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ABSTRACT

The objectives of this thesis include the development of an
exact theory of neutron wave propagation in non-multiplying media as
well as the application of this theory to analyze current experimental
work.

An initial study is made of the eigenvalue spectrum of the
velocity-dependent Boltzmann transport operator for plane wave propa-
gation in both noncrystalline and polycrystalline moderators. The
point spectrum is discussed in detail, and a theorem concerning the
existence of discrete eigenvalues for high'frequency, high absorption,
and/or small transverse dimensions is demonstrated, The limiting
cases of low and high frequency behavior are analyzed. A physical
interpretation of the discrete and continuum eigenfunctions (plane
wave modes) is given, and the point spectrum existence theorem is
explained in the light of such interpretations.

Using this spectral representation, a technique for solving
full-range boundary value problems for a general noncrystalline
scattering kernel is presented. Orthogonality and completeness of
the eigenfunctions are demonstrated, and the problem of a plane
source at the origin of an infinite medium is solved. This solution is
compared with that obtained by a Fourier transform technique. A
procedure for solving half-range boundary value problems is presented
for a one-term separable kernel model. For purposes of illustration,
the problem of an oscillating source incident upon the boundary of a

half-space is solved. The difficulty in extending the half-range theory
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to more general scattering models is discussed.

The second part of the thesis proceeds to demonstrate this
theory in more detail by applying it to analyze recent neutron wave
experiments in graphite and DZO parallelepipeds. To facilitate the
interpretation of the general solution, the inelastic scattering kernel
is approximated by a separable kernel, while the elastic scattering
is modeled with a Dirac 6-function. The eigenvalue spectrum is
analyzed in some detail, revealing several interesting conclusions
concerning the experimental data and methods of data analysis. -
Several modifications in experimental design and analysis are sug-
gested.

The agreement of the theory with experiment is sufficient to
warrant its application to the analysis of more complicated experiments
(multiple-region, multiplying media, pulse propagation, etc.).

Several suggestions for such extensions are indicated.
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I. INTRODUCTION

Neutron wave experiments involve the measurement of the
response of the neutron density in a nuclear reactor or reactor ma-
terials to a modulated neutron source. This source creates a wave-
like disturbance in the neutron distribution whose propagation through
the medium depends upon material composition and geometry. By
measuring the relative attenuation and phase lag of this disturbance at
various locations within the medium, one can obtain information about
the composition and neutron transport properties of the propagation
material.

Such neutron wave experiments are expected to find application
in a number of aréas of reactor physics. At present these experi.—
ments are being used to measure the neutron transport pi'operties of
various moderator materials(i-s). A second possible area of appli-
cation involves the measurement of the kinetic behavior and criticality
of reactor systems by propagating neutron waves through a multiplying
assembly. A third and perhaps more immediate area of application is
to provide a clearer understanding of the transport process itself,
since the propagation of these waves is an ideal example of non-
equilibrium behavior in the linearized kinetic theory of gases,

The effectiveness with .which such applications can be pursued
depends both upon advances in j:he area of experimental techniques
and upon more advanced theorétical models with which to interpret
measured results, This thesis is concerned with research into the

latter area.
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A, PREVIOUS WORK IN THE THEORY OF NEUTRON WAVES

The theory of neutron wave experiments dates from the
analysis of an oscillating absorber in a reactor core by Weinberg
and Schweinler(6) in 1948. This one-velocity diffusion theory analy-
sis was later used to analyze the early wave experiments of Raievski
and Horowitz(7). However it was not until 1963 that Perez and
Uhrig(s) extended this theory to include energy dependence, using
a Laguerre polynomial expansion in the energy variable. Subsequent

(9)

work by Moore introduced the concept of the dispersion law for

(10) developed a

such wave propagation. In 1964 di Pasquantonio
monoenergetic P1 theory which was later extended by Kunaish(1 1)
to energy-dependent P1 theory (again using Laguerre polynomial

(12) have developed

expansions), Recently Ohanian, Booth, and Perez
a more advanced energy-dependent diffusion theory which allows a
more accurate modeling of the scattering kernel. Since this latter
theory is customarily used to analyze the neutron wave experiment,
it is described in more detail iﬁ Appendix A, Travelli(13) has subse-
quently examined both one-velocity and multigroup transport models,
including 1inear1$r anisotropic scattering effects, More recently

(14) has dealt briefly with a velocity-dependent transport model

Moore
using degenerate kernel expansions. However the status of the exact
transport theory of neutron wave propagation remains rather primitive

at this time.
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B. RELATED WORK IN THE FIELD OF RAREFIED GAS DYNAMICS

Much of the kinetic theory of rarefied gases is applicable to
the neutron wave problem since both a rarefied gas and a neutron gas
are described by a similar linearized Boltzmann equation. The
specific problem most analogous to neutron wave propagation has
been the treatment of forced sound waves. The theory of such non-
equilibrium behavior in rarefied gases has been, until recently(22-23),
considerably more advanced than its counterpart in neutron transport
theory. The literature on this subject is quite extensive, and only
the work most closely related to this thesis can be mentioned in the
following brief review,

Of course the fundamental kinetic theory of gases can be
traced back to the work of Boltzmann, Hilbert, Chapman, Enskog,
Grad(is), and others. Of more immediate interest to this thesis,
however, was the work of Wang-Chang and Uhlenbeck(ié) in 1952
which amounted to an energy-dependent transport theory analysis of
sound propagation. In this treatment, the particle distribution
function was expanded in a truncated set of the natural eigenfunctions
of the collision operator for Maxwell molecules, and the resulting
determinant dispersion relation was then solved for the appropriate
eigenvalues. Later work by Sirovich, Thurber, and Weitzner(”-is)
has relied on modeling of the collision operator (BKG models, etc.)
to reduce the complexity of the Boltzmann equation to such an extent
that it could be analyzed more easily by integral transform techniques.

(20)

This modeling is similar to the degenerate kernel expansions well-



known in neutron transport theory, except that it assumes a constant

collision frequency (effectively a 1/v behavior of the total cross-

(21)

have solved similar modeled

(24)

problems using the Case method of elementary solutions . More

(

section)., Buckner and Ferziger
recently Cercignani 25) has extended much of this theory to models
with velocity-dependent collision frequency--but within the restric-
tions of a one-term separable kernel.

Perhaps the most comprehensive work in this area of kinetic
theory can be found in the numerous papers of Grad. Of particular

(19)

" interest to this thesis is his recent wor on high frequency sound
propagation, the direct analogue of the neutron wave experiment,
which includes a qualitative study of the eigenvalue spectrum for the

problem.,

C. STATEMENT OF THE THESIS PROBLEM

It will be demonstrated in detail in this thesis that the previous
theories of neutron wave propagation fail in one approximation or
another to describe the true character of the propagation process,
While much of the theory in rarefied gas dynamics is more applicable,
the specific nature of neutron scattering in matter makes it necessary
to formulate an alternative, and in some respects a more advanced,
theory. This is particularly necessary for the study of wave propa-
gation in polycrystalline media.

The basic goal of this thesis, then, is a logical development

of a general theory of neutron wave propagation., This theory will be
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developed, insofar as possible, from the exact classical equation
describing neutron transport--the Boltzmann equation. As mentioned
earlier, motivation for such a theory has been provided not only by
recent experimental work with modulated neutron sources, but as

well by a desire for a deeper physical and mathematical understanding
of the propagation of plane wave disturbances in the linearized kinetic
theory of gases.

The propagation of thermal neutron waves in moderating
media of both infinite and finite dimensions will be analyzed. Two
basic techniques will be developed for the treatment of specific
problems in wave propagation: a method using the spectral repre-
sentation of the Boltzmann operator and an integral transform tech-
nique. While the latter technique appears easier for infinite medium

problems, the more general applicability of the eigenfunction method
| will be indicated és well as its more direct physical interpretation.,

The general mathematical theory of neutron wave propagation
is developed in Part I of this thesis. In Part II the validity of the
theory is demonstrated by applying it to understand existing neutron
wave experiments as well as to suggest several more advanced experi-
ments.

However it must be emphasized that the understanding and
analysis of such experiments in themselves should not be regarded as
a suitable goal for this thesis., Indeed such an analysis could probably
be accomplished with much less effort using much less sophisticated

models. Rather the more general theory is developed to add to the
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growing understanding of non-equilibrium kinetic theory and to pre-
dict and understand phenomena which are not yet accessible to
experimenters in neutron physics (and are of only marginal interest
to reactor technology in general). Such motivation underlies much

)

of the more advanced Work(q‘2 in neutron physics and is certainly not
unique to neutron wave propagation. However rather than justifying
the theory of neutron wave propagation merely for its own sake, we
shall appeal to other very closely related areas in kinetic theory in

which such analyses have much broader physical significance and

importance to technology.



PART 1

A GENERAL THEORY OF NEUTRON WAVE PROPAGATION



INTRODUCTION
The transport of neutrons in a homogeneous, nonmultiplying

(26)

medium can be described by the linearized Boltzmann equation

—-g% +vegrad = -\)Et(v)f(_l: Vo t) +§§§ dS_Y'v'ZS(X"—’X)f(_I:,_\:',t)

+ S(r,v,t) (II-1)

Here f(E ’X’t) is the neutron distribution function of space r, velocity
v, and time t; S(r,v,t) is the source distribution; Zt(v) is the
macroscopic total cross-section; and ZS(_Y'—*_Y) is the differential
scattering cross-section ("scattering kernel") for scattering from
velocity v' in d3x' to v in d3_\_r.

This equation merely expresses a neutron balance condition,
i.e. that the substantial derivative, D/Dt = 8/0t t+v.grad, of
f(r,v,t) is equal to the change in f(r,v,t) due to collisions and
source neutrons, In general Zt(v) and ES(X'-’X) are given functions
which must be determined from either quantum-mechanical calcula-
tions or experimental investigations of neutron-nuclei scattering.

To study the propagation of neutron waves, one examines the
neutron distribution resulting from a modulated source with time
behavior eiwt which is applied at a boundary of the system. In
practice, this oscillating source is superimposed upon a static source,
thus avoiding the conceptual difficulties of negative fluxes, Of pri-
mary iﬁterest will be the "steady-state" or long-time response of the

neutron distribution to the oscillating component of the source after
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all time transients have decayed away. Hence we shall only concern
ourselves with solutions to (II-1) which have a time behavior of
iwt
e .
Since it will usually be possible to choose a coordinate system
along a wave vector K when discussing plane wave solutions (II-1)
-K» rtint

of the form ¢(v)e — , it suffices to consider one-dimensional

geometries such that (II-1) becomes

of of
51 T Ve T VELAVI(x,p,v,t)
1 @ iwt
=S\ dp'g dV'V'ZS(V"”V,p.""}.L)f(X,;.L',V',t) + S(x,p,v)e
-1 o)

(II-2)

Here, of course, v= 1_\:] and p=Eve K/[_x_;] [ﬁl and the oscillating
character of the source has been explicitly indicated.

The general theory of the propagation of wave-like disturbances
in a neutron distribution will now be developed by considering the
steady-state solutions to equation (II-2) subject to suitable boundary
conditions. The only essential assumption is that the medium be non-
multiplying, homogeneous (isotropic), and of time-independent compo-
sition,

From time to time more specific results will be obtained for
more restrictive models. The additional assumptions to be made will
usually involve approximating the form of the scattering kernel, e.g.
by assuming isotropic scattering, degene.rate kernels, etc. These

assumptions will be made only when necessary, and unless otherwise
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indicated, the theory developed in this first part of the thesis will
be based on the model represented by equation (II-2) where Zt(v)

and Es(v'—'v,p'—* i) are regarded as essentially arbitrary

functions,
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II. A SPECTRAL ANALYSIS OF THE BOLTZMANN
WAVE OPERATOR

A, INTRODUCTION

i. Reduction to an Eigenvalue Problem
Our primary goal, at least from a mathematical standpoint,
is to obtain the steady-state solutions to equation (II-2) for various
boundary and source conditions. A very powerful technique for
obtaining these solutions involves the use of separation of variables
to reduce equation (II-2) to an eigenvalue problem. To be more

specific, consider solutions to the homogeneous Boltzmann equation

of of
5t + pv B + th(v)f(x,pL,v,t)

+1 gl o]
= S dp"S dv'v'Z)s(v"—’v,p.'—'p)f(x,p.',V',t) (II-3)
1 o}

Guided by the harmonic time dependence of the source and the invari-
ance under spatial translation of this homogeneous integro-differential
equation, one seeks elementary solutions to (II-3) in the form of plane

waves

£(x 1, v,t) = Flkspu,v)e K% 0k (I1-4)

where K is an arbitrary complex constant, F(k;u,v) is an as yet
undetermined function of (u,v), and w is real and fixed at the source
frequency.

Substituting this form of a solution into equation (II-3) yields
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a restriction on Kk and F(K;u,v)
[io +vZ (v) - kpv] Fksp,v)
+1 00
=S dp.'g dv'v'ZS(v'—'v,p"—' W F(kp',v") (11-5)
-1 o]

But recognize that this two-dimensional integral equation is just an

eigenvalue problem for the eigenvalues K and the corresponding

eigenfunctions F(k;p,v).

It is convenient to transform (II-4) into a slightly different

form by defining

b (u,v) = V'I\’E(% F(k;p.,v)

~ |M 1
ZS(V'#V’P"”P‘) = \;M((;r;) Zs(v,—’V’P‘"’H)

where M(v) is the Maxwellian distribution,

. Z (v)
1w t
: [’ﬁ; + m ] LIJK(P"V)

§+1 (OO gs(v'—-’v.u"’u) ( ) ( 6)
- dp.! dv' Y (p'sv') = kg (n,v) (11-
RN s K K

Then (II-5) becomes

One can use detailed balance(26)

vIMv)Z_(vi=v,p'=p) = VMV Z vy, - -p)

and parity invariance to show that the kernel in (II-6) is now sym-

metric. Notice that we have also written (II-6) in the more standard
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form of an eigenvalue problem

= ' -t
.AQJK = ICLbK (I1-6')
where
. Zt(v) +1 0o ) (v'=v,p'—u) Boltzmann
A= [.L‘*i + .+ |- g dp'g dv' —= . Wave
b b -1 o p'p Operator
~ , \ /
A ' Az (11-7)
Streaming N Scattering
Operator Operator

and LIJK(p.,v) is the eigenfunction corresponding to the eigenvalue K.

In principle then, if (II-6) could be solved for the eigenvalues
and eigenfunctions of A, and it could then be demonstrated that these
eigenfunctions formed a complete orthogonal set, one whould have
available an extremely powerful tool for treating problems involving
not only infinite sourceless media, but also finite media and media
containing distributed sources. To treat these latter problems one
would merely expand their general solution in the eigenfunctions of A,
and then use boundary conditions to evaluate the ‘expansion coefficients,
Thus in some sense, we have succeeded in reducing the problem of
neutron wave propagation to a study of the eigenvalue spectrum of the
Boltzmann wave operator A,

Now unfortunately (II-6) is more complicated than the standard
eigenvalue problems of mathematical physics. The operator A is

i) not completely continuous

ii) unbounded
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iii) non-self-adjoint.
A rigorous analysis of the spectrum of A is therefore quite difficult
and involves rather deep mathematical concepts. A sketch of this
analysis has been placed in Appendix B. The principal results will

be presented and discussed in the remainder of this chapter,

2. Some Preliminary Concepts
First it is useful to summarize briefly some concepts from

functional analysis (27,28) .

We shall consider our operators defined
on a Hilbei't space £2 (that is, a complete linear space whose metric
is derived from a scalar product). To be more precise, define the
sets

IHE{p:pC[-i,H]}, IVE_{v:VC[O,oo)}, GEIp@Iv

Now let £2(G) be the Hilbert space of complex-valued, square-
integrable functions defined over G. The inner product will be chosen

as

+1 00
(f:g) = S dp'S' dv f(P':V)g(P"V) (II-8)
-1 o}
The vector norm is then
21| = (5,0 2 Ca-9)

while the operator norm is

Iall= focsy@} 120

(I1-10)
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Now to every operator A we can associate an eigenvalue

spectrum ¢(A) by considering the problem

(A-Kf=g (II-11)

We shall say that the inverse of (A - K) exists if for any g €R(A - k),
there exists a unique f such that (II-11) is satisfied. [Here R(A - k)
denotes the range of (A - k).]

We define the resolvent set p(A) of A as the set of all

values of k¥ for which the inverse of (A - K) exists and is a bounded
operator, while R(A - k) = & (G). [ A bounded operator A is one for
which for any ¢ CS,Z(G), there exists a ¢ < o0 such that

llag|] <clle

to be the spectrum o(A) of A. That is, the spectrum of the

.] The complement of this open set p(A) is defined

operator A 1is the set of all Kk such that (A - k) fails to have a
bounded inverse. This spectrum can be decomposed into three

disjoint sets:

o_(A): 1If the inverse of (A - K) does not exist, then K is said to
P be in the point spectrum o,(A).

o‘r(A): If the inverse of (A - K) exists, but R(A - k) is a proper
subset of £5(G), then Kk is said to be in the residual spec-
trum op(A).

o-c(A): If the inverse of (A - K) exists, R(A - k) = SZ(G), but the
inverse of (A - k) is an unbounded operator, then K is
said to be in the continuous spectrum o.(A).

Notice that

a(A) = d‘p(A) U O‘C(A) U crr(A)
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With this background, we shall now proceed to study the eigen-
value spectrum o(A) of A. It is convenient to study the cases of
noncrystalline and polycrystalline moderators separately because of

the significant differences in the form of A for each case,

B. NONCRYSTALLINE MEDIA

i. Introduction

For noncrystalline media, the total cross-section Zt(v) is a
continuous, monotonically decreasing function of v. For low v,
Zt(v) ~ a/v, diverging as v~ 0. For high v, Zt(v) approaches a
constant, ZM.

The behavior of the scattering kernel ZS(V'_’V, p'—p) for
high (v,v') coincides with that of a rigid sphere monatomic gas. For
intermediate and low (v,v') this behavior is much more sensitive to
the detailed mechanism of molecular binding. However several

general statements can be made concerning the symmetrized scatter-

ing operator
- +1 +Q0 ~
gES‘ dp."g dv' Zs(v'—’v,p.""p,) .
-1 o '

(29)

i) monatomic gas: Detailed calculations by Dorfman have

demonstrated that while 'Zws(v'*-’v,p.’—’p) is not square-integrable,

its third iterate is square-integrable., This is sufficient to imply

~

that 8 is a completely continuous operator.

ii) solids in the incoherent approximationiz Kuscer and Corngold(30)

1

Solid media for which coherent scattering can be neglected.
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have shown that the angle-integrated scattering kernel Es(v',v)
is square-integrable for low and intermediate (v,v'). Since it
must reduce to the monatomic gas kernel at high (v,v'), they
conclude that g is comple’gely continuous in this case,

iii) liquids: These authors(30) have found that the kernel for liquids
also possesses a divergence at low (v,v'). However it is con-
jectured that an iterate of the kernel is square-integrable, thus
insuring complete continuity of g,

Hence we shall characterize the noncrystalline moderators by

a smooth, monotonically decreasing Et(v) and a completely continu-

ous scattering operator g,

2. Classification of the Wave Operator A
We have separated the operator A into a multiplicative opera-

tor .A1 and an integral operator A2

; Z (v) +1 oo z (v'i—=v,u'—=p
A= —-‘%+ o —-S‘ dp.'Sv av' £ | =4t A,
P M -1 o o'

(I1-7)

One can demonstrate the following properties for each of these opera-

tors (see Appendix B):

iw Zt(v)
The Streaming Operator: A1 = | =+

BV B
1

However A1 is a normal operator [AIA1 = AiAI] . Furthermore

A1 is unbounded since the divergence of Zt(v) as v~ 0 means that

It is obvious that A, is not self-adjoint [(f,Aig) # (Aif,g)] .
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there exist functions f(u,v) €£,(G) such that HA1f|! 4 M||f]|| for

any M.

+1 oo gs(v’—*v,p.'**pu)
The Scattering Operator: AZE -S dp.'S dv' .
-1 o]

N

This operator is obviously symmetric and thus self-adjoint.

: gs(v'—'v,p'—'p)
It is demonstrated in Appendix B that is not square-

N

integrable. However there is some reason to hope that an iterate of

~

this kernel is square-integrable provided § is completely continuous.

Thus we shall assume that .A2 is a completely continuous operator.

3. The Spectrum o¢(A) of A
We can now examine the spectrum of A = A1 + A2 where A1
is a normal, unbounded, multiplicative operator and AZ is a self-
adjoint, completely continuous integral operator. This analysis is
rather long and is presented in detail in Appendix B, The results of

the analysis can be summarized in the following theoremzz

THEOREM I: The Boltzmann wave operator A for noncrystalline
media decomposes the spectral K-plane as follows:

iw Zt(v)
o (A) = C where C= {K:K = ¥ 4
c v m

,w€l-1,4],vE[0, )

o_(A): A point set lying in those regions of the first and third
p quadrants such that k ¢ C.

zIn this theorem and in Theorems II and III it has been convenient to
assume that there are no point eigenvalues imbedded in o_(A) |i.e.,
(I1-14) and (II-30) possess no nontrivial solutions for k€CU I"][.
This assum)ption can be relaxed with only slight complication in the
analysis(37 .



~-19-~

vr(A): An empty set.

p(A): All other points of the K-plane not contained in the
spectrum o(A).

Proof: Given in Appendix B.

A sketch of the spectral plane is given in Figure 1. More
detailed diagrams of ¢(A) for typical moderators are given on p. 30.

By returning to (II-5), one can give a more detailed expression
for the point spectrum (rp(A). Begin by defining an effective emission
density

+1 ~ 00
T (K50 ,v) ES du's dv'v'Z_(v'=v,p'p)Fee',v') (I1-12)
. -1 o)

so that (II-5) can be rewritten as
[iw + th(v) - Kpv] F(k3p,v) = T(K3p,v) (IT-13)

(which is equivalent to (A - K)LIJK = 0 and thus should yield the discrete
eigenvalues). To derive the characteristic equation defining the dis-
crete spectrum, restrict K z( C and divide through in (II-13) by

[iw + vZ (V) - Kpv] . Then multiply through by v'Zs(v'*v,p,'—' B s

integrate over p.' and v, and use (II-12) to obtain

+1 fo's) V'ZS(V"""'V,IJ."" )
T (K3, V) =S dp'g dv'; % Fksp'sv")
-1 o [iw + th(v) - Kkp'v']

k ¢ C (I1-14)

This integral equation represents an associated eigenvalue problem

determining the discrete eigenvalues Kj Co-P(A) and the "associated
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¢ = Im{K} K - plane
Z,‘(v)
v
o'p(A)
% %
% C

Figure 1. A Sketch of the Spectral K-Plane for Noncrystalline Media
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eigenfunctions" f(k;u,v). In future discussions, equations such as
(II- 14) which define the point spectrum will be referred to as the

"dispersion law" or "dispersion relation" for the system of interest.

It will be convenient to rederive the dispersion law under the
assumption of isotropic scattering in the Lab system, i.e.

Zs(v"—*v,p.'-* () =-12- Zs(v',v). Then if one defines

+1

N(k;v) 53 dp. F(Kk;p,v) ,
-1

(II-13) can be rearranged and integrated over p to obtain

—

1 iw + VZ,C(V) + Kv 00
o) = 1,1 ! exr! -
N(k;v) = >R in 7 VEt(v) o S‘o dv'v Zs(v ,VIN(k;v')  (II-15)
kg C

as the associated eigenvalue problem corresponding to (II-14),

These dispersion laws (II-14) and (II-15) will be discussed in

more detail in section (II-E),

4, The Eigenfunctions of A
We shall now derive the form of the eigenfunctions correspond-

ing to o(A).

Discrete Eigenfunctions: & ¢ C

These can be found directly from (II-13) as

f(Kj;u,V)
iw + VZt(v) - ij.v

F(Kj;p:v) = Ky € o-p(A) (II-16)



-22-

where the f‘(fcj;p,v) and Kj must be found by solving (II-14). Note
that since the kernel of (II-14) is square-integrable for K(¢C,
f(l{j;p,v) will certainly be contained(zs) in SZ(G), thus implying
F(Kj;p,v) €£2(G) as expected. Now it may happen that (II-14) pos-
sesses solutions which are in £2(G) even for K¢ C. Since this means
that there exist nontrivial f such that (A - k)f = 0 for K€ C, these
would correspond to point eigenvalues imbedded in the continuous
spectrum O‘C(A). However such "imbedded" eigenvalues should more
properly be regarded as a special subset of the essential spectrum
(which contains all limit points of o¢(A) ) and will be considered in

more detail below,

Continuum Eigenfunctions: K€ C

We recognize that the eigenfunctions corresponding to the con-
tinuous spectrum will not be contained in £2(G). Thus our Hilbert

space must be extended to include more general functions--and, in

(28)

particular, distributions in the sense of Schwartz --when discussing

the continuum eigenfunctions.

