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Abstract

In this thesis, a new method for the design of unsplit numerical schemes for
hyperbolid systems of conservation laws with source terms is developed. Appro-
priate curves in space-time are introduced, along which the conservation equations
decouple to the characteristic equations of the corresponding one-dimensional ho-
mogeneous system. The local geometry of these curves depends on the source terms
and the spatial derivatives of the solution vector. Numerical integration of the char-

acteristic equations is performed on these curves.

In the first chapter, a scalar conservation law with a stiff, nonlinear source
- term is studied using the proposed unsplit scheme. Various tests are made, and the
results are compared with the ones obtained by conventional schemes. The effect

of the stiffness of the source term is also examined.

In the second chapter, the scheme is extended to the one-dimensional, unsteady
Euler equations for compressible, chemically-reacting flows. A numerical study of
unstable detonations is performed. Detonations in the regime of low overdrive
factors are also studied. The numerical simulations verify that the dynamics of the

flow-field exhibit chaotic behavior in this regime.

The third chapter deals with the development and implementation of the un-
split scheme, for the two-dimensional, reactive Euler equations. In systems with
more than two independent variables there are one-parameter families of curves,
forming manifolds in space-time, along which the one-dimensional characteristic
equations hold. The local geometry of these manifolds and their position relative
to the classical characteristic rays are studied. These manifolds might be space-like

or time-like, depending on the local flow gradients and the source terms.

In the fourth chapter a numerical study of two-dimensional detonations in per-
formed. These flows are intrinsically unstable and produce very complicated pat-
terns, such as cellular structures and vortex sheets. The proposed scheme appears
to be capable of capturing many of the the important details of the flow-fields. Un-
like traditional schemes, no explicit artificial-viscosity mechanisms need to be used

with the proposed scheme.
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CHAPTER 1

Scalar Conservation Laws with Source Terms

~ A variety of efficient numerical schemes for hyperbolic systems of conservation
laws has been developed in the recent past. These schemes evolved following the
understanding of fundamental concepts from the theory of nonlinear hyperbolic
PDE’s, such as characteristic surfaces, existence, uniqueness, and solution of the
Riemann problem, etc. See, for example, Courant & Hilbert (1963), Lax (1957),
(1973), and Yee (1987) for an extensive review of the literature. The main field of

application of these schemes was compressible, non-reacting flow.

Higher-order schemes, such as the ENO schemes, Harten et al. (1987), the
MUSCL scheme, van Leer (1979), the PPM of Colella & Woodward (1984), and
Roe’s approximate Riemann solver, Roe (1981), can be viewed as extensions of
Godunov’s original scheme to second-order accuracy. These are achieved by making
use of the theory of characteristics for systems of hyperbolic PDE’s in one space
dimension. They employ the characteristic decomposition of the equations into a
set of scalar fields, locally (at each computational cell), to evaluate the flux terms
at the cell interfaces. Discontinuous solutions can be computed by supplementing
the characteristic equations with the appropriate jump relations, i.e., by solving the

corresponding Riemann problem.

The traditional approach for the extension of these schemes to equations with
source terms is to use time-splitting, that is integration of the gas dynamic terms
of the equations first, and integration of the appropriate ODE for the source term
in an intermediate step. This decoupling can be done in an optimal way using
Strang-type splitting, Strang (1968). Bounds for the £, errors of splitting methods
have been established for scalar conservation laws by Crandall & Majda (1980) for
dimensional splitting in multi-dimensional homogeneous equations, and by Tang &
Teng (1995) for time splitting in one-dimensional scalar laws with source terms.

Nevertheless, this decoupling introduces numerical errors. The decomposition of
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the equations into scalar fields is not straightforward, i.e., the quantities known
- as Riemann invariants are now not constant along characteristic trajectories. This
error can be significant in systems with multi-mode instabilities and multiplicity of

spatial and temporal scales, such as the Euler equations for reacting flows.

An altei‘nate approach was recently introduced by Lappas et al. (1995) who de-
veloped an unsplit MUSCL-type scheme for the two-dimensional compressible Euler
equations. The equations of motion of a compressible, non-reacting fluid, along the
characteristics in two and three space dimensions, are not homogeneous. They in-
clude a kinematic, source-like term that is proportional to the in-plane divergence of
the velocity field, i.e., the two-component divergence in the plane locally perpendic-
ular to the classical characteristic. As a consequence, the classical characteristics do
not serve as paths for Riemann invariants in more than one space dimension. In the
analysis by Lappas et al.(1995), a general methodology is developed that defines
manifolds in space-time, dubbed Riemann Invariant Manifolds, along which the
equations are decomposed into the same scalar fields as in the one-dimensional case
and solved numerically. These manifolds may appear to be space-like, or time-like,
in the classical description, depending on the flow-velocity gradients, but embed the

paths along which the characteristic equations apply (exactly).

In the present work, the work of Lappas et al. (1995) is extended to systems
of hyperbolic conservation laws with source terms, such as compressible, reacting
flows. This chapter deals with the development of these ideas for a scalar conser-
vation law with a nonlinear source term. Extensive numerical experimentation has
been conducted. The results are compared with approximate solutions, or exact
solutions whenever possible. The role of the stiffness of the source term has also

been examined.

1.1 General Formulation

Consider the following initial value problem for the scalar u(z,t):

%u + -(%f(u) = g(u), z € [0,00), (1.1a)

u(z,0) = ue(z) €[0,1]. (1.1b)
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The corresponding homogeneous law is associated with a convex entropy pair, i.e.,

the entropy function: ¢(u), and the entropy flux: ¥(u), satisfying
¢'u = ¢u f u .

The entropy pair is subject to the following entropy condition:

o} 0
—_— —_— < . .
2 9(u) + oaj(u) < 0 (12)
Furthermore, the source term g(u) is assumed to satisfy
g(u) € C3([0,1], ®), (1.3a)
g9(0) = g(1) = 0. (1.3b)

Let 2 = [0,00) X [0,T]. A bounded measurable function, u(z,?), is a weak solution
of (1.1) if V€ € CY(£2) with compact support in ([0,00) x [0,T))

//Q(uﬁt + f(v)é:)dzdt + /Ooouo(x)g(m,())dx = — //Qfgdxdt. (1.4)

Existence and uniqueness of weak solutions for this problem was given by
Kruzkov (1970). The source term g¢(u) is constructed to possess two equilibrium
values at © = 0 and v = 1. The large-time solution of the above initial value prob-
lem may approach one equilibrium value or another, depending on the nature of

the source term. The decay estimates for the corresponding homogeneous law, Lax
(1957), (1973), do not hold for the above problem.

The characteristic decomposition of the problem yields:

((ili_ltt = g(u), along % = fu. (1.5)
Motivated by the fact that for the corresponding homogeneous law, v remains con-
~ stant along characteristics, someone could ask the question: Along which curve in
space-time does u remain constant? The answer is that, at smooth parts of the

flow,

du dz . g(uv)

The geometry of this curve depends locally on the spatial derivatives of the solution.

These derivatives are known for any time the solution itself is known, i.e., all the
necessary elements to construct this curve in space-time are available, without extra

cost.
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1.2 "“Descrip”tion'a of the Algorithm and Numerical Results

Consider the initial value problem formulated as above, for f(u) = u?/2:

u(z,0) = uo(z) € [0,1]. (1.7b)

A typical nonlinear term satisfying (1.3a) and (1.3b) is

g(u) = éu (1-u), (1.8)

where ¢ is a coefficient measuring the stiffness of the system. An entropy pair

associated with the corresponding homogeneous law is given by:

Bu) = v Y(w) = gut (1.9)

In the case where the source term is given by (1.8), and for smooth ug(z), the

equation of the characteristic decomposition yields:

etle
) = 1.10
u(x’ ) uo 1 + (6t/€ _ 1)’U,0 bl ( a')
along the curves
T = zo+elog [1 + (et/* — 1)u0] . (1.10b)

Given this relation, one can deduce the following shock-formation criterion:
For the initial value problem given by relations (1.7) and (1.8), a shock is formed if
the following inequality is satisfied:

up(z) + euh(z) <0, for some z , (1.11)

~ where ug(z) is the derivative of ug(z). The shock-formation time is given by:

ts1. = € log (%) ; A(z) = (uo(e) + eug(Z))min - (1.12)

The equation of the constant-u curves is given by

dz _ gw) _
dt “_au/am = v(@1). (1.13)
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~ The issué of the limiting case du/0z — 0 has to be addressed. First it should
be noted that at the points in the (z,t)-plane where the spatial derivative of the
solution approaches zero, there is no singularity of the equation. The curve defined
by (1.13) becomes locally parallel to the z—axis at those points. Then, it can not
be used for the computation of the fluxes at the interfaces. Additionally, a non-
zero but very small value of u, (it can occur, say, in the cells neighboring the one
where u, = 0) might lead to a large value of v(z,t). Then a small time-step would
be necessary when equation (1.13) is to be integrated numerically, to maintain the
desired level of accuracy. For these isolated cases it would be better to find the
fluxes at the interfaces by employing a Taylor expansion. In the following, it is

shown how these ideas can be combined in a simple and uniform manner.

A similar phenomenon can occur in the application of shock-capturing schemes
- for the numerical solution of Hamilton-Jacobi type equations. A well-known exam-
ple is the computation of moving fronts whose speed is curvature-dependent; see,
Osher & Sethian (1988), and Sethian (1990). The equivalent situation there arises
when the speed of the front is locally zero. No serious difficulties have been reported

in the computations at these points.

The algorithm proposed for the numerical integration of the above problem
belongs to the class of second-order accurate MUSCL-type schemes and is described
below. Consider uniform spacing in the r—direction of length Az and let u7 be
the average of u in the j''-cell at time t = n At i.e.,

1

(j+1/2)Az
u? = — u(z, n At) dz . 1.14
o MR YO (119

Assume linear interpolation of u(z, nAt) in each cell:

| A
u(z, nAt) = uj + (uz)jz, z € [_Tx , 92—:5] . (1.15)

The slope of u(z,t) on each cell, (u;);, can be computed using a standard TVD

limiter. In the present algorithm, van Albada’s limiter is chosen, van Leer (1984):
(ug); = ave(uy ,ul), (1.16a)

where

! a u, . —u”?
uy = L2371 uf = 3L 7 (1.16b)

z Az
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\  a+b (a —b)?
ave(a, b) = 2 (1 - m ) (1160)

and ¢ is a small number, (¢? < 1).

The conservation law (1.7) is approximated by the following explicit finite-

difference scheme:

TN T Ay 2 2 2 \I \"it1/2 Yi-1/2

. ,— e ((u;‘i’ll//gy B (u;’fll//zzﬁ) .\ At (g( n+1/2) +g( n+1/2)> .

(1.17)

7:11 /22 denotes the value of u at the right interface of the j*-cell

at a time t = (n + 1/2) At. It is evaluated by tracing the constant-u curve forward

In this relation u

in time, as given by (1.13). This is done by locating the point z, that lies on that
' n+1/2

curve and satisfies u(z,,nAt) = Ui1)z

Az

At (n+1/2)At dt
5~ 2y = Shuleyndt) — o(ulapnbd) [ &

At Uz

Assuming linear interpolation of both u(z,t) and g(u) at each cell, this relation

gives:
Az At " o (n+1/2)At g4
o T T ?(uj + (uz)jzp) — (g(uj) +9u(uj)(ux)j$p) /At w (1.18)

The integral appearing on the right-hand side of (1.18) can be evaluated by the
forward Euler method. Numerical experiments, however, showed that the accuracy
of the algorithm can be improved by using a trapezoidal rule with the right end-
point approximated by a Taylor series:

/(n+1/2)At d

At
At 'u—z = —E-h(uj,(uz)]), (1.19)

where

w11 1 _ wfu, (u2);)
h(uj, (us);) = 5 ((ux),- + (uz)j+%(u,n),-)> ==, (1.20)

(uee)i = (2)j (gu(uf) — (ua);) - (1.21)
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“Equatio_nw (l.fg) must be supplemented with the appropriate jump relations that
take care of discontinuities, ¢.e., an appropriate Riemann problem has to be solved
locally at the interface. The Riemann problem for the corresponding homogeneous
law (inviscid Burgers equation) admits a self-similar solution, depending on z/t
only; see, for example, Lax (1973). For the non-homogeneous conservation law, the
Rankine-Hugoniot relation remains the same, but the rarefaction wave no longer
admits a self-similar representation. As z — 0 and ¢ — 0, the solution of the

non-homogeneous case approaches the self-similar solution of the corresponding

homogeneous problem.

Furthermore, the process of solving the discretized version of the ODE that
holds along the curve (1.13) is sufficient, for locally smooth solutions, because it
gives second-order accurate results. The solution of the Riemann problem has to
- be employed only if discontinuities are present. These discontinuities, however, are
due to the convective terms of the conservation laws and not the source terms,
hence the inclusion of the source terms gives just a higher-order correction (for a
detailed discussion on this subject, see Pember (1993)). Therefore, the self-similar
solution can be used for computational purposes without loss of accuracy. For the
conservation law under consideration, and given the fact that u(z,t) > 0 (thus only
~ shocks that propagate to the right are admissible), the numerical solution of the

Riemann problem reduces to the following procedure.

Let uy, ,up the solution at the left and right side of the j** interface:
: n o Az
up = uj + '—2—(%)1',
Az
UR = u;-'+1 - —2—(u,~,),~+1 )
and let Au = up —ur. Let u(z,,nAt) be the value evaluated by tracing the

* invariant curve (1.13)in time, as described earlier, and let v(z,,nAt) be the tangent

of (1.13) passing through (z,,nAt). Then, u;:'_'ll //22 is given by:

u(zp,nAt) , for v(zp,nAt) >0,
n+1/2
Uitz = : (1.22)
u(zp,nAt) — Au, for v(zp,nAt) <0.

As already mentioned, in the absence of discontinuities, this procedure gives:

= u(zy,nAt) = uj g (% _ u;l) (uz)i + 9 (u;‘) w(u;}’(uz)j)

T2 14 8 (ue)j — Ggu (uh) w(u?,(us);)
(1.23)

n+1/2
Uiti/2
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At the limit u, —+ 0, the above relation has no singularity and it can be used even
- for this limiting case. The following expression, based on Taylor series expansion,
could also be used:

Az At

+1/2 ;
U?+1/2 = u;’ + ?(uz)J -I- ?(ut)] , (124),

(both expressions result in second-order accurate schemes). The fact that for this

particular scalar conservation law Taylor series expansions are not necessary to

avoid division by zero, can not be easily generalized to systems of equations.

Finally, it is worth mentioning that any interpolation procedure can be imple-
mented with the algorithm, because the interpolation step is in principle indepen-
dent of the nature (split or unsplit) of the scheme. This step, however, plays an
important role in the accuracy of any shock-capturing method. This is more so in
the present case, because efficiency and robustness of the scheme depend greatly on
the accuracy with which the “invariant” curve (1.13) is known, and hence on the

accuracy with which the spatial derivatives of the solution are approximated.

As a first test of the scheme, the source term given by (1.8) is considered, with

¢ set equal to unity. Initial and boundary conditions (IC’s and BC’s) are given by:

z(l—z), forxz <1,
uo(z) = (1.25)
0, forz>1.

and

u(0,t) = 0 u(oo,t) = 0, Vit. (1.26)

The results obtained for this problem are given in Fig. 1.1. For this test case,
CFL = 0.6. A shock is formed at t = 0.61803. The value of u behind the shock
increases because of the source term, until « = 1 which is a stable equilibrium value
- (the value u = 0 is an unstable one). From then on, the shock propagates with a

speed s = 0.5. The evolution process is captured quite well by the present scheme.

As a second test, the initial conditions of the previous problem are changed to:

1, for Az <z <1,
uo(z) = { (1.27)

0, forz>1,or 0<z<Azx.



u(x)

F1G.1.1 Spatial profiles for g(u) = u(1—u), and IC’s, and BC’s given by (1.25) and
(1.26) respectively. Profiles at ¢ = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0.
Az =0.02.

Results for this problem are given in Fig. 1.2. For this test case, CFL = 0.6. The
left discontinuity, initially located at x = 1, becomes a rarefaction wave. The head
of this expansion, which is an “acoustic” disturbance, moves with characteristic
speed ucn = 1.0, while the tail stays at the origin because the characteristic speed
there is zero. The right discontinuity moves with a shock speed s = 0.5. As soon as
the head of the expansion reaches the shock, the shock starts to decay. This decay

stops because the source term eventually restores the /post-shock value at the upper

equilibrium level.

Consider now the following Riemann problem: |
0, for0 <Lz,
up(z) = { (1.28)
1, forz>0.

For this particular problem, relations (1.10a) and (1.10b) can be used to get the

expression of the resulting rarefaction in closed form:

Et/# (ez/e _ 1) , forz <t
w(z,t) = { ¢ole (et/e _ 1) (1.29)

1, forz>t.
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F1G.1.2 Spatial profiles for g(u) = u(1 —u), and BC’s, and IC’s given by (1.26) and
(1.27) respectively. Profiles at t = 0.0, 1.0, 3.0, 5.0, 10.0. Az = 0.02.

The computed rarefaction, as shown in Fig. 1.2 (and for times that the post-shock
value is unity, so that u gets the equilibrium values at the endpoints of the rarefac-

tion), are in excellent agreement with the above relation.

The same problem is also considered, but now the source term is given by
g(u) = —u(l—u). (1.30)

The only difference with the previous problem is in the sign of the source term.
Because of this sign change the value u = 1 is unstable and the value u = 0 is
stable. Expressions for the characteristics and the shock-formation criterion can
also be derived for this case. Numerical results for this problem are shown in Fig.
1.3. Again, they are obtained with CFL = 0.6. It can be verified that the shock
wave decays with a rate faster than O(1/+/t), which is the decay rate for a shock

wave in the corresponding homogeneous law.

The issue of the stiffness of the source term will now be discussed. Many authors
have devoted attention to the numerical integration of hyperbolic PDE’s with stiff
source terms and the spurious solutions that might be obtained; see for example
Colella et al. (1986), LeVeque & Yee (1990), Bourlioux (1991), Griffiths et al. (1992),
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F16.1.3 Spatial profiles for g(u) = —u(1 — u), and BC’s, and IC’s given by (1.26)
and (1.27) respectively. Profiles at ¢ = 0.0, 1.0, 3.0, 5.0. Az = 0.02.

and Pember (1993). Even though shock-capturing schemes are stable in stiff cases,
coarse spé,tia,l resolution may give incorrect propagation speeds of discontinuities.
This is because the source terms are activated throughout the region occupied by
the smeared shock, in a non-physical manner. The result is a spurious shock speed,
usually of one cell per time-step for coarse resolutions. It is also acknowledged,
Bourlioux (1991), that finer temporal resolutions produce shock speeds of one cell
per 2 —3 time-steps. Pember (1993) also pointed that out, and he additionally
conjectured a criterion for the non-appearance of spurious solutions by implicit
schemes for dissipative 2 x 2 systems. The criterion is the commutability of the
- vanishing viscosity limit for viscous regularizations of (1.7), and the limit of infinite
stiffness. Chen et al. (1994) proved that this commutability holds for such systems.

