
An element [a] € diff,,;*(M) is an equivalence class, the set of one-forms that
differ from « only by the differential of a function. With this restriction, the
pairing

(v, [a]) = /A e

is non-degenerate. The following theorem makes this fact precise and is funda-
mental to our technique for handling incompressibility.

Theorem (The Dual of Divergence Free Vectors). [Arnold and Khesin,
1998] For an n-dimensional compact manifold M with boundary OM, the space
dual to diff ,,,(M) (the space of divergence free vector fields on M tangent to OM )
is naturally isomorphic to the quotient space Q1 (M)/dQO(M) (i.e. the space of
all 1-forms on M modulo ezact 1-forms on M ) in the following sense

i If o is the differential of o function (o = df) and v € diff (M), then
Sy aw)p=0.
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it If [y, a(v)u =0 for alla =d f for some f, then v € diff ,|(M) (i.e. visa
divergence-free vector field on M tangent to OM .

i If [y a(v)p =0 for all v € diff,, (M) then the 1-form a is the differential
of a function.

Proof. (i) If &« = d f and v € Diff |(M) then a(v) = %, f. Hence by the diver-
gence theorem (2.7),

/Ma{‘v))u: /é)Mfiqu—i—/M(divuv)fu:O

because v is divergence free and parallel to the boundary. (ii) If

0=/ i,vdfu:/ fdiyu
M J M

for all f then by considering f as a bump function supported in the interior of
M we see that di,p must be zero in the interior, and hence v must must be
divergence-free. By considering a bump function f supported on OM,

/fdw=/ Flop
M J M

the vector v must be parallel to the boundary and hence in diff (M). (iii) is
proved in [Arnold and Khesin, 1998.. O

4.1.2 Generalized Flows

One can’t proceed naively with variational principles on the group of volume pre-
serving diffeomorphisms since the limit of sequences of diffeomorphisms is not
guaranteed to exist in the space. One can construct the closure by infroducing
discontinuous flows.

Brenier [1989)] introduced generalized flows where particles can cross and over-
lap thereby completing the space of volume preserving diffeomorphisms. With the
space expanded to include these discontinuous flows, one can then proceed with the
variational formalism [Arnold and Khesin, 1998]. This means that the resulting
flow is possibly non smooth. We ignore these issues and proceed formally.

4.1.3 Assumptions on the Nature of the Flow at Infinity

We will often specify a geometrical object’s behavior at infinity in order to be
" physically realistic or to ensure convergence of certain integrals that make the
metric on Diff (M) or the momentum well defined.

For example a diffeomorphism ¢ € Diff (M) representing an inertial configura-
tion of & volume of fluid will be required to satisfy fixed boundary conditions at
infinity. We will write this constraint as glo = idy by which we mean that with
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respect to the metric the distance between z € M and g(z) approaches zero along
unbounded geodesics, when they exist.

For configurations of the fluid relative to the body it makes sense to ask for
n € Diff (M) to be rigid, that is an isometry, at infinity.

In addition we will assume that for all u € diff, (M), the integral [, m{&u, u)p,
when it appears, converges for all elements £ € i{ M) of the isometry group of M.
As is well known, this requirement disallows, for example, flows with circulation
in R2. .

Generally we will be concerned with manifolds that admit rigid motions, at
least in some directions. It is well known that in these directions the manifold
must have constant curvature. For example a torus with the induced euclidean
metric allows for rigid motions “around the outside” but not “around into the
middle”.

The above theorem as quoted only applies to compact manifolds, but we as-
sume it can be extended to non-compact manifolds if we restrict our infinities to
have constant curvature. It certainly holds for manifolds that arc Euclidean (zero
curvature) at infinity [Cantor, 1981].

4.1.4 A Body in a Fluid

This section discusses the abstract configuration space for a deformable body in a
fluid. These notions will be made more tangible subsequently.

We will assume that the body B C M is a sub-manifold of an ambient Rie-
mannian manifold (M, m) and that the remainder of M, F = M \ B, is fluid. Here
m is a given metric on M. A volume p, is given which represents the density p
in the reference configuration of the fluid and body when compared, y, = ppm,
to the induced volume form i, derived from m. The density o is allowed to be
discontinuous across the body’s boundary 9B and is independent of time since it
is specified only for the reference configuration. When a body is present we require
uniform fluid density. We will use y instead of Uy in the sequel when there is no
chance for confusion.

Configurations ) of the body and fluid

Q={q: My— M| q"u=p, q@B) = 0B, gle = idm},

where each map is a diffeomorphism everywhere except along @B. For inviscid
Buids we allow slip on the boundary. Note that we will write M, instead of M as
the domain (reference configuration) of the maps q as a reminder that one cannot
compose elements of @) since the body moves and possibly deforms. Doing so could
lead to the nonsensical mixing of body and fluid elements. !

!This would suggest an alternative approach in which the configuration space is thought of as
a groupoid [Weinstein, 1995]
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Invariance of the Body Fluid Metric
The metric on @ is (2.26),

MX,Y) = /M m(X,Y)u (4.1)

where XY € X(Q). It is clearly invariant with respect to the right action of
Diff ;(F) on Q. For all 7 € Diff, ;;(F) we have that

(77*M)(Xv Y)= M(T}*X, 7]*Y) :

= / m(mX, Y )i
M

= / m{X, Y )n.p (4.2)
n{M)

]

m(X,Y)u
M
= M(X,Y)

This is the so called particle relabeling symmetry since 1 acts as a change of
coordinates of the reference configuration.

The metric on @ is also invariant with respect to the left action of the isometry
group Z(M) on Q. For all b € T(M) we have that

" M)(X,Y) = M(bx X,b,Y)

= / m(b X, bY )
M

= [ ("'m)(X,Y)u (4.3)
M

=/ m(X,Y)u
M

= M(X,Y)

This is the rigid symmesry of the ambient space.

4.2 Euler’s Equation

It is unclear if Euler understood that his rigid body and his fluid equations could
be thought of as coming from the same principle, but Poincaré [1901, 1910] did.

4.2.1 The Euler Fluid

An inviscid incompressible fluid is an example of a simple mechanical system on a
Lie group. Given a metric m on our ambient space M we get an induced metric
(4.1) on Diff (M) along whose geodesics the fluid flows [Arnold, 1966]. The
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Lagrangian for the system,

L(n,7) = / 1911

is right-invariant (4.2) with respect to the action of Dlﬁ'\ol(M ) on itself. By
changing coordinates (2.1.3) and using the fact that n*u = u we see that the

Lagrangian depends only on
1
fw=3 [ ol
“~JM

where v = ™! € diff,(M). Lagrange’s equations can therefore be reduced to
the Euler-Poincaré equations . Since a" = [v"] € diff,;* (M) we have

vol

d

Z )+ AR =0 (4.4)

and by using (2.22) and the fact that % and d commute we have
U+ Vyv+gradp =0 (4.5)

Noether’s theorem (3.3) which says that the momentum, J = n* ['LJ"}, is constant

;t ] =0 (46)

This is an equivalent formulation of the equations for a perfect fluid (4.4) which
can be seen by applying (2.24) to (4.6).

Theorem (Kelvin’s Circulation Theorem). The integral of the velocity v
around a closed path C moving with the fluid Cy = n(C) is constant in time.

d v
—(E_/C‘:tt =0

Proof. By Noether’s Theorem (4.6) we have that dtn *[v") = 0. Integrating this
around the curve C C M gives

Ay d ,b_i/ b
O_/cdt(n [U])_dt/n(c)[”]_dt o

where we can remove the equivalence class since fCt d f =0 for all functions f by
Stokes’ Theorem (2.6) as C; has no boundary. O

Theorem (Helmholtz’s Circulation Theorem). The integral of the vorticity
w = dv® over the surface S C M moving with the fluid S; = n(S) is constant in
time.

d

& Js,

w=20



32

Proof. Take d of (4.6), integrate over S, and then change coordinates. 2 O

We see from Noether’s Theorem (4.6) that J is constant. If that constant is
zero then
0=J=nQ] =" =-d¢

where ¢ € C*®°(M) or in other words we have
v=—grad ¢

potential flow. Hence a fluid that can be characterized by a potential function has
zero fluid momentum and a flow of a fluid with zero momentum is characterized
by a potential function.

We would like to add a body to the fluid, so we start by reviewing the body
alone.

4.2.2 The Rigid Body

The equations for a rigid body in a perfect fluid are, as we shall see, a generalization
of those for the rigid body alone. In the special case in which the fluid can be
described by a potential function, the Kirchhoff case, they are almost identical. In
order to see this we start by reviewing the rigid body in our framework.

A configuration of rigid body B C M on a Riemannian manifold (M,m) is an
element b € Z(M) of the isometry group of M, the space of rigid motions. The
Lagrangian for the rigid body is

Lo.h) = [ 1P
~JB
Noticing that b*m = m we see that it is left-invariant and we have
1 2
20 =5 [ léwlPu
B

where ¢ = b™1b € i(M) is an infinitesimal isometry or a rigid velocity (see §2.3.1).
Denoting

]1=/m('M,'M)N
B

as the inertia of B, then we have that g% = I¢. The resulting reduced equations

of motion are the Euler-Poincaré equations

d of ol

When M = R3? we have Z(R?) = SE(3) and i(R?) = se(3). Let £ = (U, Q) be the

2in three dimensions we have that w = i(se)» # 80 that the integral is over the normal component
of the vector (+w)’ associated with the 2-form w.
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‘body linear and angular velocity respectively then the infinitesimal generator has
the form (U,Q)gps(z) =Qz +U =Q x 2+ U and the body inertia then takes the

form
= f|I -z 3 |mI —mt
HR“"/[@ —52]”“‘ z= [mE J ]

where m is the total mass, ¢ the center of mass and J the rotational inertia. If we
let (T, A) = %%g”?%l € se(3)* be the respective momenta, then (4.7) becomes

T=TxQ+AxU
A=AxQ

If we allow I to be an arbitrary symmetric matrix instead of having the struc-
ture above then the above are also Kirchhoff’s equations for the motion of a rigid
body in an irrotational perfect fluid.

4.3 The Fluid Body Group

We have seen that the dynamics of a perfect fluid and a rigid body can both be
described as invariant simple mechanical systems on Lie groups. We would like to
generalize this to the combined case of a rigid body in a (rotational) fluid. This
generalization was first proposed by Kelly [1998]. This section expands his work,
placing it in a more geometric context. The proposed symmetry group and its
bundle structure are discussed in more detail, in preparation for its application to
the case of a deformable body.

