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ABSTRACT

The behavior of steady, periodic, deep-water gravity waves on a linear shear
current is investigated. A weakly nonlinear approximation for the small ampli-
tude waves is constructed via a variational principle. A local analysis of those
large amplitude waves with sharp crests, called extreme waves, is also provided.
To construct solutions for all waveheights (especially the limiting ones) a con-
venient mathematical formulation which involves only the wave profile and some
constants of the motion is derived and then solved by numerical means. It is
found that for some shear currents the highest waves are not necessarily the
extreme waves. Furthermore a certain non-uniqueness in the sense of a fold is

shown to exist and a new type of limiting wave is discovered,
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INTRODUCTION

Water waves are a fascinating element of nature and the study of them is
motivated for both aesthetic and practical reasons. From a practical viewpoint
a better understanding of water waves is essential in improving the design of
coastal and offshore structures. It would also be beneficial to the engineering of

devices that harness water wave energy.

Since the 1800s a sizeable effort has gone into the study of gravity waves on
the surface of deep water. Iis major emphasis has been on steady, one-
dimensional, periodic waves where usually the water has been assumed inviscid
and its motion irrotational. Realistically, the second assumption is often invalid

and the study of waves on shear currents is perhaps better.

The classic irrotational work was done by Stokes (1847). Using a perturba-
tion series in essentially wave amplitude he constructed a weakly nonlinear
approximation to nonlinear ﬁraves. He also conjectured that the highest wave
should have a corner at the crest with an included angle of 120°. Over a cen-
tury later Amick, Fraenkel & Toland (1982) rigorously confirmed the existence
of such a singular wave from the equations but were unable to verify that this
so-called extreme wave was also the wave of greatest height. By forcing this
singular nature into a form of the solution Michell (1893), Yamada (1957) and
Rottman & Olfe (1980) were all able to calculate approximate extreme waves.
The behavior of almost-extreme waves was explored by Longuet-Higgins & Fox
(1978). They matched an inner solution valid near the crest with an outer solu-
tion valid in the rest of the wave and discovered that the energies and wavespeed
are oscillatory functions of waveheight. Frorm numerical computations, Chen &

Saffman (1980) discovered new branches of solutions that they called irregular
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waves and McLean (1982) investigated the stability of irrotational deep-water

waves Lo infinitesimal three-dimensional perturbations.

Some attempts in understanding the more difficult problem of finite-
amplitude rotational water waves have also been made. Gerstner (1802) found
the earliest finite amplitude solution but it had a vorticity distribution that was
singular at the free surface of the highest wave. For finite depth Tsao (1959)
developed an algebraically complicated Stokes-type approximation for waves on
a linear shear current (uniform vorticity). For these same waves Dalrymple
(1974) numerically approximated solutions by using a truncated Fourier series
representation for the stream function. His method would be incapable of high
wave calculations though. Later Dalrymple (1976,1977) numerically investigated
finite amplitude waves on other current profiles. For rotational flows in general
Miche (1944) argued that the highest wave should have a 120° corner at the

crest.,

The focus of this study is deep-water waves on a linear shear current, and a
special effort is made to investigate the properties of large amplitude waves up
to and including the limiting waves. In chapter 1 the physical problem is clearly
stated and a useful mathematical description of it is rigorously derived. Also in
this chapter some integral properties of the waves are formulated. In chapter 2
a weakly nonlinear approximation by way of a variational principle is con-
structed. The nature of the extreme waves is investigated in chapter 3. Chapter
4 gives a description of the numerical method used to connect the weakly non-
linear waves of the second chapter to the extreme waves of the third chapter,
and chapter 5 is a discussion of the results. A brief note on stability is included

in chapter 8.
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CHAPTER 1

MATHEMATICAL FORMULATION

This study concerns cone-dimensional, pericdie, symmetric water waves of
permanent form, propagating through an otherwise vertically varying shear
current. I{ is restricted to the case of deep water in a constant gravitational
field, where both the surface tension of the water and the density of the upper
fluid (air) are neglected. The theory is inviscid, and so the shear is assumed to

have been produced by external effects.

1.1. Water waves on a deep linear shear current

We first describe the undisturbed flow: a shear current that varies linearly
in the vertical direction. Choose rectangular coordinates {z',y’) with the z'
-axis horizontal and the ¥' -axis vertical, so that the undisturbed water surface
is given by ¥' = 0. Then the horizontal velocity, »', and the vertical velocity, ',
of the current are given by

w' =Qy' +d
v'=0

where (] specifies the magnitude of the shear. The water surface has ¥y’ = 0 and
consequently the pressure in the water, p', will satisfy

r

P '=po gy’
where pg is the constant air pressure, § is the gravitational acceleration con-
stant, and without loss of generality the density of the water is taken equal to 1.
By choosing axes which move with the necessary horizental velocity we can
make ' vanish at the surface, and so we may take d = 0. The water depth is

taken to be infinite, and then initially the picture in figure 1-1 holds.
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Our interest is in wave propagation on this shear flow. If p’ is the pressure
and i’ = (u',v’) is the velocity vector in the (z’,y’) coordinate system, the
two-dimensional equations of motion for an incompressible, inviscid fluid with

density equal to 1 are

vVd'= (1.1.1)
aﬁ' 1 ' [ ] [
¢ T2 vi2=-vp' —(0.g9) ; (1.1.2)
where V' = -5%;—- a—g—,—) and the notation (@ ,b) is used to represent a vector

with horizontal component @ and vertical component b.

Define w, a measure of the vorticity, by w = %:7—— % And define the
. . ) , ab da ,
two-dimensional vector operator, curl’, by curl' (a ,b) = FrT By_' Then if
the curl’ of equation (1.1.2) is taken we obtain
dw . - .
Et—+ [ V]w=0 (vorticity equation) . (1.1.3)

Equation (1.1.3) simply states that w is a constant following a fluid particle.
Thus, if initially w = () everywhere in the fluid (as in the case for our original
shear flow), then w = (] for all time. This is the key point that makes this con-
stant vorticity problem so much more approachable than the general vorticity

case.
Because curl’' @' = —Q always, curl’ [@'—(Qy',0)] = 0 always. Hence a
potential ¢’ exists where

2'=V'¢' + (Qy’',0) . (1.1.4)

Of course ¢' is arbitrary to within a function of {; however, it can be uniquely
specified and at the same time made to satisfy the "bottom" boundary condition

of

2' - (Qy',0) (uniformlyinz') as y'-> — (1.1.5)



by requiring that
@' >0 (uniformlyinz') as y' > —c . (1.1.8)
Substitution of equation (1.1.4) into equation (1.1.1) gives

V2@ =0 (1.1.7)
which means that ¢' is harmonic. Since the fluid domain is simply connected, ¥

(its harmonic conjugate) exists and is defined by

Sy _ _9¢
oz’ oy’
a,w! _ 6¢I
ayl axl

As before, we uniquely fix ¥’ so that ¥' » O (uniformly in ') as y' » —, The

expression of the velocity in terms of ¥' is clearly just

A , oY
a4 -(6y, +Qy’, E’f,—) . (1.1.8)

At this point we derive a "Bernoulli-type" equation. Consider the vector

identity,
['L'Z'-V']'fi’=V'[-;—1I'~iZ']+w(‘u',—'u.’) :
du' v’ . . i .
where w = B—g;;—— 3z This identity when @ = {2, along with relations (1.1.4)

and (1.1.8), allow us to rewrite equation (1.1.2) as

. 0@ 1, 8y’ "2 1,0 2 | i o ‘
V(G Haer+ QT + g —0v - g0y %) = -v(p +gy)

This may be integrated to

dp' 1,09 2 1,8p -2 09 N R

where pg is the air pressure separated from the arbitrary function 7' (¢). Since
by choice ¢' , ¥’ » 0 as y' » —, taking the limit as y' » —e of this last equa-

tion we find that F{¢£) = 0. Here the pressure behavior at large depth which is
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p'—potgy' -0 as y' - -
has been used.

