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Abstract

One of the requirements for the physical implementation of many protocols in quantum information

science is the ability to convert quantum information from stationary to travelling form and transmit

it over long distances. The strong coupling domain of cavity quantum electrodynamics (QED)

provides a near-ideal setting for the pursuit of these goals. In addition, cavity QED is a unique

system for the study of open quantum systems and quantum coherence. Cavity QED experiments

have entered a new era in recent years, with the advent of single atom intracavity trapping.

Experiments described in this thesis represent significant progress in these areas. Beginning

with a tremendous set of improvements to far-off-resonance optical trapping of single Cs atoms in

a Fabry-Perot resonator, we have undertaken a series of investigations in which strongly coupled

trapped atoms have been used for quantum optics and quantum information. These improvements

in trapping go beyond quantitative lengthening of storage times, in that the trap is largely insensitive

to the atom’s internal state.

As a result of this unique property of the optical trap, a breakthrough was made in the continuous

observation time of trapped atoms. Individual atoms can be observed for times of order 1 second,

and this scheme enables real-time monitoring and measurement of the number of atoms strongly

coupled to the cavity. This enables deterministic preparation of a particular atom number of the

experimenter’s choice.

Using single trapped atoms in our cavity, we have also experimentally realized the one-atom

laser in a regime of strong coupling. The unconventional characteristics of this system are explored

in detail, including strongly nonclassical output. This represents a significant milestone of long-

standing interest in the quantum optics community, and goes beyond previous work with atomic

beams where there was a fluctuating atom number in the cavity.

Finally, we have achieved the first deterministic generation of single photons in a setting suitable

for quantum networks. By illuminating a strongly coupled, trapped atom by classical laser pulses,

single photons have been generated on demand, with intrinsic efficiency near unity. Although a great

deal of work remains to configure this system as a true node in a quantum network, the ground-work

has been laid for progress in the near future, where one goal is to create an entangled state of two

atoms in distantly separated cavities.
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Chapter 1

Introduction

The confinement, isolation, and manipulation of individual particles has been a long-standing pursuit

of experimental physicists. There is a fundamental desire to reduce systems down to their elementary

constituents and to study interactions and behavior at a basic level, including the emergence of

quantum phenomena. Within the realm of atomic and optical physics, the ion trapping community

has played a pioneering role in leading this charge [1, 2]. Laser cooling and trapping was also

applied to neutral atoms, leading to an explosion in this field throughout the 1990’s [3, 4, 5]. These

techniques led to the study of single trapped neutral atoms, first in magneto-optical traps [6, 7, 8, 9]

and magnetic traps [8], and later in optical dipole traps [10, 11].

The field of quantum information science (QIS) [12] has been simultaneously emerging along

with this development and expansion of laser cooling and trapping. In fact, cold, trapped atoms and

ions are considered one of the best candidates for the experimental realization of QIS protocols and

systems [13]. Electromagnetic fields can be used to cool and trap atoms, their long-lived internal

states are well suited for the storage of quantum information, and the interaction of atoms with laser

light can be used for readout and transmission. More specifically, many of the standard, accepted

physical requirements for quantum computation [14] are satisfied by the ability to confine a small

number of atoms in such a way that they are individually addressable by laser light and can undergo

controllable interactions with each other. Trapped ion systems seem to be the leading candidate

right now [15], and tremendous progress is being made [16, 17].

However, the field of quantum information science extends beyond the realm of local quantum

computation. Indeed, there is a strong interest in the ability to convert stationary quantum infor-

mation to a mobile type (hence the term flying qubits [18]). This must then be complemented by

the ability to faithfully transmit these flying qubits across long distances. These requirements are

considered crucial for ideas of quantum communication, which are intimately connected to quantum

computation and represent a major component of QIS in general [14].

The main system typically considered for the achievement of these goals is cavity quantum

electrodynamics (QED) in the regime of strong coupling [19, 20]. In particular, one or several trapped
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atoms strongly coupled to an optical cavity could represent a node in a quantum network, and

schemes exist where quantum information can be transmitted from one node to another using optical

interconnects, such as fibers [21, 22]. The strong interaction between the atom and the optical field

is enabled by small cavity mode volume and high resonator quality, allowing coherent interactions

to dominate dissipation. These attributes permit the reversible interconversion of stationary qubits

(hyperfine atomic ground states) to flying qubits (optical photons). Beyond its applicability to QIS,

however, cavity QED is a unique system suitable for many other types of scientific investigation.

As has been documented extensively over the years, cavity QED provides an open quantum system

with well-understood interactions (see, e.g., Ref. [23] and references therein). This system then

enables studies of quantum control and feedback, real-time observation of quantum dynamics [24],

and more generally the study of quantum coherence. Hopefully, the developments described in this

thesis, in particular the improvements in the ability to confine an atom in a cavity, could lead to

fruitful research in these fields.

This thesis documents a series of cavity QED experiments undertaken the past several years in the

Caltech Quantum Optics group. Specifically, these experiments are based on trapping single cesium

atoms inside an optical cavity, aiming toward the realization of a quantum network. David Vernooy

and Jun Ye [25, 26] laid the foundations for these efforts starting around 1998, to be continued by a

large group of researchers since then. In this thesis I will concentrate on the period beginning in the

summer of 2002, when a dramatic improvement in trapping ability was achieved. This improvement

allowed us to qualitatively change our approach from concentrating only on intracavity trapping to

using the atom-cavity system for experiments in quantum optics and quantum information science.

In this introductory chapter I intend to briefly describe each one of these experiments, and to place

them in the broader context of other similar experiments in the community.

The aforementioned breakthrough in trapping is documented in Ref. [27] and Chapter 3, where

mean storage times of 2 to 3 seconds for single Cs atoms were achieved. This was, and still remains,

the longest trap lifetime ever realized for atoms in the strong coupling regime of CQED, and eclipses

the previous best by two orders of magnitude [26]. The mechanism for trapping is the optical dipole

force, in the far-detuned regime (far-off-resonance trap, or FORT). The central idea for our system

is to use a longitudinal mode of the cavity to sustain a standing-wave FORT, so that the trapping

takes place in the same region as the cavity QED interactions. Although this integration of optical

trapping with cavity QED proved to be a substantial technical challenge, we achieved a long-standing

goal, the first step toward the creation of a viable node for a quantum network. In order to achieve

our success in trapping, we had to diagnose, understand and correct several technical problems

involving our trap, some of which are extensively documented in Ref. [28].

A critical feature of our FORT is its state-insensitive nature, meaning the strength of the trap

is only weakly dependent on the atom’s internal state. Stated differently, the atomic excited states
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are shifted by nearly the same amount as the ground states, meaning the critical optical transition

for cavity QED experiences only a small shift. This presents important advantages such as the

simplification of atom-cavity spectroscopy, and the facilitation of laser cooling of trapped atoms.

Our experiments are unique in that they combine this state-insensitivity with the strong coupling

domain of cavity QED. In ion trapping systems, the internal and external degrees of freedom are

indeed independent, but the cavities in these experiments have yet to reach the strong-coupling

regime [29, 30]. Other cavity QED experiments with trapped neutral atoms have been done with

more conventional FORTs, where the excited state is not trapped [31, 32].

Not only did we dramatically improve atomic storage times in these experiments, we also demon-

strated continuous observation of trapped atoms for unprecedented durations, thanks in part to the

state-insensitive FORT. This was another major milestone since all protocols seeking to use CQED

for quantum information science require the ability to optically address trapped atoms in a non-

destructive manner. These results are mentioned in Chapter 3, and documented more extensively

in Chapter 4 and Ref. [33]. A central feature of this scheme is the ability to determine the number

of atoms trapped in the cavity in real time. The ability to count intracavity atoms is important

not only for experiments requiring multiple atoms in the same cavity. It also circumvents a possible

criticism of our experiments: the fact that we load our trap in a “non-deterministic” manner. Other

experiments have been built around the idea of delivering a pre-determined number of trapped atoms

into a cavity region [34]. Although our experiments indeed lead to random trap-loading, in Chapter

4 we outline a scheme for quickly measuring the atom number, which is possibly faster than the

other deterministic schemes.

The achievement of this continuous probing was a crucial stepping stone on the way to our next

major accomplishment: the experimental realization of a one-atom laser in the regime of strong

coupling. In this experiment, which was reported in Ref. [35], we configured our atom-cavity system

as the fundamentally simplest possible laser (see Chapter 5 of this thesis). As a result of the strong

atom-field coupling and highly quantum nature of the interaction, this device had very different

characteristics from a conventional laser, and we explored these features in detail. We observed

nonclassical, or manifestly quantum photodetection statistics of the output light, characterized the

output power vs. pumping strength, and compared these results with various theoretical models.

Although research on “single-atom” micromasers and lasers has been reported in the past, those

experiments were performed with atomic beams in which the intracavity atom number was fluctu-

ating, with one atom on average, and each atom only incrementally contributing to the output.1

By contrast, our experiment was done with one and the same atom trapped in the cavity for times

much longer than necessary to reach steady-state.

The one-atom laser led naturally to the next step along the road to quantum networking: the
1See references in Chapter 5/Ref. [35]
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deterministic production of single photons using our atom-cavity system. We accomplished this

goal in the autumn of 2003, with results comparable to or better than the state of the art in the

literature. As documented in Ref. [36], photons were produced with near unit efficiency, and two-

photon events were suppressed by more than 20-fold compared to a coherent state. Our system

provides an intrinsically coherent and reversible photon source where the internal atomic state

decoheres slowly, so that it can remain entangled with the state of the cavity output field, precisely

the requirement for the implementation of a quantum network.

Although the experiments described herein do represent significant progress toward the stated

goals, there remains a great deal to be done. Atomic confinement inside the cavity has developed

nicely, but other atomic degrees of freedom have remained uncontrolled. For instance, further cooling

of trapped atoms would be desirable, potentially leading to the investigation of quantized center-

of-mass motion in cavity QED [37]. The magnetic sublevel of the trapped atoms also needs to be

deterministically prepared and maintained for many schemes. However, experiments underway as

of this writing are making tremendous strides toward full control of both of these variables. Some

goals for the immediate future in this laboratory are to demonstrate the indistinguishability of

our single photons, and the coherent reversibility of the photon emission. With these goals and

improvements imminently realizable, the possibility of entangling two atoms in distantly separated

cavities definitely seems within reach.
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Chapter 2

Experimental Apparatus

2.1 Introduction

The apparatus for the experiments described herein has a long history, and many students and

postdocs deserve credit for its evolution over the last 5 years or more. The vacuum chamber was

constructed by David Vernooy and Jun Ye around 1998-99 [25, 26], and some fraction of the equip-

ment and table setup were left over from experiments done by Hideo Mabuchi and Jun Ye on the

same table in earlier years [38, 39]. Jun and Dave’s chamber has been stable and functioning con-

tinually since its construction, and this should not be underestimated as a factor in leading to the

successes in the lab since late 2002. In this section I will concentrate on the layout of the experiment

on the optical table, since it seems that this area has undergone an important set of changes since

Dave documented the experiment in his thesis [25]. We have simplified and upgraded the setup

little by little since he and Jun moved on, and the cumulative effect of many seemingly incremental

changes has been substantial. As for the vacuum chamber, the various sets of coils and the cavity

construction (ours in particular [25] and newer techniques in general [40, 41]), I defer to previous

theses and possibly future ones. Notably, Joe Buck did some analysis of the properties of our partic-

ular vacuum system, including the pressure in the cavity region and its effect on the rate of collisions

[28].

I will discuss the experimental layout in three main parts, the first of which, Section 2.2, describes

the cavity “input side,” namely, the lasers and metrology necessary for introducing the relevant

intracavity fields. Section 2.3 will outline the output side, mostly the photodetection schemes we

have used and the techniques for separating the fields at different wavelengths. Finally, Section 2.4

will go over the lasers and frequency control required for the two magneto-optical traps (MOTs) and

the beams delivered to the cavity mode region “from the side” (in the transverse direction).
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2.2 Frequency metrology and cavity inputs

The layout of the optical table leading to the cavity input is schematically depicted in Figure 2.1.

This section will be divided into three parts, one for each of the lasers that drive standing-wave

modes in the physics cavity (PC). It is worth noting that the experiment as it functions today

employs only diode lasers. Although it can be difficult to procure single-mode diodes at particular

wavelengths, and sometimes our home-built systems can be unreliable, commercial systems for larger,

more unwieldy lasers are often just as bad and require a good deal more maintenance. All things

considered, this all-diode configuration has been very convenient and stable.

2.2.1 Diode laser for cavity QED interactions

In early generations of this and other cavity QED experiments [25, 40], Ti:Sapphire lasers were

used for driving the cavity modes near the cesium resonance. Improvements to diode laser designs

introduced to the group primarily by Hanns-Christoph Nägerl, along with an accompanying increased

confidence in their reliability, led to a change in philosophy around the year 2000. In spite of concerns

about known high-frequency phase noise on diode lasers [42], we decided to begin using one for our

cavity QED probe laser, which I will refer to as the CQED laser. As it turns out, this seems to have

been a good idea, and the noise issues have caused no known problems to date.

Besides switching to the diode system, we have also re-configured the frequency metrology and

laser locking scheme since Ref. [25]. The basic principles of the locking scheme are still the same, but

the particular frequencies used and techniques for shifting them have changed. It is useful however

to begin with a brief recap of the locking scheme relevant to the CQED laser. The transition in

cesium used for experiments described herein is the D2 line at λ0 ≈ 852.36 (6S1/2 → 6P3/2). More

specifically, we tune the probe beam to transitions involving the F = 4 hyperfine ground state, and

either the F = 4′ or 5′ excited states (which are separated by a 251 MHz hyperfine splitting). The

frequency locking and shifting scheme to be described can be used for these and other transitions.

For detailed information on cesium I refer to the excellent set of notes compiled by Daniel Steck [43].

The CQED laser is locked to the transfer cavity (TC), for reasons described in Refs. [25, 39] and

below. We use the Pound-Drever-Hall technique for this [44], with the reflected light directed to a

fast photodetector (PD1). The sidebands at 45 MHz are generated by an electro-optic modulator

(EOM1) which sits in the path to the TC only, meaning that the sidebands are not on the light that

reaches the physics cavity (PC). When the diode laser was first set up for CQED, these sidebands

were generated using modulation of the diode current. Due to concerns over unwanted frequencies

possibly causing atomic heating, we switched to the EOM setup; it turned out however that this

made no measurable difference.

Once this prestabilization on the TC is achieved, the system drifts freely on long timescales
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EOM

EOM1
Cs

PD3

TC
PD1

DP-AOM
+2 � 230.75 MHz

DP-AOM
-2 � 168 MHz

Cs Master
Diode Laser
852.36 nm

Heterodyne
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MOT
metrology

Cavity Lock
Diode Laser

836 nm

TW-EOM

PD2
λ/4

λ/4

PC

FORT
Diode Laser

936 nmEOM2

PBS

PBS

Laser locked to 4’-5’ 
crossover line

Figure 2.1: Schematic diagram of lasers and metrology for cavity QED, in particular the cavity
input side. Some of the light is diverted to the heterodyne detectors as the local oscillator (LO)
(see Fig. 2.2), and some to provide a frequency reference for cooling and trapping (MOT metrol-
ogy, see Fig. 2.2). (TW-)EOM: (Travelling Wave) Electro-optic modulator, (DP-)AOM: (Double
passed) Acousto-optic modulator, PD: Photodetector, PC: Physics cavity, TC: Transfer cavity, PBS:
Polarizing beam splitter, λ/4: Quarter-wave plate.

with the TC length, which then needs to be referenced to the cesium transition. In other words,

fast frequency fluctuations are eliminated by the TC lock for all intents and purposes, but absolute

frequency stablility is not yet established. This latter goal is accomplished using modulation transfer

spectroscopy on a Cs vapor cell [45, 46] (symbolically enclosed in the dotted box in Fig. 2.1). Using

this spectrum, the length of the TC (via the CQED laser frequency) is locked to the crossover
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resonance with frequency halfway between the 4 → 4′ and 4 → 5′ transitions. This means that

the laser frequency is about 125.5 MHz below 4 → 5′ and above 4 → 4′. Earlier generations of the

experiment locked to the 4 → 5′ transition with an offset of 40 MHz to the blue [25, 26].

The light directed to the physics cavity thus begins at this crossover frequency, and needs to

be shifted according to the cavity QED experiment of choice. This is accomplished using a pair of

double-passed acousto-optic modulators (DP-AOM) configured in series. The frequencies indicated

in Fig. 2.1 correspond to the 4 → 5′ transition with zero detuning, as can be easily verified by

noting that twice the difference in the drive frequencies is 125.5 MHz. Swapping these frequencies

addresses the 4 → 4′ transition instead. We chose to use two double-passed AOMs in order to

achieve broad tunability and high extinction ratio. Alternatively, for example, we could have elected

to use one single-passed AOM around 125.5 MHz, but to cite one of many drawbacks, this would

have restricted us to addressing only one hyperfine transition with small detuning.

The previous scheme for shifting the frequency involved one AOM and a travelling wave EOM,

which generated a sideband near 240 MHz [25, 26]. This sideband itself was used as the probe and

its absolute frequency was tuned to the resonance of choice. The downside of this technique is that

the carrier, albeit fairly far-detuned from the atom-cavity resonance, remains on continuously. This

means that residual off-resonant light gets into the cavity, and experiments with Dan Stamper-Kurn

in 2001 revealed that this was a very significant source of atomic heating. At that time we discovered

that switching off the probe by eliminating the EOM sideband was insufficient, and that we also had

to switch off the upstream AOM. This increased the trapping times from below 1 ms to several tens

of ms. Unfortunately we never understood the discrepancy between these lifetimes and those of Ref.

[26] (where the AOM was not switched off and a 28 ms trap lifetime was achieved). However, this

concern alone does not explain the change to the two-DP-AOM configuration, since we seemingly

resolved the early scheme’s main problem by switching off both the EOM and the AOM. The other

concern that led to the change was that in the EOM scheme, the carrier still shines while the probe

is on. This means that a known source of unwanted light gets into the cavity during experiments

in which a probe is needed. It is a near certainty that we could not have done the experiments we

eventually did (e.g., Chapter 4) without eliminating this problem.

2.2.2 Diode laser for locking the physics cavity

The next laser necessary for these cavity QED experiments is a dedicated laser for locking the physics

cavity to a stable and precisely tunable absolute frequency [39]. We will refer to this laser as the

locking laser. Ref. [25] includes a detailed description of this locking scheme, so here I provide only

a brief discussion.

The first question to be addressed regarding this laser is why do we need it at all? After all, the

CQED laser provides a very stable beam referenced to cesium to which the cavity could be locked.
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There are several problems with this simple approach. The first is that the probe beam at λ0 would

have to be on continuously for the feedback loop to be functioning, and in experiments described

herein, the probe beam sometimes needs to be off for long periods of time. The second is that

CQED probe beams typically have very low power (on the order of pW) so that shot noise would

place severe limits on a feedback loop. Thirdly, introducing detunings between the probe and the

cavity would be difficult, especially detunings larger than the cavity linewidth.

With these considerations in mind, it is clear that a continuous beam is needed which couples as

little as possible to the atom’s motion and its internal state. The ideal situation would be a beam

with very large detuning from λ0 for which the cavity finesse is still very high. This way, the laser

can drive a longitudinal mode of the cavity for the purpose of length stabilization, and the field has

a negligible effect on the atom. Unfortunately the two criteria of large detuning and high finesse

conflict to some extent, because the cavity coating is optimized for high reflectivity at the atomic

transition λ0. Fortunately, the frequency of the locking beam can still be far-detuned by atomic

physics standards while still being close to the optimal cavity coating. The wavelength chosen for

these purposes by Dave and Jun was λL = 836 nm, which corresponds to two free spectral ranges

from the mode at λ0. The fact that λL < λ0 means that the standing wave at λL creates a repulsive

force on the atom. See below for a quantitative discussion of this effect and other issues related to

this laser.

We turn now to a description of the frequency metrology setup for this locking laser, and thus

the physics cavity. The one basic principle still to be explained is that the locking laser is only useful

if its frequency can be stabilized and referenced in an absolute manner to the cesium resonance.

This is the purpose of the transfer cavity, which in the final configuration is doubly resonant with

both the locking and the CQED lasers (see Fig. 2.1). Since both lasers are locked to the TC and

since the TC is stabilized to constant absolute length (see Section 2.2.1), the frequency spacing of

the two lasers is constant.

The procedure for completing the physics cavity lock begins by tuning the CQED probe beam at

λ0 to the desired physics cavity resonance frequency. This chosen frequency near c/λ0 then dictates

the ultimate cavity length, and hence the target frequency ν
(0)
L for the locking laser (the resonance

two modes to the blue).

The next step is to decide which of the TC’s modes to lock the laser to. At this stage, the TC

already has fixed length (it has been locked to cesium) so that its modes correspond to a fixed set

of frequencies (integer multiples of the TC’s free spectral range, ν
(TC)
FSR ≈ 500 MHz). This means

that the locking laser will be set to an arbitrary frequency which coincides with one of the TC

modes, in general different from the target ν
(0)
L . By scanning the PC around the resonance at λ0

and monitoring the PC transmission at both λ0 and λL and the TC transmission at λL, one can

tune the frequency of the locking laser around until a TC mode near ν
(0)
L is found. Operationally,
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this means looking for the locking laser to jump into TC lock when the λL transmission peak is close

to the λ0 peak on the PC scan. At this stage, the two lasers have fixed frequencies that do not quite

correspond to a double resonance of the PC (|νL − ν
(0)
L | . ν

(TC)
FSR ).

This discrepancy between the closest TC resonance and the target ν
(0)
L necessitates a frequency

shifting element for the locking beam sent to the physics cavity. The choice of the travelling-wave

electro-optic modulator (TW-EOM) was made due to its broad tunability (in my experience we have

used it from around 50 MHz to almost 1 GHz, but it may be useful up to much higher frequencies).

The cavity is ultimately locked to one of the sidebands generated by the TW-EOM (i.e., the absolute

frequency of one the sidebands is set to ν
(0)
L ). The fact that we need very little power at λL for the

PC lock (of order nW) means that the typical 10% sideband fraction is not a problem at all (the

laser output is several mW). The final detail to discuss is that in order to use Pound-Drever-Hall to

derive an error signal and lock the cavity, the sideband used must itself have sidebands on it. This

is accomplished by applying frequency modulation to the radio frequency source which generates

the sideband in question (see ref. [25] for additional details).

Turning now to some quantitative details, the sideband used for locking the physics cavity con-

tained about 7 nW of output power according to the most recent measurement. Although a good

measurement of the cavity finesse at λL = 836 nm is required for an accurate determination of the

corresponding peak intracavity intensity, our best estimates yield an upper bound of approximately

IL = 7.5 × 106 W/cm2. This gives a maximum ac Stark shift of about 250 kHz.1 This is a fairly

large Stark shift, representing about 0.5% of the FORT depths used in experiments to date. Since

the standing waves from the locking and FORT lasers are of different wavelengths, each well of

the FORT is distorted by the trapping light in a different way. Additionally, these distortions will

effectively be amplified in any future experiments where the FORT depth is lowered, unless a com-

parable reduction of the locking power is feasible. Reduction of the FORT depth is desirable for the

purpose of reducing decoherence from FORT scattering. In order to alleviate this concern it will be

necessary at some point to do a serious signal-to-noise analysis of the physics cavity locking and the

implications for the possibility of reducing this power. Incidentally, the scattering rate arising from

this intensity estimate is ΓL = 1.1 s−1, lower by about a factor of 50 from the FORT scattering rate

(see chapter 3). This means that photon scattering from the locking light is negligible for current

experiments, and ideally will be reduced in future configurations.

