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Abstract

In this thesis we analyzed the simple connectivity of the Quillen complex at p for the
classical groups of Lie type. In light of the Solomon-Tits theorem, we focused on the case
where p is not the characteristic prime. Given (p,¢) = 1 let d,(g) be the order of ¢ in

Z/pZ. In this thesis we proved the following result:

Main Theorem. When (p,q) =1 we have the following results about the simple connec-

tivity of the Quillen complex at p, A,(G), for the classical groups of Lie type:

1. If G = GLn(q),dp(q) > 2 and my(G) > 2, then A,(G) is simply connected.

2. If G = Span(q), then:
(a) A,(G) is Cohen-Macaulay of dimension n — 1 if dy(q) = 1.

(b) If my(G) >2 and dy(q) is odd, then A,(G) is simply connected.

3. If G = GU,(q), then:
(a) A,(G) is Cohen-Macaulay of dimension n — 1 if p# 2 and dy(q) = 1.
(b) I'my(G) > 2 and dy(q) is odd, then A,(G) is simply connected.

(c) fn >3, ¢g>5 isodd, and dy(g) = 2, then A,(G)(> Z) is simply connected,

where Z is the central subgroup of G of order p. O

In the course of analyzing the p-subgroup complexes we developed new tools for studying
relations between various simplicial complexes and generated results about the join of

complexes and the p-subgroup complexes of products of groups. For example we proved:

Theorem A. Let f: X —Y be a map of posets satisfying:

(1) f is strict; that is, z < y = f(z) < f(v),
(2) f7Y(Y (< y)) is min {n,h(y) ~ 1}-connected for all y € Y, and
(3) Y(>y) is(n—h(y) — 1)-connected for all y € Y with h(y) < n.

Then Y n-connected implies X is n-connected. O



iv

Theorem A provides us with a tool for studying A,(G) in terms of A,(G/0,(G)). For

example, we used this method to prove:

Theorem 8.6. Let G = Oy (q) X S where Opy(G) is solvable and § is a p-group of
symplectic type. Then A,(G) is (m,(G) — 1)-spherical. O

~

In this thesis we also generated a library of results about geometric complexes which

do not arise as p-subgroup complexes. This library includes, but is not restricted to, the

following:

(1) the poset of proper nondegenerate subspaces of a 2n-dimensional symplectic space
— ordered by inclusion — is Cohen-Macaulay of dimension n — 2.

(2) If ¢ is an odd prime power and n > 4 (with n > 5 if ¢ = 3), then the poset
of proper nondegenerate subspaces of an n-dimensional unitary space over Fp is

simply connected.
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Introduction

The étudy of finite groups has always relied on analyzing group actions on certain “nat-
ural” objects. One class of objects studied extensively in the past few years is the class of
simplicial complexes. Much of the activity in_this area is inspired by papers of K. Brown

[Br] and D. Quillen [Q], the latter being an excellent introduction to this area of research.

In this thesis we focus most of our attention on p-subgroup complexes — simplicial com-
plexes naturally identified with p-subgroups of a finite group. In particular we study the
homotopical and homological invariants of the p-subgroup complexes of finite groups, es-

pecially the classical groups of Lie type.

The applications of this area of research are far reaching. For example, G. Robinson
and R. Staszewski [RS] have given a reformulation of Alperin’s Conjecture in terms of the
stabilizers of the orbit representatives of the group action on certain p-subgroup complexes.
There are also applications to combinatorial topology and K-theory. A more complete list
of the applications of the study of p-subgroup complexes is given in the paper by P.J. Webb
[W].

The analysis of p-subgroup complexes has played, and continues to play, an important
role in the study of finite simple groups, although early work in the area was not stated
in the language of complexes. Namely, it is easy to see that the p-subgroup complexes
for a finite group G of order divisible by p are disconnected if and only if G has a
strongly p-embedded subgroup. In the classification of the finite simple groups, knowledge
of the groups with strongly p-embedded subgroups plays an important role. A complete
classification of groups with strongly 2-embedded subgroups was given by H. Bender in
[Be], and is a crucial step in the classification. To date the corresponding theorem for odd
primes has not been proven without an appeal to the classification of finite simple groups.

This makes the proof of certain parts of the classification theorem unusually difficult.

However, along with the classification theorem, results of D. Gorenstein and R. Lyons

((24.1) on pg. 307 in [GL] ), give a complete characterization of finite groups with strongly
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p-embedded subgroups, and hence a complete characterization of finite groups for which

the p-subgroups complexes are disconnected.

Connectivity of a complex is the crucial piece of information in 0-dimension. The 1-
dimensional analogue is simple connectivity. The knowledge of the simple connectivity of
p-subgroup complexes is also important in the$tudy of finite simple groups. M. Aschbacher
and Y. Segev used the simple connectivity of p-subgroup complexes to give the first com-
puter free proof of the uniqueness of the Lyons group, Ly, and the Janko group, J4, in
[AS2] and [AS5] respectively. The methods developed in these and other papers give us a
better understanding of some presentations of finite simple groups, as well as giving us a

more unified method for proving the uniqueness of the sporadic groups.

A theory for reducing the question of simple connectivity of the p-subgroup complexes
to a question of the simple connectivity of the corresponding p-subgroup complexes for the
finite simple groups was developed by Aschbacher in [A2]. As part of this program we begin
a systematic study, in this thesis, of the simple connectivity of the p-subgroup complexes

for the most difficult class of finite simple groups: the classical groups of Lie type.

It is hoped that this program to study simple connectivity of the p-subgroup complexes
will be the first step towards a complete classification of the topological invariants of the
p-subgroup complexes of as large a class of finite groups as possible. With that in mind we
also computed the higher homology groups and other topological properties of the classical

groups of Lie type, whenever possible.

The research in this area has typically focused on one of two complementary problems.
The first is the development of tools to study group actions on simplicial complexes. This
includes developing tools to study p-subgroup complexes. The other area of research on
which we concentrated is the analysis of the topological properties of the simplicial com-
plexes upon which the groups act. Moreover, in analyzing the p-subgroup complexes of
the classical groups, we develop new tools to study relations between various simplicial
complexes, as well as proving results about geometric complexes which do not arise as p-

subgroup complexes. We believe that this collection of tools, results, and relations between
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various simplicial complexes has applications to an area of research wider than the area

upon which this thesis focuses; and thus is important in its own right.

RESuLTS aBOUT P-SUBGROUP COMPLEXES

Given a poset P one can consider the simpliciél complex whose vertex set consists of P,
and whose simplices consist of all finite chains in P. This well known simplicial complex is
called the order complex of P, and is denoted O(P). Associating a topological object with
the poset P allows us to attribute topological properties to P [section 1]. This association
allows us, for example, to talk about a poset being connected or n-connected, when in fact
we mean that the corresponding order complex is connected or n-connected as a topologiéal
space.

Given a simplicial complex K, recall that the dimension of K is given by:
dim(K) = maz{dim(o)|o is a simplex of K},

where dim(o) = k if o contains k+1 vertices. Also recall that an n-dimensional simplicial
complex K is n-spherical if it is (n —1)-connected; that is, H{(K) =0 Y0 <4 < n—1, and
K is simply connected when n > 2. Note that an n-spherical complex has the homotopy
of bouquet of n-spheres and in general the top dimension of the complex will be more than
one dimensional. Furthermore, following Quillen, an n-spherical simplicial complex K is
said to be Cohen-Macaulay, if, for every k-simplex o € K, lkg(o) is (n — k — 1)-spherical
[see section 14 for details]. Finally, we say that a simplicial complex K is contractible if it
is contractible as a topological space; that is, K is n-connected for all n.
An important class of simplicial complexes which arises as order complexes of posets is
the p-subgroup complexzes. An example of such a complex is the following:
Given a finite group G and a prime p dividing the order of G, consider the
poset of nontrivial elementary abelian p-subgroups of G — ordered by inclusion.
The order complex of this poset is called the Quillen compler of G at p, and is
denoted A,(G).
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In the literature, other p-subgroup complexes are considered, such as the Brown complex
studied in [Br] and the Commuting complex in [A2]. However, well-known equivalences in
the literature show that these complexes are homotopy equivalent to the Quillen complex;
see for example (5.2-3) on pp. 14-15 in [A2]. Thus, for the purposes of studying topological

invariants, it suffices to consider A,(G).
We are interested in answering the following question:

Question: Let G be a finite group and p a prime dividing the order of G. When is A,(G)

simply connected?

Following the usual strategy the above question is tackled in two steps:
Reduction : Reduce the question of simple connectivity of A,(G) for arbitrary
groups GG to the simple connectivity of A,(G) for some minimal class of groups,
particularly simple groups. This reduction was begun by Aschbacher in [A2].
Analysis of the minimal case : Given G in this minimal class of groups,

determine when A,{G) is simply connected.

The main focus of the thesis is the simple connectivity of A,(G) for the classical groups
of Lie type. The following facts — well known to researchers in this area — helped motivate

and direct our research:

Fact 1. Given a finite group G and a prime p dividing the order of G, A,(G) is.
contractible whenever O,(G) # 1 (Proposition 2.4 on pg. 106 in [Q]).

Fact 2. If G is a finite simple group of Lie type in characteristic p, then A,(G) has the
homotopy type of the Tits building B of G — Theorem 3.1 on pg. 108 in [Q]. Furthermore,
by the Solomon-Tits Theorem [see section 1], B is Cohen-Macaulay. Therefore, the ho-
mology and fundamental groups of A,(G) are well understood when p is the characteristic

prime.

Fact 3. By the above comment it suffices to consider the case when p is not the character-
istic prime. We also know that when pl¢—1 and G = GL,(¢), A,(G) is Cohen-Macaulay
of dimension » — 1 (Theorem 12.4 on pg. 126 in [Q]).
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Given these facts and the overall program to classify all instances in which A,(G) is
simply connected, and more generally to describe the homology of A,(G), we begin our
systemaﬁc investigation by considering the Quillen complex for the classical groups.

Our main results are given below. Note that for a 1-dimensional simplicial complex,
simple connectivity and contractibility are equivaient. Therefore, we addressed this question

only for those groups G' and primes p for which A,(G) is at least two dimensional.

Before stating the result we need to define two terms:

(1) If p is a prime and G = GL,(q), Sp2a(q), or GU.(q) welet d,(q) be the order of
q in Z/pZ; that is, the minimal integer with respect to p|(g%(?) —1).

(2) We use the notation C.M. to indicate that a simplicial complex is Cohen-Macaulay.

Main Theorem. When (p,q) = 1 we have the following results about the simple connec-
tivity of A,(G) for the classical groups of Lie type:
1. f G = GL,(q) and my(G) > 2, then A,(G) is simply connected.
2. If G = Spa,(q), then:
(a) Ap(G) is C.M. of dimension n — 1 if d,(q) = 1.

(b) If my(G) > 2 and dy(q) is odd, then A,(G) is simply connected.

3. I G = GU,(q), then:
(a) Ap(G) is C.M. of dimension n —1 if p# 2 and dp(q) = 1.
(b) If mp(G) > 2 and dp(q) is odd, then A,(G) is simply connected.

(c) Ifn>3, ¢g>5 isodd, and d,(q) = 2, then A,(G)(> Z) is simply connected,

where Z is the subgroup of order p in the center of G. O

We note that Uy(2) & PSps(3) implies that As(GUs(2))(> Z) has the homotopy type
of the building of Sp4(3). Hence A3(GU4(2))(> Z) is not simply connected. Therefore we
need some restrictions on the values of ¢ in 3(c). The further restriction in 3(c) that n > 3
is to ensure that A,(G)(> Z) is at least two dimensional, and hence is also a necessary

condition for simple connectivity.
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It should be noted at this point that the analysis of the simple connectivity of the Quillen
complex of the classical groups of Lie type is far from complete. When G = Sp,,(q) and
dy(q) is even we have yet to show that A,(G) is simply connected. However, we have
reduced this case to showing that A,(Sps,(¢)) is simply connected when 2n = 3d,(q).
This is similar to our proof that A,(GL,(q)) is simply connected, where the case when
n = 3d,(q) was addressed by special combinatorial methods. We expect that similar
methods will prevail in the case of A;(Spsq,(4)(q)). Furthermore, the simple connectivity
of Ap(G) when G = GU,(¢q) and d,(q) is even has not been addressed yet, nor has the
case when GG is an orthogonal group. We hope to consider these and related questions in

the near future.

A THEOREM ABOUT MAP OF POSETS AND EXAMPLES OF GEOMETRIC COMPLEXES

One of the important tools for studying relations between order complexes developed in

the thesis is the following result about maps of posets:

Theorem A. Let f: X — Y be a map of posets satisfying:
(1) f is strict; that is, z < y = f(z) < f(v),
(2) f7YY (L y)) is min {n,h(y) — 1}-connected for all y € Y, and
(3) Y(>y) is (n— h(y) — 1)-connected for all y € Y with h(y) < n.

Then Y n-connected implies X is n-connected. . O

The proof of this theorem uses the theory of homology of posets with local coefficient sys-
tems, and spectral sequences [section 2-3]. Note that this theorem is analogous to Theorem
9.1 on pg. 119 in [Q].

One application of Theorem A to the study of p-subgroup complexes is the following:
The canonical homomorphism 7 : G — G/O,(G) induces a natural map of
posets f : Ap(G) — Ap(G/Op(G)). Note that given z < y € A,(G), we have
flz)< f(y) asaNOp(G)=1VY 2 € Ay(G). Thus, if we can show that f and
Ap(G]0,(G)) satisfy the remaining criterion of Theorem A, then the analysis

of A,(G) reduces to analyzing the often simpler structure of A,(G/0,(G)).
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This method was valuable to us not only in computing the higher homology groups of
the p-subgroup complexes, but also in establishing simple connectivity. Quillen used this
exact strategy, along with Theorem 9.1 on pg. 119 in [Q], to study A,(G) in the following
minimal case. Let G = Op(G) x A where O,(G) is solvable and A is an elementary
abelian p-subgroup of p-rank n+1 [see section-1 for the definition of p-rank]. Quillen shows
that under these assumptions A,(G) is Cohen-Macaulay of dimension n (Theorem 11.2
on pg. 123 in [Q]). We use Theorem A and the above strategy to study another interesting
minimal case. Let G = Oy (G) % § where O, (G) is solvable and S is a p-group of

symplectic type. Then we have:
Theorem 8.6. A,(G) is (m,(G) — 1)-spherical, where m,(G) is the p-rank of G. O

We often prove results about A,(G) by analyzing the action of G on simplicial complexes
K which have appropriate homotopical and homological properties. The methods used
to compare A,(G) to K vary widely; they can be as simple as the argument given in
Theorem 9.13 and Remark 9.14, or they can involve more complicated arguments such as
the method of n-approzimations developed in [AS4]. However, in every case we need to
have the appropriate simplicial complex upon which G acts. Thus, a large part of this
thesis was dedicated to finding these complexes and proving that they satisfied the correct
n-connectedness properties. These proofs involved a variety of tools: the Nerve Theorem
and triangulability of graphs to name but a couple. Some of the important results about

these complexes generated during our investigations are the following;:

(1) The poset of proper nondegenerate subspaces of a 2n-dimensional symplectic space
~ ordered by inclusion — is Cohen-Macaulay of dimension n — 2.

(2) Given an n-dimensional vector space V' and its dual V*, for each U <V let U+
be the annihilator of U. Then the set {0 # U x U' | U < V,U' < UL} partially
ordered by inclusion is (n — 1)-spherical.

(3) If ¢ is an odd prime power and n > 4 (with n > 5 if ¢ = 3), then the poset
of proper nondegenerate subspaces of an n-dimensional unitary space over Fg is

simply connected.
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We also prove a number of results about the join of complexes and the p-subgroup
complexes of the product of groups; these results are contained in section 9. In the course
of our research we observe the following characterization of order complexes, which can
greatly reduce the computation involved to show that the order complex of a poset is

simply connected:

Theorem B. A simplicial complex K is an order complex if and only if the following two

conditions hold:
(1) K is a clique complex, and

(2) every odd cycle in A(K') has at least one triangular chord. .ad

ORGANIZATION OF THE MATERIAL

We now give a brief summary of the organization of the material in this thesis. Section
1 contains preliminary definitions and well-known results from algebraic topology. It also
includes the Solomon-Tits Theorem. Sections 2—4 contain definitions and results about
homology of posets with local coefficient systems and spectral sequences, which culminate
in Theorem A in section 5.

Sections 6 and 7 contain results about the poset of nontrivial totally singular subspaces
of hyperbolic orthogonal spaces and about A,(G) for groups of symplectic type. In section
8 we use Theorem A and the strategy described earlier to prove Theorem 8.6.

Section 9 contains a number of results about the join of simplicial complexes and the p-
subgroup complexes of the product of groups. Also, a lot of the notation used in succeeding
sections is introduced in section 9. Section 10-13 contain examples of geometric complexes
with appropriate n-connectedness properties. Section 10 also contains a proof of Theorem
B.

Section 14 contains the definition and basic properties of Cohen-Macaulay complexes.
These properties are used to study three different Cohen-Macaulay complexes in the fol-
lowing three sections: A,(Span(q)) when pl¢ —1; A,(GUn(¢g)) when plg—1 and p # 2;

and the poset of proper nondegenerate subspaces of a symplectic space.
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Sections 18 and 19 are analogous in that they contain an analysis of C5(A) when A €
Ap(G) and G = Sp;n(q) and GU,(q), respectively. These sections also contain information
about the decomposition, under the action of A, into homogeneous components of the
corresponding symplectic and unitary spaces. Section 20 uses results from the previous two
sections to compute the p-rank of G when G = GL.(q), Span(q), or GU,(q). Section
20 also contains a proof of the fact that .4,(G) is connected when m,(G) > 2 for these
groups. The results from section 20 are used extensively in chapter 6. Section 21 contains an
analysis of the action of A on the Tits building of V — here A € A,(G) with G = Sp2,,(q)
or GUn(q); V is the corresponding space; and d,(g) is odd.

Sections 23-25 contain results about the simple connectivity of the p-subgroup comple}&es

given in the Main Theorem.
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Chapter 1

A theorem on the n-connectedness of order complexes

In Chapter 1 we will give an analogue of Qﬁillen’slresult on the n-connectedness of
spherical complexes — Theorem 9.1 on pg. 119\}11’ [Q] We say an analogue since we weaken
our assumptions about the complexes to obtain a result which is weaker than Quillen’s
result. We adopt Quillen’s techniques of using spectral sequences to study the homology
of simplicial complexes.

In Section 1 we recall some basic concepts and state some well-known results from al-
gebraic topology. For example, we see that to any poset one can associate a simplicial
complex called the order complex of the poset; thereby allowing one to study such topo-
logical properties as homology and homotopy of posets. We also give a brief description of
Tits buildings for groups with (B, N)-pairs and include a statement of the Solomon-Tits
Theorem for completeness. Section 2 contains the definition of spectral sequences and some
results about spectral sequences. In Section 3 some definitions and facts, required to use
spectral sequences to study the homology of posets, are mentioned. We recall that every
poset can be considered as a category. We also recall that given a functor from a poset
— thought of as a category — to the category of abelian groups, one can study the homol-
ogy of the poset with local coefficient system given by the functor. We define short exact
sequences of functors, and use natural transformations between functors to define maps
between homology complexes with local coefficient systems for different functors from a
poset to the category of abelian groups. Finally, we state a result about the existence of a
convergent spectral sequence for the homology of a poset, as given in Appendix II of [GZ].
In Section 4 we give some more results on the homology of posets. Section 5 contains a
theorem about maps of posets inducing trivial homology under certain assumptions. As a

corollary to which we obtain the main result of this chapter, Theorem A.

SECTION 1 : PRELIMINARY DEFINITIONS AND RESULTS FROM ALGEBRAIC TOPOLOGY

By a simplicial complez K we mean a set of vertices {v} and a set {s} of finite
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honempty subsets of {v} called simplices such that:

(1) any subset of {v} consisting of exactly one vertex is a simplex, and

(2) any nonempty subset of a simplex is a simplex. -

The dimension of K is given by dim(K') = sup{|s|—1 : s a simplex}. A subcomplex L of
a simplicial complex K is a subset of K that has the structure of a simplicial complex. A
subcomplex L is a full subcomplez of K if every simplex of KX which has all of its vertices
in L is a simplex of L. A simplicial complex is a pure simplicial complex if every maximal
simplex, that is, a simplex which is not contained properly in any other simplex, has the
same dimension. Note that if &' is a pure simplicial complex then dim(K) = |s| — 1 for
any maximal simplex s € K. As in section 1 of chapter 3 in [Sp] we identify a simplicial
complex K with its topological-space realization |K|. This identification allows us to
attribute topological properties to the simplicial complex K. We can therefore speak of a
simplicial complex being connected or simply connected and so on.

Given a poset (partially ordered set) P, we can identify the following simplicial complex

with P :

the set of vertices is equal to the elements of P and the simplices are all finite

chains contained in P.

The above complex is called the order complez of P and is denoted by O(P); or, when
no chance of confusion exists, simply by P.
Let G be a finite group and p a prime dividing the order of G. We consider the following

two complexes:

(1) The Brown complez of G at p, denoted S,(G), is the order complex of the
poset of all nontrivial p-subgroups of G - ordered by inclusion.
(2) The Quillen complez of G at p, denoted A,(G), is the full subcomplex of

Sp(G) on the vertex set consisting of all elementary abelian p-subgroups of G.

When p is fixed we refer to the above complexes as the Brown complex of ¢ and the Quillen

complex of GG. It is a well-known fact that S,(G) and A,(G) are homotopy equivalent; for
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éxample, see Proposition 2.1 on pg. 105 in [Q].

Given G and p as above, note that each A € A,(G) can be considered as a vector
space over the field F = Z/pZ. This allows us to define the p-rank of A, denoted
mp(A), as my(A) = dimg(A). We can then define the p-rank of G as follows:

my(G) = max{mp(jl) | A e Ay(G)}.

Note that by the definition of A,(G) and the dimension of a simplicial complex, A,(G)
is a complex of dimension m,(G) — 1.

If X is a poset and z € X, we denote by X(< z) the full subcomplex of the order
complex of X on the vertex set {y € X|y < =2}. The dimension of X(< 2) is called the
height of x, and is denoted by fh(2). Note that when X = A,(G), for some group G,
then h(A4) = mp(A) -1V A € A,(G). The subcomplexes X (> z), X(> z), and X(< z)
are analogously defined.

Since we will be using techniques from algebraic topology to study these simplicial com-
plexes, we next state some basic definitions and results from algebraic topology. The
concepts of homology and reduced homolgy with integer coefficients (denoted H.(X) and
H.(X) for some topological space X ) are as given in chapter 4 of {Sp].

We define reduced homology on the empty set by setting:

Z, ifi=-1,

0, else.

.0 = {

Furthermore, we extend homology to the negative indices for nonempty topological spaces
X by setting H;(X) = 0 for all 7 < 0.

As per the discussion on pp. 181-184, 220227 in [R1], we define Tor?(—, B) as the left

derived functors of the functor T = _®g B. More precisely, if
d2 di 13
s PSP —FB =-A—0
is a projective resolution of an R-module A, then
Tor(A, B) = ker(d, @ 1)/im(dny1 @ 1).

Note that by the definition of Tor we have:
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' Lemma 1.1. IfP is projective, then Tor?(P,B) = 0 for all B and all n > 1; similarly in

the other variable. Specifically we have:

Tor%(Z, A) = 0 and TorZ(0,A) = 0

0

for all abelian groups A.
Proof. This is Theorem 8.4 in [R1]. , C
Also by the definition of Tor we have:

Theorem 1.2 (Universal Coefficient Theorem). If 2 is a chain complex of torsion-
free abelian groups and H, (%) is homology with integral coefficients, then for every abelian

group C' and each n, there is a split exact sequence:
0— Ho(A)®C — Hy(A®C) — TorZ(H,_1(™),C) — 0.

Thus Ho(AQ C) = (Ha(A) ® C) @ TorZ(H,-1(2),C).
Proof. This follows from the Kiinneth formula, for example, see pg. 169 in [R2]. a
Next we give a result about short exact sequences:

Lemma 1.3. Consider abelian groups B,C and By and maps ,j and k, with k an

isomorphism, such that:

0
[
B,
q\

0 A—2_.p5 - _.¢ 0
.
B
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commutes, and the row and column are short exact sequences. Then A = Bj.

Proof. As koj = i and k is an isomorphism, ker(j) = ker(i). But this means that
a(A) = ker(j) = ker(¢) = B{B1), which implies:

871 owa: A — By isan isomorphism.

Thus A = B; as claimed. a

In conclusion we state two important results from the research on p-subgroup complexes
and Tits buildings.

Let G' be a finite group with BN-pair of rank I. And let G1,Ga,...,G) be the maximal
parabolic subgroups of G containing B. For each 1 < i <1 let V; be the set of cosets
of the form gG;, ¢ € G. Finally,let V =V, U---UV,. The Tits building of G, denoted
A(G;B,N) or simply as A, is the simplicial complex on the vertex set V with VD ¢ a
simplex if and only if vgav # 0.

Note that G acts on A and this induces a G-action on H.(A) — the homology groups
of A with integral coefficients. Recall that a d-dimensional simplicial complex K is d-
spherical (or just spherical) if it is (d — 1)-connected. If K is d-spherical and the link of
each s-simplex is (d — s — 1)-spherical then K is said to be Cohen-Macaulay (or C.M.) of
dimension d'. Note that a d-spherical complex has the homotopy type of a bouquet of d-
spheres and in general the top dimension of the complex will be more than one dimensional.

We can now state the following result:

Theorem 1.4 (The Solomon-Tits Theorem). Let A be the Tits building of a finite
group G with BN-pair of rank | > 2. Then A is Cohen-Macaulay of dimension | — 1.

Furthermore, the action of G on H;_y(A) affords the Steinberg representation of G.

Proof. The proof of the fact that A is (I — 1)-spherical and that H;_1(A) affords the
Steinberg representation of G is given in [So] and also in [CL]. The fact that A is C.M.

is given in terms of shellability in section 4 in pp. 188-194 in [B1]. Note that the fact that

1 For a more detailed description of Cohen-Macaulay complexes and their properties refer to section 14.
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H 1—1(A) affords the Steinberg representation implicitly implies that A has the homotopy

type of a bouquet of (I — 1)-spheres as opposed to being a single (! — 1)-sphere. O

Finally, we include as a corollary to the Solomon-Tits Theorem a result of Quillen on
Ap(G) where G is a classical group of Lie type and p is the characteristic prime. Recall
that a classical group of Lie type posseses a B'N-pair of rank, say [. Let A = A(G;B,N)

be the corresponding Tits building. Then we have:

Corollary 1.5. A,(G) is homotopy equivalent to the building A. Consequently, A,(G)

has the homotopy type of a bouquet of (I — 1)-spheres.

Proof. This is Theorem 3.1 on pg. 108 in [Q]. 0

SECTION 2 : INTRODUCTION TO SPECTRAL SEQUENCES

The discussion in this section closely follows the discussion in chapter 11 of [R1].
A filtration {FPH,} of a graded module H, is a sequence of subobjects for each n
satisfying:

< C FPTYH, C FPH, C FPYIH, C ---.

A filtration {FPH.} is bounded if for each n there exist integers s = s(n) and t = #(n)
such that:

OZFSHHgFS-‘-lHn-,C‘.'”gFtHn:Hn-

An E*-spectral sequence is a sequence {E”,d” : r >k } of bigraded modules E7, and
bidegree maps d” : E] — o rg+r—1 Satislying:

(1) d"d” = 0, and

(2) E;;'l =ker(d": E; , — E}_, pvr)/im(d" B}, .y — EJ ).

By the definition of spectral sequences we have H(E;,,d") = E;jl. An E*-spectral se-

q?
quence such that Ezlfq =0 forall p <0 and ¢ < 0 is called a first quadrant spectral
sequence.

Given an E*-spectral sequence, let zk, = ker(d* : E;;',q — ;];—;;,q+k—1) and BE =

im(d* 1 EX o pyy — EF)), then EFF = Zk /BE . If Z(EFY) = ker(dFt! : EFFY —
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ENtL | 4x) and B(EEFD) = im(dF+? EXt i1 o—k — EET1), then by the third isomor-

phism theorem for modules, there exist submodules:

B;fq C Bg;l C Z;f;'l C Z;fq such that E;j;"z ’_—‘_‘ Z;‘jl/BSII.

By induction we get: “'

k k+1 . k+n k+n .. k+1 k : k+n+1 ~ 7ktn k+n
qu C qu C C qu C qu C C qu c qu ‘Vlth qu - qu /qu ‘

We let B2 = UJ, BEF™ and Z32 =, Zk' and define ESS = Z59/BSS.

Lemma 2.1. If B}, =0 for somer, then E;5 =

Proof. By the definition of EJ we see that E7, is a section of E; . Since, by our

assumption, £, =0 we have EJ? = 0 as claimed. 0
A spectral sequence {E”,d"} is said to converge to a graded module H, if there is a
bounded filtration {®#?H,} of H,. such that:

EX 2 ®PH,, /O "H,,.

In that case we write E;,fq = Hppq.

Lemma 2.2. Let Ezl,‘q = H,., be a convergent spectral sequence. Assume there exists
an integer m such that for all p,q with p+ g = m and s(m) < p < t{(m) there exists n
with E;, = 0. Then H, = 0. Here s(m) and i(m) are as in the definition of bounded

filtrations for Hp, .
Proof. As E]',fq = H,y, we know that there exists a bounded filtration:
0=9°H,, CO®**'H,, C---C®H, =H,,

with s = s(m) and t = t(m), and &1 H,, = ®5T1H, /®°H,, =~ 1) (m—s—1)- But by our
assumption there exists an n with E(ns-}-l)(m—s-l) = 0; so by Lemma 2.1, E(‘f_l_l)(m_s_l) =

0. Thus ®**1H,, =0, which implies t = s + 1, and hence H,, = ® H,, = 0. 0O
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SECTION 3 : HOMOLOGY OF A POSET WITH LOCAL COEFFICIENT SYSTEMS

Given categories 8 and © and covariant functors E. F' : B — D, a natural transforma-
tion ¢ : E — F is a collection of morphisms ¢p : E(B) — F(B) for each B € 9B, giving

commutativity of the following diagram:

eB) 29 g
MJ. Lp,?, forall f: B — B'.
F(f)

F(B) . pp)

A natural transformation ¢ is called epic (respectively monic) if for every B € B, ¢p is
epic (repectively monic). |
Now given a poset X, we can consider it as a category by letting Ob(X), the objects

of X, equal {z € X} and by defining:

{id}, ifz=y,

Mor(z,y)= ¢ {<}, ifz<y, for all z,y € Ob(X).

0, otherwise,
So given a poset X, we can have functors F : X — Ab, where Ab is the category of
abelian groups. Recall that we can define homology on X with local coefficient system F,

written H.(X, F'), as follows:
the p-chains are given by C',(X, /) = & F(s), where ¥, is the set of p-simplices
SEX,

s = (2o < -+ < xp)and F(s) = F(zo). The face maps d}, : C, — Cp_; are defined

by d, = 3" 5 d,, Where:
d;’s tF(s) = F(s%), s =(20< " <i_) <Tigg << Tp),

and &}, =idif i # 0 and d) = F(<): Fxg) — F(xy)ifi=0. If p=17=0 then

do, = 0. Ifwelet d, = 37 (—1)'di. then (dp)’ =0, and so (Cy(X, F),dp) forms

a chain complex and we define I/ ,(X, F) = ker(d : Cp, — Cp_y)/im(d : Cppy — Cp).
This definition of homology of a poset X with local coefficient system F' is as given in

section 3 of Appendix Il in [GZ].
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Given functors F,G : X — Ab, we can define the functor F & G : X — Ab by letting:

(F@G)(a)= F(z)s G(x) forallz € X

(F&G) o) = F(o) o G(o) for all ¢ € Mor(z,y).
By the definition of C',(X, F'} we can see thats

Co( X, P S G)=Cp(X, F) & Co(X,G)
dFaG)=d(F)d dG).

So we have:
Lemma 3.1. Given functors F' and G, we have: H,(X,F&G) = Hy(X,F)& H,(X,G).0
If ' is a constant functor, F' = L, we write H,(X, L) instead of H,(X, F).

Lemma 3.2. Given a constant functor F = I, from X to Ab, we have:

Hy(X,L) = (H(X)& L) & Tor?(H,—1(X), L).

Proof. Since:

Cp(X,L) = i L=(g Z)3 L=Cy(X,Z)® L,
we get the desired equality by Theorem 1.2. O
If a poset X is contractible, then H;(X) =0 for all i. So we get the following:

Lemma 3.3. Given a constant functor ' = I {rom a contractible space X into Ab, we

have:
L, ifp=0,

0, otherwise.

Hy(X.L)= {
Proof. Since X is contractible, we have H,(X )= Z or 0 for all p. By Lemma 3.2:
Hy(X, Ly = (H,(X)& L)® Tor(H,_,(X),1L).

But, by Lemma 1.1, we have Tor"f(ll‘p_l(.’(), L)y=0; so Hy,(X,L) = Hy(X)® L. This

gives us the desired equality. g
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Given a poset X, functors F, ¢ € Funct(X,.Ab), and a natural transformation ¢ : F' — G,

we get a map:

¢ Cp(X, F) — C,(X, ) given by o= Z <1~>s where
SEL,
bs = by F(s) = Fap) — G(xg) = G(s).

By the definition of ¢ we get that:

God) (D F(s) =8> F(<): F(s) = F(s))

S€EL, s€Ly
= D (B0 F(<): F(s) = G(")) = Y (G(<) 0 by : F(s) — G(s))
sEX, s€Xp
= d)( D" by F(s) = Gls) = dS 0 (Y F(s).
€T, SEX,

Thus we have shown:

do dg = dg oo for all p.

Similarly:

éodi:éoid:idoé:d{;oq} forall 1 < j < p.

So we have a map ¢ which commutes with d and thus gives us a map:
Out Ho (X, F) — H (X,G).

Notice that the definition of ¢ implies that if ¢ is epic (monic), then ¢ is epic (monic).

Given functors L, K, and F € Funct(2,€), and a sequence of natural transformations:
P g N
0—L—HK->F—0
we say it is a short ezact sequence of functors if for every A € U the sequence:

0 — L(A) =5 K(A) =2 F(A) =0,

is exact.
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From the discussion above we see that given a poset X, functors L, K, and F €
Funet(X, Ab), and a short exact sequence of {unctors:
0—L2 K2 F_o,
we get a short exact sequence of complexes given by:
(+) 0 — Co(X,L) 5 Co(X, K) 2 Cy(X. F) — 0.
Thus we have:

Theorem 3.4. Given a poset X, functors I, K, and F € Funct(X,Ab) and a short
exact sequence of functors:
0—-L2 K 2XF_o,
we get a long exact sequence:
- 8 3 (!)n—-l - ’\n—l » -t
= H (X, F) — H,_(X,L) ——= H, (X, K) == H, (X,F)~—---
in homology.

Proof. This follows directly from (%) and Theorem 6.3 in [R1]. a

Consider a poset X and a poset P consisting of a single element. A map f: X — P
of posets induces a map f. : H.(X) — H.(P) on homology with integral coefficients. And
we have ker(fo) = Ho(X), the reduced homology of X with integral coefficients. See the

discussion on pp. 167-168 in [Sp] for further details. This leads to the following definition:

Definition. Let X be a nonempty poset, P a poset consisiting of a single point, and
f:X — P amap of posets. Given a fixed abelian group L, let f.: H(X,L)— H.(P,L)
be the map induced on homology with local coeflicient system L. Then the reduced homology

of X with coefficients L, denoted H,(X, L), is given by:

N ker( fo), ifi =0,
H;(X,L)= / ;
(X.L) { H;(X.,L), otherwise.

In particular we have the short exact sequence:
0 — Ho(X, L) — Ho(X, L) L= Ho(P, L) — 0.

Finally we come to a theorem on maps of posets and homology with local coefficient

system:
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Theorem 3.5. Let f: X — Y be a map of posets and define fly={z € X | f(z) <y} =

fYY (L y)). Then for any functor F': X — Ab, we have a con vergent spectral sequence:

Ezq = Hp(Y»y = [[q(fty F)) = le+q(‘X‘s F)
Proof. This is Theorem 3.6 in Appendix II of [GZ]. O

SECTION 4 : A RESULT ON THE RELATIVE HOMOLOGY OF POSETS

Throughout this section, let X, a poset, and L € Ab be fixed.

Given a subset 5 C X, we can define a functor:

Lg:X — Ab
{ L, z€b,
T )
0, x¢65.

When § = {a} we write L, instead of L.

Lemma 4.1. If U C X such that X(> u) C U forallue U then:

[{*(/Y, LU:) = }1*([,[, L).

Proof. By the definition of C(X, Lyy) we have:

Co(X,Lu)= & Ly(s)= & L= ¢ L= Cp(U, L).
SEL, SEX, SEX,
o€l sCU

Since the face maps remain unchanged, we see that H,(X,Ly) = H(U,L) as desired. O

IfV CUCX then we can define:

ovy s Ly — Ly and opyv : Ly — Ly as :

id, ifxeV,

0, otherwise.

dun(z) = {
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Lemma 4.2. If V CU C X then:

¢v,u duU-v

0— Ly Lu Ly—_v —0

is exact.
Proof. We prove this by showing that the sequence:

v, ux)
————

(*) 0— Lv(.L') Lu(.l') w L(j_v(l‘) — 0

is exact in each of the following three cases:
Casg 1 : z ¢ U. Then () is the zero sequence and there is nothing to prove.

CasE 2 : z € V. Then (%) equals the sequence, 0 — L 2rlo- 0, which is exact.

CAse 3 : x € U — V. Then (%) equals the sequence, 0 — 0 RN LNy - 0, which is also
exact.
Thus we have the lemma. O

We can now give the main result of this section:

Theorem 4.3. Let X be a poset and fix a € X. Let V = X(> a), then:

Hi(X,Lo) ™ H;_y(V, L) for all 4.

Proof. Notice that both V and U = X (> a) satisfy the criterion of Lemma 4.1. From the

proof of Lemma 4.1 we have:

(4.4) CP(X-’ Ly)= d; .[Jv(.s\) and Cp(z\', U) = E{S} L[/(S).
sEL, sEX,
zo€V zoelU

As U =V = {a}, by Lemma 4.2, we have a short exact sequence of functors:

0—Lv & Ly L L, — 0,
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where 4 = ¢y, and 1 = ¢y . By the discussion preceding Theorem 3.4, and (4.4) above,

we have the following commutative diagram:

0— Co(X,Ly) —2— Cp(X,Ly) —— Co(X,Lg) — 0

H I H

(45) 0~ & Lv(s) —E— @ Lu(s) —— Cy(X,La) =0
IOGV’; ;l.‘oel}}

| | |

0—Cy(V,L) —2— (U L) —1— Cp(X,L,) — 0,

where the horizontal rows are short exact sequences of chain complexes. By definition, g =
ZL fs : Cp(X, Ly) — Cp(X, Ly), where fiy = jip, = ¢vy(xo) =id since zg € V C TU.
sEX

Thlzs, i =, the map induced by the canonical inclusion i: V — U.