(24) (31)

Generalizing the work of Case and Bednarz & Mika

suggests the form of the eigenfunctions corresponding to « €C

Flkip,v) = o +:£:i$),‘:)lfuv FNMK6 [(wsv) - (wv),]  KEC  (1-17)

where (p,v)K denotes the ordered pair such that

iw t th(v) - Kpv =0

is satisfied for a given K. Here MK) is, as yet, un-

specified.
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Notice that one can distinguish two sub-classes of continuous spectra:

a) K€ C, Nk)# 0: This case corresponds to what is usually called
the continuous spectrum.

b) K €C, XNk) = 0: These K must be isolated (by the identity theo-
rem of pseudo-analytic functions), correspondto square-
integrable eigenfunctions, and hence are the "imbedded"
point eigenvalues referred to earlier. We will show later
that (k) = 0 implies the dispersion law (II-14) is
satisfied for some K€ C.

Now it is hoped that the spectral representation of the general
solution to our original problem, (II-2), can be written as an expansion

in these eigenfunctions

~-K.x tiwt
fx,p,v,t) = Z a‘jF(Kj;P"v)e

. A,
I{J €0‘p( w)

+ §§ AKF (K, v)e K% 1ot gy (11-18)
Clw)

where the frequency dependence of the eigenvalue spectrum o(A) has
been explicitly indicated. However several questions must be
answered before one can make use of (11-18). First one must investi-
gate the question of completeness of the eigenfunctions
{F(K;o-,v);fc Co‘(A)} ; that is, one must determine for what class of
functions an expansion such as (II-18) is possible, Of comparable
importance is a prescription for the evaluation of the expansion
coefficients a. and A(k) for given boundary and source conditions,
As we shall see in more detail in Chapters IIl and IV, the queétions
of completeness and coefficient evaluation are intimately related and

are quite different for full- and half-range expansion problems.
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C. POLYCRYSTALLINE MEDIA

1. Introduction

The form of the wave operator A is somewhat different for
polycrystalline materials such as graphite or beryllium. There are
essentially two major variations from noncrystalline media: Zt(v)
is no longer smooth and monotonic in v and indeed can exhibit
essentially discontinuous behavior; in addition, the scattering operator
g is no longer completely continuous. Both of these effects are due
to the diffraction of the neutron wave function by the ordered crystal
lattice.

To be more precise, we note that in general one can write
v v,plp) = Dilvivaptp) 2 (i voptp)

where Zi(v'—*v,p.'—* i) is that portion of the kernel due to inelastic
scattering. It is reasonable to assume that the operator associated
with incoherent inelastic scattering is completely continuous since it
is similar to those discussed in our treatment of noncrystalline
media. The operator corresponding to coherent inelastic scattering
will not be completely continuous. However since we expect this type
of scattering toAcontribute very little to the total scattering cross-
section, we shall henceforth ignore coherent inelastic scattering.
Now Ze(v'—'v,p.’—> p) is due to elastic scattering and can be

wfitten(26) as
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Zinc -ZWD
Ee(v'—’v,p.""p.) = e e §5(E'- E)

incoherent elastic

-2wW

= 3
coh (2m) 5(k - T)e D

+
41 Vo

8(E'- E)

p
coherent elastic

2z, -2W = 3 2w
=[ inc, D, _coh (————f;’) 26(_1_6-1)6 D]é(E'- E)
(o]
=

4 4
- (I1-19)
where wp is the Debye-Waller factor, V., is the unit cell
volume, T isthe reciprocal lattice vector, and K
is the momentum transfer vector.

We shall rewrite (II-19) as
T _(v'=v,p'—p) = (VPR p)élv'-v) (IT-20)

It is obvious that Ze(v'—*v,p'—'p) is not square-integrable due to

the v5(v'- v) term. [ By definition, elastic scattering from a solid
implies essentially no energy change because the mass of the poly-
crystal is many orders of magnitude larger than that of the neutron. |
In fact if one considers the elastic coherent scattering in detail, even
the angular scattering probability P(u'—u) will contain delta functions
in angle and thus will not be square-integrable in p. However to allow
- further analysis, we shall be forced to treat elastic coherent scattering
in an approximate fashion by assuming that P(u'—p) € 'SZ(Ip.)' Hope-
fully this approximation will not invalidate the qualitative results

(22)

obtained in the following analysis
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2. Classification of the Wave Operator A
Using (II-20), we can write the symmetrized wave operator

for polycrystalline media as

- ~s
> T o+ Z (v v,p'—
A lio V) . _S‘ dp'gmdv' (VI ) .
BV [ -1 o 1

k'
\ ~ J/ N ~ w4
A4 )
~ +1 ’1‘3/( S )
+ 1. Ze(v)s dp'———E-———E— . (IT-21)
-1 Ve'p
A3

Now as before, A1 is an unbounded, non-self-adjoint, but normal

operator. A2 is again self-adjoint and completely continuous. We

have only to consider A3.

i S,
The Elastic Scattering Operator: A3 = —Ee(v)j dp' Pl p) .
-1 Tt

Now A3 is certainly bounded and self-adjoint. It is not
completely continuous however because of the 6(v'-v) term which

yields a multiplicative operator in v.

3. The Spectrum o(A) of A
Now we examine the spectrum of A = A1 + A2 + A3. The
details are given once again in Appendix B, and the resulting spectral

theorem is:

THEOREM II: The Boltzmann wave operator A for polycrystalline

media decomposes the spectral K-plane as follows:



Zt(V)
BV R

,}J.Q[-i,’f'i] ,VE[O,CD)}

and I’ is the set of all K such that

+1 1 '
' Pp — ol
h(ksp) = vEe(v)S_l dp [mvg:(v) ‘j),cp.v] hik;p')  ve[0,om)
’ ‘ (11-22)

possesses non-trivial solutions h(k;p) .

o _(A): A point set lying in those regions of the first and third
P quadrants such that K ¢C Ur.

o‘r(A): An empty set.

p(A): All other points of the K-plane not contained in the spectrum
a(A). :

Proof: See Appendix B.

A sketch of the spectral plane for polycrystalline media is
given in Figure 2. A few comments concerning such diagrams are nec-
essary. It has been assumed throughout this chapter that the frequency
w was reai and fixed., However when one actualiy' perferms a wave
experiment, the source frequency w is varied as an independent
experimental parameter, and the subsequent behavior of the eigen-
values is observed. It is important to recognize that both the point
spectrum o*p(A) and the continuous spectrum O'C(A) are dependent
upon w., Thus as one varies w, o{A) changes position in the
K-plane,

Whenever the eigenvalue spectrum is sketched in the k-plane,

crc(A) will usually be depicted for a given fixed frequency. However
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it will be useful on occasion to study the spectrum for all w. Then
it will be convenient to plot the spectrum using frequency-dependent
coordinates. An inverted spectral diagram will then be used such that

one plots

Notice that v
ph

responding plane wave mode, while L is its corresponding attenuation

can be interpreted as the phase velocity of the cor-

length.
The following diagrams depict C for various materials, both
in the first quadrant of the K-plane and on the inverted diagram.
Theorem II indicates tha1': the operdator A3 adds a new region
I to the continuous spectrum o‘C(A). To demonst?ate that this set

is given by the equation (II-22), one studies the eigenvalue problem

[A1 + A3]§0K(P- 9V) = K‘PK(]J« :V)

or equivalently

A+
[iw+vZ, (v) - kuv] HiKsp,v) = vze(v)j dp'Pp'— p)H(x3p' ,v)
» -1

(II-23)

since it is shown in Appendix B that o-c(A) = o-C(A1+A3) . Note that v
appears in (II-23) only as a parameter. Thus (II-23) may be regarded

as an effective one-velocity problem for each value of vE€[0,m). If
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£ =Im{K}

K — plane

77 SN
k\W\P&* :/* a - Re {K}

Figure 2. A Sketch of the Spectral k-Plane for Polycrystalline Media
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Q = Re {K} (em™)
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Figure 3. Plots of C for Typical Moderators
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one analyzes the eigenvalue spectrum of (II-23) treating v as fixed,

then o (A +A3) can be generated by letting v vary between 0 and

c(i

.
Since P(p'--p) is assumed to be £Z(Ip) , equation (II-23) will

have both a point spectrum p, as well as a continuous spectrum given

iw Zt(v)
pv B
generate the total continuous spectrum of A1+A3, one lets v vary,

,p.€[—1,+1]} for each value of v€[0,). To

sweeping out not only the previous

continuum C, but in addition a - 2/0,79
sequence of curves I' from the { ////
point spectrum of (II-23) for fixed L : P/;;%y
v. In the usual manner one can - P "“";\,
‘derive the characteristic relation M/\?y |
for the "discrete eigenvalues" of o /,// _x_y}f

- /

(II-23) by restricting K¢ c, divid-

ing through by [ iw +v2t(v) - Kuv]
multiplying by P(u'—), and inte-
grating over p to find that I' is the set of all Kk such that (II-22)

is satisfied. Of course this is just the dispersion relation for an
effective one-velocity problem,' allowing for anisotropic scattering.

In general one expects that (II-23) will have an infinite point spectrum
p (see Mika(32)) resulting in an infinite number of curves in I'. One
also expects that p will possess a limit point contained in c¢, giving
rise to the conjecture that the curves in I' tend to merge into an area

as they approach C.
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To determine the effects of the elastic scattering on the point
spectrum, we can derive the dispersion law for polycrystalline media.

Equation (II-13) now becomes
[ iw+v2t(v) - Kpv] F(K;p,v) = fi(K;p.,v) + vZe(v)fe(I{;p.,v) (T1-24)

+1 0
where fi(lc;p.,v) ES‘ dp.'g dv'v'Zi(v'»v,p'-‘ wE KR, v
-1 0

+1
f (K, v) 55 dp'Pp'— p) F(k;p', v) (I1-25)

-

As before, divide through by [iw +v2t(v) - Kpv] , multiply by

V'Zi(v'—’v,p,'-*p) and integrate over p and v to find, using (II-25),

' +1 o'l va.l(v'-*v,p"—’ )
. - 1 ' ! !
fi. (K3p,v) —5_1 dp. S‘o dv {{ iw+v'2t(v') = K}J.'V'T} fi(KsP- » V')

+1 o0 v'Z A(v'=v,u'p)v'Z (v)
+§ ap') dv'{ L e } (k' v")
1 o [ im'l'v'Zt(v') - Kkp'v'] e

kgcC (1I-26)

To obtain a second relation between fi(K;p.',v) and fe(K;u,v), divide
(II-24) again by [ iw +vZ(v) - Kuv] , multiply by P(p'—p), and inte-

grate over ., using (II-25) to obtain

+1
1 P([J,'—» H) o
1 dp {[ iw +v2t(v) - K"V } fi('fsp- 2 V)

) = §

+1
' Pp'—p) oy
+ Vze(v) S_i dp. {[ i +V2t(v) _ K}J.'V] } fe(K’P' 9V) K ¢C

(11-27)
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Now (II-27) and (II-26) represent a rather complicated pair of coupled
integral equations for f.l(h’;p,,v) and fe(f{;p,v). Together they define
the new dispersion law for the discrete eigenvalues. To simplify

further, note that for K¢ I"' we can formally invert (II-27) as

+1
. - o1 ' Pp'—p) ey ! ~
T (sp,v) = & 3 ‘S‘_i dp. [[ ot v3 —I{u'v]:l f.(&p .V)g (11-28)

where we define

£ {olp,v)} = olp,v) - vZ £V)§+1du' Plp’=p) | o(p',v)
g P IS @R ) _ M tvE () - rpiv]) T

(I1-29)

Now substitute (II-28) into (II-26), and use the fact that

+1
. -1 | Plp'—p) 15 (et

=& {f (0} +[1 - & 17 (kp,v) = T (K5p,v)

to rewrite the final form of the dispersion law for crystalline media

as

; +1 © v'Z (vi=v,p ' p) -1
(K3, v) =5 d 'S dv' & {f . (ksp',v")
A -1 " o [iotv'Z(v') -kp'v']) © iyt v}

kgcUI (1I-30)

A similar expression can be derived for the case of isotropic

scattering, i.e. Zli(v'“'*v,p'-—*p) 5-12— Zi(v’,v); Pu'—w) E-% +« Then
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+1
o {Ksp,v) =§ du'F k3", v) = N(k;v)

-

and

8.1 8 e} — [ U] T (g, v)

where we have defined the "elastic dispersion law"

vze(v) +1 du
Ae(I{;v) =1 - > 5-1 o TVE V) - v (I1-31)
One can immediately recognize the analogue to (II-15) as
{ ; [iw tvZ (v) +Kv:l oo _
. — | J— 1 oxyl
N{t;v) = Ae(K;v) 2KV In iw +v2t(v) - Kv S; dv'v Zi(v »VIN(K;v)
(11-32)

as the dispersion law for polycrystalline media under the assumption
of isotropic scattering. Note that if Ze(v) = 0, then equations (II[-30)
and (II-32) reduce to (II-14) and (II-15), respectively--the dispersion
laws for noncrystalline media.
One other feature of the
theory in polycrystalline media
might be mentioned at this point.
In general, the total cross- Z(V)
section for elastic scattering is

actually discontinuous at a certain

speed, vy corresponding to the

=
/

fact that neutrons of wavelength Va v

(X~ 1/v) greater than the lattice
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dimensions can no longer suffer coherent elastic scattering in the
crystal. This jump in the cross-section is commonly referred to as
the Bragg cutoff, while the velocity vy will be called the Bragg
velocity. Of course there will be similar jumps at shorter wave-
lengths comparable to multiples of lattice dimensions, but the
dominant effect occurs at Vye Such behavior produces rather inter-

esting consequences as we shall see later,

4, The Eigenfunctions of A
As before, we can derive the form of the eigenfunctions cor-

responding to o(A):

Discrete Eigenfunctions:

Using equation (II-24) and (II-28), we find that the discrete
eigenfunctions can be written as

-1 .
£e {fi(Kj:P«,V)}
iw +v2t(v) - ijv

F(Kj;p,v) = I{jC crp(A) (I1-33)

Notice that these are similar to the eigenfunctions for noncrystalline

media (II-16) with the exception of the inverted operator .C;i.

Continuum Eigenfunctions:

The usual eigenfunctions corresponding to K€ C become

S (k7))

F(«;w, = + 5 - ’
(K3p,v) [+ (0) - ] MK)S[ (usv) - (uov), ] K EC

(II-34)

where the notation is similar to that in equation (II-17).
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However there are also eigenfunctions corresponding to those k€ I

After some manipulation, one can show that these take the form

S ) VB
[iw+vE(v) - kpv] [0 +vE (V) - kpv]

Fip,v) = V(K)6v-v,) kT

(II-35)
where for a given k€ I', (II-22) is satisfied for v = vk. »

D. MULTIDIMENSIONAL TRANSPORT EFFECTS

i. Imntroduction

Thus far the analysis has been restricted to the propagatién
of plane neutron waves in an infinite medium. However most neutron
wave experiments involve the excitation of such waves in parallele-
piped geometries. While it is reasonable to treat these geometries
as infinite in length (neglecting wave reflections from the far boundary),
the effecté of finite transverse dimension cannot be so easily ignored.

We shall now proceed to indicate the necessary modifications
in the analysis of ¢(A), Choose the indicated coordinate system to

rewrite the Boltzmann equation (II-1) as

of of ’ 2 of . of
Bt +l"'v'é—>'c tveyl-p (COSLP'g; +SlnLIJ*é'E)""VZt(V)f(}'_,[.L,lP,V,t)

o A AA
= S\ dv'S.dQ'v'Zs(v""v,Q-Q')f(_x:,p',kp',v',t) (I1-36)
<, O .

To treat the spatial dependence in the transverse y-z dimensions,

it is convenient to use "asymptotic reactor theory"(33). That is,

we assume a plane wave ansatz of the form
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f(E:H’Lp:V;t‘)
_ i(B_y+B _z) .
= Flpip,b,vle PXe ¥ 7 etet

where By’ Bz, and w are real

and fixed, while p and F(p;p,b,v)

kb>

are as yet unspecified. Substi-

tuting this ansatz into the Boltzmann

equation (II-36), we arrive at the

eigenvalue problem for p, the ';
spatial eigenvalue for finite -
transverse dimensions,
[iw+v2t(v) +iv Vi - pZ(Bycos g+ stinLlJ) - ppv] Flpsp,y,v) = 8F
(I1-37)

Of course for infinite transverse dimensions, By’ Bz ~— 0 and (II-37)

reduces to (II-5) [ and thus p — k].

2. The Spectrum O'(AT) of AT

We can identify the Boltzmann wave operator for finite trans-

verse dimensions, A'T, as

. Z(v) \f 2 '
= '}&)‘ + t + 1 1 -H + i L[]
AT v m i m (Bycos P stm y)
~ A A
oo Z (v'=v,2 QY
+ -S‘dﬁ'g dv' —= . (1I-38)
o i

T

The analysis of the eigenvalue spectrum of AT is quite similar to

that presented in Appendix B, Only the results of this analysis shall
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be presented here:

THEOREM IIla: The Boltzmann wave operator AT for noncrystalline
media of finite transverse dimension decomposes the spectral

p-plane as follows:

Z,v)
o-C(AT) = CT where CTE ;P:P = m
5 ,
+l[__(*_)_+_._1_:&_.(B cos iy +B 51n¢)] ’
pv B y o z

P‘C{"i:'*'i] :LPQ[O:ZT"] ’ VE[Osm)}
o_(Ar): A point set lying in those regions of the first and third
p" T A :
quadrants in which p CT.
o-r(AT): An empty set.

p(A): All other points in the p-plane not contained in the spectrum
T A) P p-p P
i .
T

Proof: Similar to those presented in Appendix B,

THEOREM IIIb: The Boltzmann wave operator AT for polycrystalline

media of finite transverse dimension decomposes the spectral

p-plane as follows:

o;_(AT) = CTU I where

Zt(V),+ iL-‘*—’- § Viop?

P v D

CTE pip = (B_y_cos g+ stin\p)] :

wE Lo, 41], 4€10,20]  vE [0,

and I‘T is the set of all p such that
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h{p;p, )

A PO '~
= vze(v)g dﬂ'[ ( Z,‘ ]h(p;u',th')
iw+vZ (v) +ivyi-p"(B_cos ¢ +B_siny)-puv,
t vy z

allv € [0,00) (II-39)
possesses non-trivial solutions h(p;p,v).

v (AT): A point set lying in those regions of the first and third
P quadrants in which p& CT PT'

crr(AT): An empty set.

p(A): All other points of the p-plane not contained in o(A.).
T P P T

Proof: Similar to those presented in Appendix B.

In Figure 5 we have sketched ch(AT) for BY = BZ # 0, Notice
that for polycrystalline media, the sub-Bragg continuum CBB
billows out into an area. This expansion of a line c’ontinuum into an
area continuum occurs even for w= 0, giving rise to area continua

in the static diffusion length problem for systems of finite transverse

dimensions.

Now although one can easily derive the associated equations
for discrete eigenvalues analogous to (II-14) and (II-30), it is particu-
larly revealing to consider the case of noncrystalline media and

(33)

isotropic scattering. Then one can show that the associated eigen-

value problem for o-P(AT) becomes
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. 2 L2
{ {1w+v2t(v) +V\Ip - B“'J
In
B

00

dv'v'Z (v',v)N(p;v")
. 2 2 ‘S_‘ s ? ]
iw +v2t(v) - v\[p - By

o]
2 _ 2 2 )
where B = BY +B_, o Cr (11-40)

But comparing this equation with the dispersion law (II-14), we
recognize that the effect of finite transverse dimension upon o*p(A)
is merely to shift the point eigenvalues from K to p = VI{Z + Bj‘?_‘ .
Note that this is what one would have expected from elementary
diffusion theory.

Much of the subsequent analysis will be concerned with the
theory of one-dimensional neutron wave propagation. However, as
we have just shown, to adapt these results to the more realistic
situation bin which transverse dimensions are finite, one merely
modifies c-c(A) and o-p(A) as outlined above. From time to time
we shall indicate these modifications as well as their implications

for experiment.

E. THE POINT SPECTRUM O‘P(A)

1. General Discussion
It has been shown that the point eigenvalue spectrum is given

by an associated eigenvalue problem3

3Most of the analysis of this and subsequent sections will be given for

noncrystalline media., However an effort will be made to indicate
extensions and differences arising in the treatment of polycrystalline
moderators.,
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+1  poo v'Z (v v,p'—p)
%[ 2 f(K;H'sV’)

f(lf;p.,v)=5 dp.") dv'
1 o

iw +V'Zt(v') - kp'v']
kg C (I1-14)

As it stands, (II-14) is quite complicated, since it is a two-dimensional
Fredholm integral equation as well as an implicit eigenvalue problem
[i.e., it cannot be factored into the form HfK = KfK] . But perhapé

the most severe difficulty concerns the kernel

V’Zs(v'—'v,p,'—’p.)

K(v',pv,p) = (II-41)

[iw+v'Z (v') - kp'v']
It is impossible to symmetrize this kernel into a form such that
Kiv',u'5v,u) = Klv,pv',p)

[ although one can construct a kernel such that ’I\{/(v',p';v,p) =
%/(v,p.;v',p’) ]. Thus even the associated eigenvalue problem for the
discrete eigenvalues is non-self-adjoint. This was expected since the
discrete eigenvalues are known to be complex. Unfortunately, the

standard methods(30 »34)

used to treat the point spectrum of the
infinite medium initial value problem and the static diffusion length
experiment are inapplicable to such non-symmetric kernels., Hence
alternative techniques are necessary. We shall first direct our

~attention towards developing necessary conditions for the existence

of a point spectrum O‘P(A).
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2. Theorems Concerning the Existence of Discrete Eigenvalues
Of course the first question which should be answered is
whether the point spectrum crp(A) is ever an empty set, i.e. one
must determine when discrete eigenvalues exist. Earlier work(35)
has shown that when certain limits on B2 and Za(v) are exceeded
in the pulsed neutron and diffusion length problems, respectively,
discrete eigenvalues cease to exist. We expect that there exist

similar bounds on w, Ea(v), and Bf in the wave propagation problem:

THEOREM IV: There exist certain critical bounds on the source frej-

quency w, the absorption Ea(v), and the transverse buckling

Bf such that if

&

3k 2 3
w>w or Za>}3a or BJ_>B_L ,

the point eigenvalue spectrum o-p(A) is empty.

Comments: Of course each of these bounds is dependent on the other
two parameters, e.g. w* = w*(Za,Bf), etc. One can show in
fact that increasing any two of the parameters lowers the bound

on the third parameter in most cases, This theorem is of

particular interest in that it indicates the interrelations between
the three independent experimental parameters of the neutron -
wave experiment: source frequency w, absorption or "poison"
Ea(v), and transverse dimension Bf.

Proof: . A detailed proof of this theorem is given in Appendix C. How-

" ever it is enlightening to sketch this proof here. The basic idea is to

demonstrate that for sufficiently high w, Ea(v), or Bf, the associated
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eigenvalﬁe problem for discrete eigenvalues possesses no nontrivial
solutions for K€ o‘C(A). Of course such a demonstration must be
made for each model considered. By way of illustration, consider
the case of noncrystalline, isotropic scattering where Bf = 0. Then

the associated eigenvalue problem can be written as

{ iw +V7Jt(v) +Kv 00 ' ' ‘
@K(V) = 5 In iw+v27t(v§ - go dv Zs(v ,V)<I>K(v & KK@K (I1-15)

\ / AN /
N/ N/

g(K, w;v) . g(v)(blc

A necessary condition for (II-15) to possess nontrivial solutions is for
HK,{H > 1 for some K. The crux of the proof is to show that for
sufficiently high o or Z_(v), HKKH <1 forall Kk C. As w or
Za(v) increases, g(Kk,w;v) decreases to zero for all except very

high v. That is, only the high v behavior of g(K,w;v)g(v) can con-
tribute to creating a norm HKKHZ 1. But this means that in an
effort to sustain the eigenvalue problem, N(x,v) is pus};ed to higher

v as w or Za(v) is increased. Eventually the velocity spectrum of
N(k,v) becomes so heated that the scattering operator assumes
essentially a slowing-down (Volterra) form and the eigenvalue problem

can no longer be satisfied. That is, one can show that 1im ”KK [l =0,

— 0

verifying the theorem, or Z)a

Furthermore it is possible to show that at w = W [Ea(v) =

Z:(v) or B_IZ_' = sz] , the lowest discrete eigenvalue K, intersects C

[ or in the case of polycrystalline media, it intersects the boundary of

the area CA Thus we can visualize the last of the discrete eigen-

-

values disappearing into C when these critical bounds are exceeded.
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The solution to wave propagation problems (II-18) will then apparently
be composed entirely of continuum plane wave eigenfunctions corre-
sponding to O‘C(A).