It should also be noted that this estimate of the shift is at odds with the 50 kHz figure presented

in Refs. [25, 26], although the power used in experiments has not been intentionally changed and

the power quoted in Ref. [25] (10 nW) does not account for the discrepancy, which seems to be due

to an error in their calculations.
1The intensity is calculated assuming the transmission of the cavity mirrors is the same at 836 nm as it is at 852

nm. It is probably safe to assume that the true value is actually higher than this, yielding a smaller intensity. See
Chapter 7 for details on calculating intracavity intensity and Stark shifts.
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2.2.3 Diode laser for the FORT

The final step in configuring a stable system for trapping cesium atoms in our cavity is to introduce

the FORT beam and stabilize its frequency with respect to the locked physics cavity. The FORT

wavelength is λF = 935.6 nm, a full 83 nm away from λ0. At this wavelength, the PC mirror

coatings are far from optimal, and the cavity linewidth is about 2κF ≈ 3.2 GHz (FWHM). As a

result of this very large linewidth, the FORT laser only needs to be stabilized within a frequency

range much smaller than κF , which is trivially accomplished using a low-bandwidth integrator to the

laser’s grating. The FORT lock is by far the simplest of all the lasers on the table. This simplicity

is a far cry from earlier generations of the experiment. Not only were we using a Ti:Sapphire for the

FORT laser which had to be pre-stabilized on its own auxiliary narrow-linewidth cavity in order to

suppress its large native frequency fluctuations, but we were also using cavity modes much closer to

λ0, making the locking requirements very stringent.

Sidebands at around 100 MHz are applied to the FORT beam using EOM2, the laser is tuned

and locked to the frequency corresponding to triple resonance of the PC, and the system is then

ready to go. Please see chapters 3 and 7 for further quantitative details of our FORT.

2.3 Photodetection and cavity outputs

2.3.1 Photon counting system

The incorporation of single-photon counting was one of the most critical changes to the experimental

apparatus in recent years. Accomplished together with Joe Buck and Alex Kuzmich, our task was

to acquire appropriate detectors for our system as well as the proper electronics for recording the

data. In this section I will describe the system and discuss some important measurements of the

detector properties.

The detectors used are the SPCM-AQR series avalanche photodiodes (APD’s) from Perkin-Elmer.

The specified quantum efficiency is about 50% at λ0 = 852 nm, and our most recent measurement

gave (49 ± 5)%. The fiber-coupled versions were purchased due to fairly severe space constraints

on our optical table. Had we bought the free-space detectors, a very well shielded box would have

had to be built around the detectors to block stray light, which would have been difficult to make

room for. As shown in Fig. 2.2 the cavity output light is focused into one fiber launcher, and a fiber

coupler is used as a beam splitter to send half the light to each of two APD’s.

The output TTL pulses from the detectors are sent to a computer card that records the arrival

time of each pulse. The card is the P7888 from Fast Comtec Gmbh, and has one start channel and

four stop channels. The time resolution is 1 ns in two channel mode and 2 ns in four channel mode.

The main reason for using two detectors in photon counting experiments is dead time, where
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Figure 2.2: Diagram of the optical layout for the output side of the physics cavity. A polarizing beam
splitter (PBS) at the cavity output sends some of the FORT light (λF = 936 nm) to photodetector
PD4 (the half wave plate is optimized for λ0 = 852 nm, resulting in residual FORT light continuing
through the PBS). Dichroic mirror DM1 allows most of the locking light at λL = 836 nm to be
transmitted to an avalanche photodiode (APD1). Another λ/2 and PBS combination allows the
option of heterodyne detection (HD) or single-photon counting. The local oscillator for HD contains
about 5 mW of power. Interference filters (IF) and additional dichroic mirrors (DM2,DM3) prevent
remaining power at λL and λF from reaching the single-photon counting avalanche photodiodes
APD’s (SPCM). These APD’s are fiber coupled, hence the fiber launcher (FL) and fiber coupler
(50/50 FC) which acts as a 50/50 beamsplitter here.

after a photoelectric event the detector has a recovery time before it can detect the next photon.

Another problem associated with these APD’s is afterpulsing, where the detector puts out a spurious

TTL pulse a short time after a legitimate event. These two effects are both evidenced in the data

presented in Fig. 2.3. These are the results of an autocorrelation measurement, where the TTL

output stream from an APD is split, and then sent to the start channel and stop channels of the

card, respectively. The detector is illuminated continuously by a light emitting diode. The plotted

quantity A(τ) is a histogram of the stop times relative to the start times.

The fact that A(τ) = 0 for short times τ is a consequence of the dead time: the detector never

emits two output pulses within some window τDT . Fig. 2.3(a) seems to suggest that τDT ≈ 33

ns, but this is not the case. As it turns out, the P7888 card has its own dead time of about 20

ns (independently measured), meaning stop pulses arriving within the first 20 ns of a start event

are not recorded, and τ = 0 occurs after this delay. Therefore the APD dead time τDT ≈ 53 ns

(manufacturer specification 50 ns).

The next significant feature in Fig. 2.3 is the large number of events in the bins immediately

following the end of the dead time (τ ≈ 33 ns). This is interpreted to be afterpulsing, since the

statistics of the light source (LED) should be flat on this timescale. The small second bump at around
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Figure 2.3: Histogram A(τ) of the time separation between photoelectric events at the same detector.
The large spike at 33 ns results from afterpulsing. Panel (b) is a blowup of the boxed region of panel
(a).

τ = 86 ns is presumably from events with two consecutive afterpulses, and the time separation of

the first and second spikes agrees with the dead time measurement of 53 ns. Counting the number

of events in the large spike and dividing by the number of start events gives a good estimate of

the afterpulse probability PAP = 1.2%. In addition, it is clear from Fig. 2.3(b) that A(τ) is not

flat for small τ , meaning that some afterpulses may also occur at a distribution of delays which
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Figure 2.4: Cross-correlation C(τ) between the two APS’s (histogram of time separations τ between
events at the two detectors). The two large spikes come from light emitted by one detector reaching
the other one. Presumably the two spikes correspond to back reflection from the faces of the two
different input fibers to the fiber coupler, which each had different lengths. This problem was no
longer measurable after we switched from multi-mode to single-mode fibers.

decays for large τ . It is possible to subtract the average value of A(τ) for times well beyond this

decay (1.5 µs < τ < 2 µs) in order to quantify this effect. This calculation gives a total afterpulse

probability of 2.0% (this includes the events in the spikes). Although this deviation from a flat

A(τ) does not necessarily result from afterpulses, from this analysis it seems fairly certain that

the afterpulse probability is between 1% and 2%. This is much higher than the manufacturer

specification of 0.3% (typical).

The other effect to be discussed here is the light emission by the APD’s during photon detection.

As stated in the documentation from Perkin-Elmer, “one peculiarity of silicon avalanche photodiodes

is that as an incoming photon is detected a small amount of light is emitted from the avalanche

region.” We observed this effect when using multimode fibers for this detection system. The light

flashed by one detector propagated along the fiber, reflected off the other end, and was detected by

the other detector. As shown in Fig. 2.4, these events created large spikes in the cross-correlation

data C(τ) between the two detectors (one detector output was sent to the start channel of the

P7888 and the other to a stop channel). I will not describe this in further detail since our more

recent experiments have all been done with single-mode fiber, and we can no longer see this effect.

Presumably this light from the APD’s couples into the much smaller single mode fibers with much

lower efficiency, so that we are no longer sensitive to it.
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2.3.2 Heterodyne detection

Since most of our recent experiments and plans for the near future involve photon counting, I will

not describe the heterodyne detection (HD, Fig. 2.2) system in great detail. In addition, the actual

detectors, RF components, local oscillator (LO) cavity and optical path are almost identical today

to their status in Ref. [25].

Two small points are in order though. One of several factors that impeded our progress in trap

lifetime was stray light from the LO reaching the physics cavity, apparently causing heating of the

atomic motion. At this time, the LO frequency was 40 MHz blue of the Cs 4 → 5′ resonance,

and blue detuning is largely associated with heating [47, 48]. At first we solved this problem by

blocking the LO with a mechanical shutter during the trapping interval and only re-opening it for

final detection. Since then, we have changed this detuning to 125.5 MHz to the red (halfway between

4 → 4′ and 4 → 5′) and this problem seems to be alleviated to a large extent (see, e.g., the storage

times of Ref. [33]/Chapter 4 in the presence of the LO). Although I do not have quantitative details

of the heating rate associated with this LO, anyone trying to use heterodyne detection for cavity

QED should be aware of this problem.

I also wanted to include the most recent measurement of the homodyne fringe visibility associated

with the HD. The beam size of the cavity output field was changed for the work of Ref. [36], so the

LO beam had to be adjusted as well. The mode-matching was optimized in a fairly casual manner

since it is only being used for diagnostic purposes these days, giving a new fringe visibility of about

74% (compared to 88% quoted in Ref. [25]).

2.4 Lasers and metrology for cooling and trapping

As shown in Fig. 2.5, two additional diode lasers are needed for the magneto-optical traps (MOTs).

One laser supplies the cooling light at F = 4 → 5′, and the other is a repumper resonant with

F = 3 → 3′ [47].

The laser used for the MOT cooling light is actually an injection-locked slave diode, where the

injection light is taken from the CQED laser. This is a very convenient technique because the

diode system does not need a grating-based external cavity and the “lock” consists only of optical

alignment of the injection light into the slave diode. An additional advantage is that the optical

lock is very broadly tunable, i.e., the injection light can be shifted by hundreds of MHz and the

lock is maintained, with little to no change in the slave output power. This means that one can put

a double-passed AOM in the master path (without stringent efficiency requirements) for frequency

shifting. The slave then only needs one single-pass AOM (which can always be operated at the

optimal frequency for diffraction efficiency) for switching the MOT light on and off.

The slave power is divided into three paths, one for the upper MOT (UMOT), one for the lower
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Figure 2.5: Diagram of the optical layout for laser cooling and trapping. Frequency shifting is
done using acousto-optic modulators (AOM), some of which are double-passed (DP-AOM). Both
repumping and cooling light are sent to the upper MOT (UMOT) and lower MOT (LMOT). All
AOM frequencies are tunable and most are regularly switched during experiments. The frequencies
shown for the side beams are such that Ω4 is detuned by +17 MHz from the 4 → 4′ transition, and
Ω3 is detuned by +10 MHz from 3 → 3′.

MOT (LMOT) and one for the transverse beams (denoted Ω4). Each of those are delivered to the

vacuum chamber via single-mode fibers. The frequency configuration depicted in Fig. 2.5 has the

Ω4 beam near the F = 4 → 4′ resonance.
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It is worth mentioning that this part of the apparatus has been greatly simplified in recent years,

relative to what was originally set up for Refs. [25, 26]. For those early experiments, separate lasers

were constructed for the two MOTs, both for trapping and repumping. In all likelihood, this was

done because the exact power requirements were not known before the system was constructed, so

they erred on the side of more lasers. Since a completely independent master-slave configuration

was implemented for the upper MOT trapping light, this amounted to a total of five diode lasers

for the cooling and trapping part of the experiment alone. It was clearly a good investment of time

and effort to reconfigure this region of the table, thereby effectively reducing the laser number from

five to two. Keeping a large number of home-built laser systems well-behaved on a day-to-day basis

ended up consuming large amounts of time, at the expense of making progress in the experiments.
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Chapter 3

State-Insensitive Cooling and
Trapping of Single Atoms in an
Optical Cavity

This chapter is organized as follows. Section 3.1 is reproduced from Ref. [27]. The subsequent

sections contain additional data and analysis pertaining to our efforts to trap single atoms in the

cavity.

3.1 Main results

A long-standing ambition in the field of cavity quantum electrodynamics (QED) has been to trap

single atoms inside high-Q cavities in a regime of strong coupling [20]. Diverse avenues have been pur-

sued for creating the trapping potential for atom confinement, including additional far off-resonant

trapping beams [26, 25], near-resonant light with with n̄ ' 1 intracavity photons [24, 49, 50], and

single trapped ions in high-finesse optical cavities [30, 29], although strong coupling has yet to be

achieved for trapped ions. A critical aspect of this research is the development of techniques for

atom localization that are compatible with strong coupling, as required for quantum computation

and communication [51, 21, 52, 53, 54, 37].

Here we present experiments to enable quantum information processing in cavity QED by (1)

achieving extended trapping times for single atoms in a cavity while still maintaining strong coupling,

(2) realizing a trapping potential for the center-of-mass motion that is largely independent of the

internal atomic state, and (3) demonstrating a scheme that allows continuous observation of trapped

atoms by way of the atom-field coupling. More specifically, we have recorded trapping times up to

3 s for single Cs atoms stored in an intracavity far-off resonance trap (FORT) [47], which represents

an improvement by a factor of 102 beyond the first realization of trapping in cavity QED [26, 25],

and by roughly 104 beyond prior results for atomic trapping [24, 49] and localization [50] with n̄ ' 1

photon. We have also continuously monitored trapped atoms by way of strong coupling to a probe
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beam, including observations of trap loss atom by atom over intervals ' 1 s. These measurements

incorporate auxiliary cooling beams, and provide the first realization of cooling for trapped atoms

strongly coupled to a cavity. Our protocols are facilitated by the choice of a “magic” wavelength for

the FORT [55, 56, 57, 48], for which the relevant atomic levels are shifted almost equally, thereby

providing significant advantages for coherent state manipulation of the atom-cavity system.

A major obstacle to the integration of a conventional red-detuned FORT within the setting

of cavity QED is that excited electronic states generally experience a positive AC-Stark shift of

comparable magnitude to the negative (trapping) shift of the ground state [47]. This leads to the

unfortunate consequence that the detuning and hence the effective coupling between an atomic

transition and the cavity mode become strong functions of the atom’s position within the trap [48].

However, due to the specific multi-level structure of Cesium, the wavelength λF of the trapping

laser can be tuned to a region where both of these problems are eliminated for the 6S1/2 → 6P3/2

transition, as illustrated in Fig. 3.1 [55, 56, 57, 48]. Around the “magic” wavelength λF = 935 nm, the

sum of AC-Stark shifts coming from different allowed optical transitions results in the ground 6S1/2

and excited 6P3/2 states both being shifted downwards by comparable amounts, δ6S1/2 ' δ6P3/2 ,

albeit with small dependence on (F ′,mF ′) for the shifts δ6P3/2 .

The task then is to achieve state-independent trapping while still maintaining strong coupling for

the 6S1/2 → 6P3/2 transition. Our experimental setup to achieve this end is schematically depicted

in Fig. 3.2 [26, 25]. Significantly, the cavity has a TEM00 longitudinal mode located nine mode

orders below the mode employed for cavity QED at 852 nm, at the wavelength λ̄F = 935.6 nm,

allowing the implementation of a FORT with δ6S1/2 ' δ6P3/2 . The field to excite this cavity mode is

provided by a laser at λ̄F , which is independently locked to the cavity. The finesse of the cavity at

λ̄F is F ∼ 2200 [59], so that a mode-matched input power of 1.2 mW gives a peak AC-Stark shift

δ6S1/2/2π = −47 MHz for all states in the 6S1/2 ground manifold, corresponding to a trap depth

U0/kB = 2.3 mK, which was used for all experiments.

Principal parameters relevant to cavity QED with the system in Fig. 3.2 are the Rabi frequency

2g0 for a single quantum of excitation and the amplitude decay rates (κ, γ) due to cavity losses and

atomic spontaneous emission. For our system, g0/2π = 24 MHz, κ/2π = 4.2 MHz, and γ/2π =

2.6 MHz, where g0 is for the (6S1/2, F = 4, mF = 4) → (6P3/2, F
′ = 5,m′

F = 4) transition in atomic

Cs at λ0 = 852.4 nm. Strong coupling is thereby achieved (g0 À (κ, γ)), resulting in critical photon

and atom numbers n0 ≡ γ2/(2g2
0) ' 0.006, N0 ≡ 2κγ/g2

0 ' 0.04. The small transition shifts for our

FORT mean that g0 is considerably larger than the spatially dependent shift δ0 of the bare atomic

frequency employed for cavity QED, g0 À δ0 ≡ |δ6P3/2 − δ6S1/2 |, whereas in a conventional FORT,

δ0 ∼ 2|δ6S1/2 | À g0.

In addition to the FORT field, the input to the cavity consists of probe and locking beams, all of

which are directed to separate detectors at the output. The transmitted probe beam is monitored
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Figure 3.1: AC-Stark shifts (δ̂6S1/2 , δ̂6P3/2) for the (6S1/2, 6P3/2) levels in atomic Cs for a linearly
polarized FORT. The inset shows (δ̂6S1/2 , δ̂6P3/2,F ′=4) as functions of FORT wavelength λF . The
full plot gives δ̂6P3/2 versus mF ′ for each of the levels 6P3/2, F

′ = 2, 3, 4, 5 for λF = 935.6 nm. In
each case, the normalization is δ̂ = δ/[δ6S1/2(λF = 935.6 nm)]. The shifts shown here incorporate
the following couplings, including counter-rotating terms: 6S1/2 → nP1/2,3/2, for n = 6 − 11;
6P3/2 → nS1/2 for n = 6 − 15; 6P3/2 → nD3/2,5/2 for n = 5 − 11. Relevant parameters are taken
from Refs. [40, 58] (see Chapter 7 for more details).

using heterodyne detection, allowing real-time detection of individual cold atoms within the cavity

mode [60]. The cavity length is actively controlled using a cavity resonance at λC = 835.8 nm, so

the length is stabilized and tunable independently of all other intracavity fields [26, 25]. The probe

as well as the FORT beam are linearly polarized along a direction l̂+ orthogonal to the x-axis of the

cavity [59].1

Cold atoms are collected in a magneto-optical trap (MOT) roughly 5 mm above the cavity mirrors

and then released after a stage of sub-Doppler polarization-gradient cooling [47]. Freely falling atoms

arrive at the cavity mode over an interval of about 10 ms, with kinetic energy EK/kB ' 0.8 mK,

velocity v ' 0.30 m/s, and transit time ∆t = 2w0/v ' 150 µs. Two additional orthogonal pairs

of counter-propagating beams in a σ+ − σ− configuration illuminate the region between the cavity

mirrors along directions at ±45◦ relative to ŷ, ẑ (the “y− z beams”) and contain cooling light tuned

1Because of small stress-induced birefringence in the cavity mirrors, we align the directions of linear polarization
along an axis that coincides with one of the cavity eigen-polarizations [59], denoted by l̂±. For initial polarization along

l̂+, measurements of FORT [probe] polarization along l̂− for the cavity output power P give P−/P+ < 0.02[0.002] for
the FORT [probe] beam.
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Figure 3.2: Schematic of experiment for trapping single atoms in an optical cavity in a regime of
strong coupling. Relevant cavity parameters are length l = 43.0 µm, waist w0 = 23.9 µm, and finesse
F = 4.2× 105 at 852 nm. The inset illustrates transverse beams used for cooling and repumping.

red of F = 4 → F ′ = 5 and repumping light near the F = 3 → F ′ = 3 transition2. These beams

eliminate the free-fall velocity to capture atoms in the FORT and provide for subsequent cooling of

trapped atoms.

We employed two distinct protocols to study the lifetime for single trapped atoms in our FORT.

(1) Trapping “in the dark” with the atom illuminated only by the FORT laser at λ̄F and the

cavity-locking laser at λC . For this protocol, strong coupling enables real-time monitoring of single

atoms within the cavity for initial triggering of cooling light and for final detection.

(2) Trapping with continuous observation of single atoms with cavity probe and cooling light

during the trapping interval. In this case, atoms in the cavity mode are monitored by way of the

cavity probe beam, with cooling provided by the auxiliary y − z beams.

(1) In our first protocol, the F = 4 → F ′ = 5 transition is strongly coupled to the cavity field,

with zero detuning of the cavity from the bare atomic resonance, ∆C ≡ ωC −ω4→5 = 0. In contrast

to Ref. [26, 25], here the FORT is ON continuously without switching, which makes a cooling

mechanism necessary to load atoms into the trap. The initial detection of a single atom falling into

the cavity mode is performed with the probe beam tuned to the lower sideband of the vacuum-Rabi

spectrum (∆p = ωp − ω4→5 = −2π × 20 MHz). The resulting increase in transmitted probe power

when an atom approaches a region of optimal coupling3 triggers ON a pulse of transverse cooling

light from the y− z beams, detuned 41 MHz red of ω4→5. During the subsequent trapping interval,
2The (incoherent) sum of the four intensities is I4−5 ∼ 60mW/cm2 for the cooling and I3−3 ∼ 40mW/cm2 for the

repumping light, with uncertainties of roughly 2×.
3Specific examples of single-atom detection events are omitted here. For ∆p ' −g0, the increases in cavity

transmission are quite similar to those in Refs. [24, 61], while for ∆p = 0, the decreases are similar to those in
Refs. [26, 60], albeit now in the presence of the FORT.
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all near-resonant fields are turned OFF (including the transverse cooling light). After a variable

delay tT , the probe field is switched back ON to detect whether the atom is still trapped, now with

∆p = 0.

Data collected in this manner are shown in Fig. 3.3(a), which displays the conditional probability

P to detect an atom given an initial single-atom triggering event versus the time delay tT . The two

data sets shown in Fig. 3.3(a) yield comparable lifetimes, the upper acquired with mean intracavity

atom number N̄ = 0.30 atoms and the lower with N̄ = 0.019.4 The offset in P between these two

curves arises primarily from a reduction in duration δt of the cooling pulses, from 100 µs to 5 µs,

which results in a reduced capture probability. Measurements with constant δt but with N̄ varied

by adjusting the MOT parameters allow us to investigate the probability of trapping an atom other

than the “trigger” atom and of capturing more than one atom. For example, with δt = 5 µs as in

the lower set, we have varied 0.011 . N̄ . 0.20 with no observable change in either PT or the trap

lifetime τ . Since a conservative upper bound on the relative probability of trapping a second atom is

just N̄/2 (when N̄ ¿ 1), these data strongly support the conclusion that our measurements are for

single trapped atoms. We routinely observe lifetimes 2 s < τ < 3 s depending upon the parameters

chosen for trap loading and cooling.

Fig. 3.3(b) explores scattering processes within the FORT that transfer population between the

6S1/2, F = (3, 4) ground-state hyperfine levels. For these measurements, the F = 4 level is initially

depleted, and then the population in F = 4 as well as the total 3 + 4 population are monitored

as functions of time tD to yield the fractional population f4(tD) in F = 4. The measured time

τR = (0.11 ± 0.02)s for re-equilibration of populations between F = (3, 4) agrees with a numerical

simulation based upon scattering rates in our FORT, which predicts τR = 0.10 s for atoms trapped

at the peak FORT intensity in an initially unpolarized state in the F = 3 level.

Turning next to the question of the mechanisms that limit our FORT lifetime, we recall that

parametric heating caused by intensity fluctuations of the trapping field can be quite important

[26, 25, 62, 63]. From measurements of intensity fluctuations for our FORT around twice the

relevant harmonic frequencies (νaxial = 570, νradial = 4.8) kHz, we estimate a lower bound to

the FORT lifetime of τaxial
p > 1.6 s.5 Since this estimate suggests that parametric heating could be

a limiting factor in Fig. 3.3, we performed subsequent measurements in which the intensity noise

was reduced below the shot-noise level of our detection system, giving a lower bound τaxial
p > 9 s.

Unfortunately, the measured FORT lifetime increased only modestly to τ = (3.1± 0.4) s, indicating

that other mechanisms are partially responsible for the observed decay.

A second suspect is a heating process described by Corwin et al. [64] associated with inelastic

Raman scattering in a slightly elliptically polarized FORT field (due to the aforementioned small

4N̄ is estimated from the mean number of atom transit events (of duration ' 150µs) during the interval ' 10ms
from the falling MOT atoms, in the absence of trapping.

5The predicted τradial
p > 104 s.
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Figure 3.3: (a) Detection probability P as a function of trapping time tT . The upper data set is for
mean intracavity atom number N̄ ≈ 0.30, while the lower set is for N̄ ≈ 0.019 atoms. Exponential
fits (solid lines) yield lifetimes τupper = (2.4 ± 0.2) s and τlower = (2.0 ± 0.3) s. (b) The fractional
population f4(tD) in F = 4 following depletion of this level at tD = 0. An exponential fit (solid line)
gives τR = (0.11± 0.02) s.

birefringence). We calculate rates Γs for spontaneous Raman scattering in our FORT to be 2.5 to 7

s−1 for transitions that change the hyperfine quantum number F , and between 0.8 and 2.5 s−1 when

only mF changes [65]. Based on Eq. 3 in Ref. [64] (a two-state model), we estimate an upper limit

to the heating rate from this mechanism, ΓIR . 0.2Γs, giving heating times as short as 0.7 s for

the fastest calculated scattering rate. However, we have also undertaken a full multilevel simulation

of the optical pumping processes, which indicates much slower heating, ΓIR ∼ 0.02 s−1. We are

working to resolve this discrepancy.

A third suspect that cannot be discounted is the presence of stray light, which we have endeavored

to eliminate. For lifetimes as in Fig. 3.3, we require intracavity photon number n̄ ¿ 10−5, which

is not trivial to diagnose. A final concern is the background pressure in the region of the FORT.

