ON PROBLEMS OF HEAT CONDUCTION IN A COMPRESSIBLE FLUID

Thesis by

Theodore Yao-Tsu Wu

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

Californie Instituts of Technology
Pasadena, California

1952



ACKNONLEDGEMENTS

The author wishes to express his sincere gratitude to
Professors P. A. Lagerstrom and J. D. Cole for suggesting
this problem and for their constant advice and guidance
throughout the course of this work. He also wishes to thank
Professors C. R. DePrima and A. Erdelyi, Dr. R. Talmadge and
several of his friends for many helpful discussions and
collaboration. Finally, he wishes to express his deep ap-
preciation to Mrs. Beverley Cottingham for her excellent
typing and generous assistence in preparing the manuscript.

Part of the work was carried out under Office of Naval
Research Contract N 6 ONR-244, Task Order VIII, Project

NR 061-036.



de
| nad

ABSTRACT

The present work starts with a study of heat conduction in & non-
viscous compressible fluid based on & linearized theory which is simi-
lar to that used in the theory of sound. Important features of exact
equations of motion and their corresponding linearized equations are
studied briefly. For this linear system, which preserves many of the
features of the original non-linear system, the fundamental solutions
are found and discussed. The additional role played by wviscosity in
the heat conduction problem is then investigated. The fundamental
solutions for this compressible, viscous, heat-conducting flow prob-
lem are found and compared with the non-viscous case. The problem of
heat conduction in a two-dimensional stationary flow of a viscous com-
pressible fluid is further studied by finding the fundamental solu-
tions and discussing the result in some detail. As an example pro-
posed to show how a superposition of these fundamental solutions can
be used to solve a boundary velue problem, the problem of the anemo-
metry of & heated flat plate is solved for both large and small values
of the Reynolds number. The result obtained herein is discussed and
compared with some existing theories and experiments. The causes of
the discrepancy resulting from this linearized theory are briefly

explained.
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NOMENCLATURE

pressure

density

‘temperature

specific heats at constant volume and constant pressure
respectively

gas constant = Cp—Cy

—g‘:— = ratio of specific heats

time, space coordinates: (X, Y,Z) or (%, X, %3) (%)
velocity vector

body force vector per unit mass

internal energy per unit mass = (v

thermal conductivity

coefficient of viscosity

heat addition per unit mass

heat flux vector

local isothermal speed of sound =fﬁ

local adiebatic speed of sound = W

perturbation velooity vector = (3 (assumed small)
pressure perturbation; P=F (I+f7) , subscript o denotes
initial state

density perturbation (condensation) P=fo(1+ s)
temperature perturbation T=T,(1%+6)

perturbation force vector = F (assumed small)

perturbation heat addition = 9 (assumed small)



K = thermometric conductivity = fkc’,v
) 0
- non-dimensional heat addition = —o
] ok, 28 °
A = Laplace operator = grad div - curl curl (zb—f*'@—yi * 55

in three-dimensional Cartesian coordinate system)

= = perturbation force potential X = grad =

q = perturbation velocity potential —fi = grad ¢

r = fundamental solution for 8

$ = fundamentsl solution for ( in Part I, also used as dissi-
pation function in Parts II and III

(—-) bar denotes Laplace transform of the fumction

a = complex parsmeter in Laplace transformation

(N ) wavy ber denotes Fourier transform of the function

@ = parameter used in Fourier transformation with respect to % .

22 L W = complex variables

u = fundamentel solution for «
A = coefficient of volume viscosity (= —35/4 by Stokes'
assumption)
=L . kinematic viscosity of the undisturbed flow

s

vorticity = curl é’
= fundementel solution for §.
fundamental solution for p

fundamental solution for z

[]
o
—~———

L]

= free stream velocity in a stationary flow

]

= LCI. = Mach number of the free stream flow
Re = Reynolds number = U_/ﬁo&

C
Pr = Prandtl number evaluated at infinity = J’{—p = :%)—
[
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INTRODUCTION

The conduction of heat in a compressible fluid medium is studied
in this paper. An arbitrary distribution of heat sources (or sinks)
and external forces is assumed and their effects on the whole flow
field of this real fluid medium are investigated.

A general review of the schemes of solving problems of viscous
compressible fluids is given in Ref. 1. An outstanding method is by
the use of the classical boundary layer theory. This method was first
proposed by Prandtl (Ref. 2) to solve problems in a viscous incompres-
sible fluid, and may be regarded as an asymptotic method for high
Reynolds numbers. In the boundary layer theory the equations of mo-
tion are simplified by assuming that viscous effects are important
only in a narrow region close to the solid wall, across which changes
in physical variables are rapid compared to those in the direction
along the wall. The outer flow field may then be solved to a good
approximation by neglecting the viscous effects and taking the bound-
ary conditions equal to those on the outer edge of the boundary layer.
This theory has alsoc been extended to a compressible fluid medium
with heat conduction.** However, in many cases the basic assumption
of neglecting the viscous and heat conducting effects outside the

boundary layer is not justified, at least in regions other than the

*in extensive list of references on related topics may be found in
the bibliography of Ref. l.

**a general review and survey of references on this topic is given in
Ref. 3.



boundary layer. Several of these exceptional cases are mentioned in
Ref. 1, pp. 1=3. It is easy to find other examples associated with
the application of the study in this paper.

For instence, if a certain amount of heat is introduced at a
point of a compressible, heat conducting fluid, it can be shown that
the compressibility of the fluid has the important effect of causing
& pressure wave to move in the fluid. A portion of the added heat is
carried away by conduction, while the rest is concentrated on the pres-
sure wave front (cf.§7 and §11.1). A closely related problem is the
effect of heat conduction on the propagation of sound waves in a gas.
The study of this problem dates back to Stokes (Ref. 4) who solved the
problem of plane waves with linearized equetions of motion, neglect-
ing only the viscosity. In both cases the total energy is divided be-
tween thermal and pressure waves. If both viscosity and heat conduc-
tivity are neglected, the pressure wave degenerates to a disturbance
of discontinuities of pressure, temperature, and all other physical
quantities (see the study of characteristics 81). These discontinui-
ties are smoothed out by the consideration of just one of them. Hence,
this leads naturally to the question of the manmer in which these dis-
continuities are smoothed out and what role they play in distributing
the total enefgy by taking into account either viscosity or heat con-
duction or both. In this unsteady motion, the pressure wave prope-
gates through the space as time goes on, so evidently viscosity and
heat conduction are equally important everywhere in the medium through
the time history.

Another example which may be mentioned is the problem of the



disturbances produced by a stationary heat source in the supersonic
flow of a compressible fluid. Tsien and Beilock (Ref. 5) solved the
two-dimensional case for zero values of viscosity and heat conducti-
vity for a line source of heat in a supersonic flow of a two-dimen-
sional unbounded compressible fluid. Their results show that velocity
and pressure perturbations behave like a Dirac $ ~function along Mach
lines through the heat source, while the density perturbation in addi-
tion to the 5 -function behavior along Mach lines, also has & sharp
wake., But again, if either viscosity or heat conductivity is con-
sidered these sharp discontinuities will be diffused out across the
Mach lines. This again leads to the question of what their effects
are in such a diffusion process. Appesrently, viscous and heat con-
ducting effects play an important role in these regions and can not
be neglected.

All these preliminary considerations make it clear that it would
be advisable to obtain solutions to some problems of a heat conducting
flow without assuming a priori that the flow field is divided into
regions where the heat conductivity (and/or viscosity) is considered
and regions where it is not. However, to seek an exact solution seems
a hopeless task, due to the complexity of the equétions for wviscous,
heat-conducting, compressible flow (such as the Navier-Stokes equa-
tions, see §1). The principle of simplifying the problem in this
paper is in accordance with a general viewpoint of trying to isolate
the difficulties so that the resulting mathematical problems can be
solved while at the same time retaining some of the typical features

of the more exact problems. Following this prineiple, the program



of the paper is as follows: first some exact equations of motion and
heat transfer are written down and studied briefly. To make calcula-
tions possible it is next assumed that all disturbances are small so
that the equations can be linearized, a&s in the theory of sound, For
this linear system, which preserves many of the typical featurses of
the original non-linear system, the fundamental solutions (for their
definition see §4) are found and discussed in some detail. For a dis-
cussion on the justification of this linearization see Ref. 1, p. 6.

In Part I the effects of viscosity are neglected. The study of
this part is for problems in which heat transfer is the main interest
and in which the viscous stresses may actually be quite small. One
example is the propagation of a combusting flame front in a compressi-
ble fluid. The assumption of neglecting the viscosity alone is, of
course, not quite realistic since the kinetic theory of gases indi-
cates a close relationship between the coefficients of heat conduc-
tion and viscosity (for example, see Ref. 6). However, for the prob-
lems in which the energy transport is more‘important than that of mo-
mentum, the simplified problem, due to the neglecting of viscosity,
mey throw some light on the real nature of the viscous, heat-conduct-
ing, compressible flow since the viscous effects do not change the
picture qualitatively. As a matter of fact, from results oBtained
later, the theory based on non-viscous fluid can, in most instances
(which will be made more precise later), explain not only qualita-
tively but also quantitatively the motion of a viscous, heat-conduct-
ing fluid.

In Part II both viscosity and heat conductivity are considered,



with some simplifying assumptions (which will be mentioned later), to
solve some unsteady flow problems. The fundamental solutions are
found and discussed and the results are compared with the non-~viscous
case in Part I.

In Part III some stationary flow problems are studied consider-
ing both viscosity and heat conductivity. The fundamental solutions
with the existence of both heat sources and external forces are found.
An application is sought to apply these results to calculate the heat
transfer rate from a heated flat plate over a range of Mach numbers
to show the compressibility effect. For the problem of heat loss from
a hot-wire anémdmeter, King (Ref. 7) obtained a solution based on the
theory of an inviseid, incompressible fluid in 1914; Tchen (Ref. 8)
extended King's result to an inviscid, compressible fluid in 1949.
Some experimental results were given rather recently by Kovasznay
(Ref. 9) (for a more detailed historic survey see Part III). Their
results are compared with those in this paper. It is known in the
boundary layer theory for a compressible fluid that if only the skin
friction on or the heat transfer from a solid wall is concerned, their
values can be calculated by the help of certain simplifying assump-
tions, without even solving all the equations of motion (for example,
ses Refs. 10, 11, 12 and 13). Several solutions for a plafe thermo-
meter problem based on boundary layer theory are known (see Refs. 1l4-
17). As a rule, the result based on linearized theory almost always
gives non-conservative values compared with that calculated from bound-
ary layer theory and it is true in this case. However, sacrificing quan-

titative accuracy enables us to study the role compressibility plays



in this complicated mechenism.

It should be pointed out that dissipation terms are dropped out
by linearization so that the analysis can not be applied directly to
eny case in which this is of importance. An example is Rayleigh's
problem, that is, an infinite flat plate suddenly moves parallel to
itself in a non-heat-conducting compressible fluid. Then a pressure
wave is sent out normal to the plate. This pressure wave is caused
by dissipation and will be missed in any theory omitting it (cf.

Refs. 18-21).



PART 1

HEAT CONDUCTION IN A NON-VISCQUS COMPRESSIBLE FLUID
§ 1. Fundamental Equations and Their Characteristics

The fundamental equations used in this part of the paper may be
obtained from the application of the principle of conservation of
mass, momentum, and energy to the hydrodynamical continuum. As ex-
plained previously, the viscosity is neglected in Part I. It is as-
sumed that the medium is a perfect gas, and that the pressure is con-
fined to a moderate range so that the perfect gas law

P =RPT (1.1)
holds. The basic equations may then be written as:

Conservation of Mass
2f . : S
—F + div (pQ) =0 (x.2)

Conservation of MHomentum

R4 (d gwi)a F pad P (1.3)

Conservation of Energy
J—}—-Ldinr AT
+ = + .
24 (@) E P{ (@ patrt | =L dir(hgpadT)+ § (1)
where it is assumed that Fourier's conduction law applies. The heat
flux vector Iﬂ , Which denotes the rate of heat conduction scross an
isothermal surface per unit area per unit time, is given by*

H=-%qadT (1.5)

The interval energy E per unit mass is defined by

*This law holds in a frame of reference moving with the local center
of gravity of the fluid.



E =¢CT (1.8)
The notation is described in the Nomenclaturs. BEgs. (1.1)-(1.4) may
be regarded as a non-linear system of four partial differential equa-
tions for wnkmowns P , £, T and 5 « Eg. (1.4) is of second order,
with the thermal conductivity % as the coefficient of second order
terms. Hence, it may be noticed that if % is put equal to zero, the
order of (1.4) is lowered by one. If at the same time a boundary con-
- dition has to be relaxed, the perturbation problem is singular.

The mathematical characteristics of the system reveal the under-
lying structure of the system by showing surfaces of propagation of
certain disturbances or discontinuities. According to the general
theory, the characteristics are determined only by the highest order
terms occurring in the equations (cf. Ref. 22, Vol. II, Chapters 5
and 6). For simplicity, we shall only consider one space dimension
% , together with the time L as two independent variables. This,
however, does not destroy the essential nature of the system. Let
A (x.t) = constant derfote a characteristic, the characteristic condi-
tion is then (Ref. 1, pp. 18-20)

/‘1’: {u’t + (ut ) 7.}1,)(} = () (1.7a)
where

¢ = JRT = ,/(P/f) = isothermal speed of sound (1.7b)
The characteristics are:
(1) 1": =(, or t=constant, which occurs double (1.7¢)

This set indicates propagation of certain disturbances with

an infinite speed and are thus associated with the usual



heat conduction.
(1) Y+ (uc)Yy=0  or (j—’f)w = ut( (1.7d)

These lines indicate propagation of certain discontinuities
with the isothermal speed of sound C; relative to the fluid.
It may be noted that as a typical feature of non-linear equa-
tions, these characteristics are not kmown in advance since
they depend on the unknown values of U (%,t). It is not
yet completely clear what the physical meaning of these char-
acteristiocs is. However, from later study of the fundamen-
tal solution, one will be convinced that these characteris-
ties at least exhibit the surfaces of discontinuities of the
fundamental solutions (cf. §6).
If we consider for a moment a fluid in which the heat conducti-
vity ’é also vanishes, the order and hence the number of characteris-
tics of our system (1.1)-(1.4) is lowered by one. The characteristics

then become
("bt'*“ll’x)(\l’t’f(““) ¢fo¢t+(“"C) \LX] =0 (1.8a)
where

= [ART = (¥ P/¢) = adiabatic speed of sound (1.8b)

There are now only three sets of characteristics.

(1) Y+ul =0 or %—: u (1.8¢)

This indicates the streamline of the flow, across which tem-

perature and density may now jump (because +%=0 , H=0 ).
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(i1) ‘WtJf(“ic)U’x:o, or 4 _ i (1.84)

This indicates propagation of sound waves with the usual
ediebatic speed C relative to the fluid.
These characteristics, which remein undiscovered for /k% o,
must play an important role in the solutions for small values of *.
Some light will be shed on this interesting point by the solutions

given explicitly later.
§ 2. Linearization of Equations and Their Properties

The necessity and justification for the linearization of equa-
tions were explained in the Introduction. Due to the difficulty of
handling non-linear equations like these, the original system is not
considered in detail any further. Instead, in order. to look for the
nature of the solutions, a set of linearized equations will be con-
sidered with which some specific problems can be solved while the im-
portant feé‘bures of more exact problems are still retained. Let us
consider a basic flow such that at infinity, the flow is umiform, par-
allel to the X -axis, with velocity U, constant pressure F, , demnsity
f, and temperature T, . The general case U # (0 may be reduced to
the case U =0 by a Galilean transformetion (cf.§ 3). The lineariza-
tion may then be carried out by assuming that the flow field only dif-
fers slightly from the basic flow so that the solution may be written
as

Q = —_4; (assumed small, vanish at infinity) (2.1a)
P =PRU+tp), P=fU+ts), T =T (1+8) (2.1b)
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where S 1is usually called the condensation, }: s, 0 << | STt is

also assumed that

k= tko(iv k) ko= Ro(T), *' <« | (2.10)
and

F =X perturbation force vector (2.1d)

9 =Y perturbation heat addition (2.1e)

are small and vanish at infinity. By neglecting squared terms of -

small quantities, the equations then become

State p=5+86 (2.2a)
Continuity S¢ + dir g =0 (2.2b)
Momentum ?f = 5(’ - ¢t ?fwwl b (2.2¢)
Energy B¢~KAQ = (¥-1)S¢ + () (2.2d4)
where
K = -Tf"’?—- = thermometric conductivity** of the
¢ (2.3a)
undisturbed flow
and
1 = T - non~dimensional heat addition per
[ ]

(2.3b)

unit time™***

Egs. (2.2a)-(2.2d) are the linearized system of equations of mo-

tion. The solutions to this system can be applied to the case where

*Almost the same linearization was used by Stokes (Ref. 4) to solve a
plane oscillating wave with radiation.

**This name is due to Clerk Maxwell. It was called the thermal dif-
fusivity by Kelvin. Its dimension is (length?)/(time).

***Mme dimension of {1 is (1] = ft]-' .
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there is a component of velocity in one direction at infinity by us-
ing a Galilean transformation. It should be remarked here that in
linearizing the dissipation terms drop out in (2.2d) whether or not
M =0 . We are neglecting M only in the momentum equations.

Before finding solutions of the system (2.2) some general proper-
ties of the.equations will be discussed.

Irrotationality. First we show that the flow field described by (2.2)

is irrotational if it is irrotational initially and if the external

forces have a potential = such that

—jz = WS (2'4)
The curl of (2.2¢) then gives
(cad )y =0 (2.5)

which shows that the vorticity = cur1'§ is independent of time, If
the vorticity is initially zero it remains zero. In the case which
will be considered here the irrotationality would also imply that
there exists a velocity potential q’ such that

4 = qady (2.6)

The system (2.2) can then be reduced to a pair of equations for 6

and Q’
Aq’ - Z{‘: (ftt = @¢ - Cl"z'. St (2.7&)
0 - x a8 = [ -@-n4Q ’ (2.70)

From this system it is easy to see the coupling between the thermal
waves and the flow field. Egq. (2.72) appears as a wave equation for
the velocity potential with a driving force on the right-hand side
provided by the temperature field in addition to the extermal force

effect. The second equation (2.7b) is a heat diffusion equation for
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the temperature field but with a distribution of heat sources on the
right-hand side due to the velocity field and the external heat addi-
tion. It is this interaction which will be studied shortly.

By eliminating 4 in (2.7) it can be shown that O satisfies the

following differential equation

L¥yVA i a-L2V2) 0 _ LA t2)g_ Xl Az
[(A_C—;‘DT‘)A (4 C‘Zt‘)’bt]G =@ gwll-Grase  (2.6)
similarly, ¢ satisfies

» L2422 - -l -Lia-L2ym
[( _E%DEF)A_%(A—C‘M‘)M]({ = -xdle -z (8- xwlE,  (2.80)

After disconnecting the coupling, equations for 0 and ¢ +then have
the same homogeneous part.

Several limiting cases which uncouple Egs. (2.7a) and (2.7b) can
be indicated briefly.

Incompressible Fluid. To deduce incompressible flow from the sbove

results we may assume that the spsed of sound C, C; tends to infin-
ity. Then (2.7) becomes

AQ =06¢-T (2.9a)

0r- 540 =40 —(1-3)7T (2.9b)
if we assume that some of the force potential remains. Thus the tem-
perature can be found from (2.9b) and the velocity field follows from
(2.9a). It is interesting to note that ¥ still remains in this
limiting proéess and that the result is quite different from putting
$ =0 in the beginning, so that the classical potential flow equa-
tions are obtained (for example, see Refs. 23 and 7).