From purely physical considerations, we do not expect any
abrupt change in the form of the neutron distribution as the critical
limits on w are exceeded. That is, although the mathematical
representation of the solution may assume a different form, we expect
that the experimenter will observe only a gradual change in the
measured waves due to a change in the spectral representation, and
then only at w - well past W Thus if the solution could be
represented as a superposition of plane waves of wave number Kj
plus a small continuum contribution for w < w*, we expect these
plane waves will be observable for some range of w> w* and will
only gradually fade away into continuum jumble as w is raised still
higher.

This would imply that, in some sense, a "continuation" of the
point spectrum into C causes corresponding peaks in the integrand
of the continuum integral of (II-18), giving rise to pseudo-plane-wave
behavior for ©> w s That is, the continuum "remembers" the point
spect;um for some range of w> w*. K’-plane

Such behavior has been noted /x}/ mau/e_//
)

for a very simple model(36 assuming

%l

a one-term separable kernel and
1/v total cross-sections. In this A 23

case the point spectrum crp(A) can
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be analytically continued across C (which is now a line continuum)

for w> w*. More recent work(37) has verified that for a slightly

more general one-term kernel, as w> oo*, the point eigenvalues
become eigenvalues imbedded in

o-C(A)——that is, for w> w , the

w-plane
- dispersion relation can be solved
on- Yy
mode/ for K€ C. These two examples
— suggest that it is not unreasonable
0;2/*} gg ‘
" to expect that as the critical
7
'

parameter bounds are exceeded,
the o‘p(A) merely moves into C

where it now yields "imbedded"

eigenvalues and corresponding
"pseudo-discrete" plane wave modes.4 [ This must be verified by
numerical calculation for each cross-section model considered. ]
However it will be shown later that the continuum contribution
dominates asymptotically in x so that eventually for sufficiently

high @ and/or x, plane wave behavior can no longer be detected.

3. Perturbation Schemes for Low Frequency
It has been indicated that the dispersion relation for discrete

eigenvalues (II-14) represents a formidable mathematical problem

It must be mentioned that these remarks, while interesting, are
rather academic since the parameter bounds are quite high for all
materials [e.g. w*~ (vZ}t(v)% ~ 10 times higher than presently
obtainable source frequencies

L
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because it is non-self-adjoint. However some direct information
can be obtained about the point spectrum for low w by recognizing
that in the limit as w -" 0, the wave propagation problem reduces
to the well-known static diffusion length problem. That is, one can
carry out a perturbation procedure

in powers of (iw) for K-plane

AF(K;p,v) = KF(K3p,v)

about the unperturbed problem @%@ﬂ—%
~ \\\\>// P w=0
which shall be taken as the exact \t\yﬂ i
SNONT 7
diffusion length problem whose :;)/
-~

discrete eigenvalues X are deter-

mined by

[vZ,(v) - xpv]F (x5u,v) =8F  x&C (w=0) (iI-42)

Now expand for a given eigenvalue

K = z cn(iw)n

o (I1-43)

F(k3p.,v) = Z g, (K, v (i)™
n

Following the standard procedure, substitute (II-43) into (II-5) and

collect various orders in (iw). This yields

(iw)°: [th(v) - co}.w] go(I{;p.,v) = S%O . kKd C (11-44)
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But this is immediately recognized as (II-42) so that we can identify
C, =X = l/LX , the reciprocal diffusion length, and %’o(x M, Vv) as

the corresponding zero-frequency eigenfunction,

(o) L2 [vE (V) - xpv] 8, (ksp,v) - 85, = [cuv - 115, k@ C
(II-45)

This is just an inhomogeneous version of (II-44). By the Fredholm

alternative, a necessary condition for solutions %‘1(K;p,v) to exist

to (II-45) is that the inhomogeneous term be orthogonal to the adjoint

eigenfunctions of (II-45), i.e.
+1 T
S duS dviv 8O, vl eypv - 1]8 (Xsm,v) = 0
-1 o)

Thus we find

. T
i} f_1 dp fo dv pv ﬁo(X;H,V)%O(X;H,V) 1

+1
f_i dp. fooodv (pv)Z%Z(x;u,V)%o(x;u,V) <VX)x

Note 1/c1 is equal to the particle velocity along the x-axis, Voo

averaged over the ¥th mode of the static diffusion length problem.

(iw)z: [vzt(v) - Xpv] ﬁz(i{;p‘,v) - S%"z = [cip,v - 1]51 + czp.vﬁo kg C

If one repeats the argument above, the restriction on the inhomo-

geneous term yields

f-i dp.f dv pv T [i-cip.v]%"1

f dp.f dv (pv) %T%



-50-

Now 51()( i, v) must be determined by solving (II-45) or using some
suitable aplﬁroximation. Thus <, remains rather complicated. We

can conclude however that

1 2 4
-I:;("Czw +O(w)

o =

£=—2  +0(w)
(V) y

which to second order in (iw) is what we might have expected.

Thus far our perturbation theory has been quite consistent,
developing exact expressions for the coefficients c, without making
any a priori assumption about the behavior of the eigenvalues K.

. - . (38,39)
However a more naive approach, due originally to Nelkin , can
be adopted in which a perturbation scheme is developed for a certain

region of eigenvalue behavior. To be more precise, return to the

isotropic scattering model (II-15) and expand

2KV KZVZ

— = iwtvZ -
L [t vE L) Fhy Ty
Ay vEt(v) - Kv

4 4
- '42'5‘ K v 3 = ewe (II"46)
[iw+vZE (v)]
Kv
for m << 1

If one now uses this expression in (II-15) and performs a perturbation
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scheme in (iw)n for small Za(v) = ZZ/V, one can find

»°  TC D F - 2C° |
2y _ 2 £2_"a 4 o 0 0 | ,xw01] 2
Re{’{ } = a -g “—ﬁ“ - ["—3‘ +<' 5 32‘& w + v on

o D D
o) o
=° C
~ a o 2
= — - ""3 [63] + * 00
Do o]
(11-47)
, , ¢ =0 D_F - zccz)
Im{l{}=2a§—-]—3—- 3 w - 3
o D D
o) o
5D C F-D%G-5C% ‘
+4 0 O o} o} =0 wz + Tw oL
D7 a . o0 D * &0
o)

o

where D _, Co, F, G, «++ are the usual \ vs. B2 ‘expansion
parameters from the pulsed neutron experiment and are evaluated
in Williams(26). (II-47) can also be obtained by directly reverting

the \ vs. B2 series,

Such expressions as (II=47) are quite valid provided

Kv ,
— | << 1.
o Tve. (V) 1 That is, the .
: §
eigenvalues must remain within Ao e
a circle of radius [Et(v)] min 0
the K-plane. This restriction is - \\\

certainly satisfied for neutron

wave experiments performed in \ /
noncrystalline media. However A -

this condition is violated in poly-

crystalline materials such as

graphite for low w because of
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of the dip in the total cross-section below v In fact, as we shall

B'
show in Chapter VI, for wave experiments performed in graphite for

4 cm? (both of the reported experiments(3’5)

which B >15% 107
exceed this bound), even the w =0 eigenvalue is imbedded in O‘C(A).

That is, no such perturbation expansion is valid for any source fre-

quency! This rather surprising point will be discussed in more detail

later in Chapter VI,

F. HIGH FREQUENCY BEHAVIOR

We shall now examine the behavior of f(x,u,v,t) for large

(19)).

frequency (following the work of Grad If one imagines a source

S( ,v)emt at x = 0, the Boltzmann equation (II-2) can be integrated
B g

to find two coupled integral equations5 for f(x,p,v,t)

vZ (v) tiw
f(xﬁp‘ivit) =M) € BV
pv :

th(v)+iw
{ x - —_E‘_’—.——- y+iwt »
+wa7'Se gl £f] dy p>0
o
(11-48)
: vEt(v)+iw

L © - | y+iwt

f(x,p,v,t) = e e s s[{] ay p<o0

X

For large frequency we note that f(x,u,v,t) becomes rapidly

511: is of interest to note that these equations imply that f(x,p,v,t)
approaches the boundary condition at x = 0 nonuniformly in pv.
Refer to Grad{!9) for a further discussion of this phenomenon which
results from the wvanishing mean free path as v —+0 as well
as those neutrons moving perpendicular to the x-axis.
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oscillating in pv. Since § is a completely continuous operator, it
will tend to smooth out these oscillations, reducing the magnitude of

the integral term in (II-48). It can be shown that

th (v)}tiw pure
s( Y A i tiwt streaming
'—HL—\;V e L M p>0 | from the
lim f(x,p,v,t) = source
W » {no particles
0 p<0 reflected
back

That is, for large frequency [w~ (th(v))] the neutron distribution
is essentially that due to source streaming alone,
Indeed such an argument could have been expected from the

(40)

usual Neumann series expansion of the Peierls' equation for

neutron transport. Consider (II-48) in operator notation
f=8S +Kf

‘We can invert and expand for HKH <1 as

f=(1-K) ls=s+KS+K% +...

In the usual fashion one can interpret the first term as uncollided

source neutrons, the second term as once-collided neutrons, and so
wt (vZ (v))>
—_— Y
(th(v)>

* ‘
O (1 - 2 ) for large w<w . From this estimate one can con-
| (vZ, D) -

on. Now, roughly speaking, ||K]|| = O (1 -

clude that at zero frequency in graphite, the average neutron experi-
ences 103 collisions; at f = 1400 cps, 6 collisons; and at f = 5000,

2 collisions. Thus as experimenters go to higher and higher source
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frequencies, they will be measuring a larger and larger percentage

of virgin source neutrons,

G, PHYSICAL INTERPRETATIONS
Before continuing on to apply the spectral theory to actual
boundary value problems, it is desirable to digress momentarily
to discuss the physics of the wave propagation process and attempt
to interpret the mathematical theory developed thus far in the light
" of this physics. This interpretation will be useful for the further

analysis of the neutron wave experiment.

1., A Simple Model
We begin our study by using a very simple model due to

(41)

Beckurts to examine the perturbations of the equilibrium neutron
velocity spectrum due to the wave propagation process. The basic
idea is to set up a heuristic energy balance for the neutron ga.é.
Notice that there are actually two components--a real and imaginary

energy spectrum corresponding to Re{KZ} and Im{KZ}. That is,

the change in the average energy due to leakage is

OE &3 x 3
(a )1 ED 3 KT) = (@ 2 D (E o35 kT)
eakage
+ 210t D(E - -32 KT)
_ [ED(E) dE
where E_ =
P [pE) aE

If one then separates E = ER + iEI, the perturbations to the energy

spectrum can be balanced as
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dE — —
R - (02t ADE 25T) + 5 (B - 21T) - 2 k(T ]
5 T (a™-¢ )D(ED 2k'I‘) + za(EA 2k'I‘) 2k\((T Ta,) (II-49)
leakage absorption thermalization
4B == 3
leakage.

Notice that if (az- §Z) > 0, leakage causes a heating of E_, while if

R
(afz— «‘_3,2') < 0, a cooling occurs. It will be demonstrated in the later
analysis that most neutron wave theories ‘yield la| > |€] and hence
exhibit a frequency "heating" effect. In (II-50), af >0 for all «
and &, thus the imaginary component always experiences a heating
effect. Also note that this effect is never balanced by a moderator
effect, hence Im {N(x;v)} will never be Maxwellian.

Using our earlier perturbation work and (II-49,50), it is

possible to tabulate the various frequency effects as

Order in Re {N(x;v)} Im {N(x;v)}

w=0 absorption heating Im {N(x;v)} =0
wi - absorption heating wave heating
wz - absorption heating + wave wave heating
heating
w3 absorption heating + wave wave heating +
heating higher order wave
cooling

Thus from this preliminary analysis it appears that the wave velocity
spectrum is heated by increasing frequency. The more general

analysis of the Boltzmann equation will now be used to provide a
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physicai explanation of this effect.

2., Interpretation of the General Solution
The preceding spectral analysis has indicated that the general
solution to a problem in neutron wave propagation nan be written as
(II-18). If the explicit forms of the eigenfunctions are used, this

solution can be written even more specifically as

"'KEX"H.(Dt
f(k,sp,v)e
f(X,H,V,t) = z az iw+v2t(v) = I{£|J4V
I{ﬂE o'p
-Kxtiwt - ____Et(V)X iw(t __?5_)
A(K)T (K3, v)e S(u,v) . p wv
+ - dg + e e
iw +v2t(v) - Kuv WV

(II-51)

where the last term is due to the O&-function part of the continuum

eigenfunction (II-17). We will now try to interpret each of these terms:
Z.v)

; Se,v) T TR x ico(t—-%;) _

s(x,p‘,v,t) = T e e : This term represents the un-
collided neutrons of velocity v and angle p emitted by the source.
These particles correspond to a plane wave contribution moving along
the x-axis at phase velocity vPh = wv and hence phase shift wx/vph.

Since this plane wave is due only to uncollided particles of p and v,

it suffers an attenuation in the x-direction of exp [-Et(v)x/p] .

f (x,p,v,t) = S.S i(fvzlc(i) Y)Kp.v e_KX oot di«: The individual continuum

modes (eigenfunctions) also correspond to free streaming neutrons
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since K€ C implies that the integrand of fc(x,p,v,t) contains plane
Z.(v)

t iw(t -==)
wave terms of the form e e BV forall p and v. However

the total continuum contribution fc(x,p,v,t) represents collided
neutrons as well. One can distinguivsh these continuum mode neutrons
from the discrete mode neutrons since whenever the former type
suffers a collision, it is transferred to a different free streaming
mode. As a consequence, it never remains in the same mode for
more than one collision. [ By way of contrast, a neutron propagating

in a discrete mode will remain in that mode for several collisions. ]

A(K)f(f{;}"' , V) }
iw +v2t(v) - KL

This intermode coupling is represented by the factor {
in the integrand. The total contribution of continuum neutrons con-
sists of the sum of these freé streaming modes, each weighted with
the appropriate intermode coupling factor., As the number of particles
becomes very large, this sum passes to an integral corresponding to
the term fc(x,p,v,t).

This total contribution, although composed of individual plane
wave modes, usually is not a plane wave itself since each of the
individual continuum modes in the integral interferes coherently with
each other by phase mixing. fc(x,p,v,t) will suffer attenuation as
x increases due to both randomizing collisions as well as phase
interference between the individual continuum modes.

One can examine the asymptotic behavior of fc(x,p.,v,t) for
large x by considering the damping of these streaming modes. Far
from the source the plane waves corresponding to neutrons of Vph

moving parallel to the x-axis will suffer less attenuation than those
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moving at some angle p. This is true for any vph' Thus one expects

the continuum contribution to result in a forward angular peaking far

from the source. For monotonic cross-sectiog behavior, the neutrons
- X

of v — oo experience the least attenuation e ; hence we expect

that sufficiently far from the source the continuum term will provide

only very fast neutrons directed along the x-axis. For non-monotonic

cross-sections the uncollided neutrons directed along the x-axis with

% 5% - . .
speed of v = v such that Zt(v ) = EM = [Et(v)]Inin will dominate,

ok -Z X
setting up a plane wave of vph = v which decays like e M .
a, f(KJZ;p.,v) -K£x+iwt
fD(x,p,v,t) = Z iw+v2t(v)- v e : These, of course, are
Ko

the discrete or "collective" plane wave modes., To examine these
modes in more detail, return to

the K-plane diagram. Now ob- g '
H-plare

serve that a discrete plane wave

is always less damped than the

continuum modes at that particular §i=wlxlph
phase velocity Voh = w/€,. But S
since the edge of the continuum %

X
represents those modes due te

uncollided neutrons streaming

along the x-axis, one can only
conclude that the discrete modes must involve neutrons which have
suffered collisions [ otherwise the discrete wave would be damped

as much as the continuum modes of the same vph] .
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It is instructive to consider those effects which tend to throw
the particles participating in the discrete plane wave mode out of
phase, i.e. tend to "disperse" the wave. Three such phenomena can

be distinguished:

i) If one considers the wave as moving at a certain phase velocity
Vph’ the particles moving with v far from Vph will tend to be more
easily removed from the wave phase. Notice that this implies that
since vph = w/éﬂ usually increases as we increase w, the higher
velocity particles tend to have an easier time staying in phase with
the wave, while the slower particles or those particles moving at
large angles from the x-axis are more apt to suffer dispersion.
Hence we would predict from these physical arguments that the
spectrum of particles in the wave tends to become more heated as we
raise w [unless vph begins to decrease as w increasesﬁ] . This

explains the heating effect noticed in the earlier analysis.

ii) If a particle suffers too many collisions, it will tend to be thrown
out of phase into the random background regardless of its initial
velocity or direction. Since the lower velocity neutrons suffer on the
average more collisions per distance traveled than do the higher

velocity neutrons, they tend to get scattered out of phase more quickly.

For all of the models considered in this thesis, vy} is monotonically
increasing in w. Closer examination shows that this effect corre-
sponds to frequency heating, while a monotonic decreasing Voh

would correspond to a frequency cooling of the spectrum.
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As w increases, \ = 2n/& becomes very short7, implying that fewer
collisions are necessary to randomize the neutron; hence higher and
higher velocity particles are scattered out of phase. This again con-
tributes a spectral heating effect as frequency increases, as well as

causing the attenuation @ to increase with w,

iii) Of course, the discrete waves can also be damped directly by

the loss of particles due to absorption.

To gain more understanding of the discrete eigenvalues, take

the inner product of (II;S) with FT(K;;.L,V) to obtain
i+ Zv) T 8

T 1 .
K = iw(FK’E‘;FI{ (FK’ U FK) _ (FK’ v FK)
- + T T
(F;{’ch) (FK,FK) (FK,FK)
(=) ( zt(V)> (2 ) (11-52)
= jw({ — + - — 8 -
V'K L MY Tk .

Taking the imaginary part of this equation yields &= w( —é——)K or

Voh = w/E =T <VX>K where ( >K is defined as the average o? a quantity
over the discrete mode corresponding to the eigenvalue K. That is,
the phase speed of a given discrete mode is equal to the average of
the particle velocity in the x-direction weighted by the eigenfunction
for that mode. Notice that as the velocity spectrum of a mode is

heated with increasing w, v

oh = (Ve o Will similarly increase.

7N0tice that if N = 2w/£ decreases too strongly with w, then v_, = w/§
may also decrease. This would correspond to the mode veloci@y
spectrum shifting towards some finite, or even zero, velocity.
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A few additional comments are necessary., This analysis
would predict that as the discrete waves travel along, they are
spectrally heated and become angularly singular in the forward
direction. This seems to contradict the H-theorem of kinetic
theory(is)ﬂ. However we must remember that our equations (and the
experiments) are only examining that part of the neutron distribution
which carries information or periodic signals from the source., The
moment a neutron loses this information, i.e. by being randomized
out of phase or absorbed, it disappears from our equations and falls
into the random background distribution, Of course if we had
attempted to describe all of the neutrons, including the background
and moderator atoms, all of the usual theorems of statistical
mechanics would still be in evidence. Any heating of the wave spec-
trum must result in a cooling of the background Maxwellian by the
addition of low velocity neutrons to it,

It is also important to recognize that the "collective" modes
are by no means collective in the sense that they permit interactions
between the particles in the wave. Indeed any theory using a
linearized Boltzmann equation (rarefied gas dynamics included)
throws out these interactions with the linearization approximation.

The terminology of "collective modes, "

used frequently in gas
dynamics, seems rather misleading in this respect, Only a nonlinear

theory could predict truly collective modes.

3. Explanation of the Critical Bound w  on Source Frequency

By considering the propagation of plane waves, one assumes
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that the discrete wave modes propagate with a constant velocity spec-
trum in space, i.e. £(x,n,v,t) = F(K;p,v)e_I{X+iwt. However we must
recognize that this can only be so when the scattering kernel can
establish a spectral equilibrium for this mode, i.e. the moderator
scatters enough neutrons to higher velocities to insure that F(«;u,v)
is constaﬁt in x. [ Of course the total number of neutrons in the mode
decreases in x since only a certain fraction of the neutrons are
| scattered back up. ]

Now it was shown earlier that as w increases, the velocity
spectfum of F(Kk;p,v) eventually becomes heated to such an extent
that the scattering kernel is no longer capable of transferring a parti-
cle at v' to a higher velocity v such that it will remain in phase,
Thusassociated with each discrete K mode is a critical frequency

S

W above which the mode will cease to exist, We are led to define

Y, :::
w = max [wK] .

I{Ecrp(A) >|

One can give a very crude estimate of W' by returning to
(1I- 5‘2). We know that kK is bounded roughly by the total cross-section
Re {k} = (Z‘t(v)/p),{ since modes decaying with Re {k} > Z (v)/p.
correspond to free streaming neutrons. Since in some sense
(-i; >K ~ <Zs(v)/p'>/{ for w~ (th(v)) we find from (II-52) that
K~ (Zt(v)/p) . From this heuristic argument it appears that
w’; ~ (th(v)>K , i.e. the average scattering collision frequency for
that mode, That is, each plane wave mode is characterized by some
average collision time w;:; ~ (vEt(v)) K* When the source frequency

] .
exceeds @, the mode can no longer be sustained, [ The collision
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process of the mode can no longer keep up with the time behavior of

the source. ]
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III. THE SOLUTION OF FULL-RANGE
BOUNDARY VALUE PROBLEMS

By definition, full-range boundary value problems involve only
boundary conditions which are given at a specific position in x for
all p and v. In particular, such problems will involve eigenfunction
expansions over the full range of the eigenvalue spectrum o¢(A). The
prototype problem is that of an oscillating plane source at the origin
of an infinite medium, since this problem may be used to construct
the infinite medium Green's function of equation (II-2),

As in all such problems, analytical procedures can be based
on either integral transform techniques or the method of separation
of variables (and subsequent spectral representation). These two
procedures are essentially equivalent in that any problem which can
be solved by one techhique can also be solved with the other., How-
ever for purposes of compariéon, both methods will be developed in

this chapter,

A. SPECTRAL REPRESENTATION METHODS

We shall begin by developing the necessary mathematical back-
ground for the use of separation of variables and subsequent expan-
sion of the solﬁtion in terrﬁs of the eigenfunctions (spectral represen-
tation) of the wave operator A for noncrystalline media. Before con-

tinuing further, it will be convenient to introduce a more compact

. Z (v)
notation. Notice that since C = {k: k = —E-:—f- + :x. , BE [ -1,+1],

vE [0,m)} is an area in the K-plane, the continuous spectrum can

only be specified completely by two parameters. That such area
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spectra arise in time-dependent transport problems has been recog-

(19,42)

nized for some time ;> however only recently have methods been

developed to deal with such area continua. The principal work is due

(25)

to C. Cercignani and relies upon the theory of generalized analytic

(43) and others(51). Much of the analysis

functions developed by Vekua
in the next two chapters will rely heavily upon Cercignani's work,
although it will be necessary to extend it somewhat to apply it to the
propagation of neutron waves.
It is useful to define a new independent variable
iw + VZt(v)
v

i

z = Ny tig

This transformation defines a one-to-one mapping of (p,v) into the
complex z-plane [for monotonic Z?t(v) at least]. It allows (II-5) to

be rewritten as
(z - K)F(Kk;2) = S'S K(z',z)F(k;z'Ydz' = T(k;z) (111-1)

where we have defined1

F(x;z) —— F(;p(d,0) ,v(>,9))

st (vi=v,p'—p)
o 1805, 91 /80,0 | @ ?)

K(z',z) ~—

dz' = dy'de

Now one proceeds in the usual manner by noting that the continuum in

1No‘ce here that f(z) is only a formal notation for f(¥,¢) and is not
intended to mean that £(z) = £(y +ig).
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the K-plane is determined by those values of K = z for all
pE[-t,+1],v€E [0,0). But of course this is just K€ C as before,

For K@ C, the discrete eigenfunctions become

f(Ki;Z)

F(KE;Z) =—mz KIQ C (III-Z)

and the dispersion relation for discrete eigenvalues becomes

f(K;z) = S‘S' [%?—'——Z—’] f(k;z') dz' (ITI-3)
c

which, of course, is identical to (II-14).

For K€ C, the continuum eigenfunctions become

Fliz) = 82 4606 (k - ) k€EC  (III-4)
where &(k-2z) = 6(a-3)6(E - o)

Notice that since we are working with two-dimensional integrals over
C, a Cauchy principal value is not needed because the integrals exist
in the ordinary sense even for k€ C [provided f(k;z) is properly
behaved] .

