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ABSTRACT

The process of excitation of harbors and bays by transient non-
linear long waves is investigated theoretically and experimentally. In
addition, nonlinear shallow water waves generated in a closed rectangu-
lar basin by the motion of the basin are also examined.

Two numerical methods based on finite element techniques are used
to solve the weakly nonlinear-dispersive-dissipative equations of motion
and are applied to the basin excitation problem and the transient harbor
oscillation problem, respectively. In the latter case, the open sea
conditions are simulated by including a radiative boundary condition in
time at a finite distance from the harbor entrance. Various dissipative
effects are also included. In addition to the numerical results,
analytical solutions are presented to investigate certain particular
aspects of basin and harbor oscillations (e.g., the effects of viscous
dissipation in a harbor with simple geometry).

Experiments conducted in the closed rectangular basin indicate
that for a continuous excitation at or near a resonant mode of oscilla-
tion the linear theory becomes inadequate and the nonlinear-dispersive-
dissipative theory must be used. For a transient excitation the validity
of the linear theory depends on the value of the Stokes parameter.
Indeed, some features not predicted by the linear theory can be directly
inferred from the magnitude of this parameter.

Experiments on the continuous wave induced oscillations of a narrow
rectangular harbor with constant depth show that at the first resonant
mode convective nonlinearities can be neglected and a linear dissipative

solution is sufficient to describe the waves inside the harbor. At the
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second resonant mode which corresponds to a longer harbor relative to
the length of the incident wave, nonlinear convective effects

become important and must be incorporated into the numerical model.
Also the characteristics of various sources of dissipation which reduce
resonance in the harbor are investigated experimentally. The sources
considered include, among others, laminar boundary friction, leakage
losses underneath the harbor walls, and energy dissipation due to flow
separation at the entrance of the harbor.

The good agreement obtained between the experiments and the non-
linear numerical model developed in this study suggests that this model
could be used with some confidence to predict the response characteristics
of prototype harbors. As an example, the results of this study have been
applied to the response of Ofunato Bay (Japan) to the tsunami generated
by the Tokachi-Oki earthquake of May 16,1968. The model has been used
to investigate the effects of convective nonlinearities on the bay
oscillations and also to_determine the efficiency of the breakwater

which was built to reduce the effects of tsunamis at Ofunato.
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CHAPTER 1

INTRODUCTION

The word tsunami is used to designate the sea waves which are
generated by a geophysical mechanism such as an under-sea landslide
or earthquake. It is taken from the Japanese and translates literally
to "harbor wave". This is quite descriptive of ome of the major
aspects of the problems associated with tsunamis, namely the inter-
action of the waves with harbors and bays.

The propagation of tsunamis from their source to the coastline
can be divided into three major aspects:

(i) Generation and deep ocean propagation where the tsunami is
typically tens to hundreds éf kilometers long, with wave speeds of
several hundreds of kilometers per hour and a ﬁaximum wave height of
order of perhaps a meter.

(ii) Nearshore propagation where the tsunami approaches the coast
and undergoes some transformation as it propagates past the continental
shelf break and onto the shelf, with a reduction in depth in a ratio of three
or four going from the open sea to the offshore coastal regions.

(iii) The interaction with the coastline which combines refraction,
shoaling, geometric energy focusing, and dynamic resonance effects which
may result in significantly increasing the wave height. These resultant
waves which strike the shoreline can present significant hazards to life
and property in populated regioms.

An important coastal effect of tsunamis is the dynamic excitation
of harbors and bays which can be greatly enhanced by the local

characteristics of the embayment and may result in large wave heights



and associated currents. The currents can cause damage to floating
and‘fixed structures inside the bay and harbor. Of course it is the
wave runup at the lateral boundaries of a harbor or bay which can bring
about considerable damage through the inundation of coastal areas.

As an illustration of harbor oscillations induced by tsunamis the
tide gage recordings at Honolulu (Hawaii) and Mokuoloe Island (near
Oahu Island, Hawaii) are presented in Fig. 1.1 for both the 1960
Chile Tsunami and the 1964 Alaska Tsunami. Those records show that
for a given tsunami, the wave response at two rather closely spaced
stations (less than 50 km apart) can be widely different in both the
wave amplitude and the apparent frequency distribution of the energy.
They also show that, for a given location, the shape of the oscillations
tends to be similar for different tsunamis suggesting that the response
of the local waters is of prime importance in defining the wave
characteristics.

A better understanding of the wave dynamics inside a bay is motivated
in two ways. First, it Ean lead to better protection of the coastal
communities against tsunami action. Second, it may provide a means to
determine in a reliable manner the incident wave outside the harbor
or bay. This may in turn yield useful information concerning the deep

water wave signature of the tsunami which is still largely unknown.

1.1 Objectives and Scope

The objective of this study is to investigate both theoretically
and experimentally the process of excitation of harbors by transient
nonlinear long waves which may result in nonlinear oscillatioms.

The emphasis is placed on some interactive affects usually neglected
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in the linear inviscid approach; these include: convective nonlinearities,
frequency dispersion, and viscous dissipation. Two major aspects of this
investigation have evolved:

(i) The first deals with the waves induced in a closed rectangular
basin, partially filled with water, by horizontal motions. A wide range
of experiments and complementary theoretical results were obtained
primarily to study various aspects of boundary friction in a controlléd
environment where the results could be applied directly to the harbor
problem. It became apparent when these studies began that certain
nonlinear effects which applied to the oscillations in a closed basin
in the shallow water range also could be applied to the waves induced
in a harbor. Therefore, these characteristics were studied theoretically
and experimentally in some detail.

(ii) The continuous and transient excitations of a harbor is the
second (and the most important) aspect investigated. A numerical model
was constructed to incorporate the various effects mentioned previously.
The experimental investigation of a harbor excited by continuous trains
of waves (starting from rest) was restricted to a planform of a simple
geometry, namely a long and narrow rectangular harbor with a constant
depth. It was felt that a detailed experimental study for this harbor
shape could yield information which would lead to fairly general
conclusions applicable to more complicated shaped harbors. 1In this
connection, certain dissipation mechanisms peculiar to the harbor
problem were investigated experimentally. Most important of these in
view of tsunamis is the energy loss at the entrance of the harbor for

both a fully open and a partially closed harbor. The transient excitation



of a harbor was also investigated experimentally and extended to other
harbor geometries.

In Chapter 2 previous studies of the long wave dynamics in closed
basins and harbors are surveyed. A theoretical analysis is presented
in Chapter 3. It consists of the derivation of the long wave equations
applied to the present study, the development of various solutions for
waves in a closed rectangular basin caused by a to—and-fro motion of
the basin, a linear analytical solution including various forms of
dissipation for the wave-induced oscillations in a rectangular harbor
and the development of a general numerical solution for the transient
wave dynamics in a harbor with arbitrary planform and variable depth
and nonlinear wave excitation and response. The experimental equipment
and procedures are described in Chapter 4. The results of the
investigation for the closed basin and for the harbor are presented in
Chapters 5 and 6, respectively. Applications of the study to prototype
situations are discussed in Chapter 7 and major conclusions are presented

in Chapter 8.
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CHAPTER 2

LITERATURE SURVEY

In this chapter the literature which pertains to this study will be
reviewed. It is divided into two major parts: the first deals with
nonlinear oscillations in closed basins, and the second deals with the

response of bays and harbors to transient waves.

2.1. Nonlinear Oscillations in Closed Basins

In this section only investigations related to nonlinear features
which are associated with long waves induced in a closed basin by hori-
zontal motions are reviewed.

Verhagen and Wijngaarden (1965) performed a theoretical and an
experimental study of the steady state finite amplitude forced oscilla-
tions of a fluid in a shallow rectangular container.. They used the
nonlinear, nondispersive shallow water wave equations and derived their
solution from the method pf characteristics and by allowing a disconti-
nuity to occur sbmewhere along the wave profile at resonance and applying
shock relationships across it. The experiments showed differences with
the results of their analysis due perhaps to important effects which
were neglected, such as frequency dispersion and dissipation.

Chester (1968) recognized the importance of these factors and
derived a steady state solution for the waves induced in a closed basin
by horizontal motions including the effects of dispersion and dissipation.
The method of solution was based on the representation of the unknown
quantities by Fourier series which were substituted into the equations

and truncated for the numerical calculations. This led to an algebraic



system of nonlinear equations to be solved for the Fourier components.
Chester found that, although nonlinear effects remained important near
resonance,dispersion introduced higher harmonics in the spectrum of the
solution. When combined with viscous dissipation these effects tended

to smooth the shape of the shock predicted by the -nonlinear shallow water
wave theory. Chester and Bones (1968) performed a series of experiments
with a tank moved horizontally with a sinusoidal excursion near resonant
frequencies. They found reasonably good agreement with the theoretical
results of Chester (1968). In particular they were able to characterize
and quantify to some extent the effects of each mechanism: nonlinearities,
dispersion and dissipation. This study is important in the context of
long wave excitation of harbors because the three effects observed in
closed basins are expected to have similar characteristics (at least
qualitatively) for the harbor problem.

Finally, Rogers and Mei (1975) derived an analytical expression for
one dimensional standing.gravity waves in a shallow basin from the
equations of Boussinesq. They showed that as the Stokes parameter
increased the standing wave changed from one with the usual sinuscidal
shape to a solitary wave moving to-and=fro within the basin.

None of these studies investigated the transient features associated
with the excitation of the basin. This aspect is important in the
context of the tsunami problem and will be studied in some detail in

this investigation.

2.2 The Response of Béys and Harbors to Transient Waves

In this section only the more recent studies of wave induced

oscillations in harbors and bays are discussed. For a complete survey



of the work done in this area the reader is referred to Raichlen (1966),
Wilson (1972), Miles (1974) and Raichlen (1976). Various aspects of
the tsunami problem, including some coastal effects, have been reviewed
by Van Dorn (1965). A recent survey can also be found in Hwang (1979).
The following discussion is divided into three parts. The linear
inviscid approach is discussed first in Section 2.3.1. A few papers
which specifically discuss viscous effects associated with harbor
oscillations are presented in Section 2.3.2. Finally, the nonlinear

approach is discussed in Section 2.3.3.

2.2.1 Linear Inviscid Solutions

A significant amount of work has been done in the past on
the steady state characteristics of the linear inviscid response of
harbors to harmonic incident waves. In all of these studies the flow
is assumed to be irrotational and the boundary conditions at the water
surface are linearized. These simplifications lead to the Helmholtz
equation which must be solved in the region of interest.

An important contribution to the dynamics of harbor oscillations
was introduced by Miles and Munk (1961) who treated the problem of a
rectangular harbor connected directly to the open sea by including the
effect of energy radiation from the harbor mouth to the open sea. This
effect limits the maximum wave amplitude within the harbor for the
inviscid case to a finite value even at resonance. They found that in
the absence of viscous dissipation the narrowing of the harbor entrance
leads to an enhancement in harbor surging of resonance. This result,
termed "harbor paradox" by the authors, was found later to become invalid

if viscous dissipation is introduced.
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Ippen and Raichlen (1962) investigated both analytically and experi-
mentally the wave induced oscillations in a smaller rectangular harbor
connected to a larger highly reflective rectangular wave basin. Because
of the high degree of coupling between the two basins the response
characteristics of the harbor as a function of incident wave period were
radically different from a similar prototype harbor connected to the open
sea.- The former was characterized by a large number of closely spaced
spikes as opposed to the latter that would have discrete resonant modes
of oscillations.. This study emphasized the need for efficient wave
filters and wave absorbers in a wave basin for the proper simulation
of the open sea conditions in laboratory.

Ippen and Goda (1963) also studied, both theoretically and experi-
mentally, the problem of a rectangular harbor connected to the open
sea. Fairly good agreement was' found between the theory and the
experiments conducted in a wave basin (2.75 m wide and 3.35 m long) where
satisfactory wave energy dissipators were -installed around the boundary
to simulate the open sea.

Hwang and Tuck (1970) and Lee (1971) independently developed
analytical methods to solve the harbor resonance problem for harbors of
arbitrary shape and constant depth connected to the open sea and excited
by continuous wave trains. They both used integral techniques, but the
former investigators considered only one fluid domain while the latter
considered two regioms, the outside ocean and the inside harbor with a
matching procedure used at the harbor entrance. In addition, Lee (1971)
performed careful experiments in the laboratory for various simple
geometric shapes as well as for a more complicated configuration (Long

Beach Harbor). For all cases the agreement between the theory and the
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experiments Was good. All the.experiments were done in deep water
using small amplitude incident waves. A subsequent theoretical and
experimental study was conducted by Lee and Raichlen (1972) extending
the results of Lee (1971) to harbors composed of -connected basins. It
was found in some cases that the coupling of the main basin in a harbor
to smaller ones can aggravate the resonance problem instead of improving
it.

Olsen and Hwang (1971) considered a harbor with arbitrary planform
and variable depth. They used a finite difference model for the harbor and
at some distance outside the entrance this model was matched to an
open sea integral solution to determine the response defined in terms
of the power density. They applied their model to a harbor in Hawaii
where field measurements were available and reproduced reasonably well
the trend of the distribution of energy.

Chen and Mei (1974) developed a hybrid finite-element model applicable
to general linear diffraction problems. Two regions were corsidered.

A finite element formula£ion was used in the interior region. The
solution in the outer region was represented as the superposition of

the incident wave system and the radiated wave system. The latter was
represented as a series solution which satisfied the radiation condition
automatically. A matching procedure, integrated into the variational
formulation of the global problem,was applied at the boundary between
the two regions.

Miles and Lee (1975) presented an approxinate analytical method to
determine the characteristics of the oscillations in a harbor at the

Helmholtz mode for the case of an arbitrary planform and variable
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depth. Their method applies reasonably well for cases where most of the
kinetic energy of the wave oscillation remains concentrated mainly near
the mouth.

Once the transfer function of the harbor at a particular location
has been computed by one of the previously mentioned methods the transient
response of the harbor at that location can be obtained for any incident
transient wave using Fourier techniques, assuming the process to be
entirely linear. This approach was chosen by various investigators
to study the transient aspects related to harbor oscillation.

Carrier and Shaw (1969) used this method to investigate theoretically

the response of a narrow mouthed rectangular harbor, with and without an
entrance channel, to an incident wave which had the form of a pulse.
They found oscillations with a relatively long duration compared to the
duration of the incident wave; this shows the effect of resonance where
a part of the energy is radiated out of the harbor while a part remains
trapped inside for some time. An entrance channel coupled to the harbor
in this inviscid treatmeﬁt increased the energy trapping.

Lepelletier (1978) performed a set of transient experiments in
deep water and intermediate depths for a fully open rectangular harbor
and compared the experimental results with the linear inviscid theory.
The incident wave looked like an impulse followed by several small
oscillatory waves. Good agreement was obtained between the experiments
and the linear theory except for the decay rate; this was larger for
the experiments indicating effects of viscous dissipation. 1In particular
the energy spectra for the experiments obtained from measurements at the

backwall of the harbor agreed reasonably well with the corresponding
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spectra obtained from the linear theory and were quite different from
the spectra of the incident waves. The good agreement between linear
theory and experiments even for large finite amplitude incident waves
suggests that the response of the harbor, under certain conditions, may
remain linear even in extreme cases.

Houston (1978) used a finite element numerical model based upon the
method developed by Chen and Mei (1974) to calculate the interaction
of tsunamis with the Hawaiiaﬁ Islands. Using a numerical model for the
generation and deep ocean propagation of the tsunami and data of ground
uplift for the 1960 Chilean tsunami and for the 1964 Alaskan tsunami,
Houston (1978) determined deep ocean wave shapes for these two tsunamis.
These waves were used as input to the finite element model and the
tsunamis were propagated to shore. Good agreement was found with tide
gage records of these tsunamis at several locations around the Hawaiian
Islands. Such good agreement indicates the possible good behavior,
under certain conditions, of a linear theory to predict the interactions
of a tsunami with coastal regions.

Very few studies have tackled the direct transient harbor problem
in which the equations are solved with a time marching procedure. One
difficulty stems from the semi-infinite domain in the outer region.

For purposes of computation this outer region must be limited by an
artificial boundary at some finite distance from the harbor. This in
turn introduces numerical reflections of the radiated wave at the
boundary which may affect the response in the bay. Mungal and Reid (1978)
circumvented this problem by applying a condition at this boundary which

becomes valid far enough from the radiation source.



14

They were able, using this method, to solve the direct linear transient

problem of diffraction of a tsunami by an island or a group of islands.

2.2.2 Effects of Viscous Dissipation on Harbor Oscillations

An important aspect of the study of the interaction of tsunamis
with bays and harbors is the role of dissipation in mitigating the
response. It is of interest in this section to review the various
studies which pertain to the influence of dissipation on resonance in
harbors and bays. The main emphasis in this section will be the effect
of a restricted entrance on the response. This is because it has been
recognized that this form of dissipation is most effective in reducing
the harbor and bay response in some situations.

Ito (1970) investigated numerically the effect of a narrow passage
between two breakwaters in reducing the response of Ofunato Bay in
Japan to tsunamis. He employed the linear nondispersive long wave
equations and assumed the existence of the quadratic head loss across

the narrow passage of the form:
f

An = %-zf- u|u[ (2.1)
where g is the acceleration of gravity, u is the velocity at the entrance
and fe is the separation loss coefficient which he assumed equal to 1.5
from the results of one dimensional hydraulics. The outer sea was
replaced by a channel of constant width and depth., This computation
indicated that a breakwater built in 1967 at Ofunato to mitigate tsunami
hazards had contributed to reducing the tsunami of May 16, 1968 at the
bay head to less than half the value it would have been without the

breakwater.
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Horikawa and Nishimura (1970) performed some laboratory experiments
to investigate the efficiency of breakwaters in reducing wave induced
oscillations in bays. They found that the reduction of the overall bay
response increased with smaller openings at the bay mouth. They also
analyzed tsunami records from Ofunato Bay before and after the construction
of the breakwater mentioned previously. The frequency response curves
they obtained from these records showed a significant attenuation of
the wave inside the bay for the lowest mode of oscillation (T = 37 min)
of the bay whereas the amplitude of the second mode (T = 15 min) was
hardly affected by the presence of the breakwater.

Using analytical arguments Mei, Liu and Ippen (1976) modified the
form of Equation (2.1) for the case of unsteady flow. They added an
inertia term on the right hand side of Equation 2.1. They showed that
when the entrance loss coefficient associated with the incoming flow
differs from that associated with the outgoing flow a nonzero mean
velocity is induced through the opening.

Unliiata and Mei (1975) performed an analytical study on the effect
of entrance dissipation on the steady state response of a partially
closed rectangular harbor. Assuming a constant entrance loss coefficient
fe they derived an analytical solution which showed the effectiveness of
entrance dissipation for small entrance gaps.

Miles and Lee (1975) compared the relative effects of entrance
dissipation and turbulent boundary friction for the Helmholtz mode and
concluded that the efficiency of the former dissipative source in
reducing amplification is higher by several orders of magnitude than the

latter.
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In all of these studies the value of the separation loss coefficient
fe was assumed. One of the purposes of this present investigation is
to measure this coefficient experimentally and to study the relative
importance of several other sources of dissipation in the harbor, both

in laboratory and prototype situations.

2.2.3 Nonlinear Solutions

Leendertse (1967) developed a finite difference numerical model for
the propagation of nonlinear nondispersive long-period waves in an
arbitrary shaped basin including nonlinear boundary friction. The
results agreed well with certain field measurements; however, the water
surface time history at a given location must be specified. Similar
models wére developed by Houston and Garcia (1978), Kawahara et al. (1978)
and Chen et al. (1978) to investigate the interaction of tsunamis with
coastal regions. Houston and Butler (1979) developed a model which
in addition calculates land inundation of a tsunami- with reasonably
good agreement with some. available field data.

Chwang and Wu (1976) investigated in detail the effects of non-
linearities and dispersion associated with the propagation of a cylindrical
weakly nonlinear dispersive wave towards a cylindrical island followed by a
reflection from the island and propagation away from it. They showed,
by comparing their numerical results to experiments, that the wave
evolution for the conditions they considered was best described by a
nonlinear dispersive theory. Their results could conceivably be applied
to the case of an incoming wave propagating along a long trapezoidal
bay with a nonzero depth at the bay head.

Rogers and Mei (1978) reported the results of an investigation of

the nonlinear resonant excitation of a long and narrow bay for steady
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state conditions. The primary purpose was to investigate the importance
of the effects of convective nonlinearities in the equation of motion in
affecting the response of this simple geometric shape at resonance. They
used the weakly nonlinear Boussinesq equations inside the bay and

assumed that the wave system outside the bay was governed by linear
equations. Their numerical results showed that near resonance higher
harmonics are generated with a corresponding reduction in the magnitude

of the first harmonic. They also found that nonlinear interaction could
generate '"'secondary" resonant features not predicted by the linear

theory. They suggested from their study that the effect of nonlinearities
ould result in an enhancement of resonance due to the generation of these

[od

"secondary'" resonant peaks. Experiments were performed

closely spaced
by Rogers and Mei (1978) for three different bay lengths (corresponding

to the first three resonant modes). The relative importance of entrance
loss for the fully open harbors and boundary layer dissipation was
estimated. They found that for short bay lengths, nonlinearities remained
small and entrance dissipation was the most important source of damping.
The reverse was found for longer bay lengths with the relative importance
of nonlinearities increasing with the harbor length. However, their
experiments were performed in the intermediate depth range and the
conditions were outside the range of validity of the Boussinesq model:
this tends to invalidate certain comparisons made between their experi-
ments and their numerical results. Nevertheless, this appears to be the
only past study where the importance of the effects of nonlinearities

and dispersion in the harbor oscillation problem was investigated in some

detail.
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CHAPTER 3

THEORETICAL ANALYSIS

The analysis of the transient excitation of a rectangular basin
and the transient wave-induced oscillations of an arbitrary shaped
harbor with variable depth are presented in this chapter. The main
features of this analysis are the inclusion of the convective non-
linearities, dispersion and various sources of dissipation to assess
their relative importance in prototype and laboratory situations.

The viscous long wave equations in two horizontal dimensions for
a variable depth are derived in Section 3.1. These equations are used
in Section 3.2 for the analysis of the transient excitation of a rec-
tangular basin, including a numerical solution of the nonlinear tran-
sient problem, an analytical solution of the corresponding linearized
problem and a first order analytical nonlinear solution for the free
steady state oscillations. Special attention is given in Section 3.3 to
the various sources of dissipation affecting harbor oscillations in
the laboratory, as well as in the field, by using a simple geometrical
shape and a linearized médel; this model will be used later for the
experimental determination of the entrance loss and leakage coefficients
and as a basis of comparison with the experiments. Finally, a numerical
model for the treatment of the transient wave-induced oscillations of
an arbitrary shaped harbor with variable depth is presented in Section 4.
This model includes the effects of convective nonlinearities, dispersion

and also some of the sources of dissipation discussed in Section 3.3.
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3.1 Derivation of the Long Wave Equations in Two Horizontal
Dimensions and for Variable Depth Including the Effect
of Viscous Bottom Friction

A definition sketch for the coordinate systems is presented
in Figure 3.1.1. The unknown quantities are the wave amplitude
n(xl,xz,z,t), the pressure p(xl,xz,z,t) and the velocity components
ul(xl’XZ’ z,t), uz(xl,xz,z,t), w(xl,xz,z,t) in the two horizontal X and
X2 directions and in the vertical z direction, respectively, in the

coordinate system (O,xl,xz,z). The following assumptions are made:

(i) The fluid density p is constant.
(ii) The kinematic viscosity v of the fluid is small
(but not negligible everywhere).

(iii) The characteristic length % of the wave in the X
direction is of the same order of magnitude as in
the x, direction and is large compared to the depth.

(iv) The characteristic height H of the wave elevation
is small (al;hough not infinitesimal) compared to
the depth.

(v) The rate of change of the depth h with xy and x,
is small.

The last four assumptions will be stated more precisely later. In

addition, it is assumed that the frame of reference (O,xl,xz,z) is non-

Newtonian and moves in a translational motion which is defined by the

velocity components [Vl°(t),V2°(t),0] in the Newtonian frame [O°,x1°,x2°,z°].

(This slightly more general feature has direct application to the closed

basin excitation problem).
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Most of the previous studies have used the potential theory to
derive the inviscid long wave equations (e.g., Whitham, 1974). In the
present case, however, the presence of viscous forces introduces
rotationality into the flow and a different formulation must be used.

The continuity and momentum equations are given by:

du, -
5;;- + 3z 0 (3.1.1)

du, Bu, du, 13 av.° 32y, 32'ui
TR el el el vk A —— + ;7] i=1,2 (3.1.2)

ot 9x dz x, ot 9%, 0%,
J i 373
aw dw_ 9w _ _109p 2w 3%

where g is the acceleration of gravity and t the time; all the other
quantities have been defined previously. In order to abbreviate

the notations in such equations, the Einstein summation convention for
indices 1 and 2 has been used; it will be employed throughout this
subsection.

The boundary conditions are:

(1) zero velocity at the bottom:
u, =0, 1i=1,2 z = =-h (3.1.4)
w=20 z = -h (3.1.5)

(ii) kinematic boundary condition at the surface:

__.+__u' = W z = n (3.1'6)
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(iii) dynamic boundary conditions at the surface:

P = 0 Z = 0N (3.1.7)
Ju,
—x 0 zZ =7 i=1,2 (3.1.8)
0z

Eq. (3.1.8) expresses the fact that no shear force takes place at

the free surface.

At this point it is anticipated (to be confirmed later) that the

viscous forces are negligible except near the solid boundary z = ~h.
Therefore, two regions are defined: an interior region near z = -h
(also termed the boundary layer region) in which the viscous forces are
considered, and an exterior region (also termed the free region) in
which the viscous terms are neglected. The analytical procedure consists
of deriving the veleocity distributions in the exterior region and the
interior layer region and, using them along with boundary conditions (3.1.4)
through (3.1.8), to simplify the form of Egs. (3.1.1) through (3.1.3).
The velocity distribution in the boundary layer region in the
presence of an unsteady flow has been derived by several authors,
e.g., Keulegan (1948), Lin (1957). The derivation of the solution is
presented in Appendix A and only the main results are summarized here.
Assuming a laminar boundary layer and neglecting the convective non-

, - . . .th .. .
linearities, the relevant boundary layer equation in the i direction

can be written as:

___i_.___i_ = vV ___.._i___l_ (3_1.9)

h . s , .
where uiz(xl,x z,t) is the it component of velocity in the interior

2’
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. . .th . .
region, ui(xl,xz,—h+6e,t) is the i~ component of the velocity in the

exterior region just outside the boundary layer, and Ge denotes the

boundary layer thickness (see Figure 3.1.2). Considering Eq. (3.1.9)

the pertinent boundary conditions are:

u% -u, =0 . z > ® (3.1.10)
1 1
- ui -0 z = -h (3.1.11)

1|5

exterior region

interior region

Figure 3.1.2 Definition sketch for the

boundary
layer in an unsteady flow.

Equation (3.1.9), along with boundary conditions (3.1.10) and (3.1.11),

can be solved analyticaliy and the expression for the velocity gradient

in the z direction at the bottom is found as:

Bu% 1 oc)T;%;ui(t—t')
—gi (xl,xz,—h,t) = |5 J ——— dt' (3.1.12)
z . 0 /t'
where 7 is 3.14159... and u, is computed at z = -h+6e. An order of

magnitude for 6e can be estimated by considering Eq. (3.1.9) with

zx 6e, t~ 2/Vgh. Substituting these values for z and t into Eq.

(3.1.9) the expression for Ge is obtained as:

5, :(;—é)llz (3.1.13)
gh
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§
£

h

introduced if the velocity component u, in Eq. (3.1.12) is computed at

In most laboratory conditions < 0.01, so that little error is
z = -h instead of z = —h+6e. The validity of the present solution
ingide the boundary layer, as the wave height ratio H/h becomes finite,
can be questioned since the convective terms may no longer be neglected
and the flow may become turbulent. These considerations will be further
discussed in Section 5.1.

The velocity distribution in the free region is derived as
follows: mneglecting the viscous terms in Eq. (3.1.2) and (3.1.3) yields
the Euler equations. It is well known that the flow derived from these
equations remains irrotational if it has been irrotational at some

previous time., Therefore, a potential function @(xl,xz,z,t) exists

such that:
a, =2 i=1,2 (3.1.14)
i ox,
w=2 (3.1.15)
oz

The proper boundary condition at the bottom for the exterior
solution is zero velocity normal to the boundary expressed by:

dh

i axi at z = -h(x,y) (3.1.16)

w = -u

The crucial step consists of normalizing each variable by a character-

istic quantity:
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_ x? z* h* % gho
T3 *Th_ " h EoE Y
n:.n_,i (I)= o b P = P*

H z/gﬁ;'li pgh

vo* h u¥  h .
Vo= i __9 u = 1 —9 w = w- X’-
i —— H i — H H

/gho Vg o veh

where starred symbols represent the original dimensional variables.
The parameters H, £ and ho refer to a characteristic wave height, wave
length and depth, respectively. The scaling, based on the linear non-
dispersive wave theory, is such that all the previously defined dimen-
sionless variables are of order unity (henceforth all the equations
will be dimensionless unless specifically stated otherwise).

Three dimensionless parameters emerge from the dimensionless

equations:
(i) The nonlinear parameter a = H/hO
2
(ii) The dispersion parameter B = (ho/ﬂ)

1

(iii) The dissipation parameter Y ={1/h_
ﬂ/gho

As usual in dealing with long waves it is assumed that B << 1,

The relative importance of the nonlinearities is best measured by
the Ursell number Ur =o/B (after Ursell, 1953); when Ur < 0(1) nonlinear
effects can be omitted and the linear dispersive dissipative theory
(0=0) can be used;when Ur > 0(1) the equations are dominated by non-

linearities and the nonlinear nondispersive dissipative theory (8=0)
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can be used. When Ur = 0(1), both nonlinearities and dispersion are im-
portant and the weakly nonlinear dispersive dissipative theory must be used.
Rewriting the relevant equations and boundary conditions in dimen-

sionless form one obtains:

(i) The continuity equation:

ou, -
5;? +-§E = 0 (3.1.17)

(ii) The dynamic boundary condition at the free surface:

p=0 z = on (3.1.18)

(iii) The kinematic boundary conditions at the free surface and

at the bottom in the exterior region:

_on on
w o= + uuj - (3.1.19)
3
w = —u, 2 z = —h(x,v) (3.1.20)
j axj

where it is assumed that Bh/Bxj = 0(1), or equivalently, that

the rate of change of depth h#* with x; is O(hO/Z)

(iv) The integrated momentum equation in the X, direction aver-

aged through the depth:

a? Bui aui 3ui 1 3p BVE 9 Bzui
b vouy e T Yo T o '"YBaxjaxj]dz
-

© _g_ - - 1 \
f v ui(xl’XZ’ h,t-t')dt
0

e

(3.1.21)
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where Egs. (3.1.8) and (3.1.12) have been used.

(v) The momentum equation in the z direction:

1o ,1_ 8w _ . 2w B
a3z Ta- Pt OLBuj BXj_uBWBZ
2 2 '
)
+ my28(8 axaaz + =5 (3.1.22)
377 oz

(vi) The relationship between the velocity components

and the velocity potential:

u, = i=1,2 (3.1.23)
i 90X,
1
1 59
W= (3.1.24)
B 9z
Tha Ao a4 e . IR B BT S I J O P T . - "
+fl1€ asSsulptrions madae initiaily can now pe stated more preclisely by

imposing that the three parameters o, B, vy be of the same small order

of magnitude:
0(a) = 0(B) = 0(y) < 0(1) (3.1.25)

In the subsequent algebraic manipulations only terms of the order
of magnitude o, B, ¥ wili be retained. It can be first noticed that,
by inspection of Egs. (3.1.19) and (3.1.20) the viscous terms arising
outside the boundary layer are at most O(Yz) and thus can be neglected
when compared to the viscous term arising from the boundary layer region
which is 0(y). A differential equation for ¢ alone is obtained by
substituting Eq. (3.1.23) and (3.1.24) into Eq. (3.1.17) as:

2 2

B o0 + Gl = 0 (3.1.26)
9%, 90X, 2
373 oz

An expansion for ¢ , suggested by the form of Eq. (3.1.26), is assumed in

the form:
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2
o = @O(xl,xz,z,t) + B@l(xl,xz,z,t) + 0(B7) (3.1.27)

from Eq. (3.1.24) 3%/3z=0(B) since w = 0(1) from the previous choice on

the nondimensionalization of the vertical velocity component. This implies:
@O(xl,xz,z,t) = @O(xl,xz,t) (3.1.28)

Substituting Eq. (3.1.27) into (3.1.26) and using boundary condition at

the bottom (3.1.20) a proper form for ¢ results in:

30 2 3%
VA

_ Y 0 oy 2z o 2
o = <I>O(xl,x2,t)+B[®l(xl,x2,t) -z —axj (h ——axj) 5 -———-—-axjaxj]+0(8 )

The expressions for the velocity components are as follows: (3.1.29)
v 3
3% 8@0 8@1 82 8@0 z2 ] @0 2
Y Tk, X, + B[Bx. Tz 0X .90x%, (h ox ) - "2 3x.9x.09x 1+0(87)
i i i j i
(3.1.30)
2
od )
193¢ _ 9 4 0 _ o 2
VS8 %z [BX. b Bx.) tz Bx.ax.] + 0B (3.1.3D)
J ] J ]
Defining the average horizontal wvelocity component'ai as:
— 1 T 8@0
ui = m-)— J uidz = —3-;;- + 0(B) , (3.1.32)
-h

the continuity equation (3.1.17) can be integrated through the depth

and becomes, after using the kinematic boundary conditions (3.1.19) and

(3.1.20):
- s du,
5;-+-§;; [(h+on) 5;%] = 0 (3.1.33)

One notices that Eq. (3.1.33) is exact and does not require for its deri-

vation a knowledge of the depthwise velocity profile.
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The integration of Eq. (3.1.21) must be performed in two steps.
First, the pressure distribution is found by integrating Eq. (3.1.22)

in the vertical direction from z. =2z to z,=0an and using dynamic bound-

1 2
ary condition (3.1.18) along with Eqs. (3.1.30) and (3.1.31).
; . o’ (ha,) 2 8% T, ) )
5 = N-5 - Blz ——-——J—at axj - 7——13taxj] + 0(B",aB,y") (3.1.34)

Finally, the depth-averaged momentum equation is obtained by integrating
Eq. (3.1.21) using Egs. (3.1.30), (3.1.31), (3.1.32), and (3.1.34), and

by noticing from Eq. (3.1.32) that aEi/axj = a‘Gj/axi + 0(R):

du _ 8uy - ave
5t T %Yy B, Yook, Y e
. 33 hu.) 2 3351
+ Bl- 3 57 B % S ax o)
T (t-t")
+% [_8-8? . —— dt’ = O(QB’BZQ’YB;YZ) i=l’2 (3'1'35)
5 Vt!

Equations (3.1.33) and (3.1.35) are the primary equations used in
the viscous modeling of long wave dynamics in two horizontal dimensions
in a translating frame of reference. The unknown quantities are the
wave elevation n(xl,xz,t) and the averaged potential velocities in the
horizontal directions-al(xl,xz,t) and _é(xl,xz,t). One would 1like to
find an approximate form for the viscous term in Eq. (3.1.35) which
would be more amenable to numerical treatment. Equation (3.1.35) is

first rewritten in dimensional form as:
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gu¥ _ du} - v "
L+
ot* uj ox* te ox¥ + ot*
J 1
% 33(h* uh) %2 5> T %
+ o[- I°,h L1+ -0 i=1,2
2 3t*ox* Jx¥ 6 Ot*ox*ox* ph* i
io* i3

(3.1.36)

* . . .
where T, is the component of the shear stress force in the X, direction

at the bottom, and, in the case of shear laminar friction, is equal to:

= =% ) ac'* (3.1.37)

™ 1 v 1/2 i 5 'Ei(t*-t'*)
h* jB

t” Je'®

O

In order to simplify Eq. (3.1.37), a functional form for the veloc-
ity must be assumed. Since the equations are to be applied to

oscillation problems, the velocity can be chosen sinusoidal in time with

circular frequency o:

u¥ = U¥ cos ot* i=1,2
i i

An equivalent expression for the laminar shear term is sought in

the form:
i % =
—— = C uy (3.1.38)

The constant C* is found by equating the mean rate of energy dissipated
through laminar friction using Egs. (3.1.37) and (3.1.38), respectively.

(See Appendix A for details of this derivation.) The result gives:

*
T, ]_/2~
i 1 va) * (3.1.39)

e - Tz U5 u

Dh* h* 2
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From Eqs. (3.1.33), (3.1.36), and (3.1.39), the simplified form for

the viscous long wave equations can be written in dimensionless form as:

on )

_5_E+ ax. [(h+an) uj] =0 (3.1.40)
J
aEl — BE1 an ’GV;
5t T %950k, Tk, T et
3 i
3, — 3=
97(h u.) 2 37 u, Y
h SRR R SN 2 2
* Bl S G axaw, T 6 ot axax, T UiT0@RRLYEY,
J 1 J ]
i=1,2 (3.1.41)
H _ hg 2 o 1/2
where o = gD B = er) s Yg T (2 p—

The form of the dissipation term in Eq. (3.1.41) is accurate for a

sinusoidal motion. It is expected to yield a good approximation to

the exact dissipation term in the case of an oscillatory flow dominated

by a single harmonic with frequency 0. If the wave energy is dis-

tributed over a wide raﬁge of.frequencies, then the dissipation term

in Eq. (3.1.41) can only yield an order of magnitude for the actual

dissipation; fortunately, as seen in the expression for YS, the dis-

sipation coefficient YS varies like the square root of the frequency.
Equations (3.1.40) and (3.1.41) will be used to solve the basin

excitation problem in Section 3.2.

In the following derivation it is assumed that the frame of refer-
ence is again Newtonian, i.e., v = 0. Wu (1979) proposed an alternmative

form for Egqs. (3.1.40) and (3.1.41) to enhance their numerical treatment.
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Following Wu's derivation the average velocity potential function

9 is defined as:

on
= = 1
¢ = T on [ % dz : (3.1.42)
-h

Also, the pseudo-velocity component ﬁi is defined as:

Sp—i i=1,2 (3.1.43)

The difference between Gi and E; is obtained using Egs. (3.1.29),

(3.1.30), (3.1.42), and (3.1.43) as:

2
o 270
oh 3 o h odh 0 2
( ) -= ] + 0(aB,B™) (3.1.44)
Bxi Bxk Bxk 3 Bxi Bkaxk

Gi-“ﬁi =gJ

Do |

Or, since 8@0/8xi =.Hi+~0(8) from Eq. (3.1.32):

—_ — 2.
— o 1 39 h dh 3 ¢ 2
w, =22 gt O 8 20, oM 990 4, 5048,8%)  (3.1.45)
3 9x, 9%, 09X
i kk
Substituting Eq. (3.1.45) into Egs. (3.1.40) and (3.1.41), an
equivalent form for the continuity equation, valid up to order o, B,

is obtained as:
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an d 30
3t + ox, [(h+an) Bx.]
J J
_p. 0 (h3h 8 0 99 _nan 825]+0(oc8 8%)  (3.1.46)
ij 2 ij Bxk Bxk 3 ij SkaXk

Or, in vector notation:

2
20 4 - [+ o) VE] = 87 [{2 V- 7e) - 5 v%}vnl+o0(s,8?

ot

(3.1.47)

where V denotes the gradient operator. Similar evaluations for each

momentum equation (3.1.41) leads to:

— - — 2 2—
3 o 39 39 3 (h 2 1) h 2
St + 2 ox, 9x, tn-8 ot {5 X, (h Bx.) T 6 8x:, ox, }
J ] J 3 J ]
Ys-—— 2 2
+ 28 = 0(aB,B8%,8Y,Y") (3.1.48)
Or, in vector notations:
3,0 (V&)2 + 1 - g {B V- (hVo) - Pi v?@}
at 2 n at ‘2 6
Ys ~ 2 2
+ ~h— ¢ = O(O'B,B ;BY:Y ) (3vl-49)

Equations (3.1.47) and (3.1.49) without the viscous term were first de-

rived by Wu (1979). Combining further those two equations, one equation

for ® alone is obtained as:
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_ Yo
pp = VIV + =0
h = n? 2= h ~ h — o1
- B [ V-mve )- Ve ]+ ev-{(g 2., +3 Vh-VO)Vh]
= ~a[Ve-V3 +V- (8 V0)I+ - V- [(V8)" Vo]
2 2
+ 0(aB,B7,BY,Y") (3.1.50)

Mathematically, Eq. (3.1.50) is equivalent to Eqs. (3.1.40) and (3.1.41).
Numerically, however, the use of Eq. (3.1.50) is more advantageous, since
only one equation with one unknown,'E, needs to be solved. Once the

velocity potential ® is kmown, the wave amplitude n can be computed using

Eq. (3.1.48). At the lowest order:

n= -®t + O(a,B,YS) (3.1.51)

Equation (3.1.50) forms an alternative theoretical basis for long wave
dynamics in variable depth and will be applied to the harbor oscilla-

tion problem in Section 3.4.
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3.2 The Excitation of a Closed Rectangular Basin

In this section several methods are presented to investigate the
shallow water oscillations of a liquid in a narrow rigid rectangular
basin subjected to a horizontal translational motion. The emphasis
is put on the transient as well as on the steady state aspeéts of this

problem.

A numerical solution based on the nonlinear dispersive

and dissipative long wave equations is derived in subsection 3.2.1.

A linear analytical transient solution which only includes dispersive
and dissipative effects is presented in subsection 3.2.2. A first
order analytical nonlinear standing wave solution is presented in
subsection 3.2.3 with the primary purpose of gaining some physical
understanding of the nature of the finite oscillations in a closed
basin. Finally, the range of validity of the linear and nonlinear
dispersive theories for closed basin excitation problems is discussed

in subsection 3.2.4.

3.2.1 A Numerical Solution for Nonlinear Response Due to a
Transient Excitation

3.2.1.1 The Analytical Formulation of the Problem

The rigid rectangular basin shown in Fig. 3.2.1 has
a length L and a still water depth h. It is submitted to a transla-
tional motion in the x° direction defined by the velocity
v°(t). The system (0°x®z®) denotes a Newtonian coordinate system in
which the velocity V°(t) is defined while (0Oxz) is the coordinate

system attached to the basin.
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Zo T T~ ¢

l¢] - L]

0° x° X=0

—~ X°(t)

Fig, 3.2.1 Definition sketch for the
Basin Excitation Problem.

Since the following analysis is restricted to long period oscillation
it is assumed that 0(%) << 1. Also the water particle motion is
assumed to develop in the xz plane only, i.e., no variations are
permitted in the direction perpendicular to the xz plane.

The equations used for this problem are the nonlinear dispersive,
dissipative long wave equations developed in Section 3.1, applied here{
to the unidirectional case in dimensional form:

n, + {m) u} =0 (3.2.1)

vo 1/2 —

2 o) u +vi =0 (3.2.2)

o +3

— 1
u tu ux + gnx - §'h XXt h

t
where n(x,t) is the wave elevation, u(x,t) is the velocity averaged in
the z direction in the Oxz frame of reference, v is the kinematic
viscosity, and O is a characteristic frequency of the fluid motion.

In this section the averaged velocity Glx,t), for simplificity of
notation, will be denoted as u(x,t).