Zero Heat Conductivity. As another case, we let X =( . The result-

ing equations become



[

AY _cl_zaltz“? = 74 - &5, (2.102)
ot = 0] - (-1 29 (2.10D)
Now the welocity potential can be found from (2.10a) and the tempera-
ture follows from (2.10b). The isothermal speed of sound disappears
in (2.10) and only the adiabatic speed of sound C remains. That this

is so was indicated by our previous study of the characteristics of

the original system.
§ 3. Stationary Flow and Galilean Transformation

In system (2.2) it is assumed that the perturbation velocity van-
ishes at infinity. In many problems, particularly those involving
bodies moving with constant velocity, the flow picture becomes sta-
tionary with respect to an observer who moves along with the body.

Now let us consider a stationary flow relative to an observer such
that the fluid at infinity moves with constant velocity U parallel
to the % -axis while the body is at rest. The equations for this case
cen be deduced from (2.2) or (2.7) by means of a Galilean transforma-

tion, that is, by introducing a new system of coordinates (%, Y, Z.,t)

which moves with respect to the original system such that

2=2x+Ut, Y=y z=2z, t=t (3.1a)
then

2 _ 2 2 2 _2 , 2 _2 2 __2

'(%—'D—f—-‘-u'bi 'Y S 7 24 29 2Z 3z (3.1b)

The motion is stationary in this barred coordinate system if 5%:0 .

Using unbarred letters again for the transformed coordinates, (2.7)

becomes



Ag - &9, = Uox- 5, (3.2a)
U — K46 = —(3-1)AQ (3.2b)

In this case the existence of the force potential = and the
velocity potential () can be justified as follows. The motion repre-

sented by BEq. (2.2¢) becomes stationary by Galilean transformation

Ud, = X — ¢ grad b , (3.3)
Hence, if = exists as given by (2.4) then the curl of (3.3) yields
U (et d), =0 (3.4)

Hence, if the flow is irrotational at infinity it is irrotationsal

everywhere. This implies the existence of the velocity potential ¢ .
§4. Fundamental Solutions of the Linearized System

In order to simplify the problem further, it is assumed that the
force potential = 1is zero in Part I and only the effect due to heat

addition () is considered. Eq. (2.8) then becomes

((a-52)n —F(a-4Z)2] o =-L@-L2)0  (a1a)

(O R SO I R X (4.10)

Various fundemental solutions may be defined for the linear system
(4.1). One definition may be given as follows. Suppose that the

fluid fills an infinite space and that all perturbations are initially
zero; and then suppose that a wnit quantity of heat is introduced in-
stantaneously at the origin of the coordinates. The resulting tempera-

ture and potential field given by
=Tt ¢ =gy (4.2)
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is called the fundamental solution of the system due to & disturbance
at the origin, or explicitly, in mathematical terms

Q = §(1) §(ay §(x:) 61) (4.3)

where 5 denotes the Dirac delta-function defined by

S 0 * (4.40)
and .
j Sodx = | | €>0 (4.4v)

¢
This fundamental solution (4.2) illustrates many features of the

system. Furthermore, due to the linearity of the system (4.1), super-
position of fundamental solutions cen be used. If f] is an arbitrary
function of (%i,t) the solution, under zero initial conditions and

vanishing at infinity, can be represented by

o(xi,t) = fﬁ ﬂ‘iaft M= g, 20087 ) de (4.52)
@ (x:,t) =fﬁ' Azar’ $ (% -8, t-1)0) (8, T)dT (4.5b)

The fact that the fundamental solutions can be taken to depend only
on the differences in coordinates follows from homogeneity of (4.1)
in space and time if a Cartesian system of coordinates is used. It
should be noted that this form may not be true if some other coordi-
nate system is adopted. However, it is easy to see that the follow-
ing forms always hold

F(X, &, t-T) and $ (X. &; t-7) (4.6)
where X = (%) and & =(&;) are position vectors. Comparing (4.5) with

the original system (4.l1), we see that the fundamental solution
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actually hgs its more general meaning as the kernel of an integral
operator which inverts the differential operator in (4.1). Now, when
dealing with a single equation of fourth order as given by (4.1), it
can be expected that the fundamental solutions may not be expressible
in terms of well known functions but will probably themselves define
new functions. These fundamental solutions can also be used to build
up the solutions of initial and boundary value problems (see §8).

The procedure is to apply the Laplace transformation with respect
to time to reduce the problem to one in space variables. The problem
in % , X2, X3 can be solved. An integral representation of the fun-
damental solutions can be obtained and some asymptotic formulas for
these solutions can be calculated.

The Laplace transform with respect to time of a function f(xht)

is defined by (using barred letters to stand for its Laplace trans-

form)
o0
3 ~ot
feu,e) = €7 fotyat (4.78)
14
and its inversion may be given by a complex inversion formula
» | btis0 -
fo,t) = L . e 0 de (4.70)

where the path of integration is parallel to the imaginary axis and
is to the right of all the singularities of -;(xc,d‘) in the ¢ plane
(Ref. 24). Application of the transformetion to (4.1), with zero

initial conditions, ylelds

(a-X0)0 =-F) | say (4.88)

LG) = -0 =-Hm) ‘ (4.8b)
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where L. is the operator
. 4
L = AA —¥6 (L +&) A+ 15 =(a-2)(A-2) (4.80)

with

>
Il
NS
ey
q

+
z|o
|4+
]

(0-)(0-D) } (4.8d)

o, et 2 _
7= stG

| 4
2o
ol
f
S———

(4.8¢)

where | stends for J-] . Moreover, application of the transforma-

tion and convolution theorem to (4.5) gives

5 ouo) =[] Fou—ti, 00 (5,05, (4.98)

¢ (x:.0) =m 3 (xi~5i,0) 0] (5¢,0) dE,;

-—od

(4.9v)

These two equations indicate that the Laplace transforms ., E of
the fundamental solutions are themselves fundamental solutions to the
transformed equations (4.8a) and (4.8b).

It may be remarked that 2 >Y>] for all kinds of gases. Hence,

it follows that ol has positive real and imaginary parts. MNoreover,

drd =2(%-1)€ AT = S (4.10a)
and
3
MAz = ;‘CL (4.10b)

The factoring of the operator (4.8c) permits us to represent the

(=

fundamental solution G of (4.82) and (4.8b), defined by

0 (%) =jH Gm(%c—za) F(zi)dg; (4.11a)
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od

@m) =ﬂ[ G (x-5) H(5:)ds; (4.11b)

—co

as a combination of fundamental solutions of second order equations.

If G,w and G;” are fundemental solutions, respectively, of

(8-M)8 =-{(x), (A-A2) B = - §,(x0) (4.12a)
defined by
§a) = [[f 6" e-50) £ 0 A je1.2 (4.12b)
~o0
and if A, # A (which is true in our case) then, by Theorem 1, Ap-
pendix A,
Y = 506" &) (4.13)

is the fundemental solution of (4.8) such that (4.11) is satisfied.
Compering definitions (4.9) and (4.11), T and & can be related to

G—w « Now G,m and G;” , &5 fundamental solutions to second order
equations are kmown functions in the case of one, two, and three space
dimensions. Thus G(Z) , ', and 3 are known and the desired funda-
mental solutions " , $ are given by the complex inversion formula

(4.7b). The values of [ and 3 will be obtained for some specific

cases in the next paragraph.

§ 5. PFundamental Solution in Laplace Transform for Several Special

Cases

In BEq. (4.8), if the Laplace operator A is given explicitly in

different forms for different dimensions or coordinate systems, [°

and 3 can be obtained for each of these cases.
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5.1 One-Dimensional Case

Let this one-dimensional space coordinate be denoted by % . The
actual physical problem in this oase may be visualized by thinking
that the heat sources are distributed uniformly over infinite planes
perpendicular to the % -axis. In this case the Laplace operator A

is simply the second derivative with respect to x so that (4.122) is
(M) 6 = ~f (5.1)

and its fundemental solutions defined by (4.12b) are known as (for

exemple, Ref. 22, Vol. I, p. 325)

=z 1
6w - =
’ ZNMz

Here the plane heat source is supposed to be located at x =0 . The

(5.2)

fundamental solution G, defined by (4.11),of (4.8a) and (4.8b) is

given by (4.13), for a plane heat source located at X =% , as

| L% 2 A r LS 4
{m“—’ =€ }

G (a3.0) = 5 (5.3)

(MM

As a remark, it can be pointed out that G‘z) (x-%5,0) , as a func-
tion of & for fixed X , satisfies the following conditions:
) A A @)
(i) & Ge, Ggy, Gegg ek —0 as £ —>teo
2} 2)
(11) GO -G(1) =0
2 @) .
(111) Gy () =Gy (x) = 0 (5.4)
@ @,
(iv) GE§ (x*) —G’;; (x) =0

[t3]

() Gapy ) — Gygy (@) = ~|

Actually, these are what we need if we try to find the fundamen-
tal solution by integrating directly the fourth order equation (4.8).

In order to find ' end & , first substituting F(%) given by (4.8a)
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into (4.11a), using conditions (5.4 i-iii), we have

L

B (x,0) = L L%y, «f)(a,—g-l - ‘i)f—z(;;dg

(5.5)

g [¢3] Ly}
= f R" [G"Zt’ - 1_{ T] f1(3) dg

Comparison of (5.5) with the definition of I' given by (4.9a) leads to

T

Flare) = &+ [Z-10] 61,0 (5.6)
or

_ | I ~x 1l , -3 Ix

I (%, f) = m[(?”?)m € (' /\)r I] (5.7&.)
Similarly, we have

- _ -J— L N TN

$ (r0) = zx(,\.~/\=)(J— i ] (5.70)

An integral representation of the desired fundamental solutions
of ' and § ocen be obtained by applying the complex inversion formule
(4.70) to (5.7). The details of this procedure are given in §6.

5.2 Two-Dimensional Case

The space coordinates in this case will be denoted by X and Y .
The actual physical problem may then be visualized by thinking that
all heat sources are distributed uniformly along infinite straight

lines perpendicular to the %-Y plane. In this case, the Laplace op-

erator is A = % 25 5O that Eq. (4.12a) becomes
(52t gagz M2)8 = -fxy (5.8)

whose fundamental solutions are known as

Gy hz) = 27 K (i J250 %) (5.9)

where the single line heat source is supposed to be located at the
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origin, and K, is the modified Bessel function of the second kind.
Hence, the fundamental solution G? of (4.82) and (4.8b) is given

by (4.13), for a line source located at X =%, Y=, as
) 2 (g e(Y-n)
G (x-%,y4y-9,¢) = Zn{m ™ [K (hin) —K, (J'"/L)] Rt = (x-3) +(4-1) (5.10)

T and § can be obtained by comparing definitions of fundamental

solutions (4.9) and (4.11)
F (2.4, 0) = - (Fet e - 35) 67 (005,47 0) (5.11)

It can be shown that for Xx# %, Y# 1 , the following relation is

true

(]

[y6"-r 6] (5.12)

rtap) & = o

so that by using this relation (5.11) becomes

(-2 K (B JT70) = (- 20K (5] (5.158)

l"(xq ZTr(A -Aa)

Similarly, we have
§ (x,Y;0) =z—v—:(———w[ Ko (Va (v ) — K, (J)T“lxngl)] (5.131b)

5.3 Three=Dimensional Case

In this case the operator A in Cartesian coordinate system
(2.Y4.2) is

- 2,
A= Sxtagtaoe : (5.14)

and the heat source now degenerates to a point source. BEq. (4.12a)

becomes

(Bt ne) § = fsn e0

whose fundamental solution can be shown as
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2z

y o eer:/L
G (%Y E; M) = ; n= X+ yte (5.16)

1,2 47N

Here the single point source is supposed to be located at the origin.
Then the fundamental solution Grm of (4.8) is, for a point source
located at F =(&.1.¢)

) ) -JmiR- r, -\]—]n r]
G ey, 4N 2785 0) = ann ST fl[ ] an

where
|Z-F) = (x=5f+ (4= (z-4)"

In & similar manner, as described in previous cases, we obtain

— l 1% ‘\[Th' ] - )\t/"
P(x,‘J:Z;G‘) =m[(%—%))\le l —(Kl“'%\-‘)/\zer } (5.18&)
= . _ g -JAr )

$ (xY.2;0) = _——41rn<()\.-/\z)lt [e - e ] (5.18b)
with

T

o= 12_+ H"l' Zz.

5.4 Two-Dimensional Stationary Flow

In this case we are dealing with a flow having constant velocity
U parallel to the X -axis at infinity past some stationary heat
sources. The equation of motion can be obtained by applying a

Galilean transformation (cf.§3) to (2.8) (or (2.2)), with = =0 .

We have
[(A M 3x=)A_1,<u(A_Mz{a—xz)%] 6 = -1 < (4-1M .”;).Q (5.192)
(st Z)a-Ra-wg)Ele - - Lo, (5:15%)

where the Laplace operator A, in this two-dimensionel problem, is
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I N
b = ax=+'ogl (5.20)

and the Mach number M is defined by

M =L (5.21)

The fundamental solutions " and ¢ due to heat addition for this
case may be defined in a way similar to that in §4. That is, when

N =8y (5.22)

6 =[xy, ¢=2MY) (5.23)
There are several methods available for obtaining [ and $ . For
instance, a method of descent (see, for example, Ref. 1, p. 69) can
be used to deduce [(x,4Y) and P(x.Y4) from the two-dimensional non-sta-
tionary fundemental solutions [(x.Y.t) , ®(x.4Y.t) ., Another method
is somewhat similar to the previous one. First, one of the indepen-
dent variables has to be eliminated by means of transformation. In
this case Fourier transformations are most convenient to use since
the solution must be defined in the entire (%,Yy) plane. The Fourier
transform with respect to Z of a function f(x.Y) is defined by (us-

ing the wavy barred letter to stand for its Fourier transform)

fe.w =\]z':'rr f P foxax (5.242)

~ ot

The inverse transform may be given by

foy) = J—zl_wr_( eipx 3&(5,9)"@ (5.24b)

Application of this transformation to (5.19) with vanishing conditions
of 6 , ‘f and (] at X =10, agsuming that the Fourier transform of
() exists, yields

LB = -+ [ 2+ pam-0] 0 (5.250)
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o~ BU A
L) = “—;LQ (5.25b)

where L. is now the operator

L = + (YM- LI M = (NJ ’M‘ Az) (5.25¢)
with

Al M. .

N o (‘P){‘p('— 37 * ;(M* = W} (5.254)

o(l — U i_ . &.
4 T xm [((F-0% 4 7"'} (5.250)

In this stationary case, the value o is almost the same as that in

the non-stationary case (4.8¢) except that the parameter c* is re-

placed by %; .

~ ~s

The problem of finding G , ' and & in this case is now al-

most the same as in case (5.1). The results are as follows:

2) J—'“jl | —J-)\:l‘ﬂ
G = Z,(A SN [J_ e = ] (5426)

where A,. are given by (5.25d), and

(5.272)

[mp(w ] -m“}

o~ I |
P(P'W_\}ﬁzx()\.w\z){[ﬂp(w t)]
& ¢Y) = Y g% . (5.27p)

The desired fundamental solutions [ and ® can be obtained by

applying the inversion formula (5.24b) to (5.27).
§ 6. Problem of Inversion in the One-Dimensional Case

Since the one-dimensional problem usually forecasts the important
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features of higher dimensional cases, we shall discuss the problem of
inversion of these one-dimensional fundamental solutions in detail.
As an example only the calculation of [ will be given here.

If we apply the inversion formula (4.7b) to ' , (5.7a), with

= S,
Lt
= S ot 5y de
g(xt) = M(2.t) = 3 e I (6.1)
p-ioo

we see that we have to deal with some rather complicated integrals.
The success of the method depends very much on applying conformal
transformations of the complex plane to simplify these integrals, es-
pecially to facilitate obtaining approximate formules. In order to
write out [* explicitly, it is convenient to split [ into two parts,

and by introducing non-dimensional quantities

4=xc T=%¢, X=¢tH (X »0) (6.2a)
and

a=5a=E-)ridFT =heid, T=4-id (6.2b)
we have

Fuo) = T (X, 4)+ T, (X,4) (6.32)
where

- ) —
I(X4)= 5,'? %("W}]NH? ) up{—j%—,a[m+lu-a)(A-RJ]X} (6.3b)

_ 3-h - l6-0r0-2)
&)=zl (14 * fG-ais- a)/]’<5+I oy ‘Q”"’{ [l -] X} (6.30)

Then (6.1) yields

a(xt) = M(xt) = T(X,T)+ M (X.T) (6.42)
with
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[T ]

MET) = 7] (8 [ (X,%) las, i="2  (6.40)

b-i®

In these formulas, all J  are defined to have positive real parts
on the path of integration (which is described in §4 after (4.7b)).
If we investigate the singularities of 7', and _ﬁz, in the 4 -plene,
we note that 3=0 1is a branch point of F, , but is a regular point
of Fz, . We also notice that J=a , 4=a are branch points of _l;.
as well as Fz , but they are regular points of T = _l:'. +T, . This
simple analysis gives some idea about what transformations should be
introduced. As a matter of fact, which will be shown later, [} and
Fz, given by (6.4) are two branches of the same function. Now we

apply the following conformal transformation to (6.4)

4-h =4 z-4) (6.5)

which splits the cut from J=a to a4 in the J -plane to a circle

|2] =1 in the Z -plane. (6.4) then becomes
_3/2
_ ¢ [Fr | Z AT, | \[z=f0 T
N —ZKJ 7 zvrij@m ”"f"{_—(xl z Jﬁ')’_—zz“ ”___zz LT JTX]}olz (6.6a)

= T3 sz:n S@J;PI—T_ {F’- : Jrj—“;— T- ——)/'; ]}dz (646b)

where the contour (! , as shown in Fig. 1, starts from -(- , passes
the real Z -axis to the right of the branch point z =Jy-; and ends
up at +i(@ . It is easy to see that in the finite Z -plane, the in-
tegrand in (6.6a) has an essential singularity and e branch point at
Z =0 , also another branch point at Z =[J-7 ; while the integrand

in (6.6b) has an essential singularity at Z =(0 and a branch point

at Z =-"-——H'_—l .
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¥ - plane

= \\@

T-

Fig. 1

Now (6.6) provides a neater expression for us to investigate the
behavior and condition of convergence of the original integrals (6.4)

in the neighborhood of infinity. As [|Z|—> o0 , (6.6) gives

o~ =K z,',,—‘j Mk{@[T—Jﬂ’.]z} d;z

JTX d
fz ~ zcx (?Flﬂzmj {C[Tz—(i ')/’fr”—\}?i—

where the integrals are taken along parts of the path for which [Z|
is large. From here it is natural that the following different cases
must be considered to study the convergence of these integrals.
(1) T<0 (or t<0), the contour (@ for both [ and [, may
be closed in the right half plane, so in this case [, =0 ,
[, =0 , which gives
P=T+Mp=0 (6.7)

(11) X >T>0 (or ItI>Cit>0), the contour (¢ for I, may

be closed in the right half plane while the contour ( for
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1) xfxay be closed in the left half plane, then in this case
only [=0 which implies
r=1; (6.8)
(11i) T >WX (or 1%I< Cit ), the contour (! for both I, and
[; may be closed in the left half plane so that
r=r +10 (6.9)
Thus we have the important result that there is a discontinuity in
the representation of the fundamental solutions across the character-
istics of the system of equations indicated by the linearized form of
(1.74), namely x =*¢;it.
If we apply a further conformal transformation _
Z = —‘7 - (6.10)

to (6.6a), we obtain

B x-ﬁ’l ! AR i X
it 8 e o T - S o

where the contour @' described the path as shown in Fig. 2.