The bottom row of (4.5) along with Theorem 6.3 in [R] and the identification of ji with ¢

gives the following long exact sequence in homology:
(%%) coo— Hip1 (X, L) — Hi(V, L) SR H(U,Ly— H(X,Ly)— -+,

where 1, is the map induced on homology by the inclusion of V' into U.
As a is the unique minimal element of U/, by the discussion on pg. 103 in [Q], the map
k:U — {a} is a homotopy equivalence. Thus, by Lemma 3.3, we have:

{ L, ifi=0,

0, otherwise.

H,(U,L)=
Thus for 2 # 0,1, (xx) equals the exact sequence:
= 0— H(X,Ly)— H,_((V,L) =0 — ---.

Hence H;(X,L,) = H,_(V,L) = fIl-_l('V, L) when ¢ # 0, 1.

Also from (xx) we have:
(4.6) — H((U,L)y=0— H{(X,Ls) — Ho(V, L) SR Ho(U,Ly — Ho(X,Lo) — --- .
Now C_y(X, L) =0and Co(X, L) = & Ly(x)= L. Also,if V =0 then C1(X.L,) =
reX

@& Lao(zg) =0, because V = X(> a) =0 implies there are no 1-simplices of the form
(zo<z1)
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(a < ry). So Hi(X,L,) =0 and Ho(X,L,) = L. But, by Theorem 1.2 and Lemma 1.1,

we have:

Hi(0,L) = (H.(9)@ L) & Tor{(Hi-1(9),Z)

- { L, fi=-—1
~ 10, otherwise.

Thus, if V = 0, Hy(X,L,) = Ho(0,L) = Ho(V,L) = 0 and Ho(X,Ls) = H_,(0,L) =
H_(V,L)= L.
So assume that V # 0. Then Cy(X, L,) = ( %  Lu(z0) # 0. Therefore Hy(X, L,) =
To<Ty)

0=H_ (V,L). Ifk:U — {a} is the canonical contraction and j = ko, then the

following diagram commutes:

V

Ny

{a}.
By the functorial property of ., the map j.: H.(V,L) — H.({a},L) equals k. o01i., where
k.« and i, are the maps induced on homology by k and ¢ respectively.

Thus we have the following commutative diagram:

Ho(V,L) —=—  Ho(U,L)

(4.7) K lk

Ho({a}, L),
where k. is an isomorphism.
Now the fact that {a} is a poset consisting of a single point and j : V — {a} is a map
of posets, along with the definition of reduced homology relative to an abelian group L (in

section 3), imply that we have the short exact sequence:
(4.8) 0 — Ho(V,L) — Ho(V.L) & Ho({a},L) — 0.

On the other hand, by (4.6) and the fact that Ho(X, Ls) = 0, we have the short exact

sequence:

(4.9) 0 — Hy(X,L.) — Ho(V.L) == Ho(U,L) — 0.
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Now, considering the commutative diagram (4.7) and the short exact sequences (4.8) and
(4.9), by Lemma 1.3, H{(X,L,) = ﬁg(V.,L). Thus, for V # @ we also have Ho(X,L,) &
H_y(V,L) =0and H\(X,L,) = Ho(V. L).

Thus for all 7 and independent of whether V' = X(> «) is empty or not we have shown

that Hy(X, L,) = H;_,(V, L). O

SECTION 5 : A THEOREM ON THE n-CONNECTEDNESS OF POSETS

In this section we prove an important theorem about maps of posets. A direct corollary
to the theorem will give us an analogue to Quillen’s theorem regarding the n-connectedness
of spherical complexes - Theorem 9.1 on pg. 119 in [Q]. We shall use the results from
sections 2, 3, and 4 as tools to prove a result about the vanishing of homology under
certain assumptions — Theorem 5.2. The main result of chapter 1 — Theorem A — will
follow immediately from the theorem and (1.4) on pg. 5 in [A2].

We first need the following definition:

Definition. Given a map of posets f: X — Y, we define:

Jly=TY(<y)={r e X | f(z) <y}
We have the following lemma:

Lemma 5.1. Let f: X — Y bhe a map of posets satisfying:
(1) f isstrict; thatis, 2 <y == f(z)< f(y), and
(2) fly is min {n, h(y) — 1}-connected.

Then for each y € Y and ¢ < n, dim(fly) < h{y) and:

- a free abelian group, if h(y) = dim(fly) = ¢,
/1) = { ’

0, otherwise.

Proof. 1f h(y) > ¢, then min{n,n(y)— 1} > ¢, so by assumption (2) flq(fly) = 0.
If s is a k-simplex of X, then by assumption (1), f(s) is a k-simplex of Y. Thus,

as f(fly) C Y(L y), dim(fly) < dim(Y(< y)) = A(y). If h(y) < ¢ or h(y)} =
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g but dim(fly) < h(y), then dim(fly) < ¢; hence flq(fly) = 0. Thus, for all ¢ < n

fIq(f{y) # 0 only when h(y) = dim(fly) = ¢. But, by the definition of H,(fly), we

have that H,(fly) is a subgroup of the free group Cy(fly) = ¢  Z, and thus is free
(zo< o <zq)

abelian. In turn flq(f[y) is a subgroup of H,(f|y) and is also free abelian. Thus we have

the lemma. « |

Theorem 5.2. Let f: X — Y be a map of posets satisfying:
(1) f isstrict; thatis,z <y == f(z) < f(y).
(2) fly is min {n,h(y) — 1} — connected for all y € Y, and
(3) let m < n be an integer such that H,,(Y) =0, and forally € Y with h(y) = ¢ <
m, Hn_, 1(Y(>y))=0.

Then H,,(X) = 0.

Proof. Theorem 3.5 tells us that there is a convergent spectral sequence:
E;q = Hy(Y.y — Ho(fly)) = Hppq(X).

By Lemma 2.2 we will be done if we show that for all p,q such that p 4+ ¢ = m, E;';q = 0.
Remember that for a nonempty topological space, X, we extend homology to negative
indices by setting H,(X) =0 forall i < 0. Thus H,(Y,y— Hy(fly)) =0 if p < 0. Since
assumption (2) tells us that fly # 0, we also have that if ¢ < 0 then H,(f|y) = 0. Thus,
in this case too, Hy(Y,y — H,(fly)) = 0. Hence we see that for p < 0 or ¢ < 0, we have
qu =0, so E;“;q is a first quadrant spectral sequence. Thus we can restrict our attention
to pand ¢ such that p+¢=m and 0 < p,¢ < m.

For ¢ #0, Hy(fly) = f[q(f}y) for all y € Y, thus:
EX = H,(Y,y— Hy(fly)).
Given functors L, K, and F € Funct(Y, Ab), and natural transformations:

0—L2 K2 P,
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we defined the above sequence to be a short exact sequence of functors if for every y € Y,
the sequence:

0 — L{y) 2= K(y) % F(y) — 0

is exact. Given y' <y, we have the inclusion map 7 : f|y’ — f|ly which induces maps on

homology. By the functorial property of , we have the following commutative diagram:

0 —— Ho(fly) = Ho(fly") - Z 0
0 —— Ho(fly) —— Ho(fly) - Z 0,

where the rows are exact (by the definition of reduced homology).

Thus we have the short exact sequence of functors:
0 — (y— Ho(fly)) = (y — Ho(fly)) — Z — 0.
Hence, by Theorem 3.4, we get a long exact sequence:
= Hog1 (V) = Hin(Yoy = Ho(fly)) = Elg — Hun(Y) — -

As H,,(Y) =0, by assumption, replacing H,,(Y) by zero in the above sequence gives us

the following long exact sequence:
o= Hog (V) — Hyp(Y,y — Ho(fly)) — Efg — 0 — -+ .

Thus, H,(Y,y — Ho(f|y)) maps onto EZ .
Therefore to prove that E’zq =0 for all p,q such that p+ ¢ = m, it remains to show
that:

Hy(Y,y+— I~1q(f|y)) =0forall p+qg=m.
To prove the above identity we need the following result:
Lemma 5.3. If i{y)=qandp—1=m—gq—1, then ﬁp,l(Y(> y),f{q(f{y)) =0

Proof. By Lemma 3.2:

0y (Y (> 9), Ho fl)) = (H,o (Y (> ) @ Hy(fly)) @ TorP(H,—a(Y (> y)), Ho( fly)).
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But -1 < p—1=m—q~1 and assumption (3) gives H,_1(Y(> y)) = 0. And, by Lemma
5.1, H,(fly) is free abelian. So, by Lemma 1.1, Tor%(H,_2(Y (> y)), Hy(f]y)) = 0. Thus,
Hy  (Y(>y), H,(fly)) =0 ifh(y)=gand p—1=m —q— 1. O

We now complete the proof of Theorem 5.2. Let F': Y — Ab be the functor defined by
Y v fIq(f]y:) (hereg < m). Any f: X — Y S;Ltisfying the criterion of the theorem satisfies
the criterion of Lemma 5.1, so F(y) = H,(f]y) = 0 unless h(y) = ¢. Since Mory(y,y') = 0

unless y and y' are comparable, that is, h(y) # h(y'), we have:

- - . a , ifz=y,
F = X @ Hy(fly)y where Hy(fly),(2) = { 0 olfly)ife =y

(y)=q R otherwise.

From Lemma 3.1 we know that for a functor F' = Fy & F, H.(Y,F) = H(Y,F1)&

H.(Y,F,), so we have:

Hp(Yoy —~ Ho(fly)) = & H(Y. H,(fly),)

hMy)=gq

> 3 I?p_l(Y(> Y), 1~Iq(f|y‘)) {by Theorem 4.3)
Myi=q

=0 ifp+q¢g=m (by Lemma 5.3).

Thus we have H,(Y,y — flq(f]y)) =0 if p+ ¢ = m. So, for all p and ¢ such that

p+ ¢ =m, we have Ef)q = 0. Lemma 2.2 then tells us that H,(X) = 0. O

As an immediate corollary to Theorem 5.2 we get the following analogue to Quillen’s

Theorem 9.1 on pg. 119 in [Q]:

Theorem A. Let f: X — Y be a map of posets satisfying:

(1) f isstrict; that is, 2 <y = f(z) < f(y),
(2) fly is min {n,h(y) — 1} — connected for all y € Y, and
(3) Y(>y) is (n— h(y)— 1)-connected for all y € Y with h(y) < n.

Then Y n-connected implies X is n-connected.

Proof. The proof for n = 1 is given by (1.4) on pg. 5 in [A2]. Now, if for n > 1 and any

f: X — Y, the criteria of this theorem hold and Y is n-connected; then (1), (2), and (3)
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hold for n = 1 and Y is simply connected. Thus, by the proof for n = 1, we know that

X is simply connected. Hence, in the proof for n > 1, it suffices to show:

Hi{(X)=0 forall 1 < i< n.

But if for any f : X — Y and n > 1, critérion (1), (2), and (3) of this corollary are
true and Y is n-connected then criterion (1), (2), and (3) of Theorem 5.2 are satisfied for
all m < n and m # 0. Thus, by Theorem 5.2, we have that for all p # 0 and p < n,
H,(X) =0 as desired. O
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Chapter 2

The Quillen complex of a group of symplectic type

Let G = H x A be a semidirect product of a solvable p'-group H by an elementary
abelian p-group A. In Theorem 11.2 on pg. 123 in [Q], Quillen uses Theorem 9.1 on pg. 119
in [Q] to prove that A,(G) is Cohen-Macaulay of dimension m,(A)~—1 (recall the definition
of a Cohen-Macaulay complex from section 1).

In this chapter we consider another interesting minimal case. For a fixed prime p

remember that a p-group G is extraspecial if:
®(G) = Z(G) =G is cydlic.

Here ®(G) is the Frattini subgroup of G, and Z((G) is the center of G. Also remember
that a p-group is of symplectic type if it has no noncyclic characteristic subgroups. We will
consider a group S5 of symplectic type with S = Z/p"Z « T, where T is extraspecial and
of exponent p if p is odd. Recall that G + H denotes the centrel product of the groups
G and H.! Groups of symplectic type arise as interesting minimal objects in the study of
finite groups, so we shall consider the Quillen complex of a semidirect product of a solvable
p'-group by a group of symplectic type.

In Section 6 we include, for completeness, a proof of the well-known fact that the order
complex of nontrivial totally singular subspaces of a hyperbolic orthogonal space ordered by
inclusion, can be given the structure of a weak building. In Section 7 we consider the group
G =Z/AZ+T - T an extraspecial 2-group - and show that A,(G)(> Z) is (m,(G) — 3)-
connected; here Z is the center of T. Finally in Section 8, we use Theorem A and
results from sections 6 and 7 to show that A,(G) is (mp(G) — 1)-spherical when G =

0,(G)S with O, (G) solvable and S € Syl,(G) of symplectic type with § = Z/p"Z+T.

1 Refer to section 23 in [A1] for further definitions and properties of extraspecial groups and groups of
symplectic type.
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SECTION 6 : THE ORDER COMPLEX OF NONTRIVIAL TOTALLY SINGULAR SUBSPACES

OF A HYPERBOLIC ORTHOGONAL SPACE

In this and subsequent sections the concept of geometric complexes, chamber complexes,
and buildings are in the sense of J. Tits. For the sake of completeness we include the
definition of some specific complexes and also of weak buildings The notation is as given in
sections 3 and 41 in [A1]. For further details on complexes and buildings, refer to sections
3, 41, and 42 in [A1].

Given a finite set I, a geometry over I is a triple (I',7,%). T is a set of objects.
T:1I — [ is a map called the fype map; that is, 7(z) is the type of x for each x € I'. And
* is a symmetric incidence relation on I, referred to as adjacency, with the one constraint
that objects of the same type are adjacent if and only if they are equal. We will often refer
to the triple (I', 7, *) simply as I'.

A flag of a geometry is a set T of objects such that given any two objects in T they
are adjacent. Note that our constraint on 7 implies that 7 : T — I is injective for each
flag T. 7(T) is called the type of the flag T. The rank of a flag T is the cardinality of
7(T'), whereas the corank of T refers to |I — 7(T")|. A geometric complex (or simply a
complez) is a pair (I',€) where I' is a geometry and € is a collection of flags of type I
called chambers. We will often refer to a complex simply as €. Subflags of chambers are
called simplices, and simplices of corank 1 are called walls. A complex is thin if every wall
is contained in exactly two chambers.

The chamber graph of a complex € is an undirected graph on the set of chambers €
obtained by joining chambers which share a common wall. A complex is connected if its
chamber graph is connected. A connected complex (I',€) in which every flag of rank 1
and 2 are simplices is called a chamber complez.

A morphism « : (I',€) — (A,D) of complexes is a morphism of geometries I' — A
such that a(€) C ©. Given a thin chamber complex €, a folding of € is an idempotent
morphism of € whose fiber on each chamber is of order exactly two. A thin chamber

complex € is a Cozeter complex if for every pair of adjacent chambers C' and D, there is
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a folding mapping C to D.

A weak building is a pair (B,%A) consisting of a complex B and set A of subcomplexes,

called apartments, satisfying:

(B1) : the elements of 2 are Coxeter complexes,
(B2) : any two chambers belong to a comm:)n apartment, and
(B3) : given two simplices Sy, 53 and apartments ¥y, ¥, € 2 containing them, there
is an isomorphisin from ¥; onto Xy, which is the identity on §; U 5.
Note that this is what Tits calls a building , on pg. 524 in [T2].

Fix an integer m and let D™ be the 2m-dimensional hyperbolic orthogonal space over
some finite field F. Remember that the Tits building of D™ is given by the oriflamme
geometry on D™ (refer to pg. 99 in [A1] for the definition of the above geometry). For the
sake of completeness we now provide a proof of the well-known fact that the order complex
of nontrivial totally singular subspaces of D™ can be given the structure of a weak building

of dimension m — 1, and thus is (m — 2)-connected. But first we need the following result:

Lemma 6.1. If U C V are totally singular subspaces of D™ of dimensions m — 1 and m
respectively, then there is a unique totally singular subspace of maximal dimension, say

W, distinct from V' and containing U.

Proof. By (19.2) on pg. 77 in [Al], we know that dim(U+) = 2m — dim(U) = m + 1.
So if we write U+ = U ¢ U’, then by (19.3) on pg. 77 in [Al], U’ is a 2-dimensional
nondegenerate subspace.

Now U CV CUtsoVNU #0. Pick0# v € (VNU'). Then vy is a nontrivial
singular element of U'; thus, by (19.12) on pg. 80 in [A1], there exists wo € U’ such that
{vo,wp} is a hyperbolic pair for U’. Certainly W = U4 < wg > satisfies the criteria of
the lemma.

Now let Y be another totally singular subspace satisfying the criteria of the lemma. As

for V, we can pick 0 # yo € (Y NU'). Then yo = avg + bwy for some scalars a,b € F.
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NowY = U® <y > and Y #V implies b # 0. Also:
0=Q(yo) = Q(avg) + Q(bwo) + abf(vg,wp) = ab = a=0.

Soye =bwg and Y = U < wyg >= W, as claimed. 0

Define P to be the poset of nontrivial totally singular subspaces of D - ordered by

inclusion. Note that P is equivalent to the following complex. Let:

T —=I={0,...,m—1}
I'=°P UxV <= UCVorVCU
Uw— dim(U) - 1.

Then (I',*,7) is a geometry. Let € = { flags of I" of type I }. Finally set B to be the
complex (I',€).

Now for any hyperbolic basis X = {z; |1 < z; <2m}of D™, letY = {<z >|z € X}.
Then set I'y  to be the subgeometry of I' generated by elements of Y, and €y = €N Ty.

Then (I'y, €y ) is a subcomplex of B. Let:
A= {(T'y,Cy)| X is some hyperbolic basis for D™}.

Theorem 6.2. (*8,2U) is a weak building.

Proof. Note that any hyperbolic basis of D™ forms a hyperbolic basis for the underlying
symplectic space (with symplectic form f(z,y) = Q(x + y) — Q(x) — Q(y) ). Therefore any
(T'y,&y) € A is an apartment of the Tits building of the 2m-dimensional symplectic space.
Similarly, any simplex S of B is a simplex of the building of the symplectic space. Thus,
since the simplices and apartments of the building of the 2m-dimensional symplectic space
satisfy axioms (B1) and (B3), all (I'y,€y) € Aand 5 € B satisfy axioms (B1) and (B3).
Thus it remains to show that {9B,%) satisfy axiom (B2).

Let V=V, C---CVypy)and W = (Wy C---C W,,_1) be chambers of B. Then, if

O is the chamber complex of the oriflamme geometry on D™, we have:

V - (VO c--C 1/'177.—--3 - Vm——]) and W - (M/O c---C I/Vm——I} C VVm——])v
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are walls of O. Let U(V) be the totally singular subspace of maximal dimension such
that Vi, = U(V)N V,,_1 as given by Lemma 6.1. Let U(W), such that W,,_, =
UW)n Wp,—1, be similarly defined. Then we have:

V=(WVoC- CVimea CU(V),Vyp_r)and W= (Wy C+-- C Wina C U(W),Wp_1)

are chambers of O containing V and W, respectively. Since the oriflamme geometry gives

the Tits building for D™, there is a hyperbolic basis, X = {z; | 1 < &; < 2m}, such that:

J J
Vj:Z<vi> Wj:Z<wi> jE{O,---,m—-3,m—1},
i=0 1=0

and
m—3 m—3
UV)=) <vi>@<m>@<u> UW)=d <wi>d<u;>d<uy>,
1=0 =0

where v;, w;, u;,u} € X.

Now:

V2 = Vios® < v > v#0

= U = Q1 Um—2 + QU1 = bius + byuy # 0

(assume without loss of generality that aq # 0, by # 0)

= 0= a10y-2 + @201 — biu; — bauy and by 75 0

= U} = Vp-3 OF Vyp—-1.

If uy = v,—1 then by = ay, which implies ayv,,_3 — baus = 0. Hence, vy = v;,—1 and
u2 = vm—2 (asap # 0). Thus, U(V) = Vi,_1, contradicting our choice of U(V'). Therefore,
Up = Voo and ay = by = 0, which implies that V,,_s = V,,_3® < v,—2 >, as desired.
Similarly, W,,_» = W,,,_3® < w,,_2 > . So, for this choice of basis, we have V and W
are elements of (I'y,Cy ).

Thus we have shown that (B,%) is indeed a weak building. O
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Let p be a prime, and:

V= { a 2m-dimensional symplectic space, if p is an odd prime,

a 2m-dimensional orthogonal space, . if p= 2.

Set P to be the poset of nontrivial totally singular subspaces of V' — ordered by inclusion.

e

Finally, let n equal the Witt index(V).
Theorem 6.3. P is (n — 2)-connected.

Proof. When p is an odd prime or p = 2 and V is not hyberbolic, then P is equivalent
to the Tits building of V. In the case V' = D™, we have that P is equivalent to B (as
defined above). But, by Theorem 6.2, (8,2) is a weak building (for an appropriate choice
of A). Thus, by the Solomon-Tits theorem P is Cohen-Macaulay of dimension (n —1). In

particular, P is (n — 2)-connected as claimed. a

SECTION 7 : Ap(G)(> Z) WHERE G = Z/4Z + T, T 1S EXTRASPECIAL, AND Z = Z(T)

In this section we let T be an extraspecial 2-group, with |T] = 22"*! and G = Z/4Z+T.
If Z=Z(T) is the center of T, we show that A,(G)(> Z) is (mp(G) — 3)-connected.

We first need some results from linear algebra. Let (V,Q)) be an orthogonal space over
Z[2Z with associated bilinear form f. Assume that Rad(V') is a nonsingular 1-dimensional
subspace and let Rad(V) =< vy > .

Note that given v € V, Q(v+ v) = Q(v) + Q(vo) # Q(v) (mod 2). So we have:

(%) v € V is singular if and only if v + vy is nonsingular.

Let 7 : V — V/Rad(V) be the canonical homomorphism, and for eachv eV, U <V

let 3, U be their respective images under 7. Define:

f VXV —Z/2Z

(u1,u2) — f(uy,u2) where u; € 774(w;) (for i = 1,2).
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Lemma 7.1. f isa nondegenerate symplectic form on V.

Proof. f is well-defined since @; = @;' implies that u; = ul + vo (for i = 1,2). So that:

f(ﬂlvﬁ2) - f(ulvu2) = f(ui + vaué +'7)0) = f(ugvu;) - .f_(ﬁll752,)'

w

Suppose T € V satisfies f(7,7) =0V @€ V. If v € 77 (7), then:
f(v,u) = f(B,@W) =0V u€eV = ve Rad(V) = v =0.

Thus f is nondegenerate.
Finally, the fact that f is symplectic, and the definition of f, implies that f is also

symplectic. O

Now, for each @ € V, 771(%) = {v,w}, since we are working over Z/2Z. So v = w+ v
and w = v + vy. By (*) above, for each W € V there is a unique u € V, such that
m(u) = % and Q(u) = 0. Define: $:V — V by % — u where u is as above. Note that by
the definition of ¢, ¢ is 1~ 1.

Lemma 7.2. If U < V is totally singular, then ¢ : U — V is a monomorphism.

Furthermore, ¢(U) (written as U) is a totally singular subspace of V.

Proof. Let Uy, 4y € U with ¢(%;) = w;. Then 7~ '(u; + ug) = {ug + ug,u; + us + vo}.

Now:

Q(ur + u2) = Q(u1) + Q(u2) + f(ur,u2) = flur,uz) = f(,u2) = 0.

Thus ¢(u1 + uz) = u1 + u2 = ¢(W) + ¢(uz). This, along with the fact that ¢ is1 -1 as
a map from V to V, implies that ¢ is a monomorphism, as claimed.
The choice of U along with the definition of f gives us that U is totally singular.

Also note that by the definition of ¢, we have that 7=Y(U) = U @ Rad(V). O

On the other hand, if U < V is totally singular then, by the definition of f, U isa

totally singular subspace of V. So in view of Lemma 7.2 and this remark we have:
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Lemma 7.3." The order complex of the totally singular subspaces of V and the order

complex of the totally singular subspaces of V. — both ordered by inclusion — are equivalent.

Proof. We have a bijection of sets given by:

¥

{U < V| U totally singular } = {U < V| U totally singular }.

o Tl

But, by the definiton of 7 and ¢, both maps are order preserving. Thus we have the desired

equivalence. O
Let vq,...,v, € V! such that {vy,v,...,v,} forms a basis for V. Given T € V, let
n n jo—
771@) = {u,w}. fu= 3 ajv;, then w= Y a;v; + v5. Thus for each T € V, there is a
i=0 1=0
unique v €< v1,...,v, > such that 7(v) = @.
Let U <V be nondegenerate and choose a basis, {t1,...,ux}, for U. For each w; let
u; €< v1,... ,0y > such that 7(u;) = ¥;. Then:
Lemma 7.4. {vg,u1,...,ur} forms a basis for 7= (U) and U =< uy,...,up > is

nondegenerate. In particular, 7~Y(U) = U @ Rad(V).

k
Proof. Assume avo+ Y Biu; = 0. Then a =0 (as {vo,v1,...,v,} isa basis for V). Also:
=1

() Bu)=) Bii=0 = fi=0Vi=1,...,k

So {vo,u1,... ,ux} is a linearly independent set with cardinality equal to the dimension
of #=Y(U). Thus, {vo,uy,... ,ux} is a basis for 7=1(U).

Now let 0 # u € U, and choose w € U such that 0 # f(x(u),7(w)) = f(u,w). Such
aw exists as U is nondegenerate by our assumption; and 0 # u € U < < vy,...,v, >,
implies that 7(u) # 0 € U. Thus U is nondegenerate, as claimed. Note that U and U

have the same dimension. 1

By the last statement in the proof of Lemma 7.2 and by Lemma 7.4, we have the

following:
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Lemma 7.5. Let U <V be totally singular and let Tt =T ® W, then W'l(ﬁl) =
U®W @ Rad(V) such that U is totally singular and W is nondegenerate. Here 7(U) = U
and (W) =W.

Proof. W is nondegenerate by (19.3.3) on pg. 77'in [A1]. So, by Lemma 7.4, 7~ Y(W) =

W & Rad(V) with W nondegenerate. On the other hand, by the last sentence in the proof

of Lemma 7.2, 771 (U) = U @ Rad(V) with U totally singular. Thus the lemma. a

We now turn our attention to G = Z/4Z « T where T is an extraspecial 2-group with

IT| = 22"+, Let Z be the center of T, T = T/Z and:
7:G—GlZ=G222ZxT,

be the canonical homomorphism. Given g € G, let § be its image in G.

Define:

f :GxG— 7 C} G — 7
— . a,a’ € Z[4Z and t,t' € T.
(at,a't') s [t,1'] at — o?t?

These maps are well-defined as Z/4Z and T' commute element-wise and Z/4Z is abelian.

Lemma 7.6. é is a quadratic form on G and f is the symplectic form associated to it.

Furthermore, Rad(G) = Z/2Z is nonsingular.
Proof. The proof of the first statement is identical to the proof of (23.10.3) on pg. 109 in
[A1].

By the definition of f, Z/2Z C Rad(G). Now let at € G such that f(at,a't’) =

0V o't € C:’, then:

flat,a't) = [t,¢') =1Vt €T

—= t€Z = ot € L[AL = at € L/2Z.

So Rad(G) = Z/2Z, as claimed. The nonsingularity of Rad(G) follows from the fact that
if Z/AZ =< n >, then Q(7) = n* # 1. O
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Lemma 7.7. Let Z < U < G, then U is extraspecial (respectively, elementary abelian)

if and only ifU is nondegenerate (respectively, totally singular).
Proof. This follows from (23.10.4) on pg. 109 in [Al]. a

Now (G, Q) is an orthogonal space of dimension 2n + 1 over Z/27 such that Rad(G)
is a 1-dimensional nonsingular space. Solet ¢ : G — G/ Rad(é’) = G be the canonical

homomorphism and define:
f:GxG—2Z
(W, ) — f(i1, @) where ¢(ii;) = .

By the definition of C~7, G, f, they can be considered as V, V, and f (respectively) in
the discussion preceding Lemmas 7.1-5. Therefore, the above results apply to the map

f:Gx G — Z. This fact, along with Lemma 7.7, gives us the following theorem:

Theorem 7.8. Let G = Z/4Z+T and Z = Z(T) as above, then A,(G)(> Z) is equivalent
to the order complex of the totally singular subspaces of a 2n-dimensional symplectic space

over Z/2Z - ordered by inclusion. In particular, A,(G)(> Z) is (mp(G) — 3)-connected.

Proof. The first statement is a direct consequence of Lemmas 7.7 and 7.3. The second
follows from the fact that the Witt index of G = n = m,(G) — 1, and the Solomon-
Tits theorem which says that the order complex of the totally singular subspaces of a

2n-dimensional symplectic space is (n — 2)-connected. a
Finally, note that:

Lemma 7.9. Let Z < G < G be such that Gy (the image of G in G) is nondegenerate,

then Gy @ Z/AZ x Ty with Ty extraspecial.

Proof. By Lemma 7.4, Gy nondegenerate implies that there exists Go nondegenerate in G
such that ¢~1(Gp) = Go & Rad(G) (here ¢ is the canonical homomorphism from G onto
6) So by Lemma 7.7, the preimage of C~70 in GG, say Ty, is extraspecial and contains Z.
Thus Go, which by definition is the preimage of Gy & Rad(G), is isomorphic to Z/4Z+ Ty,
as claimed. Note that if dim(Gg) = k, then |Ty| = 281, O
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SECTION 8 : Ap(G) 18 (mp(G) — 2)-CONNECTED WHEN G = Op(G)S — WITH §

OF SYMPLECTIC TYPE

Fix a prime p. Throughout this section, let S = Z/p"Z +T be of symplectic type (here
n > 0), with T of exponent p if p is odd. Let Z be the center of T. Let A = A,(S5)
be the Quillen complex of the group §, and Q = A(> Z) = {E € A|Z < E}. Finally set
§ = S§/Z. Note that, as in (23.10) on pg. 109 in [A1], we can define a symplectic space
structure on S over Z/pZ by defining f: 5 x S — Z = Z/pZ by f(&,§) = [¢,y]. When
p = 2, we can define a quadratic form Q : § — Z by Q(#) = x?, with corresponding

symplectic form f as defined above.
Lemma 8.1. When p is odd, Q,(S) =T, and forp =2, Q(5) < Z/AZ +T.

Proof. Let p be odd, then by assumption 7' = Q4(7T'). So it suffices to show that ,(S5) =
Q(T). n(T) < 2(S5) by definition. Now if at € §, with a € Z/p"Z and t € T such
that (at)? = 1, then:

(at)? = aPt? = a? = 1.
But o =1 impliesa € Z, soat € T. Thus, &;(5) =T.
Let p=2. Let at € § with a € Z/2"Z and t € T such that (at)? = 1. Then:

(a))=1 = a’=teTV =27 = o' =1.

Thus, Q.(S) < Z/4Z + T. o

Now E € A = E <Q(95). Also, Z/2Z+T = T. Thus, by Lemma 8.1, we can restrict

our attention to S =T when p is odd and S =T or Z/4Z x T when p = 2.
Lemma 8.2. Q = A(> Z) is (mp(5) — 3)-connected.

Proof. When S = T, @ is equivalent to the order complex of the poset of the nontrivial
totally singular subspaces of § by (23.10.4) on pg. 109 in [A1] and our assumption that
T is of exponent p when p is odd. Then, by Theorem 6.3, @ is (Witt index(S') -2) =

(mp(S) — 3)-connected.
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When S = Z/4Z « T, the result follows directly from Theorem 7.8. 0

By (23.10) on pg. 109 in [A1], we have that |T| = p***! for some integer k. We have

four cases:
Table 1. .
Prime(p) S Witt index(S) mp(S)
is odd T k k+1
2 ZJAZ+ T ke k+1
2 T, S is hyperbolic k E+1
2 T, S not hyperbolic k-1 k

Let E € A with |E| = p'*t!, thus h(E) = t.
Lemma 8.3. A(> F) is (mp(S) — h(E) — 3)-connected.
Proof. We want to show that A(> E)is (mp(S)— h(E) — 3) = (mp(S) — t — 3)-connected.
If welet ® = A,(Cs(E)), then E' € A(> E) <= E' € D(> E). So it suffices to consider
D(> E).
CASE A: Z < E. Then let E be the image of E in 5 and consider:
Et = E® S,.

Then Sy = §; ® Rad(S), with §; nondegenerate by (19.3) on pg. 77 in [Al] when § = T
(that is, Rad(S) = 0), and by Lemma 7.5 when S = Z/4Z + T. So when § = T, Sy is
extraspecial by (23.10) on pg. 109 in [Al]; and when S = Z/4Z x T, So = Z[/4Z Ty with
Ty extraspecial by Lemma 7.9. Thus we have:

dim(So) = dim(E+) — dim(E) = dim(8§) — 2dim(E)

_{2@-0, if S =T,
Sl 2k-t)+1, if S=Z/4Z«T.

Also note that Z € EX C § if and only if [z,u] = 1V u € E if and only if E+ = @TE)

So we have:

(*) Cs(E)= E x5 (central product).
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By (%) we have Cs(E)/E = So/Z, which implies:
D(> FE) = A, (Cs(E))(> E) = Ap(So)(> Z).

By Lemma 8.2 we know that A,(S0)(> Z) is (m,(So) — 3)- connected. So we compute
mp(So) in the different cases: -
S=Z/AZ+T = dim(So) =2(k—t)+1 = m,(So) =k —t+1=m,(5) -t
S=T = dim(So) = 2(k —t).

For § =T we can now compute the value of m,(Sp) in terms of m,(.9) using Table 1.

Bear in mind that if § is hyperbolic, then Sy is also hyperbolic. Thus we have:

Table 2.
p S mP(SO) my(S) So mp(gﬂ)
odd - - E—t4+1 k+1 my(S5)—t
2 hyperbolic hyperbolic E—t+1 k+1 my(S)—t
2 not hyperbolic hyperbolic k—-t+1 k mp(S)—t+1
2 not hyperbolic not hyperbolic &k~ k mp(9) —t

From Table 2 we see that mp(So) — 3 > mp(S5) —t — 3 in all cases. So in all cases
Ap(So)(> Z) = D(> E) is at least (m,(5) — t — 3)-connected.
Case B: Z £ E. Consider EZ, then as in Case A, Cs(EZ) @ EZ xSy = E x Sy
(as So N E = {1}), here Sy is as defined in Case A. Now & € Cs(EZ) if and only if
z(uz) = (uz)eVu € E,Vze€ Z ifand only if z € Cg(E). Thus, Cs(F) = E x Sp. Thus,
D(> E) = A,(S0). But, by Lemma 2.2 on pg. 105 in [Q], A,(S¢) is contractible. Thus,

D(> E) is contractible.

Therefore, we have that A(> E) = D(> E) is (mp(S5) — h(E) — 3)-connected. a

Now let G = O, (G)S where S is as above with the added conditions that § € Syl,(G),
and that O, (G) is solvable. Note that by the definition of G and §, m,(G) = m,(S5).



Ap(G) s (my(G) — 2)-connected when G = 0, (G)S 43
Then the map:
f:G—=G/O,(G)=S

induces a map of posets:
[ A,(G) = Ap(S).
Lemma 8.4. Ifz <y in A,(G), then f(a:)l;zeqf(y).
Proof. This follows from the fact that 2 N0, (G) = y N O (G) = {1}. a
For each z € A,(G), let & = f(z). Define fla to be f71(A,(5)(L a)).

Lemma 8.5. f|a is (h(a) — 1)-connected.

Proof. f=\(Ap(S)(< @) = {b € A(G) | b < @} = Ay (Op(G)-a). But, as Op(G)
solvable, by Theorem 11.2 on pg. 123 in [Q], A,(O,(G)-a) = fla is (h{a)— 1)-connected.
O

Theorem 8.6. A,(G) is (mp(G) — 1)-spherical.

Proof. We know that A,(G) is (mp(G) — 1)-dimensional. Now, by Lemma 8.3, for each
T e AN(9):

Ap(S)(> Z) is (mp(S) — h(Z) — 3) = (mp(G) — 2 — h(&) — 1)-connected.
This, along with Lemmas 8.4 and 8.5, shows that:
[ A(G) = Ap(S)

satisfies all of the criteria of Theorem A. As A4,(5) is contractible by Lemma 2.2 on
pg- 105 in [Q], it is certainly (mpy(G) — 2)-connected. Therefore, by Theorem A, A,(G) is

(mp(G) — 2)-connected, as claimed. O
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Chapter 3
Techniques for computing homotopy and

homology of simplicial cbmplexes

In Chapter 3 much of the terminology and tools for computing homotopy and homology
of simplicial complexes — primarily order complexes and geometric complexes — is developed.
Our primary goal in the following chapters will be to compute n-connectedness of the
Quillen complex of some of the classical groups of Lie type. It is the nature of this area
of study that the computation of n-connectedness of the Quillen complex of a group will
often depend on our knowledge of the n-connectedness of some simplicial complex tﬁat
admits action by the group. Therefore, in this chapter we will consider the homology and
homotopy of various geometric complexes. Our knowledge about the n-connectedness of
these complexes will then be utilized in subsequent chapters to compute n-connectedess
of the Quillen complexes of the classical groups. There are various methods of computing
homotopy and homology of simplicial complexes, and in this chapter some of these methods
shall be demonstrated.

In Section 9 we recall some of the basic definitions and facts about simplicial complexes.
We also include some results about the join of complexes and p-subgroup complexes of
products of groups. In Section 10 we demonstrate the technique of computing simple
connectivity of a geometric complex using closed subsets and triangulability of the graph
of the complex, as developed in [AS1]. We also give a complete characterization of order
complexes. In Section 11 we use the Nerve Theorem to identify an (n — 2)-connected
complex with an n-dimensional vector space. In Section 12 we prove a couple of technical
results about subspaces of unitary spaces of dimension > 3. Finally, in Section 13 we
use Aschbacher and Segev’s result on the fundamental group of a string geometry, along
with the results from section 12, to show that the order complex of proper nondegenerate

subspaces of an unitary space — ordered by inclusion — is simply connected.
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SECTION 9 : FACTS ABOUT SIMPLICIAL COMPLEXES AND JOIN OF COMPLEXES

In this section we recall some basic notation and facts about simplicial complexes. We
also prove certain results about the join of complexes and p-subgroup complexes of products
of groups (refer to section 1 for the definition of an abstract simplicial complex and the
definition of an order complex}.

Given any finite simplicial complex A, we can consider the poset sd(h) consisting of
the simplices of K ordered by inclusion. The simplices of the order complex of sd(K')
consist of finite chains {sg < $; < -+ < 8,} where the s; (0 < { < r) are simplices of K.
Identifying s; (0 < ¢ < r) with the barycenter of s;, defined on pg. 117 in [Sp], we see that
the order complex of sd(K') can be identified with the first barycentric subdivision of K,
as defined on pg. 123 in [Sp].