This is a different take from the usual presentation found in for example in
[Birkhoff, 1950, Lamb, 1945] as we do not immediately apply the condition zero /
fluid momentum, irrotationality, to reduce to a finite dimensional system. Thus we
get a complete system of equations for the rigid-body impulse [Saffman, 1992] of
the fluid/body coupled to the Kirchhoff equations. These are the Euler-Poincaré
equations for the rigid body in a perfect rotational fluid.

We have already described an abstract configuration space. What is the group
action? There is a natural action of Z(M) on M and hence on @, the space of
configurations of the body and fluid, by composition. However, note if b € Z(M)
acts on ¢ € Q, then bg ¢ Q because the fluid particles at infinity are moved. This is
a problem since we want the total system energy to be finite and that the particles
at infinity remain fixed.

While it looks tempting to just combine the rigid body and the fluid into one
systemn, it is not obvious what the group operation should be.

The solution presented here, which differs from the approach of Kelly [1998],
is to combine the actions of Z{M) and Diff,;(M) so that a pair (b, 1) acts on ¢
in such a way that the combined action does not move the fluid particles infinity.
Hence we propose the fluid-body group defined as follows

FB(M,B) = {(b,1") € (M) ® Diff (M \ B) : 7’lec =b7"|o} ~ (4.8)
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where the ‘action of (b,1°) on q is

(6,7%)q = ban". (4.9)

For notational convenience, the combined action is written as a left action, but it
is actually a left-right action as shown in (4.9). The group operation is defined as

(b, 73 (b2, 152) = (bibo, n2n?). (4.10)

Note that FB(M, B) is a subgroup of Z(M) ® Diff, ;(M \ B) that is specified by
the holonomic constraint that the two individual maps must be inverses of each
other at infinity. The action of FB(M, B) clearly leaves the Lagrangian, in this
case the metric, invariant (4.2), (4.3).

The Lie algebra of the fluid-body group FB(M, B) is,

fo(M, B) = {(£,0%) € (M) & diff (M \ B) : v*|oo = ~Eurleo}

divergence free vector fields that are parallel to the body boundary and approach
rigid velocity field at infinity. Its dual is

f6* (M, B) = {(o, [u]) € i*(M) © diff ;" (M \ B) : [u]loo = O},

the space of equivalence classes of one-forms that differ by differentials of functions
(see §4.1.1) that tend to zero at infinity. With these definitions the natural pairing

(€, 0%), (o [u])) = (€, @) + (%, [ul)

is well defined and non-degenerate.
Because 7° actually contains all of the information that (b,7°) does, the first
b in the pair is redundant. Therefore the fluid-body group could be equivalently
~ defined by
FB(M, B) = {n € Diff, (M \ B) : nleo € Z(M)} (4.11)

“where the left-right (again written as a left) action would be

ng = (1)o@

and where in both of these expressions we assume that by the notation 7nje we
mean 7’s value at 0o, an isometry, extended rigidly over the whole domain. An
analogous alternative definition can can be made for the Lie algebra fb(M, B) as
well, but not for its dual because of the lack of a relationship between the finite
and infinite dimensional components.

Therefore, though these simpler equivalent definitions are certainly appealing,
the pairs are chosen, with their redundancies, because they highlights the left-
right nature of the action of FB(M, B) on @ and because the representation of
Lie algebra is then symmetric with that of its dual which is necessarily a pair.
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4.3.1 The Momentum of a body in a Fluid

The Lagrangian for a deformable body B in a fluid M\ B is invariant with respect to
the action of the fluid-body group FB(M, B). This symmetry leads to a conserved
quantity, the fluid-body momentum. The infinitesimal generator of the action of
FB(M, B) on @ the full space of configurations is

d

€ ve@ = 3

e%qe™ = Ey(q) + qu,

s=0

so that the momentum defined by (3.2) is

8= /M m(dg™, ) ¢ (G

where g1 is the fluid velocity. The fluid part of the Euler-Poincaré equations

will be the standard Euler equation, and the rigid part is just conservation of the
impulse.

4.4 A Rigid Body in a Perfect Fluid

~ The geometric picture of fluids will be extended to include a rigid body. This
description is a reformulation and extension of the work of Kelly [1998].

ALY

LSS

Figure 4.1: The éonﬁguration q of a rigid body in a fluid can be uniquely decom-
posed into a rigid part b that moves both the fluid and the body and a swirl n®
that preserves the body but cancels the rigid motion b at infinity.

The configuration space for a rigid body B in an incompressible inviscid fluid
filling F = M\ B is FB(M,B). If q: M, — M is a map from the reference
configuration of both the fluid and body particles, then it can be decomposed as

g = bon. The coordinates (b,n) € FB(M, B) are unique if we extend 7 to all of
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M by assuming that n|B = idps. The Lagrangian,
- L.
Llg.d)= | slldlFs,
M
is invariant and can transformed to the identity as

(&) = [ Flo+ eulPu

where (£,v) € fb(M, B) is in the Lie algebra of FB(M, B).
The (conserved) spatial momentum corresponding to the symmetry is then

J((b,m), (b,1) = (Ad; B, 7°[(v+&m)"]) (4.12)

where

B= | mv+&u, mp (4.13)
M

is the rigid component of the body momentum. The centered dot in this equation
is a place holder for an element of the isometry algebra, i(M). B is therefore a
linear functional on i(M) and hence an element of its dual i*(M).

The body inertia operator I: fb — fb* is then

T((£,v)) = (8, [(v+&an)’]),

where 3 is defined in terms of ({,v) in (4.13). The reduced Lagrangian becomes

£((&0) = {(€0). K v)) = | mlo-+ €ar,0+ €l
The equations of motion are then the Euler-Poincaré equations,
p=-t ad%_lp D, (4.14)

for p € fb*(M, B) where - is plus for part of the momentum corresponding to
the left part of the action and minus for that corresponding to the right part (see
§2.2.3). Splitting this in to a “rigid” and “Auid” piece with p = (8, [¢’]) yields:

B =adg B, (4.15)
W] = L), (4.16)

where u = v+, B is defined in (4.13). We now examine each equation in detail.
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4.4.1 The Fluid Part

We can rewrite the second equation (4.16) that governs the fluid motion as either

2
z‘;b+vvv"+dp=—<v,d§3,1>—gi[+d§§i (4.17)

or with the identification u = v + £y as

u2

W+ Vo +dp=ig,w—d 5 (4.18)
where w = du’ is the vorticity corresponding to u (i.e. in the body frame). The
velocity of the fluid relative to the moving body is v. It is therefore parallel to
the body at its boundary and has an apparent free stream (rigid) velocity —&us
at infinity. » = v + &y is the velocity as seen by an observer in a fixed frame
that coincides with with the body’s frame at the moment in question. It is zero
at infinity and is not neccssarily parallel to the boundary of the body. Neither v
nor u is the Lagrangian velocity ¢ or the body velocity w = gg~*, the velocity of
a particle seen in the fixed reference frame.

The infinite dimensional part of the Euler-Poincaré equations for a body in a
perfect fluid are just a simple change of coordinates of the Euler-Poincaré equa-
tions, the standard Euler equations (4.5}, for a fluid with no body. As before
let ¢ = bn describes the state of the fluid and body, B, relative to an iner-
tial reference frame, where the coordinates (b,7) € FB(M,B). The velocity
w=qgqg ! = (fm — b)n~1b7! is then related to those in the moving frames by

w = by (€nr + v) = bau, (4.19)

where as usual £ = b~'b and v = 7! so that (£,v) € f6(M, B). Taking the time
derivative and using (2.24) we see that

U = b*(’[l, — .ZSM'LL).
Recall that the Euler equation for a fluid (without a body),
w4+ Vyw+gradp =0

using (2.22), this equation becomes

| §,

W+ Ly(w’) +d(F— —).

Substituting (4.19) in this equation yields,
. b - 'U,Z

Note that the isometry b preserves the metric and that the Lie derivative commutes
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with pull back. After defining p = b.5 relative to the body, the infinite dimensional
component of the Euler-Poincaré equations (4.18) is obtained.

Recall the identification u = v + €3 from (4.16) so that, as in (4.17), we can
switch from (€, u) to (§,v) to get

_ (w+em)

P+ &y + Lo+ Eu) +d(p >

) =0.

Expanding the Lie derivative term using (2.22)

_ 2
P48+ Vol + Ly +dlp— U i, ) =0,
and using the magic formula (2.3), we get a useful alternative form of (4.18),

. 2
P+ Vot +dp = —(v,dgly) ~ &, +d L

Fluids in a Moving Frame

In Euclidean space E® = (R3,§), the terms on the right hand side of (4.17) can be
written as

34
. . 2
=-Qxz-U~-20xv+Qx (Qxz+U)

W+ V' +dp=—Ey ~ (v,d&,) +d

where ¢ = (U, Q) € se(3) = i(R?) is the body velocity®. See Batchelor {1974, p.
140] for a comparison of the rotational terms noting his §2 has the opposite sign.

The infinitesimal generator is {ar(z) = 2 x 2+ U where z € R3. In coordinates
this is

&y (z) = (2 + UM d .
Taking the exterior derivative

dé,(z) = Qyda? Adat
and pairing with v gives

(v,d &) (x) = Quyv? dz — Qy50t dad,
= QQU’Uj d fL‘i

3Q) is the rotational velocity of the body with respect to the body frame, and U is the linear
velocity of the body with respect to the body frame. In the body frame these are minus the
apparent free-stream velocity and rotation.
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or in other words
(v,d £5;) = 20 x v.
The d % term can be computed from
i = Q7 + U)(Qua® +UY)
by taking the exterior derivative
d &, = 2(Qua? + Uy da*.