Although the chamber pressure is 3×10−10 Torr (leading to τ ' 30 s), we have no direct measurement

of the residual gas density in the narrow cylinder between the mirror substrates (diameter 1 mm

and length 43 µm), except for the trap lifetime itself.

(2) Toward the goals of continuous observation of single trapped atoms [24, 49, 50] and of

implementing Λ-schemes in cavity QED [51, 21, 52, 66], we next present results from our second

protocol. Here, the F = 4 → F ′ = 4 transition is strongly coupled to the cavity field, with

∆′
C ≡ ωC − ω4→4 = 0. In contrast to our protocol (1), the FORT and the transverse y − z

beams are left ON continuously, with the latter containing only light near the F = 3 → F ′ = 3
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Figure 3.4: Two traces of the continuous observation of trapped atoms inside a cavity in a regime
of strong coupling. After an initial sharp reduction around t = 0 as atoms are cooled into the
cavity mode, the intracavity field strength m̄ increases in a discontinuous fashion as trapped atoms
escape from the cavity mode one by one. RF detection bandwidth = 1 kHz, ∆′

C = 0 = ∆′
p, and

∆3/2π = 25 MHz (blue).

resonance, with detuning ∆3. Significantly, we observe trap loading with no cooling light near the

F = 4 → F ′ = 5 transition.

An example of the resulting probe transmission is shown in Fig. 3.4, which displays two separate

records of the continuous observation of trapped atoms. Here, the probe detuning ∆′
p = ωp−ω4→4 =

0 and the probe strength is given in terms of m̄ = |〈â〉|2 deduced from the heterodyne current, with

â as the annihilation operator for the intracavity field. We believe that the y − z repumping beams

(which excite F = 3 → F ′ = 3) provide cooling, since without them the atoms would “roll” in

and out of the near-conservative FORT potential (indeed no trapping occurs in their absence). In

addition, this is a continuous cooling and loading scheme, so that we routinely load multiple atoms

into the trap.

The most striking characteristic of the data collected in this manner is that m̄ versus t always

reaches its deepest level within the ' 10 ms window when the falling atoms arrive, subsequently

increasing in a discontinuous “staircase” of steps. As indicated in Fig. 3.4, our interpretation is that

there is a different level for m̄ associated with each value N of the number of trapped atoms (with

the level decreasing for higher N), and that each step is due to the loss of an atom from the cavity

mode. In addition, we observe a strong dependence both of the initial trapping probability and of

the continuous observation time on the detuning of the transverse beams, with an optimal value

∆3 ' 25 MHz to the blue of the 3 → 3 transition, which strongly suggests blue Sisyphus cooling

[67].

We stress that observations as in Fig. 3.4 are made possible by strong coupling in cavity QED,
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for which individual intracavity atoms cause the displayed changes in probe transmission. While

m̄ in Figure 4 is only ' 0.01, it represents an output flux ' 5 × 105 photons per second. The

probe is also critical to the cooling, although it is not clear whether this beam is acting as a simple

“repumper” [67] or is functioning in a more complex fashion due to strong coupling. We have not

seen such striking phenomena under similar conditions for cavity QED with the F = 4 → F ′ = 5

transition. Note that our ability to monitor the atom as well as to cool its motion are enabled by

the state-insensitive character of the trap, since the net transition shifts are small, (g0, ∆3) À δ0.

In summary, we have demonstrated a new set of ideas within the setting of cavity QED, including

state insensitive trapping suitable for strong coupling. Trapping of single atoms with g0 À (δ0, κ, γ)

has been achieved with lifetimes τ ' 2 − 3 s. Since intrinsic heating in the FORT is quite low

(∼ 11 µK/s due to photon recoil), we anticipate extensions to much longer lifetimes. Continuous

observations of multiple atoms in a cavity have been reported, and involve an interplay of a strongly

coupled probe field for monitoring and a set of y − z cooling beams. Our measurements represent

the first demonstration of cooling for trapped atoms strongly coupled to a cavity. Beyond its critical

role here, state insensitive trapping should allow the application of diverse laser cooling schemes,

leading to atomic confinement in the Lamb-Dicke regime with strong coupling, and thereby to further

advances in quantum information science.
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3.2 Hyperfine relaxation

As documented in Fig. 3.3 of the previous section, we conducted measurements of the relaxation

of the ground-state hyperfine levels due to spontaneous Raman scattering driven by the FORT

field. These investigations were of interest since we were trying to characterize and understand

the behavior of trapped atoms as much as possible. Since all these experiments are performed one

atom at a time (for the most part), and inside a small cavity, the number of measurements and

diagnostics available is very limited. The spin relaxation dynamics were accessible, however, due to

the state-selective nature of the cavity QED interactions. This measurement also held particular

interest with respect to our efforts to eliminate stray light from our experiment. Stray light in the

cavity (at 852 nm) would drastically affect the results of such a measurement since optical pumping

timescales from near-resonant light are very fast (of order 100 ns for a field of saturating intensity on

resonance). The results we achieved are consistent with optical pumping calculations for the FORT

only, presenting evidence that stray light was probably not causing a harmful amount of spontaneous

emission (at least relative to the FORT).

In this section I will present some details about the procedure for these measurements, some

additional data, and some calculations of the relevant scattering rates.

The basic protocol for the experiment (Fig. 3.5) is to deplete the F = 4 ground state a small

fixed delay after trap loading, and then do state-sensitive detection after a variable delay. The

optical pumping into F = 3 was accomplished using a pulse of our F = 4 → 5′ cooling light in the

absence of repumping light. Although it may have been more sensible to use another transition for

this purpose (e.g., 4 → 4′), we did not have that frequency available yet in the lab at the time. In

any case, the 4 → 5′ light was adequate for this depumping thanks to off-resonant excitation to the

other hyperfine excited states.

The detection was done as usual using a resonant cavity probe (4 → 5′ transition). However in

this case the detection had to be sensitive not only to the atom’s presence, but also to its hyperfine

ground state. As shown in Fig. 3.5, this was accomplished by doing the detection in two phases,

with the 3 → 3′ repumper not turned on until a fixed delay after the probe. The first 300 µs of

the detection was then “blind” to any atoms still in F = 3, so the only signals seen in this window

should be atoms that have undergone a spontaneous Raman transition from F = 3 to F = 4. Any

atoms remaining in F = 3 were not detected until the repumper turn-on. The ratio of signals in the

first 300 µs to the total number detected in the entire detection window was then interpreted as the

fraction of atoms pumped into F = 4 by FORT-induced spontaneous Raman transitions.

Some data collected in this manner are presented in Fig. 3.6. Panel (a) contains the same

data as Fig. 3.3(b), and we reproduce it here to emphasize the reproducibility of the measurement.

Both experimental results are in good agreement with aforementioned calculations based on the
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Figure 3.5: Timing diagram for spin relaxation measurements on trapped atoms in our FORT. For
these measurements, mechanical shutters were used to ensure full extinction of beams.

spontaneous Raman scattering rates [27].

Although I will not discuss full simulations of optical pumping here, I now briefly present some

formalism and results for the spontaneous Raman scattering rates. With these rates in hand, it is

not difficult to calculate ground-state population dynamics in a FORT. The transition rate coupling

state (F,m) to (F ′′,m′′) is the following [65]:

γFm→F ′′m′′ =
3πc2ω3

LI

2~µ4

∣∣∣∣∣
α

(1/2)
Fm→F ′′m′′

∆1/2
+

α
(3/2)
Fm→F ′′m′′

∆3/2

∣∣∣∣∣

2

, (3.1)

where I is the local FORT intensity, µ = 〈44|d−1|55〉 is the dipole matrix element for the cycling

transition, ∆J ′ = ωL − ωJ ′ and

α
(J ′)
Fm→F ′′m′′ =

ΓJ ′

ω3
J ′

∑

q,F ′,m′
〈F ′′m′′|dq|F ′m′〉〈F ′m′|d̂ · ~εL|Fm〉. (3.2)

Here, ΓJ ′ is the spontaneous decay rate of the 6PJ′ excited state. Please note that the ~ in the

denominator of Equation 3.1 has been corrected from the seemingly erroneous h in Ref. [65].

Equation 3.1 is in agreement with simpler formulae presented elsewhere (see, e.g., Ref. [68]).

The calculation of dipole matrix elements is discussed in detail in Chapter 7. Here we simply

present rates in tabular form for all pairs of states in the 6S1/2 ground manifold (Fig. 3.7). As

has been discussed in detail elsewhere [65, 40], state-changing (Raman) transitions are suppressed

relative to events where F and m stay the same (Rayleigh scattering). This is an interference effect
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Figure 3.6: Fraction of atoms f4 pumped into the F = 4 hyperfine ground state a delay tD after
that level is depleted. This pumping takes place due to spontaneous Raman scattering driven by
the FORT field (timescales τR obtained from fits are in agreement with the theory). The expected
asymptotic value of f4 for tD À τR from the theory is 9/16 ≈ 56% (see text). Two separate
measurements are shown (taken about two weeks apart), with the data in panel (a) the same as
plotted in Fig. 3.3(b). Error bars are obtained from basic Poissonian counting statistics based on
the number of trials.

between scattering off the D1 and D2 lines, and the suppression is stronger the farther the FORT

is detuned from the resonances.

Beyond these numerical values, it is instructive to point out some additional results of the
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Final (4,m'')
4 3 2 1 0 -1 -2 -3 -4

4 44.31 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.88 44.31 1.54 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 1.54 44.31 1.98 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 1.98 44.31 2.20 0.00 0.00 0.00 0.00

Initial (4,m) 0 0.00 0.00 0.00 2.20 44.31 2.20 0.00 0.00 0.00
-1 0.00 0.00 0.00 0.00 2.20 44.31 1.98 0.00 0.00
-2 0.00 0.00 0.00 0.00 0.00 1.98 44.31 1.54 0.00
-3 0.00 0.00 0.00 0.00 0.00 0.00 1.54 44.31 0.88
-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 44.31

Final (3,m'')
3 2 1 0 -1 -2 -3

4 6.16 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 4.62 0.00 0.00 0.00 0.00 0.00
2 0.22 0.00 3.30 0.00 0.00 0.00 0.00
1 0.00 0.66 0.00 2.20 0.00 0.00 0.00
0 0.00 0.00 1.32 0.00 1.32 0.00 0.00
-1 0.00 0.00 0.00 2.20 0.00 0.66 0.00

Initial (4,m) -2 0.00 0.00 0.00 0.00 3.30 0.00 0.22
-3 0.00 0.00 0.00 0.00 0.00 4.62 0.00
-4 0.00 0.00 0.00 0.00 0.00 0.00 6.16

Final (3,m'')
3 2 1 0 -1 -2 -3

3 44.31 0.66 0.00 0.00 0.00 0.00 0.00
2 0.66 44.31 1.10 0.00 0.00 0.00 0.00
1 0.00 1.10 44.31 1.32 0.00 0.00 0.00

Initial (3,m) 0 0.00 0.00 1.32 44.31 1.32 0.00 0.00
-1 0.00 0.00 0.00 1.32 44.31 1.10 0.00
-2 0.00 0.00 0.00 0.00 1.10 44.31 0.66
-3 0.00 0.00 0.00 0.00 0.00 0.66 44.31

Final (4,m'')
4 3 2 1 0 -1 -2 -3 -4

3 6.16 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 4.62 0.00 0.66 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 3.30 0.00 1.32 0.00 0.00 0.00 0.00

Initial (3,m) 0 0.00 0.00 0.00 2.20 0.00 2.20 0.00 0.00 0.00
-1 0.00 0.00 0.00 0.00 1.32 0.00 3.30 0.00 0.00
-2 0.00 0.00 0.00 0.00 0.00 0.66 0.00 4.62 0.00
-3 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 6.16

Figure 3.7: Scattering rates (s−1) from initial states (F, m) to final states (F ′′,m′′) calculated
from Equation 3.1. The FORT wavelength is taken to be 935.6 nm and the intensity is I =
2.92× 109 W/m2, corresponding to 1 mW of output power for our cavity parameters (FORT depth
approximately 40 MHz).

calculations. By averaging these rates over the initial sublevel m and summing over the final states

m′′, it is possible to obtain total rates of population transfer γF→F ′′ from F to F ′′. In general, this
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rate γF→F ′′ ∝ (2F ′′ + 1) [10], and a simple rate equation model gives a steady-state value

fF (tD →∞) =
γF ′′→F

γF→F ′′ + γF ′′→F
=

2F + 1
2F + 1 + 2F ′′ + 1

(3.3)

for the fraction of atoms in state F . In other words, the population ends up divided according to the

degeneracy of the hyperfine level. For the case of Cs, as in Fig. 3.6, the fraction f4(tD →∞) = 9/16,

in reasonable agreement with the data.

3.3 Intensity noise and parametric heating

3.3.1 FORT laser

One of the main possibilities we have investigated as the limit to our FORT lifetime has been

parametric heating due to intensity fluctuations of the intracavity FORT field [26, 25, 62, 27, 28].

The purpose of this section is to document the most recent noise measurements on our 935.6 nm

FORT. These measurements led to the claims in Ref. [27] that we have lowered the intensity noise

below the shot noise limit of our detection system, and as a result the axial heating timescale from

this mechanism is at least τaxial
p > 9 s.

The mechanism to be studied here is parametric heating due to fluctuations of the trap strength

(or FORT intensity) at twice the relevant oscillation frequencies. This phenomenon is explained in

detail in Ref. [62], and the main result is that the energy/temperature of a trapped atom increases

exponentially with time constant

τp =
1

π2ν2
trS(2νtr)

, (3.4)

where S(2νtr) is the one-sided power spectrum of the fractional intensity noise evaluated at 2νtr,

and νtr is the harmonic trap frequency. In our case since we have an anisotropic trap with two

oscillation frequencies (νaxial = 570, νradial = 4.8) kHz, we must focus on two separate frequency

ranges. In addition, it should be pointed out that the trap is anharmonic in both directions, and that

the quoted frequencies (νaxial, νradial) are the maximum values corresponding to small amplitude

oscillations. Therefore the noise spectrum is important not only at the frequencies (2νaxial, 2νradial),

but also over a large range of frequencies below these values.

Figs. 3.8 and 3.9 give the most recent comprehensive set of noise measurements in the two

frequency ranges of interest. Fig. 3.10 illustrates the measured dependence of the noise level on

optical power. Since this scaling is linear, the measurement is likely to be shot noise limited [69].

This means that at high frequencies, we can only state that the true level of intensity fluctuations

is bounded by the measured levels, hence the statement τaxial
p > 9 s.
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3.3.2 Locking laser

Although the direct measurements of intensity noise on the FORT field suggest that parametric

heating is probably not a contributing factor to the trap lifetime, there is a small contribution to the

trapping potential from the locking laser that was not considered in the analysis above. As discussed

in Section 2.2.2, the maximum Stark shift from the locking field is at most about 5% of the FORT

depth. If there is intensity noise on the field at λL = 836 nm, parametric heating can also ensue.

We have performed a measurement of this noise contribution, which is the subject of this section.

When calculating the heating rate arising from this noise, it is crucial to carefully consider

the normalization, since the usual consideration of fractional intensity noise [62] no longer applies

the same way. Clearly the total Stark shift (and hence trapping potential) is dominated by the

FORT laser itself, therefore the fractional noise level on the locking laser needs to be scaled down

appropriately using the ratio of Stark shifts.

More specifically, in the usual single frequency FORT situation, the heating rate τ−1
p ∝ S(2νtr)

(Equation 3.4), and the fractional intensity noise S(2νtr) ∝ 1/I2
F , where IF is the FORT intensity.

This intensity appears because the trap depth (total Stark shift) UF ∝ IF . In the case of two lasers

contributing to the total intensity, the fractional intensity noise on one laser only contributes to

the extent that that laser creates a Stark shift (designated UL in the case of our locking laser).

Therefore in our case, when considering the contribution from the locking field at λL we must

multiply the fractional noise spectrum SL(2νtr) (measured and calculated the usual way) by the

ratio
(

UL

UF +UL

)2

≈
(

UL

UF

)2

. As a result, the noise power on the locking light is now “normalized”

using the total Stark shift ≈ UF , as required.

Figure 3.11 documents the measurements of the intensity noise at λL. Unfortunately there was

very little power on the detector, so that the noise of interest was barely above the detector’s noise

floor. Even though we made a correction for this, the measurement is very noisy (see the corrected

trace in Fig. 3.11(c)) and the results should only be considered a rudimentary estimate of the

contribution to atomic heating. More specifically, the electronic noise level in Fig. 3.11(a) rises

higher than the total noise at some frequencies, causing the corrected level to become negative. This

causes the huge (artificial) dips in the corrected lifetime trace of Fig. 3.11(c). With this issue taken

into account, the results indicate that the axial heating from this effect probably leads to heating on

a timescale > 10 s. However some of the spikes in the total (uncorrected) measured noise power dip

below the 10 s level. This is a large enough contribution that this effect should be not be forgotten

or neglected in future endeavors.

It should be noted that the simple treatment above completely neglects the different spatial

dependence of the fields at λL and λF . In particular, the standing-wave patterns along the cavity

axis cause different FORT trapping wells to contain different contributions of this noise from the

locking laser. A more careful treatment of this effect has not yet been undertaken. There are
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several reasons, however, that reduction of the intracavity power at λL may be required in future

experiments (see Section 2.2.2), which would greatly reduce this contribution to the heating rate.
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Figure 3.8: Intensity noise measurements of FORT cavity output light at λF = 935.6 nm, at frequen-
cies relevant to the motion of trapped atoms perpendicular to the cavity axis. Panel (a) displays
the spectrum analyzer output, panel (b) shows the spectral density of fractional intensity fluctua-
tions, and panel (c) contains the predicted heating timescale, calculated using Equation 3.4. The
maximum harmonic frequency of radial oscillation in our FORT is computed to be νradial = 4.8
kHz. From panel (c) it is clear that lower frequencies give even slower heating rates, so that the
parametric heating time should be at least τ radial

p > 5 × 104 s. It is probably safe to assume this
effect has a negligible impact on trapping and atomic temperature.



34

-100

-95

-90

-85

-80

In
te

ns
ity

 N
oi

se
 (

dB
m

)

2.0x10
6

1.51.00.50.0
Frequency (Hz)

 Light Noise
 Electronic detector noise 

(light blocked)

(a)

10
0

10
1

10
2

10
3

10
4

P
ar

am
et

ric
 H

ea
tin

g 
T

im
e 

(s
)

1.0x10
6

0.80.60.40.20.0
Axial oscillation frequency (Hz)

(c)

3

4
5
6

10
-13

2

3

4
5
6

10
-12

S
pe

ct
ra

l D
en

si
ty

 (
1/

H
z)

2.0x10
6

1.51.00.50.0
Frequency (Hz)

(b)

Figure 3.9: Intensity noise measurements of FORT cavity output light at λF = 935.6 nm, at fre-
quencies relevant to the motion of trapped atoms along the cavity axis. The panels are organized
as in Fig. 3.8. The maximum harmonic frequency of axial oscillation in our FORT is computed to
be νaxial = 570 kHz. From panel (c) it is clear that lower frequencies give even slower heating rates,
so that the parametric heating time should be at least τ radial

p > 9 s. This is also a lower bound in a
different sense: this measurement is shot-noise limited (see text and Fig. 3.10).
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Figure 3.10: Dependence of measured intensity noise on the optical power. Panel (a) contains the
noise spectra at the powers used. These traces are then averaged over the frequency range 500−1875
kHz, and the results are plotted versus optical power in panels (b) and (c) (linear scale and log scale,
respectively). The solid curves are linear fits to the data. The linear dependence of noise power vs.
optical power strongly suggests that the measurement is shot noise limited.
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Figure 3.11: Intensity noise measurements of cavity output light from the locking laser at λL =
836 nm, at frequencies relevant to the motion of trapped atoms along the cavity axis. The panels
are organized as in Figs. 3.8 and 3.9. In panel (b) the spectral density is not corrected for the noise
floor contribution. See text for further discussion. In panel (c) the huge dips in the corrected trace
should be ignored, since the uncorrected trace provides a lower bound for the heating time.
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Chapter 4

Cavity QED “By The Numbers”

This chapter is reproduced from Ref. [33].

Cavity quantum electrodynamics (QED) provides a setting in which atoms interact predomi-

nantly with light in a single mode of an electromagnetic resonator of high quality factor Q [20]. Not

only can the light from this mode be collected with high efficiency [36], but as well the associated

rate of optical information for determining atomic position can greatly exceed the rate of free-space

fluorescent decay employed for conventional imaging [24]. Moreover the regime of strong coupling,

in which coherent quantum interactions between atoms and cavity field dominate dissipation, offers

a unique setting for the study of open quantum systems [23]. Dynamical processes enabled by strong

coupling in cavity QED provide powerful tools in the emerging field of quantum information science

(QIS), including for the implementation of quantum computation [51] and for the realization of

distributed quantum networks [21, 22].

With these prospects in mind, experiments in cavity QED have made made great strides in

trapping single atoms in the regime of strong coupling [26, 24, 27, 31]. However, many protocols in

QIS require multiple atoms to be trapped within the same cavity, with “quantum wiring” between

internal states of the various atoms accomplished by way of strong coupling to the cavity field

[51, 70, 71, 72]. Clearly the experimental ability to determine the number of trapped atoms coupled

to a cavity is a critical first step toward the realization of diverse goals in QIS. Experimental efforts

to combine ion trap technology with cavity QED are promising [30, 29], but have not yet reached

the regime of strong coupling.

Here we report measurements in which the number of atoms trapped inside an optical cavity is

observed in real time. After initial loading of the intracavity dipole trap with N̄ ≈ 5 atoms, the

decay of atom number N ≥ 3 → 2 → 1 → 0 is monitored by way of changes in the transmission

of a near-resonant probe beam, with the transmitted light exhibiting a cascade of “stairsteps” as

successive atoms leave the trap. After the probabilistic loading stage, the time required for the

determination of a particular atom number N = 1, 2, 3 is much shorter than the mean interval over

which the N atoms are trapped. Hence, a precise number of intracavity atoms can be prepared for



38

Figure 4.1: Schematic of our experiment. Cs atoms are loaded into an intracavity FORT (EF ) by way
of the transverse cooling field Ω3 and the cavity probe field E4. The transmitted E4 field is directed
to a heterodyne detector (HD), allowing real-time determination of intracavity atom number.

experiments in QIS, for which the timescales (g−1 ≈ 10−8 s) ¿ (τ ≈ 3 s), where τ is the atomic

trapping time [27] and ~g is the atom-field interaction energy. In the present case, the atom number

is restricted to N . 3, but the novel detection scheme that we have developed may enable extensions

to moderately larger atom numbers N . 10.

As illustrated in Fig. 4.1, our experiment combines laser cooling, state-insensitive trapping, and

strong coupling in cavity QED, as were initially achieved in Ref. [27]. A cloud of Cs atoms is

released from a magneto-optical trap (MOT) several mm above the cavity, which is formed by the

reflective surfaces of mirrors (M1,M2) . Several atoms are cooled and loaded into an intracavity

far-off-resonance trap (FORT) and are thereby strongly coupled to a single mode of the cavity. The

maximum single-photon Rabi frequency 2g0 for one atom is given by g0/2π = 24 MHz, and is based

on the reduced dipole moment for the 6S1/2, F = 4 → 6P3/2, F
′ = 4′ transition of the D2 line

in Cs at λ0 = 852.4 nm. Decay rates for the 6P3/2 atomic excited states and the cavity mode at

ω0 = 2πc/λ0 are γ/2π = 2.6 MHz and κ/2π = 4.2 MHz, respectively. The fact that g0 À (κ, γ)

places our system in the strong coupling regime of cavity QED [20], giving critical atom and photon

numbers n0 ≡ γ2/(2g2
0) ≈ 0.0057, N0 ≡ 2κγ/g2

0 ≈ 0.037.

