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Abstract

We have constructed a phase-binning CCD camera optimized for optical observations of faint pulsars.

The phase-binning CCD camera combines the high quantum efficiency of a CCD with a pulse-phased

time resolution capable of observing pulsars as fast as 10 ms, with no read noise penalty. The phase-

binning CCD can also operate as a two-channel imaging polarimeter, obtaining pulse-phased linear

photopolarimetric observations.

We have used this phase-binning CCD to make the first measurements of optical pulsations from

an anomalous X-ray pulsar. We measured the optical pulse profile of 4U 0142+61, finding a pulsed

fraction of 27%, many times larger than the pulsed fraction in X-rays. From this observation, we

concluded that 4U 0142+61 must be a magnetar, an ultramagnetized neutron star (B > 1014 G).

The optical pulse is double-peaked, similar to the soft X-ray pulse profile.

We also used the phase-binning CCD to obtain the photometric and polarimetric pulse profiles

of PSR B0656+14, a middle-aged isolated rotation-powered pulsar. The optical pulse profile we

measured significantly disagrees with the low signal-to-noise profile previously published for this

pulsar. Our results show that the optical flux is entirely pulsed, with optical peaks at phases 0.2

and 0.8 with respect to the radio peak, and a bridge of emission between the peaks. The significance

of the detection of pulsed polarized flux is low, but the position angles match the extrapolation of

the radio polarization profile. The optical data, both photometric and polarimetric, are consistent

with the polar cap model of pulsar magnetospheric emission. The fit of the optical data with the

competing emission model, the outer gap model, has not yet been determined.

We have developed a number of statistical tools, both to estimate the errors in our measurements

and to identify systematic errors present in the pulse profiles. The statistical tools, when applied

to the data presented here, show that the systematic errors are negligible, bolstering the claims of

significance of these results.
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Chapter 1

Introduction

1.1 Optical Pulsar Observations

The history of optical pulsar observations began very shortly after the discovery of pulsars in late

1967. Searches for optical pulsations began as early as May 1968, just three months after the

announcement of the discovery of the first pulsar, PSR B1919+21. The Crab Pulsar, discovered by

radio astronomers in November 1968 (Staelin and Reifenstein, 1968), was seen to pulsate in optical

light in January 1969 (Cocke et al., 1969), by three groups within a matter of days.

The subsequent development of the field of optical pulsar observations progressed much more

slowly. It would be another eight years until optical pulsations were detected from the Vela Pulsar

(Wallace, 1977), and yet another eight years until pulsations were detected in the LMC Pulsar,

PSR B0540-69 (Middleditch and Pennypacker, 1985).

In the 17 years since the detection of pulsations from PSR B0540-69, there have been reports of

optical pulsations in three other isolated pulsars, SN 1987A (Kristian et al., 1989), Geminga (Shearer

et al., 1998) and PSR B0656+14 (Shearer et al., 1997). The reports of pulsations from Geminga

and PSR B0656+14 are at low levels of significance, and as we show in data presented in this work,

our results for PSR B0656+14, at a high signal-to-noise ratio, contradict the Shearer et al. (1997)

results. This disagreement must cast some doubt on the Geminga results, by the same group, on the

same observing run, and with the same instrument as the PSR B0656+14 results. There has been a

concerted effort over the last 15 years to monitor the remnant of SN 1987A, in the hope that a pulsar

may appear at optical wavelengths. There have been reports (Kristian et al., 1989) and retractions

(Kristian, 1991) and further reports (Middleditch et al., 2000) of pulsations from SN 1987A, none

of which can be claimed to have been confirmed (not even the retraction, in a manner of speaking).

The difficulties associated with these observations highlight the need for careful error analysis and

treatment of systematic errors.

The reason optical observations of pulsars are so difficult is by no means unique to this branch

of astronomy—it is a lack of photons. In Table 1.1, we list the optical luminosities of all pulsars

that have been detected at optical wavelengths. The difficulty in making the transition from a

time-averaged optical detection to detecting optical pulsations lies both in the necessity to make

multiple observations (a separate observation for each time resolution element) and in the detec-

tor technology required. With the occasional exception of the Crab Pulsar, all of the previous
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optical pulsation detections were made using photomultiplier tubes (PMTs) or (for Geminga and

PSR B0656+14) MAMAs (an imaging analogue of PMTs), all of which are limited by their photo-

cathode sensitivity. The time-averaged optical detections, without time resolution, have been made

using back-illuminated charge-coupled devices (CCDs), which provide near-perfect sensitivity, but

operate with no temporal resolution on the timescale of pulsar periods.

Table 1.1: Optical observations of pulsars

Pulsar P [s] log T [yr] m

Crab 0.033 3 V = 16.5 Opt pulse
PSR B0540-69 0.050 3.2 V = 22.4 Opt pulse
Vela 0.089 4.1 V = 23.7 Opt pulse
PSR B0656+14 0.385 5.0 V = 25.0 This work
Geminga 0.237 5.4 V = 25.4 ? pulse
PSR B1055-52 0.197 5.7 U = 24.9
PSR B1929+10 0.227 6.5 U = 25.7
PSR B0950+08 0.253 7.2 m130= 27

4U 0142+61 8.7 4 R = 25.0 AXP, this work
1E 2259+586 7.0 4 K ≈ 21.7? AXP

RX J0720.4-3125 8.4 R = 26.9 INS

PSR B1509-58 0.151 V ≥ 22.0?? wrong ID?

The heart of this thesis is an instrument which combines the sensitivity and imaging capabilities of

CCDs with time resolution on the order of milliseconds, extending the capacity to observe pulsations

in isolated pulsars to much fainter limits than previously attainable. Aware of the hidden perils of

systematic issues when dealing with pulsations in faint objects, we have tailored the operation of

this instrument to minimize the systematic errors introduced by the hardware, and have designed

data reduction and statistical analysis routines to ensure that the resulting data does not contain

artifacts that could compromise any of our findings. It has been extremely gratifying to see that the

level of errors in the final stages of our data analysis is entirely consistent with fundamental error

limits.

Our pulsar camera’s major achievements have been the measurement of optical pulsations from

the Anomalous X-ray Pulsar (AXP) 4U 0142+61, and from the radio pulsar PSR B0656+14, both

using the Palomar 200-inch telescope. Our findings on 4U 0142+61 are particularly exciting, because

AXPs are relatively recent discoveries, and our findings have a significant impact on the fundamental

understanding of this class of pulsar. Our measurements of PSR B0656+14 are significant in that

they are the first concrete optical pulsations seen from a middle-aged (> 105 years) pulsar. Our

observations contradict the previous measurement of pulsations from PSR B0656+14, but what is

most exciting about these observations is that we have obtained pulse-phased linear polarization

measurements on PSR B0656+14. While the polarization results are of debatable significance, this
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previews the insight that will be available using high-quality optical polarization data, which should

be readily observable with 10 m class telescopes (and, needless to say, our instrument). By opening

the door to pulse-phased polarization observations, we should be able to explore completely new

territory in the field of high-energy pulsar emission mechanisms.

1.2 Scientific Framework

Since their discovery 35 years ago, pulsars have been objects of intense interest, often because their

unusual nature and environment allow theorists to explore exotic phenomena that are unavailable

anywhere else in the universe. The solid-state properties of neutron star interiors and crusts, the

properties of their magnetospheres, and radiation mechanisms in these strong magnetic fields have

no other laboratories in the universe. The timing accuracy allowed by the stable rotation of pulsars

has provided the opportunity to test general relativity in unique ways, including the first concrete

evidence for gravitational radiation (worth a Nobel prize), and has provided the detection of the

first extrasolar planet (now the lonely outcast from the bustling crowd of extrasolar planets around

ordinary stars).

Studies of emission mechanisms in isolated, rotation-powered pulsars have generally been split

into radio and high-energy (infrared through gamma-ray) regimes, because (with the exception of

the Crab) it appears that the radio emission is not closely connected to the high-energy emission,

except through the gross energetics of the pulsar spindown. Due to the superior relative quality

of the radio observations, the radio emission mechanism has been explored more thoroughly than

the high-energy emission mechanisms. While there are still a number of debates concerning the

nature of the radio emission mechanism, a general consensus holds that the location of the emission

region is relatively close to the surface of the neutron star, some 10–100 NS radii high (Kijak and

Gil, 1997), as contrasted with the light cylinder, which is another factor of ∼ 100 in radius. This

proximity to the NS surface simplifies matters somewhat, permitting theories to neglect a number

of effects (relativistic aberration, light travel time across emission regions, etc.). One consequence of

this has been the success of a remarkably simple model, the Rotating Vector Model (Radhakrishnan

and Cooke, 1969; Everett and Weisberg, 2001), in estimating the geometrical configuration of the

rotation axis, magnetic axis, and line-of-sight to the observer from the change of polarization position

angle across the radio pulse.

The high-energy emission mechanisms of isolated, rotation-powered pulsars have not been ex-

amined as comprehensively as the radio mechanisms. The soft X-rays have a distinct mechanism

from the rest of the infrared through gamma-ray spectrum, in that the surface of the neutron star

is sometimes visible in soft X-rays, which are also modulated by the rotation of the NS. The general

belief is that the rest of the high-energy spectrum is generated in a cascade process, which begins
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when charged particles accelerating through a huge potential emit curvature gamma rays as they

follow the magnetic field lines, and the gamma rays then spawn a number of other processes (pair

production, inverse compton scattering), eventually resulting in the observed high-energy emission.

There remains a fundamental question regarding the location of this accelerating region and the

torrent of energetic processes that result. The competing theories split into two broad categories,

the polar cap models, with the acceleration near the NS surface (at the magnetic poles) (Baring,

2001), and the outer gap models (Romani and Yadigaroglu, 1995), with acceleration farther out in

the magnetosphere (at significant fractions of the light cylinder radius). There are also sprinklings

of other models in existence, including those invoking plasma instabilities near the light cylinder

as the emission mechanism, possibly producing both the radio and high-energy emission (Lyutikov

et al., 1999; Machabeli et al., 2000).

Optical observations of isolated, rotation-powered pulsars provide a means of testing the well-

developed models of high-energy emission mechanisms. Simple questions, such as the number of

peaks in the optical light curve, separation between peaks, separation between optical and radio

or optical and gamma-ray peaks, flux ratio in peaks, etc. can go a long way in determining the

validity of the underlying models. As a very simple example, in the polar cap model, where the

optical emission region is near the NS pole and therefore near the radio emission region, one would

expect the rotational phases of optical emission features to be symmetric about the radio emission,

as there are no relativistic or light travel time factors that would introduce a phase offset. In fact,

the two peaks in the optical light curve from the Vela Pulsar are not symmetric about the radio

pulse, casting doubt on the polar cap model for the optical emission from the Vela Pulsar.

Observations of optical pulsations can act as a proxy for the high-energy emission in pulsars

where the emission is unavailable at other frequencies. This is particularly true in PSR B0656+14,

for which we present here high-quality measurements of optical pulsations, while the gamma-ray

measurements of PSR B0656+14 (Ramanamurthy et al., 1996) are of very low significance. An

extremely exciting corollary to this is the opportunity for high-quality optical polarization measure-

ments. Radio polarization data, as applied to the Rotating Vector Model, have been the only tool

available to determine geometric parameters in most radio pulsars. There is little hope for X-ray or

gamma-ray polarimetry to be applied to pulsars in the immediate future, and so the only avenue for

high-energy polarization measurements lies with optical polarimetry. The agreement or disagree-

ment between radio and high-energy polarization interpretations could offer very precise metrics of

the structure of pulsar magnetospheres.

The current state of AXP emission models is far less advanced than that of radio pulsars. The

question of the fundamental nature of the objects must be addressed before continuing to develop

theories of the emission from these objects. Following the work of Hulleman et al. (2000a), three

models remained to explain the AXP 4U 0142+61: a magnetar (neutron star with surface magnetic
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field > 1014 G) (Duncan and Thompson, 1992), a hot (5× 105 K) magnetized (108 G) white dwarf

(the result of a merger of two white dwarfs) (Paczyński, 1990), and an accreting isolated neutron

star (with an ordinary magnetic field) (Marsden et al., 2001). Our data, using the detection of

optical pulsations from 4U 0142+61, was inconsistent with the accretion and white dwarf models,

leaving (by the process of elimination) only the magnetar model as a viable explanation of what is

known about 4U 0142+61. Investigations into the nature of the emission mechanisms of AXPs can

now progress, with a better understanding of the physical nature underlying these objects.

1.3 History of This Effort

This project began in the winter of 1995, with the development of a prototype logic system capable

of performing the frame transfers that define our technique for time resolution. This first prototype

had one observing run at the Palomar 200-inch telescope in January 1996, where we were able to

observe the Crab Pulsar, but light clouds prevented any sensitive measurements of Geminga (our

primary target).

With the experience gained by taking the instrument to the telescope, and a $30,000 grant from

the NSF, a complete redesign was undertaken to create a robust instrument. This new pulsar camera

went back to Palomar in December 1998, but again clouds prevented any observation of Geminga.

At that time, the pulsar camera had no polarimetric capabilities, and was a narrow-field instrument

only. During the next year, two-channel imaging polarization capabilities were introduced (with the

addition of another $30,000 grant from the NSF). The instrument was also modified to allow an

interface with the CTIO Blanco 4 m telescope, and we took it for an observing run there in January

2000. Interface problems with the telescope and electronic noise pickup prevented a high-sensitivity

measurement of Vela, but we were able to see pulsations, although at a lesser significance than those

published some 20 years prior. We had hoped to obtain polarization data on Vela, but the data was

not sufficient for any significant measurements. This experience was followed by another Palomar

run in February 2000, where we had a break from our experiences with clouds, only to find 5 arcsec

seeing conditions.

It was not until December 2000 that we obtained high-quality data on anything other than

the Crab. We observed PSR B0656+14 for two nights under good conditions (1.3 arcsec seeing,

nonphotometric conditions), using the camera in its polarimetric mode. The results of this observing

run are part of a paper that is included as Chapter 5.

The pulsar camera was reconfigured in the first half of 2001 (with a third, and final, NSF grant of

$15,000) to allow for an alternate mode of operation, the multiple frame transfer mode, which allows

bursts of imaging with very short exposures (∼ milliseconds), alternating with read cycles (while

not exposing). This mode trades the polarization capabilities for a wider field of view, necessary
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to include comparison stars with which to perform differential photometry. The camera was used

in this mode for a Palomar observing run in July 2001, with Guillaume Dubus as the principlal

investigator, observing low-mass X-ray binaries. The data from this observing run has been reduced

but not examined. It is given a very brief overview in Chapter 6.

The pulsar camera returned once again to Palomar in November 2001, observing 4U 0142+61

for two nights, in wide-field mode (obtaining no polarization information). The observing conditions

were similar to those of our December 2000 run, allowing a solid measurement of pulsations from

4U 0142+61. The results of this observing run are presented in Chapter 4.

As is true of any instrumentation thesis, the bulk of my labor seems to have gone into mechanical

drawings, machining, computer software programming, electronic logic design, optical design and

alignment, and above all else, debugging. Because of the particular systematic errors associated with

our periodic frame transfers (charge traps), we wanted to use as small a CCD as possible (for better

charge transfer efficiency), which runs counter to the interests of nearly every other astronomer I

have met. As such, we built a system literally from scratch, starting, with the prototype, from a

surplus electronics classroom CCD (front-illuminated), a surplus theromelectric cooler, and discrete

logic components wired into a breadboard.

With the exception of the logic electronics and a first iteration of the autoguider optics, I was

solely responsible for every component of the construction and operation of this camera. The bulk

of my early labor went into creating software in a Windows environment that would operate with

real time accuracy, to control the timing of our observations to microsecond precision. As much as

I expected to be able to turn all of the machining over to the Physics Shop after making of all of

the mechanical drawings, I ended up doing the majority of the machining myself, generally because

of time constraints and delays in finishing the mechanical drawings. It is always surprising to look

back and recount the weeks of work that go into each and every component of a successful system.

I have also been solely responsible for developing the data analysis routines described in Chap-

ter 3. The broad features of the calibration routine were fleshed out early in the project, as the first

cloudy data began to roll in. It was not until the December 2000 observing run, where we obtained

reliable polarimetric data, that the polarization statistics were examined, and it was not until after

the November 2001 observing run that the full image wander and pulsed fraction statistics were

examined.

This instrument is relatively specialized, and is optimized for use on sources that are periodic

on timescales of milliseconds to tens of seconds, i.e., pulsars. It does offer capabilities for general

high-time-resolution studies of nonperiodic sources, and has been used on one occasion for just this.

The true capabilities of this instrument will be realized only by access to the Keck telescopes, or

other 8–10 m class telescopes with excellent seeing. With two Palomar observing runs of pulsars

living entirely up to their expectations, the time is ripe to graduate to a larger telescope. However,
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it is not likely to appeal to a wide audience of observers, and as such, there has not been a genuine

attempt to train other observers in its use, or develop a document for the exclusive purpose of

instructing future observers on its use.

1.4 Organization of the Thesis

This thesis is divided by the logical distinctions between the directions of my efforts as a graduate

student. The operation of the instrument itself will be discussed first, followed by a description of the

data analysis and statistical evaluation routines. The data from our two successful pulsar observing

runs are presented separately, as they differ in their scientific context, and have been written as two

papers, one to Nature (to be published 2002 May 30), the other in preparation for submission to the

Astrophysical Journal. There is a brief mention of the use of this instrument in its multiple frame

transfer mode (for nonperiodic sources) in Chapter 6. Finally, a few words will conclude the thesis.

An appendix gives computational details that accompany a discussion of the PSR B0656+14 paper.

The highlights of the thesis, if one wanted an impression of this thesis in the shortest possible

time, begin with the images of PSR B0656+14 in Fig. 5.2, the clearest example of what we are

interested in obtaining. The other big scientific result comes in Fig. 4.3, where we measure optical

pulsations from an anomalous X-ray pulsar for the first time. From a data analysis standpoint,

the real achievements shine through in Fig. 3.6–3.8, where we show that the measured errors are

perfectly well explained by the fundamental error limits (Poisson background noise) and that the

pulsations we measure are clearly not instrumental in origin. These figures would compose the

five-minute tour of my work as a graduate student.
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Chapter 2

Instrumentation
This chapter describes the operation of the phase-binning CCD camera. Apart from the principles

of operation (describing the three modes of operation of this camera) and the performance sections,

much of this information is very detailed and is of interest only for a complete understanding of the

physical developments involved in making this camera do what it does.

2.1 Principles of Operation

2.1.1 Phase Binning

The phase-binning CCD is the most sensitive instrument to date for observing periodic sources,

such as a pulsar, with periods between 10 ms and 30 s. The phase-binning CCD operates as a

periodic frame transfer device, as shown in Fig. 2.1. The field of view of the CCD is masked off

with a slit, so that most of the CCD is shielded from light. The inactive regions of the CCD are

used as storage for multiple images of the slit, taken at different times. Data is commonly taken in

ten phase bins (n = 10), resulting in ten images residing on the chip. A single long exposure then

consists of alternating periods of integration, when one image is being exposed and nine images are

in storage, and frame transfer, when the most recently exposed image is transferred into storage and

the stored images are shifted so that one is brought into the region illuminated by the slit. During

frame transfer, no mechanical components move, only the accumulated charge in the CCD moves.

Fig. 2.1 shows the CCD illumination schematic, in opposing extremes of the transfer cycles.

The transfer of images is repeated in a cyclic pattern, with five transfers shifting the images

upward on the CCD and five shifting downward, so that after beginning by integrating Image 0,

then repeating the integration and transfer steps ten times, Image 0 is being reilluminated. The

shutter which defines the entire exposure is opened at the beginning of the exposure, and left open

during all of the integrations and transfers. No pixels are read out of the CCD at any time during

the exposure. After an arbitrary number of cycles of integration and transfer, perhaps illuminating

each of the ten images 100–1000 times, the shutter is closed, and the entire CCD (containing the

ten images) is read out. An individual exposure may last 120 s, which means a full observing run

may comprise several hundred exposures.

The output of a single exposure is an array of n phase-binned images (where n is generally 10).

With no moving parts, objects appearing in the images are recorded in the same physical pixels
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Figure 2.1: CCD illumination schematic. Left: Division of CCD into the region illuminated by the
slit and the storage regions. Middle: Location of images during exposure of Image 4. The images
are numbered temporally from 0 to 9, with labels horizontally offset purely for illustrative purposes;
there is no horizontal offset between the images. Note that the images 0–4 are interleaved with the
images 5–9, so that temporally consecutive images are either one or two distant. Right: Location of
images during exposure of Image 9.

(in the region of the CCD illuminated by the slit) for all images, so that no variations in optical

throughput or Quantum Efficiency (QE) will be imprinted on the differential light curve of objects

in the images. The ability to reilluminate images hundreds or thousands of times allows the signal

(and background) to grow before being read out, so that the read noise (5–8 e−/pixel rms) is small

compared to the Poisson noise of the signal (for bright sources) or the sky background. It is this

combination of imaging, the sensitivity of the CCD, and the elimination of read noise (in a relative

sense) that underlies the power of this technique.