Therefore, we have derived

8¢’ 1,09 2, 1,09 2 0" , A
at Talgg] talay ] tAY G 0¥ gy =—lp'-po] . (119)

Next boundary conditions are detailed. Since the forces on the two sides of
the air and water interface must be equal, ignoring surface tension we must
have that p’ = pg aty’ =n'(z’,t); where y' = n'(z',%) describes the interface,
and pg is the undisturbed air pressure. (Pressure changes in the air due to its

motion are negligible.) Applying this to equation (1.1.9) gives

d¢' 1,092, 1.0¢ 2 09" _ = ‘= p'(z’
ot talogd talgyd TV G (W gy =0 on yi=nlz’f)
(1.1.10)

This is the dynamic condition at the surface.

The kinematic condition comes from the usual argument that particles in

the surface remain there or

6 = 1] i f t 1 ’ —
[+ 2@ 7)) v]ly —n(=z.t)]=0
After replacement of the velocity by terms invoiving the potential, this may be

rewritten as

!

on' , 99’ qOn'_ _ B9 Yy

1.2. Waves of permanent form

Our interest is in waves of permanent form, also known as steady waves. By
definition then, there will exist a frame of reference moving with constant velo-
city (c ,0) relative to the (z',%¥") coordinate system, within which the motion
will be viewed as steady. If the coordinates in this new frame are (z ,y) and the

velocity in it is € = (w ,v) then we have the transformation:
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z =z —ct
y =y
u(z,y)=u'(z’',y' t) —c
v(z,y)=v'(z'y',t)
The quantity ¢ is by our definition the phase velocity, and is sometimes referred

to as the wave speed.
An implication of the steady motion is that there exist functions ¢, ¥ and

H dependent on the position (z ,% ) only and such that

olz y) =¢'(z',y't)
’w(x ’y) = ’w’(zl¥y'Yt)

H(z) =7'(z",t)
It follows that
% =Vp + (Qy —c,0) (1.2.1)
and
= (& - =¥,
'E—(ay +Qy —-c, 6:c) | (1.2.2)
where V = (E%:— %) Since in this steady frame derivatives with respect to the

time variable { are zero it also follows that the kinematic condition (1.1.11) is

equivalent to
d 1
&—Z—{'w(x JH) + E-QHZ -cH]=0
After integration this becomes
1
Wz ,y)+ z00y? —cy =9, on y =H(z) . (1.2.3)
This discovery is just the statement that ¥ + %—Qyz — ¢y is the usual stream-

function which is equal to a constant ¥4 on the free surface.

At last we put together for our permanent form waves the nonlinear system
of equations that must be satisfied by the potential ¢(z ,y) and the profile

H(z). From (1.1.7) the equation for ¢ which must hold in the entire fluid



domain is Laplace's equation:
V% =0 in —w<y <H(zx) . (1.2.4a)

After eliminating ¥ in (1.1.10) by using (1.2.3), the dynamic condition which

must hold at the surface is

1 Bp o R LdeR, )
5{63: +Qy —c] +?[6y] +gy =B on y=H(z) , (124b)
where B = (19 + -;-—cz is a constant. From (1.1.11) the kinematic condition at

the surface is

[%%+ Qy ——c}%—f—: %3— on y =H(z) . {1.2.4c)

We also need to add the condition at the bottom which from {1.1.8) is
¢ »0 (uniformlyinz) as ¥y » —ow . (1.2.4d)
These are the time independent equations for steady waves in the (z ,%) coordi-

nate system. Note that periodicity and symmetry have not yet been imposed.

A simple observation reveals that if ¢, ¢(z,y¥ ), H(z) and B are solutions to
(1.2.4) for (], then —c, —¢(z,y), H(z) and B are solutions for —{}. This means
that there is no loss of generality if the study is restricted to waves with positive
speeds (c >0) so long as both positive and negative shears (all {1) are con-

sidered.

1.3. Pericdic and symmetric waves

By working in the complex plane we reduce the calculation of the profile of
a steady, periodic and symmetric wave to the solution of a nonlinear integro-
differential equation.

Presently it is worth noting that if H(z) and ¢(z ,y ) are solutions to equa-
tions (1.2.4) then so are H(—z) and —¢(—x ,¥) for the same c, B, and (1. This

is a necessary condition for symmetric waves to exist, and so the assumption of
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symmetry is consistent with the equations.
Let £ and Yy be the coordinates as before (in the steady frame) and intro-
duce the complex variable
z2 =z +1wy
Then the complex function
w(z) =p(z,y) +iy(z,y)
is an analytic function of 2z in the fluid domain of the z-plane. This holds by

equation (1.2.4a) and the definition of ¥ as the harmonic conjugate of ¢. A(z),

where

_Qw  _Op __ 0Oy
A(z) = dz * Oz 16y) '

will be analytic in the same domain. If the curvey = H(x) is parametrized by

z = a(1)

y=8(1), —w<T<>,
then in the complex plane z = a{7) + 1B(T) will describe the wave profile. This
allows us to calculate profiles which cannot be described by ¥ = H(z), where
H(z) is a single-valued function of z. Although at this point the parameter T is
not specified, we remove some arbitrariness by fixing the origin and direction of

the T parameter so that

a(0) =0 (1.3.1a)
and
do
= T=Oa 0, (1.3.1b)

respectively. For convenience let

(1) = a(r) +iB(7)
Our interest is in periodic waves. Given the wavelength A, these waves

satisty A(z +A) = A(z). Furthermore there will exist a length called d which is
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dependent on the parameter T, such that ¢(7+d) = ¢(7) + A. As in Chen &
Saffman (1980) we will study the wave in a window of horizontal extent A, where
A is an integral multiple of the wavelength; that is, A = n X, n a positive integer.
Likewise, if ) is defined by D = nd then it follows that ¢(7+D) = ¢(7) + A. Con-

sequently we need only study ¢(1) for 0 < 7 < D.
We want to restrict our attention to symmetric waves. let us force sym-

metry about 7 = —;—D by requiring that
¢y =A-T(D-1), 0=7T<D . (1.3.2)

Then by periodicity 7 = 0 and T = D) must both be crests or troughs of the wave
profile. Since 7 = 0 corresponds to £ = 0, this symmetry locates the origin of
the z-coordinate at either a crest or trough. (Later the origin is specifically

placed at a crest.)

Recall that the origin of the Y -coordinate was fixed when we located the ini-
tial (undisturbed) water surface at y = 0. Because of the fluid incompressibility
this means that the wave surface will always have a mean height equal to zero or

mathematically,

D -
jo' ﬁ(r)%‘;‘_—dfzo . (1.3.3)

We are now in a position to begin the derivation of the integro-differential

equation, Application of the Cauchy integral formula gives the relation

1 A(Z)

- dz
2m T 22

A(z) =

where I is any closed contour in the fluid domain of the Z-plane which encloses
z in a clockwise manner. Pick I' so that with m a positive integer,
I'=T(m) + [;(m) is the dotted contour in figure 1-2. T';(m) consists of a sec-
tion of the wave profile containing 2m cycles and is described by

Z2 =¢(T) = alT) +iB(T). —mD <7 <mD. Ty(m) is a semi-circular arc of
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radius mA and centered at ¢(0). We should mention that for the special case of
the extreme wave (which is discussed later) A(Z) is apparently not analytic at a
120° corner point of I';; however, the Cauchy Integral Formula still holds as
A(Z) is continuous onto I'; at that point. Separating the contour into two parts

means that if

_ 1 AlZ) .
Rn(z) = Zni‘é(m)z - dz (1.3.4)

then obviously

Alz) = 1{ AZ) 43 + R (2)

In the limit as z - ¢(7), 0 = 7 < D, we use Plemelj's formula to deduce that

g |
5 = gf ((T’;(_Tg(?) 28 a7 + LA + Rp(e(r) |, (135)

where A(T) denotes A(¢(7)) and f denotes the Cauchy principal value integral.

With the exception of the extreme wave which has a slope discontinuity at the

crest
k(t)=1, forallr

For the extreme wave which has a 120° corner at the crest

4
3 if 7 is the position of a 120° corner

k(1) =
1  otherwise

(See Muskhelishvili, 19486.)