The cavity is independently stabilized and tuned such that it supports TEM00 modes simulta-

neously resonant with both the F = 4 → F ′ = 4′ atomic transition at λ0 and our FORT laser at

λF = 935.6 nm, giving a length l0 = 42.2 µm. A weak probe laser E4 excites the cavity mode at λ0

with the cavity output directed to detector HD, while a much stronger trapping laser EF drives the
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mode at λF . In addition, the region between the cavity mirrors is illuminated by two orthogonal

pairs of counter-propagating cooling beams in the transverse plane (denoted Ω3). Atoms arriving

in the region of the cavity mode are exposed to the (E4, EF , Ω3) fields continuously, with a fraction

of the atoms cooled and loaded into the FORT by the combined actions of the E4 and Ω3 fields

[27]. For all measurements, the cavity detuning from the 4 → 4′ atomic resonance is ∆C = 0. The

detuning of the E4 probe from the atom-cavity resonance is ∆4 = +4 MHz, and its intensity is set

such that the mean intracavity photon number n̄ = 0.02 with no atoms in the cavity. The detuning

of the Ω3 transverse cooling field is ∆3 = +25 MHz from the F = 3 → F ′ = 3′ resonance, and its

intensity is about I3 ≈ 4× 101 mW/cm2.

The field EF that drives the standing-wave, intracavity FORT is linearly polarized, resulting

in nearly equal ac-Stark shifts for all Zeeman sublevels of the F = 3, 4 hyperfine ground states of

the 6S1/2 manifold [64]. The peak value of the trapping potential is −U0/h = −47 MHz, giving a

trap depth U0/kB = 2.2 mK . A critical characteristic of the FORT is that all states within the

6P3/2 excited manifold likewise experience a trapping shift of roughly −U0 (to within ≈ ±15%)

[56, 57, 55, 27], which enables continuous monitoring of trapped atoms in our cavity and avoids

certain heating effects.

Figure 4.2(a) displays a typical record of the heterodyne current i(t) resulting from one instance

of FORT loading. Here, the current i(t) is referenced to the amplitude of the intracavity field

|〈â〉| by way of the known propagation and detection efficiencies. The initial sharp drop in |〈â(t)〉|
around t = 0 results from atoms that are cooled and loaded into the FORT by the combined action

of the (E4, Ω3) fields [27]. Falling atoms are not exposed to E4 until they reach the cavity mode,

presumably leading to efficient trap loading for atoms that arrive at a region of overlap between

the standing waves at (λ0, λF ) for the (E4, EF ) fields. Trap loading always occurs within a ±10 ms

window around t = 0.025 s (relative to t = 0 in Fig. 4.2(a)). This interval is determined using

separate measurements of the arrival time distribution of freely falling atoms in the absence of the

FORT [60, 26].

Subsequent to this loading phase, a number of remarkable features are apparent in the trace of

Fig. 4.2(a), and are consistently present in all the data. The most notable characteristic is the fact

that the transmission versus time consists of a series of flat “plateaus” in which the field amplitude

is stable on long timescales. Additionally, these plateaus reappear at nearly the same heights in

all repeated trials of the experiment, as is clearly evidenced by the histogram of Fig. 4.2 (b). We

hypothesize that each of these plateaus represents a different number N of trapped atoms coupled

to the cavity mode, as indicated by the arrows in Fig. 4.2.

Consider first the one-atom case, which unexpectedly exhibits relatively large transmission and

small variance. For fixed drive E4, the intracavity field is a function of the coupling parameter

g(i,f)( r) = g0Gi,f sin(k0z) exp(−2ρ2/w2
0) where ρ is the transverse distance from the cavity axis (z),
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k0 = 2π/λ0, and Gi,f relates to the Clebsch-Gordan coefficient for particular initial and final states

(i, f) within the F = 4, F ′ = 4′ manifolds. Variations in g as a function of the atom’s position r and

internal state might reasonably be expected to lead to large variations of the intracavity field, both

as a function of time and from atom to atom [61, 73].

However, one atom in the cavity produces a reasonably well-defined intracavity intensity I ∝
|〈â〉|2 due to the interplay of two effects. The first is that for small probe detunings ∆4, the intracavity

intensity I1 for one atom is suppressed by a factor f relative to the empty-cavity intensity I0, where

for weak excitation, f ≈ 4C2
1 À 1 with C1 = g2/2κγ. A persistent, strongly reduced transmission

thereby results, since the condition [C(i,f)
1 (r)]2 À 1 is robust to large fluctuations in atomic position r

and internal state. The second effect is that the F = 4 ↔ F ′ = 4′ transition cannot be approximated

by a closed, two-level system, since the F ′ = 4′ excited states decay to both F = 3, 4 hyperfine ground

levels. As illustrated in Fig. 4.1(b), an atom thus spends a fraction q of its time in the cavity QED

manifold (4, 4′), and a fraction p ≈ 1 − q in the (3, 3′) manifold. In this latter case, the effective

coupling is negligible (Ceff
1 ≈ 4 × 10−4), leading to an intensity that approximates I0. Hence, the

intracavity intensity as a function of time I(t) should have the character of a random telegraph

signal switching between levels (I0, I1), with dwell times determined by (E4,Ω3), which in turn set

p.1 Since (E4,Ω3) drive their respective transitions near saturation, the timescale τP ∼ 1 µs for

optical pumping from one manifold to another is much faster than the inverse detection bandwidth

(1/2πB) ≈ 160 µs. The fast modulation of the intracavity intensity due to optical pumping processes

thereby gives rise to an average detected signal corresponding to intensity Ī1 ≈ pI0 + qI1 ≈ pI0 for

I1 ¿ I0.

This explanation for the case of 1 atom can be extended to N intracavity atoms to provide a

simple model for the “stairsteps” evidenced in Fig. 4.2(a). For N atoms, the intracavity intensity

should again take the form of a random telegraph signal, now switching between the levels (I0, Ik),

with high transmission I0 during intervals when all N atoms happen to be pumped into the (3, 3′)

manifold, and with low transmission Ik ≤ I1 anytime that 1 ≤ k ≤ N atoms reside in the (4, 4′)

manifold, where Ik ∼ I1/k2 for weak excitation with ∆C = ∆4 = 0. The intracavity intensities

{Ik} determine the transition rates {γk→k−1} between states with k and k − 1 atoms in the (4, 4′)

manifold, while Ω3 determines {γk−1→k} for k−1 → k via transitions from the (3, 3′) manifold. For

the hierarchy of states k = 0, 1, . . . , N with transition rates {γk→k−1,γk−1→k}, it is straightforward to

determine the steady-state populations p
(N)
k . With the physically motivated assignments γk−1→k =

γ0→1 independent of k and γk→k−1 = γ1→0/k2 corresponding to Ik ∼ I1/k2, we find that p
(N)
0 =

1Fluctuations in intracavity intensity can also arise from optical pumping into dark states. Although the E4 probe
field is linearly polarized with dark state (F = 4, mF = 0), independent measurements indicate the presence of
significant Zeeman splittings ∆ν± ≈ 0.5 MHz for ∆mF = ±1, partially arising from residual ellipticity of the FORT
field [27, 64] and from uncompensated stray magnetic fields. Moreover, an atom moving at v = 10 cm/s travels through
the polarization gradients of the Ω3 field in ≈ 4 µs, ensuring rapid pumping from dark states in the F = 3 ground
level. Occupation of dark states for extended periods is thereby precluded, as is supported by detailed Monte-Carlo
simulations for N = 1 [74].
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1/
∑N

k=0(k!)2yk, where y ≡ γ0→1/γ1→0. Hence, for Ik ¿ I0, the prediction for the average intensity

is ĪN ≈ p
(N)
0 I0, which leads to a sequence of plateaus of increasing heights ĪN+1 → ĪN → ĪN−1 as

successive atoms are lost from the trap N + 1 → N → N − 1.

Figure 4.2(c) compares the prediction of this simple model with the measured values of peak

positions in (b). The only adjustable parameter is the value y = 0.5, resulting in reasonable cor-

respondence between the model and the measurements. Also shown are values p
(N)
0 for y = 0.1 to

indicate that it might be possible to enhance the resolution for a particular range of atom number

by framing a given few values N1, N1 ± 1 in the transition region p
(N1)
0 ≈ 0.5, where N1 ≈ 6 in (c).

This could be accomplished by adjusting the relative strengths of the (E4, Ω3) fields and hence y.

Although our simple model accounts for the qualitative features in Fig. 4.2, a quantitative

description requires a considerably more complex analysis based upon the full master equation for N

intracavity atoms, including the multiple Zeeman states and atomic motion through the polarization

gradients of the Ω3 beams. We have made initial efforts in this direction [74] for one atom, and are

working to extend the treatment to N ≥ 2 atoms.

Beyond these considerations, additional evidence that the plateaus in Fig. 4.2 correspond to

definite atom numbers is provided by Fig. 4.3. Here, the data recorded for the probe transmission

have been binned not only with respect to the value of |〈â〉| as in Fig. 4.2(b), but also as a function

of time. Definite plateaus for |〈â〉| are again apparent, but now their characteristic time evolution

can be determined. The critical feature of this plot is that the plateaus lying at higher values of |〈â〉|
correspond to times later in the trapping interval, in agreement with the expectation that N should

always decrease with time beyond the small window of trap loading around t = 0.025 s. This average

characteristic of the entire data set supports our hypothesis that the plateaus in |〈â〉| correspond to

definite intracavity atom numbers N , as indicated in Figs. 4.2 and 4.3. Moreover, none of the 500

traces in the data set includes a downward step in transmission after the initial trap loading.

To examine the dynamics of the trap loss more quantitatively, we consider each atom number

individually by integrating the “plateau” regions along the |〈â(t)〉| axis for each time t. The dashed

horizontal lines in Fig. 4.3 indicate the boundaries chosen to define the limits of integration for

each value of N . We thereby obtain time-dependent “populations” ΦN (t) for N = 0, 1, 2, and

Φ≥3(t) =
∑∞

N=3 ΦN (t), which are plotted in Fig. 4.4(a). To isolate the decay dynamics from those

of trap loading, we plot the data beginning at t0 = 0.034 s with respect to the origin in Figs. 4.2(a)

and 4.3. The qualitative behavior of these populations is sensible, since almost all trials begin with

N ≥ 3, eventually decaying to N = 2, 1, 0.

The quantities ΦN (t) are approximately proportional to the fraction of experimental trials in

which N atoms were trapped at time t, so long as the characteristic duration ∆tN of each plateau

far exceeds the time resolution of the detection. If the bandwidth is too low, transient steps no longer

represent a negligible fraction of the data, as is the case for transitions between the shortest-lived
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levels (e.g., N = 3 → 2). We estimate that this ambiguity causes uncertainties in ΦN at the 5−10%

level.

Also shown in panel (b) of Fig. 4.4 is the result of a simple birth-death model for predicting the

time evolution of the populations, namely, ṖN (t) = −Γ(NPN (t) − (N + 1)PN+1(t)), where PN (t)

represents the probability of N atoms in the trap. The main assumption of the model is that there is

one characteristic decay rate Γ for trapped atoms, and that each atom leaves the trap independently

of all others. Initial conditions for N = 0, 1 and 2 for the solution presented in Fig. 4.4(b) are

obtained directly from the experimental data after trap loading, ΦN (t0). Since the plateaus for

higher values of N are not well resolved, we use a Poisson distribution for N ≥ 3. The mean µ = 5.2

is obtained by solving
∑∞

N=3 e−µµN/N ! = ΦN≥3(t0). Given these initial conditions, we perform a

least-squares fit of the set of analytic solutions {PN (t)} to the set of experimental curves {ΦN (t)}
with Γ the only free parameter, resulting in the curves in Fig. 4.4(b) with Γ = 8.5 s−1. Although

there is reasonable correspondence between Figs. 4.4 (a) and (b), ΦN (t) evolves more rapidly than

does PN (t) at early times, and yet the data decay more slowly at long times. This suggests that

there might be more than one timescale involved, possibly due to an inhomogeneity of decay rates

from atom to atom or to a dependence of the decay rate on N . We have observed non-exponential

decay behavior in other measurements of single-atom trap lifetimes, and are working to understand

the underlying trap dynamics.

Our experiment represents a new method for the real-time determination of the number of

atoms trapped and strongly coupled to an optical cavity. We emphasize that an exact number

N = 1 to 3 coupled atoms can be prepared in our cavity within ≈ 200 ms from the release of the

MOT. Although the trap loading is not deterministic, N can be measured quickly compared to the

subsequent trapping time τ ≈ 3 s [27]. These new capabilities are important for the realization of

various protocols in quantum information science, including probabilistic protocols for entangling

multiple atoms in a cavity [70, 71, 72]. Although our current investigation has centered on the case

of small N ≤ 3, there are reasonable prospects to extend our technique to higher values N . 10

as, for example, by way of the strategy illustrated in Fig. 4.2(c). Moreover, the rate at which we

acquire information about N can be substantially increased from the current value κ|〈â〉|2 ∼ 105/s

toward the maximum rate for optical information g2/κ & 108/s, which can be much greater than

the rate for fluorescent imaging set by γ [24].
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Figure 4.2: (a) A typical detection record in which several (N > 4) atoms are loaded into the trap.
Heterodyne detection bandwidth is 1 kHz. (b) Histogram of 500 such traces, binned with respect to
the heterodyne signal |〈â〉|. A digital low-pass filter of bandwidth 100 Hz is applied to each trace
prior to the computation of the histogram. (c) Comparison of the model prediction for p

(N)
0 (y = 0.5)

(+) with the measured positions of the histogram peaks in (b) (©). Also shown (×) is p
(N)
0 (y = 0.1)

to indicate the possibility to detect specific atom numbers for larger N̄ .
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Figure 4.3: Histogram of 500 traces such as the one in Fig. 4.2(a), binned with respect to both
signal strength |〈â〉| and time t. The signals are filtered first as in Fig. 4.2(b).



45

1.0

0.5

0.0

ΦN (t)

1.0

0.5

0.0

PN (t)

1.00.80.60.40.2 t (s)

N = 0

N = 1

N = 2

N ≥ 3

N ≥ 3

N = 2

N = 1

N = 0

(a)

(b)

Figure 4.4: (a) Experimental results for the time evolution of the N -atom populations ΦN (t), which
are normalized such that their sum is approximately unity throughout the interval shown. (b) The
results of a simple model calculation PN (t) are fit to the data ΦN (t) with one free parameter, the
single atom decay rate Γ.
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Chapter 5

A One-Atom Laser in a Regime of
Strong Coupling

This chapter is reproduced from Ref. [35].

Although conventional lasers operate with a large number of intracavity atoms, the lasing prop-

erties of a single atom in a resonant cavity have been theoretically investigated for more than a

decade [75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85]. Recent advances in cavity quantum electrodynam-

ics allow one atom to be isolated in an optical cavity in a regime for which one photon is sufficient

to saturate the atomic transition [27]. Here we report the use of such a system for the experimental

realization of a one-atom laser operated in a regime of strong coupling. The observed characteris-

tics of the atom-cavity system in this regime are qualitatively different from those of the familiar

many atom case. Specifically, we present measurements of intracavity photon number versus pump

intensity that exhibit “thresholdless” behavior, and infer that the output flux from the cavity mode

exceeds that from atomic fluorescence by more than tenfold. Observations of the second-order inten-

sity correlation function g(2)(τ) demonstrate that our one-atom laser generates manifestly quantum

(i.e., nonclassical) light that exhibits both photon antibunching g(2)(0) < g(2)(τ) and sub-Poissonian

photon statistics g(2)(0) < 1.

Lasers are typically realized with large atom and photon number in a domain of weak coupling

for which individual quanta have negligible impact on the system dynamics. Usual laser theories

therefore rely on system-size expansions in inverse powers of critical atom and photon numbers

(N0, n0) À 1, and arrive at a consistent form for the laser characteristics [86, 87, 69, 88, 89].

However, over the past twenty years, technical advances on various fronts have pushed laser operation

to regimes of ever smaller atom and photon number, pressing toward the limit of strong coupling

for which (N0, n0) ¿ 1 [20]. Significant milestones include the realization of one- and two-photon

micromasers [90, 91, 92], as well as novel microlasers in atomic and condensed matter systems

[93, 94, 95].

In this march toward ever smaller systems, an intriguing possibility is that a laser might be
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Figure 5.1: A simplified schematic of the experiment. (a) A Cesium atom (black dot) is trapped
inside a high-finesse optical cavity formed by the curved, reflective surfaces of mirrors M 1,2. Light
generated by the atom’s interaction with the resonant cavity mode propagates as a Gaussian beam to
single-photon detectors D1,2. (b) The relevant transitions involve the 6S1/2, F = 3, 4 ↔ 6P3/2, F

′ =
3′, 4′ levels of the D2 line at 852.4 nm in atomic Cesium. Strong coupling at rate g is achieved
for the lasing transition F ′ = 3′ → F = 4 near a cavity resonance. Pumping of the upper level
F = 3′ is provided by the field Ω3, while recycling of the lower level F = 4 is achieved by way of
the field Ω4 (4 → 4′) and spontaneous decay back to F = 3. Decay (3′, 4′) → (3, 4) is also included.
Relevant cavity parameters are length l0 = 42.2 µm, waist w0 = 23.6 µm, and finesse F = 4.2× 105

at λD2 = 852 nm.

obtained with a single atom in an optical cavity, as was considered in the seminal work of Mu

and Savage [75] and has since been extensively analyzed [76, 77, 78, 79, 80, 81, 82, 83, 84, 85].

Here we report an important advance in this quest, namely, the operation of a one-atom laser

in a regime for which (N0, n0) ¿ 1. As illustrated in Fig. 5.1, our experiment consists of a

single Cesium atom trapped within a high-finesse optical cavity [26, 25, 27]. The lasing transition

6P3/2, F
′ = 3′ → 6S1/2, F = 4 is nearly resonant with and strongly coupled to a single mode of this

cavity. The coupling is parameterized by the Rabi frequency 2g0 for a single quantum of excitation,

and the atom and field have amplitude decay rates γ and κ, respectively. The upper level F ′ = 3′

is pumped by the external drive Ω3, while effective decay of the lower level F = 4 takes place via

the combination of the drive Ω4 and decay γ34, 4 → 4′ → 3. In essential character this system is

analogous to a Raman scheme with pumping 3 → 3′, lasing 3′ → 4, and decay 4 → 3. Of particular
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relevance to our work are the detailed treatments of the ion-trap laser by Walther and colleagues

[80, 81, 82, 83]. We also emphasize that a “one-and-the-same” atom laser as illustrated in Fig. 5.1

is quite distinct from “single-atom” micro-masers [90, 91, 92] and lasers [93] for which steady state

is reached through the incremental contributions of many atoms that transit the cavity, even if one

by one. Indeed, our pumped atom-cavity system is a continuous source of nonclassical light for the

entire duration that an atom is trapped, typically lasting 50− 100 ms.

Because conventional lasers operate in the limit (N0, n0) À 1, there is a generic form associated

with the laser threshold in the transition from nonlasing to lasing action that is independent of the

model system [86, 96]. However, as the system size is reduced, the sharpness of the laser “turn on”

is lost, with then no clear consensus about how to define the lasing threshold [96]. Well into the

regime of strong coupling (N0, n0) ¿ 1, even the familiar qualitative characteristics of a laser (e.g.,

the statistical properties of the output light) are profoundly altered, leaving open the question of

how to recognize a laser in this new regime.

The perspective that we adopt here is to trace the lineage of our one-atom laser from a conven-

tional regime continuously into the domain of strong coupling. We do this by considering a scenario

where an atom is placed in a cavity which undergoes a transformation from very large to very small

mode volume. The cavity length l is reduced such that the cross-sectional area of the cavity mode

at the position of the atom and the mirror reflectivity are both held constant. Since g0 ∝ l−1/2 and

κ ∝ l−1, N0 = 2κγ
g2
0

remains constant independent of l. On the other hand, the saturation photon

number n0 = γ2

2g2
0
∝ l decreases, so that the electric field per photon E1 ∝ 1√

n0
increases. Hence the

simple prescription of “shrinking” the cavity leads inevitably to a regime for which single-photon

processes become dominant, and for which predictions from the conventional laser theory and the

full quantum analysis should diverge.

For a four-state model based upon Fig. 5.1(b), it is straightforward to derive equations of

motion for expectation values of atom and field operators. The conventional semiclassical theory

is obtained from the factorization 〈σ̂ij(t)â(t)〉 = 〈σ̂ij(t)〉〈â(t)〉, where σ̂ij = |i〉〈j| are the atomic

projection operators for the set of states (i, j) and â is the annihilation operator for the intracavity

field. The steady-state solution α ≡ 〈â〉ss to these semiclassical equations is plotted in Fig. 5.2

for parameters relevant to our experiment (i.e., same values of (n0, N0) and of atomic decay rates)

and exhibits a clearly defined laser threshold. Around this threshold, familiar characteristics for

conventional lasers are found, including population inversion [74]. In these calculations, we used our

experimental value for the cooperativity parameter C1 = 1/N0 ' 12. Indeed, the condition C1 À 1

is required to observe threshold behavior for one atom pumped inside the resonator.

To obtain a fully quantum description for the four-state model based upon Fig. 5.1(b), we

carry out numerical solutions of the master equation for the density operator ρ̂ for atom and field

[97, 74]. These solutions can then be employed to investigate the passage from the semiclassical
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Figure 5.2: The mean intracavity photon number n̄/n0 (blue) and normalized intensity correlation
function g(2)(0) (red) are plotted as functions of pump intensity I3 = (Ω3/2γ)2 in (a)-(d). In (a)-
(c), the cavity length is made progressively shorter (2500l0, 100l0, l0), with l0 representing our
experiment. The corresponding saturation photon numbers are (33.0, 1.32, 0.013). n̄/n0 and g(2)(0)
are calculated from the quantum theory for the four-state system in Fig. 5.1, while |α|2/n0 given
by the black curve is from the semiclassical theory. (d) n̄ (blue), g(2)(0) (red), and the Mandel
Q parameter (green) shown over an extended range of pump intensity I3 for l = l0. In all cases,
I4 = (Ω4/2γ)2 = 2, the 3 → 4′ and 4 → 4′ transitions are driven on resonance, and the cavity
detuning ωCA = 0. The partial decay rates for the 6P3/2 → 6S1/2 Cs transitions shown in Fig.
5.1(b) are as follows: (γ33, γ43, γ44, γ34) = ( 3

4 , 1
4 , 7

12 , 5
12 )γ, where γij is the decay rate from level i to

level j. Other parameters are as given in the text.

regime to the quantum domain. An example relevant to our experiment is illustrated by the series

of curves shown in Fig. 5.2 for decreasing cavity length 2500l0 → l0, where l0 = 42.2 µm is the

length of our actual cavity. Clearly, a large cavity volume with l À l0 brings us closer to the

domain of conventional lasers, as evidenced in Fig. 5.2(a) for l = 2500l0. The laser output curve

n̄/n0 versus pump intensity I3 is to be compared to the semiclassical calculation |α|2/n0. As for

the normalized intensity correlation function g(2)(0) of Fig. 5.2(a), recall that a conventional laser

generates an output with Gaussian statistics g(2)(0) = 2 below threshold and passes smoothly to

light that approximates a coherent state with g(2)(0) = 1 as the pump increases through threshold

[86, 87, 69, 88, 89]. Moreover, for large l the Mandel Q parameter exhibits two maxima as a function

of I3, one around the conventional threshold and one for large pump values [74, 96, 80, 83], which

gradually develop into a single broad minimum with decreasing l. In all cases, n̄, g(2), and Q, as well

as the various atomic populations, display pronounced functional dependences on the pump level I3
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that require a self-consistent treatment of atom and cavity field, here in the fully quantum regime

as opposed to the limit of large (N0, n0) in conventional laser theories.

Since N0 remains constant independent of l and because the semiclassical solution |α|2/n0 is

independent of n0, the increasing disparity between the functions shown in (a)-(c) in Fig. 5.2 for

decreasing l indicates the continuous passage away from the domain of conventional laser operation

and into a regime of strong coupling where various nonclassical features emerge (e.g., g(2)(0) < 1),

as predicted in prior treatments of one-atom lasers [75, 77, 78, 79, 80, 82, 83, 84, 85]. Figure 5.2(d)

provides a global perspective of some of these characteristics over a wider range of the pump intensity

I3 for l = l0 relevant to our experiment. The input-output relationship n̄ versus I3 has several key

features to be compared with experimental results presented below, namely, the immediate onset

of emission (“thresholdless” behavior), and the saturation and eventual quenching of the output.

The saturation can be attributed to the recycling process being limited by the atomic decay rates,

whereas the output reduction at high I3 is possibly due to the splitting of the pumped excited state

F = 3′ by the Autler-Townes effect, although this is still under investigation.

Our actual experiment is somewhat more complex than indicated by the simple drawing in Fig.