The CCD operates in one of three different modes, two of which are phase-binning modes (as

described here) and one of which is a nonperiodic frame transfer mode. The two phase-binning modes

are the wide-field phase-binning and two-channel polarimetric modes, which differ in the width of

the images (wider for wide-field) and the measurement of polarization information. The third mode,

which we call a multiple frame transfer mode, is a wide-field mode that does not re-illuminate any

exposures, resulting in a series of short-exposure images. If not explicitly stated, the assumption

throughout this thesis is that one of the phase-binning modes are being used. These are the modes

that are unique to this instrument, while there are a handful of frame transfer instruments in general

astronomical use already.

2.1.2 Timing

The timing of the integration and transfers is controlled to match the period of the observed pulsar,

when phase binning, or to provide an absolute time reference for multiple frame transfers. In a

simple implementation, the timing of the phase binning (with n = 10) would ensure that Image

0 is always illuminated during pulse phase 0.0–0.1, Image 1 during phase 0.1–0.2, and so on, with
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Image 9 illuminated from phase 0.9–1.0 (see Section 2.1.3). Because the phase binning is performed

in real time, the period of the pulsar must be known a priori, from radio or X-ray (or gamma-

ray) observations. The absolute timing of the sequence is controlled by a GPS receiver and time

code generator, accurate to 1 µs. Barycenter-geocenter and geocenter-topocentric (i.e., observatory)

corrections must be computed beforehand so that they can be applied to the start and stop times

of an individual exposure. General relativistic effects (both Shapiro delay and varying redshift due

to the earth’s elliptical orbit) are small and vary slowly, and so are not important here. A simple

description of the these corrections is given in Lyne and Graham-Smith (1998).

There are two levels of timing accuracy required for the phase-binning CCD, the intraexposure

accuracy and the interexposure accuracy. The intraexposure accuracy, the timing of integration and

transfer cycles during an exposure, must be high enough to ensure that smearing of the pulse phases

is small. With a pulsar period Pobs, as observed on the surface of the earth, the accumulated timing

error during a single exposure should be a small fraction of Pobs/n (the duration of one phase bin).

Quoted in terms of the fractional error,

δPobs/Pobs � (nNpulse)−1, (2.1)

where δPobs is the error in the observed pulsar period and Npulse is the number of full pulses in an

exposure, i.e., Npulse = Texp/Pobs, where Texp is the single-exposure time. Taking PSR B0656+14

as an example, with Pobs ∼ 385 ms, n = 10, and Texp ∼ 120 s, δPobs/Pobs � 3× 10−4. For the Crab

pulsar, with P = 33 ms, the limiting fractional error becomes 3× 10−5 for a 120 s exposure. If the

errors are larger than this, then the time series recorded in a single exposure is convolved with the

error distribution, resulting in a loss of temporal resolution.

The required interexposure accuracy, the accuracy with which successive exposures must be

timed, is significantly stricter than the intraexposure accuracy, but can be largely corrected a pos-

teriori. Similar to the constraint for the intraexposure accuracy,

δPobs/Pobs � (nNtot)−1, (2.2)

where Ntot is the total number of pulses elapsed during the entire observing run. For a three-

night observation, for instance, Ntot may be 5 × 105 for PSR B0656+14, or 5 × 106 for the Crab,

resulting in a fractional error requirement of δPobs/Pobs � 2 × 10−7 or 2 × 10−8. Pulsar periods,

as measured at other wavelengths, are generally accurate to levels well beyond this requirement,

as are the barycenter-geocenter and geocenter-topocentric corrections. In the event that the actual

accuracy lies between the intraexposure and interexposure accuracy limits, the individual exposures

properly preserve the timing information, which can be retained by properly coadding successive

exposures (i.e., interexposure corrections can be applied in software).
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2.1.3 Systematic errors

Several steps are taken to reduce the effects of potential systematic errors in the time series of objects

imaged by the phase-binning CCD. The nature of the illumination scheme, with no moving parts,

ensures that QE and throughput variations will not be imprinted on the measured (differential) pulse

profile, unless the throughput variations occur synchronously with the pulse period. In addition,

the imaging capabilities of the instrument allow a number of “control” objects to be recorded in

each image. By examining the pulse profile of every star in the field of view, one can ensure that

there are no instrumental effects that mimic pulsations. This imaging capability provides the surest

confirmation of the significance of measured pulsations, by showing that the pulsations happen

nowhere else.

While each image is observed by illuminating the same pixels on the CCD, eliminating pixel-to-

pixel QE effects, the same cannot be said for the frame transfer paths of each image. For example, in

Fig. 2.1, Image 4 is shuttled between the center of the CCD (illuminated by the slit) and the bottom

of the CCD, while Image 9 moves between the center and the top of the CCD. Charge Transfer

Efficiency (CTE) differences across the CCD will mimic a time-varying signal. Because the number

of parallel shifts in an individual exposure is large (on the order of 105–106), CTE that differs from

unity by more than 10−7 will have a large effect on the resulting pulse profiles. In addition, localized

traps (≤ 1 e−) will redistribute large amounts of charge between neighboring pixels across the CCD

(Janesick, 2001). While these two effects have different effects and causes, they will generally be

discussed as sources of differential charge redistribution.

An additional effect of the different frame transfer paths for the images is that the time spent

in integration and transfer differs slightly for different images. As shown in Fig. 2.1, the on-chip

locations of the images are interleaved, so that temporally consecutive images are either next to

each other or separated by only one other image. The time to transfer from illuminating Image 9

to illuminating Image 0, or from Image 4 to Image 5, is half that of the transfer between any other

temporally consecutive images.

In general, the integration time for a given image is defined by the pulsar period, the number of

phase bins, and the transfer time,

ttrans,i + tint,i = Pobs/n (2.3)

for each i = 0,1, . . . n-1, where ttrans,i is the transfer time and tint,i is the integration time for Image

i. The parallel shift time is 42 µs/line, and a typical image height is 26 pixels, so the transfer time is

either 1.1 ms (for Image 9–0 or Image 4–5) or 2.2 ms. For PSR B0656+14 this is small compared to

P/10 = 38.5 ms, giving a duty cycle of 97% or 94%. For the Crab, however, P/10 = 3.3 ms, giving a

duty cycle of 67% or 33%, creating a large differential signal in the pulse profile, with Images 0 and
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5 receiving twice the integration time as the other images. Because the shutter is open throughout

the exposure, the time spent in transfer, in addition to reducing the integration time, results in some

vertical smearing of the images.

The opening and closing of the shutter introduces an extra nonuniformity in the total integration

time of images in an exposure. The shutter open and close time is approximately 10 ms, but because

the shutter is an iris style shutter, the effects are different at different places in the field of view.

The shutter opening time results in a reduced total integration time for Image 0 (and possibly other

images if P is small), and the shutter closing time results in an increased total integration time for

Image 9 (with a small amount of smearing as readout begins).

The most reliable way to mitigate the effects of charge redistribution, transfer time and shutter

effects is to ensure that, in the final analysis, these effects are imprinted equally on each phase bin.

While the paths traveled by each phase-binned image are different in a single exposure, by altering

the start time of successive exposures with respect to the pulsar’s pulse phase, the mapping between

images and pulse phase can be altered in such a way that in a series of ten exposures, each pulse-

phase interval appears in every image exactly once. To be specific, we define a phase offset, between

0.0 and 1.0 that is applied to the start time of an exposure. The actual start of the exposure is

delayed by the phase offset (multiplied by the period, Pobs). For a given exposure, Image 0 begins

at a pulse phase equal to the phase offset of the start of the exposure, with this offset persisting in

all of the successive images. In other words,

ϕlo = i/n+ ϕoff , (2.4)

where ϕlo is the lower limit to the pulse phase in a given phase bin (i.e., ϕlo = 0 corresponds to

pulse phase 0.0–0.1), i is the image index (0–9), n is the number of phase bins (10), and ϕoff is

the phase offset. Throughout this discussion, we will express pulse phase in units of cycles, i.e., as

fractions of 2π radians. By incrementing ϕoff by 0.1 in successive exposures, after ten exposures,

pulse phase 0.0–0.1 will appear in each of Images 0–9 exactly once, as does pulse phase 0.1–0.2, etc.

This ensures that any effects specific to individual images appear identically in each phase bin. To

the extent that the data analysis yields a differential measurement, charge redistribution, transfer

time, and shutter effects have no effect on the measured pulse profiles.

Charge redistribution effects pose difficult flat-fielding problems, relevant when examining vari-

ations in the sky dimensions (rather than the pulse phase dimension). The effects of the localized

traps are slightly dependent on the charge contained in a pixel, so for a given point in an image,

following the same transfer path through an exposure, the trap effects depend on the incident flux.

This means that proper “dark” and flat-field calibration frames can only be obtained under identical

illumination conditions as the observations they are intended to calibrate. The only practical solu-
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Figure 2.2: Wide-field phase offset and dither schematic. This figure represents the grouping of
the sequence of successive exposures. The (x, y) plane represents the CCD itself, which contains n
images (n = 10 in this case), as represented in Fig. 2.1. Successive images are taken with different
phase offsets, which are represented as the depth dimension (into the page) in this figure. After a
complete set of n exposures, started with each of all possible values of the phase offset, the telescope
dither is changed, and the process is started again. At the end of an observing run, the observer has
collected some nD different dither positions, each composed of n images at different phase offsets.

tion to this is to use a self-calibration technique, dithering the telescope pointing between exposures,

in the hope that every point in an image will be alternately exposed to blank sky and to sky plus

objects in the field of view. In this fashion, a composite flat-field calibration can be constructed

using blank sky wherever it may land on the CCD, to patch together a complete calibration. This

is discussed in detail in Section 3.1. To preserve the differential immunity to charge redistribution,

transfer time, and shutter effects, the dithering is performed only every n exposures, i.e., after a

full cycle of phase offsets. In other words, for a set of n exposures, the phase offset is increased

between exposures, then the telescope pointing is changed, and the process is repeated. In a night

of observing a single object, 200 exposures may be taken, in 20 different dither positions with 10

phase offsets at each dither position. This is shown in Fig. 2.2.

2.1.4 Polarization capabilities

The second mode of operation of the phase-binning CCD adds a polarimetric capability to the phase-

binning imaging performance. With the addition of polarizing beam splitters and an achromatic

half-wave plate, as described more fully in Section 2.2.3, the incoming light is split into orthogonal

linear polarizations, which land in separate columns on the CCD. This is shown schematically in

Fig. 2.3.

The orientation of the fast axis of the half-wave plate determines the linearly polarized position

angle (as projected on the sky), so by rotating the half-wave plate between exposures, the position
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Figure 2.3: Polarization illumination schematic. The CCD is split into two columns, each measuring
orthogonal linear polarizations. The hatch patterns represent polarization angles of -45◦ and 45◦.
The arrangement of images in each column is the same as in Fig. 2.1. The two columns observe the
same field of view.

angles measured by each of the two columns rotate as well. In a series of four consecutive exposures,

with the position angles rotated 45◦ between each exposure, each column independently measures the

Stokes parameters I, Q and U . Because this is a two-channel polarimeter, each column independently

measures the Stokes parameters, but because orthogonal polarizations are measured simultaneously,

any throughput variations affect the Q and U measurements oppositely, and so cancel when the two

separate measurements are combined. For observations of faint pulsars, where the sky background

dominates the measured flux, the timescale for making successive polarization measurements should

be as fast as possible, because the sky polarization changes with altitude and azimuth. As such, the

observing scheme is to rotate the position angle between each successive exposure (keeping the same

phase offset), change the phase offset after each set of four position angles, and dither the telescope

pointing after ten sets of four exposures. In other words, the ordering of the variations, from most

frequent to least, is the polarization position angle, the phase offset, and then the dither position.

This is illustrated in Fig. 2.4.

2.1.5 Nonperiodic short-exposure imaging

The third mode of operation of this camera is a wide-field multiple frame transfer mode, similar to

the phase-binning modes described above, but without re-illuminating any images. In this mode,

images are accumulated by exposing for short periods of time (5 ms–2 s) and transferred away from

the region of the CCD illuminated by the slit, until the CCD is full of images, at which point the

shutter is closed and the entire CCD is read out. The transfers are performed in only one direction

in this mode, resulting in a series of temporally consecutive images. A schematic diagram is shown

in Fig. 2.5

As shown in Fig. 2.5, the slit illuminates a strip of the CCD near the top, rather than across the

center, as is done with the periodic frame transfer mode. This maximizes the usable storage area
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Figure 2.4: Polarimetric position angle, phase offset and dither schematic. The (x, y) plane is the
CCD, containing two columns of n images, which compose a single exposure. The next exposure is
at a different half-wave plate position, i.e., to the right in this figure. After all four position angles
have been measured, the phase offset is changed, i.e., the next exposure into the page is taken.
After all position angles and phase offsets have been visited once (4n exposures), the dither position
is changed, i.e., downward in this figure. The order of exposures is left-to-right, front-to-back,
top-to-bottom.

of the CCD, while minimizing the transfer time. Temporally sequential images are adjacent in this

mode.

The transfer time is identical for all images in this mode, eliminating one source of systematic

error. There is no robust solution to eliminate the effects of the shutter open and close time, so

in practice, the first (or first few, if the integration time is short) and last images are discarded.

To maximize efficiency, the first image (or images) can be discarded simply by accumulating more

images than will fit on the CCD at one time. As the last images are integrated and transferred, the

first images will be shifted off the bottom of the CCD. Since the image would be discarded even if

it were read out, this practice ensures that no time is spent reading it out.

The efficiency of this technique is dependent on the read time of the CCD, during which time

the shutter is closed. To obtain a measurable signal in a single integration of 5 ms–2 s, the objects

must be bright, V ∼ 10–16. Few objects in the field of view will be comparably bright—in most

cases, there is only one comparison star in the slit. Rather than read out the entire width of the

slit, filled with empty space, the CCD logic defines serial windows which are read out, with the

rest of the pixels discarded without digitizing. The serial clocking time (2.4 µs) is much shorter

than the digitization time (20 µs, using the “old” data acquisition electronics), so the total read

time varies almost linearly with the number of serial pixels read in each line. Standard operation in

multiple frame transfer mode involves defining two serial windows (one for the science object and
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Figure 2.5: Multiple frame transfer mode illumination schematic. In this mode, the slit illuminates
a strip across the top of the CCD rather than the center. Images are numbered temporally, with
indices offset horizontally for purely illustrative purposes; there is no horizontal offset of the images.
This figure shows integration of the last image before closing the shutter and reading out the CCD,
as the storage region is full.

one for a comparison star), reducing the number of digitizations per line from 512 to 80. This serial

windowing greatly improves the overall efficiency of the instrument in this mode.

It deserves to be mentioned that the multiple frame transfer mode is not unique to this instru-

ment. The technique has been used on a number of different instruments in different configurations,

including the use of LRIS on Keck I in a continuous-read mode, effectively losing one spatial di-

mension to obtain a time dimension. Other instruments (Dhillon et al., 2001; O’Brien et al., 2001),

optimal for this mode of observation, show superior efficiency to our camera. However, our camera

is perfectly capable of operating in this mode, and in some isolated situations, can show superior

performance to any other instrument.

2.2 Optical/Mechanical

2.2.1 Overview

The phase-binning CCD has been designed for use for the F/16 and F/9 Cassegrain foci at the

Palomar 200-inch telescope, and the F/8 Cassegrain focus of the CTIO Blanco 4 m telescope. For

all of these arrangements, the optical system is similar, with a shutter, entrance slit, field lens,

collimating lens, filter (optional), and a camera lens. The plate scale at the entrance slit, in all

cases, is reimaged to 0.4–0.5 arcsec/pixel at the CCD. Some of the basic imaging parameters are

listed in Table 2.1. For this table, we assume that the minimum usable image height is 6 pixels.

Figures for multiple frame transfers, as opposed to the phase-binning modes, are given in parentheses.

The instrument is constructed on a 24× 36 inch breadboard, with the optical axis located 5 inches

above the plane of the breadboard. This modular configuration has proven extremely convenient,

as the optical layout has been reconfigured at several stages of the instrument design.
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Table 2.1: Imaging parameters of instrument modes

Dual-channel
Wide-field Polarimeter

Max. number of images 25 (50) 25 (50)
Image width, W 250 arcsec 50 arcsec
Image height, H 3–13 arcsec 3–13 arcsec
Bandwidth 380–1000 nm 400–700 nm
Throughput 45% 25%
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Figure 2.6: Wide-field optical layout.

2.2.2 Wide-field optical layout

The wide-field operating mode, in both phase-binning and multiple frame transfer modes, has been

used only at the F/9 Cassegrain focus of the Palomar 200-inch telescope. The optical train consists

of the entrance slit, field lens, collimating lens, shutter, and camera lens. A 1-inch diameter filter

can be placed at the entrance of the shutter if desired. This is shown in Fig. 2.6.

The entrance slit is a machined slot in a sheet of aluminum, with a black anodized finish. The

dimensions of the slit can only be changed by exchanging pre-machined slits, which necessitates a

simple re-alignment of the optics. In practice, this has not been done during a night of observing,

although if an observing run required observations with different slit dimensions (e.g., 10 phase bins

and 20 phase bins with different image heights), this could be done.

The camera lens used is a commercial F/1.3 25 mm compound lens with manual focus and iris.

As the actual components in the lens (7 elements) are unknown, we do not attempt to model the

performance of the camera lens in our optical design software (Code V), but rather assume it is a

perfect imaging system.
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5 arcsec

20 arcsec

Figure 2.7: Slit with keyhole. Left: Outline of 230 × 5 arcsec slit, with 20 × 70 arcsec keyhole.
Right: 30 s image of Her X-1, with no frame transfers, stretched to show sky level. The entire CCD
is shown in this figure. Compare to Fig. 2.5, which illustrates multiple frame transfers.

Simulations of the optical system (shown in Fig. 2.6) using Code V optical analysis software,

including an accurate prescription for the telescope mirror (but no atmosphere), give an rms spot

diameter of 8–11 µm (0.17–0.23 arcsec) across the full width of the slit, compared to a pixel size of

24 µm. In practice, the best images recorded at Palomar have FWHM of 1.0 arcsec (≥ 2 pixels),

from which we conclude that the imaging properties of the instrument alone do not limit the final

resolution.

For the multiple frame transfer mode, we move the CCD so that the slit illuminates a region

at the top of the CCD, rather than in the center (see Fig. 2.5). In this mode, all of the optical

elements remain in exactly the same place as for the phase-binning mode, but the dewar and CCD

(not the camera lens) are moved ∼ 250 pixels farther from the breadboard, which, because the CCD

is actually inverted in this case, moves the slit image upward. In this way, the optics do not operate

off-axis, maintaining the best imaging performance, and the modification to the mechanical layout

of the phase-binning mode is simply the addition of spacers to the mounts holding the dewar.

To maximize the exposure duty cycle (relative to the readout time) in multiple frame transfer

mode, we have used a relatively small slit, with a 5 arcsec height (10 pixels). This allows us to

record 50 images on the CCD before reading out. Using this small of a slit poses some difficulty in

acquiring the correct field, so we have used a modified slit with a “keyhole” for field acquisition (in

a frame taken with only one image, to avoid overlap), shown in Fig. 2.7. The confusion resulting

from the overlap of the keyhole in successive images renders the keyhole width unusable, but it is

straightforward to arrange the objects of interest along the slit in such a way that this is not a

problem.

2.2.3 Dual-channel polarimeter optical layout

The dual-channel polarimeter mode has been used at both the F/16 Cassegrain focus of the Palomar

200-inch telescope and the F/8 Cassegrain focus of the CTIO Blanco 4 m telescope. The optical

train consists of a shutter, entrance slit, field lens, achromatic half-wave plate, collimating lens,
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Figure 2.8: Polarization optical layout.

bandpass filter, polarizing cube beam splitters, folding mirrors, and a camera lens. This is shown

diagrammatically in Fig. 2.8.

The achromatic half-wave plate is a custom 2-inch optic (from Meadowlark Optics), mounted

in a custom rotating mount. The rotation is driven by a small stepper motor, connected by a

worm gear to the half-wave plate mount. The mount has an optical sensor and a pinhole, to

locate an absolute zero-point of rotation when powered up. The half-wave plate is designed to

give a retardation of 180±2◦ for wavelengths between 410 and 750 nm. Because the performance

becomes more unreliable outside this wavelength range, a bandpass filter is required to maintain

good performance. In practice, a simple Schott colored glass BG38 filter is used in this mode, giving

a bandpass of 400–600 nm.

The polarizing beam splitters are cube beam splitters with a broadband dielectric polarizing

coating on the hypotenuses. This coating provides a transmission of 90–95% for p-polarization and

a reflection of >99% for s-polarization, with <0.5% absorption, for wavelengths from 400–700 nm.

