## **DNA Encoded Biotechnologies for Informative Cancer Diagnostics**

Thesis by

Gabriel Abner Kwong

In Partial Fulfillment of the Requirements

For the degree of

Doctor of Philosophy



#### CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2009

(Defended May 28, 2009)

© 2009

Gabriel Abner Kwong

All Rights Reserved

Here, then are the true characteristics of objectivity... Objectivity does not demand that we estimate man's significance in the universe by the minute size of his body, by the brevity of his past history or his probable future career. It does not require that we see ourselves as a mere grain of sand in a million Saharas. It inspires us, on the contrary, with the hope of overcoming the appalling disabilities of our bodily existence, even to the point of conceiving a rational idea of the universe which can authoritatively speak for itself. It is not a counsel of self-effacement, but the very reverse—a call to the Pygmalion in the mind of man.

- Michael Polanyi, 1958, Personal Knowledge

### Acknowledgements

I am truly in debt to a number of people with whom I have interacted and worked with during my stay here at Caltech. First, I would like to thank my advisor Professor Jim Heath. Of the many things that I have learned from him, I hold in high regard his intensity and infectious passion for science. I would like to thank him for the academic freedom he grants his students, and for the incredible resources he makes available for his group, including the organization of the Nanosystems Biology Cancer Center (NSBCC) between Caltech, UCLA and the Institute for Systems Biology (ISB). I would like to offer my gratitude to many senior collaborators within the NSBCC, including Professor Caius Radu (UCLA), Professor Antoni Ribas (UCLA), Professor Paul Mischel (UCLA), Dr. Leroy Hood (ISB), Professor Mike Phelps (UCLA) and Professor Owen Witte (UCLA) all of whom have helped during my graduate career either in providing access to the resources in their labs or project guidance. I would like to thank Professor Ton Schumacher (NKI) for many insightful email exchanges regarding the NACS project. I would like to thank Professor Pamela Bjorkman, Professor Sarkis Mazmanian and Professor Chin-Lin Guo for agreeing to serve on my thesis committee with little prior notice.

I had the pleasure of interacting with many intelligent and talented co-workers within the Heath group. I would like to thank Dr. Ryan Bailey with whom I codeveloped the DEAL platform with. I wish him the best in his lab at UIUC. I would like to thank Heath group graduate students Kiwook Hwang and Chao Ma for helping during the latter stages of the NACS project. Thanks to Ophir Vermesh for being so down-toearth—you'll be a very successful doctor! I would like to thank Diane Robinson for processing all necessary paperwork (reimbursements!) and for all her direct statements and questions. Thanks to Kevin Kan for managing the group facilities and providing financial advice.

Thanks to my good friends from the Pierce lab, Harry Choi (whom I've known and worked with since my undergraduate days at UC Berkeley) and Suvir Venkataraman (the smoothest graduate student on campus) for their help in designing the orthogonal DNA sequences.

Because of the highly collaborative nature of the NSBCC, I would like to thank many collaborators at UCLA. In particularly, I would like to thank Jenny Shu for help with protein expression and the Witte lab for their hospitality. I would like to thank Begonya Comin-Anduix, Richard Koya and Thinle Chodon for preparing T cell samples for NACS. I would like to thank my good friends from the Mischel Lab; Tiffany Huang for work on the GBM project, providing assistance with flow cytometry and conversing about people, dates, family history; Shawn Sarkaria for taking the leadership role in the GBM project, being a sounding board for scientific ideas, and his meticulous attention to detail.

Thanks to Bruz Marzolf at ISB for printing DNA microarrays and his promptness in response to problems and questions.

Lastly, I would like to acknowledge my family whose influence on my life I have yet to fully understand but has made me learn more about myself, and as a result lead a more genuine life.

### Abstract

This thesis describes the development of DNA-encoded, multi-parametric, sensing platforms for informative cancer diagnostics. In the first part of this thesis, I will present a technology called "DNA-encoded antibody library (DEAL)." In this approach, computationally derived, orthogonal ssDNA sequences are conjugated to antibodies specific for protein targets and cell surface markers. The resulting collection of conjugates is applied to a biological sample of interest, binds to their cognate antigens, and is detected after the complexes are hybridized to a glass substrate printed with spatially distinct complementary DNA sequences. By using DNA assembly, the DEAL platform enables the simultaneous detection of the major classes of biological molecules, namely nucleic acids, proteins and cells.