7, - Plane

T<OX

Fig. 2
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According to the former analysis of the convergence of the inte-
gral, it is clear that @' is closed to the left of the origin for
T < J§X so that in this case [, =0 since no singularity is inside
the contour; but (2’ is closed to the right of the origin for T >J7X
end thus encloses the essential singularity et / =0. Comparison of
(6.11) with (6,6b) shows that [, end [, have the same integral rep-
resentation but are taken on two different contours. This implies
that [, and [, actually represent two different branches of the
same function which originally bears branch points 4=a and =7
in the J -plane, as mentioned beforse.

Now we can combine (6.42), (6.6b) and (6.11) into the following

form:

27

"
9(%.’C)=F(z,t)=z_%(iJ%)_L'_J

Mk{—“ﬁi%@ﬁfm[F_T— u-u@]}ﬁ—l (6.12)

p+e’
where contours (! and @' are described above. Now the integrand in
(6.12) has an essential singularity at Z=0 and a branch point at

z =—J—T_‘-—T in the finite Z-plane. Hence, if a branch cut is intro-

duced from - along the negative Z -axis to Z =-ﬁ , then the in-
tegrand is an analytic function of Z, regular in the entire cut plane
except at Zz =0 and o0 . It is easy to see, in accord with former
analysis, that for T <J7X , the integral on the contour @' is zero
so that [ comes solely from the contribution on @ . For T > T X,
the contribution on part of the contour (? cancels that on the part
of (' so that the resulting contour becomes (2" (see Fig. 3) which

starts from -{c0 , passes the real Z -axis to the left of the essen-

tial singularity 2z =0 and ends up at +i00 ,



31

- plane

¢ ¢ @ for T<{TX

@" for T > X

Pig. 3

The expression (6.12) may be further simplified by the following

conformal transformation

2 I
L =T (Z2+ 5) (6.13)
which removes the branch points at Z =—“;T," end @ . Eq. (6.12)
then reduces to a simple form

gut) = == #.@ @Mlﬂ{% %;—’f—c (¢T -HX]} dZ (6.142)
1,2

where contours (§ and (%, are shown in Fig. 4. (, is a contour

A

& - plane

@, for T<HWX
@, for T>WX
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R/
sterting at o0 et/‘ , passing the real axis to the right of the es-
sential singularity at L=1 and ending up at oo <‘:ﬂiL . GL starts
and ends in the same place but passes to the left of L=1 .

By & similar treatment it cen be shown (cf. Appendix B) that the

integral representations for velocity, density, and pressure are given

by
w(zt) =%7“ﬂ$15,:r—£3 . 2;§-| WH 2"_7{ z,[z:T-ﬁX]}dz; (6.14b)
St = Er e |y, oo AT ERLLT-F X s

bat) = I_Tg? 27'” JM CIC_, MPH— é{f Q[QT-HX]JJQ (6.144)

where (, , (, denote the same contours as in (6.14a). It may be noted
here that Eqs. (6.14) are still exact integral representations for 0 ,
u, S and P . No spproximation has ever been made and it can be shown
that they, in integ;‘al form, still satisfy the fundamental system of
equations (2.2) with —)Z =0, ) =6(t). Yow one can obtain asymp-
totic formulas suitable for either large or small values of T,

(T= %zf ). We shall discuss these two cases separately.

6.1 Asymptotic Formulas Suitable for Large Values of T

[3 .
From the expression T =,%—t , the large wvalues of T correspond

2
to ¢ , t both large, but £ small, or in such @& combination that C,gt

is large. For example, if air at standard conditions is taken as the
medium, K = 0.28 cm.z/sec., C =34 x 10° cm./sec. and sz/ﬂ =
4.1 x 10° %, thus it is clear that t = (J(1)sec. is large enough to

make | large. With this in mind, the required asymptotic solution in
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two different regions will be calculated as follows:

1) T>HX (o jx]<Ct)

In this case, it is convenient to use a method related to the
method of steepest descent (for example, cf. Ref. 25, Chapter VII,
Ref. 26, Chapter 17, or Ref., 1). The first step is to deform the con-
tour, if possible, until the following conditions are satisfied:

(1) The path of integration goes through a zero of f(4) ,

Ay
f(C) - cx_' 4

(2) The imaginary part of f(;) is constant on the path.

In addition to these, we need a third condition for our special case
to aid approximation.

(3) %(C) = %‘ { is purely imaginary on the path.
By keeping the coefficient of X immginary the magnitude of this term
is fixed. Furthermore, it is assumed that X is bounded as T — o0,
Now :F(U =( gives

(g~ s i) 6= (- i) =0 (6.158)

which has five roots

. -1 R 1 - -
[’o =0 ) él,z =Hci(,2—+anm éaA‘:ﬁct(‘ﬂ'ilmm') (6;15b)

The only path of steepest descent which meets all three of the above
conditions is the imaginary axis which passes through one of these
saddle points f,=(0 . Hence, if we deform the contour (}, to the im-

aginary (-axis, we obtain, by writing § =& +i7

0 _ T ntb .
c s
6(ut) = == a J o T T w(%g%n) d (6.16)

It is shown in the theory of steepest descent that most of the



contribution comes from the neighborhood of this saddle point Y)=0 .

Following the scheme of this method, (6.16) can be asymptotically ap-

proximated by

QLt) = J“JZE;T“ T+ 0(7p) (6.17)

This solution should be good for sz/,( large but X bounded. The de-
tailed calculation and measure of the error term are given in Appen-
dix C.

(11) T<@FAX (or Ix|>ct)

In this region both T and X are very large; we find that it is
more convenient to use another method of approximation. Owing to the
uncertainty of the value of X, it is desirable to choose a contour

which crosses the real axis to the right of the essential singularity

[ =| eand satisfies the third condition in Case (i), that is,
?([, —C—Y ; is purely imaginary on the path. By writing
= §+ i , the condition RL (¢
&=0 (6.18a)
or
[(5”!‘)1- W) E + (3-Y)n+ Y] = 0. (6.18b)

It is clear that ¢ =0 is irrelevant in this case, since (!, must
cross the § -axis to the right of §=1 . Now (6.18b) gives a closed
curve in the right half-plane, confined in the region | < & <Y ,
ml < 1‘4‘;' . It crosses the { -axis at {=1 and (7 with infinite
slope and twice meets the circle | 3t = j;—, at M=% }Z—-L with zero
slope (as shown in Fig. 5).

Since we have to avoid the essential singularity C=1] , we
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Fig. 5

choose a small portion of this curve near 0 to be part of the
: ¥,

@, -contour on which

| e _ E e
TET o7 o e T&‘”)""'T (6.19)

[

and the rest of @I may be taken as two straight lines leading from

this oval curve to .0 parallel to the Y)—axis (Fig. 6).

’ylk
P L =%+

Fig. 6
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From the expression (6.19) it can be shown that most of the con-
tribution of the integral comes from the neighborhood of the point
£, =J¥ . This point also involves an interesting physical signifi-
cance. Since the characteristies for the‘ K= 0 case indicate that
important physical processes take place on usual lines of propagation
of sound waves X = tct (corresponding to X =T which is inside the
region T< Y X under consideration). A flow with very small values
of K , which corresponds to large | in our present case, should still
retain this important feature. Hence, we may restrict oursslves to
the region

| T-X| < T<HFX (6.20)

Mathematically speaking, this amounts to assuming thet |T-X| is

bounded as [, X ->0c0. Then the integrand may be split into two parts

sp{tEerse-mlt) sl item-n) e
so that for T large, (T -X) might still be quite small; besides,
| exp {%-{L_‘f— q(T-X)H=; on the path. This shows that the asymp-
totie method has to be applied only to the first exponential function
of which ( = is evidently a saddle point. According to this analy-
sis, we may foresee that our future result is important only in the
neighborhood of the sound wave front X =T, or (Xtct)=0 .

As RI (?(C}) venishes on the path BC , we have

o, MY
§&) = 2i g (6.22)

Now, in order to evaluate (6.14a) on BC , it is advisable to repre-

sent the path parametrically by choosing a convenient parameter such

that
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Nie) =€ (6.23a)
then
Y g 2
50 = (B¢ + [I=uiey] (6.23b)
and
L) =§@+i€ do = (i+51€)de (6.230)
Consequently' 0(x.t) may be asymptotically approximated by (see Appen-
dix C)
C L (" 2 42, + 20X _
O ~ F“?g v [-Lre v i 20 (T-X) €] de (6.24)
which gives
i | _ >L-ct)z
- | .
R e e 4Et 4 0(5{) x>Cit
oxt) = K (6.25)
(- | x+ct)”
Z3 \M-Trj—f e 42/2{“ + 0 —f') 1<-Gt

The velocity, density, and pressure fields may be calculated in a

similar wey. In sumary, for Nt) = 8(1)3(‘:) , our results read

X
1 ! - [ )
T T e T+ 0z %)< it
o(x.t) = et (6.26a)
R fd '_ e 45ty 0% ) Ix| >cit
ZY Jw Tt ct

) Ix} < ¢it

u@E.t) = (6.26b)

. gwu ct)
LJﬁ“_L__ Tt + 03 Il > cit
A Jar EDh«t
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_1;@5 A5t + 0(7y) 1x] < (it
St) = . (6.26¢)
| l - fizhoct | ¢
ZT I © A5t + Ole) Il >
K { < X K "
Ac ET [I—z%t]e St +0(&) <
p(X,t) = B (DLI-CUL (6.26&)

| = I
— e 4 Kt — ;
Z et © Tt 4+ 0(g) X! > cit
A discussion of these results is givén in §7.

6.2 Approximated Solutions Suiteble for Small Values of T

If we again adopt the same example given in §6.1, that is, take
air at standard conditions as a medium, then the value of
T =:g;? = 41x0't  could ve regarded as "small™ if t is of the order
of 10'12360. or less. However, such a short duration is just about the
order of magnitude of time required when gas molecules have suffered
few collisions (for example, Ref. 6, p. 149) and equipartition of en-
ergy is nearly complete from the viewpoint of kinetic theory of gases.
Hence, the temperature field in the immediate neighborhood of the heat
source may be defined at the end of this time interval. Consequently,
it is sensible to lock for the behavior of solutions for such small
values of time.

For our purpose, it is advisable to change those integral repre-
sentations of our solutions (6.14) into a form more suitable for esti-
mation by the following transformation

w o= EQ (6.27)
which shrinks the scale of C by the factor Jﬁ?; o The resulting
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integrals are

_ < t I w-T X
_ C apmX W WET e E
W@t) = f 2 Se.,el o wp | T (- o) dur (6.28b)

with the corresponding formulas for s and p , where contours (¢, , (,
still have the same starting and ending places but cross the real W-
axis to the right and left of the essential singularity w = m reo-
spectively.

One of the advantages of the transformation (6.27) is the appear-
ance of the factor —J-Xfr—— in the resulting integrals (6.28). Since
from our previous results (see (6.26)) it is clear that heat conduc-
tion ceuses the attenuation of sound waves as Jx__‘f—— , hence for small
values of t the region where heat conductivity is important is of the

order X ~ [gf . Consequently, as t—=0 , the region of interest

should be such that _Jzt_— —((x) which corresponds in non-dimensional
form to J— ‘[I}_l —> (1) as t—~0 . Thus % is a very natural

parameter for the problem of smell values of t. Following this rea-
soning, we may then simplify the expressions (6.28) by letting T —(,
but assuming XA{T — o (a constant) in this limiting process. The
error term may be estimated by the mean value theorem.

If the integrand in Eq. (6.28a) is written in the form

oxp {ﬁ’-_:—j% (w‘—%w)} = 4w, T) np { W %w} (6.29a)

with

Hw,T) = MH o % (w= o(MY)} ol (6.29b)

I
=S



then for an interval of smsll values of T excluding T =7w® , such

as 0< T<T, < Yw®, the mean value theorem may be applied to Gw.T) .
This calculation gives

| (= Fw) T
o(x.t) = RJTZ_M_ R i NSRS D PLAg w?f””)] (6.30)
(0< A< 1)

where for the first two terms in the bracket contour (! may be taken
as any path parallel to the imaginary w-axis in the right half-plane
due to the removal of the singularity W =J77( « For the last term,
with ﬁ,?(AT) ¢ must not pass through the point W . However,
2T‘ 7(AT) is jointly continuous in w and T on such a path (¢ and is
therefore also bounded. Carrying out this integral (6.30) with an ap-

propriate estimation of error terms gives the following results:

2

9(x,t) = W e i [1+ 0(%)] (6.31a)
wiet) = SERE g ()[4 0(2)) (6.51b)
S(xt) = %nr% f’ e‘fft [1+0(5)] (6.310)
pit) = yﬁ Cﬁ“i‘:— [ [+ 0 (97?—)] (6.314)

Now these results will be discussed in the next paragraph.
§ 7. Discussion of Results

The fundemental solutions given by (6.26) for T large and (6.31)
for T small illustrate some remarks made in the Introduction. We

shall discuss them one by one.
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(i) Heat Energy Distribution

Suppose that a certain amount of heat Q(x,t) has been put into
the fluid in the time interval 0< t<T . Then if we integrate the
fundemental equations (4.1a) and (4.1b) over a domain 0 t<T,
-0 X <00 usging the assumption that all perturbations and their deri-

vetives vanish at infinity, we obtain

SN 0 (x.T)ydx = r‘dx JT_Q(x,t) dt (7.1)

- 00

This equation tells us that the spatial integral of the temperature
perturbation O at any instant T is equal to the total heat input
(dimensionless) during the time interval 0<t< T ., For our special

case, {)(x,t) =§(x) S(t) , (7.1) then becomes

jm o(x,T)dx = | for all T >0 (7.2)

~"o0
It cen be seen that this relation is also satisfied by the approximate
formulas for both t small and large (by using u—;:t_f:e_ ‘%Fd:( =)
but their energy distributions are quite different. For t small, all
the total heat diffuses about the origin, with the coefficient of dif-
fusion X . However, for 1 large, ),L of the total heat diffuses
sbout the origin, with the coefficient of diffusion 2~ ; and (I-§)
of the total heat diffuses about X =+t , the usual lines of propa-
gation of sound waves, with the diffusion coefficient YZ——; K< .

(ii) For very small values of t , pure heat conduction with un-
modified heat conductivity K 1is the dominant process. This implies
that the pressure waves take some time to establish themselves. Near

the origin changes are mainly in temperature and pressure, while those

in velocity and density are much less appreciable. From this
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phenomenon we might expect that the formation of pressure waves needs
to be built up by density which then serves as the mechanism for send-
ing off the pressure waves and at the same time modifies the conduc-
tivities. Nevertheless, the complete transition phenomenon still has
to be sought.

(iii) For 1 large, heat conduction near the origin with conduc-
tivity %— and along the pressure wave fronts x = *ct with J#K
are both important. Thus we see how the introduction of heat produces
both a thermel wave and a pressure wave. Now, changes near the origin
are mainly in temperature and density; while near the lines X = * ct
all changes are almost equally important. It is also interesting to
see that near X =*ct, simple relations between variables exist,
such as

b=5+t86, u=2Ccs, p=18 (7.3)
which are very familar in the linearized theory of isentropic sound
wave propagation.

(iv) The Case K — 0

As % becomes smaller, the solutions for T large are the only
relevant ones. It can be seen from (6.,26) thet as K becomes smaller,
all disturbances concentrate about X =0 and X = f¢l and approach

§ -functions as x— 0 . For example,
gx.t) = g8 + L T(ixi—ct) (7.4)

It can be shown that they approach the solutions with <= 0.
(v) From (6.26b) it is clear that the velocity near the origin

is linearly proportional to X and approaches zero as x— 0 .



(vi) From theée results it can be seen that heat conduction has
an effect similar to that of viscosity, which also causes attenuation
like ﬁ « Thus, when both of them are considered in this problem
the picture should be about the same as it is here.

(vii) The solution for higher dimensionel waves can be worked
out in a similar way and the results are very similar to the usual

geometrical distortion.
§8. Remarks on General Initial Value and Boundary Value Problems

In previous sections it has been shown how & solution of the non-
homogeneous system (2.2) is constructed if the initial conditions are
zero and if the domain is unbounded (-=0<X <%0 ), 1In order to solve
more general problems with non-zero initial conditions and with other
boundary values, more general formulas will have to be derived. This
method (for example, Ref. 27, p. 129) involves in particular an analy-
sis of the singularity of the fundemental solution Gm(defined by
(4.11)) in the application of Green's formula. However, only results
for several cases will be given here.

8.1 Representation for Formulas for the Solution in a Half-Plane

t>0 , ~0<x< o0 with Non-Zero Initial Conditions

It is sufficient to impose the initial conditions on two of the
four dependent variables (say 6 and u ), those for the other two can
be deduced from the fundamental system (2.2). Having obtained 6 and
4 for the given initial value problem, $§ and p can be derived also
from (2.2). An investigation of Eq. (4.1a) shows that initial values

Q(x,0) , 0t(x,0) , O (X.0) should all be given in order to fulfill



the requirement for the formulation of the solution. This corresponds

to any three independent initial conditions, for exasmple, 6 , U and
Ut , being given in a practical problem. The result is

oo {
8(x.t) =[dgj (x5, t-T)() (5, T)dT + s &) (G-$.t)0.E0)+q -5 t) ) (3.0]d5

[

+ r[ Po-g 0+ M 5 S G 160 o G (45.4)] 0(5,0)d
LI (P8 -k 6 ) + L Gu (s 1] 0c (3.0) d

2 LS
¢l KC
3

-5 [ G (-3 1) 04 (3.0) d

(8.1a)

The first term on the right hand side is the contribution due to
the heat source and all the rest of the terms arise from the non-zero

initial conditions, in which both 0(3.0) , 08¢(}.0) act like instan-

taneous heat sources. A similar requirement is for u(x,t) which is

given by

‘t ol
U t) = r;g ue-s t-t)fls,v)dr +7{- f Gy (x-5,t)0) (5.0)d%

+ r [I(x- §t)+ [y (x-%, t)+ L xc‘ Gy (2%, t)+ : G (%, t)]u(g 0)d

+ CT_L [rees.t) -k Go(x-5.t) +7<jc_‘ Gt (x-§,8)] Uz (3,0) dx

_ _gc_l[ G (-5, t) Uee (3,0)dE

(8.1v)

where [ = %—E(z,‘c} , d is given by (4.5b).

Special Case (1)

If all initial values are put equal to zero, then (8.la) and
(8.1b) reduce to the form (4.52) and (4.5b) respectively.

Special Case (2) () =0  (pure initial value problem)

In this case the first two integrals in (8.1a) and (8.1b) drop
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out.

8.2 Representation of Formulas for the Solution in a Quadrent t>o0 ,

0< X <%0, with Non-Zero Initial Values and Non-Zero Boundary

Conditions on xX=0

The representation of the solution in this case can be deduced
from the previous results (8.1) by use of a reflection principle about

X=0 . We also assume that

D@ty =0 for  x<o0, t>0; and forall x, t<O

%0 for x>0, t>0.