The discrimination between s- and p-polarizations is limited by the 5–10% of the p-polarization

that is reflected by the beam splitters, but because there are two beam splitters in the optical path,

this impurity is reduced to the 1% level. These numbers are only accurate for on-axis light rays,

however, and near the edge of the field of view, the mixture of polarization states is more pronounced.

While the absorption in the beam splitters is very low, some p-polarized light leaves through the

“inactive” side of the second beam splitter. As this amount is angle-dependent, this introduces some

throughput variations across the field of view. These variations are static, and can be calibrated

using the normal calibration routine (see Section 3.1). The use of dielectric cube beam splitters for
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polarization separation limits the accuracy of this technique to relatively large polarizations, but

there is little hope of reaching ∼ 1–3% polarization accuracy on faint pulsars, even with the 10 m

telescopes and a perfectly clean polarization measurements.

The key to creating the two columns of images shown in Fig. 2.3 is the alignment of the folding

mirrors. Because the two orthogonal polarization states travel through separate arms of the polar-

izing assembly, the propagation direction of each polarization state is independently controllable by

positioning the fold mirrors. Each of the fold mirrors is 3-axis adjustable, so that not only tip-tilt is

controlled, but the pupil image through each arm can be positioned on the camera lens.

2.2.4 Thermal

The CCD is enclosed in an Infrared Labs 5-liter dewar. It maintains the CCD at a temperature

of 195 K for 15–20 hours between LN2 fills, requiring no refilling during a night of observing. The

dewar has an offset fill tube, giving it a preferred orientation when it is not perfectly vertical. It can

be operated either upright or inverted, with the insertion of a “stinger” in the fill tube for inverted

operation. Typically, the dewar is operated in inverted configuration when in wide-field mode and

in upright configuration in dual-channel polarimeter mode. The temperature is maintained with a

closed-loop heater control, tied to a semiconductor temperature sensor located near the CCD.

2.3 Electronics

2.3.1 Overview

There are multiple electronic systems at work in this instrument, all coordinated by the data ac-

quisition computer. A block diagram of these systems appears in Fig. 2.9. The systems can be

divided into three groups, those in the data acquisition computer, those that are part of a NIMBIN

crate, and those in the camera head. The data acquisition computer houses the GPS system, which

provides an absolute time and frequency reference, and the DAQ (data acquisition) system, which

provides the digitization and analog computer interface to the rest of the system. The NIMBIN

crate houses the CCD logic system, which combines the CCD control and timing logic, and three

simple, self-contained subsystems: the shutter control, heater control, and half-wave plate control.

2.3.2 GPS System

The GPS system consists of three components: a GPS receiver, an IRIG-B time code generator,

and a frequency reference and match pulse generator. Palomar Observatory, CTIO, and our labora-

tory have GPS receivers and IRIG-B time code generators, which are standardized and essentially

interchangeable. The IRIG-B time code, an amplitude-modulated 1 kHz signal containing absolute
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timing information, is input into an ISA-bus computer-based frequency reference and match pulse

generator. The frequency reference provides a 10 MHz square-wave pulse, disciplined to the IRIG-B

time code. Based on commands from the data acquisition computer, this ISA-bus card will generate

a TTL signal at a specified time with absolute accuracy of 1 µs. The match pulse is the signal to

start and stop individual exposures, and the frequency reference is used to control the timing of

integrate and transfer states during an exposure.

2.3.3 DAQ System

The DAQ (data acquisition) system is a National Instruments PCI-6052E multipurpose data ac-

quisition board. It provides eight channels of 16-bit differential-input analog-to-digital converters

(ADCs), two 16-bit digital-to-analog converters (DACs), eight digital I/O (DIO) lines, and two in-

ternal 24-bit counter/timers. The board currently in use recently replaced an older board that was

damaged; the ADCs on the new board acquire samples at a rate of 333 kSamples/s, while the old

board (AT-MIO16XE10) acquired samples at 100 kSamples/s. The older board was used for all of

the observing runs to date. All other inputs/outputs to/from the DAQ system are quasi-static.

All eight DIO lines are used as outputs to the CCD logic system, to set configuration bits. They

select from pre-defined phase binning configurations and signal conditioning filters, and enable or

disable the shutter and pixel-binning options. One DAC is used to supply a reference voltage to be

used as a temperature reference for the heater system.

2.3.4 CCD Logic System

The CCD logic system is based on three Altera field-programmable gate arrays (FPGAs). These

FPGAs are high-speed (10 MHz) logic devices with a large number of peripheral input-output lines.

The FPGAs operate according to programs written in a high-level programming language, AHDL,

with an interactive graphical programming environment. The devices are programmed via a parallel-

port interface with the data acquisition computer; reprogramming requires only a few seconds. The

flexibility to alter the operating logic is a great benefit both in the design/debugging stages of

development and in the general operation of the instrument.

The CCD logic system is responsible for providing both the static and dynamic signals to the

camera head electronics that control the CCD. These include voltage supplies, the three parallel

and three serial phase controls, the transfer gate and reset gate controls, and a configuration word

containing all of the settings for the camera head DACs. The CCD logic system also sends signals

to the ADCs in the DAQ system, controlling the timing of the ADC samples of the analog CCD

output, as well as a shutter open/close signal to the shutter control system.

The sequence of events that take place in a single phase-binning exposure is shown graphically
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in Fig. 2.10. A negative-going pulse from the GPS system begins an exposure. The timing counters

in the CCD logic are reset, so that all timing during the exposure is referenced to the falling edge

of the match pulse. The CCD logic performs a fast frame erase of the CCD, removing all of the

charge on the CCD in approximately 42 ms. The CCD logic enters a wait state until an integral

number of phase bin intervals have passed since the match pulse went low. At the end of the wait

state, the shutter is opened and the exposure begins. The exposure consists of alternating integrate

and transfer states, until the match pulse goes high again. After every phase bin has been exposed

the same number of times, the exposure ends. In other words, the exposure time (time between the

shutter opening and closing) is always an integral multiple of the pulsar period, P .

Operation in the multiple frame transfer mode is identical to the operation described above, with

the number of phase bins, n, set to unity. In multiple frame transfer mode, the frame transfers all

shift charge in the same direction (down, in Fig. 2.5), unlike in phase-binning mode where there are

an equal number of frame transfers in each direction.

In addition to controlling the frame transfer options, the CCD logic system determines the

amount (if any) of pixel binning during readout. The pixel binning can be programmed to sum

any number of pixels along the serial and parallel directions (independently). This reduces both the

read noise in a given region of the CCD and the readout time, in exchange for the loss of spatial

resolution. In practice, this option is only used in the laboratory, when aligning optics or establishing

a coarse focus.

The timing of the ADC sampling is also controlled by the CCD logic system. Correlated double

sampling (CDS) is performed on the analog CCD output, in order to eliminate the reset noise in each

pixel (Janesick, 2001). The CDS is performed digitally, by taking an ADC sample after resetting

each pixel and a second sample after clocking that pixel’s accumulated charge onto the sense node

of the readout amplifier. These two samples, the reset sample and the Charge sample, are then

subtracted in software to produce a Difference signal, which is free of reset noise. The storage of

this data is described in Section 2.4. This variety of CDS, as opposed to real time CDS methods,

allows for more diagnostics of the noise properties of the CCD, by having access to the low-frequency

signals in the reset and Charge samples without differencing. The downside to performing a digital

CDS is that the read time is twice as long and the data storage requirements are twice as great.

Neither of these considerations limits the performance of this instrument.

2.3.5 Camera Head

The camera head contains three circuit boards, a power board, driver board, and signal board. The

power board has a number of DACs, allowing all of the operating voltages to be set programmably.

The driver board converts the dynamic logic signals from the CCD logic system into analog voltages,

as delivered by the power board. The signal board amplifies the analog signal from the CCD, and
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supplies sufficient current to drive a transmission line to the ADCs in the DAQ system.

A number of operating parameters in the camera head can be set via a configuration string,

delivered by the CCD logic system. The operating voltages that are delivered to the CCD are all

outputs from a set of 12-bit DACs on the power board. In addition, the waveforms sent to the

CCD are bandpass filtered by a number of resistors and capacitors that can be switched in or out

of the driver circuits. The combinations of resistors and capacitors in the circuit are also set by

the configuration string. This programmability allows for significant flexibility in optimizing the

operating parameters of the CCD.

2.3.6 CCD

The CCD used is a SITe SI-502A 512 × 512-pixel back-illuminated, antireflection coated multipinned

phase CCD. The quantum efficiency (QE) of the CCD is > 80% from 400–800 nm, and above 60%

to 900 nm. The multipinned phase (MPP) operation of the CCD involves keeping all of the parallel

phases at negative voltages when integrating, ensuring that a population of charge holes is maintained

at the surface interface, absorbing any surface dark current generated.

The small size of the CCD (12 × 12 mm, with 24 µm pixels) gives excellent charge transfer

efficiency (CTE) performance. In laboratory tests, an LED was focused on the CCD for a brief

period of time, then the charge was transferred repeatedly for a large number (106) of parallel shifts,

and the spreading of the CCD spot was measured. Uniformly poor CTE is analogous to a loss of

vertical spatial resolution, i.e., poorer seeing. The CTE measured depends on the timing of the

parallel phases causing the shifting. At a parallel shift rate of 42 µs/line shift, the CTE was in

excess of 1-10−8. For slightly faster shift rates, the CTE performance begins to degrade.

Because the CTE is so high on this chip, the charge traps are a more serious problem. To a first

approximation, small spurious charge traps will be filled during every integrate state and emptied

during every transfer state. Because the number of transfer states in an ordinary exposure is large

(103–104), the charge redistributed by small traps delivers a large signal. More importantly, this

signal grows linearly with the exposure time, as does the optically integrated signal. The treatment

of these traps is fully discussed in Section 3.1.

2.4 Software

The control software for this instrument is written in C++ in a Windows environment, making

extensive use of the Microsoft Foundation Class Library. The software provides a graphical interface

for the observer to control and monitor sequences of exposures, selecting the operating mode (binning

patterns and periods, exposure time) as well as several hardware parameters (ADC ranges, operating

temperature). Once acquired, exposures are stored in 16-bit FITS format. The control software has
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an interface with DS9, an image display program with a number of built-in image analysis features.

When an exposure is acquired, DS9 is commanded to display the current image. A sample screen

shot of the main window is shown in Fig. 2.11.

In practice, it is often important to be able to switch rapidly between exposures with no frame

transfers at all, and images with either phase binning or multiple frame transfers. The software

offers a simple check box to disable frame transfers. There is also a check box to enable and disable

pixel binning, as described in Section 2.3.4.

Great care was taken to ensure that the start time of each exposure, set by the timing of the

match pulse (see Fig. 2.3.4), is accurate. This can be difficult in a Windows environment, which

has few provisions for real time accuracy in its operation. The main complication comes from an

operating quirk in the GPS system. The GPS system operates the match pulse by matching the

current time to a 16-bit match pulse register. This 16-bit register contains a binary-coded decimal

(BCD) representation of the 10−3–10−6 s digits of the time at which the match pulse will toggle.

Because of the limited resolution of the match pulse register, if the register is filled with the desired

start time 10 ms or more before that time passes, the match pulse register will be satisfied too early.

For instance, when the match pulse register is filled with any valid entry (an entry is valid if every

4-bit digit is between 0 and 9, excluding a–f), the match pulse will toggle exactly once every 10 ms

(forming a 50 Hz square wave). Likewise, if the match pulse register is not cleared within 10 ms

after the match pulse, the match pulse will toggle again. Therefore, the match pulse must be filled

less than 10 ms before the desired match time, and cleared less than 10 ms after the desired match

time. Therefore, the software must ensure that the Windows operating system executes the proper

code during those time intervals. Note that the match pulse is the only function of the GPS system

that suffers from this limited resolution; all other timing functions are accurate to a resolution of 10

years.

The execution thread responsible for setting the match pulse registers takes on the highest priority

possible under Windows some time before the desired match time, and maintains that priority until

after the match pulse register is cleared. The software repeatedly polls the GPS system for the

current time, until the current time is less than 10 ms before the match time, sets the match time

register, continues polling for the current time until after the match pulse, and clears the match

pulse register. The sequence of current-time stamps is stored during this process, and is analyzed

after the match pulse register is cleared, to determine if there is any possibility that the match pulse

toggled at the wrong time (10 ms early, 10 ms late, or any multiple of these), and if so, terminates

the current exposure to start again later. In addition, the match pulse from the GPS system is fed

back into a time tag input to the GPS system, which the computer retrieves after the match pulse

register is cleared, to verify yet again that the match pulse toggled at the proper time. If any of

these timing diagnostics fail, the exposure is terminated. In practice, this generally happens in <
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Figure 2.11: Control software screen shot.
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1% of exposures.

Once the CCD logic system enters its Read mode (see Fig. 2.10), it remains in Read mode,

continually reading out pixels, until the match pulse signal begins the next exposure. The control

software sets the DAQ system to acquire only as many pixels as are desired, which causes the ADC

to ignore any further signals from the CCD logic system. When phase binning, every exposure ends

with just over half of the CCD containing accumulated charge (see Fig. 2.1). As such, the ADCs

generally only acquire only about half of the CCD.

The acquired data is reorganized to make a FITS file for storage. Two samples, the reset and

charge samples, are taken for every pixel (see Section 2.3.4). The Difference sample is free of reset

noise, and is a 17-bit number. The Difference samples are stored in the FITS file as 16-bit numbers

and 1-bit overflows. The FITS file that is output contains the lowest 16 bits of the Difference samples

as the primary image, and the 16-bit reset samples and 1-bit Difference overflows as image extensions.

The charge samples can be reconstructed from these images. All of the operating parameters are

stored in the FITS header.

2.5 Performance

The first step in evaluating the performance of this instrument is to set forth the priorities under

which this instrument operates. The two most important criteria for this instrument are its sensi-

tivity and time resolution. These are the features that separate this instrument from the photon

counting devices used by other groups.

The AR-coated, back-illuminated CCD we use has a quantum efficiency (QE) greater than 80%

over the visible band (compare to ∼ 10–15% efficiency for photocathodes of photon counting devices).

The transmissive optics are all AR coated as well. Unfortunately, the system has never been used

under photometric conditions, and since we are predominately interested in differential photometry

(differential in the rotational phase domain), we have not been overly concerned with absolute

calibration. The pulsar camera has been tested using a monochromator and calibrated photodiode

assembly in Robinson Lab (equipment used by the Palomar Observatory staff), with measured

system throughput in wide-field unfiltered mode of over 70%. Naturally, this number does not include

the effects of atmospheric extinction and telescope transmission. A rough estimate of the end-to-end

on-telescope throughput is 45%, from photons outside the atmosphere to detected photoelectrons.

The time resolution can, at some level, be traded for field of view in the frame transfer direction

on the CCD. The time resolution is determined by the time spent performing transfers, which takes

42 µs per line transfer. In phase binning mode, the bins are interleaved, so the number of lines in

each transfer is twice the number of lines in an individual image. Slit edge effects would overwhelm

the performance of the system if the images were less than 6 pixels high, so the minimum transfer
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Figure 2.12: Sensitivity curves. The total integration time required to reach a signal-to-noise ratio
of 10 in at least one bin, for flat pulses (solid lines) and peaked pulses (dashed lines), where all of
the flux arrives in a single phase bin. The Palomar curves assume a sky background of R = 20.5
mag/arcsec2 with 1.5 arcsec seeing, the Keck curves have R = 21.5 mag/arcsec2 and 1.0 arcsec
seeing. Compare this to Table 1.1 for known pulsars.

time is approximately 500 µs. If one were to image in 10 phase bins, and insist on a 50% integration

duty cycle (equal time integrating and transferring), the minimum pulsar period is 10 ms. This

default configuration is then not useful for observations of millisecond pulsars.

We summarize the capabilities of this instrument in two plots, the sensitivity plot and the

integration duty cycle plot. For the sensitivity plot (Fig. 2.12), we assume that the camera is being

operated in wide-field phase-binning mode, with 10 phase bins, and that detection of pulsations

requires a signal-to-noise ratio of 10 in at least one bin. We extrapolate these estimates from the

results obtained on our observing runs. We plot the time required for detection for two extremes

of the possible pulse profiles, one in which the pulse profile is essentially flat, and one where all of

the intensity arrives in a single phase bin. We also plot this for two observatories, for Palomar with

1.4 arcsec seeing and R=20.5 mag/arcsec2 sky, and for Keck with 1.0 arcsec seeing and R=21.5

mag/arcsec2 sky. Both of the pulsars observed for this thesis (at Palomar) have magnitudes ∼ 25.

It is interesting to note the powerful effect that highly peaked pulse profiles have on the de-

tectability of pulsations. For faint pulsars with highly peaked profiles, pulsations are easier to detect

than the integrated light, because the sky background is divided evenly across the phase bins even

though the pulsar intensity is not. With the Keck telescopes, it is entirely possible that currently

undetected pulsars will be detectable because their profiles concentrate the flux into a small num-

ber of phase bins, without requiring the “normal” sequence of optical counterpart identification in

pulse-averaged light followed by a search for pulsations.
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Figure 2.13: Integration duty cycle. The solid line represents a 26-pixel high image, the dotted line
a 6-pixel high image. The periods of three observed pulsars are labeled.

The integration duty cycle, shown in Fig. 2.13, shows the fraction of the total observation time

spent integrating, versus the pulsar period. Two curves are shown, for different image heights, 6

pixels (∼ 2.5–3 arcsec) and 26 pixels (∼ 10–13 arcsec). The observation time required for a given

signal-to-noise ratio is the integration time required divided by the integration duty cycle. For very

low duty cycles, smearing becomes a problem, where the light that falls on a given pixel during

transfer is comparable to the light that falls on that pixel during integration. Unless the field is very

crowded, this is a small effect until the duty cycle becomes very low, as the transfer time distributes

charge across a broad path, e.g., across 52 vertical pixels. The effect of the smeared light, as it falls

on an individual object, is related to the ratio of image height to seeing height, so for 26-pixel-high

images, this smearing is generally lower by a factor of 10. So even for the 26-pixel high images

viewing the Crab, with a duty cycle of 1/3, the effect of the smearing is small (but visible), giving

approximately 1/10 2/3
1/3 = 20% as much light as the integrated image.
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Chapter 3

Data Analysis
The objective of the data analysis routines is to manipulate a series of exposures to deliver a

background-subtracted pulse profile for every point in the field of view. It is critical that the

statistical routines be able to estimate the error in the measurements, and assess the overall confi-

dence in the absence of systematic errors. In particular, the imaging properties allow one to make

a map of pulsation amplitudes (at the pulsar period), which can alert the observer to the presence

of unexplained errors, if many points (other than the pulsars) show pulsations.

The calibration and statistical analysis routines have proven to be extremely successful, deliv-

ering Poisson-limited errors with no systematic imprints. Fig. 3.6–3.8 provide a summary of the

performance issues.

The calibration routines and statistical analysis presented here are unusual, and address the

particular requirements posed by this technique. Charge traps, which dominate the systematic

errors before calibration, cannot be calibrated out by simple dark and flat-field subtraction. The

calibration routine is an iterative self-calibration routine which, while complicated, produces good

results. We are not aware of any other treatment of image wander in a statistical analysis, which, if

improperly performed, would produce large spurious systematic signals, destroying our confidence

in the error analysis.

The treatment presented here is quite complete, but tedious. An attempt has been made to

produce the important points graphically (or diagrammatically, in the case of the blank-sky detection

algorithm).

3.1 Bias and Flat-Field Correction

The calibration routines are based on a specific model with a set of assumptions, which generally

concern the separability of the measured flux into spatially and temporally varying components.

Defining the counts (in units of electrons) measured at the CCD as C(x, t), where x = (x, y) is the

CCD-pixel location and t is an exposure index (i.e., a time variable, but not relative to the pulse

phase), then the model specifies

C(x, t)R(x) + Z(x) = S(x− xt)ηS(t) +B(t)ηB(t) + ε(x, t),

F (x, t) = C(x, t)R(x) + Z(x),

F (x, t) = S(x− xt)ηS(t) +B(t)ηB(t) + ε(x, t).

(3.1)
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Here, S(x − xt) is the source term, i.e., the flux of the objects in the field of view. The variable

xt = (xt, yt) represents the time-dependent pointing of the telescope, and enters only in the source

term. The implicit assumption here is that only the source term changes as the telescope pointing

changes, and that the seeing does not change through the observations. ηS(t) is the time-dependent

source throughput factor, which includes loss terms due to extinction. B(t) is the time-dependent

background term, which includes the sky brightness, average dark current, and average spurious

charge generation (as distinct from the charge redistributed by spurious traps). ηB(t) is the time-

dependent background throughput factor, which, in general, will vary differently than ηS(t). In

practice, it is not possible to independently determine B(t) and ηB(t). R(x) is the spatially depen-

dent response term, which includes static optical throughput variations, pixel-to-pixel QE variations,

and the effect of spurious charge traps. Z(x) is the spatially dependent zero-offset term, which in-

cludes the effect of spurious charge traps and the detector bias (even though the detector bias is

not spatially dependent). In practice, there is a degeneracy between 〈B(t)ηB(t)〉t, where 〈· · · 〉t de-

notes a temporal average, and 〈Z(x)〉x, where 〈· · · 〉x denotes a spatial average. ε(x, t) is an error

term, which includes Poisson errors, Gaussian read noise errors, and the charge due to cosmic rays.