Given posets X, Y and maps of posets f,g: X — Y, wesay that fand ¢ are homolopic,
denoted f ~ g, if their geometric realizations are homotopic as maps of topological spaces.
Furthermore, given f: X — ¥ and ¢g:Y — X maps of posets, if fog~id:Y —Y and
go f~id: X — X. then we say that [ and ¢ are homotopy inverses of each other and

that X and Y are homotopy equivalent.

Lemma 9.1. Given a simplicial complex K, K ~ sd(K). Here ~ signifies that the two

complexes are homotopy equivalent.
Proof. This is Lemma (6.4.b) on pg. 126 in [Am]. a

Given posets X and Y, the product of X and Y, denoted X X Y, is the poset on the
ordered pairs {(z,y) |z € X,y € Y} with (z,y) < (2',y") ifand onlyifz < z'and y < ¢/'.
By (1.2) on pg. 102 in [Q]:

X xY|~|X|x]Y

4

as topological spaces. Also, for posets X and Y the join of X and Y, denoted X xY, is
the poset on the disjoint union of X and Y equipped with an ordering which agrees with
the ordering on X and the ordering on Y and such that every element of X is less than

every element of Y,
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By (1.3) on pg. 103 in [Q] if f(z) < g(z) V = € X, then f ~ g¢. In particular, if
zo € X is the unique minimal (or maximal) element and fo : X — X is defined by
f(z) =29 Va € X, then fy ~ id where id is the identity map on X. Thus a poset with
a unique minimal (or maximal) element is homotopic to a point; that is, X ~ {z¢}. So,
following Quillen, we call such a poset conicelly contractible.

Given a poset X, let the cone of X, denoted CX, be the poset on the vertex set X U{0}
with partial order given by the partial order on X and 0 < z V 2 € X. The double cone
of X, denoted X, is the poset on the vertex set X U {0,00} with partial order given by
the partial order on X and 0 < z < 0o V z € X. Note that both CX and X are conically
contractible. '

Finally, given two simplicial complexes X and Y, the join of X and Y, denoted X %Y,
is the simplicial complex with vertex set the disjoint union of the vertices of X and Y
and k-simplices given by the disjoint union ¢ x 7 of an i-simplex ¢ of X and a j-simplex
7 of Y where -1 <1i,7and k =i+ j+ 1. Here we use the convention that the empty set

is the unique —1-simplex of both X and Y.

Lemma 9.2. Given posets X andY, we have O(X *Y) ~ O(X) *O(Y ), where O(X)

is the order complex of X. Furthermore:

X+Y ~CX x CY = {(0,0)}.

Proof. This is proposition 1.9 on pg. 105 in [Q]. O
Lemma 9.3. Given posets Xy, Xo,...,X,, we have:
Xl *X2 ok X, ECXl X CYXQ XX C/Yn - {(0,0, ,0)}

Proof. First of all, note that C(Xy*---% X, )~ CX; x---x CX, since both are conically

contractible, (0,...,0) being the unique minimal element of CX; X --- x C'X,. Now:

Xix o x Xp2C(Xyp*--x X)X CX,, — {(0,0)} by Lemma 9.2,
~CXyx--XCXyy XxCX,, —{(0,...,0)} by the comment above.

Thus we have the lemma. ]
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Lemma 9.4. Given groups G1,Gs,... ,Gy :
Ap(G1 X Gy X -+ X Gp) and Ap(Gr) * Ay (Ge) * -+ % Ap(Gr)

are homotopy equivalent.

Proof. Let Ap(Gi X+ XxGp)=ADT ={1# A4 x---xA, | 4 € Ap(GHUu{1} (1 <i<
n)}. Ifr: A — T isgiven by r(A) = pri(A)x - -xprn(A) (where pr; : G1 X---XGrn — G
are the canonical projection), then for all A € A, A < r(A). Sorandi:T — A, the
inclusion map, are homotopy inverses. Thus, T and A are homotopy equivalent. On the
other hand, T can be identified with the poset C A, (G1) X CAp(G2) X -+ X CAp(Gr) —
{(0,...,0)}. The result then follows from Lemma 9.3. o

Lemma 9.5. Given Xi,...,X, nonempty simplicial complexes, Xy *---x X,, is simply

connected if n > 3 orn = 2 and X; or X, Is connected.
Proof. This follows from (2.1) on pg. 6 in [A2] and induction on n. a

Lemma 9.6. Let X andY be nonempty posets, and set P = CX x CY — {(0,0)}.
Identify X with the subposet {(x,0) | * € X} viaz — (2,0), and fix x € X. Then

P(> z) is connected if X(> ) is nonempty orY is connected.
Proof. Let X' = X(> z), then:
P(>2z)=X(>z)x CY —{(z,0)}

=~ CX'x CY — {(0,0)} (as X(> z) = CX)

~ X'xY by Lemma 9.2.
But, by (2.1) on pg. 6 in [A2], X' Y is connected if X’ is nonempty or Y is connected.
Thus we have the lemma. a
Lemma 9.7. Let f : P — Q be a surjective map of posets, satisfying f~1(Q(< q)) is

connected for all ¢ € Q. Then P is connected if () is connected.

Proof. Given p,p' € P, let f(p) = q, f()') = ¢ and ¢ = qoqiq2-..4x = ¢’ be a path

joining ¢ and ¢' in Q. Let p; € f7!(g;) for 0 < i < n. It suffices to show that p; and piyq
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are connected in P forall0 <i<n—1. But,p; € f~HQ(< ¢iy1)) or piy1 € F7HQ(L ¢))
V0 <i<n-1; and our assumption that f~1(Q(< ¢)) is connected for all ¢ € ¢ implies

that p; and p;41 are connected. , O
Theorem 9.8. Let G = G1 X G be a finite group with m,(G) > 3 and A,(G;) # 0

(i = 1,2). Furthermore, assume that A,(G;) is connected if m,(G;) > 2 (i = 1,2). Then,
if A€ A,(G) with h(A) =0, then A,(G)(> A) is connected.

Proof. Let Ap(G) DT ={1# A1 x A2 | Ai € Ap(G;)U {1} (i = 1,2)}. Define:

riAp(G) =T

B — pri(B) x pr2(B),

where pr; : G — G; (i = 1,2) are the canonical projections.
Let X = A,(G)(> A). Now one of two cases can occur:
Case I: A¢T. Then r(A) > A, set Y =T(> r(A)).
Casg II: AeT. Then r(A) = A, set Y =T(> r(A)).
Restrict r : X — Y and note that it is a surjective map of posets, as B € Y implies

B e X. Also, for all BeY, we have:

r~H(Y(< B)) = {C € X|r(C) < B}
={C e X|r(C)<r(B)} (asr(B)=B)

= X(< B).

Thus 7=} (Y (< B)) is connected as it has a unique greatest element.

By Lemma 9.7, A,(G)(> A) is connected if ¥ is connected. But in Case I, Y is
conically contractible, so we are done. In Case II, 7(A) = A and h(A) = 0 imply
A€ Ay(Gy) or A € Ay(Gy). Assume without loss of generality that A € A,(G1). Now if
mp(G1) > 1, then A,(G1)(> A) # 0, and if my(G1) = 1, then mp(Ga) > 2 and A,(Gs)

is connected. Note that:

T ~ CA(Gy) x CAL(G:) — {(0,0)} and Y = T(> A).
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Then, by Lemma 9.6 and our observation about A,(G1)(> A) and A,(G2), Y = T(> A)

is connected. Thus A,(G)(> A) is connected, as claimed. O

Let P be a poset and § C P. We say that S is a closed subposet of P if 2 < y and

y € 5 implies that x € § for all z,y € P.

o

Lemma 9.9. Given a poset P and closed subposets R and ) if P = RUQ as sets, then

P = RUQ assimplicial complexes.

Proof. We need to show that given a simplex 0 = (29 < 21 < --- < &), 0 € Ror o € Q.
As P = RUQ as sets, we can assume that z, € R. But then, as R is closed, z; € R

VO0<:<n and so o € R, as desired. O

We fix the convention that the empty set is —2-connected. Note that this agrees with

the definition of reduced homology of the empty set as given in section 1.

Theorem 9.10. Let Xy and X, be posets (possibly empty) which are ny- and ny-
connected (respectively). Define K = X{ x X —{(0,0),(00,00)}. Then K is (ny+ns+3)-

connected.

Proof. Let Ky = CX; x X3 — {(0,0)} and Ky = X; x CX; — {(0,0)}. By Lemma 9.2,
K = X1 %(X2,00) and K3 = (X,00)*% X, where (X;,00) is the (necessarily nonempty)
poset on the vertex set X; U {oo} with partial order given by the partial order on X; and
r<oxVzeX; (i=1,2). (X;,00) is conically contractible as it has a unique maximal
element. Thus K; is contractible (for i = 1,2) by (2.6) on pg. 8 in [A2].

Note that K = Ky U K, as sets, so if K; (# = 1,2) are closed subposets then, by
Lemma 9.9, K = Ky U Ky as simplicial complexes. By symmetry, it suffices to show that
K, is a closed subposet of K. If (zy,22) € K\ Ky, then z; = oo, which implies that
(z1,22) £ (y1,y2) for any (y1,42) € K1 asy; < oo Vy; € CX;. Thus the K; are closed
subposets for i = 1 and 2.

By Lemma 9.2, K1 N K; = CX; x CX3 — {(0,0)} & Xy * X2, whichis (ny + ny + 2)-

connected by (2.6) on pg. 8 in [A2]. K; and K, are open in K, so (K,K;,K;) is an
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exact triad by (17.1) on pg. 28 in [GH]. So we get an exact sequence (the Mayer-Vietoris

sequence) as follows:
oo Hypy (K) = Hy(Ky N Ky) — Hy(Ky) @ Hy(Kz) — Hy(K) — -+ .
Since K1 N K, is nonempty, the sequence terminates in:
= Hi(K) — Ho(Kq1N K3) — Ho(K1) & Ho(K2) — Ho(K) — 0,

by remark (17.9) on pg. 100 in [GH].

Now the contractibility of K; implies Hy (K;) =0 = ﬁo(Ki) Vg>1(i=1,2). Also,
Ky N K3 (n1 + ny + 2)-connected implies Hy(K1 N K2) = 0 = Iio(lx"l NK)V1<g<
(n1 + n2 + 2). Thus we have:

o= 0— Hy(K)—0 and--- — 0 — Hy(K) =0 VY1<q< (n+n2+3).

So Ho(K) =0 = H,(K)V 1< q< (n +ny+3). Thus it remains to show that K is
simply connected when nq +ny +3 > 1.

So assume that ny + ny +3 > 1. As above, K1 N Ky is (n; + n2 + 2)-connected.
Since ny +ns +2 > 0, Ky N K, is connected. Also, as the K; are connected, K is
connected. Therefore, by Van Kampen’s Theorem — refer to pg. 138 in [Am] - and the fact
that K and K, are contractible, K is simply connected.

Thus we have shown that K is (ny + ny + 3)-connected, as desired. O

Corollary 9.11. Given (possibly empty) posets X1,X5,... ,X, , with X; m;-connected,
define K = X; x --- x X, = {(0,...,0),(c0,... ,00)}. Then K is (3 m; + (n— 1)3)-
i=1

connected.

Proof. Let YV; = Xy X - Xp_y — {(0,...,0),(c0,... ,00)}, and ¥, = X,. By induction
n-1 . .

on n, Yy is (Y m; + (n — 2)3)-connected. Also, K = Y7 x Y2 — {(0,0),(00,0)}.
i=1

Then we have the desired result since, by Theorem 9.10, Y; x Y3 — {(0,0),(00,00)} is
n-—1 n

(X mi+(n—2)34+m,+3)= (> m; + (n— 1)3)-connected, as claimed. a
=1 ]

=1
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Remark. It is important to note that in Corollary 9.11 we allow some (or even all) of the
posets in the collection under consideration to be empty. Later on we shall use the above

result without explicit reference to this admission of empty posets.
Recall the definition of a Cohen-Macaulay complex given in section 1.

Theorem 9.12. Let G = Gy Xx GG, be a finite group with Ay(G1) Cohen-Macaulay
of dimension n; and A,(G3) contractible. Furthermore, assume that Ay,(G2)(> a) is
contractible for all a € A,(G3), for which h(a) # ny = dim(A,(G2)). ThenV a € A,(G),
Ap(G)(> a) is (mp(G) — 2 — h(a) — 1)-connected.

Proof. Let T = {ay X ay # 1| a; € A,(G;)U {1} (i = 1,2)}. Let pr; : Ap(G) — Ap(G)
be the maps induced by the canonical projections. Finally, define the map r: A,(G) — T
by a + pri(a) X pra(a). Note that for all a € A,(G),a < r(a).

Now fix an a € A,(G) and let X = A, (G)(> a). If a < r(a), let Y = T(> r(a));
otherwise, set Y = T(> r(a)). The inclusion map ¢ : ¥ — X and r : X — Y are
homotopy inverses of each other, since Vy €Y roi(y)=yandVz € X ior(z)>2z. So
it suffices to show Y is (m,(G)— 2 — h(a) — 1)-connected.

If a < r(a), then Y = T(> r(a)) has a unique minimal element and thus is conically
contractible. So assume that ¢ = r(a) = a1 Xas. Now ny +n2 = mp(G1)—14+mp(Gy)—1=
mp(G) — 2, and h(ay) + h(az) = h(a) — 1. We want Y to be (my(G) -2 - h(a)—1) =
(n1 + n2 — h(a1) — h(az) — 2)-connected. Fix the notation that if a; =@ (i = 1,2), then
Ay (Gi)(> a;) = Ap(Gi) and h(a;) = —1.

Y =T(> a1 X az) = A,(G1)(> ay) X Ap(G2)(> a2) — {a1 X a3}
~ CA(Gr)(> ar) x CA(G2)(> az) — {(0,0)}
~ Ap(G1)(> 1) * Ap(G2)(> az2) (by Lemma 9.2).
Two cases occur:
Case I h(az) = ny. ThenY = A,(G1)(> ar), whichis (ny —h(a;)—2)-connected by the

assumption that A,(Gy) is Cohen-Macaulay. But then Y is (nq +ny — h{ay) — h(az) —2)-

connected as desired.
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Case II: h(az) < ny. If h(a1) = nq, then Y = A4,(G3)(> a2), which we assumed
to be contractible. Otherwise, both A,(G1)(> a1) and A,(G2)(> a3) are nonempty.
Furthermore A,(G2)(> az) is contractible. Thus, by (2.6) on pg. 8 in [A2] and Lemma
9.2, Y is contractible. _

Therefore Y, and hence X = A,(G)(> a}, is (mp(G) — 2 — h(a) — 1)-connected, as

claimed. a

Next we include a result about a closed subposet of the product of posets. Given
nonempty posets X and Y, recall that a subset F C X X Y is a closed subposet if
and only if (z,y) < (2',y') and (2',y") € F implies (z,y) € F. This result generalizes
Proposition 1.7 and Corollary 1.8 on pg. 104 in [Q], and was noted by Aschbacher on pg. 1
of [A3].

Theorem 9.13. Let X and Y be nonempty posets and F' a closed subposet of X X Y.

Foreach z € X, let F, = {y' € Y | (z,y') € F}. Similarly, for each y € Y, let F, =
{z'e X |(a',y)e F}. Ifforallz € X andy €Y, F, and F, are n-connected. Then:

X is n-connected if and only if Y is n-connected.

Proof. 1t suffices to prove the following:
If F, is n-connected V & € X, then F is n-connected if and only if X is

n-connected.

Since then, under the assumptions of the theorem and by symmetry, we have: Y is n-
connected if and only if F' is n-connected, which in turn is n-connected if and only if X

is n-connected.

Define p: F — X, by (z,y) — z. For each z € X, let:
plz = {(=',y) € F |2’ <z} = p7H(X(L ).

Then, by Proposition 7.6 on pg. 115 in [Q], if p|x is n-connected V 2 € X, then F' is

n-connected if and only if X is n-connected. So we are reduced to showing:

(%) plz is n-connected V z € X.
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Fix £ € X and consider the following maps: u : F, — plz defined by (z,y) — (=,y),
and v : plx — F, defined by (2',y) — (&,y). Then, by the definition of p|z and Fj,
both « and v are well-defined maps of posets. Furthermore, given {z,y) € F,, we
have: v o u((z,y)) = (=,y); thatis,vou = id : F, — F;. Also, given (z',y) € p|z,
wov((a',y)) = (x,y) > (¢',y). Thus, by (1.3) on pg. 103 in [Q], uov =~ id : plx — p|z.
Therefore, F, ~ ple. Since we assumed F, is n-connected for each x € X, pl|z is
n-connected.

Thus, by (#) and the discussion preceding (*), the theorem holds. O

The above theorem will be used frequently in chapters 4, 5, and 6 to compare the Quillen
complex of a finite group &G to a simplicial complex A" on which &' acts. This comparison

will be carried out, by considering:
sd(K) X Ay(G)Y D F = {(z,A)] z € Fiz(A)},

where sd(K) is the first barycentric subdivision of K. And Fiz(A) is the subcomplex of
sd(K) defined on those simplices of A on which A acts as the identity automorphism.
In algebraic topology this complex is denoted by K 4.

Now given z € sd(K), @ = (v; | ¢ € I) where I is an indexing set and v; are vertices

of K foralli€ [. Then (2,A) € F <= Av; = v; Vi€ I. Thus we have:
Remark 9.14. F is a closed subposet of sd(K') x A,(G) since given (z,A) < (2',A") €
sd(K) x A,(G) such that (2',A") € F' we have:

() 2= (vj|jed)and 2" =(vi|i€T) withJC I, and

(2) Alvy =, Viel = Avi=v;Viel
Hence, Av; = v; ¥V j € J, which implies (x,A) € F.

Finally we state a well-known result about the Quillen complex of certain factor groups:
Theorem 9.15. Given a finite group G such that O, (G) < Z(G) where p is a prime

dividing |G|, the canonical homomorphism = : ¢ — G /O, () induces an isomorphism

between A,(G) and A,(G /O, () (in the category of posets). O
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SECTION 10 : TRIANGULABILITY OF GRAPHS AND SIMPLE CONNECTIVITY

In this section we demonstrate one of the more useful methods for computing simple
connectivity of simplicial complexes. This method was introduced by Aschbacher and
Segev in [AS1]; and though we include some of the basic notions from that paper, we urge

the reader to refer to that paper for the details.

Il

Given a graph A, let P P(A) be the set of paths in A. For every path p =

ZoZy ...z, € P, let org(p) = zo, the origin of p; end(p) = z,, the end of p; and
p ! =z,2,_1...2¢. Given paths p==2¢...2, and ¢ =1yp...y, if 2, = 3, then we can
concatenate p and q to get pg = o ... Tr—1Y0...ys. The length of a pathp = z¢...2,,

denoted I(p), isr. A pathp==29...2, isa cycleif x9 = z,.
A set S of cycles of P is closed if § satisfies the following six properties:
(1) rr=1 € Sforallr € P.
(2) If pe S, then p~! € S.
(3) If p,q € S with org(p) = end(p) = org(q), then pg € S.
(4) fpe S, then r~pr € § for each 7 € P with org(r) = end(p).
(5) If p is a cycle and r € P with org(p) = end(r) and r"'rp€ S, then p€ S.

(6) zz € S forall z € A (so we allow a “loop” at each vertex of the graph).

The intersection of closed subsets is closed, so given a set of cycles T of P, we define
the closure of T to be the intersection of all closed subsets containing T. For any positive
integer n, define €,(A) to be the closure of the set of all cycles of length at most n. A
is said to be triangulable if all cycles of A are contained in €3(A).

Given two points z,y € A, the distance between x and y, denoted da(z,y) (or simply

d(z,y) ), is given by:
da(z,y) = min{l(p) | p is a path joining = and y},
P

with da(z,y) = oo if no such path exists. The diameter of A, denoted diam(A), is
defined by:

di = maz {d(z,y)}.

tam(A) = maz {d(z,y)}
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Note that A is connected if and only if diam(A) < oco. Given integers n,m with n > 2,
define |m|, = r where 0 <7 < 2 and m = +r(mod n). Define a cycle p=1x¢...2, to
be an n-gon if:

d(zg,z;) =i — jlp forall 0 <4,j < n.
Lemma 10.1. Given a graph A with diam{A) = d, A is triangulable if and only if all
r-gons are in €3(A) for all r < 2d + 1.

Proof. This follows from (3.3) on pg. 303 in [AS1]. a

Given a graph A, a clique is a finite set of vertices of A such that given any pair of
vertices in the set they are connected to one another. Given A the cliqgue compler of A,
denoted K(A), is the simplicial complex with vertex set equal to the vertices of A and
simplices the cliques of A. Given a simplicial complex K the graph of K, denoted A(K),
is the graph on the vertices of K with a pair of vertices adjacent if and only if they form
a l-simplex in K. Note that a simplicial complex K is a subcomplex of K(A(K)) and

K = K(A(K)) if and only if K is a clique complex.

Lemma 10.2. Given a clique complex K, K is simply connected if and only if A(K) is
triangulable. In particular, if diam(A(K)) = d then K is simply connected if and only if

every r-gon is in €3(A) for all 7 < 2d + 1.

Proof. The first statement follows from (4.3.3) and Remark 5 on pg. 307 in [AS1] along
with our observation that K = K(A(K')) if and only if K is a clique complex. The second

statement is a restatement of the first in light of Lemma 10.1. O

Fix an integer d > 1, and let V be a 3d-dimensional vector space over some finite field.
In this section we associate a geometric complex with V' and use Lemma 10.2 to show that

the complex is simply connected. First we need a couple of results from linear algebra.

Lemma 10.3. Given a 2d-dimensional vector space W and two d-dimensional subspaces
W1, W5, we can find a third d-dimensional subspace W5, such that WanW,; = 0 for i=1,2.

Proof. Let {ay,... ,a,} be a basis for W7 N W,. Choose {uy,...,uq—r} C Wy, such that

{ai,u; |1 <i<r,1<j<d-r} isabasis for Wy. Similarly, pick {v1,... ,v4-,} for Wj.
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Finally, choose {by,... ,bn} such that {a; uj,ve.bi |1 <i<m1<jk<d=r1<I<n}
is a basis for W. Note that n = 2d — r — 2(d - r).

Notice that X = {bj,u; +v; |1 <i<n1<j<d~r} is linearly independent. Set
W3 =< X >; then clearly, W3 nW, =0 (: = 1,2). So we only need to check that W5 has
the correct dimension. But that follows from the fact that n4+d—r = 2d—r=2(d—r)+d—r =

w

2d —r - (d —r) = d. Hence we have the claim. O

Lemma 10.4. Given V as above and three 2d-dimensional subspaces V,,V, and V;, we

can find a d-dimensional subspace, U, of V' such that UNV; =0 (1< <3).

Proof. Let Vg =< V;| 1 <i< 3>, and pick an ordered basis for V' as follows:

Let {ay,...,an} be a basis for Vi N Vo N V3. Choose {bi%,... ,b,lfn} such that
{a;, b} |1 < i< n,1 <7< nyp} is abasis for Vi N Vy. Similarly, choose {613, ... 513

ny3

for VN Vs and {63°,...,623 } for Vo V5.

YUnas

Next pick {c},...,cl } such that:

b mi

{a:i, 02,60, ¢l [1<i<n 1< j<np,l1<k<ng 1 <I<m)}

is a basis for V4. Similarly, pick {c{.... .c; )} for V3 and {c}.... ¢} for Vj.

Then B = {ai,b;fp,cgl [1<1<n,1< jip € ngp,l <5 < my} is a basis for V.

Finally, pick £ = {ey,... ,e,} in V =V, such that BU E is an ordered basis for V. This

notation is summarized in Figure ! below:

2
\/
&

Figure |

\
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By definition we have:

n+niz +n3 +my = 2d niz + my = n23 + me
n+ N1z + no3 + my = 2d = nig + My = ny3 + m3 (%)
n+ nyz +n23 + m3 = 2d niz + my = niz + ma

r=3d— (n+ i + niztngg + my +ma + m3).

Let dy = min{niz, ms},dy = min{niz, me} and ds = min{naz, m1}.
Case I: dy = niz. So m2 < mg, and by (), nag < my and ny3 < my so dy =

ny3 and d3 = na3. Let:
31:{b}2+cf|1§i§n12}u{b}3+c§]1§j§n13}u{bi3+c}c|1§k§n23}.
Note that by (*), mg — ny3 = my — ny3 = m3 — nya, so let:
B; = {c,l,mﬂ + cilaﬁ I<j<mi—mnas}U{en,px+Cori | 1< k< ms—ngal.

Let U =< FUB;UB; >.
Claim 1: F U B; U B, is a basis for U.

As E and B are linearly independent it suffices to show that B; U B; is linearly

independent. Let ay,... ,a5 € k such that:
a1 (b + ¢}) + aa(b3 + ) + as (b’ + i) + au(eny 1+ )+ @5(Cy g + ) = 0.

But as {bffp,cg-‘} are linearly independent, oy = --- = a5 = 0. ]

Thus, U is a subspace of dimension:

T+ nyg + Ny3 + nag + My — ngy + M3 — Ny =T+ nyz + mp +mg

=3d—(n+mnip+ny3+my)=3d—2d=4d (equalities given by (*)).

Claim 2: UNV; =0 (1< <3).
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I prove this claim for ¢ = 1; the other two cases follow analogously. Let v € U N V;.

Then:
ni2 ni3 n23
v= Za et Zﬁj (b + 1) + ka(b +ep)+ D60 + e+
=1
My =723 w mi+n2s3
Z 7}m(071123+m + cils-i'm) + Z pp(c}lza‘H? + Cim‘ﬂ’)
m=1 p=1
ni2 13
= Zaz ai+ Zﬁj'blz + ka’bm + Zéz
But equating coefficients gives v = 0. O

Thus when d; = ny2, we have proven the claim.

Cask II: dy = m3. Then by (%), d2 = my, and d3 = my. But then setting:

Bl:{b}2+c§’]1§i§m3}u{b;3+c§|lgjgmg}u{bi?’-kc}cllgkgml}a.nd

= {bm3+J b};z’gﬂ |1 <j<mnp - m3}U{b123+k -}-b231+;C |1 <k <noz—myl;

we see that, as in Case I, U =< E U By U By > satisfies the claim of this lemma. O

Associate the following geometric complex with V' ( refer to section 6 for the definition
of geometric complexes):
Let Ty = {U <V |dim(U) = d},Ty = {U <V | dim(U) = 2d} and let A be
the set of triples of the form {U;,U,,Us}, such that dim(U;) =d (1 << 3)
and V = U; @ Uy @ Us. We write a typical element of A as [U|U;|Us]. Finally,
set T=T1Ul and A =T UA.

The type function on A is given by:
“Y1)=Ty, 77Y2) =Ty, and 77'(3) = A.

* : the incidence relation is given as follows:

Ifz#£yel, then zxyiff 2 <y or x>y, thatis, by inclusion.
Ifz =[U1|Ux|Us] € A, then zxy iff y=U, o0 U; @ U (1 <i#7<3).
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Then (A, 7,%) is a geometry. Let B(V) be the clique complex of the graph
(A, *).

Hrxn:V - V* is an isomorphism between V' and its dual space, then for each W < V
we have a subspace W+ = 77 1({¢ € V* such that ¢|y = 0}). Note that dim(W+) =
codim(W). If § is the set of all subspaces o:ﬁ/, then let perp : § — 5 be the map taking
each W € § to WL. Note that if Wy < Wy, then perp(Wsy) < perp(W;) and dim(W) +

dim(perp(W)) = dim(V'). Furthermore, the perp map preserves direct sums. So we have:

Remark 1. There is a well-defined automorphism on the complex B(V'), given by the
perp map, which interchanges I'y and I'; and preserves A. The action of the perp map on
A is given by [Uy|Us|Us] — [(Uy @ Ua) 2 |(Uy @ Us)H|(Uy @ Us)t]. Thus if g1« An_1Xo

is an n-gon in A such that Sy = {A;,,... ,A;,} C Ty and Sz = {Aj,...,A;,} T Ty, we

can assume without loss of generality that S; C I'; and S; C I'y.

Lemma 10.5. diam(A) < 4 and diam(I') = 3. Furthermore if x # y € I' then:

2, ifr(x) = (y),

dr(z,y) =
' 3, ifr(z)# (y) and z ¢ A(y).

Here A(y) = {z € A | « is adjacent to y}.

Proof. Let z,y € A. We do a case-by-case analysis, keeping in mind Remark 1:

(1) 7(z) = 7(y) = 1. Then there exists z € I'; such that z,y < z. 7(2) =7(y) =2
follows by duality.

(2) (z)=1, 7(y)=2. Let z<ywithr(z)=1and 2Nz =0. Then z(z G 2z)zy isa
path joining ¢ and y.

(3) 7(z) =3, 7(y) = 1. Let zxa with 7(z) = 1. Then there exists a path zwy joining
z and y. So zzwy joins ¢ and y. 7(y) = 2 follows by duality.

(4) 7(z) = 7(y) = 3. Let zxz and u*y with 7(2) = 7(u). Then da(z,y) < 4, as

dp(z, u) S 2.

This case-by-case analysis proves all three assertions of the lemma. O
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Fix the following notation:

(1) Let z; € I'y, y; € 'y, and z; € A.

(2) For any path p € A, let A(p) = number of elements of A occurring in p.

(3) fyeI(z)and z € A, then we write y € I'(z) Nz if z,y € A(z).

(4) For X C A, let A(X) = IQXA(.Z’); I'tX) is similarly defined.
Note the following facts:

Fact 1: If Ay, Az € T with d{dim(A; N Az), then A(A, A2) = T'(A1, Ag).

Fact 2: If 21,2, € I'; and 2, Nzy = 0, then there exists a unique y € I'(A1,A2). A dual
statement for y;,y, € I'y also holds. '

We would like to show that B(V') is simply connected. In light of Lemmas 10.2 and
10.5, it suffices to show that for r < 9, each r-gon (as defined earlier) is in €3(A). We say

that a cycle p is trivial if p € €3(A), and write p ~ 1.
Lemma 10.6. A has no 9-gons.

Proof. Assume that p = Ag---AgAg isa 9-gon in A. Then we can assume that A\g € I'. But
as da(Ao,Ai) =4 fori =4 or 5, by Lemma 10.5, Ay, A5 € A. This gives us a contradiction

as distinct elements of A are not adjacent in A. a
We now proceed to show that all r-gons (4 < r < 8) are trivial.
Lemma 10.7. All squares in A are trivial.

Proof. Let p= Ag...A3X0 be asquare in A. In view of Remark 1, we can assume without

loss of generality (awlog) that Ao = 2.

Case I A =azpandzy Ny = 0. Consider yy = 2y Pas. X, €6 fori =1o0r3,

then, by Fact 2, A; = y1. And if \; € A, then \; = [@1]|x2]|x3] (for some z3 € T'1). So,

y1 € A\f for i = 1,3; and p~ 1. Recall that 2% = A(z)U {z} for all z € A.

Case II: XAy =9y and 2y Ny; = 0. Then A;, A3 € A; solet A\; = 27 = [@1]211]z12] and

A3 = z2 = [21]z21|222] with y1 = 2 § 242 for ¢ = 1,2. Now one of two cases occurs:
IIA: For some 1 < i,j < 2 xy; N2g; = 0. Then we can awlog that zq; Nz =

0. Solet yo = 21 ® xy1, y3 = 1 & 221, and z3 = [@1|z11]|®21]. Consider the
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path z;y;7,123221y322. Then p is in the closure of the triangles z;z,y;411¢,
YiziZay, and zyip1za2 (0 = 1,2) and the squares T1Yiv1Ti237; (1= 1,2)

and y171123221y1 (see Fig. 2 below). But these squares are trivial by Case I, so

p~ 1. .
X z,
¥s
z
3 X1
Y3
X2
22 ¥y
Figure 2

IB: Forall 1 <4,j <2z;iNzy; #0. Now by Lemma 10.3, there exists r3 <y such
that z3Nz;; =0 fori=1,2. Let y; = z3 & z3 and set z3 = [zy|z3]|z4]. Then p is
in the closure of the squares z;21y1237, and z;23y1 2221, both of which are trivial

by Case Ila.

Sop~1.
Case III: Ay =z7and 2y Nz; #0. Then, by Fact 1, P =IT1y1T2¥22,. By Lemma 10.4.
we can find z4 such that z3Ny; = 0 fori = 1,2. Let:

Yi=2;8 2 (1<) <2) andset z;; = (zi]zij|z3].

Then p is in the closure of the triangles z,z,,y,r; (1 < 7,7 < 2) and squares I,;z;1T32;2L;
and yiz1iTazeiyi (1 <1< 2) (see Fig. 3 below). But, by Cases I and II above, these squares

are trivial, so p ~ 1.
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X yl
2y
X
221 2 {z,
22
2 X
Figure 3
Thus all squares in A are trivial. 0

Lemma 10.8. All pentagons in A are trivial.

Proof. Let p = Ag---AqAo be the pentagon. If p C I' then, as I' is bipartite, T(Ao) =
7(A2) = 7(Ag), a contradiction. So 1 < A(p) < 2. Assume that Ay = 7y, and A\; = 2.
Case I: A(p) = 1. Then r(zy) = 7(A3) # 7(X2) = 7(My), 50 p = Tyziy122Y27,. As
z1,y1 € A(z1), 21 Ny = 0. Thus, if y1 = z; & 23, setting 2o = [z1]z2|z3], we see that
z3 € z{ Nyi Nz7. So by (1.5) on pg. 77 in [AS2], p ~ 1.
Case II:  A(p) = 2. We can awlog that p = z121M220 M4y, then 7(z1) # 7(\g), so we
have p = z121A229y121. If Ay = z2, then by Lemma 10.5 there exists y; € [(zy,z2). But
then p is in the closure of 2,212,271 and z,y22222y12;. The latter is trivial by Case I,
sop~1.

Otherwise, A; = yz; but then, keeping Remark 1 in mind, p ~ 1 by the argument in
the previous paragraph applied to y; and y,.

So all pentagons are trivial. a
Lemma 10.9. For all 6 <r <8, all r-gons in A are trivial.

Proof. Let p = Ag...A,—1A¢ be a nontrivial r-gon. We first show that this implies that
A(p) =0 or r = 6. For a contradiction, assume that p is a counterexample with minimal
A(p) > 0. Now, we can awlog that A\g = z;, and A\ = z;.

If Ay = z;, then z; Nz, =0, since z;,z7 € A(21). Setting y; = z; D z,, we find that

p isin the closure of z1z1zoy121 and p' = ryy12205. .. A_121. But A(p') = A(p) - 1, so
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by the minimality of A(p) we have that p’ is trivial. This contradicts the fact that p is
nontrivial.

Thus, A; = y1, but A3 # z3 as d(zy,z2) =2, thus A3 = z,. But by applying the above
argument to y;, and zz, wesee that Ay = 5. Thus, we have p = 2121120225 ... A\r 1 21.
But as d(zy,z;) = 2, this is possible only ifsr = 6.

Thus if r # 6, then the only nontrivial r-gons are contained in I'. But when r = 7,
this contradicts the fact that I' is a bipartite graph. So there are no nontrivial heptagons.
Now when r = 8, 7(Ag) = 7(A2) = 7(A4). But by Lemma 10.5, dr(Xo,Aq) = 2, which
contradicts our assumption that da(Ag,Ay) = 4. Thus, all octagons are trivial too.

Solet r =6 and let p = XAg...AsAo be a nontrivial hexagon with A(p) m'inirnai. If
A(p) # 0, then by the argument above, p = 12112222 A521. Now A5 # yo as dr(yy,y2) =
2. On the other hand, if A; = 23, then as above, y = z; & z, exists and p is in the
closure of a square and a trivial hexagon (by minimality of A(p) ). Thus the only nontrivial
hexagons are the ones contained in I'.

We can awlog thaf P = Ii1Y1T2Y223y37;. By Lemma 10.4, there exists 4 such that
4Ny =0(1<i<3). fyi =2, @z, then set z; = [z;|z!|z4]. Then p is in the closure
of the triangles z;z;y;z; (1 < ¢ < 3) and pentagons z;2,2423y3%1, T323T422Y2T3, and

T222Z421Y122. Thus, by Lemma 10.8, p ~ 1.

Figure §

Therefore for 6 < r < 8, there are no nontrivial r-gons in A. a
Thus we have proven the following:

Theorem 10.10. Letd > 1 and V be a 3d-dimensional vector space over some finite field
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and B(V) as defined above. Then B(V') is simply connected. O

In the proof of the lemmas above we were often able to use the fact that I' is a bipartite
graph to reduce the computation. It turns out that if we are considering an order complex
of a poset then the amount of computation required to show that the complex is simply
connected is significantly reduced using the fgllowing result — Theorem B. Given a poset
P, we can define the graph of P, denoted A(P), to be the graph with vertex set P and
two vertices a,b € A(P) incident if a < b, or b < a. Such a graph is called a comparability
graph. The order complex of P is then the clique complex of A(P). By Lemma 10.2,
the question of simple connectivity of P reduces to a question about the triangulability of
A(P). We now give a characterization of order complexes, which significantly reduces the
computation required to show that A(P) is triangulable. The result is based on a result
of Gilmore and Hoffman in [GiH].

Given a cycle p = z9...7,, we call p an odd or even cycle depending on whether n
is odd or even. We restrict our attention to cycles zo ...z, such that given a,b € A(P)
and ¢,j < n—1, wedonot have a = z; = z; and b = x;4; = xj41; thatis, zg...z, is
not equal to the path zg...z;_1abz;4s...2;_1abxjys...2,. In other words, if we travel
from zog to x,, going from z; to x;41, we do not traverse any edge in the same direction
twice. In particular, all n-gons are included in this set of cycles. Given a cycle zo...z,, a
triangular chord is an edge of the form (z;,2,42) 0 <7 < n —2 and the edge (z,-1,71).

With this notation in mind we have the following characterization of order complexes:

Theorem B. A simplicial complex K is an order complex if and only if the following two

conditions hold:

(1) K is a clique complex, and
(2) every odd cycle in A(K) has at least one triangular chord — here we restrict our

attention to the collection of cycles defined above.

Proof. Let K be a simplicial complex, then by the definition of an order complex:

K is an order complex if and only if K is the clique complex of a comparability graph.
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Now by Theorem 1 on pg. 540 in [GiH] a graph G is a comparability graph if and only if
every odd cycle has at least one triangular chord. Thus:
K is an order complex if and only if K is a clique complex and every odd cycle in

A(K) has at least one triangular chord. Thus we have the theorem. O
As an immediate corollary we obtain:

Corollary 10.11. An order complex K is simply connected if and only if every 2k-gon
of A(K') is contained in C3(A(K)) for all k < diam(A(K)).