5.1, with many of the technical aspects described in more detail in Refs. [27, 26, 25]. The principal

cQED parameters of our system are g0/2π = 16 MHz, κ/2π = 4.2 MHz, and γ/2π = 2.6 MHz,

where g0 is based upon the reduced dipole moment for the 6S1/2, F = 4 ↔ 6P3/2, F
′ = 3′ transition

in atomic Cs. Strong coupling is thereby achieved (g0 À (κ, γ)), resulting in critical photon and

atom numbers n0 ≡ γ2/(2g2
0) ' 0.013, N0 ≡ 2κγ/g2

0 ' 0.084. The atom is trapped in the cavity

with a far-off-resonance trap (FORT) [47], which is matched to a TEM00 mode along the cavity axis,

with wavelength λF = 935.6 nm. For all experiments herein, the trap depth is U0/kB = 2.3 mK

(47 MHz). The FORT has the additional feature that the potential for the atomic center-of-mass

motion is only weakly dependent on the atom’s internal state [27]. Another set of fields (designated

by Ω3,4 in Fig. 5.1(b)) propagate in the plane transverse to the cavity axis and illuminate the

region between the cavity mirrors, and are used not only for the pumping scheme described above,

but also for cooling in the trap-loading phase. Each Ω3,4 beam consists of two orthogonal pairs of

counter-propagating beams in a σ+ − σ− configuration. In the pumping stage of the experiment,

the fields are tuned 10 MHz blue of F = 3 → F ′ = 3′ in the case of the Ω3 beams and 17 MHz

blue of F = 4 → F ′ = 4′ in the case of the Ω4 fields. The cavity length is actively stabilized with

an auxiliary laser at wavelength λC = 835.8 nm that does not interfere with the trapping or the

cavity QED (cQED) interactions. The detuning between the 3′ → 4 transition at ω43 and the cavity

resonance ωC is ∆CA ≡ ωC − ω43 = 2π · 9 MHz. These detunings are chosen operationally in a

trade-off between achieving a large cavity output flux from the 3′ → 4 transition while maintaining

a reasonable lifetime for the trapped atom despite heating from the various fields [67].

We start our experimental protocol by releasing a cloud of atoms from a magneto-optical trap
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(MOT) above the cavity. The Ω3,4 beams are then used as cooling beams (with independent settings

of intensity and detuning) to load an atom into the FORT [27]. About 10 atoms transit the cavity

mode after each MOT drop, and the loading efficiency is set such that an atom is loaded into the

FORT once every 3 − 10 drops. We then switch the intensities and detunings of the transverse

fields Ω3,4 to the pumping configuration and record the cavity output by way of the single-photon

detectors D1,2 shown in Fig. 5.1. Each photoelectric pulse from D1,2 is stamped with its time of

detection (1 ns resolution) and then stored for later analysis. Two examples of the resulting output

counts versus time are shown in Fig. 5.3. By averaging traces such as these, we arrive at an average

signal level versus time, as shown in the inset to Fig. 5.3(a). Typical lifetimes for a trapped atom

in the presence of the driving Ω3,4 fields are 50− 100 ms, which should be compared to the lifetimes

of 2 − 3 s recorded in the absence of these fields [27]. Significantly, the approximately exponential

decay of the signal with time does not result from a time-dependent diminution of the flux from

single trapped atoms, but rather from the average of many events each of a variable duration. That

is, for a given set of external control parameters, we observe a reasonably well-defined output flux

over the time that an atom is trapped.

For a fixed set of operating conditions, we collect a set of 60−300 traces as in Fig. 5.3, determine

the average output flux for each trace, and find the mean and variance, as well as the trap lifetime

for the set. From the known propagation and detection efficiency ξ = 0.05 (intracavity photon to

registered TTL output pulse at D1,2), we translate these measurements to an inference of intracavity

photon number n̄ and associated uncertainty σ. Figure 5.4 displays a collection of such measurements

for the mean intracavity photon number n̄ as a function of pump intensity Ω2
3 for fixed recycling

intensity Ω2
4. Unfortunately, it is difficult to calibrate accurately the intensities I3,4 ≡ (Ω3,4/2γ)2

for the Ω3,4 beams at the location of the atom in the region between the cavity mirrors; indeed, we

estimate that our knowledge of either intensity for the data in Fig. 5.4 is uncertain by an overall

scale factor ' 2. However, we do know the ratio of intensities, and therefore plot the data in Fig.

5.4 as a function of the quantity x ≡ (7/9)(I3/I4), where the dimensionless factor is needed because

the two transitions have different dipole moments. For these measurements, we estimate that the

incoherent sum of intensities of the four Ω4 beams is about 50 mW/cm2, which corresponds to

I4 ∼ 13.

To describe these data, we incorporate a more complete set of atom and field states than the four-

state model employed for Fig. 5.2. As described in Ref. [74], we employ quantum jumps simulations

[97] based upon the full set of Zeeman states for each of the levels F = 3, 4 and F ′ = 3′, 4′ shown

in Fig. 5.1, for a total of 32 atomic states. We also include two cavity modes, one for each of

two orthogonal polarizations with three Fock states for each {|0〉, |1〉, |2〉}, leading to a total Hilbert

space dimension of 288. We do not attempt to model atomic motion within the FORT potential.

Rather, we fix the cavity coupling g(~r) to some constant value g, and incorporate a simple model to
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describe the polarization gradients.

A result from these simulations is shown as the full black curve in Fig. 5.4. We make no claim

for detailed quantitative agreement, as the simulations are sensitive to the parameters in our model

for the Ω3,4 polarizations. However, as discussed in Ref. [74], this effective polarization state is

the only adjustable parameter in the absolute comparison of theory and experiment in Fig. 5.4.

The simulations do support the conclusions that the range of coupling values g that contribute to

our results is restricted roughly to 0.5g0 . g . g0. Furthermore, the simulations yield information

about the atomic populations, from which we deduce that the rate of emission from the cavity κn̄

exceeds that by way of fluorescent decay 3′ → 4, γ43′〈σ3′3′〉, by roughly tenfold over the range of

pump intensity I3 shown in Fig. 5.4.

In addition to measurements of n̄ versus pumping rate, we have also investigated the photon

statistics of the light emitted by the TEM00 mode of the cavity by way of the two single-photon

detectors D1,2 illustrated in Fig. 5.1. From the cross-correlation of the resulting binned photon

arrival times and the mean counting rates of the signals and the background, we construct the

normalized intensity correlation function (see the Supplementary Information)

g(2)(τ) =
〈: Î(t)Î(t + τ) :〉

〈: Î(t) :〉2 , (5.1)

where the colons denote normal and time ordering for the intensity operators Î [69]. Over the

duration of the trapping events, we find no evidence that 〈: Î(t) :〉 is a function of t, although we do

not have sufficient data to confirm quantitatively stationarity of the underlying processes.

Examples of two measurements for g(2)(τ) are given in Fig. 5.5(a-d). In Fig. 5.5(a,b), we

again have I4 ' 13 and the pump intensity I3 is set for operation with x ' 0.17 near the “knee”

in n̄ versus x, while in (c,d), the pump level is increased to x ' 0.83. Significantly, in each case

these measurements demonstrate that the light from the atom-cavity system is manifestly quantum

(i.e., nonclassical) and exhibits photon antibunching g(2)(0) < g(2)(τ) and sub-Poissonian photon

statistics g(2)(0) < 1 [69]. In agreement with the trend predicted by the four-state model in Fig.

5.2(d) (as well as by the full quantum jumps simulation), g(2)(0) increases with increasing pump

intensity, with a concomitant decrease in these nonclassical effects.

Theoretical results for g(2)(τ) from the full quantum jumps simulation are given in Fig. 5.5(e,f)

for x = 0.17. The excess fluctuations g(2)(τ) & 1 extending over τ ' ±2 µs appear to be related

to the interplay of atomic motion and optical pumping into dark states [67], as well as Larmor

precession that arises from residual ellipticity in polarization of the intracavity FORT [27, 64].

The realization of this strongly coupled one-atom laser is significant on several fronts. From

the perspective of the dynamics of open quantum systems, our system demonstrates the radical

departures from conventional laser operation wrought by strong coupling for the quantized light-
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matter interaction. On a more practical level, over the course of the time that an atom is trapped

(which is determined in real time), our system provides an approximately stationary source of

nonclassical light in a collimated, Gaussian beam, as has been anticipated in the literature on one-

atom lasers [75, 77, 78, 79, 80, 82, 83, 84, 85], and which has diverse applications. Remaining

technical issues in our work are to improve the modelling and measurements related to atomic

motion, both within the FORT potential and through the polarization gradients of the Ω3,4 fields.

We have employed our quantum simulations to calculate the optical spectrum of the light output,

and have devised a scheme for its measurement.
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Figure 5.3: Total counting rate R recorded by detectors D1,2 is displayed as a function of time for
two separate trapped atoms, with the counts summed over 5 ms bins. At t = 0, the Ω3,4 fields are
switched to predetermined values of intensity and detuning. In (a), the atom is trapped for t ' 90
ms before escaping, with then the background level due to scattered light from the Ω3,4 fields and
detector dark counts shown as the residual. In (b), the atom (atypically) remains trapped for the
entire observation cycle ' 270 ms and then is dumped. The inset in (a) displays R versus time
obtained by averaging about 400 such traces. Two cases are shown; in one, the number of atoms
delivered to the cavity mode has been diminished by about 2-fold. Since the curves are nearly
identical, we conclude that cases with N > 1 atom play a negligible role. The overall detection
efficiency ξ = 0.05 from intracavity photon to a detection event at D1,2 is made up of the following
factors: η = 0.60 cavity escape efficiency, T = 0.50 for only mirror M 2 output, ζ = 0.33 propagation
efficiency from M 2 to D1,2, α = 0.5 detection quantum efficiency at D1,2.
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Figure 5.4: (a) The intracavity photon number n̄± σn inferred from measurements as in Fig. 5.3 is
plotted as a function of pump intensity x ≡ (7/9)(I3/I4) for fixed I4 = 13. (b) An expanded scale
displays n̄ for small x. The immediate onset of emission supports the conclusion of “thresholdless”
lasing. The two independent sets of measurements (red and blue points) agree reasonably well. The
black trace in (a,b) is a theoretical result from a quantum jumps simulation of the experiment as
described in the text.
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Chapter 6

Deterministic Single-Photon
Generation

This chapter is organized with the first section reproduced from the paper “Deterministic Generation

of Single Photons from One Atom Trapped in a Cavity,” (Ref. [36]). The remaining sections contain

various additional details, including the contents of the Supporting Online Material from Ref. [36].

6.1 Main results

A crucial building-block for quantum information science is a deterministic source of single photons

that generates one-quantum wavepackets in a well controlled spatiotemporal mode of the electro-

magnetic field. For example, protocols for the implementation of quantum cryptography [98] and

of distributed quantum networks rely on this capability [22], as do models for scalable quantum

computation with single-photon pulses as flying qubits [99, 18, 100, 101].

The earliest observations of single-photon emission used the fluorescent light from single atoms in

two- and three-level configurations [102, 103, 104], and thereby produced light with manifestly quan-

tum or nonclassical character. Fluctuations in the number of atoms provided inherent limitations

to these original schemes, and have since been mitigated by isolating single ions [105] and molecules

[106, 107], and by employing individual quantum dots [108, 109] and color centers [110, 111].

With a single dipole, pulsed excitation allows for “triggered” emission of a single photon within

a prescribed interval, albeit into 4π steradians. To achieve emission as a directed output with

high efficiency, the dipole emitter can be placed inside an optical resonator, as by coupling single

quantum dots to microcavities [112, 113, 114]. These experiments employ the Purcell effect to

enhance radiative decay into a cavity mode of interest and thereby achieve a deterministic bit

stream of single photon pulses [115] in a regime of weak coupling in cavity quantum electrodynamics

(cQED).

By contrast, the generation of single photons within the domain of strong coupling in cQED
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Figure 6.1: Illustration of the generation of single photons by one atom trapped in an optical cavity.
(a) A single Cs atom is trapped in a cavity formed by the reflective surfaces of mirrors (M1,M2)
and is pumped by the external fields (Ω3, Ω4) [27]. (b) The relevant atomic levels of the Cs D2 line
at 852.4 nm. Strong coupling at rate g is achieved for the transition F ′ = 3′ → F = 4 near a cavity
resonance. (c) The timing sequence for the generation of successive single-photons by way of the
Ω3,4 fields.

[66, 116] enables diverse new capabilities, including the reversible transfer of quantum states between

atoms and photons as a fundamental primitive for the realization of quantum networks [22]. A single-

photon source consisting of a trapped atom strongly coupled to an optical cavity represents an ideal

node for such a network, in which long-lived internal atomic states can be mapped to quantum states

of the electromagnetic field by way of “dark” eigenstates of the atom-cavity system [117]. By way

of a quantum repeater architecture, converting stationary qubits to flying qubits in this way enables

distributed quantum entanglement over long distances [22].

We report on the deterministic generation of single-photon pulses by a single atom strongly

coupled to an optical cavity in a configuration suitable for quantum network protocols. Single

Cesium atoms are cooled and loaded into an optical trap (Fig. 6.1A) which localizes them within

the mode of a high-finesse optical cavity[26, 27, 25]. The atom is then illuminated by a sequence of

laser pulses {Ωj
3(t), Ω

j
4(t)}, the first of which Ω3(t) drives a “dark-state” transfer between hyperfine

ground states, F = 3 → 4 (Fig. 6.1B, C). In this process, one photon is created in the cavity

mode because the atomic transition F ′ = 3′ → F = 4 is strongly coupled to the cavity field with
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rate g [117, 22]. The emitted photon leaves the cavity as a freely propagating, spatially Gaussian

wavepacket whose temporal profile is determined by the external field Ω3(t) [117, 115, 22]. The atom

is then recycled back to the original ground state by a second laser pulse Ω4(t), and the protocol

repeated for subsequent single-photon generations.

The lifetime for a trapped atom in the presence of the driving Ω3,4 fields is τtrap ' 0.14 s, which

should be compared to the repetition period ∆t = 10 µs for single-photon generation and to the

lifetime of 3 s recorded in the absence of the Ω3,4 fields [27]. Given our measured overall efficiency

α = (2.4 ± 0.4)% for escape from the cavity, for propagation, and for photodetection, this means

that on average, we generate (detect) about 1.4× 104 (350) single-photon pulses from each trapped

atom (see Section 6.2.6.3 below for additional details).

The Gaussian beam emerging from the cavity mirror M2 is directed to a beam splitter and

then to two photon-counting detectors (DA, DB). For each atom k, photoelectric pulses from DA,B

which occur during the trapping interval are stamped with their time of detection (with δ = 2 ns

time resolution) and recorded for later analysis. An example of the pulse shape for single-photon

generation is shown (Fig. 6.2A) over the detection window [tj0, t
j
0 + δt] within which the control field

Ωj
3(t) is ON, where δt = 1 µs, and tj0 is the onset of Ωj

3(t). The histogram of the total counts n(t) from

both detectors DA,B , binned according to their delay with respect to tj0, is a sum over all repeated

trials {j} of the generation process from all atomic trapping events {k}. For the particular choice

of Ω3(t) employed here, single-photon pulses have duration τ ' 120 ns (FWHM). The extended

tail for n(t) likely arises from generation attempts for which the atom resides in Zeeman sublevels

that are weakly coupled to the control field at the beginning of the Ω3(t) pulse [35, 74], as well as

from roughly twofold variations in the coupling coefficient g(~r) [118]. Qualitative agreement of this

measured pulse shape has been obtained with multi-level quantum Monte Carlo simulations [74].

To investigate the quantum character of the emitted field, we calculate the function C(τ) obtained

by cross-correlating the photoelectric counting events from the detectors DA,B as a function of time

separation τ (Fig. 6.3, also see Sections 6.2.4 and 6.3.2) . The large suppression of C(τ) around τ = 0

strongly supports the nonclassical character of the light pulses emitted by the atom-cavity system.

The likelihood of two photons being detected within the same trial is greatly reduced relative to

that for detection events in different trials.

Suppression of two-photon events is also quantified by the time dependence of the photon statis-

tics over the course of the pulse (Fig. 6.2B, C). Fig. 6.2B displays the integrated probabilities

for single P1(t) and joint P2(t) detection events for times t after the onset tj0 of the control pulse

Ωj
3(t), with P2(t) normalized to P1(t)/2. We calculate P1(t) and P2(t) for an effective single detector

without dead time or after-pulsing, and define P1,2 ≡ P1,2(δt). Over the duration of the control

pulse 0 ≤ t ≤ δt, P1(t) rises to a final value P1 = 0.0284; that is, the probability to register a

single photoelectric event in a trial is 2.84%. The lower trace in Fig. 6.2B quantifies the suppres-
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Figure 6.2: (a) Total histogram of photoelectric detection events n(t) from both detectors DA,B . In
all cases, the control field Ω3(t) is initiated at time t = 0 with rise time 100 ns. (b) The integrated
probability P1(t) for a single photoelectric event and ratio 2P2(t)/P1(t), where P2(t) is proportional
to the integrated coincidence probability for joint detections from DA,B . Note for a coherent state,
the two traces would overlap. (c) The ratio R(t) = P 2

1 (t)
2P2(t)

versus time, which indicates as high as
20-fold suppression of coincidences relative to a Poisson process.
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Figure 6.3: Time-resolved coincidences C(τ) as a function of delay τ between detections at DA,B .
Around τ = 0, C(τ) is suppressed for two events from the same trial relative to its values for τ = j∆t
for two events from different trials, where j = ±1, 2, . . .. As indicated in Fig. 6.1(c), ∆t = 10 µs
is the repetition interval for the generation of single photons and δt = 1 µs is the duration of our
control pulse Ω3(t).

sion of joint detection events relative to that expected for a weak coherent state, which would have

2P2(t)/P1(t) ≈ P1(t) (as we have confirmed in separate measurements). By the end of the control

pulse, 2P2/P1 has reached the value 1.8 × 10−3, which represents a 16-fold suppression of joint

detection events relative to a Poisson process.

Fig. 6.2C examines the ratio R(t) ≡ P 2
1 (t)

2P2(t)
, where R ≈ 1 for a weak coherent state and increases

with suppression of two-photon events. Significantly, R is independent of propagation and detection

losses for P1 À P2. The trace in Fig. 6.2C restates the result that two-photon events are greatly

suppressed relative to a coherent state, namely, R ≡ R(δt) = 15.9± 1.0. Also note that in Fig. 6.3,

the average area of the large peaks in C(τ) around τ = j∆t should exceed that of the central peak

around τ = 0 by a factor of about R, which we have confirmed.

The background rate during the Ω3 drive pulses is time-independent, and can be obtained from

the record of photoelectric detections when no atom is trapped. The measured background count

probability is PB = 2.7 × 10−4 for the entire window, of which PD = 0.82PB comes from detector

dark counts, and the rest from various sources of scattered light. For an ideal single-photon source,
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Figure 6.4: Evolution of the ratio R0 ≡ P 2
1

2P2
versus trapping time tT , here corrected for detector dark

counts. The data points are experimentally determined as discussed in the text, with horizontal error
bars indicating the bin widths in tT , and vertical bars based on counting statistics of coincidence
events. The full curve is the prediction from our model calculation that includes (rare) two-atom
events. The dashed line represents the measured overall average of R0 for all tT .

coincidence events at DA,B in the same trial would arise only because of background counts, since

the source never emits two photons in one trial. Using the known values of P1(t) and PB , the

background-limited value RB(t) for this idealized scenario can be predicted. Our measured values

are actually lower than this prediction (RB ≡ RB(δt) = 52.5), indicating a significant rate of excess

coincidences.

These excess coincidences most likely arise from rare events with two atoms trapped within the

cavity. We test this hypothesis in Fig. 6.4 by noting that the two-atom population should decay at

roughly twice the rate of the single-atom population (as we have confirmed in other measurements

related to Fig. 4 in Ref. [27]). The probability P2 for joint detection should therefore diminish as a

function of duration of the trapping interval, with a corresponding increase in the ratio R, which is

precisely the behavior evidenced in Fig. 6.4.

Operationally, we bin all our detection time-stamps according to their delay with respect to the

trap-loading time (tT = 0), and then compute photon statistics separately for each bin. Only 4

intervals in tT are employed due to poor statistics for the coincidence counts, especially for large
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tT . The analysis is the same as for Fig. 6.2, but we concentrate on the value R ≡ R(δt), at the

end of the Ω3(t) pulse window. Furthermore, the ratio R0 plotted in Fig. 6.4 is obtained from R

with the contribution from the measured dark-count probability PD removed, thereby providing a

characterization of the atom-cavity source that is independent of the dark counts for our particular

detectors. The results clearly support the hypothesis that rare two-atom events are responsible for

our excess of coincidences.

Also shown in Fig. 6.4 as the full curve is the result for R0 from a model calculation that

assumes that a fraction ηI of our data is acquired with a single trapped atom, and that a fraction

ηII = 1−ηI has two atoms trapped, with ηI , ηII functions of the time tT within the trapping interval.

The correspondence between the model and our measurements supports the conclusion that excess

coincidences arise from rare events with two atoms loaded into the trap. From this model, we infer

that (i) approximately 3% of the trials are taken with two trapped atoms, and (ii) the generation of

single photons succeeds with probability consistent with unity, φG = 1.15 ± 0.18 as constrained by

our absolute knowledge of the various efficiencies. Further discussion of this model can be found in

Section 6.2.6 below.

Given our ability to distinguish multi-atom trap loading events in real time (as demonstrated in

Fig. 4 of Ref. [27]), events with N ≥ 2 atoms trapped in the cavity could be actively discarded, or

alternatively the extra atoms could be heated out of the trap, before even attempting single-photon

generation. Moreover, in its current implementation, our atom-cavity system generates unpolarized

single photons, with then a well defined polarization subsequently selected with 50% efficiency. This

efficiency could be greatly improved by separating the functions of cooling and of single-photon

generation for the Ω3 control field, with the atom optically pumped into a known Zeeman sublevel

before excitation. This separation of function would allow the interaction configuration of Ref. [118]

to be implemented, making the pulse shape and phase for the photon wavepackets insensitive to

randomness of the atomic position.

We have employed a single atom trapped within a high-finesse optical cavity as an efficient source

for the generation of single photons on demand. The photons are emitted as a Gaussian beam with

user-controlled pulse shapes. As documented in Fig. 6.4, two-photon events are suppressed by a

factor R0 = 20.8±1.8 relative to a weak coherent state, while R0 ≥ 150 for single-photon generation

at long trapping times tT ' 0.4 s. With this large suppression of two-photon probability, the Mandel-

Q parameter is determined almost exclusively by propagation efficiency. For example, for polarized

(unpolarized) photon wavepackets, Q = −0.34 ± 0.05 (Q = −0.68 ± 0.10) referenced to the total

cavity output from (M1,M2). Absent passive losses from the cavity boundaries, the generation of

single photons succeeds with probability close to unity, where this high success probability derives

from the near ideal nature of the atom-cavity interaction in a regime of strong coupling.
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6.2 Additional details

6.2.1 Experimental configuration

Our experimental setup is depicted by the simple drawing in Fig. 6.1A, with many of the technical

aspects described in more detail in Refs. [26, 27]. After releasing a cloud of atoms from a magneto-

optical trap (MOT) above the cavity, transverse cooling beams illuminate the cavity region, at which

point an atom can be loaded into the intracavity far-off resonance trap (FORT), which is matched to

a standing-wave, TEM00 mode along the cavity axis. The trap depth is U0/kB = 2.3 mK (47 MHz),

and because its wavelength is λF = 935.6 nm, the potential for the atomic center-of-mass motion

is only weakly dependent on the atom’s internal state [27]. The cavity length is actively stabilized

with an auxiliary laser at wavelength λC = 835.8 nm that does not interfere with the trapping or

the cQED interactions. Relevant cavity parameters are length l0 = 42.2 µm, waist w0 = 23.6 µm,

and finesse F = 4.2× 105 at 852 nm.

For our system, the Rabi frequency 2g0 for a single quantum of excitation is given by g0/2π =

16 MHz, where g0 is based upon the reduced dipole moment for the 6S1/2, F = 4 ↔ 6P3/2, F
′ = 3′

transition in atomic Cs (Fig 1B). The amplitude decay rates (κ, γ) due to cavity losses and atomic

spontaneous emission are κ/2π = 4.2 MHz, and γ/2π = 2.6 MHz. Since g0 À (κ, γ), strong coupling

is achieved, resulting in critical photon and atom numbers n0 ≡ γ2/(2g2
0) ' 0.013, N0 ≡ 2κγ/g2

0 '
0.084.