Because the charge due to cosmic rays is positive-definite, ε(x, t) is not zero-mean. F (x, t) is the

measured flux, which a useful term when regrouping the other variables.

The goal of the calibration routines is to determine R(x), Z(x), and B(t)ηB(t). This allows

a direct estimation of S(x − xt)ηS(t), which is sufficient for our analysis, but precludes absolute

photometry of the field of view (because of the lack of knowledge of ηS). The calibration is performed

by finding regions where S(x − xt) ≈ 0, with no cosmic rays, which we call blank sky. We then

separate the spatial and temporal components of the remaining terms. The determination of regions

where S(x−xt) ≈ 0 depends on knowledge of all the other parameters, and separating the temporal

and spatial components of those regions is easiest when the complementary components are already

known, so these determinations are made iteratively. The process involves construction of several

different pixel masks, which define the regions of blank sky suitable for use in calibration.

The first step in the calibration process is to take spatial and temporal averages of the measured

flux. We define the spatially averaged flux, Fsp, as

Fsp(t) = 〈F (x, t)〉x ,
= 〈SηS〉x +BηB ,

= 〈CR〉x + 〈Z〉x ,

(3.2)

where we have dropped the arguments of each of these functions for simplicity. By dropping the 〈ε〉x
term, we have assumed that pixels containing cosmic rays have not been included in the average, and

replaced the mean value with the expected value (zero). When referring to the temporally averaged
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flux, Fte, we construct it as a zero-mean average,

Fte(x) = 〈F (x, t)〉t − 〈F (x, t)〉x,t ,

= 〈SηS〉t − 〈SηS〉x,t ,
= 〈C〉tR+ Z − 〈〈C〉tR+ Z〉x .

(3.3)

The next calibration step is to identify pixels where S(x − xt) ≈ 0, and pixels with cosmic

ray strikes. This can be done by comparing the observed flux to the sum of the averaged fluxes,

Fsp +Fte. In general, we have estimates to the “true” parameters R and Z, which we index Rj and

Zj , that lead to an estimate Fj of the true flux F . This flux estimate, relative to the true flux, is

best described by

Fj =
Rj
R

[F − Z] + Zj . (3.4)

The difference between the estimated flux and the average estimated fluxes is

Fj − (Fsp,j + Fte,j) = Rj
R [SηS − 〈SηS〉t]−

〈
Rj
R [SηS − 〈SηS〉t]

〉
x

+[
Rj
R −

〈
Rj
R

〉
x

]
[BηB − 〈BηB〉t] + ε

= Rj
R [F − 〈F 〉t]−

〈
Rj
R [F − 〈F 〉t]

〉
x
,

(3.5)

This equation need only be evaluated to an order-of-magnitude accuracy. In practice, R ≈ 1, with[〈
R2
〉
x
]1/2

/R ∼ 0.02. This makes the Rj
R −

〈
Rj
R

〉
x

term small, of the order of 10−2. If the field is not

particularly crowded, 〈SηS〉x /SηS will be of the order of the source “fill factor,” typically < 10−2.

If the telescope tracking is good and the seeing conditions are relatively stable, the only temporal

variation in S(x − xt) comes when the dither position changes, which is once every n exposures

for wide-field imaging mode, or once every 4n exposures in two-channel polarimetric mode (with 4

exposures at different half-wave plate angles for every phase offset). We define the number of dither

positions, nD,

nD =

Ntot/n in wide-field mode,

Ntot/(4n) in polarimetric mode,
(3.6)

where Ntot is the total number of exposures in an observing run. Assuming a typical two-channel

polarimetric observing run withNtot = 320 and n = 10, nD = 8. This implies that 〈SηS〉t ∼ (SηS)/8.

With these numbers, in regions where SηS & BηB/100,

Fj − (Fsp,j + Fte,j) ≈ 0.9SηS + ε. (3.7)
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Using Eq. 3.7, we can determine those regions where cosmic rays are present (ε � 0) or where

S > 0. The sensitivity of this technique to small values of ε and S depends on the noise. The easiest

way to reduce the noise is to sum over many samples, which in this case, can mean summing in time

over Ntot/nD exposures, i.e., summing over all of the exposures taken at a given dither position, as

well as summing over all n phase-binned images (which all see the same field of view). All of the

estimates of the magnitudes of the terms in Eq. 3.5 remain the same when averaging over exposures

at a single dither position and over n phase-binned images, and so Eq. 3.7 is also valid after either

form of averaging.

The ultimate goal of this calibration algorithm is not only to find blank sky regions, but also

to determine the R and Z parameters of the model as described in Eq. 3.1. Both the iterative

improvements in blank sky determination and in R and Z estimation rely on eliminating regions

with S > 0 or ε >> 0. This is done by excluding those regions when taking the spatial and temporal

averages defined in Eqs. 3.2 and 3.3. We construct a mask, MX , which is 1 in blank sky regions

and 0 in regions with cosmic rays or sources. We denote the use of this mask in an average as FXsp

or FXte . The iterative algorithm used to make masks and estimate R and Z is shown in Fig. 3.1.

The algorithm in Fig. 3.1 begins by creating masks that define Images 0–9 (see Figs. 2.1 and 2.3),

for a single polarimetric column if the data is taken in polarimetric mode. (All of the calibration

analysis is done separately on the two polarimetric columns, and only after the calibration is complete

are the two columns considered together.) These image masks have superscripts I, i where i is the

image number. The single-exposure masks (superscript 1, i) and source mask (superscript S, the

same for all images) begin with no information. The R0(x) and Z0(x) estimates are initialized to

unity and to the CCD bias, as estimated by the overscan regions of the CCD. For each image, the

calibration algorithm goes through four steps.

The first step is to create an initial mask, M0,i
j (x, t), which is a product of the appropriate image

mask, the accumulated single-exposure mask (which generally only flags cosmic rays and very bright

sources) and the accumulated source mask. In the first iteration (j = 0), this mask is identical to

the current image mask.

The second step is to use the initial mask to create the single-exposure residual, ∆1,i
j (x, t), and

a new single-exposure mask, M1,i
j (x, t). The criterion for rejection by the single-exposure mask

is that the residual must be more than five times the expected single-exposure error, σ1(t). The

single-exposure error is defined as the quadrature sum of the Poisson noise from the background

counts (as estimated by F 1,i
sp (t), see Eq. 3.2) and the read noise (which is typically negligible).

The third step is to use the new single-exposure mask to create the intra-dither residual, ∆D,i
j (x, t),

and intra-dither mask, MD,i
j (x, t). These intra-dither variables are created by summing a given im-

age over all of the exposures for which the telescope pointing, xt, is the same. For each image and

each dither position, this is a sum over either n or 4n exposures, as defined in Eq. 3.6. As such, the
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Initialize:

M I,i =

{
1, x inside Image i
0, x outside Image i

M1,i
−1 = 1

MS
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R0 = 1
Z0 = bias from overscan

j = 0

Repeat:
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∑
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Fit Fj to aFD,i
sp,j + b Fit Fj to aFD,i
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Rj+1 = Rj/a Rj+1 = Rj/a
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∆S
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Fj − FD,i
sp,j

MS
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{
1, ∆S

j ≤ 5σS
0, ∆S

j > 5σS

j = j + 1

Figure 3.1: Iterative blank-sky calibration algorithm.
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relevant error, σD(t), grows as the square root of the number of exposures summed,

σD(t) = (Ntot/nD)1/2σ1(t). (3.8)

It should be noted that the intra-dither variables change only every n or 4n exposures, i.e., ∆D,i
j (x, t) =

∆D,i
j (x, t+ 1), if t and t+ 1 do not cross a dither boundary. It is also important to recognize that a

given image samples all of the different pulsar phases in successive exposures, as well as all different

polarizations if operating in polarization mode. By combining all of the intra-dither exposures of

a given image, the assumption is that any actual pulse-phase or polarized flux variations between

these exposures is negligible at the level of σD. To the extent that this assumption is violated, this

algorithm is more likely to reject pixels with the extra variation. For sources that show a pulse-phase

variation, this is good, because the goal is to eliminate regions where S > 0. If the background is

highly polarized and the position angle changes significantly over the field of view, this will result

in the mask rejecting all of the background except that with an arbitrary position angle. A highly

polarized background with a constant position angle poses no problem, as flux changes between

exposures (when the half-wave plate rotates) are perfectly represented by Fsp(t). In principle, if a

highly differentially polarized background posed such a problem, this algorithm could be updated

to separate exposures at different position angles and sum only over exposures with similar position

angles.

The fourth step is to use the intra-dither mask to estimate the blank-sky background flux alone,

and improve the Rj and Zj estimates. The intra-dither mask, MD,i
j (x, t), represents the most

accurate estimate of the blank-sky region specific to an individual image (with time resolution equal

to the number of dither positions, nD). The blank-sky background flux is estimated over the entire

image, i.e., FD,i
sp,j(t) depends only on t. Assuming that the intrinsic background flux (i.e., top-of-the-

atmosphere flux) is uniform, any variations in Fj(x, t) in the blank-sky regions are due to errors in

the estimates of Rj(x) and Zj(x). As the background flux varies through a night of observing (as

the airmass changes, the moon rises, etc.), a large number of samples of FD,i
sp,j(t) are accumulated,

and the linear relationship with Fj(x, t) can be established at every x.

After these four steps have been completed for all n images, the image information can be

combined to form a composite mask from all of the images. This is done by mapping x into

ϑ = (ϑx, ϑy), where ϑ is angle on the sky. This simplest form of the transformation is ϑx = x,

ϑy = y − y0 mod ∆y, where y0 is the bottom of the lowest image (Image 4, see Fig. 2.1), and ∆y

is the distance between images, measured in pixels on the CCD. The source residuals and mask,

∆S
j (ϑ, t) and MS

j (ϑ, t), are formed in the same way as the other masks, summing the images with
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their appropriate intra-dither masks. The source error term is

σS(t) = n1/2σD(t). (3.9)

It would be possible to extend this technique to sum over all exposures, shifting the images by xt to

account for the telescope dither, and produce an estimate with a lower noise (σS/n
1/2
D ). In practice,

not only is this not necessary, but the lower noise levels result in rejecting large regions of the images

due to small systematic errors rather than actual source terms.

After construction of the source mask, MS
j , the iterative process is repeated, until the improve-

ment in Rj and Zj is small. At each successive iteration, the initial mask, M0,i
j incorporates the

source mask from the previous iteration, with the transformation from x to ϑ inverted for each

image. Once the process has converged, the last (i.e., most comprehensive) intra-dither mask, MD,i
j ,

is used to determine FD,i
sp,j(t) ≈ B(t)ηB(t) (see Eq. 3.2).

With good estimates of R(x), Z(x), and B(t)ηB(t), along with knowledge of the location of

cosmic rays, Eq. 3.1 allows a direct estimation of S(x, t)ηS(t). We have not yet attempted to

perform absolute photometry, which would require knowledge of ηS(t) (or verification that it is

constant). We only assume that ηS(t) does not change appreciably on the time scale of the pulse

period, or more importantly, that changes on the time scale of the pulse period are not themselves

periodic, so that by averaging over 105–106 cycles ensures that the differential photometry (between

phase-binned images) is not affected by nonphotometric observing conditions.

The last step in the image reduction is to transform the arguments of the source fluxes to variables

appropriate for analysis. This entails converting x to ϑ, accounting for the telescope dither xt, and

i (the image index). In addition, the image indices, i, are transformed into phase bin indices, p, by

applying the phase offset, ϕoff (see Eq. 2.4),

p = (i− ϕoff) mod n. (3.10)

If the images are taken in polarimetric mode, then the exposures for a given polarimetric column

are arranged with respect to the half-wave plate rotation angle, giving an index l, and the exposure

number is reordered and indexed by k,

k =

t, wide-field mode

t/4, polarimetric mode
(3.11)

l =

0, wide-field mode

t mod 4, polarimetric mode
. (3.12)
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For convenience, we define Nk to be the number of reordered exposures, Nk = nnD (see Eqs. 3.6

and 3.11). We also denote the two polarimetric columns, which were independently calibrated, by

index m (and assign m = 0 to all wide-field data). This leads to a background-subtracted source

intensity I, where we have included the throughput ηS(t),

I(ϑ, p, k, l,m) = S{x(ϑ, p, l,m), t(k, l)}ηS{t(k, l)}, (3.13)

and a background intensity I0,

I0(k, l,m) = B{t(k, l)}ηB{t(k, l)}, (3.14)

where ϑ, p, k, l, and m are the sky position, phase bin, exposure, position angle, and polarization

column varibles, respectively.

3.2 Error Estimation and Statistics of Correlated Image

Wander

The dominant noise term in the pulse profiles of any point in the field of view is Poisson noise,

due to the sky background, or due to bright individual sources. Because the number of detected

photoelectrons per pixel is large (> 103), even in blank sky regions, the Poisson distribution is well

represented by the normal distribution. The read noise (5 e− rms) is generally small compared to the

Poisson noise, and is also normally distributed. The simplest theory is that the errors are normally

distributed with variance

σ2
th = [I + I0] + σ2

RN, (3.15)

where σ2
RN is the read noise variance. For most locations, this is well approximated by σ2

th(ϑ, p, k, l,m) ≈

I0(k, l,m), i.e., the noise is background-limited.

An important step in verifying the performance of the imaging system is to examine the pulse

profiles of every point in the field of view, comparing the null hypothesis (constant flux) to the

observed variability. A significant violation of the null hypothesis, at locations away from the pulsar,

would indicate either the presence of a systematic error mimicking pulsations, or an underestimate

of the random errors.

A more realistic error estimate can be obtained by using a technique very similar to that used

in Sec. 3.1, where the measured flux was separated into spatial and temporal averages. To es-

timate errors, the calibrated, background-subtracted intensities, I(ϑ, p, k, l,m) are separated into

phase-averaged intensities, Iph, exposure-averaged intensities, Iex, and phase- and exposure-averaged
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intensities, Iph,ex,

Iph(ϑ, k, l,m) = 〈I(ϑ, p, k, l,m)〉p , (3.16)

Iex(ϑ, p, l,m) = 〈I(ϑ, p, k, l,m)〉k , (3.17)

Iph,ex(ϑ, l,m) = 〈I(ϑ, p, k, l,m)〉p,k . (3.18)

These averages are then recombined to form intensity residuals, ∆I ,

∆I = I − [(Iph − Iph,ex) + (Iex − Iph,ex)] . (3.19)

The unbiased estimate of the single-pixel variance, σ2
I,pix, is then

σ2
I,pix(ϑ, l,m) =

∑
p,k

∆2
I(ϑ, p, k, l,m)/ [nNk − (n− 1)− (Nk − 1)] . (3.20)

Implicit in Eq. 3.19 is the assumption that, for a given ϑ, l, and m, the intensity I(ϑ, p, k, l,m) is

separable into variations in phase p and exposure k, but that there is no change in the pulse profile

between exposures. There is a second-order violation of this assumption, through the variation of

ηS(t). In cases where the true pulse profile is not uniform, the measured variations from the mean

flux level will depend linearly on ηS(t), and so the variance measured by this technique will be

higher than the true “error” in the exposure-averaged pulse profile. To first order, the fact that the

estimated variance is properly mean-subtracted ensures that the estimate is correct to first order.

Because we expect that only the pulse profile of the pulsar will be variable, then this caveat means

there is a second-order overestimate of the variance at the location of the pulsar.

The variances that are of interest in the final analysis are those affecting the pulse profiles, i.e.,

the exposure-averaged intensity, 〈I〉k. The unbiased exposure-averaged variance is

σ2
〈I〉k,pix(ϑ, l,m) = σ2

I,pix(ϑ, l,m)/ (nNk) . (3.21)

In some regions, the variances, σ2
I,pix and σ2

〈I〉k,pix, contain a component due to image wander.

Image wander, due to the tip/tilt component of the seeing, will cause intensity variations wherever

the intensity has a nonzero spatial gradient. Specifically, if the image motion is ∆ϑ(ϑ, p, k, l), then

the intensity variation is

∆I = ∆ϑ ·∇I, (3.22)

where ∇ = (∂/∂ϑx, ∂/∂ϑy). While the contributions of image wander to the intensity variations

will be properly included in the intensity residuals, ∆I , these variations are likely to be correlated
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Figure 3.2: Image wander of Star 3 in field of 4U 0142+61. Image motion is measured in arcsec,
with a plate scale of 0.4 arcsec/pixel. Numbers are phase bin indices.

between phase bins. As such, the mean squared residuals do not follow a χ2 distribution.

We idealize the intensity variations from image wander by assuming that the image motion is

sinusoidal between phase bins. The specific two-dimensional distribution of the image motion is not

important, as only the component along the intensity gradient affects the measured intensity (see

Eq. 3.22). The sinusoidal aspect of the image motion is the lowest-order approximation given that

the image motion must be periodic. A plot of the measured image motion in the field of 4U 0142+61

is shown in Fig. 3.2. We also assume that the image wander is the same everywhere in the field of

view, so that the relative contribution of the image motion to the measured variance depends only

on the local intensity gradient.

To further simplify the analysis of the effects of image wander, we assume that the amplitude,

a0, of the image motion is the same in all exposures, but that the phase of the sinusoid that defines

the actual ∆ϑ observed in an exposure is random (i.e., uncorrelated between successive exposures).

When the image wander is averaged over all exposures (Nk exposures), the average image wander

will still be sinusoidal, but with a reduced amplitude, a. If the number of exposures over which the

image motion is averaged is large, the probability density function of the squared amplitude, pa2(a2)

is exponential,

pa2(a2) = Nk/a
2
0e
−a2Nk/a

2
0 . (3.23)

This is most easily seen by performing the average in Fourier phase-bin space, where the the image

motion in an exposure is always at the same frequency (1 cycle per n phase bins), with modulus
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a0, and a random phase (and its Hermitian duplicate). Averaging a large number, Nk, of these

components is an example of the classic random walk problem, resulting in an average squared

modulus of a2
0/Nk. The important issue is that these errors are non-normal, i.e., the squared

modulus does not follow a χ2 distribution.

We separate the errors into errors with a Gaussian distribution, g, and sinusoidal errors, s. The

definition of the measured residuals in Eq. 3.5 ensures that only errors that are uncorrelated between

bins and the sinusoidal (zero-mean) errors need to be considered. The errors in the exposure-averaged

intensity, Iex(ϑ, p, l,m), at a given (ϑ, l,m), are then

ε(p) = g(p) + s(p), (3.24)

s(p) = a sin(2πp/n− ϕ0), (3.25)

pg(g) = N(0, σ2
g), (3.26)

pa2(a2) = 1/a2
m e−a

2/a2
m , (3.27)

where a is the amplitude of the intensity variations in Eq. 3.22 (not simply the amplitude of the

image motion), ϕ0 is a random phase offset (which we take to be zero), pg(g) is the probability

density function of g, N(0, σ2
g) is the normal distribution with variance σ2

g , pa2(a2) is the probability

density function of a2, and a2
m is the mean a2. The pulse residuals will then be

ε2
pulse =

∑
p

[ε(p)− ε]2 ,

=
∑
p

[g(p)− g]2 + 2
∑
p

[g(p)− g] p(g)−
∑
p

[p(g)]2 ,

=
∑
p

[g(p)− g]2 + 2
∑
p

[g(p)− g] p(g)− a2/2.

(3.28)

The first term, divided by σ2
g , is

∑
[g − g]2 /σ2

g , which is distributed as χ2 with 9 degrees of freedom.

The second term, 2
∑

[g − g] p, is the product of two uncorrelated, zero-mean variates. This term

is small, and will be considered as a correction after accounting for the first and third terms. The

third term, a2/2, is distributed exponentially.

The distribution of a sum of a χ2-distributed variable and an exponentially distributed variable

can be analytically determined. Neglecting the second term in Eq. 3.28, we define the pulse residuals

normalized to σ2
g , ε2

g, and a normalization parameter, b, as

ε2
g = ε2

pulse,1,3/σ
2
g , (3.29)

b = 1/2− σ2
g/(a

2
m/2). (3.30)
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The probability density function of ε2
g is then,

pε2g (ε2
g) = (1/2− b) e−ε2/2/16 b4

 ebε
2
erf[(bε2)1/2]/(2b)1/2−[

105 + 70bε2 + 28(bε2)2 + 8(bε2)3
]

(2ε2)1/2/105π1/2

 ,

(3.31)

where erf[· · · ] is the error function, and the subscript on ε2
g was dropped on the right-hand side of

the equation. In the limit of a2
m → 0 (i.e., b→ −∞), pε2(ε2) reduces to χ2 with 9 degrees of freedom.