Let us investigate the behavior of F,,(z) for large m. Integrate (1.3.4)

d
once by parts and use A(z) = 22 o obtain

dz
_ 1 w(z) 1 w(Z) ~
Rm(z) - oM z —Z rom) S é(m) (Z —5)2 dz

In Appendix 1 a simple argument utilizing condition (1.2.4d) shows that |w(2)]

is bounded for all 2 in the region consisting of the fluid domain and its
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boundary. It is also clear that |Z2—2 | = O(mA) asm - = for 2 £ ['5(m). Since

the length of I's(m.) is equal to mmA it follows that

_ mA
|Rn(2)| = 0(5m) + 07205 as m -
and hence
Rp(z)»0 as m » o | (1.3.8)

The implications of periodicity are found in Appendix 2 where it is proven

that if f (7) is some function satisfying f (7+mD) = f (T), then

mD o~ D
J (T) = - 1 = m — T = -3 0o
mep =) d7 Aj; J ) cot(x-[((‘r) ((T)])d‘r as m
(1.3.7)
A related formula verified in Appendix 3 is
—,CD cot ( <(T) —¢(®)]) —d—?f{_ d7 =1-«(1) . (1.3.8)

If we now utilize (1.3.8) and (1.3.7) in the limit as 7. - o of equation (1.3.5)

and then use (1.3.8) to subtract off the singularity, we can derive that

S
M) = = 5 [AR) =& cot (FLetr) ~¢(P)]) gha? . (139)

It is important to note that the principal value integral and the function «(7) do
not appear in this formula. This means that {1.3.9) is nonsingular and its form

is independent of whether it describes an extreme wave or a smooth wave.

Next form the functions N(7), g (7) and n(7) using

N(r)y =+ (d.’T d'r)?

and

1

T i A + 8 ~ o]

g —in =

N(71) determines the parametrization and will be discussed later. It can be

shown that in the steady frame g (7) is the tangential component and 7 (7) is
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the normal component of the fluid velocity at the wave surface. Easily com-

puted is

A(T) = N%’r) ?Og_ (¢ —in - [g%;_c]_%%) . (1.3.10)

After some algebra, equations (1.2.4¢) and (1.2.4b) can be shown equivalent to

n(r)=0 (1.3.11)
and

q%(1) =2B - 2gB(T) . (1.3.12)
Obviously, (1.3.11) is a statement that the free surface is a streamline. Equa-

tions (1.3.10) and (1.3.11) can be used in (1.3.9) to eliminate A(7) and n (1)

yielding
_ . )
- a e ve = e - HE-T 4L
QB -8 2 oot (He(m) —¢®Na7 . (1819)

If (1.3.1R) is thought of as the equation for g (), then (1.3.13) should be inter-

preted as the principal equation for the profile ¢(7).

i.4. Parametirization and compieie formulation
In our formulation we have not yet specified the parameter 7 but now shall

do so, If s is the arclength parameter such that g‘s—;‘? 0 then it is known that

ds
‘g‘;=N(T)

since from a previous definition,

mlv—ﬁ

N =+ ([22F + [2E9)°

The obvious conclusion is that the function N(7) determines the parametriza-

tion.
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Since we are free to choose N{7) we make the selection

N(r)=-Lq(7) , (1.4.1)
where L is picked so that D =2m. In Appendix 4 it is proven that L must

satisfy

L'[Z"qz(T)dT =cA . (1.4.2)
0

We remark ahead of time that N(7) > O except for the case of the extreme wave

where N(0) = 0. Since gs . N(T), this means that ds i 0 in the limit of
dr AT |=

the extreme wave. Therefore, in this limit a mesh with constant width in 7 will
concentrate more and more points at the crest. This is exactly what is desired

for near extreme waves where the curvature changes very rapidly at the crest.

Finally we are ready to completely formulate our problem. Use (1.4.1) and

(1.3.12) in (1.3.13) to eliminate ¢ {7) and N(7) and thereby obtain

_ . am
-3—_%—+ QLImé¢(r) —cL = — %—jo- §L2[2B —2gImé&(T)] -

QL[Im¢(r) ~Im (7)) S & 8L ot (Tie(r) ~¢(D]) a7 (14.8)

for 0 = 7 < 2w Im &(7) and 27 have been substituted for (7} and D, respec-

tively. Combine (1.3.12) and (1.4.2) to yield

2n
L f [RB —2g Im¢(T)]dT=cA . (1.4.3b)
0
To uniquely formulate the problem (1.4.3a) and (1.4.3b) need to be supple-

mented with the relations (1.3.1)-(1.3.3) which in that order are now

Re¢(0) =0 (1.4.3c)
1) =A-¢Rm~T) (1.4.3d)
and
fz" [Ime¢(n)] [Reg—i-] dt=0 . (1.4.3e)
0 T

Lastly add a condition that specifies the magnitude of the wave. It is sufficient
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to give the waveheight, i, by
h = — min |I . 1.4,
dnax [Im¢(7)] — min [Tm(7)] (1.4.3)

It is this system of equations (1.4.3) that will be discretized and will allow us
to numerically compute approximate wave profiles and wave speeds - even for
extreme and almost-extreme waves, which are not resolved by other methods or

formulations.

1.5. Integral properties

One integral property we wish to calculate is the excess kinetic energy per
wavelength due to the presence of the wave. This quantity is measured in the
original unsteady frame. Recall from section 1.2 that (u',v") = (u+c ,v) where
(w',v') and (uw ,v) are the velocity in the unsteady and steady frame, respec-

tively. Then it is clear that the average excess kinetic energy may be defined by

= _)-\—»{)) f s1(w+e)®+vP]dy dz ~ 7\—“{; f ;—szzdy dz .(15.1)

Also of interest are the mean potential energy defined by

H(z)

1

P:-——f\ dy dz 15.2
oA fe gy dy (1.5.2)

and the excess impulse per wavelength given by
1 A O

_ -}——f)\ Hfz) 1
I= ", ‘/:m (u+c)dy dz ", Lde.yd.:z: . (1.5.3)

As before, we wish to rewrite our formulas for these integral properties in
terms of our parameter T so that they will hold even if the wave profile is not a
single-valued function of . At the same time considerable simplification can be
made if we introduce the functions ¢ and % and use Stokes' Theorem. For

example, with some manipulation we can show that (1.5.1) is equivalent to

X _H(z)
27\T=f f zcurl(—-’gb%%,—-'w-g—z—+20y¢)dy dz +

0 —CO
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A HE)
S fzcurl(—-;rﬂzys,O)dydx
0

The operator curl has been defined by curi(a ,b) = g—z—— %:—/’—. Using the

decay of @ and ¥ as y - —o, periodicity, Stokes’' Theorem, and the parametric

form for the wave profile this reduces to
AT = f v(a,B) ——(e-d*r - Zﬂf B(T) o(a,B) —E—d'r + —-sz B3(1) —dT

Here ?I,% has been used to denote the derivative of ¢ along (a(7),8(7)). i.e.

de _ d¢ da+aga dg
dr  dr dt 9y dT

By using (1.2.3), pericdicity, and integration by parts we can finally show that
d
2AT = [ [cB+ 3087 ——@—d + —-sz g A da s
0

In a similar manner we can deduce that

A = f ;3 d-r+——Qf ﬁzfi-g—-d , (1.5.5)

while a simple application of Stokes’ Theorem reveals that

zdad

AP = -—-gf B T . (1.5.8)

For the case of {1 = 0 our kinetic energy formula becomes 2A7 = ¢ f g dy. The

relation 27 = ¢/ also holds. These check with the results of Longuet-Higgins

(1975) for irrotational waves.

In order that these integral properties may be directly calculated from only
the wave profile and the various constants of the motion we need only make the

substitution

% = Lg% + (0 —c)

da]
ar
with

g% =2(B —gB(7))
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into the integrals of (1.5.4) and (1.5.5).

If in (1.5.3) equations (1.23) and uw — (Qy —c¢) = g—g— are used, then

since the mean wave height is zero the relation / = 9, can be obtained. This

may be used as a check for the numerical computations when (1 # 0,
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CHAPTER 2

VARIATIONAL PRINCIPLE AND SMALL AMPLITUDE WAVES

A varjational principle for steady deep-water waves on a linear shear
current is established. From this principle an average Lagrangian for small

amplitude (Stokes-type) waves is constructed and then these waves are calcu-

lated to second order.