Proof. This follows from Lemma 10.2 and the fact that an order complex has no (2k+1)-gon

for k > 2 by Theorem B. 0

SECTION 11 : A (n — 1)-SPHERICAL COMPLEX ASSOCIATED WITH AN n-DIMENSIONAL

VECTOR SPACE

In section 10 we demonstrated a method of computing simple connectivity of a clique
complex. In this section we demonstrate a method of computing n-connectedness of a
simplicial complex. We use a result from algebraic topology, called the Nerve Theorem and
Lemma 9.1.

Recall that the nerve of a family of sets (A;);e; is the simplicial complex A (A4;) on
the vertex set I such that a finite subset ¢ C I is a simplex if and only if iQoAi #0. We

have the following result:

Lemma 11.1 (Nerve Theorem). Let A be a simplicial complex and {A;}ier a family
of subcomplexes such that A = iLeJIAi. Suppose that every nonempty finite intersection,
A, NAL,N...NA,;, is (k—t+ 1)-connected; then A is k-connected if and only if the
nerve N'(A;) is k-connected. If we have the stronger condition that every nonempty finite

intersection, A;; N...NA,,, is contractible, then A and N(A;) are homotopy equivalent.
Proof. This is (10.6) on pg. 23 in [B1]. a

Given a simplicial complex K, recall the definition of sd(K’), and Lemma 9.1 from section

9.
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Corollary 11.2. Given a finite simplicial complex C, let C* be the complex whose
vertices are the maximal simplices of C, with o a simplex of C* if and only if M(;aM # 0.
Then:

C~(C".

o

Proof. Note that '™ is the nerve of the cover of C' by maximal simplices. Also, whenever

Me N M#0Q, ﬂ M is contractible. Thus C* ~ C' by Lemma 11.1. O
g

Let V* be the dual space of V and for each U <V let Ut = {fe V*| flu =0} be

the annihilator of U. Let K be the order complex of the poset on the set of vertices:
{0£A£UxU' |U<Vand U' <Ut},

partially ordered by inclusion. Note that by the definition of K, K is a (n—1)-dimensional
complex.

For each U <V, let Ky = K(< U x Ut). Then note that {Ky | U <V} is a cover of
K. Let N = M(Ky), the nerve of the cover. Given a finite subset {Ky, | 1 <i <7} of
N, note that:

Sﬂg Ky, #0 < Oaé(SﬂSU)X(SﬂS U)

is the unique maximal element of NKy,. Thus, given a simplex o € N, Kp aIxU is
conically contractible. Hence, by the Nerve Theorem, K ~ N.

Next let L be the simplicial complex whose vertices are all the subspaces of V' (including
V and 0). A subset o C L is a simplex if and only if UQUU #0 or <UlU €0 >< V. We
can identify L with N, via the isomorphism U + K.

Let P(V)={U <V |dim(U) =1} and H(V) = {U <V | dim(U) = n — 1}. For each
peP(V), let o, ={U <V|p< U} and for each h € H(V), let 7, = {U < V|U < h}.
Define a simplicial complex M as follows:

Let the vertex set of M equal P(V)U H(V). o is a simplex if and only if
<plpeo>< hgah. Here we use the convention that h(gah =VifenH(V)=0

and < plp € 0 >= 0if e NP(V) = §. Now the maximal simplices of L are
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0y, T where p € P,h € H; and s = {0,,,7s,} is asimplex of L* if and only if
< pi > <Nh; (here L* is as defined in Corollary 11.2). Thus M and L* are

isomorphic.
Theorem 11.3. K, L, and M all have the same homotopy type.

Proof. By the preceding discussion, M = L* and I can be identified with N. Also, by
Corollary 11.2, L* ~ L and by the Nerve Theorem, K ~ N. Thus M ~ N ~ K, as

claimed. O

So our question regarding the (n — 2)-connectedness of K is reduced to showing that M
is (n—2)-connected. Now let P and H be the subcomplexes generated by P(V') and H(V'),
respectively. Let Py = {c € P|<plp€ o >=V} and Hy = {r € H | hgTh = 0}. Finally,
let M’ be the subcomplex generated by M \ {P; U Hy}. Now M = PUH UM/', and
the nerve of this cover is given by P < {P,M’'} > M' < {M',H} > H, and hence is

contractible.
Theorem 11.4. M is (n — 2)-connected if M' is (n — 2)-connected.

Proof. By Lemma 11.1 it suffices to show that P, H, and M’ are (n — 2)-connected; and
PNM'and HN M' are (n — 3)-connected.

As we are working over a finite field, both P(V) and H(V) are finite and thus are
the unique maximal elements of P and H, respectively. Thus, P and H are conically

contractible.
Lemma 11.5. PN M' and HNM' are (n — 3)-connected.

Proof. As above, let V* be the dual space of V, then h — h' (the annihilator of h ) gives
amap 7 : H(V) — P(V*). So we have a canonical identification of H N M’ with P*N M~
(the corresponding complexes for V* ). But P* N M "> is canonically homeomorphic to
PN M'. Thus it suffices to show that PN M’ is (n — 3)-connected.

Define a map f: PN M' — B the Tits buildingof V by e —<p|p€ o >. Nowif
X=sd(PNM)andY = sd(B), and o <7 € X, then <p|p€o><<plpeT>.

So f induces a well-defined map of posets from X to Y.
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For each y = (Up < --- < Us) € Y, let 0 = P(Us). Given any (0p < -+ < 0,) €
Y (L y)), certainly < p|p€ g, >< Us, s0 0, < 0. Thus o is the unique maximal
element of f~1(Y (< y)), and thus f~1(Y(< y)) is conically contractible.

Also, as B is Cohen-Macaulay of dimension (n — 2), by the Solomon-Tits theorem, ¥
is also Cohen-Macaulay of dimension (n — 2).~Hence Y (> y) is (n — h(y) — 3)-connected.
Thus, by Theorem 9.1 on pg. 119 in [Q], X is (n—3)-connected since Y is (n—3)-connected.

By Lemma 9.1, X ~ PN M' so PN M' is (n — 3)-connected, as claimed. O

So we have shown that PN M’ and HNM' are (n—3)-connected; P and H are contractible.

Thus M is (n — 2)-connected if M’ is (n — 2)-connected, as claimed. a

Let X = sd(M'), then G = GL(V) acts on X. Now if p is the characteristic of Fg,
then by Corollary 1.5, A,(G) is (n — 2)-connected. We can consider X X A,(G) 2 F =
{(z,A)|z € Fiz(A)}, where Fiz(A) is the subcomplex of X defined on the simplices fixed
under the action of A. By Theorem 9.13, if for each 2 € X and A € A,(G) we can show
that F, = {A" € A,(G) | (2,A") € F} and Fy = {2’ € X | (2',A) € F} are contractible,

then X is (n — 2)-connected since A,(G) is (n — 2)-connected.
Lemma 11.6. F, is contractible for each x = (09 < --- < 0,) € X.

Proof. Note that F, = A,(G;). Two cases occur:

Casel: W=<p|p€os >#0. Let P be the parabolic subgroup of G fixing W
and let U < P be the unipotent radical of P. Then U centralizes W and V/W. Since
Vpeos, p<W, U fixes each p € 0,. On the other hand, given h € o,, W < h;
thus U normalizes each h € 0,. So U fixes o; V0 <i<s. Thus U < G,; but the fact
that W # 0 implies that U # 1. By definition, U is a p-subgroup of ;. Hence we have
Op(G;) # 1; thus, by Proposition 2.4 on pg. 106 in [Q], A,(G) is contractible.

Case Il: <plp€os>=0and W= N h#0. Again, let U be the unipotent radical
€0,

of the parabolic subgroup fixing W. By the definition of M', we know 0 # W <V so

U # 1. But as above, Uh = h ¥V h € 05, and hence U centralizes each 0; V 0 < 1 < s.

But then O,(G) is nontrivial and A,(G) is contractible as above.
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Thus we have shown that F, is contractible, as claimed. O

Now fix an A € A,(G) and let Cyv(A) be the subspace fixed pointwise by A. Let
[V,A] =< av-v]|a€ A,v € V > be the commutator of A with V. Now A is a p-subgroup
of G with p= char(F,); hence A is unipotent on V, so [V,A]NCy(A)=W; #0.

4

Lemma 11.7. Ifp € P(V)N Fiz(A), then p < Cy(A). And ifh € H(V )N Fiz(A), then
[V,A] < h.

Proof. This follows as A is unipotent on V. 0

Thus, by Lemma 11.7, 2 = (09 < 01 < ... < 0,) € Fiz(A) ifandonly if VO < i< r,
V phea;, p<Cyv(A), h>[V,A], and <p|p€ag; >< hQ h.Nowleté = WinP(V) €
Fiz(A), where Wy = [V, AN Cy(A) # 0.

Lemma 11.8. For all A € Ay(G), Fa is contractible.

Proof. Fix an A € A,(G) and let Cy(A), [V,A], Fiz(A) = F4, and 6, as defined
prior to this lemma. Now let o = {p;,h; | i € I,j € J} € Fiz(A). Then notice that
<p|lp€ed>=W <[V,A] < erthj so that < p;,p |1 € I,p € 6 >< jQth; thus
oUd € Fiz(A). Also note that if o < 7, then cU& < 7U6. Thus we can define a map of
posets f : Fiz(A) — Fiz(A) given by 0 — oUd. Note that Vo € Fiz(A), 0 < f(o) > 6.
Hence id ~ f; the map taking each o € Fiz(A) to §. Thus, by (1.3) on pg. 103 in [Q],

Fiz(A) is conically contractible. O
In view of Theorem 9.13 and Lemmas 11.6 and 11.8, sd(M') is (n — 2)-connected.
Theorem 11.9. K is (n — 1)-spherical.

Proof. By the definition of K we have that K is (n — 1)-dimensional. Now, as sd(M') is
(n — 2)-connected, by Lemma 9.1, so is M'. By Theorems 11.3 and 11.4, K ¥ M and M
is (n — 2)-connected. Hence K is (n — 2)-connected. And thus, K is (n — 1)-spherical, as

claimed. O
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SECTION 12 : SOME RESULTS ABOUT SUBSPACES OF A UNITARY SPACE OF

DIMENSION > 3

Let ¢ be an odd prime power and (V,6) an n-dimensional unitary space over F.
In section 13 we show that if n > 4, then the order complex of proper nondegenerate
subspaces of V- ordered by inclusion — is si:nply connected using a result of Aschbacher
and Segev’s on collinearity graphs of string geometries [AS3]. In this section we prove some
preliminary results about the nondegenerate subspaces of V.

Remember that 8(v,w) = 7(6(w,v)) V v,w € V, where 7 is the involutory field auto-
morphism on Fp. Vectors v € V' which satisfy 8(v,v) = 1 are called unit vectors. We
shall use the following fact about unitary spaces implicitly:

Fact 1: In an n-dimensional unitary space over F, 2, there are ¢"~'(¢" — (—~1)") unit

vectors.

Theorem 12.1. Assume that ¢ > 5 andn > 4. Let vy,vy,v3 be unit vectors of V
satisfying:
(1) < v,v; > (i # j) are 2-dimensional nondegenerate subspaces of V, and

(2) < vy1,v2,v3 > is a degenerate 3-dimensional subspace of V.

Then there exists a unit vectorvy € V such that < vy,vq >, < v9,v4 >, and < v3,v4 > are
2-dimensional nondegenerate subspaces, and < vy, v9,v4 >, < v1,v3,04 > and < vy, V3,04 >

are 3-dimensional nondegenerate subspaces of V.

Proof. The fact that < vy, v2,v3 > is degenerate and < vy, v2 > is nondegenerate implies
that < vy, ve,v3 >=< vy,0v2,8 >, where s # 0 is a totally singular element of < v{, vy >+
with v3 = ajv; + ayvy + 5. As < v1,v >+ is nondegenerate of dimension n — 2 > 2, by
(19.14) on pg. 80 in [A1], we can find ¢t €< v1,v2 >T such that {s,t} is a hyperbolic pair.

We will show that there exists vy = B1s + 82t €< s,t > satisfying the claims of this

theorem. First of all, for v4 to be a unit vector we require:

(1) 0(va, ve) = 0(B1s + Bat, Brs + Bat) = Si7(B2) + Bo7(B1) = 1.
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Now if vy is a unit vector, then the fact that vy €< vy, vo >+ implies that < vy, vs4 >,
< V2,04 >, and < wy,v2,v4 > are nondegenerate of the correct dimensions. So we need
to consider the requirements for < vz, v4 >.< vy,v3.v4 >, and < wvy,v3,v4 > 1o be
nondegenerate.

Consider < v3,v4 >, we have:
O(v3,vq) = O(a1vy + agvy + s, 81s + Bat) = 7(32).
So if ayv3 + agvy € Rad(< vz, vq4 >). then we have:

O(ajvz + agry,v3) = a) + a8 =0

Olayvs + agvg,v4) = o 7(P2) + @y = 0.

Therefore, Rad(< v3,v4 >) =0 if and only if:

1 P2 ‘o o onlar
(T(ﬁg) 1 ) is nonsingular.

This is true if and only if:
(2) BT (fy) # 1.

Consider < vy, v3, 04 >=< vy,a3v; + 8,04 > . Let (v, v3) = 1. And let

a1 + agayvy + ags + agvg € Rad(< vy, v3,vq4 >), then:

Oa1vy + azazvs + @28 + a3y, v ) = ap + agazr(n) = 0
Blarvy + azayvy + s + ayvy, asvy + 8) = g r(ax)n + asat(a2) + a3y = 0

Ocy vy + aaavs + cas + azvgvg) = apT(B2) + az = 0.

So Rad(< vy,v3,v4 >) = 0 if and only if:

1 a>t(n) 0
T(az)ny  aam{as) 3o is nonsingular.
0 () 1
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This is true if and only if:

axt(az) — B27(B2) — azr(az)nr(n) # 0
(3) <= for(B2) # a27(az)(1 - nr(n))-

By symmetry, < v9,v3,v4 > is nondegenerate if and only if:

(4) Ba1(B2) # ar7(ar)(1 — 7(m))-

The number of elements a € Fp2 satisfying:

ar(a) = 1 or ar(a) = ay7(az)(1 — n7(n)) or av(a) = a17(a1)(1 — 1 (n)),

is at most 3(q + 1). For each such a € Fp

42, there are ¢ o' € Fpz such that:

ar(a') + a'r(a) = 1.

So there are at most 3¢(¢ + 1) vectors w €< s,¢t > such that (1) holds for w but one
of (2), (3), or (4) fails. The total number of unit vectors in < s,t > is ¢(¢* —1). Our
assumption that ¢ > 5 implies that ¢(¢> — 1) = ¢(¢+ 1)(g¢—1) > 3¢(q+1). Hence, there is
a unit vector vy = 315 + P2t €< s,t > for which all (1)-(4) hold; in other words, a vector

satisfying the claim of the theorem. a

Suppose that n > 4, and let A be a graph whose vertex set is the set of all 1-
dimensional nondegenerate subspaces of V, with 2 adjacent to y (denoted z * y) if and
only if # + y is a 2-dimensional nondegenerate subspace of V. Remember that given

T,y €A, Alz,y)={2€ A|x+zand y*z}. Weshow that:
Theorem 12.2. Ifz,y € A and x and y are not adjacent, then A(x,y) is connected.

The proof of this theorem will follow from a couple of lemmas. First let 2 =< v > with
v a unit vector, and note that z and y not adjacent implies that there is a nonzero totally
singular element s € v1 such that y =< v+4s > . Let A(z,y) D ' = {z € A(z,y)|z < s*}.

We will prove the following two lemmas:
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Lemma 12.3. T' is a connected subgraph of A(z,y).
Lemma 12.4. Given z € A(z,y)\ I', there exist z' € I' adjacent to z.

Note that Theorem 12.2 follows immediately from Lemmas 12.3 and 12.4.

Now s+ =< s > @ W, where W is a nondégenerate subspace of V' of dimension

B

n — 2 > 2. Therefore, by (21.5) on pg. 87 in [Al], we can find w € W such that {v, w} is

an orthogonal pair; and we have:
s‘L:<s>€B<v,w>@U,

where U =< v,w >1 NW is nondegenerate of dimension n —4 > 0. Now Utn < v,w >+
is a nondegenerate 2-dimensional subspace of V containing s. So there exists t € U+N <

v,w >1 such that {s,t} form a hyperbolic pair and:
(*) V=<st>l<v,w>LlU.

We are now ready to prove:
Lemma 12.3. T' is a connected subgraph of A(z,y).

Proof. Since s* =< s> @ <v,w>d U, z€ I ifand onlyif z =< ayv+ ayw + azs +u >

(with v € U). Now z is nondegenerate if and only if:
O(arv+ azw + azs + u,a1v + asw + azs + u) = a17(ar) + az7(az) + 6(u,u) # 0.

Also note z + =< v,asw + azs + u > is nondegenerate if and only if ayw + azs + u

is nonsingular since ayw + azs + u € v+ ; that is, if and only if:
Blasw + azs + u,ayw + azs + u) = ax7(az) + O(u,u) # 0.

Similarly, z + y =< v + s,a2w + (a3 — ay)s + u > is nondegenerate if and only if ayw +

(a3 — ay)s + u is nonsingular since aow + (az — ay)s +u € v+ N st : that is, if and only if:

Olasw + (az — a1)s + u,asw + (a3 — a1)s + u) = ay7(az) + 0(u,u) # 0.
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Thus we see that:
I'={<a1vtaw+ass+u> |a;7(a1)+azr(az)+0(u,u) # 0, and asr(az)+6(u,u) # 0}.

Note that < w >€ I,
Now < ;v +asw+azs+u >+ < w >=< ayv + azs + u,w > is nondegenerate if and

only if @y v 4+ a3s + w is nonsingular. So all:
I'a< ayv + aqw + azs + u > with ay7(ay) + 0(u,u) #0

are connected to < w > . Solet z =< ayv+ayw+azs+u >€ ' with a;7(ay)+0(u,u) = 0.
We want to find z’ € I' such that 2’ is adjacent to both z and w.

If <bjv+ayw+ u > is to belong to I'(< w >), then we must have:

(1) bi7(b1) + as7m(az) + 68(u,u) # 0, and

(2) by7(by) + 6(u,u) #£ 0.
Such a by exists in Fgp2, since there are at most 2(¢ 4+ 1) a € Fgz for which:
at(a) + az7t(az) + 6(u,u) = 0 or () + 8(u,u) =0,

and 2(q + 1) < ¢? since ¢ > 3. Note that (2) implies that a; # b. Also, z € I' =

az7(az) + 0(u,u) # 0. Let by € Fjz satisfy (1) and (2) and set 2/ =< byv + aaw + u > .

Now z + 2/ =< (a1 — b)v+ a3s,byv + asw + u > . Let:
r = (ay(a; — b1) + azby )v + ayazs + azaaw + ayu € Rad(z + 2'),
then:

(3) 0(7‘,(&1 - 1)1)’0 + (Lgs) = (Ql([ll — bl) + agbl)r(al — bl) =0
= (ay(a; — by) + azby) = 0 since ay # by

=> T = @1a38 + aw + o U.
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Thus:

O(r,byv + agw + u) = az(az7(az) + 8(u,u)) = 0
= ay = 0 since ayr(az) + 6(u,u) #0

= oy = 0 from (3) above and a; # b;.
Thus for any b, satisfying (1) and (2) above, we have < byv + asw + v >€ I'(z, < w >)
as required. Therefore, diam(I') =2 and I' is connected, as claimed. O
Lemma 12.4. Given z € A(z,y)\I', there exist z' € T adjacent to z.

Proof. Remember that by (), V =< s,t >1<v,w >1 U. Given z =< % >€ A(z,y) \ T,

we have:

D= a1v+ asw + azs + agt +u  with v € U, and aq # 0.

Nondegeneracy of z implies:

(4) 0(0,0) = aym(a1) + ax7(az) + asr(ay) + ag7(az) + 6(u,u) # 0.

Two cases arise:
CASE I: a1v + a3s + a4t + u is nonsingular.
Then since z4+ < w >=< a1v+azs+agt+u, w >, with ayv+azs+ast+u a nonsingular

element of w', we have z adjacent to < w >€ I' and are done.

Cask 1I: a;v+ ass+ast +u is singular; that is, a;7(a1) + a37(as) + asm(az) + 6(u, u) = 0.
Then (4) implies az7(az) # 0. Now if < byv + asw > is to belong to I', then from the

characterization of I' in the proof of Lemma 12.3, we would require that:
bi7(b1) + ax7(ay) # 0 and ax7(az) # 0.

We already have the latter, so must choose b; such that:

(5) blT(bl) + agT(ag) # 0
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Consider 2+ < byv + ayw >=< (a3 — by)v + azs + agt + u,byv + byw > . And let:
r = (ai(ag — b1) + agbi)v + ajazs + ajaqt + ayu + azazw € Rad(z+ < byv + asw >),
then:

O(r,(a1 — by )v + azs + aqt + u)

= (ar(ar — b)) + axby)m(ay — by) + ayazr(aq) + ayaq7(az) + o 0(u,u) =0
= ai(a; — b1)m(a1 — b)) — ayarm(ar) + azbym(a; — b)) =0

(since a17(a1) + azm(as) + ag7(az) + 60(u,u) = 0)

= a1(=by7(ay — by) — a1 7(b1)) + azby7(ay — by) =0, and

O(r,biv + asw) = a1(ay — by)7(b1) + az(bi7(b1) + a27(az)) = 0.

Therefore Rad(z+ < byjv + azw >) = 0 if and only if:

(*) (——(ll T(bl) - blT((ll — bl) blT((ll — bl)

r(b1)(ar — by) byr(by) + azr(a2)> is nonsingular.

We choose by as follows:
II A: ey =0. (%) holds if:

(—blr(—bl) biT(—b1)

—byr(by) b1T(bli)+a-2T(a,2)> is nonsingular.

This is true if and only if:

blT(bl)(LzT((Lz) 7’3 0.

Since az7(ay) # 0, if we choose by € IF‘nqg such that by7(by)+ az7(az) # 0, then
<bjv+ayw >€ I'N A(z) as desired.

II B: ay # 0 and a;7(a1) + az7(az) # 0. Let by = ay, then

bi7(b1) + ax7(az) # 0. Furthermore, () holds if:

(~—(L1 T(ay) 0
0 ar7(ay) + ax(ay)

) is nonsingular.
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But this is true since ay # 0 # a17(a1) + a27(az).
II C: a1 # 0 but ay7(ay) + as7(az) = 0. Let é € Fz with 67(6) = 2, and
8+71(8) # 4. Such aé existssince ¢ is odd implies that there are (¢+1) 6 € Fp

with é7(6) = 2, of which only two also satisfy 6 + 7(8) = 4. Set by = éa;, then:
bi7(b1) + ax7(az) = é7(8)ar7(ar) + az7(az) = 2ay7(ay) + az7(az) = ay7(ay) # 0.

In this case, (x) holds if:

(_al T(‘Sal) - 6&17’((1,1 - 15(11) lS(LlT((Ll - 6a1) )
T(éay)(ar — bay) 2a17(ay) — a17(ay)

(alr(a1)(2 -6 —7(6)) ayr(ay)(6 —2)

ay T(al)(r(ﬁ) - 2‘) alr(a.l) ) is nonsingular.

But that holds if and only if:

(2-6~T(6) 6—2

(8) - 2 1 ) is nonsingular.

Or equivalently:

2-8—1(6)—(6—2)(1(6)—2)#0
> 2-6-7(0)—(2-2(0+71(0))+4)#0

e S+ T(8)—4£0 < §+7(6) £ 4.

We had assumed that é + 7(é) # 4, so the last inequality holds and

z+ < byv + aaw > is nondegenerate.

Thus for each possible choices of a;, we have found b; such that < bjv+a,w >€ I'NA(z),
completing our proof in the case that a;v + aszs + a4t + u is singular.
This proves our assertion that given z € A(z,y)\ I', there exists 2’ € I' adjacent to z.

Thus this lemma (and hence Theorem 12.2) is true. a

Finally, assume that n > 3, and let K be the order complex of the poset of proper

nondegenerate subspaces of V' — ordered by inclusion. Then we have:
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Lemma 12.5. K is connected.

Proof. Given any z € K, there exists a y € K such that dim(y) = 1 and y < z. So it
suffices to show that given any z,y € K with dim(z) = dim(y) = 1, there exists a path
in K joining  and y.

If « &y is nondegenerate then = * 2 & y xy is the desired path. So assume that
x @y is degenerate. Let 2 =< v > with v a unit vector, then = & y degenerate implies

L

that y =< v+ s > with s a totally singular element of v*. Now »! is nondegenerate

of dimension n — 1 > 2, so there exists a t € vt such that {s,t} is a hyperbolic
pair. We will show that there is a unit vector w = a;s + ast €< s,t > such that
<w>, T H<w> and y § < w > are nondegenerate. Now w €< s,t > and a unit

vector implies that < w > and @ 4 < w > are nondegenerate and:
(1) Hw,w) = cr7(0y) + aar(aq) = 1.

Now consider y @ < w >=< v+ s,a18+axt > . If r = B(v+ 8) + y(ays + at) isin

Rad(y & < w >), then we have:

B(r, v+ 5) = 0(Bv + (5 + 7a1)s + 7ast, v+ 8) = B+ 70 = 0,
O(r,o18 + ast) = 8(Bv + (B + vyay)s + yast, a8 + ast) =
yort(ay) + (B4 yar)T(az) = 0,

= f1(az) + y(axm(ar) + a17(az)) =0

= Br(az) + 7 =0 since ay7(az)+ ax7(ay) = 1 by (1) above.
Thus Rad(y & < w >) = 0 if and only if:

1 @2 is nonsingular
(ay) 1 nsmguiar.

Equivalently, y & < w > is nondegenerate if and only if as7(az) # 1. Now there are
(¢+1) @ € Fo such that ar(a) = 1 and for each such « there are ¢ o' € Fpz such

that ar(a’) + a'r(a) = 1. So there are ¢(¢ + 1) w = a15 4+ ast €< s,t > such that
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w is a unit vector and y & < w > is degenerate. However, since ¢ > 3, there are
qg(¢® = 1) > q(g+ 1) w €< s,t > with w a unit vector. Thus we can find w €< 5,¢ > a
unit vector, such that y & < w > is nondegenerate.

Thus, we have found z € K such that 2z @ z*2+x 2@ y+y is a path in K joining

and y, as desired. - ]

SECTION 13 : THE COMPLEX OF PROPER NONDEGENERATE SUBSPACES OF A UNITARY

SPACE OF DIMENSION n > 4 IS SIMPLY CONNECTED

Before we can prove this result we need to recall some basic terminology. Recall the
definition of a geometry and flags from section 6. Given a flag T' of a geometry I' the
residue of T'in T' is the subcomplex of I' on the vertex set {v € I'\T |v+tforallt € T}. A
geometry is residually connected if the residue of all flags of corank at least 2 are connected
and the residue of all flags of corank 1 are nonempty. A rank 2 geometry I' on {1,2} is
a generalized digonif z xyV z € I'} and y € Iy, where I'; = 771(7) for (i = 1,2).

Given a geometry I' over I, the diagram of I' is a graph on I such that given
t# j€l, tx3 if and only if there is a flag F' of type I — {i,j} such that the residue F'
is not a generalized digon.

A graph on aset [ = {1,2,... ,n} is a string if there is an ordering on I such that the
edges of the graph are precisely of the form (:,i4+1) V1 <:¢<n—1. A geometry I' over
I is a string geomeltry if the diagram of I' is a string.

Let ¢ be an odd prime power and (V,6) an n-dimensional unitary space over Fg2, with
n > 4. Assume that if ¢ = 3, then n > 5. Let 7 be the involutory field automorphism of
Foe.

Let K be the order complex of the poset of proper nondegenerate subspaces of V
— ordered by inclusion. Let the 1,2, and n — 1 dimensional subspaces in K be called

points, lines, and hyperplanes, respectively. K can be thought of as a geometry over

I={1,2,...,n— 1} with the type function given by 7(z) = dim(z) V z € K.

Lemma 13.1. K is a string geometry.
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Proof. Fix i < j € I, and note that the residue of any flag of type I — {¢,j} is contained
in K; U K;, where K; = 77!(l) for (I = 1,j).

Two cases arise:

Casg 1l j#i4+1.

Let (21 < ... < & < ... < & < ... <*z,-1) be a flag of type I — {i,j} (here
#; denotes “exclude z,;”). If R is the residue of the above flag and z,y € R with
7(z) = i and 7(y) = j, then < 2;31 < y. Thus R is a generalized digon and hence (%, j)
is not an edge of the diagram of K.

Casg Il j=1+1

Let {e1,...,e,} be an orthonormal basis for V and set Uy =< ey,€2,... €5 > for ;cl.u
1 <k <n. Consider the flag: F = (U; < Uy <...< Uiy < Ujya < ... < Uy_-1) whichis
of type I — {i,i+ 1}. Then U; and W =< ¢, |1 <k <i+2and k # ¢ > are elements of
the residue of F of type 7 and 7 + 1 respectively. However U; £ W, hence the residue of
F is not a generalized digon. Thus (¢,7 + 1) is an edge in the diagram of K.

Thus K is a string geometry, as claimed. O
Lemma 13.2. K is residually connected.

Proof. Since K is a pure complex (i.e., the maximal flags are all of type I), the residue
of all flags of corank 1 are nonempty. So we need to show that the residues of flags of
corank at least 2 are connected. Given z < y € K, welet K(< z)={z€ K | z < z},
K(>z)={z€ K|z <z}, and (z,y) = K(> 2)N K(< y).

Given a flag F' = (1 < 3 < ...=z,) of corank at least 2, note that the residue of F' is
given by:

K(<ay)*(z,22) %% (xp_1,2,) « K(> z,),

where the join of complexes is as defined in section 9. If more than one of the above

complexes are nonempty, by (2.1) on pg. 6 in [A2], the residue is connected. So assume

that the residue is in one of the following forms:

(1) K(< z). Then dim(z) > 3 since the flag is of corank at least 2. Also, K(< z)
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can be identified with the order complex of proper nondegenerate subspaces of z.
(2) (z,y). Then dim(y) —dim(z) > 3 since the flag is of corank at least 2. And (z,y)
can be identified with the order complex of proper nondegenerate subspaces of y/z
considered as a (dim(y) — dim(x))-dimensional unitary space.
(3) K(> z) Then dim(z) < n—3 since the flag is of corank at least 2. Also, K(> z)
can be identified with the order complex of proper nondegenerate subspaces of V/z

considered as a (n — dim(z))-dimensional unitary space.

In all three cases, the residue can be identified with the order complex of proper nonde-

generate subspaces of a unitary space of dimension > 3; and thus, by Lemma 12.5, is

connected. Thus K is residually connected, as claimed. O

We have shown that K is a residually connected string geometry. Also note that given
points x,y € K, they are incident to at most one line [.

Let A be the collinearity graph of K'; that is, the graph with vertex set the points of
K with distinct points z, y adjacent (denoted zxy)if 2 +y is alinein K. Let P(A) be
the set of paths of A and let ~ be the invariant relation on P(A) such that ker(~) is
the closure of all cycles in the collinearity graphs of residues of hyperplanes in K. Refer to

[AS1] and [AS3] for the definition of the terminology. Then we have the following result:
Lemma 13.3. m(K) = 7(A).

Proof. This follows from the remark about points in K being incident to at most one line,

and Theorem B on pg. 18 in [AS3]. O

Remark. Note that if a cycle is in the collinearity graph of the residue of a nondegenerate
subspace, say U, of dimension m < n -1, then the cycle is in the collinearity graph of the
residue of any hyperplane containing U, and thus is null-homotopic. So to show a cycle is
null-homotopic, it suffices to show that it is in the collinearity graph of the residue of some

proper nondegenerate subspace of V.

Lemma 13.4. A is connected with diam(A) = 2. Furthermore, if * and y are not

adjacent and U is a 3-dimensional subspace of V' containing both, then there exists
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2 < U with z € Az, y).

Proof. 1t suffices to prove the second statement; so let z, y, and U as in the statement of

the lemma. However, the second statement follows from the proof of Lemma 12.5. O

Lemma 13.5. Let z, y and z € A be distinct, with * not adjacent to either y or z,

R

and y and z adjacent. Then @ + y + z is nondegenerate of dimension 3.

Proof. x4+ y+ z is 3-dimensional, since otherwise z +y = 2+ y+ 2z = y+ z contradicting
the choice of z, y, and 2. Let 2 =< vy >, y =< v3 >, and z =< v3 > with v; unit
vectors V1 <7< 3.

Consider r = av; + fvs € Rad(y + z). Then:

O(avy + Bos,v3) = a+ fO(vs,v2) = 0, and

O(avy + Bog,v3) = ab(vy,v3)+ F = 0.
Therefore, Rad(y + z) = 0 implies:

1 9(’03,’02) . RN
(*) (0(1}2, v3) 1 is nonsingular.

Suppose x+y+2 is degenerate. Then the fact that 2+ y+ 2 is 3-dimensional implies that
there is a nonzero totally singular element s €< vy, v3 >1 such that v; = ayvs + azvs + s.
Note that §(v;,v1) = 1 implies that a; # 0 or a3 # 0. Assume without loss of generality
that a3 # 0.

Consider ¢ + y =< ayvy + azvs + s,v9 >=< v3 + (L;ls,vg >=< v3 + t,vo > where

t =a3's. Then r = avs + at + vy € Rad(z + y) implies:

O(avs + at + Boy,v2) = ab(vs, )+ 5 =0

0(avs + at + fva,v3 +t) = a+ BO(ve,v3) = 0.

But then Rad(xz + y) = 0, since:

("5 )
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is nonsingular by (). This contradicts our assumption that = 4+ y is degenerate.

Therefore, z + y + z must be nondegenerate of dimension 3, as claimed. [}

In view of Lemma 13.4 and Lemma 10.1 it suffices to show that triangles, squares, and

pentagons in A are null-homotopic.

o

Lemma 13.6. Triangles in A are 11ull~1101110’topic.

Proof. Let zyxzsx321 be a triangle in A. Then one of the following occurs:
CAsE 1 @1+x2+2z3 is 2-dimensional. Let U be any nondegenerate hyperplane containing
1 + 22 = 1 + 23 + x3. Then the triangle is in the collinearity graph of the residue of U

and is null-homotopic.

Case Il zy + z3 + z3 is nondegenerate of dimension 3. Then the triangle is in the

collinearity graph of 1 + 22 + 3 and by the Remark is null-homotopic.

Casg III 2y + 22 + z3 is degenerate and 3-dimensional. We assumed that if ¢ =3 then
n > 5. Solet U be a 4-dimensional nondegerate subspace containing x1 + 2 + 3 — such
a subspace exists by Witt’s Lemma. Then, by the Remark, the triangle is null-homotopic.
So assume that ¢ > 5 and note that if x; =< v; > with 8(v;,v;) =1 for 1 < i < 3,

then vy, vy, v3 satisfy the conditions of Theorem 12.1. So there exists x4 € A such that
T1Tox3T; is in the closure of the triangles xjzox421, 1242321, and Tox37422 with the
last three null-homotopic by Theorem 12.1 and the Remark. So 12223z is null-homotopic
as desired.

Thus we have the lemma. O
Lemma 13.7. Squares in A are null-homotopic.

Proof. Let x1x2x3242, be a square in A. If 2y 23, then zy2a3x42x1 is in the closure of
z1zex3Ty and 1232421, and by Lemma 13.6 is null-homotopic.

So assume that z; and z3 are disjoint; then Theorem 12.2 says that there is a path
AoAp -+ Ay with Ag = @2, A\, = 24 and A; € A(zy,23) V0 < ¢ < n. Therefore, zy 2323247,

is in the closure of the triangles:

Ty AiAip1xy and 232403 VO < <n— 1



Techniques for computing homotopy and homology of simplicial complezes 84

and thus, by Lemma 13.6, is null-homotopic. O
Lemma 13.8. Pentagons in A are null-homotopic.

Proof. Let &y ---z52; be a pentagon in A. We can assuxhe that xy is not adjacent to either
z3 or x4; otherwise the pentagon is in the closure of a square and a triangle and thus is null-
homotopic. But then, by Lemma 13.5, U = 21 + x5 + 74 is a nondegenerate 3-dimensional
subspace of V. By Lemma 13.4, we can find z¢ € A(z1,23)NU and z7 € A(zy,24) N U.
Then the pentagon zyzgz3z4x721 is in the collinearity graph of the residue of U and thus
by the Remark is null-homotopic.

The original pentagon, z;zyx3z4252,, is then in the closure of zyz¢zs242727 (null-
homotopic), and the squares z ;22232627 and x12774252; null-homotopic by Lemma 13.7.

Thus zyz223242521 is null-homotopic, as claimed. O
Lemmas 13.6-8 show that #(A) is null-homotopic, so in view of Lemma 13.3 we have:

Theorem 13.9. Let ¢ be an odd prime power and V an n-dimensional unitary space
over Fp2, with n > 4. Assume that if ¢ =3, then n > 5. Then the order complex of the

poset of proper nondegenerate subspace of V' - ordered by inclusion ~ is simply connected.
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Chapter 4

Cohen-Macaulay complexes

In Chapter 4 we consider Cohen-Macaulay complexes; A well-known class of such com-
plexes is the class of buildings. We consider thgee other Cohen-Macaulay complexes in this
chapter.

In Section 14 we include some basic properties and well-known results about Cohen-
Macaulay complexes. In Section 15 we show that if a prime p divides ¢ — 1, then
Ap(Sp2n(q)) is Cohen-Macaulay of dimension n — 1. In Section 16 we show that an
analogous result holds for A,(GU,(g)) under the added assumption that p # 2. Finally,
in Section 17 we show that the order complex of proper nondegenerate subspaces of a
2n-dimensional symplectic space is Cohen-Macaulay of dimension n — 2.

It is worth noting that the base field F for the groups and complexes considered in this
chapter is the splitting field for the action of a p-element; that is, F contains pt" roots
of unity. This is the main difference between the complexes considered in this chapter and

those studied in chapters 5 and 6 where ¢ has order d > 1 in Z/pZ.

SECTION 14 : BASIC PROPERTIES OF COHEN-MACAULAY COMPLEXES

Given a simplicial complex K and a simplex ¢ € K, the star of o, denoted stx (o), is
the subcomplex of K defined on the simplices 7 such that ¢ Ut is a simplex of K. And
the link of o, denoted lki (o), is the subcomplex of K defined on those 7 € stx (o) such
that on7 = 0.

A d-dimensional complex K is d-spherical (or simply spherical) if it is (d — 1)-connected.
And, using Quillen’s terminology from [Q], a d-spherical complex K is Cohen-Macaulay
(or simply C.M.) of dimension d if lkx (o) is (d—r—1)-spherical for each r-simplex o € K.
Throughout this chapter we shall fix the following terminology:

Let K be a simplicial complex and G be a group acting on K. Then for
any A < G, we can consider the action of A on sd(K’), the first barycentric

subdivision of K as defined in section 9. Then Fiz(A) will be the subcomplex of
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sd(K) generated by those simplices of K on which A acts as the identity. Note
that this agrees with the notion of Fiz(A) defined in the discussion following

Theorem 9.13. In algebraic topology this complex is often denoted K“.