Compare

2
d%:ﬂx(ﬁxw—i—U)

with Batchelor [1974, p. 162], again with a different sign for Q2. Finally, it should
be clear that

Gr=0xz+U.
4.4.2 The Rigid Part

In the previous sections we looked at the infinite dimensional term in the Euler-
Poincaré equations for & rigid body in a fluid. We now concentrate on the finite
dimensional part (4.15) and show that it is equivalent to the pressure acting on
the body. The body rigid momentum is

B= [ mu,-a)u
M
where as before u = v + €37 and v is parallel to the boundary (i, u|ls = 0). The
implication is that iy u|y = ig,, u|y. Recall that M = B + F and that v is zero on
the body.
Splitting the momensum integral 8 = g + Bp into body and fluid part by
gives the standard rigid body momentum

B = me(é, )y =1g€

governed by the standard rigid body equations

BB—'adEIBB:_F)
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forced by

}“=/Fm(it= -M)M—/Fm(% 1€, Iar).

The infinitesimal generator is a Lie algebra anti-homomorphism (2.9), so
f = Lm(ua '1\/[)#' + / m(ui [EMa ']VI])/J-
F

Continuing, insert ¢ from our infinite dimensional partner (4.18)

. u?
F = [ b Fmtan @)+ dlo = S+ [ i 2 ar il

and combine the two %,, terms to get

u2
F = [ (B +dp = 5)) = Loy (s as))i

or equivalently

22

F =[Gt +ap- 2

)) = iep A(mlar, )i
By the divergence theorem (2.7), the last term only depends on the value of ic,, 1

along the boundary, where £y and w are equal. The magic formula (2.3) can be
used to change the sign of the 1‘; term

2
. s (4 . . ;
F= /(1.1\1(1udub +d(p+ —2—)) — i, di.,, v )p.

Performing more magic on the last term leads to
2
. . U . . .
F= /(1.M (iydu” +d(p+ —2—)) — iy Ly + iy i, du)p.

Infinitesimal isometries, -5, preserve the metric (2.23), so i, d”—; = iy 2,0,
which implies that everything cancels but the pressure. Using the divergence
theorem (2.7), the force due to the fluid becomes

.7:=/i.Mdpu=/8pi.M L.

In other words, in the absence of any other external forces the integral of the
pressure above is the only force acting on the body.
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4.4.3 The Kirchhoff Potential

For inertial configurations we have assumed that we have fixed boundary condition
at infinity. This couples the motion of the body to the motion of the fluid. In
particular there is a unique potential flow corresponding to every body motion.
The Kirchhoff potential is the unique harmonic (A¢ = 0) function ¢ € C°(M,\
B,i*(M)) on the reference configuration such that grad (¢,£) — £ is parallel to
the boundary 0B and ¢|o = 0. This ¢ is a co-Lie algebra vector of potential
functions corresponding to the potential (Dirichlet) flows for each rigid motion.

4.4.4 Kirchhoff’s Equations

The rigid component (4.15), of the equations of motion (4.14) for a body in a
fluid, are Kirchhoff’s equations for the evolution of the body fluid momentum?.
They hold even when the fluid is rotational. Generically they are coupled to
Euler’s equations (4.16) for the fluid, through the boundary conditions, and the
fluid is coupled to the rigid equations directly through the definition of the rigid
momentum (4.12).

In the absence of a fluid force, if the fluid component of the momentum is
zero, it will stay zero for all time. In this case, that of potential flow, the rigid
component, Kirchhoff’s equations, completely describe the motion of the system.

Recall that the body velocity is (v,£) € diff,;(M) xi(M) and body momentum
is ¢ = (o, B) = ("], [1,,u’w) where u = v + £3. If the fluid component of the
momentum is zero

[W] =0=u=grad¢

then, because of the boundary condition iy-¢,, pul; = 0, the fact that the fluid is

incompressible (0 = Sub = ~0d¢ = ~A¢) means that u can be written as the
gradient of a linear function on i(M),
u = grad ¢(¢).

It will stay that way for all time by the fluid part of the fluid-body equations,
which means for the body momentum £ that

ﬁ:/i.M ubu=L¢(€)i-ﬂaﬂ

and since the boundary conditions in this case are linear in £ we have izrq B()—-p ,u[ 5=

“Here body refers to “body” coordinates, as opposed to “spatial” coordinates, not the rigid
body component. Generically a “body” velocity is one that satisfies the Euler-Poincaré equations,
the “spatial” velocity is the one that is conserved, and the Lagrangian velocity or just the velocity,
satisfies Newton’s equations, or more generically the geodesic equation
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0 which means we can write the momentum as,

p= /84)(5) lgrad ¢() b = /m(grad¢(§),grad¢(-))u=i§,

which, given (4.15), leads to the classical Kirchhoff equations.

4.5 'The Geometry of the Fluid Body Group

In addition to its group structure, the fluid body group also has the structure of
a possibly non-trivial principal bundle over the space of rigid motions. This is a
natural configuration space when thinking about stirring.

There is a natural right-action of Diff, (M) on Q when restricted to diffeo-
morphisms that do not affect particles at infinity. The elements of FB(M, B) that
have the identity rigid component form a subgroup of FB(M, B),

FBH(M, B) = {(e,n°) € FB(M, B) | n°|o0 = ida1 |oo}- (4.20)

FBé(M, B) is a normal subgroup of FB(M, B) (H is a normal subgroup of G if
g lhg € H for all h € H and g € G, in which case G/H is a group), therefore
FB(M, B)/FB¢(M, B) is a manifold and Lie group.

Proposition 1. Let FB(M, B), and FB¢(M, B) be defined as in (4.8) and (4.20)
then we have the following isomorphism,

FB(M, B)/FB(M, B) = Z(M). (4.21)
Proof. Elements [(b,7°)] € FB(M, B)/FB¢(M) are equivalence classes
[(5,77)] = {(e,n%)(6,7") : Vi € F(M \ B)},

within which b is constant so the projection [(b,7?)] — b is well defined. For the
other direction we have existence by choosing b — [(b,71)] where n; is the solution
att=1of

in~t = grad (¢, logb) — (log b)m

starting with no = idas, where ¢: M — i*(M) is the Kirchhoff potential §4.4.3,
so that we have M| = d7L. b = 7 is well defined, at least for b near the
identity, since since log is. The isometry group, Z(M), is assumed to be connected
§2.3.1, a sequence of b;’s can be found, for each of which the log is defined, whose
composition is b. The map b — [(b,71)] make sense globally if 7; is chosen as the
composition of the respective (1;);’s, since any two elements 7} and nzl" constructed
this way, or any other, would differ by by a diffeomorphism that is the identity at
infinity and preserves the boundary. O

This proposition implies that the dynamics of a rigid body in an inviscid fluid
are ripe for reduction by stages [Cendra et al., 2001b].
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4.5,1 Trivialities

Is the principal bundle that describes the configuration space of a rigid body in a
perfect fluid trivial? I conjecture that in three dimensions it is trivial {see [Arnold
and Khesin, 1998] concerning the diameter of the diffeomorphism group in two
and three dimensions ), but in two dimensions the question is more subtle and the
answer depends on the geometry of the body and the ambient space.

The classic example of a non-trivial bundle is the Mobius strip where the
position around the strip is the base and the orientation, the direction of an arrow
transversal to the path around the base, is the group. This is locally a bundle
$! x {0,1}. By definition it is not globally trivial because every point in the base
cannot be globally associated with either 0 or 1.

For a deformable body in & fluid the shape space is the shape of the body,
and the group is diffeomorphisms of a reference configuration of the body that are
rigid (an isometry) at infinity. Can a group element be associated with each real
configuration? If so, it would provide a map that allows comparisons diffeomor-
phisms. of the reference configuration of the fluid to those of the fluid with the
body in a different shape. So we seek for a map that for each shape gives a map
from the fluid around the reference shape to fluid around the given shape. This
is clearly not unique, nor does there seem to be a canonical choice of path. An
example choice might be to follow the unique potential flow as a given path from
the reference shape to the final shape is traversed. This depends on the path and
there is no natural one to choose. Additionally it will not likely yield a global
section when, like in the Mébius strip, two non reconcilable paths are taken to get
to a particular point.

4.5.2 A Simply Connected Body in the Plane

Consider an ellipse, B, that moves in a plane M = R? filled with an incompressible
fluid F = M \ B. A configuration for this system is a map ¢: M, — M from one
configuration of the fluid and body system to another that does not move particles
at infinity, is restricted to be an isometry on the body, and is allowed to slip on
the boundary 0B.

The group of diffeomorphisms of the fluid that are the identity at infinity,
G = Diff (M \ B)®, act on @ by composition on the right. The base space Q/G is
isomorphic to Z{M), the isometry group of M. An element g € @ can uniquely be
written as ¢ = b® where b an isometry and 7 is a diffeomorphism of the reference
configuration that is b1 at infinity. Because of this Q can equivalently be thought
of as the space of n%’s.

A global section, o: I{M) — @, of the bundle Q — Q/G exists if and only
if the bundle is trivial, i.e. @ = G x @/G. In other words, we need to smoothly
assign to each location of the body a unique configuration of the fluid that moves
the fluid at infinity appropriately. Consider the Kirchhoff flow f2, the time one
flow of the potential flow problem for log b, from the proof of Proposition 1. This
is only defined on the domain of the log. If only body rotations are considered,
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then f™ and f~™ would be the displacement of the fluid particles resulting from
spinning infinity half way around first in the positive direction and a second in
the negative. For anything other than a circle, the two diffeomorphisms will not
match except at infinity. A global section must therefore be generically rotational.

4.5.3 Construction of a Global Section

Consider a simply connected body and a coordinate system outside the body with
a “radial” variable r € [r,,00) and an “angular” variable ¢ € [0,27] such that
r'= 1, is the boundary of the body and such that the coordinates become “polar”
as r approaches infinity (Figure 4.2). We desire a flow m:(7, ) = (r¢(r, ©), ¢:(r, ©))

Figure 4.2: Generic simply connected body
that is
1. smooth ,
2. volume preserving ,
3. periodic i.e. Mo = Noxk = Idg2 , and
4. uniformly traverses the circle at infinity when r — oo for ¢ € [0, 27 .
Let the volume element in these coordinates be p = pg,rdp Adr.

