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Abstract

Damping limits the resonance of vibrating systems and thus higher anelastic damping
is generally favored for engineered structures subjected to earthquake motions. How-
ever, there are elastic processes that can mimic the effects of anelastic damping. In
particular, buildings lose kinetic energy when their motions generate elastic waves in
the Earth; this is referred to as radiation damping. Unlike anelastic damping, strong
radiation damping may not always be desirable, as reciprocity can be used to show
that buildings may be strongly excited by elastic waves of similar characteristics to
those generated by the building’s forced vibrations. As a result, it is important to
understand the radiation damping of structures to be able to improve their design.
Several experiments, using Caltech’s nine-story Millikan Library as a controlled
source, were performed to investigate the radiation damping of the structure. The
building was forced to resonate at its North-South and East-West fundamental modes,
and seismometers were deployed around the structure in order to measure the waves
generated by the library’s excitation. From this “local” data set, we determine the
elastic properties of the soils surrounding the structure and estimate what percentage
of the total damping of the structure is due to energy radiation. Using Fourier
transforms, we were also able to detect these waves at distances up to 400 km from
the source using the broadband stations of the Southern California Seismic Network.
This “regional” data set is used in an attempt to identify arrival times and to constrain

the type of waves being observed at regional distances.
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Notation

P Maximum horizontal shear force on the disk

M Maximum moment on the rocking disk

t Time

T Period

f Frequency in Hertz

w=2nf Angular frequency

Wp Resonant frequency

Wo Undamped natural frequency

Vp = \/@ Compressional (P) wave velocity

Vs =4/% Shear (S) wave velocity

Vi Rayleigh wave velocity

h =3 P wavenumber

k= S wavenumber

kr = ViR Rayleigh wavenumber

A Wavelength

[0) Azimuth with respect to the direction of the horizontal
force or with respect to the line perpendicular
to the axis of rotation of the rocking disk

0 Angle with the free surface

F(¢) Rayleigh’s frequency equation

F(Q) @

70 Building’s radius (or equivalent radius, if not circular)

r Radial distance along the surface (in cylindrical coordinates)
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Chapter 1

Introduction

Damping limits the resonance of vibrating systems and thus higher anelastic damp-
ing is generally favored for engineered structures subjected to earthquake motions.
However, there are elastic processes that can mimic the effects of anelastic damping.
In particular, buildings lose kinetic energy when their motion generates elastic waves
in the Earth, which is referred to as radiation damping. Unlike anelastic damping,
strong radiation damping may not always be desirable. Reciprocity can be used to
show that buildings may be strongly excited by elastic waves of similar characteristics
to those generated by vibrations of the building. For example, buildings with a reso-
nance frequency close to that of the soil column beneath them will have large radiation
damping. While this might be a preferred condition to damp motions of the structure
caused by sources such as wind, it may also prove to be disastrous when earthquake
induced motions are involved. This will be especially true if the soil column under-
neath the buildings resonates harmonically at a frequency close to or slightly higher
than the natural frequency of the structures it is supporting. For example, during
the 1985 Michoacan, México earthquake large engineered structures in México City,
more than 300 km from the earthquake’s epicenter, were subjected to long harmonic
ground motions that caused significant structural damage to buildings with frequen-
cies slightly higher than the soil resonant frequency (Beck and Hall, 1986). México
City is partly located on an old lake bed (Hall and Beck, 1986; Campillo et al., 1989;
Lomnitz et al., 1999), and it has been shown that the lake bed deposits amplify ground
motions with frequencies between 0.5 and 0.25 Hz (Sanchez-Sesma et al., 1988; Singh
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et al., 1988a,b; Kanamori et al., 1993). These motions damaged approximately 20%
of the engineered structures between 5 and 12 stories tall (eigen-frequencies between
2 and 0.8 Hz) (Beck and Hall, 1986). Similar soft soil conditions to México City ex-
ist in several cities with large downtown regions, such as: San Francisco, California;
Tokyo, Japan; and to a lesser extent, Seattle, Washington; and Los Angeles, Califor-
nia. In these cities, the large structures are located closer to known earthquake faults
than in México City, and a large earthquake could prove disastrous. Therefore, it is
imperative that engineers can estimate the radiation damping of a designed building
prior to construction, as this will aid in designing safer structures. To this end, this
thesis proposes a method of estimating the radiation damping for a structure.

The work presented here estimates what percentage of the total damping of a
structure, Robert A. Millikan Memorial Library (Millikan Library), is due to energy
radiation. I also study the waves radiated by the building to determine the elastic
properties of the soils surrounding the structure, and to investigate amplification
factors at regional distances. Furthermore, displacement data recorded at TriNet
stations is used in an attempt to identify signal velocities and to constrain the type
of waves being observed at regional distances. From the data analysis presented
here, it will become clear that a thorough knowledge of the supporting soil column is
needed to fully understand the building’s energy radiation damping. The properties
of the upper few hundred meters of soil near the building need to be known, and
can be estimated by either: drilling and analyzing deep boreholes (currently not
common practice even for tall buildings); by performing an inversion of the data from
seismometers located around a pre-existing building generated by vibration tests; or
by collecting and processing reflection profiles at proposed sites of large structures. I
conducted several tests using Millikan Library as a controlled source. The building
was forced to resonate at its three fundamental modes (North-South (NS), East-West
(EW), and Torsional (Tor)), and seismometers were deployed around Pasadena and
Caltech in order to measure the waves generated by the library’s excitation for various
experiments. Waves excited by the forced vibration of the library were observed at

distances as far away as 400 km on stations of the TriNet seismographic network,
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with station Mammoth Lakes (MLAC) being the most distant station to record the
signal.

Millikan Library is a nine-story reinforced concrete building located on the Caltech
campus in Pasadena, California. As Figures 1.1 and 1.2 show, it has prominent shear
walls on the East and West facades (to resist NS motions), as well as NS facing shear
walls in the elevator core and a moment resisting frame on the North and South
facades (to resist EW motions). The building dimensions are given in Figure 1.2, and
it can be seen in the NS foundation cross section that the foundation allows more
rocking in the NS direction than in the EW direction

The foundation allows more rocking in the NS direction than in the EW direction,
due to the stepped design acting somewhat like a rocking chair (Foutch, 1976), shown
in Figure 1.2c. All of the library’s shear walls have a continuous uniform thickness
of 0.3 meters (12 inches). However, due to an increase in reinforcing steel towards
the bottom of the structural members, their lower portions have moments of iner-
tia approximately 6% higher (due to a density increase) than their upper portions
(Teledyne-Geotech, 1971). For a detailed description of the library and its character-
istics, please refer to Kuroiwa (1969), Foutch (1976), as well as Bradford et al. (2004)
which is included in Appendix A.

The first published report that Millikan Library was an efficient energy radiator
was by Jennings (1970) who reported observing the signal from the library at the
Mount Wilson Observatory, at a distance of 12 km. This signal was generated during
a forced excitation of Millikan Library to investigate the building’s structural charac-
teristics, similar to the experiments performed for this investigation. Though many
studies have been conducted on the building, questions still abound about some of its
properties. This thesis addresses some of these outstanding issues and expands the
previous knowledge of the structure and its soil-structure interaction.

For his Ph.D. thesis, Kuroiwa (1969) performed multiple full scale shaking exper-
iments during the construction of Millikan Library as it was being built. Most of his
experiments took place after the finishing work on the building had begun, with the
building’s exterior completed, but the building not fully functional. He estimated the



Figure 1.1 Picture of Millikan Library facing North-West. The
eastern shear wall and the southern moment resisting frame
are clearly visible, as well as the attached conference room in
the eastern part of the building. Figure courtesy of the Caltech
Archives.

masses (in 10* Kg) of each floor to be, from top to bottom: Mpge = 1179, My to
Ms = 885, My = 1104, and M; = 1034. However, these masses seem to be for an oc-
cupied building including books, as these masses are very similar to those calculated
in Table 3.3. In his thesis, Kuroiwa (1969) describes an extensive list of properties

and characteristics for the building, which are summarized here.

e Because the library’s total damping is small (less than 2 % of critical damping),
the resonant frequency (n4) found from a displacement response curve (a plot
of the peak displacement for a particular frequency versus the corresponding
frequency) is within 1 % of the resonant frequency (n,) from the corresponding

acceleration response curve. These two frequencies are related by the equation
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Figure 1.2 A) A North-South cross section of Millikan Library,
B) a sketch of a typical floor plan, and C) a sketch of the
plan view and the cross section of the foundation of Millikan
Library. This figure is modified from a figure in Luco et al.
(1986), and since all of the original measurements are in feet,
the measurements given here are rounded off at the second
decimal place.

ng = ng(1 — 2¢?), where ¢ is the fraction of critical viscous damping for the
structure. In this thesis, natural frequencies estimated from acceleration, ve-
locity, and displacement measurements will be used interchangeably since they
are so close to each other. A velocity response curve is used when performing

the experiments for this thesis.

Due to the small motions involved during the forced shaking, the building is
assumed to be approximately linear elastic. The floor slabs are very stiff for
in-plane shear deformations and it is assumed that they deform approximately
as rigid bodies (for horizontal motions). Therefore, measuring horizontal dis-
placements or accelerations anywhere on the floor will yield similar results in
the absence of torsional motions. The estimation of vertical displacements in
the basement is more complex due to the interaction of the foundation and the

shear walls with the basement slab (the same holds true for all floor slabs).
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e The building’s center of torsion is located approximately 0.75 meters west of

the building’s geometric center (in plan view).

e The natural frequencies of the building decrease slightly as the force levels are
increased (also shown in Clinton et al. (2004)), a characteristic of a system with

a nonlinear softening spring.

e [t can be assumed that the building is fixed at the foundation, and that the

back fill surrounding the building has no effect on the building’s motion.

e The building’s damping increases with increasing levels of excitation force.

In a technical report to Caltech, Teledyne-Geotech (1971) measured the natural
frequencies of Millikan Library using ambient vibrations. The report compares the
post San Fernando earthquake natural frequencies with those measured previously.
The table presented in the report is incorporated in an exhaustive natural frequency
and structural damping summary table for Millikan Library compiled and expanded
by Clinton (2004), which covers the time period from the first reported measurements
for Millikan Library until the present. An abridged table is provided here in Table 1.1.