With an atom loaded into the intracavity FORT, our protocol for the generation of single-photon

pulses consists in illuminating the atom with a sequence of laser pulses according to the timing

diagram shown in Fig. 6.1C of the paper. Within each trial, the first pulse Ω3(t) contains light tuned

10 MHz blue of F = 3 → F ′ = 3′, which initiates the adiabatic transfer F = 3 → 4 between the

ground hyperfine levels, with the emission of a photon into the cavity mode. This transformation is

principally accomplished via “dark” eigenstates of the atom-cavity system, with no contribution from

the excited level F ′ = 3′, and hence with a concomitant reduction of fluorescent loss [117, 21, 119].

The second pulse Ω4(t) is tuned 17 MHz blue of F = 4 → F ′ = 4′ and recycles the atom back to the

F = 3 ground state through spontaneous decay F ′ = 4′ → F = 3. Each Ω3,4 field consists of two

orthogonal pairs of counter-propagating beams in a σ+ − σ− configuration. The detuning between

the 3′ → 4 transition at ω43 and the cavity resonance ωC is ∆CA ≡ ωC − ω43 = 2π × 9 MHz [35].

We now provide some additional details on the optical path from the cavity to the detectors.

After emerging from the vacuum chamber window, the path includes a polarizing beam splitter

(PBS), an optically pumped Cs cell that filters out scattered Ω3 light, several dichroic mirrors and

two interference filters. The light is next coupled into a single-mode fiber, and then split using a

50/50 fiber coupler. The two output fibers of the coupler are connected to fiber-coupled avalanche

photodiodes (APD), labelled DA and DB .



65

To APD’sFrom 
cavity

Pump
beam

Ω3 Ω4 Ω3 Ω3Ω4 Ω4

10 µs 5 µs 1 µs 

Pump
timing

Cs filter cell

Figure 6.5: Configuration and timing diagram for the Cs filter cell used in the experiments on
single-photon generation. The pump beam, near resonance with the Doppler broadened 6S1/2 →
6P3/2, F = 4 → F ′ transition in Cs, typically had 5 to 10 mW of power, in a beam of ≈ 1 cm
diameter, directed through the cell tilted a few degrees from its axis. The timing diagram (lower
part) illustrates how the optical pumping of the cell took place simultaneously with the Ω4 recycling
light being delivered to the cavity mode region.

Most of the optical elements along the path just described require no further explanation, but

the optically pumped Cs cell does warrant a brief additional discussion1. As has been extensively

documented in this chapter, one of our main experimental challenges in the generation of single

photons was the elimination of background light on the detectors. When we first started this

experiment without the filter cell, one of our main sources of background counts was Ω3 pump light

presumably scattering off the mirror substrates and into the cavity output path. The reason we

concentrated on reducing counts from the Ω3 beams is that this light is on during the production

window for single photons. Although the rate of background counts from Ω3 would fluctuate, and of

course depended on the Ω3 power, we would typically observe rates giving probabilities PB ≈ 7×10−4

in the 1 µs window (this was reduced to PB = 2.7× 10−4 in the published experiment).

The basic principle of using a Cs vapor cell is that by optically pumping all the atoms into one

hyperfine ground state (in our case F = 3) the cell is a very strong absorber of light near resonance

with the F = 3 → F ′ transitions (within the Doppler broadened profile). Additionally, and crucially,

1Within the Quantum Optics group, these Cs filter cells were first used in the experiments of Kuzmich et al. [120]
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Figure 6.6: A measurement of the depolarization time of the coated Cs filter cell. The pump beam
is switched off at t = 0. As the atoms depump via collisions with the walls, the transmission of the
probe beam (plotted points) decreases. A fit to the data (curve) gives an exponential time constant
τcell = 6.3 ms.

light near resonance with the F = 4 → F ′ transitions transmits with high efficiency (in our case

around 90%). The cell can thus be configured as an absorptive filter for light on either the trapping

or repumping transition in Cs, with a “stop-band” of width roughly set by the Doppler profile. Once

optical pumping is performed however, the hyperfine states do depolarize on some timescale due to

collisions with the walls of the cell. For this reason the walls of the cell are coated such that the

hyperfine relaxation time is extended to about 6 ms (as documented by our own measurements, see

Fig. 6.6). The approach to be taken was to pump the cell once per 10 µs cycle, outside the Ω3

window. Therefore the 6 ms relaxation timescale was adequate for our purposes.

Our implementation of the filter cell is depicted in Fig. 6.5. A few technical considerations are

worth mentioning since it took some time and effort to converge on an acceptable configuration.

One issue we had to confront was the question of propagation direction for the pump beam. The

choice of pump co-propagating with cavity output presented the possibility of large count rates at

the APD’s, possibly dangerously high levels for the detectors. Alternatively, a counter-propagating

geometry meant having this bright pump beam directed toward the physics cavity (although not

exactly aligned, small amounts of power can cause problems if coupled into the cavity mode). As it

turned out (and as illustrated in Fig. 6.5) we decided on the co-propagating option. We managed
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to reduce the detector count rates to around 50 × 103 s−1, well below saturation and damage

threshold levels of the APD’s. Although it may seem that this level of detector counts was well

below tolerable thresholds, it was important to get it down to this level or lower for the following

reason. The switching was done with an acousto-optic modulator (AOM) whose extinction ratios

are typically 103−104. Since we needed well below 100 s−1 per detector when the pump was off, the

requirements became much stricter. In order to deal with this problem we optimized the setup using

the alignment of the pump, in addition to changing its polarization, taking advantage of a polarizer

in the path to the detectors which then directed most of the pump light elsewhere. In addition to

reducing the count rate via the direction of the pump beam, the timing of the pump pulse also had

an impact on the background rates. Since the extinction ratio of an AOM is time-dependent, we

also had to maximize the delay between the pump pulse and the Ω3 pulse. After all these measures

were taken to reduce residual pump-related counts while the AOM was switched off, we finally had

low enough background to proceed with the experiment.

One other change had to be made to the setup as a result of the filter cell. The cavity output beam

for all experiments in this lab prior to these ones was collimated at a very large diameter. Although

I have no record of a documented quantitative measurement of this, its diameter was somewhere in

the range of 5 to 10 mm. When the filter cell was first placed in the path of this large beam, it proved

very difficult to achieve reasonable fiber coupling efficiency downstream. Presumably this was due

to severe phase front and beam profile distortions caused by the faces of the cell. Implementing a

telescope in the path such that the beam was much smaller (≈ 1 mm) at the position of the cell

greatly improved the fiber coupling.

6.2.2 Losses and efficiencies

Photons generated in the cavity are subject to various types of loss along their path to the detectors.

These are summarized in Table 6.1.

Independent diagnostic measurements reveal the ratio of scattering/absorption losses to trans-

mission of our cavity mirrors [59]. From this we infer the cavity escape efficiency αe. Our cavity

is also symmetric (nominally identical mirrors) meaning that 1/2 of the generated photons leave

through the mirror M1 and are not detected (α2s). Once the light exits the vacuum chamber,

the unpolarized stream of output photons is first reflected from the PBS, resulting in a 50% loss

(αPBS). The remaining optics, including the fiber coupling efficiency, on the way to the APD’s gives

the quantity αP . The quantum efficiency αAPD of the APD’s is also independently measured.

The uncertainty in αe comes from the difficulties related to mode matching and scattering in

the reflection dip measurement we used [59]. The efficiencies αP and αAPD are obtained using

measurements of the fiber transmission, which has fluctuations in our system of around ± 10%.

The values and uncertainties enumerated in Table 6.1 combine to give a total efficiency of escape,
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propagation and detection

α = αe × α2s × αPBS × αP × αAPD = 0.024± 0.004. (6.1)

From these efficiencies, their associated uncertainties and our measurements of photon statistics

of the emitted light, we infer that each generation attempt succeeds with probability φG = 1.15±0.18.

The fact that we succeed with efficiency consistent with unity (within error) derives from the strong

coupling of atom and cavity field.

Description Symbol Value Error
Cavity escape αe 0.6 0.1

Two-sided cavity α2s 0.50 N/A
Polarizer αPBS 0.50 N/A

Propagation αP 0.32 0.03
Detection αAPD 0.49 0.05

Total α 0.024 0.004

Table 6.1: List of efficiencies associated with photon propagation and detection.

6.2.3 Determination of the presence of a trapped atom

For each attempt to load an atom into the FORT, we obtain an output stream of photoelectric

events. The first step in the analysis of such an output stream is to determine whether an atom was

indeed loaded into the trap. The procedure is as follows: we assume an atom is present at time t if

more than np photons total were recorded during the Wd detection windows immediately prior to

t. The result is not sensitive to the exact values of np and Wd; typical values are np = 1− 5, Wd =

500 (i.e., 5 ms).

6.2.4 Calculation of C(τ)

Counts recorded outside the gating intervals [tj0 − 1
2δt, tj0 + 3

2δt] are removed from the record due to

an excess of stray light between trials {j}. This occurs because of our use of an optically pumped

Cs cell in the output path for the purposes of filtering residual scattered Ω3 light (see Section 6.2.1).

These records are then converted into a pair of lists (ak
1 , · · · , ak

N ) and (bk
1 , · · · , bk

N ) for detectors DA

and DB , respectively. The nth entry in each list is 1 if a photoelectric event was recorded in the

time interval [nδ, (n+1)δ], and zero otherwise, where δ is the time resolution of our data acquisition

system. The correlation function is obtained by convolving the two lists against each other, and

then convolving the result against a smoothing function f(t) = (2πσ2)−1/2e−t2/2σ2
, with σ = 20 ns:

C(τ) =
∑
m

f(τ −mδ)
∑

k

∑
n

ak
nbk

n+m. (6.2)
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6.2.5 Photon statistics

Although in these experiments our desired state of the electromagnetic field was a fairly simple one

(the single photon), it turned out that there were many counterintuitive and subtle issues to be

considered when analyzing the data. The first issue at hand is that the statistics of photoelectric

events do not necessarily allow us to deduce the state of the field in a straightforward fashion. The

next task is to infer the properties of the cavity output field (and even the field generated inside

the cavity) from the combination of photodetection data (measured “downstream”) and known

efficiencies along the optical path. This requires calculations of the effect of losses on the field

state. Another consideration in our analysis was to infer what our statistics would have been in

the hypothetical case of an idealized single detector (rather than our two imperfect detectors in the

experiment). Dark counts are another concern in any photon counting experiment, so we developed

the formalism to apply a correction to the data based on the independently measured dark count

rate. Finally, we also considered what the possible impact could have been of neglecting three-event

processes in our analysis, since our detection setup was only marginally able to detect such events.

6.2.5.1 Some basics of photoelectric detection

The data analysis for our experiment on single-photon generation presented an interesting challenge

regarding the photon statistics. The measured quantities in the laboratory are photoelectric events

recorded on two detectors after a nominal 50/50 beam splitter. The question is how to translate

these data into information about the field at the input to the beam splitter (inference about the

field further upstream is discussed below in Section 6.2.5.3). There are two issues at hand here: the

first is how does the field state at a given point in space ~r relate to the photoelectric statistics from

a detector at ~r. The second issue relates to inferring properties of the field before the beam splitter

from the data recorded on the two detectors.

As it turns out, there is no need to make statements about the state of the field itself in evaluating

the data. The reason for this is that we can compare properties of the measured statistics (such

as the quantity R) to their hypothetical values if our output field were a coherent state. The main

characteristics of interest for a single-photon source are the efficiency and the suppression of two-

photon events relative to that of a coherent state. Consequently for these evaluations it is possible

to stay in the realm of photoelectric statistics without venturing into the somewhat subtle territory

of inferring the field state.

In spite of this fact it is still crucial to write down a fundamental expression for the probability

of photoelectric detection. For one detector, Equation (14.8-7) of Mandel and Wolf [69] tells us that
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DA
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Figure 6.7: Schematic depiction of a field being split at a beam splitter (BS) and illuminating
detectors DA,B . The beam splitter has intensity reflection and transmission coefficients r̄ and t̄,
respectively. The field modes are labelled by their respective intensity operators Î0,A,B .

the probability of registering n photoelectric events in an interval [t, t + T ] is

p(n, t, t + T ) =

〈
T :

Ŵn exp (−Ŵ )
n!

:

〉
, (6.3)

where Ŵ ≡ ∫ t+T

t
αcSÎ(t′)dt′, α is the detector quantum efficiency, S is its photosensitive area,

Î is proportional to a photon number operator of the form a†a, and the T and :: represent time

and normal ordering, respectively. As the operator quantity is a Poisson distribution, it is not

surprising that this formal expression leads to the well known fact that coherent states give Poisson-

distributed photoelectric counting statistics. In the discussion that follows, however, we mostly

assume that the intensities are low, such that the probability to register a single event at either

detector p(n, t, t + T ) ¿ 1. In this limit, we can take the limit exp (−Ŵ ) → 1, and the expressions

simplify. For many of our purposes this approximation is a good one, but in some cases the full

expression is necessary.

6.2.5.2 Comparison of the data to a coherent state

I will first illustrate what I consider to be the simplest way to compare our data to coherent state

properties. Specifically, we consider the hypothetical case of our cavity output field being a coherent

state. This means that all we have to understand is how a coherent state is divided at a beam

splitter, and the ensuing photoelectric statistics at the two detectors.

It is a well known result that the outputs of a beam splitter illuminated by coherent states are

also coherent states (see Ref. [69], Section 12.12). Specifically, the coherent amplitudes of the output

modes (A,B) in Fig. 6.7 are given by |vA|2 = r|v|2 and |vB |2 = t|v|2, where the input state has
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amplitude v. For the purposes of this discussion the square moduli of these amplitudes are relevant

because we are interested in photon counting rather than any phase-sensitive detection. Another

useful and fundamental property of coherent states and this beam splitter transformation is that

these output modes are completely uncorrelated [69]. In other words, the detection statistics at

DA,B are independent of each other and dictated solely by the coherent amplitudes vA,B . With

the assumption of weak fields such that the probability of any photoelectric event is very small, the

following simple result ensues (special case of weak coherent states):

Pc = P
(A)
1 P

(B)
1 . (6.4)

Here, Pc is the probability to register an event at both detectors in the time window of interest,

and P
(A,B)
1 are as usual the single event probabilities at DA,B in the same window of time. It is

interesting to note that this expression is independent of the beam splitter ratio. We use the notation

Pc for the coincidence probability rather than P2 since the latter is reserved for the hypothetical

case of an ideal single detector. These quantities also differ in value, as will be discussed below.

At this point it is already possible to do comparisons with single-photon data. By computing

experimental single-photon and coincidence probabilities, strong violations of Equation 6.4 will in-

dicate the quality of the photon source. More specifically, the signature is a strong suppression

of coincidence probability relative to the product P
(A)
1 P

(B)
1 . The quantity R introduced earlier

quantifies this very suppression, and can be equivalently written as R = P
(A)
1 P

(B)
1

Pc
.

The approach we decided to take for Ref. [36] was to consider the hypothetical case of an ideal

single detector before the beam splitter. This allowed us to define quantities P1 and P2 (probabilities

to register one and two events, respectively, on this fictitious detector) that seem intuitively closer

to field properties than our two-detector data. The tasks then are to translate the data into this

hypothetical scenario, and also to compute one- and two-event probabilities for a weak coherent

state on one detector. This approach is slightly more involved than the previous analysis and the

expressions are more complicated, since the results do depend on the beam splitter ratio.

The case of the coherent state illuminating a single detector (without dead time or afterpulsing)

has a well-known solution, namely, that the photoelectric counting statistics are given by a Poisson

distribution. There are several ways to derive this result, and different ways to physically interpret

it, which we do not explore here in detail. Instead we refer again to chapter 14 of Mandel and Wolf

[69], in particular Equation 14.8-14. Explicitly, for a coherent state the counting statistics in the

interval of duration T are given by

p(n, t, t + T ) =
Wne−W

n!
, (6.5)

where W = αcS
∫ t+T

t
I(t′)dt′ and I(t) is proportional to the square of the coherent amplitude
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(allowed to vary in time). This expression directly gives the value of the ubiquitous ratio R (special

case of the coherent state)

R =
P 2

1

2P2
= e−W , (6.6)

where we have reverted to the more compact notation Pn ≡ p(n, t, t + T ). The weak field, low

probability result of R → 1 follows trivially.

The next step is to infer what happens at the ideal single detector in terms of the two-detector

statistics. This must be done for an arbitrary state of the field, since we are applying it to our

experimental situation. The singles rates are obtained quite trivially starting from Equation 6.3 (in

the weak field limit exp (−Ŵ ) → 1) and are

P
(A)
1 = αcSt̄

∫ t+T

t

dt′〈: Î0(t′) :〉dt′ (6.7)

P
(B)
1 = αcSr̄

∫ t+T

t

dt′〈: Î0(t′) :〉dt′. (6.8)

At this point we must write down the coincidence probability in the two-detector case in terms

of the input mode Î0, as well as the two-event probability for the fictitious single detector directly

measuring Î0. We now express the one-detector, two-event probability as follows:

P2 =
(αcS)2

2

∫ t+T

t

∫ t+T

t

〈: Î0(t′)Î0(t′′) :〉dt′dt′′. (6.9)

This is also derived from the general expression Equation 6.3, and we have again invoked the weak

field limit. In the case of two detectors, we have

Pc = (αcS)2r̄t̄
∫ t+T

t

∫ t+T

t

〈: Î0(t′)Î0(t′′) :〉dt′dt′′, (6.10)

since the operators inside the normal ordered expectation values transform in this case like ÎA → t̄Î0,

ÎB → r̄Î0, where again r̄ and t̄ are the reflection and transmission coefficients of the beam splitter.

Comparing Equations 6.9 and 6.10, we get the following expression relating the one- and two-detector

cases:

P2 =
Pc

2r̄t̄
. (6.11)

This reduces to P2 = 2Pc for the case r̄ = t̄ = 1
2 . The next question though is how to determine r̄

and t̄ experimentally, since we did observe slightly unbalanced singles rates at DA,B . The approach

we took for the analysis in Ref. [36] was to infer r̄ and t̄ from the singles rates themselves. This

seemed like a good way to obtain the relevant values, since it is effectively a measure of the ratio

averaged over the actual time data was being taken. An independent measurement may have been

desirable, but various count-rate observations over long periods of time (months) suggested that
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deviations from 50/50 were consistently small, but did have some fluctuations (|r̄/t̄− 1| < 10%).

Defining P
(T )
1 ≡ P

(A)
1 + P

(B)
1 , we obtain

P2 =
Pc

(
P

(T )
1

)2

2P
(A)
1 P

(B)
1

(6.12)

assuming a lossless beam splitter r̄ + t̄ = 1. This was the formula used (“behind the scenes”) to

define P2 for Ref. [36]. Although the two-detector analysis involves the quantity Pc (which differs

by a factor of 2 from the possibly more intuitively accessible P2) and also requires the individual

singles rates at DA,B , it does seem simpler than this one-detector fiction in hindsight, especially

since the beam splitter ratio does not enter the calculation.

6.2.5.3 Effect of attenuation

One of the main data analysis tasks of our experiment on single-photon generation is to infer the

properties of our source in the absence of the scattering and absorption losses the light suffers along

the output path. In other words, we want to determine the quality of the photon gun “upstream”

having independently measured the various efficiencies involved. These diverse loss mechanisms are

described in detail in Section 6.2.2.

As shown in Fig. 6.8, propagation through a lossy medium with efficiency α (represented by

the “blob” in part (a)) can be considered formally equivalent to a beam splitter with transmission

coefficient α (part (b)). The other input mode of this fictitious beam splitter is in the vacuum

state. Although it is of course possible to determine the full state of the electromagnetic field as it

transmits through such a medium, our approach is somewhat simplified.

First of all, we are concentrating here on the photon statistics only, namely, the diagonal com-

ponents of the density matrix written in the number state basis. Second, we are dealing with very

weak fields and for the most part neglect photon numbers higher than 2. Consequently, the ap-

proach we take is to examine how moments of the photon number operator n̂ = â†â (such as 〈n̂〉,
〈n̂2〉,...) transform upon transmission through a beam splitter. These moments relate trivially to

the n-photon probabilities Pn, which are experimentally accessible:

〈n̂q〉 =
∑

n

nqPn. (6.13)

The fundamental starting point for this exercise is of course the beam splitter relation

âo =
√

αâi +
√

1− αâv , (6.14)

where av is the “fictitious” vacuum input, α is the transmission coefficient for intensity/power, and
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Figure 6.8: Schematic diagram illustrating the equivalence of propagation through a lossy medium
(a) to transmission through a beam splitter (b). Input and output fields are symbolized by the
annihilation operators âi and âo, respectively. Output fields illuminate photodetectors (PD). The
intensity transmission coefficient α applies to the lossy medium in (a) and to the beam splitter (BS)
in (b).

we have only written the expression for one output mode. Using this expression for the output field

in terms of the input, it is possible to compute the expectation values of any operator made up of â’s

and â†’s, including of course the moments of n̂ that interest us for photon statistics. At this stage,

the idea is to obtain the output moments as a function of the input moments. This might seem to

be a somewhat daunting task for higher powers of n̂, since the full expression for n̂2
o for example

contains 16 terms. However, this amount of algebra is unnecessary: the fact that one input is in the

vacuum state simplifies things greatly. The fact is that all normal ordered expressions are trivial to

compute. Since the annihilation operator is always on the right, any terms that include the vacuum

mode vanish, so that we have

〈: n̂q
o :〉 = αq〈n̂q

i 〉. (6.15)

Using this fact in combination with the standard commutation relation [a, a†] = 1 (allowing us to

express powers of n̂ in terms of normally ordered terms), we can now obtain any moment of n̂o in

terms of the input field.

Although for most purposes we only need to consider photon numbers up to n = 2, we will

include n = 3 in the following expressions for the purpose of evaluating their importance. For any
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mode of the field, the following expressions can be obtained from the commutation relation:

n̂ = : n̂ :

n̂2 = : n̂2 : + : n̂ : (6.16)

n̂3 = : n̂3 : +3 : n̂2 : + : n̂ : .

Applying these to the output mode and using Equation 6.15 on the right hand side, we can then

write

〈n̂o〉 = α〈: n̂i :〉
〈n̂2

o〉 = α2〈: n̂2
i :〉+ α〈: n̂i :〉 (6.17)

〈n̂3
o〉 = α3〈: n̂3

i :〉+ 3α2〈: n̂2
i :〉+ α〈: n̂i :〉.

Next we have to invert Equations 6.16 so that we can replace the normal ordered terms involving

the input mode âi. This yields the following expressions:

〈n̂o〉 = α〈n̂i〉
〈n̂2

o〉 = α2〈n̂2
i 〉+ α(1− α)〈n̂i〉 (6.18)

〈n̂3
o〉 = α3〈n̂3

i 〉+ 3α2(1− α)〈n̂2
i 〉+ α(1− 2α)(1− α)〈n̂i〉.

The next step is to convert these expressions into equivalent ones involving probabilities Pn using

Equation 6.13, where the sum over n runs from 0 to 3. The use of this truncated number basis

is equivalent to the assumption that the field state has zero amplitude for n ≥ 4. We adopt the

convention of lower case p’s for the inputs and upper case P ’s for the outputs. Explicitly writing

out Equation 6.13 for the inputs, we have

〈n̂i〉 = p1 + 2p2 + 3p3

〈n̂2
i 〉 = p1 + 4p2 + 9p3 (6.19)

〈n̂3
i 〉 = p1 + 8p2 + 27p3.

After some algebra, Equations 6.18 then become

P1 + 8P2 + 27P3 = αp1 + 2αp2 + 3α(2α2 + 6α + 1)p3

P1 + 4P2 + 9P3 = αp1 + 2α(α + 1)p2 + 3α(2α + 1)p3 (6.20)

P1 + 2P2 + 3P3 = α(p1 + 2p2 + 3p3).
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These equations can then be solved for inputs in terms of outputs, or vice versa. Since both can

be useful depending on the particular analysis being done, we provide both sets of expressions,

beginning with inputs in terms of outputs:

p1 =
P1

α
− 2P2(1− α)

α2
+

3P3(α− 1)2

α3
≈ P1

α
− 2P2(1− α)

α2

p2 =
P2

α2
− 3P3(1− α)

α3
≈ P2

α2
(6.21)

p3 =
P3

α3
≈ 0,

and followed by outputs in terms of inputs:

P1 = αp1 + 2α(1− α)p2 + 3α(1− α)2p3 ≈ αp1 + 2α(1− α)p2

P2 = α2p2 + 3α2(1− α)p3 ≈ α2p2 (6.22)

P3 = α2p3 ≈ 0.