In the present numerical investigations, the focus is on the scalar law given by
(1.7) and (1.8). The proposed scheme is compared with its equivalent split scheme,
that is

u™l = LAY LAY £ (A1) (yn) (1.31)

Here, Ly is the numerical solution operator for the corresponding homogeneous
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Ou O [u?
5 + B2 (-2—> =0. (1.32a)

| "It is a MUSCL-type algorithm like the nonlinear version of scheme III of van
Leer (1977). The flux at the interfaces at ¢t = (n+1/2)At is evaluated by tracing the

characteristic dz/dt = u and solving the Riemann problem associated with (1.32a).

conservation law

Ls is the numerical solution operator for the ODE

— =g9. (1.32b)

In the present work, Ls is selected to be the second-order accurate, Runge-Kutta
scheme. It could be argued that a more efficient split scheme might had been
selected, such as an implicit one. But then again, the same is true for the unsplit
scheme; the implicit version of the unsplit scheme for a scalar law can be easily
implemented. The choice is made among second-order accurate schemes that had
already been used in systems of PDE’s such as the Euler equations. The MUSCL
algorithm used in the split scheme is generally regarded as one of the most efficient
algorithms. It is also worth mentioning that the proposed unsplit scheme does not
require more operations per time-step than the selected split algorithm; i.e., the

computational cost is the same for both schemes.

Initial conditions are given by

1, for x <1,
uo(z) = { (1.33)

0, forz>1,

with boundary conditions,
u(0,t) = 1, u(oo,t) = 0, Vt. (1.34)

For both algorithms, the discretization is Az = 0.02 and the CFL number is 0.8.
Results for € = 0.01, 0.02, 0.03, 0.05, and 0.07 are given in Figs. 1.4.

Let s be the shock speed. For this problem, s = 0.5. The relative error:

Snumerical — Sexact

9
Sexact
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is 'pl‘otterdw for both schemes in Fig. 1.5. The calculation of the numerical shock-wave
spéeds is based on the level set u(z,t) = 0.5. The split scheme gives a smaller error
than the unsplit one in the regime At/e < 0.5, but in that regime the relative error
is above 40% for both schemes and would usually be unacceptable. The unsplit
scheme seems to work slightly better than the split scheme in the cases where the
above ratio is small. For ¢ > 0.1, both schemes give an error less than 10%. For
values of ¢ less than 0.01, the computed wave speeds are one cell per time step. The
numerical solutions go unstable for ¢ = O(10°) with both schemes. Results for this
test case are also obtained by the unsplit scheme (1.17) based on the Taylor series
expansion (1.24). The difference between the results given by that scheme and the
ones given by the proposed unsplit scheme is negligible. Subsequently, the same test
problem is solved with smaller CF L numbers, namely CFL =0.5 and CFL = 0.2.
The changes, however, in the numerical results are small for both schemes. This
“observation reflects the fact that both the spatial and the time discretization have

to be kept small to avoid spurious solutions.

It is interesting to mention that LeVeque & Yee (1990) studied the equation

1
Ut-i-uz:"g“(u—l) (u—é—) )

with initial data given by (1.33). They used split algorithms to solve this problem
and they reported no spurious wave speeds for At/e ~ 0.5. This is most likely due
to the difference in the source terms. For the source term in this equation, the pre-
shock value, u = 0, is a stable equilibrium. In contrast, for the source term in the
present work, the pre-shock value u = 0 is an unstable equilibrium. Consequently,
values of u(z,t) even slightly higher than 0 activate the source term which tends to

" increase u until the stable equilibrium is attained.

In the rest of this chapter, the issue of spurious continuous solutions is exam-
ined. The conservation law (1.7) is considered, with a source term given by (1.8).

Initial and boundary conditions are given by
up(z) = 7%, (1.35)

u(0,t) = 1, u(z — o0,t) = 0, Vt. (1.36)
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h Accgrding to (1711), a shock is never formed in this problem. Combining equa-

. tions (1.10a) and (1.10b), we deduce the following expression for u(z, t):

- f1, : forz <t,
u(z,t) = < e (1.37)
et~* [u(z,t) + e/ (1 — u(z,t))] , forz>t.
Then, for ¢ < 1, .the following approximation holds:
1, forz <t,
u(z,t) ~ e—(&—1) forz>t. (1.38)

et/ 4 =1 (1 _ e—t/e) ’

The acoustic disturbance, located at z = ¢, initially set at the origin, travels
with a speed equal to unity. Then, for an extended region, the spatial decrease
of u(z,t) is very slow, i.e., u(z,t) is almost equal to 1 within this region. The
length of this region increases with time at a rate (1/¢ + 1). After that region, the
spatial decrease of u(z,t) is exponential. Therefore, the solution to this problem is

approximately an exponential profile travelling with speed

Results for this case, obtained by the split scheme, the proposed unsplit scheme,
and also by the unsplit scheme (1.17), based on the Taylor-series expansion (1.24),
hereafter dubbed as “unsplit - TSE”, are presented in Fig. 1.6, for ¢ = 0.01. The
exact solution, computed from (1.37) using Newton iteration, is plotted for compar-
ison purposes. It is clearly seen that the proposed unsplit scheme and the MUSCL
split scheme perform better than the unsplit scheme based on Taylor-series expan-
sion. Furthermore, the proposed scheme is slightly superior than the split one. The
CFL number is 0.5 for all schemes. When the CFL number is increased to 0.8, the
proposed unsplit scheme is again very accurate, and slightly superior than the split

- scheme; see Fig. 1.6¢c. For ¢ = 0.01 the relative error,

Cnumerical — Ce.p.

’
Ce.p.

in the calculation of the speed of the exponential front against the inverse of the
resolution 1/Az, is presented in Fig. 1.7, for all three schemes. The calculation of

the numerical speed is based on the level set u(z,t) = 0.5.
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It is Woﬁh mentlomng that, for this particular shock-free case, an increase
of Az, W1th At held constant, did not seem to affect the accuracy of any of the
schemes. It is found that fixing A¢ at a value of order O(¢), and satisfying the
CFL condltlon, is enough to produce reasonable results, even when Az is an order
of magnitude or more higher than At |u|. This observation is not valid in the case

of discontinuous solutions, where both the spatial and the temporal discretization

have to be of order O(e), or less, to avoid spurious shock waves.

The accuracy of the schemes remains at the same levels when the value of the
stiffness coefficient is increased to 1/e = 500, with a proportionally finer resolution.
Again, the proposed unsplit scheme is slightly better than the split one, but both
outperformed the Taylor-series based algorithm (see Fig. 1.8).

In summary, it was observed that neither the proposed scheme nor the split one
give accurate wave speeds if the time-step is not smaller than the stiffness coefficient,
€, especially when discontinuities are present. This is not surprising because both
schemes are explicit, and resolution of the smallest time-scale is necessary. However,
for reasonable time-steps, the proposed unsplit scheme is slightly more accurate,

particularly in cases characterized by a large value of the stiffness coefficient.
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F1G.1.4a Performance of unsplit and split algorithm for the problem given by (1.7),
(1.8), (1.33), and (1.34) for € = 0.01.
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FiG.1.5 Relative error for the split and unsplit algorithm for the problem given by
(1.7), (1.8), (1.33), and (1.34). Az =0.02,CFL = 0.80.
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(1.8), (1.35), and (1.36) for € = 0.01. Az = 0.03, CFL = 0.5.
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(1.8), (1.35), and (1.36) for € = 0.01. Az =0.02, CFL =0.5.
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computations were performed with CFL = 0.5.
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CHAPTER 2

The One-Dimensional Euler Equations for Reacting
Flows

Research in detonating flows was pioneered by Von Neumann (1942), Zeldovich
(1960), Doering (1943), 50 years ago, and subsequently by others. Numerical in-
tegration of the governing equations, in high—reéblution meshes, was initiated by
Fickett & Wood (1966). In the past, progress was achieved in the study of the
stability; sée, e.g., Erpenbeck (1964), Lee & Stuart (1990), and the high- and low-
frequency asymptotic nature of detonations. See, e.g., DiPerna & Majda (1985),
Majda & Rosales (1984), (1987), Choi & Majda (1989), Majda & Roytburd (1990),
Kapila et al. (1983), etc.

Accurate algorithms for gas dynamics were first employed in detonation prob-
lems in the late ’80s using splitting techniques; see e.g., Colella et al. (1986), and
Yee (1987). Further development of these codes and extensive numerical investiga-
tions were carried through to the 90’s. See, e.g., Bourlioux et al. (1991), Lappas et
al. (1993), Pember (1993), Quirk (1993), LeVeque & Shyue (1995), ete. All these

algorithms use a splitting technique.

So far, efforts to design unsplit schemes have been based on the idea of modi-
) fying'the Riemann problem that has to be solved on the cell interfaces, to take care
of the presence of the source terms. This idea of a generalized Riemann problem
was introduced by Liu (1979) for quasi-one-dimensional (area-varying) gas flows.
He considered a Riemann problem where the initial data were not uniform on each
cell but satisfied the steady-state equations, in order to construct a random-choice
method to prove existence of global solutions for the non-homogeneous system of
equations. Glimm et al. (1984) and van Leer (1984) derived second-order accurate
schemes for such flows based on this idea. Roe (1986) proposed the addition of
extra terms in the expressions of the wave strengths in Roe’s approximate Riemann

solver, Roe (1981), that take into account the source terms.
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' VB‘en—'A"rtzi &: Falcovitz (1986), also concerned with area-varying flows, consid-
" ered a Riemann problem for the non-homogeneous equations with linearly-distributed
initial states. They derived expressions for the time derivatives of the unknown
~ variables, and their fluxes, by solving this Riemann problem, and then used these
expressiohs in the ﬁpwinding step of their algorithm. Application of this strategy

to unsplit schemes for reacting flows was presented by Ben-Artzi (1989).

» As mentioned earlier, Lappas et al. (1995) proposed another way to avoid
splitting, by Ihaking use of a particular decomposition of the governing equations.
This decomposition, which leads to the introduction of new curves in space-time,
was applied in the first chapter for a scalar conservation law. In this chapter, the
work of Lappas et al. is extended to systems of hyperbolic conservation laws with

source terms, such as compressible, reacting flows.

For one-dimensional systems, a set of curves is defined in space-time, such
that the equations that hold along these curves are the same as the equations that
hold along the characteristics in the corresponding homogeneous case. As in the
case discussed by Lappas et al., the local geometry of these curves depends on the
spatial derivatives of the flow variables, as well as on the source terms themselves.
These curves facilitate the design of unsplit algorithms. In particular, an effort has
been made to improve the performance of the MUSCL-type schemes by constructing
algorithms in which the integration of the equations, including the contributions of
the source terms, is performed in a single, fully-coupled step. This is achieved by
tracing the corresponding invariant curves, in a way analogous to characteristic-

tracing in the homogeneous case.

The case of detonation problems is particularly interesting, as regards applica-
tions, but it is also very difficult to simulate numerically. This difficulty arises from
the large number of time-scales and length-scales associated with these problems.

Numerical simulations are performed in regimes where the solutions are stable, but
 also in those fegimes where unstable and even chaotic behavior is encountered. The
source terms of the equations are typically stiff in these regimes. Comparisons with
results obtained by conventional schemes are made, accompanied by observations

concerning the behavior of high activation-energy detonations.



23
" 21 General Formulation

A homogeneous, first-order system of M quasi-linear equations in two indepen-

dent variables (z,t)
' ' ou OF(U)
ot + or

0, (2.1)

is called hyperbolic, if the Jacobian DF(U) has real eigenvalues A, £ = 1,..., M.
In the equation above, U = (uy,...,up) is the solution vector, and F(U) is the

corresponding flux vector. One can write the system in characteristic form:

dU
lk<—d—t-)k =0, k=1,...,M, (2.2)
(repeated index does not imply summation), with
d 0 0

This is done by performing the following steps:

1. Evaluate the eigenvalues of the Jacobian DF(U), and the corresponding
left eigenvectors 1 = (l1,...,lp)k, k=1,..., M.

2. Multiply system (2.1) by I, k=1,...,M.

There are cases where the system of ODE’s (2.2) is integrable. The equations
* describing isentropic one-dimensional gas dynamic flows represent such an example.

In such cases, the following relation holds:

dU dR;
= = { —= =0, k=1,... M. 2.4
li (dt)k (dt)k 0 Y (4)

The functions Ry, kK = 1,...,M, are called Riemann invariants, and remain con-
stant along the corresponding characteristic directions:
dz

5 = M, k=1.,M. (2.5)
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In general, “the 'system (2.2) is not integrable. Nonetheless, numerical evi-
: dence, coming mainly from results based on shock-capturing schemes for the one-
dimensional Euler equations of gas dynamics, e.g., van Leer (1979), and Colella
& Woodward (1984) has shown that 1t is useful for numerical purposes to try to
decompose the initial system of PDE’s (2 1) to the characteristic set (2.2). The
phrase numerical purposes can be defined as “development of algorithms that are
both accurate and stable”. As mentioned above, in the homogeneous case, the

system (2.2) holds along the characteristic lines (2.5).

The case of non-homogeneous systems, s.e.,

B_U + JF(U)
ot Oz

= G(U), (26)

is not so straightforward. In the later case, the set of equations (2.2) does not hold

along the characteristics (2.5). A straightforward calculation shows that the system
of ODE’s (2.2) holds along the curves defined by

de - G(U)

i Ak I, -0U/0s ’ k=1...,.M. (2.7)

It is the system of equations (2.2) that can be easily discretized and solved
numerically in the upwinding step of a shock-capturing solver. While this decom-
position holds only at smooth parts of the flow, this is not a serious restriction. The
numerical treatment of the above decomposition in non-smooth parts of the flow is
completely analogous to the treatment of the characteristic decomposition, for the
homogeneous case, when shocks are present. Even though the characteristic decom-
position in the homogeneous case holds only when the solution is continuous, it is
still useful nurﬁerically in the presence of shocks because it holds on either side of
the discontinuity. Furthermore, the computation of these curves can be performed
~ at no extra cost, since the information about the spatial derivatives of the flow is

always available at points where the solution is known.
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" 22 Formulation of the One-Dimensional Detonation Problem

Cons1der a simple model of chemical interaction of two calorically perfect gases,

A — B, assummg one-step, 1rrever81ble, Arrhenius kinetics, and the absence of

d1531pat1on mechanisms.

The conservation equations are given by:

0 0

) o, 5.
5(ﬂﬂ)+$(pu +p) =0,

d 8
3; (Pee) + - [(pec +p)u] = 0,

g_t (pz)+ (7% (puz) = pg(T,z) .

The total specific energy and the source term are given by

= gzt i
e = ——————— —
)
and
9(T,2) = —Kze B/T

- respectively. The equation of state reads:

T=2.
P

(2.8a)
(2.8b)
(2.8¢)

(2.84)

(2.9)

(2.10)

(2.11)

In the equationé above, z is the reactant mass fraction, « is the specific-heat ratio

(assumed the same for both species), and go is the heat-release parameter. E, is

the activation energy parameter, and K is an amplitude parameter that sets the

spatial and temporal scales. As employed here, 0 < z < 1. It equals unity, when

the material is totally unreacted, and zero when the reaction has been completed.
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Dréspitevthe"simﬁlicity of this model, éomputing such flows is quite challenging.
- The reason is that for a wide range of values of the parameters of the reaction-rate
equation, ¢o, Fa, K, this system of conservation laws is linearly and non-linearly
~unstable. »FurthérnAlore, the reaction-rate equation is generally stiff, and this leads
" to a large range of (coupled) spatial and temporal modes. Required resolution
for numerical simulation of these flows typically exceeds available computational

resources.

The system (2.8) can be written in conservation form, i.e., in the divergence
form of (2.6), by setting;:

U = [uy, ug, us, u4]T = [p, pu,pet,pz]T , (2.12a)
u? U9 Ug Uy T
F(U) = [Uz, -2 + p(U), —=(us +p), ] : (2.12b)
Ui Ui Ui
G(U) = [07 0, _QO(’Y - 1)9) g]T ] (2120)
with
uj
p=pU) = (v—1){us— ou. ot ) (2.13a)
51
g = g(U) = —Kuye Eeur/p(U) (2.13b)

The eigenvalues of the system are:

A= ud [ (2.14a)
A2y = u, , (2.14b)

Ay = u—,[—. (2.14¢)

=

The second eigenvalue is degenerate; therefore, z can sustain jumps only across

contact discontinuities.
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~ The following curves in the (aé,t)—plane can be defined by performing the de-

composition of the system to a set of ODE’s, as described in the previous section:

: d
Cy: E:E =uta+tuy, (2.15a)
t
dz
C() : E =u-+tug, (215b)
dz
C: i U+ Uy, (2.15¢)
with
— yp
a = b
p
and
Kg(y—-1 ~B/T
uy = _Haly=lpze (2.16a)
Op/0z £ pa(Ou/Ox)
K go(y -1 ~Ea/T
4y = —Ttoly=1pze (2.16b)
Op/dz — a? (0p/0z)
Kze BT
The ODE’s that hold along these curves are:
along Cy: dp £ padu =0, (2.17a)
along Cy : dp —a*dp =0, (2.17b)
along C; : dz =0. (2.17¢)

'

There can be parts of the flow where the values of the added convection ve-
locities, ugq, for a = 0, +, —, r, defined by (2.16) are small and the curves defined
by (2.15) are very close to the corresponding (classical) characteristic curves. But
there can also be parts of the flow where these are not negligible. In the latter

case, the propagation speeds, u & a + uy , will be considerably different from the
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clarsvsi(;al 'charact”erisﬁc speeds, u + a, and might even differ in sign. Interestingly,

: p‘ortions of these curves that emanate from some point, P, in the (z,t)-plane, might
lie outside the region enclosed by the (classical) characteristics emanating from P,

~i.e., the doma,iﬁ of dependence of P. In such cases, the curves (2.15) might then
be classified as locally space-like, otherwise locally time-like. Nevertheless, it is the
(invariant) curve equations given by (2.7) that are the ones along which the char-
acteristic equations apply (exactly). These equations translate to the system (2.15)
for the problem under study here.