In order to account for dissipation due to wall friction and
surface effects, the coefficient of the dissipation term in Eq. 3.2.2 can
be multiplied by (1 + %?—+ C) where b is the basin width and C a "surface
contamination factor which, according to Miles (1967), can vary between 0
and 2; for details of the discussion on these dissipation mechanisms, see

Section 3.3. The end walls of the basin are assumed to be perfectly

reflective and at time t = 0 the fluid is at rest. Thus, the initial
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and boundary conditions are prescribed as:

n(x,0) = 0 (3.2.3)
u(x,0) =0 (3.2.4)
u(0,t) = 0 (3.2.5)
u(L,t) =0 (3.2.6)

The variables are nondimensionalized as follows:

n* = Hn x* = Lx P
vgh
H — o% o) *
% = 2 - :
u n vgh u Vt Acf (ot™)

where the starred symbols represent the original dimensional variables.
(Henceforth all the variables will be dimensionless in the remainder of
this subsection unless specifically stated otherwise.) The characteris-
tic wave height H can be determined from the following consideration:
when a basin with length L is moved in the x direction with a constant
acceleration At’ then the water surface elevation at either end of the
basin is O(ACL/g). Therefore, for normalization, it seems reasonable to
choose H = ACL/g, so that the dimensionless water surface elevation n is
0(1). The characteristic frequency 0 of the wave motion usually can be
taken equal to the forcing frequency of the basin motion. Therefore, Eqs.

(3.2.1) and (3.2.2) are rewritten in a dimensionless form as:

1 1 =
ne + {u@+oem ] 0 (3.2.7)
1 o} _
u, + nx + dut%{ - §-Buxxt + f (Gt)-kysu = 0 (3.2.8)
with the initial conditions:
n(x,0) = u(x,0) =0 (3.2.9)

and the boundary conditions:
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u(0,t) = u(@,t) =0 (3.2.10)

Four nondimensional parameters appear in Egs. (3.2.7) and (3.2.8):

(1) a nonlinear parameter o = ACL/gh
(ii) a dispersion parameter B =h /L2 (3.2.12)
(iii) a dissipation parameter Y ==(29)1/2(1-+G-+-gh)——£L— (3.2.13)
] 2 b N
hvgh
(iv) a frequency parameter § = oL/V/gh (3.2.14)

The first three parameters have been derived in the last section. The
fourth parameter § serves as an indicator of resonant con-

ditions (and thus nonlinearities) in the basin. The relative impor-
tance of these four parameters for the basin excitation problem will

be examined in detail in Section 3.2.2 and in Section 5.2.

3.2.1.2 A Finite Element Solution

The Strong form (S) is:

Find the amplitude n(x,t) and the velocity u(x,t)

in the interval O0< x< 1 and 0 < t < t' satisfying

(s)
Egs. (3.2.7) and (3.2.8) along with the initial
conditions (3.2.9) and boundary conditions (3.2.10).
A weak form (W) of (S) is:
Find the amplitude n(x,t) in the function space H' and
W) u(x,t) in Ho' such that for all functions n in H' and

for all functions u in Ho':
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1
(n,n) + J {u(l+om)}X ndx = 0 (3.2.15)
0

@0 +3 BE LU + v (D)

1 1
- (nx,a) - J £9(st)u dx -1xf uu u dx (3.2.16)
0 0
and
(u(x,0), u(x,0)) = O (3.2.17)
(n(x,0), n(x,0)) = 0 (3.2.18)
where
1
H' = {f(x,t): J fxdx is bounded for all t in [O,t']}
0
B' = {f(x,t): £(x,t) dis in H' and £(0,t) = £(1,t) = 0}
(o]
1
(f,8) = J fg dx
0

and the dot above the symbols denotes partial differentiation with
respect to time. Under appropriate smoothness hypotheses, the solution
of the weak formulation can be easily shown to be identical to the
solution of (S).
The Galerkin form (G) of (W) is:
Find nh(x,t) in the function space S' and uh(x,t) in the function

space So' such that for all functions ﬁh(x,t) in S' and ﬁh(x,t) in So':
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1
¢&B by +/ {uh(1+anh)}xﬁhdx =0 (3.2.19)
(o]
© (*:h,u )+ B (u ,uxh) +vg CHOLIE

- / £°(5t)T P ax -a/uhuha”hdx (3.2.20)

and (x O), (x 0)) =0 (3.2.21)

(nh(x,o), TP (x,00) = 0 (3.2.22)

where S' is a subspace of H'

and So' is a subspace of Ho'.

The finite element discretization consists of choosing the subspace
S' in a simple manner in order to transform the Galerkin formulation into

a matrix formulation with a finite number of unknowns. §' can be defined

N
S' = {fh:fh = Zfi(t) ¢i(x)}
i=1

where fi(t) denotes any arbitrary continuously differentiable function

ass

in the time interval [0,t'] and ¢i(x) is a piecewise linear function

defined as:

¢i(xi) =1 i=1,2,....N

¢i(x) =0 for x> X, OF X < X1

The functions ¢i(x) are called shape functions and are represented

schematically on Fig. 3.2.2.
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Fig. 3.2.2 Definition sketch for the
shape functions.

The location x, where the shape function is defined is called a

node.

From the definition of the functions ¢i it follows that fi(t) is
the value of the function.fh at the node i.
Therefore, the functions nh(x,t), Em(x,t), uh(x,t),'ﬁh(x,t) can

be written as:

nh(x,t) = ni(t) ¢i(1c)

1 £l

nPae =) n© 6,60 3.

1

[}

i=
N-
wf ) =) u (e) 4,60

(.

=)
U

TRt =) T 6,6
i=2

2.23)
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The unknowns are the functions ni(t) and ui(t) at each node. (Note
that Uy = Uy = 0 in accordance with the requirement that uh belongs to
SO'. The next step is to substitute Egs. (3.2.23) into Eqs. (3.2.19)
through (3.2.22). Since the Galerkin equations must be checked for all

functions ﬁi (ie[1,N]) and Gi(ie[Z,N—l]), the coefficients of each

function ﬁi and Gi must be zero and the following magtrical system is

obtained:
N 1 N-1 N
D g0, = ‘/4’1 {( uj¢j> <l+a2nk¢k>} ax
j=1 o j=2 k=1 x
i=1,N (3.2.24)
N-1
1 °
Z{<¢i,¢j) +1s ((Oi’x,(bj’x)}uj -
j 2
1
—Z (bg585 N5 - Zw SRR -/f°<6t)¢idx
j=1 o
1y-1 N-1
/( uk¢k>< uj¢j)>¢idx’ i=2,N-1 (3.2.25)
k=2 j=2
nj(O) =0 j=1,N
(3.2.26)
Or, in matrix form:
M= f"
n=f (3.2.27)
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Mt o = £t (3.2.28)
with:
n _ .
Mij = (¢1’¢j) isJ—l,N (3-2-29)
u = -l'- i.q= -
Mij (¢i,¢j) + 58 (¢i’x,¢j’x) i,j=2,N-1 (3.2.30)
1 N-1 N
fl” = —/¢1{< Z uj¢j>< 1+ dantbk)}dx i=1,N (3.2.31)
o j=2 k=1 <

Hh
Moo
]
|
[M]=
N
-
W)
-5
[}
™
h
s}
[}
1
<
[4/]
T
47
no =t
~
-
[ N
-
e
~
[
e
I
Fh
o
~
O
rt
~
-
e
2,
]

o
1 N1 N-1
- oc/ ukq)k)( E uj j,x) qbidx . i=2 ,N-1 (3.2.32)
o . s

Eqs. (3.2.27) and (3.2.28) are coupled through the vectors £ and
£, The matrix M" and Mu are tridiagonal, symmetric, positive, which

provides computational efficiency,and exact integration is performed

on all the terms.

3.2.1.3 The Integration Algorithm

Equations (3.2.27) and (3.2.28) form a first order
nonlinear differential system which can be solved using the generalized

midpoint rule:

M (n ) (3.2.33)

- - n
~n+1 ,]ln) At ,f., (u

~ n+8*’ n B,



.= u
M (Ea n+l - l.:,n) At ’fv (}i n+8*’ ;’ln+8*, tn+8 ) (3.2.34)

where At = t -t

T R L
E,n+6* = By E,n+l +a- B*)E,n

where

B4 1s a numerical parameter which can vary between 0 and 1. At time

t o1 the unknown vectors ) and u 41 are found by solving Egs.

n+

(3.2.33) and (3.2.34) using the following iterative procedure:

1. First iteration:

)

u
* Comput £
Compute ~ (E. n’ Lo’ tn+6*

. (1)
¢ Solve Eq. (3.2.34) for E,n+1

(1) )

. n
Compute £ (un+8*’ n

. (1)
Solve Eq. (3.2.33) for N

2. Subsequent iteratiomns:

: u, (k) (k)
Compute f, (E. n+8,° n n+8*’ tn+8*)

k) _ (k)
where E,n'l-ﬂ* =B u gt @- B*)in
(k) _ (k)
and 2 n+f, By Q n+l + - 8*)3\] n
(k+1)

« Solve Eq. (3.2.34) for }\1} ot



*+ Compute £N (u

~e

* Solve Eq. (3.2.
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(k+1) (k)
nt8, ° ln+8*)
(k+1)

33) for R

3.2.1.4 The Convergence and Accuracy of the Algorithm

The scheme presented previously belongs to the class

of one-step integration schemes for nonlinear first order differential

equations. It is considered specific to the problem of interest, and thus

it may not be relevant to
error analysis shows that
8, = 1/2, for which it is

proved difficult owing to

more general situations. A local truncation
the scheme is first order accurate except if
second order accurate. Stability analysis

the form of the nonlinear terms and could

not be carried out successfully. Instead, numerical experiments were

performed with 8, = 1/2 and the results can be summarized as follows:

(i) The condition

where Ax = xi+1

At € Ax

- X, and At = - t must be
i n

tn+1

fulfilled for all segments. Otherwise the scheme

does not converge.

(ii) The number of iterations required per time step

must not be less than 3, when Ax =~ At.

(iii) The number Nx(=1/Ax) of segments discretizing the

basin must be large enough to describe the wave

profile accurately; if the wave is linear Nx can

be related conveniently to a particular mode
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shape by

N =20 n
X

where the integer n is equal to the number

of nodes in the basin.

If finite amplitude effects are important, Nx must be increased in
order to describe the secondary oscillations accurately, otherwise
numerical damping occurs. When those three conditions are met, the
scheme yields quite satisfactory results as will be shown in
Section 5.2. In particular, numerical dissipation does not take place
and a high degree of accuracy is achieved, allowing to perform integra-
tions with a number of time steps up to 10,000.

Using Ax = At, the number of time steps per period of oscillations
is about twice the number of elements for the sloshing mode (n=1).

For instance, if NX = 20 then 4,000 time steps are required to compute
the solution for 100 cycles of oscillations.

All the calculationé for the closed basin problem have been
performed on a PDP11/60 computer in single precision (32 bits per word)

and the results of the numerical runs will be presented in Section 5.2.

3.2.2 The Analytical Solution for the Linear Response Due
to &a Transient Excitation

In this section the linear dispersive dissipative theory
is applied to the excitation of a closed basin. Two approaches are
available. The first method involves computing the transfer function
of a basin forced by an harmonic excitation. Based on the derived

transfer function, numerical Fourier techniques can be used to compute
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the basin response to a given transient excitation. The second method

consists of using integral transform techniques when the expression for

the transfer function can be obtained in an analytical form simple enough

to allow an explicit analytical computation of the transient solution;
this is the method which was followed.
The statement of the problem and the notation used are the same as

in Section 3.2.1. Linearizing Egs. (3.2.1) and (3.2.2) yields:

1/2
- 1,2 o 4 Llf142n vo -
u +gn -Fhouw  +X° +& (14-b +—C>< > ) u =0

(3.2.36)

(The walls and surface friction are accounted for by multiplying the

b

The initial conditions and boundary conditions are:

friction coefficient by <l + ZE,+ c ) .

n(x,0) = u(x,0) =0 (3.2.37)
u(0,t) = u(L,t) =0 (3.2.38)
In dimensionless units Egqs. 3.2.35 through 3.2.38 can be
rewritten as:
n, +u_ =20 (3.2.39)
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1 o -
u, + n, -3 B Ut + £°(8t) + YU 0 (3.2.40)
nx,0) = u(x,0) =0 (3.2.41)
u(0,t) = u(l,t) =0 (3.2.42)
AL 2
h
where o = jir B = ZE
1/2
ys=——L—(%) (1+c+%) § = Lk
hv/gh /gh
* L
and 2= = ap . x* = Lx , tk = — t ,
b /gh
ot _su X° = A £2(ot*)
/gh e

The starred quantities refer to dimensional variables. It is noted
the nonlinear parameter, o, does not appear in the equations;
it merely acts now as a scaling parameter for n*/h and u*/Vgh.

The variable u(x,t) is eliminated between Eq. (3.2.39) and

Eq. (3.2.40); this yields an equation in terms of n(x,t) alone:

1 -
e + Ny +-§ B Nexte™ Yt = 4] (3.2.43)

with the following initial conditions and boundary conditions:

n(x,0) = n (x,0) =0 (3.2.44)
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n (0,t) = n (1,t) = -£°(6t) (3.2.45)

Equations (3.2.43) through (3.2.45) are conveniently solved using
integral transform techniques. Laplace transform is chosen because

of the initial conditions:

=]

n(x,s) =/ n(x,t) e °F at (3.2.46)

o

Multiplying both sides of Eq. (3.2.43) by the kernel e—St and using

the initial conditions (3.2.44) yields a differential equation for a:

A+Ls?)n_ - (s2+ sy )0 =0 (3.2.47)

with the transformed boundary conditions:

ﬁx(o,s) =0 (1,8) = -£°(s) (3.2.48)

[>]

where E°(s) =.)[.f°(5t)e—Stdt (3.2.49)

o
The solution for n is:

sinhKO(X --%
(3.2.50)

n(x,s) = -f°(s) .
[
Kocosh(—io

si/2¢s + vy )1/2
where K = S (3.2.51)

o 1/2 1/2
g , /3 . f3
3 (s + 1 E’) (s -1 E—)

and 7 denotes the imaginary number v-1 .
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Using the inversion integral for the Laplace transform, the

solution for n(x,t) is obtained as:

. 1
sinh Ko-(x - 2)

n(x,t) = - _2;1% eSTTs) e ds (3.2.52)
B Kocosh(T)
T
u+ir
where / = lim [ is the Bromwich contour integral.
B P> Jyir
r

The time displacement history of the basin is defined dimensionally

as:
-d if t¥*< 0

Xk (t*) = -d cos ot*  if 0 thkg T (3.2.53)
-(-1)"a if tr> B0 mel,2,3...

where d is the amplitude of the basin displacement.

From Eq. 3.2.53 it is seen that the acceleration number AC for

this motion is do2?, and:
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0 if t< Oor t> -“:S—“

cos 8t if O < ts%ﬂ‘

The transform function fo(s) becomes:

~ 0 _ s m+1 __mm
f(s) = Tz [1 + (-1)  exp [ S(G)]:l (3.2.55)

and from Eq. (3.2.52) the integral solution for the surface elevation

is
1

sinh kK (x - 3) m+1
n(x,t) = - L ; 2 2 2 [exp (st) + (-1) exp(s(t -Pi))] ds
2me s2+82 ¢ cosh (i%) .

B, °© 2

(3.2.56)

Eq. (3.2.56) can be evaluated explicitly using the Residue theorem.
For details of the calculations the interested reader is directed to

Appendix B; the final result is as follows:

if t < % :
p sin [x(x - %)] 78t
n(x,t) = —Re{’K‘ " e
cos(i)
(3.2.57)
ot s t
_22(-—1)n sin[an(x—%)] Re[fn e " ]
n=0
; mm
if t> 5 ¢
> n Y : st
n(x,t) = =2 Z (-1) s:Ln[an(x—E)] Re[fn e ] (3.2.58)

n=0
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where:

a = (2ntl) T

S < 7:.Ys
K = 1 - =< (3.2.59)
1-1sent/2 25)

§ < ‘/-38- (3.2.60)

1
s 1+ % ps 2
£ =4 —D0 3 n (3.2.61)
n 2412 e
(sn +84) [zsn+ys(1__%.esn2)]
. Lyl —-m'rrsn ]
fn fn[l + (-1) exp( 5 (3.2.62)
1/2
v, ~2i2_(1 +£a )1/
s, = B > ) (3.2.63)
2(1 +§ an )

The inequality shown in Eq. (3.2.60) validates this form of the solu-
tion mathematically. Physically this condition must always be met as
will be seen in Section 3.2.4.

Equations (3.2.51) through (3.2.58) will be used in Chapter 5 as a
basis of comparison with the nonlinear dispersive dissipative theory
and with the experiments. A physical discussion of the linear solution
and a derivation of several useful relationships follow in the remainder
of that section. It is understood that B << 1 and Ys << 1 in accordance
with the assumptions underlying the derivation of the dissipative long
wave equations in Section 3.1.

The solution closely parallels that for the motion of a damped
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single degree of freedom oscillator. During the excitation phase
(t <%§[two groups of terms contribute to the solution: a linear
combination of all the free modes of oscillation of the basin repre-
senting the transients and a harmonic function with the frequency of
the exciting motion corresponding to the steady state. During the
initial stage of the excitation the transients play the dominant role
and may induce a maximum amplitude greater than the steady state
amplitude. As time progresses, however, the transients decay due to
the presence of the exponential viscous term approximately equal to
Yy t

exp (- —%— ) in each term of the series in Eq. (3.2.57) and after a
T

time tY = OCQT) only the steady state solution remains. When t > E%—,
! s

the basin is no longer excited and the expression for the forced solu-
tion does not appear any more. Only the transient terms are present
and they decay at the same rate as during the excitation phase. It can
be noted from Eqs. (3.2.57) and (3.2.58) that because of the manner in
which the basin is excited, only the modes of oscillation corresponding
to an odd number of nodes are excited. Also, the water elevation
at the middle of the basin is zero for all times. Specializing to the

harmonic problem, the steady state response can be derived from Egs.

(3.2.57) and (3.2.59) and is written down for clarity:

p sin [e(x - %)] i85t
n{x,t) = -Re = " e (3.2.64)
cos(f)
s 1 ‘Y (3.2.65)
k= 1 1/2 ( _W> ks
1-3 B62)
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Equation (3.2.65) can be interpreted as the dispersion relation for
this problem. It is seen from Eq. (3.2.64) that wave amplitude !ln(x,t)[!
is OC%) except at resonance when cos(%)-*O.

Thus maximum excitation is achieved when Re[cos(%)]==0, that is:

8

l,:2

Re(k) =~ = (2n+l)T = a , (3.2.66)

1/2

where Ys and B82 are considered to be much less than unity:

Equation (3.2,66) can be rewritten as:

a
n

8§ =~ 8 2
(l+§an )

77 = | (s )| (3.2.67)

Thus, at resonance the excitation frequency is equal to one of the
natural frequencies of oscillation of the basin, as expected.
The corresponding steady state wave amplitude at either end of the

basin is computed at resomance from Eq. (3.2.64) through Eq. (3.2.66) as:

%
nO,el _4 1 (3.2.68)

ha Yo (2n+1)7

Or, since o = d8%/L and & ~ (2n+1)T from Eq. (3.2.67):

Hn*(O,t) ~ 4 20T d (3.2.69)
I R
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In typicai laboratory cénditions, O(Yé) = 10“2 and d/L = lO_3 so that
Iln*(O,t)]!/h * 0.4, which tends to invalidate the application of the
linear theory near resonance. A detailed discussion on the range of
validity of the linearized theory will be postponed until Section 3.2.4.

Assuming for the moment that the linear theory remains valid for
all ranges of amplitude, the characteristic number of oscillations
required for steady state to be achieved near a resonant frequency,
starting the excitation of the basin from rest, is controlled by the

Y

exponential decay terms in Eq. (3.2.57), i.e., exp [— 7; t] or in

dimensional units:

y
Znil _tTi (3.2.70)

exp[-

where T denotes the excitation period. The transients are reduced to

5% of their original value for:

% a
5 m(2ntl) _ n (3.2.71)

T YS YS

Finally, from expression (3.2.70) and Eq. (3.2.69) an estimation
of growth of the wave amplitude with time at either end wall at reson-
ance can be made when, starting from rest, the basin is continuously

excited at a period equal to one of its matural periods of oscillatiom,

as:
n*(0,t) - 4 4C2nt)m (1 - ex 's = (3.2.72)
h T L Y exp[- 2n+l T]) o

]
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In particular, during the initial stages of the excitation the wave

amplitude grows linearly with time:

n*(0,t)

‘ - lm%_t_*; (3.2.73)

All of these results obtained from the linear theory will be used

as a basis of reference in Section 5.2.

3.2.3 The First Order Solution for Nonlinear Standing Waves

It is a well known result, e.g., Ippen (1966), that the
linear unidirectional natural modes of oscillations in a rectangular
basin are formed by the superposition of two sinusoidal waves which
have the same amplitude and travel in opposite directions.- The
relationships, for a long dispersive wave, using dimensional

notations, are:

2 2
nix,t) = % cos(z—;E +—2T7rx)+% cos —%Trt-——;-x) =H cos(%ﬁ- x) cos(z—,TI,r—E) (3.2.74)
Ao = 1.2m 2]
T=C = Veh [1 AT (3.2.75)
L.o
) (3.2.76)

where L is the basin length, h is the still water depth, n is the wave

elevation, H is the wave height, g is the acceleration of gravity,
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T is the period, C  is the wave celerity, A is the wave

length of the two progressive waves and n is an integer referring to the
particular mode and equal to the number of nodes in the basin. This
result is valid only for infinitesimal waves.

Rogers and Mei (1975, unpublished report) showed that in the case
of a rectangular closed basin the finite wave amplitude could be
represented as the sum of two nonlinear waves propagating in opposite
directions, each being a solution of the Korteweg-de Vries equation
corresponding to its direction of propagation. From that result, the
natural modes of oscillations including the nonlinear and dispersion
features can be defined analytically.

First, the derivation of the aforementioned basic result using the
approach of Rogers and Mei (1975) based on. the multiple scales method,
e.g. see Cole (1969), is presented. The inviscid one-dimensional non-
linear dispersive long wave equations applied to a constant depth can

be written in dimensionless form as (see Egs. (3.1.50), (3.1.51)):

- =1 - 2
@tt @xx 3 B®xxtt a(2®x®xt + ®t® ) + 0(aB,B%) (3.2.77)
n = —®t + 0(a,R) (3.2.78)
where:
x* vgh
= — n% = m—— ¥ *
n hT} X T t ,Q,t
h 1 H h 2
2= e * = o = (==
¢ H 0 ¢ h 8 (2
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and ¢ is the depth-averaged velocity potential, H is a characteristic
wave amplitude, £ is a characteristic wavelength. The starred
quantities denote the dimensional variables. All the dimensionless

variables are of order unity and 0(a) = O(B) < 1.

Equation (3.2.77) can be transformed with the same degree of

accuracy into:

=31

- 2
tt " Yxx a(20. 0  +9.0 ) + 0(xB,B?) (3.2.79)

xxtt

The method of multiple scales is based on the assumption that the
system is governed by rapid changes in time and space modulated by
slow variations in both time and space. Mathematically this can be

expressed by assuming a solution of the form:
o(x,t) = o€ (x,t,xtt")+ a6 () (x,t,x",t') + 0(a?) (3.2.80)

where x' = ox t' = at (3.2.81)
x,t,x",t' are considered as independent variables in 3(0) and (1),
Substituting Eq. (3.2.80) into Eq. (3.2.79.) a zeroth and a first order

equation are obtained as:

0 0
) - ®( ) =0 (3.2.82)

0(1): ®tt xx

! L 0 0) (0 0
o: el 00018, 28 ), 4 >®<o)]

tt XX X xt t tt

) (0
+2(e N (3.2.83)
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The general solution to Eq. (3.2.82) is:

(0)_ + ' ' - 1 1
o) = ¢ (t+x,x",t") + ¢ (t=-x,x',t") (3.2.84)
Substituting Eq. (3.2.84) into the right-hand side of Eq. (3.2.83)
two sets of terms are obtained, those which are functions of (t+x) or

(t-x) alone, and hence secular, and those which are mixed. Thus,

Eq. (3.2.83) can be rewritten as:

1 _ _+ -
®z+z_ =F(z) +F (z) +6G(z.,z) (3.2.85)

where z, = t+x , z = t-x

The integration of Eq. (3.2.85) yields a solution of the form:

(1

0 (2y,2) = 2 ) (2) + 2,F () + 6 (z,,2.) (3.2.86)

Since a bounded solution is desired at all times, the function

+ -
F (z+) and F (z_) must be set to zero. This gives:

+ tLLlB st optet L1ttty 2 3.2.87
@XX' q)tt'+ 6 o “xxtt (@x oot t 7 % q)tt) 0 3. )

- T A - S 3.2.88
uxt™ Qe 6w Cxxrt (q)x Qe T3 0 O) =0 ( )

+ -
Now define n and n as:

n* =-<1>::r (3.2.89)

N - (3.2.90)
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using Eq. (3.2.78) along with Eq. (3.2.84):

(0) -
n=-29 +0(,B) =~ <I>: +0(c,8) = n +n” +0(,8) (3.2.91)

Thus, at the zeroth order:

no= o (thx,x',e') 4+ o0 (t-x L,x',t") (3.2.92)

. A + -
From Eqs. (3.2.89)-(3.2.90) and the form of the functions & and &
in Eq. (3.2.84), it follows that:

R T (3.2.93)
© +

- .20 .3 .

- (3.2.94)

Substituting Eq. (3.2.93) and (3.2.94) into Eqs. (3.2.87) and

(3.2.88), two uncoupled equations for n+ and n are obtained:

+ + 1 + 3 + +
-nx.+ Mg ‘g?f‘“z zz — 20N, = 0 (3.2.95)
+°4+7+ +
- - 1 - - -
et —-6-75-712 z z —%n n, =0 (3.2.96)

Equations (3.2.95) and (3.2.96) are now applied to the wave

motion in a rectangular tank with length L. It appears reasomable to

assume that 0(%Q = 1. Thus, the absciasa x = O(%b = 0(1) and the
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dependence on the variable x' can be neglected in Eq. (3.2.95) and

(3.2.96). Thus:

n = n+(z+,t') (3.2.97)

n (z_,t') (3.2.98)

3
It

Reverting back to the initial variables x and t, Eqs. (3.2.95) and

(3.2.96) can be expressed as:

+ + 1 + 3 +
'ﬂx -nt +€B n +'§'0L nnx=0 (3.2.99)
N +ien T +3anm =0 3.2.100)
X t 6 Nyxx 2 N Ny (3.2.10¢

It is noted that these are simply the KdV equations (after Korteweg
and de Vries (1895)) for waves moving to the left and to the right,
respectively.

The following basic result based on Eqs. (3.2.92), (3.2.99) and
(3.2.100) can now be stéted: in a narrow, closed rectangular basin the
wave amplitude in shallow water can be described by the linear super-
position of two nonlinear waves traveling in opposite directions, each
satisfying its own KdV equation. Note that the approximation leading to
that result is of the same order of magnitude as that which leads to the
KdV equation from the nonlinear dispersive equations. Thus, to the same
order of approximation, two waves propagating in the same direction do
interact in a nonlinear fashion (e.g., Whitham (1974), p. 580) but

two waves propagating in opposite directions do not! This can be understood
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physically on the basis that as two waves propagate in the same direction
their inferaction time is relatively long while when they propagate in
opposite directions their interaction time is much shorter, too short

in fact to allow nonlinear interaction to take place.

The next step is to look for a solution represented as:
+ -
n{x,t) = n (Ct+x) + n (Ct-x) (3.2.101)

+ —
where C is the wave speed and n (Ct-x) and n (Ct+x) are solutions
of Eqs. (3.2.99) and {3.2.100),respectively, which satisfy the zero

velocity boundary conditions at either end of the basin:

),
(

N
[
(e
N
Neerr?

(o) . _ Lo .« A .
@x(o,t)=qzx y £)=20 (3.2.

=i

Using Egs. (3.2.84), (3.2.93) and (3.2.94), and choosing & = L
one obtains:

nT(ct) - n (Ct) = 0 (3.2.103)

nt(ct+l) - n7(Cce-1) = 0 (3.2.104)
and from Eq. (3.2.103):

n'(Ct) = n"(Ct) = F(Ct) (3.2.105)

Applying this relation to Eq. (3.2.104) the following results:
F(Ct+l) = F(Ct-1) (3.2.106)
Thus, the particular solution must be periodic and of the form:

nx,t) = F(Ct+x) + F(Ct-x)
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Equation (3.2.106) is satisfied if, in dimensional units, the basin
length L is an integral multiple of half the wave length A.

An obvious solution for F is the cnoidal wave which is a periodic
solution of the KdV equation. In dimensional notations the solution
is written as:

t

n(x,t) _ ,4 h 2 t_x 2 x, £
g = 20 - e - P ml+en2K(E + 5w} (3.2.107)
)2 16 2
A = 22K (3.2.108)
3 3
h
t _ H(K~ E)
d° = h-H+ (3.2.109)
A o= H _3E
cC = 5= Ygh [1 + (2-m K)] | (3.2.110)
y =2 (3.2.111)

where h is the depth, H is the wave height, dt is the distance to the
wave trough from the bottom, X is the wave length, T is the period,

C is the wave celerity, m is the elliptic parameter, K = K(m) and

E = E(m) are the first and second complete elliptic integrals,
respectively, and cn is the cnoidal Jacobian elliptic function. The
integer n refers to a particular mode of free oscillation of the
rectangular basin. A definition sketch for the various parameters

is presented in Fig. 3.2.3.
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Fig. 3.2.3 Definition sketch for the cnoidal
wave parameters.

Equations (3.2.107) to (3.2.111) define the finite amplitude
unidirectional natural modes of oscillations in a rectangular basin

Two familiar features characterize those nonlinear modes. First,

since a cnoidal wave is not symmetric with respect to the mean water

level, fixed nodes do not exist. Second, the period of the oscilla-~

tions varies with the .amplitude as can be seen from Eq. (3.2.110) where

the wave celerity can be expressed as:

C H h
—= 5.7
vgh
It is noted that those two features also characterize finite amplitude

oscillation in the intermediate and the deep water range.

At the two extreme values of m:

H>\2 T : T
(i) as m »> 0, —7;-+ 0, K~ 7 E ~» E-and:
h

I E e . 2 + cosz[n(,-}:,- - %)] + cosz[n(%-i- %)]
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n(x,t) _ 2 27T
or -—T;L—_ s =g cos =
C
cC _ [1 - 1 (Zﬂh 1 o
6 X
vgh gh

(This is the linearized result stated at the beginning of Sec. 3.3.3.)

2
(ii) asm-=1 *E%r-+ © , K»>® , E+ 0 and

h

n(x,t) _ 2‘121 - 2‘/21
o sech T (x-Ct) + sech e (x+Ct)

= -a+33
/§H 2
For this limiting case solitary waves will travel back and forth in

the basin.

The ratio C/Co’ where Co denotes the wave celerity computed from
the linear dispersive theory, is plotted as a function of H/h in Fig.
3.2.4 for several values of h/A. It is seen that for a fixed value of
h/A, C/Cois an increasing function of H/h and for a fixed value of H/h
it is a decreasing function of h/A; the application of this property
will appear clearly in Section 5.2. It can be noted that for a given
basin length and a given mode of oscillation the ratio C/CO is also
equal to o/oo, where % denotes the frequency of the fundamental mode of

oscillation as computed from the linear dispersive theory.

An important parameter in the study of long wave oscillations in
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Fig. 3.2.4 Variation of the relative wave celerity C/C

h/» for a cnoidal wave.
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closed basins is the Stokes parameter sz/h3. Inspection of Egs.
(3.2.107) to (3.2.109) shows that the shape of the curve n(x,t)/H
depends only on the value of HA2/h3 at a given time t/T. The evolu-
tion in time of the wave in the basin has been plotted in Fig. 3.2.5
for three different values of le/h3. For H)\z/h3 = 10 the profiles
are similar to those predicted by the linear theory. However, no
fixed node exists at x/L = 0.5 although the surface elevation remains
small at all times at that location. For HA2/h3 = 100 the comparison
with the linear theory becomes poor; the standing wave pattern becomes
a progressive wave pattern and the envelope of maximum surface elevations
has constant height different from zero along the basin away from the walls.
This nonlinear feature pertains only to the long wave range aqd is not
observed in the intermediate or deep water range. For HA2/h3 = 1000
the traveling wave pattern is even more apparent, actually the wave looks
very much like a single'hump' traveling back and forth in the basin
almost entirely above the still water level.

A comparison of theée analytical results with experiments will be
presented in Section 5.2. One major advantage of this analysis is
that, although restricted to natural modes of oscillations, it provides
insight into the characteristics of the finite amplitude oscillations.
Using this approach it is also possible to delineate quantitatively the

limits of validity of the linearized theory.

3.2.4 The Range of Validity of the Linear and Nonlinear
Dispersive Theories

In this subsection all the variables are expressed in

dimensional form. One common assumption to both the linear and
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nonlinear dispersive theories is that 0(%9 < 0(1) where % is a character-
istic wavelength and h is the still water depth. Mathematically this
assumption is expressed by the approximation of the classical linear

dispersion relation by:
02 = kg [ kh -% (kh) 3] (3.2.112)
This approximation is valid within 2% error if:

kh < 0.6 (3.2.113)

or ovh/g < 0.6 (3.2.114)

For the problems of the basin excitation or the wave-induced harbor
oscillations, 0 denotes some characteristic frequency of the excitation
function.

Both linear and nonlinear long wave theories are applicable only
if Eq. (3.2.113) is verified. If not, higher order dispersion terms
should be introduced into the equations.

The second limitation concerns the effects of nonlinearities
neglected in the linear theory. A relevant parameter indicating the
importance of nonlinearities relative. to dispersion is the Stokes
parameter defined in Subsection 3.2.3 for the case of standing waves

in a closed rectangular basin:
H)2

g = 3.2.115
7 ( )

where H and A denote the cnoidal wave height and cnoidal wave length,

respectively, associated with the standing wave oscillations.
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It has been seen (Fig. 3.2.5) that if_gs is less than ten, finite
amplitude effects remain small if not negligible for all modes of
oscillation, but as_’gS increases, the standing wave pattern changes
into a wave pattern which is quite different from what the linear
theory predicts. The critical value_I_JS = 10 presumably can be chosen
to define the upper limit at which finite amplitude effects can be
neglected. For_gS < 10 little error is introduced by replacing
A by 2m/gh/c. Furthermore, although the criterion has been established
for the free oscillation of a standing wave system, it seems reasonable
that it could also be extended for more general wave systems develop-
ing in the basin as well. Therefore, it is proposed to express the
range of validity of the linear theory for long waves by:

n, < on_
= (T ¢

vgh 27 2
Eé oh ) < 0(10) (3.2.116)
For a basin continuously excited with the motion described in Section
3.2.2 a resonant frequency is given by:

L
o (ontl)T n=0,1,2--- (3.2.117)

'Eﬁ;
Using Egs. (3.2.72), (3.2.116), and (3.2.117), an estimate of the
evolution . of the Stokes number with time when the basin is continu-

ously excited at a resonant frequency can be derived as:

. 40 d/L_ 4 . s ¢
L ® oD yZ s (1 - explo—+ 1) (3.2.118)
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In particular, during the first few oscillations:

160 d/L
(2n+1) %1 (h/L)2

et

U, (3.2.119)

The significance of Eqs. (3.2.116), (3.2.118), and (3.2.119) will
appear clearly in Section 5.2.

It is useful, at this point, to stress the difference between the
Stokes number, defined specifically for the excitation of a closed
basin, and the Ursell number, mentioned in Section 3.1 and used in a
more general context to describe the evolution of a long wave system.
The characteristic wave height H and the depth h are the same for the
two parameters, but the characteristic length £ is different. TFor the
Stokes number the length A is the usual wavelength, related to the fre-
quency 0 by A = ZH/EEVO, and it is independent of the local shape of
the wave in the basin. In the Ursell number, the length % refers to
the local wave shape independent of the exciting conditions. A more
quantitative definition. of % has been given by Hammack (1972) as
2= nq/ﬁnxl where no is the maximum wave amplitude in the region of

the wave under consideration and nx is defined as the maximum value of

the shape of the profile in that region. One important property of
long waves, pointed out by Hammack (1972), is that they tend to evolve
during their propagation in the absence of friction and geometric
spreading effects towards a wave state characterized by a local Ursell
number of order unity. An application of this consideration will be

discussed in some detail. in Section 5.2.
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3.3 The Effects of Energy Dissipation on the Wave Induced Oscillations
of a Narrow Rectangular Harbor

This aspect of the investigation presented here was motivated in
the following ways. The initial purpose was to use a linearized
analytical model for a harbor configuration with a simple geometry
to determine the energy dissipation due to the entrance of a
harbor. It turned out, however, that this method only yielded reliable

results if the other sources of dissipation present in laboratory

experiments were considered, such as boundary friction, surface ten-
sion, and leakage underneath harbor walls (for a harbor just sitting
on the floor of a larger wave basin). Once the various sources of
dissipation had been properly scaled, the results of the linear model
could be used as a basis of comparison with the experiments for the
investigation of the finite amplitude effects in both steady and
transient wave induced oscillations. Since most of the experiments
were performed for a narrow, rectangular harbor, a rectangular con-
figuration was chosen for the analysis.

The incident waves generated in the laboratory are never sinusoidal,
but contain higher harmonics. These harmonics may affect the harbor
response significantly and since they are not necessarily in the shallow
water range, the use of a fully dispersive linear theory is
necessary.

The various sources of dissipation which may affect the wave
dynamics in the present experimental harbor study are described in
Section 3.3.1. The analytical formulation of the harmonic problem and

the derivation of the dispersive, fully-dissipative solution are
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presented in Section 3.3.2., A physical discussion of the solution and
a correction for the sources of dissipation not included in the model,
such as surface tension, is presented in Section 3.3.3. Finally, the
application of the dissipative steady state solution to transient

problems is presented in Section 3.3.4.

3.3.1 The Various Sources of Dissipation

In this section only the sources of dissipation affecting

the present experimental harbor study are discussed.

(i) Laminar bottom friction

This source of dissipation has been included in the dissipa-
tive long wave equations derived in Section
laminar shear stress of the fluid against the bottom resulting in a
velocity gradient at the bottom which can be approximated by (see Eqs.
A.19 and A.23 in Appendix A):

ou,

i _ ,0,1/2
Wm0y G.3-1)

where n is the normal vector to the solid boundary, pointing toward the

~

fluid domain, uy is one of the velocity components parallel to the bound-

ary, just outside the boundary layer, v is the kinematic viscosity

and ¢ is a characteristic frequency of the wave motion.

(ii) Laminar wall friction

When the fluid domain is bounded laterally by vertical
walls, shear stress of the fluid against the lateral boundaries takes
place, causing additional dissipation,and the resulting velocity gradient

at the wall is alsc given by Eq. (3.3.1).
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(iii) Laminar surface friction

In laboratory conditions a laminar shear stress often
occurs at the water surface. It is caused by the formation of a
thin film resulting from surface contamination. When the film is
insoluble and becomes fully contaminated it acts as a solid boundary
in the horizontal direction and the resulting velocity gradient at
the surface can be expressed as:

ou.,
_i_ . 951/2
v c (Zv) ui (3.3.2)

where ( denotes the surface contamination factor which can, in principle,
vary from 0 to 2 (Miles, 1967). In practice, for initially clean liquid
surface in contact with ambient atmosphere experiments by Van Dorn (1966)
indicate that C rapidly approaches a limiting value of unity. This

value corresponds to the establishment of the fully contaminated surface

film.

(iv) Dry friction from meniscus action

For a solid surface not wetted by a liquid,
"Coulomb-like'' frictional forces take place, according to Miles {(1967), when

the meniscus moves along the solid surface and can be expressed by:

F=x r, (3.3.3)

per unit length of meniscus, where Te is the surface tension at the
air-water interface and k a constant approximately equal to 0.31
for a distilled water-air-lucite contact (Miles, 1967). More precisely,

according to Miles (1967), k is equal to %-[coseR-coseA] where GA and OR



76

denote the contact angles of advance and recession, respectively, of the
meniscus moving along the solid surface, which have unequal, but

constant values. In the case of a distilled water-air-glass contact K
is nearly zero; this is reflected in the fact that distilled water wets
glass but not lucite. 1In order to drastically reduce this friction
force in the case of lucite (which was used in the present investigation)
it is sufficient to add a small quantity of detergent in the water,

e.g.,see Keulegan (1959).

(v) Reésidual dissipative source related to surface tension

An additional damping mechanism related to surface tension
was apparently first measured by Keulegan (1959) in a special case and

involves some "obscure surface activity phenomena" as expressed by

Keulegan, apparently independent of surface film shear stress or dry menis-
cus friction. It becomes significant only for narrow vessels. One way to
characterize this mechanism is to consider the surface as a membrane

with a uniform tensile fprce Fe per unit length acting parallel to the

water surface and connected to the walls (see definition sketch in

o

b —]

Fig. 3.3.1).

Fig. 3.3.1 Definition sketch for the additional surface
dissipation mechanism.
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The force F per unit length required to pull the membrane to an elevation
n is given by:
Pen

F ~ Fe sin 6~T (3.3.4)

where Pe is the surface tension at the air-water interface, b is distance
between the two walls and n is the wave height. One way to render this
force dissipative dis te assume the existence of a slight phase shift
between F and n.

It can be noted that this dissipation mechanism and the four others
previously mentioned affect the experimental study of the closed basin

excitation as well as the experimental study of harbor oscillations.

(vi) Leakage losses

Many of the harbor experiments presented in Section 5.3
were performed with the harbor just sitting on the floor of the wave
basin without seals. It was realized later in the program that this
procedure introduced additional damping due to a small gap underneath
the walls of the harbor. Thus, an analysis of this source of dissipa-
tion was necessary; this analysis is presented in Appendix D. The
results can be expressed in the following way. First, the expressions
for the horizontal component of thé velocity vector and for the wave

elevation are assumed to be of the form:

_ ~ cosh k(z+h) -iot
un(xl,xz,z,t) = Re{un(xl,xz) “eosh kh_ © } (3.3.5)

n(x,x%,,t) = Re{f(x ,x,) ¢ 7} (3.3.6)
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where u denotes the outward normal component of the horizontal
velocity vector at the wall, n is the wave elevation, h is the still
water depth, 0 is the circular frequency of the harmonic motion and k
the corresponding wave number. The'leaking' boundary condition can be

expressed as:

3

o _ e gk A
Uy T 3vt_ Zkh+sinh 2kh n (3.3.7)

where e is the width of the gap between the wall and the floor, teis the
wall thickness, g is the acceleration of gravity, and v is the kinematic
viscosity. One of these parameters, the gap e, is undefined and it will
have to be found from the experiments presented in Section 6.2. Con-
sidering shallow water waves, the dependence of the leakage velocity on

k in Eq. (3.3.7) disappears and u is related to % by:

, 3
~ e g -
Yn T 12\)t:e h (3.3.8)

It can be noticed that since Eq. (3.3.8) does not contain the
frequency U or the wave number k it applies equally well to the

transient case for long waves.

(vii) Entrance separation loss

Similar to the approach of Ito (1970) and Unluata and
Mei (1975), at the harbor mouth a head loss is assumed to exist such

that the amplitude difference across the entrance 1s expressed as:

f

T TN e
An(x19x2’t) = Z un(xl’xst’t) ,un(xl’xz ’O’t), (3'3'9)

where u denotes the velocity across the entrance, the

horizontal bars denote the average along the entrance and the vertical
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bars denote the absolute value for a real expression and the modulus
for a complex expression. The friction factor f, is ill defined for
the unsteady case and will be investigated from experiments which will
be described in Section 6.2. In addition, a discussion of the
dependence of fe on certain relevant physical parameters will be post-
poned also until Section 6.2.