The second part of this thesis focuses on the development of a cell sorting platform that can detect antigen-specific T cells called "Nucleic Acid Cell Sorting (NACS)." In NACS, ssDNA encoding is used to assemble peptide major histocompatability complexes (p/MHC) on glass substrates by hybridization to cDNA microarrays. These assembled peptide/MHC microarrays are then used to sort mixed populations of antigen-specific T cells. This spatially encoded scheme addresses the widespread desire for methods that allow the multiplexed detection of antigen-specific T cells. The sensitivity and selectivity of NACS is similar to flow cytometry, demonstrated in key experiments with T cells derived from multiple sources, including endogenous and TCR-engineered T cells collected from cancer patients. Finally, this platform is used to

monitor the persistence of cancer-specific T cells in peripheral blood collected from a patient undergoing T cellular immunotherapy.

Lastly, a scheme for the detection of cell surface markers is presented. In this approach, DEAL and NACS conjugates prepared with UV labile ssDNA oligonucleotides are allowed to bind to target cell samples in solution. The ssDNA tags are released in solution by UV-induced photocleavage. The presence and expression of the cognate antigen is determined by collecting the pool of reporter ssDNA tags followed by exponential amplification by PCR. A DEAL conjugate specific for the oncogene EGFR was used to determine the expression level of EGFR in a low-passage brain tumor primary cell line. The feasibility of using ssDNA-p/MHC complexes for detecting unique TCRs was also demonstrated. Finally an experimental flow is described for integration with second generational high-throughput sequencing platforms for global and quantitative surface-ome profiling.

# **Table of Contents**

| Acknowledgements           | iv   |
|----------------------------|------|
| Abstract                   | vi   |
| Table of Contents          | viii |
| List of Figures and Tables | xii  |

| Chapte | r 1: Introduction                         | 1  |
|--------|-------------------------------------------|----|
| 1.1    | Complexity of human cancers               | 1  |
| 1.2    | Diagnostic challenges presented by cancer | 3  |
| 1.3    | DNA as an encoding element                | 5  |
| 1.4    | Thesis overview                           | 6  |
| 1.5    | References                                | 10 |

#### Chapter 2: DNA-Encoded Antibody Libraries: A Unified Platform for Multiplexed Cell Sorting and Detection of Genes and Proteins .... 16

| 2.1 | Intro | duction                                                       | 16 |
|-----|-------|---------------------------------------------------------------|----|
| 2.2 | Expe  | erimental Methods                                             | 20 |
|     | 2.2.1 | DNA sequences for spatial encoding                            | 20 |
|     | 2.2.2 | DNA antibody conjugation                                      | 21 |
|     | 2.2.3 | Microarray fabrication                                        | 23 |
|     | 2.2.4 | Fabrication of microfluidic devices                           | 23 |
|     | 2.2.5 | 1° antibody microarray generation and DEAL-based immunoassays | 24 |
|     | 2.2.6 | Microfluidic-based assay procedures                           | 24 |

| 2.2.7    | Microfluidic Au amplification methods                                                       | 25 |
|----------|---------------------------------------------------------------------------------------------|----|
| 2.2.8    | Analysis of DNA-encoded antibodies by flow cytometry                                        | 25 |
| 2.2.9    | Cell capture, separation, and sorting methods                                               | 26 |
| 2.3 Resu | Ilts and Discussion                                                                         | 28 |
| 2.3.1    | In silico design of orthogonal DNA oligonucleotides                                         | 28 |
| 2.3.2    | Generation of DNA-antibody conjugates                                                       | 29 |
| 2.3.3    | Multiplexed protein detection by DEAL                                                       | 33 |
| 2.3.4    | Detection of multiple proteins within a single microfluidic channel                         | 36 |
| 2.3.5    | Multiplexed sorting of immortalized and primary immune cells                                | 40 |
| 2.3.6    | Single environment detection of specific cDNAs, proteins and cells                          | 43 |
| 2.4 Con  | clusions                                                                                    | 44 |
| 2.5 Refe | prences                                                                                     | 46 |
| 2.6 App  | endix A: Computation derivation of orthogonal DNA oligomers                                 | 52 |
| 2.6.1    | Computational analysis of sequences A1, B1, and C1                                          | 53 |
| 2.6.2    | Computing orthogonal sequences A, B, and C constrained by a $polyA_{10}$ header: input file | 54 |
| 2.6.3    | PolyA <sub>10</sub> header computational results                                            | 55 |
| 2.6.4    | Computing a fourth sequence: input code                                                     | 58 |
| 2.6.5    | Results of fourth strand computation                                                        | 59 |
| 2.7 App  | endix B: FPLC of DEAL conjugates                                                            | 60 |
|          |                                                                                             |    |