2.3 Description of the Numerical Scheme

A second-order accurate MUSCL scheme, based on the above decomposition,
is designed to solve the system of equations (2.8) numerically. Consider a finite-
volume formulation, s.e., space is discretized to a set of computational cells of length

Az. Additionally, consider mass-averaged values of the conservative variables

Tjt1/2
mj = / pdz , (2.18a)
Tji-1/2
Tjt1/2
mju; = / pudz , (2.18b)
Tji-1/2
Zit1/2
mjey; = / peydz | (2.18c¢)
Tj.1/2
Tjt1/2
mjzj = / pzdz . (2.18d)
Tji-1/2
Finally, set : :
Tit1/2
mjg; = / pg(T,z) dz . (2.19)
z

i-1/2

* In these expressions, average values of all quantities in the 7 cell are denoted by

the subscript 7, while values of various quantities at the cell boundaries are denoted
by j £1/2. '
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By using the following notation for the fluxes of the system

Fn = pu, (2.20a)
F, = pul+p, (2.20b)
Fe = peiu+ pu, (2.20c)
F, = pzu, (2.20d)

the conservation equations at the j*® cell are written as

%mj + (Fm)j+1/2 - (Fm)j_1/2 =0, (2.21a)
%(mm) + (Fu)jprye — (Fu)jogye = 0, (2.21b)
%(mjetj) + (Fe)jpre — (Fe)j_yye = 0, (2.21c)
-(;i—t(mjzj) +(F)jpaye — (F)jija = mig; - (2.21d)

As in the case of the scalar conservation law, linear interpolation is used for
all quantities on each cell. The slopes are estimated by van Albada’s limiter (1.16).
The proposed scheme, which evaluates the solution at time (n + 1)At from the

solution at the previous time nAt, can be written as:

n n n+1/2 n+1/2
mpth = ml— At|(Fa)ihs = (Fa)i 0] (2.222)
(mju)™*" = (mju;)" = At [(R)ThTs - (R0 (2.22b)
(mje;)"t = (mjeq)” — At [(Fe)}’;fll,’j—(Fe);‘fll//f] : (2.22¢)

(mjz)"*! = (mjz;)" — At [(Fz)?ﬂ,/f — (B3 + (mjgj)”+1/2](2.22d)

n+1/2 nt+1/2 n+1/2 n+1/2 .
j+1//2 ’ (Fu)j+1//2’ (Fe)j+1//2 a'(Fz)j+1//2 , are given by

equations (2.20) and are evaluated by solving the ODE’s (2.17) numerically along

The numerical fluxes (F,)

the curves defined by (2.15). The case where a denominator in the expressions for
Uy, U—, Up, U; vanishes is treated in the same way as in the scalar law. Since the

points of vanishing denominators are not points of singularity but simply points of
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singﬁlérity but simply points of locally zero convection upwinding can be obtained
- by a Taylér expansion in time. In practice, when one of these denominators becomes
~smaller that a critical value inside a cell (in the present implementation of the
~ scheme this value is 107, made dimensionless with respect to the reference state),
Tayl.or—se'ries expansion is used. This procedure ensures, uniformly, second-order
accuracy, in both space and time, for smooth parts of the flow. Numerical tests

showed that no spurious oscillations occur because of the use of Taylor expansion

at those isolated points.

This set of ODE’s must be supplemented with the appropriate jump relations,
to take care of the presence of the discontinuities, .e., a Riemann problem has to be
solved locally at each cell interface. The exact jump relations have to be used in the
cells where the density and pressure slopes are large. The acoustic approximation
can be used otherwise. A detailed description of the Riemann solver that is used
can be found in Lappas et al. (1993). The Riemann problem that corresponds
to this set of equations, referred as “Generalized Riemann Problem” (GRP), is not
the same as the classical one-dimensional, gasdynamic Riemann problem (RP). The
GRP is not a self-similar problem and its solution is more complicated. The shock
and expansion waves are curved in the (z,?)-plane; i.e., they are accelerating. The
solution to the GRP has been worked out by Ben-Artzi (1989), who showed that
the solution approaches the solution of the RP in the limit 2 — 0, and ¢ — 0.
The use of the classical Riemann problem for numerical purposes is, therefore,
justified by the same arguments that were mentioned in the first chapter of this
work, which deals with scalar laws. It will be verified in the next section that,
using this approximation, the acceleration of the various waves can be captured

numerically quite well.

2.4 Numerical Results for One-Dimensional Detonations

In the early 40’s, Zeldovich (1960), von Neumann (1942), and Doering (1943)
independently propose‘d that detonation waves in one-dimensional flows are steady
shock waves, propagating in a medium of local thermodynamic equilibrium, and
followed by a reaction zone of finite length. This theory is historically known as the
ZND theory of detonations. Given a fixed state ahead of the detonation, the com-

putation of the spatial profiles of the solution reduces to the numerical integration



31
" the pressﬁre and the reactant mass fraction are given in Figs. 2.1.

For the detonations governed by the one-step irreversible Arrhenius law (2.9b),
there is a minimum shock velocity. This is the Chapman-Jouguet velocity, Dcj. A
reaction process characterized by this shock velocity is called a Chapman-Jouguet
detonation, The point at the end of the reaction zone of a Chapman-Jouguet

detonation is sonic. For every detonation, the shock velocity, D, has to satisfy:

D> Dgy.

The parameter f, defined as f = (D/Dcj)?, is the overdrive factor of the
detonation. The half-reaction length, L,/, i.e., the distance between the shock
wave and the point where z = 0.5, has been used as the unit length, throughout.
'The half-reaction length divided by the sound speed ahead of the shock serves as
the time unit. Experimental studies suggest, in contrast with ZND theory, that
detonation phenomena are generally unstable and possess a far more complicated
structure; see, e.g., Fickett & Davis (1979). Linear-stability analysis of the equations
(2.8) by Erpenbeck (1964), and Lee & Stewart (1990), verify that the system is

unstable for a large range of the parameters v, go, £,, and f.

In the following, the variables and parameters of the system have been made
dimensionless by reference to the uniform state ahead of the detonation front, hence
f becomes the stability parameter of the system. The remaining parameters have

been fixed as follows:
,Y=1‘27 q0=50, Ea,=50.

. According to linear-stability analysis, there is a critical value f* at which the real

part of one of the eigenvalues of the system changes sign and becomes positive.

The system is unstable for overdrives below this critical value, with additional
eigenmodes becoming unstable as f decreases. This is to be expected, since a
decrease in the overdrive implies lower post-shock temperature and an increasing
ratio of the activation energy over this temperature. That makes the reaction zone
more sensitive to small changes of the hydrodynamic shock strength. The critical
value of the overdrive factor, for the above set of parameters, is f* = 1.72. It
should also be noted that the value of the stiffness coefficient, K, is determined
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cc_)mplétely"by t_}ie value of f and the normalized speed of sound ahead of the shock,
- /¥: In particular, K increases as the overdrive factor f decreases, i.e., the lower

the post-shock temperature is, the slower the reaction becomes.

\ In the numerical simulations presented here, the spatial ZND profiles for various
overdrive fa,ctors are evaluated and given to the computer code as initial condition.
The truncation error is left to trigger the instabilities, and the evolution process is
observed. The state at the left boundary is always given by the state at the end
of the reaction zone at ¢ = 0, that is the left end-point of the ZND profile. All
computations are performed with CFL = 0.50, where

CFL = 2—; lu + al .y - (2.23)

As a first test, the overdrive factor is taken to be f = 1.8. This is a case
of a stable detonation. The shock speed and stiffness coefficient for this case are
D =9.1357, and K = 145.69, respectively. The time history of the shock pressure,
i.e., the pressure immediately behind the shock is presented in Fig. 2.2; the fluctu-
ation of the shock pressure decays with time. The resolution for this simulation is
15pts/Ly /2. The results of the time history of the shock pressure are in very good
agreement with the results obtained by Bourlioux et al. (1991), using the Piecewise
Parabolic Method (PPM) and front-tracking, with the same resolution.

The overdrive factor is then lowered to f = 1.6. This case corresponds to
D = 8.6134, and K = 230.75. Linear-stability analysis predicts one unstable
mode for this case. The time history of the shock pressure is presented in Fig.
2.3a. The spatial profile of the pressure at ¢ = 80.0 is presented in Fig. 2.3b.
Following Quirk (1993), a convergence study for the peak shock pressure for various
numerical schemes is performed, and the results are presented in Fig. 2.3c. The
numerical schemes are: PPM with front-tracking and mesh refinement, Bourlioux
et al. (1991), Roe’s solver with Superbee Limiter, Quirk (1993), Roe’s Solver with
the Minmod Limiter, Quirk (1993), and the present unsplit scheme. In this figure,
a relative mesh spacing of 1 corresponds to a resolution of 10pts/L,/,; similarly,
a relative mesh spacing of 0.25 corresponds to a resolution of 40pts/L;/,. The
schemes are seen to converge to approximately the value predicted by Fickett &
Wood (1979), who estimated that the peak pressure is 98.6.
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F1G.2.1a Typical spatial profile of the pressure for a ZND detonation.

z(x)

F1G.2.1b Typical spatial profile of the reactant mass fraction for a ZND detonation.
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v | Sﬁbscquentiy, numerical results are obtained for lower overdrive factors, namely
- f =1.40 and f = 1.34. For f = 1.40, the parameters are D = 8.06, and K = 411.98.
Linear-stability analysis predicts two unstable modes. The shock pressure history,

- which exhibits a period-doubling oscillation, is presented in Fig. 2.4a. The spatial
profile of pressure at t = 100.0 is presented in Fig. 2.4b.

For f = 1.34, the parameters of the problem are D = 7.88 and K = 504.91.
This is a case of three unstable modes, according to linear-stability analysis. The
shock pressure history and the spatial profile of the pressure at t = 100 are presented
in Figs. 2.5. The results for both overdrive factors are obtained with a resolution of
40 pts/ Ly /. Numerical simulations with higher resolution produce the same results

in both cases.

The overdrive factor is lowered further, to a value of f = 1.30. The shock speed
and stiffness coefficient for this detonation are D = 7.764, and K = 583.71. Linear-
stability analysis suggests three unstable modes for this case. Bourlioux et al. (1991)
proposed the existence of chaotic-pulsation instabilities because they observed a
sensitive dependence of the results on the initial data, as is characteristic of chaotic
systems with a small number (greater-than or equal-to 3) of degrees of freedom,
e.g., Nicolis (1995). Specifically, they observed that slightly-perturbed initial data

produced results that were qualitatively similar but quantitatively different.

Similar behavior is demonstrated in the present study in simulations performed
using the unsplit scheme. This can be verified by comparing the shock pressure
history of unperturbed initial profiles, as presented in Fig. 2.6a, with the pressure
history of perturbed initial profiles in Fig. 2.6b. To perform these simulations, a
perturbation is added to the ZND profiles of the fluid-dynamic variables given by a
sinusoidal wave of amplitude 0.1% of the values behind the shock, with wavelength

set to unity.

Numerical simulations using high-order algorithms for even lower overdrive fac-
tors had not been published until recently. Linear stability predicts an increased
number of unstable modes as f decreases. He & Lee (1995) presented results ob-
tained by a split algorithm, for overdrive factors as low as f = 1.10. For this
case, which corresponds to a shock speed of D = 7.1418 and a stiffness coefficient
K = 1389.58, they found that the initial perturbations die out, that the post-shock
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| ;\ra,lues of the variables become steady, and that the reaction front lags behind the
hydrodynamic shock at an ever-increasing distance (quenched detonation). They
attempted a connection between the detonation quenching they observed and linear-
stability analysis, noting that, at f = 1.165, the imaginary part of the first eigen-
value becomes zero. Linear-stability analysis, however, is helpful for overdrives close

to f* and not for overdrives close to unity.

Furthermore, this system of equations can not produce a quenched detonation
at larger times. This is because of the phenomenon of thermal runaway: the reaction
front stays temporarily behind the main shock and the temperature in the area
between the reaction front and the shock is low. In this area, therefore, the source
term on the right-hand side of the species equation is exponentially small. The
process in that region can be described as homogeneous combustion, i.e., after some
‘time, the source term becomes large and a rapid explosion takes place, resulting in

high combustion spikes.

An underresolved simulation for f = 1.10 is presented in Fig 2.7a. The pro-
posed unsplit scheme is used, with a resolution of 15pts/L;/,. The result is in
agreement with the result of He & Lee (1995), obtained with a mesh of 50 pts/L /,,
up to t = 60.0 (it is at that time that He & Lee stopped their simulation). The high
rise of the shock pressure that occurs at time ¢ ~ 65.0 is due to the phenomenon of

thermal runaway discussed above.

When the resolution is increased in the current simulations, a dramatic change
takes place (see Fig. 2.7b). The temporal profile of the shock pressure becomes
irregular, with no evident structure. At ¢t ~ 8.0, the shock pressure drops to a value
around p ~ 27.0. The temperature at this point is around T ~ 3.4, which is indeed
- too low to initiate and sustain the chemical reaction. Consequently, the reaction

front is convected by the flow and stays behind the hydrodynamic shock.

In the region between the reaction front and the shock, however, the temper-
ature is not constant. It can be verified that there are small pockets of material
with higher temperature (see Fig. 2.8a). Recall that the initial fluctuations in the
shock pressure produced shock waves that travelled upstream (they can be seen in
Fig. 2.8). These waves interacted with each other and some reflected back, travelled

downstream, and created the temperature gradients in the region discussed above.



38
Highéf—temperafure f)OintS are responsible for chemical-reaction initiation. The area

" between the initial reaction front and the hot spot remains inert. It develops to a

pocket of unreacted material as soon as the hot spot has burnt completely.

In the beginning, the reaction inside the pocket is slow because the source
term in the ‘species equation is still exponentially small. This early stage of the
combustion can be considered as a constant-pressure process. When the source term
becomes larger, a relatively-rapid explosion occurs. During this stage of combustion,
the density isiinitially almost constant (for inertial reasons) with the temperature
rise producing a large pressure rise. This pressure rise produces two shock waves,
one travelling downstream and one upstream. The downstream shock wave catches
up with the main shock. The time required for this to take place can be estimated
by the shock-pressure history; Fig. 2.7b. In this figure, the sudden jumps in shock
pressure, at time up to t ~ 55.0, correspond to the overtakings of the main front
by shocks produced during earlier explosions. The increase of the shock pressure
restarts the detonation process behind the shock, until it drops again to a value
p ~ 27.0. The shock wave that propagates upstream causes the explosion of the
pocket of unreacted material. This second explosion gives birth to a second pair
of shock waves. Spatial profiles of the flow variables during such an explosion are

given in Figs. 2.9.

This process repeats itself, until ¢ ~ 55.0, when the explosions become large.
After that, the detonation oscillates in an irregular way and appears to correspond to
the situation termed “spatial and temporal chaos”, e.g., Nicolis (1995). Resolutions
up to 250pts./Ly/, are used for this case. It is observed that resolutions finer
than 15 pts/L;/, produce qualitatively-similar, but quantitatively-different, results
at large times. In such highly-unstable cases, different resolutions are equivalent
to different initial conditions. Further numerical investigations, with much higher
resolutions, may be required for a definitive conclusion, even though the present
numerical evidence indicates clearly that the detonation does not quench and that
' the system exhibits chaotic behavior for f = 1.10.
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F1G.2.9a Spatial profiles of the flow variables at the area of an explosion, for a
detonation with overdrive factor, f = 1.10. Profiles at ¢ = 12.0, 13.0,

13.5. Resolution, 50 pts/Ly .
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-2,.5," | “Co.nclud‘i_ng Remarks

A new approach for evolving hyperbolic systems with source terms in one space
- dimension has been presented. Performing the decomposition of the equations to
" a set of scalar fields along selected curves in space-time, it is possible to identify
associated -.rivrivariants along these curves that permit the construction of unsplit

algorithms for the numerical integration of these laws.

The proposed scheme was tested on a scalar conservation law with a non-linear
source term, and on the one-dimensional compressible Euler equations for reacting
flows. The scheme is found to be accurate and robust. In the scalar case, increased
stiffness may, depending on the initial data, produce continuous solutions with
high propagation velocities. Unless the computational grid is sufficiently resolved,
these velocities may not be captured correctly with explicit schemes. Overall, the

proposed unsplit scheme is more accurate than the equivalent split version.

In the case of reacting flows, useful insight for the evolution of detonations
in the unstable regime was obtained. The question of the long-time behavior of
detonations near the CJ point is still open. Results obtained by the present scheme

indicate chaotic behavior of the system, in contrast with recent previous predictions.

An advantage of the new approach is that it can be generalized to multidi-
mensional flows, in a straightforward way. The system of conservation laws can be
decomposed to a set of homogeneous ODE’s, as in the one-dimensional case, that
hold along selected manifolds in (z,y,t) space. The study of the geometry of these
manifolds and the design of unsplit multi-dimensional algorithms is the subject of

the following chapter.
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CHAPTER 3

~ Unsplit Schemes for Multi-Dimensional Hyperbolic
Systems

Considerable amount of work had been devoted to the study of systems of
hyperbolic conservation laws in the past. Most of the effort was focused in systems
with two independent variables. These variables were, usually, time and a space
variable. As a result of this effort, it became possible to establish existence and
uniqueness of weak solutions for such systems and to derive important properties
of these solutions, such as their asymptotic behavior. It also became possible to
construct accurate algorithms for the numerical approximation of these solutions.
The concepts of characteristics and Riemann invariants played a significant role in
both the derivation of these theoretical results, and the design of stable and accurate
numerical algorithms.

The extension, however, of these theoretical results to systems with more than
two independent variables has not been successful. The extremely complicated
topology of the discontinuous solutions admitted by such systems has not allowed,
so far, the development of global existence theories. Furthermore, the design of
numerical schemes for multi-dimensional problems that share the same properties
as the equivalent one-dimensional schemes, has not been straightforward. As a
_consequence, numerical schemes that have been devised consist practically of a

patch of one-dimensional computations on each spatial dimension.