Between August and December 1974, Foutch (1976) performed forced vibration
tests on Millikan Library to determine the building’s behavior and modelled the struc-
ture, including soil-structure interaction effects, to investigate the interdependence of
the horizontal and vertical load carrying systems. [ summarize his findings for Mil-

likan Library as follows:

e He uses the same floor masses for the analysis as in Kuroiwa (1969). Fur-
thermore, he modelled the foundation using an elastic half-space with a shear
wave velocity (V) of 500 m/s, a density (p) of 1760 Kg/m?, and an equivalent

circular foundation radius (r¢) of 12.5 m for Millikan Library.

e The North-South (NS) motions of the structure are dominated by the behavior
of the shear wall at the East and West ends of the building.



Test East - West North - South Torsional Remark
fol&o] filéi] fol&o] filéi] fol&o] f1l&1]
1966-1967 1.46-1.51 6.2 1.89-1.98 - 2.84-2.90 - AF.M
[0.7-1.7] [1.2-1.8] 0.9-1.6]
Mar 1967 1.49 [1.5] 6.1 1.91 [1.6] - 2.88 - A
Apr 1968 1.45 6.1 1.89 9.18 2.87 9.62 A
M6.7 February 9 1971 San Fernando egk. at a distance of 44 km
Feb 9 1971 | 1.02 [0.06] |4.93 [0.05] [ 1.61 [0.06] | 7.82 [0.05] - - E
Feb 1971 1.27 [2.5] | 5.35 [0.9] 1.8 [3] |9.02[0.2] | 2.65[2] | 9.65 [0.5] A
Jul 1975 1.21 [1.8] - 1.79 [1.8] - - - F
May 1976 1.27 - 1.85 - 2.65 - A
M6.1 October 1 1987 Whittier Narrows eqk. at a distance of 19 km
Oct 1 1987 §0.932 [0.04] | 4.17 [0.08] | 1.30 [0.06] | 6.64 [0.18] - -
May 1988 1.18 - 1.70 - - - F
M5.8 June 28 1991 Sierra Madre eqk. at a distance of 18 km
June 28 1991 0.92 - 1.39 - - - E
May 1993 1.17 - 1.69 - 2.44 - F
M6.7 January 17 1994 Northridge eqk. at a distance of 34 km
Jan 17 1994 0.94 - 1.33 - - - E
Jan 20 1994 1.13 4.40-4.90 1.65 8.22-8.24 2.39 - A
[1.2-2.1] [1.0] [0.7-1.5] | [0.2-0.3] [0.3-0.5] F
Dec 2001 | 1.12 [1.63] - 1.63 [1.65) - 2.34 - F
Aug 2002 1.14 [2.28] 4.93 1.67 [2.39] 7.22 2.38 [1.43] 6.57 F

Table 1.1 Summary of modal frequencies and damping values
for Millikan Library between 1966 and August 2002. fy and f;
are the natural frequencies for the fundamental mode and the
first overtone, in Hz. &y and &; are the corresponding critical
damping ratios in %. For the Remark column, the following
codes are used to specify which method excited the library for
the estimation of the properties given: A=Ambient, F=Forced
Vibration, E=Earthquake Motions, M=Manned Excitation of
the Library. Distances are given from the earthquake epicenter
to Millikan Library. Adapted from Clinton et al. (2004).
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e In the NS direction, rocking of the structure accounts for 25% of the roof dis-
placement, while rigid body translation contributes 4% (see Figures 3.8 and 3.9).
Therefore, nearly 30% of the roof motion is due to rigid body motions of the
structure in the NS direction. These numbers agree with the values calculated

in Table 3.5 as well as those given by Bradford et al. (2004).

e For East-West (EW) shaking, there is little vertical motion of the slab around
the perimeter of the building, but there is a significant amount at the East and

West ends of the central core wall.

e In the EW direction, the basement translation accounts for 2% of the total roof
displacement, however, due to the basement slab deformations, it is difficult to

compute the rigid rotation of the base.

e The effect of soil-structure interaction is more significant in the stiffer NS di-

rection.

e A drop of 11% of the NS fundamental frequency of the structure occurs be-
tween the time of the experiments performed by Kuroiwa (1969) and that of
those performed by Foutch (1976). This drop is attributed to the occurrence of
the 1971 San Fernando earthquake, which is believed to have fractured brittle
connections that connect Millikan Library with adjacent structures through a

system of underground utility tunnels.

e A lumped mass model (where floor masses are considered to be point masses,
inter-floor stiffnesses given by a single spring element, and inter-story damp-
ing is represented by a single viscous damper) allowing for shear and bending
deformations best fits the mode shapes of both Kuroiwa (1969) and Foutch
(1976). However, this result might be specific to Millikan Library, due to its

high rigidity.

Jennings and Kuroiwa (1968) and Luco et al. (1975) carried out experiments to

measure the amplitude of surface waves excited by Millikan Library, as was done



9

for this thesis. However, due to the limited technology in the recording instruments
of the time, and their experimental setup, precise time information (such as GPS
time stamps) was not available. This limitation prevented the investigators from
performing a phase analysis of the type carried out here in order to constrain the
velocity structure under Millikan Library and to eventually compute the radiated
energy of the building. The results of Jennings and Kuroiwa (1968) and Luco et al.
(1975) will be presented in the chapters for which the data is relevant.

The thesis chapters that ensue, follow the order in which the collected waveforms
were processed as well as how the problem was approached, and not the order in which
the data was collected. Due to difficulties in data processing after the first experiment,
which at the time were attributed to instrument location error, and a continuous GPS
data campaign to try and resolve the perceived problem (see Chapter 4), a second

and simplified experiment was conducted to better understand the problem.
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Chapter 2

Instrumentation and Data
Reduction Procedures

This chapter describes the instrumentation and the data reduction procedures used
for the performed experiments. These descriptions include the instruments used inside

as well as outside the building, and the force generating system.

2.1 Force Generating System

A model VG-1 synchronized vibration generator system was used to carry out the
forced vibration tests performed on Millikan Library. This generator is permanently
attached to the building’s roof for the civil engineering class experiments performed on
the library at Caltech. It was manufactured by Kinemetrics (1975) and it is currently
powered by an electric 5-horsepower motor (Raul Relles, Engineering technician at
Caltech, Personal Communication, 2001). The previous version of the shaker was
powered by a 1-horsepower motor, however, both the frequency controller and the
motor were upgraded a few years before the start of the tests presented here, to obtain
better frequency control (Raul Relles, Personal Communication, 2001). The force
generating mechanism consists of two counter-rotating baskets, subdivided into three
sectors (two large sectors at the outside of the bucket, and one small one located at the
center), which may be loaded with a variable number of lead masses of two distinct
sizes (see Figure 2.1). The result of the controlled spinning of the two counter-rotating

baskets is a linearly polarized horizontal sinusoidal force applied to the building’s roof.
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This force in turn causes the building to oscillate between two extreme positions, and
as the oscillations take place, the floor slabs in the building undergo translational and
rotational in-plane motions, while various points on the floor slab also move vertically

due to bending deformations in the slab (Foutch, 1976) and in the building.

Figure 2.1 Picture of the force generating mechanism used to
shake Millikan Library. The shaker is pictured here with full
buckets (exerts maximum force).

The maximum amplitude of the sinusoidal force (in Newtons) generated by the

shaker is obtained from Equation 2.1.
Force = w?MR = 4n*f?MR (2.1)

where M is the mass of the two counter-rotating baskets plus any extra mass in
the buckets, w is the rotational frequency in radians per second, and R is the distance
from the rotation axis to the center of mass of either bucket (since both buckets are
identically loaded). Once the forcing frequency and loading condition are established,
the sinusoidal motion generated by the shaker is known, as long as waveforms of the

floor’s motions are accurately recorded. However, it should be kept in mind that
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the frequency control is done through a feedback mechanism, and therefore minor
oscillations in frequency should be expected.
Table 2.1 lists the values of M R for various combinations of masses and Table 2.2
provides the maximum allowable operational frequencies for these mass combinations.
The tables are modified from the Kinemetrics (1975) operations manual to be in SI

units, and are given for completeness.

0 S1 S2 S3 S4

0 6 11 16 21 26
L1 22 27 32 37 42
L2 39 44 49 o4 99
L3 95 60 65 70 75
L4 71 76 81 86 91

Table 2.1 “MR” (Kg=m) for each combination of masses. S =
small mass (center section), and L = large mass (side sections).
The number (1, 2, 3, 4) following an “S” or “L” indicates the
number of masses of that size placed in each section of the
corresponding size in each bucket.

0 S1 S2 S3 S4

0 9.7 7.2 6.0 5.2 4.7
L1 5.0 4.6 4.2 3.9 3.7
L2 3.8 3.6 3.4 3.3 3.1
L3 3.2 3.1 3.0 2.8 2.8
L4 2.8 2.7 2.6 2.6 2.5

Table 2.2 Maximum frequency (Hz) for each mass combination.
S = small mass (center section), and L = large mass (side
sections). The number (1, 2, 3, 4) following an “S” or “L” in-
dicates the number of masses of that size placed in each section
of the corresponding size in each bucket.

It should be noted that the shaker is located south of the building’s East-West
centerline (see Figure 2.2), which allows for the excitation of torsional modes when the

appropriate frequencies are excited (otherwise, torsional effects would be negligible).
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However, the shaker is located close to the North-South line crossing the building’s
center of mass. The axis of rotation for the shaker weights is located approximately
10.7 m West of the inside of the East shear wall and approximately 5.2 m North of
the inside of the southern wall, as shown in a map view sketch of the library’s roof in
Figure 2.2.

As is visible in Figure 2.1, the baskets are connected to the motor by chains.
The shaker’s design provides a very simple mechanism for re-orienting the baskets
to change the excitation direction, but the directional adjustments are limited by
the number of discrete chain links to steps of 3% degrees. This implies that the

force orientation may deviate slightly from the desired shaking direction, up to :i:l%

degrees.
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Figure 2.2 Approximate location of shaker on the roof of Mil-
likan Library. Measurements are to the shaker’s center of ro-
tation.