We shall be using the term Fiz(A) without explicitly defining it throughout this and the

e

following sections.

Lemma 14.1. Given simplicial complexes K1,... ,K, with K; n;-spherical V1 < i < r,

Ky*---x K, is (Y n; + 7~ 1)-spherical.

=1

Proof. When r = 1 the statement holds trivially. Assume that the result holds for r — 1 >

0. Now, by the definition of K * K', dim(K « k') = dim(K) + dim(K"') + 1. Thus:

dim(Ky * % K,) = dim(Ky -+« K,_) + dim(K,)+ 1

r—1 T
:Zni+r—2+nr+l:2ni+r——l.
i=1 i=1
r—1

By the inductive hypothesis, Ky * ---* K,_q is Y. n; + r — 3-connected, and by our
i=1

assumption K, is n, — l-connected. Thus, by (2.6) on pg. 8 in [A2], Ky *---x K, is:

r—1 T
Zni +r—-34n,-142= Zni 4 r — 2-connected.
=1 i=1
Thus we have the lemma. ]

Given a poset P and x € P, recall the definition of P(< ), P(< z), and P(> z) given
in section 1. Also recall the height of z equals the dimension of P(< z). A poset P is
called C.M. if the order complex of the poset is C.M. Note that if ¢ = (z9 < 21 < -+ < )

is an r-simplex in P, then:
(*) lkp(o) = P(< xo) * (o, @1) %+ x (xp_1,2,) * P(> z,).
This fact gives us the following lemma.

Lemma 14.2. A poset P is C.M. of dimension n if and only if the following four conditions

are satisfied:

(1) P is n-spherical,
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(2) P(> ) is(n— h(z) — 1)-spherical,

(3) P(< ) is (h(x)— 1)-spherical, and

(4) (z,y) is (h(y) — h(z) — 2)-spherical, forz < y.
Furthermore, if P is C.M. of dimension n then the above four conditions hold with
spherical replaced by C.M. Finally, in a C.M.*poset every maximal element has height n;

that is, the order complex of C.M. posets are pure complexes.

Proof. This is Proposition 8.6 on pg. 118 in [Q]; however, for the sake of completeness, we
include a proof providing the details.

Assume that P is C.M. of dimension n. Then (1) holds trivially. Let + € P, choose
0= (zp <21 < -+ < z;) amaximal chain in P(< z); that is, » = h(z) and @, = z. By
(%), lkp(o) = P(< zo) * (g, 21) * --- % P(> 2,) = P(> z) since o is a maximal chain of
P(< ). Thus, by the definition of C.M., we have P(> ) is(n—7—1) = (n— h(z)-1)-
spherical. Thus (2) holds.

Let 0 = (29 < 21 < -+- < z,) be a maximal chain of P(> z); thatis, 29 = z and r =
n — h(z). Again by (%), lkp(o) = P(< a¢)* - -* P(> z,) = P(< z). And so P(< z) is
(n —r—1)=(h(z)— 1)-spherical. Thus (3) holds.

Statement (4) follows from (2) and the definiton of h(y), by identifying (z,y) with
P(< y)(> x). Thus, when P is C.M., (1)-(4) hold.

Now assume that (1)—(4) hold and let ¢ = (29 < --- < 2,) be achainin P. As P is
n-spherical, it remains to show lkp(o) is (n —r — 1)-spherical.

By (%) lkp(o) = P(< x¢) * (zg,21) * --- * P(> 2,) and since (1)-(4) hold we have:
P(< zg) is (h(x¢)—1)-spherical, (z;,2;41) is (h(x;41)—h(z;)—2) -spherical for0 < i < r—1
and P(> z,) is (n—h(x,)—1) -spherical. Thus, by Lemma 14.1, we have [kp(0) is spherical

of dimension:

r—1
(h(zo) = 1)+ Y _((h(zip1) = h(zi) =2 )+ (n = h(z,) = 1)+ 7 +2 -1
i=0

=—14+hz,)-2r+n-h(z,)—1+r+1l=n-r—1.

Thus P is C.M. as claimed.
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The fact that spherical can be replaced by C.M. in the four statements follow from
this characterization of C.M. posets. Assume that P is C.M. of dimension n. Note that
replacing spherical by C.M. in (1) gives us a tautology. I will prove that P(> z) is C.M.
of dimension (n — h(z) — 1); the proofs for P(< z) and (z,y) are analogous. Given
z € P, it suffices to show that (1)-(4) hold for P(> z). The dimension of P(> z) is
(n—h(z) - 1) =n'. Since P is C.M., P(> z) is n'-spherical and (1) holds for P(> z).
Also given y € P(> ), note that hp(5.y(y) = h'(y) = h(y) — h(z) - 1.

Now P(> z)(> y) = P(> y) which is spherical of dimension:
n—h(y)—1=n"+h(z)+1-h"(y)-h(z)-1-1=n"—h'(y)- 1.

So (2) holds for P(> z).
Similarly, P(> z)(< y) = (z,y) which is spherical of dimension: h(y)—h(z)—2 = h'(y)—1.
Thus (3) holds for P(> z).
Since (4) follows from (2), (4) also holds for P(> ), and P(> z) is C.M. of dimension
(n—h(z)-1).

Finally, given a maximal element € P, we have P(> x) = § which is —1-spherical. On
the other hand, P(> z) is (n — h(x) — 1)-spherical by (2) above. Thus n —h(z)—-1= -1
or h(z) = n.

Thus we have the lemma. O

Consider two C.M. simplicial complexes K, I of dimension n, m, respectively. Note
that, by Lemma 14.1, K « L is (n 4+ m + 1)-spherical. Let ¢ * 7 be an r-simplex in K x L
with » = ¢4 7+ 1, and ¢ is an i-simplex of K, and 7 is a j-simplex of L. As K
and L are C.M., note that lkg (o) and lkp(7) are (n —i— 1) and (m — j — 1)-spherical,
respectively. Consider ¢/ x 7/ € K x L. ox7Ucd x7' = ocUod *7UT is asimplex of
K x L if and only if c Uo’ and 7 U 7' are simplices of K and L, repectively. Thus,
lkgsr(ox7) = lkg(o)*lk (7). By Lemma 14.1 this implies that lkx.p(o*7) is spherical

of dimension:

n—t—1l4+4m—-—j—14+l=n+m+1-((+j5j+1)—-1=dim(K+xL)—r—1.
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Therefore K * L is C.M. of dimension n + m + 1, and we have the following result:

Lemma 14.3. Given C.M. complexes K and I of dimensions n and m respectively, K x L

is C.M. of dimension n + m + 1. Furthermore if Gy, G3,..., G5 are finite groups such

that A,(G;) is C.M. of dimension n; for 1 <i<s, then Ay(Gy1 X ---x Gy) is C.M. of
8

dimension Y, n; + s — 1.
1==1

Proof. We have already proved the first statement. The second statement follows from the
first statement and the fact that A,(G X -+ X G5) ~ A, (G) * - * A, (G5) (Lemma 9.4),

by induction on s. O

SEcTION 15 : IF plg— 1, THEN A,(Sp2n(q)) 1S COHEN-MACAULAY OF

DIMENSION n — 1

In Theorem 12.4 on pg. 126 in [Q] Quillen shows that if p is a prime dividing ¢ — 1,
then A,(GL,(gq)) is C.M. of dimension n — 1. In this section we show that, under the
same assumptions for p and ¢, A,(Sp2,(¢)) is also C.M. of dimension n — 1.

Let (V, f) be a 2n-dimensional symplectic space over Fy, G = Spy,(g), and p a prime
dividing ¢ — 1. We prove that 4,(G) is C.M. of dimension n — 1 by induction on n.

We first need to consider the decomposition of V' under the action of A, where A €

Ay(G). Let V = @V, be a decomposition into homogeneous components under the action
A

of A. Andlet & = {A: A — F} |V #0}, then we have:

Lemma 15.1. If p is odd, then given A € &, A™' € @ and V\ + Vy-:1 is symplectic.
Furthermore, if 1 # A € ® then V) is totally singular and V\ + Vy-1 = V@ V-1, If
p =2, then for all A\ € ® V, is nondegenerate. Also, V), LV, VA #y¢€ ®.

Proof. First assume that p # 2. We show that if A # 1, then V) is totally singular. Note

that given A € ® and a € A, A(a)? = A(aP)=1. Let 2,y € V), and @ € A, then:

f(a,y) = flaz,ay) = X (a)f(z,y) = (1 = X*(a))f(z,y) = 0.

Now p # 2 and XA # 1 implies that there exists « € A such that A?(a) # 1. Then, as the

above equation is satisfied for all a € A4, f(z,y) = 0.
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Now let z € Vf. IfVye®, V, <zt, then z € Rad(V), a contradiction. So let y € ®

such that V, £ zt, and choose y € V, such that f(z,y) = 1. Then:

1= f(z.y) = f(az, ay) = Aa)y(@)f(z,y) = Ma)y(a) ¥ a € A,

Soy = A7!, thus A™! € ®. Also note that I/ =< z,y > is a hyperbolic plane of V. Thus,
by (19.3.1) on pg. 77in [A1],V = U & U+L.

As A < Span(q), A actson UL, Let Wy = (UL)y and Wy = (UL)y-1; then dim(V)) =
dim(W1) + 1 and dim(Vy-1) = dim(W3) + 1, so by induction dim(V)) = dim(Vy-1).
Furthermore, as V) = Wi <z >, V-1 = Wao® <y >, and VA + Vi1 = Wi + W, @ U;
by induction on the dimension of V), we see that V) + Vy-1 is symplectic as claimed.

Now let p = 2. It suffices to show that for A # v € ®, V, L V,, since then the
nondegeneracy of f implies that f|y, is nondegenerate for each A € ®.

Let A\# v € ® and a € A such that A(a) # y(a). If u € V) and v € V,,, then we have:
f(uv) = flau,av) = Mayy(a)f(u,v) = (1 - Ma)y(a))f(u,v) = 0.

But since AMa) # 7(a) and A(a)? = 1, this implies that f(u,v) = 0. Since u,v were

arbitrary, we have V), L V., if A # v € &. O
Note that since p|g — 1, A,(Sp2(q)) # 0. Thus we have:
Lemma 15.2. Given G = Spy,(¢q) and a prime plg — 1, m,y(G) = n.

Proof. Consider an orthogonal decomposition of V= V; L Vo L -+ 1 V, into two
dimensional symplectic subspaces. Then, since A,(Sp2(¢)) is nonempty, we can choose an
element A € A,(G) given by A = A; X Ay X --- X A, where 4; € Sp(V;)) V1 <i<n.
Thus, m,(G) > n.

Fix A € A,(G). When p # 2, by Lemma 15.1, we have a decomposition of V' =
Vo LV, @ Vl-l L LV, @ V\:l, where Vo = Cy(A) = V) when A = 1. Note
that s < n. Again by Lemma 15.1, when p = 2 we have an orthogonal decomposition

V=VWLV, LaLlV,, withs<n.
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Now, forall 1 < i <'s, let 4; = Cx(Vy, & VA'.x) when p # 2, and A; = Cyu(Vy,)
when p = 2. Note that when p # 2, A, = Cx(Vy,) = Cu(V :1). If W; is a simple
F,[A]-submodule of V), then V), =< W | W 2 W, >; thus, Co(W;) = Ca(V),) = A;.
But A/C4(W;) acts faithfully irreducibly on W;, and since plg — 1 we have A/A; =

A[CA(W;) = Z/pZ. Since 1<ﬂ< A; = 1, we have the normal series:
StS8s

A>A4 >2A4N0A2>2--> N A 2>1,
1<i<s—1

where each factor group is isomorphic to 1 or Z/pZ. Thus my(A) < s < n. Since this
holds for each A € A,(G) m,(G) < n.

Thus we have shown that m,(G) = n, as claimed. d0

Note that in particular dim(Ay(Sp2(q))) = mp(Spa(q)) — 1 = 0. Since A,(Sp2(q)) is
nonempty, that is, —1-connected, we have our claim in the base case n = 1. By Proposition
10.1 on pg. 122 in [Q], in the general case we need to show that V A € A,(G)U {1}
Ap(G)(> A) is (mp(G)—mp(A)—1)-spherical. Now the fact that dim(Ay(G)) = mp(G)—1
and dim(A,(G)(< A)) = mp(A) — 1 implies that A,(G)(> A) is (mp(G) — mp(A) — 1)-
dimensional. Thus it suffices to show that A,(G)is (n—2)-connected and thatV A € A,(G)
A (GY(> A) is(n—mp(A)—2) = (n— h(A) — 3)-connected.

Assume that p # 2 and n > 1. We have:
Lemma 15.3. A,(G)(> A) is (n — h(A) — 3)-connected for all A € Ay(G).

Proof. Since A,(G)(> A) = Ap(Ca(A))(> A)V A € Ay (G), it suffices to show that the
latter is (n — h(A) — 3)-connected. Let ® O ®* be a subset such that A # v € &+
implies Ay #1 and ® = {A\,A7!1|A € ®*}. Then note that V = )\éf;ﬁ(Vx + Vy-1) with
W+ V-1 = V@ V- if A # 1.

We have Cg(A) = N Ng(Va) = Ca(Vit)x  [I  Ha, where Vo = Cy(A) = V\ when

A€D red+—{1}

A=1, and Hy = Co((VaBVy-1))NNG(NA)NNG(Ny-1). For any nondegenerate subspace
U <V, wehave Cq(UL) = Ng(U)/Cq(U) = Sp(U). Therefore, Cx(Vg) = Sp(Vy), and
Ca((Vy @ Vy-1)t) = Sp(Vy @ Vy-1). For each A € &1 — {1}, let G\ = Sp(Va @ Vy-1),
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then Hy = Ng, (Vo) N Ng, (Va-1) 2 GL(Vy). Thus we have:
CalA) = SpVo) x [ GLV).
Aedt {1}
By Theorem 12.4 on pg. 126 in [Q] and induction on the dimension of the symplectic

spaces, we have A,(Sp(Vy)) and A,(GL(Vy))- are C.M. of dimensions n; — 1 and ny — 1,

respectively, where n; = dimz Vo , ny = dim(V)), and n = )  n). By Lemma 14.3 we
redpt
thus have A,(Cg(A)) is C.M. of dimension n — 1.
Thus, by Lemma 14.2, A,(Ca(A))(> A) is (n — h(A) — 3)-connected as desired. a

It remains to show that A,(G) is (n — 2)-connected. Let B be the Tits building of
(V,f), and note that it is (n — 2)-connected. Let B = sd(B) and note that by Lemma

9.1, B is also (n — 2)-connected. Define:
B x A,(G) D F = {(z,A)|z € Fiz(A)}.

Note that F' is the closed subposet of B X A,(G) mentioned just prior to Remark 9.14.
Thus, by Theorem 9.13,ifV z € B and A € A,(G), F, and F4 are (n — 2)-connected,

then A,(G) is (n — 2)-connected; here F, and F4 are as defined in Theorem 9.13.
Lemma 15.4. Let @ € B then F, is (n — 2)-connected.

Proof. Note that F, = A,(G,), where G, stabilizes . Now (/. is a standard parabolic

subgroup P. Let U be the unipotent radical of P and 7 : P — P/U = L the canonical

homomorphism (where [ is the Levi factor). Let v = (Up < Uy < -+ < Us), no = dim(Up)

andV1<i<s letn; = dim(U;) — 2}30 n;. Finally, let ngyq =n— i ni, then nsy; < n,
J=

1=0
since Us # 0. By the definition of the Levi factor we have:

L2 GLny(q) X GLy(q) X -+ X GLyn (q) X Sp2n,,,(9)-

By induction on the dimension of the symplectic spaces and Theorem 12.4 on pg. 126 in

[Q], we have:

(1) Ap(Span,,.(q)) is C.M. of dimension ny4y — 1, and
(2) A,(GLy,(g)) is C.M. of dimension n; —1 V0 <4 < s.
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Thus, by Lemma 14.3, A,(L) is C.M. of dimension:
s+1 s54+1
d(ni—-D+(s+2)-1= ni—1l=n-1L
1=0 1=0 ’
[Note: The fact that A,(L) is C.M. of dimension n — 1 is independent of p # 2.]

Let f: A,(P)— Ap(L) defined by & — & “be the map induced by 7. Then f satisfies

the following properties:

(1) If 2 <y € A,(P), then f(x) < f(y). This follows from the fact that U <
Op(P)soxznU=ynU = {1}.

(2) fly={z € Ay(P)| & <y} = f1A,(L)< y)) is C.M. of dimension h(y) for
all y € A (L). This follows from the fact that fly = A,(U -y) and Theorem

11.2 on pg. 123 in [Q], since U is a solvable p'-subgroup of P.

Thus f satisfies the criterion of Corollary 9.7 on pg. 121 in [Q]. Hence, since A,(L)
is C.M. of dimension n — 1, A,(P) is also C.M. of dimension n — 1. In particular,

Ap(P) = Ap(G;) = F, is (»n — 2)-connected as claimed. O

Remark: The proof of the next lemma depends on the fact that the complex constructed

in section 11 is (n — 1)-spherical.
Lemma 15.5. Let A € A,(G), then Fa is (n — 2)-connected.

Proof. Fix A € A,(G), andlet V = )\gﬁ(v,\ +Vy-1) be a decomposition into homogenous
components under the action of A (as earlier in this section). Remember that F4 =
Fiz(A). If Fiz(A) is the full subcomplex of the Tits builiding defined on those simplices
fixed under the action of A, then Fiz(A) = sd(Fiz(A)). Thus, by Lemma 9.1, it suffices
to show that Fiz(A) is (n — 2)-connected. Now one of two cases occurs:

Caspl: |®F]=1. As A#1 and A # 1, we have dim(V,) = n. Consider:
Fiz(AY ={z =(so<s1<...<8,)€EB|As; =5, VO <i <7}

Now each s; = U; x W; where U; < V\,W,; < V-1, and f(u,w) =0V ue€U,we W,

Now the map 7 : Vy-1 — V defined by v — f(-,v) is an isomorphism. Thus, identifying
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W, with 7(W;), we see that s; = U; x W, where W; < U+ =< ¢ € Vil élu, =0 >

the annihilator of U; V 0 < ¢ < r. Thus Fiz(A) = K the (n — 1)-spherical complex
constructed in section 11 (where Vy is the n-dimensional vector space). So in this case
Fiz(A)' is (n — 1)-spherical, and in particular is (n — 2)-connected as desired.

Casg I1: |®1| > 2. Nowlet ny = dim(Vy)- when A # 1 and ny = dimzvl) when A = 1.
Then ny < n VA€ ®t and Y. ny = n. Foreach A € ®* — {1}, let By = Fiz(A|v, ),
where by Fiz(Alv,) we me/;iq’:he full subcomplex of the Tits building of V) + Vi

generated by those simplices on which A, restricted to Vi 4+ V-1, acts as the identity.
Then, by Case I, B is (ny — 1)-spherical. For A = 1, let B; be the Tits building of the
symplectic space V;, whichis (n;—1)-spherical. For all A € %, let D)y = B,\U{0}, ordefed
by inclusion. Then D) isisomorphic to C'By, the cone on By as defined in section 9. Also
let pry:V — V) + Vy-1 be the canonical projection. Then pri(Fiz(A)') = D) for each
A€ @t and Fiz(A) = [] Da—{(0,...,0)}. Thus, by Lemma 9.3, Fix(A) = o B..

red+ €pt
So, by Lemma 14.1, Fiz(A)" is spherical of dimension:

Y-+ [@t 1= ) m-l=n-1

rea+ Ae@+
In particular, Fiz(A)" is (n — 2)-connected in this case too.

Thus, by considering the two possible cases, we have shown that Fy = Fiz(A) =

sd(Fiz(A)") is (n — 2)-connected as claimed. O
Theorem 15.6. If p # 2 and pl¢ — 1, then A,(Span(q)) is C.M. of dimension n — 1.

Proof. By Lemmas 15.4-5 and Theorem 9.13, we have A,(Spa,(q)) is (n — 2)-connected
and thus is (n — 1)-spherical. And by Lemma 15.3 we know that Ap(Span(q))(> A) is
(n — h(A) — 3)-connected. Thus, by the discussion just prior to Lemma 15.3, A,(Span(q))

is C.M. of dimension n — 1 as claimed. O

Now consider the case when 2|g— 1. By the discussion preceding Lemma 15.3, it suffices
to show that A;(G) is (n — 2)-connected and that for all A € Ay(G), A:(G)(> A) is

(n — h(A) — 3)-connected. Now, since there is a central element of G of order 2, O,(G)
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is nontrivial; and, by Proposition 2.4 on pg. 106 in [Q], A2((G) is contractible. So we are

reduced to showing that:
(%) Ay(G)(> A)is (n — h(A) — 3)-connected ¥ A € Ay(G).

Let A € Ay(G) and let V = ¢V, be a decomposition of V' into homogeneous com-
A
ponents under the action of A. Let ® = {A: A — F! | Vi # 0}. Note that by Lemma
15.1 we know that V :/\i—tb Vy is an orthogonal decomposition of V' into nondegenerate
€

subspaces.

Lemma 15.7. If A € Ay(G) and A £ Z(G), the center of G, then Ay (G)(> A). is
(n — h(A) — 3)-connected.

Proof. We have an orthogonal decomposition of V :I\.EL@ V, into nondegenerate homoge-
neous components under the action of A; then the fact that A £ Z(G) implies |®] > 2.
Therefore, for all A € @, V), < V.

Now Ay (G)(> A) = A(Cq(A))(> A), and Cg(A) = AQ@N(;(VA). By the proof of

Lemma 15.3 and the fact that V = & V) is an orthogonal decomposition, we have:
A€ED

D Na() = [T Catvit) = TLspvu),

rED reD
where dim(V)) < dim(V) V XA € ®. Thus, by induction on dimension of the symplectic
spaces and Lemma 14.3, Cz(A) is C.M. of dimension n — 1. Therefore A,(G)(> A)is (n—

h(A) — 3)-connected as claimed. ]

Let Z € A:(G)N Z(G), the central elementary abelian 2-subgroup. It remains to show
that € = Ay(G)(> Z) is (n — 3)-connected. Let B be the Tits building of (V, f) and
consider B = sd(B). Then let:

BXx €D F={(x,A) |z € Fiz(A)}.

Then F' is closed, and by Theorem 9.13, it suffices to show that for all z € B and A € €,

F, and Fy4, as defined in Theorem 9.13, are (n — 3)-connected.
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Lemma 15.8. If z € B then F, is (n — 3)-connected.

Proof. Let x = (Uy < Uy < --- < U;) € B. Note that F, = A, (G )(> Z), and G,
is a standard parabolic subgroup P. Let U be the unipotent radical of P, a solvable
2'-subgroup of P, and «# : P — P/U = L, where L is the Levi factor of P.

Note that Z € Ay(L). If g : A2(P) — Ax(L) is the map induced by 7 then:

z<ye A(P)= g(z) < g(y) € A (L),

since t N U = {1} for all # € A;(P). Thus we have a map of posets g : A2(P)(> Z) —
A2 (L)(> Z) such that:

(1) v <y€AAP)>Z)= g(x) < g(y) € AL)> Z).

In the proof of Lemma 15.4 we showed that A,(L) is C.M. of dimension n — 1. Since
the proof did not depend on the fact that p # 2, we have Ay(L) is C.M. of dimension
n — 1. Therefore, by Lemma 14.2, A2(L)(> Z) is C.M. of dimension n — 2.

Now given y € Ay(L)(> Z), h(y) = ma(y) — 2. Also, the fact that U is a solvable
2'-subgroup of P, together with Theorem 11.2 on pg. 123 in [Q]; implies that A;(y-U) is

C.M. of dimension my(y) — 1. Therefore, again by Lemma 14.2, we have:
g7 (A L)(> Z)(< y) = As(y - U)(> 2),

is C.M. of dimension my(y) — 2 = h(y).

Therefore g : A3 (P)(> Z) — A3(L)(> Z) is a strict map of posets with g7 (Ax(L)(>
Z)(< y)) C.M. of dimension h(y). Therefore, by Corollary 9.7 on pg. 121 in [Q]; since
A(L)(> Z) is C.M. of dimension n — 2, we have that Ay(P)(> Z) = A(G)(> Z) is
C.M. of dimension n — 2. In particular, we have F, = A2(G,)(> Z) is (n — 3)-connected

as claimed. O
Lemma 15.9. Given A € €, F4 is (n — 3)-connected.

Proof. As in Lemma 15.5 it suffices to show that Fiz(A)" - the full subcomplex of the Tits

building defined on those simplices fixed under the action of A ~ is (n — 3)-connected. Let



If plg — 1, then A,(SP2,(q)) is Cohen-Macaulay 97

V= /\%}@V,\ be a decomposition of V' into homogeneous components under the action of
A. Note that A € € implies that |®] > 2. For each A € ¥, let 2ny = dim(V)), B,
be the Tits building of the symplectic space V) and pry : V — V) be the canonical
projection. Then, by the Solomon-Tits theorem, for all A € &, B, is (n) — 1)-spherical
and pry(Fiz(A)") = CB,, the cone on B, as defined in section 9.

Thus Fiz(A) = [[ CBx - {(0,...,0)} =~ A;(p%) by Lemma 9.3. Therefore, by

red
Lemma 14.1, Fiz(A)" is spherical of dimension:

Y-+ 1= nmy—1l=n-1
A€ AED

Thus Fy = sd(Fiz(A)')is (n — 2), and hence (n — 3)-connected as claimed. a
By Lemmas 15.8 and 15.9 and Theorem 9.13 we have the following;:
Lemma 15.10. Let Z € Ay(G)N Z(G) then Ay(G)(> Z) is (n — 3)-connected.

Thus, by (%) and Lemmas 15.7 and 15.10, we have shown that if 2|¢ — 1, then Ay(G) is

C.M. of dimension n — 1. Therefore, in light of Theorem 15.6, we have the following result:

Theorem 15.11. If p is prime and plg — 1, then A,(Spyn(q)) is Cohen-Macaulay of

dimension n — 1.
As a direct corollary of Theorems 9.15 and 15.11 we obtain:

Corollary 15.12. Let G = PSp;,(q) and let p # 2 be a prime dividing ¢ — 1. Then

A,(G) is Cohen-Macaulay of dimension n — 1.

Proof. Since a prime p # 2 divides ¢ — 1, Spy.(q) # Sp2(2), Sp2(3), or Sps(2). Hence
PSpen(q) is simple.

When ¢ iseven, G = PSps,(q) = Sp2,(¢q) and the result follows directly from Theorem
15.11. Otherwise, p # 2 implies that O, (Sp2n(q)) = Z(Sp2n(q)). Therefore, by Theorem

9.15, Ap(G) =2 Ap(Sp2n(q)). Once again the result follows from Theorem 15.11. 0
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SECTION 16 : Ir p# 2 AND plg— 1, THEN A,(GU,(q)) 1S COHEN-MACAULAY

In section 15 we showed that given a prime p|¢ — 1, A,(Span(q)) is C.M. of dimension
n— 1. In this section we show that an analogous result holds for GU,(q) under the added
constraint that p # 2.

Let G = GU,(q) and let (V, f) be the corresponding n-dimensional unitary space over
F,.. Fix a prime p # 2 dividing ¢ — 1. We show that A,(G) is C.M. by induction on n.

Given a fixed A € A,(G), consider a decomposition of V = é/}\}V)\ into homogeneous
components under the action of A. Let & = {\: A — Fgg | Vi # 0}, and note that for all

A€ ® andall a € A, we have A(a)? = A(e¢?) = 1. This gives us the following result:

Lemma 16.1. If 1 # A € & then A~! € ®. Furthermore, if 1 # A then Vy is totally
singular and Vy @ V-1 is a hyperbolic subspace of V. If Vo = V) when A =1, then Vy
is nondegenerate and dim(Vy) = n (mod 2).
Proof. Let A,y € &, u e V), and v € V. Then, for all « € A, we have:

f(u,0) = flau,av) = f(Ma)u,3(a)e) = Ma)y(a)f(u,v)

= (1 - Ma)y(a)?)f(u,v) = 0.

(*)

Now plg — 1 implies y(a)?™!' =1 = ~v(a)? = 7(a) Vv € ®, and Va € A. Thus
1—-XMa)y(a)? =0 <= Aa) = v(a)™' Va € A Hence, by (%), if v # A7!, then
Vi L V,. Thus, V) is totally singular for A # 1, and Vy is nondegenerate. Also, by the
nondegeneracy of f, if A # 1, then A\™' € ® and V), @ V,-1 is nondegenerate as claimed.

Now let A # 1 and let 0 # u € V). Then, as V), is totally singular and V), & V-1 is
nondegenerate, by (19.12) on pg. 80 in [Al], we can find v € Vy-1 such that U =< u,v >
is a hyperbolic plane. Now V = U @ U+ with U+ nondegenerate of dimension n — 2.
So passing to U+ and by induction on dimension, as in the proof of Lemma 15.1, we have
Vi @ V-1 is a hyperbolic subspace of V.

Fix a set of “positive weights” ® D &+, such that A # v € &+ = Ay # 1, and
® = {A\ A7\ € ®@*}. Then, forall 1 # A € &+, we have dim(V\ & V\-1) = 2dim(V)).

Also, V=V L L Vi & V-1, thus dim{Vp) = n (mod 2) as claimed.
red+—{1}
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Thus we have the lemma. O

Let A € A,(G) and &+ be as defined above and assume that &+ = {Xg, A1,...,Aq},
where A\g = 1. Let Vi, = Vo and V1 < 7 < d; let V; and V] equal Vy, and V-1,
respectively. Finally, for 0 < i <d, let n; = dim(V;). Then, by the proof of Lemma 16.1,

=3

we have:
(6.2) V=WiVvigV/ 1L - 1LV,@¢V,,

where Vy is nondegenerate and V; & V, is a hyperbolic subspace of dimension 2n; with
g i !

Vi, and V/ totally singular V 1 < i < d. Hence we have:

(6.3) Co(A) = GU(q) x [] GLn(d)):

1<i<d

Note that since plg — 1, A,(GU,(q)) is nonempty; thus we have:

Theorem 16.4. If k = [}], the greatest integer less than or equal to %, and p# 2 isa

prime dividing ¢ — 1, then m,(GU,(q)) = k.

Proof. Consider an orthogonal decomposition of V :1<Ji—<k V: L V' wherefor1<i<k
V; is a 2-dimensional nondegenerate subspace, and V' is an r-dimensional nondegenerate
subspace. Since A,(GU(q)) # 0, we can find A = Ay x --- X Ay € Ap(G) where
A; € A (GU(Vy)) for each 1 < i@ < k. Hence, m,(G) > k.

Now given A € A,(G), by (16.2), we have a decomposition of V. =V5 L --- L Vy& V).
Foreach1 <i<d, let A; = Ca(ViB V), then A; = Ca(V;) = Ca(V/). Now, if W; is an
simple F[A]-submodule of V;, then V; =< W|W = W; >; thus C4(W;) = Cx(V;) = A,.
But, A/C4(W;) acts faithfully irreducibly on W; and since pl¢ — 1, we have AJA; =
A/Ca(W;) 2 Z[/pZ by (5.21) on pg. 159 in [Su]. Since 1<Q<dAi = 1, we have the normal
series: o

A>A>2A4NA > 2> N A; > 1,
1<i<d~1

with factor groups equal to 1 or Z/pZ. Thus, my(A) < d and since d < k, we have
my(G) < k.
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Thus, we have shown that m,(G) = k, as claimed. O

By the above result, m,(GUz(q)) = 1, so the fact that A,(GUz(q)) is nonempty implies
that it is indeed C.M. So we can now prove the main result by induction. Let n = 2k + r,
then m,(G) = k and by Lemma 14.2 it suffices to show that:

(1) VA€ A (G) Ap(G)(> A) is (k- lz,([;) — 2)-spherical, and

(2) Ap(G) is (k — 1)-spherical.

Now A,(G) is (k — 1)-dimensional since m,(G) = k. Also dim(A(G)(< A)) = h(A),
V A € Ay (G); thus A,(G)(> A) is (kK — h(A) — 2)-dimensional. So we are reduced to

showing that:

VAeA(G), A (G)(> A)is (k — h(A) — 3)-connected, and
(16.5)
A (G) is (k — 2)-connected.
The proof of these two facts will closely mimic the proof of the fact that A,(Sp2,(q)) is

C.M. when p|q — 1.

Lemma 16.6. Given A € Ay (G), A, (G)(> A) is(k — h(A) — 3)-connected.

Proof. A,(G)(> A) = Ap(C(A))(> A) and by (16.3) we have:

Ca(A) = GUp(q) x [] GLni(d®),
1<i<d

where ng < n, since A € A (G) implies that A is not central. Let ng = 2ko + ro, then

d
n; = k. Now pl¢g — 1 and Theorem 12.4 on
P4
t=1

pg. 126 in [Q] imply that A,(GL,,(¢*)) is C.M. of dimension n; — 1V 1 < ¢ < d. And, by

by Lemma 16.1 we have ro = r and k¢ +

induction on dimensions, A,(GU,,(q)) is C.M. of dimension ky — 1. Therefore, by Lemma

14.3, A,(Cg(A)) i1s C.M. of dimension:
d d
ko= 14 (ni—1)+(d+2)—1=hko -1+ ni=k-1.
i=0 i=0
In particular, by Lemma 14.2, A,(G)(> A) = A,(Ca(A))(> A) is (k—h(A)—3)-connected

as claimed. O
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By (16.5), we are reduced to showing that A,((/) is (k — 2)-connected. Let B be the
Tits building of (V, f) and set B = sd(®B), the first barycentric subdivision of B. Then,

by the Solomon-Tits theorem and Lemma 9.1, B is (k — 2)-connected. Consider:
Bx Ap(() 2 F ={(x,A)]| 2 € Fie(A)}.

Then, by Remark 9.14, F' is closed; and by Theorem 9.13 it suffices to show that I, and Fju

- as defined in Theorem 9.13 - are (k — 2)-connected for all x € B, A € A,(G).
Lemma 16.7. Let x € B then F, is (k — 2)-connected.

Proof. Let ¢ = (Uy < Uy < -+~ < Ug) € B, ng = dim(lUp), and V1 <z < 55 let

i—1 s
n; = dim(U;) — 3 n;. Finally, let ngpq =n— Y n;. By Lemma 16.1,if nyyy = 28 + 7/
j=0 i=0

(0< 7" <1), then ' =r and Z n; + A& = k.

=0
Now F,. = A,((G,) where (i, stabilizes # and is equal to a parabolic subgroup P of .

Let U be the unipotent radical of P and 7 : P — P/U = I be the canonical homomor-

phism; here L is the Levi factor of P. By definition of the Levi factor:
L% Glny(¢8) X GLy (6°) X -+ X GLy (%) X GUy 4 (q):

Now U # 0 and the definition of ngyy imply that ngyy < n. Then, as in the proof
of Lemma 16.6, by induction on dimension and Theorem 12.1 on pg. 126 in [Q]. we have
A,(L) is C.M. of dimension & — 1.

Let f : Ap(P) — A,(L) be the map induced by x. Then, since [/ is a solvable p'-
subgroup of P, as in Lemma 15.1, f satisfies the criterion of Corollary 9.7 on pg. 121 in
[Q]. Thus, as A,(L) is C.M. of dimension k — 1. A,(P) is also C.M. of dimension & — 1.

In particular, I, = A,((G;) = A, (P) is (k — 2)-connected as claimed. O
Lemma 16.8. Given A € A, (G). Fy is {k — 2)-connected.

Proof. By (16.2) we have a decomposition of V" =1y L --- L Vi3 V], Now, Iy = Fia(A)
the subcomplex of B defined on those simplices of B fixed vertex-wise under the action

of A. As in the proof of Lemma 15.5, let Fiz(A) be the full subcomplex of B defined on
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those simplices fixed under the action of A. Then, Fiz(A) = sd(Fiz(A)') and, by Lemma
9.1, it suffices to show that Fiz(A)" is (k— 2)-connected. One of two possible cases arises:
Case I: Vog=0and d=1. Then, by Lemma 16.1, dim(V}) =k, and V =V; @ V/ isa
hyperbolic space. By definition:

e

Fiz(A) ={z =(so<s1 <--<s)EB|Asi =5, VO < i< r},

where each s; = U; x W; with U; < Vi and W; < V/ N U+ V0 <i<r Identifying
V] with the dual space of V}, considered as a k-dimensional space over Fp2, we see
that Fiz(A)' = K the (k — 1)-spherical complex constructed in section 11. Thus, Fx =

sd(Fiz(A)") is (k — 1)-spherical and in particular, (k — 2)-connected as claimed.

Case I : |[®F] > 2. Let ng = 2ko+r and dim(V;) = n; V1 < i < d, then k0+zd: n; = k.
Now for each 1 < i< d, let B; = Fiz(Al|y,), where Fiz(Aly,) is the full subzc;(—)(inplex of
the Tits building of V; @ V/ defined on those simplices on which A acts as the identity.
Then V1 <2 <d, B; is (n; — 1)-spherical by Case 1. Let By be the Tits building of
Vo. Then, by the Solomon-Tits theorem, By is (kg — 1)-spherical. If for all 1 < < d,

pri: V=V, @ V] and prg : V — V are the canonical projections, then:
pri(Fiz(A))= B;u{0} =2 CB; V0 <i<d,

where B; U {0} is ordered by inclusion, and C'B; is the cone of B;, as defined in section

9. Thus, by Lemma 9.3, we have:

Fiz(A) = ] €Bi—{(0.... .0)} = Box By -+ By,
0<i<d

Thus, by Lemma 14.1, Fiz(A)" is spherical of dimension:

d d
k0~l+Z(ni—1)+(d+2)—l:1\70—1+Zm:k—1.
1==0 i=0

In particular, Fyq = sd(Fiz(A)') is (k — 2)-connected as claimed. O

By Lemmas 16.7-8 and Theorem 9.13, we have shown that:



The order complex of proper nondegenerate subspaces of a symplectic space 103

Lemma 16.9. A,(GU,(q)) is (k — 2)-connected.
Thus, in light of (16.5) and Lemmas 16.6 and 16.9, we have:

Theorem 16.10. Let p # 2 be a prime dividing ¢ — 1, then A, (GU,L(q)) is C.M. of

dimension my(GU,(q)) — 1. O

o

We obtain the following result as a corollary to Theorems 9.15 and 16.10:

Corollary 16.11. Let G = SU,(q) or U,(q) and let p # 2 be a prime dividing q — 1.
Then Ap(G) is Cohen-Macaulay of dimension m,(GU,(q)) — 1.

Proof. Since p # 2 and plg — 1, pt(¢+1). Thus A,(GUn(q)) = Ap(SUn(q)) as posets.
Thus when G = SU,(¢q), the result follows directly from Theorem 16.10.