Eq. 3.31 is valid for all values of b (including when b→ 0), understanding that erf[(bε2)1/2]/(2b)1/2

becomes erfi[(−bε2)1/2]/(−2b)1/2 when b < 0, where erfi is the imaginary error function.

The normalization of εg is convenient from the standpoint of writing Eq. 3.31, but does not

directly correspond to a measured quantity. We have a measurement of σ2
〈I〉k,pix (Eq. 3.21), which

encompasses both of the idealized error sources (Eq. 3.24). To normalize ε to the measured variance,

we introduce a variance ration r, and a scaling factor f , to arrive at the probability density function

of the pulse residuals normalized to the measured variance ε2
meas,

r = σ2
g/(a

2
m/2), (3.32)

f = 1 + (a2
m/2)/(9σ2

g), (3.33)

ε2
meas = fε2

g, (3.34)

pε2meas
(ε2

meas) = fpε2g(ε
2
meas). (3.35)

Plots of pε2meas
(ε2

meas), for several values of f (and therefore b), appear in Fig. 3.3. The most

notable feature of Fig. 3.3 is the increase in the high-end tail of the distribution for small values of

r. This implies that a few of the regions of the image with large intensity gradients will show very

large residuals.

All of the analytic expressions describing the distribution of pulse residuals have ignored the

cross term in Eq. 3.28, which we claimed was small. To evaluate the effect of this cross term, we

make a simple assumption, that the resulting probability distribution is a member of the family

of distributions described by Eq. 3.31, with a different value of b. We define r2(r), the effective

ratio r (which also defines b) that describes the full probability distribution incorporating the cross

term. This effective ratio is determined by constructing a frequency distribution of pulse residuals

for each true ratio r using a Monte-Carlo routine, comparing the frequency distributions to the

distributions defined by Eq. 3.31, and defining r2(r) as the ratio input into Eq. 3.31 that best

matches the Monte-Carlo frequency distribution. In the course of comparing Monte-Carlo frequency

distributions to Eq. 3.31, we also define rmin and rmax, the minimum and maximum r for which

the frequency distributions differ significantly from the limiting distributions. For r < rmin, the
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Figure 3.3: Probability distribution function of image wander. Identifying the curves by their peak
positions, from left to right, are values of r = 0, 0.01, 0.03, 0.1, and ∞. r = 0 is an exponential
distribution, and r =∞ is a χ2 distribution with 9 degrees of freedom. The important point is that
all of the distributions have larger tails in the high error ranges than the χ2 distribution, i.e., there
will be more outliers under these distributions.

exponential distribution (r = 0) is applicable, and for r > rmax, the χ2 distribution (r = ∞) is

applicable. A plot of r2(r) is shown in Fig. 3.4. As predicted, the effect of the cross term is small,

varying r2 by a factor of 3 over 3 orders of magnitude in r.

To apply this probability distribution to the measured pulse residuals, the correct value of r for

a given point (ϑ, l,m) must be determined, with which a value of r2(r) is calculated and fed into

Eq. 3.31. Knowing I0(ϑ, p, k, l,m) from Eq. 3.14, we estimate the Gaussian variance σ2
g(ϑ, l,m) by

averaging over k and p and assuming that the errors are Poissonian. We also calculate the intensity

gradient (Eq. 3.22) at each point. We then fit a global amplitude conversion factor α to the equation

σ2
〈I〉k,pix(ϑ, l,m) = σ2

g(ϑ, l,m) + α|∇ 〈I〉k (ϑ, l,m)|. (3.36)

Using Eq. 3.28, we now set

a2
m(ϑ, l,m) = 2α|∇ 〈I〉k (ϑ, l,m)|. (3.37)

We now have all the components necessary to compare the measured pulse residuals with the

distribution we expect in the absence of pulsations. The best visual metric for determining whether

the errors have been realistically calculated is to plot a histogram of the cumulative probability
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Figure 3.4: Scaling correction from pulse residual cross term. r is the variance ratio defined by
Eq. 3.32, and r2(r) is the parameter that, when used in Eq. 3.31, best matches a Monte-Carlo
frequency distribution calculated using r. The line marked rmin denotes the r for which the best-
fitting probability distribution is exponential. The line marked rmax denotes the r for which the
best-fitting probability distribution is χ2.

distribution Pε2meas
(ε2

meas),

Pε2meas
(ε2

meas) =
∫ ε2meas

0

pε2meas
(ε2)dε2. (3.38)

If the errors have been properly calculated, a histogram of the cumulative probability distribution will

be uniform. We compare the histograms of the cumulative probability distributions of the measured

errors assuming the population distribution is a χ2 with 9 degrees of freedom, Pχ2(ε2
meas), in Fig. 3.5,

to that assuming the probability distribution is as calculated in Eq. 3.38, Pε2meas
(ε2

meas), in Fig. 3.6.

As can be seen in Fig. 3.5, the simple χ2 interpretation of the errors leads to an overidentification

of regions of large variability. Looking at the 0.999–1.000 bin of Fig. 3.5, we would identify roughly

20 pulsars, expecting 2.7 of those to be spurious identifications. Looking at Fig. 3.6, on the other

hand, we identify 2 pulsars, expecting 2.7 of these to be spurious. The difference between Fig. 3.5

and Fig. 3.6 is a graphical representation of how the differences in the tails of the distributions in

Fig. 3.3 result in large differences in the interpretation of the residuals.

For identification of the regions of largest variation (i.e., the real pulsar), the histogram ceases

to be the most efficient means of identifying the variations. A variability image of the field of

4U 0142+61 is shown in Fig. 3.7, where the two pixels that form the 0.999–1.000 bin of Fig. 3.6 are

readily identifiable. The cumulative probability at the location of 4U 0142+61 is 1− 6× 10−5, and

the cumulative probability at the peak 2 arcsec E of star 3 is 1− 1.2× 10−4. The probability that,
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Figure 3.5: Histogram of cumulative probability distribution of errors, assuming a χ2 distribution
with 9 degrees of freedom. Data is taken from field of 4U 0142+61. Left and right panels differ only
in the x-axis range, and in the bin size. The left panel has bin sizes of 0.01, the right panel 0.001. The
dotted line denotes the level expected from a uniform histogram. There is a large overpopulation at
high values of ε2

meas.
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Figure 3.6: Histogram of cumulative probability distribution of errors, assuming a Pε2meas
distribution,

as defined in Eq. 3.38. Data is taken from field of 4U 0142+61. Left and right panels differ only in
the x-axis range, and in the bin size. The left panel has bin sizes of 0.01, the right panel 0.001. The
dotted line denotes the level expected from a uniform histogram. The histogram is very uniform at
all scales. The range of N in both panels is the same as in Fig. 3.5.
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Figure 3.7: Map of cumulative probability of pulse residuals. The top and middle panels are di-
rect images of the field of 4U 0142+61, with logarithmic (top) and linear (middle) stretch. The
numbering of stars comes from Reid et al. (1980) Coe and Pightling (1998), and Hulleman et al.
(2000a). 4U 0142+61 is star A. The bottom panel is Pε2meas

(ε2
meas) for each point, displayed loga-

rithmically, where dark is a high cumulative probability. The cumulative probability at the location
of 4U 0142+61 is 1− 6× 10−5. The signal-to-noise ratio at Star 3 (the brightest region in this field)
is over 150 per phase bin.

given 2720 samples (the number of pixels in Fig. 3.7), at least one pixel will have a value of P greater

than 1−1.2×10−4, the value of P at the spurious peak, is 28%. This is in excellent agreement with

the hypothesis that at every point in the field except at 4U 0142+61, the residuals are distributed

according to Eq. 3.31, with no spurious systematic measured variability. The signal-to-noise ratio at

the brightest star in the field is over 150 per phase bin, with no measurable systematic fluctuations

between phase bins.

As a last analysis of the errors present in the data reduction, we examine the relationship between

the measured errors and the errors predicted from first principles. Because the variance due to image

wander was globally fit to compensate for the level of measured errors, we do not consider the variance

due to image wander when analyzing the error from first principles. Assuming that the background

intensity, I0, has only Poissonian errors, we compare ε2
meas directly to I0 in Fig. 3.8, assuming that

σ2
g = 〈I0〉k (this neglects read noise, for instance). The blank sky regions of the image will have no

image wander variance (because the intensity gradients are zero), and so we see a floor to the plot of

ε2
meas/σ

2
g at a ratio of unity, i.e., the errors are Poissonian. The large values of this ratio are due to

regions where the image wander adds to the variance. For comparison, Fig. 3.8 also shows the ratio
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Figure 3.8: Ratio of measured errors to predicted errors. The top panel shows the ratio of measured
errors to Poissonian errors, where σ2

g = 〈I0〉k, the Poisson errors in the background. The bottom
panel shows the ratio of measured errors to errors modeled in Eq. 3.28, including the image wander
variance. In each plot, the ratios are plotted for cuts along ϑx, at each value of ϑy in the field of
view.

of measured errors to modeled errors, i.e., ε2
meas/(σ2

g + a2
m/2) (see Eq. 3.28), where we ignore the

cross term. The inclusion of the image wander variance makes the ratio of measured to predicted

errors very nearly uniform.

It has not been demonstrated that this model of image wander is the correct explanation for the

measured variance. The appeal of this explanation is that it is a single-parameter model, which fits

only the global amplitude conversion factor α (see Eq. 3.36) to the entire dataset, giving a resulting

distribution of expected variances that matches the measured variances quite well. The image

wander, as described in this section, must be a factor at some level, although the assumption that the

wander is well-described by a single sinusoidal term (rather than a sum of Fourier components) will

be violated for long-period pulsars (in which the image wander becomes less correlated between bins).

In addition, the measured variance shows a pattern which closely matches the intensity gradient,

showing a “donut” with a minimum at the center of each bright object (where the intensity gradient

passes through zero). However, the temporal components of the image wander can be exploited

in a simple experiement, where exposures are taken with different pulsar periods, in which the

image wander variance (as defined by the global amplitude conversion factor α) should reflect the

truncation of the atmospheric tip-tilt power spectrum at different frequencies. This experiment

has not yet been done, and should provide clearer evidence for or against the interpretation of the

variance presented in this section.
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3.3 Statistics of Polarization

When polarization is measured with low signal-to-noise ratios, systematic biases can greatly affect

the measurements. The linearly polarized flux, L, is computed from the Stokes parameters Q and

U by

L =
(
Q2 + U2

)1/2
. (3.39)

Because L is positive-definite, when Q and U are both near zero, noise in Q and U results in a

systematic overestimate of L.

To conform with the traditional labeling of Stokes parameters, we use I in this Section in reference

to the Stokes I parameter, which can be understood as IStokes = 2 〈I(ϑ, p, k, l,m)〉k,l,m, where we

will not use the subscript on IStokes further. To facilitate the labeling in equations in this section,

we define S0, S45, S90, and S135 with a different (although related) definition than the S defined in

Eq. 3.1. We define these S variables as

S0(ϑ, p) = [〈I(ϑ, p, k, 0, 0)〉k + 〈I(ϑ, p, k, 2, 1〉] /2, (3.40)

S45(ϑ, p) = [〈I(ϑ, p, k, 1, 0)〉k + 〈I(ϑ, p, k, 3, 1〉] /2, (3.41)

S90(ϑ, p) = [〈I(ϑ, p, k, 2, 0)〉k + 〈I(ϑ, p, k, 0, 1〉] /2, (3.42)

S135(ϑ, p) = [〈I(ϑ, p, k, 3, 0)〉k + 〈I(ϑ, p, k, 1, 1〉] /2. (3.43)

In all of the polarization analysis, we will deal only with averages over exposures k. See Eq. 3.12 for a

definition of the l variable. The variation in the l variable denotes observations taken at different half-

wave plate angles, which defines different polarization position angles of the observations. Because

two orthogonal polarizations are sampled simultaneously (the two-channel operation, see Fig. 2.4),

the m = 0 images at a half-wave plate angle of 0◦ (part of S0) sample the same polarization as

the m = 1 images at a half-wave plate angle of 45◦ (also part of S0). Recall that the polarization

position angle is rotated by twice the half-wave plate angle.

The Stokes parameters I, Q, and U are determined from the S variables, and L is determined

from Q and U by Eq. 3.39

Q̂(ϑ, p) = S0(ϑ, p)− S90(ϑ, p), (3.44)

Û(ϑ, p) = S45(ϑ, p)− S135(ϑ, p), (3.45) Q

U

 =

 cos 2φ sin 2φ

− sin 2φ cos 2φ

 Q̂

Û

 , (3.46)

I(ϑ, p) = [S0(ϑ, p) + S90(ϑ, p) + S45(ϑ, p) + S135(ϑ, p)] /2, (3.47)
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where φ is the angle between the 0◦ instrument polarization axis and N on the sky, which is generally

constant throughout an observing run. Q̂ and Û are Stokes parameters defined only along the

instrument polarization axes, while Q and U are defined on the sky. The arguments of Q(ϑ, p) and

U(ϑ, p) were dropped in Eq. 3.46. Note that all of the Stokes parameters used here (including L)

are not normalized to the total intensity I, but rather all of them are in units of intensity.

We will assume that the errors in Q and U are uncorrelated and Gaussian, with equal variance,

σ2
Q,

σ2
Q(ϑ) =

〈
σ2
〈I〉k,pix(ϑ, l,m)

〉
l,m

(3.48)

with σ2
〈i〉k,pix as defined in Eq. 3.21. The statistical distribution of measured L values follows a

Rice distribution, which has important deviations from the simple (Gaussian) approximation when

L ∼ σQ.

An excellent overview of the statistics of L is given in Simmons and Stewart (1985), of which

we summarize what is important to this analysis. In discussing the probability distributions, we

normalize L to σQ, to give

Ln(ϑ, p) = L(ϑ, p)/σQ(ϑ), (3.49)

and define the true, normalized linearly polarized flux L0 (and the associated unnormalized true

linearly polarized flux Ltrue = L0σQ). The Rice distribution gives a probability density function of

pLn(Ln|L0) = Lne
−(L2

nL
2
0)/2I0(LnL0), (3.50)

where I0 is a modified Bessel function of zero order (of the first kind), not to be confused with the

background intensity (also I0) defined earlier. Given an L0, the estimated Ln is

E(Ln) =
∫ ∞

0

L′pLn(L′|L0)dL′. (3.51)

The bias, E(Ln) − L0, is shown in Fig. 3.9. This bias is large for small values of L0 (i.e., low

signal-to-noise measurements).

We use a Wardle-Kronberg estimator (Wardle and Kronberg, 1974), which is also described in

Simmons and Stewart (1985), to reduce the bias. The Wardle-Kronberg estimator, LW, is defined

as the L0 which satisfies the equation

∂pLn(L′|LW)/∂L′|L′=Ln
= 0, (3.52)

i.e., LW is the value of L0 for which the observed Ln maximizes pLn(Ln|L0). The bias in the
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Figure 3.9: Bias in polarization estimators. The X in LX denotes the estimator used. The zero-order
estimator is labeled Ln (the upper curve), the Wardle-Kronberg estimator is labeled LW.

Wardle-Kronberg estimator is also shown in Fig. 3.9.

The Wardle-Kronberg estimator is not without bias, but it does reduce the bias significantly. It

is easy to show, in fact, that it is impossible to create an estimator (which is continuous with respect

to Ln) that is without bias near L0 = 0. This can be seen by taking the derivative of E(LX) − L0

with respect to L0. If the bias is zero at L0 = 0 and remains zero for L0 = δ > 0, then

∂ [E(LX)− L0] /∂L0 = 0, (3.53)

for some estimator LX . However, at L0 = 0,

∂E(LX)/∂L0|L0=0 = ∂/∂L0

[∫∞
0
LXL

′e−(L′2+L2
0)/2I0(L′L0)dL′

]∣∣∣
L0=0

=
∫∞

0
LXL

′e−(L′2+L2
0)/2 [−L0I0(L′L0) + L′I1(L′L0)] dL′

∣∣∣
L0=0

=
∫∞

0
LXL

′e−(L′2+L2
0)/2 [0I0(L′L0) + L′0] dL′

= 0

. (3.54)

To interchange the partial derivative and integration operators, it is sufficient that LX(Ln) be

continuous. Therefore, ∂ [E(LX)− L0] /∂L0 = 1, and so no estimator can be unbiased at more than

one point near L0 = 0. The choice of the Wardle-Kronberg estimator over other estimators, such as

a maximum likelihood (ML) estimator, is specific to our desire to reduce the bias for moderately low

signal-to-noise ratios. As discussed in Simmons and Stewart (1985), the ML estimator performs best

at extremely low signal-to-noise ratios, Ln < 1, but we are less interested in those values, as they
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Figure 3.10: Confidence bands for polarized flux. The bands, from darkest to lightest, are the 1-, 2-,
and 3-σ confidence bands. The line in the middle of the 1-σ band is the Wardle-Kronberg estimator;
at every L0, this is the Ln which maximizes pLn(Ln|L0), as defined by Eq. 3.52.

are of the least significance. We are interested in the values with marginal significance, 1 < Ln < 4,

where the Wardle-Kronberg estimator suffers less bias than the ML estimator.

Confidence intervals for L0 can be generated from the probability density functions in Eq. 3.50.

Given a confidence level, α, for every value of L0, we define an interval of Ln between the confidence

limits Lα0 and Lα1 , such that

α =
∫ Lα1

Lα0

pLn(L′|L0)dL′. (3.55)

For a given value of α, the confidence limits Lα0 and Lα1 are not uniquely specified. We arbitrarily

choose to define Lα0 and Lα1 as the limits that give a minimum-length interval (i.e., minimize

Lα0 − Lα1), satisfying Eq. 3.55. This is equivalent to insisting that pLn(Lα0 |L0) = pLn(Lα1 |L0).

The set of these intervals, for all values of L0, define a confidence band, shown in Fig. 3.10. Given a

measured value of Ln, a confidence interval for L0 can be found by the intersection of the boundary

of the appropriate confidence band with a line at the measured Ln. The value of L0 at which

Lα1(L0) = Ln becomes L0,lo, and the value of L0 at which Lα0(L0) = Ln becomes L0,hi. The

confidence interval of L0 is then [L0,lo, L0,hi]. In addition, Fig. 3.10 gives a graphical representation

of the Wardle-Kronberg estimator, which gives the estimated L0 for a measured Ln. Fig. 3.10 is

constructed vertically, by solving for properties of Ln at a fixed L0, but is read horizontally, by

specifying Ln and finding the values of L0 that correspond to the estimator and confidence limits.

It should be noted that the confidence intervals as defined here are not unbiased intervals. For
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a given L0,true, the true value of L0, there exists another L0 which satisfies

P [L0 ∈ C(Ln)|L0,true] > α, (3.56)

where C(Ln) = [L0,lo(Ln), L0,hi(Ln)] is the confidence interval for a sampled Ln, and P [· · · ] is the

probability, as determined over a random sampling of Ln. The fact that these intervals are biased

implies that they are not Uniformly Most Accurate (UMA) intervals. The bias in the intervals,

however, is not as serious as the bias in the estimators of L0. We do not attempt to reduce the bias

in the confidence intervals.

All of the issues discussed here, concerning the bias in the estimators and the accurate analysis

of confidence intervals when the errors are non-Gaussian, are of importance only when the signal-

to-noise ratio is low. In the presence of low signal-to-noise ratios, a more important question is the

significance of the measurements themselves, relative to a null hypothesis. At a given point in the

field of view, we have 10 (we assume n = 10) phase-binned sets of Stokes parameters. The significance

of individual nonzero values in these bins can be determined using a χ2 test, χ2 =
∑

p L
2
n(ϑ, p),

distributed as χ2 with 20 degrees of freedom. The 20 degrees of freedom from 10 samples are due to

Eq. 3.39, where the null hypothesis is that both Q and U are zero, with Gaussian errors of variance

σ2
Q.

The χ2 test, as applied here, is designed to test independent, identically distributed Gaussian

variates against a null hypothesis. However, the measures of L(ϑ, p) are not independent, as they

form a periodic time series. Because the ordering of the samples has an intrinsic meaning, the χ2

test is not sufficient to test for the randomness of L. The most robust technique to test this variety

of time series for a random ordering is a non-parametric serial correlation test, as described by Wald

and Wolfowitz (1943). This technique defines a serial correlation statistic R =
9∑
p=0

L(ϑ, p)L(ϑ, p+1),

where L(ϑ, 10) is replaced by L(ϑ, 0), because L is periodic. The test involves calculating R for

every permutation of the phase bin indices. We define an index permutation function pi(j), where

for each i, pi(j) takes on values of 0–9 for values of the index j between 0 and 9, with a different

permutation for every i. For notational simplicity, we define p0(j) = j, so that when i = 0, we

recover the true ordering. In all, there are 10! values of i, representing all of the permutations of the

10 phase bins. A frequency distribution is the formed from the set of values of Ri, defined by

Ri =
9∑
j=0

L(ϑ, pi(j))L(ϑ, pi(j + 1), (3.57)

where pi(10) is replaced by pi(0). We form a cumulative probability distribution, PR(R), by in-

tegrating the frequency distribution, and base our test on the value of PR(R0). We are able to

perform this test exactly, without approximations to the permutations, for n (number of phase bins)
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up to 10, which involves 10! permutations, or 4 × 106 values of Ri. This is within the comfortable

limits of current computational power, but increasing n to 20, for instance, would preclude the direct

computation of each permutations.