To obtain an expression for MKk), multiply F(k;z) by K(z,u)

and integrate over z to find
M) = [ Kk, u}] -1 [f (k3u) - Slg [I—ég?;—’—%)] f(K;z)dz] KE C
C (III-5)
Notice that f(k;z) is still unspecified. It is found to be more conven-

ient to use unnormalized eigenfunctions when one is concerned with
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problems involving a general scattering kernel ZS(\«"--'v,p."--> p) in
velocity-dependent transport theory(31). Thus rather than normaliz-
ing F(k;z) and introducing some A(k) as the amplitude coefficient
in the continuum term of (II-18), we shall treat f(k;z) itself as the
continuum expansion coefficient. [ However when a separable kernel
model is adopted in Chapter IV, it will be found to be more convenient
to normalize the eigenfunctions., ]

One further change in notation is useful, Although most of
Chapter II was concerned with "symmetrized" operators in which
detailed balance had been used to symmetrize the scattering operator,
we shall find it more convenient to return to the unsymmetrized form

in (II-5). All of the previous theory is still applicable provided we

choose as our new inner product
+1 loe] '
(f,g) 5‘81 dMS dv pv £{u,v)glp,v) (ITI- 6)
-1 o
The analogue in z-notation is

o= e (IT1-6')

Notice that under this inner product, the equation adjoint to (III-1)

becomes

(E-TE)FT(K;Z) - gS‘ R(z.20F (k;z') dz' (IT1-7)
¢

Subject to these notational changes, we shall continue on to examine
the solution of full-range boundary value problems., First the usual

theorems about the eigenfunctions can be given.
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1. AFull-.-Range Orthogonality
THEOREM V: The eigenfunctions {F(k;z): k& (fp(A)} form a bi-
orthogonal set over the full range z¢ C,
Proof: Assume for the moment that none of the discrete eigenvalues
K, are degenerate. Then taking the inner product of (III-1) with
FT(K';Z) , then the inner product of the adjoint problem (III-7) with

F(k;z), and subtracting, yields

(k - K)FL,,F,) =0

Thus for nondegenerate eigenvalues [and even for eigenvalues of
finite multiplicity provided a Gram-Schmidt procedure is used] , the
biorthogonality relation for discrete eigenvalues can be written as

T _ T . . _ T
(FK,Q ,FKm) = S‘X F (Kﬂ,z)F(Km,z) dz = aﬂm(FK£ ’FKI)
C

K, © o‘p(A) (III-8)

Such biorthogonality can also be demonstrated for the continuum eigen-
functions corresponding to K€ o-C(A). However such a property is of
iittle use in the evaluation of expansion coefficients since the normali-
zation of these eigenfunétions must still be determined from the
boundary conditions. Notice that the biorthogonality relation (III-8)
becomes in (u,v) notation

, n / +1 0 —-—
(FKI’FK ) =§ dp‘g dvpvF (Kl;MnV)F(Km;HJV)
m -1 o]

- f’fzm(F;rci ,FKI) ko (a)  (T-9)
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2. Full-Range Completeness
We shall now state and prove2 a completeness theorem which
justifies the eigenfunction expansion (II-18) of functions defined over
all p and v. In the course of the proof a prescription will be given
for the evaluation of the expansion coefficients.

THEOREM VI: The set of functions {F(k;z): K€ ¢(A)} is complete
for the class of all functions y(z) € 31(-6). [Here C is the
closure of C.]

Proof: The proof is constructive in nature and consists of actually

evaluating the expansion coefficients in

Y(z) = Z aﬂF(i{ﬂ;z) + S‘g Flk;z) dz (III- 10)
I{ﬁEo‘p(A) C

and then demonstrating that such an evaluation is unique. First define
yiz) = 0z - ) a,Flkgie)
i

and consider (III-10) as
YiHz) = g\g F(k;z) dk = S‘S fz(i_;—z-)—dl{ + ANz) (I1I- 11)
Ke C

where the explicit form of the continuum eigenfunctions (III-4) has

been used. Now using equation (III-5) in (III-11), one obtains

Kz, o' (=) = Kz, (L2 + 1 s - {§ [RE)] as)
c c | (ITI-12)

This theorem is a generalization of that given by Cercignani(ZS) for
the special case of a one-term separable kernel. The idea behind
the p{oof is similar to that of a theorem proved by Bednarz and
Mikal31) for the w=0 case. _

2
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Now (III-12) is a rather complicated two-dimensional integral equation
for f(z;u). Notice how both of the variables z and u are involved
in the equation.

To complete the proof of the theorem we must demonstrate
the existence and uniqueness of a solution to (III-12) for any
b z)E & 1(-5). Fortunately techniques exist which will allow the
construction of a formal solution to (III-12), These techniques rely
upon the theory of generalized analytic functions (see Appendix D)
and upon the following lemma [ which gives the generalized analytic
function analogue to the Plemelj formulae'?®s 58)]:

Lemma: Define the operator

TAflD = - T%SS‘{—(_-%— dg (11I-13)
‘ c

Let (L)€ 511 (C). Then TC[ f]g exists for all points z outside
C, is holomorphic in z outside C, vanishes at infinity, is
continuous on 9C except possibly at angular points, and

possesses a generalized derivative with respect to z which

satisfies
f(z) zE C
2 T 4], = (III-14)
0z z —
0 z& C

If, on the contrary, g(z) is holomorphic outside C, vanishes
at infinity, is continuous almost everywhere on 8C, and

possesses a generalized derivative which satisfies
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f(z) z& C
== (I11-15)
9z 0 zg C

9g

with f£(z)& £ (C), then g(z) is determined uniquely in the

entire complex plane, being given by
=T [£]° III-16
glz) = T 4] (II1-16)

[ Note here that 8C is symbolic for the boundary of C.]

Proof: Refer to Vekua i),

Now rewrite (III-12) in terms of the TC operator as

K(z,ul'(z) = Kz, a)n T Fsz)] s + i) + nT (LK, 0)f (250)] |

zc C (I11-17)

But we can rearrange this as

| % [{1 +aT [ K(g,u)-]i’} {TC[ f(f{;u)];‘ }_ = K(z,u)y'(z) z€ C
| _ (III-18)
2 [{1 rat K] Tl el =0 s@

where we have defined

((§ ooy
C C

gs K(;,xz)qi(zz,é)d;

‘Thus we can apply the 1.emma above to find
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{t# 7T R 1Tt ] = TR0l ]
(I11-19)

Now we must solve (III-19) for f(z;u). Clearly this will involve using
. : RIS _ -
the inverse operator {1 + wTC[ K(L ,u) ]z } =[1 'S(u,z)]

where we have defined

Lia,z)¥z.8)= gg K(c zu) $(z,%) dt (I11-20)

Of course one must account for those values of z for which this
inverse fails to exist, But we recognize from equation (III-3) that
these points z = K, are just the discrete spectrum crp(A), and the

usual application of the Fredholm alternative requires

(90 (z3u), T [ K(L, w’ (é)] ) 0 ZEUP(A)_ (III-21)

where goT(z;u) is the solution to the homogeneous adjoint problem

[1 - S(u 1o (z3u) = 0
or .
o' (zu) = ﬂﬂ Blu.8) T (z50) at (III-22)
u=-2

But notice that we can identify (III-22) as just (III-7) which implies that
qu(z;u) = FJr (z;u)s We can now use this fact in equation (III-21) to find,

after some manipulation,
T
(Fl, ¥
a, = = (II1-23)
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which is just the expression for the discrete expansion coefficients
one would have obtained by applying biorthogonality directly to

(III-10). Thus subject to (III-23), we can solve (III-19) for

Tl flsal S = (1= £ 17 T IRE, 0]
or

fas) = 2401 - 8, 17 IR we'w) ) (111-24)

0z

Hence by formal construction we have demonstrated the existence of a
solution T(z;u) to (III-12) for arbitrary Y(z)€ £1(—C). The converse
of the lemma on p. 70 yields the uniqueness of f(z;u).

Therefore by actually demonstrating how one might evaluate
the expansion coefficients aj and T(k;z) in (III-10), we have proven
that the eigenfunctions {F(k;z): K€ ¢(A)} are complete over the full-
range of K for the class of integrable functions defined over all u

and v.

3. An Application of the Technique
Let us now consider the prob-

lem of an oscillating plane source at .

| / /
the origin of an infinite medium. /
The Boltzmann equation of interest / /
is (II-2) with a source term S(I;é/ / /(
S{p,v,x) = S ,v)8(x) //////

We shall take the physically significant

2 22 I

///\/&\
\
(&
~
\I
Q
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boundary conditions at infinity
lim  [f(x,p,v,t)| =0 (111-25)
|x |0

To obtain the boundary condition at the source, integrate (II-2) over x

from 0 - ¢ to O +¢ and then let € —~ 0 to find

w070, vat) - £07, 1, v, 0)] = Siu,v)e t (IT1-26)

To solve this problem by the method of spectral representation, we
shall seek the solution in the form of expansions in the plane wave
eigenfunctions of Chapter II. Utilizing the boundary conditions at

infinity demands the expansions

AN THyp X Tt ~kx + ot
aﬂ_‘_F(l{ﬂ;p,v)e + g‘s"e Flk;p,v)dk

+=
27=1 AC+ x>0

(ITI-27)

L/2 .
-K, x+tiwt .
- ~kx +
>Z a, FlKkyp,vle . + gge hx lth(K;}l,V)dK
/, 21-

=-=1 .

f(X:]J':V’t)=

AC x<0

Then applying the source boundary condition (II-26) yields

S(E\;V) = z aJZF(KI;”’V) +§S‘ F(k;p,v) dk (II1-28)
K.QEO-p(A) C

as the condition from which the expansion coefficients are to be deter-
mined. Since S(u,v) is considered to be defined over all p€ [-1,+1]
and vE [0,m), (I1I-28) is just the full-range expansion (III-10). Thus

from the previous completeness theorem we know that such an
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expansion is possible, and indeed this theorem will actually evaluate

a, and T{K;z) for us as

+1 oo
T T
(FKI,S/}J.V) j;idpj(; dvF (Kﬂ;p.,V)S(H,V)
a, = (FT _— = I = (11I-30)
Kﬁ ’ Kﬁ fidp‘,{; dvpv F (Kf;HsV)F(Kﬂ ;P':V)

)= 24 -1 ot
f(z,u) = ’é% {[ 1- “:(u,z)l Tc[ K(Q,u)S(z) - K(‘Q:u);al F(Kl’z)] z}

(III-31)

Of course such a representation is still very formal in that one must

invert the [1 - S(u 2;)] operator which amounts to solving the

H

associated eigenvalue problem (II-14)--a formidable task.

B. INTEGRAL TRANSFORMS

Consider once again the problem of an oscillating plane source
at the origin of an infinite medium, as outlined in the previous section.
An alternative approach involves the use of integral transforms in the
spatial variable x. Because of the infinite geometry x¢ (-00,®), a
Fourier transform is appropriate., Working formally then, define
the transform

~ o) + x
F(n;p.v) ES‘ e’ f(x,p,v) dx (I1II-52)
Y -0

Lot factor is to be understood. The existence of such a

where the e
transform is insured since we assume that the boundary conditions

at infinity (III-25) coupled with physical considerations imply
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f(x,p,v)E .SZ(-oo,oo) in x.
Thus we can transform (II-2) into
~ ~++1 00 ~
[io +vE (v) - nuv] F(n;p,v) =S idu'j dv'v'Z _(vi=v,p' =) F(np',v')
- o)
+ S(p,v) (111-33)
But if we use our operator notation, this can be written as
[A- 0] F(nip,v) = S(p,v)/uv (III-34)

If we introduce the resolvant operator [ A -7n] -1, we can write the
inverse transform

+ico

feap,vit) = 5| e T R i, v an
- L0O
+ico . ' .
= —2-1-—5 e'“X“‘*’t{[A -]t -S-i*:‘—l’-)} dn (111-35)
™Y i BV

as a formal representation of the solution.
However such a form of the

solution as (III-35) is rather

l ~
Z./a/ane | gz ("*’,
awkward. A more satisfactory [ é‘;\
. . T i} O —

representation of the solution i N

1% 4
can be obtained by a suitable ‘[ A

) /

deformation of the inversion i —-—
contour. Since we have shown ¥ T

iothn/kwmekw

X f/’m%
|

that the resolvent [A—n]“1 is an

operator analytic in n for ¥

n & o¢(A), we can readily deform
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the path into the right half plane as shown for x > 0, using the e ¥
‘behavior to kill off contributions from Re {n} — oo.

~/
Now we know we can represent F(n;pv) as

z (FZ:S/W)

[ A-n] -1 S(!E\;V) - F(r;p,v) +§1S' E’V d

T K-mn"
KEO‘p(A) (FK’FK) K& C
(III-36)
where f(K;p,v) in the continuum integral is given by (III-31). Rewrite

(III-35) using the path deformation above

2wi

f(x,p,v,t) = Z L e-nx“:»t[[A_n] -1 s;&v,v)] dn
K,QEO-p(A) YK,Q

1 -mx Fiwt |, 11 S{p,v) -
T\ e [[A ull " dn | (II1-37)
9C x>0

substitute (III-36) into (III-37), and interchange the path integrations

with the summation and integration over o(A) to find

(Fl,S/uv) ~mx Fiot
K Fk;p,v) 1 § e

(FT F ) e ZTrl K - T]
KIEUP(A) KT K Y

f(xpm,v,t) = dn

2

1 e-nx+iwt
+§§dl€F(K:p,v) 21ri§ P dn x>0

oC

Evaluating the residues yields
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L/2

f
B (F,S/uv) .
-k x +
f(x,p,v,t) = Z ——— Fliip, v)e ¥ Lt
T FeF
+ S‘ g Fip,v)e KTt g x>0 (II1-38)
Tt
AGC

But this is identical to the expression obtained by separation of
variables (III-27), hence verifying that the two methods are indeed
equivalent.

Actually once the mathematical framework of orthogonality
and completeness has been developed, the spectral representation
approach appears somewhat more direct for a specific problem
involving wave propagation in noncrystalline media. However such
a preference is largely a matter of taste, and both integral transforms
and spectral representation will be used in the latter stages of this

thesis.
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THE SOLUTION OF HALF-RANGE BOUNDARY VALUE
PROBLEMS

IV.

A. INTRODUCTION

i. Half-Range Boundary Conditions
By "half-range" problems, one is referring to boundary value
problems in which an eigenvalue expansion over only half of the
These arise

spectrum o(A), Re{k} >0 or Re{k} <0, is required.

quite frequently when one wishes to consider one-dimensional trans-
port in the presence of boundaries since the three typical boundary

conditions placed on the neutron flux ¢(x,u,v,t) = vi(x,p,v,t) are

racyum mbteta x\ / gcuum || fmaferna
- /,> \ ] /¢ \ / .
) // X0 X“\\y o \ / v
x=0 » x=0 X=0
vacuum interface material interface source

¢(O:P-:V:t) = S(H:V't)/P‘
O<p=1

¢(0"J”V’t) = 0
O<pu=1

¢1(0,p,v,t) = ¢2(0,p.,v,t)
all w

These boundary conditions coupled with the semi-infinite geometry
will necessitate eigenfunction expansions over only half of the range

of «.
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Thus our immediate task from a theoretical viewpoint is two-
fold: i) to verify that one can indeed expand a solution in a half-range
expansion of the eigenfunctions {F(k;u,v)} and ii) to provide a
prescription for calculating the expansion coefficients. As we shall
demonstrate below, this task is rather futile for all but very simple

models of the scattering kernel.

2, Difficulties with the General Theory
In analogy to the full-range theorem, one would like to show
that the set of eigenfunctions {F(x;z): K € Ao-pUAC} is complete for

the class of all functions defined in a simply connected subset AC

of C and contained in £1(AC). [Here AC is that part of C such
| (24)

that Re{x} >0.] Now following the approach of Case and

(25)

Cercignani , one would find that the proof hinges on finding a

quantity X(z) such that

K(z,u)X(z) zE AC

[1 taT LKL, ). ] 2} 2X
oz

(IV-1)
X -9 zq AT
oz

This is the analogue to the Riemann-Hilbert problem encountered in
one—velocity transport theory(24). However (IV-1) is considerably
more complicated in that it is é. "generalized Hilbert problem" in the
sense that generalized analytic functions are involved. Furthermore

the unknown X(z) is an operator. Such "operator Hilbert problems"

have defied solution in stationary transport theory and have forced
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previous authors to consider various approximations [ multigroup

(44)

treatments, n-term degenerate kernels

(45)] .

,. or finite polynomial
expansions However even these approximations lead to a
"matrix Hilbert problem" for the matrix §(z) whose solution is still
rather formidable,

It is important to stress that our interest in such a half-range
theorem is not so much one of proving completeness [ we would be
surprised if the eigenfunctions did not have this property], but rather
;m providing some technique to evaluate the coefficients in the eigen-
function expansion. Even the more recent half-range orthogonality

(46)

methods rely upon the solution of (IV-1). Alternative techniques

(18)

such as integral transform methods also appear to lead eventually
to the difficulties encountered in solving (IV-1),

Thus until more basic theory is developed towards the solution
of half-range boundary value problems in velocity-dependent transport
theory, we appear to be limited to those very simple models of the
scattering kernel for which a half-range theorem can be given. It is
towards one of these models that we now direct our attention.

B. EIGENFUNCTION EXPANSION METHODS FOR A SYNTHETIC
KERNEL MODEL
1. Introduction

Alerted to the difficulty of extending our general theory to
half-range problems, we now retreat to a much simpler model which
can be treated by existing techniques., It shall be assumed that the

scattering kernel can be approximated by an isotropic one-term
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separable kernel, or "synthetic kernel," of the form

£ (v vt = ST (vivMv) I ) (1Iv-2)

1 j

B =do dvv ZS(V)M(V)

where we further assume that Z‘s(v) is monotonically decreasing in
v. This model, due originally to Corngold, preserves detailed
balance, yet integrates to give the correct total scattering cross-

section.

The eigenvalue problem (II-5) then becomes
[ iw +v2}t(v) - Kpv] Flk;p,v)

+1
= -% ZS (v)vM(v) 3‘_1 dp'go dv'v'ES(v')F(K;p' ,v') (IV-3)

or in the notation of section (III-A),

(z - K)F({K;2) A: g(z) (‘S' h{z")F(k;z') dz' (IV-4)
where
2 (v)vM(v)
gla) — § —=— h(z) — vZ (/|55

Thus adapting our earlier treatment, the eigenfunctions become

Discrete Eigenfunctions:

Flk,sz) = (zK)ﬁ K,d C (IV-5)

~where we choose to normalize ffh(z)F(K;z)dz = 1. Note that

this yields the dispersion relation for the discrete eigenvalues

as
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+1 v M(V = (v)]
- h(Z)g -
Alk)= S‘S da =1 - —S' dpS dv[lw tvZ (v) - Kpv]

(IV-6)
Continuum Eigenfunctions:
F(ksz) = 22 4\ (k) 8(k-2) k€ C (IV-7)

and the normalization yields

M) = ij—[i [ alelele) 'dz] - MK /ntk)  (1V-8)
C

The orthogonality relations become

h
gg 2 Flgin)F(k i2) dz = Ny 5y € oyl (V-9
where
2 2
+1 M(v)[ Z_(v)]
NEE gg ____g___h(z) dz = g dpSI dv i ’ 2 5
& (z-k ) ) [iw+v2t(v)—l{£p,v]
(IV-10)

S‘S h(z) F(k;2z)F(k';z) dz = N(k)&(k - &) ke C (Iv-11)
where
2
__A(k) -
N(k) = NOEG) (IV-12)

2. Completeness Theorems
Of course the earlier full-range tzeorem applies to this model
THEOREM VIa: The set of functions {F(k;z); K€ o(A)} is complete

for the class of all functions (z) € Si(—é).
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Proof: This theorem is proven as a subcase of the more general

Theorem VI, But of greater importance is the fact that one can now

(25,

THEOREM VIb: The set of functions {F(«;z):KE Ao‘pUAC} is com-

prove a half-range theorem (after Cercignani

plete for the class of all functions defined on a simply connected
subset AC and contained in £1(AC) .
Proof: Since it can be shown that A(k) possesses at most two sym-

metric zeros, iko, we need only evaluate a s and A(k) in

Y(z) = aO+F(KO;z) + S‘S\ AlK)F(k;z) dK (IV-13)
AC

In the usual manner, define
V'(z) =9 (2) - a  Flk_;z) (IV-14)

Now substitute (IV-7), (IV-8), and (IV-14) into (IV-13) to find

h(z)y'(z) = h(z)g(z)g V—Z‘f‘-_(-’f-c-)-d,{ + Afz) |1 - S"S h(z g dzil
AC

or (IV-15)

hy' = 7hgT , A + A[t +7T shg] (IV-16)

AC

To solve this integral equation for A(z), consider the associated

genefalized Riemann-Hilbert problem for the function X(z)

[1 +aT.gh] —2—_3_5 = thgX z@ AC
' Z
(IV-17)
X g zq AC
9z

If such an X(z) c‘an be found, then (IV-16), (IV-17) and the lemma on
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p. 70 can be used to find

1 Xh!
Tact = xTac [1 +17Tchg] (IV-18)

again provided X(z) # 0 for z€ AC and TACA'* 0 as z — oo.
Of course in contrast to the operator or matrix version of
(IV-16), we can now solve (IV-16) directly by applying Theodorescu's

(43

formula ) to find

X(z) = ¢(z) exp %TAC [ﬁg—gﬁ_g—] } (IV-19)

where ¢(z) is an analytic function for z& 8AC. On the boundary

9AC we require A(z)E .531 (AC). To investigate this latter restriction,

rewrite

__mhg | _ 9 _ 8
Tac [1 +"Tchg} TAC; o [log (1 +chhg)]§_ TAC[B_Z_L(Z)

(IvV-20)

Now applying Green's theorem allows us to write

1 S» log (1 +1rTChg)

_mhg | -
TAC[i +1rTchg]"1°g(1 +1rTchg) o du

u-2a

8AC
z € AC (IV-21)

log (1 +1rTChg)
g du =z & AC

u-2z

T mhg 1 ___1_
AC|1+aT hg T 2wl
0AC

The branch of the log must be fixed at some point on 3AC. As we

traverse 0AC, Aarg L(z) ‘BAa = 2mwi (#poles - ffzeros outside AC) =2wi
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or 0 for the synthetic kernel model, Thus the presence of discrete

spectra causes a discontinuity in L(z) on 8AC., But from Vekua(43), |

the only points where IL(z) can be discontinuous are the angular

points of 8AC, e.g. z =0 oOr z = [Et(v)] mine For monotonic

Et(v) one can show that the only point of discontinuity is at z = oo,

(58)

Now we can use the theory of Muskhelishvili on the line

integrals in (IV-21) [ since they are Cauchy integrals] to show

Tac {1 +T:rhT

Of1) no discrete spectrum (Case I)
che

O(1) +log(~-z) discrete spectrum (Case II)
In case I, choose ¢(z) = 1. In case II, use (IV-19) to pick

2 2 0(1) =5 glz) == => Ala) € £, (BT)

ze

Thus (IV-19) becomeé

X(z) = z—hexp {TAC tr%g] } (Iv-22)
0 casel
where h =
1 case Il

Now for case II, h = 1 and the behavior of X(z) at infinity can be

used to evaluate the discrete coefficient a Since X(z) = O(1/z)

o+’
as z — oo, this requires
§ XU'h |
. iZTAC [1 ¥ wTChg] };‘ 0 (Iv-23)

But since
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T !
- Xem | _(1 _1_5‘ XP'h g
AC | 1+7T ~hg z/ 1 +7T hg
C xS C

( ) S‘S 1+ﬂ:h’f1 d’”o('z%)

(IV-23) implies

(7 X@UE)RE) 4 )
S 5 NG =0 (IV-24)
AC

Now using (IV-14), we find from (IV-24)

§S X(c,)Ay(é))h(;) ar gs‘ X(Qq_{é;;)h(r_,)d;

- X(2)gle)h(e) ) A(':r 2.3: 4 . e
S‘ - K YALL) dg AC [1 +‘n'TChg] p
This a_, is so detefmined for any Y({)E £1 (AC).

One can also solve for the continuum expansion coefficient A(z)

from (IV-18) as

5 J1 Xhy'
Alz) o {'}'E Tac [1 +1rTChg] }

i]

_ ny the Xhy'
= [FaT hg  [T7nThglX Tac [‘1 FuT ohe (IV-26)

Hence the existence of a s and A(k) has been demonstrated for
arbitrary §(z) € £1(AC) by actual evaluation, Furthermore the con-
verse statement of the lemma on p. 70 implies that such an evaluation

is unique. Thus the theorem has been proved.
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3. Identities for the X(z) Functions
To facilitate the solution of half-range boundary value prob-
lems, one can derive several identities among the X(z) functions.