2.2 Building Accelerometers

In 1996, Millikan Library was equipped with 36 accelerometers connected to two 18-
channel, 19-bit digital Mt. Whitney recorder systems built by Kinemetrics, operated
by the United States Geological Survey (USGS), and jointly owned by the USGS and
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Caltech. Due to requirements by both the City of Pasadena and the USGS at the
time of the experiments, it was only possible to acquire data in the context of this
thesis from the Mt. Whitney system on three occasions, namely the night of June 15,
1998, the morning of May 19, 2001, and the morning of August 28, 2002. Data was
collected for the building’s three fundamental natural frequencies for the first two ex-
periments, while for the third experiment data was additionally collected for a number
of frequencies to investigate interesting building behaviors. The recording time for
each frequency was approximately 15 minutes for the first two experiments, while
for the third experiment data was collected in approximately one minute intervals,
allowing for time to change the frequency and to let the building response settle to
the forcing frequency. The waveforms collected from the Mt. Whitney system were
recorded at 200 samples per second (sps).

For the first and second set of local experiments (those in the Pasadena and
Caltech area), data was also collected from Millikan Library using an L4C-3D short
period seismometer (described in Section 2.3) located on the roof of Millikan; this
provides a means to calibrate individual experiments with respect to the data collected
on June 15, 1998. It was found that amplitude differences at different observation
points between shakes are small for slightly different excitation frequencies for the
same loading configuration, and as a result the base station seismometer is only used
to normalize the phase data. All data from the L4C-3D seismometers was recorded
at 50 sps.

In May 2001, the continuously telemetered TriNet station MIK was installed on
the East end of the ninth floor of Millikan Library. This station uses a 24-bit Quan-
terra datalogger to record a 3-component Kinemetrics Episensor accelerometer at
80 sps and lower. For the regional experiments (presented in Chapter 6), data for the
base station was collected from TriNet station MIK. Before the first regional exper-
iment was carried out, an experiment was performed on May 19, 2001, to verify the
floor data (accelerations from the Mt. Whitney system) collected in 1998, and addi-
tionally calibrated MIK with the L4C-3D seismometer located on the building’s roof

to insure that the waveforms from station MIK could be used interchangeably with
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those of the short period instrument. The location and orientation of the L4C-3D
roof seismometer were kept constant for all the experiments so that the calibration
would remain valid. Appendix A provides a list of the type of accelerometer on each
floor, and an approximate location, as well as floor maps with more detailed locations
for the accelerometers. Station MIK is used as a base station for all of the regional

experiments performed for this thesis.

2.3 Seismometers for Local Tests

For the experiments in 1998, 17 Mark Products L4C-3D (short-period) seismome-
ters were used, while for the experiments performed in 2000 only 14 L4C-3D seis-
mometers were utilized. These instruments were supplied by the Southern California
Earthquake Center’s (SCEC) office in Santa Barbara. L4C-3D seismometers have a
1 second natural period and SCEC’s Portable Broadband Instrument Center (PBIC),
located at the University of California at Santa Barbara, has studied their responses
over time and provides the responses for each individual seismometer. The instru-
ments were calibrated with respect to each other on the roof of Millikan Library
when it was being excited at its maximum amplitude, as described in Appendix B,
and these waveforms suggest that the seismometers’ nominal response best describes
its actual response.

All of the data collected from the portable L4C-3D seismometers was recorded
at 50 sps. Most of the instruments for the first portable experiment were oriented
to magnetic North, whereas for the second experiment, all of the seismometers were
oriented to geographic North. For the Pasadena area, the magnetic declination is
13.5°E (Peddie (1993), and http://www.ngdc.noaa.gov/seg/pltfld /declination.shtml).
The walls of Millikan Library are oriented with respect to geographic North.
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2.4 Seismometers for Regional Tests

For the regional set of experiments, data was collected from the Southern California
TriNet network (Hauksson et al., 2001). This set of experiments consists of four long
(four to six hours) continuous shakes, for which data was collected at 20 sps. For the
first two experiments, the waveform data from sites with instruments of different types
were compared to investigate the response of the TriNet short-period seismometers
versus the broadband ones, which have better known responses. It was found that
the amplitude response of the short-period seismometers varied by as much as a
factor of 3 with respect to the corresponding broadband sensors at the frequencies of
interest. Since the main purpose of the experiments was to measure displacements
due to waves emanating from the library excitation, it was decided that only the
broadband sensors should be used for the study so as to reduce the data collection
effort and processing time. Furthermore, no accelerometer data was collected for the
first two experiments. In the third shake, accelerometers were used and they showed
a consistent amplitude response when compared to the corresponding broadband
sensors (Toshiro Tanimoto, personal communication, 2002). However, since many of
the accelerometer sites are co-located with the broadband sites, it was also decided
to forego collecting the accelerometer data for any test other than the third test.

Therefore, only broadband channels were analyzed (BHE/N/Z) for all TriNet sta-
tions, as well as for Berkeley Digital Seismic Network (BDSN) stations (Uhrhammer
et al., 1996). The broadband channels used in this study are all recorded at 20 sps,
and a large portion of them are stored continuously at the Souther California Earth-
quake Data Center (SCEDC) for the TriNet channels and at the Northern California
Earthquake Center (NCEDC) for the BDSN stations.

At the completion of this thesis, TriNet and the data archives could be accessed

through the following “URLs”:
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e TriNet: http://www.trinet.org
e SCEDC:  http://www.scecdc.scec.org

e NCEDC: http://quake.geo.berkeley.edu/ncedc

The pertinent information on the individual stations used (all stations available
at the time of the experiments were processed) can be found at either the TriNet or

NCEDC internet addresses.

2.5 Data Reduction Procedures

Almost identical data reduction procedures were followed for all of the collected data,
with the exception of the first few steps which could vary slightly. All data processing
was done utilizing either the Seismic Analysis Code (SAC, http://www.llnl.gov/sac)
or Matlab (The Matworks Co.). If the original data format was not in SAC format,
the data was first converted into SAC format.

In SAC, all waveforms were lined up with the same origin time (for each exper-
iment), the mean amplitude and a linear trend were removed from the record, and
the ends of the record were sharply tapered to zero. Subsequently, the instrument
responses were removed (to displacement), and all data files were cut to the same
length. The cut windows were determined from the experiment length, and by using
the recording from the library itself. The beginning cut time was chosen to be after
the library’s displacement settled (usually a few minutes after the initial excitation),
and the end cut time was chosen to be just before the shaking stopped, with both val-
ues determined from the library’s record. If the files needed to be rotated, they were
rotated to geographic North at this stage of the processing. The processed data files
were then cut into different file segments corresponding to the different experiments
performed.

If the displacements were estimated by integrating the energy of the waveforms
using a Fourier Transform, this calculation was also completed in SAC. However, if

the signal was of high enough amplitude in the time domain for all of the instruments
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used in the experiment, then Matlab was used to compute the signal amplitude and
phase by minimizing the error between the data and a sinusoid of variable amplitude,
frequency, and phase. A fairly accurate forcing frequency was known for each ex-
periment from the shaker’s frequency controller digital output, and as a result, this
parameter was narrowed down significantly, minimizing the computation time. An
exception to estimating the phase from the time domain (using Matlab) occurred for
the short-period instrument calibrations which were performed on the roof of Millikan
Library. At the time of the calibration experiment, I did not have a fast and reliable
code which estimated the best fitting sinusoid to the data, and instead, trigonometric
identities were used to reliably estimate the signal’s relative phase by taking advan-
tage of the fact that the waveforms have similar amplitudes and phases. The details

of this method are given in Appendix B.
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Chapter 3

Theoretical Solution to Energy
Radiation Problem

The calculation of the radiated energy from a building was undertaken with the objec-
tive of deriving a simple equation that could estimate the building’s damping due to
energy radiation, with only the prior knowledge of basic site specific soil parameters
and estimated forces from a building or building model. It was the hope that once
the site specific soil properties were known, it would be possible to use a simple half-
space to estimate a minimum damping coefficient for any building, once the forces
exerted on the soil are determined. However, after performing several experiments, it
was quickly realized that the half-space model is too simplistic; it predicts monotoni-
cally decaying seismic amplitudes with distance away from the source, whereas more
complex patterns are typically observed. As the data in later chapters will show,
deviations from a monotonically decaying radiated displacement field are extremely
repeatable, and thus tell us something about the soil properties and the soil column
under the building and its interaction with the superstructure. However, I believe
that even though the half-space model lacks the complexity necessary to compute the
radiated energy for this experiment, it provides insight into solving a more general
problem that involves either a layered soil model or continuous soil property changes
with depth.

Perhaps the simplest radiation model is to consider the problem of a rigid disk

on the surface of a half-space; this disk is subjected to forces and force couples.
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Since I am concerned with radiated energy, only the far-field (r — o0) solution
for the displacement field is investigated. Cherry (1962) solved for the displacement
field for such a source for a harmonic load applied horizontally to the surface of a
semi-infinite space, and Bycroft (1956) derived, in integral form, the solution for the
displacement field for a rigid disk under a rocking motion on the surface of a semi-
infinite space. I use the displacement fields derived by Bycroft (1956) and Cherry
(1962) to calculate the body wave energy radiated into a half-space by a rigid disk,
and by following the analysis of Miller and Pursey (1954), I also compute the radiated
energy from Rayleigh waves for both a harmonic horizontal load and a harmonic
rocking motion. Even though the body waves and the surface waves are related
to the same displacement field, the analysis for each one is presented separately to
simplify the presentation, grouping the analysis of body waves (Sections 3.2 and 3.3)
and surface waves (Sections 3.4 and 3.5). This is done because the procedure to solve
for each displacement field is similar. Johnson (1974) solves a very similar problem
for the body wave solutions utilizing the Green’s Function approach, however the
method used here is more intuitive and provides a direct physical approach.

In the following analysis, the wave energy is calculated for the entire volume, and
it will be assumed that the waves have travelled long distances. By normalizing the
average energy for the volume by the number of building cycles used to compute
the energy, an average energy per individual oscillation cycle can be computed. The
excited waves travel at different velocities, and as a result, the energy integral is
subdivided into various integrals as a function of distance from the source. One of
these integrals involves the entire displacement field from the source up to the distance
that the Rayleigh wavefront has travelled, the next from the Rayleigh wavefront to
the shear wavefront, and the last from the shear wavefront to the compressional
wavefront. However, SV head waves are generated by the free surface interface (a P
to SV conversion), and these will be ignored in the calculation of the radiated energy,
as these SV head waves are transformed compressional waves required to keep the
free surface traction free and are small compared to other terms.