The Wald-Wolfowitz serial correlation test is a non-parametric test. This means that the test is

not based on any assumptions about the distributions underlying the observed numbers. With no

assumptions of normality or measurements of variance, the test is free of many potential systematic

errors. The serial correlation, as defined by Eq. 3.57, is a measure of the tendency for values of L

to be correlated between neighboring phase bins. The relationship between values of Ri calculated

under different permutations shows how randomized samples (where only the ordering in time is

random) would behave, and so the size of R0 with respect to the set of Ri is a measure of the

randomness of the observed ordering.

The combination of χ2 and the Wald-Wolfowitz serial correlation tests assess both the randomness

of the size of the samples and the randomness of the ordering of the samples in time. The results of

these two tests give a true measure of the significance of a given sample set.

3.4 Statistics of Pulsed Fraction

Pulsation amplitudes in time series are commonly measured in one of two ways, using order statistics,

i.e., finding maxima and minima, or by fitting some function (usually sinusoidal) to the data. Each

of these measurement techniques has associated systematic problems. Fitting the time series to a

sinusoid tests only pulsations at a particular harmonic frequency. When the duty cycle of a pulse

profile is low (for instance, if in 10 phase bins the intensity is constant for 9 bins and doubles in

the 10th bin), the Fourier amplitudes are distributed over many harmonics, and the measurement

of any one harmonic frequency will not adequately represent the pulsation amplitude. The proper

treatment of order statistics, on the other hand, also involves assumptions about the true underlying

pulse profile (i.e., the profile in the absence of measurement noise). We choose to define pulsation

amplitudes by the maximum and minimum of the pulse profile, defining a pulsed fraction h by

h =
Imax − Imin

Imax + Imin
, (3.58)

where the maximum and minimum are taken over all p for a given ϑ.

Measurement of h, as defined in Eq. 3.58, is tied intimately with the full treatment given in

Section 3.2, where the intent was to determine the significance of pulsations. Here, on the other

hand, we are interested in developing an estimator of and confidence intervals for h, rather than the

test of significance of the pulsations. To evaluate the distribution of errors in h, we need to make

some distinction between the errors and the estimate of the underlying pulse profile. In testing
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the null hypothesis, the assumption is that the pulse profile is uniform, and that all deviations

from uniformity are due to sampling error. In this case, the probability distributions involve no

assumptions, because the intensities across all phase bins are identically distributed, and so the

ordered intensity values are distributed according to the Beta distribution of the first kind. When

evaluating h, however, when h 6= 0, the assumption is that the mean of the probability distribution

varies across the phase bins.

The measured intensity in each phase bin is the best estimate of the mean of the intensity

distribution in that phase bin (at least in normal and Poissonian distributions, which are the only

distributions we consider for intensity distributions). However, using the measured intensities as

the estimators of the true intensities introduces a bias. Any noise in the measurements will tend

to increase the extrema of the pulse profile, resulting in an overestimate of h. A straightforward

example of the bias is seen if the true pulse profile is in a low (uniform) state for 5 phase bins, and

in a high (also uniform) state for the remaining 5 phase bins, i.e., the pulse profile is a step function

with duty cycle 1/2. In this case, it is intuitive, and simple to show, that sampling noise leads to an

increase in E(h), the expectation of the measured pulsed fraction.

The approach we take is to assume that the measured intensities across phase bins represent the

best estimates of the relative deviations from a uniform pulse profile, but that the amplitude of the

deviations, as measured by h, is unknown. This is equivalent to stating that the shape of the pulse

profile is defined by the measured intensities, but not assuming that h is estimated directly from

the measured extrema in Eq. 3.58. Taking the true pulsed fraction, h0, to be variable, for each h0,

given the assumed true pulse profile shape, it is straightforward to compute the probability density

function of measured pulsed fractions, hmeas, assuming that the measured intensities have either

normal or Poissonian distributions. From these probability density functions, Wardle-Kronberg

estimators, maximum likelihood (ML) estimators, and confidence bands can be generated by the

same techniques as in Section 3.3. Fig. 3.11 shows the confidence bands and estimators for the

pulsed fraction of the optical light from 4U 0142+61, as described in Chapter 4. In Chapter 4, we

use the maximum likelihood estimator, hML(hmeas), defined by

∂ph(hmeas|h0)/∂h0|h0=hML
= 0. (3.59)

This definition is similar to the Wardle-Kronberg estimator in Eq. 3.52, except the maximization

is performed over values of h0, rather than over the measured quantities. In practice, the Wardle-

Kronberg and ML estimators are indistinguishable, giving results that differ by less than 0.01 when

applied to the data in Fig. 3.11. We therefore consider them to be interchangeable for these purposes,

and we use the ML estimator in the paper presented in Chapter 4 simply because it requires less

explanation.
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Figure 3.11: Confidence bands and estimators for pulsed fraction. The bands, from darkest to
lightest, are the 1-, 2-, and 3-σ confidence bands. The line in the middle of the 1-σ band is the Wardle-
Kronberg estimator; at every h0, this is the h which maximizes ph(h|h0), similar to the definition in
Eq. 3.52. The maximum likelihood (ML) estimator is indistinguishable from the Wardle-Kronberg
estimator in this case. The noise in the lines reflects the precision of the Monte-Carlo routines used
to generate the probability density functions.

The estimators and confidence bands shown in Fig. 3.11 are specific to the dataset used, i.e., the

measured pulse profile of 4U 0142+61. For every measured pulse profile and error estimates on the

individual intensity measurements, there is a new assumption regarding the true pulse shape. This

is in contrast to the data in Fig. 3.10, which applies to any polarization measurements (properly

normalized, with normally distributed errors).

For completeness, we also show the bias of the ML estimator in Fig. 3.12. The bias of the näıve

estimator, h = hmeas, is also shown. For the dataset used in this analysis, hmeas = 29.3%, giving

hML = 26.9%, with 1-σ confidence limits of 21.4% and 35.3%. Assuming that the true pulsed fraction

h0 = 27%, the remaining bias due to the ML estimator is 0.2%, while the bias due to the zero-order

estimator would have been 2.8%. The residual bias, 0.2%, is insignificant compared to the size of

the confidence interval, and so we feel no need to improve on the estimator.

The technique we have chosen to use to estimate the pulsed fraction and its confidence intervals,

while relatively straightforward computationally, relies on a very specific assumption regarding the

underlying pulse profiles. We feel that these assumptions are reasonable, however, they must be

carefully sized up relative to other techniques of measurement for similar properties. The specifics

of this technique become important, as with other statistical techniques, when the signal-to-noise

ratio is low. This is the case for the 0.5–1.0 keV X-ray pulse profile of 4U 0142+61, as described in

Chapter 4.
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Figure 3.12: Bias in pulsed estimators. The X in hX denotes the estimator used. The zero-order
estimator is labeled hmeas (the upper curve), the Maximum Likelihood (ML) estimator is labeled
hML.
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Chapter 4

4U 0142+61
This paper was accepted by Nature, for publication on 2002 May 30. The paper is included here

in its original form, with the exception of the bibliographic references, numbering, and figure font

sizes. Because I lack both the prior knowledge and the willpower to overcome the formidable LATEX

issues associated with maintaining separate referencing styles in different sections of this thesis,

the citations in this chapter are in (Author, year) format, and the bibliography for this paper is

merged with the overall thesis bibliography. The numbering of equations and figures conforms to

the numbering scheme of the thesis. The font in the figures appears large, because the figures were

generated with the understanding that the figures would be printed in two-column format, but here

they appear in single-column format.

4.1 Nature paper on 4U 0142+61

Optical pulsations from the

anomalous X-ray pulsar

4U0142+61

B. Kern & C. Martin

Division of Physics, Mathematics, and Astronomy, California Institute of Technology, MS 405-47,

Pasadena, California 91125, USA

Anomalous X-ray pulsars (Mereghetti, 2001) (AXPs) differ from ordinary radio

pulsars in that their X-ray luminosity is orders of magnitude greater than their rate of

rotational energy loss, and so they require an additional energy source. One possibility

is that AXPs are highly magnetized neutron stars (Duncan and Thompson, 1992)—or

‘magnetars’—having surface magnetic fields greater than 1014 G. This would make them
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similar to the soft γ-ray repeaters (SGRs) (Kouveliotou et al., 1998), but alternative

models that do not require extreme magnetic fields also exist. An optical counterpart

to the AXP 4U 0142+61 was recently discovered (Hulleman et al., 2000a), consistent

with emission from a magnetar, but also from a magnetized hot white dwarf (Paczyński,

1990), or an accreting isolated (Wilson et al., 1999) neutron star (Marsden et al., 2001).

Here we report the detection of optical pulsations from 4U 0142+61. The pulsed

fraction of optical light (27 percent) is five to ten times greater than that of soft X-

rays, from which we conclude that 4U 0142+61 is a magnetar. Although this establishes

a direct relationship between AXPs and the soft γ-ray repeaters, the evolutionary

connection between AXPs, SGRs and radio pulsars remains controversial.

We observed the field around the faint (R = 25) optical counterpart proposed by Hulleman

et al. (2000a) for the 8.7-second Anomalous X-ray Pulsar (AXP) 4U 0142+61 (Figure 4.1) on 15–

16 November 2001 at the Palomar Observatory Hale 5-m telescope, using a novel phase-binning

CCD. The average seeing was 1.4 arcsec, in non-photometric conditions. The light curves of every

point in the field-of-view (200 × 10.4 arcsec) are binned on-chip into 10 phase bins. The imaging

properties of this technique allow us to ensure that the observed time variability of 4U 0142+61

is not instrumental in origin. In Figure 4.2 we show that the variability (at the X-ray period of

4U 0142+61) everywhere but the optical counterpart is consistent with the noise. The light curve

of 4U 0142+61 is shown in Figure 4.3.

The remarkable aspect of the optical light curve is that its modulation amplitude is very large

compared to that of the X-ray light curves. We define pulsed fraction h as

h =
Fmax − Fmin

Fmax + Fmin
, (4.1)

where Fmax and Fmin are the maximum and minimum flux in any phase bin. We use a maximum

likelihood estimator for h to reduce the systematic bias caused by random errors. We find hopt =

27+8
−6% (1-σ errors), with a probability of spurious detection of 6×10−5 (one-tailed). Due to the finite

temporal resolution of the optical data, this estimate is a lower limit to the true pulsed fraction.

The X-ray spectrum of 4U 0142+61 is generally interpreted as an absorbed sum of power-law

and blackbody components (White et al., 1996), with a power-law index ∼ 3.7 and temperature

0.4 keV. With this ultrasoft power-law index, the observed luminosity, corrected for absorption, is

dominated by soft X-rays. Between 0.5–10.0 keV, the 0.5–1.0, 1.0–2.0, and 2.0–10.0 keV X-rays

provide 65%, 25%, and 10% of the unabsorbed flux. To compare the optical and soft X-ray pulse

profiles, we use archival Chandra ACIS-S data (Figure 4.3), which provide the most sensitivity to

0.5–1.0 keV X-rays of any observations to date. Following Equation 4.1 to define h0.5 and h1.0 as

the pulsed fractions for 0.5–1.0 and 1.0–2.0 keV X-rays, respectively, we find h0.5 = 2.9+1.9
−2.9% and
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h1.0 = 5.0 ± 0.5%. The quoted errors are 1-σ errors, which show that h0.5 is consistent with zero.

For these estimates, the X-ray data were binned into 10 phase bins to match the time resolution

of the optical data. Binning the 1.0–2.0 keV X-rays into 20 phase bins instead of 10 increases the

measured pulsed fraction by 2%.

We first consider the optical pulsations in the framework of the magnetar model. There is

compelling evidence that the soft gamma-ray repeaters (SGRs) are magnetars (Kouveliotou et al.,

1998), but the SGRs are heavily absorbed at visible wavelengths, and there are no detailed models

predicting the optical emission from magnetospheres of magnetars. We turn to the closest relatives

of magnetars, the young (103–104 yr) isolated radio pulsars with measured optical pulsations, i.e.,

Crab (Romani et al., 2001; Tennant et al., 2001), Vela (Helfand et al., 2001; Manchester et al., 1980)

and PSR B0540-69 (Gotthelf and Wang, 2000; Boyd et al., 1995). The optical light curves for these

pulsars are similar in morphology to their X-ray light curves, and they have LX/Lopt ∼ 103–104,

similar to 4U 0142+61. At present, the data is consistent with the optical emission that might be

expected from magnetars.

We next consider the possibility that 4U 0142+61 is a neutron star (NS) fed by accretion, without

a stellar companion (Wilson et al., 1999). We assume that beamed X-rays are emitted at the NS

surface, and that rotation of the NS leads to the observed X-ray pulsations. Optical pulsations

at the X-ray pulsation frequency can arise only from thermal reprocessing of X-rays illuminating

a disk. In binary systems, where the X-rays illuminate a companion star, the pulsed fraction of

the reprocessed light cannot exceed the pulsed fraction of the incident X-rays (Chester, 1979). The

reprocessing mechanism is similar in accretion disks (Pedersen and et al., 1982), giving

hopt ≤ hX, (4.2)

where hX is the pulsed fraction of the X-rays illuminating the disk. Assuming that the softest X-rays

(0.5–1.0 keV) dominate the energetics of reprocessing and that the X-rays illuminating the disk are

the same as the observed X-rays (i.e., hX = h0.5), this is violated, because hopt ∼ 10h0.5.

To reconcile Equation 4.2 with the observations, two conditions must be satisfied; hX > h0.5,

and the disk axis and the NS rotation axis must be misaligned, so that the X-ray illumination of the

disk is not azimuthally symmetric (or else there would be no optical pulsations). The first condition,

hX > h0.5, could be satisfied if the X-rays were more strongly beamed toward the disk than toward

the observer. This is unlikely to be significant, because general relativistic effects spread out beamed

X-rays from the NS surface (Pechenick et al., 1983). For a 1.4 M� NS with a 10-km radius, the

flux ratio between the center of the X-ray beam and a line-of-sight 90◦ away will be < 4 (Perna

and Hernquist, 2000). An alternate reason hX may be greater than h0.5 is that the pulsed fraction

of X-rays with energies < 0.5 keV (unobservable because of absorption) may be higher than h0.5.
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While there is no observational evidence for or against this possibility, we note that the trend of

pulsed fraction with energy is to lower pulsed fractions with lower energies (White et al., 1996).

All of the preceding NS discussions relate the X-rays to the reprocessed optical flux. The VRI

optical fluxes measured by Hulleman et al. (2000a) limit the possible size of an accretion disk to

Rout < 0.05R�. For such a small disk, the disk heating is expected to be dominated by viscous

dissipation rather than X-ray irradiation (Hulleman et al., 2000b). The optical flux is then dominated

by a steady component due to the viscous dissipation. For these reasons, we conclude that our

measurement of optical pulsations is inconsistent with the NS accretion model.

The third model we consider is that 4U 0142+61 is a B = 5 × 108 G, T = 4 × 105 K white

dwarf, possibly the result of a double-degenerate merger (Hulleman et al., 2000a). The white dwarf

with the most similar physical properties is RE J0317-853, with B = 5 × 108 G, T = 5 × 104 K,

P = 725 s (Barstow et al., 1995; Ferrario et al., 1997). RE J0317-853 shows optical pulsations

with hopt ∼ 10% (Barstow et al., 1995) and 100-Å EUV pulsations with hEUV ∼ 20% (Ferrario

et al., 1997). Two other highly magnetized, rotating white dwarfs have shown photometric optical

variability—PG 1031+234 with h ∼ 20%, 15% and 10% for U , B and V (Piirola and Reiz, 1992),

and Feige 7 with h ∼ 5% in V (Achilleos et al., 1992). Surface variations in magnetic field strength

in these objects change the continuum opacity (magnetic dichroism), and may cause variations

in surface temperature. In addition, the surface abundances may be nonuniform. Models have

successfully explained the photometric variability of these white dwarfs by adjusting their geometric

and chemical parameters.

We know of no model atmospheres that accommodate both the high temperatures and large

magnetic fields proposed for 4U 0142+61. Model atmospheres with temperatures of 105–106 K (but

no magnetic fields) have X-ray spectra that are very sensitive to both temperature and chemical

abundance. Assuming that the observed X-rays are related to the EUV / soft X-rays emitted near

the peak of the blackbody spectrum, the X-rays scale as T 4, while the optical luminosity scales

as T 1, giving hX > hopt. Even in a pure hydrogen atmosphere, there is a temperature-dependent

photoionization opacity that will cause more variability in the X-ray fluxes (Heise et al., 1994).

Ionization edges of highly ionized He, C, N, O, and Ne are very sensitive to changes in temperature,

and line blanketing by these elements results in EUV / soft X-ray spectra that vary by orders

of magnitude for temperature differences of a factor of 2 (Rauch, 1996). We conclude that the

mechanisms that have explained optical photometric variability in other white dwarfs are likely to

produce hopt < hX (as in RE J0317-853, with hopt = hEUV/2).

The X-ray spectrum of 4U 0142+61 is difficult to explain in the context of a white dwarf. If

the blackbody component is to be believed, then the emission region is confined to a radius of 12

km (White et al., 1996) (assuming a distance of 5 kpc). Assuming M ∼ 1.3M�, R ∼ 0.01R�, the

surface gravity is log g ∼ 9, which means that, assuming the blackbody radiation is emitted at the
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surface, the flux in the emitting region is ∼ 16× the Eddington flux.

The evidence that 4U 0142+61 is a magnetar is strengthened by the disagreement between the

accretion and white dwarf models and the optical observations. Optical observations of magnetars

open up new avenues for exploring exotic effects, such as QED in strong magnetic fields resulting

in magnetic photon splitting (Baring and Harding, 2001) and polarization of the vacuum index of

refraction (Shaviv et al., 1999). High-quality pulse-phased photopolarimetry is possible with 8–10

m telescopes, opening a new field of physical exploration. Future multi-color optical and infrared

phase, morphology, and polarization observations, when combined with X-ray data, will provide

crucial diagnostics of magnetar physics in much the same way that multi-wavelength pulse-phased

observations have proved invaluable for expanding our understanding of radio pulsars. In addition

to the physical properties of magnetars themselves, AXPs may share an evolutionary connection

between SGRs and radio pulsars, and could represent a significant fraction of all stellar remnants.