These are summarized below:

X(z) = - T o %@—] h=1 (IV-27
X(z) =1 - T, [—“—}%ﬁ] h=0 (IV-27b)
X(z)X(-2z) = ——-A—Z(-E-)———Z— where y = lim A(z) =1 (IV-28a)
vz~ - K zZ—" 00
X(2)X(-2) = %A(z) =0 (IV-28b)
X(z) = - T [ mgh ] h=1 (IV-29a)
2C Ly(e2- k5x(-1)
X(z) =1 - T, [%{%}9—5] . h=0 (IV-29b)

X(z,) - X(z,) X(Dg(t)h()
— -§V “z (L -2 )AE ¢ R=0t (1V230)
AC

[ By introducing suitable notation, these identities can be adapted to

the two-adjacent half-space problem. ]

4. Solution of the Wave Albedo Problem
To illustrate how the standard half-range problems of neutron
transpdrt can now be solved, we consider the problem of a modulated

source S(p,v)elwc incident upon the boundary of a half-space for
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x>0, From (IV-A-1), the boundary

conditions are

i) lim !f(x,p,v,t)} =0
X" Q0 I
S( ) iet vacudm Vil
. = S, v) iw » /
ii) £(0,p,v,t) e e /YO
The solution to the synthetic kernel 59‘,‘»@;&* | ”

-

modeled Boltzmann equation subject
to these boundary conditions shall
be sought as the eigenfunction expansion

-Kox +iwt +Kox +iwt
fx,p,v,t) = a [ FK_p,v)e ta _F(-k_;p,v)

+ 55 A(R)F(k;p, v)e K Tt 4 (IV-31)
C

3

[ where we have assumed that w < w  so that a discrete eigenvalue
exists]. Applying the boundary condition as x— 00 implies
aj_ = A(k)= 0, KkEAC ., Furthermore, applying the source condition

yields, in the =z-notation,

S(z) = a0+F(Ko;z) + S‘SA(K)F(K;Z) dz z€& AC+ (IV-32)
ac”t
But this is identical to the form of the expansion considered in the
half-range Theorem VIb, provided we take Y(z) = S(z). Hence one

finds
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XhS ]

X(£)S(LIh(D)
J[ =5 [
AC B AC|LTA

e TXgh T T Xk)
AC|T+nT gh |,

a = (IV-33)

o+

where identity (IV-27a) has been used. Furthermore from (IV-26) and

identity (IV-30)

Ay = REISWD _ shi)g() g

_X(KO)-X(K)]
T Ak) A(k)X(k)

L KK

XhSﬂ K X{K)
N I

-
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PART II

APPLICATION OF THE GENERAL THEORY

TO THE NEUTRON WAVE EXPERIMENT
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V. THE NEUTRON WAVE EXPERIMENT
A, DESCRIPTION OF THE EXPERIMENTS

1. Introduction

As mentioned earlier, the neutron wave experiment involves
the use of a modulated neutron source to excite wave-like disturbances
in the neutron distribution within a medium. In general this distur-
bance is composed of a superposition of plane wave modes. However
sufficiently far from the source, one of these modes should dominate.
The goal of the experiment is to determine the complex wave number
K = @ +if of this dominant mode at a fixed frequeﬁcy by measuring
its exponential attenuation factor a and its linear phase shift per
unit length, £.

From the general theory of the propagation process, it is evi-
dent that each of the plane wave modes corresponds to an eigenfunction,

- + 3
F(K;p,v)e Kx Tiwt

, of the Boltzmann wave operator A, Stated mathe-
matically, the experimental goal is to measure the discrete eigenvalue
K, with least real part a_ (damping) at a given frequency since this
should correspond to the dominant mode at large distances from the
source,

A series of such measurements is made at various source
frequencies in order to obtain information about the behavior of Ko(w)
with frequency. That is, the experiment essentially measures the
"dispersion curve" of the fundamental eigenvalue I{O(w) in the K-

plane. Presumably this measurement can then be compared totheoreti-

cal calculations of the dispersion curve,
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Neutron wave experiments have been performed in a variety
of systems--both single and multiregion, multiplying and moderating.
However for reasons of expediency, we shall only concern ourselves
here with wave experiments conducted in one-region, moderating
systems. To date, the only experiments of this type have been those
(3,4)

et al.

conducted in graphite and DZO parallelepipeds by Perez
at the University of Florida and by Takahashi and Sumita(S) , at the

University of Osaka, Japan. It is useful to examine the experimental
techniques involved in making these measurements before continuing

on to their analysis.

2. Experimental Techniques
There are actually two techniques available for performing
the neutron wave experiment. One can either use a modulated source
of fixed frequency w, or one can use a pulsed source whose time
behavior can then be analyzed into its Fourier frequency components.
Both techniques have been used in performing the wave experiments

O [although recent communications have indicated
(54)] ,

in graphite and D 2
that the latter technique is preferable
The actual sources have been either Crockoft-Walton or Van de
Graff accelerators producing neutrons of several Mev in energy.
These initial fast source neutrons are directed through a thermalizing
tank to produce a thermal neutron source upon the boundary of the
system of interest. A cadmium difference technique is used to sub-

tract out any remaining epithermal flux background.

3
He™ or BF3 detectors are used to measure the resulting flux
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at various locations within the

. . ' 1 Cufron
propagating medium. More _ neus

source
specifically, the phase shift and '
signal amplitude are measured /'/,,70 *‘[ l"
relative to a reference detector Zrow Jead
as functions of position at a given “ | sheets
Srephite
frequency w. Then least squares v ftin

fitting is used to determine the % propagating

A\ matevial
Lperimental  Schematic

attenuation coefficient o{(w) and
the linear phase shift £(w) for
this sox;.rce frequency [ or Fourier frequency component] . By repeat-
ing this procedure for various source frequencieé [ or Fourier com-
ponents] , the behavior of K(w) = a{w) + if(w) as a function of. w is
determined.

It has been customary to use these data to determine the coef-
ficients of a power series expansion of K(z)'(w) similar to equation
(II-47), and then these coefficients are compared with theoretical
predictions. However the exper‘imentally measured dispersion curve
can also be directly compared to the theoretically calculated disper-

sion curve for the fundamental eigenvalue,

3. Goals for a Satisfactory Theory
The primary goal of the second part of this thesis is to
demonstrate the validity of the general theory by applying it to under-
stand and interpret existing experiments. Several stages of analysis

are necessary, ‘First, the solution must be obtained for a boundary
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value problem which is a reasonable mathematical model of the
experiments., This solution will be composed of contributions from
various portions of the eigenvalue spectrum ¢(A). One must deter-
mine whether the discrete plane wave modes corresponding to O‘P(A)
dominate for any ranges of parameters, and to what degree the
remaining spectrum contributions "contaminate" the measurements
of the experimenters.

It is also of some importance to examine the manner in which
experimental and theoretical results may be presented and compared.
And certainly one éhould also study the theoretical connection between

the experimental data and interesting physical parameters.,

B. CONSTRUCTION OF A SUITABLE MATHEMATICAL MODEL

Of course to apply the theory in its most general and exact
form is not only extremely difficult, but also of questionable value if
one merely desires qualitative understanding of the experiments and
not quantitative prediction of measured results, We shall therefore
develop a simple mathematical model of the neutron wave experiment
which retains most of the interesting physical and mathematical
features of the exact description, yet allows a reasonably simple
application of the theory of the first part of the thesis. In doing so,
we expect only a qualitative agreement between the experimental data
and numerical calculations from our modeled theory. However
extensions will be indicated which should yield better quantitative

agreement.
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1. Choice of the Boundary Value Problem
We would now like to approximate the experimental geometry
[ which includes a complicated thermalizing tank in addition to the
graphite or DO parallelepiped] by one more amenable to analysis by
transport theory. As in our earlier analysis, it will be convenient to
consider initially one-dimensional

problems; then later the effects of

transverse dimension can be intro- \
duced by appropriate modification

of the spectrum o(A). Within this

‘ /
context, it appears that the most ‘)«7 \x;o
realistic problem which could be
treated by transport theory would /\
X=0

be the two~adjacent half~space

problem in which one imagines a
source at iﬁﬁnity exciting the fundamental wave mode in the ther-
malizing medium, and this in turn acting as the source at the boundary
of the propagating medium.,

However the complications of the two adjacent half-space
problem, although solvable, would tend to obscure the desired re-
sults. Since the experiment only involves measurements "far'[ greater

than several mean free paths] from the source, it is reasonable to

1It is important to note that the thermalizing tank creates a thermal
source distributed in all angles and speeds at the interface. It is
therefore unrealistic to approximate this source by a beam source
or a given source distribution on a free surface.
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consider instead an oscillating

plane source of given distribution //
S(u,v) at the origin of an infinite
P
*.
medium of the propagating material,

Indeed this full-space problem,

. X</
although mathematically much
simpler, gives a better description
of the true source conditions than //

X=0

WA B A S S A &

L

VA S A S S 4

the half-space problem with the
source at a free boundary [ which has 'recently been considered by
others in the synthetic kernel approximation(z’?)]'. And by suitably
adjusting the source distribution, it is even possible to examine the

wave structure near the source.

2. Modeling of the Scattering Kernel (Modified Synthetic Kernel
Model) .

It has been mentioned in the earlier analysis that the most
direct manner by which one may simplify the general theory, and yet
retain most of the interesting features of the transport process, is to
approximate the form of the scattering kernel Es(v'—*v,p.'—’ pn)o How-
ever we recognize that the simple synthetic kernel approximation made
in section (IV-B) is inadequate for materials such as graphite because
of their crystalline structure. The complications a'rising in the treat-
ment of polycrystals have been discussed in detail in section (II-C).
These crystalline effects play an extferriely important role in the .

transport of neutrons in these materials and cannot be ignored.
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Therefore we shall adopt the simplest possible model of the
scattering kernel which retains the features of crystalline media.

(55)

This model, also due to Corngold , approximates the inelastic
scattering by a one-term separable kernel while modeling the elastic

scattering by a Dirac 6-function

P>
S v vpi ) =8 S VM@ E W) 52 WS-y (V1)

1_ SO" ) 5
where _B= . dv vM(v) i(v)

and where E.l(v) and Ee(v) are the cross-sections for inelastic and
elastic scattering. Since the structure of these cross-sections is
rather complicated, we chose to model them by assuming: i) 1/v
absorption, ii) only one Bragg diffraction peak such that Ee(v) =

H(v-vB)Ee(v) , and iii) for v <v Z(v) = Z:/v [ which is reasonable

B’ Tt
to within current cross-section measurement accuracy]. Notice that
the modified synthetic kernel model (V-1)

i} exhibits the property of detailed balance

ii) preserves the correct total cross-section [ and thus insures
conservation of neutrons]

iii) gives the proper physics of elastic scattering, as well as
imitates the non-compact nature of the true elastic scatter-
ing operator :

iv) will yield at most two discrete eigenvalues, *K,, which is
in agreement with more detailed calculations performed
for graphi‘ce(1 2

'v) can be reduced to the synthetic kernel for studying non-
crystalline media by setting Ee(v):—‘- 0, Zjlv) = Zs(v).

The more obvious limitations of this model can also be listed
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i) the assumption of isotropic scattering

ii) a rather crude modeling of coherent scattering

iii) the description of the moderator as a perfect thermalizer,
i.e. only one inelastic collision is sufficient to throw the
neutron into thermal equilibrium with the moderator.

[ Since we expect the neutron wave velocity spectrum to be
frequency heated, this crude treatment of the higher velocity
form of the kernel should cause some discrepancy at large
wﬂ ]

iv) The fact that the elastic term in (V-1) is non-degenerate
will greatly complicate the extension of this model to prob-
lems with half-range geometries.

We shall now use this model in the general theory to obtain a
analytic solution of the boundary value problem outlined on p. 97.
Most of our attention will be directed towards the study of wave propa-
gation in polycrystalline media [ i.e. graphite] because of its more
interesting features. The study of noncrystalline materials such as

DZO is straightforward using this modeled theory, and only the results

will be presented in Chapter VIL.
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Vi. APPLICATION OF THE MODELED THEORY

A, ANALYSIS OF THE EIGENVALUE SPECTRUM o(A)

First we shall examine the simplifications that follow by using
the modified synthetic kernel (V-1) in the general theory for poly-
crystalline media (section II-C). The eigenvalue problem (II-24) now

reduces to

vz (v)
L iw+v2t(v) - Kpuv] F(K3p,v) = -gZi(v)vM(v)f (k) + ; N(x;v) (VI-1)

+1 (o's]
where - (k)= S dpSl dv in(v)F(K;p.,v)
-1 o

(VI-2)

+1
N{x;v) ES‘ dp F (k5 ,v)
-1

One can now analyze (VI-1) to determine the eigenvalue spectrum for

this model.

1. The Continuous Spectrum C

o)

Since the elastic scattering angular probability P(u'—p) =

for this model [and thus certainly P(up'—p) € SZ(IM)] , the theory
= (v)

of section II-C indicates that C= {k: k =32+ tp , wE[-1,+],

vE [0,m)}. But notice that since Zt(v) has a discontinuity at v = vy

the area continuum C becomes split into two disjoint sets

iw+E:
CBBE {K: K= oV 3 |J~€ ["1,+1] ’ V€ [O:VB]}
(BB - Below Bragg)
iw- Et(v)
C,p= {’“’“}}T;“L . cp€ -1, 4], vE [vg, o))

(AB - Above Bragg)
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where for CB we have used the specific assumption that Et(v) =

B
Z}:/v for v <vp. Notice furthermore that while CAB remains an
area in the K-plane, the 1/v cross-section behavior below the

Bragg velocity VR has caused CBB to degenerate into a line con-

tinuum (Figure 6). This fact will be of importance to the later

analysis.

2. The Elastic Continuum T
If we use the modified synthetic kernel (V-1) in equation (II-22),
we find that the elastic continuum I' is given as the set of all k such

that

= (v) iw +v2t(v) + Kv
In

A(kv) =1 - =

e }:o v € [0,0) (VI-3)

iw +V2t(v) - Kv

Notice that since Ee(v) =0 for v <'vB, (VI-3) tells one to plot the
locus of the zeros I{e(v) of Ae(K;v) for all v& [VB,oo). These will
sweep out a curve I' in the first and third quadrants as shown on
p. 104. |
Actually since (VI-3) is essentially identical to the one-
velocity dispersion law (A-5), much of the analysis in Appendix A
can be suitably adapted to conclude:
i) The principle of the argument can be used to show that Ae(K;v)
has two complex zeros, * l{e(v) , symmetric about the origin, for
w <-1-gp.o(v)vEe(v). As v varies abtween vy and oo, these
zeros trace out the two symmetric curves I' in the K-plane.
For w > max [-TZIpO(v)v Ee(v)], these curves vanish en-

. . ve vy, o)
tirely into CAB'
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& =Imix}

K —plane

2;(v)

W)

Figure 6. A Sketch of the Spectral K-Plane for the Modified Synthetic
' : Kernel Model
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ii) Using power series expansions,
one can show that I' lies g N
always below CBB and to

. _ <0
the right of Z, =% /vB

provided one requires

lim- Ee(v) = 0, Fortunately N
v~ 00
this latter restriction is i I

. I
demanded also by the physics Z, e
of elastic scattering. Uplane.

iii) The detailed shape and location of the I' curves are extremely
sensitive to the modeling of the cross-sections Ee(v) and Et(v).
Some sample plots of the I' spectrum for various w have been
computed numerically for the cross-section modeling of graphite

and are presented in Figure 7.

3. The Dispersion Law for Discrete Eigenvalues
One can use the modified synthetic kernel (V-1) to reduce the
general dispersion law (II-30) for polycrystalline media to
Hoopoo ByPME T ()]
Alk) = 1- S L) YTevE - evA ) O

kg Ccur
(VI-4)
[ Notice that by setting Ze(v) =0 and Ei(v) = Zs(v) ,. one can
also use (VI-4) to examine the usual synthetic kernel model (IV-2).
This will be useful for the analysis of noncrystalline media. ]
Thus to examine the point spectrum for the modified synthetic

kernel model, we must search for the zeros of A(k) in those regions
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of the K-plane not contained in the eigenvalue continuum C or T,

As in earlier analyses, we shall confine our discussion to the first
quadrant, using the symmetry of the spectrum to infer the structure

of the remaining quadrants.

a) Number of discrete eigenvalues: Because of the complicated
structure of the k-plane and the arbitrary forms of the cross-sections,
it is rathér difficult to apply the Principle of the Argument to deter-

mine the number of zeros of

Alk)., However one can examine - pa 2/0,7@
the w=0 case rather easily.

EYie
Since this case corresponds to //

/
the diffusion length experiment, /

_.A__L_l__d__a.'%:%} /,\ 7IN 2“ w£
we know that any zeros of A(k) H // M
/

lie on the real axis between 0 ' -/

and :!:ZM, One can easily show

that -g% ‘ is always negative
w=0 dA
for K(—:[O,Z}M] (and an C0:0>O

must be monotonically de-

for KE[—EM,O] ). Thus since A(k) =0
creasing on the interval, there can be at most one zero K € [O,EM] .
Since A(k) is analytic in K& CUTI for w> 0, one can use the ideas
of analytic continuationi to conclude that this zero moves off on the

axis into the k-plane for w> 0. Hence we conclude that A(x) will

possess at most one zero in the first quadrant for sufficiently low

1or the imFlicit function theorem for functions of several complex
variables{(37),



-106-

frequencies. That is, there are at most two discrete eigenvalues,
iKO, in the point spectrum o*p(A) for sufficiently low w. As w is
increased from zero, these eigenvalues move off of the real axis into
the K-plane. From the maximum w theorem, we know that at some
sufficiently high w [or Za(v)] the discrete eigenvalues will disap-
pear into CAB' However the detailed structure of the K-plane sug-
gests that the eigenvalues ilco(w) might also encounter the line con-
tinuum CBB or the elastic continuﬁm I atalower w [or Za(v)] .
These questions shall be examined in more detail on p. 108,

b) Low frequency behavior: It is possible to apply the perturbation
ideas of (II-E) to study the trajectory of the discrete eigenvalues as
they move off of the real axis. Recall that the basic idea was to con-
sider an expansion Kg(w) = Po + Pi(iw) + Pz(iw)z + P3(ico)3 + ees, If
one assumes an(v) = ZZ to be very small, then the work of this

section yields

32° [ dv M(v) 0
> o - a2 1 -
P_= . =5, "2 (VI-5)
f dv M(V){E (v)]
(o] S
QO
3f dv M(v)
~ _0O - 1 -
P, ¥ — . "D, (VI-6)
f dv M(V)[E (V)]
o} S
2
© D D -z
3 avvME) | == - ——— (33, +23 ) + = —
o veZ;  3vIos e z C
P, = = =
2 foo v , D3
dv M(v) ] o
o) Es(v)

(VI-7)
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where we have also indicated expressions for the coefficients in terms
of Do’ the diffusion coefficient, and Co’ the diffusion cooling coef-
ficient, These 1atter~quantities can help us to better understand the
limitations of our model (V-1).

Since DO is dependent only upon the total scattering cross-
section, we would expect it to be well described by the modified
synthetic kernel model. Thus first order effects in w should be
predicted quite well by our analysis [ as numerical calculations will
verify later] . However since Co is dependent upon the more detailed
form of the scattering kernel, one would not expect second order
effects in w to be well described by our models. Indeed one can
easily show that the usual syn;thetic kernel model (IV-2) predicts a
Co ~ 0. However the modified synthetic kernel model (V-1) containing
an elastic scattering contribution yields a more reasonable value for

5

C, [e.g. for graphite, C,~ 15X 10 cm4/s as compared to the

5 cm4/s] . Hence we should expect

measured value of CO = 38X 10
at least qualitative information about second order effects in w.

c) Numerical Calculations: The above information was sufficient to
allow a direct numerical evaluation of the discrete eigenvalues,

:i:Ko(w) » for various source frequencies. To do this, a complex
arithmetic Newton-Raphson iteration scheme was used to find the

zeros of A(k) for each fixed vw. These calculations were programmed
and easily performed on an IBM 7040-7094 cbmputer. The resulting

dispersion curves of the discrete eigenvalues aré shown on pp. 120,121,

Since the calculation of these dispersion curves provides the only



-108-

direct comparison with experimental data, these calculations will be
discussed in some detail and compared with other theoretical calcu-
lations in Chapter VII,

d) Critical Frequencies: Specific calculations for graphite have

revealed that for sufficiently high

. *_ A
frequencies, w (vEt(v)) , the g
. . _ &

discrete eigenvalue Ko(w) en Cw
counters the area continuum CAB /7
as predicted by Theorem IV, g\, <,
However at a much lower fre- /

. 3 r
quency, wpp ~ Et » the disper- 5‘;/
sion curve also intersects the t OZ
line continuum CBB’ while at a ;{—p/aﬁ&

frequency @ ~ vEe(V)) the
dispersion curve intersects the elastic continuum I'.

It is important to recognize that all of these "critical fre-
quencies" are dependent upon the transverse dimensions of the pro-
pagating medium. We have seen that transverse leakage, when
introduced via asymptotic reactor theory, yields a new spectrum
o'C(AT) in which CBB becomes an area similar to CAB' But of
even more significance is the fact that the point spectrum o-p(AT)
is shifted from Kk to p = K2+ Bz . That is, the presence of finite
transverse dimension shifts the discrete eigenvalues closer to the

continuum, thus effectively lowering the frequencies at which these

eigenvalues will eventually encounter various portions of o‘c(AT). In
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fact, detailed calculations for graphite [ see Chapter VII] indicate

that for Bf> 15x 107% cm-z, the discrete eigenvalue po(w) is
shifted into CBB even for w = 0(53). For transverse dimensions

smaller than this critical limit [~ 115 cm X 115 cm], wpp 0 imply-
ing that for even zero frequency, the discrete eigenvalue is imbedded

in the continuum C The implications of this behavior will be dis-

BB
cussed later in Chapter VII.

The influence of transverse dimensions upon w* is not so
dramatic since in the neighborhood of CAB’ IKZl >> Bf implying
that p ~ K and thus that the intersection of po(w) with CAB occurs

at essentially the same frequency w " at which >I{O(w) intersects CAB-'

We similarly expect Bf to have little effect upon W since this inter-

2
.L.

section of I{O(w) with I" also occurs in a region in which |/{2l >>B
B. CONSTRUCTION OF THE SOLUTION

The boundary value problem for an oscillating plane source in
an infiﬁite medium has been proposed as a suitable model of the
neutron wave experiment., This problem has already been solved
formally for a general noncrystalline scattering kernel in Chapter III.
Here it was shown that either eigenfunction expansions or Fourier

transforms could be used to construct the solution. It is more con-

venient to use the latter approach for the modified synthetic kernel

(V-1)°.

2Let it be mentioned that there appears to be some difficulty in demon-

strating an expansion theorem such as Theorem VI for the modified
synthetic kernel model,
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The Fourier transformed Boltzmann equation (II-33) becomes

~ +1 00 ~
[ i tvZ (v) - nuv] F(nsu,v) = gzi(V)vM(V)g dp'g dv'v'Z (v F(m;p',v')

vZe(v) +1 -
—""2—"“-5‘1 dp' F(nsp',v ) + S(,v) (VI-8)

+

~ Va¥4
In the usual fashion one can solve for the moments f(n) and N(n;v)

to obtain

E Z, (v)vM(v) x () Qs , v)

F(np,v) = [1w+vz (v)-np.v]A(Tl)A('ﬂV) [w+vz (v) - nuvl A (m;v)

(VI-9)
where Ae('r);v) and A(n) are the dispersion relations defined by

equations (VI-3) and (VI-4)., We have also defined the source moments

, vz (v)
Qmip,v) = S, vIA () + ——— x (nv)
~+1
o) = S, v) . _
Xe(n’v) - 5_1 dp ico+th(v) - MUV (VI-10)

+1 fo'e) v, (V)Q(T] o, V)
x (n) g

i [ iw +v2 V) = v A _(m;v) dv

[ Notice that if we assume an isotropic source S{u,v)= S _(v)

we find that Q(n;u,v) — So(v).]