Nowlet G = U,(gq). When n = 2, by Theorem 16.4, m,(GU,(q)) = 1. Since A,(G) # 0,
A,(G) is indeed C.M. of dimension m,(GU,(¢)) — 1. So assume that n > 3. Since we
have a prime dividing ¢ — 1, GU,(¢) # GUs(2) and so U,(q) is simple. From the previous
paragraph we know that A,(SU,(q)) is C.M. of dimension m,(GUr(q))—1. Also, p{ (q+1)
implies that 0, (SU,(¢q)) = Z(SU,(g)). Thus, by Theorem 9.15, A, (G) = Ap(SU.(q))

and we have the desired result. O

SECTION 17 : THE ORDER COMPLEX OF PROPER NONDEGENERATE SUBSPACES OF

A SYMPLECTIC SPACE IS COHEN-MACAULAY

Let (V, f) be a 2n-dimensional symplectic space over Fy. It is well known that the order
complex of nontrivial totally singular subspaces of V- ordered by inclusion — that is, the
Tits building of V, is C.M. of dimension n — 1. Consider the order complex, €, of proper
nondegenerate subspaces of V' — ordered by inclusion. In this section we show that € is
C.M. of dimension n — 2. However, we first need to consider a different complex.

Let W be an n-dimensional vector space over F, and W~ its dual space. For
each U< W, let Ut =< f € W*| fly =0 >, the annihilator of U. Define K
to be the order complex on {U x U' < W xW* [0 £ U #W;W*=U+aU'}

ordered by inclusion.
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Lemma 17.1. The complex K defined above is (n — 3)-connected.

Proof. We prove this by induction on n. When n = 2, K is nonempty and thus is —1-
connected. So assume that n > 3. Note that GL,(q) acts on K by p(g)(U x U') =
g(U) x g*(U") where ¢* = '¢7', Vg € GL,(q) and all U x U' € K. Let pl¢g — 1 and
¢ a nontrivial p'" root of unity in F,. Then Z = diag((,... .C) € A,(GL,(q)), so
C = A,(GL.(q))(> Z)is (n— 3)-connected by Theorem 12.4 on pg. 126 in [Q] and Lemma

14.2. Consider the closed subposet:
sd(Kyx C D F={(z,A) |z € Fiz(A)}.

Then F is as defined just prior to Remark 9.14. By Theorem 9.13, if for all z €
sd(K)and A € C, F, and F4, as defined in Theorem 9.13, are (n — 3)-connected, then
sd(K) is (n — 3)-connected. And hence, by Lemma 9.1, K is (n — 3)-connected.

Given ¢ = (Ug x Uj < Uy x U] < -+ < Ug x Ul) € sd(K), let ng = dim(U) and
V1<i<s, let ny = dim(U;) Z nj. Since VU x U' € K, g (UL) = (gU)*+ and
W=UgU') and W*=Ut g U’ we have:

GLn(q)s = GLpo(q) X GLy,(q) X -+ X GLy, (q) X GLy,,,(9),

where n = S‘E n;. Now Fy = A,(GL.(q):)(> Z), where, by Lemma 9.4, A,(GLy(q);) =
Ap(GLno(q3§i o+ Ap(G Ly, (q)). By Theorem 12.4 on pg. 126 in [Q] and Lemma 14.3,
Ap(GLn(q)z) is C.M. of dimension n — 1. Thus F, = A(GLn(¢):)(> Z) is (n — 3)-
connected.

Now given A € C, let W = W, & W, & --- & W,, be a decomposition of W into
weight spaces of A. Then, since A > Z, s > 1. Given 1 <7 < s let (W),)* be the
annihilator in W>* of all Wy, such that i # j. Note that W), x (Wy,)" € K.

Consider a decomposition of W* into l/Vj;o B B Ww*r under the action of A. Then

given a € A, w; € W), and wj € W, we have:

wi(w;) = pla)w(p(a)w;) = y;(a)(a)w](w;).
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Thus, if v; # )\17'1, then WJ < Wg‘- Therefore, since W* is the dual space of W for each
1 <1< s, there exists 1 < j <r such that v; = /\;'l. By the symmetry between W* and

W, we have a decomposition of W* = Wi @ a Wy

v 1 under the action of A, where

Wi o = (W, )" (as defined above) V0 <4 <s.
If pri : W — W), and pri : W* — W _, ~are the canonical projections, then we have

pri(UL) = pry(U)L VU <W. Thus,if U x U' € K then, since W* = UL & U’, we have:
(%) (Wa)" = WSoo = pri(UY) @ pri(U") = (priU))* & pri(U").
Now let K; be the order complex of the poset:

{UXU <Wy, x Wy | 0£U #Wy ;Wi =(U'n W)@ U},

ordered by inclusion. And let D; = sd(k;), the double cone of sd(k’;) as defined in section

9, for all 0 < i < s. Then, the fact that s > 1 along with (x), implies:
pri X pri{Fiz(A)) =2 D; YV0<1<s.

Note that Fiz(A) equals Fy. Hence, Fy = Do *---x Dy — {(0,...,0),(00,...,00)}. If

n; = dim(W,), then, by induction, K; is (n;—3)-connected for 0 <7< s, andn = Y n;.

=0
3 5
Thus, by Corollary 9.11, F4 is: Y (n;—3)+3s = Y n;—3(s+1)+3s = (n—3)-connected.
i=0 1=0
Hence, by Theorem 9.13, K is (n — 3)-connected as claimed. O

We are now ready to show that € is C.M. of dimension n — 2. When n = 2, € is
nonempty and we are done. So assume that n > 3. By (19.16) on pg. 81 in [Al], we know
that € is (n — 2)-dimensional. Thus it remains to show that € satisfies the four conditions
of Lemma 14.2. First we show that € is (n — 3)-connected.

Let p be a prime dividing ¢ — 1 and G = Spa,(q). Then, by Theorem 15.11, A,(G)

is C.M. of dimension n — 1. So consider the closed subposet:
CxA,(G)D F={(z,A)] z € Fix(A)},

where C' = sd(€) and Fix(A) is as previously defined. By Theorem 9.13, if for all z € C

and A € A,(G), F, and F4 are (n — 3)-connected, then €' is (n — 3)-connected.
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Lemma 17.2. Given z € C, F, is(n — 2)-connected.

Proof. Let © = (Up < Uy < --- < Us) with dim(U) = 2ng, and V1 < i< s 2n; =

11
dim(U;) — Y 2n;. Now F, = A,(G,) with:
Jj=0

Gr = Sp‘Zno(q) X Sp?n{é‘]) XX sznsﬂ(CI)»

s+1
where n = > n,.
=0
Now, by Theorem 15.11, A,(Span,(¢)) is C.M. of dimension (n; — 1) V0 < i< s+ 1.

Thus, by Lemma 14.3, A,(G;) is C.M. of dimension:

s+1 s+1

i=0 i=0

In particular, F, = A,(G,) is (n — 2)-connected. O
Lemma 17.3. Given A € A,(G), Fy is (n — 3)-connected.

Proof. Let V.=Vy, LV\, ®V, -» L ... LV, @&V, -1 be orthogonal direct sum decom-
position of V' into weight spaces under the action of A (with Ay = 1). Then, as in section
15, V\, + VATJ is a symplectic subspace of V V 0 < ¢ < s. Two cases arise:

Casel: V), =0and s =1.In that case V = Vy&V,-1 and each nondegenerate subspace
of V' is of the form Uy @ Uy-1 with Uy < V) and Uy-1 < Vy-1. The map 7 : V-1 — VY

given by v — f(-,v) is an isomorphism. So identifying V-1 with V¥, wesee U\ G Uy-1 is
nondegenerate if and only if V" = UL @ Uy-1. So we can identify F4 with the complex K
defined at the beginning of this section. Thus, by Lemma 17.1, F4 is (n — 3)-connected.

Casell : V), #0ors > 1. Let pry : V. — Vy, + V-1 (0 < ¢ < s) be the canonical
projections. And for each 0 < 7 < s, let ('; be the first barycentric subdivision of the
order complex of proper nontrivial subspaces of Vy, + V) -1. If n; = dim(V),), then
n = ‘Z: n;, and by induction C; is (n; — 3)-connected forall 0 < i < s, If D; = C; is the

120
double cone on C;, as defined in section 9, we have:

pT‘l(FI’L(A)’) ~ (U {O,‘f,\' + ‘/A—l} 2D, Y0<i<s,
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where C; U {0, V), + V. '_-1} is ordered by inclusion. And Fiz(A)' is the full subcomplex
of € defined on those simplices fixed under the action of A; that is, Fqy = Fiz(A) =
sd(Fiz(A)). Thus, Fiz(A) = Do+ Dy x---x D, — {(0,...,0),(c0,... ,00)}. As in the
proof of Lemma 17.1, we thus have Fiz(A)'; and hence Fs4 is n — 3-connected as claimed.

]
Thus we have shown that:
Lemma 17.4. € is (n — 2)-spherical.

Proof. By Lemmas 17.2-3 and Theorem 9.13 we have shown that ' = sd(€) is (n — 3)-
connected. Thus, by Lemma 9.1, € is also (n — 3)-connected. Since, by definition, € is

(n — 2)-dimensional, we have the result. a

Now given ¢ = U € €, h(z) = ———*—)- — 1. For any symplectic space W, let €(W) be
the order complex of nondegenerate proper subspace of W. Then, by Lemma 17.4, ¢(W)
is (dz—mém — 2)-spherical.

Theorem 17.5. € is C.M. of dimension n — 2.
Proof. Let ' = U' < U =z € €. Note that € satisfies:

(1) € is (n — 2)-spherical. This is Lemma 17.4.

(2) €(< z) is (h(x) — 1)-spherical. We know that h(z) = @%(ﬂ —1and €U) is
(—ﬂgﬂ —2) = (h{z) — 1)-spherical. Since €(< &) can be identified with €(U) the
claim holds.

(3) €(> «) is (n — h(x) — 3)-spherical. We know that €(> x) can be identified with
C(V/U). Now €(V/U) is (Lml=dimll) _ 9y — (p — 22U _ 9y spherical. But
(n—h(z)—-3)=(n— (d‘—'";-g 1)=3)=(n - ——1—7%-(-[2 — 2), so the claim holds.

(4) (2',2) = €(> )N &(< x) is (h(z) — h(z") — 2)-spherical. Now (z',x) can be
identified with €(U)(> a') which is (dz—mz(gl (') — 3)-spherical by (3). But
(‘-iﬁ;ﬂﬂ —h(z') = 3) = (h(z) — h(z') — 2), so this claim holds.

Thus by Lemma 14.2 and facts (1)-(4) above, we have € is C.M. of dimension n — 2 as

claimed. 0O
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Chapter 5
Results about spaces with forms

In chapter 6 we shall consider A,(G) where G is one of GL,(q), Sp2n(q), and GU,(q)
with (p,q) = 1. These groups arise as groups of isometries of spaces with forms, and in
Chapter 5 we record some results about such spaces. The results pertain to the decom-
position of these spaces, and geometries identified with these spaces, under the action of
elementary abelian p-subgroups. These results will play an important role in our analysis
in chapter 6.

Let p be a prime and ¢ a prime power such that (p,¢) = 1. In Section 18 we let
G = Spyn(q) and A € A,(G) and consider the structure of C';(A). We also study the
decomposition of the corresponding symplectic space into Fy[A]-submodules. In Section 19
an analogous computation for G = GU,(q) is carried out. Some of the results in this section
are identical to those in section 18 and have been included only to make section 19 complete.
In Section 20 we use results from the previous two sections to obtain some preliminary
results about m,(G) and A,(G), where G is one of GL,(q), Span(q), and GU,(q). With
p and ¢ as above, let d be the order of ¢ in Z/pZ, that is, the minimal integer with
respect to plg® — 1. Our analysis in sections 18 and 19 will show that the structure of
Ca(A) — where G = Sp2,(q) or GU,(q) — and the decomposition of the corresponding
spaces with forms depend greatly on whether d is even or odd. In Section 21 we let
G = Spyn(q) or GU,(q) and assume that d is odd. Given A € Ap(G) and B, the Tits
building of the corresponding space with form, we study the structure of Fiz(A), the full
subcomplex of B defined on the simplices fixed under the action of A. Finally, in Section
22 we consider Fiz(A), when G = Spy,(q), A € Ay(G) and d is even.

At this point we should remark on the strategy used in sections 18 and 19:

Strategy: We want to compute C';(A) where A € A,(G) and G = Span(q) or GUy,(q).
We also want to study the decomposition of (V, f), the corresponding symplectic or unitary

space, into homogeneous components under the action of A. Given A € Ay(G), let K
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be the field of definition of A (see section 26 in [Al] for the definition and properties of
K), and let (f},f) be the “appropriate” space with form over K. Let G be the group of
isometries of (IA/,f) and ¢ an “appropriate” automorphism of V such that g7v7 = (gv)°
Vge G, veV. By “appropriate” we mean that Cp(o) =V and Cylo) =G.

Using results from section 15 and 16 (since-p| |K*|) and facts about fields of definition,
we get a decomposition of V into homogeneous components, as follows: V= 171 BB Vi
And Cg(A) = ﬂNG(‘A/z) =[x X L., where each I; corresponds in a natural way to 172-;
for example, if G is a symplectic group and each Vi is nondegenerate, then L; = CG(‘ZL).

Note that ¢ acts on {V; | 1 < i< m} and since ¢g°v° = (gv)°, this defines an action
of o0 on {Lz} Given a set of orbit representatives Vil,ﬁ}g, . ,‘7,'5 for the action of ‘O’
on {\71}, Li,,...,Li, is a set of orbit representatives for the action of ¢ on {L;}. Also,
given 1 <3 <s, o actson ‘71-1. (and thus on iij) in one of two ways:

(1) Either 0"72']. = ‘72']., which implies (7]:” = Iiij‘ In this case, let W; = I//\ZJ and
H; = I:;j, and note that o induces a field automorphism on W; and H;. Thus
Cw,;(0) <V and Cy,(0) <G

(2) Or o acts regularly on {\T}j,aﬁj, .. ,U(‘_‘LA’,-].} and thus acts regularly on
{]:ij,aI:ij,... ,ad"ll:ij}. Then let W; = ﬂ] e 0‘7}1 SRR ad_l‘/}ij and H; =

L x-- -Xad‘lf,ij. Then we have C'y, (o) =< v4+ov+---+0 v |v € ‘71'1' > ﬁ}j
as K-subspaces and C'y,(0) =< gog - ol lglge€ iij > I:i, <G
Note that by the choice of orbit representatives and the definition of W; and H; for all

1<j<s, wehave V= Wi@d---dW, and CG(A) =Hyx---xH,;, with<o>W,=W,;

and <o > H;=H; V1< j<s, thus:

V==Cplo)=Cw,(0)F---®Cw,(0), and

Co(A)=Ce(A)NCxlo) = Cu (o) X ---x Cy (0).

We thus say that “C'w, (o) contributes C'y (o) towards Cg(A).” Notice if 0 acts on

Vi as (2), then Cy,(0) = f,ij. a

i

We shall use the facts and notation contained in Strategy in the following two sections
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without explicit reference to Strategy.

SECTION 18 : Cg(A) WHERE G = Spyn(q) AND A € A,(G)

Let G = Span(q), and (V, f) be the corresponding 2n-dimensional symplectic space
over F' = F,. In chapter 6 we will consider the sim‘ple connectivity of A,(G). By Theorem
15.11 we know that if pl¢ — 1, then A,(G) is Cohen-Macaulay - so we may assume that
p # 2 is a prime with (p,q) = 1.

Let d be minimal with respect to p|¢? — 1 and in light of Theorem 15.11 assume that
d>1 Let K =Fu and T = Gal(K/F)=<o>. LetV=V@pKand f:VxV = K
be defined by f(v @a,w@b)=abf(v,w) Va,be K, vyw €V (extended by linearity).
Then (IA/,f) is a 2n-dimensional symplectic space over k' with f[; = f. Note that o
acts on (f,f) by (Xv; ® a;)7 = Yv; @ o(a;).

Now G = Span(q) < Span(q?) = G, and o acts on G as a field automorphism with
Ce(o) = G and ¢%v" = (gv)" Vg € G,v € V. Given 4 € A (G) C Ay (G), we have
Ca(A) = Ca(A)N Cp(o). So we first have to compute Cpz(A). Fix A € Ap(G), and as
in section 15, consider a decomposition of V= &}‘ into homogeneous components under
the action of A, and set ® = {A: 4 — K*| VA # 0}. Note that given A€ @, Vaec A

andVove V)\ we have:
a’v? = (av)” = (Ma)v)” = Aa)?v° = Aa)v

Thus U(V)\) = Vye, and T actson & by mapping A — A?. Now two distinct cases arise:
Assume that d is odd. Then |I'| = d implies that there are no involutions in I'.  So
V1#Xe® A1 ¢TA Thus it is possible to find a set of positive weights ® D &%

preserved by I' which satisfies the following conditions:
ifA#v€®t, then Ay # L; and & = (A, A7 | A e &),
By Theorem 15.11 we have a decomposition:

18.1 V=V Vi Vo),
(18.1) 0\e<1>+ {1}( B Vy-1)
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where Vy, which equals YA/,\ when A = 1, is nondegenerate; and for all A € &+ — {1} ‘//\}\
and V)\—i are totally singular, and ‘A/,\ GHVi-1 isa hyperbolic subspace of V. Thus we have:
ColA) = Spang(g®) x [ GlLna(g"),
A€+ —{1}
where 2ny = dim(f/\b), and ny) = d'i'm(‘?',\) V Xxe ot — {1}
If we choose orbit representatives for the action of I' on &1, say Mg, A1,...,A,, with
Ao = 1, then note that: I'\; N [’/\;1 =0VO0<ij<m Foreach 0 < i< m, let

f/i“” = @ 177 and 1’\1— = & IA/W, then both fﬁ and f’f are normalized by I'.  Also,
yEL X, VETAT!

by (18.1) and Lemma 15.1, for each 1 < i < m, IA/f and 17[ are totally singular and
Vi = ‘7,.+ @ 172-" is a hyperbolic subspace of V.

Fix 1 <7 <m, and note thatVa € A \j(a)P? = Aj(a?) =1 = AP = 1. Soif [T\ # d,
then there exists r < d such that /\;’r—1 =1 = pl¢" — 1, contradicting the minimality
of d. So we have:

o~ ~

Vi+ = V:\' B ‘/’a( ) & ‘/ad—l(/\'.).

Since ‘71~+ is a K[A}-submodule normalized by T', by (25.7.2) on pg. 120 in [A1], there
exists an F[A]-submodule V;* < V' such that lAf =Vt @p K. Since flv = f and
‘A/i+ is totally singular, Vi+ is a totally singular subspace of V. Also, if di?‘ll}((f})\‘) = n,
then dimp(Vi“L) = dimlﬁ-(‘Afi+) = dn;. Similarly, for 171»— there is a dn;-dimensional totally
singular subspace V;” <V such that VAZ” =V, @p K. Similarly, IAQ+®{\Q— being hyperbolic
implies V; = V;* @ V™ is a 2dn;-dimensional hyperbolic subspace of V.

Note that o acts regularly on {f’,\‘,aﬁ\',... ,U(“”“?\'}. Thus, as K-spaces Vf =
C‘A/.'+(U) =<v+o(w)+- -0l He)|ve f",\, > ‘7’/\,. Similarly, V;7 = ‘71\:1. Thus, by
the argument outlined at the beginning of this chapter, V; contributes /L, (¢%) towards
Ca(A).

o~

For 17%, also by (25.7.2) on pg. 120 in [A1], we have V5 < V' such that V), = @\ V, =
vel Ao

Vo @F K. So Vp is a nondegenerate subspace of V' with dimp(Vy) = dimg(V),). Now o

induces a field automorphism on LA’O, and thus on f"oi. Thus, Vy contributes C'Smno(qd)(o) =

Spano(q) towards C(A) = Ci(A)N Cp(o). Thus we have the following result:
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Theorem 18.2. Let p # 2 be a prime and d > 1 be minimal with respect to p|q® — 1.
Let G = Spyn(q) and V' be the corresponding symplectic space, and assume that d is odd.

Fix A € A,(G). Then we have an orthogonal decomposition:
V=VoLVtaV L..-LVIiapV,

into homogeneous F[A]-submodules, where:
(1) Vo = Cv(A) is nondegenerate with dim(Vy) = 2ng where ng = n(mod d).
(2) V1 <i<mV;"and V;" are totally singular with V;* &V,” hyperbolic of dimension
2dn;.
And we have:
Ca(A) = Spang(g) X J] GLn,(g%).
1<i<m

The decomposition of V' and the structure of C(A) differ significantly when d is even.
In this case we get a unitary structure on ‘7, but the proof of certain results about this
structure depends on the fact that 2 is invertible; so we have to assume that ¢ is odd.

As in the case when d is odd we can choose a set of positive weights ®* such that:

A”“A -~ ‘/\ . \_"( - d d>
V=to b, (V@ Vio) and CoA) = Spaulg”) X II GLag,

red+—{1}

where Vp = V\ for A = 1, 2ng = dim(i”o), and ny = d'im(ﬁ\) VAiedt - {1}. Let

d
2

T g

Il

be the unique involution of I'. Given A € ®* — {1}, consider 7(A) = A*. Then
A

1

72(A) =A% and A? =1 = 2% =1 (mod p). Since K was chosen to be the minimal
extension of F' containing p'* roots of unity,  # 1 (mod p) so 7(A) = A71. Thus we
cannot choose a set of positive weights which are preserved by I'. Thus we must analyze
the action of I' on &.

First note that as 7 is a field automorphism, we have the following result {(which will

be used frequently without explicit reference):

Lemma 18.3. For all v,w € V' we have:

f(rv,7w) = 7(f(v,w)).
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V,. Then, by Lemma 15.1 and the discussion above,
A

Fix 1# e ® andlet W= @
~yer

we have an orthogonal decomposition of W into symplectic subspaces as follows:

W=W@Vioy Lo LV g Vo
=V Vi Lo L Va%“(x) P Va%'l(k)“l'
Thus the contibution of W to Cs(A) is isomorphic to GLn,(¢%) X GLy,(g%) X --- X

GLn,(q%), which we denote by I, = Ly X Ly x --- x Ly. We want to understand the
structure of:
CL(o) =< gxa(g)x -~ x a¥ 7 (g)lg € Cp, (1) >= Cp, (7).

Note that Cjs, () is isomorphic to U = C";A@;,A“l(r) =< v+ TV | inVy >. And Cp (1) =

GL(U)N Ly.
Now remember that L, is CSP(GA@‘/‘;\_I)(A). Since Vy-1 is Ly-isomorphic to the dual
='g7!'} with respect to a basis

{vi,7v; |1 < i< ny} for Vi@ V,\—x. Thus:

() = {(é' :) | g € GL(V));g™ = ‘g™"} satisfying

(g g) < v ) =gut+grvel < ¢gro=Tgv < T¢g"TV=gvV v E V.
0 ¢ TV
Hence we have to classify all ¢ € (;}'L(f"/\) such that ¢ = 7¢*7. We have the following

result:
Lemma 18.4. For v,v' € V\, f(rv,v') = f(g"rv,9v')V g € GL(Vy).
Proof. This result follows from the following computation:
2f (rv,0") = f(v,70') + f(rv,0") = f(v,70') + f(Tv,0")
= f(v + 1o, 0 4+ ro') + f('——v +ro,0 + 10")
- f(g'v +g v, 90 + g7 To") + fh(‘gv +g v, gv’' + g Tv')
since (g g(l) € Sp(Vy & Vi-1)

= f(gv,g*rv') + f(g*71’7917/) - J;(!l'"» g Tv') + f(g*-rv,gv')

= Qj:(g*rv,gv' ).



Results about spaces with forms 114

Since ¢ is odd we have fA(Tv,v’t) = f(‘g*rv,gv’) as claimed. O

Now let k = K7. Then by Hilbert’s Theorem 90 we know that there exists § € K such

that 7(6) = —6 and K = k(é). Define:
0: ‘7,\ x Vy — K by 8(v,v') = 6f(v,‘rv').

Lemma 18.5. # is a unitary form on 1’\/’/\.

Proof. Suppose v € ‘A/A such that 8(v,w) =0V w € f’/\. Then 8(v,70') =0V ' € Vi-1.

Hence §f(v,v') = 0V v' € Vi-1. But since f is nondegenerate on Vy @ Vy-1, this implies

v=040. '
0(v+w,v') = 0(v,v")+0(w,v'); 8(v, v +w) = 6(v,v")+6(v,w); 8(av,v") = ab(v,v") and

8(v,av') = 7(a)f(v,v') follow from the definition of # and the linearity of f. So consider:

6(v',v) = §f(v', TV) = sr(f(rv',v)) = 6T(——f(v,rv'))

= -—(ST(fA(‘U,T’U’) = T(ﬁj(v, ")) = 7(0(v,v')).

Therefore 8 is a unitary form as claimed. i
Lemma 18.6. Cp, (1) = (}Um(q% ).

Proof. We already know that 'y (7) @ ' = {g € G,L(\f;',\) | g = 7¢g*7} Since § is a
unitary form, it suffices to show that ¢/ is the group of isometries of (VA,H).

Let g € G'. We want to show that 8(gv,gv') = 8(v,v"). So consider:

6(gv, gv') = 6f(gv,7‘_qv') = éj:(‘rg*rv,rgv') = érf(g*T'v,gv')

(by Lemma 18.4) = 67 f(rv,v") = & f(v,70") = 6(v,v").

Thus G' C GUn, (¢%).
Now let g € GU,,(¢%) and let {vj | 1 < j < n,} be an orthonormal basis for Vi
with respect to 6 (such a basis exists by (21.5) on pg. 87 in [Al]). We want to show

that gv = T¢"Tv V v € VA; so it suffices to show that gv; = 7¢*7v; V1 < i < ny. But
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as {v;} forms an orthonormal basis for (f/\},()), it is equivalent to showing 8(gv;,v;) =

O(rg*Tvi,v;) V1< 1,5 <ny. So consider:

B(gvi,v;) = 8(gvi,99™ ' vj) = B(vi, g~ " v;) (since g € GUn, (q%))
= 6f(gvi,Tv;) = 519(02‘%‘&(1_’1 v;)
= 7f(rgvi,v;) = T f(1vi,97 " v))
= Tf(Tg”i»7’j) = Tf(!f‘“’n gg—lvj) (by Lemma 18.4)
= f(gvi,7v;) = f(rg™rvi, Tv))

= O(gvi,v;) = 8(Tg"Tv;,v;).

Thus GUn, (¢2) C G' = GU,,(¢%) = G' and the lemma holds. a

Thus we have shown that ('f (o) = O (7) = le",u(q%) where dim( V\) = n).

Now choose orbit representatives Ao, A\1,... , A, for the action of G on & with Ag = 1.

Let XA/Z = GGIQ\ ‘77 Y 0 < i< m. Then, by the preceding discussion, for 1 <i < m we have
verx

1 contributing GUm(q%) towards C'g(A), where dim(‘?ﬁ\.) = n;. And, by (25.7.2) on

pg. 120 in [A1], for all 1 < 7 < m there exists V; < V' which is nondegenerate of dimension

dn; such that ‘72 =V, ®p K. For Ay we have the same situation as in the case when d

was odd. i"o contributes Spyn,(¢q) towards C(A) and i\’o = Vo &pr K where V is a

nondegenerate subspace of V' with demp(Vy) = (li'nzfg(f"o). Thus we have:

Theorem 18.7. Let p # 2 be a prime and q be an odd prime power such that (p,q) = 1.
Let d > 1 be minimal with respect to p|¢® —1, and assume that d is even. Let G = Span(q)
and V the corresponding symplectic space. Fix A € A,(G), then we have an orthogonal

decomposition:

V=VoLlVidl LV,

where:

(1) Vo = Cv(A) Iis nondegenerate of dimension 2ng where ng = n (mod %).

(2) V1 <:<mV, is nondegenerate of dimension dn;.
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And we have:

Ca(A) = Sprao(@) x [] GU.(g?).

1<i<m
SECTION 19 : Cg(A) WHERE G = GUn(q) AND A € A,(G)

In this section we consider C;{A) where "= GU,(¢q) and A € A,(G) with (p,¢) = 1.
We also consider the decomposition of the corresponding unitary space under the action of
A. Note that in section 16 we showed that if p # 2 is prime with plg—1, then A,(GU,(q))
is Cohen-Macaulay of dimension n — 1. Also note that if p|g + 1, then there is a central
elementary abelian p-subgroup Z < G'U,(¢q). Thus, by Proposition 2.4 on pg. 106 in [Q],
A,(GU,(q)) is contractible. Hence in this section we will mostly be interested in the case
when ptq? — 1. However, we first need to analyze the case when p|q+1 in slightly greater
detail.

Let p be a prime such that (p,q) = 1, ¢ = GU,(q), and A € A,(G). Let (V, f)
be the corresponding unitary space over F' = F,». Assume that pl¢ + 1, and consider a
decomposition of V = GA}V,\ into homogeneous components under the action of A. Let

®={):A— F*|Vy,#0} and note that forall A\ € ® and ¢ € A we have:
(19.1) Ma)) =Xa@’)=1 = NP =1 = A =1 asp|l¢g+ 1.
Now given A,y € ®, let ueVy, veV,, a€ A and consider:
f(u,0) = flau,av) = f(A(a)u,3(a)v) = A(a)(a) f(u.0).
Thus we have:
(19.2) (1=XMa)y(a)) flu,v) =0 VAyeb, a€c A ueV,,andvelV,.
But by (19.1) we have:
(19.3) 1-XMa)y(a)! =0 <= (@)™ = MNa)y(a)! =0V a €A &= A=7.

Thus, taking into consideration (19.2) and (19.3), we see that if A # v € ® then f(u,v) =0

VueV,, veV, thatis, Vy L V, if A # v € . By the nondegeneracy of f, we thus
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have V) is nondegenerate VA € &. So V :,\‘L@ V\ is an orthogonal decomposition of V
€
into nondegenerate F[A]-submodules. If dim(Vy) = ny VA € ® then we have:

Ca(A) = [[GUn(9)-
red

Now assume that ' does not contain any p'" roots of unity, and let d be minimal with
respect to pl¢® — 1. Note that d > 3 implies that p # 2. Given A € A,(G), let K be the
field of definition for the action of A on (V, f), that is, the smallest extension field of F
containing p'" roots of unity. Let I' = Gal(Kk/F) =< o > . Three possibilities exist:

r

Case ]l d is odd. Then K = Fy2a and = d.

This case is very similar to the case when d is odd in section 18. Let V= V&p K and f
be the unitary form on V' which restricts to f onV, (17,f) is an n-dimensional unitary
space over K, so set G = GU,(q%), then G < G Consider a decomposition of V= 6{\9?&
into homogeneous components under the action of A. Let ® = {A: A — K¥ | v\ #£0}. If

1 # A€ ®, then the minimality of d with respect to pl¢g® — 1 implies that

I'Al =d. And
since d is odd, 1 # A € ® implies that A=! ¢ ['A\. Thus, as in section 18, we can choose a
set of positive weights ®+ C ® which are stable under I'.

When we consider the action of A, considered as a subgroup of G, on V then the fact
that pl¢? — 1 and p # 2 implies that we are in the same situation as in section 16. Thus
we know that for each 1 # A € @, ‘A\ is totally singular and f,\ + ‘7)‘—1 is nondegenerate.
Pick orbit representatives Ag, Ai,... ,A,,, of the action of I' on &+, with A\g = 1. For all
1 <1< m, let:

Vi= +eBa Vi=Va, LVongy Lo L Voamay)-

Then V; is a totally singular K[A]-submodule of V' which is stable under the action of T.
Thus, by (25.7.2) on pg. 120 in [Al], there exists V; <V such that Vi=Viop K. Thus,
if dimK(\A/,\l) =n; then dimp(V;) =dn; V1 <i < m. Since f restricted to V is f and
Vi is totally singular, V; is also totally singular for all 1 <7 < m, and V; @ V,” (where

Ve K= @ ‘74,) is a hyperbolic subspace of V. Also:
~yEr A1

Vi= C"}‘(O') =<v+o)+- -+ v)|veE VA",\‘ > \7,\',
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with I' regular on FVA,. Thus, forall 1 <7 <m, V;$ V" contributes G'Ln,,(qu) towards
Ca(A) - by the discussion at the beginning of the chapter.
For i = O,‘A/O = B} 177 = ‘A/AO, and C‘Z (o) = Vy is an ng-dimensional nondegenerate
€L Ao o

subspace of V| and o induces a field automorphism on Cé(\ff&) > GU,o(qY).

Thus we have:

Ca(A) 2 GUn () x [ GLu (8.

1<i<m
And we have an orthogonal decompositionof V=V, L Vi@ V" L--- LV, ®V, into

F[A]-submodules, where:

(1) Vo = Cv(A) is nondegenerate of dimension ng = n (mod 2d), and

(2) Vi@ V™ is a nondegenerate hyperbolic subspace of dimension 2dn; V1 < i< m.

=2 is odd.

Case Il d=2(mod 4). Then K = Fy and |T'| = §

As in Case [, let (VA,f) be an n-dimensional unitary space over K with V=Vark
and f]v = f. Let V= 7{){\ be a decomposition of V into homogeneous components
under the action of A. Let G = GUy,(¢q%) and & = {A:A— 1\"“]?\ # 0} as before. Since
Pt q% — 1, our analysis of the case when p|g+ 1 tells us that Vy is nondegenerate for each
Aegd.

Let Ao, A1,...,A, be orbit representatives of the action of I' on ®, with Ay = 1.
For1 <i<m, let V; = g)\ V,. Then V; is a nondegenerate K[A]-submodule of V
stable under I'. Thus, agai;/ b); ‘(‘25.7.2) on pg. 120 in [A1], there exists an F[A]-submodule
V; <V with f/\’l = V;®pr K. Hence, if(lin'zh-(f’,\i ) = n;, then dimp(V;) = g—ni Vi<i<m.

Arguing as in Case I, V; is nondegenerate. Also:
Vi=Cp (o) =<v+o(v)+-+ar (v)]ve Vs, >2 V),

and so V; contibutes GU,, (¢%) towards C(A) = Ca(A)n Cilo).
For : = 0, we have f”o = \AN = \7’,\0. Thus CVO(U) = Vp, a nondegenerate
yEM o
subspace of V' with dimg(Vp) = dimp(Vy), and o induces a field automorphism on

CG(‘A/OL) o G’Lno(q%). So, Vg contributes GU,,(¢q) towards C(A).
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So we have:

CalA) = GUy(q) x [] GUnila?).
1<i<m

And we have an orthogonal decomposition of V. = Vy L Vi L --- L V,, into F[A]
submodules, where:

(1) Vo = Cy(A) is nondegenerate and dim(Vy) = n (mod £).

(2) Vi is nondegenerate of dimension %ni for each 1 < i < m.
Case 111 d =0 (mod 4). Then K = Fy and |I| = § is even.

As K is the field of definition for A, and |K : F| is even, by (7.6.1) on pg. 493 in [A5],
it is not possible to define a unitary structure f on V =V @p K which restricts to f “on
V. Thus we have to use a different method to compute Cg(A).

Throughout the remainder of this section, let {¢; | 1 < ¢ < n} be an orthonormal basis
for V, which exists by (21.5) on pg. 87 in [Al]. Consider V' as a vector space over F' and
let V=V @F K be the corresponding space over K, with basis {e; ® 1|1 <7< n}. By
abuse of notation, we refer to ¢; ® 1 alsoase; V1<i<n IfG= GL(V) = GL,(q%),
then given the choice of basis above we have a representation of G as a subset of M,(q%)
- the n X n matrices over K. And we can define the following two maps:

Let 0 : K — K, defined by a — a?, be the map such that I' =< o? > . Then
o actson GG asa field automorphism; that is, (a;;)7 = (a;’j ). We also have the
transpose inverse map 0 : G — G defined by ¢ = '¢g™!. Define r = 06 : G—G

and note that 08 = 6o and 6> =1 imply that I =< ¢ >=< 7% > .

Also note that since {e¢; | 1 < ¢ < n} was chosen to be an orthonormal basis for V' we
have:

G = GUa(q) = Cpa(7).

Let V* be the dual space to V and {f; | 1 <i < n} the basis dual to {¢;}. Note that

given g€ GG, veV, and w € V" we have:

(19.4) (¢°w)(gv) = w(v) which implies (¢°w)(v) = w(g™'v).
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fwelet U=V V*, then we have a linear representation p : G — GL(U) given by:
plo)v+w)=gv+g°w Vge G, ve ‘A, we V.

And with a basis for U given by {¢;, fi | | <7 < n}, we have the following maps defined
on U :

0:U — U is defined by (Yaje; + X3, f,)7 = (Yale;+ E67 f;). And 0:U — U

is defined by (Saue; + X5:fi)¢ = Sa,fi + YB3ie;. Let 7 = 06, and note that

06 = 0o and 6? = 1 imply that 7?2 = ¢2. Also note that 0(‘7) = V*, hence

T(V) = V* - with both V and V* considered as subspaces of U.

The definition of ¢ and 8 on G and U implies that for all g € G and u € U we have:
(19.5)  p(g”)(u”) = (p(g)u)” and p(g°)(u”) = (p(g)u)” = plg")(u7) = (p(g)u)".
Consider Cy (1) =< v+v" |v € Cy(r?) > . Nowv = Y aje; + 3 8:fi € Cy(7?) if and
only if:
v = Zai’zei + Zﬂ?zﬁ = Zam + Z/Bifi &= a;, ;€ FY1<i<n.
Furthermore, we have:
vhro =Y (it B)eit+ ) (ol + B

= Z(ai + B )ei + Z(a,? + 537 ) [ (since g€ FV1<i<n)
= Z(‘li + B])e: + Z((Yz' + 8171 fi = Z7i€i +A7fiwithy, e FY1I<i<n
So we have:
Cu(r)y=<wv+Tv]0vE ()';,(TZ) > .
Since T(‘/}) = V*, we can define f': Cu(t)x Cuy(r) — F by fllv+ rv,w+Tw) = Tw(v).
Lemma 19.6. (Cu(7), f') is a unitary space over F, with group of isometries G = C ().