Establishing 4U 0142+61 as a magnetar is the first step in this investigation.
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Figure 4.1: Time-averaged optical image of field around 4U 0142+61. This image is 170×16-pixels
(68×6.4-arcsec), displayed with linear (top panel) and logarithmic (bottom panel) scaling. The
phase-binning CCD has 512×512 pixels, masked by a 500×26-pixel (200×10.4-arcsec) slit. Intensity
is binned on-chip into 10 phase intervals using a periodic frame transfer of the CCD. Every 1/10 of
the period of 4U 0142+61 (known a priori), the accumulated image is transferred away from the slit
onto a region of the CCD used for storage, but no pixels are read out of the CCD. At the end of 10
transfers (i.e., 1 period of 4U 0142+61), which alternate between shifting the accumulated charge
both up and down on the CCD, the image accumulated during the first phase interval is shifted back
into the CCD region illuminated by the slit, and the image is re-exposed. At any time, there are 10
accumulated images residing on the CCD, one of which is being exposed. This exposure pattern is
repeated for 95 s (11 cycles of 4U 0142+61), at which point the shutter is closed and the entire array
is read out. Each readout delivers 10 phase-binned images, each of which has been exposed for 9.5
seconds, long enough for the read noise of the CCD to be small compared to the Poisson noise of
the sky background. The total exposure time in two nights was 60,000 s. No filter was used, giving
a 400–1000 nm spectral response. The images shown here are sums of all 10 phase-binned images.
The numbering of stars follows the convention of Reid et al. (1980) and Coe and Pightling (1998),
with 4U 0142+61 labeled star A, as in Hulleman et al. (2000a).
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Figure 4.2: Map of pulsation amplitudes. At each point of the field in Figure 4.1, the square of the
intensity fluctuations divided by the variance is summed over all 10 phase bins. Each point in this
map shows the probability of chance occurrence of the residuals (plotted logarithmically). In a field
this large (68×6.4 arcsec) we expect residuals as large as the spurious peak (2 arcsec E of star 3)
24% of the time. The residuals in 4U 0142+61 have a chance probability of 6×10−5.
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Figure 4.3: Optical and X-ray pulse profiles of 4U 0142+61. Each panel is normalized to the mean
flux at that energy, with 1-σ error bars. The optical flux is measured in a 4×4-pixel (1.6×1.6-
arcsec) aperture centered on 4U 0142+61. The timing information used for these exposures was
taken from the “second span” entry in Table 2 of Gavriil and Kaspi (2002), with an arbitrary choice
of absolute zero-phase. These parameters are: ν = 0.1150969336 Hz, ν̇ = −2.687 × 10−14 Hz/s,
on MJD 51704.0 TDB, with zero-phase barycentric time-of-arrival MJD 51704.00006816 TDB. The
timing of the optical observations is controlled by a GPS receiver, that delivers start and stop pulses
accurate to 1 µs. The Crab Pulsar was observed each night to verify the accuracy of the timing. The
middle and lower panels are pulse profiles of 1.0–2.0 keV and 0.5–1.0 keV X-rays, respectively, with
the intensity axis zoomed by a factor of 4 relative to the optical pulse profile panel. The X-ray pulse
profiles are 5 ks of Chandra ACIS-S continuously-clocked data taken on 21 May 2000, folded onto
the same timing solution as the optical data. The background level is < 10−3 the total flux level
in both plots. We do not correct the continuously-clocked data for dither, which results in periodic
timing errors of 50 ms (0.006P ). The absolute accuracy of Chandra continuously-clocked timing has
been estimated at < 20 ms. The Gavriil and Kaspi (2002) timing solution is from RXTE data up to
June 2001, 5 months before the Palomar observations. Because the X-ray and optical data are not
contemporaneous, and the optical observations were taken outside the span of the timing solution
used, the relative phases are unconstrained.
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Chapter 5

PSR B0656+14
This paper is, at the time of this writing, in a near-final (presumably) stage of preparation, for

submission to the Astrophysical Journal. It is included here, in its present state, as a stand-alone

body of work. As with Chapter 4, the references are merged with the thesis bibliography.

Apart from the paper, an effort has begun to calculate detailed outer gap models, which may

provide very specific predictions with which we can compare our observations. A synopsis of these

additional calculations is presented after the paper, in Section 5.2.

5.1 Astrophysical Journal submission on PSR B0656+14

Optical Pulse-Phased

Photopolarimetry of

PSR B0656+14

B. Kern, C. Martin, B. Mazin

California Institute of Technology, Pasadena, CA 91125

J. Halpern

Columbia University, New York, NY 10027

Abstract

We have observed the optical pulse profile of PSR B0656+14 in 10 phase bins at a high signal-to-

noise ratio, and have measured the linear polarization profile over 30% of the pulsar period with

some significance. The pulse profile is double-peaked, with a bridge of emission between the two

peaks, similar to some gamma-ray profiles observed in other pulsars. There is no detectable unpulsed

flux, to a 1-σ limit of 16% of the pulse-averaged flux. The emission in the bridge is highly polarized,
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with a position angle sweep that agrees well with the prediction of the Rotating Vector Model as

determined from radio polarization observations. We have not computed outer-gap emission models

to compare with the optical observations, but polar cap emission models are broadly consistent with

the data.

5.1.1 Introduction

Radio pulsars, as their name implies, are well studied at radio wavelengths. High time-resolution

pulse profiles and polarization profiles have allowed determinations of the relative orientations of the

rotation axis, magnetic axis, and observer line-of-sight (LOS), based on variations of the Rotating

Vector Model (RVM), originally proposed for the Vela pulsar by Radhakrishnan and Cooke (1969).

It is commonly believed that the radio emission is generated near the surface of the neutron star

(Kijak and Gil, 1997), which simplifies the interpretation of the radio data. Studies by Lyne and

Manchester (1988), Rankin (1990), and Everett and Weisberg (2001) use different methods and

assumptions to determine these angles, with a rough agreement established between the methods.

High-energy (infrared to gamma-ray) magnetospheric emission from isolated radio pulsars presents

a more complicated theoretical picture. Two categories of theories have been presented to explain

the location of the emission region for high-energy photons. Polar cap models (Daugherty and Hard-

ing, 1994, 1996) claim that the emission region is close to the neutron star surface, near the emission

region for the observed radio waves. Outer gap models (Romani and Yadigaroglu, 1995; Romani,

1996) place the high-energy emission regions farther out in the magnetosphere, up to ∼ 30% of the

light-cylinder radius. Part of the problem in distinguishing between these two models lies in the

small number of pulsars observed at high energies. Pulsed gamma rays have been observed in seven

radio pulsars (counting Geminga as a radio pulsar for this argument), with possible detections in

another three (Thompson, 2001). Many more pulsars have been observed in X-rays, with some-

what inconclusive impact on the question of emission model (Becker and Trümper, 1997). Optical

pulsations have been observed in only three radio pulsars, with weak detections in two more.

PSR B0656+14 is a middle-aged pulsar, with characteristic age 1.1×105 years, considered a

“cooling neutron star” because its soft X-ray emission is believed to come from the surface of

the neutron star (Becker and Trümper, 1997). There is a tentative detection of a gamma-ray pulse

(Ramanamurthy et al., 1996), as well as a claim of optical pulsations (Shearer et al., 1997). Optically,

PSR B0656+14 is the second-brightest radio pulsar in the Northern sky (V = 25), after the Crab

puslar. Optical polarization measurements hold the best promise to constrain the models for high-

energy emission regions, until such time that X-ray and gamma-ray polarimetry becomes feasible.
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5.1.2 Observations

We observed PSR B0656+14 on 2000 December 20–21 at the Palomar 5 m telescope, with a Phase-

Binning CCD Camera. Over the two nights, we obtained 38,000 s of integration time, with an

average FWHM of 1.3 arcsec under non-photometric conditions. The phase-binning CCD used is a

512 × 512 pixel back-illuminated CCD, masked by a 100 × 26 pixel (50 × 13 arcsec) slit. Intensity

is binned on-chip into 10 phase intervals using a periodic frame transfer of the CCD. Between the

slit and the CCD, an achromatic half-wave plate and broadband polarizing beam splitters form

an imaging two-channel polarimeter, measuring two orthogonal linear polarizations simultaneously.

The two polarized images are arranged side-by-side on the CCD in two columns. Every 1/10 of

the period of PSR B0656+14 (known a priori), the accumulated images (both polarizations) are

transferred away from the slit onto a region of the CCD used for storage, but no pixels are read out

of the CCD. At the end of 10 transfers (i.e., 1 period of PSR B0656+14), which alternate between

shifting the accumulated charge both up and down on the CCD, the images accumulated during the

first phase interval are shifted back into the CCD region illuminated by the slit, and the images are

re-illuminated. At any time, there are 20 accumulated images residing on the CCD (2 columns of

linearly polarized images, 10 rows of phase-binned images), two of which are being illuminated.

This illumination pattern is repeated for 120 s (311 cycles of PSR B0656+14), at which point

the shutter is closed and the entire array is read out. Each 120 s exposure delivers 20 phase-binned

images, each of which has been illuminated for 12 seconds, long enough for the read noise of the

CCD (< 10 e− rms) to be small compared to the Poisson noise of the sky background. Timing of the

exposures is coordinated using a GPS receiver and time-code generator, which delivers a disciplined

10 MHz oscillator signal and start and stop signals accurate to 1 µs. Between 120 s exposures,

the achromatic half-wave plate is rotated by 22.5◦, rotatating the polarization position angles the

detector observes, as projected on the sky, by 45◦. On each night, we observed the Crab Pulsar

to calibrate our timing and check our polarization optics. We used a Schott BG38 colored-glass

filter, which together with the quantum efficiency of our CCD, defines a bandpass of approximately

400–600 nm.

Because the folding of the intensity to the pulsar period is done in real time on the CCD,

an accurate pulse frequency, as observed at the telescope, must be known a priori. We used an

ephemeris for PSR B0656+14 from A. Lyne (2000, private communication), with barycentric f =

2.5980738005954 s−1, ḟ = −3.71214× 10−13 s−2, and f̈ = 8.33× 10−25 s−3 at 2451687.5 JD TDB,

and a radio pulse geocentric time-of-arrival 2451687.500000997 JD UTC. This was used to predict

a topocentric pulse arrival time at Palomar and an observed pulse frequency for each individual

exposure. The JPL DE200 solar-system ephemeris was used to compute the barycenter-geocenter

and geocenter-topocenter corrections.

Care was taken to eliminate systematic effects in our measurements. The most important aspect
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of this technique is that the data are a time-series of images, which contain many stars in addition

to PSR B0656+14. The light curve of every object in the field can be extracted, to verify that no

spurious pulsation signals come from the instrument or observing scheme. Another important aspect

of this technique is that in a given exposure, the light at each point in the field falls on the same

CCD pixels for every phase bin (i.e., the slit does not move with respect to the CCD pixels), so that

quantum efficiency and throughput fluctuations are not imprinted differentially on the light curves.

Charge transfer effects, on the other hand, can introduce light curve variations, because the paths the

phase bins follow as they are shifted up and down on the CCD are different. To eliminate this effect,

successive exposures are started at different phases, so that by properly coadding a 10-exposure set,

each phase bin will have equal contributions from each path up and down the CCD. The rotation of

the half-wave plate between exposures ensures that the linear polarization measurements alternate

position on the CCD. The dual-channel configuration ensures that throughput variations are not

interpreted as polarization signals.

5.1.3 Data analysis

The largest systematic signal to be removed from the data is due to charge traps in the CCD.

Because the number of parallel line shifts during an exposure is large (∼ 150, 000), even small

charge traps (� 1 e−) generate large noise signals. The pattern of charge shifting caused by these

traps is slightly illumination-dependent, which necessitates calibration under similar illumination as

the observations. This was done by dithering the pulsar position in the field-of-view and using blank

regions of the field to calibrate both additive and multiplicative nonuniformities across the field-

of-view. After this self-calibrating flatfielding and bias removal, the blank regions of the sky show

variances approximately 30% higher than the expected Poisson variances from the sky brightness,

an acceptable level of noise.

Individual exposures are coadded to preserve the phase and polarization information, resulting

in a 4 × 10 array of images, at 4 position angles, in 10 phase bins. The integrated image, formed

by adding all of the average images to eliminate phase and polarization information, is shown in

Figure 5.1. The total intensity images, formed by combining sets of 4 polarized images but keeping

the phase bins separated, are shown in Figure 5.2.

To extract the flux of PSR B0656+14 in each averaged image, we use a 3 × 3 pixel (1.5 arcsec

× 1.5 arcsec) aperture. At any point in the field, we denote the measured flux by Sχ,i(x, y), where

χ is the instrumental polarization position angle, i is the phase bin number (ranging from 0 to 9),

and x and y are the position in the field-of-view. The instrumental position angle, χ, is measured

with respect to an instrumental axis, which is rotated with respect to N on the sky. We denote

the linearly polarized Stokes parameters measured with respect to the instrument axes Q̂i(x, y) and

Ûi(x, y), and the rotation of these measurements to refer to N on the sky Qi(x, y) and Ui(x, y). We
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define

Q̂i = S0,i − S90,i (5.1)

Ûi = S45,i − S135,i (5.2) Qi

Ui

 =

 cos 2φ sin 2φ

− sin 2φ cos 2φ

 Q̂i

Ûi

 (5.3)

Ii = (S0,i + S45,i + S90,i + S135,i)/2, (5.4)

with Ii the total intensity, and φ the angle between the instrument and sky orientations. We do not

measure V , the circularly polarized Stokes parameter. We do not normalize the Stokes parameters

to the total intensity, leaving all measurements in flux units.

Background Subtraction

A nearby extended object, which is visible in Hubble Space Telescope WF/PC2 and NICMOS

images of the field around PSR B0656+14 (Koptsevich et al., 2001), when observed from the ground

contributes some light to the photometric aperture we use for PSR B0656+14. This object is labeled

o2 in Koptsevich et al. (2001). The HST WF/PC2 images were observed in the F555W filter, a similar

bandpass to that of our ground-based images. After standard image reduction to remove hot/warm

pixels and cosmic rays, we perform aperture photometry on the pulsar in the WF/PC2 images to

determine the intensity of the pulsar alone. We then convolve the WF/PC2 images with a gaussian

PSF whose FWHM equals our average ground-based seeing FWHM (1.3 arcsec), and determine how

much light falls in the photometric aperture we used for the ground-based images. By referencing

both the convolved HST images and the ground-based images to a “blank-sky” region of the images,

we can determine the contribution of the pulsar alone, as well as that of the pulsar and extended

object, to the light in our photometric aperture. Because the bandpasses are similar, we perform

no color corrections between the HST WF/PC2 images and our ground-based images. We find that

in our 1.5 arcsec square photometric aperture, the extended object contributes 39% ± 7% of the

pulse-averaged light in our photometric aperture.

The intensity profile Ii is shown in Figure 5.3, which has been background-subtracted as described

above. The phase of our observations are referenced to the peak of the radio pulse, that arrives at

phase 0.0. The possible gamma-ray pulse (Ramanamurthy et al., 1996) peaks at phase 0.2. The soft

X-ray pulse broadly peaks near phase 0.85, with a minimum near phase 0.3 (Marshall and Schulz,

2002).

The minimum of the background-subtracted pulse profile, Imin/I, is -0.05, normalized to the

pulse-averaged flux I. While negative fractions are unphysical, the measurement error in each bin

(σI/I = 0.24) makes it very likely that negative values are measured. Using all of the bins in a
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joint probability measurement, we find a 1-σ upper limit (two-tailed) to the true unpulsed flux to

be Iunpulsed/I < 0.16, accounting for both measurement error in each bin and the uncertainty in

the background level. The limited temporal resolution of these measurements causes Iunpulsed to be

overestimated, so these numbers should be considered true upper limits.

The pulse profile we measure for PSR B0656+14 is very different than that measured by Shearer

et al. (1997). Shearer et al. measure a pulse with a broad single peak, reaching a maximum at phase

0.2, coincident with our Peak 1, but they find a minimum near phase 0.8, coincident with our Peak

2. Basing some estimates on Figure 3 of Shearer et al. (1997), the quoted unpulsed flux limit must

be understated, because the background flux uncertainty is ∼ 40% of the average net flux, and the

error on the flux in each phase bin is ∼ 80% of the average net flux. Combining the flux in their four

faintest phase bins, and considering the uncertainty in the background, the unpulsed flux must have

an error greater than 40%, and yet the quoted 1-σ upper limit (8×10−31) is only 20% of the net flux

(3.9×10−30). More to the point, a simple test of the null hypothesis (that the flux is unpulsed) gives

only χ2 = 15 for 10 degrees of freedom (cumulative probability 0.87). The disagreement between

the pulse profile reported here and that reported in Shearer et al. (1997) raises some doubt as to

the significance of the optical pulse profile for Geminga reported by the same group (Shearer et al.,

1998), from data taken concurrently with their PSR B0656+14 data.

Linearly Polarized Flux

We compute the linearly polarized flux, Li, from the Stokes parameters Qi and Ui,

Li =
√
Q2
i + U2

i , (5.5)

θi = tan−1(Ui/Qi)/2. (5.6)

Here, θi is the polarization position angle, defined as the direction of vibration of the electric field

measured E from N on the sky. The equation for Li uses a biased estimator, because any noise

will, on average, result in a systematic overestimate of the linearly polarized flux. Following the

prescriptions in Simmons and Stewart (1985), we use a Wardle and Kronberg (Wardle and Kronberg,

1974) estimator, which is equivalent to a maximum likelihood estimator. The analysis we perform on

Li uses estimates derived from the Wardle and Kronberg estimator. A plot of the linearly polarized

flux is shown in Figure 5.4. From phase 0.4 – 0.7, the Li values differ from zero at the 2–3-σ level.

We test the significance of the polarized flux measurements in two ways. If the uncertainties

in Qi and Ui are distributed as independent gaussian variables with variance σ2, under the null

hypothesis that there is no polarized flux, χ2 =
∑9

i=0 P
2
i /σ

2 should be distributed as χ2 with 20

degrees of freedom. We find χ2 = 50, which has a cumulative probability of 94.5%.

Since these polarization measurements form a time series, in which the ordering of the mea-
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surements is significant, we also address the question of the randomness of the distribution. We

test the randomness of the time series with the Wald-Wolfowitz test of serial correlation (Wald

and Wolfowitz, 1943). Because the number of data points (10) is small, we can compute the serial

correlation

R =
9∑
i=0

LiLi+1, (5.7)

where L10 is replaced by L0, since the measured values are periodic. We then compute R for

every permutation of indices i (3.6 × 106 permutations), and form a distribution function from

the collection of values of R at different permutations. This forms a non-parametric test, which

involves no assumptions of normality or variance, and which has no dependence at all on the time-

independent distribution of the Li being measured or on the total intensity Ii. The ordering of the

polarization values measured violates the null hypothesis, that the numbers are randomly chosen,

at the 97% level. This number represents the significance of the three most significant polarization

flux measurements being clustered in phase.

The combination of these two tests, which are independent of one another, lend credibility to the

measured polarization flux values. In addition, the position angles are correlated in the three most

significant bins. The angles in phases 0.4–0.7 are θ4 = 77◦±11◦, θ5 = 89◦±9◦, and θ6 = 137◦±17◦.

If the position angle changes by 90◦ on timescales comparable to the bin width, the measured

linear polarization will be reduced. Without a specific model of the behavior of the position angle

with phase, the measured linear polarization must be considered a lower limit. The best estimate

is then that the flux is ∼ 100% polarized from phase 0.4–0.7, and mostly (linearly) unpolarized at

other phases.

5.1.4 Discussion

The optical light curve is double-peaked, unlike either the radio (Gould and Lyne, 1998) or the X-

ray (Marshall and Schulz, 2002) curves, which are both single-peaked. We separate the optical light

curve (see Fig. 5.3) into 4 phase intervals. We define Peak 1 from phase 0.2–0.3, Bridge emission

from phase 0.3–0.8, Peak 2 from 0.8–0.9, and Off-pulse from 0.9–1.2.

The soft X-rays are commonly interpreted as thermal emission from the surface of the neutron

star itself, with a 10% modulation. If the optical light were due to the same thermal component, it

too would show a small pulsed fraction. Assuming that the thermal flux is equal to the unpulsed flux,

we find a 1-σ upper limit to the thermal flux of 16% of the flux in the observed bandpass. The bulk

of the observed optical emission is then of nonthermal origin, arising from the pulsar magnetosphere

rather than the surface of the neutron star. The high pulsed fraction of the optical light rules out

the notion that the optical emission could be due to a disk of material (i.e., fallback material from a
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supernova explosion), as it would not be pulsed at the neutron star rotation frequency (Perna et al.,

2000).

The radio pulse peaks at phase 0.0, with FWHM 0.04–0.07 P at frequencies from 0.2–1.6 GHz

(Gould and Lyne, 1998). The Rotating Vector Model (RVM) allows radio polarization profiles to

determine the geometry of the magnetic poles relative to the rotation axis and the observer line-

of-sight (LOS). In the case of PSR B0656+14, the deepest data (at 1.4 GHz) gives a measurement

of α = 29◦ ± 23◦, β = 8.9◦ ± 6.1◦, where α is the angle between the rotation and magnetic axes,

and β is the angle of the closest approach of the observer LOS to the magnetic axis (Everett and

Weisberg, 2001). The uncertainty in these two angles is highly (positively) correlated. Two earlier

studies investigated PSR B0656+14, with Lyne and Manchester (1988) giving α=8.2◦, β=8.2◦, and

Rankin (1990) giving α=30◦ (with no estimate of β.) These earlier studies do not estimate errors,

as they are fits to empirical assumptions about the underlying geometry whose errors are not easily

estimated.

The RVM is a simple model, which determines the angle of the dipole magnetic field at a constant

radius in the magnetosphere, projected onto the observer’s LOS, at different rotation phases. The

polarization position angle is then assumed to be parallel or perpendicular to the projected magnetic

field lines. We take the position angles predicted by the fits to the radio polarization, degrade the

temporal resolution to that of the optical observations (10 resolution elements), and add a constant

position angle offset to best fit our polarization measurements (beacuse the position angles of the

radio data are uncalibrated). The best-fit RVM prediction is shown in Figure 5.5. The range of α and

β allowed by the radio fit does not change the predicted position angle by an amount comparable

to the errors in our measurement of θi, so our data does not help constrain the observational

angles beyond the level of the radio polarization data. The fit of the optical position angles to the

RVM prediction is surprisingly good; the measured χ2 is 2.3 for 2 degrees of freedom (cumulative

probability 0.69).