If Eq. (3.3.9) is applied to the harmonic problem, higher harmonics
are generated due to the quadratic terms. However, as a first approxi-
mation in Eq. (3.3.9) the quadratic entrance loss can be replaced by

an equivalent linearized expression:

£
e Fal
= 5y U] U (xp%y50,0) (3.3.10)

|0

N(x; 5%y )

w

where Gn is defined by Eq. (3.3.5). Equation (3.3.10) is obtained from
Eq. (3.3.9) in the case of a sinusoidal wave by computing the loss of
energy in one period at the entrance for a quadratic and a linear dissi-

pation term and equating the results.

3.3.2 The Solution of the Harmonic Problem

The harbor under study has a rectangular shape and is
partially closed at the mouth by a thin breakwater as shown by the

definition sketch in Fig. 3.3.2. Several assumptions are made:

(i) The still water depth h is constant throughout
the fluid domain.
(ii) The coastline AE,BF is straight.
(iii) The direction of the incident wave is perpendicular to

the coastline.
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Fig. 3.3.2 Definition sketch of a rectangular harbor.
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(iv) TFinite amplitude effects are neglected. This implies

the wave amplitude is small compared to the depth.

(v) The following dissipation sources, among those dis-
cussed in Section 3.3.1 are included in the present
formulation: laminar boundary friction at the
bottom, the walls, and at the surface inside the
harbor, leakage losses under the walls DH, HG, and
GC, separation losses across the entrance AB. A correction
for the remaining sources of dissipation listed in Section
3.3.1 but not included in the formulation, namely the
two dissipative sources related to surface tension,

will be presented in Section 3.3.3.

(vi) The harbor width b is small compared to the harbor
length (b/L £ 0.4, say). Also, the ratio of b/A,
where A is the wavelength of the incident wave, is

small compared to unity (say, b/A < .2).

The assumptions listed in (vi), which are consistent with the range of the
experiments presented in Section 6.2, greatly simplify the derivation
of the analytical solution as will be seen later. The solution will
be obtained in four successive steps: derivation of a simplified form
for the equations of motion including the effects of laminar boundary
friction, representation of the solution inside the harbor, representa-
tion of the solution outside the harbor, and matching between the two

regions at the harbor mouth.
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Using the Einstein summation convention, the linearized continuity

and momentum equations are:

ou, 3
3y (3.3.11)
oxX, 0z
J
2 2
Efi.= _ l.EE§.+ v 7Yy + e i=1.2 (3.3.12)
ot p 9%, 9%, 9%, 322 ’ e
1 ]
dw 1 9P 32y 32w
R sl P (3313

where ui(xl,xz,z,t) is the component of the velocity vector in the
horizontal X, direction, w(xl,xz,z,t) is the component of the velocity
vector in the z direction, p is the fluid density, v is the kinematic

viscosity, t is the time; and P4 is the dynamic pressure defined as:
Pq =P + pgz (3.3.14)

where g is the acceleration of gravity and p the static pressure.
Internal dissipation is neglected throughout this analysis for the
reason discussed in Section 3.1, and the only viscous terms retained
are associated with the velocity gradients near the bottom and at the
surface in a direction perpendicular to the bottom and surface
boundaries.

The boundary conditions are:
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Py = PEN at z =0 (3.3.15)
w = 9n/ot at z =20 (3.3.16)
w =20 at z = -h (3.3.17)
du
i_ ,0.1/2 _
5, - (2V) uy at z = -h (3.3.18)
ou
i 0.1/2 -
P _C(Zv) uy at z =0 (3.3.19)

where n(xl,xz,t) is the surface elevation, ¢ is a characteristic
frequency of the fluid motion and C the surface contamination factor.
Equations (3.3.18) and (3.3.19) are directly derived from Egs. (3.3.1)
and (3.3.2), respectively.

The analysis is now restricted to the harmonic problem. Since the
effects of friction are only important near the solid boundaries, omne
could expect that the velocity and pressure fields in the fluid domain
away from the boundaries have the same structure as in the friction-

less case. That is, UgsWsPy and n are assumed to be of the form:

_ ~ cosh k(ht+z) -10t .
u, = Re{IJi(xl,xz) ~osh ki~ © } i=1,2 (3.3.20)

. + _.
w = Reitx,xy) SibkGn) il (3.3.21)

cosh kh

s
|

1o
- Re-{ cosh k(h+z) e—iot} (3.3.22)
{7

= Re n(xl,x ) e tOt} (3.3.23)
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where 7 denotes the imaginary number V-1 and k is a wave parameter to
be found from the equations and boundary conditions.
Substituting expressions (3.3.20) and (3.3.21) into Eq. (3.3.11)
yields
3d, .
—= 4+ kw=0 (3.3.24)
axX.
i
Multiplying Egqs. (3.3.12) and (3.3.13) by u, and w, respectively, and

integrating through the depth yields:

2 p
. 1 vo.1/2 4kh(1+C cosh“kh).~ _ 1 Pa
[-io + 4 &) 2kh + sinh 2kh 1% " p axi+0(") (3.3.25)
10w 1~ .
- Tx T 5Pyt oM i=1,2 (3.3.26)
K Y
The boundary condition (3.3.15) implies:
Igd = g N (3.3.27)

Combining Eqs. (3.3.26) and (3.3.27) one obtains:

B (3.3.28)

The elimination of w between Eqs. (3.3.28) and (3.4.24) yields:

A

Bu, . 2 ~
_i_zkenq. (3.3.29)
Bxi (0]

Finally, after eliminating Gi and ﬁd between Egs. (3.3.25), (3.3.27)

and (3.3.29), an equation for n alone is obtained as:

5%h

2 Cen
W}ZJT + k(1 + TL]Jbs)T] = 0(v) (3.3.30)

where Mo is the boundary dissipation factor equal to:
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_1 (Y,1/2 2 sinh 2k b o kh
Y5s 1 ‘20 Okh + sinh 2kh 'sinh 2kb '  tanh kh

(3.3.31)

The boundary condition (3.3.16) has still to be satisfied. Using Egq.
(3.3.28), the classical dispersion relation between ¢ and the wave

number k is obtained as:

02 = kg tanh kh (3.3.32)
The equations of motion have now been reduced to the modified Helmholtz
equation (3.4.30). The relationship between f and the other variables

can be rewritten using the various relations derived so far:

~ - _. _5 _ 8 aﬁ s

U s (1 ”“bs) ————,axi i=1,2 (3.3.33)
wo= -7 %5?1 (3.3.34)
Py = P& 1 (3.3.35)

It is noted that wall friction effects are not included in the

damping coefficient Moo in Eq. (3.4.30), since the integration was only
over the depth, not along the boundaries. Assuming momentarily that there
is no variation of the wave motion in the X, direction, the momentum
Equation (3.3.12) and (3.3.13) cén be integrated first along the width

so that the contribution of boundary friction at the walls can be

obtained. Then, following the same procedure as in the previous

derivation, the final equation is obtained as:
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22 ~
-9—2 + k2(14-iut)n = 0(V) , (3.3.36)
dxl

with the following expression for Mt

_1(¥,1/2  2sich 2kh . 2kh _,  Ckh
Ye =1 Y20 2kh + sinh 2kh° 'sinh 2kh | tanh kh

2h
+ T;J (3.3.37)

For a small aspect ratio b/L one can expect the motion to remain one-
dimensional except near the mouth. As a result, a reasonable way to
include the effects of wall friction in Eq. (3.3.30) is to replace
Uy by Mo

For purposes of clarity the coordinates xq and x, are replaced by
x and y and the velocity components uysu, become u and v in the remainder

of this section.

(ii) Representation of the solution inside the harbor (Region 3)

The variables are referenced by the subscript 3 in the
interior harbor region, limited on Fig. 3.3.1 by the boundaries DH, HG,
GC, and CD.

The problem consisté in deriving a proper representation for ﬁS(X,y)

satisfying the Helmholtz equation:

27 22
< I S P (3.3.38)
ax? ' py? N3 =

- He
k=k(l+7:-§—)

The proper boundary condition at the'leaking!boundary can be obtained

by substituting Eq. (3.3.7) into Eq. (3.3.33):
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A

= i¢ekn+ 0Cen,) (3.3.39)

where

3 o

e
€= 3\)te 2kh + sinh 2kh (3.3.40)

Typically 0(g) = O'(Ut) = 0.01, so that terms of order Eut, €2, and

ui will be neglected throughout the analysis. The boundary conditions are:

o1y b .

S= Ly =0 , Iyl <3 (3.3.41)

an

3 b . ~ A b

—2 Dy o = .3.42

5y (x, 3) =71 ¢ekmng (x,7) 3 )

e S ek 7 b 3.43

Sy (x,——z— = - ek n3(x, - -2-) (3.3.43)

13 s (3.3.44)

% (0,7) = ¢c3() 3.
where c3(y) =0 for |y|>a

2

Following Miles and Munk (1961), a Green function representation

of the solution is sought of the form:
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b/2
T‘53(&}’) =/ 03(y') G(x,y,y")dy' (3.3.45)
-b/2

where the Green function G(x,y,n) must satisfy Eq. (3.3.38) to (3.3.43)

(where ﬁ3 is replaced by G) and

%S'(O’Y’Y') = §(y-y") ly'] < b/2 (3.3.46)

where §(y-y') denotes the Dirac function.
An elementary solution of Eq. (3.3.38) for G satisfying boundary

conditions (3.3.41) to (3.3.43) is found as:

cos<ény) cos[&n(x+L) + 7] (3.3.47)
where
- ~ ~ 5 1/2
= 2_ 2
o ( B, )
2Tn _ 1€ . -
5 &EE n=1,2,3...
Bn =
. €
(7-1) P k n=0

The general solution for G can be expressed in a series expansion:

oo

G(x,y,y') = z dn(y') cos(ény) cos[&n(x+L)-+i€] (3.3.48)
n=0
Each coefficient dn(y') is found by applying boundary condition (3.3.46)

and integrating across the harbor width after multiplying each side of

Eq. (3.3.46) by cos(ény):
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cos(é 7'
- g n=1,2,3

~ - kb ~ .

g'& [1+ 21;22—‘5——'] sin(a L + Z¢)
n 2(rn)2 o

dn(y') = (3.3.49)
cos(E _v')
o’ n=0

~ ; ~ + * ’
bqo sin(gOL 1g)

It has been\assumed previously that b/L < 0.4. Thus, the wave for
those situations can be comnsidered unidirectional except near the mouth,
and most of the wave energy remains concentrated in the first mode of
oscillation (corresponding to n=0). Hence, the effect of dissipation
will be retained only in the first term of the series in Eq. (3.3.48).
Furthermore, it has been assumed that b/)\ << 1; this implies that

kb < 21 and, thus, the final form of Green's function is obtained from

Eq. (3.3.49) as:

—cos(éoy') cos(éoy) cos(&o(x+L)-+ie)

G(XsY3y') =
bd sin(d L + 7€)
o o
@ cos(B_y")cos(8 y) coshl[a (x+L)]
+ ] = n L (3.3.50)
n=1 E—an sinh (unL)
where )
21 , _ 2 2 12
Bn = ——_b—-" OLn = (Bn - k )

A uniform velocity distribution is assumed across the mouth. This implies

from Eq. (3.3.33) a constant value for c3(y):
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[

= =£‘; ) a
ey(y) =T T+ i) uy(0,y)  for  y] <

(3.3.51)

From Eq. (3.3.45), an average amplitude across the entrance can be com-

puted as:
— a/2 a/2
~ Cq
n3(0,y) = J J G(0,y,y") dy' dy
—a/2 "31/2

and the result can be put in the form:

n3(0,y) = c3(E+aSl)

where
E =—%—-1— 1
8 tan(o L+7g)
o o
5 - ] 2d? (A2 L CosuhaLsiHZ(Trna)
1 & a m” bo_ sinh o L b
n=1 n n

E can be expanded to the first order in Mo and €:

- _al_ 1 :

E=-f%tanim T2, 1)
where

u

t a L a
I =— ( + = )
H 2 kb tan kL b cin’kL

. ea 1 Ly 1
IE—EkakbtankL+(l+b) 7]

sin kL

(3.

(3.

(3.

(3.

(3.

(3.

(3.

.52)

.53)

.55)

.56)

.57)

.58)

.59)
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The unknown Es is to be found by matching the solution at the mouth as
described by Eq. (3.3.53) with the form of solution outside

the harbor, which will be derived next. Once Es is known, the solution
inside the harbor is given by Eq. (3.3.45). More explicitly, using

Eq. (3.3.50) and expanding G(x,y,y') to the first order in e and €,
the amplitude function ﬁ3 is expressed as:

<3

~ _ _3 ;_ a cos k(x+L) . P
ny(x,y) = | 5 ein w7 7’(Ju+Je) + 8,(%,y)] (3.3.60)
where
g ooalfe 1 1+ =L 5 (3.3.61)
U b 2 sin kL tan kL T
_a € 1, (1 +1L/b)
Je v smm i G ¥ tan km (3.3.62)
8nb
_ o  4kb sin(—z—) cos(B vy) cosh[an(x+L)]
S,(x,9) = ] 5 Z (3.3.63)
n=1 b"a B sinh(a L)
n.n n

(i1) Representation of the solution outside the harbor (Region 4)

The subscript 4 will be used to denote the variables in the
region outside the harbor. In the outer region viscous and leakage
effects are neglected. The amplitude function 34 must satisfy the

Helmholtz equation;
2%, oM, .

9x
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with the boundary condition:

8ﬁ4 a
5y @) =0 [y] > 5 (3.3.65)

The amplitude can be conveniently divided into two parts:

N, = Np +n (3.3.66)

where ﬁI denotes the amplitude function of the normally incident and

reflected wave system in the absence of harbor:

n_= AIcoskx (3.3.67)

LN

and ﬁs is the amplitude function of the radiated wave produced by the
presence of the harbor. A proper representation of the solution for

N satisfying Eqs. (3.3.64) and (3.3.65) and the Sommerfeld radiation con-

dition at infinity, i.e., ﬁs->0 as x2+y2—+W, can be obtained along the
mouth (e.g.,Lamb (1932, §305) as:

. a/2?
;]S(O,Y) = -‘72:'/ Ho' [kly-y'l]c4(y')dy' (3.3.68)
-af2

where Ho' is the Hankel function of the first kind of zeroth order and

a » - [l -
c4 is the normal derivative of ng across the harbor entrance, i.e.,

an
¢, = 5= (0, Iyl < 5 (3.3.69)
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From Eqs. (3.3.67) and (3.3.68) the wave amplitude in the outer region

at the harbor mouth can be represented as:

a/2
A 7
N, 0,y) = A -3 B ' [kly-y'|] ¢, (yNdy’ (3.3.70)
-af2
an
Since 757 = 0 at x = 0 for all values of y, c4(y) also represents the

normal derivative of a4 at the entrance:
o, a |
¢, === Oy , lyl<3 (3.3.71)

A uniform velocity distribution has been assumed across the mouth. This

implies from Eq. (3.3.65) a constant value for ca(y)

— _ _ 10 - _ 10 s
c, = ¢, p a, (0,y) . @, (0,y) (3.3.72)

An average amplitude can be computed across the entrance (see Lee (1971)) as:

Ty o L= . 2
naco,y) = A -3¢ a(JC + 4 Yc) (3.3.73)
2 2
where Jc =1+ 0(k"a") (3.3.74)
Y = 72(0.1987 ka) + 0(k%a?) (3.3.75)
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(iii) Matching the solution of each region &t the harbor entrance

The existence of a head loss across the mouth has previously
been assumed defined by Eq. (3.3.10). With the present notations and

using Eqs. (3.3.20) to (3.3.23), Eq. (3.3.10) can also be written as:

f ——— e
A N -8 _e g a
n3(0,y) - n,(0,y) = 37 7g Iu3(0,y)| u,(0,) (3.3.76)

A

where the vertical bars denote the modulus of the complex quantity Ug-

The continuity requirement at the entrance implies:

83(o,y) = 6, (0,y) (3.3.77)

where the assumption of small wave amplitude compared to the depth has
been used.

The remainder of the derivation follows directly. Substituting
Eqs. (3.3.53) and (3.3.73) into Eq. (3.3.76) and using relations (3.3.77),

(3.3.72) and (3.3.51) yields, after some manipulation, the following

expression:
7:0' a (O’Y) <
I I AT AT R T A
ka a _
where B = - e m(0.1987 ka) - 3 cotg kL + akSl (3.3.79)
gz-is the real quantity given by Eq. (3.3.56) and:
- ak
Xr =72 (3.3.80)
X ks [+ K (3.3.81)
(8 2 b “tan kL sinsz
PN S L, 1
Xe =% g tanim t A+ 3] (3.3.82)

sinsz
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=€ (9
Xe =5 Gy ¥ Y] (3.3.83)

The term Xr comes about from the communication of the harbor with the
open sea and is directly related to the imaginary part of Eq. (3.3.73).
The physical significance of the four terms Xps xu, Xe and Xg will be
discussed in Section 3.3.3.

Once the Eq. (3.3.78) has been solved for the unknown quantity ES
the wave amplitude can be computed at any location inside the harbor
from Eq. (3.3.60). 1In particular, the series §é(x,y) can be neglected

at the backwall for b/L < 1 and a simple expression is obtained

for ny (-L,y):

ﬁB(‘L’Y) a 1 B}
T T g O, ) (3-3.86)

where Ju and Je.are‘defined by Eq. (3.3.61) and (3.3.62) respectively.
This concludes the analytical derivation of the solution for the

wave-induced oscillations in a rectangular harbor with laminar boundary

friction, entrance losses, and the effect of leakage incorporated (as
mentioned, the primary application of the latter is in connection with
the laboratory studies presented in Chapter 6),

The application of these results for the indirect experimental
determination of the entrance friction coefficient fe can be seen from
Eqs,(3.3.84) and (3.3.78). The value of |Y| can be determined from the

measurement of the wave amplitude at the backwall of the harbor and from
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Eq. (3.3.84). The coefficient fe is derived from Eq. (3.3.78), assuming
that XU and X, are known. A physical interpretation of the solution

and its applications to the evaluation of the effects of other sources
of dissipation not included in the present formulation are presented
next in Section 3.3.3.

3.3.3 The Physical Interpretation of the Solution

The structure of the solution is best characterized by
Eq. (3.3.78) which is similar to that which defines the amplification
factor for the harmonic oscillator. The denominator consists of a real
part B which becomes zero for some values of the incident wave number k,
and an imaginary part composed of four terms, each generally less than
order unity. These terms represent the effects of the four dissipative
sources described earlier on the dynamics of the harbor.

The radiative damping term, Xps is produced by the communication
of the harbor with the open sea which creates a leakage of energy away
from the harbor. Since ir is proportional to ka the radiative damping
decreases as the harbor opening gets smaller leading to the so-called
harbor paradox (Miles and Munk (1961)). The boundary friction term, XU’
in this section is due to laminar friction along the bottom, lateral and
surface boundaries. Equation (3.3.81) shows that XU increases with
kL, i.e., with higher modes of oscillation. The term Xe stems from the
possible existence of a small gap beneath the harbor walls in the
laboratory model, corresponding to a loss due to leakage. It is noted,
from Eq. (3.3.82), that the importance of leakage damping increases as

the ratio %-increases. Finally, entrance friction is represented by the
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term X and is produced by the head loss across the harbor entrance.

From Eqs. (3.3.83) and (3.3.84) Xg increases with E-and ﬁ3 so that the im-
portance of entrance loss increases as the width of the entrance decreases
and as the wave amplitude inside the harbor increases. If in Eq. (3.3.78)
B = 0 for some wave number and Xr.<< 1, the quantity Y still remains

finite because of the presence of the terms associated with viscous

dissipation, i.e., xu, Xgo Xgo

The amplification factor R(x,y) is defined as:

Ny (%, )
R(x,y) = g (3.3.85)
T

Specializing to the situation where O(Xr + XU + x . + xf) < 1, the
reasonant conditions corresponding to a maximum velocity at the entrance
are realized for B = 0 and the corresponding amplification factor is

given at the backwall by:

R(-L,0) =| 2 1 !
»Ve b sinlkL X, t+ Xu + X e'*Xf

+ 0(e,n) (3.3.86)

At resonance, the value of kL for which B = 0 in Eq. (3.3.79) depends

a
b

order approximation for kL is:

both on = and %-. However, if b/L remains sufficiently small, a zeroth

kL ~ (2n+1) 121 n=0,1,2... (3.3.87)

(In actual fact, these values of (kL) correspond to the limiting case

b
where = 0.) The corresponding mode shapes can be defined approximately
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from Eq. (3.3.60) as:

n3(x,y)

X ~ cos k(x+L) (3.3.88)

I

In order to evaluate the effects of dissipative sources not included in
the present model it is useful to define at resonance the factor Qi

associated with the dissipative source Si as:

dWi/dt

E
n

1 1
a—=6' (3.3.89)

i
where dWi/dt is the mean power dissipated by the source Si’ and En is the
mean wave energy in the harbor at resonance. From the resonant character-

istics defined by Eqs. (3.3.87) and (3.3.88) En is given by (see e.g.,

Ippen (1966)):

A pg LB

e
[
B

where A denotes the wave -amplitude at the backwall.

An alternative parameter measuring the effect of the dissipative
source Si is the decay coefficient E; which measures the damping rate of a
freely oscillating wave system. It can be directly related to Qi as
follows. From the energy conservation principle the rate of energy loss

in a system in free oscillation must be exactly balanced by the mean power

dissipated by the source Si:

_n___1 (3.3.90)
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since En«..A2 it follows that:
n_, nda (3.3.91)

Using Eq. (3.3.89) and (3.3.91), Eq. (3.3.90) becomes:

dA -0 dt

el 2-6; (3.3.92)
Or, integrating

A _ g L

AO = exp[- o 7 (3.3.93)

where the decay rate a, is related to Qs by:

o, = (3.3.94)

o
i .
Ql
In case of n sources of dissipation, the same reasoning leads to

an overall decay rate a—given by:

o, = (3.3.95)
1

Q =

| o~
I~

U
i=1 i=1 4
The relationship (3.3.95) will be used in Section 5.1 for the
experimental investigation of the sources of dissipation related to
viscous boundary friction and surface tension dissipation.
The determination of the Qi factor corresponding to radiation
damping, laminar bottom, wall and surface friction, leakage losses and

entrance dissipation is presented in detail in Appendix E; only the

results will be summarized here as:
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1 450 1 1 kh

0, " ma Gy B Temmmand Xi 1Th2:3.4 (3.3.96)

s X = Xpy» X3 T X In other words, the product

, s Xy = X

where Xl = ¥ e

r

x.Q. does not depend on the particular source of dissipation Si'
iti

Combining Eqs. (3.3.86) and (3.3.96) yields:

4
1 . ) L (3.3.97)
A
4
1 _ ) 1 (3.3.98)
e Y
_ 4 1 1 kKh (3.3.99)
Ri o (2n+1) (2 +sin}12kh) Qi
_4 1 1. kKb (3.3.100)
R = (2n+1) (2 + sinh zkh)Q

Ri can be defined as the amplification factor at resonance corres-
ponding to the dissipative source Si. Physically it would be the wvalue
taken by the amplification factor at the backwall of the harbor if only
the source Si was presenf. These results suggest that the reduction of
the amplification factor at (or close to) resonance resulting from any
other source of dissipation can be derived simply from the Qi factor cor-
responding to that source by using Egs. (3.3.97) and (3.3.99).

If a source of dissipation introduces too much damping, e.g., lead-
ing to a value of R less than 2, the results from (3.3.97) can only be
considered qualitative, because in that case maximum amplification may no
longer correspond to values of k which cancel the expression for B in
Eq. (3.3.79).

Several applications of these considerations are mentioned in the

remainder of this section.
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(i) Correction for surface tension effects

| The effects of surface tension not included in the analytical
solution derived in Section 3.3.3 can be estimated by computing the Qi
factors corresponding to this dissipative source. The details of
the derivation are presented in Appendix E. Then the correction for
the amplification factor R at resonance can be obtained from Eq. (3.3.97)
and (3.3.99). This correction procedure will be used in particular in
Section 6.2.2 and 6.2.3 for the experimental determination of the leakage

coefficient ¢ and the entrance loss coefficient fe, respectively.

(ii) Energy dissipation in the model and in the prototype

Hydraulic models are usually constructed to predict the wave
dynamics in a prototype; however, the nature of dissipation in those two
situations may be different. For instance, the boundary friction is
likely to be turbulent in prototype, while it is usually laminar in
a model. A comparison of the Qi factors corresponding to those sources
of dissipation can give an estimate of what their relative effects are
in the case of a harbor with b/L << 1. This aspect will be investigated

in Chapter 7.

(iii) Time required to reach steady state

The number of oscillations required to reach steady state
(or within 5% of its limits) is, from EQ. (3.3.93), approximately equal
to 3/a, that is, using Eq. (3.3.94) equal to Q. In practice, the ampli-
fication factor R at the first resonant mode (n=0) is less than eight
when radiation damping and viscous losses are considered. Therefore, from
Eq. (3.3.100), Q is at most equal to six and thus at most six oscillations

are required for the steady state to establish. One conclusion may be
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drawn from this. In practice, it takes only a few oscillations to
achieve steady state in a long and narrow harbor excited with a narrow
banded frequency; therefore, in the case of transient waves such as
tsunami waves, there may be enough excitation time for normal mode
oscillations to fully develop. (This is one reason why the investigation
of the steady state oscillations of a harbor remains important.)

Another conclusion concerns the basin space required for the simulation
of steady state harbor oscillations in a laboratory, and this will be

discussed in Section 6.1.

3.3.4 The Transient Linear Problem

Once the response of a linear system to a sinusoidal
excitation is known, the linear superposition method allows the response
of the system to any transient input excitation to be computed. The
procedure is as follows: let F(x,y,0) represent the response in amplitude
(which can be complex in the mathematical sense) at a given location
(%,y) inside the harbor to a plane harmonic wave with frequency ¢ and
a unit amplitude at the coastline. If the incident wave amplitude at
the harbor entrance, with the entrance closed, is represented by the in-

tegral:

o]

-ict do
- a0 3.3.101
”i(t) f Ai(c) e oo ( )

-0

then-the transient response of the harbor can be expressed simply as:
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[

-iot do
n{x,y,t) = / Ai(O) F(x,y,0) e © T (3.3.102)

-0

This derivation is valid as long as there is no energy transfer between
Fourier components.
Mathematically n(x,y,t) is the product of convolution of £(x,y,t)

with ni(t):

n(x,y,t) =/ Tli(t')f(X,y,t—t')dt' (3.3.103)
-
where f(x,y,t) is the response of the harbor to a unit impulse, or
equivalently represents the inverse Fourier transform of F(x,y,o).
The most efficient way to perform the operations involved in
expression (3.3.103) consists in using the Discrete Fourier Transform

(DFT) (e.g. Brigham (1974)). The practical computation procedure can be

stated as follows:

-~ Discretize the time record ni(t) into N equispaced values

from t=0 to t=T. The time step At is defined as:

At = = (3.3.104)
N
-~ Compute the Fourier transform of ni(t) with the DFT:
N-1 e kD
=L 2 : 1L = 3.3.105)
Ai(nAf) N nikat)[exp( N )] n=0,1,2,...N (
k=0

where of = % (3.3.106)
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~— Compute

B(x,y,nAf) = A (nAf) F(x,y,ndf), n=0,1,2,...N/2 (3.3.107)

-— Complete the array B as:

BlGxy, (3414009 = B*[(x,5,G5 + 1-D)8)] 1=1,2. ce 3 <2(3.3.108)

where the star denotes the complex conjugate.’

~— Compute the inverse Fourier transform of B as:

N-1 . kn
n{x,v,kAt) = %- E B(x,y,nAf) [exp (- Eél)] n=0,1,...N (3.3.16%)
k=0

Computations corresponding to Egqs. (3.3.105), (3.3.109) are most
efficiently performed using the Fast Fourier Transform (FFT) algorithm.
In order for this procedure to yield satisfactory results, two conditions
must be respected: the time step At should be chosen such that the
incident wave does not contain any energy for a frequency greater
than E%E (Nyquist frequency) and the number N of discretization points
should satisfy:

N=z2P+Q-1

such that PAt is the time during which the incident signal is not zero
and QAt is the time response of the system to an impulse signal. These
Fourier methods will be used in Section 6.4 to compare the transient

experiments with the linear dissipative theory. It should be mentioned
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that this method remains valid only for a linear process. 1In particu-
lar, the effects of leakage and boundary friction included in the
harmonic solution of Section 3.3.3 can be treated using this method.

On the other hand, entrance dissipation which is nonlinear cannot be
adequately treated for the transient oscillations using this technique.
Another method must be used for the transient problem if entrance

friction is introduced, such as the one to be presented in Section 3.4.

3.4 Nonlinear Transient Wave-Induced Oscillations of Harbors
with Arbitrary Shape

The main purpose of Section 3.3 was to provide an analytical
tool to investigate various sources of dissipation affecting wave-
induced harbor oscillations by deriving analytically the linear response
of a harbor with a simple geometry to a harmonic incident wave. In the
present section a numerical finite element model is presented to solve
the problem of nonlinear oscillations induced by plane incident transi-
ent long waves in a variable depth harbor with arbitrary planform. A
Yadiative" boundary is included in the model at some finite distance
from the harbor entrance to allow smooth transmission of the wave
radiated away from the harbor entrance. Incorporation of this feature
in the numerical model allows the computations to be carried on as long
as desired in a finite discretized domain without numerical reflection
problems. This capability renders the model particularly suitable for
the study of the buildup of nonlinearities inside the harbor for reson-

ance conditions and for the investigation of steady state conditions in

the harbor.
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The numerical model is based on the potential function formulation
of the nonlinear dispersive dissipative long wave theory discussed in
Section 3.1. It includes three viscous dissipative effects, namely,
laminar boundary function, leakage losses through lateral boundaries,
and quadratic separation losses due to sudden changes in boundary geom-
etry inside the harbor.

The analytical formulation of the problem is derived in Section
3.4.1. A finite element solving procedure is presented in Section 3.4.2
followed by a presentation of the transient algorithm in Section 3.4.3
and a discussion of its convergence and stability characteristics in Sec-
tion 3.4.4. Finally, an example of implementation of the numerical method

is given in Section 3.4.5.

3.4.1 Analytical formulation

The harbor configuration and the coordinate system are de-
fined by the sketch in Fig. 3.4.1. The analysis is restricted to the
fluid domain bounded by the semicircle FR and the curve EDF. The origin
of the coordinate system lies on the entrance of the harbor at x=0.

The problem consists of computing the wave system in the harbor induced
by plane transient incident waves with a direction of propagation normal
to the coastline whose incident wave characteristics are known. Two
regions are considered:

(i) The harbor region, denoted by QN is the fluid domain bounded later-
ally by the curve AGBDA, and at the bottom by the curve agbda, where the
water depth can be slowly varying. The sources of energy dissipation

considered are: the laminar boundary friction at the bottom and the
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Fig. 3.4.1 Definition sketch of an arbitrary shaped harbor.
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water surface, quadratic separation losses across narrow passages in-
side the harbor region, and leakage due to losses and laminar flow
underneath the lateral vertical boundaries. Some additional losses,
such as turbulent boundary friction, could be included in the formula-
tion without great complication. However, since the present analytical
model was constructed as a basis of comparison with laboratory experi-
ments, only the treatment of the three mentioned viscous dissipative
sources will be discussed here. The equations used in this harbor re-
gion are the weakly nonlinear dispersive and dissipative long wave

equations derived in Section 3.1.

(ii) The outer region, denoted by QL is the fluid domain bounded later-
ally by the curve EAGBF and the semicircle TR. The water depth is
assumed to be constant and is denoted by ho’ the portions of the coast-
line BF and AE are assumed to be straight and perfectly reflective. The
effects of viscous dissipation, convective nonlinearities, and disper-
sion are neglected in this region. The justification of this assumption
as well as the proper location of the boundaries AGB and PR away from
the harbor mouth will be discussed later in this section. As a conse-
quence, the wave system is considered as resulting from the linear
superposition of the known incident reflected wave system (supposed to
be plane and moving normally to the coastline) and the radiated wave
system emanating from the harbor mouth. Finally, a proper boundary con-
dition is applied on the semicircle, FR’ to allow smooth transmission

of the radiated wave through it. A matching procedure must be applied

to connect the two regions. This is done by imposing continuity of the
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flow rate and the wave amplitude across the boundary AGB.

In the remainder of Section 3.4, the physical variables are ex-

pressed in the same dimensionless form as in Section 3.1:

*y/
X="X‘i<‘ =Y_*. h:h* t:_t_:.__g_hi
) Y IR h 3
O
e h % h  u* «
z = 2% 6 =2 2 w =2 = n=-
ho i KVgho ~ i Vgho H

where ho denotes the still water depth outside the harbor region, g is
the acceleration of gravity, H is a characteristic wave height, £ is a
charactéristic wavelength, and the starred symbols refer to the dimen-
sional variables: t* is the time, x* and y* are the coordinates in the
horizontal plane, n* is the wave elevation, 3" denotes the depth averaged
velocity potential function, and E* is the depth averaged velocity vector.

Henceforth, all the equations will be dimensionless unless specifically
stated otherwise. It is recalled that with the above nondimensional
equations, all dimensionless terms are of order unity.

The mathematical formulation of the equations and boundary condi-

tions and a detailed discussion of the simplifications stated above fol-

low next.

3.4,1.1 The Harbor Region

Nonlinear, dispersive, as well as dissipative effects are
considered in that region. Therefore the 'pseudo" potential function,
noted as ¢ in that region (instead of Erfor simplicity in the notations),

is set to satisfy Eq. (3.1.50) up to the first order in o, B, Yot
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yS
0 =V (0V0) + = 0

2

hg. b2 g h g
- Bly VeVe, ) - 5 Vo T+BY-{(z & +3 Vh Vo) Vh}
= -a[Ve-Vo_ + V- (2 VO)] (3.4.1)

where the nonlinear parameter o, the dispersive parameter B, and the dis-

sipation parameter YS, are assumed small compared to unity, and are

defined as:

(3.4.2)

where Vv denotes the kinematic viscosity of the fluid, C is the sur-
face contamination factor, and ¢ denotes a characteristic frequency of
the wave motion.

Equation (3.4.1) is exact up to the first order in u,B,YS. Once
®(x,y,t) is known, the wave elevation n(x,y,t) and the depth averaged
velocity vector B(x,y,t) can be derived simply from ¢ at the lowest

order as:

3
|

= —@t + O(u,B,YS) (3.4.3)

u
~

Vo + 0(B) (3.4.4)

In a hydraulic model it is possible that due to the presence of a small
gap underneath the walls ADB energy can be lost "through" the boundaries

of the model. Combining Eq. (3.3.88) with Eqs. (3.4.3) and (3.4.4),
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the leakage condition is expressed in dimensionless form as

0] on ADB (3.4.5)

3
£ = —= & (3.4.6)
12vt h
e o

where e and t, denote the gap width under the walis and the wall

where

thickness, respectively. It is recalled tpat ho denotes the constant
water depth outside the harbor region. One notices that expression
(3.4.6) is identical to expression (3.3.40) for the leakage coeffici-
ent € in the 1limit of the shallow water range.

Flow separation can take place in the harbor at locations where
sudden expansions and combined contractions and expansions of the
lateral boundaries occur, e.g., at narrow passages between two break-
waters at a harbor entrance. Using Eqgs. (3.3.9), (3.4.3), and
(3.4.4), the resulting loss is expressed as an amplitude difference

across the gap in the following dimensionless form:
__ e (3%
r®, = | (3.4.7)

where 7;; denotes the averaged velocity (assumed continuous) across the
gap, A@t denotes the jump in the value of @t across the gap, andfe denotes
the separation loss coefficient. For purposes of clarity in the subse-
quent presentation, it will be assumed that only one contraction-expansion

exists in a harbor, e.g., IJ in Fig. 3.3.1.
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3.4.1.2 The Outer Region

Formally the wave dynamics outside the harbor region are
also governed by the nonlinear-dispersive wave equation (3.4.1). Physi-
cally, the overall wave system in the outer region can be interpreted as
being composed of two parts: (i) the plane incident-reflected wave system,
assumed to be known at all times, which describes the wave evolution in
the absence of harbor, i.e., in the case of a straight coastline and con-
stant water depth everywhere, and (ii) the radiated wave system which
emanates from the harbor entrance.

In general, these two wave systems (i and ii) interact in a non—
linear manner due to the presence of the nonlinear terms in Eq. (3.4.1)
so that they cannot be linearly superimposed. However, this simplifica-
tion of linear superposition constitutes a reasonable approximation if
the radiated wave amplitude becomes much smaller than that of the
incident-reflected wave system.

The wave height of the radiated wave at some distance from the har-~
bor mouth can be estimated from the derivation presented in Appendix F2

based on the linear harmonic solution, as:
Hs
g ~ 1 *
(HI) ka |H] (ke*) | (3.4.8)

where HS and HI denote the characteristic wave height of the radiated
wave and incident-reflected wave, respectively, r* is the dimensional
distance from the mouth, k denotes the wave number associated with the
harmonic wave, and Hé denotes the Hankel function of the first kind and

zeroth order. Based on the linear harmonic analysis, the characteristic



113
horizontal length £ is set equal to the wavelength A related to the
dominant frequency of the wave motion; this gives:

L = 2w/k (3.4.9)

Combining Eqs. (3.4.8) and (3.4.9), the nonlinear interaction between
the incident-reflected wave and the radiated wave reasonably can be

neglected if:

22 11l &5 | <o) (3.4.10)

The inequality (3.4.10) provides a means of determining the location of
the boundary AGB at some distance R: away from the harbor mouth, such
that the nonlinear interaction between the incident-reflected and
radiated wave systems can be neglected beyond that boundary. In particu-
lar, for small relative harbor openings (say ka<0.1), the boundary AGB
can approach the mouth quite closely, since for small values of kr*,
Hé(kr*) varies only as %n(kr*). (It is noted that this case corre-
sponds to most tsunami situations.) For instance, the value r*/2==0.l
reasonably can be chosen. For moderate values of ka, however, the
boundary AGB must be located further away from the mouth. Hé(kr*)
varies thus only like 1//§¥’ which implies that a rather large portion
outside the harbor mouth must be incorporated in region QN in order

for inequality (3.4.10) to be fulfilled.

*

Provided that inequality (3.4.10) is met at r* = R”, the poten-

]

tial wave function in the outside region, denoted as @L,may be written

as:

@L = @I + ¢ (3.4.11)
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with

0@ < 08,

where @I and { denote the potential function of the incident-reflected
and radiated wave, respectively.

The potential function @L must satisfy Eq. (3.4.1) with ¢ replaced
by @L. Neglecting terms of order w@I, wz, recalling that the depth is
assumed constant (h=1) in region QL’ and substituting Eq. (3.4.11) into
Eq. (3.4.1), an uncoupled system for @I and Y is obtained as:

2 B 2
¢ -Vo_ +v o -V
Itt I s It 3 Itt

= ~a(Ve VoL +V- (o, Vo)) (3.4.12)

t t

2 B 2
- _B - 3.4.13
wtt v 7\{]—*-qujt 3 tht 0 ( )

At the coastline perfect reflection is assumed. This implies

8®L
—= = 0 on AE,BF (3.4.14)
on
or, since 8©I/an = 0 on EF:
%% = 0 on AE,BF (3.4.15)

Neglecting dispersion and dissipation effects for the radiated wave
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as it spreads away from the harbor in region QL (B=0=0 in Eq.

3.4.13, to be justified later), the proper boundary condition on
the semicircle TR,which allows smooth transmission of the radiated
wave through FR,has been derived in Appendix Fl and is expressed

in dimensionless form as:

AR 2, 212 4,16
™ wt R U] at (x"+y7) Rr (3.4.16)
If R - =,

T
equation (3.4.16) is similar, in the time domain, to the asymptotic
Sommerfeld radiation condition derived for the harmonic case. The relative
error in using Eq. (3.4.16) at some finite distance from the harbor entrance

has been computed in Appendix F.1 and yields

2
Er®/o = Max(— s ka 0[£%§l—]) (3.4.17)

R

8(kr¥)?  4(krk)?
For small relative harbor openings (ka < 0(1)) the accuracy of the radiative
boundary conditions is only a function of the dimensionless distance kr¥*,
In particular, Eq. (3.4.16) is verified within a small percentage error

for values of ak less than 0.5 if

*
Rr/l = 0.6 (3.4.18)

where Rt denotes the dimensional radius of the boundary FR'

For larger relative harbor openings and the same accuracy, the radius
Ri becomes an increasing function of ak as the trend in Eq. (3.4.17) shows,
and the present method, although still valid, becomes inefficient for

ak > 0(1) because of the large region QL to consider in the computations.
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The reason why dispersion and dissipation terms can be neglected
in Eq. (3.4.13) stems from the relatively short distance between the
radiative boundary and the harbor mouth; the radiated wave does not
propagate far enough from the harbor entrance to the boundary FR for
the dispersion and dissipation terms in Eq. (3.4.13) to have time to
affect the wave evolution.

In summary, the present treatment of the outer region applies well
to narrow mouthed harbors (say, ak < 0.5). It can still be applied for
wider entrances at the expense of computational efficiency, since for
that case the distance of the boundaries AGB and FR must increase with
the harbor width to keep the same degree of accuracy.

A final simplification of the analysis is introduced concerning
the incident-reflected wave system. As will be seen subsequently, its
characteristics are needed in the present formulation on the boundary
AGB only. In laboratory conditions the incident-reflected wave system
can be characterized by the wave elevation at the coastline in the
absence of harbor nI(t). Since the boundary AGB lies fairly close to
the harbor mouth, as seen previously, first order effects do not have
time to manifest as the incident wave propagates from the coastline to
point G. Therefore, the potential function @I can be analytically

derived at the boundary AGB from the wave elevation nI(t) as:

@I(x,y,t) = —FI(t+x) - FI(t-x) (3.4.19)

where
",

1
FI(G) =3 j 'ﬂI(t')dt' (3.4.20)
0

where the first order terms have been neglected in Eqs. (3.4.3) and
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(3.4.12). This simplification has been used throughout the present

study.

3.4.1.3 Matching Between Harbor and Outer Regions

Smooth transmission of the flow characteristics through
the boundary AGB between regions QN and QL is ensured by equating the
wave elevation and the flow rate between the two regions at the bound-
ary between the regions. Using Eqs. (3.4.3) and (3.4.4), the con-

tinuity requirement is also expressed in terms of the velocity poten-

tials as:
¢ = ¢I + U on AGB (3.4.21)
0d
%g - - =1 i;% on AGB (3.4.22)

where, by convention, the positive nmormal derivative of a function
defined in a region is directed outward. This convention will hold
throughout the remainder of this section, unless specifically stated

otherwise.

A related boundary condition more amenable to numerical treatment

is written as:

=2 (0-0_=-1) on AGB (3.4.23)

-y ) on AGB (3.4.24)

6
where A is a large fixed number typically chosen equal to 10, called the
penalty parameter. It can be checked that in the limit where X*-+“5 Egs.