Proposition 2. The flow corresponding to the stream function,

w(r)s-;;fr/o%uwdcpdr

satisfies the above properties and is a global section for a simply connected rigid
body that can only spin.
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Proof. The velocity, defined by dv = i, u, is v = ﬁ%% and the flow, n; =
(ri, 1), is defined by 7(r, ) = v(m(r, ©)) with initial conditions no(r, @) = (r,¢).
Integrating the r component we get (7, ) = r. By manipulating the expression
P(r, ) = ﬁ% and by integrating the resulting expression, w:(r, ©) is specified by

1 Pt
—&7/ pordp=t+C.

The constant of integration C = % S por dip is set by the initial conditions so
that

1 [er

7 ), P dp=t. _ (4.22)
The volume form is positive so its integral is monotonic. Therefore, the above
equation gives a unique smooth value of ¢, for all . Using (4.22) and the definition

of 9,
/m% por dp =9/t +2m) = /

Pt pi+2m
uwdg0+/ I/‘cprd(Pa
L ¥

n
we see that ¢ior = @ + 2m. In other words ¢y — ¢ is 2w-periodic while ¢; is
2m-periodic mod 27. It is volume preserving, as shown by the fact that
* _ a"Pt . -

Mp= g dps Adry = “9"”5; doAdr = p,deAdr
where the last step comes from taking the derivative of (4.22) with respect to
. Finally, as r approaches infinity, the volume form becomes “polar”, ie. y —
rdy Adr, and therefore ¥/(r) — r so (00, ) — ¢ + t, which uniformly tra-
verses the circle at infinity. Therefore, seen in the reference frame of the circle
moving at infinity (¢; — ¢: — ¢t), the body uniformly rotates the other direc-
tion and all particles move in a volume preserving periodic motion. Therefore
(7, @) = (r,0—t(r, ) + t) is a global section, a global map, from orientations of
the body (specified by ¢) to volume preserving maps of the fluid outside the refer-
ence configuration of the body to the space outside the rotated body, that leaves
particles at infinity fixed. |

Corollary 1. The configuration space for a simply connected rigid body in the
plane is trivial. :

Proof. A global section can be found by composing the above map for the rota-
tional part of the rigid motion and the unique potential flow associated with the
translational part. (|

Remark: Note that the global section for any simply connected shape but a

circle is necessarily rotational and therefore any global canonical coordinates for
the principal bundle are as well.

" It can be seen from (4.22) that ys(r, ) = (T, @s(r, ©)), so the global section,

found in §4.2 for the body that can spin, is a group homomorphism. If a global
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section for arbitrary motions in the plane, that is also a group homomorphism,
could be found, it would provide semi-direct product structure for the fluid-body
bundle. I conjecture it is not possible.

The Trivial Ellipse

As an example we construct a global section for rotation of an ellipse defined by
major semi-axis ¢ and minor semi-axis b. Let (r,¢) be coordinates for the (z,y)-
plane defined by

z = (r+ f(r))cosp (4.23)
y=(r—f(r))sing (4.24)

where f decays to AGI‘O as r goes to infinity, so that we recover polar coordinates,
and f (1"0 = ——'t-) 2 , 80 tha.t To is the boundary of the ellipse. For example if
? = a? — b? then, f(r)=% ® would suffice.

By (4.23), u= (A+Bcos2p)drAdy where A=r— ff'and B=rf' — f so
that

T 2T
v,b(r)z-él;/ A (A+Bcos2<,o)drdzp=%(r2——f2).

Then, ¥’ = A and (4.22) becomes
1 [ B '
— (A4 Bceos2¢p)d o = p; — @ + —(sin2¢p; — sin2yp) = 1.
A, . : 24 .

There is no explicit solution for ¢:(r,¢,t), but one can easily compute it numeri-
cally by iterating

B
@ — @+t + —(sin 2 — sin 2¢p;)

24

4.5.4 A Multiply Connected Body in the Plane

Multiply connected bodies in the plane are non-trivial. To see this, consider two cir-
cles that are rigidly connected, and consider rotating the pair rigidly once around.
If the fluid body group is a trivial bundle, then there is smooth path for all the
particles in which, after the complete rotation, every particle has returned to its
original location. In this example, a smooth path cannot be found due to the
fixed boundary condition at infinity. Consider the dotted line of fluid particles
in Figure 4.3 extending from one of the circles out to infinity before the rotation
and compare them with the solid line representing the same line of particles after
the rotation. Clearly there is no smooth way for the particles to return to their
reference configuration since they are wrapped around the body. Therefore the
principal bundle describing the conﬁguratlon of a multiply-connected rigid body
in R? is non-trivial.

From this one might conjecture that, with a connected body in a perfect fluid,
the same stirring effect can be achieved through only local, as opposed to global,
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Figure 4.3: Two swizzle sticks. The fluid cannot be made to return to its initial
position after a complete rotation of a multiply connected body.

motions whereas, the non-trivial swizzle sticks can expect to achieve stirring mo-
tions through global holonomy that are otherwise unattainable. This effect be seen
_clearly in the experiments found in Boyland, Aref, and Stremler [2000], MacKay
[2001].

4.5.5 Stirring in a Perfect Fluid

Take the right principal bundle n: FB(M,B) — ZI(M) with structure group
FB(M, B). The Lie algebra of FB¢(M, B) is {b°(M, B), the space of divergence
free vector fields that are zero at infinity and tangent to the body boundary. This
can be a model of stirring a perfect fluid. Moving a rigid body in a repetitive
manner would be small contractible loops in the base space, the space of isome-
tries, producing a net displacement in the fibre, which corresponds to a swirl, an
element of FB%(M, B). We have seen that when the body is simply connected the
bundle is trivial, but for a multiply connected (rigid) body there are global stirring
motions that reach fluid configurations not available by local motions.

As will be made clear in Chapter 6, the curvature of the metric orthogonal
connection can be used to measure the net stirring effect resulting from periodic
motions of the body, so an expression for it is presented.

The infinitesimal generator of the action of FB¢(M, B) on FB(M, B) is

vQ(e) =qu
with v € FB®(M, B) and g € FB(M, B). The connection is almost

we(X) =¢71X (4.25)

where X € T,FB(M, B). The connection w, defined by (4.25), preserves the metric
(3.4), is the identity on generators, and is Ad-equivariant, but it is not vertical
valued because its value is not necessarily tangent to the boundary. To determine
what modification are needed, we examine the defining equation for the mechanical
- connection (3.4). _

M(tq,wa(X)) = M(£q, X),
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in terms of the induced metric (4.1)

/quQWX) /mqu

After a change of coordinates by ¢ and using (4.1.1) the connection satisfies

(g ()] = [Xg™].

In the same manner that the pressure arose from the equivalence class when deriv-
ing the Euler equations, now ¢ € C*°(M,i*(M)), the unique Kirchhoff potential
§4.4.3 arises

w(X) = ¢ ' X + ¢* grad (g, 7X) (4.26)

to kill off the the part of X in (4.25) normal to the boundary. Because ¢ = b,
this can be rewritten as

w=nP"(f + € + (grad b*p, £))

where £ = b~1db € Q1Q,i(M)) and v§ = dnnp? ™" € QY(Q,§6(M, B)). This looks
a lot like a connection in local coordinates, but it is not since the terms inside the
parenthesis are not both parallel to the boundary and zero at infinity. Their sum
is, however, so the expression for the connection itself is still valid. For all the
terms to be in the Lie algebra we would have to write 7° = o®n° with respect to
a local section o. It is not clear that this is worth the effort because we can just
consider the local connection to be

A=¢&p + (grad e, §)

since, at least for computing the holonomy algebra in Chapter 6 only the curvature
(2.12), will be needed and it is necessarily zero at infinity and parallel to the
boundary since any rigid part, either at infinity or on the boundary, naturally
satisfies Cartan’s structure equation (2.12)

d{+[6,¢] =

for the Lie group Z(M) which has no curvature. Recall that the bracket, in the
expression (2.12) for the curvature, is the Lie algebra bracket of vector fields and
the d is the exterior derivative of the rigid part of A which is linear in . Therefore,
when computing the local curvature (2.17) for a right action using (4.5.5), it follows
that

= (d&)u + (gradb*e,d &) — [Ey + (grad b*y, £) , émr + (grad by, )]

Using (2.9) and (4.5.5) the curvature becomes

= (grad {arb*p, &) — (grad b, [, £]) — [(grad b*p, &) , (grad b™p, §)].  (4.27)
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4.6 Body Deformations

We would like to construct the bundle § = Q/FB(M, B) where @ is the space
of configurations of a deformable body in fluid and FB(M, B) is the fluid body
group. In other words we would like to have a section of the bundle @ — S, that
is a smooth map taking a given shape to a placement of the shape in the ambient
space M and an associated refercnce location of the all the fluid particles. The

2
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Figure 4.4: The configuration ¢ of a deformable rigid body in a fluid can be
uniquely decomposed into a rigid part b that moves both the fluid and the body, a
shape which through ¢ gives a reference location for the fluid, not moving infinity,
in that shape, and a swirl n° that preserves the body but cancels the rigid motion
b at infinity.

possible deformations of the body are elements of a shape space S. We assume
that we are given a map ¢: S X B — M such that for each shape s € S, ¢4(B)
describes how the body deforms in M (we will mostly write ¢, = ¢(s,-): B — M).

For convenience we also assume that this map can be smoothly extended to
all of M (though we allow discontinuity parallel to dB) such that it is volume
preserving (i.e. ¢iu = p (??7) where p is a volume element on M) off B, and for
now we assume so on B as well (i.e. all of M) though this is not strictly necessary.
This extension is not necessarily unique. We will discuss this later.

The body and the fluid can move by isometries (i.e. rigidly). These motions
are described by elements of the isometry group G = Z(M) (SE(3) is the isometry
group for R3).

We want to show that @ =~ G x S. Given ¢ we can write it uniquely as

g=bogron

Where (b,7): M - M € G, b*m =m,n: M — M, n*pp = p, n|B = Idm. The
- action of the fluid-body group on ¢ is the same as before and so we have a principal
bundle. The equations of motion are again given by conservation of momentum
(3.7) since we assume we have control over the shape such that (3.8) can be ignored.
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The unique horizontal path z"(t) € Q in the configuration space over a given
path z(t) € Q/FB(M,B) in the shape space can be found by integrating the
solutions of w(¢") = 0. For the mechanical connection w(3.4) given in terms of
our metric M have then for all (£,v%) € fb(M, B) that

M((§1 UE)Qv 'Th) =0.