## 

| 3.1 | Introduction         | 61 |
|-----|----------------------|----|
| 3.2 | Experimental Methods | 65 |

| 3.2.1 Microarray fabrication                                                          | 65  |
|---------------------------------------------------------------------------------------|-----|
| 3.2.2 Production of ssDNA-SAC conjugates                                              | 66  |
| 3.2.3 Preparation of T cells                                                          | 67  |
| 3.2.4 T cell sorting methods                                                          | 69  |
| 3.3 Results and Discussion                                                            | 70  |
| 3.3.1 Rational design of ssDNA-encoded p/MHC tetramers                                | 70  |
| 3.3.2 Performance of p/MHC arrays produced via DNA immobilization and direct spotting | 74  |
| 3.3.3 NACS specificity and limit of detection                                         | 76  |
| 3.3.4 Selective release of immobilized T cells with restriction                       |     |
| endonucleases                                                                         | 80  |
| 3.3.5 NACS sorting of endogenous primary human T cells                                | 82  |
| 3.3.6 Persistence of MART-1 specific, TCR-engineered human T cells                    |     |
| in vivo                                                                               | 85  |
| 3.3.7 Homogeneous platform for cell sorting and functional analysis                   | 87  |
| 3.4 Conclusions                                                                       | 90  |
| 3.5 References                                                                        | 92  |
| 3.6 Appendix A: Protein sequences                                                     | 98  |
| 3.7 Appendix B: Chromatography                                                        | 104 |
| 3.7.1 Iminobiotin purification of SAC                                                 | 104 |
| 3.7.2 FPLC of ssDNA-SAC conjugates                                                    | 105 |
|                                                                                       |     |

| Chapter 4: Detection of Cell Surface Markers with Encoded ssDNA Reporters |     |
|---------------------------------------------------------------------------|-----|
| Towards Global Cell Surface-ome Profiling                                 | 106 |
| 4.1 Introduction                                                          | 106 |

| 4.2 Experimental Methods                                               | 108 |
|------------------------------------------------------------------------|-----|
| 4.2.1 DNA sequences and production of conjugates                       | 108 |
| 4.2.2 Detection of surface markers with PCR                            | 109 |
| 4.3 Results and Discussion                                             | 110 |
| 4.3.1 Detection of differential cell surface expression of EGFR by PCR | 110 |
| 4.3.2 Cellular barcoding limits of detection                           | 112 |
| 4.3.3 Detection of antigen-specific T cells using ssDNA-p/MHC          |     |
| tetramers                                                              | 113 |
| 4.4 Conclusions and Future Directions                                  | 115 |
| 4.5 References                                                         | 119 |

## Chapter 1

| Figure 1.1 | Numerous components of tumor biology must be queried for |   |
|------------|----------------------------------------------------------|---|
|            | informative diagnostics                                  | 3 |