(3.4.23) and (3.4.24) become equivalent to Eqs. (3.4.21) and (3.4.22).
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3.4.2 A Finite Element Solution

As mentioned previously only one narrow gap with separa-
tion loss (in region QN) is comsidered in the subsequent analysis for
the sake of clarity in the presentation and in the notation. This gap
is represented by the segment IJ in Fig. 3.4.1. For the subsequent
treatment of the equations, the harbor region QN is subdivided into two
non-overlapping subregions Qé and Qé in each of which the solution is

differentiable and such that

Region Q; is, by definition, the fluid domain bounded laterally by the
curve IJD in Fig. 3.4.1 and subregion Q§ refers to the fluid domain
bounded laterally by the curve IBGAJ. The first step in the derivation
of the finite element solution consists in stating the strong form (S)
of the solution:
Find the functions @1(x,y,t), @2(x,y,t), Y(x,y,t) differentiable
2

in the domains Qé, QN’ QL, respectively, and in the time interval 0 < t < t'

such that:
sl = 7o avnly + 22 ol
tt h t

2 . .
h o, posl y _ h° 02,4 ho i hoo o
-B I3 V- (Ve ) - = Vool T+pv-{(g ¢, +3 Vh:Ve")Vn}

. _oc[V®i'\7<I>i +V-(q>i Vol in 9; ,i=1,2 (3.4.25)

- = i 3.4.26
wtt Vi 0 in QL ( )
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with the following boundary conditions:

1
00" _ e .1
ﬁ = h ®t on JA,IB
2
90" _ g .2
m - T h @t on IDJ
%% =0 on AE,BF
R 1
5% = -, - on Ty (3.4.27)
r
30° 5o’ 2.1/2 .1 .2,1/2 1.2
—_— = e ———— = o (S - io [ )
dn on (ocfg l‘t ‘tl Sl‘:’n(‘t ‘t) on 1J
1
80 1
T = A (@7 ¢ - V)
on AGB
L0
N}__ 1 _ I
on A (@ CDI ¥) an
And the initial conditions:
ol (x,y,0) = 0 in Q;I L i=1,2
(3.4.28)
w(x,}’,o) =0 in QL

@I is the given potential function of the incident-reflected wave.

Inspection of Egs. (3.4.25) through (3.4.28) shows that only the know-
ad

ledge of @I and 5, °on AGB is required, as mentioned previously. In

order to insure a smooth solution initially, the computation must start

before the first incident wave reaches the point where radiation begins,
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i.e., point G in the case of Fig. 3.3.1. The weak formulation (W) is
derived from the strong form (S) by multiplying both sides of Eq. (3.4.25)
and (3.4.26) by a trial(or test)function and by integrating each equation
in its respective domain, using the following Creen's identity for all

the integrals which involve spatial second derivatives:
ff £V-Vg dQ = j £ %ﬁ-d(ag) - ff VEVg df (3.4.29)

where 9{! denotes the boundary of the domain {}. The last step consists of
substituting the boundary conditions (3.4.27) into the line integrals re-
sulting from the use of Green's identity.

Performing these steps, the weak form (W) of (S) is stated as:

Find @i(x,y,t) in the function space H'(Qi), i=1,2, and Y(x,y,t)
in the function space H'(QL) such that for all functions 5165 H'(Q;),

i=1,2 and for all functions @ e;H'(QL), respectively:
2 i 74 i pei
) J(]’ (6> o + nve . Vo ] dQ
tt
i=1 /
QN

+ flptt;dﬁ +—JJ Ve v dn

L L

O
]

n?_ ~i h yi_.i
J (5 Vey, -Ve' + ¢ Ve ¢ Vh) df
1
N

” (2ol vatvh + 2 (vneved) (mn-vEh) ) an
1 tt 3
%
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2 v .
s i i
+ ) ——” o o dn
Ly ) t
o
+ € f @11: 3 a) + ¢ J @i 3T d(sn) + e j @tz: 52 d(s9)
JA 1B IDJ
+ 7 a(30) + —— 7 d0)
' rr
R
1 >~
+ g J (@ =) (F- ") d(a%)
AGB
-~ ~l 8®I ~
- f Db (-0 = —5= B1 d(3D)
AGB
2 f i g g~
+0 ) J [(Ve"-va")e - <v¢1-V@t)®1] o
i=1 4
QN
2.1/2 1 .2/1/2 ~1 =2, . 1.2
- [hl@t—cbt[ (87 - 0% sign(, cbt) d(s0) (3.4.30)
e .
1J
with the initial conditions:
~ 2 ivi
”stnfﬂw a2 = 0 at t =0
9 =173
L N (3.4.31)
. 2 .
Hwtwdmiﬂcpi@ a= 0 at t =0
Q =173
L e

where
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H'()) = {f(x,y,t):ly [635)24-(g§)2] d? bounded for 0 < t §_t'}
0
Under appropriate smoothness hypotheses the solution of the weak
formulations can be shown straightforwardly to be identical to the solu-
tion of (S). In order to retain consistency, second order terms in de-

riving Eq. (3.4.30) have been neglected.

The Galerkin form (G) of (S) is:
ih i h
Find ¢© 4in the function space S'(QN), i=1,2, and ¢ in the
function space S'(QL) such that for all functions 5lh15 S'(Q;), i=1,2,

and all functions @h EES'(QL), Eqs. (3.4.30) and (3.4.31) hold with @i, %1,

Y and @ replaced by @ih, 5ih, wh, @h, respectively.

The finite element discretization consists of choosing S'(Qﬁ)
and S'(QL) in a simple manner in order to transform the weak formulation
into a matrix formulation with a finite number of unknowns. Each domain
Q; (i=1,2) and QL is discretized into small non-overlapping regions called
:

elements. Associated with the discretization is a set of " nodal points.'

Each function space is defined as

2

Q
s = {5 1= ] £.(0) N (x,y)) (3.4.32)
i=1
where fi(t) denotes any arbitrary differentiable function in the time in-

terval [0,t'] and Ni(x,y) is the shape function associated with node i

and satisfies by definition:

N Gy = 8 (3.4.33)

where (xj,yj) is the location of the node j, and Gij denotes the
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Kronecker delta symbol.
Thus, fi(t) represents the value of fhat the location (xi,yi). The
basic element used for this study is the four-node, bilinear, isoparametric

quadrilateral element. Within an element fhcan be expressed as:

N 4
£ = azl £,(t) N_(&,m) (3.4.34)
where
1
N (E,n) = Q+E0)A+nn), [nl<1, le] <1 (3.4.35)
4
x = Zl x N_(E,n) (3.4.36)
4
y = azl y N_(E,m) (3.4.37)

The values of Ea’na are indicated as follows:

a ga na
1 -1 -1
2 1 -1
3 1 1
4 -1 1

The shape function associated with node i and the wvariation of fhwithin
an element are represented in Fig. 3.4.2. An important remark is that

the choice of the shape function Ni ensures continuity along the boundary
of two adjacent elements within a subdomain {i, which is in accordance with
the requirement that each function f in the function space S'({2) must be
continuous over {l.

At the interface between two subdomains, namely along IJ and AGB,
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i+7

i+

i+7

Fig. 3.4.2 TFinite element discretization, shape function associated
with node i and variation of fD within element e.
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two nodes must be present for each discretization point, one for each

region.
h «1h -
The functions @k ,@k (k=1,2), wh,wh are written as
N. N
kh k .k ~kh k zk
o0 = ] 9(t) N (x,y) o = 17 e (t) N, (x,y)
i=1 i=1
(3.4.38)
N N
h 3 ~h ~
s Duoney = P iim ey
i=1 i=1
where N 1

l,N2,N3 denote the number of nodes in region QN’Qé’QL’ respectively.

The next step is to substitute Eq. (3.4.38) into Eqs. (3.4.30) and (3.4.31).

The resulting scalar equations are obtained in matrix form as:

~ o o [+ [<]

afMa+cd+xa = £.(£) +g,(d,d) +g,(d)]} (3.4.39)
~T T o

a' N a@) = d¥Ndo) = 0 (3.4.40)

where the dots above the symbols denote differentiation with respect to
time. The vector g includes all the unknown nodal quantities @i(t),
@i(t), and wi(t) in the whole fluid domain. The matrices M, C, K, and N
are symmetric positive except in the case of variable depth, where
matrices M and K become unsymmetric. They are most efficiently formed
using the standard finite element assembly procedure by working on the
element level and adding together the contributions from each element.
fI(t) is a known force vector associated with the incident reflected wave
data, %l includes the nonlinear convection terms, and gy accounts for

the quadratic head loss across the segment IJ. All the integrations

were performed using the 2Xx 2 point Gauss quadrature rule.
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Since Egs. (3.4.39) and (3.4.40) must be checked for all vectors
a(t), the coefficients associated with each di(t) in Egqs. (3.4.39) and

(3.4.40) must vanish, and the following matrix system is obtained as:

Md +Ca + Kd fI(t)i-gl(d,a) + gz(é) (3.4.41)

a(0) %(0) = 0 (3.4.42)

3.4.3 Time Integration Algorithm

An algorithm is presented in this section to solve the non-

linear second order differential equation (3.4.41). It has features

similar to the "implicit-explicit operator splitting"” technique (Hughes, et al,
1978) where all linear terms are treated implicitly and some of the non-
linear terms are treated explicitly, using a predictor-multicorrector
algorithm. Stability problems were encountered when the nonlinear

term %2(8), which ensures a nonlinear contact between region Qé and

Qé, was treated explicitly. This term was subsequently treated im-

plicitly and the stabilify problem disappeared.

Equation (3.4.41) is discretized in time as:

(i+1) (i+1) (i+1) _ (i) (i)
M 2+l +C Yo+l +K §n+1 - 5I(tn+1) +§1(§n+1’1’n+1
(i+1)
+ e, (v i) (3.4.43)
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(i+1) ) (i+1)
d i1 =94y TALSBA Ly
G(i+1) (i+1)
Z, ntl X. n+l + AtY*?. n+l
- At (3.4.44)
.=d  + + =
E. n+l i n At‘.f. (1-28 )an
R A

where At denotes the time step and 8* and Y, are two numerical parameters

governing the stability and accuracy of the linear scheme corresponding

to 81 = 8, = 0. §n+l’ Vo1? @p4 2Te the discretized values of g(tn+l),
[<] [+2]
g(tn+l)’ g(tn+l), respectively, and i is the iteration counter.

+13 implies the

The implicit treatment of the nonlinear term gz(v o

use of a tangent stiffness matrix C such that:
2

-

(
NP

~2(v (1) (1+l) (1) ] (3.4.45)

) + ng [~ n+l ~n+l

(1)

2 is defined at the ith iteration by:
2

where C

(1)

C 3¢ /v
8 <2

~n+l

Substituting Egqs. (3.4.44) and (3.4.45) into Eq. (3.4.43) yields:
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(1) _(i+1) _ (i) (1) (1) 1), (1)
Kx oy T = §n+1 +gi(d v e vy - ng[ 1] (3.4.46)

~

where
. B.AL .
K*(l) _ 1 M+ C + * K - C(l)
Y At Y gy
AtB
* = Mo =
Fern = E1C000) YTy Y C RId_,, - Yo Vo1

The procedure to perform I+l iterations per time step. (where i varies

from 0 to I) is as follows:

~

(i) Compute d

d 110 Vou1 from Eqs. (3.4.44)

. 0) _ = (0 .
(ii) Set é il g 410 Vol = Yn+1 at the beginning of time step t o1

(iii) Form the matrix K*( )and the right hand side of Eq. (3.4.46),

(iv) Solve Eq. (3.4.46) for (13)
(v) Compute §i+l)from Egqs. (3.4.44)

~nt+l

(vi) Continue the procedure until i=1

(I+1) - v(I+1) d (I+1)

(vii) Set a d =97

o+l Zn#1 2 Vbl T Yol
and proceed in the same manner for the next time step.

In order to reduce the computational cost, the tangent stiffness
matrix ng is only formed in practice at the beginning of every three or
four time steps. Therefore, the matrix K* needs only be reformed and
factorized every three or four time steps. Its structure can be fully
exploited by the so-called "compacted column" equation solver in which

zeros outside the profile are neither stored or operated upon (e.g.,

Bathe and Wilson, 1976).
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The resulting main computational cost comes from the formation of
the nonlinear vector at the right hand side of Eq. (3.4.46) and the

equation solving procedure at each iteration.

3.4.4 Convergence and Accuracy of the Algorithm

Assuming in a first step that the nonlinear terms vanish
everywhere at any time, the numerical scheme reduces to the well known
Newmark family of algorithms used extensively in linear structural dynamics
(after Newmark, 1959). Some of their properties can be summed up

as follows:

—~ Unconditional stability is achieved if:

Y

By = 5 (3.4.47)
1

Ya2 5 (3.4.48)

~— The additional restriction

| 1,2
B* = (Y*+ -i-) /4 (3.4.49)

maximizes the high frequency numerical dissipation which is usually
desirable.
—-— The Newmark schemes are first order accurate except if Y%=-%, for
which second order accuracy is achieved. When 81 is considered in Eq.
(3.3.46), the stability analysis of the resulting scheme becomes more

involved. Hughes et al. €1978) showed that if the tangent stiffness matrices

Ky = 9g,/3d
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and CT = agl/ag

are symmetric positive-definite, the implicit-explicit algorithm becomes
conditionally stable, depending on the value of a critical time step and

on the characteristics of the tangent stiffness matrices. In the present

case, however, the matrices KT’CT are not symmetric, and the conclusions
of Hughes' stability study cannot be applied.
Based on the results of numerical tests, the following observations

can be made:

-- It is best to retain unconditional stability for the linear terms by

choosing B, and Y, in accordance with inequalities (3.4.47) and (3.4.48),

~- Two iterations per time step are required to achieve convergence when
nonlinear terms are included in the formulation. It isnot clear, when only
one iteration is used, whether nonconvergence results from instability or

accumulation of round-off errors.

—— For all cases solved with this numerical scheme, the time step was
chosen as At = Axi, where Axi denotes the length of element i in the direc-
tion of wave propagation. No stability or convergence problems were un-

covered using this criterionm.

3.4.5 Example of Implementation of the Numerical Method

It is felt useful at this point to illustrate the applica-
tion of the previous analysis by an example for which comparison between
theory and experiment is available. The harbor configuration has a
trapezoidal plan form shape, constant depth, and partially closed

harbor entrance.
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The conditions chosen for this numerical example are: a = 2.5 cm,

=4 cmy, L = 122 cm, where a,b,b,,L denote the entrance

b = 20
cm, b 10

1
width, harbor width near the mouth, backwall width, and harbor length,
respectively and the water depth h is equal to 8 cm. The incident wave
consists mainly of two cnoidal oscillations; the period of each oscilla-
tion is 1.92 sec.

The first step in implementing the computer program consists of
choosing a characteristic wavelength £. Since the incident wave has a

dominant period T, £ is chosen as £ = TVgh which gives £=170 cm. The

incident wave at the coastline is given as a numerical input in

the form of the discretized relative wave elevation n/h versus dimen-
sional time. The time must be nondimensionalized by dividing it by the
quantity Q/JEH, that is, the characteristic period T; as a matter of
convenience for the numerical computations, the characteristic height H
is chosen equal to the depth h. In this manner the dimensionless given
wave elevation nI/h need.not be rescaled for this computation.

The resulting values of the nonlinear parameter and dispersion
parameters are for this choice of the scaling, o = 1.0, B = 0.0024, respec-
tively. The laminar boundary friction parameter Ys is computed from
Eq. (3.4.2) as equal to 0.10, leakage parameter € is zero (the base of
the harbor was sealed off for this experiment) and the separation loss
coefficient fe is taken equal to 1.15 from the results of the experimental
study performed in Section 6.2.

(The reader should note these dimensions are those of an experiment

which was conducted to investigate the validity of this numerical model.



132

The experimental and numerical results for this trapezoidal harbor will
be given in Section 6.4.3.)

Of major importance is the determination of the locations of the
boundaries AGB and FR outside the harbor. As discussed previously,
they depend on the value of the dimensionless parameter ak, where k
denotes a typical wave number of the wave system related to % by
k = 2r/%. 1In the present case ak = 0.09. Therefore, from the previous
discussion, the boundaries AGB and FR can be located at a relative dis-
tance from the mouth equal to r/% = 0.1 and Rr/Z = (0.6, respectively.

The finite element mesh configuration where the coordinates are
normalized with respect to £, is shown in Fig. 3.4.3. Because of the
symmetry of this problem, just half the total configuration is con-
sidered for the numerical computations. The location of the boundary
IJ at the entrance, and of AGB can be readily recognized by the double
node feature along them. In order to capture the evolution of secondary
waves stemming from nonlinear interactions inside the harbor, the rela-
tive length of each element in the direction of wave propagation was set
for most of the cases investigated in this study equal to 0.02. The
resulting fine mesh configuration inside the harbor is noted. In con-
trast, the mesh becomes quite loose in the outer region, which renders

computations economical.

The last step before running the program is to choose the dimension-
less time step. In order to ensure stability, it is chosen equal to 0.02,
i.e., equal to the element length in the direction of wave propagation
inside the harbor. All the computations associated with this finite

element scheme were performed on an IBM 370/3032 digital computer. In
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the present example about 20,000 single precision words of data
storage were required. The program was run for 380 time steps and

required 90 sec of CPU time.
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CHAPTER 4

EXPERIMENTAL EQUIPMENT AND PROCEDURES

4.1 The Wave Basin

The wave basin used for the experiments and shown in Figs.

4.1 and 4.2 was 58 cm deep, 4.73 m wide and 9.60 m long. The vertical
walls and the floor were constructed of 1.91 em (3/4 in.) marine plywood
and 2.54 cm (1 in.) marine plywood, respectively. The basin floor

rested 25.4 cm (10 in.) above the laboratory floor on a substructure
consisting of wood sills and joists, which was built mainly to allow

for proper leveling of the basin floor. (For additional details of

the construction of the basin, see Raichlen, 1965.) In order to ensure
water tightness and to provide a leveled bottom, a layer of polyester resin
approximately 0.64 cem (1/4 in.) thick was poured into the basin. The
resulting bottom was horizontal within #0.05 cm (0.02 in.)

The wave absorbers placed along the sidewalls are also shown in
Figs. 4.1 and 4.2. They were built to partially absorb the wave
emanating from the harbor entrance; this aspect of the study will be
discussed in more detail in Section 6.1. Each absorber was 48 cm high,
33 cm thick, 9.15 m long and consisted of 50 layers of fiberglass
window screen cloth. The wire diameter of the screens was 0.03 cm
with 18 wires per inch in one direction and 16 wires per inch in
the other direction. Each unit consisting of ten screens spaced
0.95 cm (3/8 in.) apart was held together by brackets at each end, and

it was stretched taut by 0.95 cm (3/8 in.) diameter stainless steel rods
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which were connected from the brackets to a structural frame located
outside the basin. Fittings with "0" ring seals were mounted in the
walls to prevent the leakage around the rods. Five identical units
were stretched along each side of the basin as shown in Fig. 4.1.

4.2 The Wave Generator

The wave generator which was designed and constructed for
this study consisted of a vertical plate which was moved horizontally
in a prescribed manner by means of an hydraulic servo-system. Three
parts are considered in the discussion: the wave plate and carriage,
the hydraulic system, and the servo-system. For details of the latter
two the reader is referred to Goring (1978); only a summary will be
presented here.

4.2.1 The Wave Plate and Carriage

The wave generator consisted of a piston-type wave machine.
Photographs of the wave plate, overhead support frame and carriage
can be seen in Figs. 4.1 and 4.2. The vertical wave generating
surface was an aluminum plate 3.60 m long, 61 cm high and 0.64 cm
(1/4 in.) thick which was attached to a structural aluminum angle
frame to provide rigidity. An aluminum plate 2.98 m long, 64 cm wide
and 0.64 cm (1/4 in.) thick was fastened on top of the structural
frame to increase its stiffness. As shown in Fig. 4.2 this assembly
was suspended from an overhead structure by three pairs of linear
ball bushings (Pacific Bearings Model SPB-20-0PN) which traveled on
3.18 cm (1/4 in.) diameter hardened steel rails (Pacific Bearings
Model SA-20-120). Each rail was connected to two vertical channels

which were fastened to the overhead structure using slotted holes to
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allow for vertical alignment of the rails. The overhead structure
in turn was fixed to a reinforced concrete ceiling beam.

To reduce leakage around the wave plate two aluminum guide walls
60 cm high, 3.30 m long and 0.95 cm (3/8 in.) thick were placed
parallel to the sidewalls of the basin and between the wave absorbers
and the wave plate; these can be seen in Fig. 4.1 and 4.2. One
end of the guide plates was connected to the backwall of the basin,
and each plate was maintained in vertical position by three braces
fastened between the top of the plate and the sidewalls of the basin.
The wave plate itself was sealed against the aluminum guide walls and
the bottom of the wave basin by windshield wiper blades. The
arrangement for mounting the wiper blades is shown in Fig. 4.3. It
consisted of two identical aluminum bars with grooves cut out to
accept the body of the wiper blade; the blade was held in place by
tightly bolting the two bars together.

As shown in Fig. 4.2 and 4.4, the plate assembly was connected
to the rod of the hydrauiic cylinder through three arms which were
constructed of aluminum tube 6.37 cm (2-1/2 in.) diameter and
2.25 mm (1/8 in.) thick. A safety device was designed and constructed
to connect the cylinder rod to the arm system to prevent the system
from being exposed to excessive forces in case of a malfunction of
the electro-hydraulic system. A drawing of this is shown in Fig. 4.5.
The connection was made using a shear plate 0.03 cm thick, made out of
Phosphor Bronze, which was designed to break if the shear load
exceeded 13240 N (3000 pounds). (This was the maximum load which

could be taken safely by the ball bearing and plate assembly.) 1In
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case of shear plate rupture the piston arm could slide freely inside
the central arm with the load transmitted to the plate decreasing to
zero. During this study the shear plate never broke. The hydraulic
cylinder was mounted to a 81 cm (32 in.) "I" beam used as a base,

see Figs. 4.2 and 4.4. With that support no vibrations were observed
during the motion of the wave generator. To eliminate any bending
moment on the piston rod a nylon support bearing which was nylon lined,
through which the central arm could slide, was installed inside a
support block placed near the front edge of the base; this can be

seen to the right in Fig. 4.4.

4.2.2 The Hydraulic System

The various components of the hydraulic system are
shown schematically in Fig. 4.6. The reservoir had a capacity of
0.152 m3 (40 gals.) of hydraulic oil. The pump, used to fill the
accumulators with oil, was a Denison constant volume, axial-piston-
type pump, rated at 0.012 m3/min (2.9 gpm) at 20,000 kN/m? (3000 psi).
It was powered by a 5.6 kW (7.5 hp) 1800 rpm electric motor.
Immediately downstream of the pump was a filter with a nominal particle
diameter rating of 5 microns, followed by an unloading valve and a
check valve. The by-pass pressure valve of the unloading valve was
adjusted to 17000 kN/m2 (2500 psi), the check valve prevented a reverse
flow through the pump from the pressurized system when the pump was
turned off. Two 0.038 m3 (10 gal.) accumulators provided operating
conditions between 20,000 kN/m3 (3000 psi) for which the accumulators

were nearly full of oil, and 3000 kN/m3 (450 psi) when the accumulators
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were empty corresponding to the precharge pressure of each accumulator.
The servo-valve (Moog Model 71-103) provided for the variation in
direction of the flow of o0il in direct proportion to the current it
received from the electronic servo controller. It had a rated flow

of 0.24 m3/min (60 gpm) at 40 ma current. The double ended cylinder
(Miller Model OH77B) had a 10.2 cm (4 in.) bore 4.45 cm (1-3/4 in.)

rod with a stroke of 40.64 cm (16 in.). The seals between the piston
and the piston rod had a small contact area to reduce static friction

to a minimum (Shamban lip seals). One 0.0057 m° (1.5 gal.) accumulator

was installed immediately downstream of the servo-valve to reduce pressure
fluctuations in case of rapid changes in the servo-valve settings.
Finally, a check valve, which opened at 96 kN/m° (14 psi) was placed just
before the reservoir to keep the return line full of oil. (It should be
mentioned that the hydraulic supply system was located one floor below

the wave basin so the hydraulic cylinder for the wave machine drive

was about 5 m above the oil reservoir.) The cylinder, the servo-valve
just above it, and the sﬁall accumulator are shown in the photograph

presented in Fig. 4.4.

4.2.3 The Servo-System

The servo-system consisted of a function generator, a
feedback device and a servo-controller. The principle of operation
is as follows: the voltage from the function generator and the

voltage from the feedback device are of opposite signs and are added
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by the servo-controller which amplifies the resulting signal and
transmits the corresponding current to the servo-valve. The quantity
of flow through the servo-valve, and, thus, the velocity of the
piston is proportional to the magnitude of the current generated
in the servo-controller.

The block circuit diagram of the function generator is presented in
Fig. 4.7. The time history of the desired motion is loaded into
memory of the function generator through punched paper tape and an
associated punched paper tape reader (manual loading is also possible).
The input data consist of 1000 integer values, equispaced in time,
which wvary from 0 to 999. At the time of execution of the pro-
grammed motion the amplitude of the motion is scaled by the total
stroke (the value of which was entered externally in the function
generator) and the time duration controlled to 0.001 second Ewhich

was also entered separately).

The motion feedback deyice consists of an LYDT (linear yariable
differential transformer), Collins Model IMT 711 P38, shown in Fig. 4.4
along the side of the cylinder. The position of the carriage was
converted into an electrical current by the LVDT which consisted of
primary and secondary coils mounted in the form of a tube inside
which a ferro-magnetic core moved. The primary coil was supplied
with a 6 VAC from the servo-controller and the output of the secondary
coil was returned to the servo-controller where it was demodulated

into direct current. As the piston moved, the core which was attached
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to the piston rod moved inside the coils and the demodulated voltage
from the secondary coils varied linearly with the position of the
carriage.

The servo-controller was a Moog AC/DC servo-controller (Model 82 151)
and power pack (Model 82-152). 1Its circuit diagram is presented in
Fig. 4.8. (The connection of the function generator and the LVDT
can be seen in that figure.) A photograph of the function generator
and servo-controller is presented in Fig. 4.9.

Examples of the response of the wave generator are presented in
Fig. 4.10 where the solid curves are the programmed motion from the
function generator and the dashed lines represent the actual motion
of the plate. Figure 4.10(a) shows the respomse to a hyperbolic
tangent time-displacement history which would be used to generate a
solitary wave, and Fig. 4.10(b) shows the response to the function
which would be used to generate a series of cnoidal waves. A time lag
of approximately 0.05 seé between the programmed and actual motion
is observed for the two examples and constitutes a feature of the
servo-controller. (The "roughness'" of the curves is attributed to
the precision of the generated motion which is divided into one part
per thousand.) Otherwise, good agreement is seen between the two

curves in each figure.

4.3 The Closed Basins and Harbor Models

4.3.1 The Closed Basin Models

Two lucite basins were constructed for the experiments presented

in Chapter 5. The first one, made of lucite 1.27 em (1/2 in.) thick
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was 60.95 cm long, 47 cm high and 30.5 cm wide. It could be partitioned
in smaller widths by means of removable lucite walls 1.27 cm (1/2 in.)
thick which were fastened at each end of the basin. The sealant was
applied on the outside face of this wall at the joints to eliminate
leaks. Experiments were performed using six different widths: 23 cm,
13.8 ¢cm, 8 cm, 6.15 cm, 5 cm and 4 cm. This basin was used for the wave
damping experiments and some experiments on the nonlinear resonant oscil-

lations. The second basin, shown in Fig. 4.11 was 117.4 cm long, 13 cm wide

and 40 cm high and was also made of lucite 1.27 cm (1/2 in.) thick.
It was used to extend the experimental results dealing with non-
linear resonant oscillations to small depth to basin length ratios.
The two basins were fastened to the top of the wave generator
wave plate assembly, as shown in Fig. 4.11. Therefore, they could
be moved with a programmed horizontal back and forth motion in a precise
manner using the hydraulic-electro-servo system. The structural
angles seen in Fig. 4.11 attached to the upper edge of the basin were
used to mount the wave recording device which, therefore, moved with

the basin.

4.3.2 The Harbor Models

Two different harbor planforms were investigated experi-
mentally: a rectangular harbor with variable width, length and entrance
width and a trapezoidal harbor with fixed dimensions. The harbor
models were designed so that each would fit into a false wall simulating
a perfectly reflective "coastline' which was installed seven meters
from, and parallel to, the wave plate. The false walls were made of

lucite 0.95 cm (3/8 in.) thick and 40 cm high mounted to a frame
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Fig. 4.11 Long rectangular closed basin, rectangular and trapezoidal
harbors.
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composed of galvanized iron angles constructed in two identical
pieces: the east wing and the west wing. Each wing extended 145 cm
from 30 cm off the center of the basin to the beginning of the wave
absorbers screens. The supporting frames and the walls can be seen
in Fig. 4.1. The walls were weighted to hold them in place. In line
with the false walls, lucite spacers, 0.95 cm (3/8 in.) thick,
2.54 em (1 in.) wide and 45 cm high were placed between each screen
of the absorbers in order to prevent wave energy from penetrating
the absorbers into the still water region behind the "coastline."

The variable size rectangular harbor, made of lucite, is shown in
Fig. 4.11. A "U" shaped outer frame composed of three lucite walls
connected to the false walls. This frame was built to reinforce the
rigidity of the harbor itself. The harbor, made of lucite 1.27 cm (1/2 in.)
thick, consisted of two parallel walls 178 cm long and 44 cm high connected
to the backwall of the outer frame. This system of four walls can
be seen clearly in Fig. 4.11; the distance between the two inner
walls could be varied continuously. The backwall of the harbor con-
sisted of rectangular lucite pieces 40 cm high, 1.27 cm (1/2 in.) thick
of different widths. Each piece was held vertical by two other‘
rectangular lucite pieces 10 cm long, 40 cm high, 1.27 cm (1/2 in.)
thick, which were connected to it at right angles so that the
assembly formed a "U" shape able to stand vertically by itself. (This
can be seen in Fig. 4.11 midway back into the harbor.) With this
arrangement the harbor width could only be varied incrementally by

changing from one piece of lucite to another thereby maintaining



153

an approximately constant width-to-length ratio as the harbor length
was adjusted. In the experiments twelve pieces of lucite were used,
varying from 3 cm to 20 cm wide. The backwall of the harbor was

held in place by clamps. The entrance width of the harbor was
adjusted using two pieces of lucite 0.64 em (1/4 in.) thick, 43 cm
high, 116 cm long and rounded at the edges. These pieces could slide
parallel to the false walls and were connected to these walls and

to vertical plates shown near the harbor entrance in Fig. 4.11.

For some of the experiments presented in Section 6.4 a linear
varying depth inside the harbor was created using a ramp with an
aluminum plate on top of it and by pressing the sidewalls against it
after it had been placed inside the harbor.

The trapezoidal harbor, used in some of the transient experiments
presented in Section 6.4, had fixed dimensions. It was made of lucite
walls 1.28 cm (1/2 in.) thick and was 122 cm long, 40 cm high, 20 cm
and 4 cm wide at the entrance and the backwall, respectively. It could
be partially closed in the same manner as for the rectangular harbor.
Leakage at the bottom was eliminated by gluing the bottom edges of the

walls to a thin lucite sheet 0.18 em thick.

4.4 The Measurement of Water Surface Elevation

The only physical wave characteristic measured in this study was
the water surface elevation. The measurement of the time history of the
surface elevation at a given position is discussed first, followed by

the measurement of the wave profile along the closed basin or harbor
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at a given time (the spatial profile).

4.4,1 The Fulerian Measurement of Wave Amplitude

Resistance wave gages were used in conjunction with the
Sanborn (150 series) recorder (shown in Fig. 4.9) for the measurement
of the water surface elevation as a function of time at a specific
location. A drawing of a typical wave gage is shown in Fig. 4.12.
The wave gage consisted of two stainless steel wires 8.25 cm (3.25 in.)
long with a diameter of 0.025 cm (0.01 in.) and spaced 0.4 cm (0.16 in.)
apart. The wires were stretched taut and parallel in a frame con-
structed of 0.32 em (1/8 in.) diameter stainless steel rod, and
were insulated electrically from each other in the frame. For small
depths (h < 4 cm) a special wave gage was constructed. It consisted
of two stainless steel tubes 0.08 cm (1/32 in.) outside diameter,
0.01 cm (0.02 in.) wall thickness and 6 cm long which were slightly
bent at the lower end mounted without the clamp shown in Fig. 4.12;
using that gage the maximum depth of immersion of the tubes was equal
to the water depth. A Sanborn Carrier Preamplifier (Model 150-1100 AS)
supplied the 2400 cps, 4.5 volt excitation for the gages and also
received the output signal from the wave gage which, after demodification
and amplification was displayed on the recording unit. The circuit
diagram for the wave gages is presented in Fig. 4.13. The immersion of
the wave gage in water causes an imbalance in the full bridge circuit
and induces an output voltage proportiomnal to the change of depth of

immersion relative to the balanced position.
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In addition to the display unit a voltage proportional to the wave
amplitude is obtained from each amplifier of the recorder. Since the
signal was not completely demodulated the output still retained some of
the 2400 cps eﬁcitation voltage modulated by the wave signal and
amplified to several hundred volts to drive the stylus of the display
unit. This signal was to be used for purposes of automatic data
acquisition; thus, the voltage had to be reduced and the signal had
to be filtered to eliminate noise. The circuit diagrams shown in
Figs. 4.14(a) and 4.14(b) were constructed to reduce the output voltage
from the Sanborn recording system to be compatible with the laboratory
data acquisition system and to reduce ncise in the signal. The voltage
divider and first stage filter (Fig. 4.14(a)) reduced the voltage
to an acceptable 15 volts range for the output signal. To reduce the
noise level of several tens of millivolts with a dominant frequency of
120 Hz the signal was further processed by a low pass filter (4 Pole
Butterworth filter) with .a cutoff frequency of 60 Hz (Fig. 4.14(b)).
The final output signal contained a noise level of 8 mv (r.m.s. value)
or less.

Each wave gage was attached to a remotely controlled calibration
device shown in Fig. 4.15, which consisted of a rack and pinion driven
by a synchronous motor. The wave gage was attached to the rack with
its weight counterbalanced. The synchronous motors (GE Model S-6 101)
were connected parallel to the master control shown in the left part
of Fig. 4.16, which consisted of a synchronous generator (GE Model SF 142)
driven by a pinion and the rack of a point gage. Therefore, when

the point gage was moved, a current was generated and relayed to the
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motors which moved the wave gages vertically in a one to one ratio.
This arrangement allowed a quick calibration of the wave gages before
each run. To record the calibration data with an analog-to-digital
converter the motion of the rack of the point gage was converted to an
electrical signal by a potentiometer and constant voltage signal. The
circuit to scale and offset the voltage across the potentiometer

within 5 wvolts is shown in Fig. 4.16(c).

4.4.2 The Measurement of Spatial Wave Profiles

Two methods of measurements were used. For the closed basin, the
water surface profiles were obtained photographically using the following
procedure. Horizontal and vertical scales were mounted on the side of
the basin which faced the camera. A 16 mm Bolex movie camera was
mounted on a tripod about 1.50 m from the basin and a clock placed
in the field of view of the camera next to the basin. The camera
clutch and the clock remote control switch were engaged and the motion
of the wave generator which moved the closed basin was started, To
retrieve the wave profiles the film, after being processed, was
projected frame by frame on a 40 cm by 40 cm screen and the selected
wave profiles were copied. This method, although straightforward,
yielded a fairly low degree of accuracy and the relative uncertainty in
the wave height could reach 20% for small wave amplitude profiles.

The second method, used for the harbor,consisted of retrieving the
spatial wave profiles from closely spaced interior water surface time
histories obtained at wvarious locations. This technique, although more
involved and more time consuming than the previous one yielded far more

accurate results. The description of the detailed procedure is
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postponed until Chapter 6.

4.5 The Data Acquisition System

All voltage measurements were discretized with the Analog-to
Digital (A/D) data acquisition system built into the PDP 11/60 computer
installed in the laboratory. This system can accept eight analog
voltage inputs in differential mode (16 in single-ended mode), digitize
the signals and store the data on a disk. The digitized values are
stored as integer numbers between 0 and 2048 corresponding to a #5 volts
range. The precision of the system was therefore #0.005 volts. The data
acquisition process was monitored through a Fortran routine which was
run from a CRT interactive terminal next to the basin and shown in
Fig. 4.16. The command program for data acquisition requires prior
knowledge of the data rate, the number of channels to be processed,
the total number of data to be taken and the data file name for the
data storage.

The A/D converter of the PDP 11/60 computer was located several
hundred feet away from the recording device., This situation significantly
alters the quality of the data tramnsmitted between the user's
instrument and the A/D converter because of the noisy environmment
inside the building. The noise frequency ranged from 60 Hz to several
kHz so that the use of a numerical filter was impractical. Therefore,
the following alternative solution was chosen to eliminate the noise in
the transmission lines. A circuit diagram of the arrangement is shown
in Fig. 4.17. It consists of three parts:

(i) An input box (located at user's experiment) which transforms

the signal coming from the user's instrument into a differential signal.
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(ii) A twisted pair of cables which is used to transmit the
signal to the A/D converter.

(iii) An output box located next to the A/D system which
transforms the differential signal back into a signal referenced with
respect to the user's ground potential. In this manner the noise
picked up during transmission is automatically .canceled by the differential
signal. Tests performed with that circuitry showed that the amount of
noise picked up by the whole system was less than 2 mV, which is

below the detection level of the A/D.

4.6 The Experimental Procedure Using the Data Acquisition System

The use of the A/D converter in connection with the PDP 11/60
mini computer made it possible to reduce the wave data of each channel
and obtain the calibrated wave heights in a matter of seconds after
the end of the data collection. Calibration of the wave gages had to
be performed before each experiment because of the variability of the
resistivity of the water in the basin with time. Each experiment
consisted of three consecutive steps:

(i) 1In the calibration phase, each wave gage, after balancing the
corresponding circuit, was immersed a positive vertical distance from
its equilibrium position which was larger than the maximum positive
wave height to be measured. The A/D was activated and each gage was
raised by turning the wheel on the point gage of the master unit until
the negative wvertical distance of the wave gage from its balance
position became larger than the maximum negative wave height to be
measured. At the end of the sweep the point gage was placed back in the

equilibrium position, During that phase both the voltage from the
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potentiometer and the yoltages from the wave gages were acquired and
digitized.

(ii) In the run phase, the wave was generated and the A/D
was activated manually. This time only the voltage signals from the
wave gages were discretized with the A/D converter.

(iii) At the end of the sweep a data reduction program was run to
calibrate the wave data. For each wave record the basic operation
consisted of fitting a fourth order polynomial to the corresponding
calibration curve. The resulting coefficients were applied to calibrate
the wave data obtained in the second step. To eliminate the influence
of the end points, only points corresponding to a wave gage deflection
within values prescribed to the Fortran program were considered for the
calibration process. A typical calibration curve is presented in Fig.
4.18. Good agreement is obtained between the original calibration
curve and the fitted one.

Usually these three steps took less than three minutes to be
performed for the harbor experiments presented in Chapter 6. With this
procedure the relative error on the wave height was estimated to be
about 1%. Other Fortran programs were written to analyze the discretized
data; they include curve plotting, searching for wave extrema, Fourier
analysis. Sometimes the wave height to be measured in the harbor was
larger than the depth; for these cases the experiments were carried in
two steps. In a first run only the positive part of the wave was
recorded and calibrated. The same run was repeated and this time only
the negative part of the wave was recorded and calibrated. For each
run, the complete wave was recorded with a wave gage outside the

harbor for a time reference. A Fortran program was run to connect the
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positive and negative parts of the wave record together so that the

complete wave could be reconstructed.
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CHAPTER 5
PRESENTATION AND DISCUSSION OF THE RESULTS

FOR THE CLOSED BASIN

Two sets of results related to the problem of wave dynamics
in a closed rectangular basin are presented in this chapter.
Section 5.1 deals with the damping characteristics of a standing
wave in a closed rectangular lucite basin which result from
dissipation related to laminar boundary friction and surface tension
effects. In Section 5.2 experimental results on the wave dynamics
resulting from the transient and steady state excitation of a
closed rectangular basin in shallow water are presented and compared
to the theory. It is recalled that this closed basin study was
carried out to help elucidate some of the features pertaining to

long wave oscillations in harbors and bays.

5.1 Experiments on Energy Dissipation in Standing Waves in

Rectangular Lucite Basins

5.1.1 Introduction

Experiments were constructed to determine the damping
characteristics of a standing wave in a rectangular lucite basin which
result from dissipation related to laminar boundary friction and

surface tension effects.
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The main reason underlying this study stemmed from the
necessity of knowing accurately the amount of dissipation resulting
from the two aforementioned damping sources in order to investigate
experimentally the other dissipation mechanims, such as leakage
losses and entrance separation, affecting the harbor experiments
presented in Chapter 6. Since the shapes of the modes of
oscillations are similar for a rectangular basin and a narrow
rectangular harbor (which was used mostly in the experimental study
described in Chapter 6), the characteristics of laminar boundary
friction and dissipation related to surface tension in the harbor
can, therefore, be directly inferred from the closed basin experiments.

A convenient parameter to characterize the amount of dissipation
is the decay coefficient o defined as

= £
A _ T
N (5.1.1)
o]

where Aand Ao denote the wave amplitude at either end wall, and T

is the period of a natural mode of oscillation of the basin.

From Eq. (3.3.95) the coefficient o can be expressed as

Q|
"

I e~
Q]
n

n
] (5.1.2)

e

where Q denote the "Q" factor defined in Section 3.3.3, associated
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with the dissipative source Si and n is the total number of

dissipative sources. TFive sources of dissipation which can affect

wave oscillations in closed rectangular basins in laboratory have

been investigated in Section 3.3.1. The associated Qi factors

have been computed in Appendix E, yielding from Eq. (5.1.2)

the following expressions for the corresponding decay coefficients:

bottom laminar boundary friction:

v 2kh
426 sinh 2kh

Cib=

e

wall laminar boundary friction:

— i

% w2 5+ Q-5 2
surface laminar boundary friction:

i A Ckh

® "% /20  tamh kn

dry friction from meniscus action:

— 1 mTb
% =g a b T2 T

residual surface tension dissipation:

2T

— e
aoh= Kob 5
pgb

(5.1.3)

(5.1.4)

(5.1.5)

(5.1.6)

(5.1.7)
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In these expressions v denotes the kinematic viscosity of the
liquid, h is the still water depth, Te is the surface tension of the
liquid air interface, p is the fluid density, g is the acceleration
of gravity, C is the surface contamination factor equal to 1 for
a fully contaminated surface, and k and Kob are two constants.

The frequency O of the wave oscillations corresponds to & natural

mode of oscillation of the basin defined by:
KL = nm . n=1,2,... (5.1.8)

where k denotes the wave number. It is noted that only the decay
coefficient ?g'varies with amplitude. This characteristic makes
it easy to recognize this dissipation source' experimentally.

The purpose of the experiments was to check the validity of
the analysis and to determine the values of the two unknown
coefficients x and KBb felated to surface tension dissipation.
The study of wave damping was conducted in a Jlucite basin
with 'a length L = 60.95 cm, divided into six different widths:
b=4cm, 5cm, 6.15 em, 8 cm, 13.8 cm, and 23 cm. For each
basin width the decay coefficient was measured for eight depths
corresponding to a range of kh from 0.3 to 1. All measurements
were performed for the first mode of oscillation (n=1 in Eq. (5.1.8)).

Ordinary filtered tap water was used for all experiments.

In order to eliminate the effects of dry friction from meniscus

action, a commercial solution of Kodak Photo-Flo 200, which acts
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as a wetting agent, was added to the water in a concentration of
one part per thousand. (This concentration was found empirically
by adding successive quantities of wetting agent in the basin
until no further decrease of the attentuation coefficient was
observed).

The experimental procedure consisted in filling the basin with
filtered tap water at the desired depth and adding the solution of
Photo-Flo. The basin was fixed rigidly to the top of the wave
plate connected to the hydraulic system described in Chapter 4 and
was left at rest for about an hour. Then the wave plate was
activated with a sinusoidal motion of small amplitude at a period
corresponding to the lowest mode of oscillation of the basin and
was stopped after a few oscillations. The wave motion was measured
using a wave gage mounted at one end of the basin and the data
acquisition system described in Chapter 4. A typical decay curve

is illustrated in Figure 5.1.1

& :

n
l\J\\J {\ {\U{\V/\VA\/ \VV A v+ t

V)

Figure 5.1.1 Typical decay curve.