The generator is given by (£,v%)o(q) = ém(g) + qu so we get two equations since
¢ and v are arbitrary. After changing coordinates we get

. -1
[ mlewahs" =0
gt (M)

/ m(z™,v, zi:hmh_l)u. =0
qe(My)

The latter is equivalent to [zh*(2Pzh~")?] = 0 which implies that

the horizontal flow is potential.
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Chapter 5

Reduced Series Expansions

This chapter develops a series expansion for the geometric phase or holonomy gen-
erated by a non-Abelian principal connection in terms of the covariant derivatives
of its curvature along with geometric properties of its shape deformation. First,
series expansions for the values of a function defined along the flow of an time de-
pendent analytic vector field are examined. The vector field represents a non-linear
control system and its time dependence represents the effects of the inputs. These
systems have a rich algebraic structure and the expansions provide a connection
between the Lie brackets that appear in tests for local controllability and proper-
ties of the input that are necessary to effect motion in directions corresponding to
the brackets.

One of the first people to consider formal series expansions for the flow of
non-commutative operators was Feynman {1951} who introduced the path ordered
exponential as a way to deal with the non-commutativity. He expanded time in-
tegrals of compositions of non-commutative operators by allowing the order of
composition to depend on the value of time. Magnus [1954] extend this work by
generalizing the Cambell-Baker-Hausdorff formula, which dealt with the effective
flow of two non-commuting linear operators, to the continuously variable case in
which a single operator fails to commute with itself at different times. He found a
differential equation for a time independent operator that had the same flow at a
given time as the time varying one. He was then able to recursively integrate the
equation to obtain a series in which the Lie algebraic structure intertwined with
iterated integrations. Chen [1957] generalized these ideas to the fiow of nonlinear
vector fields. These series expansions have since become widely acknowledged as
invaluable tools in the study of controllability of nonlinear systems [Hirschorn and
Lewis, 2002, Kawski, 1998, Liu., 1997]. Agratev and Gamkrelidze [1978] mod-
ernized the treatment of these series and added convergence results. Sussmann
[1986] succeeded in finding, and Kawski and Sussmann [1997] better formalized,
an explicit formula for the series expansion in terms of a product of exponentials of
Hall basis elements with explicit coefficients. It is still and open question, whether
explicit coefficients can be found for the exponentiated sum of basis elements. The

" series we concentrate on has explicit coefficients, but no explicit basis. Bullo [2001]
has created a series specialized to the evolution of mechanical systems. This series



52

is cast in a similar setting to ours, but without the symmetry and the zero mo-
mentum condition. [Vela, 2003] has shown a formal correspondence between series
expansions and averaging theory by showing that truncations of the single are re-
lated the standard averages. This idea was used, but not formalized, in [Leonard
and Krishnaprasad, 1995].

The second half of this chapter will connect these ideas to those of the previ-
ous chapters by specializing to the case when the system in question has enough
symmetry to allow these series expansions to be reduced. This reduction, while
simplifying the general case, will nonetheless be an extension of the standard re-
sults for the expansions for the holonomy, or geometric phase, of systems defined
by a connection on a principal bundle. The standard results cover systems defined
on Abelian bundles [Berry, 1984, Koon and Marsden, 1997] where the - holonomy is
written as an exponential of the integral of the curvature. In the non-Abelian case
we have expansions directly in the group to second [Shapere and Wilczek, 1989]
or third [Rui, Kolmanovsky, McNally, and McClamroch, 1996] order. Again, the
curvature and, though not explicitly stated, its derivatives playing a key role. To
continue to see this structure in a higher order expansion it is necessary to move
to an exponential representation like in the Abelian case. For left-invariant vector
fields this technique has been used extensively [Leonard and Krishnaprasad, 1995].
We try and bridge the gap between this case and the general non-linear case by
allowing the control techniques from the left-invariant case to apply to the vector
field case by performing reduction.

We also review the reduced controllability tests from [Kelly and Murray, 1995]
for control systems on principal bundles and then relate them to the standard
notion the holonomy algebra [Kobayashi and Nomizu, 1963]. The series presented
here can then be thought of as a expansion for the local holonomy in terms of its
holonomy algebra. ‘

When this work was completed it was the first appearance of the adjoint bundle
that we are aware of in the non-linear control and mechanics communities. Since
then however it has proven to be one of the fundamental objects in the reduction
of mechanical systems with symmetry Cendra et al. {2001a).

5.1 Motivation and Background

Nonholonomic mechanical systems naturally occur when there are rolling con-
straints [Kelly and Murray, 1995] or Lagrangian symmetries leading to momentum
constraints [Bloch et al., 1996]. Examples include kinematic wheeled vehicles, free
floating satellites with appendages, and simplified models of bio-mimetic locomo-
tion. This chapter considers the local motion planning problem for a specific class
of nonholonomic systems—those whose configuration space is the total space of a
principal fibre bundle and whose equations of motion are described by a connec-
tion on that bundle. The state variables of these systems naturally split into two
classes. One class is the set of base or shape variables that describe the internal
configuration of the system. The other variables take values in a Lie group G,
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and are termed group or fibre variables. They typically describe the position of
the system via the displacement of a reference frame in the moving system with
respect to a fixed frame. Motion in the position variables can often be realized
though periodic motion of the shape variables.

The governing equations of many nonholonomic control systems locally take
the form

Ny — 1
it o2
F=u
where z € M the shape manifold, ¢ € G a Lie group with Lie algebra g, and
A: TM — g is termed the local form of the connection. We assume that we have
complete control over M. We seek to control the group variables through actuation
of the shape variables. In the case of the kinematic car, the shape space consists of
the wheel rolling and turning angles, while the car’s position in SE(2) defines the
group. The connection describes the no slip constraint between the wheels and the
ground. For a more complete review of these ideas see [Kelly and Murray, 1995].
First, we construct an expansion for the system’s group displacement that arises
from small periodic motions in the base space. This expansion is a generalization
of the work of Leonard and Krishnaprasad [Leonard and Krishnaprasad, 1995],
who developed an analogous formula for case when the local connection form A is
constant. Kolmanovsky et al., [Rui et al., 1996] have developed a less structured
version of this formula that expands directly in the group rather than in its Lie
algebra. In order to develop an intrinsic geometric understanding of these systerms
we next relate the terms in the expansion to the infinitesimal holonomy algebra
of the bundle and to the controllability distribution. In doing so we introduce
the covariant derivative on the associated adjoint bundle as a simple means to
calculate the terms in the expansion and the small-time-local-controllability tests.
These results represent a sharpening and intrinsic restatement of the controllability
results of Kelly and Murray [Kelly and Murray, 1995]. We sum up by showing that
we can write our expansion to any order as a reduction of a series for general affine
control systems given by Sussmann [Sussmann, 1986].

5.1.1 Local Expansion of the Group Displacement

Since the system (5.1) is “kinematic,” a path in M completely specifies the resulting
path in G and the control u that will generate it. For open-loop planning it is
sufficient to design paths in the base M. We can think of A; in (5.1) as components
of a Lie algebra valued one-form A;: TM — R and write the equivalent system as

§=—gAz (5.2)

We would like to find a solution for this equation that will aid in designing or
. evaluating paths. We let g(t) = g(0)e*®) and use an expansion for the Lie algebra
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valued function z(t) given by Magnus [Magnus, 1954}.

c= A+ A A+ {[Z,A],A]+Il-2-[A,["A,—A]'1+--- (5.3)

where A(t fo A(r)z(r)dr.

To obtam useful results, examine the group displacement resulting from a
periodic path a: [0,7] — M such that a(0) = «(T). In coordinates we have
A(x)e = Ai(z)it. Taylor expand A; about «(0) and then judiciously regroup,
simplify, apply integration by parts, and use the fact that the path is cyclic. The
expansion up to third order is,

3

1 o
Z(O!) = ——2‘1‘?{]' dz*dz? +
a

1 o
7 (Fije — [Ai,ﬂk])/dx’dwjdg:k + - (5.4)
[23

where Fj; = Aj; — Aij — [Ai, A;] and

L T pte pty; .
/dmidmjdack = / / / &4 (t;)dt; 29 (t;)dt; &F () dty.
a o Jo Jo

A and F are evaluated at «(0) so that the coeflicients of the integrals are con-
stants. The resulting motion is a geometric phase since the integrals represent
parameterization independent areas and moments of the path.

Given a desired g(T') that is sufficiently close to g(0), the term 2(T") is easily
computed. We then find the lowest order of the integral coeflicients that can
be summed to produce z(T). The coefficients of the vector sum determine the
desired values of the integral terms. We can now use the results of [Leonard and
Krishnaprasad, 1995] to plan trajectories in M that will have the needed geometric
properties. We note that for A constant our results simplify to those in [Leonard
and Krishnaprasad, 1995]. While this result is sufficient to design paths for these
systems, greater understanding can be gained by recasting the problem in the
geometric framework found in [Kelly and Murray, 1995, Montgomery, 1993} and
viewing the series as a reduction of a general series for the flow of a time dependent
vector field given by Sussmann [1986]. We begin by reviewing these now.

5.2 The Chen Series

We will be dealing with a system of the following form.

&(t) = X((2))

where for our purpose the time dependence represents the input X;(z(t)) = X(z(t), u(¢))
freedom of a control system. Therefore our time dependent vector field X; € X(M)
~ takes its values in a given input distribution D. Often we will make this restriction
explicit by writing

4(t) = ua(t) Xa(a(2)) (5.5)
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where {Xa,} with X, € X(M) is a basis for D.

We give first a review of series solutions for the flow maps of non-stationary
vector fields. A non-stationary vector field X; on a manifold M is one that depends
explicitly on a real parameter ¢, the salient feature of which is that for two distinct
times t; and t the bracket [X,, X3,] is not necessarily 0. In the context of control,
this time dependence represents the effects of the inputs on the system.

We will be constructing formal series solutions for the value of a real valued
function ¢ of M along solutions of the differential equation (5.2). The first series
that will be useful to us is the Chen [1957] series for ¢(z(t)). It can be found
though repeated application of the fundamental theorem of calculus, first to the
function ¢(z(t)),

Mmm=¢um»+41a@wmmS

and then again to the function (X,¢)(z(t))

mmﬂ@ﬁ4&mwm+ﬁlnmmmumm

and so on to get

st =3 [ [ [(Cu XupeO)i -t (58

k>0

Note that in the case where the vector field is not a function of time it can be
pulled outside the integral so that we obtain

b(a(t)) = 3 (X*6)(=(0)) /D t /0 . ]0 T

k>0

= S XER O
k!

k>0
= (" ¢)(2(0))

which shows that the formal exponential of tX, thought of a differential operator,
is the time-t flow map for the flow of the stationary vector field X.
Therefore we define the following

exp/ X = > | Xpdl, (5.8)

where the sum is on length |T| = k of the multi-variable T' = (¢1,...,%). This
is the time-t flow map, a partial differential operator, which when applied to the
- function ¢

$(x(2)) = (exp! ** ¢)(2(0))
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gives its value (5.6) along the flow z(t) of the time dependent vector field X;. The
use of exp is justified because it reduces (5.7) to the standard exponential

[X _ X

exp’ * =e

defined by the usual infinite series when X; is independent of time.