» then

Now to perform the inversion

1 tioo o~ X +iwt
f(X:IJ',V:t) = L) . F(”l M v) dn
=-100

we can make use of our knowledge about the structure of the n-plane
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which was obtained in the study of
the eigenvalue spectrum of A for J
this model. For x > 0, we can

deform the inversion contour into
the right half plane, picking up the Y
residues from the simple poles

r

[zeros of A(m), Ae('r];v), and

[iwtv Et(v) -nuv] ] and line inte-

gral contributions from around C M

and I'. The details of this calculation, although straightforward, are
rather tedious, and only the final solution wiil be given here. It is
convenient to write the solution as the superposition of a number of

terms [ from each of the singularities--eigenvalues--in the %-plane]

£(x,1,v,t) = £ +fo, +f

. +f + f .t f
discrete source elastic CBB r CAB
(VI-11)
The first term in this representation is
%E.(V)VM(V) X (K ) -k xtiwt
i o o
fdiscrete(x’p’v’t) = 0A e
[iw +v2t(v) -k uwvlA (K _v)==
o e’ o onl_ _
. M =K
o
(VI-12)

This term is the discrete plane wave mode corresponding to the eigen-
value Ko and hopefully is the quantity measured by the neutron wave
experiment. For Re {KO} = a <X, this mode will be less damped

than any of the other terms in (VI-11) and thus should dominate for
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for large x. However if w should be raised sufficiently high,

a (w) > ZM’ and fC will then become less damped than f

o( BB discrete’

The detection of f then becomes more difficult, The effect

discrete
of this "continuum contamination" will be discussed in more detail in
section VII-A.

K v
9o
iw +vEt(v)

becomes isotropic. However as

Notice also that if Ko(w) is small such that << 1,

the neutron distribution f .
discrete

K (w) becomes larger, f becomes more anisotropically

discrete
peaked in the forward direction. Its velocity spectrum is also shifted
to higher velocities [see Figure 8].

The next term in (VI-11) is

f (x,psv,t) = S, v) e B e BV (VI-13)
source v

One finds this term to be a solution of the first flight Boltzmann

equation
of of _ iwt
_é'é + l‘LV’E';{ + VEt(V)f(X:H,Vat) = S(P‘ ,v)6(x)e (VI 14)
Hence f represents those neutrons emitted by the source at
source :

(n,v) which travel from source to detector without suffering any
collisions.

The third term in (VI-11) is more complicated:
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Figure 8. The velocity spectrum of the fundamental mode, fd'xscrete (%, u, v, t).
(The ""resonance' effect which appears atV ~ 0,15, f = 400 cps,

is due to the intersection of xo(w) with CBB at this frequency.)
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vZ (V)X (K 5v) ~K (V)% Fiwt

(X,}J.,V,t) = 8A e
- Y\ - - e
2[ iw v (v) K pv] I

felastic

n=K (v)

[ 2, (oo © dne TNE (v) (x I x (m |

- _ i
Tz g TR 4T A
v t
+ - Z.(v)
1 L x ) x () - x ot -X)
- Z + + _ e e H
" Ae) A 0 +vE, (v)
n ={——;R;————J
(VI-15)

To interpret this term, consider the associated "one-velocity"
transport equation under the assumption of isotropic scattering and an
oscillating plane source at the origin

v (v) p+
o v gt vE et = —— | a9 () 5l ot

v fixed (VI-16)

One can readily verify that (VI-15) is the solution to this equation
[ subject to the boundary conditions lim |f(x,p,t)| = 0]. Thus we

|3 |00

can physically interpret f as representing those neutrons which

elastic
are emitted by the source at speed v, suffer only elastic collisions
prior to absorption by the detector, and hence obey an effective "one-
velocity" transport equation at velocity v.

The final three terms in (VI-11) are due to the line integrals

about the continuous eigenvalue spectrum and can be written as
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f (X:H:V’t)
CBB

- ﬁzi(v)vmv)g _ dne M T Lot ;X (n) _ x'(n)g
27i - 2] iw +v24t(v) - v A (;v) A+(‘1) A (m)
BB
ZO
= - I 3
-B i(V)VM(V)H;VB V); ") + X (n)t e PV Xelw(t PW) (VI-17)
(iw+2t ) ATy AT Y| o
4uvl | ——;v o —t
1= 5]
BZ. (v)vM(v) dn o~ X +iwt ¥ ()
T, gt = g § 7 TG va ) - mav] By (mI A (VI48)
9C,
fP(XsHsV:t)
52 YyvM(v) dne-nX+iwt SX () _ x"(n)
2wi S 2| i-(’J‘}'Vzt(v) -ﬂHV]Ae('fl; v) ?A (n) A (11)%
P2 v MvHly-ve) 3 x4 x () é Ko lviae it
- oA T - e
. Am) A
2[ 1w +vE (v) - nuv] m= -
[iwtv V- V] 5 n=k_(v) n—i{e(v)
(VI-19)

The discussion of section II-G suggests that the contributions from
CBB and CAB represent a superposition of free-streaming modes
with appropriate intermode coupling factors to account for collisions.
Similar arguments indicate that the term due to I' corresponds to a

superposition of elastic scattering modes such as f with the

elastic

intermode coupling effect now due to inelastic scattering collisions.
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Of course we must remember that (VI-11) is only a repre-
sentation of the solution for one-dimensional geometries, However to
include the effects of transverse leakage, it is a simple matter to
use asymptotic reactor theory as in Chapter II and carry through the
same Fourier transform analysis for Bf > 0, Then, of course, the
integral over CBB becomes a line integral about an area similar

to that about C but otherwise the general structure of the solution

AB’

is left unchanged. Indeed, one can use physical arguments to assign

the same interpretation to each of these terms as in the Blz = 0 case,
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VII, THEORETICAL INTERPRETATION OF EXPERIMENTS

A, GRAPHITE

The modified synthetic kernel model (V-1) was applied to
analyze neutron wave experiments performed in graphite. Since the
detailed cross-section behavior of this material is rather complicated,
it was convenient to model only the gross structure as shown in
Figure 9 [ variations in such modeling actually produced little change

in the calculated dispersion curve].

1. Calculations of the Discrete Eigenvalues

The dispersion curve Ko(w) was calculated numerically from
(VI-4) using the graphite cross-section modeling of Figure 9. These
calculations are shown on the following K-plane diagram along with
sample sketches of the continuﬁm structure for several frequencies,
An inverted spectral plane diagram is also shown.

It is useful to compare these calculations with the experi-
mentally measured Ko(w) as well as with alternative theoretical
calculations of the point spectrum orp(A). Several comments con-
cerning these diagrams are necessary:

i} Notice that one-velocity diffusion theory gives better agree-
ment with experiment than does one-velocity transport theory,

This is evidently a consequence of the fact that the diffusion

approximation and one-velocity approximation tend to cancel

to some degree, resulting in somewhat better agreement than

expected,
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Pl theory actually gives quite poor agreement with experiment

since the aZ/at?‘ term overcompensates for the transport
effects (see Travelli(13)).

The K-plane plots of the dispersion curve show that for

f > 100 cps, one has essentially straight line behavior--i.e,

€ = Cloz + CZ. A closer examination of the dispersion relation

reveals that in this frequency regime

ar _ iC
do = "[lot (vE (V) T[T 7 (vE_(V]) ]

Thus the dispersion curve is charac-
terized by two "break frequencies"”
corresponding first to the mean

absorption collision frequency

(vZa(v» and then to the mean total

collision frequency (vzt(v)) . For

(vza(v)) << w << (th(v))

dK dé . &
da Cil{:)-&—& o

which implies straight line behavior as observed numerically.
Notice that in the diffusion theory models, (th(v)) -~ o, thus
the higher break frequency does not exist for this model. This
higher break frequency is of the same order of magnitude as
w*; therefore it is not distinct in several of the more advanced
transport models,

In Table I we have found it convenient to list the critical
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Figure 11, The Dispersion Curve of the Discrete Eigenvalue Ko(w)

for Graphite
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TABLE I: CRITICAL FREQUENCIES (graphite)

Theoretical Model

One-velocity diffusion theory

P1 theory

One-velocity, isotropic transport theory
Velocity-dependent diffusion theory
Multi-group transport theory

Velocity-dependent transport theory
(synthetic kernel)

Velocity-dépendent transport theory (Bf = 0)
(modified synthetic kernel)

Velocity-dependent transport theory

(Bf = 59.6 X 10" *cm™%)

(modified synthetic kernel)

cm

Here we are defining

1]

Critical Frequencies

none

none

sk

f = 15,000 cps

f~ =400 cps

82

f = 14,000 cps

LS

= 12,000 cps
fc = 150 cps
fBB = 390 cps
fl., = 7,000 cps
*= 11,000 cps
fC = 0 cps
fBB = 0 cps
*= 11,000 cps

fC frequency at which continuum is less damped than

discrete mode

f

f

BB frequency at which dispersion curve of discrete eigen-
value intersects the sub-Bragg continuum C

BB

T frequency at which dispersion curve of discrete eigen-

value intersects the elastic continuum T

e

f = frequency at which discrete eigenvalues encounter C
and cease to exist (at least in the usual sense)

AB
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{requencies predicted by each of the theoretical models.

It was found that the detailed modeling of the cross-sections
used in the modified synthetic kernel had little effect upon the
dispersion curve. The effect of changing the density of the
propagating graphite was also investigated. Although this had
little effect upon the 1oca£ibn and shape of the dispersion curve,

it did slightly affect the frequency parameterization [e.g. if

1.60

— — 3 - SRS
Ky = K (w) for p=1.60 g/cm”, then Ky = K (g7 w) for

o o}

p=1.67 g/cm3] .

It is noted that the Parks' kernel-diffusion theory calculations

(12)
(13)

of Perez, Booth, and Ohanian and the multigroup transport

theory calculations of Travelli give the best agreement with
the experimentally measured dispersion curve. However the
modeled transport theory of Chapter VI gives a dispersion
curve which is almost as good--and certainly better than the
MASS-12 calculations and less sophisticated theories. It is
rather surprising, in fact, that such a crude model of the
kernel as (V-1) gives results which are even comparable to

the Parks' kernel calculations.

Of course the modified synthetic kernel calculations give

results which are much better than those obtained with a

synthetic kernel model such as (IV-2), This was expected

since we have seen that the high frequency behavior of the

curve is determined by the higher terms in the expansion

Kz(w) =1 4 —L(iw) + -2 (iw)'2 + ... and the synthetic kernel
o) LZ Do D3 ,

(o]
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model predicts Co ~ 0 as compared to the modified synthetic
kernel model's prediction of C, = 15X 105 cm4/s.

Noting that

Re {p?} = ‘1‘2 + B - —%wz + O(w?)
L D
(o]
1
Im{pz) =W + O((.o3)
o]

one can plot the dispersion curve in the pz-plane (see Figure

13) to study the second order effects in w. Since all of the

models accurately preduct Do [i.e. the total mean free path],

the agreement of Im {pz} vs. w with the experimental data is
quite good.

However the Re {pz} behavior is more sensitive to the
scattering kernel through the Co dependence. It is observed
that even the Parks' modeling of the kernel gives a rather bad
prediction of this curve. This appears to explain why none of
the theories gave a really good quantitative agreement with the
experimental data. [ A similarly bad agreement is noted in
the calculations of the time decay constants of the pulsed
neutron experiment in gfaphité.] One must conclude that
until a more accurate model of the scattering kernel for
crystalline media is developed, quantitative calculations of
the discrete eigenvalue spectrum are not possible.

For purposes of comparison, we have estimated Do’ C , etc.

o}

for each of these models and compared these quantities with

experimental estimates in Table II.
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TABLE I: EVALUATION OF EXPANSION PARAMETERS IN
02w = PO + P ) + PR g2 + ..,

Theoretical Model

Experimental (Perez &
Booth)

Energy-Dependent
Diffusion Theory
(SUMMIT kernel)

Multi-group Transport
Theory (SUMMIT)

Velocity-Dependent
Transport Theory
(Synthetic kernel)

Velocity~-Dependent
Transport Theory
(Modified Synthetic

kernel)

p(0 w10t pll) x 10® p(2) 5 110
-2 -2 2 -2
CImn S Cim s Cm

Theoretical Model

Experimental (Perez &
Booth)

Energy-Dependent
Diffusion Theory
(SUMMIT kernel)

Multi-group Transport
Theory (SUMMIT)

Velocity-Dependent
Transport Theory
(Synthetic kernel

Velocity-Dependent
Transport Theory
(Modified Synthetic
kernel)

2,11

2.60

0.023

1.60

Co (105 cmé/s)

63.88 4,74
63.8 4,70
63.8 5.08
63.8 4.73
D0 (10 5 cmz/s)

2.16i0.01

2.11

2.13

1.97

2.11

39.0 £ 2

20.15

25

0.18

15
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x) To indicate the effects of transverse leakage, we have sketched
the p-plane spectrum O‘(AT) for Bf = 59.6 X 107% cm™® in
Figure 14 [ corresponding to the transverse dimensions of the
Perez & Booth experiment]. One notes that even for w = 0,
the discrete eigenvalue po(w) is imbedded in CBB [at least
in the approximation of asymptotic reactor theofy] . As the
frequency is increased, the discrete eigenvalue is eventually
"left behind" by Cpp and emerges into the resolvent set

p(AT). The implications of this behavior will be discussed in

section (VII-A-3).

2. Resolution of the Discrete Mode

We must now determine whether the neutron wave experiment
in graphite actually is measuring the complex wave number Ko(w) of a
dominating discrete plane wave mode, and whether there are any
ranges of éxperimental parameters, [ w, Za(v), Bf, x] in which such
a measurement cannot be performed. The theory of neutron wave
propagation in polycrystalline materials has shown that the neutron
distribution can be written as a superposition of terms (VI-11), each
corresponding to a portion of the iiigenvalue spectrum o(A). Hence

o'}
the detector response R(x,t) = f dp.f dv vzd(v)f(x,p,v,t) can also
- o

be written as a sum of terms

R(x,t) = R (x,t) + R {x,t)

© AB

BB C

discrete (x,t) + RF(X,t) + R

where we have combined the elastic term of (VI-11) with the term due

kal

to I, and the source term with the CAB term. By studying o(A)
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Figure 14. The p~Plane Spectrum for Graphite
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B3 .
we can see that for all frequencies below w , the eigenvalues cor-
responding to CAB and I are considerably more damped than the
discrete eigenvalue. Hence it is evident that for sufficiently large x,

RI" and Rc can be neglected in comparison to R To

AB
estimate how far from the source one must go to insure that these

discrete®

"source transients" are negligible, we need to estimate the relative
magnitude of each of the components of R(x,t) as well as their
respective attenuation in x. In general these relative magnitudes
depend upon the source distribution S{u,v) as well as the frequency w.
However one can use physical arguments to estimate the relative

magnitudes of these source transients crudely as

R (0,0)
Cas = O(1) ; e AALLUI RIS (_“55< Ze(v»>
Rdis crete(o »0) d'ls;:rete(O :0) ( Et(v

Such estimates indicate that these terms decay so rapidly that for x
greater than 20 cm from the source and frequencies less than 5,000
cps, they comprise less than 3% of the total solution.

There are other possible sources of contamination such as
higher discrete modes [ higher discrete eigenvalues] which are not
predicted by our model. Actually it appears fhat these modes can be
ruled out for the case of graphite since all calculations with more
detailed kernels(iz) seem to indicate only one discrete mode. In

addition, diffusion theory analyses of higher transverse modes indicate

that these can safely be ignored, as can reflections from boundaries.
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Notice however that the eigenvalues KECBB can actually be

less damped than the discrete eigenvalue K, even for low w. Indeed,

if Bf >15x 10”4

since po(m) is imbedded in CBB even for w= 0. Hence we do not

cm_z, such behavior will be present for all

expect the discrete mode to dominate asymptotically in x for experi-
ments performed in graphite. To determine the influence of this con-
tinuum contamination upon experimental measurements, we must
estimate not only the relative magnitude of RC » but as well its

BB
behavior in x [which is certainly not exponential] .

Numerical calculations [ such as Figure 15] as well as a two-
group diffusion theory analysis [ Appendix E] have shown that for
S(p,v) = M(v), the relative magnitude of this .term is initially
,RCBB(O ’O)/Rdiscrete(o ,0)|~0.6%. The attenuation is roughly expo-
nential only for intermediate x, although for very large x (x >> 50
‘cm) » R (x,t) behaveé asymptotically as

BB N
iw + Zt \
-(——————‘— X tiwt
1

VB/

RC (X,t) =0 -}-—{e

BB
These calculations show that for intermediate distances and source
frequencies (x <50 cm and £< 1000 cps), one can indeed expect

R to be negligible.

Cps

However one might be interested in the alternative problem of
trying to observe these continuum effects experimentally. In Figure
16 a diagram is given which indicates the distance from the source,
xc(w), which the magnitude of R (x,t) will be 10%, 50%, or 100%

BB
of the discrete mode magnitude. Since this distance xc(w) decreases
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as w increases, a very convenient technique would be to perform
measurements of the attenuation of the total response at a fixed dis~-
tance x for various w. For w such that xc(w) > x, one should
observe an exponential attentuation in space since the discrete plane
wave mode is dominant. However for w such that xc(w) < x, the
continuum contamination should be apparent in the form of a non-

and R

exponential behavior. Since the phase shifts of RCBB discrete

will differ, one expects an interference effect to cause oscillations in

the amplitude as a function of x. Recent experiments by Takahashi

log / Amplrtude /
log JAmplitude |

>N

=<\

x < % (W) x 7 X ()
(5)

and -Sﬁi‘nita appear to have found this effect. Although the counting
statistics seem rather poor, oscillations in the data appear roughly
where the theory would predict.

Additional experiments of this type with more intense sources
or better counting statistics would be interesting. Since RCBB(x,t)
is sensitive‘to the source neutrons emitted below Vg it should be

possible to magnify this effect by using cold neutron sources.



-135-

In summary then, the discrete mode will dominate the source
transients from CAB and I' as well as higher transverse modes
for x> 20 cm, f<5000 cps. The sub-Bragg continuum CBB is
actually less damped than the discrete eigenvalue Ko and will
clominate1 asymptotically in x. Howevér the relative magnitude
of this term still allows one to resolve the discrete mode provided
the detector is sufficiently close to the source (x < 50 cm, for
£ < 1000 cps).

The experimeﬁters appear to have made most of their
measurements in regions in which the continuum contamination should
be minimal, and thus should indeed be measuring a discrete plane
wave mode. The one exception has been the above mentioned data
taken by the Japanese group which appears to demonstrate the effect

of continuum contamination by CBB‘

3. Further Comments
We have seen that the dip in the cross-section below the Bragg
cutoff introduces a portion of crc(A) which has less damping than the
discrete eigenvalue for most experimental situations. Indeed for
B% > 15 % 10“4 cm_z, the discrete eigenvalue Py (w=0) is actually

L

imbedded in CB This appears disturbing at first. However it is

B.
useful to keep in mind that CBB represents sub-Bragg neutrons. A

measure of the importance of these sub-Bragg effects is given by the

1Indeed this phenomena is quite well known in wave propagation experi-
ments in rarefied gases and plasmas in which there are continuum
modes present with zero damping [ corresponding to Zt(v) —~ 0 as

v — 00].
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parameter

_ # of sub-Bragg neutrons
~ " total # of neutrons

For graphite, € = 0.6% for Maxwellian sources, and thus all of these
effects are rather small.

Similar phenomena arise in any problem involving neutron
transport in polycrystalline media [e.g. the pulsed neutron experi-

(49). Although the effects of sub-Bragg structure do certainly
g gg

ment
have a qualitative influence upon the mathematical structure of the
solution, the fact that they cause only an O(e) effect in most cases
means that one should be able to ignore CBB without making any
major quantitative error [ such as in the calculation of the dispersion
law] .

However the presence of CBB does seem to invalidate the

usual series expansions of Ki(w) such as equation (II-47). Indeed for
Bf' > 15X 10“4 cm-z, po(oo) _is imbedded inthe continuum, and the
radius of convergence of the power series in (iw)r1 is zero. One
might be tempted to try an alternative type of expansion about the
singularity. However we feel that such expansions are of little use

in presenting data in any case, and that a direct comparison of data

and theory in the k-plane [or better yet, the pz-plane] is usually

preferable.
B. DZO |
Since. D_,O is noncrystalline, one would suspect that the

2
synthetic kernel model (IV-2) would be adequate to study this type of
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experiment. However due to the rather large coherent scattering
cross-section, it was decided to use once again a modified synthetic
kernel with cross-section modeling as shown in Figure 17. Of course
there is no Bragg cutoff and thus no sub-Bragg continuum structure

. Z (v)

. s . e

. = <<

to worry about for this model. In addition, since z‘—t(—;)— 1 for all

v, one can easily show that I' lies very close to the boundary &C

and thus can also safely be ignored.

1, Calculation of the Discrete Eigenvalues
The K-plane structure for DZO is presented on p. 140 along
with an inverted spectral plane and the pz-plane. Again the agree-
ment appears to be reasonably good for the K-plane. However the
pZ—plane exhibits considerable deviation since it magnifies second

order effects in w.

2. Resolution of the Discrete Mode
For x> 20 cm there is no difficulty in resolving the discrete
>k
mode for all w< w'{ = 2w (10,000 cps). Of course since there is no

CBB’ this discrete mode dominates asymptotically in x.

C.. OTHER MATERIALS

In principle, we have shown that the above models are capable
of analyzing neutron wave experiments in both noncrystalline and
polycrystalline materials. Since graphite and DZO have been the
only materials upon which simple experiments have been performed,
no further calculations will be presented for additional media. How-

ever these calculations are straightforward and can easily be per-
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formed when the need arises.
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VIII. CONCLUSIONS

A. SUMMARY OF RESULTS

This thesis has attempted to develop a comprehensive and
exact transport theory of neutron wave propagation in homogeneous,
non-multiplying media. Of course much of this theory is of a formal
nature in that explicit solutions cannot be obtained without first
specifying the detailed form of the cross-sections appearing in 'the
Boltzmann equation, and then solving rather complicated Fredholm
integral equations. Moreover, portions of this theory are speculative
and incomplete from a mathematical point of view., But this was to be
expected since the general mathematical theory of such non-self-
adjoint, unbounded operators is itself rather primitive at this time.
By augmenting much of the analysis with physical arguments, we have
sought to bypass mathematical rigor in an attempt to obtain some
general qualitative information about the propagation of such wave-
like disturbances in a neutron distribution.

It was possible to give a rather general study of the eigenvalue
spectrum of the Boltzmann tr.ansport operator for plane wave propa-
gation in both noncrystalline and polycrystalline moderators. An
extension of this analysis to systems of finite transverse dimension
was indicated. A general solution to the problem of neutron wave
propagation in an infinite medium was given for noncrystalline media.
Unfortunately, at the present time no general theory appears possible
for constructing the solution of partial range expansion problems in-

volving such general scattering kernels., Nevertheless it was possible



-144-

to develop a theory utilizing a one-term separable kernel which can be
used, in principle, to solve any problem with one dimensional sym-
metry and sectionally homogeneous media (e.g. wave reflection from
an interface or slab)., By way of demonst?ation, the problem for an
oscillating source at a free boundary of a half-space was considered.

In the second phase of the thesis, simple models of the scatter-
ing kernel were used to illustrate how the general theory could be
applied to analyze the neutron wave experiments performed in graphite
and DZO° The modeling of the graphite kernel was designed to exhibit
those features characteristic of polycrystalline media, and led to
several interesting qualitative and quantitative results. A suitable
model of DZO was also studied.

It was not expected that such crude modeling of the scattering
kernel would give accurate estimates of the discrete eigenvalues,
However numerical calculations revealed that the theory was sur-
prisingly good in predicting the dispersion curves of the discrete
eigenvalues. Indeed, the modeled transport theory gave better re-
sults than the MASS-12 kernel calculations of Perez and Booth(iz),
and yielded results comparable to the SUMMIT calculations based
upon the Parks' model of the graphite scattering kernel. Similarly,
agreement with the GIN kernel calculations for DZO was somewhat

better than expected. ‘

B. IMPLICATIONS FOR EXPERIMENTAL TECHNIQUES
The theory has proven useful in helping us to understand the

neutron wave experiment., Of perhaps most immediate interest and
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significance was the conclusion that while a discrete plane wave mode
is certainly dominant asymptotically in noncrystalline media such as
DZ.O’ the asymptotic behavior for large distances from the source in
polycrystalline media such as graphite is frequently not plane-wave
in nature. It was demonstrated that even for low source frequencies,
the continuum contribution due to the sub-Bragg neutrons actually has
less spatial damping than the discrete mode, and thus will dominate
the solution for sufficiently large x. Consequently measurements

in polycrystalline media must not be performed at too great a distance
from the source since otherwise this non-plane wave component will
be detected.

It was possible to verify in general that plane wave behavior
can be observed for most moderating systems providing certain
critical bounds on experimental parameters such as source frequency,
absorption, and transverse dimensions are not exceeded, In most
cases, existing experiments have remained well within these limita-
tions.

The analysis has indicated that transport effects upon the dis-
persion law for discrete eigenvalues are rather small in most cases.
Even the phenomena introduced by the Bragg cutoff in polycrystalline
materials are only of order 0.5% [ although it does appear that pro-
perly designed experiinents can detect these effects].