The problems arising in the computational efforts of hyperbolic conservation
laws with source terms are more complicated, because of the presence of a large
number of spatial and temporal scales. Additionally, the source terms are stiff
for most applications, and this makes the integration of the equations even more
difficult. The conventional approach for solving such systems is to introduce time-
splitting for the source terms, i.e., integration of the source term in an intermediate

time-step, in addition to dimensional splitting,.
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_ 1 Ré'ce'ntjly, Lappas et al. (1995) proposed a way to avoid dimensional splitting
-for systems of multi-dimensional homogeneous laws. They introduced a family of
“space-time manifolds, dubbed as Riemann Invariani Manifolds along which the
 system of equations can be decomposed into the characteristic ODE’s for the corre-
spon‘dingvone—dimen’sional case. This particular decomposition was employed in the
upwinding step of an unsplit, MUSCL-type scheme. This idea was also used in the
previous chapters of the present work to design unsplit algorithms for the numer-
ical solution of one-dimensional equations with source terms. In this chapter, this
decomposition is employed to systems of equations in two space dimensions. The
pl:oposed algorithm is an unsplit, multi-dimensional scheme. Neither time-splitting
nor dimensional splitting is performed. In Chapter 4, this algorithm will be used

for the numerical simulation of unsteady, two-dimensional detonations.

3.1 First-Order, Quasi-Linear Hyperbolic Systems

A brief review of the theory of hyperbolic systems is given in this section in
order to provide the necessary background for the material that follows. Consider
the euclidean space-time of N spatial dimensions, t x ®", and the following system
of M equations, satisfied at each point, (,x) = (¢,z1,...,2n) of t x RV:

ou ou

— +A4;,(U)— =G =1,...,N . 3.1

at + ]( ) a IL‘] ’ J ’ ) ( )
For this system of quasilinear equations, U(t,x) = [ui(¢,%),...,upm(t,x)] is the
solution vector, and G(U,t,x) = [¢1(U,t,x),...,9m(U,t,x)] is the vector of the
source terms. A;(U), j =1,...,N, are M X M matrices. Summation notation is

implied for repeated indices..

The Cauchy initial value problem for this system amounts to specifying initial
- data (referred to as Cauchy data) at points on some initial N-dimensional subman-
ifold of ¢t x RV, S, and determining U that satisfies (3.1) off this manifold. The idea
behind the hyperbolicity of a quasi-linear system is that the Cauchy problem be
Wéll—posed for it, that is there exists unique solution that depends continuously on
the data specified on S. It is interesting to see how the terms of the system (3.1) can
be rearranged so that the derivative of U normal to & (exterior derivative) can be

~ expressed in terms of the Cauchy data and its derivatives in S (interior derivatives).
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. The ;va,y' o do this is to consider a coordinate transformation and replace
(t,x) by a new vector, ¢ = [¢g,...,dn]. The components ¢;(¢,x), ¢ =0,...,N,

are assumed to be differentiable functions of their arguments. Keep the variable

.-t unchanged, i.e., ¢o = t, and assume that the manifold § is associated with one

pafticular cobrdinate, say ¢n. The following equation is then used to define the
manifold &+
o on(t,x) = 0. (3.2)

The other coordinates ¢;(t,x), ¢ =1,..., N —1, can be selected arbitrarily, provided

that the Jacobian of the coordinate transformation,
J = a(t,$1,.. . ,(EN)
I doy---,ON)

is non-vanishing at the points of interest, i.e., in the vicinity of §S. Then the system
(3.1) becomes

'(aﬂ B a¢N) ouU (IBQS,- 6¢i) ouU

ot T 4%s; ) aen T e V5, ) ba

(3.3)

+ = G(U,t,x). (34)

By making the substitutions

=9 4. 00
A=T5r T4,
(3.5)
_ (99 0¢:\ 90U
pe (124, 26) 00,
the system (3.4) yields:
| PSR (3.6)
9on . :

In the equations above, and throughout this section, repeated index j implies sum-

" mation from 1 to N and repeated index ¢ implies summation from 0 to N — 1.

Given Cauchy data on S, all the tangential derivatives
au
o¢;’

are known. Only the S-normal derivative, i.e., the exterior derivative, is not known.

i=0,....N—1,

It can be evaluated, however, by equation (3.6) provided that A~! exists. This

condition implies that the following relation must hold on a given point P of S:

Q(P;n,\) = det(A) # O. (3.7)



50

'Furthermore let V¢ N be the spatial gradlent of ¢ and define

\ = —0én/0t
— Vel
(3.8)
Vén
n = .
Von|
Substituting in the expression for Q(P;n, X), one finds that
Q(P;n,\) = det(~AI +n,A4;) . (3.9)

The expression (3.9) is a homogeneous polynomial of degree M in the quantities

(A\,n1,...,nN), and a first-order differential equation for ¢n(t,x).

The surfaces along which this polynomial equals zero are called characteristic |
surfaces. The normal derivative of the solution can not be determined along these
surfaces. Therefore, a discontinuity of this (or a higher-order) derivative, is possible.
Consequently, one can define the characteristic surfaces as surfaces across which
discontinuities of the derivatives of the solution can be present. The differential
equation that holds on a particular characteristic surface can be found by taking
the inner product of the original system with the appropriate left eigenvector 1,

ouU oU
L 5+ +,1k-(Aa——G> =0, k=1,...,M. (3.10)

The system of first-order, quasi-linear equations (3.1) is defined to be hyperbolic
at a point P in the space-time ¢t x R, if real characteristic surfaces pass through
this point. In other words, the system (3.1) is hyperbolic if the zeros Ay of the
polynomial Q(P;n, ) are all real, and if the corresponding right eigenvectors ry ,
satisfying

(—/\‘kI-l—njAj)rk =0, k=1,...,.M, (3.11)

(no summation on k) span the space EM. The property of hyperbolicity as formu-
lated above is a local property, and it depends on both the point P and the Cauchy
data prescribed initially.

Every curve x = x(t) passing through P that lies on a characteristic surface
is called characteristic ray, or bicharacteristic, of the original system of equations.
Recall that ¢n(¢,x) =0 on S; therefore,

d¢N(t, X)

gr =0 oné, (3.12)
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B A{vhich, by virtie of (3.8), yields the following relation for the vector tangent to S:
5 ~ dx

This relation serves as a definition of the bicharacteristics. Given the fact that
any surface on space-time can be regarded as a wavefront, Whitham (1974), one
can deduce the following simple geometric interpretation of the above relation: A
is considered to be the propagation velocity of & on the direction specified by n.
For every possible choice of n, there exists a different bicharacteristic direction.
The totality of these directions form the so-called characteristic cone. This cone is
tangent to the conoid that is generated by the characteristic rays that pass through

P. This conoid is referred to as the ray conoid.

Every non-characteristic surface can be either space-like or time-like. A surface
S is defined to be space-like at a point P, if A is positive definite at P; see Fig.
3.1. Insuch a case, the direction normal to § at P is inside the ray conoid and is
said to be a time-like direction. For example, constant-t hyperplanes are space-like
surfaces. Similarly, a surface S is defined to be time-like at a point P, if A is not
positive definite at P. In this case, the direction normal to S at P is outside the

conoid and it is said to be a space-like direction.

Existence and uniqueness theorems of classical (continuous) solutions of hyper-
bolic systems with Cauchy data prescribed on any space-like surface can be found in
Courant & Hilbert (1963). These theorems state that the solution U at a point P is
uniquely determined by Cauchy data prescribed on the bounded domain D that is
formed by the intersections of the ray conoid of P with the constant-t hyperplanes.

This domain is called domain of dependence of the point P.

Characteristic surfaces play a significant role in the proof of these existence
- and uniqueness theorems. Furthermore, it might happen that the ODE’s (3.12)
that hold on the characteristic surfaces are integrable and form a convenient set to
integrate, either analytically or numerically. The characteristic equations for isen-
tropic, one-dimensional, gasdynamic flow is such an example. But these ODE’s are
in general non-integrable. In such cases, the characteristic surfaces do not provide
any computational advantage against some other surfaces. Another transformation
of variables that leads to a more appropriate, for computational purposes, set of
ODE'’s has to be employed. In the following section, such a transformation is applied

to the compressible Euler equations of reacting flows in two space dimensions.
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t=const.
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F1G.3.1 The ray conoid through the point P the domain of dependence of the
solution at P at an earlier time, and the domain of influence of the solution
at P at a later time. The surface element passing through P is space-like.

3.2 Invariant Manifolds of the 2-D Euler Equations for Reacting Flows

Consider a simple model of chemical interaction of two calorically-perfect gases,
A — B, assuming one-step, irreversible, Arrhenius kinetics and absence of dissipa-

tion mechanisms. The conservation equations of the reacting system are given by:

| %_-{-V-(pu) =0, | (3.14a)

%% +u-Vu+%Vp =0, (3.14b)
% +u-Vp+ypV-u = KQo(7—1jPze"E“/T, (3.14c)
02 L Vs = —Kze BT (3.144)

ot
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o The_équaﬁbn of state of the reacting system is:

p
T = -—. 3.15
P (3-15)
" In the equations above, u = (u,v) is the velocity vector and z is the reactant mass

fraction, satisfying 0 < z < 1. The parameters of the system are:

v, the specific heat ratio, assumed common for both species,
go, the heat-release parameter,
E,, the activation-energy parameter, and

K, a scaling factor.

In the system under consideration, there are five dependent unknowns, therefore

M =5, on a three-dimensional space-time; therefore, N = 2.

Assume that the solution is continuous, and consider an arbitrary but fixed
spatial unit vector n = (nj,n2). Then, for the system under consideration, the

characteristic polynomial gives

(wn—2* ((u-n—N?—(am)?) =0, (3.16)
where
= [P
a= i (3.17)

This quantity is usually referred to as the frozen speed of sound. Relation (3.16)
yields, in view of (3.8),

(8;5:’ +u V¢N) (( L V¢N>2‘—(a |V¢N|)2> =0. (3.18)

The convective manifold defined by the equation

9¢n

5t +u-Voy =0, (3.19)

has a thre-fold degeneracy. The triple eigenvalue associated with it is A; 23 = u-n.

The acoustic manifold defined by the equation

O¢n

5 tuw Vén +a|Vén| = (3.20)
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| cqrféSpbnds to the eigenvalue Ay = u-n —a, while the acoustic manifold defined by
‘the equation

9N

at +u-Vony —a [V¢N| (3.21)
corresponds to the éigenva,lue As = u-n+ a. The left eigenvectors of the system
are, respectively,

11 = [0, —ng/nl, 1, 0, 0] ) (322&)

l, = [-a?,0,0,1,0], (3.22b)

I3 =[0,0,0,0,1], (3.22¢)

ly = [0,n1pa, napa, l,0], (3.22d)

Is = [0, —nipa, —n2pa, 1, 0]. (3.22¢)

By applying (3.10) the original system of equations can be written in the following

characteristic form:

) _
5 loa(pp™") +u- V(log(pp™)) = K (7—1)qopT ~E/T (3.23a)

%Jm Vz = —Kze B/T (3.23b)

éz(u-n )+u-V(u-n—) = —;Vp-n , (3.23¢)
Op Ou

(Bt +pan- 6t)+(u—|—om) (Vp+pan Vu) = R, (3.23d)
(%It-)—pan aaltl) +(u—an)-(Vp—pan-Vu) = R, (3.23e)

where

R = pa2[n-(Vu)n—V-u]+K('y—1)quze"Ea/T. (3.24)



‘In the‘ eql;.atioﬁs above, n' stands for the spatial unit vector normal to n. The
solution of each of these five equations defines a manifold in ¢ x £~. These are the

characteristic manifolds. The integral curves defined by

dx

lie on the first three manifolds, while the integral curves defined by

dx
'd7 = u-+an (326)
and q
X
"d—t— = u—an (327)

lie on the fourth and fifth manifold respectively.

The terms on the right-hand side of equations (3.23) act like forcing terms and
do not allow a straightforward extension of the method of characteristics, as used
for the one-dimensional Euler equations of gas dynamics. The usual approach in
the design of shock-capturing schemes for multi-dimensional flows (with or without
chemical source terms) is to fix n parallel to the grid direction, ignore the velocity
component normal to n and the terms on the right-hand side of the characteristic

equations, and finally solve the resulting one-dimensional characteristic problem.

By employing this strategy, however, one essentially disregards information
that is coming from other directions. Therefore, integrating equations (3.25), (3.26),
and (3.27) that hold along the bicharacteristic directions parallel to the grid does
not provide any obvious computational advantage against considering some other

direction.

The idea behind the present design of unsplit, multi-dimensional schemes is
to find manifolds in space-time along which the equivalent one-dimensional charac-
teristic problem holds. The immediate advantage of using such manifolds is that
the characteristic problem can be easily discretized and solved numerically. As a
first step towards the construction of such manifolds, one needs to assume that
the solution vector is continuous up to first-order derivatives. Then, the convective
velocities ug, u;, uy, uy, u_, can be defined so that the following relations are
satisfied:
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»-

up-Vieg(pp™) = =K (v- 1)%%6“’3’*‘”,

(=]

u,-Vz = Kze_Ea/T,

1
u; -V(u-nt) = ;Vp-nl,
u; - (Vp+pan-Vu) = —R,

u_-(Vp—pan-Vu) = —R.

(3.28a)

(3.28b)

(3.28¢)

(3.28d)

(3.28¢)

Additionally, consider the manifolds Sy, S5, §—, &;, 81, defined as the integral

surfaces of the following equations:

D

So - D losler™") = 0,

S; %—j— =0,

Sy %(u-nl) =0,

S¢ ¢ 4pap(um) =0,
S- PD—zt)——paf)D—t(u n) =0

(3.29a)

(3.29b)

(3.29¢)

(3.20d)

(3.29)

By combining relations (3.28) and (3.23), it can be verified that the integral

curves of the following vector fields lie on the manifolds (3.29):
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dx

{(t,x) € tx?RN: T - utut € S, (3.30a)
{(t,x) € t xRN : ((ii_)t{ =utu} €S, (3.30Db)
{(t,x) € t xRN : -cdl)-;- =u+tur} € 81, (3.30¢)
{(t,x) € t xRV : i—’; =utantuy} € Sy, (3.30d)
{(t,x) € t xRN : i—}: =u—an+tu_} € S_. (3.30e)

The convective velocities ug, u;, u,, uy, u_, depend locally on the spatial
gradients of the flow and are defined through the inner-product relations (3.28).
These relations must be regarded as the necessary compatibility conditions for the

integral curves given by (3.30) to lie on the corresponding manifolds.

Each of these equations is linear in the components of the corresponding con-
vective velocity. This is because each of the ODE’s (3.29) holds on a family of
curves that constitutes a two-dimensional space on the three-dimensional euclidean
space-time. This space is the manifold associated with the particular ODE. Every
curve on this manifold passing through a point P corresponds to a different choice

of convective velocity, see Fig. 3.2.

The construction-of these manifolds is of local character because it is made
under the assumption of a smooth solution vector. The existence of discontinuities
in the solution or its derivatives does not allow a global (at-the-large) construction

of the five manifolds.

This is not, however, a serious restriction for the numerical integration of
the original system of conservation laws under consideration. If a discontinuity
is present in the flow-field, each of these manifolds can be defined, and used for
computational purposes, on either side of the discontinuity. The presence of shocks

is then taken care by supplementing the equations that hold on the curves of the
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FIG.3.2 An invariant manifold in the three-dimensional space-time. The surface on
this picture can be either of the five manifolds defined by (3.29). There
is an infinite number of curves passing through a given point P on the
surface.

manifolds, with the appropriate jump conditions across the discontinuities. In other
words, an appropriate Riemann problem has to be solved. In this case, care must
be taken so that not both initial states are taken from the unshocked region, be-
cause then the information carried by the manifolds will not propagate through
the approaching shock. This methodology is exactly the same as the one used in
traditional schemes. In such schemes, it is the bicharacteristic rays that are traced

on each side of the discontinuity.

It should be mentioned that even though these manifolds can not be defined
globally in the euclidean space-time E3, one can still study their local geometrical
properties. For this purpose, consider a vector x corresponding to a point P € E3
and having components (¢, z,y). Let s denote arclength in E*. The displacement

on E3 is given by

ds = /dt? +dz? + dy? . (3.31)

Let S denote any of the five previously-defined manifolds. Let also ¢ = (¢1,¢2)

denote the corresponding convective velocity that represents the velocity of the
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" manifold &. Finally, let the ODE

DW

5 =0 (3.32)

* . denote the one-dimensional characteristic equation which holds on the manifold of

interest. For example, if § = &4, thenc=u+an+ uy and

E_%_i_ 2( n)
Dt _ Dt "Pipit

A vector N € E? normal to the manifold is given by
1

N = [W, W, W,] . (3.33)
W2+ W2+ W}
The following curves lie on S:
. _ d_ac _
dt = (1,
(3.34)
dy _
dt = €2,

and the displacement on § is, therefore, given by

ds = dt4/1+c 4. (3.35)

The tangent vector at each point on § is represented by

dx dz dy] dt 1
%= [ ’d_i’d_z] T = c1,62)\/—-—I—_|—_—c————__m (3.36) .
The curvature vector of a curve lying on § is given by:
_
. ds2 7 .
Which,'ifl view'of" (3.34) and (3.35), produces
k=[4BT——, (3.37)
(1+c2+¢2)
where
A= —(cie1+ce). (3.38a)
B = (d+cct—cec), (3.38b)
I'=(&+céc—ciee). (3.38¢)
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In this relation,v a dotted quantity represents differentiation along a curve on S.
-For example,
dCl acl +ec 6c1 + acl
—_— = = — t .
dt ot e 4y

The normal and geodesic curvature vectors, k, and k, respectively, are given by

c; =

k, = (k-N)N, (3.39a)
k, = k—k,. (3.39b)

Given these relations, one can get estimates for the curvature of the various curves
on the manifold, and use this information to achieve higher-order accuracy. The
geodesic curves of the manifold under consideration (that is, the curves whose

geodesic curvature is zero) satisfy the following set of equations:

AW, = BW,, (3.40a)

BW, =TW,. (3.40b)

Some numerically useful choices of directions on the manifolds of interest are
presented below. Recall that every surface ¢(t,x) = 0 in space-time can be viewed
as a wavefront. First, consider the invariant manifold &;. Let N4 denote the
spatial unit vector normal to this front. Then

_ Vp+paV(u-n)
* 7 IVp+paV(u-m)’

(3.41)

N, depends on the spatial unit vector n. Actually, there is a class of manifolds S,
each manifold corresponding to a different choice of n. The unit vector n, which
is assumed to be arbitrary but fixed, acts as a “label” for the particular manifold
under consideration. In other words, n is the free parameter of the one-parameter
class of manifolds S;. This is also true for the class of manifolds S_ and &,. It
" not true, however, for Sp and §; because these manifolds do not depend on n; see
equations (3.30). |

Furthermore, n gives the spatial direction along which a one-dimensional char-
acteristic problem holds. By keeping u, fixed and letting n rotate a full circle, one
gets a conoid of invariant curves passing through the point P. An example of the

relative position of this conoid with respect to the ray conoid is given in Fig. 3.3.
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t=const.