5.3 Exponential Series Expansions

If we expand the time dependent vector field X; = uq(¢)X, in a time independent
basis {X,} for the input distribution, then we can rewrite the time ¢ flow map
(5.8) as

. 4 t 11 bp—1
eXp,l Xe — E X]/ ur = Xa1 .. -Xak / / e / Uq,y (tl)d’tl .. -uak(tk)dtk
0 JO 0

1I{>0

where there is an implied sum of over each a; in the multi-index I = (a1, ...ag).
The [wu; can be thought of as the coefficients of a polynomial where the X, are
the non-commuting variables, and we can treat this partial differential operator
algebraically. To do this we employ some results from the combinatorics of words
[Lothaire, 1997] 1.

In particular the coefficients [ u; satisfy the necessary and sufficient condition
of Ree’s Theorem [Ree, 1957] such that the series exp/ ¢ is the formal exponential
of Lie elements. Lie elements are commutators which, when thought of as vector
fields, become Lie brackets.

5.3.1 The Magnus Series

Given a vector field X; we ask if there is a vector field Z; whose formal exponential
eZt ig the time-t flow map exp-/' X¢ for X,;. That is, can we find a vector field Z;
such that its time-1 flow with ¢ fixed is the same at time ¢ of the time dependent
flow of X;?

expf Xe = g2t
This question was answered by Chen [1957] who gave a differential equation for
the Zt

Zt = f(a'dZt)Xt

where f(z) = z/(1 — e7®) = Bya* (the B are the Bernoulli numbers). There
are a number of different forms for the solution to this equation. Magnus [1954]
repeatedly integrated this equation to get

Zy =Xt + ‘Q'[XhXt] + Z[[Xt,]it],Xt] + 1_2‘[Xt, (X, Xel] + - -

LA further exposition of these ideas and their connection to control theory can be found in
found in [Kawski, 1994, Kawski and Sussmann, 1997].
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where X; = [* X,dr. Note that this has the same form as (5.3).

5.3.2 Sussmann’s Log Series

Another way to find Z; such that exp/ Xt = ¢ is to take the formal logarithm of
the Chen series (5.8). This was done by Sussmann [1986] who wrote down a closed
form solution for Z; by taking the formal log of the Chen series which we rewrite

st = Y [ ooy
{T|>0

using an implied sum on length |T'| = & of the multi-variable T = (t1,...,%).
Taking the log, In X = Ebo(—l)k““l(x—;lﬁ, we see that

) (_" )k+1 t
Ze = Infexp/ ) = Y =l / XrdT)".
k>0
1T|>0

Since we know that Z; is a Lie element, we can use Dynkins’s theorem {Lothaire,
1997] which says |T| f X7dT = [[X7]|dT (there is an implied sum on the length
of T' even though there are three T's) where [X7] = [X,, [Xta, 0 [ X1 Xg ] -]
2. We then have that

.t t
Zy = ln(expf Xt) = Z (_1’():k+1 [(f XTldC[Z;l_'z %l XTk di:)}

k>0
|T:|>0

5.3.3 Sussmann’s Product Series

In addition to a single exponential, Sussmann {1986} also expanded the flow map
expf X: of a time dependent vector field X; = u,X, as a product of exponentials
of elements of a basis B for the free Lie algebra with {X,} as indeterminates.

expl X+ = HBesecB(t)B (5.9)

where ¢4(t) = fot uydt and Cadg B (t) = f(f (cB, (t))™dcp,(t). For a more recent take
on this series, see [Kawski and Sussmann, 1997].

5.4 Reduction

The goal of this section is to show how the series we have just reviewed can be
reduced in the presence of symmetry and periodic inputs. In this way we generalize
(5.4) and see it both as an extension of known expansions for left-invariant systems
and as a reduction of the case general non-linear systems.

2The brackets can nest in either direction



58

Given a configuration space that is a principal bundle where we assume com-
plete control over the base space, and a non-holonomic control system that is
forced by completely controllable horizontal lifts, then the the system is driftless,
kinematic and takes the form

=X (5.10)

where we are given complete control over the time dependent vector field X;. Let
{Xi} be a basis for the tangent space of the shape such that [Xi, X;] = 0, and
then write, with Xy = v%(t) Xy,

g =u(t) X} (5.11)

With respect to a local section, X" = X 3@5 - gAX B%’ 50 {5.10) can be expressed
locally as

§ = —gAu(z)ul(2)

where A, = A(X,).

In order to reduce the series we first reduce the brackets that appear and show
that they are left-invariant and so are defined by their values at the identity. With
this we can relate the Lie algebra rank condition for controllability of the driftless
systems to the infinitesimal holonomy algebra. We then show that we can reduce
the exponential from a flow on the full space to one on the Lie algebra of the
symmetry group. '

5.4.1 The Reduced Brackets

Theorem (Bracket Symmetry). Let w be a connection on a principal bundle
T:Q — Q/G and let X,Y € X(Q/G) and f € C®(Q, g). then

(X" YM = (X, Y] - (X", Yh) (5.12)
(X", fol = (X" f)q (5.13)
where () is the curvature of w.

Proof. Because X" and X are m-related we have T'w([X", X%]) = [X, X]. The first
equation then follows because of the isomorphism between VQ and g and
W((X*YP]) = —duw(XF, V™) + XP(w(Y)) + YR (w(XP))
= _(Q + [w,w])(Xh, Yh)
= -Q(xh vh

where we have used {2.5) and (2.12) and the fact that w vanishes on HQ. Because
vertical vectors are m-related to zero, Tw({X", fo]) = 0. The second equation then



follows from

w([Z", fQl) = —dw(Z", fo) + Z"(w(fa)) + fo(w(Z™)
= (—Q - [w,w])(Zh, fQ) + Zh(w(fQ))
=2

because {2 is zero if one of its arguments is vertical. O

5.4.2 Holonomy

For analytic systems, the infinitesimal holonomy group,

Hy={geG:3c:[0,T] - M > ch(O) = q,ch(T) = gq, ¢(0) = (T},

is the subgroup of group displacements in the fibre resulting from the horizontal
lifts of small contractible loops in the base. It is shown in [Kobayashi and Nomizu,
1963] that H, is a Lie subgroup whose Lie algebra is spanned by

Xt o o XEo (Xt XEY) (5.14)

13 Rt s

where X; € TM.

The local curvature is defined relative to a section o as F' = ¢*Q. It can be
shown that F = dA — [A, A]. Clearly the coefficients of the area term in (5.4) are
the local coordinates of F. As we will see, the other coefficients are also related to
the pull backs by the local section o of the expressions in (5.14).

We can now use these expressions for the Lie brackets of horizontal and vertical
lifts to reduce the Lie bracket condition for small-time-local-controliability in the
case of completely horizontal inputs.

5.4.3 Controllability
Theorem 1 (Reduced Controllability). The following are equivalent.

1. (5.4) is small-time-locally-controllable at g € Q)
2. span([Xh,...[XP [xh Xﬁ)]] N =T,Q

ig? ig? LM 0

3. span(Xi};( 0---0 X{‘z o (XD Xﬁ)))(q) =g

4. span(ink e VX12 (ﬁ(xh i) )N (@) =8
5. span(Vx, - Vx,, (F(Xy,, X3,))) (r(9)) = g

Proof. From Chow’s theorem we know that (5.4) is small-time-locally-controllable
if and only if the iterated Lie brackets of the X{’ plus the vector fields themselves
span T,Q. Because of the natural splitting of TQ into HQ and VQ, we must
show that the brackets span V@ since the vector fields X{‘ exactly span HQ).
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The equivalence of 2. and 3. should be clear from (5.12) and their equivalence
with 4. and 5. from §2.2.6 and the fact that Q(X"* Y") is Ad-equivariant, and
can therefore be thought of, Q(X,Y) = [(¢, UXP?,Y?))] € §, as a section of the
adjoint bundle. |

This theorem is a generalization of similar theorems for trivial bundles and the
infinitesimal holonomy algebra for Abelian groups found in [Kelly and Murray,
1995]. Note that the last three expressions in 5 are only functions on M.

We have now an explicit relation between the brackets of Chow’s theorem,
the infinitesimal holonomy algebra from [Kobayashi and Nomizu, 1963}, and the
coefficients that appear (5.1). Using this framework, we next show that the series
in (5.1) can generally derived as the reduction to the Lie algebra of a series given
by Sussmann [Sussmann, 1986] for the general solution of an affine control system
in which we replace brackets with covariant derivatives.

5.4.4 The Reduced Series

We apply the series expansion to (5.4), subject to periodic inputs, and choose
g9: Q — G, defined by a local trivialization (2.16) o: Q/G — Q, as the output
function. We seek to find the value of g(g(T)) the group dlsplacement after a
periodic change in shape.

Notice that, because [Xj, X;] = 0, the only brackets of the form [X}], which are
horizontal, are the {X!}, and they have a coefficient of fo dz'. These coefficients
are zero when evaluated a T because the inputs are periodic. The brackets [X 7],
with |I| > 1, are vertical and can be written as the infinitesimal generator of an
Ad—equiva.riant function.

Proposition 3. If {1 Q — g is an Ad-equivariant function, then
efag=elg

where the exponential on the left is a formal series consisting of compositions
of vector fields acting on the equivariant function g: @ — G, defined by a local
section (see §2.2.11). The exponential on the right is the Lie algebra exponential
right translated by g.

Proof. Since g is equivariant, using (2.10), we have

etfg = fg.
t=0

N d
Letfg = P

d
fog= 3 dt|,

If we apply fo again we see that fo(fgg) = ffg. This can be repeated to obtain
the result. O

With respect to a local trivialization, (2.2.11) f = Ad, fso

ef = Adg ef.