To estimate the radiated energy using this model, we must know some basic prop-
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erties of Millikan Library and the soil surrounding it. Due to the intermixing of
theoretical analysis with the experimental data collected and analyzed for Millikan
Library, Figure 3.1 provides a flowchart which hopefully aids in understanding the
organization of this chapter as well as simplifying the problem set-up and the un-
dertaken solution. The values given in Table 3.1 represent the top 3 meters of soil,
and were calculated from a local refraction experiment. According to Dr. Ronald F.
Scott (personal communication, 1998), and to Dr. Behnam Hushmand (personal com-
munication, 2001), these values are representative velocities for the top soil around
Caltech and Millikan Library. Furthermore, Luco et al. (1975) report that Millikan
Library has an equivalent circular foundation radius, ry, of approximately 13m. This
number is used as the rigid disk’s radius to estimate second-order effects (%, 4) in
Appendix E, but these are not presented in the main text to simplify the presenta-
tion, as the leading order terms (}%) dominate the displacement fields. However, the
second-order effects are presented in the appendix to verify that the magnitudes of

these contributions are indeed smaller than those of the leading order terms in the

Far-field approximation.

Vp 597 m/s
Vs 316 m/s
p | 1850 Kg/m3
A 1.89

Table 3.1 Surficial soil properties for the area surrounding Mil-
likan Library from a refraction experiment near Millikan Li-

brary. Vp is the compressional (P) wave velocity, Vg is the

shear (S) wave velocity, p is the soil density, and A = ‘%.

Furthermore, apart from this surficial model, I will also use a “best estimate”
velocity model which is determined and explored in Chapter 5. The properties of
this model are those of the top layer for the velocity model given in Table 5.3. It is
presented here as both these models will be used at the end of the chapter to estimate
the energy radiation from the half-space model, which are then compared to observed

building results. Furthermore, the derivation of the displacement fields in Sections 3.2
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to 3.5 will assume that the applied force and moment are in the EW direction, as in

an EW shake. For a NS shake, the radiation patterns should be rotated by 90°.

Ve 710 m/s
Vs 376 m/s
p | 1910 Kg/m?
A 1.89

Table 3.2 Estimated half-space soil properties for the area sur-
rounding Millikan Library. Vp is the compressional (P) wave

velocity, Vg is the shear (S) wave velocity, p is the soil density,

_ v
and A = -
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3.1 Solution of the Elastic Wave Equations

In the absence of body forces, the dynamics of a homogeneous isotropic elastic solid
are governed by the Navier equations. The vector displacement equations of motion
can be written as

52U
P o

= M+20)V(V-U)—pVxVxU (3.1)

where p is the material density, o (the shear modulus) and A, are the Lamé con-
stants for an isotropic medium. To solve the elastodynamic problem, the Helmholtz

decomposition of a vector field is introduced. Thus

U = Vp+Vxvy, V-¢p=0 (3.2)

where ¢ is a scalar potential and ) is a vector potential. Substitution of this dis-

placement field yields the following decoupled set of wave equations

D¢

9 2 o2

2 = VeVay, V- =0 (3.4)
where the wave speeds are given by Vp = ’HTQ“ for compressional waves, and by

Ve = \/% for shear waves. Note that the wave equation for 1 is a vector equation,
and therefore it describes a total of three equations (given in Equation 3.7). The
proceeding summary of equations in cylindrical coordinates follows the presentation of
Achenbach (1993). Denoting the displacement components in cylindrical coordinates
in the r, ¢, and z directions by U,, Uy, and U, respectively, the relation between the

displacement components and the potentials follow from Equation 3.2.

dp  10v. U,
or r 0¢ 0z

Ur
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10y 0. 00

roé = 9z  or (35)

dp  1rov, 10v,

U= = Oz r Or r 0¢

where ¢ satisfies Equation 3.3, and the Laplacian in cylindrical coordinates is defined

as

0 10 1 02 0?
VQ — — - I
o2 + r Or + r2 02 + 022 (3.6)

The components of the vector potential @ satisfy the equations

1 oyY? y 20
10 g, 200
Vg ot r2 ¢
1 0y} ) Ve 2 O,
— T _ e = 3.7
V& ot? Vs r2 12 9¢ (37)
1 oy2 2
In cylindrical coordinates, the strain-displacement relations are given by
T or o T Ty 0¢p = 0z
vy U, 10U,
2 = 2 = — — =4 -
cre Cor or ror 0o
(3.8)
10U, 09U,
29, = 26,6 = -— ——
“ C¢ r 0¢ + 0z
ou, 0U,
26, = 26, =

8z+87"
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and the stress-strain relations in cylindrical coordinates are of the forms

(e O 1 00

orr o T T T os or
o by %_’_%_’_l%_f_a[]z +92 %4_1%
o0 °\ or rr 0o 0z P\ T r 0]
A %+%+1%+8U2 +9 oU.
0z °\ or ror 0¢ 0z a 0z
(3.9)
, o, Uy 10U,
o K r r o r d¢
, Lov. | ou,
o2 P\ 7 op 0Oz
- ouU, . ouU,
- M\ a2 or
And the constitutive relation for a homogeneous isotropic solid is given by
Oy = /\oekkéij + Q,MEU (310)

In this chapter, the temporal response in the solutions of the wave equation will

be sinusoidal due to the periodic nature of the forcing. Therefore the potentials can

be assumed to have a separable structure, such that ¢ and 1 are given by

—iwt

p(x,t) = p(x)e
(3.11)

Y(x,t) = P(x)e

where w is the forcing frequency, which in the case presented in this thesis is one

of the resonant frequencies of Millikan Library. The wave equations reduce to the
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Helmholtz equations for the spatial components of the potentials. These are given by
Vip+h*o=0 V*p+Ek*p=0 V-p=0
where the wave numbers A and £ are given by
h=— k=— (3.12)

The structure of the general separable solution to the Helmholtz equation, in

cylindrical coordinates, that remains bounded is of the form

An(C) Jn(cr)e_\/@_—h%“w

where  and n are separation constants, and A, (¢) is an amplitude term that is deter-
mined based on the boundary conditions. The problems to be solved in Sections 3.2
and 3.3 are the shearing and rocking of a rigid disk on the surface of a semi-infinite
medium, respectively. The boundary conditions for problems of this type include the
specification of both displacement and stress at a free surface, as well as bounded

stresses at infinity. The general boundary conditions are given by

e at z = 0,

Q
=
I
wnn

=

=
=
N

> To
U =U(re¢), r <

o =0, r >0
e U —- 0 as zand r — oo

where S and U are a prescribed stress vector and displacement field, respectively,
under the disk.

In these particular problems, no initial conditions are required since we are inter-
ested in the steady-state harmonic response of the medium, such that all transient

response has decayed.
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3.2 Body Waves from a Shearing Motion

This section presents the calculation of energy in the form of compressional (P) and
shearing (S) body waves radiated away from a circular foundation (rigid disk) under-
going horizontal (shearing) harmonic motion. I use the displacement field derived in
Equations 17 through 19 in Cherry (1962) as the displacement field to integrate us-
ing the method presented in the previous section. Furthermore, since Cherry (1962)
solves for the displacement field using an asymptotic solution, this section also serves
to verify that the method developed here gives the same leading order term solu-
tion as that achieved by Cherry. In the analysis that follows, we utilize the initial
stress field used by Bycroft (1956), as Cherry (1962) removes some constants from
his stress field for convenience. This change eliminates the dependence of Cherry’s
solution on the foundation’s radius, which should not appear in the far-field solution
to the problem (it only depends on the applied shear force). However, since only
constants are involved, the solution maintains the same form. Figure 3.2 shows the

coordinate system used throughout the rest of this chapter.

Figure 3.2 Coordinate system for the equations used in this
chapter. The plane created by x and y defines the free sur-
face, while z is the depth coordinate.

From the following boundary conditions at the free surface, (z = 0), in polar
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coordinates,

Ue(t) =d(t)sing  (r <)
Uy(t) =d(t)cosp  (r <rp) (3.13)

Orz = Oz = 0 (T > TO)

where d(t) is the horizontal displacement of the rigid plate, r¢ is the radius of the
disk, and U,., Uy, and U, are the displacements of a point at 7, ¢, z in these coordinate
directions (radial, tangential, and depth). Assuming a particular solution similar
to that given in Equations 3.28 through 3.33, in conjunction with the boundary
conditions given by Equation 3.13, and forcing the disk to remain horizontal when a
force is applied, one can solve for A(¢) and C(¢). The procedure is used in the next
section. Using this method, Bycroft (1956) and Cherry (1962) find the stress field
under the plate to be

Psing (r <o)
Opy = ————F——— r<r
QWTO\/W ’
P
cos ¢ (r <o)

Oup= ———F—— <
27mro\/ 18 — 12

where P is the maximum applied shear force. The sinusoidal nature of the excitation
force (sin(wt)) has been neglected for convenience, and will be brought in once the
displacement field is calculated. The displacement field calculated by Cherry (1962) is
provided in Equations 3.22 through 3.24 in the proceeding analysis. The displacement
field is given in cylindrical coordinates, where r and ¢ give the coordinates of a point
on the free surface (z = 0) of the half-space. After the solution is achieved, it is
transformed to spherical coordinates to simplify the integration of the displacement
fields. The following integrals have been expanded and re-arranged to match the

integral format presented in Appendix D in order to easily visualize the required
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integrations. By utilizing the Bessel function identity

2Jl((r) = CJo(Cr) —

or (3.14)

J1(¢r)
T
to expand the integral form of the displacement field given by Cherry (1962) in
Equations 17 to 19 to integrals of the form solved in Appendix D, the displacement

field is as follows,

R
0

2m g P SnCro)Ch(Cr) e dC +

/0 %sin((ro)@jl(cr) e d¢ +
/0"0 %M(m e 7 d¢ + (3.15)
/0 (2¢ ?]?)(\C/)W sin(Cro)CJo(Cr) o0z dc +

[FeesnyeE

Grre) S(Cro)CACr) e dd

qu _ PCOS(b[_/WESHI(CTO)CQa]l(CT) e d( +
0

27 pro CrF(C)

/0 C\/@CJO(CT) € dC +

(3.16)