F1G.3.3 Relative position of the invariant conoid formed by the rotation of n, with
respect the ray conoid passing through a point P in space-time. The solid
line represents the ray conoid, and the dotted line represents the invariant
conoid.

The velocity of the front &4 is given by
cy = ut+an+tuy. (3.42)

A possible choice for u is to seek |uy | The curve on 84 that corresponds to this

min*
choice is the curve that lies as close to the equivalent bicharacteristic ray as possible.
This means that the point of the proposed curve is closer to the intersection of the
bicharacteristic ray and the constant-¢ plane than any other intersection point of

_ the manifold and the constant-t plane. Then

uy [/ N4,

and, in fact,

-R
b = (IVp+paV(u-n)|)N+' (3.49)

Another choice would be to try to minimize |uy + an|, i.e., to consider the

curve that is as close as possible to the fluid streamline. In this case

(uy +an) // Ny,
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and the éxpressidn for the convective velocity becomes

R
[Vp+ paV(u-n)

uy = (a(n N;) - ) N, —an. (3.44)

Since u, + an is parallel to N, the velocity of the front S; can be written as
ct = ut+aMiN;. (3.45)

In the equa,tioh above, the expression for M, can be obtained form (3.44). The
result is
n-Vp+paV-u—(y-1) Kq (pz/a) e 5/T

My = |Vp +paV(u-n)

(3.46)

The dimensionless parameter M, is a measure of the deviation of the surface-
element around the selected curve on the manifold Sy from the bicharacteristic ray
u+ an. When |M,| < 1 the surface-element is time-like. When |My| > 1, the
surface-element is space-like (and when |My| = 1, it is characteristic). When the
surface-element of &4 is space-like, it lies outside the domain of dependence of a
given point P. At first-sight, this result might look counter-intuitive but it has
to do with the fact that knowledge of the local spatial gradients of the flow and
their smoothness constitutes additional information about how the initial data are
related. This information can propagate with speeds greater than the characteristic
speeds, as (3.46) reveals, and can be used for computational purposes; see also

relative discussion in Lappas et al. (1995).

Most of the information about Sy is contained in Ny and M., which provide
the direction of this manifold and its relative position with respect to the char-
acteristic manifolds. Both of these quantities depend directly on the spatial unit
vector n, but this is because of the multi-dimensional character of the problem

“under consideration.

As mentioned by Lappas et al. (1995), the intersection of a manifold in space-
time and the local characteristic ray-cone can be examined by considering the pro-

jection vector, V,, of an arbitrary bicharacteristic direction n,

V, = u+an, (3.47)
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" ‘on the manifold of interest. For the case of S84, one can readily find that the
~ projection of a curve x(t) = W on S, is the curve %(t) = w, such that the norm
W —w,p| attains a minimum. Following the same procedure as in Lappas et al.
(1995), one observes that this occurs if

(W —w,) [/ N4

If this condition is satisfied, then W = V, and w, = c,. Furthermore, one gets
that

(W - Wp) = Vp —C4 = a(ﬁ . N+ — M_|_)N+ . (348)

The bicharacteristic ray lies locally on the invariant manifold &4 if the right-hand

side of the above expression becomes zero, i.¢., if the following relation is satisfied:
M, = n-Ny. (3.49)

This equation admits a solution only if |M4| < 1. This condition is satisfied when
the surface-element of S lies within the characteristic ray cone. This is because
both i and N are unit vectors, which implies that whenever the invariant manifold
S, is not space-like, there are bicharacteristic directions along which an equivalent

one-dimensional problem holds.

Similar relations hold for the invariant manifold S_. The spatial unit normal
to this front is given by
Vp—paV(u-n)

N- = Ny pav(um) (3.50)

Along the curve of S_ that lies as close as possible to the equivalent bicharacteristic,

- the norm |n_| attains a minimum. In this case, u— // N_, and one gets

T (Fr=rov -’n)l) - (351

The curve along S_ that lies as close to the fluid streamline as possible is found
by selecting u_ such that (u— —an) // N_:

R
u_ = (—a(n -N_) — Np—paviu. n)|> N_+an. (3.52)
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'Gi'vé’n that the velocity of "‘chej front is given by
C- = u—an+4u_,
~one gets er the ébc%ve choice for u_:
c. = ut+aM_N_. (3.53)

M_ is a.dimensionless parameter, similar to M, that measures the deviation of the

selected curve from the bicharacteristic ray u — an. The expression for M_ is

—n-Vp+paV-u—(y—-1) Kq (pz/a) e F/T

M_ =
[Vp+ paV(u-n)

(3.54)

As in the case of Sy, a surface-element on S_ is time-like, characteristic, or space-
like, according to whether |M_| < 1, |[M_| = 1, or |[M_| > 1, respectively. Using
arguments similar to the ones employed when S, was examined, one can find that

the necessary condition for a characteristic curve to lie on S_ is

M_ = f-N_. (3.55)

It remains to investigate the structure of the invariant manifolds So,S:,S1,
and determine the curves along these manifolds that can be used for numerical

purposes. The spatial unit normal vectors of these manifolds are given by

~ Vp—a®Vp
Ny = Np—a?Vp)|’ (3.56a)
Vz
N, = —, 3.56b
2 (3.56b)
' V(u-nt)
N, = =% 3.
L= M) (3:569)
respectively. The corresponding front velocities are
Co = u+tug, (3.57a)
¢ = utu, , (3.57b)

cy = u+u. (3.57¢)
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" ."As mentioned earlier, the convective velocities g, Uy, and vy need only satisfy the

~ compatibility conditions (3.‘28). Since each of these conditions are linear equations

in the velocity space, a particular choice of a convective velocity represents a curve

along the corresponding manifold. It is natural to select the velocities whose norm

" attain a minimum, i.e., to look for |ug|,; , [Wr|pins 0Ly, Then, one immediately

gets .

uo//NO,
ur//Nra
UJ_//NJ_.

Using relation (3.56), the following expressions are deduced:

o — _E@=Dagpze /T
" |Vp — a2V
K ze E/T
u, = —-—l—v—;’T—_ T
Vp-nt
= —— N, .
R CR e

Alternatively, one can introduce dimensionless parameters:

K(y—-1)g= e E-/T

My, =
0 a |Vp—a?Vp|
M, = ———Kze,_Ea/T ,
a |Vz|
Vp-nt
M, =
* 7 palV(u b’

- and express the convective velocities in the following fashion:

Uy —
u, =

u; =

—aMyNo ,
aM.N, ,
aM N, .

NO)

b

(3.582)
(3.58b)
(3.58¢)

(3.59a)
(3.59b)

(3.59c¢)

(3.60a)
(3.60Db)

(3.60c)

(3.61a)
(3.61b)
(3.61c)

As in the case with M, and M_, the parameters My, M;, and M, , determine

the relative position of the corresponding invariant manifolds with respect to the

local ray cone. The manifolds Sg, S; and S , can be locally space-like, or time-like,

depending on the values of these parameters.
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' When one of My %Mr‘, or M | is greater than unity, the corresponding’ invariant
manifold is locally space-like and its surface-element lies outside the domain of
dependence of a point P. 'This fact can be, at first glance, contradictory to the
concept of the domain of dependence. Careful consideration, though, shows that
no such contradiction exists; see relative discussion above when the manifolds S

and S_ were examined.

The intersection of Sy, S;, and S with the ray cone can be examined in
the same way as above, i.e., by considering the projection vector of an arbitrary
characteristic direction. Then, one deduces that the following condition has to be

satisfied for a characteristic curve to lie on Sp:
My = n-Np. (3.62)
Similarly, if a characteristic curve is to lie on S;, then the necessary condition is
M, = a-N,;. (3.63)
Finally, if a characteristic curve is to lie on &, then the the necessary condition is

M, = A-Nj. (3.64)

3.3 Description of the Numerical Scheme

The compressible Euler equations for reacting flows (3.14), written in integral

form, are:
d ,
/pdV+/pu-dS=0, (3.65a)
dt g
d
pudV+/puu-dS—|—/pdS=0, (3.65b)
4 ,
peth+/petu-dS+/pu-dS:0, (3.65¢)
dt g s

(;it pde+/pzu-dS—/épdV=0, (3.65d)
s %
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*‘where the-total speciﬁé energy, €, 1s given by:

2
p u
ey = — < +qoz+ . 3.66
ply—1) 2 (3.66)
These equations are written for an arbitrary control volume V whose bounding sur-
~ face S has zero velocity. The procedure of discretization and numerical evaluation

of th_eske integrals at each computational cell is given below.

| Consider a simply-connected domain consisting of N, x M. quadrilateral cells
of arbitrary shape; see Fig. 3.4. The area of the (7, ) cell is denoted by AS; ;, and
the coordinates of the center of the cell are denoted by (zf;,y¢ ;). The interface
between the cells (7, j) and (i+1, j) is denoted by (¢41/2, 7). Similarly, the interface
between the cells (¢,7) and (¢,7 4+ 1) is denoted by (¢,7 + 1/2). Finally, the unit
vector normal to a cell interface is denoted by ng, and the length of a cell interface

is denoted by I.

Linear variation of all variables is assumed in each cell. The generic quantity

q is then given by

q(z,5) = %, + (qz)i,j ('E - CE;-:,]-) + (Qy)i,j (y — yic,j) , t=1,...,Ne, j=1,..., M,

(3.67)
where g; j, the average value of ¢ in the (¢, 7) cell, is given by
ol
gij = qdzdy , (3.68)
T ASL S

and (gz )i j,(gy)i,; are the slopes of ¢ in this cell.

Under the assumption of linear variation of ¢, the slopes are constant; therefore,
¢;,; becomes the value of ¢ at the center of the cell. The slopes (¢:)i ; ,(gy)i,; are
evaluated through the divergence theorem. For linear functions, this theorem takes

- the form: : :
[(¢2)i,5 5 (ay)i,j] ASi; = (gns Dixayz,; +(qns )i jx1/2 - (3.69)
In the relation above, ¢ must be evaluated at the center of each cell interface. This

is performed with the following procedure.

Assume that ¢ is to be computed at the center of the left interface, and let
Al; denote the distance between (zf ;,yf ;) and (z{_ ;,y{—; ;). Consider the left
divided difference

Agi, = -q%;"l—’ . (3.70)
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(i-1,) ()

@j-1)

F1G.3.4 A typical computational mesh of quadrilaterals of arbitrary shape.

The differences Aqr , Aqu , A¢p , in the right, up, and down directions, respectively,
are defined in a similar fashion. Then, the value of ¢ at the left interface is given
by

di-1/2,j = ¢i,j — 0.5 AL Agqur

where Agqyr is an approximation of the slope of ¢ in the direction normal to the
cell interface. It can be computed from Agp, and Agr with the use of van Albada’s
limiter, van Leer (1984),

AQLR = ave(AqL,AqR), - (3.71)

and +h (a— b)?
a a—
ave(a, b) = ———2—— (1 - m) 3 (372)

with € being a small positive number, say, € = 1072, This slope-limiting procedure
is employed to preserve the monotonicity of ¢ near discontinuities. The evaluation
of ¢ at the centers of the other cell interfaces is performed by repeating these steps

to the appropriate interface.
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For the namerical solution of the system of conservation equations, mass-

averaged values of the conservative variables are considered:

m;; = / _pdzdy, (3.73a)
(2,5)

m; ju;j = /( X pudz dy , (3.73b)
z,]

m; jvi; = / pvdzdy, (3.73¢)
(4,5)

mijes;; = /( X pet dz dy (3.73d)
i,

mijzi; = /( ) pzdzdy . (3.73¢)
i,

Furthermore, let g(T', z) denote the source term in the reaction equation:
g(T,2) = —K ze P/T (3.74)

and set
mijgij = / py9(T,z)dzdy . (3.75)

(4,5)
The value of each of these integrals equals the product of the integrand, evaluated
at the center of the cell, with the area of the cell, because linear variation of all

primitive quantities has been assumed.

The flux vectors are given by

F.. = [pu, pv] , (3.76a)
F, = [pu® +p, pu] , (3.76b)
F, = [puv, pv* +p| , (3.76¢)
F. = [pesu + pu, petv + pv] , (3.76d)

F, = [pzu, p2v] . (3.76¢)
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'The?iﬁtegra'tion of the flux vectors along each cell interface is performed ﬁsing the

midpoint rule.

Consequently, the proposed numerical scheme, which evaluates the solution at

time (n + 1)At from the solution at the previous time nAt, can be written as:

(ms )" = (mij)" — At [(lns : Fm)?fll//f,j —(Ins - Fm)?ff/f,j]

(3.77a)
nt+1/2 n+1/2

- &t [(ng - Bl S, - (e B30

(i)™ = (moguiy)" = At [(In - BZES — (e L
n+1/2 nt1/2 |’ (3.77b)

~ &t B, — (Iny - )11

(migui)"T = (miguig)" - A [(lns'Fv)?fll/zQ,j_(lns'Fv)?jll//zz,j]
n+1/2 nt+1/2 1’ (3.77¢)

- At [ans BT, — (my BT

(mi o)™ = (myjei;)" — At |(Ing - F)i 2 — (Ing - B2
l: +1/2,j 1/2’]] (3_77d)

- ¢ [(ime - TR - (- R

n n n+1/2 n+1/2
(mi,jzi,;5) = (mijzij)" — At [(lns ' Fz)z‘+11//2,j — (Ins - Fz)i—l//Z,j]

— At [ FTE, — (g F)IT] - (37T0)

—I— At ASz,] (mingi’j)n-i-l/z

The flux terms in relation above have to be evaluated at the center of each cell
interface, and at time ¢t = (n + 1/2)At. This is performed by making use of the
information provided by the invariant manifolds that were studied in the previous
section. This procedure is illustrated below, for the interface between the cells (z, j)

and (i + 1, ). For the other three cell interfaces, the procedure is exactly the same.
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Let X3 = (Zw, Yw) denote the center of this interface. One has to trace specific
curves along the five invariant manifolds that pass through the point with coordi-
nates (2, Yw, (n+1/2)At), and find the intersection of these curves with the surface
~ t = nAt. Then, the equations that hold on the manifolds have to be discretized

" and solved numerically.

But first, one should select n. Recall that there is a one-parameter family of
the manifolds &4 that is generated by the rotation of n. These manifolds form
a conoid equ‘ivalent to the ray conoid. By selecting n, one essentially decides the
direction along which the ODE’s that hold on &4, and S_, are solved. Numerical
experiments showed that selecting the unit normal to the cell interface, i.e., n = n,

works well in practice.

Having determined the manifold §; that will be used, one has to decide which
specific curve on 84 should be traced forward in time, ¢.e., which convective velocity
u, will be used. The intersection of S with the plane £ = nAt is the locus of the
points that are connected with the point (z., yw, (n + 1/2)At) by the characteristic
differential equation (3.29d); see Fig. 3.5. Each point of this curve corresponds to
a specific uy. In the present work, the convective velocity uy has been selected to
satisfy equation (3.43). In other words, the curve that lies as close to the equivalent

characteristic as possible has been chosen.

The coordinates of the point at which this curve intersects the plane ¢ = nAt,
say Xp, are evaluated by solving equation (3.30d) numerically. For this purpose
the selected curve is approximated by a straight line. After some straightforward

calculations, one gets the following expression for the coordinates of xp:

I

Ty 1
= . .
[ v ] ot s (3 78)

n

where

]

9

_ [(v+v+)y+ﬁ —(u+ugy
—(vtvi)e  (utug)e+ 3

5 _ [‘ﬁ—f—(u+u+)]

‘AA‘%—(”+U+)
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@j+1)

F16.3.5 The locus of the points at ¢ = nAt, that are connected with (Zw,Yw)
through (3.29d).

All the quantities in this relation are evaluated at the center of the cell interface.
Once the coordinates of x, are computed, the solution vector is evaluated at this

point.

This procedure is repeated for the manifold S_ by setting n = —n,. The
specific curve on S_ that is used is the one that corresponds to a convective velocity
u_ which satisfies (3.51). The point at the plane t = nAt that is connected with
(Zw, Yw, (n+1/2)At) by the characteristic equation (3.29¢) is determined by solving
numerically the equation (8.30e), with a procedure similar to the one employed for
(3.30d) that was described earlier. Then, the solution vector is evaluated at this

point.

Subsequently, the ODE’s (3.29d) and (3.29%) are solved for the computation
of the pressure and the normal velocity component at the cell interface at time

(n + 1/2)At. These two equations must be supplemented with the appropriate
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“(ji‘lmp vconaitioﬁs,‘ in. the presence of discontinuities. The easiest and most robust
wdy to iinplement this, is to consider a one-dimensional Riemann problem in the
direction pa,fallel to n. As mentioned in the second chapter, the Riemann problem
that corréspé)nds to the governixig equations for reacting flows is not the same as the
classical one-dimensional gasdynamic Riemann problem. This Riemann problem is
not s_elf—similar and, as a result, shock waves and expansion fans are not straight
lines anymore, i.e., they are accelerating. Yet, one can safely use the classical one-
dimensional Riemann problem, because, as mentioned in Chapter 2, the difference

between the two solutions vanishes as t — 0, z — 0.

It should also be mentioned that, by design, shock-capturing schemes allow
discontinuities only at the cell interfaces and parallel to them. This constraint can
be important, especially in cases of shock fronts with high curvature. The result
is that in the presence of oblique shocks, there is more numerical diffusion than
one would expect. This problem is a constraint imposed by the grid and it is

independent of the effort to construct multi-dimensional, unsplit schemes.

The tangential velocity component, u-n=*

, is evaluated by selecting a curve on
S . In the present work the selected curve corresponds to the velocity u, given by
equation (3.58¢c). As usual, the curve is approximated by a straight-line segment,
and its intersection with the plane ¢ = nAt is computed. At that point, u - n*
has the same value as at (Zy, Yw, (n + 1/2)At). The expression for the coordinates
of that point is analogous to (3.77). The reactant mass fraction is evaluated by
selecting a curve on &;. The selected curve corresponds to a velocity u, given by

equation (3.58b).