Application of & method of reflection to (8.1) about ¥ =0 yields

Bext) = dg[ [Fea-3, t-1)= T (g, t-7)| Qes.v)de + —jexa £2)0) (o, 0)dl

| {6 es.6-6 o ] e+ [ 6,002, 0-G 5. H] N s.0) dg

_z,ﬁj T (4, t-7)080,0)dT + f [F(i-i,f)—T’(1+§,t)]a(5,0)d§
(] [

t t
_zj Gl(l,f~'l)05§(o,'5)d’i+&g—J G, @ 1-T) Oz (0T dT
(] 0

’g‘c ro{éru—E t)- G (4%, ’c)]BTT(E o)+ [GH: (-5, t)- Gulr+g, {-)]Q,c(; o)}

+ j;;_lj [Gzz (X-%,t) - Gxx (14'5,1'3)] O (5.0)dg

(8.22a)

P t had
U =J d;j [U -5, t-7)- Yowg t-t] 1 0)de —K'—] (6,065 8+ G, (o3 ] 0G94E

0

+ od
—ZKI P (A=Y u(o,tdr + f (Fet-5,6)-T(+3, t)] uts.o)de

-2 | Gx (%, t-7) Ugg (0.T)dT + ’izﬁljf Gy (2,t-%) ug (0,%) dr
]

KC‘[ {[G(x—z t)- G (245 1)) Ure (5.0) + [ Ge (-5, 4)- Gy (5, 8)] uc (8, o)} 3

+1§_‘L [Goux -5.4) - Gy (43, 1) ] U(E,0)dE (8.2b)
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Special Case (1) All initial values equal to zero

In this case (8.2) becomes

. t
G (x:.t) :[dzj [(x-5.t-7)- F(x+;,t-7)]f2(§,r)dt + -f—J Gx (x,t-T)[) (0, T) dT

]

t t ¥
—26[ T, 060,17 - 2 | G (1.t-T) (05300 L 6r0u)dr (8.38)
[]

o (t t
ut) = f dgj (Ucx-5,t-7)- U (243, t-”r)].Q (5.7)dr- ZKJ e t-vYu(o,t)de

° 0

t
2| G (L[ - L ur 0] dv (8.3b)

[

Special Case (2) All initial values equal to zero amd ()l =

In this case we have a pure radiation problem and Egs. (8.3a) and

(8.3b) then further reduce to

t t
6(xt) = -znf (X, t-t) 0 (o,t)dt 'ZLG" (x.t-1) [6;;(0.1)-%67(0,1)]dt (8.42)
(]

t t
uEt = —zﬁj M (2 t-T) U (0.9 d —zj 6,01, 47) [ Ugg (0.%)- Tug (o 7))d (8.4b)
o (4
In a pure radiation problem, boundary values §(o0T) , @;; (0.T) and
d(T) , Ug (0,T) are needed.
Representation of the solution in other cases can be worked out
in a similar way. With these results meny practical problems can be

solved.
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PART 1I

HEAT CONDUCTION IN AN UNSTEADY FLOW OF A VISCOUS COMPRESSIBLE FLUID
§ 9, Fundamental Equations and Their Characteristics

The fundamental equations of a viscous, compressible, heat con-
ducting fluid may be obtained in the following form:

The continuity equation is the same as before

2

B v dir(pT) =0 (9.1)
Conservation of momentum now becomes

fg_%_—_ fF_?AAAP-l- grad (Ndiv @) + d:v{p[(V§)+(va)*]} (9.2)

where ) and u are two coefficients of viscosity, which may be con-
sidered in general as functions of f and T , entered naturally in
the derivation of the Navier-stoices equation. (Vﬁ)* is the trans-

-

posed tensor of (v{) . The operator D%: = % t Q- Tﬂd . Conser-

vation of energy now becomes

L p 2 - L (hgqud )+ 24 g (9.32)

where P is the dissipation function due to viscous stress.

$ = )(dwd) + p § (gﬁt) ¥ ZJ (;"3; %%’L)‘} (9.3b)

It is again assumed that the medium is a perfect gas, so that the
equation of state is
P = pRT (9.4)
In the following work the Stokes assumption
3x+trp = 0 (9.5)

is taken, which is approximately true for actual gases, but does not
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hold for a liquid such as water (for this discussion see Ref. 28).

Eqs. (9.1)-(9.4) may be regarded as a non-linear system of four
partial differential equations for four unknowns P, f , T and Q.
Comparing this system with the non-viscous case (1.1)-(1.4), it can
be seen that one of the differences is that the order of the momentum
equation is raised from one to two, while the added viscosity has its
known diffusive character. Therefore, we would expect that the limit-
ing value of the solution of the above system of equations, as f/—0 ,
will not converge wniformly somewhere in the fluid to the non-viscous
case.

In order to investigate this uniform convergence and the underly-
ing construction of the solution, the characteristics of (9.1)-(9.4)
for the one-dimensional case will be considered.

Let 1y(x,t)= constant demote the equation of characteristies,
then the characteristic condition for u %o , % #0 becomes (Ref. 1,
pp. 18-20)

_ ’M/Z“(l//t rul,) =0 (9.62)
The characteristics ares
(1) #Q} =0 or t = const. which occurs quadruple (9.6b)
This set indicates the usual heat conduction.

(11) YW +ul, =0 or 3‘% =y ~ (9.6¢c)
This indicates the streamlines of the flow across which
temperature, density and hence pressure are still continu-
wsﬂmwwekfo,ﬂ#ﬂ).

The characteristics for different special cases when u, or %

or both are put equal to zero were given in 81. In Part I it was



49

shown that the characteristic lines Z‘,—f— = ut(; for the non-viscous,

heat-conducting fluid flow indiecate the boundary of different regions
across which the fundamental solutions have discontihuous form. How-
ever, when the viscosity is considered in addition to heat conduction,
such characteristic lines disappear. Thus it would imply that any
discontinuity in the representation of the fundamental solutions is

expected not to occur in the viscous, heat-conducting fluid flow.
§ 10. Linearization of Equations and Their Properties

With the same reasoning stated in §2, we apply the same lineari-
zation (2.1) to the system (9.1)-(9.4) with an additional expression
for coefficients of viscosity

M= ‘,u,, (+p') Mo = po(To) ple< | (10.1)
If we neglect all higher order terms of small quentities, we then ob-

tain a linearized system of equations as follows:

State P=3S+0 (10.2a)
Continuity Se+dwd =0 (10.2b)
Momentum 7= X-% pad b + 49 gad divq - Jemtanl T (10.2¢)
Energy B¢ -K A8 = (4-1) Sg + () (10.23)

Here the dissipation terms are dropped out by linearization due to the
fact that the whole expression of the dissipation function é contains
only squared terms of small quantities. Thus the linearized energy
equation has the same form whether the fluid is viscous or not.

If we consider for a moment the property of rotationality of the
flow, we can see that the scalar velocity potential in general does

not exist. Because if we define the vorticity @ by
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.-‘5.= C”‘l;“: (10.3)
we can show, by taking curl of (10.2¢c), that ® satisfies

D, = VOB — el X (10.4)
in our linearized theory so that W diffuses like heat with diffusi-
vity V= %”- . If @ has some singularity initislly, or if
cund 5(’ %= (0 in the whole domain, then the flow is rotational every-
where for € >0 « This is a remarkable difference from the inviscid
fluid. Consequently, we have to deal with the velocity itself instead
of its potential as in the non-viscous case. It may be remarked here
that in most cases the splitting of the welocity field into a longi-
tudinal wave (whose curl is equal to zero) and a transversal wave
(whose div is equal to zero) (for their definitions see Ref. 1, p. 27)

is possible (see for example, Part III).
§ 11. Fundamental Solution in the One-Dimensional Case

We shall denote this one-dimensional space coordinate by X and
the velocity by U . In this section we again assume that the external
force 5(’ is zero and consider only the effect due to heat addition Q.
The actual physical problem in this case may also be visualized as
that which is described in §5.1. The linearized fundamentel system

of equations in this case then becomes:

b=5+89 (11.12)
St + Ux = (11.1b)
U — % DUz =~ % bx (11.10)
0t — K 02z = () + (¥-1) S¢ (11.14)

In this system all dependent variables are coupled in a complicated
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manner. It can be seen that U satisfies a diffusion equation with

Px acting as a forcing function; while O satisfies another diffusion
equation with heat addition () and S; as heat sources. This system

can then be reduced to a peir of equations for 0O and U

¢ — K8y =0 —-1) ux (11.2a)
g%-i U xxt +Uxx—#utt =_XL('(QXH+ -Qx) (11.2b)

Here @ and u are still coupled. Furthermore, for 4 #0 , U satis-
fies & parabolic equation instead of a hyperbolic one in the non-vis-
cous case, so it is impossible in this case to have any discontinui-
ties propagated with finite speed.

The system (11.1) can also be reduced further to a single fifth

order equation for each of the dependent variables

L) = ;ﬁ;ﬂ ‘%(%*% )Q (11.59.)‘
Lw =-+0x (11.3b)
L(s) = % xx (11.3¢)
Lip = -2% Opee + 150y (11.3)

where L. is the operator

L= { ﬁ? 2’3;1'* * [’01‘ —(1t3 )g‘ 2)#]21‘ _%Q_t'g‘%‘);t} (11.30)
It may be noted that due to ) being different from zero, the order
of these differential equations is raised by one compared with the
non~viscous case (see (2.8)). Since both viscosity and heat conduc-

tion are considered here, it is clear that the Prandtl number
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- et w0

is a very important parameter in this problem. It is of interest to
note that when Po= 7 , a remsrkable simplification of these equa-
tions cen be carried out. Since this value is very close to the ob-
served value for air®, we shall take advantage of the simplification

offered and limit our attention to this value. When

P =3 so that -4y (11.5)

the operator L. given by (11.3e) can be written in terms of two factors

L= 00802 -+ ) - 1 @26

The operator in the first bracket is exactly the one discussed in Ref.
1, Appendix A; while the operator in the second bracket is a diffusion
operetor with diffusivity ‘/7( « With this particular value of the

Prandtl number, the system (11.3) mey be written as follows:

Loy =-L[+&3H)5-22]n (11.7a)
Lw= -+ Qu (11.7b)
Lesi = &+ (L, (11.7¢)
[(+&%)dap) b= -4 - (1.ra)

with L. given by (11.6). It is interesting to note that p satisfies

*Por air, Pr = 0.72 to 0.76 over a wide range of temperature (Ref.

13). Another example that simplification cen be achieved when 1= I-
is the shock wave theory. BSee, for example, Puckett and Stewart,

Quart. Appl. Math., Vol. 7, p. 457, 1950; von Mises, Journ. Aero. Sci.
Vol. 9, 1950.



a partial differential equation of the third order in x end t, in-
stead of the Ffifth order as the original one. This has some physical
interpretation from the result obtained later.

The fundemental solutions of (11.7) are defined in the same way
as stated in §4, so that for () = §)5(t) , the solutions to (11.7)
are given by

o="T@t) u=Ulwt), s=J@&t), p=flxt (11.8)

Here the procedure is very similar to thet in Part I. If we
apply the Laplace transformation (4.7) to the system (11.7) with all

zero initiael conditions, we obtain

(LA (-2 B = -k (f-12)0 (11.9a)
(M- = % (1+55)7 0, (11.9b)
(A2 5 = (14 A5 D (11.90)
(ag%_,\,) -1& = _%Lﬁ (11.94)

where
= (14578 L a=dn (11.9e)

The fundamental solution for the pressure -P is easily obtained (see

(5.2))
_f—’(x,O“) = :{} (x,0) = z% e-‘]TI I _ (11.10a)

while for the rest of the fundamental solutions the factoring of the
operator again permits us to apply Theorem 1 in Appendix A. Follow-

ing the same procedure described in §5, we obtain
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— - o =mi Rl
0.0)= T(x.e) = s t)[(%—ﬁ\?)mc (- 2w e™] (11.10b)
- - L ‘ Sy YB3 BN il 4
0)= 0 = - K- X L J .
i (x,0)= U (2,0 RS 1)[ e (11.106)
- + - Jh Xl ~ P 2
S(,0) = ﬁ(x €)=~ K m Z(/\I.—)w) [JX,e —Je ] (11.104)
Applying the inversion formula (4.7b) to the system (11.10), and in-
troducing
s=%c 7=, X=%u (X >0) (11.11)
we obtains
+(0 -FZX P
AT ¢ -1 _Ji¥Z Jl—*hTX} 1.12
O(xt)= 7= me_u e {\fﬁ(Hi;,—'J) 3 |+13—A ds (11.12a)
HO O aT -4
— € ! e ~-BX _ WX}
biod
bti0 -F7x 4
S(xt =——C——'—.J T{ﬁe — -mx}a 11.12
() = -2 ) a(1+ 5k T IFE(+GLY) e 4 ( e)
4
(11.124)

B X
_ ¢ l -5
by = 2K 2 f N ds
b-ie0
where the path of integration is parallel to the imaginary axis and to
the right of all the singularities of the integrand in the J -plane.

If we consider for a moment the integrands in (11.12) we see that
4
, and e {FS X has

e V18X  pas o branch point at the origin 8 =0
a branch point and an essential singularity at J4 = -/ so that we must
in general restrict Iwa}xgl LT in the former case and Iaﬂ? (+8)] <

, and

in the latter. Another singularity in the integrand of 0, U
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S is a simple pole at J=- Y—l—l— . By investigating the behavior of

these integrends for large values of |4 , it can be seen that the
original contour may always be closed to the right half-plane for
T<0 so that 9,u,s,p=0; for T>0 the contour may be closed to
the left half-plene with some proper branch cuts. This fact is fore-
seen in our study of the characteristics of the system and is quite
different from the non-viscous case where we have a different choice
of contours for different regions of [ ( T >HX and 0<T <JFX).
The integral

4
A e
J(xj):z,;r—_tf e T R ds

bice

is calculated and discussed in Ref. 1, Appendix A by contour integra-
tion in the J -plane. However, it is found that the application of
some appropriate conformal transformations of the complex plane can

simplify the calculation. If we apply in (11.12) the transformation

to terms with ¢ I3ZX  gnd another transformation
d=c (11.14)

.
to terms with € Vit7 £ , then all the original branch points are re-

moved, the resulting integrals are

e N I
_c 1 | j | eT-0XC LD 11.15
9(1,t) K 27 {’2‘" @I Cl+~‘j:'|- € d£;+ ZCL"'#C dg ( 9.)

. CT-FXL @nT-450x
u(x,t)=_c,&%x | [j@ Q dc __J C C ') C

(]"l)"‘ 2L l Cl_'_:‘_-{_‘c 0 CL‘F,‘-'.,‘ dC} (11015b)
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‘ CIT_R.XC I
e dg —
©

. . cl_'
o7 -5
5""“=‘rﬁm‘2'ﬂﬁl E mrc | Fdgf (1ase)

3

2

X Ct—l
)T —=X
peet) = £ z,'mj eENT T 4 (11.154)

2

where (0, and (. are the transformed contours of the original path

by the transformations (11.13) and (11.14) respectively. They may be

4
K z-bl.

Fig. 7

2

G-l
_CX

shown as in Pig. 7. In the integrand of these integrals, €
has an essential singularity et £ =0; (& + :-‘f'_T)"' has two simple
poles on the imaginary axis at { = 1% Lj%; ;s and (& + —,1_7)-' has two
simple poles at { = * ij{‘—q « An investigation of the behavior of
the integrands for large values of [{| shows that contours (, , C,

mey be deformed only in such a wey that they start from o0 (3 i and

end up at DOCLS where -SZ"T—>5> %— . It may be pointed out here that
Eqs. (11.15) are still exact integral representations for 6 , u , S

and P and that they still satisfy the fundamental system of equations
(11.1). From these expressions one can obtain the asymptotic formulas

suitable for | large or small.
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11.1 Asymptotic Formulas Suitable for Large Values of T

In Eqs. (11.15) there are two types of integrals, nemely

¢CT-HXC
o?, (2, t) = —m'n j@ f(;) e d (11.16a)
] .

z

x_ T_ £-1 X
jz(x,t)= ' J ?(C)e(c ) ¢ dg (11.16Db)
. . @2

2mi

It is desired here to find asymptotic expressians for J’, and Jl for
T large., Now for j, , it is convenient to apply a modification of
the method of steepest descent as described in §6.1. It is easy to
see that { =0 is the only saddle point through which the path G,
must go. This is possible because {(L’,)= Cq(czi'%j)-' (a=0,
or | ) is regular in the neighborhood of &; =0 . The next step is to
deform the contour (%, such that both (i) c}m (4%)= constant and (ii)
RL(L) =0 on the path are satisfied. The requirement of the second
condition is expleained in §6.1. These two conditions lead to a con-
clusion that the imaginary axis is the only path of the steepest de-
scent. Hence, we deform (2, into the whole imaginary axis, with two
indentations at two simple poles of (&) , & =% ([75 , to the
right half-plane. Then, with the exception of the contributions from
these two indentations, the most of the contribution of the integral
comes from the neighborhood of the saddle point £ = (. Hence, if we
write

fley=¢ 4w (a=o, o0 1); fe)= (C‘+71_—,-)" (11.17)

then near C =0 , we may approximate f, as

fio) = f@+0) = L+ 06 (11.18)
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Hence the integral J, can be asymptotically approximated by

O] C’T-FXC . . .
o?; (1,'{:) ~ g‘lTJ@' C“ e d(; + -%— (Z residues 0.{: + l.j%’;——,) (11.19)

The value of this integral is given in Appendix D. Hence, we have

2

= = e T+ 0(H for  a=0 (11.20a)
X
—"‘4—% AT+ 0(4) for  a=| (11.20D)

The estimation of error term is similar to that given in Appendix C,
and the contribution due to residues is included in the error term.
These formulas are important in the region where Xz/ T is small.

For the integral ot it is convenient to use & method of approxi-
mation similar to that described in §6.1, Case (ii). First we choose
a contour which crosses the real axis to the right of the essential

singularity § =0 in such a way that the quentity S g L is purely

2

imaginary on the path. By writing ( = §+i72 , the condition
RL ( Lol)=1p gives

E(E+-1)=0 (11.21a)
so that

£ =0 or  Ewnt=| (11.21b)

Since thelli.ne ¢ =0 passes through the essential singularity ¢ =20,
we have to use both conditions in (11.21b) by combining them in a man-
ner as shown in Fig. 8. The contour (%, goes from -i% along the
line £ =0 to -i , with an indentation at the simple pole & = ‘ijj—'-_,_
to the right half-plane, and then goes on the semi-circle BC D of

unit radius in the right half-plane to +( , from +i proceeds to +(0
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£ L=&+in

i ¢,

) B
=P
R

Fig. 8

along £= 0 , again with another indentation at § = +( 5 -
If the contribution of the integral on AB and DE is denoted

by jhb and Qﬁ,e respectively, it can be shown that
0o
. -r+)T .
iJ]\B, e | € zLTr'J' I?(L’l),e 1 dn + L (3 residue af it\[t—'j-) (11.22)
Now we have

-1

a(z) = C’,b(l‘;?g'.—,) (b=o,1 or2 for s, uorp) (11.23a)

= | (for p) (11.231)

After some detailed manipulation it can be shown that, for all cases

| dos, de | < & e’ (11.24)

A being a constant. On the semi-circle BCD , it can also be shown
that most of the contribution of the integral comes from the neighbor-
hood of the point { = | . This point involves some physical signifi-

cance similar to that mentioned in 86.1.
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I1f we denote the contribution of the integral on BCD by g 8D

and choose a convenient parameter such that

NE) =€ (11.25a)

and
Ee)= [i-& (positive branch being chosen) (11.25b)

then J’BD mé.y be expressed perametrically by
Jao =

which can be asymptoticelly approximated as

od 2 .
(é=o)f -2€°T +2i(T-X)E€
cjleb ~ j_é,f—_w € ole

[z€'+ 2i€E@] T —2i€X

+]
Z—;TT,( tC zerzicf)e (¢'+i)de  (11.26a)

or

I /)
Jop = %%%J%Ti e 7 +0(4) (11.26b)

This formula is important only in the region where (X"T)z/ T is
small. The estimation of the error term may be obtained by a calcula-
tion similar to that described in Appendix C. Therefore, we have the

2z

asymptotic expressions of the fundamental solutions for C,J large,

with Pr = 3/4, as follows:

feet) = %Jl‘w’f,_t G + 1 W c_('z'—'é“}o(gf) (11.27a)
U t)= - —2—¢ 4?"; + agpex e_%"‘—fﬁ + 0(-’—) (11.270)
‘ z”ﬁﬁ‘ a W t
YA - ~ct)”

— [ t
S(x.t) = — _L 41]’% T 4Kt t o7 AT e 2K + 0 (Ej{_-) (11.27¢c)

_ axl-ct)t
P(l.t) = %Jz_'fjf_?— ' 2Rt + O(El?) (11.274)
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Discussion of Results

Comparing these formulas with those of the non-viscous case (6.26)

several interesting points may be noted as follows:

(1)

(11)

(iii)

For &t large and fa=3/4, the role of the additional

viscosity gives exactly the same asymptotic expressions for
g, u, and S near the origin as the non-viscous case, but
it rules out completely the pressure field P near X=0
where the heat is introduced. For the non-viscous case F
is shown to be of negligible value there.