[ sin(¢ro) N
[ aenn e i

[T
0 ¢GrF(Q)

sin(Cro)¢* i (¢r) =% d¢

v. - PSinﬁb[/w?\/@—iﬂ\/C?—k?
0

2mpary F) oG A e dC
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(3.17)

_ /0 % sin(Cro)C2 Iy (Cr) e d¢

where,

a = /(?—h? and (=K

the symbols commonly used for the P and S wave velocities, a and (3, are here only
used in the exponentials to distinguish which integrals are associated with compres-
sional waves («) and shear waves (). Instead, the symbols Vp and Vs specify the

wave velocities. Also,

h = and k= and A:%:—

=€

d
Vo

where h and k are wavenumbers, and F(¢) is the Rayleigh frequency equation (By-
croft, 1956) given by,

F(O) = (B =2C) =4/ = W2/ = k2
(3.18)
= (k* = 2¢*)° — 4afic?

where ( = —msin 6 (the saddle point) and m can take on the values of either h or
k, depending on the type of waves, P or S, being studied, respectively. Expanding
F(¢) for both saddle points, it is found that the Rayleigh frequency equation becomes

either
F(—hsinf) = h* [(A2 — 2sin?0)? — 4sin® § cos /A2 — sin? 9] (3.19)

or

1
F(—ksing) = k* {(1 — 2sin” 6)® — 4sin® 6 cos 0 / 2 sin® 0 } (3.20)
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After performing the necessary integrations and transforming the resulting dis-
placement fields to obtain a spherical coordinate set by utilizing the following trans-

formation,
Ur =U,sinf + U, cosf Uy =U,cosf — U,sin6 (3.21)

As illustrated in Appendix E.2, the first-order terms (%) of the displacement field
are as follows
P [h*VA2 —sin?0

N in 20 si in(wt — 22
Ur 2xRp | F(—hsin) sin 081n¢] sin(wt — hR) (3.22)

P [K*(1—2sin?0)
= 0 si in(wt — k 2
Uy R | F (ks d) cos 6 sin qb} sin(w R) (3.23)

P
Uy = R [cos @] sin(wt — kR) (3.24)

where the sinusoidal time variant has been incorporated into the solution, and equal
signs are used for the displacement field as only the first-order terms will be used in a
later section to estimate the radiated energy of the model. This field is in agreement
with the asymptotic field computed by Cherry (1962). The higher order terms are
omitted for brevity, as for most of the integrals, they include several dozen terms
and would be too cumbersome to read. If the reader wishes to obtain these terms,
he/she can use the method given in Appendix E to compute them for the integrals
presented here or ones with similar structure. Figures 3.3 through 3.5 provide plots
of the displacement fields given by Equations 3.22 through 3.24, minus the sinusoidal
time term. It should be noted here that the reason that Figure 3.4a has the large peak
associated with it is that the square root term in Equation 3.20 becomes imaginary
when sin ) = %, and the behavior of the amplitude of Uy changes dramatically at this
point. This is not the case for Equation 3.19, and therefore terms containing it do
not show this behavior.

Taking the time derivative of the displacement field to obtain the velocity field to
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Figure 3.3 Displacement field for Ug. The gray arrows through

the origin show the excitation direction for a horizontal force.
All three figures correspond to the first term of the expansion
(1/R term). Figure A shows a vertical polar cross section (¢ =
7/2), figure B the corresponding phase argument, and figure
C the corresponding polar map views of the radiation patterns
(0 = 7/8, z =0). The harmonic source for the left and right
plots is located at the plot’s origin, and it oscillates along the
X axis.
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Figure 3.4 Displacement field for Uy. The gray arrows through

the origin show the excitation direction for a horizontal force.
All three figures correspond to the first term of the expansion
(1/R term). Figure A shows a vertical polar cross section (¢ =
7/2), figure B the corresponding phase argument, and figure
C the corresponding polar map views of the radiation patterns
(0 = w/8, z = 0). The large peak present at approximately
359 from the vertical axis is due to the asymptotic expansion.
The harmonic source for the left and right plots is located at
the plot’s origin, and it oscillates along the x axis.
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Figure 3.5 Displacement field for Uy. The gray arrows through
the origin show the excitation direction for a horizontal force.
All three figures correspond to the first term of the expansion
(1/R term). Figure A shows a vertical polar cross section (¢ =
m/2), figure B the corresponding phase argument, and figure
C the corresponding polar map views of the radiation patterns
(0 = w/8, z = 0). The harmonic source for the left and right
plots is located at the plot’s origin, and it oscillates along the
X axis.

be integrated at a later section,

Pw [h*/A%—sin?f
= in 20 si t—nh
Vg 2 Rp | F(—hsind) sin smgzﬁ] cos(w R)
Pw [K*(1—2sin?0) _
Vo = 27Rn | F(hsmd) cos@smqﬁ} cos(wt — kR)
Ve = n R [cos @] cos(wt — kR)

the final result is achieved.

3.3 Body Waves from a Rocking Motion

(3.25)

(3.26)

(3.27)

This section provides the procedure for calculating the body wave energy radiated

into a half-space from a circular foundation undergoing rocking motion. I follow the

method of Bycroft (1956) and use his general displacement and stress conditions (in



35
cylindrical coordinates) provided in Equations 180-185 in Bycroft (1956)(labelled here
as 3.28 through 3.30). Assume a solution of the form.

U, (Q) [A - (Okge ﬁz}ajla(fr) sin ¢ ¢! (3.28)
ie) = [ LG D o o (3.29)
U.(Q) = [A - (Qé;ﬁ ‘ BZ} Ji(Cr)sin ¢ ¢t (3.30)
0..(¢) = u:A(C)<%—2hi;2>eaZ+ (]2“2 5Z] Ji(Cr)sing et (3.31)
o () = u“]gﬁ)o‘ew C(c)(gz + ii) Bz}ajla—(fr)sinqb et (3.32)
06(C) = MZM]E?%w C(c)(inrg)eﬁZ} Jl(fr) cosé e (3.33)

where ( is an arbitrary parameter. From the following boundary conditions, in polar

coordinates, at the surface, z = 0,

U, =0grsingsin(wt)  (r <o)
0..=0  (r>rg)

O, =0,=0 (r>0)

where O is the angle of rotation of the circular rigid plate about a horizontal axis,
¢ is the angle in the horizontal plane measured from the horizontal axis of rotation,
and U, is the displacement field under the disk. By setting the shear stress equal to

zero at the free surface, 0,,(() = 0.4({) = 0, we can solve for C'(¢)

2A(Q)ak? 1
() = 3.34
and by substituting into Equation 3.31, we find that the normal stress is
A(C):u Ah2 2\ —az 4@6<2 —,Bz w
0..(¢) = 0 (7 — 2« >e + i CQ J1(¢r) sin g ™" (3.35)
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At z = 0, Equation 3.35 becomes

A Ah? 433
rn(¢) = HOEIAE g ey 220

J1(¢r)sin ¢ ™!

After some simplification and by using Rayleigh’s frequency equation (3.18), the

normal stress is given by

pA(CQ)F(C)

0::(C) W20k — 202

J1(Cr)sin ¢ ™!

For convenience, I will stop writing the exponential time term, and it will be

reintroduced towards the end of the analysis. Since the above equations are valid

only for individual ¢, but the boundary conditions used to this point must also be

true for any sum of (, the solution for the stress field can now be generalized by

integrating from 0 to oo with respect to ¢, which gives

Oz = /OO Mﬁ(fr)singbdc

w2 (k> = 20%)

From Bycroft (1956), equation 187, we know that

0., = / " Ksing Ji(Cr)CI(Q) d
0

where
I(¢) = o [sin(Cro) — cos(Cro)
¢L (ro ’
and,
- -3M
2mry

(3.36)

(3.37)

and the moment, M, necessary to rotate the rigid plate through an angle ©, about



37

the horizontal axis, is found to be

16 ©9 (1 —A7?)

M 3.38
! (3.38)
by (Bycroft, 1956). By equating Equations 3.36 and 3.37, we get that
—3Mh2((k? — 2¢%) [ro /sin(Cro)
AC) = — — 3.39
©) 2mrguF () {<< Cro ““““ﬂ (3:39)

Now use Equation 3.39 to solve for the displacement field in cylindrical coordinates

(Equations 3.28 through 3.30).

~ —3Ma  qsin((ro)
_QWT(Q)MF(C)[ Cro

U.(C) - cos((ro)} [(1& — 2 4 2¢2%e P T (Cr) sin o

Generalize the displacement field by integrating from 0 to oo with respect to ¢, and

then rewrite in a form similar to that of Equations D.4 and D.44, which gives

—3M si o
U, = WSLM [ /0 Ey(Q)C2T (Cr)e ™ d¢ +
(3.40)
/ Eﬂ@@ﬁ@ﬂe&d4
0
where F; and FE, are defined by the following functions
_ (K*—2¢%)\/¢? — h? [sin(Cro) — (ro cos(Cro)]
Ey(¢) = CraF () (3.41)
Ey(() = 24/¢? — h? [sin(Crg) — Cro cos(Cro)] (3.42)

CroF'(C)

Similarly to U,

A(Qe ™ 24 621 ]
M0 =~ | H = T e | e
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which after a similar analysis yields,

3M o
v, = Set] [T Bt dc +
(3.43)
| Eocnne™ dg}
0
where F3 and E, are defined as
~ (K*—2¢?) [sin(¢ro) — Cro cos(Cro)]
E5(¢) = NI (3.44)
2a3 [sin(Crg) — (ro cos(Cro)]
E4(¢) - O roE(0) (3.45)
And for U,,
—A —az C —Bz o
o= [ o,

after substituting for A(¢), C((), the derivative of the Bessel Function by using

Equation 3.14, and performing the previous analysis, this gives

U, — M[_ / = (B = 207 [sin(Cro) — Crocos(Cro)] 2 ey gz
0

2mré r G roF(¢)

CIy(Cr)e P +

/°° 203 [sin((ro) — (ro cos((ro)]
0 r C3 TOF(<>
(3.46)

[ =2 0l —GroelGrol ey o

CTOF(C)

/OO 203 [sin((ro) — (ro cos((ro)]

— B2
CroF () ¢ Jo(Cr)e

After performing the necessary integrations and transforming the resulting displace-

ment fields to obtain a spherical coordinate set as illustrated in Appendix E.3, the
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first term of the displacement field is found to be

M [ih®sin20(A? — 2sin?0)
Urp = ' in(wt — hR 3.47
"= orRu { oF(—hsing) 4 sin(w ) (3.47)
—M [2K’cos@sin® 6/ A2sin® 60 — 1
= i in(wt — k 4
Usp 7R [ F(—ksind) sin gb} sin(w R) (3.48)
U, = 0 (3.49)

where the sinusoidal time variant has been incorporated to the solution. Only the
first-order terms (%) are given once again, as only these will be used to estimate the
radiated energy. Figures 3.6 and 3.7 provide plots of the displacement fields given by

Equations 3.47 through 3.49, minus the sinusoidal time term.