Of course such a transport theory analysis is mandatory if
one wishes more information than merely the trajectory of discrete

eigenvalues [such as the form of the neutron distribution f(x,pu,v,t)].
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In particular, the Bragg cutoff behavior of Es(v) seems to invalidate
the customary power series expansion in (it,o)n as a means of data
presentation and comparison with theory [although such a technique
still appears to be valid for noncrystalline media].

It is certainly true that a direct comparison of the measured
dispersion curve with theoretical calculations in the pz—plane provides
a very sensitive test of second order effects in frequency [ and hence
considerable sensitivity to higher moments of the scattering kernel] .
However it remains to be seen whether these defects in the modeling of
the scattering kernel which are responsible for this disagreement
with the wave data are of any significance to the original purposes
for which these kernels were designed--i.e. reactors. And although it
is of interest to present such pz-plane plots, they should always be
supplemented with a K-plane plot of the actual eigenvalue spectr'um
since these latter eigenvalues are the quantities of true physical sig-
nificance [ the "observables" of both experiment and theory] .

Notice also that even though such comparisons as the pz-
plane provide very sensitive tests of the scattering kernel model,
they do not provide direct measurement of any physical parameters
of interest. Of course for those systems in which an (iw)n expansion
is valid, the neutron wave experiment can be used to measure the
same quantities as the pulsed neutron experiment (Za, L, Do’ C0 ,
etc.) by appropriate power series fitting, Our analysis has also indi-
cated that quantities such as (vx) can be measured, but these are of
questionable interest. Thus it appears that the role of the neutron

wave experiment to measure ''parameters of physical interest" in



-147-

single-region, non-multiplying media is open to some challenge. Of
course such experiments are still of considerable use as a test of
theoretical models of neutron transport. They also provide an
experimental and theoretical background for wave experiments in

more complicated systems.

It is convenient at this point to make a brief comparison of the
wave propagation experiment (WPE) with the two other classic experi-
ments of neutron physics, the pulsed neutron experiment (PNE) and
the diffusion length experiment (DLE). All three experiments are
similaf in that they seek to measure a fundamental discrete eigenvalue
as a function of some experimental parameter: in the WPE, one
measures the complex wave number K vs. the source frequency w;
in the PNE, the time decay constant A is measured as a function of
system size; BZ; and in the DLE, the inverse relaxation length «
is measured as a function of absorption concentration Ea(v). | One can
roughly order the experimental difficulty of these experiments in solid
moderators as PNE < WPE < DLE. [ The DLE has been considered
the most difficult experiment to perform since it is extremely difficult
to vary the amount of poison in solid materials. ]

However consideration of the theoretical analysis of these
experiments prompts a different conclusion. The PNE is effectively
a non-separable problem in space r, time t, and velocity v and
must be treated as such. The assumption of a separable distribution
o(v,t)R(r) which is made in "ei—%.—li transport theory" is clearly in-

adequate for many experimental situations. That is, N must be
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calculated theoretically as a function of system dimensions rather
than some mythical parameter such as B2 [ whose mere existence
is a matter of some doubt] . However by using a source of fixed
time dependence and waiting long enough for starting transients to
decay, one can regard the WPE and DLE as separable in (r,v) and t
since the steady state response of the neutron distribution will then
have the same time behavior as the source, This considerably simpli-
fies the theory of such experiments, essentially allowing the exact
mathematical treatment of these latter problems [ as in the first
portion of this thesis]. Thus if one were to order the three experi-
ments according to level of theoretical c;)mplexity, the order would
be inverted from before: DLE < WPE < PNE,

It is important here to make one further comment about the
comparison of the WPE to the PNE frequently encountered in the
literature. The statement is occasionally made that the WPE is
complementary to the PNE since the former possesses no inherent
limitation such as material size. However our analysis has shown
that there exist not only limitations on éystem size (Bf) , but in

addition,limitations on source frequency and absorption necessary

for the performance of meaningful experiments. These limitations

are no more or less restrictive than similar limitations on the pulsed

neutron experiment.

To understand this in more detail, one can use the dispersion
laws A(K) discussed earlier in this thesis to study all three problems

(PNE, DLE, & WPE) simultaneously if it is recognized that Kk — -iB,
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iw— \ in the PNE, and K — K, iw/v — _(v) inthe DLE. That is,
one can regard A(K,s) = 0 in general as a relation between two com-
plex variables, s and K. In the s-plane there will be a region in which
A(k,s) may have zeros--i.e. in which discrete eigenvalues exist.
Outside of this region, the discrete eigenvalues vanish., The existence
theorems such as Theorem IV occur when the bounding curve R
dividing these regions intersects [
the axes, It is evident that the f_:,_o_/c_?__n_e Ko discrefe

egenvalues
§ ewst

RN

limiting values of various param-
eters for each type of experiment

can be compared by examining the

-A
shape of the curve R. Our models

Za

suggest that R will be roughly

10

circular in shape, thus implying

that all three experiments are -
equally restricted by their respective limitations.

Hence it appears that the major advantage of the wave experi-
ment over the other traditional experiments of neutron physics is in
the exact knowledge of the independent experimental variable w it

allows, as opposed to the use of a fictitious parameter such as Bz.

It is also true that by appropriate variation of w, Za(v) , and B_f
‘one can use the wave experiment to study the entire spectral k-plane
(dispersion law) rather than just the real axis. However it remains

to be seen whether this can provide any additional information of

interest.
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C. SUGGESTIONS FOR FURTHER EXPERIMENTATION
This thesis has prompted several suggestions for future ex-
perimentation as well as data analysis in existing types of experimen-

tation:

i) One should always plot the K-plane spectrum o-C(A) for the ma-
terial of interest before experimentation or analysis in order to deter-
mine how close the meva,surements will be to the continuum eigenvalue
structure. [ Such a diagram can be sketched by using the BNL-325

cross-section data to calculate C.]

ii} For noncrystalline media, transport effects play a minor role,
and existing methods of analysis are adequate for w << o ”(vEt(v)) .
Both a direct comparison of data in the K-plane or pz-plané as well
as an evaluation of the coefficients in an (iw)™ expansion appear

useful.

iii) In polycrystalline materials more care must be taken to account

- for the sub-Bragg neutron effects. In particular, the customary
power series expansions in (iw)™ should be abandoned in favor of a
direct comparison of measured and calculated dispersion curves in
either the Kk-plane 01; the pz-plane. Although it appears that existing
experiments have experienced very little continuum contamination,
one should be aware that such effects will occur for sufficiently large

w and/or x.

iv) To date most attention has been directed toward the measurement
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of the dispersion curve of the fundamental eigenvalue Ko(w). However
it appears that for sufficiently large w, Za(v), or B'2 one should be

able to observe the sub-Bragg continuum contribution due to CBB

in polycrystalline media such as graphite. Cold neutron sources such

(57)

as those used By DeJuren and Swanson might be used to enhance
the magnitude of this continuum term. One would then attempt to
observe CBB by looking for oscillations in the measured wave ampli-
tude vs. distance x due to phase interference between the continuum
and discrete wave modes. It would be quite interesting if one could
measure the period of these oscillations and £hen theoretically relate

this period to some physical parameter (perhaps characteristic of

the sub-Bragg cross-section structure of the medium).

D. SUGGESTIONS FOR FURTHER THEORY

There appear to be a number of useful and significant exten-
sions of the work contained in this thesis. Of perhaps most direct
interest to the experimenter would be a more thorough determinatioﬁ
of precisely what physical parameters of the propagati.ng media caﬁ
be measured by neutron wave techniques. The measurement of Z}a,
DO, Co’ etc. does not in itself justify such experiments (jusf as it
does not justify similar work with pulsed neutron sources). There is
some possibility that one might be able to obtain information directly
from the continuum contributions in polycrystalline material. Cer-
tainly a more detailed investigation into these questions is needed. "

Considerable work remains on the extension of this theory to

both multiple region systems (wave reflection experiments) and wave
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propagation in multiplying media. A significant amount of work also
remains on the analysis of neutron pulse propagation--that is, the

analysis of true waves with finite wave-front speed rather than '

'wave-
like" disturbances (merely characterized by periodic behavior in x
and t) such as considered in this thesis. Such work will involve an
integration of our solutions over all w in order to synthesize such
pulses.

Of more mathematical interest is an adequate treatment of
wave propagation in geometries of finite transverse dimensions.
Asymptotic reactor theory is inadequate to provide a detailed descrip-
tion of transverse leakage effects, and a full transport theory analysis
is needed. Of course such work has been long overdue even for the
static diffusion length problem. (33, 56)

It is also of some importance to study the point eigenvalues
imbedded in the continuous spectrum, and the effect of these eigen-
values upon the representation of the total solution. This of course
will involve generalized analytic function theory, but should be |
straightforward. Of related interest is a general study of the dis-
persion law for neutron transpbrt as a function of two complex vari-
ables s and K.

It was mentioned in the introductory chapter that the analysis
of neutron wave propagation is mathematicaily quite simﬁlar to the
study of plane wave disturbances in rarefied gases and low density

plasmas. We suspect that much of the analysis of this thesis is

similarly adaptable to these fields.
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APPENDIX A: ELEMENTARY THEORIES OF
NEUTRON WAVE PROPAGATION

I. ONE-VELOCITY DIFFUSION THEORY

The diffusion equation of interest is

on 82 it
—- Dv-—-—% + vZan(x,t) = S(x)e'? (A-1)

ot 5%

-Kx t+iwt
e

If one considers separable solutions of the form n(x,t) = n ,

then the condition for K becomes

\% 2 )
L a

Hence there are two discrete plane wave modes characterized by

. { 5 '
K = [%‘_j—, +?} : (A-2)

II. ONE-VELOCITY, ISOTROPIC TRANSPORT THEORY
Consider the one-velocity Boltzmann equation within the iso-

tropic scattering approximation

of of
- - tvZ
5t TRV g T VEIG,T)
{ +1 ot
= 3vr [ aweoun o + seowet® (a-3)
SJy

+iwt

Substituting the plane wave ansatz f(x,u,t) = F(K;p)e-’{x into the

homogeneous version of (A-3) yields

vE it v
TietvE - kpv] Flip) =—E-S dp'Fr;p") = ZS (A-4)
1
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»+1

where we have normalized 5 dp'Fisp') =1
-1

. z
Point Spectrum P: Let k& C where C= {&: &= —:-‘-% +~|I-t- s e [-1,+1] 3.
To find the conditions on the eigenvalues k & C, divide through in
(A-4) by [iw vz, - Kuv] and integrate over p to find the dis-

persion law

= iw+v2t+i{v
AK) =1 - == In =0 kdgcC (A-5)

2K iw+v2t- Kv

The corresponding eigenfunctions are then found from (A-4) as

VES/Z
iw +v2t - Kypv

Flk,5u) = K, € P (A-6)

Continuous Spectrum C: Now the continuum eigenfunctions are found

as
VZS/Z lw+vZ,
Flk;p) = ¥V, - v Mr)S\p - ———=] K& C (A-7)

To evaluate M(K), use the normalization of F(x;u) to find

= Kv +tiw+vz : ‘
[ :I = A(k) (A-8)

=1->° In| —ruu>%
M) =1 - In Kv = iw=-vZ,

where explicit use of the Cauchy principal value has been used in
the integration.,

Thus one can express general solutions to (A-3) as

~K,xtiwt —Kx it
f(x,p,t) = z a,Fk,ule + 5 dKA(K)F(K;p)e (A-9)

4 C
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One can show that the eigenfunctions {F(i;p): k€ CUP} form an
orthogonal set over the full-range p& [-1,+1] [ with weighting factor
] and are complete over both full and partial ranges of Kk for any
function ()& H*[ -1,+1] (24’58).

To obtain more information about the eigenvalue spectrum, first

note that the continuum C is a cut

in the K-plane. [It is also useful /{—,a/ane g\
to sketch in the exact area con- _
—

tinuum for the velocity~dependent ' ///
problem treated in the thesis. ] ‘%’? -‘_’—7/%
By applying the Principle of the / ir 4
Argument around a suitable con- %

-

tour in the K-plane, one can show ~

that A(k) has two zeros, K s
ES _ K
for w<w = zpovzs %;;vhere Fg

is determined by 1 - _z_s_ }.Lotanh”1 Py = 0. Furthermore one can show

that

z

- . w w - Ta
Ko(w) Q(3Et2a [1 + 1(2V2a)], Vzt << 1, Zt << 14

which agfees with the diffusion theory expression (A-2).

III, CURRENT METHODS OF ANALYSIS
To date, the neutron wave experiments have been analyzed
using an energy-dependent diffusion theory which allows a rather

accurate modeling of the scattering kernel. This theory, due to
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(12)

Ohanian, Booth, and Perez P

shall be outlined below.

I
Consider the Boltzmann : /7

equation in the diffusion approxi-

|
|
mation }
b
19%9_ 2 T i
< 5% D(E)V \If+2t(E) (r,E,t) {
oo ,I—--- N
=g dE'Z (E',E)¥(r,E',t) -7 L P
S . — - - -
0 pad e b/ y
(A-10) -7 A
/G/Z
with boundary conditions for a b

~parallelpiped assembly with a thermal source at its base
V(= 2,y,2,E,t) = Ux,22,y,2,E,1) = Ulx,y,2~ 0, E,t) = 0
[ Here we neglect end effects and consider only the sinusoidal com-

ponent of the source. ]

v _ S(x,v,E) eiwt

To consider the quasi-steady-state response of the flux, assume

¥(r,E,t) = LlJ(_I’_,E)elws in which case (A-10) becomes

iOJ 2] - 0 lz 1 !
[+ 2 m-p@v? bz m = | amE @ muEE) (A

It is convenient to symmetrize the scattering kernel using detailed

balance, by defining
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1

P(E',E) E[D(E')‘g?g)%&(m] "z (£',E)- 575" Z(EN 8(E-E")

to rewrite (A-11) as
~ 00

{vz— | e <R PEE R i
o]

Now expand solutions to equation (A-12) in terms of the space eigen-
functions defined by the Helmholtz equation

2 2
g 8% , 8 + B2

2 1

@ (X:Y) =0
ox oy g Lm

Im

and the energy eigenfunctions defined by

2 o8]
-l B E) = 50 dE'P(E',E)S,(E)

These latter eigenfunctions are evaluated numerically using the pro-
cedure of Ohanian and Daitch(iz).
The solution is then approximated by a finite expansion in the

eigenfunctions
N

X(}'_:E) = z Almagoﬂm(x:Y)f&a(E)e-Kz (A'13)

{,m,a

If (A-13) is now substituted into (A-12) and orthogonality is used, a

system of algebraic equations arises

22 2 ) _
Z [(x - Poo" Biﬂm)éaﬁ' 1wLaB]A£ma =0

here L .=t dE's (B =2 | 5.(E")
vhere Log = ) 429 (E)| 350 | %
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Thus for non-trivial solutions, we require the usual condition

2 2 .
- B )6 o - iwL ]z 0 (A-14)
oa l,@m af aB

det [(Kz- )
This condition will determine a set of eigenvalues k = a +if for each

transverse {m mode, and thus constitutes the dispersion law for

this model. The final solution to the original problem is then

vl\/i(E)-l%\é\fI N “%tma® i((')t—gﬁ az)
¥(r,E,t) = [’“]5‘(—15)—-] /, Z Aima?’ﬂm(x,y)&‘ra(E)e e ™
‘ I,ma

Now it is hoped that one of these modes will dominate asymptotically
in space far from the source and boundaries. If this is true, then the
experiment should measure the lowest Kii0 = %10 + §“0 for each

source frequency.

The dispersion relation (A-14) has been solved numerically
for an exioansion (A-13) of N = 33 terms, and the first few eigen-
values have been evaluated for various w, For graphite, both the
MASS-12 heavy gas kernel code and the SUMMIT code were used in
the calculation of the energy eigenfunctions 3 (E). The more accurate
SUMMIT code was also used in the multigroup transport theory calcu-

(13)

lations of Travelli . This code is based upon a model of the
(61)

graphite scattering kernel due to Parks which uses the incoherent
approximation to calculate the inelastic differential scattering cross-
séctioh, assuming that the vibrations of atoms perpendicular to the

basal planes of the lattice are uncoupled from vibrations in the plane.

The elastic scattering is modeled separately and then added on to
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obtain the total scattering cross-section o-s(E). (It must be noted that
this model fails to account in any way for coherent inelastic scatter=~
ing. This latter component is of considerable importance for neutron
energies below the first Bragg peak. This defect probably explains
why the SUMMIT code calculations fail to give good quantitative agree-
ment with experiment.)

For calculations in DZO’ the GIN (Goldman Improved Nelkin)
kernel was used with the DZO parameters introduced by Honeck(éz).
This model also uses the incoherent approximation (hence assuming
that all energy transfer is due to incoherent scattering) and treats

the D,O molecule as a combination of translation, hindered rotation,

2
and 3 vibrational states.
These calculations are shown in Figures 12 and 20 where they

are compared with the results of experiment as well as the calculations

using the modeled transport theory in Part II.
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APPENDIX B: THE BOLTZMANN WAVE OPERATOR

I. THE BOLTZMANN WAVE OPERATOR A FOR NONCRYSTALLINE
MEDIA

Recall that we wish to consider the linear operator

~/
. Z (v) +1 0%} Z (v v,ptp)
A=l 4t ] 4" d}L'S‘ dv' —2 . (B-1)
T oo ), !

Ty

which operates on functions contained in the Hilbert space S,Z(G). Also

recall that our inner product was chosen as

n+1 ~ O :
(L= ) av T age,v) (B-2)
o]

A, Classification of A -

iw Z;1:(\'?)
i : = |- +
The Streaming Operator A1 v m

Under the inner product (B-2) it is easy to show that
Z (v)

AI =-3 4 Y "4 A, thatis, A, is not self-adjoint. However
BV B 1 1
afa, - [. iw Z,(v) o, Zt(v)] i, z.(v) e, . (v)
o AL | LA BV T
= T
=818y

Hence A1 is a normal operator. Since A1 is a multiplicative
operator, it is not completely continuous. [ Here we are using the
definition of a completely continuous operator A as one for which

P ¢ = Arpn——>Ago.] Furthermore note that

~+1 w [ . ZVNr = (v)
t t p—
| £]] =§_1dugo dv[— ot ][—:ﬁ’ﬁ Jf(p,V)f(M,V)

. P
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and since Z (v)= @ as v—0, HAHH#MHfH for some

f(p,v)E SZ(G). Thus by definition, A1 is an unbounded operator.

The domain of this unbounded normal operator is

= (V) }
84, {o: 0 € 2,(@), L€ 5,(G), L—0c sy

+1 Z (v v, )
The Scattering Operator: 5 = S dp.S‘ dv'

Vi'w

This operator is hopefully bounded and is certainly self-adjoint
under (B;Z). However we would like to go one step further and con-
clude that it is completely continuous. That is, we would like to show
that gon———\ o = Achn~—§ Azgo. To do this, we must demonstrate that
the kernel of AZ or one of its iterates is square-integrable.

However this demonstration is a rather difficult task. Observe

that for isotropic scattering kernels

2

+1 vv) +1 —-
12,112 =) dug av3" dp§ av' |- § et 12 v

-1 M

We note a logarithmic divergence due to the 1/p term. This diver-
gence is in addition to the divergence at high (v,v') of the free-gas
kernel(zg). Thus we conclude that HAZ H = oo. Now it may happen

that a higher iterate of .A2 is square-integrable. Certainly the

-1/2

[p'p] will not affect the customary divergences of gs(v "=y, )

which are square-integrable in higher iterates.

However it may happen that A, is not compact in an SZ(G)

2

sense since the 1/u divergence occurs because of neutron streaming
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perpendicular to the x-axis. This is a definite "physical" singularity
in the problem. Perhaps one should actually work in the function

(48)

space of Bareiss which allows for principal value interpretation
of integrals. In this case, 1/p is integrable. This latter approach
was adopted in an attempt to rigorize a spectral theory approach to the

(24)

Case method » which of course involves principal value integra-
tions as well as the treatment of functions obeying Holder conditions.
However as physicists rather than mathematicians, we are

reluctant to cast aside the more familiar Hilbert space £Z(G)' Thus

we shall assume that .A2 can be regarded as completely continuous

operator. [ Additional motivation for this assumption is two-fold:
(1) We know the Case approach involving similar operators is correct.

(2) We can show that the 1/‘\,|.L'|J. term in A_ "does not appear to add

2

additional continuous spectra to o(A)--see p. 166, ]
In summary then, AZ. is a self-adjoint, "completely continu-

ous' operator whose domain of definition AS\A = SZ(G).

2
It is evident that AQA C SZ(G)., Hence we can conclude that the
1

domain of our original operator A is 8,=8, .,
A A1

B. The Spect;'um o(A) of A
We shall now indicate a sequence of theorems about the spec-
trum ¢(A) which culminate in the summary theorem presented on
p. 18.
1. The Continuous Spectrum O'C(A):
Recall that by definition o*C(A) is composed of those values of

Kk for which R(A-k) = £Z(G), and (A'-K)"1 exists but is an unbounded
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operator. We shall first indicate two useful preliminary theorems:

LEMMA (Extended Weyl Criterion): A necessary and sufficient con-
dition that K be a limit point of the spectrum [ and thus in o-C(B)]
of a normal operator B is that there exist a sequence of elements

cpn€ AS)B such that

logll =1, 0,=0, (B-w9,—0 .

Proof: The proof of this lemma is given for self-adjoint operators in

Riesz-Sz. Nagy(27), p. 363. However the only place where the
assumption of a self—adjoint operator entered into this proof was in

the application of the spectral decomposition theorem

Since such a theorem can also be proven for a more general un-
bounded, normal operator [ see footnote, Riesz-Sz. Nagy, p. 363]

+oo+0o 2
B=§ ‘3 K d°E

-0 Y -0

K b}

the Weyl criterion appears true in addition for unbounded normal

operators such as Ai'

THEOREM (Extended Weyl-von Neumann Theorem): If- A is a normal

operator and B is a self-adjoint, completely continuous operator,

then

O'C(.A + B) = O‘C(A) -
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Proof: Suppose KE O‘C(A) and let ? be a sequence such that

H‘Pn“ =1, Qon‘“" 0. Of course
(A+B-K)e_ = (A-K)g +Be

But (A- f{)qon——> 0 by the extended Weyl criterion. Furthermore
by the definition of a completely continuous operator, qun——-> 0.
Thus

(A+B-Klg_—0 =2 k€ o (A +B) Q.E.D.

We shall now use these theorems to locate a‘C(A) for (B-1).

THEOREM: Let C= ix: K=I’;+T— , WE [-1,+1] ,v€[o,oo); .

Then O'C(A) = C,

Proof: We first show C(C o (A). Choose values of K& C and by V
; Zlvy)
such that K = —o— + t K . Now take for the ¢_ any sequence
FeVe  Fg n
of unit vectors which as functions approximate &(p - pK) (v - VK) )

K

e.g. L &
M(v) ]2 = <
[52 :l Ve SV SVt e Sp< s
@g(esv) =
0 otherwise

Clearly HgoaH =1 while ¢,— 0. But H(Ai"{)‘l’éH"’>0 =
k& o (A,). Thus we have shown by the Weyl Criterion that
cC o‘C(Al).

Now to prove C_) O‘C(Ai) [i.e. kK C—~ k& O‘C(Ai)] , we
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Z (v)
consider K_ # ﬁ% + for any v€& [0,), p€ [-1,+1]. Then
1w |, TV -t .
(Al- I{o) il e +—;—L—~—~— - K is certainly a bounded operator.

Thus by definition Kk & o_(A), implying that C Do _(A,).
Hence we have shown that C = o-C(Ai). Now since A1 is
normal while AZ is completely continuous and self-adjoint, we

can apply the Weyl-von Neumann theorem to find

C

i

o (A

A = o (A T A

) = o (4) Q.E.D.

Notice that this proof has relied upon the fact that A2 is com-~
pletely continuous. It is possible to establish several facts without

this assumption by referring to a theorem by \S/mul'yan(So):

THEOREM: (gmul'yan): Let P(Kk) be an operator which is analytic
in Kk for K contained in some region G of the complex plane.
Furthermore let P(k) be compact for each value K€ G. Let K,
be a non-zero complex number and {Ko} the set of those values of

K€ G for which K, is an eigenvalue of P(k). Then either

i) {k}

G
or
ii) {Ko} has no limit point in G

v
Proof: See Smul'yan(5o).