Proof. We first show that (C'y(7), f') is a unitary space, and then show that C's(7) is the

group of isometries of (Cy(7), f).
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Let v+ 1v = Yaje; +al fi, w+ 7w = X3¢, + 37 f;, u+ru€ Cy(r) and a € K. Then:
f'(v +rmv,wtTwtu+tTu)=1(w+ u)(v) =
Tw(v)+ ru(v) = fl(v+ 1o,w+ Tw) + f'(v+ 70,0 + TU).
The fact that:
flotmo+w+rwu+t7u)= fllo+rv,u+1u)+ f'(w+ 7w, u+ Tu), and
ffla(v+1o),w+7Tw) = af'(v+ Tv,w + TW)
are similarly proven. Also, note that:
fl(w+ Tw,v+ 7v) = To(w) = LalB; = Ea;’ﬁ;’g = (Xa; 8N = (f'(v+ To,w+ Tw))’.
Finally, given 0 # v+7v € Cy(7), let w+7w € U such that 7w = v*. Since v € Cy(7?)
we have v* = 7w € Cp.(7?); thatis, w + 7w € Cy(r). Then we have:
fv+ 7,04+ 1w) = Tw(v) = v*(v) = 1.
Thus f’ is nondegenerate; and by the preceding discussion, (Cy(7), f') is a unitary space
over F.
To show that Cx(7) is the group of isometries of (Cy(7), f'), it suffices to show

containment since both groups are isomorphic to GU,(q). Now given g € C's(7), and

v+ 71y, w4 TWw € Cy(r) we have:

T (p(g)(v + T0), p(g)(w + Tw))
= fl(p(g)v + p(g)Tv, p(g)w + p(g)Tw) = f'(p(g)v + p(g7 )T, plg)w + p(g7)Tw)
= fi(p(g)v + (p(9)v) ", plg)w + (p(g)w)™) (by (19.5))
= (p(g)w) (p(g)v) = plg" NTw)(p(g)v) = plg)(Tw)(p(g)v)
= ¢*(rw)(gv) = rw(v) (by (19.4))
= fl(v+ 1v,w + Tw).
So Cg(7) is contained in, and thus equals, the group of isometries of (Cy(7), f'). O
Note that V = Cy(7?) by the definition of V' and the fact that I =< 72 > . Thus we

have:
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Lemma 19.7. The map 7 : V — Cy(r) induces a G-invariant isomorphism between

unitary spaces.

Proof. Since V- = Cp(r?) and Cuy(r) =< v+ 71v | v € Cyp(7?) >, 7 is certainly an
isomorphism of vector spaces.

Also given g € G and v € V' we have:

m(p(g)v) = p(g)v + T(p(g)v) = p(g)v + p(g7)7(v) (by (19.4))

= p(g)v + p(g)T(v) (since G = Cx(7)) = p(g)(v + 7(v)) = p(g)7(v).

Thus it remains to show that = is a homomorphism of unitary spaces. Recall that
the basis for V {e; | 1 < i< n} isinduced up from an orthonormal basis {e;} for V.
Thus we have 7(e;) = f;, the vector dual to ¢;, forall 1 <7 < n. To show that = isa
homomorphism of unitary spaces, it suffices to show that {z(¢;)} forms an orthonormal

basis for (Cy(7), f'). Sofor 1 <i,j7 < n, consider:

fl(m(ei).m(es)) = ['(ei+ five; + [j) = filei) = bij = fleir€;).
Thus 7 does give a (G-invariant isomorphism of unitary spaces as claimed. O

In view of Lemmas 19.6 and 19.7 we will identify (Cy(7), f') with (V, f) both having
group of isometries equal to G = C (7). We are thus interested in studying the decompo-
sition of Cy(7) into homogeneous components under the action of A, and the contribution
of each homogeneous component towards C'(A) = Cxn(A) N Ca(T).

Consider a decomposition of V= 3\>f\ into homogeneous components under the action
of A. Let ® = {A: A — K" |V, # 0}, and note that for all A € ®,a € A we have
Aa)? = AaP) = 1. Similarly, let V* = ﬁ(jﬁﬂ}* be a decomposition into homogeneous
components under the action of A and A = {¢: A — K* | VA(;‘ # 0}. Then note that we
have a decomposition of U = ¢ VA\ & ﬁa‘?‘; into homogeneous components under the

AeP
action of A. We fix the following notation:

(1) Given A € ®, let (V3)* be the annihilator if V* of all V, for v # A. Note that

(ﬁ})* can be identified with the dual space of V.
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(2) Given X € ®, let 'V, = EEI-)/\QY; and (I'V,)* is the annihilator in V* of all ‘A/g
~er

for 8 ¢ TA. Note that (I'Vy)* = @\(177)*. Given ¢ € A, TV} and (I'V})" are
~vel' )
similarly defined.

Fix A € ® and consider T(IA/X). Given v € f”,\, a € A, remember that @ € Cs(7), so

by (19.5) we have:

pla)y” = p(a™ v = (pla)v) = (Ma)v)' = Aa)Tv".

So we have: (V) = ,V\’/\*q. Given the definition of I'Vy, we thus have:

(19.8) V) =r( @ V)= ¢ r(V,)= @ Vi= & V=TIV
yET A yELA ~yer'A YEI' A9

If welet T =< 7 >, then we have:

(19.9) T‘?,\ = @ ?N & P ‘A(; (since we have I' =< 72 >).

yeI'N el
We also have the following result:

Lemma 19.10. Given 1 # A € &, we have:

(Va)" = Vi

Proof. Pick a basis X = {z; |1 <¢<n} of V consisting of “weight™ vectors; that is, for
each 1 <7 < n, there exists A € ® such that z; € f\A Let X* = {L;} be the dual basis.
It suffices to show that given z; € ‘A\ we have 27 € ‘A\*_‘ Let x; € ﬁ',\, and T; € X

then for all ¢ € A we have:

(p(a)z})(z;) = ((lHJL';)(;L'i) = .”L';((I,_l.’l/‘i) (by (19.4) )
= .r;(/\(a,)'lrci) = /\((z)"lzr;f(;lri) = Ma)7'6;; (Kronecker delta).

~

Thus we see that (I//\'A)* = V., as claimed. O

In view of Lemma 19.10 and the definition of (I‘/V\',\)*, we have:

o~ o~

19.11 )y = @ (V)= @ V= @ Vr=TIVo..
( ) ( /\) 'yg?“/\( ’Y) 7617’,\ v A/Gléj/\-l i A



Results about spaces with forms 124

Nowif 1 #X € @& with A7! € I'\?, then A7! = A for some 0 < < %. But we

assumed that d = 0 (mod 4) is minimal with respect to pl¢® — 1, therefore p{qg‘ + 1. Since

2r 41

d 4
AP =1, we thus have A™! = A?°. And thus we have A7 = A7~ . But that implies:

d=4r+2 (mod d) <= 4r+ 2= 0 (mod d),
a contradiction since d = 0 (mod 4). Hence,if 1 # A € ¢, then:
(19.12) (Va)* = Vi £V} forany ¢ € TA".

~ ~ 4
Now let v € ® such that 7(V,) = V_,; that is, V = VA 1, or equivalently v7 = \9%,

Then we have:

(d-1) (d—2)

4
7% =\ = (A\9)¢ MY,

Thus, given 1 # A € &, if we choose v € ¢ such that T({Z,) = i\/"/\’“_,, then we have:
(V) =V = f(; for some ¢ € 'A%,

Note that v ¢ T'\, since otherwise 7 = A~! € '\?, a contradiction to (19.12).

Thus given 1 # A € &, we can find vy € & such that:

TVi= @& Vo® @ vﬂ_ & Vo @ vﬁzlv\@r(x * 1),

o€l A BET A ael’ A Ber~—1
(19.13) ™W,= o V,o @ Vi= gV, o Vi=rV,al(V), and
n€l~y pel~e nely nEl A1

TV\+ TV, =TV, & TV,.

By the remark immediately following Lemma 19.7 we want to understand the decompo-
sition of Cy(7) into homogeneous components under the action of A, and thus need to
understand the structure of Cpp (7) forall A€ @. Let 1A € ® and y € & such that
T(IA/ ) = ‘A/A*.x. Let ny = (linzK(f«\&) then since T( = \) d‘im(‘//\iy) is also equal to

ny. By (19.11) we have: (II )" =TV ;. And by (19.8) we have:

7(TVy) = vy = Ff’;ﬂ (as v~ € I'AY) = I‘(f’l,)* (by Lemma 19.10).
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To understand the structure of C’T‘7\ (), we want to prove the following three facts:

(1) Cpp (1) is totally singular under the action of f' for A # 1.
2) Crp. (1) ® Crp (T) is a hyperbolic subspace of V' under the action of f' when
TV, TV,
47 = AL
(3) If $ € @ such that ¢7 ¢ TA~!, then Cro(T) & C'T;,d)(r) is totally singular.

Now TVA = IWA/,\ & (I“A/A)* by (19.13) and (19.11); thus:
Crp(T)=<v+7Tv]VvE Crf/}(’r“)) > .

If we pick a basis {@1,... ,2,,} for I'Vy, then {ray,... ,72,,} isabasis for 'V}, = I‘VA:‘;I.

n)
Now, Cpp (7°) =< 3 ;x| a; € F >, so we have:
i=1

T((JFQ\(T{Z)) =< Salre; |o; € F >= C[‘.‘A/;_l (%) = ((7”77(7'2))*.

Thus given v € CF%(TZ), TV € ((,,E'F‘A/V(TQ))* which is contained in the annihilator of
CI‘VA(TZ) since I'Vy N I‘Vw = 0. Since the action of f' is defined by f'(v+ rv,w+ Tw) =
Tw(v), and by the preceding discussion we see that for v, w € Cry, (r%), fl(v+rv, wtTw) =

Tw(v) = 0. Thus:
f' restricted to Crp, () is identically 0.
Since dimK(IW?A) = %nA, we have dimp((;'T‘;A(T‘)) = %nk. Thus we have shown:

19.14)  C. .y (7) is a (Lny)-dimensional totally singular F[A]-submodule of V.
TV, 2

Now consider CT‘A,A(T) & CYTVW(T) where 77 = A~!. By (19.13) and (19.11) we have:
Cro (1)@ Crp (1) =< v41v|ve Cp (T7) @ Crp (77) >

But we have:

T(C’VI‘VA(TQ) t C’r‘?w(Tz)) = T(‘C‘er(\ ('7'2)) S T(Crf/‘/(rz))
(19.15) R o, R ”
(Crp, (7)) & (Crp (79)" = (Cpp (77) & Cpp (T7)
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If we let W = CF‘A,A(Tz) & CFV.,(T;Z)’ then we have Cpp (1) @ Cpp (7) = < v+ 7v |
veW >, where 7(W) = (W)* which can be identified with the dual space of W. Since

fl(v+1v,w+ Tw) = Tw(v), we see that:
f! restricted to Cro (T) & QT(/Q (7) is nondegenerate.

Since dimp(Corp, (7)) = dimp(Crp (7)) = gn,\, we have:

(19.16)  Given A # 1 and ¥ such that y¢ = A\71, (,7T‘7A(T)59(7T‘7~(7‘) is a dn\-dimensional

hyperbolic F[A]-submodule of V.
Finally, consider ¢ € ® such that ¢7 ¢ TA~!, then:
T(CI‘\?’é(TZ)) n (CFV,\ (Tz))* = Crf/‘;«q (Tz,) N C"r\?;_l (TZ) =0,

since ¢ ¢ TA~!. Thus, arguing as in the discussion immediately preceding (19.14), we
have:
(1917)If A # 1 and ¢ € ® such that ¢? ¢ TA™1, then Crpy (1) Crp, (1) is a totally

singular subspace of V.

Since for each ¢ € A, there exists A € & such that A7 = ¢, it is possible to choose a
set of positive orbit representatives, say ®*, of the action of I' on ®, with the following

properties:
Let &t = {Xg,A1,... ,An} with Ag = 1. Then we have:
(HHO0<i#j<m, then \; ¢ I'\; and A ¢ I‘)\j_l.

(2) If foreach 1 <7< m weset Al € ® such that T(VA’/\:) =V then we have

‘\—-13

S =T{N, A, AL |1 <i<m} and A = T{X. A/, (AD7 ]| 1 <i<m}.
By the definition of ®* and (19.13) we have:

U=TV& & (TV, &TVy).
1<i<m !
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Foreach 0 < i< m, let diml\»(f/)\',) = n;. Then, by the discussion preceding the definition
of @t for 1 <i# j < m we have:

(a) ('TV (r) isa ( 1; )-dimensional totally singular F[A]-submodule of V.

(b) Cyryp, (T) &) CT‘; ’(7') is a (dn;)-dimensional F[A]-submodule of V.

(c) CTV (r) is orthogonal to both € (T and CT@' (r).
Now for 1 < ¢ < m, 7T acts regularly on TV,\', thus CTV"A,.(T) =<v+TU+-- 4701y {
vE ?A, > is isomorphic to i\",\, as N-subspaces. And by (19.14) and (19.16) Cpp (1) ®
CTVA, (7) is a hyperbolic subspace of V' and thus contributes G’L(V\‘) = G L, (q%) towards
Cs(A).
For Ag, we have T‘?)\O = VA’AO e (ff,\g)*, so we have:

(a) CTV,\O(T) is a nondegenerate F'[A]-submodule of V' with dim(CT‘A,AO(T)) = ng.

(b) CT"},\O(T) is orthogonal to CT‘A,Ax () and CTVA, (r) forall 1 <i<m.
Now 7 induces a field automorphism on Tff\f\o, thus Cpp, (7) contributes GUy,(q)

0

towards C(A). And we have the following result:

Ca(A) = GU(q) x [ GLni(a®.

1<i<m
We also have an orthogonal decomposition of V=V, L Vi V™ L --- LV, &V, into
F[A]-submodules, where:
(1) Vo = Cy(A) is nondegenerate of dimension ng = n (mod d).

(2) And forall 1 << m, V;d:V.™

.~ is hyperbolic of dimension dn; and Vi, and V;”

are totally singular.

This case-by-case analysis gives us the following result:

Theorem 19.18. Let (G = GU,(q), p be a prime such that (p,q) =1, and A € A,(G).
Let d > 3 be minimal with respect to p|¢® — 1; then we have:
(GU.o(q) % [] GLu(q"), ifd is odd,
1<i<m
. o
Ca(A) = GUry(q) X H GU, (q2), ifd = 2 (mod 4),
1<i<m

GUno(q) x [ GLn.(¢"). ifd=0 (mod 1),
1<i<m
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where n; (for 0 < ¢ < m) is as defined in the preceding discussion. O

SECTION 20 : BASIC RESULTS ABOUT A,(G) WHERE G = GL,(q), Span(q), OR GUy(q)

In this section we state some results about the Quillen complex of GLn(q), Sp2n(q), and
GU,(q). These results are well known and are stated mainly for completeness. We shall
use the results of the previous two sections along with results of Aschbacher, Gorenstein,
and Lyons to establish the p-rank of ¢ and the connectivity of A,(G) — where G is one
of GLn(q),5p2a(q), or GUn(q).

Let G = GL,(q), Span(q), or GU,(q); p be a prime such that (p,¢) = 1, and d be
minimal with respect to p|¢® — 1. Note that G'L,(¢q) can be considered as the group of
isometries of (V, f) where f is the trivial form; that is, f(u,v) = 0V u,v € V. We use
this convention for notational convenience. Before we can compute m,(G), we need the

following two results:

Lemma 20.1. Suppose that a finite abelian group A acts irreducibly and faithfully on an

additive group V. Then A is cyclic.
Proof. This is (5.21) on pg. 159 in [Su]. a

Lemma 20.2. Let G = G'L,(q) and V' an n-dimensional vector space over ' = F,. Let
p be a prime with (p,q) = 1, and let d be minimal with repect to pl¢? — 1. Given
A € A,(G), we have a decomposition of V. = & V; into homogeneous components

0<i<m
where Vo = Cyv(A) andV 1 < i< m dim(V;) =0 (mod d). We also have:

Ca(A) 2 Glny()x J[ GLn(e"),
1<i<m
where n; = dim(V;) V0 <@ < m.
Proof. Let K = Fya and I' = Gal(KN/F) =< 0 > . Let V=V Gp K and G = G'L”(qd) >

G, and consider A as an element of A,((G). As in section 15 and 16 we can consider a

decomposition of V = ¢V, into homogeneous components under the action of A.
A
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Let ® = {A: A — K*|V\ # 0}, and note that I' actson & since o(Vy) = VA’(,(,\). Choose
orbit representatives, Ag,Ay,... , A, for this action, with Ay = 1. For each 0 < ¢ < m,
let n; = dimK(YA/,\'.) and V; = E»JIEA i\ﬂ, Since V 0 < 1.< m, f\z is normalized by T'; by
(25.7.2) on pg. 120 in [A2], ther;/ exi;ts F[A]-submodules V; < V such that V; = V; @ K.

If 1 < ¢ < m then, arguing as in the discussion prior to Theorem 18.2, the minimality
of d implies that [I'A;| = d. Thus, dimp(V;) = dim,;\»(ﬂ-) = dn;. Also, as K-vector spaces
V& ‘7,\., so V; contributes GLn,.(q‘i) towards C'¢(A).

For ¢ = 0, Vo = 6’,\0 implies that dimp(Vy) = dim;\v-(‘A/AO) = ng. Also, since Vy =
Cy, (), Vo contributes GL,,(q) towards Cc(A).

Thus, we have a decomposition of V = Vo & Vi @ --- @ Vi where dim(V;) = dﬁi

V1<i<m. Also:

Ca(A) = GLny(q) [[ GLn.(¢*),

1<i<m
as claimed. O
We are now ready to compute m,((). Note that in the case when G' = Spy,(¢q) or
GUy,(q), the value of m,(G) will depend on the parity of d. This is not surprising since
the decomposition of the corresponding symplectic and unitary form depended on the value

of d, and m,(G) depends on this decomposition.

Theorem 20.3. Let G = GL,(q), Sp2n(q) or GU,(q), and (V,f) be the corresponding
space with form. Let p be a prime with (p,q) = 1, and let d be minimal with respect to

pl¢® — 1. Then we have my(G) =k where k is given as follows:
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Table 3.

Group(G) Prime(p) d n’
(1) GLn(q) # 2 > 1 n=~kd+r
(2) Span(q) # 2 Odd (> 1) n="kd+r
(3) Any Even® n= /"% +r
(1) GUn(q) # 2 Odd (> 1) n=2kd+r
(5) Any d =72 {(mod 1) n = A:,i + 7
(6) Any d =0 (mod 1) n="kd+r

v

a. When we write n = kx + r. we mean 0 < r < where x = 2d. d, or
b. When (i = Spy,.(¢q) and d is even. in view of Theorem 18.7. we have to restrict our

attention to the case when ¢ is odd.

Proof. ¥ix A € A,((G). From Theorems 18.2 and 18.7. the case-by-case analysis in section
19 and Lemma 20.2 we have the following decomposition of (V. f) into F[A]-submodules,

where the numbers correspond 1o those in the table above:

() V=Vo:p Vo0V, where dim(Vy) =dn; Y1 <t <m.

)V =V, L vte v L L VgV~
1 1

m g m

with dim(l'ﬁ) = dim(}V;7) = dn;
Vi<i<m.

B V=VvgLVy L---1LV, withdim(Vi}=dn; V1 <1< m.

(4 Vo= Vo L Ve V7 Lo LVE Vs with (11'71:(‘}“*) = dum(V;7) = dny
Y1<i<m.

(G) V=V L VL. LV, withdim(V,)=%n, V1<i<m,

(6) Vo= Vo L Vb, Lo LV oV with dim(VT) = dim(V]7) = Sy

V1< <m.

Note that by the definition of k. m < & in all cases. In all of the cases for 1 <7 < m,
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let W; be a simple F[A]-submodule such that V; =< W | W = W; > in cases 1, 3, and
5; and Vi+ < W | W = W, > in the other cases. For 1 < i < m, let A; = Cx(V;)
in cases 1, 3, and 5; and let A; = C4(V.:t & V,7) in the other cases. Note that by the
definition of W; and the action of A on V, in all cases A; = C4(W;). Also note that in
all cases 1<P<mA“' =1 since A is nontrivial and Vy = Cy(A). Since A; = Co(W;), A is

elementary abelian, and W; is simple, by Lemma 20.1 in all cases A/A; = Z/pZ. Thus we

have a normal series:

A>A>2A4NA2>2---> N A >1,
1<i<m~1

with factor groups isomorphic to 1 or Z/pZ. Therefore my(A) < m < k. Since this result
holds for all A € A,(G), by the definition of m,(G), we have m,(G) < k.

Now, in all of the cases above, setting n; = 1V 1 < i < m, by the definition of k£, we have
m = k. Thus we can find A 2 Ay X Ay X -+ - X Ay whereV 1< i<k A; € Ap(G;), where
G; is the isometry group of V; or V;* ¢ V;™ depending on the case under consideration.
Thus mpy(G) > k.

Hence m,(G) = k as claimed. a

To any finite group GG and prime divisor, p, of the order of G, we have associated two
simplicial complexes —~ the Quillen and the Brown complexes. We now associate a third
complex to G at p. Recall the definition of the clique complex, K(A), of a graph, A,
from section 10.

Given a finite group ' and a prime p dividing |(], let A,(G) be the graph on the
vertex set {A < G| |A| = p} with A, A" € A,(G) adjacent if and only if [A,A'] = 1.
Ap(G) is called the commuting graph of G at p. The clique complex K,(G) = K(A,(G))

is called the commuting complex of G at p. It is well known that given (G and p as above:
Sp(G) ~ Ap(G) ~ K, (G),

(where “~” indicates “homotopic™). For a proof see (5.2-3) on pp. 14-15 in [A2].
Since Ap(G) ~ K, (G) = K(A(G)), Ap(G) is connected if and only if Ap(G) is

connected. However, by (46.6) on pg. 247 in [Al], we know that A,(G) is disconnected
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if and only if G contains a strongly p-embedded subgroup (see pp. 246-247 in [A1] for a
definition of strongly p-embedded subgroups). The above fact along with the classification
theorem and a result of Gorenstein and Lyons on strongly p-embedded subgroups — 24.1

on pg. 307 in [GL] - gives us the following lemma:

Lemma 20.4. Given a finite group G and a prime p| |G|, A,(G) is disconnected if and
only ifOp(G) =1 and mp(G) =1 or < A, (G) > [O,(< Ap(G) >) is one of the following:
(1) Simple of Lie type of Lie rank 1 and characteristic p.
(2) Ayp withp > 5.
(3) 2G(3), L3(4), or My; withp = 3.
(4) Aut(52(32)), 2Fy(2), Mec, or M(22) with p=5.
(5) Jsy withp=11.

Proof. This is (6.2) on pg. 16 in [A2]. O

Now let G = GLn(q) or Span(q) and assume that pl¢ — 1, then by Theorem 12.4 on
pg. 126 in [Q] and Theorem 15.12, A,(G) is connected if m,(G) > 2. If G = GU,(q) and
plg—1, then two either p = 2 in which case G contains a central 2-subgroup and A,(G) is
contractible by Proposition 2.4 on pg. 106 in [Q]; or p # 2 in which case A, () is connected
when m,(G') > 2 by Theorem 16.10. We will show that if G = G'L,(q), Sp2n(q), or GU,(q)
and p is a prime such that (p,q) = 1 and m,(G) > 2, then A,(G) is almost always
connected. By the above discussion we can restrict our attention to p{¢— 1. We can now

state the main result about connectivity of A,(G) :

Theorem 20.5. Let G = GL,(q),Span(q), or GU,(q) and let p be a prime such that
(pyq) = 1. If mp(G) > 2, then A,(G) is connected.

Proof. Let N =< Ap(G) > . Ifp

Z((G)|, then O,(G) # 1; thus, by Proposition 2.4 on
pg. 106 in [Q], A,(G) is contractible and we are done.

So assume that p { |Z((')|. This assumption, along with the fact that m,(G) > 2
and Theorem 20.3, implies that i ¢ {G/'Ly(2),GLa(3), Sp2(2), Sp2(3), GUs(4)}. Therefore
Z(G) = 0,(G). By Theorem 9.15, the canonical homomorphism 7 : G — G/Op(G) = G
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induces an isomorphism between 4,(G) and A,(G), since O () is central. Note that
mp(G) > 2, and if 7(N) = N, then m,(N) > 2. Assume that A,(G) is disconnected;
then, by Lemma 20.4, N is in the list given in Lemma 20.4. Since N is classical and
mp(N) > 1, N = L3(4) with p=3. Equivalently, G = G'L3(4) with p = 3, contradicting

our assumption that p{|Z(G)|. Thus A,(G)~ hence A,(G) - is connected. O

The results from this section will play a crucial role in our computations of the simple
connectivity of the Quillen complexes for G L,(q),5p2.(q), and GU,(q) carried out in

chapter 6.

SECTION 21 : THE ACTION OF A ON THE TiTs BUILDING OF V. THE d: ODD CASE

Let G = Spy,(q) or GU,(¢q) and let p be a prime such that (p,q) = 1. Let d be the
order of ¢ in Z/pZ, that is, the minimal integer with respect to p|(¢? — 1). In this section
we consider the case when d > 3 is odd. Let {V,f) be the 2n-dimensional symplectic
space over ' = F, when (G = Sp;,(q); orlet (V,f) be the n-dimensional unitary space
over F' = F. when & = GU,(q). Let K = F« when G = Span(q), and K = Fpa
when G = GU,(q). Then we have I' = Gal(K/F) =< o >, with |I'| = d. Finally, let
V=V ®p K with f the symplectic or unitary form on V' such that flv = f.

Given A € Ap(G), we want to analyze the action of A on the Tits building of V.
So fix an A € A,(G). By Theorem 18.2 and Case I in section 19, we have an orthogonal

decomposition of:

VeV LVt a v, L LV gV,

m

into homogeneous components under the action of A. Here Vi = C'y(A) is nondegenerate
and V1 < i< m; we have V¥ and V,™ are totally singular with V:t @ V.o a hyperbolic
subspace of dimension 2dn;. Also remember that if V = & V) is a decomposition of V

AED
into homogeneous components under the action of A, then I' acts of & and we have:

(1) ® D ®* a set of positive weights fixed by T’

(2) XosA1y... 5 Am, the orbit representatives of the I-action of %, with Ag = 1.
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B)Vi<i<m V= @ V,=Vtapk, V- @ V, =V, ®pK; and
e\, ~verx;!

o~

Vi = Cp+(o) =< v+o(v)+ -+ crd_’(v)]v € Vi, > as F-vector spaces and

K3

1l

Vf & VA’,\ as N -vector spaces.
[All of this information is worked out in complete detail in sections 18 and 19 for the
symplectic and unitary spaces, respectively.] )

Now fix 1 < ¢ £ m, and note that by (3) above we have a K -structure on Vi+ as follows:
Given a € K and w € V¥, we define aw = av + o(av) + --- + 0% (av) where w =
v+ 0o(v)+---+ 0% 1(v). Thus given a nontrivial pt" root of unity ¢ € K, it makes sense
to talk about (w for w € V,;¥. Given a subspace U < V;*, we say that U is a K-subspace

of Vi+ if and only if U = KU. We have the following result:

Lemma 21.1. Given a nontrivial p root of unity ( € K and 0 # w € V;*, the set

{w,(w, ..., (4w} is linearly independent over F.

Proof. Assume to the contrary that there exist ag,... ,aq4-1 € F such that

0=aw+aw+ - +ag_1("""w=(ag+ a1+ - @41 Hw

= a9+ a1+ -+ a.d_lg‘d_l =0 since w # 0.

But then ( is a root of a polynomial of degree < d over F, contradicting the minimality

of d with respect to pl¢? — 1. Thus we have {w,Cw,... (" 'w} is linearly independent

over F' as claimed. a
Now given a € A and 0 # w € V;*, we have:

d-—1

aw = a(v+ o(v)+ -+ 07 v)) = M@)o + Ai(a)Ta(v) + -+ Af (a)o?~1(v)

I

M(@)w + o(Ai(@)v) + - + o (Ai(a)o) = Ai(a)uw.

Thus for any 0 # w € V;*, we have Aw = {w,(w,... (" 'w} where ¢ is a nontrivial

p'" of unity. This gives us the following result:

Lemma 21.2. U < Vi'*' is A-invariant if and only if U is a K -subspace of Vi+.
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Proof. If W is a K-subspace of V.t and w € W, then, by the remark immediately

preceding this lemma, we have:
/ — - ~d—1 . e
Aw = {w,(w, ... ,(*TTw} < W.

Thus W is A-invariant.
On the other hand if U is A-invariant for some U < Vi+, let 0 # u € U. Then, by
the remark immediately preceding this lemma, we have Au = {u,(u,...,(* 'u}. Hence

U > Ku and thus U is a K-subspace of V. O

Note that by Lemmas 21.1-2 if AU = U < V;* then dim(U) = 0 (mod d).

Let B be the Tits building of V, and Fiz(A) the full subcomplex of B defined on the
set of simplices {¢ € B | Ao = ¢}. Since the decompositionof V.=V, L --- L VI GV~
is a decomposition into homogeneous components under the action of A, given a totally
singular subspace U < V fixed by the action of A, we have U = Uy L Uy L --- L Uy,
where Uy < Vg, U; < Vi+ V. VI<i<m, and VO <1< m, AU; = U;. This
decomposition leads us to a consideration of the following simplicial complexes:

Define Fiz(A)y to be the full subcomplex of the Tits building of V defined
on the set of simplices fixed under the action of A restricted to V. And similarly
for 1 < ¢ < m, define Fiz(A); to be the full subcomplex of the Tits building
of Vi+ @V, defined on the set of simplices fixed by the action of A restricted
toVioV, .
By the statement preceding the definition of Fiz(A);, we see that the structure of Fiz(A)
can be understood by studying the structure of Fiz(A); V0O < i< m.

When G = Span(q), by Theorem 20.3, we have n = my(G)d + r where 0 <r < d. Let

dim(Vy) = 2ng; then note that since V 1 < i < m, ([i/n'z,(}"f b V") = 2dn;, and d > 3,

we have:

m

(21.3) Z n; > my(G).
1=0

Similarly when G = GU,(q), we have n = 2m,(G)d + r where 0 < r < 2d. Let

dim(Vp) = 2n9+¢ where ¢ = n (mod 2). Then since V1 <i< m, (11771'1,(}";+ @GV,7) = 2dn;,
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and d > 3, we have:

NE

(21.4) n; > my(G).

i=0

Note that since Aly, = 1, we have Fiz(A)g = By the Tits building of V5. Thus by the
Solomon-Tits theorem we have Fixz(A)y is (ny — 1)-spherical.

Fix 1 < < m, and let B; be the Tits building of Vi“' @ V,”. Since Vi+ and V7 are
homogeneous under the action of A, given U € Fixz(A);, we have U = U; & U; where
Uy < VY and U, <V, NUE; and AU; = U; for j = 1,2. By Lemma 21.2, U; and
U, are thus K-subspaces of Vf and V;7. Thus, if 1§i is the Tits building of ‘7/\; oV -1
then Fiz(A); can be identified with the full subcomplex of B; defined on those simpli(;,es
fixed by the action of A restricted to f\ $ ‘Af’"’\l-x. Now pl¢? — 1, and d > 3 odd (i.e.,
p # 2) implies that this last complex is the one analyzed in Lemma 15.5 in the case when
i\’)\' ) V/\TI is symplectic, and in Lemma 16.8 in the case that it is unitary. By the proof
of these lemmas we know that the full subcomplex of IAL defined on those simplices fixed

under the action of A is spherical of dimension n; — 1. Thus we have shown that:
(21.5) Fiz(A);is (n; — 1)-spherical V1 <i<m.

Now one of two cases may occur: |®| = 2d or |[®| > 2d. If |®| = 2d, then the fact
that A # 1 implies that ® = {I'A;,I'A]'} for some positive weight A; € ®*. Thus,
V = Vl+ @ V], and by (21.5) we have Fix(A) = Fix(A); is spherical of dimension
ny—1=m,(G)—1. When |®| > 2d, let pro : V — Vy andV 1 <i<m, pry: V — VgV,
be the canonical projections. If V 0 < i < m, weset D; = CFixz(A);, the cone of Fiz(A),

as defined in section 9, then we have:
pri{ Fiz(A)) = Fiz(A); U {0} = D,,
where Fiz(A); U {0} is ordered by inclusion. Thus we have:

Fix(A)= Do x Dy X ---x D,, = {(0,...,0)}

= Faa( A * Fra(Ay « - x Fue(A)y,.



The action of A on the Tits building of V. The d: odd case 137

Since V0 < i < m, we have Fiz(A); is (n; — 1)-spherical; by Lemma 14.1, we have Fiz(A)

is spherical of dimension ) (n; — 1)+ (m+1-1)= Y n; — 1. But, by (21.3) and (21.4),

=0 1=0
we have ) n; > m,(G) both when G = Spy,(¢) and when G = GU,(¢q). Thus we have
i=0

the following result:

Theorem 21.6. Let G = Spyn(q) or GU,(q) and let p be prime such that (p,q) = 1.
Assume that if d is minimal with respect to pl¢? — 1, then d > 3 is odd. Let B be the
Tits building of the corresponding symplectic or unitary space. Let A € A,(G) be fixed.
If Fiz(A) is the full subcomplex of B defined on the set of simplices {0 € B | Ao = o},

then we have Fix(A) is (m,(G)— 1)-spherical. o

Recall the definition of the graph, A(D), of a simplicial complex D given in section
10. Also recall the definition of a geometric complex given in section 6. Given a geometric
complex K (with type function 7) over an indexing set I, and a subset J C I, the
truncation of K at J is the full subcomplex of A’ defined on the vertex set {z € A(K) |
T(x) € J}. It is well known that if K is a C.M. geometric complex then any truncation of
K is also C.M, see for example (3.5) on pg. 11 in [A2].

Now note that when G = Sp,,.(¢q), then B is C.M. of dimension n—1. And we can define
a type function 7 : A(B) — {0,... ,n— 1} given by 7(2) = dim(x)— 1V x € A(B). Then
(A(B),*,7) is a geometry with B the corresponding geometric complex. Similarly, when
G = GUx(q) then B is C.M. of dimension [§] — 1 where [%] is the greatest integer less
than or equal to §. As above, 7: A(B) — {0,...,[2] — 1} defined by 7(z) = dim(z) — 1
gives B the structure of a geometric complex. And in both cases we can define By to be
the full subcomplex of B defined on the vertex set {x € A(B)|7(z) = —1 (mod d)} =

{r € A(B) | d|dim(z) }. Note that By is a truncation of B.
Lemma 21.7. By is C.M. of dimension (m,(G') - 1).

Proof. As By is a truncation and B is C.M. - by the Solomon-Tits Theorem - By

is C.M. by the comment following the definition of truncations. Now, by Theorem 20.3,
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my(G) = k, where:

(1) n=kd+r (0<r<d) when G = Sp2,(q), and

(2) n=2kd+r (0 <r <2d) when G = GU,(q).
Thus, by the definition of B and the Witt index of the spaces, B does contain totally
singular subspaces of dimensions: d,2d,... ,kd. Thus, By is (k — 1) = (mu(G) — 1)-

dimensional as desired. O

Nowlet V.="V5 L --- L V@V, be the decomposition into homogeneous components
as considered earlier. Let dim(Vp) = 2nod 4+t (0 < t < 2d). We know that for 1 < < m,

dim(V;t @ V") = 2dn;. Thus we have:

(21.8) 2n = Y 2dn; +t = 2kd + 2r (0 < t < 2d) when V is symplectic; that is,
1==0

Yoni =k =my(G).

=0

S

(21.9) n Z 2dn; +t = 2kd + r (0 < t < 2d) when V is unitary; that is, Y n; = k =
1=0 =0
mp(G).

Consider Fiz(A) the full subcomplex of B; defined on those simplices fixed under
the action of A. Let Fiz(A)), = Fiz(A) NnVy and for all 1 < ¢ < m, let Fiz(A), =
Fiz(AY n (V¥ @ V7). If we let By, be the truncation of the Tits building of Vp, then
note that Fiz(A)y = Bo,. We have the following two results:

Lemma 21.10. Fiz(A){ is (ng — 1)-spherical, where dim(Vy) = 2dng + 1 (0 < t < 2d).

Proof. We have Fix(A), = By,, thus the lemma follows from the proof of Lemma 21.7,

considering Vy as a (2dng + t)-dimensional space with (0 <t < 2d). a

Lemma 21.11. Fiz(A). = Fia(A)N( Vi+ V)= Fie(Ad), VI<i<m.

Proof. This follows from the fact that if U < ‘/"ﬁ“ ¢ V.7 such that AU = U, then, by

Lemmas 21.1-2, d|dim(U) V1 <@ < m. a
We know that V 1 < i < m, Fiz(A); is (n; — 1)-spherical. So in view of Lemmas

21.10-11 we have shown that Fix(A)! is (n; — 1)-spherical for all 0 < ¢ < m. Then arguing
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as in the discussion prior to Theorem 21.6, we have Fiz(A)' is spherical of dimension

S(ni—=1)+m= > n; — 1. Thus we have:
1=0 t==0

Theorem 21.12. Let G = GUyn(q) or Sp2,(q), p a prime such that (p,q) = 1, and B
be the Tits building of the corresponding unitary or symplectic space. Assume that ifd is
minimal with respect to pl¢* — 1, thend > 3 “is odd. Set By to be the full subcomplex of
B on the set of vertices {x € A(B) | d|dim(z) }, and let A € A,(G) be fixed. If Fix(A)
is the full subcomplex of By defined on those simplices fixed under the action of A, then

we have:

Fiz(A) is (m,((G) — 1)-spherical.
:

Proof. This result follows trivially from the fact that Fiz(A) is spherical of dimension

Y. n; — 1 and the fact that, by (21.8-9), ¥ n; = m,(G). a
i=0

1=0 =
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Chapter 6
Simple connectivity of p-subgroup complexes

In Chapter 6 we analyze the simple connectivity of A,((/), where G is one of 'L, (q),
Spanlq), or GU,(q) and (p,q) = 1. We shall rely heavily on the linear algebraic results
obtained in chapter 5, along with the n-connectivity of some of the complexes constructed
in chapter 3.

The proof of the simple connectivity of A,((/'L,(¢)) will be by induction on n and
the p-rank of GGL,(¢). In Section 22 we show that in the minimal case Ap(GLn(q)) is
indeed simply connected. In Section 23 we show the simple connectivity. of Ap((.}'Ln((.l)‘)
in the general case. With p and ¢ relatively prime, choose d minimal with respect
to pl¢® — 1. In Section 24 we show that Ap(G) is simply connected when d is odd.
G = Spanlq) or GU,(q). and m (/) > 3. We shall rely on our analysis of Fir(A) in
section 21 for this result. Recall that when pl¢ + 1 and (7 = (7U',(¢), there is a central
elementary abelian p-subgroup 7 of ;. Hence. by Proposition 2.1 on pg. 106 in [Q],
A,(G) is contractible. In Section 25 we show that when pl¢ + 1. ¢ > 5 is odd and

mp(GUn(¢)) >4, A(GU(q))(> Z) is simply connected.

SECTION 22 : SIMPLE CONNECTIVITY OF A (G L, (q)) IN THE MINIMAL CASE

Let (+ = (GL,(¢) and V' be the corresponding vector space over F,. Choose a prime p
such that (p,q) = 1 and d > 2 is minimal with respect to pl¢! — 1. Assume that n = 3d.
Then, by Theorem 20.3, m,((G) = 3. We will show that A,(G) is simply connected by
using the method of n-approzimation developed in [AS1].