0.06 0.12 0.18 X
y 3 0.12
2 2
0.08 3 1 0.06
g0 N
4 y
1)
0.12 S, -0.12\ -0.06 0.06 J0.12
o
-3 0.06
02 04 06 08 1 1.2 14
0.18 0 (radians) 012
z
A) B) C)

Figure 3.6 Displacement field for Ug. The gray arrows through
the origin show the excitation direction for a single couple. All
three figures correspond to the first term of the expansion (1/R
term). Figure A shows a vertical polar cross section (¢ = 7/2),
figure B the corresponding phase argument, and figure C the
corresponding polar map views of the radiation patterns (6 =
7/8, z = 0). The harmonic source for the left and right plots
is located at the plot’s origin, and it oscillates along the x axis.

Taking the time derivative of the displacement field to obtain the velocity field to

be integrated in a subsequent section,
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Figure 3.7 Displacement field for Uy. The gray arrows through
the origin show the excitation direction for a single couple. All
three figures correspond to the first term of the expansion (1/R
term). Figure A shows a vertical polar cross section (¢ = 7/2),
figure B the corresponding phase argument, and figure C the
corresponding polar map views of the radiation patterns (6 =
7/8, z = 0). The harmonic source for the left and right plots
is located at the plot’s origin, and it oscillates along the x axis.

Mw [ih®sin20(A? — 2sin?0) .
Vr = 2Ry { SF(—hsm ) sin qb} cos(wt — hR) (3.50)
—Muw [2k° cos§sin? 61/ A2sin? 0 — 1
= i t—k 51
Va 2 Rp [ F(—ksin0) sin (4 cos(w R)  (3.51)
V, = 0 (3.52)

the final result is achieved.

3.4 Rayleigh Waves from a Shearing Motion

This section provides the calculation of energy radiated away from a circular founda-
tion undergoing shearing motion in the form of Rayleigh waves, following the method
of Miller and Pursey (1954) which expands the method used by Bycroft (1956). It
has been shown by Miller and Pursey (1954) that the poles of the integrand occur
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on the real axis at points (s = dkg, where kr > k. If 6 > arcsin(A™!), the deforma-
tion of the contour mentioned in Section D will cause it to move across the pole at
(o = —kpg and this will give rise to a residue term which must be added to the integrals
presented in the previous two sections. This term corresponds to the Rayleigh wave.
Since, however, this term contains a factor e /(9 and ¢ > k, the contribution from
the pole will be asymptotically negligible except when 6 = 7.

The following analysis is in cylindrical coordinates, where r and ¢ give the coor-
dinates of a point on the free surface (z = 0) of the half-space. From Equation 3.16

through 3.18, we know that the displacement field is

- M - m@ —az
U, = 27T,u7“0{ /0 F(O) sin((ro)CJo(Cr) e ¢ +

/ % sin((ro)( 2 (Cr) e d¢ +

s o
/or@\/m“(@e ac +

® (2(2 — k%)/CF — k2
/

CF(C) sin(Cro)CJo(¢r) e d¢ +

sin(Cro)C2Jy(Cr) e % d¢

_/°° (2¢2 — k2)\/C — &2
0 ¢Cri(C)

- PCOS¢ - w@ 3 2 —az
Ud) - 271 |: /0 CTF(C) Sln(Cro)g JI(CT)B ¢ +

OOM —Bz
|, et e

B OOM 2 —Bz
/o Csrmg Ji(Cr) e PP d¢ +

/0 . CfT;W sin(Cro)(*J1(Cr) e dC
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L PV IR nro)t ) e d +
0

2 CF(O)

00 2 _ 1.2
_ / M sin(Cro)¢2J1(¢r) e d¢
0

CF(Q)

From the method of residues, the contribution from the residue for an integral of

the type Io = ¢, eRf(O%dC is (Miller and Pursey, 1954)

I 2mix ((o) e RS (Co)
PG

(3.53)

as F'(¢) has a simple pole at (o, where F’'((y) is the derivative of the Rayleigh fre-

quency equation evaluated at (o, and (j is a zero of F'(¢). The contribution to the

displacement field for each integral of the form of Equation D.16 for terms involving

Jo and of Equation D.55 for terms involving Ji, is as follows (showing only terms of

order r~2).

U, =

where o = ViR

iPsinnge_%_"CO [ §\/7 . —
— 2(24 /(3 — k2sin((yrg) e +
/.M"(]\/ﬁF/(Co) <0 CO (CO 0)

(3.54)
C_%(Qgg — k*)\/¢E — k2 sin(Corg)e_Blz]
0 (3.55)
Psin¢ef%r*ir<0 _ % 2 2 12 -1z
1rov/2er ' (Go) [ 265 /G — 2/ — B sin(Goro) e +

(3.56)

Co% (2C§ - k2> sin(Coro) 6612}

L= (722, =i\ /1- (E)% F(kg) = —4k}N,
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and

_ A2 A2
N = 2(Aés—2+\/1—A2RP\/1_A%S)+m+ V1A%
L= Ahs  VI- AR

substituting h = ¢, k = Vis, kr = ViR, Agrs = “i—’;, and Agp = %7 Taylor expanding
for sin({yro), and introducing the sinusoidal time dependence of the source as in

Section 3.2, simplifies Equations 3.54 through 3.56, which yields

Pw /
UT = |:—2 1_A%ES e_alz +

[N

2V F (Go)
(3.57)
B2 T .
(2 A%o)\ /1 — Ajge™” } cos (wt — ry + Z)smgzﬁ
Uy ~ 0 (3.58)
U. = oz [—2\/1—/\;5\/1—/\;}; e 4
pN2mr Vg F'(Co)
(3.59)

(2 — A%s) e‘ﬁlz} cos (wt — 1y — %) sin ¢

where the expected phase shift between the radial and vertical component in a
Rayleigh wave is evident in the sinusoidal time term, and the vertical component
is 90° behind the radial term.

Now transform the displacement field to spherical coordinates as in the previous

two sections, which gives
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Pw? - . m
Up = {—2\/1_/\%5 (\/31116 cos(wt—RCosme—l—Z) +

7
uV/ 2RV F(G)
1 _A2 ﬂ cos(wt—RC sin @ — z)) ez +
VAT 0 4
(3.60)
(2 - Aés)( 1 — A%4Vsing cos (wt — R{ysin 6 + %) +
cosf ) T s '
cos (wt — R(ysinf — —)) e M*| sin¢g
sin 6 4
Us = 0 (3.61)
Pw? cos 6 ™
Ug = = {—2\/1—A%S<+ cos (wt — R(ysinf + —) —
pV2rRVE F' () sin ¢ 4
\/1—A%pVsing cos (wt — R(ysinf — %)) e M 4
(3.62)

cos 0 _ 7r
(2—A2Rs)(\/1—A%%S — cos(wt—RCosm@—i—Z) -

sin
Vsiné cos (wt — R(ysinf — %)) eﬁlz} sin ¢

The velocity field is not shown here, as it is quite lengthy and fairly simple to derive

from the shown displacement field.

3.5 Rayleigh Waves from a Rocking Motion

This section provides the calculation of energy radiated away from a circular founda-
tion undergoing rocking motion in the form of Rayleigh waves. From the calculation

of body wave energy for a foundation undergoing rocking motion in Section 3.3, we
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have that

_ 3Msing > (k* = 2¢?) [sin(¢ro) — ¢ro cos(Cro)] —az
Ur = 27mrgp {_ /0 r G roF(Q) Chln e +

¢ I(Cr) e +

B /°° 2a3 [sin(Crg) — Cro cos(Cro)]
0 r 3ok '(Q)

/°° (k2 — 2¢?) [sin(Cro) — Crocos(Cro)]

CrF(Q iy e

/°° 203 [sin((ro) — (o cos((ro)]

r)e P
CroF Q) ¢ hler) }

ChL(Cr)e ™ d¢ +

0. — 3M cos ¢ [/OO (k2 — 2¢?) [sin(Cro) — Crocos(Cro)]
o ome L r 3 roF(()

/°° 2a [sin(Crg) — (ro cos(Cro)]

r @ roF(() Ch(er) e dc}

U — —3M sin ¢ [/o" a(k? —2¢?)[sin(Crg) — Cro cos(Cro)]
0

2mrép BroF(0) G (Cr)e *d¢ +

/°° 2a [sin(Cro) — Cro cos(Cro)]

CraF(O) ¢Ii(¢r) e dé]

Applying the same method as in the previous section, the contribution to the
displacement field for each integral of the form of Equation D.16 for terms involving
Jo and of Equation D.55 for terms involving J;, is as follows (showing only terms of

order r72).
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Ur 7“8,“ /27T7"F/(§0) Cié <k2 —_ 2£2) [Sin(CTO) — CTO COS(C‘TO)] e 1% +
(3.63)
QC_% Ofﬁ [Sin(CTO) - Cro COS(CTO)] e_ﬂlz
el (3.64)
Uz _ 3M sin ¢67%*i7“(0 C—% a(k2 _ QCQ) [SiIl(CTO) o CTO COS(€3T0)] e~ 12 +

ropy/2mr FY (Go)

(3.65)

202 o [sin(Crg) — Crg cos(Crg)] e ™2

substituting h = ¢, k = Vis, kr ==, Agrs = “i—’;, and Agp = %? Taylor expanding

for sin({yro) and cos(Crg), and introducing the sinusoidal time dependence of the

source as in Section 3.2, simplifies Equations 3.63 through 3.65, which yields

Ur

Muw?
wg {(A%S —2)e " +
uN2mr Vg F'(Co)
(3.66)
B T,
2\/1 — A%%P\/l — A2 e’ } cos (wt — ry + Z)smqﬁ
0 (3.67)
Mw% 2 2 -1z
9 V1= Akp(Ags —2) e +
N 2mr Ve F'(Co)
(3.68)
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Again transform the displacement field to spherical coordinates, which gives

Mw?
U = wg {(A%S —-2) (\/ sin@ cos (wt — R¢ysin 6§ + %) +
pV2rRVE F'(Co)
1— A2 ﬂ COS(wt— RC sinf — E)) P L
RE/sin 6 0 4
(3.69)
2\/1 - A%y:(\/l — A% 4Vsinf cos (wt — R(psinf + 2) +
cosf ‘ T o]
: cos(wt—R(osm€—_)>e 1% sin ¢
sin 4
Vo m 0 (3.70)
Mw3 0
Ug = wg [(A%{S — 2)( CO'S cos (wt — Ry sin 0 + z) —
12t RVE F' () Vsin g 4
1-— A%P\/ sinf cos (wt — Ry sin — %)) e—MF 4
(3.71)

cos 6 _ T
2\/1 - A%P<\/l - A%’Sm cos (wt — Ry sinf + Z) —

Vsiné cos (wt — Ry sinf — %)) 6’812} sin ¢

Once again, the velocity field is omitted for conciseness.