2.1. A variational principle

Consider the following variational principle:
6 [tdzdt =0 ,
R

f ot 4 1 2 r3 1 ,2 1
= f 5 +—[V¢] +(y’ -y—%dy — g+ H{0c —g In"" + Qygn
(2.1.1)
where p'(z',y',£) is the potential in the original (z',%') coordinate system,
7'(z’, t) is the surface elevation, and R is an arbitrary region in (z',¢) space.

For infinitesimal changes 6¢' in ¢' after application of the chain rule, and

integration by parts,

~sf [tdzdt =
¥4

ff§§T£6¢‘dy‘+ ai,f:[gﬁji S¢' +Qy’ 0¢' Jdy'} dz’ dt

¥4
Rfj_:’% ——‘fz—%dga dy' dz' dt
—jl;fé[ g”, Z‘”, +an—’x7— g"’ log'},_ dz'dt

—ff 5¢§y __dz'dt

Using Green's Theorem the first term can be written as an integral over the
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boundary of K. By the usual arguments in the calculus of variations (see Luke

(1967)), if the variational equation {2.1.1) is to hold true for all 8¢’ it must be

that
VZ2g' =0 (2.1.22)
%%i—+[§x ]gﬂ'— % on y'=n(z,t)  (2.1.2b)
oy
% -0 as y'» - . (2.1.2¢c)
For small variations 7' in 7',
~5f [ ldz'dt =
R
ff%[ HV'e'] +Qy 6: L,_ ) 277’2+[g —Qcn’ Q%} on' dz'dt

Similarly if (2.1.1) is to be satisfied for all variations 67" then

de’ dg’ 241 dg' 2 . Bp' 1.2 2 g et -
yTe +_{6xJ E{ay,] +Qy 6:::’+2_Qy Qey ' +g9y' —Qyp=0

on y' =n'(z',t) . (2.1.24d)

Equations (2.1.2a) and (2.1.2b) are just (1.1.7) and (1.1.11) rewritten.
(2.1.2¢) is a slightly weaker form of (1.1.8). If steady waves are assumed then

(2.1.2d) is the same as (1.1.10) with 9 replaced (from section 1.2) by

! S— 1 12 i [ J— ! L3
Vv = -y +ey'+y on y' =n'(z'"1)
In effect equations (2.1.2), which follow from the variational principle (2.1.1),
are just the formulation for steady waves in the original (z',%¥') coordinate sys-

tem.

2.2. Small amplitude waves

Like Whitham (1967) we shall compute the Stokes-type waves by substitut-
ing the appropriate series expansions into the variational principle and obtain-

ing the coefficients from the variational equations.
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First the Fourier series

n'(z',t) = ) a, cosntd

n=1

o'z y' t)=Y :L—Anen"y'sinnﬂ
n=1

are substituted into the average Lagrangian

_ 1
L_znfo (=) d

For these steady, periodic and symmetric waves, ¥ is defined by ¥ = k(z'—ct)

where the wavenumber k& = —2%- . Note that ¢’ satisfies (2.1.2a) and (2.1.2c)

already, and so the coefficients 4, and @, are chosen to satisfy the wave surface

conditions.

Plug the series for ¢' into I and simplify this expression using the product
formula for sines and cosines to arrive at

o , o =1 R
—l==c ¥ 1—An e™ " cosnY + %—k Sy %—Am./ln_me"’"'cos(n—2m)19

n=1 L n=e m=1

+03 jTAnn'e“""'cosn'tS - i—(} 3 —-1-5—,4ne"’”"cosnﬁ1

n=1 n=1

+ 30%3 + Hg —QcIn”® - Qyen’
In advance o, and 4, are taken to be O(a?) for small amplitudes. 7' is
replaced by its series and L is computed up to and including O(a,;L ) since the

O(a.;‘) terms contain the first nonlinear effects, After considerable algebra it is

found that
_ 1 2 1 2
L= —[7141 + 7242] + 571141 + 572242 + 7124142 +
1 2 2 1.2 2 8
Tlg —Qclley +az] + 00" ayagz + O(ay) , (2.2.1)
where

1 1 1,2 3 1 1,2 3
71 =C’C[2_a1+j4—kala42+1?k a1:| _Q[4_]CQ1Q2+B—’C al]



1 1, 2 1, 2
72 =ck[zaz+ Thkar] - Q[gka;
1,3 2
711 = 5%t 5kCa,
1.2
Y12 = 3% @)
1
Y2z = 7%

Here the average lagrangian I has been determined (to the order of our
interest) in terms of @4, @5, 4,, and 4. @, can be thought of as a fundamental
parameter related to the waveheight. The other three coefficients are functions

of @ and are found as solutions to the variational equations

8L _ 8L _ aL _
aAl’O’ aAz“‘O’ aaz’o

If L is written as a function of @ ; only, then the dispersion relation follows from

aL —0
6&1

First we determine 4; and 4, in terms of @, and a3 by solving the first two

variational equations mentioned above. They are equivalent to the two linear

relations

71141 71242 =71 . 71241 T 7242 =72

which have as their solution

_ Y1Y22 72712

— Ye¥11~ V1712
711722 —7122

Y1172z "7122

A, , As (2.2.2)

L may then be expressed in terms of @; and a3 only. Using relations (2.2.2) and
the preceding expressions for the 7's, (2.2.1) becomes

L= —i—[czk +(lc —g]cz,i2 + Tlg-k[czlcz-—;—ﬂzjaf +

L1c®k® + 20ck + l-(lz]a.zav, - 1—{2021c +Qc ——g}azz + O(a.s) . (2.2.8)
4 2 192 4 1

If we consider the variation of this new L with respect to a4, then the lowest

order approximation gives the linear dispersion relation
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c =cq+ 0(0.12) where cozlc +Qcg—-g =0 . (2.2.4)

With this last relation (2.2.8) can be rewritten and then the variational equation

% = 0 formed to yield a formula for a5 in terms of @, which is
2
as = é—g—[cok + 2Qcok + 310 ]al +0(af) . (2.2.5)

After replacement of as by this expression, the Lagrangian is finally simplified

to
- _1r 2 2
=—1c% +Qc —glay +
(o = Lok s 36 +200gk + 0 Pat + 0(at) (220
Co

Here L is a function of @4, ¢ and k£ only and its substitution into the variational

equation = 0 yields the nonlinear dispersion relation

da
¢’k + Qc -g =

e k(cok — 0Pk +[c 8k +20cok + 30°%)a? +0(e}) . (22.7)
Co

If } = O Stoke's result for irrotational waves is recovered; that is,
¢’k —g —Cok of + 0(af) where cik=g

At this point we have found (to second order) the expansion for Stokes-type
waves on a linear shear current. cg, the lowest order approximation to the wave
velocity ¢ is given by (2.2.4), while to higher order ¢ is found from the amplitude
dependent relation (2.2.7). @p is determined by (2.2.5), and from the formulas

(2.2.2) it can be deduced that

Ay =coaqy + 0(a?)

Q
2c ok

The same procedure could be used to determine a higher order approximation,;

Agp = [a+ SColc]a,lz +0(ey)

however, the algebra would be tedious.
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CHAPTER 3

EXTREME WAVES

In this chapter we argue that, independent of (), if the slope of a steady

wave profile has a simple discontinuity at a crest (which means that this crest

has a corner), then the included angle must be zai radians. Although Miche

(1944) has shown that this result holds for rotational flows in general, for com-
pleteness we present (for the linear shear case) a simple argument similar to
that of Stokes (1847). Stokes was the first to consider these waves with sharp
crests, which shall be called extreme waves; however, for the most part he
confined his attention to {1 =0. Amick, Fraenkel and Toland (1982) have
recently given the rigorous proof that for (1 = 0 this extreme wave does exist;
although they have not yet shown that it is alsc the wave of greatest height.

This indicates a likelihood that for {] # 0 extreme waves also exist.