For Pr= 5'/tl. , the effective coefficient of diffusion about
the origin is %4 , which is the same as the non-viscous
case. The effective diffusivity about the lines x= *ct is
’C/z , which is independent of ¥ in the first place, and
secondly, is greater than that of the non-viscous case, %m ‘
(= —.',—;c for air). This would imply that the viscosity has
its property to increase the rate of heat diffusion about
the usual lines of propagation of sound waves.

As far as the heat energy distribution is concerned, the in-
tegration of the linearized energy equation (11.2a) through-
out space and time again gives the relation

=

j 9(%7) dx = | for )= 5 5t). and T>0,(11.28)

—od
Substitution of (11.27) into (11.28) shows that the heat
energy distribution is exactly the same as the non-viscous
case, that .is, :‘L of the total heat diffuses about the ori-

gin and (| —%) of the total heat diffuses about the
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lines x= * ct .
(iv) The relative magnitude between § , U , S and ’9 along
® = +c¢t is the same as the non-viscous case (cf. Eq. (7.3)).

(v) As t—o , M —= 0 , but keeping Pr = 3/4 , these distur-
bances approach the same limiting forms as the non-viscous
case to their first order terms.

(vi) For P = %4 , so that « = —gﬁ‘h) , We may replace < by
4+4p  in solutions (11.27), but the forms in terms of «
are more convenient for comparison.

It may be remarked here that all of these results verify the statement
made in §7 (vi).

11.2 Approximated Solutions Suitable for Small Values of T

Following the scheme described in §6.2, we first apply the trans-

formation
z=[T( (11.29)
to the integral representation of solutions (11.15). We then have
(g (_F - g5
0@at)= &5 —_—J lT e z + J dz} (11.30a)
K2ZmWi(¥-1) 2 +%Lg.'- d T 77_‘_
]
LI whlz-lT=% - Z -
U@ t)=-LAapx L j z vple ’_] - TJ“”‘H dz (11.30b)
#IUK 2w Z+.)}L‘L_ A z+7:,—

with the corresponding formulas for S and P . We can now approximate
these integrals for | very small. For terms like (z‘£7'+AT)“l , A
being & constant, we may expand it into a convergent series in T for

sufficiently small T so that

(F+a1) = 2140 (F)], o <t dor allz on G € (11.31)



And for the term 4xp [—% -Z;—T] s, We may write

X z-T
ap A mp ] gen, qen= k(D) G
Again, for the same reason concerning the rate of attenuation as stated

in §6.2, X = O(fT) for T small, so we may assume

% —> o (@& constant) as [ —0 (11.33)

Then (11.32) takes the value

exp [—%— *Z;T ] = % (1+ 0(L) as T —0 (11.34)
if TTET< | forall z on (3 , (,. From the imposed conditions re-
quired in (11.31) and (11.34) we may deform ( , (, into a path
parallel to the imaginary axis, to the right of the origin such that
on the path min ([2, 12 )>>T so that instead of [I+ O(75)] and
[l+0,;z,)J , we can write [ 1+ 0(T)] on the path. Therefore, for

very small values of [ , we have

Nl B S L LJ - o2
(.t = z'n {1_, J@ 5 € dz + = 86 Az} [1+0(m] (11.35a)

_ Caiget | 4 E- AR _J 1A
u(x,f)—’—aﬁmlje z € az o z ¢ dz [l‘f’ O(T)] (11.55b)

again with corresponding formulas for § and {9 , which give (of. Ap-

pendic D)
— xl a,
o (Lt) = m e T (14 0(%Y] (11.362)
_ Ay _xl 1% ct
v~ SEEE e ke B[] cvse

x* 11‘

St = 7 un{z%[e—m‘e FJ '1'[

Zj— "" ]} [HO(“,J](ll.sec)



- X 2
b(xt) = J4T'n<T e FT (140 (5Y)] (11.364)

Discussion of Results

Comparing these solutions (11.36) with the corresponding non-vis-
cous solutions (6.31), it can be seen that 9 and la have exactly the
same expression to the first order of approximation; both diffuse a-
bout the origin with conductivity X . However, there is a slight dif-
ference for U and S ; in the non-viscous case we have only the unmodi-
fied conductivity K , while in the viscous case there are two apparent
conductivities X and X4 . Terms with 4 have a counter effect
against those with KX . However, the qualitative behavior is the same
in both cases so that for T small, heat conduction is the dominant
process and changes near the origin are mainly in temperature and pres-
sure. The important point is that the viscosity does not change the
temperature and pressure, which are the two nia.jor ones, to their first
order of magnitude. This seems to imply that they are independent of
Prandtl number.

These approximated formules cen be shown to satisfy the fundamen-
tal equations (11.1) asymptotically; and € to satisfy the energy re-
lation (11.28).

As a remark, a perturbetion may be applied to these eqﬁations

with respect to P when fA is very close to 3/4.
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PART III
HEAT CONDUCTION IN A TWO-DIMENSIONAL STATIONARY FLOW
OF A VISCOUS COMPRESSIBLE FLUID
AND

THE APPLICATION TO ANEMOMETRY OF A HEATED FLAT PLATE
§12. Linearized Equations and Their Characteristiocs

The significant equations governing the motion of a two-dimen-
sional stationary flow with the presence of heat addition and external
forces can be obtained by a method mentioned in 85.4. This system of
equations is then linearized in & menner similar to previous cases.
For a flow whose velocity at upstream infinity is U parallel to the
X -axis, the resulting linearized equations read:

State b= 5s+86 (12.1a)
Contimuity USx + dw'{ =0 (12.1b)

Momontwn U, = -£ quad p + $vqudde § - Demlent T+ X (12.10)

Energy UBx—xAa8 = U@-1)s2+ (] (12.14)
where .
3 = & 2
A= [ doig = T, = |2 2 =T =| ¥ X
P (l) poddw =T, (_a_ »_7) el =T, =| 7 "%
’b‘(j ’bx'b; 271. 'ax'b7 x>
and
_ 7_ (v
A”‘w*fotd*' + (V)

In Eqs. (12.1), () end X are assumed to be independent of time.
If the characteristics of this system are considered, it can be
shown that for K # 0 , ¥ # 0 , no real characteristiocs exist. This

means that any discontinuity of physical quentities is smoothed out
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instentaneously by the viscous and heat-conducting effects. If we
consider for a moment a special case H =0 , k=0 ., the order of the
momentum and the energy equetions is each lowered by one, and the char-
acteristic condition then becomes

Y [V — (MDY =0 m=L (12.2)
where 'V/(x,g) = constent denotes & characteristic. Hence the charac-

toeristies in this case are:

bR
(i) "Ifx =0 or Y= const. which occurs double (12.3a)

This set indicates possible discontinuities across the line-

arized streamlines g = constant.

(1) Y- M0V =0,  or (g;;i)w = t&‘l__l_' (12.3b)

This set is imaginary for subsonic flow M< | ; but becomes
real for supersonic flow M >| , which then represents the
fomiliar Mach lines. Across these lines temperature, density
and even velocity may jump (beceuse m=0¢ , *=0).

These characteristics (i) and (ii) must play an important role in
the solutions for small values of M and 4 . In other words, a two-
dimensional disturbance introduced at a point inside a fluid of small
viscosity and heat conductivity tends to propagate downstream more con-
centrated along the streamline and Mach lines (if M > | ) tﬁrough that
point, and at the same time diffuses about these lines (due to the non-
venishing U and % even though they are very small). This interest-
ing point can be seen more clearly from the solutions given explicitly

later.
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§ 13. Representation of Fundamental Solutions in Fourier Transform

For the definition of fundamental solutions in this problem ref-
erence is made to 84 and 85.4. As the effects due to () and S(’ are
independent of each other, we may treat them separately. If we denote
the fundemental solutions of the temperature and velocity field by
la , f_q_ due to {) and [y end ¥, due to X (with corresponding nota-

—
tions for density and pressure), then when () and X are arbitrary

functions of (x.Y) , the solutioms to (12.1) can be represented by:

6Ly = E { '1‘1-¥.H-'1JQ(§,1) + _ﬁx(x-;,y‘—vp_)?(;q)}dgdq (13.1a)
qeLy) =:E { ¥, syl + By ex.4-0) X gy | dydy (13.1b)
S (Y) =jf { RQa (=3, 'd-fpﬂ(;nh éx (%-2.5-'1)7( (8. YU} sz1 (13.1c)
p(xy =E {.ﬂn -y, 4R + ﬁx(%m—f() 7((5,'1)} Az ol"z_ (13.14)

— > - -
where [, , R ‘ﬁ.rl are scalars; [y, ¥, , ﬁx, 'I}X are vectors
and Q_Fx is a two-by-two tensor. These fundamental solutions can also
be used to build up the solutions of boundary value problems as will

be shown later in the application to the anemomebtry problem.

‘i‘he procedure adopted here is similar to that in §5.4, that is,
first to eliminate the independent variabie X by applying Fourier
transformation to the system (12.1) and thus reduce the system to ordi-
nary differential equations in Y only. After this the method of inte-
gration in the complex plane is used to obtain an integral representa-
tion of the fundamental solutions from which asymptotic formulas can

then be derived. The Fourier transform )C of a function f@.4y) with



68

respect to X and its inverse transform is given by (5.24).

Application of Fourier transformation to system (12.1) with the

condition that all perturbations vanish as 1 —= 1t 0 , gives

F-544
pUS +div T =0
T8 = [($0r FapT -2 T -gU] 74X

~ ’r~

ipU+k A) 8 = (-0 div § — ()

(13.22)

(13.2b)
(13.2¢)

(13.2d)

where all wavy barred operators are those obtained by replacing %

by ¢ P in their original forms.

Transforming (13.1) and using the convolution theorem, we obtain

P
20

6(p.y) =Jz—1[f {ﬁl({s,g-vﬁ({s.m + T lp y-rzﬁ(’(p.vp}dq

Ty =\[z—m:f{i_fn((3.5-*1)f2(p,q) + Typy-wX )y

(13.32)

(13.3b)

and corresponding formulas for g((i,lj) and %(F,y} . BEgs. (13.3) tell

nJ

~ —
us that the Fourier transform [n , l"x etc. are themselves fundeman-

tal solutions to the transformed system (13.2) divided by 27 . In

order to find these fundemental solutions in Fourier transform the

system (13.2) is reduced to a single higher order equation for each

Lo e
of §, ? . S and P « The resulting equations can be greatly simpli-

fied by choosing the Prandtl number Pr=3/4 . Under this assumption,

our equations then become as follows:

L.z(5)= _J’({l_qu-lM)ﬂaé}ﬁ _ A@-t)iaf d".‘l’r-—- _

W |+ia‘3 Xx*(1+iap)

where Ly, is the operator

le. = (,';%Lx_)\l)(,‘b?,j_:'_/\z)

-Fs(Y)

(13.4)

(13.5a)
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N ELSTLT o=+ nyf‘, a= M_J (13.5b)

|+iap
The equation for the velocity is slightly more complicated, since an
equation of order higher than £our is involved. However, it can be
expressed most simply by splitting Qf into four parts
1=§n+§‘>x = é’n*?‘qi,**‘?f:; + 4 (13.62)
in such a way that their transformssatisfy

fad (Y o~ o~ :
L, (%) = ——,ﬁ.—fp— grad 1] (13.6b)
T i . (1 0\
L:z,(%)‘—‘%,_.:%@{ﬁ—(ﬁ"‘—%ﬁ——gy—l)(o I)X (13.6¢c)
Lo b ke (B )% Ls.6a
Z(ﬁz - ) ,+£a‘3 2 — X (5' )
% g
and
3., L2 0, .
L (33) = ,)z("F’)”"Ll—ﬂ—ﬁ’—éﬂ‘é( o 7;)7 = - Fs(y (13.6¢)
2y Tt
where
L\3 = <’b'f‘ M )(l——‘}\z (,03;,_ )\3 = ﬁz.’. %.E (13.6f)

Furthermore, the equations for density and pressure perturbations are

L.(3) = WL@(;JI pA + T%F[w (L)X (s

L, (p) = —ﬁ%@ 0 + 1€ I+‘w‘{5 dv X = -Fpy) © (13.8a)
where

L, = ('u;')") (13.8b)

The factoring of these operators L, and L, again permits us to

represent these fundamental solutions as a combination of fundamental
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solutions of second order equations as indicated in Appendix A. Ap-
plying the theorems in Appendix A we have the following statement:

The fundemental solution G of (13.8a) defined as the solution
venishing et infinity when F4)= d(4) is known as

6" = gz e (13.9)

The fundamental solution G of (13.4) (as well as of (13.6b)-(13.6d)

etc.) defined as the solution when Fg(y) = 5(4) is given by

) | g eyl
W =55 laxe =] (13.10)

while the fundamental solution G of (13.6e) defined by

L@ = [ ¢ Fopdn

-0

is again e linear combination of "

e -m - MYl I -1yl
oy = Zin € L 20 © 2% , (13.11)

= R T am)m) T G MO AD)

Following the definition of G° in (13.10) the solution to

(13.4) may be written as

~ M(z; x 7-|-$M1 ‘ ~ -1)ia -
Bep = [ 6" s (i (8™ e + Bty v X o0} o

o

T 2 Iy M ny ~ 2) ~
J _(2((51“ :le-(s %ﬁj G By + %{% gmd(‘j)ér'( (g-q)-f&p.q)}d»z(ls_.lza)

- od

where
~ iF 7 > L~ ~ - X'
?]'“"‘Lg) = (%) ) divgy X = (ip X+ % X.), X= (X,) (13.12b)

Compering (13.12a) with the definition of [, and [, given by (13.3a)

and using the form of G given by (13.10), we obtain
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N I ia ~J‘,l9| L
EL(M) znﬁ I+ GTiag {]T e }

J7\_z (13.132)
and
F —__l_i__M I g -\(X.I'Jl e-,\zlm
T;(Plj)— &r 2 U* )+j.?-LLa{S (’b‘a){ T } (13.13b)

For the velocity field, if we follow the similar procedure to treat

each componeﬁt separately, we have

IL(FH)— Z“_w |+17—MP(F){ iy —JMM}= Ly’

J—A-l 1(,‘_‘) M:. r;( (13.14:&)
; Pl -1yl
! iap I e e 10
((53 227 +1$—M(5 {lﬂ;afs N + () P }(0 ,) (13.14b)
$ o=z L Lrdiap [ ARSIl émm»}
2 F(j T3V et |+%‘-L£aP %j _,;(3 [ YN
1 0 CEM’- e—lXM' e—J;\—;lljl
t (o o)[— priap +1;¥ N ] (13.14c)
where the following relations have been used
N —0‘-'9' _ - Yl
—:—F‘—%—gz o ( lg |+ m(j)
A -l 1y) &
¢ 2 € = (‘P ) e
Similarly, we have
- l P 4 ol -3 ol ' L
? (fY)= ijr ﬁ P{(_ -;F)[(HMF) -4+ (-3 mP) +3(|+1‘—m(3)j}?3 J
1o JX.WI -ty
_( )[L‘gm _4_?11_!( H)“"(‘)

&l
+3U (|+—La‘s) ! ]} (13.144)

Combining Egs. (13.14b)-(13.14d), Yy is then obtained
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‘_I,\[/x(@-‘j) = ﬁ,*+ i’: + "\Ll?la*

_ 1 (i %5 ‘ [c-meruMF e—Jx,an_ S
AUfzw| 2 -ip 1+ 5hiap L VA ¥ s VA3

L
297 (0 o D3
‘ iap (00 | ey e 13.14e
+aniﬁ |+%‘laa9(o I)[H'WF NEY + -y Jh ] ( )

From these expressions it can be seen that in. is a longitudinal weve
(since it is a grad of a certain function) while ¥, 17&; represent
transversal waves (since each is a curl of a certain function), but

the splitting of fl* into longitudinal and transversal waves is not

readily seen.

By a calculation similar to the above, we obtain, for the density

and pressure fields

Ra(py) = P Hi'%m(i [‘% ’fcﬁ@ e;—flql— ‘f.r,\—idw] (15.158)
—N_ﬁ*x (Y = ~u'j’l}z_w |+13L£4? (;g) [ |+Ieap C-TJT'“{ + (3-1) ‘iiim} (13.15b)

The desired fundamental solutions can be obtained by applying the
inversion formula (5.24b) to (13.12)-(13.16). The details of this

procedure are given in the following section.
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§14. Problem of Inversion of the Transformation

Application of the inversion formula (5.24b) to (13.12)-(13.16)

gives
o0 ct‘gx {-1 & ALl C—J):IUI
[ Ly = ,mf |+1{:me{ ap E—— + ] dp (14.1a)
= LPX -Ja Wyl -yl

= _ % € _ €
ﬁ (15 4-71' Ul( ) S ]+]‘;—tap [ Y I ]dﬁ (14.10)
-> | U" -
Va2 Y) = J5) M Ik (14.1¢)

2 2 -yl - Jhtyl -J‘;mu

_ 1 [ % J e 4. . € } x

EX (xal_") 4TU (% _% _f{ |+l.‘;'-|‘ae[ A + ] l«aF Ja ] F d‘B
O oy FtaﬁeP P gy et
+ 4;"1)(0 021‘ J_— F 4’1’& o | /) ‘+L"AF (1+LaP)J—|+ J—;‘ JdF (14old-)
Rty =3 r e [ fiap B e_&ml] d (14.1e)
2 (X Y) = 4—”![!(.” |+1_6;Lcafa Itiap  n N F 2@
2. 05 I -

= M [ Lﬁ! | iy Dalyl

—_ DX e T -
Iﬁx(’tl‘j) - U 7)]9' L ,"‘LL“F ‘HAP "x‘- +(\‘ ') m ]dF) (14°1f)

| (gx L
Rocey = Mm_L ,iafi@ ™ 4B (14.1g)
? . -

— 2 ¥ Ayl )

— "
rﬂx (. 4) = 4"ru= (%)- |+m{s Y d (14.1n)

All of these integrals may be evaluated in the complex p -plane, the
path is taken from -o to+eo¢ along the real (S-e.xis , on which all

o, Jh s, A, are defined to take their branches having positive

real parts.
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Let us consider for a moment the case
> |
nN=0 X = (o) S0 8(Y) (14.2)

The temperature and velocity due to this force are formally given by

N

Mz 2 ci(QI [e.m“dl _ e— )z“le
prey) =Lt uj i (S (14.58)

N | l % ) SR Em
_fu P e X
9r(x.9)—( ) 4TrU %)H caP[ +1—m{3 e ] w }e ap

| | 0 ea@x~\r)§lyl
' i (O)L e df (14.3b)

It is of interest to note that the V -component of the velocity van-
ishes at Yy=0, V(%0)=0. Furthermore, the heat transfer in this

case is proportional to ’09 9(x,0) , which also vanishes. Similarly,

when
Q=0 X =(}) b0y (14.4)

it can also be shown that U(X,Y) has the same expression as that of
V(Y) in the case (14.2), so that it also venishes where the force

is applied. The heat transfer in this case depends on 52 0 (Z.Y)
evalusted at the singular force, which is also zero. The case (14.2)
(or (14.4)) may be visualized as a very short flat plate, of zero
thickness, being placed in the flow, parallel (or perpendicﬁlar in
case (14.4)) to the free stream, with its length tending to zero as a
limit. Then the above results may be interpreted that such & singular
flat plate does not create any hot or cold spots (that is, singular
heat source) in the flow, nor generate on itself a velocity perpendicu-

lar to the plate.
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On the other hand, if we consider the case
Q =Swsw) X=0 (14.5)
then ":a: is given as a grad of a certain quantity (longitudinel wave)
and is irrotational so that there is no net force on this singular
heat source. Tsien and Beilock obtained the same result in treating
a single heat source with K =0 ,k=0 (Ref. 5).