Finally, the density is evaluated by tracing the curve on §; that corresponds
" to a velocity ug given by equation (3.58a), and subsequently locating the point at
which this curve crosses the ¢ = nAt plane. Let pg, po denote the values of pressure
and density at this point. The density at the interface, say (i +1/2,7), is evaluated
by discretizing equation (3.29a) in the following way:

if pPt1/2

if p;i1/2, > Pos then

n+1/2
Ypo [ ¥ +1 L= 1Pit1/2,5 (o712

n-+1/2 . .
po \ 27 2y  po Pit1/2,j

(Piya/z,; = Po) =

—po) = 0. (3.782)
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If pn":l/ > < po, then'

di+1/2,j
pi/2 Y
,,yﬁ/;i = po %0/2’] . (3.78b)

Equation (3.78a) is the jump condition of (3.29a). It is used when the curve on
So is being crossed by a shock. Equation (3.78b) is just the discretized version of
(3.292). An example of the projection of five curves that were traced to upwind the

solution, on the (z;t)-plane, is shown in Fig. 3.6.

(n+1/2)At

n At

@) i+1/2,5) G+1)

F1G.3.6 A typical example of the projection of the five curves used to find the
solution at t = (n + 1/2)At on the (z,t)-plane.
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CHAPTER 4

-~ Numerical Study of Two-Dimensional Detonations

4.1 Historical Background

Detonations are generally unstable phenomena that can develop very compli-
cated structures. The most noticeable structure of a detonation is the cellular
pattern. Examples of such patterns can be found in the photographs of Strehlow et
al. (1972), and Fickett & Davis (1979), which were taken during experiments with
detonations in channel flows. These patterns are self-sustained because of the con-
tinuous energy release from the chemical reaction. The cells are diamond-shaped
and are formed by transverse waves. The cell-size can be almost uniform, resulting
to a system of regularly-distributed cells, or it might vary from cell to cell. The
existence, or not, of such regularity depends on the combustible mixture and the
width of the channel. In general, narrow channels result in cells of uniform size. Un-
confined detonations typically produce irregular cellular patterns. Fickett & Davis
(1979) observe that the cell-spacing is of the order of 100 reaction-lengths of the
steady (ZND) solution.

The transverse waves that are responsible for the formation of the cellular
patterns move along the leading front. They are generated by the non-uniformities
of the front and are attached to it at triple-points via the traditional three-shock
pattern. The Mach stem and the incident shock are part of the leading front and
the transverse wave is the reflected shock. The strength of a transverse wave is not
constant, it diminishes with time. Consequently, the propagation velocity of these
waves is not constant either. Transverse waves moving in opposite directions collide
with each other. These collisions lead to explosions that release large amounts of

heat and enable the rejuvenation of the three-shock structures.
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One finds that the non-uniformities of the leading shock are small hot spots,
distributed aloﬁg the front. Eventually they explode, resulting in the development
of micro-detonations. The waves generated by these explosions interact with each
other and form a .tfiple point that sighals the generation of the transverse waves.
Two 4imp(')rta,nt issues have attracted the attention of researchers on the field of
detonation dynamics. The first issue is the stability of two-dimensional detonations.

The second issue is the size of the cellular structure of an unstable detonation.

The linearized, two-dimensional stability problem has been considered by Er-
penbeck (1964), who used a Fourier-series approach to investigate the growth-rate
of transverse instabilities. Strehlow and his coworkers pioneered the investigation
of the role of acoustic-ray trapping in the reaction zone (see, Strehlow & Fernan-
dez (1965), Barthel & Strehlow (1966), Barthel (1974), etc.. They employed the
method of geometrical acoustics to derive simplified stability criteria. These crite-
ria examine whether amplification of the acoustic signal occurs, or not. Strehlow
(1970), and Barthel (1972), presented cell-size predictions based on these simplified
stability approaches. Recently, Majda (1987) used non-linear geometrical optics for
the prediction of the cell-size.

In general, linearized-stability theories applied to these problems are very ac-
curate in the prediction of the stability limits. As it turns out, two-dimensional
detonations, governed by one-step Arrhenius kinetics, are intrinsically unstable. It
is worth mentioning that unstable behavior is encountered even in cases where the
corresponding one-dimensional problem is stable. Stability is maintained only if the
overdrive is extremely high (more than 10), or the activation energy is very small.
The approximate‘theories mentioned above, however, have not been successful in
the prediction of cell-size. The mechanisms that determine the evolution of detona-
tions are highly non-linear and, as a result, theoretical results based upon linearity

assumptions areé of limited validity.

Traditionally, studies of the geometry of the detonation front were based in
observations, interpreted with information provided by standard blast-wave and
shock-dynamics theories, like the one proposed by Whitham (1974). These theories
take advantage of the fact that, in the non-reacting case, the flow in the neighbor-
hood of a triple point is almost steady. Applications of these theories to reacting
flows have enjoyed limited success, because of the complexity and the unstable na-

ture of the flow around a triple point of the detonation front. For recent modelling
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| ’éﬂ'prts see, ambng others, Stewart & Bdzil (1988), Bdzil & Stewart (1989), Bartlma
(1990), Bukiet & Menikoff (1992), Klein & Stewart (1993), and Menikoff et al.
(1996). In all these works, the simplified one-step model was used, and the assump-
tion of absence of transport mechanisms was made. Therefore, viscosity effects,
such as boundary layers, and multiple-species effects, such as chain-branching, were

ignored.

Numerical simulations of two-dimensional detonations using finite-difference
schemes were initiated in the late ’60s and early ’70s. See, for example, the pio-
neering work of Taki & Fujiwara (1973). The simulations served as a supplement to
the experimental investigations and to the theoretical-modelling approaches. The
quality of the simulations has been improved greatly over the years because of the

progress that was achieved in the numerical analysis of hyperbolic equations.

In the early ’90s, a trend of detailed, high-fidelity, reacting-flow simulations
was established. Modern, state-of-the-art schemes that were developed during the
'80s, were employed in these simulations. Oran et al. (1982) and Lefebvre et al.
(1993), simulated detonating channel flows (with periodic boundary conditions at
the top and bottom boundaries) using the Flux-Corrected-Transport (FCT) algo-
rithm. Bourlioux & Majda (1991) performed simulations of the same problem for
a wide range of parameters using the Piecewise Parabolic Method (PPM) with
adaptive mesh refinement and front-tracking of the main front. Quirk (1993) also

employed a Roe’s solver and adaptive mesh refinement for this problem.

Cai (1995) designed a hybrid algorithm that uses an Essentially Non-Oscillatory
(ENO) scheme at regimes of steep gradients and spectral representation at regimes
where the flow is smooth. He also studied channel-flow problems using reflecting-
~ wall boundary conditions at the top and bottom boundaries. Schoffel & Ebert
(1988) had worked in the same problem earlier, and investigated the number of
cells that were formed, as a function of the channel-width. They compared their
results with the experimental work of Strehlow et al. (1972), and they reported
satisfactory agreement. The algorithm that they used was based on McCormack’s
method.

Another problem that has been the subject of numerical studies is the simula-
tion of oblique detonation waves. Such detonations can be generated, for example,

in supersonic flow of a combustible mixture over a long wedge. In this problem, the
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obliéﬁé shock that is formed at the tip of the wedge turns upward due to dilatation
-of the ga,'s‘.caus.ed by the reaction that takes place behind the shock. There is an
important question associated with this flow, and it has to do with the stability of
the oblique wave. If the detonation is sfable, one should expect that the asymptotic
structure of the shock is an oblique ZND wave. Nonetheless, this structure might
not be realizable for a variety of wedge-angles and detonation parameters. For a
detailed discussion of the possible configurations see, among others, Buckmaster
(1990) and Shepherd (1994). An asymptotic treatment of this problem in the hy-
personic limit has been presented by Powers & Stewart (1992). A definitive answer
has yet to be given to the problem determining the stability boundaries of such

flows.

Cambier et al. (1989) and Glenn & Pratt (1988) carried numerical simulations |
for the problem mentioned above, but their grid was too coarse (of the order of
100 x 100 cells). As a result, the reaction region was not well-resolved in their
simulations. Li et al. (1994), performed simulations for the same problem using the
FCT algorithm on a 450 x 150 grid. More recently, Grismer (1995) worked on a
similar problem with a Roe’s solver. In his simulations the wedge was curved in such
a way that the resulting detonation front should theoretically be straight. His grid,

however, was of the order 200 x 200, and his results seemed to be underresolved.

It is worth mentioning that the study of detonations induced by a wedge has
attracted a lot of attention because of the concept of the oblique detonation wave
engine. The idea is to use the thrust from the wave for propulsion purposes. The
problem of premixing the fuel in a safe way has hampered, so far, the construction

of such an engine.

In the present work, two different problems are studied numerically. The first
one is the two-dimensional detonation in a narrow channel. Simulations of this
problem will help demonstrate the effectiveness of the proposed scheme and to make
 comparisons with previous results. They will also help to gain new insight on the
various mechanisms that govern the propagation of two-dimensional detonations,
and in particular the effect of the vorticity generated at the detonation front. The
second problem is the flow generated by an impulsively started wedge. This problem
is studied numerically because of the important practical applications associated
with it, such as the design of scramjet engines. High-resolution simulations of this

problem using state-of-the-art algorithms have not been published yet. But first,
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" two tests on n@n-fe’acting flows are presented. These simulations are performed for
diagnostic purposes. They demonstrate the suitability of the developed algorithm
for the study of compressible, inert flows. The simulations presented in this chapter

were perfdrrried on either a VAX-alpha machine or an SGIl-onyx system.

4.2 Preliminary Tests with Non-Reacting Flows

The first test is the problem of double Mach reflection. This is a classical test,
used by many authors to validate a numerical scheme and to make comparisons
with other schemes; see, for example Woodward & Colella (1984). A strong planar
shock diffracts from a 30° wedge. The velocity behind the shock is so high that the
shocked fluid particles do not have enough time to turn. The turn is thus achieved
via the triple-point mechanism. The shock that emanates from the triple point
perpendicular to the wedge is the Mach stem. The flow behind the Mach stem is
subsonic in the shock-attached frame. The shock that connects the triple point and
the tip of the wedge is the reflected shock. The triple-point structure essentially
plays the role of an additional ramp on which regular reflection can occur. The
shock Mach number for the numerical test is M = 10.0. The medium ahead of the

shock is quiescent‘ and has the following thermodynamic properties:
p =10, p =14, v = 14.

All quantities have been made dimensionless with respect to these values. The
computational domain is shown in Fig. 4.1a. It consists of 180 x 90 cells. The
length of the domain is z = 3.0. The height of the domain at the tip of the ramp
‘is y = 2.0. The shock is initially located at = 0.10. The CFL number for this

simulation is set to (.8.

Results for the density at t = 0.20 are shown in Fig. 4.1b. In this figure there
are 25 contours in the range 1.4 < p < 19.81. It can be verified from this figure that
all the features of the flow, such as the transverse shock wave and the slip line, are
well resolved. The results for the structure of the flow as obtained by the proposed

scheme are in good agreement with the results that can be found in Woodward &

Colella (1984).
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" The second test is the di’f‘fracAtion of a shock from a corner. A planar shock
is propagating in a channel with a recess at a given point. As soon as the shock
reaches the corner, an expansion fan and a shear layer are formed. The shock gets
curved and vorticity is generated. The shock Mach number for this problem is taken
to be M, = 5.0. As in the first test, the medium ahead of the shock is quiescent

and has the fdllowing thermodynamic properties:

p =10, p =10, 07 14.

The cofnputational domain has the shape of a rectangle and consists of 120 x 160
cells. Reflecting-wall conditions are imposed at the top and bottom boundaries.
Outflow conditions are imposed at the right boundary. The corner is assumed to
be located at the center of the left boundary. At this boundary inflow conditions
are given at the upper half (at the upper 80 cells), and reflecting-wall conditions
are assigned at the lower part. Initially, the shock is located at the upper half of
the left boundary, and is about to diffract. The CF L number for this simulation is
0.8.

Results for the pressure and density at ¢ = 0.08 are plotted in Figs. 4.2a and
4.2b, respectively. In these figures, there are 30 pressure contours in the range
0.13 < p < 29.6, and 30 density contours in the range 0.06 < p < 5.0. It can be
verified that all the important features of the flow, as identified experimentally by
Bazenhova et al. (1984), are captured.

These two tests help to demonstrate that the proposed algorithm is suitable
for accurate numerical simulations of compressible flows with strong shocks. The
smearing of all discontinuities has been kept in satisfactory levels: a discontinuity,
either parallel or oblique to the cell-boundaries, never occupies more than three cells.
After these preliminary results, a detailed study of two-dimensional detonations is

presented.
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F1G.4.1b Density contours at ¢ = 0.20 for the double Mach reflection problem.
There are 25 contours in the range 1.4 < p < 19.81.
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0.0 0.2 0.4 0.6

F1G.4.2a Pressure contours at ¢ = 0.08 for the problem of a shock diffracting from
a corner. There are 30 contours in the range 0.13 < p < 29.6.

0.6

F1G.4.2b Density contours at ¢ = 0.08 for the problem of a shock diffracting from
a corner. There are 30 contours in the range 0.06 < p < 5.0.
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43 - Numerical Study of Detonations in Channel Flows

A set of numerical experiments is performed for the study of the instabilities
that are developed in two-dimensional detonations. The computational domain is
a rectangle. Periodic conditions are imposed at the top and bottom boundaries
and inflow conditions are imposed at the left boundary. Finally, outflow conditions
are prescribed at the right boundary. The flow at this boundary is subsonic. The
problem of evaluating the fluxes across the boundary becomes underdetermined
when one or more curves of the invariant manifolds lie outside the computational
domain. Therefore, an a priori condition needs to be imposed, but in such way that

no artificial wave-reflections occur at the boundary.

In the present work this is achieved by copying the values from the boundary
cells to their corresponding dummy cells. By doing so, two conditions are satisfied.

First, all the invariant curves lie inside the computational domain except

d
(t,x) € tx RN : E)ti =u—an+u_,

which lies outside. Second, each term of the characteristic equation that holds on

the above curve, namely

becomes identically zéro, thus overcoming the uhderdetermina,cy problem.

The initial condition is a transversally perturbed, planar ZND wave, propagat-
ing in a quiescent medium. For a given choice of parameters the one-dimensional
ZND profile has been computed numerically (the procedure has been explained in
Chapter 2) and it is assigned to each longitudinal station throughout the width of
the domain. The perturbation is a sinusoidal variation of the amplitude of the post-
shock values of the flow variables in the transversal direction, and it is employed to

trigger the instabilities faster than the truncation error would.
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7 vItg 's'hould b_e” mentioned that the ZND ‘wave is assumed to propagate to the left
'(hence the use of inflow condition at the left boundary), and it is considered to be
stationary with respect to the laboratory frame. This means that if the flow was
_1ndeed steady, as postulated by the ZND theory, the position of the shock front

would be constant

It is a common practice to employ explicit artificial dissipation mechanisms for
compressible flow simulations. The use of these mechanisms is necessary because the
implicit viscosity of a scheme, which arises from the discretization of the equations
arid the monotonicity constraints, is not adequate for the stabilization of strong
shocks, especially in cases where the shocks are moving slowly with respect to the
grid. For a detailed discussion on this topic; see Colella & Woodward (1984).

No explicit dissipation mechanism, however, needs to be employed in the pro-
posed unsplit scheme, even though the leading shock fronts in detonations are typi-
cally very strong *, and they are moving slowly with respect to the grid. It is worth
noticing that, to the author’s best knowledge, explicit artificial viscosity terms have
been used in all previously published results of two-dimensional detonations. These
terms deemed necessary in the vicinity of either the leading shock, or the transverse
shock waves. For example, Bourlioux & Majda (1991) had applied front-tracking
for the leading shock, but artificial viscosity was used to stabilize the transverse

waves.

In the present study five different cases have been considered. These cases
correspond to different selections for the overdrive and the activation-energy pa-
rameter, and are ‘presented below. In all cases the variables and the parameters of
the system have been made dimensionless by reference to the uniform state ahead
of the detonation front. The values of the specific heat ratio, v, and the heat release

coefficient, go, have been set at:
v = 12, g0 = 50.0.

As usual, the half-reaction length of the steady ZND profile, L, /,, has been selected
to be the characteristic length-scale. The characteristic length-scale divided by the
sound speed ahead of the shock provides the characteristic time-scale. The spatial

* The shock Mach number of the fronts in the cases considered in the present study is of the
order of 10.
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" A‘res'olutio_nw is 20 points per L, /2> and the CFL number has been set at CFL = 0.7.

The sinusoidal transversal perturbation has amplitude equal to 0.2% of the value
of the respective variable. The wavelength of the perturbation is one unit-length,

for all cases considered.

4.3.1 Case A

This is @ case of high activation energy and strong overdrive. The values of

these parameters are set as follows:
E, = 50.0, f =30.

‘Given these values, thé stiffness coefficient of the system is K = 30.06. The com-
putational domain for this simulation is 30 unit-lengths long and 10 unit-lengths
wide. The ZND wave is initially located at z = 25.0.

The corresponding one-dimensional case is linearly stable, i.e., there are no
linearly unstable longitudinal modes. The transversal perturbations, however, grow
and interact with the truncation error, and transverse waves are eventually gen-
erated. These waves lead to the formation of the familiar cellular patterns. As
mentioned earlier, the explosions generated by the collisions of the transverse waves

release large amounts of heat that allow the conservation of these patterns.

Contour plots for this case are presented in Fig. 4.3. In these plots, 30 contour
levels of the pressure, temperature, and vorticity are plotted, equally distributed
between the extremal values. Furthermore, 11 contours of the reactant mass frac-
_ tion are plotted, with contour levels at z = 0.01,0.1,0.2,..., 0.9, 0.99. There are
several ¢ontour plots taken at different times. The time difference between two
consecutive plots is one time unit. Additionally, schlieren-type snapshots of the
above variables are presented in Fig. 4.4. The expression “schlieren-type snapshot”

implies snapshots of the norm of the gradient vector of a variable.

It can been observed in these figures that three shock waves and a contact
surface emanate from each triple point. The shock waves are the Mach stem and
the incident shock, which are part of the leading front, and the transverse wave.

The contact surface emanating from the triple point is a rolled-up vortex sheet.
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Thevvarticity p_lbts réveal that when two triple points collide, the vortex sheets
-detach from the structure of the leading front and travel downstream. Vorticity
is also generated by the curvature of the shock. A large part of this vorticity is
annihilated by the dilatation of the fluid within the reaction zone. The vorticity
plots4 also suggest that the vortices behind the reaction front interact with each
other: small vortices are absorbed by large ones. The diffusion of these vortices
is determined completely by the implicit artificial viscosity of the scheme, because
there are no viscosity terms in the system of equations under consideration. By
comparing results taken at different times, one can verify that collisions of triple
points give birth to new triple points that move along the leading shock front until

they collide, too.