## Chapter 2

| Figure 2.1  | Illustration of the DEAL method for cell sorting and co-           |    |
|-------------|--------------------------------------------------------------------|----|
|             | detection of proteins and cDNAs (mRNAs)                            | 18 |
| Figure 2.2  | DNA sequences derived from computation minimize cross              |    |
|             | hybridization                                                      | 29 |
| Figure 2.3  | Illustration of the two step coupling strategy utilized to prepare |    |
|             | DEAL antibodies                                                    | 30 |
| Figure 2.4  | Optimization of DNA loading of DEAL antibodies for cell            |    |
|             | surface marker recognition                                         | 32 |
| Figure 2.5  | Spatially encoded protein array                                    | 34 |
| Figure 2.6  | Illustration of the resistance of the DEAL approach towards        |    |
|             | non-specific protein absorption                                    | 35 |
| Figure 2.7  | Protein array assembled in microfluidics in 10 minutes             | 36 |
| Figure 2.8  | DNA-templated protein immunoassays executed within                 |    |
|             | microfluidic channels                                              | 38 |
| Figure 2.9  | Optimization and use of DEAL for multiplexed cell sorting          | 42 |
| Figure 2.10 | Microscopy images demonstrating simultaneous cell capture at       |    |
|             | spot B1 and multiparameter detection of genes and proteins, at     |    |
|             | spots A1 and C1, respectively                                      | 44 |
| Figure 2.11 | Fast protein liquid chromatography of DEAL conjugates              | 60 |
| Table 2.1   | DNA sequences for spatial encoding                                 | 21 |

## Chapter 3

| Figure 3.1  | Self-assembled ssDNA-p/MHC tetramer arrays for multiplexed        |
|-------------|-------------------------------------------------------------------|
|             | sorting of antigen-specific cells                                 |
| Figure 3.2  | An engineered variant of streptavidin expressing C-terminal       |
|             | cysteine residues has superior biotin binding capacity compared   |
|             | to native streptavidin post conjugation with ssDNA                |
| Figure 3.3  | T cell capture efficiency is optimal when utilizing ssDNA-SAC     |
|             | conjugates to generate NACS p/MHC tetramers                       |
| Figure 3.4  | Comparison of NACS versus spotted p/MHC arrays                    |
| Figure 3.5  | Comparison of the performance of p/MHC arrays produced by         |
|             | NACs and by spotting                                              |
| Figure 3.6  | Mulitplexed nucleic acid cell sorting of antigen-specific T cells |
| Figure 3.7  | NACS limit of detection                                           |
| Figure 3.8  | Programmed release of sorted T cells by endonuclease cleavage     |
| Figure 3.9  | NACS sorting of endogenous primary human T cells specific         |
|             | for Epstein-Barr virus and Cytomegalovirus                        |
| Figure 3.10 | The T cell specificities of PBMCs from patients NRA11 and         |
|             | NRA13                                                             |
| Figure 3.11 | Limit of detection of endogeneous human T cells with NACS         |
| Figure 3.12 | Monitoring the presence of infused MART-1-specific, TCR-          |
|             | engineered T cells                                                |
| Figure 3.13 | Functional profiling of TCR triggered activation of captured      |
|             | antigen-specific T cells                                          |
| Figure 3.14 | Dynamic cytokine profiling of NACS sorted murine OT1              |
|             | lymphocytes                                                       |

| Figure 3.15 | SAC purification with an iminobiotin agarose support column | 104 |
|-------------|-------------------------------------------------------------|-----|
| Figure 3.16 | Fast protein liquid chromatography of ssDNA-SAC conjugates  |     |
|             |                                                             | 105 |
| Table 3.1   | Orthogonal DNA sequences for spatial encoding of p/MHC      |     |
|             | tetramers                                                   | 65  |

## Chapter 4

| Figure 4.1 | Schematic of cellular barcoding                         | 108 |
|------------|---------------------------------------------------------|-----|
| Figure 4.2 | Antibody-ssDNA and p/MHC-ssDNA tetramers stain cells in | 111 |
|            | solution                                                |     |
| Figure 4.3 | GBM1600 EGFR detection by cellular barcoding            | 112 |
| Figure 4.4 | Limits of detection                                     | 113 |
| Figure 4.5 | Antigen-specific T cell detection by cellular barcoding | 115 |
| Figure 4.6 | Schematic of global "surface-ome" profiling with Solexa |     |
|            | sequencing                                              | 117 |
| Figure 4.7 | DNA sequence design considerations                      | 118 |
| Table 4.1  | Cellular barcoding DNA sequences                        | 109 |