3.1. An argument for 120° corners

In this section the local behavior of both the wave profile and the complex
function w(z) is ascertained. Recall from section 1.3 the definitions that
w(z)=¢p(zy) +iy(z,y) and 2z =z +1iy, where (z,y) are the space coordi-

nates in the steady frame of reference.

Allowing for certain singularities at the sharp crest, we assume
ad
w(z)= Y Rz —zg)" + R(z —2z4)° +0(]z—24|%) as 2z » 2z (3.1.1)
n=0
where the unknown b is some real number excluding the non-negative integers,
and 2o = Tg +1Yg is the position of the crest. Insisting on a continuous velocity
field, we must have that a crest with a corner is a stagnation point in this steady

frame. A mathematical statement of this is
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dw
—dz (20) +Q’y0 -c =0 , (3~1-2)

" which for the function g (7) used in sections (1.3)-(1.4) implies that
g=0 at z=2z4 . (3.1.3)

Substitution of (3.1.1) into equation (3.1.2) with the assumption that ?i%—Of the

o-termis o(|z —2zg|®™!) leads to the restriction that >1 and B; = ¢ —Qy,.
If polar coordinates are introduced by z —zg = pe'? with —m<@<m and

p >0, then the Re part of (3.1.1) becomes

o= Y r,ptcos(no+y,) +rpcos(be+y) +o(p®) as p -0 (3.1.4)

n=0 al
Here it has been supposed that K, =7, g Xn (and R =7 e™X) with —m <y, <7
and 7, >0. For waves moving to the right (¢ >0), observe that F; = ¢ —Qyq
implies
ry=c —{lyg (3.1.5a)

X1 =0 . (3.1.5b)

If in our polar coordinates 6 = B(p) describes the wave profile, then locally

the exireme wave is given by
Bp)=6,+6 +0o(1) as p->0 . (3.1.8)

The + sign is chosen if p = 0 from the side with z >z ; similarly, the - sign is
picked if the approach is made with x <z The ray € = g, bisects the angle at
the crest and 20 is the measure of the included angle. Using the coordinate
transformation = = zg+pcos(6) and y =yg+psin(6), we can rewrite the
dynamic boundary condition (1.2.4b) in terms of the polar coordinates. Now in

order that g given by (3.1.4) satisfies this condition as p » 0 {from both sides),

it becomes necessary that 6, = -~ T and

2
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IpBp222 L gy —gpcosé +0(®B) =B as p-0 . (3.1.7)
2

Here (3.1.5) and (3.1.8) have been used. The implications of relation (3.1.7) are

m]ca

b =
gYo=F
1 3.2
5—7'2(5—) = g cosd

dw

a2 has a square - root branch point at the sharp

This value of b suggests that

crest of the extreme wave.
We still need to determine 0 and do so by forcing g to locally satisfy the

3
kinematic boundary condition {1.2.4c). With b = z-and 6 = — %— this condi-

tion will require that the two equations

?%rp;_cos(—z—i -g—-+x) + o(p?)g Ej:cotd + o(l)g

3 = T 0 =
= z—‘rpasin(-—-zl—-t 5—+x) +o0(p?) (3.1.8)

be satisfied as o » 0. Again the choice of sign depends on whether p approaches

zero from the left or the right. One choice of sign implies that

3 m _
cos (+ 5—5 —Z—'i'x) =0
likewise, the other choice gives
3 (i
cas(—é—d—z—+x) =0
. . . Ll _ 3m .
The solution of these two equations is 6 = 3 and x = — -4-—-—(for waves moving

to the right). Thus, the included angle, 26, is %’{T_

The dynamic boundary equation has been satisfied as p -+ O for terms up to

O(p). This can be seen in (3.1.7) if & is replaced by g— Because b = g—- the
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3
next higher order terms in this equation would be 0(0?) and not 0(p?). If we

wish to satisfy the boundary condition to this next order then it becomes clear

1
that we must include a term O(p?) in our polar description of the wave profile.

Substitution of (3.1.4) and

‘u—-

1]

(o) = 6, + (5 +5p%) +0(%) as p-0 (3.1.9)

3
into (1.2.4b) and (1.2.4c) followed by collection of O{p?) terms and O(p) terms,

respectively, shows after some work that

L
Z

S = 3Qg (3.1.10)

Ry = -1-52—073 also comes out of the algebra. For waves with ¢ >0, (3.1.9) and
(3.1.10) tell us how the curvature of the extreme wave near the crest depends

upon the sign and magnitude of the shear parameter (1.
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CHAPTER 4

NUMERICAL METHGD

In chapter 2 the behavior of small amplitude waves is determined. On the
other end of the waveheight spectrum, the large amplitude "extreme"” waves are

studied in chapter 3.

In this chapter we discuss the method used to construct solutions for those
intermediate waveheights, the missing link in the global picture. In many ways
this middle region turns out to be the most interesting, Purely analytical means
fail here and so we must turn to numerical procedures at which time the prelim-
inary analysis in chapter 1 becomes invaluable. There the problem of determin-
ing a function of two space variables (z and ¥) is reformulated into that of
finding a function of one variable (7). The numerical techniques for this latter
class of problems are very well understood, and for a given accuracy require less

computer memory and time.

4.1. Peliminaries

We first point out that the parametrization in T is a natural choice if we
hope to solve for both near extreme waves and the extreme waves themselves.

Consider the parametrization in arclength s, where s = 0 corresponds to
the wave crest (T = 0). For a fixed {1 focus on the wave profile as a function of s
and waveheight A so that ¢ = ¢(s,k). If h, defines the waveheight of the
extreme wave then we are interested in the limit A - h,. Although it seems

likely that ¢(s,h) - ¢(s,h,) uniformly ins as b - h, it cannot be the case that

%{s A) - %—g—(s ) uniformly in s. The argument follows by taking s = 0

and showing that as kb —hg it is impossible for t—é—si{O,h) - %E—(O,he). This is
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. . _ d ,
obvious since if A # hg then by symmetry and smoothness _{—‘ds 0,h) =1+ 01,
. . . d¢ 1 .
and if A = h, then by the jump in slope -dT(O,h,e) = 5—{\/51'&).

On the other hand, the parametrization in 7 is a "smoother” one. Using

a¢ _ _ a¢ ds _ _ o :

o Lg () . (as o Lg), it is clear that if A # hg then
%—(O,h) = —Lg(0) + 0%, Also, for extreme waves g(0) =0 and therefore
:’r 0,h,) = 0. In this case there is no jurmp in derivative for the extreme wave.

Better yet, %O,h) - %{o,he) as h » h, and so it is possible that the limit

of first derivatives is uniform in 7. The parametrization in 7 is not perfect

dZ
though and it can be shown that d,:?‘( is discontinous at the crest of the

extreme wave.

We need to numerically solve the nonlinear systern of equations {1.4.3); but

prior to this we enlarge the system by adding to it the equation
V=28 —2gIm¢(0) . (4.1.1)

V is a new variable which from (1.3.12) and (3.1.3) is shown to equal zero for
extreme waves. The motivation for adding (4.1.1) is just that extreme wave solu-

tions may then be isolated by setting ¥V = 0,

Two procedures are adopted for finding numerical solutions to the new sys-
tem of equations {1.4.3) and (4.1.1). For both of them A and g are fixed in
advance (which fixes the length and time scales). The differences are that in one
of them (1 and h are given and approximate solutions for ¢(7), ¢, B, L and V
are constructed; whereas in the other, the roles of V and A are interchanged.

For both procedures the equations are discretized in the same way.
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4.2. Discretization

In dealing with the numerical approximation to (1.4.3) and (4.1.1) it is con-
venient to use real functions. Therefore the equations are broken up into their
real and imaginary components after ¢(7) is replaced by a(1) + 18(7). a and 8

are then discretized by
a; =a(t;) , B =B(1;) j=1,...N (4.2.2)
where the 7;'s define a uniform mesh of N points by

j—1
N-1

T j=1,..N . (4.2.2)

=T

Because of symmetry it is sufficient to work in the interval 0= 7<m.

Derivatives in our equations are replaced by sixth order centered finite
differences except when extreme waves are calculated directly and then deriva-

tives of o are replaced by one-sided differences at the first few points adjacent

n
to the crest. Since g——%does not jump at T = 0, centered differences remain
T

accurate for f§ derivatives at the crest.