It is also interesting to mention that there is an induction region behind the
shock. The material in this region reacts very slowly, as it can be observed in the
plots of the temperature and the reaction variable. The length of this region varies
in the transversal direction, but it is usually of the order of one unit-length. Beyond
the induction region the material reacts almost completely and the temperature rises
substantially. The zone where most of the reaction takes place typically occupies a

few tenths of a unit-length in the longitudinal direction.

The dimensionless shock pressure, according to the ZND solution, is p; =
126.36. During the numerical simulation the shock pressure goes as high as p, =
384.79, almost three times higher than the ZND value. This maximum value is
reached when explosions occur. The results obtained in the present study are in

good qualitative agreement with the results presented by Bourlioux & Majda (1991).

4.3.2 Case B

In this case, the activation energy is kept the same and the overdrive factor is

lowered:
E, = 50.0, f =20.

The stiffness coefficient for this detonation is K = 99.76. The computational domain
for this simulation is the same as in Case A, i.e., 30 unit-lengths long and 10 unit-
lengths wide. The initial ZND wave is located at z = 25.0.
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The corresponding onefdimensidnal flow is linearly stable. Consequently, longi-
tudinal instabilities do not grow and they are expected to decay with time. The main

features that can be observed in the flow-field of the previous case are also present

. in this detonatlon, i.e., triple pomts collide, releasing large amounts of energy. The

rolled-up vortex sheets that emanate from the triple points move downstream after

these explosions, and interact with each other.

But there are also some new features in the flow-field. The transverse waves
are stronger and their length is considerably larger than in Case A. Furthermore,
the reaction zone can be much longer, up to six unit-lengths long. This occurs
at the parts of the flow that are characterized by large amounts of vorticity. It is
observed that strong vorticity impedes the reaction process. The shock pressure, as
predicted by the ZND theory, is p; = 84.79, but the simulation showed that it can
go as high as p; = 179.87 during an explosion.

Contour plots for this case are presented in Fig. 4.5. There are 30 contours
of the flow variables in each plot, equally distributed between the extremal values.
Furthermore, the plotvs of the reactant mass fraction consist of 11 contours at levels
mentioned earlier. Schlieren-type snapshots of the flow variables are presented in
Fig. 4.6. For this detonation, contour plots of the temperature field, taken at nearby
times, are given in Fig. 4.7. Each plot contains 20 contours, equally distributed
between the extremal values. These plots serve to visualize the process of the

triple-point collisions and the explosions that take place in the front.

4.3.3 Case C
In this case the overdrive factor is lowered even more:
- E, = 50.0, f=16.

The stiffness coefficient for this detonation is K = 230.75. The computational
domain for this simulation is, as usual, 30 unit-lengths long and 10 unit-lengths
wide. The initial ZND wave is located at £ = 25.0. Contour plots and schlieren-
type snapshots of the flow variables for this problem are presented in Figs. 4.8 and

4.9, respectively. The format of these figures is the same as in the previous cases.
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F1G.4.3a Case A: contour plots of the flow variables of the detonation. Results
taken at times, from left to right, ¢ = 42.0, 43.0, 44.0, 45.0. Two periods
in the y-direction are plotted.
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F1G.4.3b Case A: contour plots of the flow variables of the detonation. Results
taken at times, from left to right, ¢ = 46.0, 47.0, 48.0, 49.0. Two periods
in the y-direction are plotted.



F1G.4.4a Case A: schlieren-type image of the pressure field of the detonation. Re-
' sults taken at ¢ = 50.0. Two periods in the y-direction are plotted.

F1G.4.4b Case A: schlieren-type image of the temperature field of the detonation.
Results taken at £ = 50.0. Two periods in the y-direction are plotted.



F1G.4.4c Case A: schlieren-type image of the vorticity field of the detonation. Re-
sults taken at ¢ = 50.0. Two periods in the y-direction are plotted.

o
:@Z’%w%»
B

F1G.4.4d Case A: schlieren-type image of the reactant mass fraction of the deto-
nation. Results taken at ¢ = 50.0. Two periods in the y-direction are
plotted.
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F1Gc.4.5a Case B: contour plots of the flow variables of the detonation. Results

taken at times, from left to right, ¢t = 42.0, 43.0, 44.0, 45.0. Two periods
in the y-direction are plotted.
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F1G.4.5b Case B: contour plots of the flow variables of the detonation. Results
taken at times, from left to right, t = 46.0, 47.0, 48.0, 49.0. Two periods
in the y-direction are plotted.
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F1G.4.6a Case B: schlieren-type image of the pressure field of the detonation. Re-
' sults taken at ¢t = 50.0. Two periods in the y-direction are plotted.

0 ' - 10 | » 20 A 30
F1G.4.6b Case B: schlieren-type image of the temperature field of the detonation.
Results taken at ¢ = 50.0. Two periods in the y-direction are plotted.



F1G.4.6¢c Case B: schlieren-type image of the vorticity field of the detonation. Re-
sults taken at ¢ = 50.0. Two periods in the y-direction are plotted.
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F1G.4.6d Case B: schlieren-type image of the reactant mass fraction of the deto-
nation. Results taken at ¢ = 50.0. Two periods in the y-direction are
plotted.
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F1G.4.7 Case B: contour plots of the temperature field of the detonation, taken at
various times. Two periods in the y-direction are plotted.
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* The corresponding one-dimensional flow is linearly unstable, with one unstable
mode that results to a pulsating detonation (see the results in Chapter 2). The two-
dimensional flow patterns, however, are more complicated. As in the previous cases,
there is s'trc;ng vorticity generaf.ion near the front, which is partially annihilated
inside the reaction zone by the fluid dilatation. The reaction zone can occupy as
many as 7 unit-lengths. The shock pressure of the ZND solution is p; = 67.35. As
discussed in Chapter 2, the shock pressure can go as high as p; = 98.6 in the one-

dimensional case, but its maximum value during the two-dimensional simulation is
Ds = 241.5.

The new feature in this case is the formation of pockets of unreacted material
behind the main front. Initially the unreacted material is located near the front,
but the temperature is not high enough for the medium to burn completely. The
‘incident shock and the Mach stem of the triple points, which are part of the main
front, do not have the same strength. The temperature, therefore, behind the two
shocks is not the same. The material behind the Mach stem burns fast. The material
behind the incident shock burns slowly, and some portions of it are “trapped” in
the vortex sheet that emanates from the triple point, and transported to the core
of the sheet. Consequently, the vortex core consists of almost unreacted material at
low temperature. It is surrounded by fast-burning material, and it detaches from

the main front when a triple-point collision occurs.

The detached vortex cores are the small pockets of unreacted material that
are convected downstream by the flow. Eventually these pockets burn, and the
temperature of the material rises. Two shock waves emerge from the temperature
rise. One is travelling towards the main front, and the other one is travelling away

from it. The shock that travels towards the front collides with the neighboring
' transverse waves and with the main front, as soon as it gets there. Pockets of
unreacted material had not been observed in higher overdrives, and they were not
present in the corresponding one-dimensional case. They are a product of the
interaction of transversal and longitudinal instabilities. It is worth noticing that
pockets of unreacted material had been observed in one-dimensional detonations
for low overdrives, near the CJ point. In the regime of low overdrives, the one-
dimensional conservation equations exhibit chaotic behavior. The mechanism for
formation of unreacted pockets in these detonations is different and it has been

explained in Chapter 2.
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Rééults for this case have been published by Cai (1995) who designed a hybrid
algorithm éonsisting of an ENO scheme for regions of high gradients and a spectral
scheme for smoother regions. His computational domain was wider (20 unit-lengths)
than the one of t'heh present study, and he imposed reflecting conditions at the top
and bottom boundaries, instead of periodic conditions. His numerical results appear

to be in qualitative agreement with the results of the present study.

4.3.4 Case D

Subsequently, the overdrive factor is lowered even more, to the regime where

the one-dimensional problem has 5 unstable longitudinal modes:
E, = 50.0 , f=12.

The stiffness coefficient for this detonation is K = 871.42. The computational
domain of the simulation is 60 unit-lengths long and 10 unit-lengths wide. The
initial ZND wave is located at z = 5.0. Contour plots and schlieren-type snapshots
of the flow variables for this problem are given in Figs. 4.10 and 4.11, respectively.

The format of these figures is the same as in the previous cases.

The two-dimensional analysis of Erpenbeck (1964) reveals that this detonation
is unstable at arbitrarily short wavelengths. The transversal instabilities, combined
with the longitudinal ones, are expected to lead to complicated patterns. In the
early stages, the evolution of the flow-field resembles the equivalent one-dimensional
process, i.e., the shock pressure and temperature drop below the ZND values and,
as a consequence, the reaction zone stays temporarily behind the hydrodynamic
shock. Later on, the material burns fast due to thermal runaway, resulting to high
over-pressures. This similarity to the one-dimensional case suggests the fact that in

early times the evolution process is dominated by the longitudinal instabilities.

Once the transversal instabilities grow and start dominating the flow, the struc-
“tures on the flow-field become very complicated. At the front, strong triple-point
collisions occur, thus generating new systems of shock waves. In the wake of the
leading front there are strong vortical structures. Pockets of unreacted material
are constantly created and subsequently burn. These pockets are much larger than
the pockets encountered in Case C. The ones observed in the present case are long
chunks of unburnt material, almost parallel to the main front. Sometimes they can
span the width of the channel.
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' The_ transverse waves of the triple points are strong and can be more than
10 lengths long. ‘Transverse-wave collisions are encountered very often. The shock
waves that are formed from these collisions interact with the vortical structures that
are convected downstream from the main front. As a result, the flow-field for this
detonation is very complicated and without any evident regularity, even far behind
the leading front. According to the ZND theory the shock pressure is p; = 50.49.
In the present simulation the maximum value observed is p; = 220.0. This test
case was also investigated by Bourlioux & Majda (1991). Their results are in good

qualitative agreement with the results obtained in the present study.

4.3.5 Case E

Fina,lly, a case of low activation energy and low overdrive factor is presented.

These parameters are set as follows:
E, =10, f=12.

The stiffness coefficient for this case is K = 3.124. The computational domain is
60 unit-lengths long and 10 unit-lengths wide, i.e., it consists of 1200 x 200 points.
The initial ZND wave is placed at 2 = 55.0. The corresponding one-dimensional
flow is stable, as one might expect for such a low activation energy. Results for this
case are presented in Figs. 4.12 and 4.13, with the usual format. One can notice
that the transverse waves are weaker and shorter, than the transverse waves of the
previous cases. As a result, the vortex sheets are more regularly distributed in the
wake of the front. The shock pressure of the ZND solution is ps = 50.49, but 1t
_ is found out that the maximum shock pressure during the simulation goes as high
as p; = 144.62. ‘Contour plots of the temperatﬁre field for this detonation, taken
at nearby times, are given in Fig. 4.14. Each plot contains 20 contours among the
extremal values. It can be verified from these plots that the structure of the main
front repeats itself in time. This case had been studied earlier by Bourlioux &
Majda (1991) and Quirk (1995). Their results agree qualitatively with the results
of the present study. Those results show that the geometry of the main front and
the vorticity distribution are perfectly symmetrical about the horizontal line that
intersects the main front at points of triple-point collisions. Cai (1995) had also

studied this case.
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It is worth "notiéi‘ng that simulations of the above cases with different reso-
lutions (1'0 and 15 points per unit length) produced qualitatively the same but
quantitatively different results. This is typical in the simulations of highly unstable
(chaotic) flows, because only the instabilities whose wavelength is larger than the

cell size can be captured numerically.

It should be mentioned that different widths of the computational domain
have also been considered. The cases discussed above have also been computed in
domains that were 5 and 15 unit lengths wide. It was observed that the size of the
structures that are present in the flow-field depends on the width of the domain. It
was found out that at given times there are many triple points distributed along the
front. Their strength, however, is not the same. The explosions that occur when
the two strongest triple points collide will dominate and spread along the front,
“consuming” the other (weaker) triple points. This results in the formation of one
cellular structure in the computational domain. The size of this structure scales
equals the width of the domain. This can be verified at the results presented in
Fig. 4.15. Contour plots of the pressure and temperature for the detonation of Case
B with varying widths are presented in this figure, with the usual format. Three
different domain-widths have been considered, namely 5, 10, and 15 unit lengths.
Front track when the domain width is 10 unit length is presented in Fig. 4.15a,

where the cellular structure of the detonation can be observed.

A summary of the description of the numerical simulations for the cases con-

sidered above is given in the following table:

“Case E, f  [1-D linear stability 2-D behavior
A 50.0 3.0 stable regular vortical structures,
no unburnt pockets

B 50.0 2.0 stable wide reaction zone,
) ' regular vortical structures,
no unburnt pockets
C 50.0 1.6 | 1 unstable mode [complicated vortical structures,
‘ long transverse waves,
small unburnt pockets
D 50.0 1.2 | 5 unstable modes | strong triple-point collisions,
very long transverse waves,
complicated vortical structures,
large unburnt pockets
E 10.0 1.2 stable regular vortical structures,
small unburnt pockets
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Fic.4.8a Case C: contour plots of the flow variables of the detonation. Results
taken at times, from left to right, ¢ = 31.0, 32.0, 33.0, 34.0. Two periods

in the y-direction are plotted.
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F1G.4.8b Case C: contour plots of the flow variables of the detonation. Results
taken at times, from left to right, ¢ = 35.0, 36.0, 37.0, 38.0. Two periods
in the y-direction are plotted.
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F1G.4.10a Case D: contour plots of the flow variables of the detonation. Results
taken at times, from left to right, ¢ = 32.0, 33.0, 34.0, 35.0. Two periods
in the y-direction are plotted.
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F1G.4.10b Case D: contour plots of the flow variables of the detonation. Results

taken at times, from left to right, ¢ = 36.0, 37.0, 38.0, 39.0. Two periods
in the y-direction are plotted.
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F1G.4.11a Case D: schlieren-type image of the pressure field of the detonation.
Results taken at ¢t = 40.0. Two periods in the y-direction are plotted.

F16.4.11b Case D: schlieren-type image of the temperature field of the detonation.
Results taken at ¢ = 40.0. Two periods in the y-direction are plotted.



FiG.4.11c Case D: schlieren-type image of the vorticity field of the detonation.
Results taken at ¢ = 40.0. T'wo periods in the y-direction are plotted.
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F1G.4.11d Case D: schlieren-type image of the reactant mass fraction of the deto-
nation. Results taken at ¢ = 40.0. Two periods in the y-direction are
plotted.



FiG.4.12a Case E: contour plots of the flow variables of the detonation. Results
taken at times, from left to right, ¢t = 52.0, 53.0, 54.0, 55.0. Two periods
in the y-direction are plotted.



110

F1G.4.12b Case E: contour plots of the flow variables of the detonation. Results
taken at times, from left to right, ¢t = 56.0, 57.0, 58.0, 59.0. Two periods
in the y-direction are plotted.
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F1G.4.13a Case E: schlieren-type image of the pressure field of the detonation. Re-
sults taken at ¢ = 60.0. Two periods in the y-direction are plotted.

F1G.4.13b Case E: schlieren-type image of the temperature field of the detonation.
Results taken at ¢ = 60.0. Two periods in the y-direction are plotted.
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F1G.4.13¢ Case E: schlieren-type image of the vorticity field of the detonation. Re-
sults taken at ¢ = 60.0. Two periods in the y-direction are plotted.
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FI1G.4.13d Case E: schlieren-type image of the reactant mass fraction of the deto-

nation. Results taken at ¢ = 60.0. Two periods in the y-direction are
plotted.
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F1G.4.14 Case E: contour plots of the temperature field of the detonation, taken at
various times. Two periods in the y-direction are plotted.
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4.4 Numerical Studyv’of Wedge-Induced Detonations

In this section, numerical simulations of wedge-induced detonations, using the
proposed unsplit scheme, are presented. The wedge is placed instantly in uniform
“flow of a reactive gas. A shock is immediately formed at the wedge. If the surround-
ing gas were inert, this shock would oblique, at a prescribed angle with respect to
the centerline of the wedge. But because the gas is assumed to be reactive, the
shock is curved due to the dilatation of the reacting material behind the shock.
A detonation might be established downstream if the shock temperature is high

enough.

The wedge angle, 6, is an important parameter of this problem. It is expected
that for small wedge angles the shock turns smoothly and the flow far downstream
consists of an oblique ZND wave, i.e., a ZND wave with a non-zero transversal
velocity component. For small wedge angles, both the inert and the equilibrium
shock-polars admit solutions for the shock angle, 8. The shock near the tip is
essentially inert and its angle can be computed from the inert shock-polar. The
angle of the ZND wave, far downstream, can be computed from the equilibrium
shock-polar. Given the state ahead of the shock, denoted by the subscript “1”, one
can determine the flow variables behind the shock, denoted by the subscript “s”,

by employing the standard kinematic relations for oblique shocks:
1+ M £ (M3, — 1)? = 2(y + V)M, 00/ (pT1)

F = , 4.1
G+ DM, (412)
o . _ tan(B—6)
. F = tang (4.1b)
ps = p1+ul(l—F)sin’g3, (4.1¢)
where Mj, is the normal Mach number ahead of the shock:
) Ml _ U1 Slnﬂ (4 2)

VAT

For wedge angles larger than a certain value (but small enough so that the
equilibrium shock-polar admits a solution for ), the shock can not turn smoothly,
and a strong explosion is expected to occur on the front. This explosion is caused
by the interaction of pressure waves inside the reaction zone. These pressure waves
are emitted from the points at which the material near the wedge burns rapidly due

to thermal runaway.
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4.4.1 Detonation induced by long wedges

Three different cases have been examined numerically. Schematic of the geo-
metrical conﬁgurafiofl and the computafional domain is given in Fig. 4.16. The
wedge is assumed to be long so that the wedge corner has no effect on the flow-field
near the reaction zone. Inflow conditions have been assigned at the left boundary
and at the first 7 cells of the bottom boundary. Reflecting conditions have been
assigned at the rest of the bottom boundary, and outflow conditions have been as-
sumed at the top and, right boundaries. The flow at these boundaries is supersonic,
and one must ensure that all information for the evaluation of the boundary fluxes
comes from inside the domain. This is performed by copying the values from the

boundary cells to their corresponding dummy cells.

computational domain—-

shock wave

F1G.4.16 Schematic of the computational domain for the problem of a detonation
induced by a long wedge.
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- The values of the speéiﬁc heat ratio, v, and the heat release coefficient, ¢qq, are

set as follows:
v =12, go = 50.