The approximate expressions on the right are for the case of P3 = p3 = 0, and would have been

the results had we used a basis of n ≤ 2 from the beginning. The expressions 6.21 are the most

important result here, as they give the “upstream” input probabilities in terms of the experimentally

accessible output statistics.

6.2.5.4 Correction for known rate of dark counts

When analyzing photodetection statistics it is important to distinguish the behavior of the detector

from the properties of the field impinging on it. Since we are interested in evaluating the character

of the light emitted from the cavity, corrections need to be made based on known detector properties

that affect the data in a measurable way. The two avalanche photodiodes we used had dark count

rates of about 160 s−1 and 60 s−1, respectively. These are the independently measured rates occur-

ring in the absence of any illumination. The purpose of this section is to outline how we applied

corrections to the measured photon statistics due to the contributions of these spurious counts.

Consider the situation depicted in Fig. 6.7, in which we are interested in photoelectric counting

statistics at the detectors DA,B . For our analysis we will use P ’s for the total probabilities including

dark counts and Q’s for corrected probabilities in the absence thereof (equivalently the detector

counts arising from the light alone). The notation P (T ), Q(T ) signifies that the probabilities are for

intervals of duration T . The dark count rates at DA,B are the time independent quantities r
(A,B)
B ,

yielding single dark count probabilities b
(A,B)
1 (T ) = r

(A,B)
B T . In the weak field approximation and

assuming the dark count rates are also low, singles probabilities can be written as follows:

PA,B
1 (T ) = Q

(A,B)
1 (T ) + b

(A,B)
1 (T ). (6.23)
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Since the dark counts and the light-related counts are statistically independent, we can write the

following simple expression for the probability of registering a coincidence event (one event at each

detector):

Pc(T ) = Qc(T ) + Q
(A)
1 (T )b(B)

1 (T ) + Q
(B)
1 (T )b(A)

1 (T ) + b
(A)
1 (T )b(B)

1 (T ). (6.24)

From now on we will drop the dependence on T for compactness. Combining Equations 6.23 and 6.24,

we can write the corrected (light-related) coincidence probability Qc in terms of the experimentally

accessible quantities:

Qc = Pc − P
(A)
1 P

(B)
1 +

[
P

(A)
1 − b

(A)
1

] [
P

(B)
1 − b

(B)
1

]

= Pc − P
(A)
1 b

(B)
1 − P

(B)
1 b

(A)
1 + b

(A)
1 b

(B)
1 . (6.25)

Equation 6.23 for the singles and 6.25 for the coincidence probabilities were used in our analysis for

dark count corrections.

6.2.6 Two-event processes: A model for inferring the two-atom

probability

One of the main ways of characterizing the quality of a single-photon source is by measuring the

suppression of higher photon numbers. For an ideal source and ideal detectors, one would never

register more than one photoelectric event per trial. In a real experimental setting, however, there

are always sources of background counts. This background is typically composed of detector dark

counts and events from scattered light, and the rate of these counts is easy to measure. Background

counts and legitimately detected single photons combine to make coincidence events. However,

knowing the probabilities of each of these statistically independent processes allows us to predict

the probability of these background-related coincdiences.

In our experiment, we observed a rate of coincidences that exceeded even this prediction. This

is illustrated in Fig. 6.9 which compares the data to the predicted suppression factor RBP (t) in the

hypothetical case that coincidences only arise from background counts. The predicted trace has a

pronounced peak around 240 ns, and decays from there to be RB(δt) = 52.5 at the end of the Ω3

window. The maximum occurs near the peak of the average single-photon pulse (see Fig. 6.2(a)),

and the purity of the single-photon data begins to degrade as more and more background counts

are allowed to accumulate. Clearly if our photon pulse were shorter, the peak would reach a higher

value since fewer background counts (and hence fewer coincidences) would occur during the pulse.

Additionally, the rate at which RPB(t) decays increases with background count rate.

What follows is a discussion of the discrepancy between the two traces in Fig. 6.9, and the

analysis we performed to explain it. We investigated several optical processes that might yield more
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Figure 6.9: Plotted are the data R(t) quantifying the suppression of two-photon events relative to a
weak coherent state, and the theoretical prediction RBP (t) based on the known rate of background
counts in our experiment. The experimental trace R(t) is the same as the one plotted in Fig. 6.2(c).
See text for a discussion of the discrepancy between these curves.

than one photon per trial, including the atom’s recycling by stray light from the Ω4 beam or by

diverse off-resonant excitation mechanisms, including from the FORT itself. We conclude that none

of these are responsible for the observed disparity between R and RB . Instead, as demonstrated by

Fig. 6.4, the excess coincidences likely arise from infrequent events in which two atoms are trapped

within the cavity, each atom contributing one photon during the detection window. This section

describes the model we used for the theoretical curve in Fig. 6.4, which tries to predict the time

dependence of the photon statistics of our cavity output during single-photon generation. The model

is based on the hypothesis that we sometimes load two atoms into the cavity.

The basic approach taken for this calculation is to use experimental data for the two-photon

probability at early trapping times to estimate the initial two-atom probability. From there, we

predict the time evolution of the two-atom fraction and compute the resulting photon statistics vs.

trapping time, and finally compare it to the full data set, as in Fig. 6.4.

6.2.6.1 Photon statistics vs. atom number

The first step then is to develop a model for how two atoms in the cavity impact the photon

statistics in our experiment. We begin by considering the one-atom and two-atom cases separately,

and later consider a statistical mixture of these. In this model we make two major assumptions:
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first that two atoms act independently inside the cavity (both with respect to the trap decay and

photon generation). Second, we assume that there are at most two atoms in the cavity and neglect

three-or-more-photon events.

The starting point is the model for what happens inside the cavity (or equivalently at the output

of an ideal, single-sided cavity with our finesse) for one atom and two atoms. Let the probability of

one atom to generate one photon be denoted φG. We’ll use lower case p’s for statistics “inside the

cavity” and upper case P ’s for photodetection statistics after our losses (overall efficiency α ≈ 2.4%,

see Table 6.1). We will also consider the quantities corrected for dark counts, indicated by the tilde:

P̃1,2. For one atom, we have

pI
1 = φG (6.26)

pI
2 = 0 (6.27)

P I
1 = αφG + PB (6.28)

P I
2 = PBP I

1 = PB(αPG + PB), (6.29)

where PB is the total background count rate (both detectors). The derivations of these are trivial:

inside the cavity one photon is generated with likelihood φG, and we never make two photons. At

the detectors, we have attenuated single photons, background singles, coincidences from one signal

and one background click, and pairs of background clicks. For two atoms, we have

pII
1 = 2φG(1− φG) (6.30)

pII
2 = φ2

G (6.31)

P II
1 = α(pII

1 + 2pII
2 (1− α)) + PB = 2αφG(1− αφG) + PB (6.32)

P II
2 = α2φ2

G + PBP II
1 + P 2

B = α2φ2
G + 2αφGPB(1− αφG) + P 2

B . (6.33)

These derivations are slightly more nontrivial, as they include the formalism for propagating photon

statistics across losses (Section 6.8), and a simple use of the binomial distribution. Equation 6.30

is based on the fact that there are two ways of getting one photon: atom 1 succeeds and atom 2

fails, and vice versa. Equation 6.31 is trivial. The next two also use the equations of Section 6.8.

We’ve incorporated background contributions in Equations 6.32 and 6.33 in the same way as we did

in Equations 6.28 and 6.29.

6.2.6.2 Statistical mixture of atom numbers

The next step is to write down the average statistics when we have a data set which is a mix of

one-atom and two-atom data. The way our statistics are compiled is that (to a good approximation)
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there is always at least one atom. We’ll therefore parameterize the fraction of the data with two

atoms as ηII , with the one-atom fraction then ηI = (1 − ηII). These fractions are percentages of

the single-photon-generation (SPG) attempts, and will lead to the one- and two-atom “populations”

that we’re interested in (and for which we know how to model the time dependence). Let’s denote

the total number of SPG attempts in the data set NA, the number of single detection events N1,

and define N2 ≡ 2Nc where Nc is the number of coincidence events. Our overall measured statistics

should then be given by

N1 = ηINAP I
1 + ηIINAP II

1 (6.34)

N2 = ηINAP I
2 + ηIINAP II

2 . (6.35)

Note that these formulas hold for any “part” of the data set, if it were divided by time. Resulting

photodetection probabilities P e
1,2 can then be written (see Equations 6.32 and 6.33)

P e
1 = ηIP

I
1 + ηIIP

II
1 = (1− ηII)αφG + 2ηIIαφG(1− αφG) + PB (6.36)

P e
2 = ηIP

I
2 + ηIIP

II
2 = (1− ηII)αφGPB + ηIIαφG(αφG + 2PB(1− αφG)) + P 2

B . (6.37)

Similarly, in the absence of dark counts, we have

P̃1 = ηIαφG + 2ηIIαφG(1− αφG) + PS (6.38)

P̃2 = ηIαφGPS + ηIIαφG(αφG + 2PS(1− αφG)) + P 2
S .

Here PS = PB − PD is the probability of a background event other than from detector dark counts

in the detection window [tj0, t
j
0 +δt] (i.e., scattered light). From the measured photoelectric counting

statistics, the known probability PS = 4.9×10−5, and the overall efficiency α, we can solve this pair

of equations for the two unknowns φG and ηII . Actually the product αφG always appears together

in these equations, so that it can be considered one of the independent variables. This means that

ηII is determined directly from measured statistics, and is independent of α. φG on the other hand

is inversely proportional to α, given fixed detection statistics.

For the first bin of Fig. 6.4 (with the values P̃1 = 0.0285, P̃2 = 2.68× 10−5 derived from P1, P2

by correcting for dark counts), we find αφG = 0.0276 and ηII = 0.033.

6.2.6.3 Photon statistics vs. time

The full curve in Fig. 6.4 is obtained by employing these values for αφG and ηII as initial con-

ditions to deduce the time dependence of the photon statistics over the duration of the trapping

interval. The time dependence of ηI , ηII is modelled by simple rate equations with initial conditions
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(η0
I , η0

II) = (0.967, 0.033). We also use the experimentally determined decay rate Γ1 = 1/0.14 s, and

the assumption Γ2 = 2Γ1.

More explicitly, we have the following relationships:

ηI =
pI

pI + pII
(6.39)

ηII =
pII

pI + pII
, (6.40)

where pI,II are the overall one- and two-atom fractions, whereas the η’s just quantify one vs. two

without allowing for zero. The population dynamics are driven by the following birth-death equa-

tions:

ṗ0 = Γ1pI

ṗI = −Γ1pI + 2Γ1pII (6.41)

ṗII = −2Γ1pII ,

where the zero-atom fraction p0 ≡ 1 − pI − pII . In order to proceed, we need to know the loading

efficiency (which includes both one- and two-atom events). This can be extracted from the data,

which gives a loading rate of 9.2%. Using this number along with the inferred initial value of ηII , we

can trivially solve for pI,II at t = 0. The Equations 6.41 are then solved using these initial values,

and the results are displayed in Fig. 6.10. This figure also includes resulting predictions for the

photon statistics (corrected for dark counts).

We now turn to some discussion of the qualitative characteristics of Figs. 6.10 (a-d). In panel (a),

we can clearly see that the two-atom decay rate is twice that of the one-atom rate Γ1, as expected

from this independent, single-exponential decay model. Panel (b) plotting the singles probability

vs. trapping time shows a slightly higher production rate of single photons at early times than

at late times. This can be explained by the higher fraction of two-atom data at early trapping

times, combined with the fact that sometimes two photons produced in the cavity lead to only

one photoelectric event at the detectors. Fig. 6.10(c) shows the drastic reduction of coincidence

probability late in the trapping interval when the two-atom probability is reduced relative to that

of one atom. This clearly shows the near-ideal nature of our single-photon source if the two-atom

contribution is no longer a factor. We also note that panel (d) contains the same plot of R0 as Fig.

6.4, but here plotted on a linear scale and out to much longer trapping times. The asymptotic value

of R0 ≈ 294 quantifies how much the residual scattered light contaminates the single-photon source

(when the two-atom probability is greatly suppressed).

In order to compare the theoretical curve in Fig. 6.10 to the data, the lifetime Γ1 must be

determined. The approach we took was to look at the distribution of trapping event durations in
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Figure 6.10: Results of the simple model described in the text to predict the time evolution of two-
atom and two-photon probabilities. The quantities P̃1, P̃2 and R0 related to photoelectric statistics
are all corrected for dark count contributions. Panel (a) contains the one- and two-atom populations
pI,II , where the dashed trace is pI and the solid trace is 20pII . Panel (b), (c) and (d) display the
quantities P̃1, P̃2 and R0, respectively. The scaling of the time axes is with respect to the single
atom trap decay rate Γ1. These results correspond to the same data set as was used for Fig. 6.4.

the data and perform an exponential fit. As it turns out, the trap decay behavior does not seem

to be exponential, so it is important to explore the deviations from this. Clearly this is a major

limitation of our simple model and will have to be taken into account in future any attempt to obtain

better quantitative agreement with the data.

Figure 6.11 illustrates an attempt to better understand and quantify the decay dynamics. The

data traces are all histograms of the number of single-photon attempts in each time bin. Our data

analysis program automatically truncates each record of photoelectric events when it determines

that the atom has left the trap (see Section 6.2.3). Although we could have plotted the number

of photons detected vs. trapping time, this would have included possible fluctuations in the rate

of photon production. In any case, plotting attempts vs. trapping time tT seemed to be the most

direct way to access the distribution of event durations.

Panel (a) of Fig. 6.11 illustrates a truncation procedure we used to eliminate the earliest times

after trap loading for the purposes of obtaining the lifetime. Only the indicated truncated section

of the trace was used for the fits. The reason for this is that at early times tT , there are many

events where only one photon is detected in the first ≈ 5 ms (500 attempts). Since this is well below
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Figure 6.11: Various fitting attempts to determine the trap lifetime in our single-photon generation
experiment. The vertical axis of all panels (arbitrary units) is proportional to the number of photon
generation attempts per time bin (see text for further explanation). The asymptotes in all fits
were forced to be zero (no vertical offsets allowed). In panel (b), the fit yields a lifetime τ =
140± 28 ms. This was the lifetime used for the analysis leading to Fig. 6.4. Panel (c) gave lifetimes
(τ1, τ2) = (200 ± 5, 39.4 ± 0.5) ms and weights (A1, A2) ≈ (94, 146) (arb. units). Panel (d) gives
τ1 = (95± 18) ms, τ2 = 2τ1 and (A1, A2) ≈ (70, 90) (arb. untis).

the overall average of one detected photon every ≈ 36 attempts, this leads to an excess of recorded

generation attempts before the determination is made that the atom is gone. This is an indication

that our “triggering” algorithm outlined in Section 6.2.3 could be improved, since many of these

short events are probably failed loading attempts (N = 0), with the recorded photoelectric events

arising from background processes.

Turning next to the fitting attempts, it is clear that the single exponential fit in panel (b) is not

in very good agreement, so we tried to consider slightly more complicated decay behavior. One idea

was that since the two-atom population supposedly decays twice as fast, this additional timescale

Γ2 = 2Γ1 should be incorporated into the decay model. This led to the fit attempt in panel (d),

where the fitting equation was a sum of two exponentials with arbitrary weights, but whose time

constants were constrained as indicated. This fit was not very successful either, and on further

consideration, the small (ηII ≈ 3%) two-atom contribution is so small that the impact on such a
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decay curve should not be appreciable anyway. With this consideration in mind, it is somewhat

puzzling that the double exponential fit in panel (c) is in such close agreement with the data. The

two resulting timescales (≈ 200 ms and ≈ 40 ms) are widely separated, and the weights of the two

exponentials are similar.

Our hypothesis is that there is most likely an inhomogeneity from event to event in the trap

decay rates, for any of several possible reasons. There could be a distribution of event durations

from a spread in initial atomic temperatures right after trap loading. Another possibility is that

there could be a dependence of the lifetime on which well of the standing-wave FORT the atom

is trapped in, since the coupling strength g at the center of various wells is different. It will be

interesting to see if future attempts to do reliable three-dimensional cooling and well-selective trap

loading will eliminate this possible inhomogeneity in lifetimes.

In any case, since we only sought qualitative agreement for the purpose of Fig. 6.4, and since

it would have been difficult to incorporate more complex decay dynamics than Equations 6.41, we

decided to simply use the single exponential result shown in Fig. 6.11(b).

6.3 Additional experimental data

6.3.1 Dependence of pulse shape on pumping and recycling powers

One area that was not systematically explored much in the work leading to Ref. [36] was the

dependence of the pulse shape n(t) (Fig. 6.2(a)) on the pump powers Ω3,4. We did do one cursory

investigation of this question, yielding somewhat interesting results, shown in Fig. 6.12. The two

changes made from the usual power settings were to lower the power of each of the Ω3,4 beams

separately by a factor of 5. The major observation of note is that the weakened Ω3 field (Fig. 6.12

(b)) has a drastic impact on the pulse shape.

As discussed above in Section 6.1 [36], we hypothesize that the shape of these curves is actually

inhomogeneously broadened in the following sense. The actual effective Rabi frequency Ω3 for a given

attempt to generate a photon depends on more than the beam intensity at the atom’s position. Ω3

also depends on the local polarization and the atom’s magnetic sublevel (dictated by the relevant

Clebsch-Gordan coefficients). In fact, if the atom happens to be in the state (F = 3,mF = 0) in

a basis defined by the local Ω3 polarization, the Rabi frequency vanishes. This type of dark state

occurs generally for for transitions F → F ′, including 4 → 4′, used in our experiments for recycling.

In our experiment, the Ω3,4 beams formed a polarization gradient, meaning that with atomic

motion in the transverse direction possibly extending over many µm, the atom “saw” different

polarizations from shot to shot. In addition, stray magnetic fields and effective Zeeman shifts

from residual ellipticity of the FORT (see chapter 7) presumably caused Larmor precession on fast

timescales. This means that the sublevel could not be expected to remain constant from trial to
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Figure 6.12: Single-photon pulse shape as characterized by time-resolved histograms n(t) of photo-
electric events. Three traces are shown, each for a different setting of the pumping/recycling powers
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number of counts per time bin depends on the total amount of data taken (number of trials).
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trial. The upshot of all this is that the randomness of these variables (polarization and mF ) led to

large shot-to-shot fluctuations in the effective coupling Ω3, which is largely responsible for how fast

(or slowly) the photon is produced. Weakly coupled atoms presumably produced a broader pulse

shape, and a delayed peak.

Returning now to Fig. 6.12, we see that the data support this theory somewhat. The lower Ω3

setting (panel (b)) produced a significantly broadened and delayed pulse with respect to the pulse

obtained at the usual settings (panel (a)). Lowering the overall power should have the same effect

on the dynamics as a change in the Clebsch-Gordan coefficient due to the Zeeman substructure. In

panel (c), we see that the pulse shape is not significantly modified by a change in the Ω4 power.

This makes sense since Ω4 is gated off during the actual Ω3 photon production window. Incidentally,

one effect not illustrated by these plots was a reduction in the photon production efficiency P1 of

about 40% for the weak Ω4 case. This is not surprising since a weaker Ω4 reduces the likelihood of

recycling the atom back to F = 3, where it must be for photon production to succeed. It should be

noted that the efficiency was not significantly affected by the weakened Ω3 setting (cases (a) vs. (b)

in Fig. 6.12).

6.3.2 Correlation function from experiment without filter cell

As discussed in Section 6.2.1, the use of the Cs filter cell led to a relatively high rate of background

counts in between trials Ω3 (scattered light from the pump beam). As a result of this, for the purpose

of computing C(τ) (Fig. 6.3) we removed counts from the data set that did not lie in a ‘production

window’ when Ω3 was on (see Section 6.2.4). Earlier experiments, including those leading to Fig.

6.12, were performed without the filter cell in place. Although without the cell there was a higher

background rate during the Ω3 trials, the data looks qualitatively similar, and it is instructive to

examine it here.

Fig. 6.13 displays such a correlation function, taken from the data set that produced Fig. 6.12(a).

In Fig. 6.13(a), plotted out to ±200 µs (±20 trials) we observe no visible decay in the peak heights,

meaning that it is just as likely to observe a coincidence separated by 20 trials as if they were

separated by only one. This results from the fact that the ±200 µs displayed here is much less than

the mean storage time of the atoms in the presence of the pumping and recycling fields, τtrap ≈ 140

ms. This emphasizes the strong qualitative difference between our work documented in Ref. [36]

and that of Ref. [66], where the peak heights in their equivalent function decayed at a rate given by

the transit time of a freely falling atom (about 17.5 µs).

We turn now to a comparison between Figs. 6.3 and 6.13. As can be seen in Figs. 6.13(a, b), the

regions between the peaks have a background level of coincidence counts which is absent in Fig. 6.3

(for which the counts in between trials have been removed). With those counts removed it is trivial

to show that it is impossible to register a coincidence event for which the separation is ∆t/2 = 5 µs
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Figure 6.13: Correlation function C(τ) (histogram of time-resolved coincidence events) computed
from the same data set used for Fig. 6.12(a), and plotted at three levels of detail (ranges of the τ
axis). All traces C(τ) have been smoothed as described in Section 6.2.4. ∆t = 10 µs is the time
separation between trials.
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(for example). More precisely, C(τ) vanishes for τ outside the regions defined by |τ −n∆t| ≤ 2δt (n

is an arbitrary integer). In Fig. 6.13 on the other hand, coincidences occur at all delay times. It is

obvious that when all counts from the record are included, background events such as dark counts

give rise to coincidences with arbitrary time separations. Scattered Ω4 light contributes significantly

to C(τ) between peaks (these counts are removed in the processing for Fig. 6.3 since they occur

simultaneously with the cell pumping stage, in between trials). In spite of this background related

noise level in C(τ), Fig. 6.13 is shown here partly to indicate that the data in Fig. 6.3 is not

qualitatively altered by this processing step, and the sought-after features of C(τ) are still present

without it.

Fig. 6.13(c) is zoomed in on the central region around τ = 0. We also display the average of the

non-central peaks (n 6= 0) on the same plot. Specifically, this curve is the average of C(τ − n∆t)

over n, excluding n = 0 and going out to n = ±19. This emphasizes the suppression of likelihood to

register two events (a coincidence) in the same trial, compared to registering them in separate trials.

It can be shown that the ratio of areas of the two traces shown here corresponds approximately to

the quantity R, and this has been verified for these data.
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Chapter 7

Calculation of AC Stark Shifts

Motivated by our desire to implement a state-insensitive dipole trap for atomic cesium in the setting

of cavity quantum electrodynamics [27], we have developed a unified, consistent formalism for com-

puting the ac Stark shifts that includes the shifts of the excited states. Although there already exists

a great deal of literature on this subject, many authors restrict their attention to the ground-state

shifts, which determine the depths of dipole traps. The shifts of the excited states are important

for any spectroscopic application since they alter transition frequencies. They also impact motional

heating which arises from force fluctuations on driven atoms in dipole traps.

The structure of the chapter is as follows. Section 7.1 presents the basic formalism and equations

necessary for computing the Stark shifts. Section 7.2 presents the application of the formalism to

the special case of the alkali atom ground states. Section 7.3 gives the relevant expressions for

obtaining absolute Stark shifts in real units, based on experimentally accessible quantities. Section

7.4 then presents results of the calculations for the excited states of Cs, with particular emphasis

on state-insensitive trapping [27]. A quantitative evaluation is included of the contributions to the

shifts of higher-lying excited states and the counter-rotating terms.

7.1 Basic formalism and dipole matrix elements

The expressions provided herein are most relevant to the case of far-off-resonance traps (FORTs),

in which the field drives the atom well below saturation due to very large detunings. The detunings

also far exceed all hyperfine splittings, which also somewhat simplifies the formalism.