In the context of the polar cap model, the two peaks in the optical emission come from two edges

of a hollow cone of emission, that the LOS intercepts at two phases. The separation in phase of the

two optical peaks will, in principle, allows a determination of the height of the emission region. In

the relevant polar cap models (Daugherty and Harding, 1996), the radio peak appears in the center

of the hollow cone of optical emission, so Peak 2 occurs first, followed by the radio emission, and

then Peak 1. With a peak separation of 0.4 in phase (a coarse estimate, given our limited temporal

resolution), α = 29◦, β = 8.9◦, the opening angle of the optical cone is 77◦. Following the last closed

field lines in a dipole field (ignoring relativistic aberration, time-of-travel, and magnetic sweepback

effects), the height where the opening angle reaches 77◦ is r/rLC = 0.2, where rLC = cP/2π is the

radius of the light cylinder. At this height, aberration and time-of-travel effects would become large,

and this calculation would be too simplistic. The emission region height decreases significantly as α
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decreases. Taking α = 6◦, β = 1.9◦, which is at the limit of the 1-σ confidence interval determined

by the radio polarization, the opening angle becomes 17◦, at a height of 0.01 rLC. This height is

comparable to that assumed for the radio emission region.

In the outer gap model, the optical emission is generated farther out in the magnetosphere,

where the velocities are mildly relativistic and light-travel times can be large, so the emission region

observed at a given phase is not necessarily along the LOS connecting the observer and the neutron

star. Therefore, the RVM should not be expected to apply as simply as in the polar cap model.

For instance, the optical polarization of the Crab Pulsar shows two distinct swings that cannot be

accounted for in the polar cap model but do arise naturally in outer gap models. Agreement of

outer gap models with the optical polarization data in this study will require a detailed model of

the emission regions observed at each phase.

The Crab Pulsar is the only other pulsar for which optical polarization measurements are avail-

able. The polarization pulse profile measured in PSR B0656+14 is different in character than that

measured in the Crab. The Crab’s linearly polarized flux is maximized at the peaks and minimized

in the bridge, while its polarized fraction is maximized in the bridge and minimized at the peaks

(Smith et al., 1988). In PSR B0656+14, the linearly polarized flux and polarized fraction are both

maximized in the bridge and minimized at the peaks. The low temporal resolution of our optical

measurements will lead to a decrease in the measured linearly polarized flux, but our observations

of the Crab at the same temporal resolution show a much greater polarized flux at the peaks (where

the position angle swings rapidly) than in the bridge.
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Figure 5.1: Average intensity image, eliminating all phase and polarization information.
PSR B0656+14 is in the middle of the image. Note the extended object which overlaps the pulsar
(above the pulsar in this plot).
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Figure 5.2: Phase-binned total intensity (i.e., no polarization information) images of PSR B0656+14.
Each image is labeled by its phase bin index (0–9), with 0 corresponding to phase 0.0–0.1, 1 to phase
0.1–0.2, etc. PSR B0656+14 is in the center of each 40×10 arcsec image. The intensity is a maximum
in bins 2 and 8.
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Figure 5.3: Total-intensity pulse profile of PSR B0656+14. The intensity scale is normalized to
the pulse-averaged total intensity. Error bars are 1-σ errors. Pulse is plotted twice for clarity. All
intensities have been background-subtracted as described in Section 5.1.3. The radio pulse peaks at
phase 0.0, and the possible gamma-ray peak (Ramanamurthy et al., 1996) is at phase 0.2.
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Figure 5.4: Linearly polarized flux. The filled circles are the maximum likelihood estimates to the
linearly polarized flux, with 1-σ error bars, normalized to the pulse-averaged total intensity. The
dotted line is the total-intensity pulse profile, as in Fig. 5.3.
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Figure 5.5: Linear polarization position angles. Diamonds are the optical position angles with 1-σ
error bars. Dashed line is predicted position angles from Rotating Vector Model fit to radio data,
small dots are 1418 MHz position angles (without error bars) from Everett and Weisberg (2001),
solid line is predicted position angles binned in 10 phase bins.
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5.2 Emission Models

One of the exciting opportunities that arises from the data on PSR B0656+14 is the chance to

test the polar cap and outer gap model predictions. The rotational phase of the optical peaks with

respect to the radio peaks, and the sweep of the optical polarization position angle, provide the

input to these models.

Polar cap models have fared poorly against optical data in the Crab and Vela pulsars. The

Crab Pulsar, the only pulsar (other than our measurements for PSR B0656+14) with high-quality

pulse-phased polarization data, shows two nearly identical 90◦ sweeps of position angle through the

two optical peaks (Smith et al., 1988). In the polar cap model, the two optical peaks would be

the intersection of the observer line-of-sight with the edges of a hollow cone of emission, with the

magnetic axis as the axis of the cone of emission. According to the Rotating Vector Model, the

position angle sweep should be centered on the magnetic axis, with no additional features associated

with the two optical peaks. This contradiction is difficult to reconcile under the polar cap model.

One of the significant successes of the outer gap models, on the other hand, was the ability to account

for the double-sweep of position angle in the Crab Pulsar (Romani and Yadigaroglu, 1995).

The two optical peaks of the Vela pulsar are not symmetrically located with respect to the radio

pulse. Defining rotational phase such that the radio pulse is at phase 0.0, the two optical peaks

occur at phases 0.15 and 0.6. These locations are not symmetric about the radio pulse (or about

phase 0.5). Polar cap models have no capacity to introduce phase offsets between components, and

so again, the optical measurements are difficult to reconcile with the polar cap models. Again, the

outer cap models, on the other hand, can be arranged to generate the observed emission profiles

(Romani and Yadigaroglu, 1995).

Applying the polar cap models to our optical observations of PSR B0656+14, as discussed in

the preceding paper, poses no problems. The optical peaks are symmetric about the radio pulse,

occurring at phases 0.2 and 0.8. The only other constraint on the data comes from the radio

polarization data, which, through the Rotating Vector Model (RVM), constrains the geometry of

the pulsar and observer. The pulsar geometry is specified by the angle between the rotation axis

and magnetic axis, α, and the observer colatitude, ζ. The observer colatitude (the angle between

rotation axis and observer line-of-sight) is often rearranged to give the impact parameter, β, which

is the smallest angle between magnetic axis and observer line-of-sight, when the rotation phase is

zero. In other words, ζ = α+ β. RVM models generally constrain β much more tightly than α (and

therefore ζ).

Using the 1418 MHz radio polarization data from Weisberg et al. (1999) and models from Everett

and Weisberg (2001), we calculate the range of α and ζ allowed by fits to the RVM in Fig. 5.6. The

raw radio data are shown in Fig. 5.5 in the PSR B0656+14 paper. The lack of constraint on α is
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Figure 5.6: Rotating Vector Model constraints. The lines denote regions where χ2
ν , the reduced χ2,

increases by ∆χ2
ν = 3.

immediately obvious from this figure, however, β is constrained to positive (and small) values, i.e.,

ζ > α. The geometrical arrangement required to describe the optical emission, assuming an exterior

hollow cone emission model near the polar cap, is consistent with the radio polarization data.

Since the work of Romani and Yadigaroglu (1995), outer gap models have followed a specific

prescription to form the basis of their pulse profile predictions. Beginning with the assumption of a

dipolar field at the neutron star surface, the magnetic field of the rotating neutron star is calculated

using the full retarded potentials (Deutsch, 1955). The surface of last closed field lines is determined

by those field lines which intersect tangentially with the light cylinder. Field lines in the open field

line region (i.e., field lines that exit the light cylinder) are parametrized by a gap width parameter w,

which measures the distance between the magnetic axis and the point where that field line intersects

the NS surface, normalized to the distance between the magnetic axis and the last closed field lines at

the NS surface. Radiation is assumed to be emitted by particles traveling at the speed of light along

the magnetic field lines, and relativistic aberration determines the direction in which the radiation

travels in the nonrotating reference frame. The direction of emission from every point along a

magnetic field line can then be represented in spherical coordinates, by colatitude and longitude. The

observer occupies a particular colatitude (ζ), and as the NS rotates the observer sees the longitude

vary with the rotational phase. The rotational phase at which radiation from a particular point

in the magnetosphere is observed is determined both by the direction of propagation and the light

travel time delay. Accounting for all these factors, the emission from every magnetic field line can

be mapped into the (ϕ, ζ) plane, where ϕ is the rotational phase and ζ is the observer colatitude.

Examples of these skymaps are shown in Appendix A. A full description of the construction of
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skymaps is given in the PhD thesis of Yadigaroglu (1997).

The skymaps can be interpreted as pulse profiles by identifying the ζ of the observer and trans-

forming the map of emission points into observed intensities. A standard assumption is that radiation

is emitted from magnetic field lines that form a cone of constant w, the simplest assumption being

that the intensity is uniformly distributed across the surface area. The skymap is transformed into

observed intensity through the Jacobian defining the transformation of surface area at the magne-

tosphere into (ϕ, ζ) area on the skymap. Regions where the field lines in the skymap “fold” over

themselves correspond to peaks in the intensity, because the Jacobian of the area transformation

becomes very large (i.e., the transformation from surface area to (ϕ, ζ) becomes degenerate).

The generation of pulse profiles according to this prescription is a matter of representing the

intensity as a function of 4 variables, ϕ, ζ, α, and w. Rather than attempting to distill this infor-

mation into some subset of this parameter space, we display the skymaps in all four dimensions, in

Appendix A. This situation is simplified somewhat by the constraint on ζ as shown in Fig. 5.6. For

a given α, only values of ζ slightly larger than α (within ∼ 10 degrees) are consistent with the radio

data. Fitting the optical data to the polar cap model is now a question of finding pulse profiles from

skymaps with small β that match the observed pulse profile.

There are some general predictions about which outer gap model parameters are appropriate.

For a middle-aged pulsar such as PSR B0656+14, the energetics required to “close the gap” and

end the cascade of particles are harder to achieve, and so the gap is wider than it would be in a

younger pulsar. Some predictions place the gap width of PSR B0656+14 at w=0.7 (Cheng et al.,

2000), nearly filling the entire open field line region.

Because many of the particles responsible for the emission in the outer gap region are generated

by pair production, there are both positively and negatively charged particles participating in the

emission. The oppositely charged particles will be accelerated in opposite directions, causing emission

to be both inward-going and outward-going. In the study of gamma-ray pulsars, which are commonly

double-peaked, it was determined that if both inward- and outward-going emission were observable,

many of these pulsars would have four peaks. The assumption is then that the inner magnetosphere

is opaque to gamma-ray radiation, and the inward-going emission does not reach the observer.

We are not aware of similar opacity calculations for optical photons. In fact, outer gap models

of hard X-ray emission sometimes invoke outward-going emission for gamma rays and inward-going

emission for X-rays (Zhang and Cheng, 2001). As such, it seems reasonable to allow the possibility

that the observed optical pulse profile may be due to either outward- or inward-going emission.

We attempt to find skymaps which reproduce the observed optical pulse profiles. Generally

adhering to the restrictions on ζ given in Fig. 5.6, we attempt to find values of α and w that give

peaks near phase 0.2 and 0.8, relative to the radio pulse at phase 0.0. A preliminary analysis, without

calculating full pulse profiles from the plots in Appendix A, finds it hard to account for both of the
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optical pulses using either inward- or outward-going emission, but that it might be possible using

both.

We find general features in the emission skymaps in Appendix A. The emission is generally

centered around phase 0.5, and pulse widths are almost always smaller than 0.5. The optical pulse

we measure has width 0.6, which, while not significantly greater than the 0.5 just mentioned, seems

hard to generate from the skymaps. We estimate that it would be possible to generate the peak at

phase 0.2 from the α=50◦, w=0.05 outward-going map at ζ ∼ 75◦, and the peak at phase 0.8 from

the α=50◦, w=0.05 inward-going map at ζ ∼ 75◦.

This analysis is very preliminary, and the reason for including the skymaps in Appendix A is

to allow for a “by eye” confirmation of the ideas presented here. Calculation of the pulse profiles,

which we can generate on a case-by-case basis but not by an automated routine, will be the next

step in this investigation.

To summarize, we are hypothesizing that the outer gap models may fit our data, but with

emission coming from a much narrower gap than predicted (w=0.05, compared to a prediction of

0.7), and utilizing both the inward- and outward-going emission from the gaps.
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Chapter 6

Low-Mass X-ray Binaries and Cataclysmic Variables

The first observing run with the camera operating in multiple frame transfer mode was in July 2001.

The primary target of this investigation was Cyg X-2, for which we had scheduled simultaneous

observations with the Rossi X-ray Timing Explorer satellite. The other objects of this observing

run were other low-mass X-ray binaries (LMXBs) and cataclysmic variables (CVs), Her X-1, RW

Tri and WZ Sge, with no additional X-ray coverage.

The Cyg X-2 observations were performed alternately through an Hα filter and in unfiltered

white light, with integration times of 100 ms and 5 ms, respectively. The interest in the Hα high-

time-resolution data was to watch for signatures of coronal flares, which might have extremely short

timescales and briefly dominate the Hα emission. This was a speculative exploration, searching for

coronal flares as a signature of magnetic field loop reconnection. This reconnection mechanism would

explain the production of hard X-rays, which are unaccounted for under the standard accretion disk

theories. Guillaume Dubus was the principal investigator for this observing run.

The data analysis, which will not be described in detail here, had few similarities with the data

anlysis procedure discussed in Section 3.1, because charge traps play an insignificant role in the

error analysis when the charge is not shifted back and forth over thousands of cycles. As in the

phase-binning case, the use of comparison stars observed simultaneously with the object star was

essential. In fact, the field of view of the camera was specifically widened (to its current wide-field

configuration) specifically for this observing run, to ensure that comparison stars of comparable

brightness to the science objects were observable in each field. Because the LMXBs and CVs were

bright (V ∼ 8–12), the challenge was to find comparison stars that were of comparable brightness.

In the end, the comparison stars proved absolutely essential, as the observing conditions were not

photometric. Correlations with the comparison stars, which are known to be stable to < 0.01 mag

(Henden and Honeycutt, 1997), allow differential photometry to obviate the need for photometric

conditions.

The principal challenges of the data analysis of the multiple frame transfer data consisted of

finding appropriate photometric apertures for the object and comparison stars. Read noise dominates

large apertures while image wander (nonperiodic, as opposed to that seen in Section 3.2) dominates

small apertures. The reduction of this data eventually resulted in images of Cyg X-2 with a signal-

to-noise ratio of ∼ 20 per 5 ms exposure in white light, and ∼ 5 per 100 ms exposure in Hα. The
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5 ms exposures had an integration duty cycle of only 10%, the 100 ms exposures 70%. While these

are low duty cycles, the exposures comes in bursts of 50 contiguous exposures, so that the resolution

exists on the shortest timescales, but with holes in the temporal coverage.

The analysis thus far has been performed by using autocorrelations of the optical and X-ray data

and cross-correlations between them. No features in the correlations are obvious at a first glance,

and further investigation is ongoing.
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Chapter 7

Conclusions
As is true more often than not, the material presented in this thesis is a work in progress. The work

of constructing the phase-binning CCD camera as an effective and reliable observing instrument is

largely finished, until such time as modifications will need to be made to adapt to other telescopes

(Keck?). The data analysis routines, while not automated for turnkey convenience, have proven

adequate for performance near the fundamental limits of the observations. However, the interesting

work, as I see it, has just begun.

The data presented in this thesis is based on only two observing runs. While the list of pulsars

observable from Palomar does not stretch on very long, use of this instrument at Keck or in the

Southern Hemisphere (because Vela is significantly brighter than the pulsars we observed) promises

to provide a few more objects in the near future. The real promise of this technique is in pulse-phased

polarimetry, which will also be possible at Keck.

On the theoretical front, a great deal of opportunities present themselves with the new data from

both pulsars observed. The optical emission expected from magnetars is a topic currently under

investigation by other groups (C. Thompson, private communication), which will benefit from the

solid measurement presented by this work. More importantly, the confirmation that 4U 0142+61 is,

in fact, a magnetar is the most significant contribution of this thesis work to the scientific community.

Our treatment of the outer gap considerations from PSR B0656+14 was not comprehensive, and

we have not dealt with the polarization data (although of low significance) in the framework of the

outer gap models. Our analysis of the data from PSR B0656+14 does not make or break either of

the competing models for high-energy pulsar emission, but it does at least set the record straight

regarding the previous measurements of pulsations from PSR B0656+14.

The gratification of seeing a project through from its initial inception on paper through the

production of exciting scientific results is hard to overestimate. I sincerely expect that this project

will be able to continue without the degree of mechanical and electronic coercion (and, at times,

brute physical force) required to bring the camera to is presently mature state.

At present, this camera fills a niche that is largely ours to fill. However, new superconducting

detectors under development promise to exceed our capabilities. Superconducting Tunnel Junctions

(STJs), Transition Edge Superconductors (TESs), and kinetic inductance detectors all promise pho-

ton counting performance with near-perfect quantum efficiency, with the added bonus of energy

resolution on each photon and some imaging abilities. At present, the imaging capabilities of these
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technologies are extremely limited, and there are throughput issues associated with coupling each

of these types of detectors to telescopes, but it is only a matter of time until these technologies

dominate this field. As such, the phase-binning CCD camera is likely to have a few more years

of competitive advantage, until the competing technologies have developed the imaging capabilities

that will enable robust statistical analysis to be performed on the data.
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Appendix A—Outer Gap Model Calculations

Collected here are the skymaps computed from the outer gap models as described by Yadigaroglu

(1997). Each page of figures is calculated from a single value of α, the angle between the rotation

and magnetic axes. The different plots on a page correspond to magnetic field lines originating in

different regions of the polar cap of the NS, as parametrized by w. w is the ratio of the distance from

the intersection of a particular field line with the NS surface to the magnetic axis, normalized by

the distance from the last closed field line to the magnetic axis, measured in the sense that w = 0 is

the location of the last closed field line, and w = 1 is the magnetic axis. Outer gaps form at the null

charge surfaces, the locations where the Goldreich-Julian charge density vanishes. This occurs when

the magnetic field is perpendicular to the rotation axis, which corresponds to ζ=90◦. Therefore,

emission in these skymaps is only seen from ζ < 90◦. The maps must be turned upside down to see

emission for ζ > 90◦, as that emission must come from the opposite pole.

In each skymap, the observed rotational phase is plotted as ϕ, and the observer colatitude is ζ.

As an observer is located at only one value of ζ, the pulse profile is obtained by slicing through the

skymap at a constant ζ. The basic assumption is that emitted intensity is proportional to surface

area on the surface of field lines at a constant w, and so the observed intensity depends on the

Jacobian of the transformation between surface area and (ϕ, ζ). Regions where the field lines “fold”

over themselves provide the highest intensity (i.e., peaks in the pulse profile).

In the outer gap models, emission may be emitted in both directions along a field line, i.e., inward-

going and outward-going. These directions are plotted separately here, with all of the outward-

going plots appearing before the inward-going plots. Models based on outer gap emission generally

only examine the outward-going emission, assuming that the inward-going emission is absorbed

in the inner magnetosphere before escaping to where the observer can receive it. We present the

inward-going emission skymaps because the outward-going emission alone does not easily explain

the observations.

In each of the figures, the gray circles in the upper hemisphere (ζ < 90◦) correspond to the pole

emitting the observed radio emission.



85

α =  10, w = 0.02

-180 -90 0 90 180
ϕ

180

150

120

90

60

30

0

ζ
α =  10, w = 0.05

-180 -90 0 90 180
ϕ

180

150

120

90

60

30

0

ζ

α =  10, w = 0.10

-180 -90 0 90 180
ϕ

180

150

120

90

60

30

0

ζ

α =  10, w = 0.20

-180 -90 0 90 180
ϕ

180

150

120

90

60

30

0

ζ

α =  10, w = 0.40

-180 -90 0 90 180
ϕ

180

150

120

90

60

30

0

ζ

α =  10, w = 0.80

-180 -90 0 90 180
ϕ

180

150

120

90

60

30

0

ζ

Figure 7.1: Skymap of outward-going emission for α=10◦.
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Figure 7.2: Skymap of outward-going emission for α=20◦.
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Figure 7.3: Skymap of outward-going emission for α=30◦.
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Figure 7.4: Skymap of outward-going emission for α=40◦.
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Figure 7.5: Skymap of outward-going emission for α=50◦.
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Figure 7.6: Skymap of outward-going emission for α=60◦.
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Figure 7.7: Skymap of outward-going emission for α=70◦.
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Figure 7.8: Skymap of outward-going emission for α=80◦.
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Figure 7.9: Skymap of inward-going emission for α=10◦.
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Figure 7.10: Skymap of inward-going emission for α=20◦.
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Figure 7.11: Skymap of inward-going emission for α=30◦.
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Figure 7.12: Skymap of inward-going emission for α=40◦.
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Figure 7.13: Skymap of inward-going emission for α=50◦.
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Figure 7.14: Skymap of inward-going emission for α=60◦.
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Figure 7.15: Skymap of inward-going emission for α=70◦.
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Figure 7.16: Skymap of inward-going emission for α=80◦.
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