A1l the above argument tells us the fact that Q end 5(, are line-
arly independent of each other. This follows from our linearization.
Physically interpreted, (1 and -)_() lose their coupling because the dis-
sipation term drops out from the energy equation in linearization. In
actual cases, _)Z should affect () through the dissipation mechanism.

To proceed with our inversion problem, we see that only two terms

-~ 1Yl

in (14.14) with ¢ cen be evaluated exactly as

i@~ r,u.n [ oiBt- “JIJ@“iTﬁ yx
Clomialr gy p=ze® K (L) Gee)

% ~os

where A = Jx*t+y* (Ref. 29). These two terms, which do not depend
on M, result solely from the viscous effect. They remain unaltered
if heat conduction and compressibility are neglected (for example, see
the incompressible, non-heat conducting Oseen solution given in Ref.

1, Appendix Da, Eq. (98)). The rest of these integrals can be approxi-
meted very easily for some special values of M, for instence M=0
and o ., For general values of M, no closed forms could be achieved

suceessfully for these integrals, but one can find their asymptotic

Ui Uyl x
< M and <M

formules for either large or small values of

*These two terms are actually proportional to the local Reynolds number
divided by M?, usually assumed to be large in boundary layer theory.



76

14.1 Asymptotie Solutions Sultable for Large Values of %U—i

Here we have two types of integrals to treat

j _ SM | o iB% - Y] J (A= | o 33 (12.72)
V=) TrAep T Tn P 58 .
J r . P ~J% Wi
— 14.7>
) 1+Aiap e dﬁ ( )
while other integre.ls cen be derived from these two, for example
o ;‘gx—Jx‘,l‘Jl
- ip e ? 4,7
s _L [+Aap  In ap = % (14.7¢)
o4
3 i FESRPAL] 3
du = S [+hiaf  Jm af = 37 & (14.7d)
-od

By introducing non-dimensional quantities

|
A=ap, X=%=ﬁi. Y___%_zUMI

o o (Y>0)  (14.8)

Eqs. (14.7a) and (14.7b) become

o0 2 A-L(-MY)
g = f 20X - S Y an (14.92)

j,\ A~ L(l-M‘)

—od

40 I —[Nramwx Y

Jz = IR € dx (14.90)
t

where ?(»\) = m , independent of a . Now our problem is to find

the asymptotic formulas of J, and Jz for Y large ( Y20 ).

To approximate the integral Jl » we have to consider the subsonic
and supersonic cases separately, because the branches of JX, have a
different behavior for M<K | and M>! ,
(1) Subsonic Case, M< |

It is easy to obtain a rather crude approximation in the subsonic

case by considering contributions from small ) only as an asymptotic
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formula for large Y . The error term cen be estimated in the same
mamner as described in Appendix ¢, Here only the first term will be

given

* a0) DX — ALY
g | e A\ = = 2 Ly [T+

which is the principal value of the above integral. Hence

j’ BT M‘ e B (= [+ 0w 51]%) +0 (& (14.102)
and from (14.7¢) we have
___2 X KM )2 .
js i X+ (1-MYY * O«U'?'U (14.100)

4, behaves like a subsonic source, while 093 behaves like a doublet.
(i1) Supersonic Case, M>|

Here we demote M =M=-1 | 5o that M >0, Now special atten-
tion is required to choose the proper branch in order to assure that
Re J)\T-j\\_—*_—itﬁ is always greater than zero on the path of integration.

If we write the integral of, in the following form

j J—ﬂL E MRS Y (14.11a)

4 (m>

we then require that

In the following a method is described to obtain the required approxi-

mation by applying a conformal transformation of the complex plane to

simplify the integral. Another method is given in Ref. 1, pp. 190-192.
If we apply the following trensformation

ig= [Arw (14.12)
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to (14.11), we then obtain

o[ g0w) - (X eY),
4=z ¢ @) ' g (14.13)

where the contour (0, which is determined by (14.12) and condition
(14.11v), starts from £ =-(, passes through points J[m s s M,
m CHTT/A' and ends up at +( , as shown in Fig. 9. 1In the integral
(14.13), ¢ = *i (corresponding to A= T = ) are essential singulari-
ties of the integrand. For a similar reason explained in §6.1, it is
U

+L

- pl

I3
-t

Fig. 9

desirable to deform the path @, if necessary, such that the quantity

2 bR
é—;}-’?—— is purely imsginary on the path, to aid the approximation.
If we write 4 =£+i , the condition R/ (C o )= gives

(M) + (1= (g%~ -m'=0
which passes the points (0,-1), (f-"_z’— ) —f%——) (m,0), (f%» j—%)' (0,+1)
and is actually the transformed contour (¢ of our original path, real
A -axis. The fact that this is so may be seen from the point that iAX
is purely imaginary on the real )X -axis. On this contour it cen be

shown that most of the contribution of the integral comes from the
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neighborhood of the point {=wm . This point also has some underly-
ing physical significence similar to what is mentioned in §6.1 (ii)
so that our solubtion is importent only in regions close to the non-

viscous Mach lines x*tmy=0_ X>0 ,

If we choose a parameter € on the path such that

nee) =€ (14.142)

flo) = [Mpb - ¢ty Mt [Ty ) (14.145)
2 2 (m*ei)* *

and noting that most of the contribution comes from the neighborhood

of €=0 , then the integral J, can be approxima‘c‘ed as

MZ

St [ e mp o) 4

~ _____ e X-mY (cf. Appendix D)
=Y

The estimation of the serror term is the same as stated in Appendix C.

Hence we have

gy =- nfe ——Ma— + 0 (54 (M>1)  (14.158)
M-I U
and by (14.8c)
J (2.4) = '“ [———IJ_”——(M +0 M (M>1)  (14.15b)
JM | JEE-MT“LL P{ ﬁﬁul } (Ulgl) 4

A rather crude approximastion of 0‘}‘2 for Y large can be obtained

by approximating only ¢(\ for X small, then we have

Y ST FENTTVN ¢ My 2
A~ € — 2 YM T Yl
J ?(O)_L RO d/\ Ze Ko( .2‘ ‘X + )

or
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‘JU

oy = 2[IE e o ZF (XM O(U,U,) (14.162)

The error term cean be estimated as before. From (14.7d)

J,,,(x.y)-—: I (1-%)e “(ZM+ 0 (&M

LT ) (14.16Db)

The Mach number effect disappears in these first order terms.

With these approximations the asymptotic expressions of the fun-

demental solutions for i large, with fr= 3/4 , then become,
[ (x4) = 7 {11—' S/ AN (14.17a)
Ty (x.4) = -3 % 9rad {J. - f(z} (14.17b)
T,y = - 7y grad [~ } © (14.17¢)
2 2 . yz Ux
T, (x4 = Z#U(;l; _?i){.f, s LL S _2emT L, %)}*;Tp(o' f)ef"_Ka(%‘) |
30 (e ?) {Js * ({—:)J4} (14.174)
R, (2.9) = Z?Ir? {—,} "{}'1 gy - J,_} (14.17e)
Ex (1Y) = —1%4,-:7: qrad { J, G- o } (14.17¢)
oy = 4 (14.17g)
:ﬁx (xY) = —fﬁ% grad o, | (14.17h)

where Jz and oy are given by (14.16) and J’, and js by (14.10) for
M< 1 ; and by (14.15) for M >1 .
These formulas, valid if the free stream Mach number M is not

close to | or o0 , show a diffusion term representing a heated wake
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(coming from the asymptotic expression of J’z and the term

ejzl‘_’Jg Ko (g—-ﬁ) ) and & dynamic term representing the temperature-pres-
sure field (from <, and ja ). The wake diffusion damps out exponen-
tially upstream but decreases as J_7ILT downstream for all Mach numbers.
The dynemic term, which dominates the outer flow field, has a differ-
ent behavior for M<) and M>| . For M<I| the temperature-pres-
sure field behaves like that of flow around a cylinder, but for M?>|
the disturbance is concentrated along the non-viscous Mach lines

X X MTY =0 . A careful study of Fx , ia and Ex shows, how-
ever, that there is no wake for these quantities. It is also of inter-
est to note that pressure satisfies a differential equation of lower
order and its solution shows that it does not have a diffusive wake.
Hence, due to heat addition alone the wake consists of changes in
temperature and density; while due to shearing force the wake has only

the change in velocity. Now, when both X and 4 tend to zero we note

that
¢ -4 ~ i
(ZEQM %y—')zmlo [—% J — S(X—wnyl) as K —»0 (14.18a)
= U
and
A
L e ® K, (L xFE) — T Jy 1w as K—0 (14.18b)

where A is a constant, and 1(z) is a Heaviside unit step function.

1= = | X >0

( (14.18¢c)
= 0 X <0

In Ref. 5 Tsien and Beilock solved the problem X =0, () = & d(y)

with the assumption < =2 =0 , It is easy to verify that our results

reduce to theirs as X — 0 .
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For most aerodynamic problems Uk is large so that thess asymp-
totic solutions are good approximations everywhere except close to the
singularities. The fields in the neighborhood of the singularity can

also be obtained by approximating the J 's for l{—(j—L small.

14.2 Approximated Solutions Suitable for Small Values of %

In addition to the condition that local Reynolds number Re ~4Y

should be small in this case, we shall also assume that M*/Re tends
to zero with Re so that the neglecting of the dissipation is still
justified. It is plausible to see that these two assumptions are in
general correct for very slow flow problems. It can be shown that for

both Re and M7Re small, ) . J; etc. can be approximated as

= -2 Loy (L 55F) + O(f¢) (14.198)

fo= -2 [hg (3Y ) + Ye | (H}‘%x) + 0(Re?) (14.19b)
gy = - x%fyz + 0 ('RMTz) (14.19¢)
dy = - F5 (1 52) - T (g (L) + ¥e ] + O(Re) (14.194)

where Y = 0.577 - , Euler's constant. With these formulas, funda-

mental solutions then read, for both Re and —‘2—45 small, and Fa= ¥4,

as follows:

My = _zé_ﬁ[ugm +1ﬁ39§},{ + Ye] + O(Re) (14.208)
Py = 0(Re) (14.20b)
T, = O(Ke) (14.20¢)
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2 2
¥y :_4%—»(7”‘ _’”A_)[x,ﬂogfxww +x(1»74—%+\ie)]

2
Y 3
~ g (s o) [ 4 (B F)+ 1 ] + 0 (Re) (14.204)
Ao =-Ta (14.208)
Ry =- 3l grad Uﬁg (AL mvg) + ¥e ] (14 2 x) + 0 (Re) (14.20¢)
fto = O(ke) (14.20g)
By = B (14.20n)

The above results show that pure diffusion is the dominant process in
the neighborhood of the heat source and shearing force.

In the following paragraph an example will be given to show how
a superposition of these fundamental solutions can be used to solve a

boundary value problem.
§ 15. A Boundary Value Problem - Anemometry of a Heated Flat Plate

As & simple example, we shall consider & two-dimensional steady
flow of & compressible, viscous, heat-conducting fluid past a flat
plate of zero thickness and length L at zero angle of attack. The
plate is assumed to be heated, in the usual application by the pass-
age of an electric current. The difference between the surface temp-
erature T, of the plate and that of free stream T, is supposed to be
only a fraction of T, so that our linearized theory may be applied
and the radiation may also be neglected. On the other hand, (Tuw=To)
is also supposed not to be too small (for example, insulated condition)
such that the neglecting of the dissipation is justified. The exact

problem probably should be viewed more realistically by considering
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the plate to be very thin (but not of zero thickness) so the boundary
condition of the surface temperature for the fluid flow should be de-
termined together with the heat generation and conduction rate inside
the solid plate. Our assumptions used to simplify this problem are as
follows: (1) The heat conductivity of the plate material is supposed
to be so large and the plate so thin that it remains at a wiform con-
stant temperature. (2) The over-all Reynolds number based on the plate
length Re =-%%— is assumed to be large (say, >10). (3) Pa ='%T-
This method is analogous to the linsearized boundary layer theory, and
our result may be regarded as an asymptotic solution for large Re.
If we choose the coordinate system such that the plate is located at
osx <4, 4 = 0, then our simplified boundary conditions are, on
the plate
(1) 8 = 8 (constant)
(1) u= w ( U=-U 4if no slip) (15.1)
(iii) v = 0
while at infinity all disturbances are required to venish.
(1) 6= o0
(i1) 9o=0

In order to solve this problem the plate is represented by a dis-

(1542)

tribution of heat sources and shearing forces, each with unknown
strength which can be determined by applying the boundary conditions.
Hence, if we write

Q)= feody), 5(’(1,14)=(é)?(1)5(y) for o<x<l  (15.3a)

and

Q=0 Y =0 elsewhere (15.3b)
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where {(xy and 4(1) are respectively the unknown strength of the
heat source and shearing force to be determined. Then the solutions

to this problem satisfying the boundary condition at infinity (15.2)

may be given formally as

{ L
ey = [ T ey dnds + [ Teny 9004z (15.40)
L L
weey) = [T U Ges g s + [T U (ny) g ds (15.4b)
¢ t
vy = [T Y any) fards 4 [ Ve (esy) 4o dg (15.4¢)
where

['=Tq, rz:rl’x(:)), (u')EEJL. (g:)zijx((l))

[}

As investigated previously (cf. Egs. (14.lc) and (14.3b)),
U (x,0) = Z/z(x,o) = 0 , so that the boundary condition (15.1 (iii)) is
always satisfied by the solution (15.4c) for any value of f and g .
Application of the other two boundary conditions leads to a system of
two simultaneous integral equations in f and ?

90=Jl

[4

'
Mg o) fedy + |7 (x50 $5)ds (0<x<l) (15.58)
0

I
Yo = j U, (x-3,0) Fz)dg + jQ U, (2-%.,9) $g)dt (0<x<2) (15.5b)

()

Following ocur assumptions, we shall regard X to be small, then
(15.58,b) can be solved approximately by a method of estimating the
order of terms with respect to J< in the [' 's and }{'s and expand-
ing § and 4 similarly. It can be shown (cf. Appendix E) that in

general

Moo = e + 1+ 0k) (15.6a)
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[ (x0) = FQ”(x) + 0 (<) (15.6Db)
U, (x.0) = U e + 0 x) (15.6¢)
Upro) = = U@+ Uy @ + O (15.64)

These functions may be approximated crudely as follows:

( ©
P e = A e, U v =J—i_;ijl(z) for all M (15.72)
T o) = -2+ ay S M< |

= [as+a4] ) M>| (15.7b)
]"':) (X) = %—gx—s M<
= -2 as §) M>| (15.7¢)

0 ) = u* o (15.74)

! Y-1) M* T2

W) _ V) W)

U w = ECETR I , (15.78)

where 1(x) denotes the Heaviside step function defined by (14.18c),

and
T T - [ -3 M
&=z Iy Gz EL VI B =¥ [i-M*
(15,7¢)
Ry = b ——, as = L 3o M
TV L G-oM? 201 JM=1

As these ["'s and J{'s only serve here as kernels, these forms may be
regarded as good approximations as long as they give accurate weight-~
ing factors in the integrals.

If a similar asymptotic expression for f and ? is assumed,

fo =g {0 + < f 00+ 0 (%) (15.8a)

0 =IK o + £ §i0) + 0(h) (15.8b)
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where ;& and ﬁo are the main terms in the local heat transfer and
skin friction respectively, and § and ¢, are their correction terms,
all independent of « . Then by substituting (15.6) and (15.8) into
(15.5), and collecting terms of order | , < , X, etc. & set of inte-

gral equations is obtained

Order | :
L ©®)
6, = | -5 hz)dz (15.92)
L _
Up = X U, x-5) $p(§)dE (15.9b)
Order JK :
t (%) e ) u)
j ra-g) f)dg = ~J [T e-g) i)+ [ 2-5)9u0)] d¥ (15.102)
LY L )
[ U om0 qusdg = - [ een) £6)+ Uy cp) guin]dy (15.10b)

These integral equations can be solved in succession. With the values

of these kernels as given in (15.7), (15.92) and (15.,9b) reduce to the

well-known Abel equation

A b 4
fo(‘e',) . ol%)
6= a T u = | %ag (for all M) (15.11)

[+ 0

which have solutions (cf. Ref. 30, p. 141)

fo0 = % _ — 26, 2 (15.12a)
Tafx
u ’
?0(1) = ’rra:jf = W ~{3’:]’_U1 (15.12b)

Having obtained Jco and gd , the right-hand sides of (15.10a) and
(15.10b) are then known functions of x . The integral equations in f,

and 3" are again of Abel's type, and their solutions may be formally
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given as
fo = 6°“U d L J {F,W<E—d‘)+%f‘ (§- 0')}}’: (15.132)
l ¢
%) =~ Zﬂeudxju : J Wa-o + T U - )& (15.13b)

which should be treated separately for subsonic and supersonic cases.
Fur’chermoré, what we are interested in is the heat transfer rate

from the plate which is given by
1
Q=0T J fda (15.14)

With the asymptotic expansion of f(x) given by (15.8a), Q can be

consequently expanded in a similar form

Q=rRA"+ Q" + 0(x%) (15.15%)
where
(0 1
Q"= et T | feode = acopT o (15.15b)
2] L
Q= onT| fedx (15.15¢)
0

By substituting (15.13a) into (15.15¢c), we have

(1) /e_d}__JJl[ru)(g 6‘)+—£& r“,(‘{—(l") iq:

g 49
Q=-cT6,U 3 | T | 278, '2 ]J'F (15.18)

This integral will be calculated for M< | and M>| separately.