Symmetry described by (1.4.3d) allows us to transform all integrals into
new ones with the range of integration from ¥ = 0 to T = . The integrals are
then replaced by sums using the trapezoidal rule since for uniform meshes and
periodic integrands this is highly accurate. For the integro-differential equation
(1.4.3a) L'Hospital's rule is applied to find the value of the integrand at the
points where T = 7. This will introduce second order derivatives which are

replaced by sixth order differences.

Discretization transforms the original problem into that of finding the solu-
tion to a nonlinear system of algebraic equations. Close examination reveals
that (1.4.32) provides 2V —2 equations. Its real part at 7 = 7; provides N equa-

tions. On the contrary, its imaginary part yields only N —2 equations because at
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T =71, (=0) and T = Ty (=7) identities result owed to the imposed symmetry.
(1.4.3b) turns out one relation, and {1.4.3¢c) produces the constraint oy = 0.
The symmetry condition (1.4.3d) has already been used at all T; except Ty to
rewrite the integrals, etcetera. At Ty its real part becomes ay = ::;—A but its
imaginary part reduces to an identity. {1.4.3e), (1.4.3f) and (4.1.1) each contri-
bute one more equation. (For class 1 waves which are defined in chapter 5,
(1.4.3f) takes the simple form h = f8; — By if a crest is put at 7;.) In the end
there are RN+4 equations. The counting is correct as the unknowns a5, B, ¢,
B, L and V (or h if V is given) also total 2N +4 in number.

We remark that for ) = 0 a shift in y-coordinate can be used to improve
the accuracy of our scheme. If (1.4.3e) is replaced by JO-Zﬂﬁ d7 = 0 then there
are no derivatives to approximate in this new integral and the accuracy of the
numerical approximation will increase. With this new relation (1.4.3b) simplifies
to 4mBL = cA which is also better from a numerical standpoint. Fortunately,
if {1 = 0 the solutions to this new system are the same as those to the original

one except that the new § and B are just shifted from the old ones. The shifted

T
amounts are Ay and g Ay, respectively, where Ay = %—j‘z R Za ar.
A T

4.3. Newton's method and continuation

The nonlinear system of algebraic equations may be represented by

Fgo) =0 (4.3.1)
where [ is a vector whose components are the unknowns (the profile values at
the mesh points, the wavespeed and so forth) and ¢ represents one of the
parameters (b, V or (1) which are varied. This system is solved iteratively by
Newton's method, represented by

I (fin ,0) 68, = — F (fin,0) (4.3.2a)
41 = o, + 7 Oy, (4.3.2b)
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where ¥ = 1, [, is the nth iterate, J is the Jacobian matrix for f , and fg is a
supplied first guess. O, is computed as the solution to the linear system
(4.3.2a) by LU decomposition and then put in (4.3.2b) as the difference between
old and new iterates. On occasion this method is replaced by its underrelaxed
version in which ¥ < 1. This allows for a less accurate first guess, but then the

convergence is only linear as opposed to quadratic fory = 1.

If {i(o), the solution at 0, is already known and the solution at ¢ + 60 is
wanted, then a reasonable first guess for Newton's method at o + 00 is obtained

by the one step Euler method

J(@(e)0) S = - 2 (3(0).0) (¢35)
 fig(o +60) = fi(o) + 6o %gt— X (4.3.3b)

Using (4.3.3) in combination with (4.3.2) we can continue along in the parameter
o and find solutions (o). If a solution curve foids (i.e., a limit point is encoun-

tered) then we switch parameters to follow it.

Simple bifurcation points occur between o's in which there is a sign change
in the determinant of the Jacobian. Once these points are located more pre-
cisely by bisection then an approximation to the tangent of the new solution
curve is either guessed (from known behavior) or estimated from the algebraic

i

bifurcation equation. (See Keller (1977), for example.) With qo replaced by

this tangent approximation, (4.3.3b) provides a first guess to a solution along
this new branch. Newton's method pinpoints this solution and further continua-

tion resolves the branch.

Our goal is to find both the region of solutions and the nature of them for a
chunk of the (h (1) plane. To accomplish this continuations are made in several

ways. The most useful one is to fix (], start with a small amplitude wave given in
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chapter 2 and continue up in the waveheight parameter hA. As either folds or
extreme waves are neared the continuation parameter is then switched to V and
varied towards zero, enabling continuation right up teo the limiting wave. This
isn't always successful because for some (1 there are gaps in A where no solu-
tions exist. Another helpful procedure is to fix ¥V = 0 and vary {1, in this way
resolving the extreme wave solutions in the (h,Q) plane. Lastly, an alternate
approach is to fix h and vary Q

After a wave is found numerically its integral properties are célculated

from the discretized form of (1.5.4), (1.5.5) and (1.5.8). Additionally, for

extreme waves the siope at the crest is computed using cubic spiines.

4.4. Some checks

The results of any numerical calculation require verification and we use a
series of checks. Small amplitude waves are compared with the predictions of
weakly nonlinear theory in chapter 2. Included angles at the extreme wave
2

crests are tested for their closeness to 120°. For {2 = 0 the relation B = —;—c

serves as a check on accuracy, while for Q # 0 the relation
i
I =vy= ET(B “;—cg) provides the check. Perhaps the best overall test of

accuracy, the results calculated on a given mesh are compared to those from a
mesh with half the number of points. We also compare our results to those of

others for specific values of the parameters.
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CHAPTER 5

NUMERICAL RESULTS AND DISCUSSION

5.1. Definitions
Dimensionless quantities which are suitable for describing the results are

given by

3
o_ 1 _1,2m\2 v~ RTN\T

Since A = 2m and g = 1 in our actual computations, the 27 factors are intro-

duced above to allow ease in converting to the dimensionless quantities.

We adopt the same terminology used by Chen & Safiman (1980). Any
Stokes-type wave or its smooth continuation to finite amplitude defines a "regu-
lar" wave. All other waves are termed "irregular' waves. Recall from section 1.3
that wave profiles are computed in a window of horizontal length A. A regular
wave having an integral multiple of wavelengths nA in this window is called a
regular wave of class n. Irregular waves of class . are bifurcations of these reg-

ular waves into waves having 7. crests per wavelength.

Obviously all classes of regular waves are physically equivalent and the
differences only occur in the description of them by the dimensionless variables
above. In terms of these variables regular waves of class n. are related to regu-

lar waves of class 1 by

¢ 1 ¥ ¢ e ®
e _ h‘l Q#_ -Z—Qt e _ Gy Tt___ Tl P&_Pl I:___ ]1
h.n—n, n — T 1 » 6 = _;_1 n"‘nzx n""nzyn_ %_r
n n

where the subscript denotes the class.
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5.2 Caseof 0'=0

Since. our method allows for accurate calculations in the region of the
extreme wave, we pursue the irrotational case in order to improve upon and/or
to verify the theoretical and numerical results of Longuet-Higgins & Fox (1978),

Chen & Saffman (1980) and Rottman & Olfe (1980).

All computations are carried out in double precision on a Vax 11/750 com-
puter and Newton's method is considered to have converged when the residuals

are less than 10_11 .

5.2.1. Regular waves

From section 5.1 it is sufficient to study only class 1 regular waves. We start
with a small amplitude Stokes wave, continue first in waveheight and then in V
to a point near the extreme wave. This last wave is then used as a first guess in
a direct calculation of the extreme wave. The calculations are done on both a
mesh of 121 points per half wavelength and one of 61 points per half wavelength.
Results from the two different meshes coincide to 8 significant figures for most

1
amplitudes and to 5 significant figures for the near extreme waves. B = -2—-02

checks to within an error of at worst Of 10—?). For each individual wave
Newton's method takes 3 to 4 iterations to converge, which in CPU time is on the
average about 9 minutes for a 61 point grid. Figure 5-1 shows a computational
window one wavelength long with 5 different calculated profiles. Profile E) is the
extreme wave which is computed to have & ° = .141064 and an included angle of |
119.95°. Note that zero on the vertical axis represents the mean wave height
level.