Now we shall use this to show
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THEOREM: o‘C(A) Cc

Q+ v'E (v v,p'p)
Proof: Consider P(K)= 5—1 dV'S::OdV' iw+v'2t(v) Ry . This is

clearly analytic for k €& C. Furthermore

SPTTE R G (o A . ma il
[1P() |7 = ) P"O V._i p o v [iw"'v'Et(v')-Ku'v']liu>+vzt(v)'KHﬂ

Now we know that since lim [ iw +v2t(v) - Kpv] -t [ilw+ )\-*] -1 s
v—=0

lim [iw +V2t(V) - Kpv] -1 0 for KK C, we can bound
v 00

[iw +v2t(v) - Kpv] “1< M and hence bound
[|P(e) ||“ <M 5‘ duﬁvg dp'S av' V'VES(V'—*v,p.'-* )
-1 o] -1 o}
- N2 = 1 1 2
- 202 |93, e v ]

Now if we can assume 8§ = nﬂdp'g‘x:iv' V'ZE;(V""'V,}L'_’}L)' is
completely continuous, as it—;ppe;rs to be for noncrystalline
media, then we can conclude that P(k) is compact for I{Q C.
Therefore we can apply Smul'yan's theorem to P(k) to con-
clude that either o(A)= {k: k& C} or {k: k& C} contains no
limit points of o(A). But since the first alternative is clearly

impossible, we can conclude that the set {k: K& C} contains no

continuous spectrum o-C(A). That is, o-C(A)C C.

2. The Residual Spectrum o-r(A)

The residual spectrum is defined as those values of K for
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which (A - K)—i exists, but for v&hich R(A - K) is a proper subset

of SZ(G). We shall demonstrate that the residual spectrum O'r(A) is

empty for our class of operators. We first prove a lemma:

Proof: We shall show that if (A-K)&

LEMMA: If K€ GP(AT):‘:)KE o‘p(A) y then o*r(A) is empty.

2 is not dense in .SZZ, then k
must be contained in the point spectrum crp(A) [ thus implying that
o (A) is empty]. To see this, notice that if (A - k)&, is a proper

subset of £_, then for any ¢¢& S'Z there exists a vector ‘\lJ orthog-

2’
onal to {A-K)e [by the projectiontheorem(zs)] . That is,

(Y,[A-k]g) =0 for all go€£2

But we can rewrite this as

(AT -Fly.e) = 0
Since (AT —Tc)l{) Eé:z and ¢ is arbitrary, this implies that
(AT -K)Y =0 = K crp(A )

But by assumption, K& GP(AT) = K EO‘p(A). Thus if (A - I{)SZ
is a proper subset of S,z, then K € O’P(A). But since o'r(A) and

o-p(A) are disjoint sets, this implies that O‘r(A) is empty. Q.E.D.

We shall now use this lemma to prove the following theorem:

THEOREM: The residual spectrum ot A, o-r(A), is an empty set.
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Proof: Consider o*p(A) defined by

A,TTPK ) { [ &ri% ¥ E;M] ¥ AZ}I’—’K = kb,

Taking the complex conjugate
A%+ B a o oms,

or, identifying AJf = A, we can conclude that if LP is an eigen-

.

function of A' with eigenvalue k, then L(JK is an eigenfunction
of A with eigenvalue k. That is K& o*p(AT) = KE o'p(A).

Hence, using our lemma, we conclude that o'r(A) must be empty.

3. The Point Spectrum o-p(A)

The point spectrum of A is defined as the set of those iso-
lated values of Kk for which (A - .'{)“1 does not exist. We have already
shown that o‘p(A) is contained in the complement of 'C. We can

either consider crp(A) as the set of values for which

. Z (v) = (v'-*v P )
l:-:;%’“ ; ]LPK(&L,V)-S quiv bt v') =, (,v)

KkdC (B-3)

has nontrivial solutions, or consider the auxiliary eigenvalue problem

e ) +1 o Sv's“s(v’—*v ) ] L
(51 v) -S;idp. S dv Liw+v! Zt(vr) - Ku'v'] (K5p"5 )

kg C (II-14)
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Since (B-3) and (II-14) are non-self-adjoint eigenvalue problems,

there is little that can be said

about o _{A). However we can
P H-plane
use equation (II-5) to show that
w0
. -Kkx tiwt N
if F(Kk;u,v)e is a solu- \\\ N @(& %
tion to (II-2), then both \\ s ¥
_ '_IZ - ot \
i) Flgp,vie” 1 = AN
¥ £ N
and N
O~
+ i w
H) Fi-p,v)e X Tiet

are also solutions, These sym-
metries arise from the irreversibility of the Boltzmann equation and
detailed balance, respectively. They allow us to depict the symmetry
in the K-plane as shown, and to cbnclude that o*p(A) is confined to

those regions of the first and third quadrants of the K-plane for which

kK& C.

4, The Resolvent Set p(A)
The resolvent set of A contains those values of k¥ for which
(A-k) " exists and is bounded and R(A-k) = SZ(G). p(A) is the

complement of ¢(A) in the complex K-plane., Hence we can conclude

that p(A) is the set of those values of kK such that k& C U o‘p(A).

We have now completed the proof of the summary theorem pre-

sented on p. 18 for noncrystalline media.
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II. THE BOLTZMANN WAVE OPERATOR A FOR NONCRYSTAL-
LINE MEDIA

The scattering kernel now becomes
Zs(v'—*v,p.'—’p) = Zi(v'—*v,p,'-*p,) + Ze(v)P(p.'-*p)S(v' -v) (B-4)

We shall assume

i) Zi(v'*'v,p.'—* f) or one of its iterates is square-integrable
over G

ii) P(p'—=p) or one of its iterates is square-integrable over II~L

iii) Ze(v) is bounded and piecewise continuous

Our linear operator is

Z (v) +1 oo Z) (v —v,p )
S RN PR .
A [pv+ m } + S\ dp.j dVL \[___ j

Ay Ay
1 ) 1
[ = (V)S\_ dp' \—fi—h*—l.__ J (B-5)
A3

A, Classification of A

As before, A, is an unbounded, non-self-adjoint but normal

1
operator with domain AS\A ={o;0€ £ G), @ ESLZ(G), goC £ (G )}.
1

We shall assume A2 to be self-adjoint, completely continuous inte-

gral operator with 8, = SZ(G).
2
The operator A3 is bounded and self-adjoint. It is not com-

pact, however, because of the 6(v'-v) term which yields a multi-
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plicative operator in v. [If ¢, @, Ze(v)qon"‘“ Ee(v)cp.] However,
ASA = £2(G).
Again the domain of A = A, +A2 + A3 is 8, = AQAi.
B. The Spectrum of A
Unfortunately the Weyl criterion does not apply to operators
such as Ai + A3 ‘which are not normal. Hence the Weyl-von Neumann
theorem cannot be used to imply o-C(A) = o-c(.A1 + A3). We need a

different approach.

1. The Continuous Spectrum o‘C(A)
We shall use a definition of the spectrum ¢(A) due to Hille

and Phillips(sg)

Definition: If there exists a sequence u5€ ASA such that

Hu5HZc>O, H(A-K)usH—*O as 66— 0 then K€ o(A).

Now our procedure will be to show (CUTI)(C o(A) and then show that
if kg CUT then k¢ o_(A). That is, while we will be unable to
determine precisely what kind of spectrum C UT is, we will show
that it is contained in o(A) an;i furthermore contains all of ch(A).
Then since we can show o-r'(A) is empty, ’ghe only other possible
spectrum present in C UT is o‘P(A). But if the set C UT' is dense--
as we shall assume it is-~then UP(A) cannot be contained in C UT

by definition, thus implying o-C(A)E cur.
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{ iw Zt(v)
THEOREM: Let C={K: K=— + s
{ MV

pE[-1,+1],v€[O,oo)}.

Then C( o(A).

. Z(v.)
Proof: Again pick values of k€ C and p, ., v, > K = oyt K .
K’ 'K R e
K K K
Now take 1
M) |? = + =< +
{SZJ Vg SV S Vtes e St
@ (s v) =
0 otherwise

Now [[¢ || =C>0 and [[(A-r)e,l|| =~ (k + M5~ k) = 0.

Thus by the definition above, C( ¢(A). Q.E.D,

+1
. = e _ 1 Plu'—u) 1
THEOREM: Let I'= {K. hK(p,) —vEe(v)S\_idp. [iw'i"vzt(v) = Ku'v] hK(p, ),

vE[0,00}
Then I'C o(A).

Proof: Similar to the above proof.

THEOREM: If k¢ C UT, then k& o (A).

Proof: Consider the associated operator

_ +1 (o V'E.(v'"—'v,p'—’p)) 1
P(K)=S:1dp§0dv {iw+xlf'2t(v')-i<p,'v'f£e {-} (B-5)

where

+1
— ! Plp'—p) 1
S:e“o- ¢ "’Ze(")& idp. {im‘i‘vzt(v) - I{p.'v}q’(p' )
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It is obvious by construction that P(k) is analytic in kK for
kg CUT . Furthermore it should be straightforward to demon-
strate that P(k) is compact for k& CUT. Hence applying

gmul'yan's theorem implies that & O‘C(A) for k¢ CUT.

Therefore we have shown that

iy (CUD)Co(a)

ii) o'C(A)C cur

2. The Residual Spectrum O'r(A)
Since the symmetry of A is not disturbed by the addition of

A;, we can again conclude that crr(A) is empty.

3. The Point Spectrum GP(A)
We have shown that the point spectrum o‘p(A) is determined

by those values of Kk such that

+1 00 V'Zi(v'—’v,p"’}x) -1
- — 1 1 PO | 1
fi(K’“’v) - .Si flp' §Odv {iw +v’23t(v’) - Kp'v! }se {in("{’*’L v}

possesses non-trivial solutions. Since CUI' are dense sets and
crp(A) can contain no limit points, o-p(A) must lie in those regions of

the first and third quadrants for which I{Q cUrT.

4. The Resolvent Set p(A)
Again p(A) is the set of all points not contained in o(4), i.e.

all Kk such that I{Q curu crp(A).
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Thus we have now proven the summary theorem given on p. 26

and completed the analysis of A for polycrystalline media.
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APPENDIX C: NECESSARY CONDITIONS FOR THE
EXISTENCE OF o_(A)

A proof of Theorem IV shall now be given. Since this proof
is somewhat different for each model considered, a sequence of

theorems is necessary.

I. ISOTROPIC, NONCRYSTALLINE MEDIA

I, J,

THEOREM Al: There exists a frequency w such that for > w ’

the point eigenvalue spectrum o*p(A) is empty.

Proof: Our task is to demonstrate that for sufficiently large w,
equation (II-15) has no non-trivial solutions for any ke C.
Rather than treating this equation directly, it is convenient to
multiply by Zs(v',v) and integrate over v', defining
= t 1 !
b (V) -—de z (vhv) &, (v')
to arrive at an alternative formulation of the dispersion relation
- i ! . N = -
LPK(V) = S:?:lv Es(v ,v)g(K,w,v)LlJK(v ) = KKk[JK kd C (C-1)
Now a necessary condition for (C-1) to possess a non-trivial

solution is for
00 © ' 5 1
”KK” = S dV'S‘ dvZ_(v',v) lglk,w;v")|“] = 1 for some k& C
o o :

We will show that this condition can never be satisfied for suffici-

ently large w.
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Consider first

iwt+tvZ (v) tKv g l
gk ,w;v) = E%\;lnl: t ] i-plane /

iw +v2t(v) - Kv

We need some information

about k{w) for large w. l

From the K-plane diagram

it is evident that the con- l
tinuum area C fans out as /

shown. Thus for KQ C,

@ = Re {K} must certainly

be bounded by [Zt(v)] nin = Z, as @ . However the form

of K(w) will remain otherwise arbitrary. Consider then

ot v(Z,(v) ta(io)) +i(w+vE(w)
gk, 0iv) = Sy FiE(@)] B V(Z,(v) - @(@)) F (e - vE() (C-2)

for three separate cases:

i) £(w) strictly increasing for large w., Then

oy ~ L w t vi(w
gl ) ™ ) 1n[w - V§(w)]
and the 1/(w) factor will force g(k,w;v) to zero as

w — O,

ii) &(w) strictly decreasing in w. For the moment, assume

that v is bounded. Then as w — oo,

g0 ~ 2 1n[$f§§§$;] —~0

as the argument of the log goes to 1.
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iii) £(w) approaches a constant goo as w— . If we again
assume that v is bounded, the argument of the log again
goes to 1 forcing g(K,w;v) to zero as w=—- oo,
In conclusion then, g(k,w;v) —~0 as w=> oo for bounded v. Thus
certainly for sufficiently well-behaved Zs(v',v) [ which we have for
noncrystalline media]
”

V' fglee 2 2 %
lim g dv'\ dv Zs(v',v) lg(k,w;v') | = 0 forany v < oo
w—roo Yo Yo

Now consider the remainder

(o0 o
d= ) dV"g dv 2§(V',V) lg(K,wiv') !2
v °
Recognize that g(K,w;v) does not approach zero uniformly in v

as w — oo since there is a singular behavior in case ii) and

iii) when
v[Z,(v) - @(w)] +i[w-vE(w)] =0

But this can only occur as w =+ o for v — . Thus it is neces-
sary to examine the effect of any divergences in g(k,w;v) as
v = oo, |

To be more specific, let Zt(v) = EM+ qé{v) where ¢(v) is
(52)

monotonically decreasing and is usually assumed to go down

slower than exp(-bvz). To examine g(K,w;v), notice that

[% - £(w)] =0 as v— o like c/v. Thus we can write
c

. Q4lv) +i— +c,
gl o) ~ g, Y| TREW T o /v

as v =" 00
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Now for cases ii) or iii), the denominator q¢(v) + ici/v will
certainly go to zero as 1/v or slower. Thus the divergence in

g(K,w;v) can certainly be bounded as

gl ,wv) = In [c3vY] y< i (C-3)

L
2K

We now use the behavior of the scattering kernel Es(v’,v) for

ale
3R

v>v toforce d— 0 by noting that for large v, Zs(v',v)

assumes its slowing~-down form

civ/v'2 vE [Wv',v']
z v =

0 otherwise

hence
fo's) v! 2 aYee) .
J:g dv"g\ dv ci—z—4— |glk,w;v") }2 = 025 _c_l_}__rr_ |glk,wsv') lz
s . vt %« Vv
v e v \s

(C-4)

If one now uses (C-3) in (C-4)

_ dv
J—CJ*V 2 1n? [c Y]

v
Y

lnzcv

Now since — c'/v, one can conclude that 1>:;<m d=0.

v =
Hence we have shown that J can be made arbitrarily small by

e
R

moving v  to infinity, Thus we have shown that
| 1
2 2
lim HK [| = lim [g dv\S1 dv Z (v V) | gk, wv )I] =0
w—>0o w™>00

In particular for some w < 00, "w> w will imply HKK || <t for

any K & C. Thus we can conclude that there exists a frequency
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w  such that for w> o , O‘P(A) is an empty set. Our proof is

complete.

it

¢ dtv)

such that for Za(v) = qP(v) > Z:, the point spectrum crp(A) is

THEOREM A2: There exists a critical absorption 2, (v)

empty.

Proof: This theorem was originally presented by Corngold(sz) for
the w =0 case. Its proof follows immediately from Theorem Al
by noting that

e
E
sk

v o 2 ' .
1im§ dv'g des(v',v) lg(k,w;v') | = 0 for any v < oo,
q— v o o ‘

2

bv , the remainder

and for ¢(v) decreasing more slowly than e~

d can be shown to approach zero as q —> ., Q.E.D.

THEOREM A3: There exists a critical transverse dimension yielding

a sz such that for Bf >Bf2, the point spectrum O‘P(A) is empty.

Proof: This theorem was first presented by Williams(53) , again for

the w =0 case, His proof can be extended immediately to the
w >0 case., However a more intuitive proof is merely to recog-
2 2

nize that if one increases Bf sufficiently, p = k= * B, will be

forced into C for any k & C. Q.E.D.
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II., ISOTROPIC, POLYCRYSTALLINE MEDIA

THEOREM B: There exist critical bounds on W, Za(v) , and Bf such
o B3 ES
that if w >w or Za(v) > Za(v) or Bf > Blz, the point spectrum

crp(A) is empty.
Proof: The dispersion law analogous to (C-1) is now

. A
‘PK(K) 25:21"'2&:("’"") (:(,icuj,: ))\IJI{(V')E Kby

But notice that since Ae(K;v) =1 - Ze(v)g(l{,w;v), we can examine
the influence of Ae(K;v) on HKKH directly. First we restrict
ourselves away from o - Ae(l{;v) = 0--that is , kK& I'. Now we
know that for v bounded, |g{k,w;v)| = 0 as w— . But as

v = 00, Ae(v) - Cl/v'2 for all reasonable cross-section models.
Thus it is evident that as w —> o0, .Ae(l{;v) — 1 for all v. This
of course implies that

tim (R 1] = 1%, ]] = 0

hence implying that for w > ‘*’%::, o-p(A) is empty. A similar argu-

ment can be given for Za > Z:, or B.LZ > B 4, Q.E.D.

III. GENERAL KERNELS
Now consider the more general dispersion relation for non-

crystalline media

+1 [0 0] !VIES(V'—’V’}L‘-—»}L)
. ‘= ! ! oy ! i -
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We would like to demonstrate that the above theorems hold even for
this more general model. That is, we would like to show that for

sufficiently high w (Z_ or B_‘z‘),

[~+1 oo V""V’P""“)
G || = dp\ d d '

for all k¢ C

AN
[

This, of course, is a rather difficult task since Zs(v'—*v,p'—'p) is
arbitrary. Howéver a very crude argument is as follows: We know
that since Z‘,S(v'—’v,p‘» p) is a relatively scattering probability,
it must be finite for all (u,u',v',v). Furthermore it seems evident
that since the probability to scatter into any angle is always greater
than the probability to scatter from a specific ' to a specific p,

one should be able to bound.
|Z v = v | < M[Z (v, V)]

where M is a finite (perhaps large) constant. But then

1
2
Z (v',v) )
HGH<MS\ pgdvg gd'lw
22+ 2,() - s [ | 2B+ 2 (0") - k']
Tz
oo oo 2 2
x| e | ar 22 gte,ee 12 = Ml |
o o s ’ K
From Theorem Al, we know lim HK H 0. Thus we can conclude

W™ 00
that ||G H ~ 0 as w— . Hence there exists an w such that for

s

w>w, [|G,||<1 forall k¢ C. Q.E.D.
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A similar idea can be used for the maximum absorption and

transverse buckling theorems, as well as for polycrystalline media.
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APPENDIX D: GENERALIZED ANALYTIC FUNCTIONS
In the theory of functions of a complex variable, an analytic

is one which satisfies the Cauchy-

function w(z) = u(z) + iv(z)

Riemann equations
du Ov ou , Ov _
7% By oy Tox - 0 (D-1)
where z = x +iy
Suppose we consider a more general form of these equations
(D-2)

du owv ou , ov

222 4y tby = =24 2 =

5% ~ By au tbv =1 5y | Bx tcutdv=g
Then we can define a "generalized analytic function"(43) [or "pseudo-
1)] as one which satisfies this more general form

analytic fu.w:txctioarl"(5
of the Cauchy-Riemann equations (D-2). A convenient notation is
5 (g -3
oz Y

Using this notation, the Cauchy=~-Riemann equations (D-1) become

w2 (D-4)
0z
and the generalized Cauchy-Riemann equations (D-2) become
(D-5)

Wi Aw+Bw=F

0z

Then to test whether a function &(z) is analytic, one can merely
is an analytic

If this derivative is zero, then &(z)

evaluate -?: .
oz
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D
function. However if ?f # 0, then &(z) must be regarded as a
0z
generalized analytic function of z.

A very useful class of generalized analytic functions are those
which satisfy a simplified form of (D-5)
W =g (D-6)
0z
Using a form of Green's theorem, one can actually "solve" (D-6) for

some domain G as

T -z

\ e /
'

®(z) T

w(z) = ;Wigwé@_‘f-% ) HEEEA = gsin (D7)

The TG operator defined by (D-7) plays a major role in the theory
of generalized analytic functions, as evidenced by the Lemma of
section (III-A).

Much of this theory can be developed in analogy to the theory
of analytic functions. Many of the important theorems of the latter
possess analogues for generalized analytic functions [ Cauchy's
theorem, identity theorem, etc.]. An extensive treatment of this

theory is given in Vekua(43).
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APPENDIX E: SUB-BRAGG CONTINUUM CONTAMINATION

I. INTRODUCTION

We wish to examine the role of the sub-Bragg continuum contri-
bution in the total solution for the modified synthetic kernel model,
Actually the experimenter will measure the neutron distribution inte-
grated over a detector response de(v). The analysis becomes
particularly transparent for a detector response of in(v) [ detailed
numerical calculations for a 1/v detector exhibit no significant differ-

ences]. Then the measured detector response becomes

+1 (o]
Rx,t) =5\ dp.g dVVZi(V)f(X,[J.,V,t)
-1 o)

+1 (o's) 1 -ioco gt :

=§ dp§ dn/v?l(v){——-—:--‘gv e N F(n;u,v) d'q} (E-1)

i 2mwi J,.
-1 o} +ico

Interchanging orders of integration, one can show this reduces to

(x,t) + R

discrete (x,t)

-ioco .
R(x,t) = = E LMot X (6) oo e c
+ BB

2Ti {0 (K)

+ Rr(x,t) + RC (x,t) (E-2)

AB

where we have denoted the various terms corresponding to the con-
tour deformation indicated on p. 111, Now for x > 20 cm. we have
shown that we can neglect the source transients due to CAB and T,

Therefore the total solution can be written as
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R(x,t) = R,. (x,t) + R (x,t) =
discrete CBB
x (i) =k x+iot o _ o DX p(MAM) + x (AL (n)
= 57 e +5e ety (R R g (E-3)
o1 |« C A (mA ()
o BB

Before continuing, it is useful to regress to a simple diffusion theory

model for a preliminary analysis.

II. A TWO-GROUP DIFFUSION THEORY ANALYSIS

If we identify those neutrons in RC (x,t) as sub-Bragg
BB

neutrons, while those in R (x,t) are predominately neutrons

discrete
with v > vp, we can use a two group diffusion theory to estimate
-K _xtiwt -K xtiwt

(x,t) + R (x,t) = r,e e +r e
CBB d c

Rx,t) = Rdiscrete

We recognize two sources of sub-Bragg neutrons

i) those due directly to the source [ corresponding to

X g (MAM) in (E-3)]

ii) those due to neutrons scattering below Vg [ term x(n)AR(n)
in (E-3)].
Considering a plane source with a Maxwellian distribution yields for

the first type of contribution [ using as a boundary condition

1 6n 2 -v%
e ]

< F— =V
BZtBX

# source neutrons below vh

# source neutrons above vy

D 5.
B 2 ~v
Kk, fo dv Zi(v)v e
- ~ 0.4% for graphite

Ke foodv z (v)vze
vy 5
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and for the second type, using as a measure of downscattering the

inelastic collision term in (VI-1)

r, # neutrons scattered below vp
Cds - ?; # neutrons scattered above Vg
v
B . 3 —VZ
f de:i(v)v e
= =2 ~0.2% for graphite
.o 3 -yl .
jv dv Zi(v)v e
B

Hence we expect from these analyses that the initial magnitude of the
sub-Bragg contribution will be about 0, 6% that of the magnitude of
the discrete mode. [ From this analysis it is also clear how one
might use cold neutron sources to build up the relative contribution
from CBB’]
III. ASYMPTOTIC ESTIMATES

If we assume a Maxwellian source, then it is possible to re-

write RC (x,t) as

B8 (iw+2‘§)) ~ 2 o 1
Ro (k) = S‘dne-nX+Mx Zfﬁ N LB Eif}n)+?Ain)
BB ol R AT A" ()
© U7
- gm due—auﬁwt o(w)d(u) _ (E-4)

: 1/VB-E—

where a = (iw t ZS)X‘
u = n/a'

. Integrate (E-4) by parts to obtain
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it e u *
e R (x,t) = - p{u)d(u)
Cps * /vy
90) e-a'u 9
-S du -= 57 (oW)
1/VB

But the first term in (E-5) is identically zero; hence we must integrate
by parts once more. It is possible to show that 8y/du has a first

order pole at u = 1/vB. Thus we can only find

—Q/VB

(x,t) = E—“‘Z—‘— 552‘ (o)
BB @ ¢ 1/v

~-iwt
e R c

100 -au_ Oy 1 (® o au o
'-)1/v ue ¢au+a§1/vd =WgL) (E-5)

Thus, provided we can bound the integrals, (E-5) implies that

-l B /vp)x +iat )

R (x,t) = o (—-—e as x — o (E-6)
CBB | X
m+z§
This estimate is only useful for x>> - ~ 20 cm however,
B
Numerical calculations of RC (x,t) have been performed
BB

which indicate that for intermediate distances at least,

-k xHot
(x,t) ~ e
BB

Re

where Re {Kk (w)} is given in Figure 21. Hence it appears that a
reasonable form for the structure of the solution in the regime
20 cm <x< 100 cm can be written as

-K xt+iwt &,
R(x,t) =e ©° +0.5%e K xtiot (E-T7)
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