(i) Subsonic Case, M< |

()

)
Using the explicit formulas of [ and F: for M< | , we have

4 {
dx u.o 9‘_{ — -
o J__TE_L 1s-0) £ A58, + Ae (15.17e)

where

a,z_Jo '_fzi%d1=z—"')—lé 0.917 (15.170)

Yizop (ZW+U
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£ ! w
dg M (-0) _ Y4z -
i -z .[, o dr =g & (15.17¢)

Therefore, we obtain

l

Qu) — ZCVfaTo 90 { 80(1 (I _ J_uo)(.‘_')Jl v %‘__ '+({I-|)M‘} (M< |) (15-18)

(ii) Supersonic Case, M>|

In this case we have

1
d
SD J% J I", (g <r)J_ (Gs+Gu) W (15,19a)
1
d¥ Y 4T _ _Ads
jo e J A L (15.19b)
so that
Q" :—Z,CVﬁ,]; I(I—gjg)({ )F_ ¥ W} (M>1) (15.20)

In the usual application of a hot-wire anemometer, the heat de-
livered from the anemometer to the fluid is
Q=ir (15.21)
where ( 1is the electric current passing through the hot-wire and T

is its resistence. In our notation the temperature of the wire is

Tw =T (1+6,) (15.22)
sc that
-]:90 = -ITAI_ To
and
Q__ _i'r_ P
1,6, ~ Tw—To (15 43)

ig the variable usually used in the hot-wire measurement.

In summary, the result based on our linearized theory gives

2 o 2 1 ) -
_mf”[z] +’<[8*' gJ‘a) J—J“ il |+(x-uml]+0(“3/)}‘ (M) (15.240)
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J—l
where o, is given by (15.17b).

__Q__— 4 Ul Uoy (¥-)M Z I 3/
T, —zcvﬁ,{z% —K[(I fu—e,) 7TW}+O(K )i M>1) (15.24b)

The above result may be put in a non-dimensional form by defining
8. non-dimensional heat transfer coefficient (usually called the Nusselt

number ), counting both sides of the plate

__Q B Q _
Nu = 2RO ( = TR in our notation) (15.252)

and & non-dimensional parameter depending on hydrodynamical behavior
of the flow, say, Reynolds number based on the plate length [

Re — Ul _ 4y Ul

=4 L (15.250b)
Then for no-slip condition, u,=-U , (15.24) becomes
_ [z Tl S ygom 2 | 0
Ne = [F e + [ B (1+ 55 T ] 0(ge), (M<V) (15.260)
_3 _ 5y @M 2| e
Nu —-j; Jﬁé_ [(H- 26,/ JM=] T !+d~I)M‘] * O(Jg?) (M>1) (15.26b)

Another interesting part of this problem is tc consider the skin

friction drag on this heated flat plate

—(“OSQ?(I)C’X. (15.27&)

The drag coefficient is given by

b _ 2 (¢
Cp = Tovi = " UT j 400 dx (15.27b)

By & calculation similar to that for ( we obtain

G =%JR;+—4’—L9 (1 Z90)(72 L +0(Re (M<1) (15.28a)
_ g g YEl | -%
G = —JF_IR!—T —J?@ (1+ Zeo)JW—R? + 0(Re ™), (M>1) (15.28b)

These results for heat transfer (Egs. (15.24) and (15.268)) and
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frictional drag (15.28) are good only for large values of Re (say,
greater than 10, which is the usual operational range of anemometry).
However, some useful formulas good for small values of Re can also be
obtained by solving the boundary value problem, using the approximated
fundamental solutions for both Re and -ﬁg small. Since in the pre-

sent case, for a flow creeping very slowly over the heated flat plate,

2

the assumption that both Re and gL are small would be rather real-

istic. In the calculation of this problem it is convenient to shift
the origin to the center of the plate so that the leading and trailing
edges are (—-%wO) (jglo) respectively. It may be noted that now the
boundary conditions can be imposed only at the plate, which are the

same as (15.1); the boundary conditions at infinity have to be released.
Here again the boundary condition (15.1 iii) for the U -component is

automatically satisfied while conditions (i) and (ii) give
Ya A
0 = L/ [ (5.0 f(5)dg + ﬁ [2 (x-5,0) 9e5) dg (-% <x<¥%) (15.298)
Jy, Sy

Uy = g/z U, (-0 f&)dg +J;Zz U %00 9(8)dg (Yo <x< ) (15.29b)

When both Re and -%g- are small, the [ 's and {[ 's can be deduced

from (14.20) as

M (x-¢,0) =‘Z§7RU"3 lx—g|+by%+15] (1+ 0(Re)) ~ (15.308)
[z (x=3.0) = (O(Re) (15.30b)
U x-5.9 = O(Re) (15.30¢)
Up(r-g,0) = = 2 [ Log 1251 + Sy 5+ - 1] 1+ 0(Re)) (15.304)
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It is clear that if we want to find the first order term of f(x) and
9(x) , then terms with [, and Y, in (15.29) may be neglected and

thus the equations are wncoupled. Physically, this means that the

flow rate is so small that there is practically no interference between

the heat transfer and shearing force. By using the formula (cf. Ref.
30, p. 143)

| = - I Lo lx-%)

15.31
Trlq% ) Je- ( )

the integral equations (15.29), neglecting [, and |, have the solu-

tion

zx&, !

fo = 15.32
by fhe % A7 oo

and

yu
2(1.): b 4"4 ax + 1“‘ T (15.33)
fre ~tetl (z) %
The heat transfer rate from the plate is given by (15.14) as
Q=Ff0T 8 —2TF—. (15.34)
/EO?}F@—-’XE
and in non-dimensional form
gis
Nu = ———— (15.35)
Jlﬂag—ge— ”65

The dreg coefficient cen be obtained from (15.27b), for the no-slip

case

G = JR% _Lé_l_ per unit span (15.36)
joar 2 ¥e + 1

These solutions should be good for Re< 4.
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§16. Discussion and Comparison of Results with Existing Theories

and Experiments

The formulaes listed above show what type of behavior to expect
from a hot-wire anemometer in two different ranges of Re ., For FRe
large (15.24) and (15.26) exhibit the behavior of the heat transfer
rate as Re and M vary. The first order term in the expression of
Nu is proportional to [Re (in dimensional form, Q ~ fJU ), but is
independent of M . The second order term, which is independent of
Re , shows clearly the different behavior of the heat loss for M<|
and M>1 ., This implies that M in its moderate range has a rather
slight effect on the value of the heat transfer, although for M >|
the increasing M tends to decrease Nu and the converse is true for
M< | ., This is qualitatively in agreement with experiments (for
example, cf. Refs. 9, 31 and 32), For Re small, (15.35) and (15.36)
show that Nu and (p depend on Re only, the Mach number effect drops
out. Now, as far as the local transfer rate is concerned, we see that
for Re large, the first order term f, 1is asymmetric, proportional to
ﬁ%~ which has a squere root singularity at the leading edge. For Re
small, Eq. (15.32) shows that the distribution of heat loss is symme-
tric with respect to the center of the plate and has a square root
singularity at both the leading and trailing edges.

In order to compare our results with some existing theories and
experiments, a brief historical survey is given in the following. The
experimental study of thermal losses from heated bodies under various
conditions dates back to the classical researches of Dulong and Petit

in 1817 (Ref. 33). The first experimenter to have shown that the
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forced convection loss in a current of air is proportional to the tem~
perature difference and to the square root of velocity seems to have
been Ser (Ref. 34) in 1888. In 1901 the theoretical study of this
problem was taken by Boussinesq (Ref. 23). Following Boussinesq, King
(Ref. 7) in 1914 considered the circular e¢ylinder immersed in an incom-
pressible, non-viscous fluid by choosing a surface heat flux distribu-
tion which involves discontinuities of temperature between the solid
surface and the outer fluid to give results in agreement with his ex-
perimental data. Xing's result for a circular cylinder of radius a,

in our notation, is

1?9, — 20, p {m + _g—} (large U) (16.12)
Q@ _ _awaer (small U) (16.1b)
Taeo ﬂoaU’(&__‘xei—]

This theory is not very satisfactory since it is clear that viscous
effects are of great importance. Some improvement on King's assump-
tions and method was made by Piercy and Winny (Ref. 35) in 1933. A
little later Piercy and Schmidt et.al. (cf. Refs. 36-38) extended
King's theory to viscous incompressible fluid by using Oseen's veloc-

ity profile. Their result for a flat plate is, in the present notation

-1 4
e = 1616 f Gk (1] Re” for Re large  (16.2)

In 1949 Tchen (Ref. 8) generalized King's theory to compressible but

still non~viscous fluid. His result, in our notation, becomes

' ] 2
QA " —zg+ [F0<1 A3 1+¥M” 6 2
T = TS A RS RO e +0(<") (M<1) (16.3a)

R ) 5 B
Tﬁnz Xhe ey § &0 [106 —-N%ﬂix L+ v ba[ﬁ‘%ﬁl)\‘“‘” ‘—}i—] (M>))(16.3b)



95

where A\ =| fi%LNP and T, is the isentropic stagnation temperature.

Another quite different category of attacking this problem is the
use of boundary layer theory. In 1921 Pohlhausen (Ref. 15) calculated
the heat transfer from a flat plate of length { immersed in an incom-

pressible viscous fluid. His result is
§ 4
Nu = 0.644 (fa)’(Re) , Cp= 1.33(Re) ? (16.4)

Another solution to the same problem has been obtained by Fage and
Falkner (Ref. 17) as

Nu = 0.623 JRe (16.5a)
(by putting fi = %r in their formula). Their experimental measure-
ment gives the following empirical formula

N grergge = 075 (Re | (16.5b)
In 1948 Tsien and Finston (Ref. 39) considered the heat loss of a flat
ribbon hot-wire of length { immersed in a compressible viscous flow.

Their result may be repeated here as

Q = 1.32% %w f;f—; To [Re ((%—l)w";—'M‘] (16.62)
or
Nu = 0.664 [Re £(M) (16.6b)

where (M) is a function of M given below

M| 0 o5 1o 1§ 20 25 30 §0 @ e¢

(18.6c)
fovy | 100 98 43 BT 30 .73 6T .50 o

Rather recently (1950) an empirical formula was given by Kovasznay
(Refs. 9 and 31) based on his experiments of circular hot-wires at
moderate supersonic speeds (between M = 1.15 and 2.03) using platinum

and tungsten wires of diameter d from 0.00015 inch to 0.0003 inch.
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His empirical formula is

Nu = 0.5 lf% — 0.795 (16.7)

where a special combination is chosen to form Re such that the depen-
dence on M disappears. It is claimed that this formula is good for
low temperature loadings and at large values of Re . BExperimentel re-
sults show that the dependence on M is not appreciable at all (the
standerd deviation of the data from Bq. (16.7) is less than 1%). How-
ever, Lowell's experiments (Ref. 32) show that the effects due to
changes in M and 6, are both quite appreciable.

Now we can compare these results with those obtained in this
psper. It may be pointed out that at small values of fe , our heat
transfer rate agrees with Piercy and Wimmy's formula (Ref. 35) for in-
compressible fluid, and our result of C(p (Eq. (15.36)) is exactly
that given by Bairstow (Refs. 1 and 40) for an incompressible, non-
heat conducting fluid. Therefore, when both Re and M%e are small,
our compressible fluid theory reduces to a special case of incompres-
sible flow, even though the heat transfer may still take place. For
Re large the first order term of the heat transfer in our result gives
the right type of dependence on Re , but its numerical coefficient has
some discrepancy from other results. For example, when M =0 our re-
sult is about 30% too high compared with Fage's experiment, while
Fage's theory gives a value about 18% too low and Tsien's result is
about 12% too low (cf.. Fig. 10). In this case, our linearized theory
gives over-estimation. However, the dependence on M should be cor-

rect as shown by our formulas. The over-estimation of the exact heat
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transfer rate which resulted from this theory may be explained as
mainly being due to the linearization procedure. Because during line-
arization the momentum transport rate UUx +VUy due to u (where ()
denotes the total velocity here) is approximated by Uux which over-
estimates the exact picture. This can be seen from the fact that u
is considerably smeller than U near the body and on the body surface, -
where u=0 , the approximation is further impaired. This over-esti-
mation is the same as that which occurs in using Rayleigh's formula
for skin friction instead of Blasius' result. Furthermore, the ne-
glecting of dissipation adds enother cause of over-estimation. The
order of magnitude of the total dissipation in this problem for Re
large can be estimated as follows: It can be shown that most of the
contribution of the dissipation comes from the second integral in
(14.1d). Hence, the estimation of the dissipation due to this term
only should give a rough idea about its order of magnitude. The ve-
locity field generated by this term due to the frictiomal force j,(x)

(15.12b) can be obtained. For instance, the u -component is

U S 25 (0= 7]
u(x.y) T W € 2y (16.8)

Then the total dissipation in this velocity field can be approximated

*
a.s

P = F.II uﬂ‘(x,g)dxdj < Zﬁ'rﬁ M U JRe for Re large (16.9)

It is this value of & that should be compared with the total heat

fIncit:lenta.lly, this relationship may also be seen from the viewpoint
of the work done by the drag, because if there were no heat added, we
should have & = D-.U = §pUL ¢, = pU*fRe Dby using (15.28).
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loss Q=i’r in the operation of a hot-wire

iz total dissipation
Q total heat loss

0.098 uU* JRe
*r

< (16.10)

In order to give a rough idea about the value of this ratio, we may
pick up a typical operating condition (for example, cf. Refs. 9 and

31) and take the air at standard conditions as an example, so that

p=1gx10* cgs. = 3xi0* em/se. L= 3x10%em
(16.11)
P = 0.I8 Cm%ec_ : L =003 alvn}a r= Joo ohms
Then Re = 60 , which is in the range of our consideration, and
% <15 (16.12)

This shows that the dissipation is usually very small compared to the
total heat loss if we keep the wire temperature sufficiently high.

However, the magnitude of dissipation might be appreciably larger for
less favorable cases so that by omitting it a further over-estimated

heat transfer rate results.
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APPENDIX A

SOME THEOREMS ABOUT FUNDAMENTAL SOLUTIONS

In this appendix we shall state and prove some simple theorems
about fundamental solutions of some special linear differential equa-
tions.

Theorem 1
If G;” is the fundamental solution of
(M=pri)u = ~f(x) i=12 (A.1)

defined by

v = [ 6 &) f@) dg (a.2)

where M stends for any linear differential operator in one, two, or
three dimensional space, Al are constants ﬁth the condition MF Az
and aﬁd}; means to integrate over all components of the position vec-
tor { . Then the fundamental solution of

(M=A)(M=A)u = - f(%) (a.3)
over the same region of the space is given by

w

G &)= ﬁ (6, -6;') (a.4)
such that
u(x) = ﬁ ¢%x, £) fre)ds (a.)

Since M is a linear operator and ), , A, are constants,
( \# Ay ), the operators (M-\,) and (M-);) are commutable. Thus
(A.3) may also be written as

(M=2z)(M=A)u = - $(X) (A.6)
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Considering (M-—A2)u as an unknown function in (A.3) and apply-

ing the definition of fundamental solutions given by (A.2), we have

od

M-ag)u = [ G"x. &) f(&) di

Similarly, from (A.6) we obtain
m-A0u = [ Gy &) f2) dg

Substracting (A.8) from (A.7) yields
od
I}

g = [[ (6= fode

Comparing (A.9) with (A.5) we obtain, for )\ = ),

Grm (%, &) = -)\_ll-_/\: (le_ zm)

This proves the theoren.

Theorem 2

(a.7)

(A.8)

(4.9)

ste the same notations and definitions as in Theorem 1, for

i =01,2,3, X5 Az ¥#A3 . The fundamental solution of

(M=A)(M=2A)(M=23) u = - {(x)

is given by
A2)(M=23) (A= A)(Az=As)  (As=A)(As=Az)

(3)
G (% &)= O

such that
°¥) = ﬂ G (x. %) f(£) dg

Proof

(A.10)

(A.11)

Here operators (M- A), (M- )z) and (M-)3;) are again commu-

table, so by applying the definitions of GE” given by (A.2) to Eq.

(A.10) we have

(M=A)(M=A3) u = [M= Oat Xs) M+ A ds]u =ﬂ G, (x.&) {(£)d

(4.12)
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M=M)M=A)u = [M=haerg M+ AsnJu = [ 67 00 &) §&)dg, (a.13)
(M-M)(M=Dgyu = [M= (e da M+ anu =[] G (x8) f2)dg (A.14)

For the case )\ F+ M F A3 , the following identities are easily proven

(= A2)(\-23) + (Az=M)(Az=)3) * Qs =M} A3—A2) =0 (A.15)
Mt A3 Azt N Mtz
= A..ls
(M=) (M= 23) (Ra= M) (Az=23) (Aa-M) (A3=2z) 0 ( )
end
)1,)\3 AS)\I + /\l)\l - , (A.l?)

(M= 2A2)(A—A3) (M=) )(A2-X) (Ms-M) (A3-Xe)
Dividing (A.12) by (M=M)(n—A3) , (A.13) by (A-A)(M-23) and
(A.14) by (M—A)(A3—Az) and adding, using the relations (a.15) -

(.17), we then obtain

“‘W=K[ g’ . _Gi . __ G¥ | feerde  (a.28)
M= A2)(AN=2A3)  (Pa=A)Pa=A3) (M=) (M-Aa)

Therefore the result (A.11) follows.

In Theorem 3 we shall consider a special ordinary linear differ-
ential equation of any even order whose operator can be factorized in-
to second order dperators.

Theorem 3

2 .
If M= ddg‘ and constants M\ # AaF A #F ---- FM#0 (again the
sams noteations and definitions as in previous cases are used), then

the fundamental solution of

2 Y 2 -0 <Y<
(fe-M)-r) o (e wu=—fy (7)) was

is given by
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)

o) . GUI G_u) G
-n) = — ! 2 . n
G 4= (M-Aa) - - (M=~ an) +()z‘)\l)(/\x-Aa)"'()u-/\n) * * Gn=Ay) === - (An-An-)) (A.ZO)
such that
)
uty) =j G (49 fop d7 (a.21)
Proof
We shall prove this theorem by mathematical induction.
s, Since then

This theorem is certainly true for n =1

Gu)___ Gl‘” = flﬁ e_‘m Y= where the positive branch of the | is
The theorem also holds for n=2,3 because they are special

chosen.
Now suppose that (A.20)

cases of Theorem 1 and Theorem 2 respectively.

holds up to n= k . That is, the equation

(E"[Jiz—,\.)(di;—,\z)----- (f'gi—m)u=—§(g) (A.22)
hes the fundamental solution
thy zﬁe_ﬁ'g'"' ZJ_,X:C-mw—ql ﬁ e—mly-nl
R PE el wrw ey wrvei l wswrrws w s AR vy wapenrrvey P SL LD
which satisfies Eq. (A.21). Then in
(A.24)

the quantity ( a%i—)\kﬂ) u mey be regarded as a new variable U .