61

Therefore, if we let

= er(i}XJ) ifI= (.77']), III >2

and g(t) = goe*®, we can write our expansion for z in this notation as

TOEEDY (=D (fdah)...([da’) o

] ,Ik)I Tt r i)

k>0,[L1>1 k (21, ..
where the first few terms are

L

1 .
z(a) = —'§F(Xi,Xj)/diEzde + 3
o

ﬁxi(F(Xj,Xk))/dm"dz:jdxkﬁ— -+ (5.15)
(27

Though this series is limited because the curvature terms are not linearly in-
dependent (because of the Jacobi identity), we can easily apply this technique

to reduce in an analogous way Sussmann’s product of exponentials formula (5.9)
which is based on a Philip-Hall basis.
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Chapter 6

The Fish and The Hat

This chapter provides mainly two examples, one of swimming and one of stirring.

The mobility of three connected rigid bodies in a plane filled with a perfect fluid
is examined first. As this is intended to be a simple model for a swimmer, complete
control over the relative positions of the bodies, or more practically, the angles
between the bodies is assumed. This system fits into the general framework of
simple mechanical systems with symmetry introduced in Chapter 3. In addition,
when started from rest, the controllability and displacement resulting from cyclic
motions can be analyzed using the techniques from Chapter 5.

Since exact computations are infeasible, we approximate our deformable body
in a way that can provide useful insight. In analyzing systems of this nature,
many researchers, [Kelly, 1998, Mason and Burdick, 1999, Shapere and Wilczek,
1989], have computed an expansion for the velocity and pressure fields around the
slightly deforming body. We take a different approach. Instead, we suggest an ap-
proximation of a deformable body in a fluid consisting of mechanically coupled but
hydrodynamically decoupled bodies, that is, a system of rigid bodies with Kirchoff
like added masses connected and articulated like they were non interacting rigid.
bodies.: ’

This, of course, is an approximation that makes sense only when the bodies
are well separated though still connected via links with negligible hydrodynamic
effect. We assume that this technique captures the essence of the systems we study,
though clearly not the exact details of their motion.

These simple low dimensional models are sufficiently rich that, together with
models of lift and drag, they can capture enough of the relevant dynamics for the
model to be used for path planning or controller synthesis[Morgansen, Vela, and
Burdick, 2002]. A recent model of a deformable Joukowski foil that capture the
effects of vorticity generation and added mass is quite complicated[Mason, 2002].
The examples concentrate on the purely inviscid case for its simplicity and to
emphasize the fact that alone, i.e. without lift or drag, a stripped-down model
can provide complete controllability. I feel that this fact is often overlooked and
bears emphasis. These models may not be realistic or capture the most significant
dynamics, but they do capture, in a simple way, effects present in the analogous
real systems.
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Not only can systems consisting of mechanically coupled but hydrodynamically
decoupled bodies be controllable, but the resulting gaits are reasonably efficient
for “bracket” motions. This stands in contrast with the classic rolling examples,
like a wheelchair or car, where Lie brackets give rise to impractical parallel parking
gaits.

To explain why such a simple extension of rigid body dynamics leads such dif-
ferent characteristic behavior, some emphasis is put on demonstrating the possibly
non-intuitive characteristics of added mass. The notion of a center of mass doesn’t
exist generically for rigid bodies in inviscid fluids. This is demonstrated with a
simple model of a propeller.

When started from rest, a fluid-body system will return to rest once the joints
stop moving. The center of mass of a system of internally actuated rigid bodies
in space that is at rest will stay at rest even once the bodies are actuated to move
relative to each another. In a fluid, even when the center of mass exists, this is not
the case. The articulated satellite in space becomes a fish when put in an inviscid
fluid.

The second example presented is that of a rigid body stirring a perfect fluid.
We have asked what net motions of a body in space result from performing cyclic
deformations of its shape. As we have seen, the same formalism can be applied
when the body is immersed in a perfect fluid. In the latter case, the “net motions”
naturally include those of the fluid as well as the body. In particular, though it
will be ignored in the approximations used to describe the swimmer, the series
expansion Chapter 5 theoretically gives an approximation for the resulting swirl
of the fluid as well the net motion of the body.

This can be highlighted by ignoring body deformations and by looking a the
simpler problem of stirring with a rigid body. The formalism developed here gives
a concrete way to answer questions such as: Can a Hat dropped from a dock can
be moved to an arbitrary location with an arbitrary orientation. If this is true,
then can any diffeomorphism of the fluid be approximated just via stirring? The
latter question is not answered here but the groundwork to do so is set.

6.1 Articulated Rigid Bodies

To study deformable bodies in a fluid, we consider articulated rigid bodies. The
effects of fluid around the bodies is approximated by assuming that they are rigidly
coupled but hydrodynamically decoupled. This is only accurate, of course, when
the bodies are sufficiently separated. This technique, however, does lead to com-
putable and manipulable systems of equations that still qualitatively capture many
of the locomotion properties of the systems of interest.

The articulated bodies will consist of collections of ellipses for simplicity. The
location of each body is parameterized as follows.

The rigid displacement b € SE(3) specifies the location, with respect to an
inertial frame, of a frame moving with the bodies, and usually fixed in one in
particular. The location of a body fixed frame located at the center of mass of
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each body is then specified as a rigid displacement b;(6) € SE(3), depending on
some parameters f € S, from to the moving frame specified by b. The inertial
location of each of the bodies will then be h; = bb;. The body velocity of each of
the bodies is then

& = h Ry = Ady1 (€ + Ai6)

where £ = b™1b and A; = db;b; . The Lagrangian and kinetic energy of the
system is then

R 1 —~
€e.0,0) = 3 560 Lk
[}
1 o~ . -
= 55@5 +£TTA + %9%9
where I; = Adg;l ﬁi Adb_-l
/IE = Z ][i,
i
IA=>"LA,
i
N 1
7 = 22: §AZTI7‘A¢A

The local versions are related to their global counterparts (3.4), (3.3), (3.5), (3.6),
by

w=Ady(b"1db+ A),

m = — ATLA,
I=Ad, TAdy,
J=Adl, J.

The momentum J is conserved but the local momentum,
J=T(¢ + A8),

is only conserved when the system starts at zero initial momentum, in which case
we have ]
&= —Af.

This equation relates shape changes to motion of the body as a whole. This is the
local version of the statement which says that the velocity of the system on the
full space is the horizontal lift of a path in the base. '
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6.1.1 The Propeller Paradox?

Elroy’s Beanie, two rigid bodies connected at the their center of mass on an axis
actuated with a torque relative to one another is a standard trivial example of
momentum conservation giving a connection, but one without local holonomy since
it is one dimensional. In a perfect fluid in R3, a body doesn’t necessarily have a
center of added mass (there is a notion of one in two dimensions however as we
will in §6.2.1), since the symmetric added mass matrix without symmetry has 15
free parameters and a rigid coordinate change can only force 6 of them to zero.

[Birkhoff, 1950, p. 157] in his discussion of the Propeller Paradox for a rigid
body in perfect fluid said:

for a propeller or any other object possessing n-fold rotational sym-
metry about an axis (n > 1), all force components are (theoretically)
Z€ro.

By calling this a paradox it might seem he suggests somehow this notion implies
that a propeller in a perfect fluid cannot act like a propeller should. Like in
d’Alembert’s Paradox, no force is generated by a propeller moving along its relative
- equilibria and it it cannot generate momentum, but when forced to spin relative to
a main body, it can serve to drive them both along. This single degree of freedom
system does not violate the Scallop Theorem [Purcell, 1977] as a complete rotation
is not a reciprocal motion.

The propeller is our first example of dynamically coupled but hydrodynamically
uncoupled bodies. In this case the propeller is modeled by three ellipses, one for the
main body by € SE(3) and two connected rigidly for form a propeller b1, by € SE(3)
that can spin relative to the main body.

To avoid needless complication we assume the blades have only translational
inertia I; = I, =Adiag(m1,m2,m3,0,0,0) and the body only rotational inertia
about the z axis Iy = diag(0,0,0,7,0,0). Let the coordinates in each blade be
such that the long semi-axis of length a is along the y axis and the second longest
along the z. Let each blade have a pitch ¥ so the blades are positioned relative to
a coordinate frame at the hub by by = e and by = e~¢ where ¢ = (0,4,0,0,¢,0) €
se(3). Below we assume the pitch of the blades is ¢ = . The total inertial of the
blades is then

Iy + 1z = AdL, Iy Adp, 1 + AdT, Ty Ady
1 2 2

‘my+mg 0 0 (mg—my)a O 0 1
2ma 0 0 0 0
_ my -+ ms 0 0 (mp—ma3)a
- a?(my+mg) 0 0
0 0
i (mq + ma)a? ]

The entries that appear on the diagonal of the upper right quadrant are what give
rise to screw like motion.
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If the main body is oriented along the z axis with longest semi-major axis of
length ! and is rotated by an angle 6 then its frame is given relative to the hub by
bo(8) = eX where x = ((,0,0,8,0,0).

IA=[0 0 0 j 0 0]dd

The locked inertia matrix is singular but only because of the restrictive assumptions
on the body and blade inertias. This poses no problem in solving for the local
connection A since it is in the range of IA. The local form of the connection is

[(m1 — ms3)ja]
_ 0
1 0
A= .| d86.
(m1 +m3)j +4dmimaze? | (m1 +ma3)j
0
L 0 |

By spinning the propeller with respect to the main body we get a net rotation of
the body about the propellers axis and a translation along it.

Figure 6.1: A propeller propelling a body in inviscid flow. The body is only shown
in the last frame.

6.2 Simple Planar Satellite

We next consider three connected bodies in the plane as shown in Figure 6.2. It is
well known that in space, starting from rest and allowing only cyclic motions, this
system able to reorient itself, but not to translate. This limitation on the motion
is due to the structure of the inertia tensor, and as with the propeller, we will see
that this satellite becomes a fish that can swim when put in a perfect fluid.