We consider a multilevel atom with several levels labelled by their total electronic angular mo-

mentum J and energies EγJ , where γ is a shorthand index for all other quantum numbers (e.g.,

radial, electron orbital angular momentum). Each of these levels has hyperfine structure due to the

nuclear spin I, so that each state within the J-manifold also has total angular momentum F and

magnetic quantum number m (we neglect the hyperfine splittings). The specific example of cesium

is depicted in Fig. 7.1.
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Figure 7.1: A partial schematic level structure of cesium. Allowed dipole transitions from states in
the 6P3/2 manifold are indicated with arrows. The ac Stark shift to a state |φ0〉 in this manifold
will contain contributions U

(L)
0 from the ground state 6S1/2 as well as −U

(H)
0 from the higher-lying

S and D states.

The perturbation to be considered is the dipole interaction with a laser field of frequency ωL,

E(r, t) = E(r)~ε(r) cos (ωLt + Φ(r)), (7.1)

where throughout this chapter we will only study the case of spatially varying amplitude and constant

polarization: ~ε(r) = ~ε, where |~ε| = 1 for all r.

In the presence of E, the state |φ0〉 = |γ0J0F0m0〉 with unperturbed energy E0 will experience the

following ac Stark shift, due to the interaction of the field with the induced atomic dipole moment:

U0(r) = U
(H)
0 (r)− U

(L)
0 (r) , (7.2)
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where U
(H)
0 (U (L)

0 ) is the shift to due to atomic levels with energies Eh > E0 (El < E0). In the large

detuning limit where no transition is near saturation, these terms are given by [68]

U
(H)
0 (r) =

∑

h

|〈φ0|d̂ ·E(r)|φh〉|2
4~∆h

(7.3)

U
(L)
0 (r) =

∑

l

|〈φ0|d̂ ·E(r)|φl〉|2
4~∆l

,

where ∆h,l = ωL − |Eh,l − E0|/~.
We will now restrict our calculation to fields with pure polarization q in the spherical basis,

E(r) = E(r)~εq. However, this treatment can be extended to more general polarization states by

taking linear superpositions of these.

From this point on, we adopt a convention for the ordering of the dipole matrix elements: we

will always write the state with higher energy to the left of the dipole operator. The reason for this

is that the process of reduction of the matrix elements via the Wigner-Eckart theorem is inherently

asymmetric. The contributions U (H,L) to the Stark shift must then be written

U
(H)
0 (r) = |E(r)|2

∑

h

|〈JhFhmh|d̂q|J0F0m0〉|2
4~∆h

(7.4)

U
(L)
0 (r) = |E(r)|2

∑

l

|〈J0F0m0|d̂q|JlFlml〉|2
4~∆l

,

where the γ indices have been omitted in the interest of compactness.

The next task is the reduction of the dipole matrix elements. For this we will use primed quantum

numbers for higher-lying states.

|〈J ′F ′m′|d̂q|JFm〉|2 = (2F + 1)|(J ′‖d‖J)|2 ×
∣∣∣∣∣∣





F ′ I J ′

J 1 F





∣∣∣∣∣∣

2

|cF ′,m′

F,m |2, (7.5)

where the quantity in curly brackets is the Wigner 6-j symbol1, the shorthand notation cF ′,m′

F,m for

the Clebsch-Gordan coefficients is explicitly given as follows2:

cF ′,m′

F,m = 〈Fm1q|F ′m′〉 (7.6)

= (−1)m+F−1
√

2F ′ + 1


 F 1 F ′

m q −m′


 , (7.7)

and the selection rule is m′ = m + q. We choose the following normalization for the reduced matrix
1The Wigner 6-j symbols are computed using the Mathematica function “SixJSymbol”
2These conventions are consisent with the Mathematica functions “ClebschGordan” (Equation 7.6, RHS) and

“ThreeJSymbol” (Equation 7.7, RHS)
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element, expressed in terms of the lifetime τJ ′→J of state J ′ in the case of one decay channel J ′ → J :

|(J ′‖d‖J)|2 = (2J ′ + 1)
3πε0~c3

ω3
JJ ′τJ ′→J

, (7.8)

where ωJJ ′ is the resonant frequency of the transition, and we have used MKS units. It is important

to point out that there are several conventions for this normalization. Here I have used notation

from the notes of Steck [43], since the treatment here corresponds to the alternative normalization

he describes on p. 7 (not his main choice of normalization). In her thesis, Christina Hood [40] relies

on the formalism of Deutsch and Jessen [121], which seems to require a third, different normalization

convention. In addition, it seems that the reduced matrix elements in Table 6.2 of her thesis are not

normalized properly for this formalism. Armed with Equation 7.8 and the others in this section,

however, it is possible to calculate unambiguously the matrix elements (and hence the Stark shifts).

At this point, given the partial lifetimes for all relevant transitions and their resonant frequencies,

as well as the FORT intensity, these equations are sufficient for calculating Stark shifts of any state

(ground or excited).

7.2 Special case: the ground states

Perhaps the most commonly required formula for alkali atom FORTs is the expression for the ground-

state shifts U
(G)
F,m,q(r), considering only the lowest lying P1/2 and P3/2 excited states (i.e., the D1 and

D2 lines). In our approximation of large detuning and weak excitation, there is negligible excited

state population, so that the ground-state shift is effectively the FORT depth.

Without going through the required angular momentum algebra, we simply state here the formula

for these shifts in several forms. The first is in terms of the reduced matrix elements (J ′‖d‖J), which

in the formalism of this chapter is given by

U
(G)
F,m,q(r) =

1
24
|E(r)|2

( |(6P3/2‖d‖6S1/2)|2(2 + qgF m)
2~∆D2

+
|(6P1/2‖d‖6S1/2)|2(1− qgF m)

~∆D1

)
. (7.9)

Here, gF are the g-factors for the hyperfine ground states of Cs (g3 = −1/4 and g4 = 1/4). The

detunings are with respect to the D1 and D2 resonance frequencies, e.g. ∆D1 = ωL − ωD1.

Using the following approximate identity from further reduction of the matrix elements (which

seems to differ from experimental values by about 1%) [43]

d2
D2 ≡ |(6P3/2‖d‖6S1/2)|2 ≈ 2|(6P1/2‖d‖6S1/2)|2 , (7.10)
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we can simplify Equation 7.9 somewhat:

U
(G)
F,m,q(r) =

|dD2E(r)|2
48

(
2 + qgF m

~∆D2
+

1− qgF m

~∆D1

)
. (7.11)

This agrees with the following equation, which also appears as Equation 19 in Ref. [68] and as

Equation 7.16 in Ref. [25]:

U
(G)
F,m,q(r) =

πc2ΓD2

2ω3
D2

(
2 + qgF m

∆D2
+

1− qgF m

∆D1

)
I(r) , (7.12)

where I(r) = 1
2cε0|E(r)|2. Please note that in Ref. [68], the undefined quantities Γ and ω0 are for

the D2 line (Γ = ΓD2 and ω0 = ωD2).

Writing this expression yet another way, we can gain some insight into the qualitative character-

istics of the shifts:

U
(G)
F,m,q(r) =

πc2ΓD2

2ω3
D2

[(
2

∆D2
+

1
∆D1

)
+

(
1

∆D2
− 1

∆D1

)
qgF m

]
I(r) , (7.13)

The m-dependent part of this shift is directly proportional to gF m, just like a Zeeman shift in a

static magnetic field. For this reason, this contribution is often referred to as an “effective magnetic

field” term. In addition, this m-dependent component does not occur for linear polarization q = 0.

If one goes through the algebra for a general (elliptical) state of FORT polarization, it is not difficult

to obtain the following formula [64]:

U
(G)
F,m,ε(r) =

πc2ΓD2

2ω3
D2

[(
2

∆D2
+

1
∆D1

)
+

(
1

∆D2
− 1

∆D1

) √
1− ε2gF m

]
I(r) , (7.14)

where ε is the ellipticity of the field, as defined in Ref. [64] by the following normalized polarization

vector:

~εL =
1√
2
(~εx

√
1 + ε + i~εy

√
1− ε) (7.15)

=
1
2
((
√

1 + ε +
√

1− ε)~ε1 + (
√

1 + ε−√1− ε)~ε−1) ,

where ~ε±1 = ~εx±i~εy√
2

. Operationally, the ellipticity ε can be measured as follows: when rotating a

polarizer before a photodetector one measures maximum and minimum powers Pmax and Pmin as a

function of polarizer angle. The ellipticity is then

ε =
Pmax − Pmin

Pmax + Pmin
. (7.16)

The formula 7.14 is not written exactly as it appears in Ref. [64] (as Equation 1), but it does
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Figure 7.2: Schematic representation of spatially dependent ground-state Stark shifts in an ellipti-
cally polarized FORT with a Gaussian intensity profile. Neighboring sublevels m are separated by
a constant Zeeman-like splitting at a given point in space, with opposite signs in the two manifolds
due to the gF factors (see text). The thicker lines in each F manifold represent the m = 0 state,
which is equal to the Stark shift for all sublevels in the case of linear polarization.

agree with it, provided their ambiguously defined quantities γ and λ are for the D2 line (γ ≡ ΓD2,

λ ≡ 2πc/ωD2). Figure 7.2 displays an example of these m-dependent ground-state shifts.

It is also worth pointing out that the shifts U
(G)
F,m,q reduce to a familiar simple form for the case

F = m = 4 and q = 1: the case of the two-level atom. In other words, the “stretched” ground state

in circularly polarized light of the correct helicity is only coupled to the state 6P3/2, F = m = 5,

forming an effective two-level system. Equation 7.12 reduces to

U
(G)
4,4,1(r) =

3πc2

2ω3
D2

ΓD2

∆D2
I(r) . (7.17)

Although I have presented this result for the case of Cs, it also applies to the analogous stretched

state in the other alkali atoms.

One issue that has been neglected above is that even in linear polarization, the ground states

are not all shifted by the exact same amount. Due to the hyperfine splitting δHFS = 9.2 GHz, the

detunings of the FORT field from the D1 and D2 lines are slightly different for each of the ground

levels. This causes a difference in the shifts of the hyperfine manifolds of order ∆U (G)/U (G) ≈
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δHFS/∆D1,D2. Please note that a precise expression for this can be easily computed by using

different resonant frequencies ∆D1,D2 in Equation 7.12 for each of the hyperfine ground states.

7.3 Absolute stark shifts: intensity, power and field ampli-

tudes

7.3.1 Single beam running-wave

Since we already have expressions for the Stark shift as a function of local intensity I(r), we need

to relate this to a single beam power P . Consider a beam of wavelength λF propagating along z

focussed to a waist w0 (Rayleigh parameter zR = πw2
0/λF ). We have the following expression for

the intensity:

I(ρ) = I0
w2

0

w(z)2
exp

[
− 2ρ2

w(z)2

]
, (7.18)

where ρ is a cylindrical radial coordinate with respect to the propagation direction, and I0 is the

peak intensity, and w(z) = w0

√
1 + z2

z2
R

. Since P = 2π
∫

I(ρ)ρdρ for all z, we trivially obtain

I0 =
2P

πw2
0

. (7.19)

This intensity corresponds to the maximum Stark shift, and hence gives the FORT depth.

7.3.2 Intracavity FORT

Next consider the case of a standing-wave FORT field of wavelength λ inside a cavity. The task is to

compute the peak intracavity intensity based on the transmitted FORT power Pout. The additional

quantities needed are the transmission coefficient T of the output mirror at λ and the beam waist,

w0. For all the experiments described in this thesis [27, 35, 36, 33] λF = 935.6 nm, for which

the cavity finesse is F = 2.2 × 103, well below its maximum reflectivity. Assuming a symmetric

cavity and no scattering or absorption in the mirrors, we calculate T = π/F = 1.4 × 10−3 [59].

We justify the assumption of zero scattering and absorption by noting that these effects amount to

A ≈ 2 × 10−6 at λ0 = 852 nm [59], and that they should be approximately the same (or at least

negligible compared to T ) at λF . Section 7.3 of Ref. [41] (among numerous others) contains the

requisite formalism on how to determine w0, so I omit the details here.

We obtain the following expression for the peak intensity:

I0 =
8Pout

Tπw2
0

. (7.20)

Comparing this to Equation 7.19 and noting that the output power is related to the one-way intra-
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cavity power by Pout = TP
(1−way)
in , we see there is an additional factor of four in this standing wave

case relative to a running wave. The physical explanation is that the antinode of the standing wave

has twice the electric field amplitude of the one-way case, and therefore four times the intensity.

Please note that the Stark shifts computed in Refs. [25, 26] do not incorporate this standing-wave

factor, and after careful evaluations and cross-checks with similar calculations done by others, we

conclude that the older calculations are incorrect. In addition, this does not seem to be the only

discrepancy between those earlier calculations and the ones presented here.

7.4 Excited states, transition shifts and the state-insensitive

trap

In order to illustrate the capabilities of the formalism described above, we now present some more

general results which include excited state shifts.

7.4.1 A simple model: 6S, 6P and 6D levels only

We begin by concentrating on the ground and excited states of the commonly employed 6S − 6P

transitions. The shifts to the ground states are dominated by contributions from the 6P levels, and

the 6P states themselves are mostly shifted by 6S and by the higher-lying 6D states [40]. Therefore

the inclusion of only these three manifolds is sufficient for most Stark shift calculations. Please note

that the exclusion of higher-lying states and counter-rotating terms (see below) accounts for the

small discrepancies between the simplified results of this section and those of Ref. [27] which use

the full formalism (see Fig. 3.1 of this thesis).

The reduced matrix elements for these calculations have been obtained from two sources. For

the 6S − 6P transitions, I have used the notes of Steck [43], with the proper adjustment to the

normalization. For the 6P − 6D transitions, I have used the numbers from Table 6.2 of Christina

Hood’s thesis [40] (they are in atomic units ea0). It turns our that her convention for normalizing

the reduced matrix elements is compatible with the formalism presented here. Please see Section

7.1 for further discussion of these conventions.

Figure 7.3 shows the Stark shifts of the ground and excited states of the D2 line within this

restricted set of included levels, where for 6P3/2 we have chosen the F ′ = 4 manifold. The intensity

chosen corresponds to the approximate power typically used in our experiments. Although within

the approximation of negligible hyperfine splitting the ground states are all degenerate for q = 0 (a

linearly polarized FORT), the 6P3/2 excited states are not, as is clearly evidenced in Fig. 7.3. See

Section 7.4.3 below for further discussion and details. We also include the shifts for the D1 line in

Fig. 7.4.
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Figure 7.3: AC Stark shifts of ground and excited states of the D2 line in Cs for a linearly polarized
FORT (q = 0), and an intensity of I0 = 2.92 × 109 W/m2. This corresponds to a cavity output
power of 1 mW for the cavity parameters of our experiments (see text). For the ground states, all
sublevels of both hyperfine manifolds have nearly the same shift, and for the 6P3/2 excited states
all sublevels of the F ′ = 4 hyperfine level have been plotted. These shifts have been computed
considering only the 6S, 6P and 6D levels, without counter-rotating terms. The Stark shifts for the
ground and excited states are approximately equal around λF ≈ 937 nm, as indicated by the small
box in the upper panel. The lower panel is a blowup of this region.

7.4.2 A more complete model: Inclusion of higher-lying excited states

and the counter-rotating terms

We have also investigated two contributions to the Stark shifts that are often neglected: higher-lying

excited states and the counter-rotating terms [122]. We were also able to compute the shifts of the
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Figure 7.4: AC Stark shifts of ground and excited states of the D1 line in Cs for a linearly polarized
FORT (q = 0). The intensity is the same as in Fig. 7.3. All sublevels within both hyperfine
manifolds are degenerate, for each of 6S1/2 and 6P1/2. These shifts have been computed considering
only the 6S, 6P and 6D levels, without counter-rotating terms.

5D states, which may be of interest for cooling applications.

We begin by tabulating relevant wavelengths and oscillator strengths for various transitions.

The tables are organized such that each level for which we wish to compute shifts gets one table

for each set of higher-lying states nL. For example, Table 7.1 lists the information for the 6S1/2 −
nP transitions. Using these lifetimes and wavelengths, the reduced matrix elements necessary for

computation of the Stark shifts can be computed via Equation 7.8.

Level nP λ1/2 (nm) τ1/2 (µs) λ3/2 (nm) τ3/2 (µs)
6P 894.6 0.03494 852.4 0.03051
7P 459.3 1.308 455.5 0.5787
8P 388.9 10.17 387.6 2.542
9P 361.7 45.94 361.2 6.852
10P 348.0 153.1 347.7 14.35
11P 340.0 418.0 339.8 25.70

Table 7.1: Partial lifetimes and wavelengths for decays nPJ → 6S1/2. τJ is the partial lifetime of
the nPJ state decaying to 6S1/2, at wavelength λJ . Data for 6P → 6S is obtained from Ref. [43].
For (7 − 11)P → 6S, oscillator strengths are obtained from Ref. [123] (Table 1, column b), and
wavelengths taken from Ref. [58], Table 4.

The counter-rotating terms can be included by the following substitution involving the detunings
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Level nS λ1/2 (nm) τ1/2 (µs)
7S 469.5 0.07529
8S 794.4 0.2599
9S 658.8 0.5533
10S 603.4 0.9924
11S 574.6 1.607
12S 557.3 2.428
13S 546.3 3.490
14S 538.5 4.809
15S 532.9 6.431

Table 7.2: Partial lifetimes and wavelengths for decays nS1/2 → 6P3/2. τ1/2 is the partial lifetime
of the nS1/2 state decaying to 6P3/2, at wavelength λ1/2. All wavelengths and oscillator strengths
are obtained from Ref. [58], Table 4.

Level nD λ3/2 (nm) τ3/2 (µs) λ5/2 (nm) τ5/2 (µs)
5D 3612.7 10.090 3489.2 1.433
6D 921.1 0.3466 917.2 0.0587
7D 698.3 709.7 697.3 0.1198
8D 621.7 1.284 621.3 0.2170
9D 584.7 2.131 584.5 0.3587
10D 563.7 3.290 563.5 0.5527
11D 550.4 4.807 550.3 0.8063

Table 7.3: Partial lifetimes and wavelengths for decays nDJ → 6P3/2. τJ is the partial lifetime of
the nDJ state decaying to 6P3/2, at wavelength λJ . All wavelengths are taken from Ref. [58], Table
4. The oscillator strengths for 5D → 6P are from Ref. [58], for 6D → 6P from Ref. [40], and for
(7− 11)D → 6P from Ref. [123].

Level nF λ5/2 (nm) τ5/2 (µs)
4F 1002.5 0.07689
5F 801.8 0.1291
6F 722.9 0.2117
7F 682.5 0.3273
8F 658.6 0.4829
9F 643.2 0.6791
10F 632.6 0.9249
11F 625.0 1.227
12F 619.4 1.589
13F 615.0 2.069
14F 611.7 2.646
15F 609.0 3.078
16F 606.8 3.747

Table 7.4: Partial lifetimes and wavelengths for decays nF5/2 → 5D3/2. τ5/2 is the partial lifetime
of the nF5/2 state decaying to 5D3/2, at wavelength λ5/2. All wavelengths and oscillator strengths
are obtained from Ref. [58], Table 4.

[124]:
1

∆r
=

1
ωL − ωr

→ −
(

1
ωr − ωL

+
1

ωr + ωL

)
, (7.21)
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Level nP λ1/2 (nm) τ1/2 (µs) λ3/2 (nm) τ3/2 (µs)
7P 1375.9 0.825 1324.4 11.90
8P 891.8 2.922 885.3 43.20
9P 760.9 6.889 758.4 106.1
10P 702.7 13.220 701.3 210.1

Table 7.5: Partial lifetimes and wavelengths for decays nPJ → 5D3/2. τJ is the partial lifetime of
the nPJ state decaying to 5D3/2, at wavelength λJ . All wavelengths and oscillator strengths are
obtained from Ref. [58], Table 4.

Level Simple Model Full Model (No CR) Full Model (Incl. CR)
6S1/2 1.0000 1.0005 1.035

6P3/2, F ′ = 4, m = 0 1.105 1.010 1.072
6P3/2, F ′ = 4, m = ±4 1.005 0.865 0.935

F ′ = 4 spread 0.100 0.145 0.138

Table 7.6: The effect of additional terms on the 6S1/2 and 6P3/2 Stark shifts in Cs for λF = 935.6 nm,
relative to the simple model described in Section 7.4.1. The second column shows the impact of
the inclusion of additional higher-lying S, P and D levels (see text). The third column includes the
effect of the counter-rotating terms.

where ωr is the resonant frequency of a given J − J ′ transition (regardless of whether its energy lies

above or below the state of interest, i.e., r = h, l), and this substitution is made for every term in

both summations in Equation 7.4.

Table 7.6 summarizes the effect of including the additional higher-lying levels and the counter-

rotating terms. We also provide Fig. 7.5, which plots the ground and excited state shifts for all

magnetic sublevels of the D2 transition at λF = 935.6 nm, including both of these contributions.

In addition, we plot in Fig. 7.6 the shifts to the 5D3/2 levels. Since the 6S − 5D transition at

690 nm is not dipole-allowed, there may be potential to use it for narrow-line Doppler cooling. At

our FORT wavelength, however, the 5D states are shifted up, possibly precluding the success of

such a cooling scheme.

7.4.3 The state-insensitive trap

As evidenced in Fig. 7.3, the ac Stark shifts for 6S1/2 and 6P3/2 are nearly equal around λF ≈
936 nm. This is in marked contrast to the conventional dipole trap, where the excited state is

shifted up with the same magnitude as the (negative) ground-state shift [40, 68]. In this more

typical regime, the transition frequency of the D2 line is increased by twice the trap depth at the

location of peak intensity. We have referred to our FORT at λF = 935.6 nm as a state-insensitive

trap, and have exploited this feature significantly in our experiments.

This state-insensitive trap provides tremendous advantages in two main ways. The first is from a

spectroscopic point of view: the transition shifts are reduced over tenfold compared to the standard
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Figure 7.5: AC Stark shifts of all magnetic sublevels m in the 6P3/2 excited manifold. The scaling
is relative to the ground-state shift U (G), and the wavelength is λF = 935.6 nm. The dashed line
represents the (degenerate) ground-state shift of all sublevels of both 6S1/2 hyperfine manifolds.
These shifts have been computed considering the 6S − 15S, 6 − 11P and 5 − 11D levels, including
the counter-rotating terms. This figure contains the same data as Fig. 1 of Ref. [27], plotted with
a different axis range.
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Figure 7.6: AC Stark shifts of all magnetic sublevels m in the 5D3/2 excited manifold, plotted vs.
FORT wavelength λF . The scaling is relative to the ground-state shift U0 ≡ U (G)(λF = 935.6 nm).
These shifts have been computed considering the 6− 11P and 4− 16F levels, including the counter-
rotating terms.
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dipole trap. Second, the fact that the excited state has a negative shift similar in magnitude to that

of the ground state means force fluctuations are greatly reduced for driven atoms in the FORT. In

other words, when an atom is pumped to the excited state, the dipole force does not switch sign, as

it does in a conventional FORT, and furthermore its magnitude stays nearly constant.

However, as shown in Fig. 7.5, the 6P3/2 excited states are not all shifted equally. At our chosen

wavelength of 935.6 nm, the magnetic sublevels are split by as much as ≈ ±15% relative to the

ground-state shift. In order to discuss the implications of this splitting, we return to the discussion

of the spectroscopic issues. Note that for the particular trap depth chosen in our experiments

(which corresponds to about U (G)/kB ≈ 2.2 mK), the transition shifts are at most around 8 MHz.

If in future endeavors the trap depth can be lowered thanks to improved cooling techniques, this

transition shift could conceivably be reduced to well below the natural linewidth ΓD2 = 5.2 MHz.

Indeed, a 200 µK trap would give transition shifts of below 1 MHz, almost negligible from the point

of view of direct spectroscopy.

It is also worthwhile to point out that the quantization axis for the m levels here is the polarization

direction of the FORT field. In any scheme where we consider alternate quantization axes, such as

along the cavity axis, it is important to bear in mind that the excited states are “mixed” in this basis

by the FORT. The implications of this mixing would only be important for situations where the

excited states are populated, so some schemes would be unaffected (presumably including Raman

transitions and adiabatic passage). However optical pumping, for example, may not function as

expected if mixing timescales (of order MHz for these typical FORT powers) are comparable to the

excited state decay rates.
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Imamoğlu. A quantum dot single-photon turnstile device. Science, 290:2282, 2000.

[113] E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg. Single-mode

solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl.

Phys. Lett., 79:2865, 2001.
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