Local decay coefficients anl, associdted with the amplitude
Anl, could be computed from a least square fit of the logarithm of

the expression:
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A
L exp[-a . (n-1n")] (5.1.9)
A ny
n
. th  th
where An and An' denote the wave amplitudes at the n and n
oscillation, respectively, and the averaged amplitude An
1
defined as:
n'
1
A = Z A. (5.1.10)
o, (n' - n+l) j=n j

The npumber n-n' was usually chosen between 4 and 10. The discrete

variation of &; with Anl could then be obtained with this method.
1

This allowed detection of the variation of the decay coefficient
with amplitude between point B (three oscillations after the basin
motion was stopped) and point € (corresponding to a wave amplitude
approximately equal to 1/20th of its value at point B).

One important problem is the determination of the permissible
experimental maximum wave amplitude in order for the analytical
expressions for the decay coefficients to apply. In primciple,
those results are applicable within the range of validity of
Stokes second order theory such that the second term in the Stokes
expansion remains much less than unity. 1In the case of a rectangular

basin the expression given by Keulegan (1959) leads to:
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=& < 0(1) (5.1.11)

Ay
2 N

where
coshzkh(cosh 2kh + 2)

sinhzkh sinh 2kh

N2 =

Keulegan (1959) found experimentally that the relative error in
the wave amplitude, using second order Stokes theory,was less than
5% if & is chosen equal to 0.1. Table 5.1.1 gives the resulting
maximum permissible wave amplitude as a function of the depth,
based on this value of E} for the first mode of oscillation and

a basin length equal to 60.95 cm.

Table 5.1.1 Maximum permissible wave amplitude compatible with Stokes
second order theory as a function of the depth.

h(cm) kh A(cm)
20 1.03 6.0
16 0.82 3.8
12.5 0.64 1.9
10.5 0.54 1.4
9.0 0.46 1.0
8.0 0.41 0.7
7.0 0.36 0.4
6.0 0.31 0.3

The experiments were performed such that the wave amplitude at
point B (in Figure 5.1.1) remained within the range indicated by Table

5.1.1.
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5.1.2 Experimental Results

The experimental variation of the attenuation coefficient

o with the wave amplitude is plotted in Figure 5.1.2 for various
widths and a constant value of kh = 0.82 in the presence of a
wetting agent in a concentration of one part per thousand. It is
noted that o remains essentially constant with the amplitude for
nearly all the widths investigated,indicating no effect of dry
friction from meniscus action. TFor b=4 cm o varies only slightly
with the amplitude A, probably resulting from some residual dry
damping not completely eliminated by the action of the detergent.
In the case of Figure 5.1.2 the maximum initial wave amplitude is
approximately 20 mm. It can be mentioned that similar tests
were conducted for small initial wave amplitudes equal to 3 mm;
essentially no difference was noticed between the two sets of runs:
in both cases the damping coefficient remained constant as A varied
and were equal for given values of b and kh.

Figure 5.1.3 demonstrates the importance of the action of
the wetting agent in reducing the damping coefficient. The two
curves correspond to a 6 cm width and kh = 0.83. When the wetting
agent is added to the water there is essentially no variation in
o with A. Conversely when no wetting agent is used, o increases
markedly as the wave amplitude decreases from 25 mm to 2 mm; the
discrepancy between the two curves is attributed to the dissipation
caused by the dry friction of the meniscus against the lucite wall

in the absence of detergent. In the absence of a wetting agent
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it was noted during experiments that the liquid surface near the walls
was rough and irregular. In contrast, when enough wetting agent was
added to the water, the contact region appeared glassy and no roughness
of the water surface was observed. Thus the vertical distance between
the two curves can be set equal to the coefficient &E corresponding

to dry friction. Using Eq. (5.1.6) and the experimental values of

a, inferred from Figure 5.1.3, the coefficient E-appearing in

Eq. (5.1.6) yields:

k = 0.35+0.04

This value is based on a surface tension Te corresponding to an
air-distilled water interface equal to 72 g/secz. It is of the
same order of magnitude as that mentioned by Miles (1967, i.e.,
K = 0.31.)

The variation of a with kh and with basin width b is presented
in Figure 5.1.4. Each graph of Figure 5.1.4 corresponds to a
given width. The dashed lines represent the theoretical variation
of Eﬁ +'&§ (bottom and wall friction) coefficient with kh derived
from Egqs. (5.1.3) and (5.1.4). The solid lines represent the

theoretical variation of E£ + o +‘E; (bottom, wall, and surface

W
friction) coefficient withkh derived from Eqs. (5.1.3), (5.1.4), and
(5.1.5). The symbols represent the experimental data. For this set of

experiments wetting agent was added to the water in order to eliminate
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the dissipation related to dry friction of the meniscus against the
walls, For the largest width, b = 23 cm, the data agree well with
the analysis if bottom, wall, and surface friction effects are taken
into account; this indicates that surface friction must indeed be
considered as a significant source of dissipation. In particular,

in shallow water (kh = 0.3) the actual dissipation rate is 33% higher
than predicted by bottom and wall friction only. As the width
decreases, the measured dissipation rate becomes larger than that
predicted by theory; the difference between experiments and theory
increases as b decreases and for a basin width of 4 cm the dissipation
rate is 407 larger than predicted by theory. It should be noted

that the difference between the experimental decay coefficient o and
EE + E& + Egapparently remains independent of kh for a given width.
The difference a = (ES +'&% +'§s)is shown as a function of b in
Figure 5.1.5. (The vertical bars show the variation of this
coefficient with kh for.the indicated basin width). Even with the
scatter of the data a definite trend can be observed. 1In particular
the slope of the line (obtained by a visual best fit) joining the
segments is -2 on the log-log scale indicating a variation of

. 2

a - (ab +a + as) proportional to 1/b".
Attributing this discrepancy to the surface tension effects

reflected in the damping coefficient Egb, the coefficient KOb

appearing in Eq. (5.1.7) - is found by identifying the experimental

curve of Figure 5.1.5 with Eq. (5.1.7) as:
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Kob = 3.3 (5.1.12)

which gives

o 6.6
2
ob ogb (5.1.13)

KReulegan (1959) found experimentally an expression for Eéb based

on dimensional analysis for similar basins as:

If the parameters from his experiments are substituted into

Eq. (5.1.14) one obtains:

(5.1.15)

which compares favorably with Eq. (5.1.13). This tends to confirm that
the mathematical form assumed in Section 3.1.1 to characterize the
residual dissipative source related to surface tension and leading
to the attenuation coefficient'agb (expressed in Eq. 5.1.7)) is
correct, although an adequate explanation for the existence of this
dissipative source appears to be lacking.

The results of this investigation also tend to show that with
the experimental conditions described in this section, no other source

of dissipation, apart from those reflected in the attenuation
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coefficient O, ,0 .0 ,0 , and Eg , appears significant.

b’ w>s’ ¢ b

For some other experimental conditions this conclusion should proba-
bly be modified. In particular, a critical Reynolds number beyond which
the oscillatory flow inside the boundary layer becomes turbulent was
stated by Jonsson (1978) as uée/v = 563, where u is the inviscid orbital
velocity just outside the boundary layer, v is the kinematic

/2

viscosity, and Ge = (Zv/c)l is the boundary layer thickness;

this critical value can actually be reached for some laboratory

conditions. Also the friction of the portion of the fluid above

still water level against the walls induces some additiomnal damping

neglected in this study which may account for a significant fraction

of the total energy dissipated when the ratio A/h is of order unity.
In order to appreciate the relative importance of the dissipation

mechanisms discussed here, Table 5.1.2 gives the values of

E£ +-5§, Eg, E;, and a;b based on Egs. (5.1.3) to (5.1.7) for

three different widths and kh = 0.3. The values for the dry damping

coefficient are based on a wave amplitude of 10 mm.

Table 5.1.2 Variation of the damping coefficients with
various widths.

o 23 em 8 cm 4 em
o, + o 0.027 0.045 0.072
b W
ES 0.019 0.019 0.019
EC 0.025 0.056 0.100
o 0.000 0.008 0.03
ob
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Dry friction of the meniscus against the lucite walls appears to be the
most important source of dissipation for the two smallest widths and
thus cannot be neglected unless the lucite walls have been wetted due to
the addition of detergent. Assuming this is the case, the combined
effects of surface shear stress and surface tension, associated
with the decay coefficients '&; +.*6b’ account for about 407 of the
total dissipation for the three widths; this clearly shows their impor-
tance in laboratory conditions. Surface tension dissipation associated
with the coefficient &gb can be neglected for larger widths (say
b > 13 cm); it accounts for 13% of the total dissipation when b = 8 cm
and 33% when b = 4 cm, thus demonstrating its importance for small
widths.
Two applications for the present experimental study follow from
these results:
(i) In the experimental study presented in Section 5.2 on the
transient excitation of a closed basin, two basin widths,
b =12 em and B = 23 cm were used. Also, a wetting agent
was added to the water for each experiment: Therefore,
the only significant sources of dissipation to be considered
are the bottom, walls, and surface friction which have been

included in the formulation presented in Sectiom 3.2.

(ii) 1In the experimental study presented in Sections 6.2, 6.3,
and 6.4 on the transient wave induced oscillations in a
rectangular harbor, the harbor widths used ranged from 4 cm to
15 cm and wetting agent was not always present. Therefore,
it was found necessary in some cases, after an estimation of the

dissipation related to surface tension effects, to correct the
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experimental results for these effects using the method presented

in Section 3.3.3. Those considerations will be discussed in more

detail in Chapter 6.

5.2 The Closed Basin Excitation

5.2.1 Introduction

Experimental and theoretical results are presented

in this section, which correspond to the wave dynamics resulting

from the transient: and steady state excitation of a closed
rectangular basin. The only measured wave parameter was the
wave height, therefore the discussion will be limited to this
quantity.

The excitation motion chosen for the basin was a horizon-
tal sinusoidal motion characterized by the amplitude d and
the frequency 0. From the analysis performed in Section 3.2
the water surface elevation can be completely defined by six

dimensionless parameters:

n/ho_ pt/gh x4 hooL
- s s ’ ] >
d/L L L°L’L /EE s (5.2.1)
where
1/2 2h
v, = —= T @+ (5.2.2)
hvgh

The dissipation parameter Yq includes only bottom, walls, and

surface friction. Dissipation from surface tension is expected to

remain small compared to boundary friction dissipation for the

reason invoked din Section 5.1.23 it is therefore neglected here.
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For a given time t and a given position x the nondimensionalized
amplitude n/h, scaled by d/L, depends on four parameters: the
nonlinear parameter d/L, which describes the relative excursion

of the basin, the dispersion parameter h/L, the frequency parameter
oL//gﬁiand the dissipation parameter Yo A more accurate measure

of the dispersion is h/), where A denotes the wave length associated
with the frequency o. Using the linear nondispersive theory, A

can be simply approximated as: A = 2ﬂ/§ﬁ70 so that a relevant

measure of dispersion effects is:

(5.2.3)

~

lf=n

1
27

>
Q

09
a1

If nonlinear effects are neglected, d/L does not appear any
more as a variable in the function F and merely acts as a scaling
parameter for n/h.

Some important results were derived from the linear dispersive
and dissipative theory, presented in Section 3.2.2. 1In particular,

the gesonant frequencies (neglecting dissipation) are given by:

b

o
oL 1 2 2 h,2
= (20+D)m[1 - 2(20+D) T ()] (5.2.4)

31|

where n defines a particular free mode of oscillation of the basin.
The evolution of the wave amplitude with time at either end

wall, for a continuous excitation at resonance, is given by:
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n_, 4 @ Ts t 5.2.5

RT4T RA (1 - expl- 557 71 (.2.9)
so that, at steady state

n_,d (2n+) 7 (5.2.6)

=

L YS

and during the initial stage of the excitation:

(5.2.7)

The characteristic time to reach steady state, or equivalently
for the transients to be reduced to 5% of their original value is
such that:

ot _ (2nt)7 (5.2.8)

27 Yq

Finally, according to the linear theory, a node exists at all

times at x/L = 1/2 for the excitation considered in this experimental

study.
The range of validity of both the nonlinear and linear dispersive

and dissipative theories has beenfound in Section 3.2.4 as:

h .o |[b
Y % or /; < 0.1 (5.2.9)
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In addition a Stokes parameter‘gs was used to define the range of

validity of the linear dispersive theory:

_+ - 2
= @--ny Zweh 5.2.10
U= O ) G ( )
where n+ and n  denote the positive and negative extremes
respectively at the end walls. Linear dispersive and dissipative

theory applies only if:
g, < 00 (5.2.11)

Two rectangular lucite basins were used for the experiments} the first
one was 60.95 cm long and 23 cm wide and the second one was

117.5 cm long and 12 cm wide. Both were fixed rigidly on top of

the wave plate connected to the hydraulic system described in

Chapter 4 and the wave motion was recorded with a wave gage clamped

on top of the basin (and thus moving with the basin) and the data
acquisition system described in Chapter 4. Wetting agent was added

to the water for all experiments.

Section 5.2.2 deals with the basin initially at rest, continuously

excited with a small displacement amplitude relative to the basin
length. In Section 5.2.3 the results of the analysis presented in Sec-
tion 3.2.3 on the nonlinear standing mode of oscillations are investi-
gated experimentally. Section 5.2.4 deals with transient basin excita-
tions of short duration but finite displacement amplitudes. Finally, a

summary of the main results is presented in Section 5.2.5.
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5.2.2 Transient and Steady States for a Continuous Excitation

Near the First Two Resonant Modes

Figure 5.2.1la shows the variation at x=1L of both the
steady state and maximum transient extrema corresponding to the linear-
dispersive theory with the relative frequency of excitation G/GO, where
Oo is obtained from Eq. (5.2.4) for the first resonant frequency, i.e.,

n =0 in Eq. (5.2.4). The values of the dimensionless parameters are:
d/L = 0.0032, h/L = 0.098, OOL/EE = 3.0915, Yo = 0.045 for G/GO = 1.
The two curves are similar to the response of a damped linear oscillator
near resonance; they are approximately symmetric about 0 = Oo and the
maximum transient and the steady state wave amplitudes (n/h)T and (n/h)S
show small variation with O/OO except within about 47 of the resonant
frequency where they increase significantly. The transient response
(n/h)T is always larger than (n/h)S except at resonance where the two be-
come equal. (At resonance (n/h)S is given by Eq. (5.2.6)). The value of
the Stokes parameter_p_S computed from Egs. (5.2.10) and (5.2.6), correspond-
ing to the steady state conditioms, is 360, implying the linear theory
is not adequate at resonance. However, (n/h)S = 0.05 away from resonance
where Hs ~ 40, which is near the range of validity of the linear theory.
A few water surface time histories at one end wall obtained from the
linear dispersive and dissipative theory are presented in Figure 5.2.1b
(n/h versus ot/2m at x = L). They show a good symmetry about the mean
water level. The amplitude of the oscillations grows linearly with time
at first and is given by Eq. (5.2.7). After a few oscillations, however,
theinfluence of either the forced frequency (which induces a beat pattern

near ¢ = OO) or dissipation (at ¢ = OO) alters this linear growth. The
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beat pattern is created by the superposition of the free oscillation
mode corresponding to O = OO and the forced oscillation imposed by the
exciting frequency O; this results in a beat half-period characterized
by GO/|U-OO] oscillations; thus as IO-—GOI/GO decreases, the period
of the beats increases until it becomes theoretically infinite. With
increasing time the beats diminish due to dissipation and steady state
oscillations result.

Figure 5.2.2 shows the variation of the number NT of oscillations
required to achieve maximum transient wave amplitude (n/h)T with G/OO
and the corresponding variation of the number NS of oscillations for
full establishment of steady state. Steady state is, by definition,
considered to have taken place at time t when the relative variation
of all positive extrema along the wave record at x = L is less than 5%
from time t onwards. The number NT increases as IG-OOI/OO decreases,
which can be related directly to the variation of the beat period with
0. Since the maximum transient amplitude occurs during the first beat

for the linear case, N_, can be set approximately to 00/210-00| , 1.e.,

T
a quarter period of a beat, as can be checked from Figure 5.2.2. The
only exception is for the range of values of 0 within 1% of OO for
which NT is primarily controlled by friction. The number NS varies only
slightly with G/Oo near resonance and is governed strictly by friction.
Its value, at resonance, is given by Eq. (5.2.8), i.e., NS = 70.

Since the nonlinear parameter d/L merely acts as a scaling param-

eter in the linear theory, Figures 5.2.1a and 5.2.1b can be derived for

any other values of d/L by multiplying n/h by (d4/L)/0.0032, and Figure
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5.2.2 remains unchanged with scaling.

The experimental variation of the positive and negative extrema
(n/h)T and (n/h)S with O/GO at x = L are presented in Figure 5.2.3 for
the same values of the dimensionless parameters as in Figure 5.2.1 and
are compared to the nonlinear dispersive dissipative theory. Obvious
differences can be noted between Figure 5.2.3 and Figure 5.2.la, con-
firming the inadequacy of the linear model for these conditions near
resonance. The response curves are no longer symmetric about G/OO =1
but bend toward the right and the maxima now occur at G/OO = 1.07,
where the response curves exhibit a large discontinuity (or jump).

(The frequencies at which a discontinuity takes place in the response
curves will be termed "bifurcation frequencies'" in the remaining dis-
cussion.) Thisibehavior is attributed to the effects of nonlinearities
and can be related to the "hard spring" solution of the Duffing's
equation (Stoker, 1950).

The oscillations are quite asymmetric about the still water level;
the ratio of positive té negative water surface elevations becomes
nearly eight for G/GO = 1.07 during the transient stage of the oscilla-
tion. In contrast to the positive extrema, the negative extrema vary
little with O/OO and reach a minimum value of about -0.2. Another fea-
ture of the response which is different from the linear results is the
existence of a secondary jump which takes place at G/GO = 0.97. This
feature seems to pertain only to the forced basin oscillations in the
shallow water range. Experiments by Fultz (1962) on closed basin oscil-
lations in the intermediate and the deep water range resulted in re-

sponse curves with only one discontinuity. Therefore this feature must
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be attributed to the effect of small dispersion.

Steady state is achieved for all values of O/Oo except near the
second bifurcation frequency where a beat pattern develops with period
different from that which the linear theory predicts and diminishes at
a much slower rate than predicted by the linear theory. This also
constitutes a significant departure from the linear theory and will be
examined in more detail shortly.

Positive maximum transient extrema (n/h)T remain larger than the
positive steady state extrema (n/h)S and this difference increases
markedly near O/Oo = 1.07. By contrast their negative counterparts
follow almost the same curve.

The computed curves in Figure 5.2.3 were obtained from a large
number of numerical wave records, each of about 100 oscillations, cor-
responding to a basin length discretization of 30 nodes. Hence, the
computed response curves result from a lengthy computational process
and were obtained only for the conditions of Figure 5.2.3. The compari-
son between the nonlineér theory and the experiments appears good. In
particular, the location of the two discontinuities is correctly pre-
dicted. The only marked discrepancy appears for the values of n/h
greater than 0.7 where the theory predicts lower values than the experi-
ments do. Considering that the nonlinear dispersion theory is based on
finite but small relative wave amplitudes, good agreement with experi- .
ments up to a value of n/h of about 0.7 is actually remarkable. For
larger relative wave heights a more complete theory should be used such
as the equations derived by Su and Gardner (1969) which apply to any

wave situation with small dispersion but arbitrary relative wave height.
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Several water surface time histories obtained from experiments
are presented in Figure 5.2.4a showing the variation of the relative
amplitude n/h at x = L as a function of the normalized time, Ot/2Tm.
Familiar beat patterns which diminish with time can be observed for
each record, but the wave shapes are no longer sinusoidal; near the
main bifurcation frequency they look like cnoidal waves (O/GO = 1.10,
1.07, 1.01) and are indeed closely related to the nonlinear mode shapes
of oscillations derived in Section 3.2.3 which will be discussed in
Section 5.2.3. 1In the record corresponding to G/Oo = 1.04 the slope of
the positive envelope of the oscillations remains constant for the first
few oscillations as predicted by the linear theory, but then increases
markedly before decreasing. This "hardening' behavior during the tran-
sient stage is caused by the nonlinearities and becomes actually more
pronounced closer to the main bifurcation point. As ¢ decreases, a
second oscillation appears at the trough of the main wave at O/GO = 1.01.
This oscillation grows in amplitude behind the main wave as 0 is further
decreased until it becomés equal in amplitude to the first wave for
O/Oo = 0.96. Then the two waves tend to merge together (O/GO = 0.94)
until eventually a nearly sinusoidal wave appears (O/GO = 0.91). The
maximum transient extrema (n/h)fusually take place during the first beat
except near the second bifurcation frequency. For O/Oo = 0.96, (n/h)T
reaches its maximum value during the third beat at the 30th oscillation.
This characteristic is typical near a secondary bifurcation frequency
as will be seen for other cases. Thus, for a continuously excited basin
in the resonant region, the steady state wave shape is very sensitive to

the exciting frequency O.
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The corresponding computed wave records are presented in Figure
5.2.4b. They compare well with the experiments, confirming the
validity of the analysis and of the numerical treatment. The only
discrepancy is a small mismatch in the time of occurrence of the
extrema for some records.

Additional experimental water surface time histories at x = L are
presented in Figure 5.2.5a. The upper curve corresponds to the same
experimental conditions as those presented in Figure 5.2.4, with
G/Go = 0.98. Referring to Figure 5.2.3, this excitation frequency
belongs to the frequency range for which no steady state could be ob-
tained. Beats with a half period equal to 18 times the excitation
period can be observed. They do not result from a linear process,
since, from the linear theory, the half-period of a beat would contain
50 oscillations which is not the case here. Also, according to the
linear theory, those beats should disappear after 70 oscillations
because of dissipation. However, they are still visible in Figure
5.2.5a after 130 oscillétions. Hence, these are truly nonlinear beats
caused by the nonlinear interaction of the oscillation with itself
which induces a secondary oscillation with a slightly different fre-
quency from the excitation frequency ¢. This nonlinear feature is even
more apparent when the parameter d/L is increased from 0.0032 to 0.0048
(the lower record in Figure 5.2.5a); it is recalled that d/L is the
ratio of the amplitude of the basin excitation to the basin length. The
period of the beat is the same as in the previous case, but the maximum
height of the secondary oscillation is bigger relative to the main

oscillation. This feature results in a much more pronounced beat
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pattern. Also nonlinearities tend to act against dissipation in the
sense that for larger ratio of d/L (0.0048) the beats appear to be
attenuated more slowly.

Figure 5.2.5b shows the corresponding theoretical wave elevation
time histories at x = L obtained from the nonlinear dispersive dissipa-
tive theory. The same pattern can be observed as in the experiments
(Figure 5.2.5a) Although in both theoretical wave records shown the
beats are damped faster than in the experiments. Also, for the computed
wave record corresponding to d/L = 0.0048, the half period of the beats
is only 16 times the exciting period compared to 18 times for the ex-
periments. Those numerical computations show that it is indeed
possible to produce these nonlinear beats without invoking the existence
of cross waves along the width of the basin as a generation mechanism, since
it is recalled that the equations used in the present computations only
contain one spatial variable, i.e., the x coordinate.

The experimental and computed variation with O/OO of the number of
oscillations, NT’ for tﬂe motion to reach a maximum (the maximum tran-
sient amplitude) and the number of oscillations Ns required to reach
steady state are presented in Figure 5.2.6 for the same values of the
dimensionless parameters as in Figure 5.2.3. The experimental data show
N remains small away from the bifurcation points, and a jump in the

T
value of NT occurs at the main bifurcation frequency, G/Oo = 1.07.
Several discontinuities take place near the second bifurcation frequency,
G/Go = 0.96 and result from the fact that the maximum transient oscilla-

tions do not take place during the first beat but during the third beat

for 0.955 < g/oo < 0.965 and during the second beat for



<0

‘WO 9 =Y ‘wd G609 = T ‘WO 96T°Q = P $UOTINTOS AB9UTTUOU pue Juswiiadxe uesmilsq uostaedwod
‘4ouanbaxy jueuosea 3semoT ay3 1eOU UOT3IBITOXd 3o Lousnbaiy sy3l yjTa SuUOFITPUod s31B3IS
ApE93lS puU®B JUSTSUBI] WNWIXEW YOBDI 03 Paafnbal suol3eT1IdS0 uUyseq jo iaqunu 243 JO uoTieTaBp

9°2°S *38t4
°0
0
2rl ol 801 90’ YOl P40} 00l 860 960 60 260 060
T * _ _ _ T T | T T 0
o
— —0¢
— -0t
L ]
34045 Apoayg
B oN 09
o o o °© 22
\\ b.lplp
\\ ) o0 0= =0 0= 0~ 00 == —0 — g —O— =0~ 9
| / b a—0—o —08
/ N
P e > == .
/J..r
- - — 00|
~o
- —10<I
Nt INZISNVEL XYW Sv00= 4
SN ‘3LVIS AQYILS ——— 994w $600°0 = a yb/
-~ AYOIHL NYINIINON wy 9=y 160°¢ = 555 021 resesp_ ~ov |
L wi G’ 09 = 7 8600= 1 0> 4 =
N *IN3ISNVHL "XV . wo {9610 = P 4 -
SN *31VIS AQV3ILS o 1995 888°¢=°0  2£000= ! 1
— VLINIWIEEdX3 R N7 g —091
I ] | ! | i t | | |




201

0.945 < O/OO < 0.955. The computed variation of NT with O/OO agrees

well with the experiments over the full range of the abscissa.

The variation of the quantity N_ with O/OO determined experimen-

S

tally remains relatively small except in the vicinity of the main

bifurcation frequency, where N_ increases slightly as O/GO decreases

S

from 1.09 to 1.07 and then decreases sharply before increasing toward
a constant value close to that predicted by the linear theory, i.e.,

N, = 70. The corresponding values of N_ determined numerically agree

5

well with the experiments except for the abscissal range of

S

1.04 < O/O0 < 1.06, where the experimental values are smaller than the
theory predicts. This difference may be caused by the local wave
breaking due to extreme heights reached near the main bifurcation fre-
quency; this accentuates energy dissipation which reduces the number
of transient oscillations.

The evolution of spatial wave profiles at given times as deter-
mined from experiments is presented in Figure 5.2.7a for O/OO = 1.04
during the interval folléwing the maximum transient extremum, which
occurs at time ti such that Gtin/Zﬂ = 15. A single "hump-1like" wave
travels back and forth in the basin and looks like the moving wave
profile resulting from the linear superposition of two cnoidal waves
traveling in opposite directions. (This nonlinear mode shape was
shown in Section 3.2.3). The computed profiles for corresponding
times are presented in Figure 5.2.7b and generally appear similar to
the experimental results. At the nondimensional time O(t - tin)/2ﬂ= 1
as the wave reflects from the end wall, the theoretically determined
wave height is about 15% lower than that determined experimentally.

The evolution of wave profiles measured experimentally is pre-
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sented in Figure 5.2.8a for G/OO==0.96 (near the second bifurcation

frequency) during the interval following the maximum transient extremum.
That extremum occurs at time tin such that Gtin/Zﬂ = 30. Two waves
clearly can be seen moving back and forth; the evolution of the main and
the secondary waves are indicated by a solid arrow and a dashed arrow,
respectively. It is noted that wave extrema occur not only at the end
walls of the basin during the reflection process, but also when the two
waves interact, e.g., at o(t- tin)/Zﬂ = 0.15 and O(t-—tin)/Zﬂ = 0.70.

The corresponding wave profiles determined numerically and pre-
sented in Figure 5.2.8b show reasonably good agreement with the experi-
ments with regard to both the wave shape and the wave height. (It is
recalled that the experimental profiles were obtained photographically
as described in Chapter 4, which introduces some irregularities in the
profiles.) Thus, nonlinear effects and dispersive effects can introduce
quite different profiles compared to a fully linear system near
resonance. Also, no standing wave profile with a node at x/L = 0.5 is
observed, but instead a moving wave pattern with one or more waves
traveling back and forth in the basin occurs near resonance.

In order to study the effect of the nonlinear parameter d/L, the
experimental variation of (n/h)S and (n/h)T with O/OO has been deter-
mined by reducing d4/L from 0.0032 to 0.0016 and letting the other
parameters remain unchanged, and the results are shown in Figure 5.2.9.
A few computed points also are presented in this figure; they agree
reasonably well with the experiments. The shapes of both the transient
and the steady state response curves are similar to those of Figure

5.2.3. The main resonant frequency is shifted to G/G0 = 1.04 and the



204

£ .00032 :.:2.?:50 sec! 7,20.045 i‘*' £ +00032 410045 '
b .op98 L Loes em £+096 E | L0098 #0396 h |
aoL , 6 em 27 [s) L x L, 2,
o 3.09) b 50084 endase e 30 . a <o T 3.09t "0 =3t [ - i(; x
—dcose! 120 x ={_45050' t>0
0.5 T 0.5 .
- | o -
= A=ty z7 U ta) !
, 0 °
o ; 3
0
.10
‘ ' 0.10 \
i i
[ 0
0 / oy
Q.15 0.15
o
0.25 H !
| ! o2s V i
/\/ [
) i
+
0.35 .3
1 ‘ . 0.35 /
o [h)
L 05 B/
h | . h } 0.45 ;
i +
o [
|
+
0.55
. 0.55 .
i i
o o
L i
070 0.70
o °
z 0.85 a
\ \ ‘\ 0.85 :
0
; i
1.00
, ) 1.00
0 : ‘
0/
——— EXPERIMENTS —— NON-LINEAR THEORY
~0.5 fl
0.5 1 08 s i
X X
L T

(a)

(b)

Fig. 5.2.8 Evolution with time of the wave profiles along the basin
within one period; (a) experiments, (b) nonlinear solution;
c/co = 0.96, d = 0.196 cm, L = 60.95 cm, h = 6 cm.



205

second bifurcation frequency is shifted to about O/oo = 0.95, the lat-
ter exhibiting a very weak discontinuity. Steady state is achieved at
all frequencies suggeéting that the beats which were discussed pre-
viously depend directly on the magnitude of the nonlinearities as
described by the parameter d/L. One would expect that as d/L is
further decreased the response curves converge toward that described
by the linear theory and presented in Figure 5.2.1.

Several experimental wave records of n/h versus the nondimensional
time parameter ot/2m at x = L are presented in Figure 5.2.10a and can
be compared to the corresponding theoretical records shown in Figure
5.2.10b. There appears to be good agreement between the experiments
and the theory, and the profiles are similar to those shown in Figures
5.2.4akand 5.2.4b for the case of a larger excitation, i.e.,

d/L = 0.0032. Thus, once nonlinear effects appear, they seem to
induce a wave structure which is somewhat independent of d/L provided
records are compared at similar frequencies relative to the position
of the two bifurcation points. (This conclusion may be misleading:
The dependence of the wave structure on the ratio d/L is weak com-
pared to that of h/L; nevertheless it exists and further experiments
and a simple analysis will demonstrate it later in this section.)

Figure 5.2.11 shows the experimentally determined variation with
G/Go of the number of oscillations NT corresponding to the maximum
transient amplitude and the number of oscillations Ns required to
reach steady state. A few computed points are also presented on this

figure; they agree reasonably well with the experiments. Again the
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curve appears very similar to those of Figure 5.2.6, and the only dif-
ference is that, since local breaking does not take place near the main
bifurcation frequency for the example of Figure 5.2.11, an abrupt

change of N, is not observed near this frequency as in Figure 5.2.6.

S
The effect of the dispersion parameter is investigated by reducing
h/L from 0.098 to 0.051 while keeping d/L the same as in Figure 5.2.3,
i.e., 0.0032. The new linear resonant frequency Oo is defined by
OOL//EE = 3.128 and the dissipation parameter is calculated from the
experimental conditions at ¢ = Oo as Ys = (0,075. For these conditions
the experimental variation of (n/h)T and (n/h)S with O/Oo at x/L=1
is presented in Figure 5.2.12. Also shown in Figure 5.2.12 are
several computed points; a good agreement. is obtained with the experi-
ments. There are certain similarities with the results shown in
Figure 5.2.3, but also differences can be observed. First, the main
bifurcation frequency is shifted to a larger relative frequency (about
G/OO = 1.085) and the maximum positive value of (T]/h)T measured at
that normalized frequenéy is less than 0.8. The resulting response
curves look, therefore, '"flatter and more stretched" towards larger
O/Oo compared to Figure 5.2.3. This feature can be related to the
shape for small values of the dispersion parameter h/), of the ampli-
tude frequency curves in Figure 3.2.4 which correspond to a nonlinear
free mode of oscillation of the rectangular basin. As the relative
frequency 0/0o decreases from O/OO = 1.08, (n/h)S and (n/h)T do not
decrease in a monotonic fashion suggesting the presence of secondary

bifurcation frequencies with small "jumps." One of these can clearly
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Fig. 5.2.13 Time histories of free surface profiles at x=L near the

lowest resonant frequency; (a) experiments, (b) nonlinear
solution; d = 0.39 cmy, L = 117.5 cm, h = 6 cm.
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be seen at G/O0 = 1.025, and another can possibly be detected at

0/0O = 0.975. The difference in amplitude between the results for
the transient and the steady state remains small for all frequencies
for these experiments. Finally, it should be noted that steady state
conditions are reached for all frequencies.

Several experimental wave records at x=L are presented in
Figure 5.2.13a for various excitation frequencies along with corre-
sponding theoretical records in Figure 5.2.13b. In both figures the
variation of the relative wave amplitude n/h is presented as a func-
tion of normalized time ot/2m. Considering Figure 5.2.13a first, the
wave records appear similar to those of Figure 5.2.4 with a "cnoidal"
shape for frequencies which are close to the main bifurcation fre-
quency. As O/OO decreases, a secondary wave develops and approaches
the amplitude of the main wave at G/Oo = 1.023, this is nearer to the
main bifurcation frequency than for the case shown in Figure 5.2.4
For smaller values of O/OO a third wave develops (G/Oo = 0.97) and
then a fourth wave (G/Go = 0.942). Eventually the four waves merge
together at G/Ob= 0.924 to form a "sinusoidal" profile. For the two
wave records corresponding to O/OO = 1.023 and 0/0o = 0.97, the
maximum of the envelope of the waves does not occur during the first
beat, but during the second beat, suggesting the existence of bifurca-
tion frequencies near this frequency. (This ig similar to what was
observed from the results of the experiment with larger dispersion
effects presented in Fig. 5.2.4.)

The computed wave records were evaluated with the basin length

discretized into 41 nodes. The theoretical curves shown in Figure
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5.2.13b appear to agree with the experimental observation of Figure
5.2.13a. Some differences are noted for O/GO = 1.066, where the
theory does not predict the higher frequency waves appearing in the
trough of the main wave, and for G/OO = 1.023 where the measured num-
ber of oscillations required to reach maximum transient state

(N, = 50) is longer than the computed one (NT = 40).

T

It seems reasonable to infer from these results that if the dis-
persion parameter h/L is decreased further, the number of secondary
oscillations in the wave records will increase accordingly. The Stokes
number, defined by Eq. (5.2.10), is equal to 840 near the first
bifurcation frequency for the case of Figure 5.2.13a and was equal to
360 for the case of Figure 5.2.4. This also suggests that the number
of secondary oscillations which may emerge near resonance increases
with the Stokes parameter; this will be discussed additionally in
Section 5.2.4 which deals with transient excitations.

The experimental variation of the relative wave height

(n+-n_)/h for steady s£ate conditions with the relative frequency of
excitation O/OO is presented in Figure 5.2.14; the quantities n+ and
n_ denote the positive extremum and the negative extremum, respec-
tively. (The value of the dimensionless parameters are d/L = 0.00094,
h/L = 0.034, UOL/JEH.= 9.263, and Yo = 0.19 at G/OO = 1.) The frequency
OO is given by Eq. (5.2.4) with n = 1, i.e., it corresponds to the
third resonant mode of oscillation. A true measure of the dispersion
parameter is h/\ which from Eq. (5.2.3) is equal to 0.05. This is the

same value as was used in the experiments which were presented in
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Figures 5.2.4 and 5.2.5; hence, the effects of dispersion are the same
also.

Figure 5.2.14 was obtained by first allowing the steady state oscil-
lations to develop at a given frequency and then increasing or
decreasing the frequency a small amount and letting the basic oscilla-
tions come to a new steady state value. The amplitude of oscillations
of the basin was kept constant. The new feature which was obtained for
these higher mode experiments is the existence of stable subharmonic
oscillations which lie on branch curves denoted on Figure 5.2.14
as Shl and Sh2. For these branch curves the frequency of oscilla-
tion is one~third of the exciting frequency. In particular, for
1.035 < G/GO < 1.05 three stable states of oscillations can be ob-
tained. It was found experimentally that once a steady state oscilla-
tion has been reached on a particular branch curve, and if the excita-
tion frequency is changed until the frequency reaches the bifurcation
frequency value, the response remains on that particular curve. If
after the bifurcation point is reached the frequency is increased a
small amount, the response suddenly changes until it corresponds to
the branch curve beneath it. Thus, referring to Figure 5.2.14 starting
at G/Oo = 1.0, if the excitation frequency is increased incrementally
after first reaching steady state at the lower frequency, branch curves
Sh2, Shl, and the lower response at about O/Oo = 1.06 will be realized.
(Conversely, with a decrease in frequency on a given branch curve,
similar jumps can be seen, but in this case the jumps would lead to a

branch curve with a larger response.)
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It is possible by starting at rest and exciting the basin at a
constant frequency and amplitude to reach steady state on any of the
four branch curves shown in Figure 5.2.14. This was done experiment-
ally and Figure 5.2.15 shows the evolution with time of selected wave
records obtained at x = L. The period of the oscillation for the
records corresponding to G/GO = 1.042, 1.01, and 0.96 is equal to the
period of the excitation. For O/OO = 1.034 the steady state response
lies on the Shl curve and for G/OO = 1.02 the steady state response
lies on the Sh2 curve. For the latter two records, the period of
oscillation is three times the excitation period. As seen in Figure
5.2.15 the record corresponding to the steady state oscillations for
G/GO = 1.034 (Shl curve) consists of one dominant oscillation, while

the Sh2 curve (O/OO = 1.02) consists of two dominant oscillations.

An interesting feature of the wave record corresponding to
O/UO = 1.042 is the time it takes for the subharmonics to develop from
rest; actually at least 150 oscillations are necessary. This may be
related to the extremely narrow frequency bandwidth along which
subharmonics of the Shl type can be generated, starting from rest,

using a constant frequency of excitation. Also, subharmonics

of the Sh2 type emerge sooner when o/oO = 1.02 but it still

takes some time to obtain them (at least 70 oscillations for

fully developed state). This suggests that for transient problems
those subharmonics may not have time to emerge. On the wave
record corresponding to c/oo = 0.96, a small secondary wave
emerges. Its amplitude remains small because of the small value

of d/L. As a comparison the nonlinear parameter corresponding
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to Figure 5.2.9 is nearly twice as large for the same measure of dis-

persion.

5.2.3 Nonlinear Standing Modes; Comparison with the
Analytical Solution

It has been shown in Section 3.2.3 (after Rogers and
Mei, 1975) that the nonlinear free modes of oscillation could be
represented as the sum of two cnoidal waves of the same amplitude and
period propagating in opposite directions. The corresponding steady
state variation of the wave amplitude with time at either end wall can

be derived from Eq. (3.2.107) as:

t
D@ by 2o OF
sk = (g - ten’ [ o [ m] (5.2.12)

where 11 denotes the wave elevation at the back wall, h is the still

t . .
water depth, d  is the vertical distance between the bottom of the
basin and the trough of the wave, cn is the cnoidal Jacobian elliptic

integral of the first kind, m is the elliptic parameter, t is the time,

o is the circular frequency, and H is the cnoidal wave height.
It is seen from Eq. (5.2.12) that at the end walls the
time history of the wave elevation is exactly equal to the time

history of twice the wave elevation of a cnoidal wave moving
in one direction and recorded at some location. 1In particular

the total wave height at the end walls is given by:

2H

s
!

=
]

+ -
where n and n  represent the positive and negative wave elevation



219

at the end walls, respectively.
Some useful results obtained in Section 3.3.3 can be rewritten

here for purposes of clarity for the subsequent discussion. The shape
of the wave defined by Eq. (5.2.12) depends on only the Stokes param-

eter:

v = — (5.2.13)

A === and n=1,2,--- (5.2.14)

The relative frequency of the free modes of oscillation is a function

of both H/h and h/X, i.e.:

= = £(8/h,h/) (5.2.15)
(o]

where GO denotes the frequencies of the free modes of oscillation
computed from the linear dispersive theory. For a given value of
h/)\, the relative frequency O/GO depends only on the relative wave
height H/h.

In this section the time history of the water surface variation
at one end of the basin, determined experimentally, is compared to
the computed shape given by Eq. (5.2.10), i.e., from the nonlinear
standing mode theory presented imn Section 3.2.3. It is noted that
the nonlinear standing mode theory assumes a zero velocity at the end-
walls of the basin.. Therefore, one problem is the experimental

generation of those nonlinear modes by a "correct" excitation.
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Experimentally the rectangular basin was moved sinusoidally. It
is noted for that motion only the modes corresponding to uneven values
of the number n (Eq. 5.2.14) can be excited (see Section 3.2.2). The
choice of the relative frequency O/OO to excite a nonlinear mode can
be determined with reference to Figure 5.2.16, which represents the
nonlinear steady state response to a sinusoidal excitation. The
amplitude-frequency curve for normal free modes of oscillation, which
is defined by Eq. (5.2.15) is represented by the curve PE on Figure
5.2.16. The forced steady state response curve corresponding to a
sinusoidal excitation is represented by the curve DCNBA on Figure
5.2.16. For a basin excited from rest with a constant frequency o and
a constant amplitude d, only the branches AB and DC can be obtained.
However, the branch DC can be continued by starting the solution at
some position in DC and by increasing the frequency ¢ while keeping

the amplitude of the excitation the same until the branch point N is

A} (774-_ 77—)
2h

Figure 5.2.16 Definition sketch of a nonlinear steady state response
curve to a sinusoidal excitation.
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reached. If the point N lies on (or close to) the frequency amplitude
curve PE the branch point N is reached. (If the frequency is further
increased, then the solution falls on the lower branch curve BA.) If

the point N lies on (or close to) the frequency amplitude curve PE

the wave shape at the end walls should satisfy Eq. (5.2.12). The

strategy consists then of varying the nonlinear parameter d/L for

a given value of h/}A, each measurement being made at point N, in

order to obtain several measurements along the curve PE. The

periodic records can be compared with the theory through harmonic an-

alysis and by a direct comparison of the wave shape during one period.
The results for the first three frequency components are

presented in Figure 5.2.17 where the component amplitudes normalized

by twice the cnoidal wave height, are plotted against HA2/h3. The

* dashed curves represent the first three theoretical Fourier components

of a cnoidal wave. Three experimental values of h/A were chosen:

h/A = 0.05, 0.025, 0.017. For h/x = 0.05 the first and third

free modes were obtained whereas in the other case only the first

mode was produced., Figure 5.2.17 shows good agreement between the

theory and all the experiments corresponding to h/A = 0.05; the

agreement remains good when h/A = 0.025 for the first component

and becomes poorer for the other two components. With respect to

the case with h/) = 0.017, the experimental data appear to differ

significantly from the theory.
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Fig. 5.2.18(a) Comparison of experimental wave records at x=L with the
nonlinear analytical standing wave solution, h/X = 0.05.
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Fig. 5.2.18(b) Comparison of experimental wave records at x=L with the
nonlinear analytical standing wave solution, h/Xx = 0.025.
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Comparison of experimental wave records at x=L with the non-
linear analytical standing wave solution, h/A = 0.017, 0.010.
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Some experimental wave records at x=1L are compared to the
theory in Figures 5.2.18a, 5.2.18b, and 5.2.18c with the ordinates as
n/2H and the abscissa t/T. Four experimental values of h/\ are pre-
sented: h/X = 0.05, 0.025, 0.017, 0.010. Again the quality of the
agreement between experiment and the results of the nonlinear steady
wave theory appears to depend more on the dispersion parameter h/A
than on the relative wave height H/h. 1In Figure 5.2.18a the experimen-
tal wave record corresponds to h/A=0.05; it is seen that the theoret-
ical shape agrees quite well with the experiments. In Figure 5.2.18b

all the experiments correspond to h/A = 0.025; some discrepancies

become apparent especially for smaller values of the relative wave
height h/)A. As the dispersion parameter decreases further the
agreement between theory and experiment becomes worse as shown on
Figure 5.2.18c. In fact a secondary wave begins to emerge on the
back of the main wave for h/A = 0.017 and becomes well formed for
h/x = 0.010.