Upstream, the ISressure and density of the gas are equal to unity. All the variables
and parameters of the system of equations have been made dimensionless with
respect ‘to this upstream state. The results of the simulations are plotted with
the same format that was used in the previous section, i.e., contour plots of the
pressure, temperature, vorticity, and reactant mass fraction are presented. Each
plot consists of 30 contours, equally distributed between the extremal values, except
" of the plots of the reactant mass fraction which contain 11 contours, at the levels
z = 0.01,0.1 ,0.2, ..., 0.9,0.99. The CFL number for these simulations is set to
0.70.

- Case A

This is a low activation energy case:
E, = 10, K = 3.1245.

As a first test, the wedge angle is set to 8§ = 20°. The upstream velocity of the gas
is u; = 12.171. Given these parameters and upstream conditions, the theoretical
prediction is that far downstream this detonation reduces to an oblique ZND wave
of overdrive factor f = 1.2 and at an angle f = 34.02°. The equivalent channel-flow

problem was examined in the previous section (case E).

The computational domain consists of 960 x 400 cells. This corresponds to a
nominal resolution of 8 points per half-reaction length for the steady (ZND) solution.
In this simulation the shock wave turns smoothly until it reaches the asymptotic
angle. Contour plots for this case are presented in Fig. 4.17a. These plots are
taken at ¢t = 24.0. No change on the flow variables is observed at later times, which
implies that the part of the flow-field that is covered by the computational domain

reaches a steady state.

In the area near the tip of the wedge, the shock is essentially inert. The pressure
and particle velocity in this region are almost constant along a streamline, and the
gas reacts due to the phenomenon of thermal runaway. The temperature increase
across the oblique shock is small and, consequently, the source term in the species
equation remains too small to initiate rapid reaction. This source term, however, is

not zero, so the material burns very slowly.
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The region of slow burning is the induction zone. At the end of the induction
zone, the temperature has risen high enough to initiate and sustain fast burning of
‘the gas. As a result of the fast burning of the material near the wedge, pressure
waves are transmitted to the shock front. These waves interact with the slow-
burning region behind the shock, causing the fluid particles to burn faster and dilate,
and the shock front to turn. Recall that the phenomenon of thermal runaway was
also encountered in the study of one-dimensional detonations near the CJ point. It
is responsible for the formation of pockets of unreacted material in such flows, as

discussed in Chapter 2.

Next, the wedge angle is increased to § = 27°. This is the maximum angle
for which the equilibrium shock-polar admits a solution for . For a detonation
of overdrive factor f = 1.2 to occur, the upstream velocity has to be u; = 9.255.
The asymptotic limit of the shock angle is readily found to be f = 53.7°. The
computational domain for this simulation consists of 1020 x402 cells, with a nominal
resolution of 6 points per half-reaction length. Contour plots of the variables for
this problem, at t = 50.0, are given in Fig. 4.17b. It can be observed in these plots
that several triple points have been formed along the leading front. These triple
points move with different velocities. Therefore, collisions between the triple points
will eventually occur (most likely outside the area covered by the computational
mesh), thus forming the cellular structures that were studied in the previous section.
Formation of triple points should have been observed in the previous simulation

(when 8 = 20°), had the computational domain been large enough.
Case B
The activation energy and the stiffness coefficients are now set at:
E, =5, K =99762.

The wedge angle is § = 20°. The upstream velocity is u; = 20.58. Theoretically,
the shock angle tends asymptotically to a shock angle f = 27.9°. At this limit the
detonation is an oblique ZND wave of overdrive factor f = 2.0. The equivalent

channel-flow problem was also examined in the previous section (case B).

Three different resolutions have been used for this problem. In the first test the

computational domain consists of 285 x 60 cells, Fig. 4.18a. In the second test it
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consists of 570 x 120 éells, Fig. 4.18b. In the final test it consists of 1140 x 240 cells,
Fig. 4.18c, corresponding to a nominal resolution of 6 points per half-reaction length
of the one-dimensional, steady-state solution. Again, the shock turns smoothly until
it reaches a steady state, very close to the asymptotic limit. The results presented
in Figs. 4.18 are taken at ¢ = 18.0. By this time, the solution has already reached
the steady state. It is expected, however, that formation of triple points occurs
further downstream. Unfortunately, the current constraints on the computational
resources did not allow the use of a domain large enough to include the region
where triple-point formations occur. It can be observed that the same steady-state
" solution has been computed with all three meshes. As expected, the shock profiles

on the coarse meshes are more smeared than the ones on the fine mesh.

Next, the wedge angle is increased to 8 = 35°, which is near the maximum angle
for which the equilibrium shock-polar admits a solution. As before, three different
mesh sizes have been used for this problem, consisting of 560 x 64 cells, 560 x 128
cells, and 1140 %240 cells, respectively. The finer computational domain corresponds
to a nominal resolution of 8 points per half-reaction length. The upstream velocity
is 43 = 11.509. The asymptotic limit is a detonation with overdrive factor f = 1.2
and at an angle § = 56.8°. Results for this simulation, taken at ¢ = 50.0, are
given in Figs. 4.18d, 4.18e, and 4.18f. The flow can not turn smoothly in this case,
because of the high value of the wedge angle.

As a result, a strong explosion takes place at the front. The center of the
explosion is a triple point. The incident shock and the Mach stem are the two parts
of the main front, below and above the triple point respectively. Another shock
emanates from the triple point, the reflected shock, which hits the wedge and reflects
back. Additionally, a contact discontinuity (shear layer) is formed between the Mach
stem and the reflected shock. The material behind the incident shock burns due
to thermal runaway, but the material behind the Mach stem burns fast because
of the high temperature rise due to the explosion. Consequently, there is a strong
density and temperature gradient across the shear layer. The shear layer becomes
unstable very quickly and generates strong vortical structures that are convected
downstream, as seen in 4.18f. Diffusion in these simulations is introduced by the
discretization of the equations and the truncation error of the scheme. Consequently,
the size and the velocity of the vortical structures are determined by the the size of

the grid and the implicit artificial viscosity of the algorithm. The convective Mach
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number for the shear layer lies between 0.5 ~ 0.7, so the layer can be considered

slightly compressible.

It is worth mentioning that the flow between the incident shock and the wedge
is steady. Furthermore, the region between the shear layer and the Mach stem
is subsonic in the vicinity of the triple point. A sonic line emanates from the
triple point and moves along the shear layer. After some distance the sonic line
turns upward and ends up in the Mach stem. Beyond this pocket, the flow becomes
supersonic and should have all the typical characteristics of planar detonations, such
as formation of colliding triple points and transverse waves, and vorticity generation
at the main front. Qualitatively, the results on the three different meshes are the
same. Interestingly, the location of the explosion at the front is the same regardless
of resolution. The results on the coarse meshes, however, are more diffusive than
than the ones on the fine mesh: the shock profiles are more smeared, and the

structures of the shear layer and the reaction zone are not sufficiently resolved.

Since the equilibrium shock-polar admits a solution for the shock angle 8, it is
expected that far downstream the Mach stem reduces to an oblique ZND wave, at an
angle 8 = 56.8°. The instability mechanisms that were encountered in detonations
in channel flows (and lead to the formation of triple points) should also appear
on the flow-field of oblique detonations: as demonstrated in the previous section,
two-dimensional detonations are intrinsically unstable. This region, however, is too

far downstream to be included in the computational domain.

It should be noted that for higher wedge angles, the equilibrium shock polar
can not give a solution for B. In such situations, a strong explosion of the main
front is also expected to occur. But since there is no solution to the equilibrium
shock-polar, the Mach stem can not reduce to an oblique ZND wave downstream,
and 1t is everywhere curved. For even higher wedge angles, none of the shock-polars
admits a solution, and the main front detaches from the wedge. Such high wedge

angles have not been considered in the present work.
Case C

The activation energy is the same as in case B, but the stiffness coefficient has
now been increased:

E, = 50, K = 230.75 .



123

" The wedge angle is @ = 20°. The upstream velocity is u; = 18.051. The theoretical
predictiori is that far downstream the detonation will be a ZND wave of overdrive
factor f = 1.60 and at an angle 8 = 28.5°. The equivalent channel-flow problem was
examined in case C of the previous section. The computational domain consists of
1200 x 200 cells, corresponding to a nominal resolution of 8 points per half-reaction
length of the one-dimensional, steady-state solution. As in case B, the shock turns
smoothly until it reaches a steady state. Contour plots of the flow variables are
given in Fig. 4.19a. These results are taken at time ¢ = 18.0. No change in the flow
variables could be observed after that time. The shock angle at the right boundary
is very close to the asymptotic limit 8 = 28.5°.

The case of a higher wedge angle, namely § = 30°, has also been considered.
The computational domain consists of 1440 x 240 cells, corresponding to a nominal
resolution of 8 points per half-reaction length. The upstream velocity is now set at
u; = 12.035. Under this initial condition, the theoretical prediction is a detonation
of overdrive factor f = 1.6, at a shock angle 8 = 45.7°. Results for this simulation,
taken at time ¢t = 36.0, are given in Fig. 4.19b. These results are similar to the
ones obtained in the high-angle simulation of case B. The basic features that were
encountered earlier on (such as the explosion on the front, the development of an
unsteady shear layer, and the formation of a subsonic pocket behind the Mach stem

in the vicinity of the triple point) can also be observed in this simulation.

It is worth mentioning that Li et al. (1994) also presented simulations for
wedge-induced detonations using the FCT algorithm, on a domain of 400 x 150
cells. Their numerical results seem to agree qualitatively with the results obtained
with the proposed unsplit algorithm. In particular, they also observed that for small
wedge angles the main front turns smoothly, while an explosion occurs at the front

-if large wedge angles are considered. More detailed comparisons between the two
studies can not be made because Li et al. considered a different combustion model

and did not use dimensionless quantities for their simulations.
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4.4.2" Detonations induced byv short wedges

In the cases examined in the previous subsection, it was assumed that the wedge
is long enough for the explosion to take place upstream of the corner of the wedge.
In such casés, the location of the explosion and the flow-field in that neighborhood
are determined completely by the kinetics of the reaction. If, however, the wedge is
not long enough, then the explosion will take place near the corner. The effect of
the corner in such situations has also been studied numerically, and the results are

described below.

The chemical reaction increases the temperature of the fluid, while the expan-
sion at the corner decreases it. These two mechanisms “compete” against each
other. Furthermore, by including the corner in the computational domain, a second
characteristic length is introduced. This is the height of the wedge, hy, the first
one being the half-reaction length. It is the combination of these two length-scales

-with the wedge angle that ultimately determines which of the two mechanisms will

dominate.

In the numerical simulations, the activation energy and the stiffness coefficient
are set at E, = 50 and K = 99.762, respectively. The wedge angle is # = 35°. The

upstream state of the fluid is
= 1.0, = 1.0, u; = 11.509 .

The flow that is produced by these parameters and upstream conditions in the case

of a long wedge was examined in the previous subsection; see Fig. 4.18d.

Three different wedge heights are considered. First, the wedge height is set at
 hw =70.0. The computational domain consists of 930 x 330 cells. The length of the
domain is 155.0, and its width from the upper wall of the wedge is 55.0. Results for
this simulation, taken at ¢ = 46.0, are shown in Fig. 4.20a. In this case the explosion
occurs upstream with respect to the corner. The expansion at the corner does not
affect the explosion because the flow in the corner is supersonic. The leading shock
is expected to reduce far downstream to a CJ wave, just like the one-dimensional

detonation initiated by a moving piston that comes suddenly to a rest.
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F1G.4.20a Flow past a wedge of height hy, = 70.0 and angle 8 = 35°. Contour plots
of the flow variables at £ = 46.0.

The flow-field in the neighborhood of the inert shock and the explosion is the
same as in the corresponding case with a long wedge; see Fig. 4.18b. The interaction
of the reflected shock with the shear layer causes the fluid to decelerate, thus forming
_another subsonic reglon in the flow-field, besides the one in the vicinity of the triple
p01nt It is also worth mentioning that the expansion that takes place at the corner
affects the evolution of the shear layer. As the fluid below the shear layer expands,
the pressure and density drop, generating even higher entropy gradients across the
layer. Therefore, the expansion at the corner leads to an increased amount of

vorticity generation across the shear layer.

Subsequently, the wedge height is reduced to hy, = 50.0. The computational
domain consists of 810 x 420 cells. The length of the domain is 135.0, and its
width, as measured from the upper wall of the wedge, is 70.0. Results for this



136

simulation are shows in Fig. 4.20b. They are taken at time ¢ = 46.0. In this
-case, the explosion takes place downstream of the corner. The flow in the subsonic
area in the v1c1n1ty the triple point (between the Mach stem and the shear layer)
is influenced by the expansion at the corner. Additionally, the expansion at the

corner affects the curvature of the leading front and the reflected shock.
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F1G6.4.20b Flow past a wedge of height h,, = 50.0 and angle § = 35°. Contour plots
of the flow variables at ¢ = 46.0. ‘

A fluid element moving parallel to the wedge does not have time to increase
its temperature substantially, via the thermal-runaway mechanism, because of the
small length of the wedge. Consequently, it remains almost unreacted when it

reaches the head of the expansion. The expansion produces a further decrease of
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“the temperature which delays the initiation of the reaction even more. It is observed
that the material on the upper wall of the wedge has remained only partially reacted

(about 20%), as a result of the temperature decrease caused by the expansion at

the corner.

~As a final test, the wedge height is lowered further to hy, = 25.0. The simulation
is pérformed on a domain of 1266 x 270 cells. The length of the domain is 210.0 and
its width is 45.0. Results from this simulation, taken at ¢ = 10.0, are presented in
Fig. 4.20c. It is observed that the expansion at the corner reduces the temperature
so much that the gas near the wedge remains almost unreacted because the time
needed for rapid reaction via thermal runaway becomes very large. As a result, a
detonation can not be established and the shock wave is expected to reduce to a
Mach wave downstream. It is also observed that there is a small pocket of slightly
- reacted material near the wedge. It can be verified by looking at results taken at
early times that the formation of this pocket is a transient phenomenon caused by
the interaction of the shock wave and the expansion at the corner, in the beginning of
the simulation. It is convected downstream with the fluid velocity. The minimum
value of the reactant mass fraction inside the pocket is z ~ 0.9. If the material
reacted completely, pressure waves would be transmitted to the shock wave and
a CJ detonation could be established. But it is observed that the reaction rate,
2 = —Kzexp(—E,/T), inside the pocket decays with time, which suggests that
the reaction process will not be completed inside the pocket. After some time the
pocket exits the computational domain, and the shock front eventually assumes a
fixed position. No change in the flow variables can be observed after that. The
material all along the wedge will remain only partially reacted, and a detonation
will not be established.

4.5 Concluding Remarks

The proposed unsplit numerical scheme has been used for the numerical stufy
of two-dimensional detonating flows. The scheme is based on a decomposition of the
governing equations that is mathematically consistent, and appears to be capable
of capturing important details of the structure of the resulting flow-fields, some of
which have not been easy to document in the past. No explicit artificial viscosity
mechanisms or any other of the usual “fixes” (such as entropy-fixes or flux-splitting)

has been employed.
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F1G.4.20c Flow past a wedge of height hy, = 25.0 and angle 8 = 35°. Contour plots
of the flow variables at ¢ = 10.0.

It was verified that two-dimensional detonations propagating in narrow chan-
nels are intrinsically unstable and exhibit chaotic behavior. They are characterized
by the presence of cellular patterns. These patterns are formed by the transverse
waves of the triple points of the main front. The slip lines emanating from the
triple points are rolled-up vortex sheets. They detach from the leading shock when
triple-point collisions occur. Vortical structures are also generated by the curvature
of the shock but their strength reduces substantially within the chemical reaction

zone.

Furthermore, a numerical study of shock-wedge induced detonations was also
performed. It was demonstrated that, for small wedge angles, the shock that is
attached to the wedge turns smoothly to an oblique ZND wave. For high wedge
angles, however, such a smooth turn is not possible and an explosion takes place
at the front. The center of the explosion is a stationary triple point. A shear layer
emanates from the triple point. that eventually becomes unstable. The effect of

the corner of the wedge was also studied numerically. It was shown that when the
| explosion of the leading front takes place upstream of the corner, the expansion at
the corner does not affect the evolution of the front, which reduces to a CJ wave.
When the explosion occurs downstream of the corner, the curvature of the front
and the reaction process depend on the expansion at the corner. It appears that
for wedge heights small enough, a detonation can not be established downstream,

and the front decays downstream to a Mach wave.
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CHAPTER 5

Future Directions

The subject of this work has been the design and implementation of unsplit
schemes for the numerical solution of hyperbolic systems of conservation laws with
source terms. For this purpose, new manifolds are defined in space-time, along which

‘the conservation laws can be decomposed into the same characteristic ODE’s as in
the homogeneous one-dimensional case and solved numerically. These manifolds
might be space-like, or time-like, depending on the local spatial gradients of the

flow, but embed the curves along which the one-dimensional characteristic equations

apply (exactly).

A particular version of the proposed algorithm has been applied successfully
to the simulation of one-dimensional detonations and to the simulation of two-
dimensional detonations propagating in narrow channels. It has also been employed
for the numerical study of wedge-induced detonations. This scheme integrates all
the terms of the governing equations simultaneously. No flux-splitting or other
usual “fixes” are employed. Most important, no explicit artificial viscosity terms
are needed for the stabilization of discontinuities, in contrast with conventional

schemes.

Future directions include the extension of the algorithm for the numerical sim-
ulation of multi-component reacting systems. This will help study various prob-
lems arising in supersonic combustion, such as the effect of chain-branching. The
better understanding of these mechanisms is very crucial to the design of the next-
generation, high-speed propulsion systems. In order to treat with the considerable
resolution requirement that are necessary in order to capture instabilities of very
short wavelength, the proposed algorithms will be parallelized so that they can work

in the environment of massively parallel supercomputers.
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| vAvddi‘t‘iona,lllj, the' decomposition of the two-dimensional hyperbolic system that
-was described in Chapter 3 of the present work can be directly extended to hyper-
bolic systems in three space dimensions. This development will serve as the build-
ing block for the generahzatmn of the algorithm to three-dimensional, chemically-
| reacting flows. It should be stressed that because such flows are highly non-linear
phenomena, the third spatial dimension is expected to result in a richer dynamical
behavior, with many more unstable modes than in the two-dimensional case. It
is apparent, therefore, that three-dimensional simulations are necessary in order
to get useful ihformation about the initiation and propagation of instabilities and

combustion fronts in these flows.
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