Our deformable fish is approximated as a dynamically coupled but hydrody-
namically uncoupled set of three identical ellipses with only translational inertia
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b1(61)

Figure 6.2: A three-link swimmer

L= diag(m1,mg,0) and major semi-axis a along the z axis. Connecting the tips
of the ellipses with a revolute joint and using the notation from §6.1 we have

[t 00
=10 1 0
b — [cosfy —sin8; a(l +cosb;)
1= sinf; cosf; asin 6y
b — [cosfe —sinfy —a(l + cosbz)
2= sinf,  cosfy —asin 8y

Computing the local locked inertia gives

.1 Hy p{S1+82) a(@ma(se —s1) + pu(S1 — S2)
I=5 —Hy  a(a = ca)(me — pler + c2))
H

where

Hi =2(2p —my) + p(Cr + C?)
H = 2d%(ma(1 + c1)® + ma(1 + 2)? + my (s} + 3))

and where u = my — ma, C; = cos20;, ¢; = cosb;, S; = sin26;, and s; = sin6;.
Using

N —sin 91 sin 92
IA = amg cos 04 déy, + amsy —cos by d by
a(l + cosby) a(l + cos 62)

the local connection can be computed. To see that this system is locally con-
trollable compute the local curvature and its covariant derivative evaluated in the
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straight configuration,

. Jax(—ml+m2))/(9 * m1)
F= 0
0

0
ViF = |—{a* (ml—m2)* (2% ml +m2))/(54 * ml = m2)
(=6 + (5% ml)/m2 + (4 + m2)/ml)/144

0
VoF = | ~(a* (ml —m2)x (2+ml +m2))/(54 * ml +m2)| .
(6 — (5xml)/m2 — (4 x m2)/ml)/144 ]

Together three these span se(3) when m;  mg so the system is locally controllable
in water but only orientable out of it. The forward gait can be seen in Figure 6.3,

6.2.1 The Center of Added Mass

One of the distinctive features of the added inertia tensor in three dimensions
is that it cannot always be diagonalized by a change of frame. For a general
body without symmetry the best that can be done is to find three principal, not
necessarily perpendicular, screw axes about which you can sustain steady motion
coupled with rotation at a given pitch[Birkhoff, 1950]. We saw an example of one,
the propeller, in §6.1.1. In two dimensions however it always possible to diagonalize
the added mass matrix. In two dimensional space a rigid body has no preferred
orientation, while in a fluid it does. In space the center of mass is confined to the
convex hull of all of the particles that make up the body. This is not the case in
a fluid since we technically include the whole fluid plane as part of the body. We
can get an intuitive picture of how good our ellipse approximation is by looking at
Figure 6.4. The inertia tensor for the fish is diagonal when written with respect
to a coordinate frame aligned with and centered on the large ellipse which drawn
such that it would generate the same effective added inertia as the three links in
their current configuration.

Clearly we are underestimating the inertia in the short direction and overesti-
mating in the long direction. This makes sense, as we intuitively know that the
three bodies effectively become one long streamlined body with almost the same
inertia along its length as that of just one of the bodies, but our approximation
doesn’t notice this drafting since as far as it is concerned the bodies could be
situated next to each other.

6.3 The Hat

The geometric framework and results on holonomy presented here can be applied
to novel problem of stirring of an inviscid fluid. Consider the questions: If a hat is
dropped off a dock, is it possible to retrieve it just by moving a sick around in the
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Figure 6.3: The forward swimming gait of the three link fish.

7

Figure 6.4: The three bodies in the three link fish act together as if they were the
shown large ellipse, the center of added mass. In particular, the center of rotation
of the three links is at the center of the large ellipse.
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water? Can it be arbitrarily reoriented by the stirring motions of the stick? How
completely can I stir a fluid with a given shaped rod using only small motions?

In §4.5.5 it was shown that stirring can be represented as holonomy of the
principal bundle FB(M, B} — Z(M) of body fluid motions over rigid body motions
with with structure group FB¢(M, B) consisting of fluid motions that are parallel
to the body boundary and do not move the fluid at infinity.

The resulting motion, when started from rest, is governed by the mechanical
connection (3.4) which in this case consists of the potential flow solutions §4.4.3
corresponding to rigid motions (4.26).

The above questions can be answered by looking at the holonomy algebra from
§5.4.3 consisting of the curvature of the connection and its covariant derivatives.
The curvature is Lie algebra valued which in this case consists of elements of
f6€(M, B) which are vector ficlds that are parallel to the boundary and zero at
infinity. It can be decided if arbitrary motions of the “hat” are possible by looking
at the span of the vector fields that make up the holonomy algebra at each point
in the ambient space.

Vector fields in the Lie algebra obviously cannot be free from vorticity since
irrotational flow requires boundary motion. Because the vorticity represents the
local rotation of the fluid, solenoidial flows will affect the rotation of the hat,
complete local control over the hat can then be achieved if there are at least
three vector fields from the holonomy algebra that together span not only the two
dimensional tangent space at each point but also the one dimensional space of the
vorticity.

Evaluating the span of vector fields at every possible hat location in the ambient
space, independently, corresponds to a more limited notion of controllability than
that covered in Theorem 1. The vector fields spanning the infinite dimensional
space of all vector fields in the Lie algebra would correspond, in this case, to the
' potential to arbitrarily stir the fluid. Because of the boundary conditions, only
the span of the vorticity of the curvature its covariant derivatives needs to be
considered.

6.3.1 Approximating a Stir

In this section we compute the curvature of the connection associated with moving
a circle in small loops and comparing the net displacement with out calculated
values of the curvature using the first term of (5.15).

The stream function for the flow around a circle centered at (rx,ry) is

(y—ry)drg+ (z—rg)dry
RS B TR

olz,y) =

so the curvature given by (4.27) evaluated at the initial point is

4

= .l
For= G L2 4 4
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The first covariant derivatives are

G F = ___1_____ (—8zy(4 + 3z2 + 3y%))
T (2 2P (4(5z* — y2(1 + %) + 2%(T + 49%)))
Sp - _ 1 [(4(3:4 ~Ty* ~ 5yt + 2?(1 - 4y2)))]
T (@ PP (8zy(4 + 32% + 3y%))

Figure 6.5 shows the motion of some of the particles when the circle follows
(rz(t),ry(t)) = .05(1 — cost,sint) for two cycles. Figure 6.6 shows a blow up
of the paths of four particles compared to the average displacement predicted by
the curvature scaled by the appropriate area coefficients from the series (5.15). To
determine if the Hat can be controlled we compute the vorticity of the curvature
and that of its first covariant derivatives,

y . —16
dFg, = @2 + 2%

—96z(z® +y> ~ 2

——
dv“Ffb‘y - (:L.Q +y2)5 ?
< ~96y(z? +y* — 2
b _ —90y y
AV, Fh, = CoEer

The determinant of the velocity field and vorticity corresponding to the first and
second brackets

Fr  VoFi, V,Fr, | —256(5+2% - 6% +y +22%(=3 +¢?))
dF%, dV.Fy, dV,Fy, (x2 4+ y2)11

is only zero when r = 1 and 7 = v/5. The Hat is therefore controllable everywhere
in the plane by doing small circles and figure eights except on the boundary of the
stirring rod and on the circle of radius /5. It may still be controllable on r = Ve
via higher order derivatives of the curvature.

The span of the vorticities of the curvature and of all its covariant derivatives
can be checked to determine to what extent the fluid can be controlled in general,
not just at one point, through stirring. Only the vorticity needs to be checked
because the fixed boundary conditions preclude any irrotational component of
velocity. If they span the space of functions (vorticity is a scalar) outside the circle
then the fluid will be completely locally controllable. A cursory examination of a
Hall basis of derivatives up to those corresponding to 5th order brackets does seem
to produce linearly independent functions. Despite this, it does not seem likely
that the system will turn out to be completely controllable.
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Figure 6.5: Particle paths after two stirs.

o O
O &

Figure 6.6: A close up of four particle paths from Figure 6.5 showing the their net
displacement compared with that predicted by the curvature.
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Chapter 7

Future Work

There are many avenues open for further research in the areas of geometric model-
ing of fluid dynamics, series expansions and the modeling of swimming and stirring.

Geometric Modeling of Fluids A formulation of fluid body problems based
on groupoids, which have principal bundles as a special case, warrant further ex-
amination. I have alluded to the fact that the configuration space of a deformable
body in an inviscid fluid is naturally a groupoid. The Lagrangian is also naturally
right invariant with respect to the right action of composition. In addition, La-
grangian’s with a parameter, for example compressible fluids, also have a natural
groupoid structure.

It would be nice to use the symmetry elicited in our Lagrangian description
of ideal fluid flow to develop symplectic integrators that would have well behaved
properties with respect to the conserved quantities of the system. Doing this in
the presence of moving boundaries would be even nicer.

No heed has been payed to time symmetries in our geometric formulation
and hence energy conservation has been denied its rightful place. This glaring
shortcoming might be rectified by moving to a multi-symplectic formulation.

I have been less than strict in dealing with the technicalities of convergence in
infinite domains. Most of the “results” presented here are not precise mathematical
statements, but more guides to precise statements that could be made. In addition
assumptions have been made that explicitly forbid circulation in two dimensions
for the sake of convergence.

Swimming and Stirring The simple models for swimming in terms of artic-
ulated, but hydrodynamically decoupled, rigid bodies easily capture many of the
effects of a carangiform swimming. In particular they capture steering due to body
bending and eel like forward gaits. However, in modeling only added mass, they
cannot capture momentum generation and loss. Clearly it would be advantageous
to add representations of the effects of vorticity and viscosity while keeping the
model simple.

It would be interesting extend the results on stirring to determine the extent
to which an arbitrary diffeomorphisms of the fluid can be achieved via stirring.
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Series Expansions The series presented here was my entree into the world of
series expansions, but I only touch on the structure of the generic problem. These
series expansions have a clear connection to averaging, which can be studied in the
generic case. The algebraic structure of these series is very beautiful and I have
only hinted the bigger picture. In particular it would be nice to see an expansion
for the single exponential in terms of a Hall basis with explicit coefficients.

This thesis is rooted in attempts by many people to write coordinate inde-
pendent problem statements and answers. In the context of the series and in the
context of non-linear control in general this has been successful with respect to the
state space, it has not been so with respect to the input space. The Lie bracket be-
tween two input vectors is a coordinate free expression, but not when you consider
that is relies the choice of a basis for the input space. Sussmann’s good and bad
bracket test is an example of this. One gets different answers based on the choice
of input parameterization. This is suboptimal. This also leads to the question
of nilpotentization. In some problems, certain choices of input parameterization
naturally truncate the serics. Determining when this is possible and what change
of coordinates to use to do so is an unsolved and difficult problem. There may be
a connection between tests nilpotentness and tests for flatness.
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