A conclusion related to these experiments is that a nonlinear
cnoidal mode shape, although predicted by the theory, cannot be
obtained for values h/) smaller than approximately 0.025 by using
a sinusoidal motion of the basin. Perhaps another form of excita--
tion may generate these modes for small values of the dispersion
parameter although the proper choice, if any, remains unclear.

These results at least explain the cnoidal-like shape of the
wave records near the main bifurcation frequency described in
Section 5.2.2. They also provide a partial verification of the
analytical solution of the nonlinear standing mode problem in

shallow water and this sheds some light on one possible wave
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structure associated with long wave excitation in closed basins.

5.2.4 Transient Excitation

In Section 5.2.2 waves were induced in a closed rec-
tangular basin by a small but continuous sinusoidal motion of the
basin and nonlinearities were produced by the gradual build-up of the
wave near a resonant frequency. The wave dynamics were investigated
further by moving the basin with two periodic excursions and then
leaving it at rest. This section presents the results of that inves-
tigation to further characterize the interaction effects of the non-
linearities, dispersion, and dissipation on the wave evolution for
transient excitations.

It has been shown previously that for a basin which is continu-
ously excited near resonance, the wave shape is very sensitive to the
frequency of the basin motion. To verify whether or not this feature
remains true for a transient excitation, five experiments were con-
ducted, corresponding to the same excitation motion (two period
excursion of the basin motion) but different frequencies. The result-
ing wave records of the relative wave amplitude n/h versus ot/27 at
x = L are presented in Figure 5.2.19. The dimensionless parameters
for the experiment are: d/L = 0.00%4, h/L = 0.051, GOL//g_h = 3,128,
Yo T 0.075, and the frequency range is: 0.77 < U/UO < 1.43. The same
characteristics are observed for each curve: After several periods,
the oscillations appear to divide into two or three waves. Thus, the
shape of the waves which result from a transient excitation appears to

be relatively insensitive to the frequency of the motion over a rather
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wide range of frequencies. (The frequency S, given by Eq. (5.2.4)
with n= 0 has been chosen for all the cases investigated next.)

Four series of experiments were conducted. For each set h/L was
held fixed and the wave was recorded at x = L for three values of
d/L = 0.0014, 0.0037, 0.0094. (Four values of h/L were considered:
0.098, 0.051, 0.034, and 0.021.) For all runs the excitation con-
sisted of two cycles of oscillation. A characteristic Stokes param-
eter derived from Eq. (5.2.10) and based on the wave amplitude at the
end of the excitation motion (Eq. 5.2.7) and the excitation frequency
o, (Eq. 5.2.4) gives:

d/L

U = 102 5
(h/L)

(5.2.16)

Table 5.2.1 Values of Stokes parameter at the end of the excitation.

d/L
h/L 0.0014 0.0017 0.0094
0.098 14 38 98
0.051 54 142 362
0.034 120 320 812
0.021 316 838 2162

From previous analysis one would expect the wave to depart from its
linear behavior for gs > 0(10) (see Eq. (5.2.11)).

The dissipation parameter Ys which measures the effects of energy
dissipation along the bottom, walls, and surface cannot be controlled

experimentally for a given basin length. It is entirely determined by
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the depth h; therefore, as the dispersion parameter is decreased Yo
increases accordingly. The only way to separate the effect of dissi-
pation from dispersion is through numerical computations; this will
be treated later.

For experiments where the normalized excitation parameter, d/L,
varies, the relative wave elevation 1/h has been normalized with re-
spect to d/L as: (n/h)/(d/L). The normalized experimental time wave
histories of (n/h)/(d/L) versus ot/27 at x=1L are presented in Figure
5.2.20a for the three amplitudes of basin motion shown in Table 5.2.1.
The common dimensionless parameters are: h/L = 0.098, OOL//EH =
3.0915, and Ys = 0.045. For the smallest excitation (d/L = 0.0014) a
damped sinusoidal wave shape is apparent. For d/L = 0.0037 a minor
beat pattern appears and a small secondary wave emerges in the trough of
the main wave a few periods after the basin motion has stopped. Finally,
for d/L = 0.0094 a beat pattern becomes quite apparent and a secondary
wave distinctly emerges.

The beats are due to the superposition of the forced mode causing
the basin to oscillate at the frequency of excitation o, and the non-
linear free mode of oscillation, whose frequency varies with the wave
height. As the wave decays the period of the beats becomes larger due to
a gradual shift of frequency of the nonlinear mode toward OO.

It is interesting to note that the maximum wave height takes place
for the three curves two cycles after the basin motion has stopped.
Also, the maximum relative wave height during the fourth oscillation
increases with increasing d/L. In Figure 5.2.20a the Stokes number

associated with the upper curve is 14, which indicates the behavior of
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the oscillations should be nearly linear. For the case of d/L=0.0037
the Stokes number is 38, implying a departure from the linear behavior.
Finally, for the lower record in Figure 5.2.20a, with a Stokes number
equal to 98, the effect of nonlinearities appears significant.

The corresponding wave records obtained from the nonlinear dis-
persive theory are presented in Figure 5.2.20b; a theoretical record
from the linear dispersive dissipative theory is included for reference.
(The basin length was discretized into 31 nodes for the nonlinear
numerical computations.) There is reasonably good agreement with the
experimental results shown for Figure 5.2.20(a), although for d/L = 0.0094
the experimental record tends to decay at a faster rate than the cor-
responding computed one. This suggests that some additional source of
dissipation may be created by the large waves resulting from a strong
basin excitation, e.g., turbulent boundary friction. 1In order to check
whether or not turbulent friction is responsible for this slightly
larger experimental rate of damping, the Reynolds number associated
with the boundary layer Lhickness, defined by Jonsson (1978) as
Re = u/§735 (see Section 5.1), can be computed for the lower record
(d/L = 0.0094). The orbital velocity u can be estimated away from the
end wall as u = 0.5(n+1-n—)/§7ﬁ'. The resulting Reynolds number, based
on the wave elevation at the fourth oscillation is found as 356. The
critical value given by Jonsson (1978) beyond which the oscillating flow
inside the boundary layer becomes turbulent is 563. This tends to
indicate that no additional dissipation caused by turbulent friction

has taken place during this run.
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A second set of experimental records is presented in Figure

5.2.21a with the dispersion parameter, h/L, decreased to 0.051,

the dissipation parameter Y is increased to 0.075, and UOL/VEE-= 3.128.
It is noted in the upper record which corresponds toHS = 54 a second-
ary wave develops. This secondary wave emerges sooner and reaches a
higher amplitude in the middle record which corresponds to §S==142.
Finally, three waves emerge in the record for which Es = 362.
Nonlinear beats are no longer observed apparently because friction
effects become important.

The corresponding wave records computed from the nonlinear
dispersive-dissipative theory are presented in Figure 5.2.21b. (The
basin length for this set was discretized into 41 modes for the
numerical computations.) The same type of "breakdown'" of the main
oscillation as observed experimentally is seen in the three cases.
However, the evolution of the wave with time for the largest excita-
tion (i.e., d/L = 0.094) differs more from the experimental one than
for the smaller ratioé of d/L; in particular, the experimental wave
decays faster than the computed one. The largest Reynolds number
associated with the experimental run is about 130, which is less than
the critical value given by Jonsson (1978), i.e., Re = 563. This
suggests that no turbulent dissipation has taken place during that
run. The reason such a discrepancy is observed for the rate of wave
damping between the experimental wave record and the computed wave
record remains unclear.

Figure 5.2.22a shows the results of experiments conducted to

investigate the evolution of the wave system for the following
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conditions: h/L = 0.034, Y = 0.111, and OOL//gﬁ = 3.14. A second-
ary wave tends to develop for the relative excitation of d/L = 0.0014
for which HS = 120, but friction appears to affect this evolution.

The main wave separates into three secondary waves in the second
record corresponding to d/L = 0.0037 andyS = 320. Finally, four or
five waves emerge from the main wave in the lower record for which

d/L = 0.0094 and gs = 812. Figure 5.2.22a3 shows that the division

of the main oscillation into secondary waves occurs at smaller rela-
tive times as the nonlinear parameter d/L increases. For a small dis-
persion parameter, such as it is here, the nonlinear effects act first
by steepening the wave. This process takes less time to develop for a
large initial wave amplitude. Near the peaked wave front of the wave
the water particles experience a large vertical acceleration and hence
dispersion begins to act by creating the observed secondary oscilla-
tions.

Figure 5.2.22b shqws the wave records obtained using the nonlinear
dispersive theory for the same conditions as for the experiment of
Figure 5.2.22a. (The basin length was divided into 51 nodes for the
numerical computations.) The comparison with the experiments looks
good for all three curves computed from the nonlinear theory; in par-
ticular, the rate of damping appears to be correctly predicted for the
three curves. An interesting feature is that as the nonlinear param-
eter d/L increases the decay rate of the oscillation alsc increasés,
as can be observed in Figure 5.2.22b, although the dissipation param-

eter y_ remains the same (i.e., Yo = 0.111) for the three curves. By
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comparison the decay rates look similar for the three curves in Figure
5.2.20b corresponding to a larger dispersion parameter. This would
tend to indicate that for a fixed dissipation coefficient Yo the decay
rate of the wave increases with Hs'

Figure 5.2.23a shows the evolution with time of the experimental
‘wave records for the following conditions: h/L=0.021, GOL//EE = 3.14
and Yg = 0.181. For this case one would expeét viscous dissipation
to play a significant role since from the results of the linear
theory (see Eq. (5.2.8)) the wave height should be reduced to
5% of its initial value after 15 oscillations. In fact, it is quite
interesting to observe how it affects both nonlinearities and
dispersion. In the record corresponding to d/L = 0.0014 and QS = 316

no secondary oscillations are observed; in fact damping begins

almost immediately at the end of the excitation. Howeyer the

shape of the waves changes with time with the front face steepening
and the back face flattening, which characterize a growth of
nonlinearities as the wave is damped. The same behavior is
obserwed for the record such that d/L = 0.0037 and QS = 838.

In addition, small secondary oscillations appear on the back face
of the wave which, after some time, has the familiar triangular
shape of a finite volume bore propagating in shallow water. For
the record corresponding to d/L = 0.0094 andl_]S = 2162, the
triangular shape develops more rapidly while more secondary
oscillations with higher amplitude develop on the back face of the
wave. Still the amplitude of those secondary waves remains much
smaller than in the case of Figure 5.2.22a,implying thgt relatively

larger friction effects must be present which negate the effects
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of dispersion.

The corresponding theoretical wave records are presented in
Figure 5.2.23b. (The basin length was divided into 71 nodes in
order to model the secondary oscillations properly.) These records
appear to agree well with the experiments.

To assess the effect of friction on the dynamics of waves for
the conditions of the experiments with initially small dispersion,
theoretical wave records were evaluated for the same conditions as
the results presented in Figure 5.2.23 except the dissipation param-
eter was decreased by a factor of four from YS = 0.181 to YS = 0.045.
These results are presented in Figure 5.2.24., Significant differences
can be observed between the corresponding theoretical records in
Figures 5.2.23 and 5.2.24. For d/L = 0.0014 (gs = 316) nonlinearities
cause the wave to steepen and act against viscous dissipation; this
results in a very small decay rate over the twelve first oscillations.
The dispersion effects begin to appear after the nonlinear effects
cause the main wave to.steepen and peak and then secondary waves emerge
and grow. Thus, for a small oscillation, it takes time for the non-
linearities to grow and consequently for the effect of initially small
dispersion to manifest itself. In the record corresponding to
d/L = 0.0037 (Es = 838) the wave steepens faster and soon separates
into four secondary waves of larger amplitude than those seen in the
corresponding computed wave record in Figure 5.2.23, Finally,
in the last record for which d/L = 0,0094 (Hs = 2162)  the

wave begins to disperse almost immediately, separating into six or

seven secondary escillations. It is interesting to note how much
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faster the amplitude decreases for the larger values of the excita-
tion parameter d/L, as noted earlier. So dissipation, in addition
to damping the overall wave motions, also acts against dispersion
by strongly damping the secondary oscillations which tend to
develop on the back face of the wave. In addition, the larger the
number of secondary waves (or, equivalently, the smaller the wave
length of each secondary wave) the stronger the decay rate of the
overall wave.

It can be checked from most of the transient wave records which
have been presented (both from the results of experiments and from
theory) that the main wave divides into a number of secondary oscil-
lations, and this number appears to increase as the Stokes parameter
increases. A physical interpretation of this can be given as fol-
lows. It is first recalled that the characteristic length associated
with the Stokes number is defined as ZNVEE/G where 0 denotes the
characteristic frequepcy of the basin excitation. On the other hand,
the characteristic length % which defines the Ursell number is a
local length at a given location inside the basin and at a given time.
A long unidirectional wave always tends to evolve in such a way as
to satisfy a balance everywhere between nonlinear effects and fre-
quency dispersion; thus the resulting Ursell number associated with
the local wave form must approach the order of unity in the absence
of dissipation. In the present situation in the initial stage of the
wave evolution, e.g., at the end of the excitation period, the wave

profile has a sinusoidal shape so that a characteristic wave length
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can be chosen the same as that defining the Stokes number. Therefore,

a characteristic Ursell number can be chosen as given by Eq. (5.2.16):

y = 102 /L) _ (5.2.17)

in which (d/L) represents the nonlinearities associated with the wave
height and (h/L)2 the dispersion. After several oscillations the
wave divides up into a number N% of waves so that a new measure of

a local wave length becomes L/N:f and the resulting measure of
dispersion becomes (th/L)Z. Assuming that the various wave heights

remain of the same order of magnitude as the one at the end of the

basin motion, the resulting Ursell number becomes:

U = 107 /L (5.2.18)

Since this number must be of order unity, the variation of the

number“Nfcan be derived from Eq. (5.2.18) as:

1/2
(d/L)

The variation of”waith [(d/L)l/Z/(h/L)] is presented in Figure
5.2.25 where the number of fissioned waves'thas been obtained from
the transient wave records. (Figure 5.2.23a is not considered be-
cause the effects of dissipation are too large for those wave

records and invalidates the above derivation.) The linear trend tends

to confirm the validity of the above reasoning. (The one data point

which deviates from this line at an abscissa value of 1.75 probably
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comes about from the fact that the computation was stopped
before the wave had enough time to completely separate out,
and reach its final balanced state.) A visual best fit straight

line relating N_. and vd/L/(h/L) yields:

f
.. ~d/L
1 if —E7i_i 0.5
Nf = (5.2.20)
d/L .. vd/L
1.25 /L + 0.4 if _E7f > 0.5

Eq. (5.2.20) can be expressed more generally by using the

Stokes number defined in Eq. (5.2.16):

Ne = (5.2.21)
0.125 /U + 0.4 if U > 25
-s S

The Stokes number defined in Eq. (5.2.10) constitutes an impor-
tant parameter for the .excitation problem in two respects. It first
defines the range of validity of the linear dispersive theory. For
example, if gs < 0(10) it suffices to use the linear dispersive
theory; if U_ 2 0(10) nonlinear dispersive theory must be employed. Also
in the latter case the standing wave pattern changes to a moving
wave pattern where the concept of node becomes irrelevant. In
addition, considering transient excitations, it has been possible

to relate the number of waves emerging after several oscillations
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to the Stokes parameter calculated at the end of the duration of

the excitation, for the case where dissipation effects remain small.
(If not, the prediction of the number of developing secondary oscil-
lations given by Eq. (5.2.21) may become invalid because of the
large damping rate of those secondary oscillations after they have
emerged.)

One must use caution in applying Eq. (5.2.21) to the problem of
a basin continuously excited near resonance. In this case the wave
evolution is constrained by the motion of the basin and appears from
the previous results to be very sensitive to the excitation frequency
0. Near the main bifurcation frequency a cnoidal-like wave develops;
the establishment of normal modes of oscillations which have a well-
defined structure is compatible with the basin motion (provided the
dispersion parameter h/L is not too small). (Note that the Ursell
number associated with the cnoidal wave is of order unity, if the
proper length £ is chogen.) Away from the main bifurcation frequency,
the cnoidal wave structure associated with a normal mode of oscilla-
tion is no longer compatible with the basin motion and the main
oscillation separates into a number of secondary oscillations in a
manner similar to that observed for the transient problem.

Table 5.2.2 gives the characteristic parameters, the number of
waves computed from Eq. (5.2.21) and the maximum number of waves ob-
served for the four sets of experiments from which steady state
response curves are obtained. The value of (n+ - n_)/2h for each set

is chosen at the frequency corresponding to the largest number of

emerging secondary waves.
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Table 5.2.2 Comparison between calculated and observed values
of N_for steady state excitation

£
n+_n—- OOL N N
Figure No. o h/L —_— U calcuiated b a
Jeh s (Eq. 5.2.21) | °bserve
5.2.4 0.4 0.098 T 170 2.01 2
5.2.10 0.2 0.098 m 85 1.6 2
5.2.13 0.4 0.051 ™ 623 3.52 3-4
5.2.15 0.1 0.034 37 42 1.21 1

As seen from Table 5.2.2 the computed values of N results agree
well with the observed ones, which tend to confirm the applicability
of Eq. (5.2.21) to the estimation of the maximum number of waves

which can develop in the case of a continuous excitation.

5.2.5 Summary

Several aspects of long wave oscillations in a closed
rectangular basin have been investigated in Section 5.2. The results
can be summarized as follows:

For a continuous excitation it has been found that, near resonance, a

linear theory is inadequate to describe the wave evolution in the
basin. Instead the nonlinear dispersive dissipative theory agreed
well with the experiments for all the cases investigated. The wave
shape, near resonance, is very sensitive to the frequency of the
excitation; a cnoidal wave shape which can be predicted analytically
develops near the main bifurcation frequency provided that the dis-

persion parameter is not too small. As the excitation frequency is
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decreased the main wave divides up into a number of secondary
oscillations as a result of the small dispersion.

For the transient excitation the importance of the Stokes number
in defining the range of applicability of the linear theory and in
estimating the number of secondary oscillations developing with
time (if dissipation effects remain small) has been demonstrated.
Some steady state features have been related with the transient
results. It has been verified, in particular, that for the cases
investigated the maximum number Nf of secondary waves emerging with
time at resonance is also a function of the Stokes number. The
applicability of these results to the harbor problem will be dis-
cussed in Chapter 6. A major difference with the basin problem is
the usually much larger damping rate of the wave in harbor and bay
situations. This may somewhat alter some of the present conclusions

relevant to the basin oscillation problem.
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CHAPTER 6

PRESENTATION AND DISCUSSION OF THE RESULTS FOR THE HARBOR

Experimental results on the oscillations of harbors induced by
transient and continuous nonlinear long waves are presented in this
chapter and compared to theoretical results.

Experimental considerations concerning the range of the experiments,
the simulation of the open sea conditions, and the incident wave system
are discussed in Section 6.1. An experimental investigation of leakage
losses and entrance losses for a narrow rectangular harbor is presented
in section 6.2. The relative importance of the various sources of dis-
sipation which affect the response of a narrow rectangular harbor are
also discussed in this section., In Section 6.3 the response of a narrow
rectangular harbor with a flat bottom excited by a continuous train of
periodic incident long waves is discussed. The transient excitation of
a harbor with a finite number of incident waves is investigated in
Section 6.4, Three harbor shapes were used for these experiments:

a fully open narrow rectangular harbor with a flat bottom, a fully
open narrow rectangular harbor with a linearly decreasing depth, and

a fully open and a partially open harbor with a trapezoidal planform

and constant depth.

6.1. Experimental Considerations

6.1.1 Range of the Experiments and the Simulation of the Open Sea
Conditions

The long wave theory developed in Section 3.1 only applies

if the ratio of depth to wavelength remains small compared to unity, i.e.,
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h/A << 1. To satisfy this condition in the laboratory, all the experi-
ments presented in this chapter were performed in the shallow water

range, with:

%< 0.05 (6.1.1)

The solution developed in Sections 3.3 and 3.4 treats the case of
a harbor connected to the open sea where the incident waves after being
reflected from the coastline propagate away without returning, and the
radiated waves which emanate from the harbor entrance decay to zero at an
infinite distance from the harbor and also do not return. However, in
the laboratory the experiments must be conducted in a wave basin of
finite size; thus, the reflected waves from the coastline and the
radiated waves from the harbor mouth may be reflected from the wave
plate and the side walls of the basin, violating the desired open sea
condition. In previcus investigations, e.g., Lee (1971), the open sea
condition was simulated by performing the experiments in deep water and
by absorbing the reflected and radiated waves with wave absorbers
located along each side of the basin and a wave filter located in front
of the wave paddle. 1In the present study this procedure proved unde-
sirable for two reasons. First, all the experiments were performed in
the shallow water range, which significantly alters the efficiency of
wave absorbers such as those used by Lee (1971). Second, most of the
incident waves were nonlinear, and they would have been altered signif-
icantly by filters located in front of the wave machine; thus, the shape
of the waves at the coastline could not have been controlled.

For these reasons a wave filter was not used and an alternative

method was chosen to satisfy the open sea condition experimentally. From
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the analysis performed in Section 3.3 the number of oscillations required
for the harbor to reach steady state for the case of periodic incident
waves is usually less than eight. Taking this as a reference, the
maximum wavelength of the incident waves such that eight oscillations
can be realized in the harbor before the first incident wave reflected
from the wave plate returns to the harbor, is given by:

2Lb

)\=_-8— (6.1.2)

where Lb denotes the distance between the wave plate and the coastline
(about 7 meters for these experiments); thus:
A =175 cm (6.1.3)
Therefore, with this wavelength the presence of the wave plate is not
felt inside the harbor until the ninth oscillation; this provides enough
time for adequate information on the characteristics of the harbor
dynamics to be obtained. Combining Eq. (6.1.1) and (6.1.3) yields the
maximum permissible depth as:
h =.9 cm (6.1.4)
In practice the experiments were performed in water depths between
4 cm and 10 cm, with incident wavelengths between 150 cm and 175 cm.
" Even though efficient wave absorbers for long waves are difficult
to construct in a limited area, to minimize the effects of reflection
of the radiated wave from the side walls of the basin, wave absorbers
composed of wire mesh screens were installed along each side wall. (See
Chapter 4 for their characteristics). Using the analysis of Goda and
Ippen (1963) the reflection coefficients of these absorbers for the

experimental conditions which are typical of this study were estimated
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to be between 307 and 60%. Although this is large, in reality only a
small fraction of the radially spread radiated wave returns to the harbor
mouth before the effects of reflection from the wave plate are felt;
hence, the wave absorbers proved useful in further reducing the effects
of the presence of the side walls. In fact, for all experiments con-
ducted there was no evidence of disturbance of the wave oscillations

inside the harbor caused by the proximity of the side walls.

6.1.2 The Incident Wave System

Weakly nonlinear incident long waves such as solitary and
cnoidal waves were used for the experiments. Several experiments were
performed to determine the characteristics of the generated waves in the
present study. Three wave gages were installed in the basin at locations
A, B, and C as shown in Figure 6.1.1; gage A was installed on the center-
line of the basin, 180 cm downstream from the wave plate, gage B was
placed on the centerline of the basin against the coastline with the
harbor mouth closed, and'gage C was placed against the coastline 150 cm
apart from gage B, near the side wall wave absorbers.

One major concern in the present investigation is the effect of
the lateral wave absorbers on the shape of the incident wave. As shown
in Fig. 6.1.1 the guide walls used to prevent leakage around the sides
of the wave generator extend 250 cm downstream from the wave plate.
Beyond that distance the generated wave diffracts laterally. Consider-
ing that the ratio of the total basin width occupied by the absorbers
to the length of the wave plate is more than 0.3, this may induce a
significant change in the wave shape as the waves propagate toward the

coastline.



253

— 3.50m -
_ WAVE PLATE
‘ 1
5 50m [.80m
A
e ——
| WAVE
GUIDE %
%
/|
-WAVE —/
ABSORBER
6.80m
5m
0.60m—=
0.25cm
l"—" 1.50m ‘l‘
COASTLINE

Fig. 6.1.1 Location of the wave gages in the basin used for the
experimental study of the incident wave system.
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Two series of experiments were performed by generating solitary
waves using the method described by Goring (1978) with nominal wave
height ratios, H/h, of O;l and 0.5. Each series consisted of two tests,
one with movable vertical side walls extending parallel to the wave
absorbers from the end of the existing fixed side walls to the coastline
and the other without them. (These walls were constructed of 16 gage
galvanized iron.)

Fig. 6.1.2 shows the water surface time histories at each
location for a relative wave height of H/h = 0.1 and a depth h = 6 cm.
(The corresponding. stroke Sp of the wave machine is 3.6 cm and the time
duration T of the plate motion is 2.27 sec,) The wave elevation n is
normalized by the depth h at location A and by twice the depth at
locations B and C to account for wave reflection at the latter locations.

Considering first the experiments with the side walls extending to
the coastline, it is seen that the wave essentially retains its shape
as it propagates from location A to locations B and C. The variation of
the wave shape laterally is small, as can be judged by comparing the
wave records at B and C. It is noted that the experimental wave height
at location A is about 307 less than the value predicted by the theory.
Part of that discrepancy may be due to leakage under the wave plate as
it moves forward, despite the presence of the seals around the plate,
This may explain the slightly negative mean value of the small
oscillations trailing the main wave. This possibly indicates the exis-
tence of a small fluid velocity created by the static pressure difference
between each side of the plate at the end of the plate motion. This

pressure difference is at least equal to Sph/dp, where dp denotes the
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distance between the wave plate and the basin wall behind it. 1In the
present case dp = 70 cm for the mean position of the piston so that the
resulting value of Sph/dpis not negligible. It is possible to further
assess the importance of leakage effects by assuming that the mean

negative level H,Z of the trailing wave is proportional to the static

2
head difference Sbh/dp' From the generation relationships developed by

Goring (1978)Sp/h is proportional to (H/h)l/2

, and the ratio HQ/H which
measures the relative importance of the leakage effects is then propor-

tional to:

(6.1.5)

Thus, the relative leakage effects increase with depth and with decreasing

distance dp’ and for a given depth and dp they decrease as H/h increases.
The shape of the incident-reflected wave at the coastline deter-
mined experimentally is compared with the solitary wave shape derived
from the Boussinesq equations in Fig. 6.1.3. The front of the wave
measured experiﬁentally agrees well with the theoretical solution, but
the back face does not, perhaps due to the leakage effects mentioned.
Considering next the case where the sidewalls are removed, in
Fig. 6.1.2 it is seen that the shape of the wave changes markedly as it
propagates toward the coastline. A secondary oscillation appears behind
the main wave and its height approaches one-half of the height of the
main wave at location B. The wave height of the leading wave at
location C is about 60% of the height of the wave at location B and the
shape is quite different. These features emphasize the two-dimensional

character of the incident wave when the sidewalls are removed.



258

Fig. 6.1.4 shows similar water surface time histories for a relative
height of H/h = 0.5, h = 5 cm. The stroke and duration of the wave
machine motion are S_=8.2 cm, T = 1.0 sec. With the sidewalls in place
the wave shape is about the same at the three locations. The wave height
obtained experimentally at location A in Fig. 6.1.4 is still about 30%
less than the value predicted by the theory (H/h = 0.5), but the negative
water surface elevation observed in Fig. 6.1.2 behind the main wave has
almost completely disappeared, which agrees with the trend predicted by Eq.
(6.1.5). The shape of the wave at the coastline determined experimen-
tally agrees well with the theory for the whole wave, as can be seen in
Fig. 6.1.5. 1In the absence of the sidewalls a secondary oscillation
appears at gage B in Fig. 6.1.4 due to the diffraction of the wave
around the permanent sidewalls into the wave absorber region.

In summary, both diffraction into the lateral wave absorbers and
leakage under the wave plate tend to change the shape of the solitary
wave which is generated initially., As a result it appears difficult to
predict its chafacteristics (shape and spectral energy content) as it
reaches the coastline. Therefore, the solitary wave was not used to
excite the harbor in this study.

Two series of experiments were performed with cnoidal waves, gener-
ating a group of five waves with nominal Stokes numbers, sz/hB, equal
to 50 and 650. Each series consisted of three experiments and the waves
were recorded at the same locations as were the solitary waves. In the
first run, the cnoidal waves were generated using the plate motion as
prescribed by Goring (1978), denoted herein as elliptic motion, with the

"removable' sidewalls present. In the second run the waves were generated
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using the same elliptic plate motion without the 'removable' walls. 1In
the third run a sinusoidal plate motion was used with the same stroke
and same period as in the other two cases but with sidewalls installed.

Figure 6.1.6 shows the water surface time history at each location
for HAz/h3 = 50, H/h = 0.12, h=6 cm, T = 1.613 sec, and Sp= 2.35 cm.
Considering first the elliptic plate motion, the experimental wave height
at location A is about 25% less than that predicted by the wave genera-
tion relationships. At location C, when no sidewalls are present, it
is significantly reduced by diffraction effects but the wave shape at
location B seems to be only slightly altered by diffraction. The wave
shape at the coastline on the centerline of the basin is compared with
the wave shape from the cnoidal theory (see Section 3.2.3) in Fig. 6.1.7.
With the sidewalls along the wave absorbers good agreement is obtained.
When the sidewalls are removed a small secondary wave appears at the
trough of the main oscillations but nevertheless the shape remains
reasonably close to the theoretical one. As expected, when the waves
are produced by a sinusoidal plate motion (Fig. 6.1.6) they do not retain
their original shape as they propagate. As seen at locations B and C,
secondary waves tend to form at the back of the main oscillations as the
waves try to attain a permanent shape.

Similar results are observed in Fig. 6.1.8 for sz/h3 = 650, H/h = 0.5
h=6c¢m, T=2.51 sec, Sp= 5.8 cm. In the presence of sidewalls the
shape of the waves varies little between location A and B. It is noted
that the relative wave height is equal to 0.33 at location A compared to
0.5 predicted by theory. Such a discrepancy, also found in the three

other cases investigated previously, can possibly be explained by leakage
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effects mentioned previously. As the wave propagates from location A
to location B, its height is reduced further by 25%. Assuming a decay

law for the wave height of the form:

A

[o]
Y ] (6.1.6)

= exp [—E%
the decay factor f is found as 0.0025 for this case. This value is fairly
high but consistent with the experimental results of Goring (1978). 1In
the absence of sidewalls the shape of the waves varies slightly between
location A and location B. The wave shapes at the coastline on the
centerline of the basin are compared with the cnoidal theory in Fig. 6.1.9.
Theory and experiments agree reasonably well when the sidewalls are in
place. In the absence of sidewalls the wave shape is no longer symmetric
about the crest in this case. So diffraction does affect the cnoidal

wave shape in some cases, but this effect is not as dramatic as for the
solitary wave. One way to correct for the skewness of the incident wave

is by extending the guide walls one or two meters further than in

Fig. 6.1.1. This procedﬁre was used for some of the experiments presented
in Section 6.3, especially those corresponding to a large Stokes number,

to obtain an incident wave shape which is more symmetric about the crest

at the coastline,

In the case of a sinusoidal plate motion Fig. 6.1.8 shows that
secondary waves form near the plate and the wave shape changes drasti-
cally as the waves propagates toward the coastline. This points out the
importance of a properly generated wave motion to control the charac-
teristics of the wave at the coastline,

The following conclusions are drawn from Figs., 6.1.6 through 6.1.9.

A sinusoidal plate motion appears inadequate to generate a nonlinear
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periodic train of long waves., The resulting wave does not have a proper
balance between nonlinearities and dispersion (the imbalance increases
with the Stokes number), and, therefore, it changes as it propagates.
Conversely, the proper elliptic motion of the plate generates a wave
with a permanent form, so that the resulting shape at the coastline
closely resembles that near the plate, The effects of diffraction
through the wave absorbers remain fairly small for a cnoidal wave group
so that the energy content and the shape of the waves near the coastline
on the centerline of the basin can be controlled fairly well by the
plate generation parameters. These cnoidal waves have the additional
advantage of containing a dominant frequency which is convenient for the
study of resonance in a harbor.

All the experimental results dealing with the harbor study which will
be presented here were performed using cnoidal waves. In the case of
the continuous excitation of the harbor (Section 6.3) a continuous train
of cnoidal waves was gengrated. In the case of a transient excitation
(Section 6.4) a small number of cnoidal waves was generated and then the

wave plate was brought to rest.

6.2 Experiments on Leakage and Entrance Dissipation

A correct interpretation of the experimental results obtained in
the laboratory for the problem of wave dynamics of a rectangular harbor
requires a quantitative knowledge of the effect on the response of
various dissipation mechanisms, The dissipation effects related to
boundary friction and surface tension have already been presented and
discussed in Section 5.1 in connection with the study of the water

surface oscillations induced in a moving closed rectangular basin. Two
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additional sources of dissipation have been investigated experimentally
and are discussed in this section: the losses due to leakage under the
boundaries of the model harbor and losses due to flow separation at the
entrance. (The former is a loss which is generally peculiar to experi-

mental facilities.)

6.2.1 Introduction

In the analysis presented in Section 3.3 the response of a
narrow rectangular harbor to a plane harmonic incident wave was obtained
analytically from a linear theory. Various sources of energy dissipation
were included in a model, such as boundary friction, leakage underneath
the walls and losses due to flow separation at the entrance. Two other
undetermined parameters, namely the average gap thickness e underneath
the walls and the entrance friction coefficient fe’ were included in the
solution. An experimental method is presented in this section for
evaluating these two parameters. It is based on the reduction near a
resonant frequency of the wave elevation inside the harbor caused by
dissipation.

Using the notations of Section 3.3 the expression for the wave

amplitude A at the backwall is given by:

ny(-L,0) a1
R = [—— = [Y| B’ﬁéEE—Efﬂ'* 0C &, He ) (6.2.1)
I

where the normalized average velocity ]Y[‘at the harbor mouth is:

o) L (6.2.2)
kg A_ 2 2.1/2 Lo
I

[B +(xr+xu+x€+xf)]

Y| =
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and Xp» xu, Xes Xg represent the effects of radiation damping, viscous
boundary friction, leakage losses, and entrance separation losses, respec-—
tively, and are defined by Eqs. (3.3.80) through (3.3.83); the quantity B
is defined in Eq. (3.3.79). The gap e is contained in the term Xe and

the entrance loss coefficient fe is incorporated in the term Xge Usually
each of these dissipation terms is of order less than unity so that the
quantity]Y[remains of order unity except for some values of L/X for which

B = 0. Then lY| = O(Eé—) and resonant conditions are obtained in the
i

harbor. For simplicity of notation the amplitude |ﬁ3(-L,0)| of the wave
elevation at the back wall and the amplitude lﬁ3| of the velocity at the
harbor mouth will be denoted as A and Ue’ respectively, in the subsequent
discussion.

The variation of the amplification factor R with the dimensionless
wave number kL is presented in Figure 6.2.1, from the linear theory, for a
fully open harbor with an aspect ratio b/L equal to 0.2 in the absence
of viscous dissipation (i.e., XU = XE = Xf = 0). Resonance takes place
for kL = 1.3, 4.2 and 7.15, Those values of kL are reasonably close to
those corresponding to the limiting case where b/L = 0, which yields

N L

KL=9,%,%5

The method used to obtain the gap width e and/or the entrance

, respectively,

friction coefficient fe consists of obtaining the amplification factor R

from experiments computed as the ratio of the first harmonic component

of the steady state oscillation at the back wall to the first harmonic

component of the steady state oscillation at the coastline on the

centerline of the basin with closed harbor entrance. Equations (6.2.1) and (6.2.2

can then be solved for Xg OF Xgs assuming all other terms in the equation
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are known. In order to achieve maximum accuracy it was important to
conduct the experiments near a resonant frequency for the following

reason. Equation (6.2.2) can be rewritten as:

1
> (6.2.3)

[y} =
3% + ¥

1/2

where x denotes the sum of the dissipative terms X+ Differentiating

|Y| with respect to x yields:

aly| _ xd
= (6.2.4)
TR A NTE

The ratio dIY]/dX is a maximum for B = 0, that is, at resonance. .There-
fore, the sensitivity of the amplification factor to dissipation is

the highest at (or near) resonance, thus the evaluation of dissipation
is most accurate near resonance.

It is recalled that the derivation presented in Section 3.3 (and
hence the method presented in this section) to evaluate the gap width
and the entrance loss coefficients are determined from a linear theory
which neglects convective nonlinearities in the equations of motion. It
will be shown in Section 6.3 that such an assumption near resonance is
completely invalid when the harbor length L becomes comparable to the
incident wavelength A. However, it is reasonable for ratios of L/A
aboﬁt 0.25, i.e,, near the first resonant mode. As an indication of the
linear response of a narrow rectangular harbor near the first resonant
mode, the transient response to an incident train of sinusoidal waves
was computed at the back wall of a fully open rectangular harbor for the

following conditions: b/L = 0.2, h/x = 0.05, oL/Vgh = 1.3, (Al/h)O = 0.05;
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no viscous effects were included in the calculations. The time history
of the normalized wave elevation n/h, computed from the linear theory
(Section 3.3) is plotted as a function of the dimensionless time ot/27
in Fig. 6.2.2 and compared to the curve obtained from the nonlinear
dispersive theory (Section 3.4). (The curve for GL//EE = (0 corresponds
to the incident wave system, i.e., L = 0.) The two curves shown for
GL//EE = 1.3 agree well both in shape and in amplitude; the wave height
computed from the nonlinear theory is slightly smaller than the one
resulting from the linear theory, but this constitutes the only apparent
discrepancy. In particular, very little harmonic distortion is noted
with regard to the results of the nonlinear theory, although the relative
wave height of the oscillations reaches 0.7. This comparison suggests
that convective nonlinearities can reasonably be neglected at the first
resonant mode for the case shown. This is an important aspect of the
problem which will be discussed more fully later.

The experimental regults concerning the effects of leakage under
the harbor boundaries due to a gap and flow separation at the entrance

are presented in the following two sectiomns (6.2,2 and 6.2.3).

6.2.2 Leakage losses

Leakage losses arise in the laboratory from the presence of
a small gap between the walls of a harbor model and the bottom of the
wave basin. For the experiments dealing with the continuous excitation
of a harbor, the walls were not sealed. (The reasons for this will
become apparent when the results are presented in Section 6.3.) The
purpose of the experiments presented in this section was to determine

the average gap width, e, so that the leakage loss coefficient e defined
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by Eq. (3.3.40) could be defined. A fully open harbor was used for all
the experiments; the width b and the length L were set to 8 cm and 40 cm,
respectively for all experiments. The corners of the mouth were rounded
with a 5 cm radius to minimize losses due to flow separation at the
entrance. A finite element harmonic analysis (Lepelletier, 1978) was
used to determine that the round corners used for the experiments did
not appreciably modify the harbor response computed with sharp corners
at the entrance.

Three series of experiments were performed using depths of 10 cm,
8 cm, and 6 cm. Each series consisted of five experiments which differed
from one another by the height of the incident wave. Each experiment
consisted of three runs: First the incident wave elevation was recorded
at the coastline on the centerline of the basin with the harbor entrance
closed., In the second run the entrance was opened and the wave was
recorded at the back wall of the harbor without sealant between the
walls and the wave basin‘bottom. In the last run the same measurement
was taken after-the harbor walls had been sealed to the basin bottom
with mastic. The period of the incident waves was set such that
GL//EH = 1,3, corresponding to resonant conditions for the first mode
of oscillation of the harbor.

A convenient parameter which provides a measure of the energy con-
tained in a periodic wave with period T is the equivalent relative wave

amplitude /E;/h defined such that

E = -%fnz dt » (6.2.5)
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Parseval's identity yields:

2
Ao = 2
E =5+ géi A (6.2.6)

where Ai denotes the amplitude of ith harmonic component. For a
purely sinusoidal wave with zero mean value, /E; is just equal to the
amplitude of the wave, i.e., Al’

The steady state characteristics of the incident wave at the coast-
line (with the harbor entrance closed) within one period are given in

Table 6.2.1 for the experiment conducted.

Table 6.2.1
Table 6.2.1 Steady state characteristics of the incident wave at

the coastline

(2;) <s§c> h/V/gh T (/E;/h)I Ay/h A,/h A,/h
0.008 0.0079 0.000 0.000
0.015 0.014 0.001 0.000
10 2.0 0.05 0.026 0.025 0.003 0.000
0.038 0.037 0.005 0.000
0.051 0.05 0.006 0.000
0.012 0.012 0.001 0.000
0.019 0.012 0.003 0.000
8 2.29 0.04 0.03 0.03 0.001 0.002
0.04 0.037 0.011 0.004
0.07 0.064 0.026 0.016
0.02 0.018 0.006 0.002
0.03 0.026 0.011 0.003
6 2.64 0.03 0.045 0.038 0.022 0.005
0.06 0.49 0.031 0.012
0.08 0.06 0.043 0.02
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It is seen from Table 6.2.1 that the relative importance of higher har-
monics increases as /E;/h increases and as the depth decreases. This is
in accordance with the cnoidal wave theory: for a cnoidal wave the
relative importance of higher harmonics increases as the Stokes number
increases.

The variation of the experimental amplification factor R (defined
as the ratio of the steady state amplitude of the first harmonic com-
ponent at the back wall to the steady state amplitude of the first
harmonic component at the coastline (with the harbor entrance closed)
with (/E;/h)I is denoted by hollow circles in Fig. 6.2.3. It is =een
that, for a small amplitude wave, i.e.,, a small abscissal value, R
decreases as (/E;]h)l decreases. This indicates the effect of a
dissipation source which increases with decreasing wave amplitude. The
only source of dissipation discussed herein which has this feature
appears to be dry friction related to surface tension without a wetting
agent. In order to correct the experimental data for this effect the
procedure discussed in Séction 3.2 can be applied here. The factor RC
associated with dry friction can be obtained from Eq. (E37) in Appendix E

and Eq. (3.3.99) as:

1 _8x o1 T b
R T s Tt A +7 D (6.2.7)

where k = 0.35. The amplification factor R, corrected for this effect,
is given by: 1/(1/R - I/RC), and the corrected data are denoted by the
gsolid circles in Fig. 6.2.3. For reference the computed amplification
factor affected by radiation and laminar boundary friction only is indi-

cated by a dashed line in each portion of the figure.
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It is seen that for a given depth, the corrected values for the
amplification factor remain fairly constant. For larger amplitude
incident waves the response decreases, perhaps indicating an influence
of entrance dissipation. A substantial reduction in the amplification
factor due to leakage can be observed for each depth. With seals, for
h = 10 cm, R is about seven, which is close to the value predicted by
the linear theory, i.e., R = 7.2; without seals the response decreases
to about 5.5 for these conditions. For h = 8 cm the amplification factor
reaches a value close to seven with the bottom sealed and about 5.2
without seals. Finally, for h = 6 cm, R decreases from 7.7 with seals
to less than 5 without seals.

Two major conclusions can be drawn from these results:

(1) Leakage losses cannot be neglected in the present study and
they must indeed be incorporated in the theoretical models to
be compared with the experiments.

(ii) In the absence'of leakage the experimental data closely follow
the results predicted by a linear theory. This supports the
hypothesis that at the first resonant mode for a narrow harbor
nonlinear convective terms are negligible.