Figure 5-2 illustrates the manner in which mesh points uniformly spaced in

T automatically concentrate at the crest for extreme or near extreme waves.

Notice that for a small amplitude wave as in A the grid is almost evenly spaced
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along the profile.

Longuet-Higgins & Fox (1978) estimated that the value of A * for the
extreme wave is .14107. They also predicted that the wavespeed and energies
oscillate infinitely often as the extreme wave is approached through increasing
waveheight. Figure 5-3 is a plot of wavespeed ¢ * versus h* from our results.
The inset shows a closeup of the region which borders the extreme wave and it
seerns to reveal the first relative maximum, the first relative minimum and pos-
sibly the second relative maximum of these wiggles. These oscillations decay so
fast as a function of A ° that it seems beyond the scope of double precision cal-
culations to resolve many more of them. The weakly nonlinear approximation is
also displayed in this figure and shown to be a pretty good approximation (at
least visually) up to heights with h * about .03. Even for larger amplitudes the
weakly nonlinear estimate is never all that bad; however, it is incapable of even
roughly describing the behavior of the strongly nonlinear region close to the
maximum waveheight. Figure 5-4 is a table of some important physical quanti-
ties for almost-extreme waves. It confirms the expected oscillations in energies.
Furthermore it shows that our method works better than that of Chen &
Saffman (1980) for this region, and it gives us an idea of the accuracy required

to numerically resolve more details in it.

5.2.2. Irregular waves

There are no signs of bifurcation from class 1 regular waves to other sym-
metric waves. We allow for subharmonic bifurcations by considering class 2 reg-
ular waves. This time continuation in waveheight locates a simple bifurcation
point at A ° = .06446 which agrees well with Chen & Saffman (1980). Continua-
tion along this new branch of irregular class 2 waves leads up tova new extreme
wave which is calculated directly. The same procedure is followed by starting

with a class 3 regular wave. Continuation in height reveals a bifurcation point at
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h® = .04294. Following the new branch this time reveals two different irregular
class 3 extreme waves. Figure 5-5 displays the bifurcation diagrams and the
important profiles in these continuations. A and E are the points of bifurcation
from regular to irregular waves. C, D and F are the calculated extreme waves,
while B is just an intermediate point. In the class 2 case notice that the extreme
wave profile C) has one sharp crest and one smooth one. This means that the
regular wave A) has bifurcated into a wave with twice the wavelength. For class
3 one limiting wave has two sharp corners per wavelength and the other has only
one. In either case the regular wave E) bifurcates into a wave of triple its origi-

nal wavelength.

Rottman & Olfe (1980) used Michell's method to calculate irregular extreme
waves directly. They concentrated on class 1 through class 4 and could only
produce those waves having one sharp crest per wavelength. In order to com-
pletely compare the resulis of two different methods we also search for an irreg-
ular class 4 extreme wave. Since the regular to irregular wave bifurcation here
is second order, the sign of the determinant of the Jacobian cannot be used to
locate the bifurcation point. Nevertheless by estimating its location from a
noticed pattern and using perturbed regular waves at that point as first guesses
in Newton’s method, we manage to jump onto an irregular class 4 branch. Again
continuation and direct extreme wave calculation are employed to yield the lim-
iting wave of interest. Figure 5-8 is a comparison of results for those extreme
waves having one sharp crest per wavelength. Since in our method the 120°
corner at the crest is not an input as in Michell's method, we list the values of
the included angles which are outputted. These angles hover close to 120°.
Notice that our results are very close to those of Rottman & Olfe {(1980). Our
value of h* = .141064 for the class 1 extreme wave is the most accurate so far

and lies between the numbers quoted by Longuet-Higgins & Fox (1978) and Rott-
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man & Olfe (1980).

Figure 5-7 has the computed profiles for the extreme waves that were just
compared. Both regular and irregular class m waves are shown in a window
which in length is one wavelength of the irregular wave and n wavelengths of the
regular wave. It is interesting to note that the crests and troughs of irregular

waves are slightly shifted horizontally from those of regular waves,
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5.3. Caseof Q" #0

With the introduction of vorticity into the problem some rather fascinating
behavior is observed. Although for 1°=0 it seems that regular waves are unique
if irregular waves are discounted, this is no longer necessarily true for waves on
a linear shear current. (By "unique" we mean in the sense that given the
wavelength, height and propagation direction there exists only one wave.)
Furthermore, while it seems evident that for {1° =0 the extreme wave is the wave

of greatest height this is not true for some (1° <0.

Recall that without loss of generality we consider waves moving only to the

right so that ¢ *>0.

5.3.1. Regular waves

First we fix 3" =+1. We begin with a small amnplitude Stokes-type wave and
then continue in waveheight and ¥V up to and including the extreme wave. Cal-
culations on the 81 points per half wavelength grid and the 121 points one coin-

cide to 6 significant digits or better. B = é—cg + QI checks to within an error of

at worst O( 10.8). Figure 5-B displays 9 profiles in the order in which they
appear in the continuation pirocess. 1) is the extreme wave profile shown to have
a corner which is computed to include an angle of about 119°. The curvature of
this wave at the crest differs from that of the 3" =0 regular extreme wave and
this checks with the prediction of (3.1.9) and (3.1.10). Notice that the maximum

allowable waveheight here is noticeably less than that for the irrotational case.

The same continuations are done for other positive (1°. The curvature at
' the extreme wave becomes more noticeable and the maximum waveheight
becomes less as (° is increased. Figure 5-9 is a typical example of wavespeed
versus waveheight for positive {2 *  Like the irrotational case ¢ * is not monotoni-

cally increasing. For this particular illustration with (° =+2 the weakly non-
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linear approximation appears visually accurate for A ¢ up to about one third of

the maximum height.

Next fix Q" =—1. The profiles in figure 5-10 are calculated by continuing
from a small amplitude wave in A) up to the extreme wave in I). It is discovered
that at the sharp crest the included angle is close to 120° but the curvature
there is opposite to that of positive Q°. This time the maximum waveheight is

larger than that of Q°=0.

Figure 5-11 is a table of calculated physical quantities as a function of Q°
for regular extreme waves. One of its implications is that for waves moving to
the right, negative shear {Q1° <0) favors larger amplitudes than positive shear.
Also as predicted, the included angle at the sharp crest is shown to be indepen-

dent of Q° (to within a small error).

For more negative shear something new develops. The profiles pertaining to
(1°=—1.6 are found in figure 5-12. Observe that as we continue through these
solutions the waveheight at first increases, then decreases and finally increases
again as the limiting wave is neared. In other terms a fold exists if A" is the
parameter, and waves are no longer unique for certain waveheights. The
extreme wave which now has noticeable curvature at the corner is no longer the
wave of greatest height. A further development of the continuation is that a

bulge in the wave profile appears and then subsides.

The question naturally arises as to what happens to this bulge for even
more negative shears. Part of the answer to this is in figure 5-13 where our
results for 1°=—1.74 are presented. In this case continuation from small
amplitude only gets as far as wave D) where the profile almost touches itself.
Beyond this point Newton's method diverges. Now we work backwards. The
extreme wave for (1° =—1.74 is located by fixing V=0 and continuing down in

& N . . «
(1" from the irrotational extreme wave. From this new wave we continue back
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towards smaller amplitude waves. Again a point is reached where the iterative
method diverges and this time it happens just after profile E), which also almost
crosses itself, is computed. We summarize this result by saying that in the con-
tinuation from wave A) to I) a gap is found to exist between two "touching"
waves D) and E), and within this gap there is no physical solution. Note that
each touching wave is a limiting wave that encloses a bubble. A similar

phenomenon occurs in capillary waves,

Perhaps the best means of describing this behavior more completely is
figure 5-14. Here wavespeed versus waveheight is plotted for several values of
(1°. 1t is immediately obvious that the extreme wave height increases as (1"
becomes more negative. We can see that the fold develops somewhere in
—15< ("< —1.3 and increases in size as (1° decreases. For a given (" having
such a fold there are values of A ° where as many as two or three different waves
exist. It is apparent from this diagram that for 0" more negative than approxi-
mately —1.5 the extreme wave is not the highest wave. Furthermore, the gap in
solutions appears around ("=-1.7 and gets larger as 1" becomes more nega-

tive.