Given a simplicial complex D, recall the definition of the graph of D, A(D) given in

section 10. Also remember that given simplicial complexes L and D :
a l-approzimation of L by D is a surjective map © : A(D) — F(B) onto a
family of subcomplexes of . such that each 0 and 1 simplex of 1, is contained

in a member of F{Q) aud:
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(1-Approx) Q O(a) is a (1 — k)-connected subcomplex of L for each
k-simplex o of D, for 0 < k < 2. Recall that —1-connected is equivalent to

nonempty.

Lemma 22.1. Let L, D be simplicial complexes and assume that O is a 1-approximation
of L by D. Foreachz € A(L), letC(x) = {a € A(D) |z € O(a)} regarded as a subgraph
of A(D). Assume that whenever a,b € A(D) and x € O(a) N O(b), there is a path in

C(z) joining a and b. Then L is simply connected if D is simply connected.
Proof. This follows directly from Theorem 3 on pg. 286 in [AS4]. O

Now V  being 3d-dimensional allows us to associate with V' the simply connected
complex B = B(V) which was analyzed in section 10. Let 7 be the type function on B,
also as defined in section 10. Since B is simply connected, A,(G') will be simply connected

if we can find a l-approximation of A,(G) by B which satisfies the criterion of Lemma

22.1.
Lemma 22.2. Let 0 = (xg * ¥y *...*x,) be a simplex of B with 7{x;) < 7(2i41)
Y 0 < i< s Then we have the following:

(1) If r(zs) =3, then G, = K x T, where T <5, and K and S are as follows:

g 0 0
K = 0 g2 0 |€e€G|gieGLlalg)V1<i<3
O O [/R]

> G La(q) X GLa(q) X GLa(q),

S = {permutation matrices of G with three d x d identity blocks} = Ss.

Furthermore, A,(K') is simply connected.

(2) If r(x,) # 3, then Ap(G,) Is simply connected.

Proof. If 7(zs) = 3, then x; = [U1|Uz|Us] is a partition of V, and G, preserves this
partition. Let K be the “pointwise” stabilizer of this partition; that is, KU; = U; V 1 <
i < 3. Then K is as claimed above. S permutes the U;, and T is the subgroup generated

by the admissible permutations. The admissible permutations depend of course on the
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structure of the z; for 0 <7 < s—1. Thus G, = K T as claimed. The fact that A,(K)
is simply connected follows from Lemmas 9.1 5. and the fact that Ap(GLalg)) # @ (by
Theorem 20.3).

So assume that 7(xs) # 3. Now (/, is a parabolic subgroup of G. Let U < G,
be the unipotent radical  a solvable p’-subgroup of (7/,. The canonical homomorphism
T:Ge — Go /U = L, the Levi factor, induces a map of posets f: A (G,) — Ap(L).

By the definition of L. L = (/L4(q) X G L4(q) X G'Ly(q) or GLya(q) X GLa(q). By
Theorems 20.3 and 20.5 we know that A,(G'Ly(q)) # 0@ and A,((/Lyg(q)) is connected.
Thus, by Lemmas 9.4 5, A,(L) is simply connected.

Furthermore, by Theorem 20.3. m,(L) = 3 aund since A,(L) is a pure complex (refer
to section 1) if A(A) =1 forany A € A (L), then A,(L)(> A) # 0.

When L =2 GLy(q) X GLi(q) X GLa(g), let Ly = GLy(¢g) X GLi(q) and Ly = GLy(q).
And when L = GLyq(q) X GL4(q). let Ly = Glaya(q) and Ly = (GLy(g). Then note that
L=L xLy and for?z=1o0r2 if m,(1;) > 2 then, by Lemmas 9.4-5 and Theorem 20.3
and 20.5, A,(L;) is connected. Also. by Theorem 20.3, A,(L;) #0 fori=1and 2. Thus,
L.L; and L, satisfy the criterion of Theorem 9.8, Hence if A € A,(L) with h(A) = 0.
then A,(L)(> A) is connected.

Note that given A € A, (L). [7HA(L)N< )= A(A-U) which.since U is a solvable
p'-subgroup of GG, is (h(A) — I)-connected by Theorem 11.2 on pg. 123 in [Q].

We have thus shown that A,(L) and f: A,(G,) — A,(L) satisfy the criterion of (1.4)
on pg. 5 in [A2]. Therefore. A,(L) simply connected implies that Ay(Go) is simply

connected. Hence statement (2). and thus the lemma, holds. d
We will use the following fact often (without explicitly stating it):

Remark. Given [ € A,((/). by the proof of Lemuma 20.2. every nontrivial irreducible
Fo[A]-submodule of V' has dimension d. Note that since A € A,((/) A # 1. which implies

that A has a nontrivial irreducible F [A]-submodule.

Let A(B) be the graph of B. Given @ € A(B). note that by Lemma 22.2,if 7(x) # 3
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then A,(G ) is simply connected. If 7(z) = 3, let k' be the “pointwise” stabilizer defined
in the proof of Lemma 22.2; that is, K’ = (/L4(q) X GL4(¢) X GL4(q), then A (K) is
simply connected.

So we can define a map O : A(B) — F(0), where F(0) is a family of subcomplexes of
A,(G) defined as follows:

O(x) = { AplCr). il 7(w) # 3. for all x € A(B).

Ap(K), ifr(z) =3,
Lemma 22.3. Given a 0- or 1-simplex 0 of A,(G), o € O(z) for some x € A(B).

Proof. Given a l-simplex, ¢ = (A; < Ay) if Ay € O(z) for some z € A(B), thén
o € O(zx). So it suffices to show that given any A € A,(G), there exists z € A(B) such
that A € O(z).

Fix A € A,(G) and let U be a nontrivial irreducible F,[A]-submodule of V. Then
z =U € A(B) with 7(z) = 1. By the choice of ¥, O(x) = A,((,); so we have A € O(z).

Hence we have the claim. O

Lemma 22.4. Given any simplex 0 in B, 0 O(x) is simply connected.
TEo

Proof. If ¢ is a 0-simplex then the claim follows by the discussion preceding the definition
of 0.

Solet o = (2o * -+ xa,) with 7(a;) < 7(2;41) VO < i< s—1. If 7(zs) = 3, then
IQOG(:I:) = O(xs) = A,(K) which is simply connected. So assume that 0 = (29 *x1) with
T(z0) # 3 # 7(x1). Then O(zg) N O(xy) = Ap(G(sger,)) Which is simply connected by
Lemma 22.2.

So in all cases JCQUG)(;U) is simply connected as claimed. O
Lemma 22.5. O : A(B) — F(0O) is a l-approximation of A,(G') by B.

Proof. This follows from Lemmas 22.3-4 and the definition of a 1-approximation. O

Given A € A,(G), define C(A) ={ a € A(B)| A€ 0O(a) }.
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Lemma 22.6. Let a,b € A(B) and assume that there is an A € A,(G) such that

A € O(a)N O(b), then there is a path in C(A) joining a and b.

Proof. We prove this result by a case-by-case analysis of 7(a) and 7(b).
Case 1: 7(a) =71(b) = ¢, withe=1o0r2. Ife =1, letc=<a,b>, andife =2, let
c=anb. Since A € O(a)NO(b), ¢ isa IFq[.»l]jsul)m()dul(‘. Therefore ¢ € A(B), A € O(c)

and axcxb is a path joining a and bin C(A).

CAsE 2: 7(a) = 1 and 7(b) = 2. A stabilizes anb, soanb = 0or a. If anb = a, then axb
and we are done, so assume that aNb = 0. Let b = by & by be a decomposition of b into
irreducible F [A]-submodules. Then by,b, € A(B) and ¢ = [a]by|b2] € A(B) with 7(¢) =

3. By the definition of b; and b;, ¢ € C(A) and axc*b is a path joining a and bin C(A).

Caste 3: 7(a) = € and 7(b) = 3, with e = 1 or 2. If a *b, we are done. Otherwise, let
c*b with 7(¢) = € and ¢ € C(A). By Case 1 we know that there is a path p in C(A) from

atoc, sopxb is a path joining @ and b in C(A).

CaAst 4: 7(a) = 7(b) = 3. Let ¢xa with 7(¢) = 1 and ¢ € C(A). Then by Case 3 we know
that there is a path p in C(A) from ¢ to b, so a*p is a path in C(A) joining a and b.
This case-by-case analysis shows us that if a,b, and A satisfy the criterion of this claim,

then there is a path in C(A) joining ¢ and b as claimed. O

Theorem 22.7. Let G = G/ L,(q) and p a prime such that (p,q) = 1. Ifd > 2 is minimal

with respect to p[(qd — 1), assume that n = 3d. Then A,((') is simply connected.

Proof. By Theorem 10.8, B is simply connected. The map 0 : A(B) — F(O) is a l-
approximation (by Lemma 22.5) which satisfies the criterion of Lemma 22.1 (by Lemma

22.6). Therefore the result follows from Lemma 22.1. O

SECTION 23 : SIMPLE CONNECTIVITY OF A,(GL,(q)) WHEN my(GLy(q)) >3

Let G = GL,(q), and V' be the corresponding vector space over F,. Choose a prime

p such that (p,q) = 1, and assume that d > 2 is minimal with respect to p|¢? — 1. In
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section 22 we showed that if n = 3d, then A,(G) is simply connected. In this section we
generalize the result to all n > 3d by induction on n and m,(G). We follow the structure
of Quillen’s proof of Theorem 12.4 on pg. 126 in [Q].

Assume that k = [5] > 3. By Theorem 20.3, m,(G) = k > 3. In view of Theorem 22.7
we can assume without loss of generality that-when £ = 3, » # 0; that is, n > 3d. Let B
be the Tits building of V., that is, the order complex of the proper nontrivial subspaces of
V - ordered by inclusion. By the Solomon-Tits Theorem B is C.M. of dimension (n — 2).

If A(B) is the graph of B, then 7 : A(B) — {0,... ,n—2} defined by 7(z) = dim(z)—1
gives us a type function of B. Consider the subcomplex By, of B, defined as the full

subcomplex on the set of simplices:
{(xro<ay < -~ <as)€ B|dim(z;) =0 (mod d) V0 <i<s}.

Note that B, is a truncation of B, as defined in section 21. By the discussion on trunca-
tions, since B is C.M., B, is also C.M. Since n = kd + r with r < d, and by the definition
of By, B, is (k— 1)-dimensional if d{n and it is (k — 2)-dimensional if d|n. Thus, B,

is (k — 2)-connected if dtn and (k — 3)-connected if d{n. Since we assumed that n > 3d:
(23.1) B, is simply connected.

Consider sd(Bg) x Ap(G) D F = {(0,A)lo € Fix(A)}. where sd(By) is the first
barycentric subdivision of By, and Fiz(A) is the full subcomplex of sd(By) defined on
the set of simplices fixed under the action of A. This is the subset of sd(By) x A,(G)
discussed prior to Remark 9.14, and hence is a closed subposet of sd(Bg) x A,(G). For

each o € sd(By) and A € A,(G), define:
F,={A" € A, (G) | (0,A") € F} and Fy = {0’ € sd(By) | (¢'.A) € F}.

By Lemma 9.1 and (23.1) we know that sd(By) is simply connected. Hence, in view of

Theorem 9.13, A,(G) is simply connected if:

(23.2) F, and F4 are simply connected V ¢ € sd(Bg), A € Ay(G).

We first need the following result:
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Lemma 23.3. Let G = GL,(¢q) and consider a prime p with (p,q) = 1. Assume that
d > 2 is minimal with respect to pl¢® — 1 and that n = kd withk > 3. If A € Ap(G)

with h(A) = 0, then A,(G)(> A) is connected.

Proof. By Theorem 20.3 m,(G) = k > 3. And by Lemma 20.2 we have:
CaA) 2 G Ly () X GLy (") X -+ X GLy (q"),

where n = nj + ZS: dn; = ng = dng.

Note that APZZ)(> A) = A(Cs(A))(> A). Nowif ng =0 and s =1, then Cg(A) =
GLi(g%). Now plg¢? — 1, so by Theorem 12.4 on pg. 126 in [Q], A,(Cc(A)) is C.M. of
dimension k£ — 1. Thus, by Lemma 14.2, A,(Ci(A))(> A) is (k — h(A) — 3)-connected;
that is, A,(Cg(A))(> A) is connected since k > 3, and h(A) = 0.

So assume that ng # 0 ors > 1, and let Ky = GLgn,(q) X -+ X GL,,_,(¢%) and
Ky = GL, (q%). Then, by Theorem 20.3 and Theorem 12.4 on pg. 126 in [Q], A,(K;) # §
for : = 1,2. Also if m,(K;) > 2, then A,(K;) is connected by Theorem 12.4 on pg. 126
in [Q], Theorem 20.5 and Lemmas 9.4-5. Thus Cg(A) = Ky x K, Ky, and K, satisfy
the criterion of Theorem 9.8. Hence A,(C(A))(> A) is connected as claimed.

Thus we have shown that A,(G)(> A) = A,(Cu(A))(> A) is connected when m,p(G) >
3 and h(A) = 0. O

Lemma 23.4. Given 0 = (2¢ < 21 < --- < x4) € sd(By), F, is simply connected.

Proof. Let dim(x;) = dk; ¥ 0 < i < s. Note that I, = A,(G,) where G, is a standard
parabolic subgroup. Let I/ < (G, be the unipotent radical, a solvable g-subgroup of G,.
Then the canonical homomorphism 7 : G, — G, /U = L. the Levi factor, induces a map
of posets f: A,(G,) — A,(L).

Note that V A € A, (L), [~ A (L)< A)) = A (A-U); thus, as in the proof of Lemma
22.2, it is (h(A) — 1)-connected by Theorem 11.2 on pg. 123 in [Q].

By the definition of the Levi factor we have:

L= GLdko(([) X (;Ldkl(q) X X C;Ld};g(([) X (,;Izt(q)w
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where t = n — f%)dki = dksy1 + 7 (and kg1 may equal 0). By Theorem 20.3, my(L) =
fil ki =k >3. Thusif h(A) =1, then A (L)(> A) # 0@ since A (L) is a pure complex.
Z=0N0w let A € A,(L) with h(A) =0. If 0 = (2¢) wit,h’dim(:vo) = kd - occurs only when
dtn—then L & GLg(q) with k > 3. So, by Lemma 23.3, A,(L)(> A) is connected.
Otherwise, let Ly = G Lgk,(q) X -+ X G’Ldk;(‘q) and Ly = G'Li(q) when koypq # 0; or
Ly = GLak(q) X -+ X GLgg,_,(q) and Ly = G Ly (q) x GLi{(q) when ksyy = 0. Then,
by Theorem 20.3, A,(L;) # 0 for i = 1,2. Also, by Theorem 20.5 and Lemmas 9.4-5, if
myp(L;) > 2, then A,(L;) is connected for i = 1 or 2. Since L = Ly x Ly, Ly, and Lq
satisfy the criterion of Theorem 9.8, A,(L)(> A) is connected.

Thus, f: Ap(G,) — Ap(L) satisfies the criterion of (1.4) on pg. 5 in [A2]. Therefore,
A,(G,) is simply connected if A,(L) is simply connected. By the structure of L and

Lemma 9.4 we know that:
(23.5) Ap(L) = Ap(GLaky(q)) ¥ Ap(GLag, (q) -+ x Ay(GLgk (q)) ¥ A(G Li(q)),

where, as above, t = dksy + r with kg possibly equal to 0. We show that A,(L) is
simply connected by considering the different cases that arise:

Case l: o = (o). If dim(xg) = dk —~ occurs only when d { n — then A, (L) =
Ap(GL4k(q)) where dk < n. Thus, by induction on n, A,(L) is simply connected.
Otherwise Ap(L) = A,(GLa(q))* Ap(GLi(q)) wheret =dky+7r and k = ko+k; > 3. So
ki > 2 fori = 1or 2, which implies by Theorems 20.3 and 20.5 that either A,(G Lgk,(q))
or A,(GL¢(q)) is connected. Therefore, by Lemma 9.5, A,(L) is simply connected as
claimed.

Casg Il : o= (zg <azy). I ky#0, where t = dky + r, then, by Lemma 9.5, A,(L)
is simply connected. Otherwise, k = ko + k; > 3. Thus, arguing as in Case I, either
Ap(GLgky(q)) or Ap(GLak,(q)) is connected. Therefore, by Lemma 9.5, A,(L) is simply
connected.

Case Il : o =(x9<---<axs)withs>1. In thiscase A,(L) is simply connected by

Lemma 9.5.
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Thus we have shown that A,(L) is simply connected. Hence F, = A(G,) is simply

connected as claimed. O

Let A € A,(G) be fixed. We want to show that F4 = Fir(A) is simply connected.
By Lemma 20.2, we have a decomposition of V' = V- V73 -4 V), into homogeneous
components under the action of A, where 1 = Cyv (). Notethat VI < i< m, dim(V;) =
dn; and so dim(Vy) = dng + r. Now Fie(A) is the subcomplex of sd(y) defined on

the set of vertices {o € B, | Ao = a}. Soif welet Fir(A)Y

to be the full subcomplex of
B, defined on the set of simplices {a € By Ao = o}, then Fia(A) = sd(Fiz( 1)), And
hence, by Lemma 9.1, the question of simplex connectivity of F'y = Fia(A) is reduced to
showing that Fiz(A) is simply connected.

For 1 <i<m, let W; be the n;-dimensional vector space over Fpu. Let B; be the Tits
building of W;, and pr, : V" — V7 be the canonical projections. Let D; = B; U {O,W;}
ordered by inclusion be the double cone of B, as defined in section 9. By the proof of

Lemma 20.2 and the definition of a homogeneous component, we have:
(23.6) priFir(A)) = D;.

For i = 0, let By be the Tits building of V4. and 1;’() be the full subcomplex of By
defined on the vertex set {& € A(By) | dim(e) = 0 (mod d)}. Note that IA}() is a truncation
of Bg. Since dim(Vy) = dng + 1 with 0 < r < d, 1}0 is C.M. of dimension (ng — 1) when
d{n. and dimension (ng — 2) when djn. Let prg : V" — V3 be the canonical projection.

And let Dy be defined as follows:

By U {0} if d 1 n.
Do =< .
By U {045}, if din.

where Dy is ordered by inclusion. Then we have:
(23.7) pro(Fie( 1)) = Dyg.

By (23.6) and (23.7). and since Fia(A) = {0 #£ U - Uy i Uy #F V| U <V} owe

have:
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Case1: dfn Fiz(A) = Do x Dy X -+ X Dy = {(0,...,0)} = By % (By,00) % -+
(Bm,oc) by Lemma 9.2. Here, V1 < i <m, (B;,00) is the poset B; U {W;} ordered
by inclusion. Thus Fiz(A) is simply connected by Lemma 9.5, since each (B;,0c) is
conically contractible for 1 < i < m.

Casg I : djn. Then Fiz(A) = Do x Dy x+--x D,y — {(0,...,0),(x,... ,00)}. Now,
by the Solomon-Tits Theorem, V 1 < ¢ < m B; is (n; — 3)-connected. And by definition,

By is (no — 3)-connected. So, by Corollary 9.11, Fiz(A) is:

Z(ni -3)+(m+1-1)3= Z n; — 3 = (k — 3)-connected.
1=0 1=0

Since we assumed that n > 3d and d|n, we have k > 4. Thus, in this case too, Fiz(A)
is simply connected.

Hence we have shown:
Lemma 23.8. Given A € A,(G), F4 is simply connected. O
In view of (23.2) and Lemmas 23.4 and 23.8 we have the main result of this section:
Theorem 23.9. A,(GL,(q)) is simply connected when m,(GL,(q)) > 3.

Proof. We can assume that (p,q) = 1; otherwise, A,(G L,(q)) is spherical by the Solomon-
Tits Theorem. When plg— 1. then the result follows from Theorem 12.4 on pg. 126 in [Q].

Finally the result was shown to be true for the case p{ ¢ — 1 in this section. O
As a direct corollary to Theorems 9.15 and 23.9 we obtain the following result:

Corollary 23.10. Let ¢ = SL,(q) or L,(q) and p be a prime dividing the order of G.

Assume that pf(q— 1) and my(G) > 3. then A,(() is simply connected.

Proof. First assume that G = SL,(q), then the fact that p+ (¢ — 1) implies that A €
A (GL,(q)) if and only if A € A (G). Thus A,(GL.(¢q)) = Ap(G) as posets and the
result holds for G = SL,(q) directly from Theorem 23.9.

Now p{(g—1) implies Z(SL,(q)) = Op(SLy(q)). Thus, by Theorem 9.15, the canon-

ical homomorphism 7 : SL,(q) — SL,.(q)/Z(5L,(q)) & L.(¢) induces an isomorphism
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betweeen A,(S5L,(q)) and A,(L,(q)). Thus A,(L,(¢)) is simply connected by the dis-

cussion of the preceding paragraph. |

SECTION 24 : SIMPLE CONNECTIVITY OF A,(() WHEN d 15 0DD AND (¢ = Spy,(q)
or (U, (¢)

In this section we consider the simple connectivity of A,(() when (7 = Spy,(q) or
GU,(q) and p is a prime such that:

(1) (p.g)=1, and

(2) if d is minimal with respect to plg? — 1, then d > 3 is odd.
Let (V.f) be the corresponding 2n-dimensional symplectic space over ' = F, wliwn
G = Spya(q); or let (V.f) be the n-dimensional unitary space over F© = Fp  when
G = GUL(q).

Let B be the Tits building of V', and B; the full subcomplex of B defined on the set

of vertices {& € A(B) | dldim(x) } the truncation of B discussed in secton 21. Consider:
sd(By) X A D F = {{o.4)| o€ Fir(A) }.

where sd( By) is the first barycentric subdivision of By. and Fia(.1) is the full subcomplex
of sd(By) defined on the simplices fixed under the action of . We wish to show that if
my(G) > 3, then A,((7) is simply connected. Now. by Lemma 21.7, By s (mp(() — 2)-
connected; so when m,(() > 3. sd(B4) is simply connected by Lemma 9.1. Now. by
Remark 9.14, we know that I’ is a closed subposet of sd( By) x A,(G). So.V o € sd(By)

and V A € A,(G), define:
Fo={A € A(G) ] (a. )€ FYand Fy = {0 € sd(By) | (o', A) € F}.
Then, by Lemma 9.13. A,((/) is simply connected if.V o € sd(By) and ¥ A € A (G).
F, and F, are simply connected.
Lemma 24.1. If A € A, (G). then Fa s simply connected.

Proof. F4 = Fiz{A). If Fir(A) is the full subcomplex of By defined on those simplices

fixed under the action of A. then Fix(A) is the complex analyzed in section 21. Hence,
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by Theorem 21.12, Fix(A) is (mp((7/) — 2)-connected. Also, by the definition of sd(By)
and Fie(A), we have Fir(A) = sd{(Fie(A)). Thus, by Lemma 9.1, Fir(A) is also

(mp((+) — 2)-connected. Since m,((7) > 3. we have our result. O

Let 0 = (29 < ¥y < -+- < &) € sd(By). Now I, = A,((/,;) where (i, is a standard
parabolic subgroup of (+. Let I/ be the unipotent radical, a solvable p'-subgroup of G,,.
Then the canonical homomorphism = : G, — G,/U = L. the Levi factor, induces a
map of posets f : A, ((,) — Ap(L). We have the following results about A,(L) and
[ ANG) — Ap(L):

Lemma 24.2. A, (L) is simply connected.

Proof. Let 2y = xg. and V 1 <i <s let ot <o, such that oy = g -bap b ioxh. Then,
by (19.14) on pg. 80 in [Al]. we have V 0 <7 < s. gyt totally singular subspaces of V'

such that x! ¢ y!

! are hyperbolic subspaces of V. Furthermore we have:

Vi g oyy Ly Lo Lathogl LW

where W = (x5 y,)t when y, = -+ yl. Since. by the definition of By, V0 <i< s
0<i<s

dldim(x;), dim{z})=dn, Y0 <i<s. Let dim(W)=m. Then, by the definition of the

Levi factor, we have:

(24.3) [ = { GLinolq)y X - X G Ly, (g) X Spalq). when (= Spa,(q).
- T (/1,(1,,,0((/2) X - X Gl (¢°) x GUL (). when (= GU L (q).

« . . . . . . PR . o

Considering ¢* as ¢'. we note that since d is odd. d is minimal with respect to pl¢’" —1.
Thus, all of our analysis in sections 20, 22. and 23 carry over to (‘Lq,,(¢*). So we have,
by Theorem 20.3, m (G La, (q)) = n; = mu(( Ly, (§°)). This fact, along with induction

on the dimension of Spy,(¢) and (U, (¢). implies that:
(24.4) my(L)y = m, () > 3.

Also, as (4 ranges over (L, (q). Gl (q2). Spniq). and (U, (g). by Theorem 20.5,

Ap(G) is connected when m,((7) > 2. Finally, by Theorem 23.9. when ¢ = (/Ly, (gq) or

(:’[,d,;,(qg), Ap(G) s simply connected if n, ((/) > 3.
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By (24.3) and Lemma 9.4 we have:

Ap(("lldno(q)) koo ¥ Ap((f"l/dn*(q)) * -Ap(sl'm(‘l))- il (7 = SP‘Zn((I)

24.5) A (L) = { , , 5 o AP .
( ) p( ' .A,,((:Ld,m((] ))* ek A;)(('Mm(fl' )) * Ap(('('n(q))- if (= Gl-’n(ﬂ)-

Thus, by Lemma 9.5 and Theorem 20.5.if s > 1 or s =1 and A,(5p,.(q)) # @, or
A (GUL(g)) # @ (as appropriate). then A, (L )‘ is simply connected. So we have to consider
a couple of special cases:

Case 1: o= (x0). Let my(Spulq)) ov mp(GU{q)) equal ny (as appropriate). Then
no + ny = my(L) > 3. Either ny = 0. in which case ng = m,(L) > 3: and, by (24.5),
Ap(L) = Ap(G Layo(q7)) is simply connected by Theorem 23.9 (here ¢ = 1 or 2). Or n; > 2
for i = 1 or 2. Then. by Theoremn 20.5. the corresponding complex is connected. Hence,
by Lemma 9.5, A,(L) is simply connected.

Case Il : o = (29 < x1). As in Case L let m,(Spn(q)) or my(GU,(q)) equal ny.
Then, if ny # 0, by Lemma 9.5. A,(L) is simply connected. So assume ny = 0: then
ng + ny = myu(L) > 3 implies that n; > 2 for i = 1 or 2. The corresponding complex is
connected by Theorem 20.5. Thus. Lemma 9.5, A,(L) is simply connected.

This analysis of the two special cases, along with the simple connectivity of A,(L) in

the general case, proves that A,(L) is simply connected when m,(G) > 3. |
Lemma 24.6. Given A € A (L). [7HAL (LN A)) is (h(A) — 1)-connected.

Proof. Given A € A (L), fTHALLNL ) = A (A - U). which, since {7 is a solvable

p'-group, is (h(a) — 1)-connected by Theorem 11.2 on pg. 123 in [Q]. O

Lemma 24.7. Given .\ € A(L). A,(L)> A) is nonempty when h(A) = 1. and

connected when h(A) = 0.

Proof. By (24.4) we know that m,(L) > 3. Since A (L) is a pure complex (refer to
section 1) if A € A (L) with h(.4) = 1. then A, (L)(> 1) is nonempty. So assume that
A€ A (L) with () =0. By (2L.3) we know that:

|~ { GLyng(q) X -+ X GLgy () X Spu(q). when (= Span(q),
T Gl,,im,(q")) X oo X Glyy (¢°) x GUL(q). when (G = GU,(q).
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Let my(Spm(q)) or m(GU(q)) (as appropriate) equal nsyy. Note that if o = (zg) and
nep1 =0, then Ay(L) = Ap(GLao(q)) or Ap(L) = Ap((/Lany(4*)). where ng = my(L) >
3. Thus, by Lemma 23.3. A, (L)(> A) is connected if h(A) = 0. So assume that s > 1

or gy # 0.

If ngyq # 0. let:

[ = { G Lang(q) X -+ X GLay (q). when (= Span(q)
T GLano(G%) X - X Gly, (7). when G = GU,(g).
and

Ly = { Spuw(q). when (= Sps,(q)
T GU,(q), when (7 = (U, (q).

And if ngpq = 0, which implies s > 1, let:

{ GLung(q) X - X GLgy._ (q). when &G = Spy,(q)
T G Lan, (4 GYX - X (.'L,,,,.\__‘(q2 ). when (v = GU(¢).

and

B { L () X Spu(q). when (7 = Spalq)

2T GLan.(¢%) X GUn(q). when G = GU,(q).
Then, by our assumption that s > 1 or ngy # 0. my(L;) # 0 for 7 = 1 and 2.

Also, if my(L;) > 2 for i = 1 or 2. then. by Theorem 20.5 and Lemmas 9.4-5. Ap(Li) is
connected. So, L = Iy X Ly, Li. and L, satisfy the criterion of Theorem 9.8. Thus if

A€ A, (L) with i{(A) = 0. then A, (L)(> A) is connected. Therefore we have the lemma.

O
We thus have the following result:
Lemma 24.8. Let o € sd(34). then I, is simply connected.

Proof. F, = A,((,). By Lemmas 206 7. A, (L) and f: A (Go) — A (L) satisfy the
criterion of (1.4) on pg. 5 in [A2]. Hence A,((/;) is simply connected, since. by Lemma

24.2, A,(L) is simply connected. a

By Lemmas 24.1 and 24.8 and the discussion immediately preceding Lemma 21.1, we

have the main result of this section:
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Theorem 24.8. Lot (v = Spy,(q) or GU,(q) and p be a prime such that (p,q) = 1. If
d is minimal with respect to pi(q” — 1), then assume that d > 3 is odd. Then Ay () is

simply connected whenever m,(() > 3. O

Similar to the final result in section 23. we obtain the following corollary to Theorems

9.15 and 24.9:

Corollary 24.10. Let G = PSpy,(q). SU,(q) or U, (¢) and let p be a prime such that
(p,q) = 1. Ifd is minimial with respect to pl(¢® — 1). then assume that d > 3 is odd.

Then A,(G) is simply connected whenever m,{() > 3.

Proof. When GG = SU,(q), d > 3 implies that A,(() = A,GU,(¢)) and the result follows
from Theorem 24.9.

For G = PSpy,(q) or U,(g), the fact that d > 3 and m,((/) > 3 implies that G is
simple. Thus O (Sp2n(q)) and O (SU,(¢)) are central, which implies, by Theorem 9.15,
that A,(G) is isomorphic to either A, (Spaa(q)) or A,(SC.(¢g)). The result then follows

directly from Theorem 2.1.9 or from the preceding paragraph. [

SECTION 25 @ SIMPLE CONNECTIVITY OF A (GU (g))(> Z) WHEN plg+ 1 AND

Z 1S CENTRAL

Let (¢ = GU,(¢) where n >4 and ¢ > 5 isodd. Let p be a prime dividing ¢ + 1, and
fix Z to be the central elementary abelian p-subgroup of (. Since OQ,((+) is nontrivial, by
Proposition 2.4 on pg. 106 in [Q], A,((/) is contractible. However, unlike the case when
p # 2 divides ¢ — | (section 16) we do not show A,(G) is (.M. We do show, however,
that A,(G)(> Z) is simply connected.

It is worth remarking on that showing that A,(G,(¢)) is C.M. dimensional n — 1
when plg+ 1 would be a useful result with implications towards the Aschbacher-Smith
Conjecture Conjecture 4.1 on pg. 31 in [ASm]. However. though we have contractibility
for A,(GU,(g)), it is not clear that we have the appropriate connectedness for links of
simplices. Some computation with regard to the question of (".M. behavior of Ap((w'lf"n(q))

is included at the end of this section.
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Let (V. f) be the n-dimensional unitary space over A = F .. Given A € Ay (G,
consider the decomposition of V" = i Vy into homogeneous components under the action
AED
of A. Then, from the discussion at the beginning of section 19, we have the following:

Lemma 25.1. Let V., A, and & be as given above. Then we have:
(1) VAed, Vy is nondegenerate. Also. 41' :,\_é_d> Vi is an orthogonal decomposition
of V.
(2) Cu(A) = \H(b(:'(',u(q). where dim(Vy\) = ny Ve D,
A€

Let B be the order complex of proper nondegenerate subspaces of V ordered by
inclusion. By Theorem 13.9. B is simply connected. Let BB = «d(9B). which is also simply

connected by Lemma 9.1, and consider:
BX A GH> Z) D F ={(o. )] ae Fir(A)].

Note that /' is the closed subpaoset mentioned just prior to Remark 9.14. Thus, by Theorem
9.13, it suffices to show that for all o0 € B and A € AJ(G) (> 7). I, b4 as defined in

Theorem 9.13 - are simply connected.
Lemma 25.2. Given o € B. I, issimply connected.

Proof. Let 0 = (g < U} < «-- < U,) € B, ng = dim(ly). and for 1 <1 < s, let
n; = dim(l/;) — iil n;. Let ngyy =n— i: ng. and note that ngpey > 1 since U5 is a
proper subspace (J)?OV. =

Now I, = A,(G,)(> Z). where Go = GU, (q) x GUy (g) X - x GUy , (g). Now for
cach 0 <7< s+1, let Z; be the central elementary abelian p-subgroup of (U7, (g). Set
W =2ZoX 7 XX Zspy. and note that W € A,((/,). Since ngyy > 1. W > Z: hence
W€ AGo)(> 7).

Now ¢ : A (Ga)> Z) — ApG > Z) delined by A4 — AW s well defined and
satisfies 4 < g(A) ¥V A € AGL)(> Z). Thus by (1.3) on pg. 103 in [Q]. ¢ ~ id. the
identity map on Ap(Go)(> Z). Also.V A € A (G ) > Z). W < AW Hence g ~ r. where

rAGa > Z) — Ap(GL) (> Z) is the map defined by A — W. Therefore. id ~ r and



Stmple connectivity of p-subgroup comple res 156

Ap(Go)(> Z) is contractible. Hence, F, = A, ((/-)(> Z) is simply connected. as claimed.

O
Lemma 25.3. Given A € A (G)(> Z). Fy is simply connected.

Proof. Let A € A (G)(> Z), and consider 111}\ orthogonal decomposition of V :(\é@ V.
As A # Z, Vi <V, ¥ XA e & in particular, |¢| > 2. Note that 4 = Fiz(A). If
Fiz(A) is the full subcomplex of B defined on the set of simplices fixed under the action
of A, then. by the definition of B and Fir(A), Fir(A) = sd(Fir(A)'). Thus. by Lemma
9.1, it suffices to show that Fir(.1)" is simply connected. For cach A € &, let By bhe

the order complex of proper nondegenerate subspaces of ¥y ordered by inclusion. Let

pra: V. — ¥y be the canonical projection. Then we have:

7;\ {since ¥y < V7).

14

pra(Fia(A))y = Byu{0.V,}

where B, is the double cone of By as defined in section 9. Assume that By is m,-

connected for ecach A € & (where my is defined later). Then, by Corollary 9.11:

Fir(A) =[5y - (0. L0y ox))

NNED

is ( 3 ma+ (|®] = 1)3 )-connected. Three possible cases arise (since |[®] > 2):

CA;\EQ’I ¢ = {M, A} Let ny = dim(Vy,) and B; = B\, for i = 1,2. Note that
ny +ny =>4 Andifn; >3 for i = 1 or 2. then B; is connected by Lemma 12.5.
If ny = uy = 2, then B; is —l-connected for i = | and 2. Then. m; + nmy +3 =1 aud
so. Fir(A)' is simply connected. Otherwise. m; > 0 for i = 1 or 2. and mz_; > =2, so
my 4+ my 432> 1. Thus, Fia{A)Y is still simply connected.

Case I 3 < |®| < n. Then there exists A € ¢ such that dim{V'\) > 2: hence iy > —1.

Thus we have:

(Zy,z,\+(i¢|~1):;>z o2 -1 (e -1 = 9 -2 1
1

A€d i®]—1

Thus, Fir(A) is simply connected.
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Case 11 : |®] =n > 1. Then we have:

(Z my + (|| — l)Ii) = Z—Z +(|®|-1)3=|®|-3>1.

AEP @]

Hence, Fix(A) is simply connected.
This case-by-case analysis shows that Fir(A) simply connected. Therefore. Fy =

Fir(A) = sd(Fix(A)) is simply connected as claimed. 0
So, by Lemmas 25.2 3 and Theorem 9.13. we have:

Theorem 25.4. Let v > 1, and ¢ > 5 odd. If plg+ 1 and 7 is the central elementary

abelian p-subgroup of GU,(q). then A,(GU,(¢))(> Z) is simply connected. a

We now address the question of whether A, (GU,(q)) is C.M. when plg+1. Let Z be the
central elementary abelian p-subgroup of (+ = (iU, (¢} as before. Note that A, (U (q))

is nonempty and hence CM. of dimeusion 0 as required.
Conjecture. Given ¢ odd, and pl¢+ 1. A(GU,(q)) is C.M. of dimension n — 1.

We have already shown that this conjecture holds for n = 1. So assume that n > 2, and
the conjecture holds for all # < n — 1.

Since Op((7) is nontrivial. we have A,((/) is contractible. Thus. by Lemma L1.2. it
suffices to show that for each 4 € A, (). A GH> A) is (n = h{A) — 2)-spherical.
Now, dim{A,(()) is n — 1 and dim(A(G)< A)) is h(A): thus A(G)> A) s
indeed (n — h(A) — 2)-dimensional. So we are reduced to showing that A ((){(> A) is
(n = h(A) = 3)-connected for all A € A,((). The following result is immediate in light of

Lemma 25.1:

Lemma 25.5. Let (i be a minimal counterexample. Given A € A, (G} with A # Z.

A GHY(> A) ds (n = k() = 3)-connected.

Proof. By Lemma 25.1. we know that (';(.1) 2 ][] U, (q). Note that since A # Z.
AED

[®| > 2. and ny < n. VA€ P Also. Y ny=n.
Aed
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Now A(G)> A) = AJ(CG(A))> A) where A, (C(A)) ~ \2¢A,)((}[7m(q)) by
Lemma 9.1 and 25.1. Since ny < 0V A € &, by induction on dimensions, A,(GU,, (q))
is (.M. of dimension ny — 1 V A € ¢&. Thus. by Lemma 113, A(Cp(A)) is C.M. of

dimension:

Z(n,\— D4 (e —-1)= (Zn,\> —l=n-1.

e \ed

Therefore, by the definition of C.M., A, (G) (> A) = A (Cu())N> A) is (n — (A} = 3)-

connected as claimed. O
So we have the Conjecture if we can prove the following result:
Conjecture 25.6. A,(G)(> Z) is (n — 3)-connected. O

The proof of this conjecture is complicated by the fact that A,(GY> Z) is (n — 2)-
dimensional while the dimension of the underlying building is [§] — . However, note that
we have A (G)(> Z) is simply connected when n > 1. under the added assumption

that ¢ > 5 and odd. So Conjecture 25.6 reduces to a conjecture about the homology of

AL (G > Z) which may possibly be addressed using tools such as spectral sequences.
P A A g
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