From the experimental values of R the dissipation term X, can be
computed from Eq. (6.2.2), where Xg is set equal to zero. The gap width
is derived from X using Egs. (3.3.82) and (3.3.40). (The wall width
t, in these experiments was 1.2 cm.) Those calculations yield the

following results:

e = 0.041 cm for h = 10 cm
e = 0.045 cm for h= 8 cm
e =0.043 cm for h = 6 cm



279

These three values for e are in reasonable agreement, and, thus, the
average width of the gap is taken to be:

e = 0.043 cm.
The gap, although of the right order of magnitude, appears fairly large.
This is possibly due to the approximation made in Appendix D which led
to the linear analytical expression for the "leaky" boundary condition.
In particular with this value of e, expressions derived in Appendix D
show that the neglected quadratic losses caused by the gap are about
25% of the total leakage losses. However, even if the analytical
expression used for the leakage loss does not represent exactly the true
loss mechanism, it allows a sufficiently accurate quantitative estimate
to be made of that dissipation source. Hence it will be used in sub-
sequent sections when comparing linear and nonlinear theories with

experiments.

6.2.3 Separation Losses at the Entrance

Separation lpsses at the harbor entrance arise from an abrupt
change in the geometry of the harbor at the mouth which induces flow
separation, jet formation, and turbulent dissipation of energy. Unlike
the loss of energy due to leakage beneath the harbor walls which usually
only applies to laboratory conditions, entrance losses occur in both
laboratory and prototype harbors. It also turns out to be one of the
most efficient means of dissipating energy; this will be discussed more
fully in Section 6.2.4.

The difference in elevation between each side of the entrance

is expressed as:

f

An = Eg-lulu (6.2.8)
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The entrance loss coefficient fe is not well defined for an oscillatory
flow, and the purpose of this section is to determine this coefficient
experimentally for a periodic flow such as that induced by the oscil-
lation of a harbor.

Dimensional analysis shows that the coefficient fe for a symmetric

entrance opening depends in general on the following dimensionless

parameters:

e - @, 2, Te Y m o
e e ‘p*L’ , ac’>h’"h

The physical significance of each of these parameters can be briefly
discussed as follows:

(i) The opening ratio a/b is equal to the ratio of the mouth
width a to the harbor width b. For a unidirectional, steady,
fully turbulent flow, an estimate of the coefficient fe for
a/b = 1 can be obtained from one dimensional engineering
hydraulics (e.g., Streeter, 1971). Table 6.2.2 shows the
entrance coefficient for an inward steady flow and an outward
steady flow through the harbor mouth. For the cases where
the unsteady effects can be neglected, the entrance coefficient
can be estimated for the harbor oscillation problem (for the
fully open entrance) by taking the average of the values
corresponding to the outgoing and the ingoing flow through
the mouth.

(ii) The width ratio b/L does not depend on the geometric charac-
teristics of the entrance and therefore should not affect, in

principle, the coefficient fe' (However, some of the
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experiments showed some dependence in some cases, as will be seen

shortly.)

Table 6.2.2 The postulated loss coefficient for a/b = 1 for a fully

(iii)

(iv)

turbulent, steady flow for sharp edges (see Streeter, 1971)

a/b 1.0

(ingoing £low) 0.5

(outgoing flow) 1.0

The coefficient Ue/ac is proportional to the number of times

a fluid barticlé travels distance a in half a period and thus
can be interpreted as an inverse Strouhal number which provides
a measure of the unsteadiness of the flow., For large values

of Ue/ac separation flow has enough time to establish fully

and the influence of the periodicity in fe can be neglected.
Conversely for small values of Ue/ao one would expect fe to be
strongly influenced by the periodicity of the flow.

The Reynolds number aUe/v is expected to influence the entrance
loss coefficient only for relatively small values, As an
indication, the flow resistance through a circular orifice into
a large tank is unaffected by viscosity for aUe/v > 1000
(Rouse, 1946). This critical value of 1000 can be used as a
guide to estimate the importance of viscous effects in the
present problem. In particular, at resonance the velocity at

the entrance is related to the wave amplitude at the backwall

by:
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-bA —~—
U = 2 h gh

so that the relative minimum wave amplitude at the backwall

required to neglect viscous effect at the entrance is:

v

b/gh

=

= 1000

For the present experiments v = 0,01 cmz/sec, h=10cm, b= 7 cm, this
gives A/h = 0.01., Therefore the influénce of viscosity on fe can be
expected to remain small in most cases.

(v) The relative height ratio at the backwali of the harbor con-
ceivably may affect the friction coefficient fe for large
values, as will be seen later.

(vi) The shape factor Sh characterizes the local geometry of the
harbor at the opening. The influence of the local shape of
the harbor around the mouth on the friction coefficient fe is
expected to be fairly significant since the wave dissipation
directly depends on the separation pattern of the flow at the
entrance which in turn is induced by the local harbor geometry.

Several series of experiments were performed by changing the plan-

form and entrance gap of the harbor as defined by a/b and b/L. For
each harbor configuration ten experiments were performed varying the
incident wave height. (For all the experiments a water depth of 10 cm
and a wave period of 2 sec were used.) The harbor configurations for
each set of experiments are given by Table 6.2.3. They were chosen to
satisfy the resonant conditions (in the absence of viscous dissipation)

at the first mode of oscillation of the harbor (B = 0 in Eq. (6.2.2)).
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The quantity ry in Table 6.2.3 denotes the radius of the corners at the
mouth for the fully open harbor and the radius of the rounded edges of

the breakwaters for the partially closed harbor.

Table 6.2.3 Harbor characteristics for each series of experiments

b/L a/b a b L r.
(nominal) (nominal) {cm) (cm) (cm) (em)
.2 1.0 8.0 8.0 41.0 5.0
.2 1.0 8.0 8.0 41.0 0.5
.2 0.8 6.4 7.5 38.5 0.3
.2 0.6 4.6 7.5 37.0 0.3
.2 0.4 3.0 7.5 36.0 0.3
.2 0.2 1.5 7.5 35.0 0.3
A 1.0 14.0 14.0 35.0 0.5
A 0.2 2.5 12,5 31.0 0.3
4 0.1 1.25 12,5 31.0 0.3

The characteristics of the incident wave at the coastline on the
centerline of the basin (with the harbor mouth closed) are presented in
Table 6.2,4. It can be seen that the relative importance of higher
harmonics remains small for all wave heights,

Each experiment consisted of two runs: first, the incident wave
was recorded at the coastline (with the harbor closed). In the second
run the wave elevation was recorded at the backwall of the harbor. A
harmonic analysis of the steady state oscillations was performed for
each record. (For this set of experiments steady state conditions were

obtained after about four or five oscillations.) The amplification
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factor R was defined as before as the ratio of the steady state ampli-

tude of the first harmonic component at the backwall to the steady state
amplitude of the first harmonic component at the coastline. (R was
corrected for the effects of dry friction using the same procedure as in
Section 6.2.2). Equations (6.2.1) and (6.2.2) could then be solved for the
entrance coefficient fe related .to the parameter xf by Eq.(3.3.83). Since
all the experiments on entrance losses were performed before the impor-
tance of leakage losses was realized, the term X had to be included

in Eq. (6.2.2) for a correct determination of fe.

Table 6.2.4 Characteristics of incident waves at the coastline

(/§;7h)1 A/h A,/h Ay/h
0.029 0.0286 0.003 0.000
0.042 0.0415 0.005 0.002
0.055 0.0572 0.007 0.002
0.067 0.0659 0.011 0.004
0.090 0.0895 0.009 0.003
0.110 0.109 0.010 0.004
0.132 0.130 0.020 0.007
0.165 0.163 0.021 0.009
0.201 0.194 0.038 0.016
0.229 0.223 0.038 0.032

To appreciate the effects of entrance dissipation on resonance,
the variation of the amplification factor R with (VEa/h)I is presented

in Fig. 6.2.4 for each harbor configuration. On each graph the dashed
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line indicates the values of the amplification factor which includes
the effects of radiation, viscous boundary friction, and leakage losses.
The symbols represent the experimental data. For the fully open harbor
with large corner radii at the entrance (re/b==0.5) the experiments
coincide with the dashed line for small incident wave heights. This
shows that entrance dissipation is apparently negligible for these cases.
However, as (/E;/h)l increases, R begins to decrease indicating that
entrance dissipation begins to manifest itself for larger values of
incident wave heights. For a fully open harbor with corners with small
radii (re/b==0.06) the response decreases with (/E;/h)l for the full
range of the abscissa, indicating that entrance dissipation affects all
the measurements for these experiments.

For a partially closed harbor (a/b < 1) the difference between
experimental values of R and values indicated by the dashed lines (for
which no entrance losses are included) increases as the opening ratio
a/b decreases for a fixed incident wave height; it also increases with
(/E;/h)l for a given opeﬁing ratio. Actually, resonance as defined here
is suppressed for almost all wave heights for a/b X 0.2. An interesting.
feature, when entrance loss becomes significant, is the common slope,
i.e., -%L,for all experimental curves. This implies that R varies inversely
as the square root of G/E;Vh)I when entrance loss becomes the dominant dissi-
pative mechanism. (This feature will be explained simply later).

The variation of the entrance loss coefficient with the parameter
Ue/ac derived from the experimental data of Fig., 6.2.3 is presented in
Fig. 6.2.5 for the case of the fully open harbor. The velocity at the

entrance was computed from the experimental amplification factor R,
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using Eq. (6.2.1). Considering first the harbor with small corner radii
(re/b = 0.06), the entrance loss coefficient fe varies in a linear manner
with Ue/ao and reaches a constant value equal to approximately 0.8 as
Ue/ac becomes greater than 1., The data corresponding to b/L = 0,2 and
b/L = 0.4 seem to agree fairly well with each other, which tends to
indicate, as expected, that fe is not a function of the aspect ratio b/L.
The numbers next to the symbols in the upper and lower portions of Fig. 6.2.5
indicate values of the relative wave amplitude at the backwall greater
than 0.45. TFor these extreme wave heights the coefficient fe takes
higher values, which indicate, in the absence of any additional source

of dissipation, that fe may become also a function of the wave amplitude
in the harbor for some extreme conditions. Ignoring the points for which
the relative wave amplitude is greater than 0.45, the shape of the curve
can be interpreted from visual observation as follows. For values of

the parameter Ue/ac less than unity, losses are induced by vortices at
each corner of the entrance. If Ue/ao is further increased, flow
separation becoﬁes apparent and a well-formed jet in addition to the
vortices is observed during the first half period when the flow is
directed inwards in the harbor. The same jet pattern develops again
during the second half period when the flow is directed outwards. Once
flow separation is well formed, the entrance loss coefficient remains
relatively constant as seen in Fig., 6.2.5.

For large radius corners at:the entrance (re/a = 0.6) a relevant
measure of the unsteady parameter is Ue/(a+2re)o where an effective width
of the mouth is considered. It is seen from the lower part of Fig. 6.2.5
that fe remains negligible for small values of the unsteady parameter

and then fe increases gradually. For all experiments Ue/(a+2re)c remains
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less than unity and the only experimental evidence of energy dissipation
which was observed was the formation of vortices without "clean cut" jet
formation.

Figure 6.2.6 shows the variation of fe with Ue/ao for partially
closed harbors and two harbor planforms. For a/b = 0.8, fe seems to
increase linearly until Ue/ac = 1.3 and then remains constant, i.e.,
fe = 1,10. For a/b = 0.6, the experimental variation of fe with Ue/ac
remains small. It is noted that the unsteady parameter Ue/ao is greater
than unity for all values of Ue/ao. For a/b = 0.4, the range of variation
of fe with Ue/ao is rather large (between 1.10 and 1.30), but no definite
trend can be observed.

For a/b = 0.2, the experimental data corresponding to b/L = 0.4 are
definitely distinct from those corresponding to b/L = 0.2 even if this dif-
ference remains relatively small. Part of this discrepancy possibly may
be attributed to the small physical scale of the present model harbor.

For b/L = 0.2, the distance between the edge of the breakwater and the side-
walls of the harbor is only 2.5 cm whereas it is about 5 cm for b/L = 0.4.
From these experimeﬁtal results, two regimes seem to take place,
at least for the fully open harbor. In the first regime, corresponding

to Ue/ao < 1, full flow separation does not have time to take place
within half a wave period and dissipation is induced by vortex formation
at the corners of the entrance, and fe seems to grow linearly with
Ue/ao. In the second regime, corresponding to Ue/ac > 1, the flow
appears to separate from the boundary and a jet forms. (These con-
clusions are based on direct observation.) The data indicate the
influence of the periodicity of the flow does not seem as important

for this region and fe remains constant as Ue/ao increases.

For the partially closed harbor, only limited data are available
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which support this conclusion, since most of the data correspond to
values of Ue/ao greater than one. It was not possible to operate in
the region Ue/ac < 1 for a/b = 0.6 because on the one hand the resulting
wave amplitude to be measured would have been very small and therefore
the measurements somewhat inaccurate, and on the other hand the effects
of viscosity (the Reynolds number) on the entrance loss coefficient fe
would probably begin to be important, It should be mentioned, the

jet flow was observed for all cases of the partially closed harbor for
Ue/ao > 1.

The range of variation of the Reynolds number for each harbor con-
figuration is indicated in Table 6.2.5. For all cases investigated
Uea/v remains larger than 103 which suggests that viscosity has little
effect on the entrance loss coefficient for the present experiments.

According to Ingard and Ising (1967) the viscous contribution to orifice

resistance for an accoustical wave becomes unimportant for flow velocities

much greater than (8Gv)1/2. This condition is always fulfilled in the

present experiments.

Table 6.2.5 Range of variation of the Reynolds number

Uea/v for each harbor configuration

a/b b/L Uea/v (min) Uea/v (max)
0.8 0.2 8500 35000
0.6 0.2 7000 28000
0.4 0.2 5000 20000
0.2 0.2 2200 11000
0.2 0.4 4600 15000
0.1 0.4 11000 ‘ 57000
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With the results of Figures 6.2.5 and 6.2.6 in mind a simplified

representation of the variation of fe with Ue/ac is postulated.

The corresponding equations are:
(i) For fully open harbor with small corners radii:

0.8 Ue/ao if - Ue/ao <1
f = (6-2-9)
0.8 if Ue/acr 21

(ii) For partially closed harbor: (a/b £ 0.8)

1.15 U /ao if U [faoc < 1
e e

fe = ' (6.2.10)
1.15 if Ue/ac‘i 1

Two remarks can be made here. First, for a partially closed harbor the
dependence of fe on the opening ratio a/b is dropped in Eq. (6.2.10).
The validity of this simplification for the harbor oscillations will be
investigated shortly. Second’in all experiments on entrance dissipation
the parameter Ue/ac was varied leaving ¢ approximately constant because
of experimental constraints (see Sec 6.1). Whether or not the same
conclusions would be obtained if Ue/ao was changed by varying ¢ but
leaving Ue constant, although this is postulated here, remains to be
proved experimentally,

In order to check whether or not Eqs. (6.2.9) and (6.2.10) provide
a reasonable description of the experimental results the amplification
factor has been computed by solving Eq. (6.2.1) using Egs. (6.2.9) and
(6.2.10) for each case, which is defined by the incident~reflected wave
amplitude at the coastline and by the harbor geometry. The variation of

the computed values of the amplification factor, R, with those obtained
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experimentally is presented in Fig. 6.2.7. It is seen that almost

all points lie close to the line which represents perfect agreement between
the predicted and experimental values of R. The effects of entrance
dissipation further can be characterized considering a situation where

the most important dissipation source is entrance frictien. That is,

it is assumed momentarily that the dissipation parameters, X, XU’

and X, can be neglected in Eq. (6.2.2) when compared to X¢ and B = 0.

Therefore Eq. (6.2.2) becomes:

1
Y| = = .2,
M X , (6.2.11)

Substituting the expression (3.3.83) for Xg yields, from Eq. (6.2.11),

the following expression for IY

x| = &2 —/—1_-— /1__ (6.2.12)
£ /A /h

m/2, the amplification factor at the

Using Eq. (6.2.1) and taking kL

backwall becomes:

R = (68“)1/2 -%—1—— 1 (6.2.13)
/f'; /'AI/h

Several comments can be drawn from Eq. (6.2.13) for the case where
entrance separation plays a significant role. The amplification factor

R decreases linearly with a/b, which clearly demonstrates the irrelevancy
of the harbor paradox which predicts a contrary behavior. R varies also
like the inverse of the square root of the incident wave amplitude. (Of
course, there is a limit to the applicability of Eq. (6.2.13) as AI/h

decreases,) This feature can be verified for all curves on Fig. 6.2.4
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for a/b £ 0.8, Also R varies like 1//?;; hence, there is a small
dependence on R of the friction factor for conditions of large entrance
dissipation.

The dimensionless ratio (a/b)/(feAI/h)l/2 appears to be an important
parameter in describing the relative importance of entrance dissipation.
In order to quantify this, the experimental amplification factor of the
first mode has been plotted versus this parameter in Fig, 6.2.8 for
partially closed harbors (a/b X 0.8). The curve represents Eq. (6.2.13)
with fe = 1,15, It is seen that agreement between the data and the
curve defined by a constant entrance loss parameter remains reasonable
for abscissa values less than about unity. This corresponds to the
regime where entrance dissipation dominates the other dissipation
sources. For abscissa values greater than unity, disagreement becomes
significant indicating the other dissipative sources can no longer be
neglected in determining the amplification factor.

The generation of higher harmonics due to the quadratic nature of the
entrance loss expression was investigated by comparing the second and
third harmonic components of the wave elevation at the backwall to the
same components corresponding to the incident wave, No difference
within the range of accuracy of the measurement could be found for all
experimental cases. It is thus concluded that within the present
experimental range the generation of higher harmonics from entrance
dissipation can be neglected.

In summary, this aspect of the investigation has pointed out the
degree of variability of the entrance friction coefficient for a periodic

flow. For values of the parameter Ue/ao greater than unity, the
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coefficient fe can be considered constant. For Ue/ao less than unity

fe appears to be a linear function of Ue/ac. The results of entrance
losses can, in principle, be applied to any harbor shape with an abrupt
change of geometry at some location. A narrow rectangular shape was

used only as a convenient means for determining this coefficient fe. The

results of the study will be applied in subsequent sectiomns.

6.2.4 The Relative Importance of the Various Dissipation Sources
in a Narrow Rectangular Harbor for Laboratory Conditions

Various losses which could affect and reduce the response of a
harbor to incident waves in laboratory situations have been presented
in the previous section., These include: boundary friction, surface
tension dissipation (Section 5.1), leakage losses (Section 6.2.2), and
separation losses at the entrance (Section 6.2.3).

The purpose of the section is to evaluate, from the physical consid-
erations discussed in Section 3.3.3, the relative importance of those
various sources in reducing resonance in the case of a narrow rectangular
harbor, i.e., corresponding to a ratio b/L less than 0.4. Restricting
the present discussion to shallow water waves, the amplification factor R,
as affected by the various dissipative mechanism near a resonant frequency,

can be estimated from the results of Section 3.3.3 as:
1
R = —— (6.2.14)

where Ri denotes the amplification factor associated with a particular
dissipative source, i.e., the amplification factor which would prevail

if only that dissipative source alone were present. It is recalled
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that the ratio 1/Ri can be used to measure the effectiveness of source
Si in dissipating energy in the harbor. The expression for the amplifi-
cation factor associated with each source of dissipation can be derived
as follows from the Qi factor computed in Appendix E and from the

relation in (3.3.99) between Ri and Qi:

(i) Radiation damping

= (2n+1) % (6.2.15)

1 s
R 4
T

where b and L denote the harbor width and length, respectively, n is the

mode number corresponding to resonant conditions such that in shallow

water:

£

9 = (2n+1)-%

2

h

where h is the depth and o is the frequency of the incident harmonic wave
system. (It is recalled that when b/L-0, l/Rr does not depend on a/b.)

(ii) Laminar boundary friction

1 _ ul
Ru = (2n+l) A ut (6.2.16)

where the boundary friction parameter is given by:

-1 2,172 2h
“t"h(zg) [1+c+b]

where v is the fluid kinematic viscosity and ¢ is the surface contamin-
ination factor equal to unity in the present study. The three terms in

the parentheses account for the bottom, surface, and wall friction,

respectively,
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(iii) Leakage loss

1 _ L
R_ = e(1 + b) (6.2.17)

where the leakage parameter e is given by:

__e
12vt
e

vg/h

where g is the acceleration of gravity, te the thickness of the harbor
walls, and e the gap width between the walls. In the present study

t =1.2 cmand e = 0,043 cm.

e
(iv) Separation loss at the entrance
1 .
— =K. R (6.2.18)
R f
f
where Kf is defined by:
A
4 1 b.2
Ke=5-f_ ()

f 37 e 'h a

where a is the mouth wid£h of the harbor, (AI/h) denotes the wave ampli-
tude at the coastline on the centerline of the basin with the entrance
closed, and R is the overall amplification factor. The entrance loss
coefficient, fe’ is given by Egs. (6.2.9) and (6.2.10). It is noted

that R. is a function of the overall amplification factor R due to the

f

nonlinear nature of the entrance separation loss.

(v) Surface tension dissipation related to dry friction

ll.ZFe
(2n+l) —4/—— (1 +
2
T pgbAI

1
) R (6.2.19)

o

1 _mm i
R 4 4
C
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where Pe denotes the air-distilled water surface tension (= 72 g/secz).
It is noted that l/RC depends on R because of the nonlinear nature of
this friction source, but unlike entrance dissipation which increases
as R increases, dry friction dissipation decreases as R increases.

(vi) Residual surface tension dissipation

1 _ 7 2 3.3
=7 (ot T =S T (6.2.20)
ob pghb

It is recalled that Eq. (6.2.14) remains quantitatively reasonable
only for values of the resulting amplification factor R greater than, say
two, for reasons discussed in Section 3.3. If this condition is not met,
the value of the amplification factor, R, given by Eq. (6.2.14) is
usually smaller than the maximum value which is shifted toward a smaller
frequency, and should be considered qualitatively only. On the other
hand, it appears to give the right value of R at the frequency such that
GL//EE = (2n+l) 23 even in cases of strong dissipation.

To compute the amplification factor related to a nonlinear dissipa-
tive form such as the effect of separation at the harbor entrance and
dry friction, it is necessary to know the overall amplification factor R.
It is anticipated at this point that dry friction effects do not appre-
ciably affect the overall amplification factor R. Therefore R can be
determined in the following way:

Equation (6.2.14) is rewritten as:

%=Zi:(§;)l +§:(Rij ) (6.2.21)
where (Ri%/refers to any amplification factor associated with a linear

dissipative source, i.e., such that the mean power dissipated by the
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source is proportiomnal to the square of the wave amplitude and (Rj)nﬂ
denotes any amplification factor associated with a quadratic dissipative
source, so that the mean power dissipated by this source is proportional
to the third power of the wave amplitude. For instance, entrance
separation and rough turbulent boundary friction are quadratic dissipative
sources. All amplification factors associated with quadratic dissipation

can be written in the form:

1
(—R—.-)nﬁ, = KjR (6.2.22)

where K. is a fixed linear coefficient specific to the dissipation

mechanism, so that Eq. (6.2,21) becomes:
1 _ 1
E=Z(§—) + QO K.) R (6.2.23)
T4 i

The resulting overall amplification factor at resonance is found by
simply solving Eq. (6.2.23) algebraically for R.

In the present case the only quadratic dissipative source is
entrance separation. The coefficient Kf contains the entrance loss
parameter fe which may vary with Ue/ac as seen in Section 6.2.3. 1In
order to account for this variation the following iterative procedure is
recommended. First an estimate for fe is made. Equation (6.2.23) is
solved for R and the velocity at the entrance Ue is computed from R as

A
BRI
The value Ue/ao follows and the coefficient fe is then determined from

Eqs. (6.2.9) or (6.2.10). Usually this process needs to be

repeated one more time for a correct determination of R. Once the
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overall amplification R has been computed, the amplification factor
associated with each quadratic dissipative source is obtained from
Eq. (6.2.22).

This simplified method can be used to estimate the relative impor-
tance of the varjous dissipative sources. As an example, the following
four cases are considered for the rectangular harbor:

(i) TFirst resonant mode, fully open harbor

(ii) TFirst resonant mode, partially closed harbor.

(iii) Second resonant mode, fully open harbor.

(iv) Second resonant mode, partially closed harbor.

The values of the inverse amplification factor corresponding to
each dissipative source is shown in Fig. 6.2.9 for each of the four
cases. The physical parameters from which the l/Ri were computed are
also indicated in that figure; they correspond to typical laboratory
conditions in the present study., It is recalled from Section 3.3.3
that (l/Ri)/(I/Rj) is thg ratio of the mean power dissipated by the
source Si to the mean power dissipated by the source Sj' Therefore,
l/Ri is a measure of the energy dissipated by the source Si'

It is seen that for all four cases radiation and entrance dissipation
are the two most important damping sources; for the partially closed
harbor entrance separation becomes the most important dissipative source.
The magnitude of the dissipation due to leakage is next in importance.
For the first resonant mode, dissipation induced by leakage is about
one~-fourth that due to radiation; nevertheless it is not negligible.
For the second mode the relative importance of leakage grows slightly

when compared to radiation. The effect of laminar boundary friction
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is fourth in importance, dissipating about one-ninth that cue to
radiation for the first mode oscillation and about one-fifth for the
second mode. The relative importance of leakage and laminar friction
grows for the second mode when compared to the effects of entrance
separation for the fully open harbor. Surface tension (which on Fig.
6.2. 9 includes both dry friction and the residual dissipation source
related to surface tension) is of least importance, but as mentioned in
Section 5.1 the ratio of the power dissipated by surface tension cannot
be neglected when compared to that dissipated by laminar friction. It
is about one-half the power dissipated by viscous boundary friction for
three out of the four cases investigated. It is recalled that dry
friction is mainly responsible for surface tension dissipation and that
one way to drastically reduce it is to add a wetting agent.

In experimental conditions of Fig. 6.2.9 the wave amplitude
chosen at the coastline, AI/h = 0.1, is fairly large. The effect of
entrance dissipation decreases markedly for smaller incident wave
amplitudes. Tor example, for the fully open harbor case, at the first
resonant mode a relative wave amplitude at the coastline equal to 0.05

induces a loss due to entrance effects equivalent to that of leakage.

6.2.5 Summary

In summary, the effects of entrance separation, leakage, and
laminar friction when combined, usually induce more dissipation than the
inviscid effect of radiation. Therefore, to correctly predict the
maximum amplification factor near resonance it is crucial to include
these three effects in the analysis. Surface tension can be safely

neglected only if a wetting agent is added to the water in the wave basin.
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Otherwise it can introduce a relatively important dissipation, especially
for small wave amplitudes, e.g., less than 0.5 cm. It is emphasized at
this point that the simplified analysis of Section 6.2.4 provides a method
of determining the relative importance of the various dissipative sources,
and can yield only an estimate of the resulting overall amplification
factor. In particular the effects of nonlinear convective effects were
neglected. This assumption, as will be seen in Section 6.3. is reasonable
at the first resonant mode but it becomes incorrect at the second mode.

A last remark concerns the total damping associated with oscillation
induced in a closed rectangular basin compared to the damping connected
with wave induced oscillation in a rectangular harbor. 1In the study of
the motions in a rectangular basin discussed in Chapter 5 the important
dissipative sources were laminar friction at the boundaries and dissi-
pative effects related to surface tension. However, for the cases of
Fig. 6.2.9 those sources account for less than 7% of the total dissi-
pation in the harbor. Therefore, one can expect that the growth of
nonlinearities observed in the closed rectangular basin will also be
seen in the harbor, but to a lesser extent because of the comparatively

much stronger dissipation effects.

6.3 The Excitation of a Narrow Rectangular Harbor by a Continuous
Train of Periodic Long Waves

6.3.1 Introduction

Experimental and theoretical results are presented in
this section for the finite amplitude waves which are produced in a
narrow rectangular harbor with a constant depth by a continuous train

of periodic long waves incident upon the entrance. The basic features
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of harbor oscillations associated with nonlinearities, frequency
dispersion, and dissipation will be discussed in some detail.

From the analysis of Section 3.4, for a given incident wave shape,
the transient and steady state characteristics of the oscillations at a
given location inside the rectangular harbor can be defined by the

following dimensionless parameters:

n/bh _ _ ,t/gh E h L a b
H/h - F ( ,Q, ’ h’ Q,’ 2! b’ L! YS, e, fe) (6‘3'1)

where t is the time, g is the acceleration of gravity, h is the still
water depth, a, b, L are the entrance width, the width, and the length

of the rectangular harbor, respectively. H denotes the characteristic
wave height and 2 a characteristic wave length of the incident wave
system, Ys is the laminar boundary friction coefficient, € is the

leakage coefficient, and fe is the entrance logs coefficient. The length
2, for the discussion presented next, is chosen as T/EE, where T is the
period of the incident waves (o = 27/T) so that L/& ~ OL/JEE.

A useful method for investigating these effects consists of obtaining
the response of the harbor from the variation of the steady state wave
characteristics inside the harbor with the length ratio L/% by keeping
the relative shape of the harbor, b/L, the same. The reason the steady
state investigation is important is mainly because, given a periodic
incident wave, steady state conditions are reached in the harbor within
a few oscillations. Therefore an understanding of steady state features
yields a good insight into the transient harbor oscillation problem.

It is recalled (Section 6.1) that steady state conditions were

obtained experimentally after exciting the harbor from at-rest conditions
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before the effects of the finite size of the wave basin were felt in the
harbor. In the present study, as mentioned previously, the incident
waves are a series of approximately identical cnoidal waves which have
certain nonlinear features associated with them. Therefore, the charac-
teristic horizontal length 2 associated with these waves cannot be

varied without also changing their spectral energy content. Consequently,
for all cases presented, the ratio L/% was changed by varying the harbor
length L and simultaneously changing the entrance width and the harbor
width accordingly.

For these experiments since the walls of the harbor were adjusted
during the tests some leakage losses were noted. The results were
corrected for these effects.

For purposes of terminology in the following discussion the solution
obtained using the fully dispersive linear analysis described in Section
3.3 will be termed the linear analytical solution, and the solution
obtained using the finite element analysis described in Section 3.4 is
denoted as the numerical solution. In the latter it will be indicated
for each case if nonlinear and/or dispersive features are incorporated. For
both solutions the inclusion of dissipative effects will be indicated
by the values of the loss parameters: Yoo € and fe‘

It became apparent during the initial stages of the experimental
investigation that the nonlinear features which develop in the harbor
are strongly related to the mode which is excited. Therefore, the
following presentation is divided into two parts. In Section 6.3.2 the
harbor response near the lowest resonant mode is discussed, and in Section

6.3.3 the harbor response near the second resonant mode is treated.
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6.3.2 The Harbor Response Near the Fjirst Resonant Mode

Four sets of response curves were obtained near the first
resonant mode of a narrow rectangular harbor. The characteristics of
the incident wave and the harbor are given for each case in Table 6.3.1.
In Table 6.3.1 (Allh)o, (Az/h)o’ (A3/h)o denote the relative -mplitude
of the first three Fourier components of the incident cnoidal waves,
measured on the center line of the basin at the coastline with harbor
entrance closed. The period of the plate motion is denoted by T or,
equivalently, the period of the first harmonic component of the incident
~ wave system; a, b, L are the entrance width, the harbor width, and the
length of the rectangular harbor, respectively. The equivalent relative
wave amplitude (/E;/h)o at the coastline is defined using Eq. (6.2.6).
As seen from Table 6.3.1, the first harmonic amplitude dominates the others
and lies in the shallow water range for all cases, as indicated by the
values of the parameters (/375)/T which are all less than 0.05. However,
the amplitude of higher harmonics cannot be neglected when compared to
that of the first component. Therefore, even considering only the
linear theory, those higher harmonics (such that the nth harmonic
has a period Tn equal to T/n) may appreciably modify the waves in the
harbor by exciting higher modes of oscillation of the harbor in addition
to the lowest which is excited by the first harmonic of the wave.

As the basis of comparison with later results, the response of a
rectangular harbor to sinusoidal waves from a linear theory is presented
in Fig. 6.3.1 for two cases: b/L = 0.2, a/b = 1.0 and b/L = 0.2,

a/b = 0.5. The theory usea is inviscid and the ordinate represents the

amplification factor at the backwall and the abscissa is the dimensionless
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wave number kL, where the wave number k is related to the wave frequency

0 by the usual linear dispersion relationship:

02 = kg tanh kh (6.3.1)

Table 6.3.1 Experimental conditions for the experiments performed

near the first resonant mode

A A A
1 bt~ 1 2 3 b a
h (em) | T (sec) Té (\ffﬁ;/h)o (h)o (h)o ('h)o I 5
Case la 6.0 2.170 0.036 0.05 0.046 | 0.017{ 0.005} 0.2 |1.0
Case 1b 6.0 1.90 0.041 0.13 0.116 | 0.051{ 0.020} 0.2 |1.0
Case lc 4,0 2.87 0.022 0.104 0.082 | 0.047 } 0.036] 0.2 ]1.0
Case 1d 6.0 1.90 0.041 0.15 0.136 [ 0.052 | 0.617] 0.2 ] 0.5

It should be noted that the higher harmonic components in the
experimental incident cnoidal wave are not in the shallow water range.
Therefore, if the harbor response is considered a linear process the
full dispersion relationship (Eq. 6.3.1) must be used to relate .
(where o, denotes the frequency of the nth harmonic component) to k.
This is one reason a fully dispersive linear analysis was presented in
Section 3.3.

Figure 6.3.1 shows a sharp peak at the first resonant mode (kL = 1.3).
The two other peaks correspond to the excitation of the second and third
modes, respectively. In reality, viscous dissipation reduces this
amplification. Table 6.3.2 gives the values of Ygr €5 and fe for each
case to be considered, along with the resulting amplification factor
for the first mode estimated from the simplified analysis presented in

Section 6.2.4 and the relative harbor opening a/b.
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Table 6.3.2 Effects of viscous friction on the amplification

factor at the first resonant mode

Y * £ f R a/b
5 e
Case la 0.15 0.0075 0.7 3.5 1.0
Case 1b 0.15 0.0075 0.8 3.0 1.0
Case 1lc 0.22 0.0092 0.8 3.0 1.0
Case 1d 0.15 0.0075 1.15 1.6 0.5
* = 2 1
Ys ﬂAbs

It is noted in Table 6.3.2 that for the fully open harbor cases the
maximum amplification is reduced to about one-half its inviscid value.
In addition, when the harbor is partially closed (a/b = 0.5), the
amplification factor is further reduced by half and resonance is nearly
nonexistent., Each case can be defined approximately by three charac-
teristics: the incident wave amplitude (moderate or large), dispersion
{(moderate or small) and dissipation (moderate for a fully open harbor,
and large for a partially closed one). More precisely the range

over which each denomination applies is indicated in Table 6.3.3 below.

Table 6.3.3 Definition of experimental range of non-linearities,
dispersion and dissipatiom.

Large Moderate Small
(J:E:/h)o 0.10 - 0.16 0.05 - 0.06
(%ﬁf/_g) 0.035 - 0.05 0.020 - 0.025
R 1.5 - 1.7 2.5 - 3.5
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The results are presented separately for each case, such that one

characteristic is changed at a time, the other two remaining the same.

6.3.2.1 Case la: Moderate Amplitude, Moderate Dispersgion, Tully
Open Harbor

The variation of the positive and negative steady state
wave extrema with cL//gﬁ as obtained experimentally at the backwall of
the harbor is presented in the upper graph of Fig. 6.3.2 and is compared
with the linear analytical solution and the nonlinear-dispersive solution.
It should be mentioned at this point that the numerical results necessitated
a different finite element mesh configuration for each harbor length; this
process proved time consuming, and consequently only a few numerical runs
were performed for comparison with experiments for each case, The values
of the dissipation parameters Ygr € fe vary with OL/JgE. They are
indicated in Fig. 6.3.2 (and for all subsequent figures where response
curves are presented) for the value of oL//gH corresponding to resonant
conditions., The parameters Vg and € can be computed simply for each
harbor length, but the entrance loss coefficient fe may depend on the
local inverse Strouhal number computed at the harbor mouth which is not
known a priori. However, for simplicity, this coefficient was set
constant for all harbor lengths for a given response curve, and was
chosen from the simplified analysis presented in Section 6.2.4.

In the response curve shown in the upper part of the figufe
6.3.2 agreement between the experimental results and those from the
linear theory appears reasonably good. The first peak at an
abscissal value of oL/Vgh = 0.6 corresponds to the lowest resonant mode

for the second harmonic component; the main peak at OL/JEE = 1.3 is the
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response at the first resonant mode for the first harmonic component; the
third extremum at OL//gﬁ?=2.05 corresponds to the second resonant mode
for the second harmonic component. It is near this third peak that the
experimental results disagree somewhat with the results of the linear
theory.

In the lower portion of Figure 6.3.2 several steady state wave
records obtained at the backwall are presented. The upper curve at
OL//EE = 0 represents the steady state waveform at the coastline with
closed harbor mouth, i.e., L =0. For the harbor lengths presented (or
for the other values of OL/VEE) the agreement of the waves obtained in
the experiments and from both theories is good.

Nonlinear effects from these experiments can be evaluated further
by presenting the results in two complementary ways. In the first,
at the backwall and for each value of OL/JEH, the percentage of wave
energy contained in each harmonic component is computed, i.e.,

106 Ai/'Ea, where Ai denotes the amplitude of the ith Fourier component,

and Ea is given as before by:

In the second approach the relative wave amplitude Ai/h (i =1,2,3)
versus oL//EE is obtained for the first three Fourier components at the
backwall. A comparison between linear theory and experiments for each
of these two methods leads to fairly good understanding of the manner
in which nonlinearities affect wave induced oscillations in this

simply shaped harbor.



318

The experimental variation of the percentage of wave energy with
oL//EE is presented in Fig. 6.3.3 for the first six Fourier components
and is compared with the linear analytical solution; (such curves are
termed energy percentage curves for simplicity in the following discus-
sions). The experiments appear to agree well with the linear theory for
nearly all values of UL//EH investigated. The major difference between
the experiments and the theory is for GL//gE = 2,2 where the third
harmonic is somewhat larger than what the linear theory predicts. The
variation of the relative amplitude Ai/h, for 1 = 1,2,3, with oL/V/gh
is presented in Figure 6.3.4. The comparison between linear theory and
experiments is good for the first and second harmonics. It is noted
that the experimental amplification curve appears quite smooth, i.e.,
there are no spurious peaks which could relate to reflections inside
the wave basin., This tends to confirm the validity of the present
experimental approach in simulating the open sea conditions. Some
discrepancy between experiments and linear theory arises for the third
harmonic component around GL//EE = 2,2 in which the experiments indicate
higher amplitudes. Since for this experimental value the amplitude of
the first two harmonic components agree well with the linear theory, the
discrepancy may be due to some form of nonlinear resonance phenomenon
which manifests itself by producing higher harmonics with small inter-

action with the first two lowest harmonic components.

6.3.2.2 Case 1lb: Large Amplitude, Moderate Dispersion, Fully
Open Harbor

In this example, dispersion and dissipation effects are

kept approximately the same as in case la, but nonlinear effects are



319

larger. The first harmonic component of the incident wave has more than
doubled and the relative importance of the higher components has increased.

The upper portion of Fig. 6.3.5 shows the variation of the relative
steady state wave extrema, n/h, with GL//EE. Again, the linear analytical
solution agrees well with the experiments except around OL//gg = 2,2,
where the positive wave elevation exhibits a peak 30% higher than what
the linear theory predicts. It should be noted the location of this peak
does not correspond to the resonant conditions by the second harmonic,
i.e., UL//EE = 2. The nonlinear dispersive solution agrees quite well
with the experiments for the four points investigated which include
oL/Vgh = 2.2.

Considering the steady state wave records shown in the lower portion
of Fig. 6.3.5, the correspondence of the wave shapes between linear
analytical theory and experiments remains good for GL//EE <1.5, 1In
particular, both the wave height and the wave shape are correctly
predicted by the linea;vtheory at the first resconant mode for both the
first harmonic component (UL/JEE = 1.,3) and the second harmonic component
(oL//EE = 0.6). This agreement for the highest peak appears indeed
remarkable when one considers the large relative wave height, i.e.,

H/h = 0.8, reached by the oscillations at the backwall for OL/VEH = 1.3.
However, as the harbor length is increased, some secondary oscillations
appear behind the main oscillation and the front of the wave steepens;
this experimental feature exists also for the wave record computed

from the nonlinear dispersive theory, but it is not observed in the
results of the linear theory. Away from resonance, at oL/Vgh = 2.84,

the wave shape at the backwall becomes similar to the incident wave
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Case 1b; h=6 cm, T = 1.9 s.
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shape, and agreement between linear solution, nonlinear solution, and
experiments is again good.

Before pursuing the discussion of steady state wave oscillations,
it is of interest to evaluate the importance of transient effects for
the experimental conditions of Fig. 6.3.5. The experimental water
surface time histories of n/h are presented in Fig. 6.3.6 for several
of the values of cL//gE shown in Figure 6.3.5 and are compared to the
nonlinear dispersive numerical solution. (No special attention was
given to the exact time origin during the experiments; therefore, the
wave records have been arbitrarily; aligned on the first extremum of
the oscillations.) First, good agreement is observed between the
experiments and the nonlinear dispersive theory for all records. Although
for GL/JEE-= 2.19, the phase and the amplitude of the secondary oscil-
lations do not align exactly, the features are qualitatively similar. It
is interesting how rapidly steady state oscillations are realized in
contrast to the experiments in the closed basin (see for example Figure
5.2.4). This is probaﬁly due to the higher dissipation rate for this
harbor situation compared to the closed basin., Also, the maximum transient
wave height does not overshoot the steady state features. Therefore, for
the case of Fig. 6.3.6. transient effects appear small.

Returning to the considerations of the steady state oscillations,
for the example of Fig. 6.3.5 the percentage energy curves in Fig. 6.3.7
show the same anomaly (although much more pronounced) as mentioned
earlier between experiments and linear theory in the region of
oL/Vgh > 1.5. While for short lengths (oL/V/gh < 1.5) the experimental

results follow the predictions of the linear theory, for larger harbor
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lengths higher harmonics are generated and grow in relative importance
until at GL/JEH = 2.4, where the third, fourth and fifth harmonic components
contain about 257 of the total wave energy compared to 3% for the linear
theory. The response curves for the first three Fourier components

are presented in Fig, 6.3.8. An interesting feature of these curves is

the reasonably good agreement between the linear theory and the experi-
ments for the first two harmonics for the full range of harbor lengths
investigated. 1In contrast, the third harmonic component exhibits much
larger values from experiments ‘than predicted from the linear theory

for oL/vgh > 1.5 and reaches a maximum disagreement at oL/vVgh = 2.2.

It appears, from Figs. 6.3.7 and 6.3.8, that effect of nonlinearities
is most important at oL/vVgh = 2.2, and the relative importance of this
mode increases with increasing incident wave height. It is produced by
a nonlinear resonant process which generates or enhances higher harmonics
while leaving the amplitude of the first two harmonic components reasonably
intact. 1In other words{'for this nonlinear resonant mode little energy
is transferred from the lower to the higher harmonic components.