3.6 Building Results

The building’s floor displacements and rotations are calculated using the accelerom-
eters located throughout Millikan Library. There are at least three horizontal ac-
celerometers per floor, as well as three vertical accelerometers in the basement. For

simplicity, it will be assumed that all the displacements for the NS and EW modes
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take place in a vertical plane in either the NS or EW direction, respectively, and that
the floor slabs are rigid, as was shown by Foutch (1976) for forced vibrations of the
library. The rigidity of the floor slabs implies that accelerometer measurements for
each floor are valid throughout the floor, as long as floor rotations about a vertical
rotation axis are accounted for. With these assumptions, the maximum kinetic energy
of the building (Ek;,), the applied shear force (P), and the applied moment (M) on

the ground can be computed by

Roof Roof

1 1
_ 2 2. 2
Exin = g oMivip = g 5w Tig (3.72)
i=Basement i=Basement
Roof Roof
P = E m;a;o = E mixiowQ (373)
i=Basement i=Basement
Roof Roof
M = E miaiohi == E mixiohiwz (374)
i=Basement i=Basement

where x;9, v;0, and a;o represent the maximum displacement, velocity, and acceleration
at the ¥ floor, h represents the story height measuring from the basement floor, and
m represents the lumped mass for each floor as given in the structural calculations
of Millikan Library, but modified to correct for the live loads (mostly books) added
since the building’s construction. The correction of the the masses is presented in
Table 3.3, and it is assumed that the entire live loads are present in the individual
floors. The live loads are estimated from the building’s design plans (except for the
6th floor which changed use since the building’s construction) and they correspond
to the floor uses at the time of the September, 2001 shake. A lumped mass model is
one where the mass of the structure is assumed to be concentrated at discrete points.
In our case, the mass is assumed to be concentrated at the floor slabs, which implies
that the mass from the inter-story columns is lumped along with the weight of the

floor slab. We also assume that the center of rotation for the building is located



at the basement floor level, although is is probably located under (but close to) the
basement floor [Jennings, 2000, personal communication]. Figures 3.8 and 3.9 show
the mode shapes obtained from the EW and the NS shakes, as well as the proportion
that rigid body rotation and translation contribute to the total floor displacements.
It is clear from the two figures that the NS mode undergoes significantly more rigid

body rotation than the EW mode.
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Mass Floor Area | Live Load | Maz. Live Load | Total Mass
(10° Kg) (f£) (Kg/ft?) | Mass (10° Kg) | (10° Kg)
Floorl 826 2749 15 41 867
Floor2 826 4249 15 64 890
Floor3 681 2825% 68* 192 873
Floor4 681 2825* 68* 192 873
Floorb 681 2825* 68* 192 873
Floor6 681 4249 15 64 745
Floor7 681 2825* 68" 192 873
Floor8 681 2825* 68* 192 873
Floor9 681 2825% 68* 192 873
Roof 979 4249 0 0 979
Total 7398 1321 8719

Table 3.3 This table presents the total floor masses for each floor

for the lumped mass model. The values for the superstructure
for floors 1—roof are from the Millikan structural calculations
(minus the live load percentage that are assumed there). The
floor areas denoted with an asterisk, are for book storage only,
as all the other live loads in that floor are small in compar-
ison. The other floor areas are for library operations, and
represent space used in the library similarly to office space.
The live loads denoted with an asterisk are from the Millikan
structural calculations, and the other live loads are 65% of the
UBC (1997)’s uniform loads for office space. A percentage of
the uniform loads are used as no correction for walls or par-
titions is used, there is not much furniture in the floors, and
approximately 25% of the floor area is utilized as hallways. No
live load is used in the roof, as the structural plans account
for the mechanical equipment under the dead load calculation.
Note that the areas are given in ft2.
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Mode Shape for EW Direction

25 q

—— RB Translation
RB Rotation

Building Height (m) from Basement

—— Remaining Displ.

—— Total Displacements

0 | | |
4 6 8

2
Horizontal Displacement (m) x10

Figure 3.8 Mode shape decomposition for EW shaking. In the
legend, RB is an acronym for rigid body. Note that most of
the displacements in the EW mode shape are due to internal
building deformations and not to rigid body motions.
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Figure 3.9 Mode shape decomposition for NS shaking. In the
legend, RB is an acronym for rigid body. Note that approxi-
mately 30% of the displacements are due to rigid body rota-
tions.
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Tables 3.4 and 3.5 show the detailed calculations for the maximum applied force,

the maximum applied moment, and the total energy per cycle (maximum kinetic

energy) for the EW and NS modes.

Total Mass | Height | Shear Force, | Moment, Kinetic
Displ. (m) | (10> Kg)| (m) P (103 N) | M (10> Nm)| Energy (J)
Floorl | 2.499 % 107°| 867 4.28 1.1 4.5 0.01
Floor2 | 8.468 «107°| 890 9.17 3.7 33.8 0.16
Floor3 | 1.516 1074 873 13.46 6.5 87.2 0.49
Floord | 2.389«107%| 873 17.74 10.2 181.0 1.22
Floor5 | 3.291x107*| 873 22.02 14.1 309.6 2.31
Floor6 | 4.242 1074 745 26.30 15.5 406.7 3.28
Floor7 | 5.128 x107%| 873 30.58 21.9 669.9 5.62
Floor8 | 6.044 «10~*| 873 34.86 25.8 900.1 7.80
Floor9 | 6.918 x10~*| 873 39.14 29.6 1156.6 10.22
Roof | 7.811%107*| 979 43.43 37.4 1625.1 14.61
Total 165.8 5374.5 45.73

Table 3.4 This table shows the building’s kinetic energy (Exn),
as well as the applied force (P) and the applied moment(M )

for an East-West experiment.

All values other than mass

and height are given for the peak values, as they are sinu-
soidal in nature. The displacement data are acquired from the
Mt. Whitney system in Millikan Library. For this experiment,
the frequency of excitation is f=1.1133 Hz.

As can be seen from these tables,

Excin(ew) = 45.7J

Exin(vg) = 106.1 7

Pgw =166E5 N  Pys=3.84E5 N

Mys = 1.21E7 Nm

where the subscripts represent the shaking direction at the respective resonant fre-

quency. For the complete details of the accelerometer data, please refer to Appendix

A.
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Total Mass | Height | Shear Force, | Moment, Kinetic
Displ. (m) | (10> Kg)| (m) P (103 N) | M (10> Nm)| Energy (J)

Floorl | 5.059%107°%| 867 4.28 4.6 19.9 0.12
Floor2 | 1.433 x107*| 890 9.17 13.5 123.8 0.97
Floor3 | 2.041 x10~*| 873 13.46 18.9 254.0 1.93
Floord | 2.817+107%| 873 17.74 26.0 462.1 3.67
Floor5 | 3.608 x10~4| 873 22.02 33.4 734.7 6.02
Floor6 | 4.481 x10~*| 745 26.30 35.4 929.9 7.92
Floor7 | 52391074 873 30.58 48.4 1481.5 12.69
Floor8 | 6.191x107%| 873 34.86 57.2 1995.6 17.72
Floor9 | 7.044 x10~*| 873 39.14 65.1 2549.3 22.94
Roof | 7.870%107*| 979 43.43 81.6 3544.5 32.12
Total 384.1 12095.3 106.14

Table 3.5 This table shows the building’s kinetic energy (Fxin ),
as well as the applied force (P) and the applied moment(M )

for a North-South experiment.

All values other than mass

and height are given for the peak values, as they are sinu-
soidal in nature. The displacement data are acquired from the
Mt. Whitney system in Millikan Library. For this experiment,
the frequency of excitation is f=1.6380 Hz.
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3.7 Kinetic Energy in a Half-Space and Energy

Radiation Estimate

To calculate the average kinetic energy density of the generated wavefield over N
periods of oscillation at a particular point in space, the following equation can be

employed (Lay and Wallace, 1995),

NT

i V24t (3.75)

“TONT J,

where T is the period of one oscillation, and V2 is the square of the velocity field and
is defined by
V2=Ve+ V@ +V} (3.76)

To calculate the average kinetic energy density in a volume, Equation 3.75 must
be integrated over the half-space volume where the displacement field is not zero.
Due to the nature of the displacement field, most of the integrals done here will be
in spherical coordinates. However, integrals involving only Rayleigh waves will be
carried out in cylindrical coordinates to simplify the math.

The contributions to the velocity field from the different types of generated waves
(P, S, Rayleigh) vary with distance from the source due to the different wave velocities,
as shown by the leading wavefronts depicted in Figure 3.10. It should again be
mentioned that I am only integrating first-order terms, as they represent most of
the energy in the generated displacement field. As the integrals are to be performed
over V2 and over a volume, and all the components in the displacement field are
independent of each other, the integrals can have different limits from those depicted
in Figure 3.10. For example, for V¢2, the Rayleigh waves and the P waves have no
displacements in the ¢ component, and therefore the limits for the distance integral
are from R =0 — VsNT'. For the purpose of performing the integrals, I will take NV
to be very large, as the solution derived in the previous sections is valid in the far-field.
It will be assumed that the contribution of the near-field terms is small compared to

that of the far-field for the large distances and the large number of cycles involved in
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the integral (N > 1). Furthermore, in order to simplify the integration, the integral
over the volume where only Rayleigh waves exist, will be performed in cylindrical

coordinates to simplify the integral forms involved.