Hence by the definition of the fundemental solution CT(*J , we have

1 > ]
U= (g%, — M) U =J' fe &' (M Ms §-n)dn = —H(Y), say (a.25)
L o~ 1411

However, the fundamental solution of (A.25) is o

Hence
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TIAR+ 1y~4I
U =§ z(—‘;‘;;,e Do 18 H(&)dg
0 —J‘.lt—*ﬂ reeAl L w1 =D 14-80
d 1 )\Mkﬂ ______ AR Akl ] .
_ 3((7) q‘*“ i=A) = 23) (M~ Ak) ¥ (A=2) === (M= Ag-1) 4 (2.26)

It is easy to show that the interchange of the order of integration

is justified in the present case. Furthermore, it can be shown that

- ~-b - ~ - -
ZLK aly-zl “:Y"dz;= 'b,[aewm—be“'”']

(a>0, b>o) (A.27)

Hence Egq. (A.26) becomes

U.('J) —;J‘ '}(’))dq 2 ! M=Aa) -+ (/\’-)‘.k)()\,—}\kﬂ)

| [ o P 1g-m B e—mlﬁ-m]
Jxl Adett

] C-Azl‘il*'l' C—J/\ﬁbl 'q‘v)l]
+ —_
AN (A2=A3) -+ (A =AY (A —Aﬁﬂ) [ a J}\kﬂ

l RURY e"J)\kﬂ l‘J‘V)'J
+ J—
(Mr=A0) -+ vk = Mot AR ~Adet) [ Y Il

-G Y-l (=18l

X =
Jf(mdq[ul Ta) -~ i ) - Aer) T M)A As) === (M~ Mat) *

1 Pty o[t 141
2% © o &M ]
(A=A = = A1) A= Ake) (A — M) - oo Oy — M) J (4.28)
where in the last step, the following identity is used:
} ! -1
(M=) Ai=A3) - (A=hkn) * o (Mg"‘]\\)"" ()\h-)\ﬁ-l)()\h‘/\&u) (AMert =N} == (Mert —Ag) (A.ZQ)

Eq. (A.28) shows that the relation (A.20) also holds for n= k+|

Therefore, the proposition follows.
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APPENDIX B
INTEGRAL REPRESENTATIONS OF VELOCITY, DENSITY AND PRESSURE FIELDS

IN UNSTEADY ONE-DIMENSIONAL FLOW OF A NON-VISCOUS FLUID

If we denote fundamental solutions of velocity, density and pres-
sure by L , A , and J{ respectively, which may be defined by similar

equations like (4.5)

u(x.t) =£oolgr YU (x-3, t-'c)ﬂ (5.7)dt (B.1)
ets. and if we take 0
0 = §00dt) (B.2)
then we have
aent) = Yt) seut=At),  paw) = [t (B.3)

B.l Velocity Field

The velocity of this one~dimensional flow may be deduced from ¢

according to (2.6), using their Laplace transforms

e, 0) = ,(;‘)—1 &(x;0) = —% [e-JX.lxl_ e—,\llxl] (B.4)

where the values of A , Az are given in (4.84). The desired veloc-

ity is then given by the inverse transform of (B.4)

bticd

mt( O )[C-Jxlil_e- ,\MlJ de (B.5)

ut) = T2 (M)

I
RWi
bried

If now the following conformal transformations are applied successively

to (B.5)

X =<, (B.68.)

_*
I
?\l,;

o= C[&-1+ &L (2. - L) (B.6b)
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where 2Z, applies to the term with e I and 2, +to that with
LS Xl and
i 2

we then obtain

de (B.7)

o
U (xt) = —:@L?’VLX Zn T

| r reeleT-53]
IR €
1,2

where the paths (, , @, are described in §6.

B.2 Density Field

We may deduce the density JS(x,t) from the basic system of Egs.
(2.2b) or (2.2d) by using the integral representation of U or 8 .
However, for the sake of later checking, we use an alternative method.

The Laplace transform of the fundamental system of equations (2.2) is

p=35S+8 (B.8a)
¢S +dwg = (B.8b)
T =-£ grad P (B.8¢)
CO-KkAB =003 + 0 (B.8d)

Eliminating p , 6, ? , it can be shown that S satisfies
L(3) = +AN (B.9)

where |, is the same operator as (4.8¢c). In one-dimensional case,

with [) given as (B.2), the solution to (B.9) is then

—_ -Jn 11 —erlxl
S(I,W)Z—m[ﬁeﬁ —5;.6 ] (BolO)
such that
e ot & i)
— 1 e - X _ "M
st =i | i [we me™ ] de (B.11)

beiss
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Applications of the same transformations (B.6) to (B.11) yield

S(t) = 2 Z,:nj@ e e AR A ARSI T (8.12)
1.Ca, .

B.3 Pressure Field

The shortest way to obtain p at this stage is by using (2.2a),

so by adding up (6.14a) and (B.12) we have

bati=S+6 = EJ:Z"”L@ C§_| Mk{%é 2rler J‘X]} e (B.13)
The same result is obtained if we solve the equation
L) = ,fg" n (B.14)

with L given by (4.8¢c) and (1 = §).
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APPENDIX C
ESTIMATION OF ERROR TERM IN THE APPROXIMATION

OF A CERTAIN INTEGRAL

In §6.1 and $6.2 a general outline of the scheme to approximate
integrals in Eq. (6.14) for large or small values of the time is des-
cribed. However, many of the detailed calculations are not given
there. This appendix may be regarded as the supplementary note of
§6.,1 end 86.2, by showing the systematic procedure of how the error

torm is estimated in approximating (6.14a)

8(x.t) = Er—" _—— JO.@ b {1 2 o[eT- J‘X]}da (c.1)
where (, , (; are showzn in Fig. 4. The rest of the integrals in
(6.14) may be calculated in a way similar to this.

When T is large ( T = ¢*l/c ) it is shown in §6 that the above
integral should take different contours for T>WX and T<{TX .
(1) T>WX (or ixiI<cit)

We found in $6.1 that {=0 is a saddle point and that the im-
aginary axis is the path of steepest descent. If we write =28+ ”}

then on this path we have ( = LYl so that

B(x.t) :ng_z‘"r“l” {--%—’}[nntnrx]} n

=%_'ﬁr_[j,+zjz] ' (c.2)

where
= [t (e il o ¢
3= [Tk | T w) colF o) o @0
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Now
oo 2 00 _I 2 _l
KRS j. MP{-}%W}M <J' e T ay < Le 7 (c.5)

In .J, we write

S SN L)k i
I 7+ T 107

then we obtain

U oepr-in@X L L [y +inGE
d=[e" ¢ 5 e LT T rinfiE]

o
The mean value theorem may be used to approximate
fo = enp { B2 U+ o v5x] ]
= I+V]fI(A.V)) (s, o0<A<t)

Hence
J| = JI' e—"f‘T —Ulﬁxd"] + Jll?] )(I(AuV]) wp {-[vr'H_ ,;ﬁxy,]}d-,]

oo b X"
= zjo e Tens HXV]ol‘r) + o+ s =F’r'—L ek N A iz (c.6)

where

=)

J, = —ZJ, e-nsz "X d7)

S Jl £ wp {1 -iFxn ) dy

It is easy to see that
i -T
Il < e (c.7)
and a careful estimation of J.z gives

onst.
IJn.‘ < 'C——?——— : (C.B)
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Therefore, by summing up these error terms we obtain
_¥%
o) = e (e ¥+ 04
which is Eq. (6.17).
(11) T<JX (or ix|>at)
It is shown that the right contour in this case is the one drawn

in Fig. 6, on which we may break the integral into three parts

6t) = g e [0+ + ) web {55 ¢ e} e (c.9)

Denote these three integrals by Js R J~; s J4 , respsctively.
For JX we may take a parametric representation of the path BC as
given by (6.23)
5) = &)+ i (€

() = ¢ (c.10)

s@=[H-e+ B -5

Ir € =* L1 | then

E=g ot v =5, N=rtLl=iny, (c.11)

It is convenient to choose our end points to be B (£, ~"), C (%s 7o)

N)—

then on paths AB and CD we have ( =§,+ir] and M 27 , so

2 ~‘_| (f,-"l -1)T~ J"XZ.(%’#’? l)]
(&-1-1)+ 4327} 1

|of + ol = 2 ep{ 4[5 T-7FXL --0T]} M{ T
<z K op {3 [ET-FEL -0 © T
o {5 (8 T-BX5-6T]) , €7

< % Koo {f o= T AR &0 T

where



110

Jw’b’.wk{ gl (§.<§ ly))T‘) ff:,(r,fﬁ"]z_l)” M#{ [%T-’-HXE,]} in 137,

For these special end points chosen we have

3=t
|+l < gre T T (c.12)

Now if we apply the parametric represemtation (C.10) to J’, s WO

have
JX —L { —g%[(é;(e)ue)'r—ﬁx/]} (i+%e)de (c.13)
and write

£+¢" _ [

Feel |+ q€) HO = srea (c.14)
then on its path BC , which is outside of the circle Eret= | s We
may apply the mean value theorem to 3(6) s which leads to

M _2 [Te*-ieR(T-X)
S = _J e ¥l ]A(g) [i+€58' (A 0] de (C.150)
_7)‘
where
" 3

he) = op | Al [l 4"(hs€) (T-X) + £'(A€) T + 0(9)] £ } (c.15%)
and

0< Az' Ag’ A4, < I (0-150)

The mean value theorem can be again applied to ) for I1€1€7M .

This process yields:

M 2 [Te*-iedF(T-X)].
J,:tj 57'—'( ]de +J1.
_YI,
L = LAY
= 2i Jo e cod 'Fr'(T—X)-Edé + chl + J.‘Z (c.16a)
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J,,= J”Vloe—-.%_T—,é‘ﬂe %‘.’?(T—x){
_Y'p
o 2T 2
Ju=—ZiJ e V' ca 6 , 2 (T-X) € de
Y)o

It can be shown that
’°h|| < (I‘ € 7——09)
where K, = constant (7)) , independent of T , and

2
71 o

13- 1
Therefore, by combining these order terms we obtain

(x,t) = —“;}},T ”"P zX(szJTX } +0f )}

which is BEq. (6.25).

[5"hs )+ iR'mies] e + () de

(o< i< 1) (c.16b)

(C.16¢c)

(G.17a)

(C.17v)

(c.18)
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APPENDIX D

EVALUATION OF SOME CONTOUR INTEGRALS

In the following some contour integrals which are used in this
paper are calculated. The contour (! denotes a path parallel to the

imaginary axis, to the right of the origin of the complex plane Z .

. . 2
(1) J= z'm J@ e“’ bzdz - Z'rff e (a>0) (D.1)

This result is immediately seen by deforming (¥ into the imaginary

axis.

(i1) g = z'ru J@ _;.I" eazl_bidz = —%—m{c (2%) (a>0) (D.2)

One way to prove this is by deforming (? into the imaginary axis ex-
cept with an indentation at the origin to the right half-plane
z ie0 =€ z
. F4 . az .
'J_é_ea Az=1mj)'e di+ﬂm“ J 1'?9 dz}=’lft
(2 €=0 € Tl
where J} dz denotes the integration taken on the indentation of radius

€ . Hence

az* _ _
J_zllz Z‘TrLJ@ ez [ekz—l]dz =—sz eazi dgdz

and.by justifying the change of order of integration and using (D.1)

we have

‘ b _
J=%—21l—7§£e My = ZM'{C(ZJ—) for aso

2 -b
1) =gz f Fe” Ydz =L Lofe(zl) (@) (0.3)

It can be justified that we may carry out the differentiation of J

with respect to either @4 or b under the integral sign,
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where ((¥) is a function of b only, which can be determined by compar-

ing with

b>o
bz o
J(o b) = ,Z‘In E[’_‘ ¢ {

b b<o
This gives the value of ((b)=0 for all b . Therefore the result

(D.3) follows

Ly _b
() d= g, 36"z = @+ ) vhegp -bE € ™| @0 (0.0)

2

2 -b 2
(v) Jzz}ﬁje %eaz !’zal.i:'i”%(‘“*bt)e 44__%_(“3"—)“&%) (a>o)(D,5)

(D.4) and (D.5) cen be proven by a method similar to (iii)

* s
(vi) J'mn j@ 27 Pz = 411%56 44, (a>0) (De6)

This result can be obtained, with justification, by differentiating

(D.1) with respect to b .

2

o Azt s -2
i) I = g, T e = mm () e

(a>0) (D7)

This result can be obtained by differentiating (D.1) with respect

to a.
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APPENDIX E
ASYMPTOTIC EXPANSION OF FUNDAMENTAL SOLUTIONS IN PART III

IN ORDER OF TERMS WITH RESPECT TO Jr

The fundemental solutions [, , [, , U, and I, defined by Egs.
(15.4) can be expressed in their original integral forms (of. Eq.

(14.1)) as follows:

_ _ r Ghiap 4 " e (E.1e)
el =T+ e _J I+ Bhia v J [+ 5-iap [giX0p *
e Goo)=Nt M= -3 0+ Hgla 21, (B.1b)
Ave Uymo) = U+ U, = ‘d(i 5 M‘ (4K ) (B.1lc)

47K z'lZ("'o) = uzg"’ Uzz"’ uzs g-| M" 11_ a

ul 1_;}_[ (-7 tﬂ)e

Jm— (E.14)

where each term is indicated according to its order, and all notations -
are the same as given in Part III., Note that X =0 is a singuler
point of some of these integrals, so in our approximation an attempt
is made to avoid this difficulty either by keeping away from x=0 or
by finding its principal value, if it exists.

As an example, we shall approximate [, first. [}2 represents
a diffusive wake and thus behaves differently upstream and downstreem.

Hence, we first convert them into real integrals of Laplace type for

X >0 and X<0 separately. The resulting integrals are then approxi-

mated for A small. Now

{31
P, = ! e _ r I ,
. -a[ ’ t '; LGF (a(p‘f'jﬁ J dp & i b (E.za)
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with
. H 0 , ;
N L
R pE+ib) J, 8-k Jpipriv)
whers
-4 _ Y _ W
d=a=L, b =3 (B.2¢)
and
J@(‘SHL) is defined to take the branch
having a positive real part on the path of (B.2d)

integration.

The integrand in (E.2) has two branch points at B =0 and -ib and
a simple pole at B = ,‘—1_7 il « A proper branch cut may be introduced
as shown in Fig. E-l so that the condition (B.2d) is satisfied on the
whole real axis.

_Trn/ﬂ

(6J

051 4] 31

¢ }(3=;‘T,co(

(4] (1

-ib , 1 arg((&ﬂ',b)

RLA

For X >0 , we may close the paths for [, and [', both in the

upper half of the cut plane. It can be shown that the contributions
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on (2] and (6] tend to zero as || = . Then as |B| e on [2] and

(6], we have

‘ff'] i '[[3]
5[4] * J[s]

wi X (Residue at B = TT-TM evaluated on (3]) (B.3a)

Ti X (Residue at @ = w7 (4 evaluated on [5]) (E.3b)

A iz . iz
Nowon (3], ~p=1te?,  p+ib=(t+be’?
g ol ~-xt
J _ J = _¢€
[3] A t- = J't(‘t"’b)
l -
end Residue on [3] =—m e
_;ar LT
while on [5 =te LZ’, +ib = (t+b)e'% =J
] § & ’ J[51 3]
| -34-x
and Residue on [5] = W e
Therefore
e _%ﬂa(_ éxt
- ¥ = | = = _zf = dt x>0) E.4
r:z DU] l-;’[4-] J’B] J{s] A ‘6"‘19:’\" Jt(t+h) ! ( ( )

For X< 0 , close the contours in the lower half-plane (as shown

in Fig. E-2). Here agein as |p| —>o0 on [2] end (8], we have

J + j +J. =0 (E.5a)
m [3] [4)
[+ j +1 =0 (E.5b)
(s} (3] m
X -i%
Now on [3], p="te z @Hb: (t-b) e
[,
- , b3 [ty
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REA
-Z . Lz
on [4], gp=te *, B+ib = (b-t)e
J = Jb _;‘;i'- ext
(43 o t+ 35 Jt(ot)
hi = —':Jz[ b = - i : = —J
while on [6], B=te %, ptib=(b-t)e'= x er] (4]
2« e an : _
and on (7], p=te ' F’“L’“ tt-b)e <, " J[v] - La]
Therefore
— —-z’ = — t E06
Iz m =L bt [ttt ’ (<o) (@:6)

In sumary, [, has different representations in terms of real inte-

grals for X 20 .

i . S8

; = - /o ! -t
[z (%.,0) 2 L - B T e dt (x>0) (E.72)
e [T
=z2e" ) oa] fay & (9 @)
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It can be seen that Mz decays exponentially for X<0 , so the im~
portant contribution comes from the neighborhood of X =07, If we in-

tegrate [}, from -€é to O , where € is a positive small quantity,

we have
od
0 -4 -~ b
— A 1+(K-l)M I—e
i M (x0dx = L,(x-l)M*J [)\ FAITE } (A+l) ST 9A
- . [

This integral converges uniformly with respect to € in any sub-region
of €20 , so we may obtain the limit of the integral as X —0 , or

b —~ o by taking the limit of the integrand as b —> < .

y ° = ﬂ —_ ')M I YV
;(b_’:g-J; nz(":o)di - adu [l m C/fl'f\, l"'c‘ l)M]

which is independent of € . This implies, in an approximated form,

that

[ (20) = K §5 s H“ b+ O((E])  asm=o, (x<0) (E.8)

(BE.72) may be approximated by noting that most of the contribution
comes from the neighborhood of A= 0 (cf. Watson's lemma, Ref. 41).

The procedure is to expand

| [ _
=@M oaxny I3 [ I+ 0(}\)]

and integrate termwise to obtain its asymptotic expression

o) = 2[5 + 0((5)") oo (Be9)

ux

By a similar method applied to [ , we have

r, (x0) = Lfi IM: ,'( + 0((%)3/’), M<I (E.108)

= 2UE L S+ 0((&"), M> | (E.10b)

U‘(f_
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Now, the integral U,3 given in (E.1d) may be written as

uzg = - %[ M dp (E.ll)

If this is converted into real integrals by contour integration by a

method similar to the previous one, the following result is obtained

. o4 _91/\
Uyt = 135—5 AL 0" 7% gy (x>0) (E.122)
0
Ux =0 ux
—_He? J 2 da (%<0) (E.12b)
0

For x>0 , Watson's lemma may be applied, which yields

32
U ) = 4 H3E + 0(()7) (x>0) (E.13)
However, it needs extra attention to approximate U3 for x<0 ,

If we apply Watson's lemma to (E.12b), the asymptotic expansion starts

3y -UI
2o U ( x< 0 ) which is not integrable at x=0 .

with the term () ©
To make sure that {.3(Xx) does not give any contribution for X<O0 up
to the term of order X, we integrate {l,; from -€ to ¢ with re-

spect to X whose principal value exists.

- LL l—c:"g’_eA
[Tl=e el T r—_i]d,\+j X

SRR A Y (.14)

€
j U,y wdx = %{

I
S

For W =34 , 2 tends to zero with X . It is clear that j@ con-
verges and tends to & limit as 2 —0.
Lum J J J———————dx =2{Z -2 J»y(rﬂ) (E.15)
V>0

For o L, , we have to integrate it by parts first in order to obtain

convergent integrals as P—>0 .
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Ve - -
=-2z0-¢ v)+J’o' '[__Afh’l’ dA +zuejj_e T

= i it s (E.16)
Now each of these three terms tends to a limit as 22— 0 , namely
;)ei,;, g =22 (E.17a)
Lo th - 2 107(r+ 3, (B.17v)
J_L Lo \‘_0&5 2 —rU [I +0(—3‘)] (B.17c)
so that oJ+J, +Jiu >0 as >0 and
—fuﬂwd’f = 4K [ [+ 0(Z)] as K,v-0 (E.18) -
Comparing (B.13) and (E.18) we may draw the conclusion that
Uy = 4 [TIE 1) + 0((5)") (5.19)

where f(x) is the Heaviside step function defined by (14.18¢c).
In summary, we haves

(1) M<

AT o) =% ( L)+ © (-5 M_ L)y 0<%, 200 (B.208)

4T [ (%0) = x (2% 2 M_ 1)+ 0( "~ (B.20b)

Am e Y o) = (¥ )+ 0N (8.200)

awr Uy (o) = (4fF5) L2 +x (- =)+ 06" (E.20d)
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(11) M>1

2 v Y- L .
4 o = ® (AL 200) + ) (350 M v ) 5o + 06 (B.20e)

AR 2 (x0) = (-3 “ " M se0) + O(<) (E.20£)

ars U, (0= x (-4 J_M—I-T Seu) + O(<*) (E.20g)

4T K U1(xl°)=R(4—j¥J: jl]g) + }((

X

u)) + 0(<h) (E.20h)
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