To further verify this behavior some numerical computations for 0'=-2
are run.‘ In figures B-15 and 5-16 are graphed the profiles and the curve c’
versus h°, respectively. As before in the continuation from small amplitudes a
limiting wave D) is discovered to mark the beginning of a gap. Across the gap is
another limiting wave E) which encloses a larger bubble. As we continue
through a fold the profiles become less bulging and finally a limiting wave I) with
a corner is reached. From figure 5-16 it is seen that for waveheights less than
maximum there are values of h* where either two, one or no solutions exist.

When Q°=-2 the larger waveheight calculations for the 121 and 61 point

meshes coincide to 4 significant digits only, and the error in B = -12-—02 +Q7 is
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usually 0(10.5).

From our weakly nonlinear theory there are no signs of a critical value in
(1° beyond which solutions fail to exist, and hence we believe that as Q" > 1w
the limiting curves will never cross A ‘=0. Figure 5-17 is a plot of the limiting
curves in the (h°") plane and it supports this belief. It also hints that the
extreme wave will become the wave of greatest height again if 0°is slightly more
negative than —2.0. This gets confirmed. Here it is appropriate to mention that
as IQ'} is increased our numerical method becomes more sensitive and less

accurate.

53.2. Trregular waves

Recall that for 1°=0 bifurcations of regular class 7 waves yield irregular
class n. waves if n > 1. The same is true if Q°#0. For a given Q° these irregu-
lar wave branches can be resolved as before by first locating the bifurcation
point in the regular wave branch. Figure 5-18 is a list of some calculated bifur-

cation points for class 2 and class 3 with Q7 between —1 and +1.

We choose to confine <‘>'ur attention to extreme waves. V=0 is fixed and
continuation is done in Q° starting from the irregular extreme waves of 0°=0.
In this way irregular extreme waves of Q°#0 are computed. Figure 5-19 shows
the resultant paﬁhs in the (h° (") plane for class 2 and class 3. In figure 5-20
the profiles for Q°=x+1 are given. The curvature at the crest is the most notice-

able difference between positive and negative () .
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CHAPTER 8

A NOTE ON STABILITY

To examine the stability of finite-amplitude waves on a deep linear shear
current a detailed numerical study is necessary. However, a simple argument
indicates that the weakly nonlinear waves are unstable to modulational (long
wavelength) disturbances. The argument proceeds as for the irrotational case.

(See Whitham (1974)).

Since changes in the "mean velocity" and "mean height" play no role for
deep water, pseudo frequencies and wave numbers do not arise. Therefore,
modulations of the weakly nonlinear waves (found in chapter 2) will be

described simply by

60.2 12 4

T +a.1 wo(k) +wo(lc) =0(ay) (6.1)
2

B v (k) ot wylk) Sk = 0af) (6.2)

Here a.12 and & are slowly varying functions of z' and f. The w's are defined by
wolk)=co(k)k and wa(k)=ca(k)k if the c's are given by the dispersion rela-

tion c(k)=co(lc)+03(lc)a12+0(a.f). The dot notation is used so that

. dw
wolk) = d]co . et cetera. For the general derivation of (6.1)-(6.2) from a varia-

tional principle see Whitham (1974).

It we neglect the O(a ;) terms then the characteristics for the system (6.1)-
(6.2) are given by

= ©olke) j:[Cdz(k)wo(k)] a;

From the dispersion relation (2.2.7) it can be shown that
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S ACHE

wg bl = —g—
20T (2w +0)2

4 1.2 2 1 242
where o =wp—5 {1 wp +[w§+2f}mo+ 70 ]

Using the linear dispersion relation wg +Qlwg —gk =0 it is possible to deduce
that ¢ = -%—szg+29kﬂz+ —;—Q4+2g2k2 and hence >0 for all real {}. This
means that &gwgs <0 which in turn implies that the characteristic velocities are
imaginary and the system (8.1)-(6.2) is elliptic. As remarked in the irrotational
case, periodic wavetrains are unstable when the modulation equations are ellip-

tic.
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APPENDIX 1
Part (a)

We shall prove that for periodic waves w(z) is a periodic function; that is, if

A is the wavelength so that A(z+A) = A(z), then w(z +A) = w(z). Obviously by

_ 9y _; O
Mz) = Gi-ay) =i gh-(ay)
periodicity is equivalent to

dp _ 3y
3y (z+2y) By (z.y)

ay_ - v
3y (z+A\y) = 3y (z.y)

Integration implies that

plz+hy) = p(z.y) + g,(x)

Yz +ry) =Yz .y) + ga(z)

If now the condition that ¢ , % —» O is applied in the limit as y - —o, it becomes
clear that g, =g2=0 and so ¢ and Y are periodic (in z). Since
w(z)} = ¢ + 19, w is also periodic.
Part (b)
Here we show that for periodic waves, |w(z)| is bounded for all z in the
fluid domain and its boundary. By (a) the range 0 <z < X need only be con-
sidered. ¢ ,¥ » 0 as ¥y = —o uniformly in £ means that given £ > 0 there

exists a yp such that |¢| < € and |¢¥| < ¢ whenever ¥ < yp. Therefore in the
region R, = %(x Y ) l O<x=<xandy S’ygg. |¢| and |¥| are bounded. Let
K3 be the region defined by Kg = g(a: Y) ‘ O=z<Aandypg<y =< H(:r:)g. @
and ¥ are continuous in this closed and bounded region; hence, from a result in

calculus the functions |¢| and |y¥| are bounded in K, Since

|lw(z)| < |¢| + |¥]| obviously |w(z)| is bounded in R R>.
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APPENDIX 2

In this appendix we verify that

mD D
f,,,pE(';f)'%)'(?T a? o Tf £ () cot (FHeln) ~¢e(B])d? as m e
(A2.1)

if f (t+mD) = f (7). First observe that
ml o -1 (n+1)D -~
JC ——LLLOZ? = mz: T ——dT
~mD ((T) _{(T) n=-m nbD C(T) —C(T)
and then make the substitution T =% + nD on the right hand side. Since
FE+nD) = f(f) and ¢(T+nD) = ¢(F) + nA it can be shown that

£t @oar = L ( )

a7 = T d7
o T2 F@A 2z [6(7)—6(7)] .

(AR.2)

Next consider the identity

. m=1l 1

lim —— =mncofnme i a #integer . (A2.3)

MA® gz &7

If we let @ represent ﬁﬁiﬁi . then using (AR.3) in (AR.2) as m - « gives

the desired relation (A2.1).
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APPENDIX 3

We prove that

z_'jg” cot (TLe() ~¢(M)]) §5-d? =1-x(n) . (a0)

Application of the Cauchy Integral Formula and Plemelj's formula as in section

1.3 but now with A(2z ) replaced by the constant 1 leads to

1 mD 1 d¢ A ICQT!
- 2nifm,, D=2y a7 @7t ot mim) . (A3.2)

where

1 1 ~
In(2) = dz
") = 2

I';(m) and () are as before. In this case it is a simple observation that
m p(2) = 5 . (A3.3)
M, = o

Utilizing this fact and (A2.1) (from appendix 2) in the limit as 7 >  of (A3.2),

we prove that relation (A3.1) holds.
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APPENDIX 4

Here it is shown that

szﬂ q%(T)dT=cA . (A4.1)
Q

Let the contour Iy be defined by Iy = 52 z =¢(T)and 0< 1< 1)%. Since

Az) = 2—? and w is periodic (by appendix 1a) it is clear that

{ Az) dz =w), =0 . (A4.2)

) ¢]
If we use the parametrization for Iy and replace A(¢(T)) by the right hand side
of (1.3.10), then the real part of (A4.2) can be shown equivalent to

D

jo. §qN—[Qﬁ—c]%%§ dr=0 . (A4.3)

Here N? = gi'r_ %— has also been used. It follows that

D D
{ gNdr= ‘jo- iy dT=~cA (A4.4)

since by our choice of coordinates,

D
_{; [3(7)-3—%%17 =0

Since N = —L g and ) = 2 also by choice, (A4.1) follows from (A4.4).
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