/ Source
P+S+R
\\/ p

P+R
\/ P+S

R

Figure 3.10 Leading displacement field wavefronts for the dif-
ferent radiated waves; Compressional (P), Shear (S), and
Rayleigh (R) waves.

Therefore, the energy integral can be separated into multiple integrals over the dif-
ferent components. In the following formulation, the first subscript after the velocity
component represents the component being integrated, the subscripts in parentheses
indicate which waves are contributing to the integral for the integrated region, and

the number subscript corresponds to a region shown in Figure 3.11.

p VpNT
2 .
Eay = WUT /(ZS / /9 V2 py o) B2 sinfdo dRdp dt +
sm0
/ / / / Vipir)2) B2 sin0df dRd¢ dt +
¢=0 J R= 0=0p
VpNT %
/ / / / Vg(P)@H) R*sinfdfdRdodt —
¢=0 0=0p
sm@
/ / / / Vipy R sin0dfdRd¢dt +
¢=0 J R= 0=0p
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A) Radial Component, Ug

| > 6
K/é\

w\
5 ~N
| ~

g
|
B) Tangential Component, Ug

|
C) Tangential Component, U,

Figure 3.11 Integral partitions over the half-space for the indi-
vidual displacement components. The numbers in the differ-
ent regions shown are used to identify which integral in Equa-
tion 3.77 corresponds to a particular region of integration for
the different displacement field components. A) Radial Com-
ponent (Ug), B) Tangential Component (Up), and C) Tangen-
tial Component (Usy).
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VRNT
/ /¢ 0/ V(VeNT)Z =2 2/ 0 (Vig + Vo )(R) rdrdzdpdt +
= P - r=

NT Vs N
T=0 J¢$=0 J R=0 0=0

NT VsNT (%
/ / / / Vits)om) B2 sin0d0 dRdedt —
T=0 J¢=0 J R=0 9=0s
NT sin 6 g
/ / / / is)6) B2 sin0do dR dg dt +
T=0 J¢=0J R=0 0=05
NT 2 o) VrRNT
/ / / / (V + V. )(R)(g rdrdzdpdt +
T=0 J¢=0Jz=1/(VsNT)?—r? Jr=0

NT p2rm pVsNT %
/ / / / Vi) B sin0df dRd¢ dt}
T=0 J¢=0 J R=0 6=0

<

3

where
Op = sin~! (—R> O = sin”! (—R> (3.78)

For the time integrals (over IV oscillation cycles), the integrals involved are of the

following form,

NT NT
NT
/ sin®(wt — a)dt = / cos?(wt — a)dt = - (3.79)
0 0
NT
NT
/0 sin(wt — o + 4) sin(wt — a — %)dt = (3.80)
NT
/ sin(wt) cos(wt)dt =0 (3.81)
0
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and can be performed first to simplify the results. Similarly, the integrals with respect

to azimuth (¢, the angle along the surface) can be subsequently performed by

2 2
/ sin® ¢ dg = / cos’pdp = (3.82)
0 0

Substitution of the results from Equations 3.79 and 3.82 into Equation 3.77 yields

EAvg

VeNT
m[/ / Vipemu R2sin0dfdR +
6=

VRNT

“hmo (2
/ Vipirye Rsin0dfdR +
=0 0=0p

VpNT (3%
/ / Vipyasa) B2 sinfdodR —
(%

R=0

VRNT

—0p
sin 6 g 9 2

/ / VR(P)(Q) R Sin 9 d(9 dR -+
R=0 0=0p

©© VrRNT
Vi + V2 )7 drdz +
/ZZW/TZO (Vz ) ima T drdz

VsNT Os
/ / Vitsin)s) Rsinf@dfdR + (3.83)
0

/ o /  Vieiny R2sin0dodR +
R 0

VsNT %
/ / V92($)(6+7) R*sinfdf dR —
0

o0 VaNT
/Z /T (V;B + ‘/;5)%R)(8) rdrdz +
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VsNT %
/ V¢>2(S)(9) R2 S1n 9 d(g dR

R=0 0=0

Due to the significant number of integrals involved and the large number of terms
to be integrated, instead of presenting all of the integrals, I will only show the types
of distance integrals involved. The integrals over 6 will not be shown, as they need to
be computed numerically (Appendix E) and the integrands are long and complicated.
The integrals dependent only on body waves (V}?L.( Py VQQ(S), V2(5)> involve integrals of

the form
* 1 2 b
/a ﬁR dR = R|, (3.84)

Integrals involving only Rayleigh waves (Vg( R) VQQ( R)) include integrals of the form

"1
/—rdr = rp (3.85)

r

6—2042 b

b
—2az
dz = — 3.86
[ eras = < (3.56)

The more complicated of the forms includes a mix of a body wave (P or S) and

a Rayleigh wave. These integrals include 3 types of integrals, namely

b
1
/a = R%dR = R|" (3.87)
b €—2aRc0s9 ) e—2a1Rc030
S RR=-% 2 0+ 1 .
/a 7 R°dR 1o cos20( a;Rcosh + 1) (3.88)

/b e—aRCOSQ COS(hR — RI{}O sin 0) R2dR (389)

R3

Integrals 3.88 and 3.89 behave like near-field terms, as the integrands decay expo-
nentially with distance. As a result, they are only important near the source, as the
integral’s contribution with distance quickly diminishes to zero, causing the integral

to reach a constant value. The same is true for 3.86, except that the limit closer
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to the source is at the P wavefront, and therefore this integrand never takes on any
large values. I will ignore these terms, as they can be neglected in the far-field (large
N) and due to their constant values, when dividing the total average kinetic energy
(E44g) by the number of cycles of oscillation, the contribution from the integral is
negligible.
I calculate the moment, M, the building induces on the soil and the shearing force,

P, on the soil’s surface for each of the building’s natural frequencies in section 3.6 as

Mpw ~537TE6 Nm  Myg~ 1.21E7 Nm

After finding the zeros of F({) for the soil properties (A ~ 1.89) given in Tables 3.1
(model 1) and 3.2 (model 2), we can achieve an estimate of the building’s damping.

From the zeros of F'({), it is found that

Ve = 0.9282Vg

Therefore, the integrals in Equation 3.83 can be solved as shown in Appendix E.4,
where the appropriate values for a half-space have been used. However, the appendix
only calculates the kinetic energy, and therefore the values given there must be mul-
tiplied by two to include the potential energy (Achenbach, 1993). For model 1 the

integrals give that the energy radiated per cycle is

Ergwi1 =0.366J  Eng1 = 3.984 J

and for model 2

Epwe=0204J0  Eng =2.224J

As can be seen from the detailed results presented in Appendix E.4, the generated

shear body waves are the largest contributor to the radiated kinetic energy, and the
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Rayleigh waves have a negligible contribution. From the radiated energy per cycle,

the radiated power is estimated to be

ERad(EWl) = 0.408 Watts ERad(NSl) = 6.526 Watts

(3.90)
ERad(E‘W2) = 0.228 Watts ERad(NSQ) = 3.642 Watts
From Section 3.6, we know that the building’s kinetic energy per cycle is
Exinew) =45.7J  Eginws) = 106.1 J (3.91)

In order to compute the damping due to energy being radiated away from the
building, we have to compare the radiated energy with the building’s kinetic energy.
Using Equation 3.72 in section 3.6 and following the derivation of the logarithmic
decrement of damping derived in Housner and Hudson (1980), the building’s damping
can be calculated using the kinetic energy of two successive cycles in free vibration.

For the first cycle, the maximum kinetic energy is given by

1
Erin, = §mw2x2 (3.92)
and for the second cycle,
Loy 2
Erin, = 5w (x — Ax) (3.93)

where z is the maximum displacement of the first cycle and Az is the change in
maximum displacement between the two cycles. If we calculate the change in kinetic
energy (AFE;,) and divide it by the total initial kinetic energy (Ex;, from Equation

3.91), and furthermore assume that Az is small with respect to x, we get

AEKin Az
~2— &~ 20 94
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where ¢ is commonly referred to as the logarithmic decrement of damping. Further-
more, § can be related to the viscous damping ratio(§) by
0 ~ AEYKin

(3.95)

In order to calculate the percentage of damping attributed to the radiated energy

per cycle, substitute the computed radiated kinetic energy per cycle for AEj;,.

Using the values in Equation 3.91, the radiated kinetic energy damping ratios are

estimated to be

5EW1 - 0.06% 5]\[5’1 = 0.29%
(3.96)
Epwo = 0.04%  Enge = 0.17%

The observed damping ratios for Millikan Library are computed by fitting a decaying
exponential to the peaks of the free amplitude decay of the building displacements,

which yields the following damping values

Eew = 1.63%  &ns = 1.65% (3.97)

As can be seen, the observed damping ratios for Millikan Library are much larger
than the estimated radiated kinetic energy values computed here, and are also in
general agreement with the other experimental values given in table A:7 (Bradford
et al. (2004)). Therefore, it may be concluded that the half-space model applied
here is not a proper mathematical model, or that processes within the structure
are dissipating most of the energy input into the building. The half-space model

fails to account for resonances in the soil layers, and therefore an alternative should
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be explored. Multi-layer cases will be examined in Chapter 5 by utilizing a Finite
Element Model, and it will be shown that the damping values estimated here for the

half-space model are in general agreement with those of the Finite Element Models.



63

Chapter 4

Surface Wave Modelling

For the experiments performed in 1998, the field GPS units provided by SCEC were
utilized to obtain precise locations of the portable seismometers. Seismometer sites
were chosen throughout Pasadena at locations volunteered by members of the Cal-
tech community, who kindly offered a place in their residence to install a temporary
seismometer. As a result, a fairly random distribution of sites was achieved, however,
with a concentration in the NW part of Caltech. At the time, it was believed that
wavelengths in the order of 600 to 700 meters would be observed, and that errors in
the GPS measurements (in the order of few meters) would not have a large influence
on the data analysis. After collecting 