The question of whether or not these nonlinear resonant conditions
are triggered or enhanced by the presence of higher harmonics in the
incident wave can only be answered numerically by computing the harbor
response to a sinusoidal incident wave at OL/JEE = 2.2, The variation
of the normalized wave elevation n/(Al)o with t/T is presented in Fig.
6.3.9 for three relative incident wave amplitudes (Al/h)o equal to 0.03,
0.07, and 0.15, for a length ratio GL//EE = 2,2, an aspect ratio b/L = 0.2,
and a relative period /ﬁ7§/ T = 0.04. No viscous dissipation is included

in the computations. The importance of the transient phase of the
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oscillation can be appreciated for this case, for which the negative
wave elevation at the end of the first oscillation reaches twice the
incident-reflected wave amplitude at the coastline. When steady state
conditions are achieved (which, for the case of Fig. 6.3.9 does not
occur until at least the seventh oscillation) the relative trough
elevation keeps a fairly constant value equal to -1.25 for the three
incident waves, but the relative crest elevation increases from 1.25

for (Al/h)o = 0,03 to 1.70 for (Al/h)o = 0.15. 1In addition, higher
harmonics are generated for the largest incident wave, similar to what
is observed in Fig. 6.3.5. Therefore, nonlinear resonant conditions
obtained in the case of Fig. 6.3.5 need not be triggered by the presence
of higher harmonics in the incident wave. They result directly from the
magnitude of the incident wave height.

6.3.2.3 Case lc: Large Amplitude, Small Dispersion, Fully Open
Harbor

The experimental conditions are approximately the same
as in case 1b except that the depth to wavelength parameter /E7§7 T has
been decreased from 0.041 to 0.022., Hence, the dispersion effects
become smaller. The resulting Stokes parameter associated with the
incident waves is increased and, consequently, the relative importance
of higher harmonics in the incident wave is larger.

The variation of positiye and negative steady state wave extrema
with oL/V/gh is presented in the upper portion of Fig. 6.3.10. Good
agreement can be seen between the experimental results and those from
the linear theory for nearly all values of oL//gh investigated. The
only slight discrepancy occurs around oL/vgh = 2.6, where the positive

wave extremum obtained from the experiments is larger than what the
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linear theory predicts. Selected portions of the steady state wave
records (experimental and theoretical) are presented in the lower portion
of Fig. 6.3.10 for several values of OL//gﬁ. For all curves, agreement
between linear theory and experiments appears good. In particular the
secondary oscillations which evolved in case 2b for oL//EH > 1.5 are
hardly observed for these conditions. (The nonlinear numerical solution
also compares reasonably well for the two values of OL/JEE investigated.)
For oL/Vgh = 2.2, the numerical solution exhibits several secondary
oscillations of higher frequency than in case 1b, but with smaller
amplitudes.

Turning to the percentage energy curves in Fig. 6.3.11, the importance
of higher harmonics can be appreciated by considering the rather compli-
cated pattern in the experimental and the theoretical results. The
correspondence between the linear theory and the experiments is quite
good except around oL/vgh = 2.2 where higher harmonics, not predicted by
the linear theory, emerge, The percentage of wave energy contained
in the fourth, fifth, and sixth components reached 15% for the experi-
ments, compared to 2% for the linear results. The response curves
for the first three harmonic components are presented in Fig. 6.3.12.

It is noted the experiments agree well with the linear theory for all
three components over the full range of OL/VEE_which was investigated,

It appears then, that smaller dispersion induces some nonlinear
resonance interaction which is shifted towards somewhat larger values
of UL//EE and which is characterized by the generation of higher
frequency secondary oscillations of rather small amplitude. These

results are consistent with those obtained in the investigation of the
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oscillations in a closed basin for which it was found that, near resonance,
the frequency of secondary oscillations increases with smaller dispersion.
It was also found that high frequency secondary oscillations are very
sensitive to dissipation. 1In the present case, the dissipation

effects are considerably more important than in the closed basin problem;
therefore, the higher harmonics produced by nonlinear resonant effects
are strongly reduced by dissipatioh. This consideration, compounded by
the higher viscous dissipation rate in the case lc compared to case

1b (see Table 6.3.,2), probably explains the better agreement between
experiments and linear theory in case lc than in case 1b, This example
illustrates the effectiveness of dissipation in offsetting the effects

of nonlinearities, i.e., the generation of nonlinear resonant conditions

not predicted by the linear theory.

6.3.2.4 Case 1d: Large Amplitude, Moderate Dispersion, Partially
Open Harbor

The experimental conditions are approximately the same

as in case 1lb, except that the harbor mouth is partially closed to half
its width (a/b = 0.5). The purpose of this section is to investigate
the effects of the rather strong dissipation at or near resonance which
is introduced by the partially closed entrance.

The upper part of Fig. 6.3.13 sghows the variation of the steady
state wave extrema with cL//gg. The positive experimental curve shows
a rather interesting feature. The second peak induced by the nonlinear
resonant mode (GL/JEE = 2,2) becomes as large as the peak induced by the
linear resonant conditions for the first harmonic computéd near cL//EE = 1.3,
This can be explained in the following way: The dissipative effects of

entrance separation, which increase with the velocity at the mouth, are



(a)

(b)

333

0.8 R e N —
© EXPERIMENTS —0—
~——LINEAR ANALYTICAL SQLUTION
& NON-LINEAR SOLUTION J L wave GaGE
. LOCATION
+
0.4F . o~
A e
h e 1;7 /hsg = 008! a/b
(A,7h), = 0136 b/L
O ———— - (£a/hi, = 0052 ¥s
W g/, 007 ‘
| ‘ ] "
-0.412 L 1 Lo a) el .
) 0.5 ] 1.5 2 2.5 3
ol
vagh
0.75 T ~T T Y T T T T
NON-LINEAR ol
EXPERIMENTS DISPERSIVE ANALYTIont oo T /oh
NUMERICAL SOLUTION LYTICAL SOLUTION
PR AN 4 0
of XQ‘F/“\R/"/' AL A — —k7.»/- 0.65
o —\K-]Z\//———- W 0.86
/A
h
L e Nttty it i iy mlbe Sty A —\“7/\\/——"- .29
[+] SRR NS SSE " W .63
ol E\'\?:JAXRIDZ W .98
,
oF —— —— LH* —— l&_——)['}tzyz 2.19
oF 3<::¢3*<:7[ l<::12¥<:7£ 2.84
| — ]
-0.75 1 L ) | 1 1 i )

i~

Fig, 6.3.13
(a) Variation of the steady state wave extrema with oL/vgh,

at the backwall, (b) stead

= 05

=02

= 00075
=15

state wave records at the backwall

for several values of oL/vYgh; comparison between experiments,
linear and nonlinear solution, Case 1d; h= 6 cm, T = 1.9 s,



334

'S 6°T = 1 ‘wd 9 m y fpy ose) ‘uoTinos amealTuou w:m.umwcﬂﬂ ‘sjuswtiadxs usemiaq uostiedwod ‘TTemideq
243l 3® ‘sjusuodwod isfinog xjys ISIT3 Byl o3 U434/710 yapm L319us saem Jo afejussiad 3O uotieTaey

%1°¢€°9 *314

@ w
B .m_.m.A — wiq.b. m.._.x. ——t Jm_.o - 0 0 ¢ AL S _”_.b. S0 0 o1
‘\ b J \ 4 \ / \ / /. Lo / / .
v / iy ﬂ ’ N
o \ \ oy | AR W W / ~
! ! v L/ A Lo A
\ 7 \
1 4 i // /M \\\ / 4
! \ \ ] ) \ (Y\ / w&#a!)g N
. 5 /\ e /:\cfft\u m\b g/
L - 01 - /./16 . N.s 5 — 0t
Y / ®
L] A oo \
, " ‘u. 3 12300 | Jvaﬂfcos{ /w/ oo 1%,
NS E ! R
i T NoTinos #2:..<z<x<wz: B— - T SINaNTEIwG 20!

I
S0 uﬁ%& 7914 9 = | -O—
— G = | —x—
;=9 0 =bri NOLLYOOT P ——
SH =% w00 = &4 T o H bo: ! +
¢ = -v-
G000 = 3 20 = 1/9 2 =1 -0-
SO =4 S0 = asp of— b= -o-




‘8 6°T m I ‘WO 9 m Y {P] 958D ‘UOTINTOS JBOUFTUOU pue IeSU] ‘sjusufiadxe ueemieq uosfiedwod
‘sjusuodwod IBFANOS 93ayl 3ISATF 943l 10J U34/10 Yars opnipldue aABM SATIETAI 9Y3 JO UOFIBLTABA GT'€°9 'S14

yby SIN3IWIY3dX3 @
I AHO3IHL TVUDILATUNY HVINN
¢ sz 4 ot ] $°0 0 gir="2
L R e B e S e e e e e e e m e e R o)
GL000 = 2 2100 = °(u/fw)
gio = %4 2600 =°(4/%v)
20 =/ 9¢10 =°%u/s'y)
2070 A s
' GO = q/0 P00 = By
v
39—
“ ¥0°0
(o8] NOILYD0T
o 39v9  IAUM 7
-
PURTERES VTV NN RUNT WD VU TS N G ST S VAN WY WRUT IO TR S S NS SN U N U W0 S A

90'0

£ §'2 4
— T T

1 S0

| LA B B B S S e o

ub/
55
S

s¢i0

§¢°0



336

most severe for cL//EE = 1.3, where a node exists near the entrance. In
contrast, near GL/JEE = 2.2, where nonlinear resonance occurs, the
velocity at the mouth becomes smaller since, from the linear theory, a
node no longer exists near that location. Therefore, entrance separation
does not affect substantially the development of the nonlinear resonant
features at oL/Vgh = 2.2.

The agreement of the experiments with the linear theory is rather
poor around UL//EE>= 2.2, as expected, but it is also rather poor for
smaller values of cL//EH, where the positive extrema are underpredicted
and the negative extrema are overpredicted. The nonlinear theory agrees
well with the experiments for OL//EE'= 2.2, but shows the same tendency
as the linear solution for oL//EE'= 0.6. The reason for this discrepancy
is not clear. Examples of several steady state wave records are presented
in the lower portion of Fig. 6.3.13. For oL/Ygh > 1.3, the growth of
secondary oscillations is observed again and good agreement is obtained
between the experimental results and the results of the nonlinear theory
for oL/V/gh = 2.2.

The energy percentage curves in Fig. 6.3.14 and the amplitude
response curves in Fig. 6.3.15 follow the same trend as for case 1b:
entrance separation reduces the maximum amplification factor for the
first harmonic component down to about 1.7 (= Ai/Ao) at resonance, but
does not prevent the development of higher harmonics near oL/VEE-= 2.2.
Actually, the amplitudes of the third harmonic component for this harbor
length are both equal to about 0.055 for case 1d and 1b. This shows
that nonlinear resonance develops as fully in case 1d as in case 1b.

To demonstrate the capability of the numerical program in modeling

separation loss at the entrance of the harbor, four experiments were
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performed by exciting the harbor continuously with different opening
ratios a/b. The fixed dimensionless parameters are (H/h)inc = 0.1,

b/L = 0.2, /h/g/ T =0.05, oL//gh = 1.2, vy_ = 0.113, and e = 0.006,
corresponding to T = 2.0 sec and h = 10 cm. The opening ratios a/b were
set equal to 1.0, 0.8, 0.4, 0.2, For this set of experiments the harbor
was not sealed to the floor of the basin; consequently, the leakage loss
parameter € has a non-zero value., The entrance friction factor fe is
determined from the simplified analysis of Section 6.2.4 as 0.8 for the
fully open cases, 1.15 for the other cases. Figure 6.3.16 shows the
variation of the relative wave surface displacement n/h at the backwall
with dimensionless time t/T for the four opening ratios. It is seen
that the numerical solution agrees reasonably well with the experiments
although it predicts a slightly larger amplification for a/b = 1., 0.8,
and 0.4 by about 15Z. The efficiency of the breakwater in reducing
resonance for small values of a/b can be appreciated by considering the
higher curve and the lower curve in Fig. 6.3.16; the former corresponds
to a/b = 1 and the latte? to a/b = 0.2. For the partially ciosed harbor
resonance is completely suppressed compared to the example of the fully

open harbor where the wave height at the backwall is more than three

times the incident wave height.

In prototype situations the depth to wavelength ratio /E7§7 T is
smaller than in laboratory, typically by one order of magnitude. In order
to investigate the effects of very small dispersion on the first resonant
mode, numerical experiments were performed using a sinusoidal incident

wave with b/L = 0.2, oL//EE.= 1.3, (Al/h)o = (.05, and no viscous
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dissipation. The time history of the relative water surface elevation,
n/h, at the backwall is presented in Fig. 6.3.17 for three values of
/E7E_YT: 0.03, 0.009, and 0.003. The three waves evolve with time in

a similar manner and retain their shape which is approximately sinusoidal
even when the relative wave height at the backwall reaches 0.8, Therefore,
the effects of nonlinearities with small dispersion can also be

neglected for these conditions.

6.3.3 The Harbor Response Near the Second Resonant Mode

Five sets of response waves were obtained mnear the second
resonant mode for a rectangular harbor where for this mode the harbor
essentially appears longer relative to the incident wavelength. The
characteristics of the incident wave and of the harbor for each case are

given in Table 6.3.4,

Table 6.3.4 Experimental conditions for the experiments performed

near the second resonant mode

INEE YR A e TN e T I N N Y

h (em) | T (sec) T{; ( h )o (h)o (h}o (h)o 1 5

Case 2a| 7.5 1.81 |0.048 |0.06 | 0.058 | 0.004 |0.002 {0.1]1.0
Case 2b| 7.5 1.81 |0.048 {0.117 | 0.114 | 0.026 | 0.010 { 0.1 | 1.0
Case 2¢c| 4.0 2.36 10.027 |0.127| 0.11 |o0.055|0.026 | 0.1 |1.0

Case 2d{ 7.45 1.805 {0.049 | 0.11 | 0.104 { 0.018 | 0.006 { 0.1 0.5

Case 2e| 7.5 1.78 [0.048 {0.16 | 0.151 { 0.06 0.02 {0.1}1.0

Cases 2a, 2b, 2c, and 2d correspond approximately to the same experi-
mental conditions as cases la, 1lb, lc, and 1d, respectively, except that

the width ratio b/L is now reduced to 0.1 to decrease radiation damping at
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the second resonant mode. Case 2e corresponds to the same experimental
conditions as case 2b, except that the incident wave height is larger.
This section deals with the excitation of the second mode of the
harbor by the first harmonic component of the incident cnoidal wave
system. As a basis of comparison with subsequent results the variation
from the linear theory of the amplification factor at the backwall with
the normalized wave number kL is presented in Fig. 6.3.18 for b/L = 0.1
and for a/b = 1.0 and a/b = 0.5, in the absence of viscous dissipation.
The three maxima in Fig. 6.3.18 correspond to the second (kL = 4.3),
third (kL = 7.5), and fourth (kL = 10.5) resonant modes. The peak which
is associated with the second resonant mode appears fairly sharp, but actually
viscous dissipation tends to modify this by reducing the amplification.
Table 6.3.5 gives the values of the various dissipation parameters: ¢,
Yoo and fe for each case and the estimated amplification factors at the
second resonant mode (kL = 4.3) based on the simplified analysis of

Section 6.2.4,

Table 6.3.5 Effects of viscous friction on the amplification factor

at the second resonant mode

ys** £ fe a/b R
Case Z2Za 0.11 0.0067 0.10 1.0 3.0
Case 2b 0.11 0.0067 0.5 1.0 2.4
Case 2¢ 0.19 0.0092 0.4 1.0 2.3
Case 2d 0.11 0.0067 1.0 0.5 1.7
Case 2e 0.11 0.0067 0.0 1.0 3.0
k% =

Ys 2-’mbs
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From Table 6.3.5 1t is seen that viscous dissipation reduces the
response at the second mode substantially and therefore must be
included in the various numerical models for a meaningful comparison
with the experiments. The experimental and theoretical results for

each case are presented next.

6.3.3.1 Case 2a: Moderate Amplitude, Moderate Dispersion,
Fully Open Harbor

The variation of the positive and negative steady state
wave extrema with GL//EE'is presented in the upper part of Fig. 6.3.19.
Although the experimental conditions are similar to Case la, the agree-
ment between the linear theory and the experiments is not as good as in
the case of Fig. 6.3.2. 1In particular, the experimental positive
extremum is less than what the theory predicts for UL//EE = 4,3, and a
secondary peak seems to emerge for 0L//§HA= 5.0. The wave extrema
computed from the nonlinear theory compare well with the experiments.

An extracted portion of the steady state wave records for several
values of oL//EE is preéented in the lower graph of Fig. 6.3.19. The
front face of the oscillations steepens more than the linear theory
predicts from OL//EE = 3,50 to 4.96, and small secondary oscillations
appear on the back face of the main oscillation at oL/Vgh = 4.96. The
numerical nonlinear solutions agree well with the experiments and agree
better than the results of the linear theory.

The corresponding energy percentage curves are shown in Fig. 6.3.20.
In contrast to the results of the linear theory, the experimental results
show that the growth of the first harmonic component near resonance is

accompanied by the simultaneous growth of higher harmonics. These higher
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harmonics continue to grow as the harbor length is increased, until

at about oL//EE = 5.0 where their relative importance culminates. The
amplitude response curves for the first three Fourier components are
presented in Fig. 6.3.21. The ratio of the wave amplitude predicted
by the linear theory to the experimental wave amplitude at oL//EE = 4.4
is about 1.3, whereas the amplitude for the second and third harmonic
components obtained experimentally at oL//EE = 4.4 is much larger

than linear theory predicts. Therefore, it can be concluded that for
the second resonant mode a transfer of energy takes place from the
lowest to the higher frequency components, resulting in a "nonlinear
inviscid damping" of the lowest harmonic at resonance. This new
feature did not appear to exist for the first resonant mode. As

oL//Eﬁ is increased further, the amplification of the second and

third harmonic components grows also, until a maximum is reached at about
oL/Ygh = 5.0. For this value, the amplification of the first harmonic

is well predicted by the linear theory, but complete disagreement between
experimental and linear curves can be observed for the second and third
harmonics. This suggests the existence of a second nonlinear resonant
mode around cL//EH = 5.0 which is characterized by the production of

harmonics, similar to those obtained in Section 6.3.2.1 for the first mode.

6.3.3.2 Case 2b: Large Amplitude, Moderate Dispersion,
Fully Open Harbor

The experimental conditions are the same as for case 2a,
except that the incident wave height is now twice as large. The upper
portion of Fig. 6.3.22 shows the variation of the steady state wave
extrema with oL/Ygh. The difference between the e#perimental results

and the linear theory appears greater than that shown for case 2a in
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Figure 6.3.19. 1In particular, the positive peak is shifted from

oL/Vgh = 4.4 to about oL/Vgh = 5.0. The skewness of the positive extremum
curve is also quite apparent. For oL/Vgh = 5.0, the ratio of positive

to negative extrema reaches 2.5 compared to 1.1 for the linear theory.
Thus, the general shape of response curves for the steady state bears

a certain resemblance to the results obtained for the closed rectangular
basin. It is noted that the agreement between the nonlinear dispersive
solution to the experiments is good.

Several wave records are presented in the lower portion of Fig.
6.3.22 for steady state conditions. The experimental results and the
linear theory differ significantly and in contrast, the nonlinear
theory agrees reasonably well with experiments for the four curves

which were obtained numerically. For oL/vgh = 3.50, a slight extremum

takes place on the linear curve on Fig., 6.3.22, which indicates the
excitation of the third resonant mode by the second harmonic component of
the incident wave. However, the wave shape described by the linear theory
and shown below, characterized by a distorted front face, does not agree
with either the experiments or the nonlinear theory. This means that the
harbor cannot be considered for this case as a linear transducer for the
incident wave. Thus, the effects of higher frequency components in the

incident wave cannot be simply linearly superimposed; they become directly

related to the over-all nonlinear behavior of the wave inside the
harbor. As oL//gE increases, so does the wave height and the front
face of the wave steepens and secondary oscillations appear and grow
in amplitude. At GL//EE'= 5.2 the secondary oscillations attain a

height about one-third of the main oscillation. It should be noted,
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for these experiments, the nonlinear resonant processes inside the harbor
are quite similar to features observed in the closed basin; in particular,
the main oscillation at resonance divides into several secondary
oscillations as a result of the attempt of the wave to balance nonlinear
and dispersive effects. However, these oscillations remain smaller

than what was observed for the closed rectangular basin, probably

because of the strong damping (viscid and inviscid) for the harbor which
limits their development. For OL//EE = 5.94, which corresponds to a
nonresonant condition, the wave shape at the backwall is again similar to
the incident wave.

To estimate the transient effects near the second resonant mode,
the time history of the relative wave elevation n/h at the backwall is
presented in Fig. 6.3.23 for several values of oL/Vgh and is compared
with the experiments. Again, the nonlinear solution agrees well with
the experiments for all cases. It is seen that nonlinear effects
become fully developed after four oscillations, and steady state
conditions occur within.five oscillations for all examples. Thus, the
transient effects remain small for these conditions.

The steady state energy percentage curves on Fig. 6.3.24 clearly
show the generation of higher harmonics which accompanies the nonlinear
resonant process. For GL//EE = 5,2, the second, third, and fourth
harmonic components contain about 507 of the wave energy, compared to
only 7% predicted by the linear theory. It can be observed from Fig.
6.3.24 that only higher harmonics up to the fourth are generated by
this nonlinear resonant process. The amplitude response curves for

the first three harmonic components are shown in Fig. 6.3.25. The
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nonlinear process of energy transfer from the lowest to higher harmonic
components is clearly seen for GL//EH- = 4.4 where the ratio of maximum
amplitude computed from the linear theory to the corresponding experi-
mental amplitude reaches 1.4 for the lowest harmonic. The response

curves for the second and third harmonic component obtained experimentally
is significantly different from that which is predicted by the linear
theory. This indicates that they result from the nonlinear interaction

of the main oscillation triggered by the second resonant mode.

6.3.3.3 Case 2¢: Large Amplitude, Small Dispersion, Fully Open
Harbor

The experimental conditions are similar to those of
case 2b, except that the depth parameter /575/ T is decreased from
0.048 to 0.027. As a consequence, the amount of energy in the higher
harmonics in the incident wave is larger.

The variation of the relative positive and negative steady state
wave extrema with oL/Ygh for this case is presented in Fig. 6.3.26. The
second harmonic componeﬁt in the incident wave has an amplitude equal
to half that of the first harmonic component, and this explains the
presence of these rather well defined peaks on the linear response
curve. The peak at GL//EE = 3.80 corresponds to the amplification of
the second harmonic at the third resonant mode, the main peak at
GL/VEE = 4.3 corresponds to the amplification of the first harmonic
at the second resonant mode, and finally, the peak at cL//EE = 5.2
corresponds to the amplification of the second harmonic component at the
fourth resonant mode. Relatively large differences between the response
curve predicted from the linear theory and that determined from

experiments can be observed, and the shape of the experimental response
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curve is somewhat different from that in Fig. 6.3.22. Two distinct
experimental extrema now occur in the experimental curve at GL//EE = 4.5
and oL/V/gh = 5.4, respectively. The occurrence of the second experi-
mental peak and the third linear peak at about the same value of
oL//EE, i.e., around 5.2, is believed to be coincidental, since the
experimental wave behavior is not believed to be governed by linear
theory for cL//gﬁ = 5.2, but rather emanates from the characteristics
of the nonlinear resonant oscillatioms.
Several steady state wave records are presented in the lower part
of Fig. 6.3.26. TFor oL/Vgh > 4.3, secondary oscillations appear on
the back face of the main wave but with small amplitudes. Nevertheless,
the number of oscillations is larger than for case 2b, e.g., for
oL/V/gh = 5.25 four secondary oscillations are clearly seen. The same
features are obtained on the corresponding nonlinear wave record,
although secondary oscillations have somewhat larger amplitudes. These
observations are consistent with the results of the oscillation of a
closed rectangular basin which showed a larger number of secondary
oscillations for smaller values of the dispersion parameter. For
OL/JEE.> 4.3, the nonlinear resonant conditions which develop are
mainly characterized by the presence of higher harmonic components.
The frequency of these harmonics increases as the effects of dispersion
decrease, and they tend to be damped more efficiently by
dissipation. Consequently the secondary peak observed in upper graph
of Fig. 6.3.26 may not be fully developed because of dissipation effects.
In the energy percentage curves shown in Fig. 6.2.27, the effects

of small dispersion in generating higher frequency components is clearly
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demonstrated. 1In particular for oL//gE = 5.6, the fifth and sixth
components contain 107 of the total energy, whereas in case 2b those
components were negligible. The amplitude response curves in Fig. 6.2.28
exhibit similar features to case 2b. The same nonlinear damping is
observed for the first harmonic. The ratio of maximum amplitude computed
from the linear theory to the corresponding experimental amplitude
reaches 1.35. Higher harmonics grow until a certain point (oL/Vgh = 5.5)
and then stop rapidly, as can be seen from the response of third
harmonic in Fig. 6.3.28.

To investigate further the effects of small dispersion on the
second resonant mode, numerical experiments using the nonlinear dispersion
solution were performed with a sinusoidal input wave for: b/L = 0.1,
oL/Vgh = 4.95, (Al/h)o = 0.1, and no viscous dissipation. The computa-
tions were made for three "depth-to-wavelength" parameter values
(vVh/g/ T) which correspond more to prototype conditions: 0.03, 0.009,
and 0.003. The time history wof the variation of the water surface
elevation n/h at the backwall is presented in Fig. 6.3.29 for these
conditions. For the three curves the steady state wave height is about
twice that corresponding to OL/VEH = 0 (compared to about unity for the
linear theory). The nonlinear resonant oscillations are characterized
by a steep front face and secondary oscillations on the back face.
Finally, the number of secondary oscillations tends to increase for
smaller dispersions but their amplitude tends to decrease in the same

time.

6.3.3.4 Case 2d: Large Amplitude, 8mall Dispersion, Partially
Closed Harbor.

The effects of entrance dissipation on nonlinear resonant

interactions near the second resonant mode were investigated by reducing
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the harbor entrance to half the fully open width. Figure 6.3.30 shows
the variation of the relative steady state extrema with oL//EE. It is
noted resonance is almost completely suppressed near oL/Vgh = 4.4

and in the experiments a distinct peak results from the nonlinear
resonant process at oL/V/gh = 5.00.

Selected segments of some steady state wave records are presented
in the lower portion of Fig. 6.3.30 .for various values of OL//EH
obtained experimentally and from the noniinear and linear theories. The
wave shapes from the linear theory are in better agreement with the
experiments than in the other cases, which shows that nonlinear
features have been reduced by the energy dissipation introduced by
the partially closed entrance.. :Some secondary eoscillations appear
behind the main wave in the wave record obtained experimentally. This
feature is not predicted by the nonlinear theory, although the wave
height is correctly predicted.

The energy percentage curves are shown in Fig. 6.3.31. The genera-
tion of higher harmonics around GL//EE = 5,0 is relatively less important
than for case 2b. In the latter case the third and fourth harmonic
components contain a maximum of about 357 of the total wave energy,
compared to 12% for case 2d. The amplitude response curves for the
first three harmonic components presented in Fig. 6.3.32 show similar
effects as observed for the fully open case; however, the features are

somewhat attenuated by entrance dissipatiomn.

6.3.3.5 Case 2e: Large Amplitude, Moderate Dispersion,
Fully Open Harbor

In previous cases data were obtained at only one

Jocation: the backwall of the harbor. In this section in addition to
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obtaining the variations of the water surface elevation with time at a
given location, the variation with distance was also evaluated at
different elapsed times. The experimental profiles were compared to

both the linear analytical solution and the nonlinear dispersive solution.
To clearly characterize the nonlinear behavior of the wave inside the
harbor for the second resonant mode, a fairly large incident wave was
used as input, i.e., (/E;/h)o = 0.16 and the small radius corners at

the entrances used for all other cases ( T, = 0.5 cm) were replaced by
the large radius cormners (_re = 5 cm) to minimize entrance dissipation.

First the response curves obtained experimentally and from the
linear theory are presented in Fig. 6.3.33 similar to the other cases
investigated. The same nonlinear features seen before, although some-
what enhanced here, are observed. It is seen that the mnegative
extremum measured experimentally is relatively independent of oL//EE.

The response éssociated with the experiments is a maximum for oL/Ygh = 5.0
and the corresponding ra?io of the positive extremum over the negative
extremum reaches three. The discrepancy between experiments and linear
theory is obvious especially when the positive wave extrema are compared
at resonance. Good agreement is obtained between experiments and non-
linear results even for oL//EE = 5.0 where the experimental relative

wave height reaches 0.8.

The experimental steady state wave records presented in the lower
part of Fig. 6.3.33 do not agree at all with the results of the linear
theory. 1In contrast, the experiments agree quite well with the nonlinear
dispersive theory. For oL//gﬁ > 4.3 secondary oscillations appear and

the main wave divides into three separate waves.
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The photographic method used to obtain experimental wave profile
(variation of the water surface elevation with distance) inside the closed
rectangular basin turned out to be unsuitable for the harbor because of
physical constraints. Instead, steady state wave profiles were obtained
experimentally by using the following procedure: A series of tramsient
Eulerian wave gage records were taken at sixty equally spaced locations
inside the harbor. For each of these sixty runs the same incident
wave was generated and the wave was recorded at a given location inside
the harbor. Then the wave gage was moved to the next location and the
process was repeated. For each run the wave was recorded by a second
gage, located at a fixed position just outside the harbor in order to
provide the same time origin for all records. This method proved
accurate because of the high degree of repeatability of the hydraulically
driven wave generation system, and due to the analogue-to-digital data
acquisition system used in this study.

The experimental sFeady state wave profiles for twelve different
times within one wave period are presented in Fig. 6.3.34. These were
measured along the centerline of the harbor and the profiles are compared
with the linear analytical solution and the nonlinear dispersive numerical
solution. The positions x/L = -1 and x/L = 0 correspond to the backwall
and the mouth, respectively. The wave elevation in millimeters is plotted
as the ordinate. (It is recalled that h = 7.45 cm for this case).

The experiments and the nonlinear theory agree fairly well for all
times. The linear theory produces a completely different pattern which
resembles a standing wave pattern. No nodes are seen with the linear

theory because the incident wave used as input in the calculation is
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not symmetric about the mean water level consequently the intersection

of the wave elevation with the mean water level oscillates about the
positions x/L = -0.33 and x/L = 0.0. One important feature associated
with the experimental profiles is the moving wave pattern characterized
mainly by two "hump-like'" waves indicated by the full line and the hatched
arrows in Fig. 6.3.34, which travel in and out of the harbor. Secon-

dary travelling oscillations complicate that pattern further, and are
mainly responsible for additional local extrema such as the one observed
at x/L = -0.6 for t/T = 0.67. The similarity between this wave pattern
and those obtained with the closed basin is obvious (see Fig. 5.2.8).

If dispersion effects are decreased one would expect to obtain
more secondary local extrema along the harbor. If they are further
reduced, viscous dissipation is expected to damp out the secondary
oscillations and triangular shaped waves travelling in and out of the

harbor should be obtained.

6.3.4 Summary
The nonlinear resonant oscillations of a narrow rectangular

harbor have been investigated experimentally and theoretically and discussed in
Section 6.3. The main results can be summarized as follows.

For short bays, such that GL/VEE < 0.6, nonlinear convective effects
do not appear and can be reasonably neglected even when the wave height
of the oscillations is of order unity. In this range the harbor acts
as a linear transducer which sees the incident wave as a signal composed
of various frequencies, but does not perceive the nonlinear nature of
this wave. 1In fact the harbor length L is too small for the nonlinear

effects to have space enough to develop.
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As the bay length increases relative to the incident wavelength,
some nonlinear features of the bay response begin to appear. Nonlinear
resonant conditions, not predicted by the linear theory, may be triggered
inside the harbor for a sufficiently large incident wave amplitude, and
higher harmonics are generated which increase this wave height.

For even longer bays, such that the second mode resonant conditions
are met, the importance of nonlinearities is apparent. At the second
resonant mode the ratio L/% is about 0.75 and the wave has enough space
(and time) to resonate in a nonlinear manner, similar to that observed
for the closed basin. These nonlinear features are somewhat attenuated

because of dissipation, but nevertheless they cannot be neglected.

6.4 The Transient Excitation of a Harbor

Section 6.3 was specialized to a narrow rectangular harbor
with constant depth, excited by a continuous train of nonlinear incident
waves. The main purpose was to analyze in detail the interactive effects
of finite wave amplitude, dispersion, and dissipation on the wave

dynamics inside the harbor for this geometrically simple shape.

In this section the investigation is extended to wave oscillations
in harbors induced by a transient train of incident cnoidal waves for a
fully open rectangular harbor with a constant depth, a fully open
rectangular harbor with a linearly varying depth, and a fully open and
partially open harbor with a trapezoidal planform and a constant depth.

For each case investigated the experiments are compared to the
results of the nonlinear dispersive numerical model; the linear solution
is also presented for most of the results. All the experimental wave

records were taken at the backwall of the harbor.
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6.4.1 A Narrow Rectangular Harbor with a Constant Depth

In a first series of experiments two cnoidal incident
waves were generated with the primary purpose of investigating the
growth and decay of the oscillations in the harbor when the period T
(associated with the frequency o) of the cnoidal incident wave matched
one of the natural periodsof oscillations of the harbor. For this
series the bottom of the harbor was sealed to the basin floor and the
corners of the entrance were rounded to minimize leakage and entrance
dissipation, respectively.

The variation of the relative water surface displacement n/h with
dimensionless time t/T at the backwall is presented in Fig. 6.4.1 for
three incident relative wave heights: (H/h)inc = 0.05, 0.10, and 0.17,
where H denotes the incident wave height before it reaches the harbor or,
equivalently, one-half the wave height at the coastline with closed harbor
entrance (assuming the reflection process at the coastline is linear).
The other dimensionless parameters are b/L = 0.2, Vﬁ7§7 T = 0.047,
GL//EE = 1.3, Yo = 0.13, ¢ = 0.0, fe =.0.0 corresponding to the physical
parameters L = 35 cm, T = 1.92 sec, h = 8 cm. The value of the frequency
parameter OL//EH corresponds to resonant conditions for the first mode
of oscillation of the harbor. 1In each graph the full line represents
the experiments, the line composed of short dashes represents the
nonlinear numerical solution and the line of long dashes corresponds to
the linear solution. The upper curve in each graph is the incident wave
record at the coastline with the harbor entrance closed. In the case of
Fig. 6.4.1 the linear curves were obtained from the analytical solution

of Section 3.3.
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For the smallest incident wave, (H/h)inc = 0.05, both linear and
nonlinear theories agree well with the experiments. Resonance develops
over a relatively short time, and the height of the second oscillation
reaches 3.5 times the incident wave height at the coastline. Therefore,
in prototype situations resonance conditions can indeed lead to a
substantial amplification of the transient incident waves even if the
number of waves is small (e.g. less than three)., The decay rate of the
harbor oscillations after the excitation phase is rather large: the
wave motion has almost disappeared inside the harbor within five
oscillations. Good agreement between experiments and linear and
nonlinear theories is again obtained for (H/h)inc = 0.10. For the
largest incident wave (H/h)inc = 0.17 only a slight discrepancy is
observed between experiments and linear theory. 1In particular small
secondary oscillations appear on the front face of the third wave.

These oscillations are reproduced by a nonlinear solution which agrees
well with the experiments. Such a good agreement appears indeed
remarkable if omne considérs the wave height reached at the backwall
during the second oscillation is 1.4 times the depth! The decay rate of
the wave is well predicted by both theories. These results confirm the
conclusion of Section 6.3: for a harbor with a short length relative

to the incident wave length convective nonlinearities can be neglected and
it is sufficient to use a linear formulation.

Similar results are presented in Fig. 6.4.2. The incident wave
characteristics are the same as for Fig. 6.4.1 and the dimensionless
parameters are b/L = 0.1, vh/g/ T = 0.047, oL/V/gh = 4.5, Yo = 0.13,

e =20, fe= 0.0, with the physical parameters L = 121 em, T = 1.92 sec,

h

8 em, The value of the frequency parameter oL/vgh corresponds to
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resonant conditions for the second mode of oscillations of the harbor.
For a relative incident wave height of (H/h)inc = 0,05 linear theory agrees
fairly well with the experiments and the agreement is even better between
the nonlinear solution and the experiments. For (H/h)inc = 0.1 there is
some difference between the experiments and the linear solution. In
particular secondary oscillations not predicted by the linear solution
appear on the fourth experimental wave oscillations; however, the
differences are indeed small. The oscillations are predicted by the
nonlinear theory which also shows a good overall agreement with the
experiments. Finally, for (H/h)inc = 0.17 the difference between the
recorded wave and the record computed from the linear theory becomes
relatively large. The detailed features of the oscillations (in partic-
ular the second oscillation) emanating from the nonlinear interactions
are not reproduced by the linear results. In contrast, the local experi-
mental wave forms are in nearly perfect agreement with the nonlinear
theory. It is seen from this last part of Fig. 6.4.2 that nonlinear
effects cause the oscillétions to peak and dispersion effects appear to
become important and cause the main oscillations to separate into
secondary waves.

Thus, if the second mode is excited nonlinear effects tend to
modify the shape of the wave; in particular, a larger difference is found
between experiments and linear theory in the case of Fig. 6.4.2, where
the second mode of the harbor is excited, than in the case of Fig. 6.4.1
where the first mode is excited. These results are consistent with those

obtained in Section 6.3 for the case of a continuous excitation.
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Attention is focused next on the number of incident waves required
to obtain fully developed nonlinear features when the second mode of the
harbor is excited.

It was seen in Fig. 6.4.2 that when the incident wave consists
of only two oscillations, some nonlinear effects modify the shape of the
wave, but the overall agreement between the linear theory and experiments
remains reasonable. The variation of the relative water surface
displacement n/h with dimensionless time t/T is presented in Fig. 6.4.3
for three incident waves, consisting of two, four and six oscillations
respectively, with the same relative wave height (H/h)inc = 0.1. The
other dimensionless parameters for the experiments are: b/L = 0.1,
vhig/ T = 0.047, oL/Vgh = 5.0, v, = 0.13, € = 0.0, and f_ = 0.0,
corresponding to L = 135 em, T = 1.92 sec, and h = 8 cm. When the
harbor is excited by two incident waves, some nonlinear features can be
observed, but the overall response appears to follow a linear theory
reasonably well. In the case of four oscillations of the incident wave
the shape of the wave atlthe backwall begins to differ markedly from
the linear solution. During the fourth oscillation it separates out into
three waves as a result of dispersion acting against nonlinearities. Finally,
when the incident wave consists of six oscillations nonlinear features
emerge at about the third oscillation and become fully developed during
the fifth oscillation. It is noted that for the three cases the non-
linear dispersive solution agrees well with the experiments with regard
to both the shape of the wave and the height. Thus, it takes some time
for nonlinearities to develop. For excitations of a short duration, it

should be noted the wave can be damped out before nonlinearities can

establish themselves.
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6.4.2 A Narrow Rectangular Harbor with a Linearly Varying Depth

Three experiments were performed with a fully open narrow
rectangular harbor with a linearly varying depth. The slope was made
out of an anodized aluminum plate with supports beneath it and it was
sealed onto the harbor walls with tape. The experiments differed from
each other by the height of the incident wave: H/h = 0.05, 0.1, 0.17.
The other wave parameters and the harbor dimension remained the same
except for the factor fe' (It is important to note that this case was
used to demonstrate the capabilities of the numerical program and was
not intended to investigate variable depth harbors.)

The fixed dimensionless parameters are: b/L = 0.1, hl/h = 0.5,
vh/g/ T = 0.047, oL/V/gh = 3.69, Y, = 0.12, e = 0.0, where h denotes
the still water depth at the backwall of the harbor. The corresponding
physical parameters are h = 8 cm, L = 100 ecm, and T = 1.92 sec. The
harbor length was determined such that it corresponds to the resonant
conditions for the second mode of oscillations of the harbor in a linear
sense, i.e.,, the resonanf frequencies were determined using the linear
harmonic numerical program used by Lepelletier (1978). Since small radii
were used at the mouth for these experiments (r, = 0.5 cm), the entrance
separation coefficient is not zero and is obtained from the analysis
of Section 6.2.4 and Eq 6.2.9 (assuming constant depth) as fe = 0.2,
0.4, 0.6, respectively.

The variation of the relative water surface displacement n/h with
the dimensionless time t/T at the backwall is presented in Fig. 6.4.4
for each case. Two incident waves were generated for (H/h)inc = 0.05
and 0.1 while only one was generated for H/h = 0.17, in order to prevent

breaking from occurring inside the harbor during the second oscillation.
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Since some quadratic dissipation must be included in the solution,
the linear analytical solution developed in Section 3.3 cannot be used
for transients, instead the linear curves in Fig. 6.4.4 are produced by
the linear nondispersive numerical solution. For (H/h)inc = 0.05 both
linear and nonlinear solutions agree reasonably well with the experiments.
(Some local discrepancy occurs with the nonlinear solution during the fifth
oscillation, which is not understood.) For (H/h)inc = 0.1 the nonlinear
features begin to clearly appear. The front face of the second oscil-
lation at the backwall is quite steep and secondary oscillations develop
during the fourth oscillation. A comparison with the graph in Fig. 6.4.2
corresponding to the same incident wave amplitude shows that nonlinear
effects develop more for the linear varying depth, as would be expected,
The agreement between the nonlinear solution and the experiments appear
quite satisfactory (except for the fifth oscillation). Finally, for
(H/h)inc = 0.17 a phase shift appears clearly for the first maxima
between the experimental results and the results of the linear theory,
showing that the wave ceierity, as the first incident wave propagates on
the slope, is greater than what the linear theory predicts. The secondary
oscillations appearing on the front face of the second wave are nicely
reproduced by the nonlinear solution. It is noted that, in this last
case, the lowest mode of the harbor becomes excited also by the incident
wave, as evidenced by the long period oscillations, with a dimensionless
period of about 2.5 which develops after the first oscillation.

In summary, for this variable depth harbor, the nonlinear theory
agrees generally well with the experiment; however, the overall features

of the linear solution are not too different from the experiments. This
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is probably because, in this case, the ratio of the harbor length to the
incident wave length is only 0.6; nonlinear-dispersive effects which
begin to develop on the slope do not have time enough to develop fully
before the wave reaches the backwall of the harbor. Actually, this
situation is probably typical of most tsunamis, where the wave length

is usually much larger than the length of the bay or harbor so that even
if the bottom slopes, nonlinear and dispersive effects may not have space

(or time) enough to develop.

6.4.3 A Trapezoidal Harbor with a Constant Depth

In addition to the dynamic effect of resonance the wave
height in a harbor also can be increased significantly by concentrating
its energy through geometric focusing. In particular, Green's law
indicates that the height H of a linear nondispersive wave propagating

in a constant depth but decreasing width channel is given by:

1/2
£=(3)
H0 : b

In the case of a natural bay with a trapezoidal shape, the
resulting concentration of energy is at the bay head and may result in
a very large wave height with devastative effects. To explore this
effect three experiments were performed with a fully open harbor with
constant depth for relative wave heights: (H/h)inc = 0.05, 0.10 and 0.17.
The characteristics of the harbor are given by L = 122 cm, the entrance
width b = 20 cm, the backwall width b1 = 4 cm, the incident wave
period T = 1.92 sec, and the water depth h = 8 cm. The values of the

corresponding dimensionless parameters are-% vh/g = 0.047, oL/Vgh = 4.51,
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Yg = 0.10 and € = 0.0. The entrance loss coefficient fe based on the
incident wave height is 0.1, 0.2, 0.3, respectively, for the three
relative wave heights. TFigure 6.4.5 shows the variation of the relative
water surface displacement at the backwall n/h,with t/T. For

(H/h)inc = 0.05 and 0.10 the agreement between the experiments and both
linear and nonlinear theories is fairly good although the nonlinear
results agree better. For (H/h)inc = 0.17 the first two oscillations

are correctly predicted by the nonlinear theory. The shape of the second
oscillation is particularly interesting and differs from everything
encountered so far. It consists of a very peaked and impulsive type
wave; such a wave shape would have quite an impact on coastal sited
structures due to the amount of energy concentrated over a relatively
short time. It is noted the positive wave height at the backwall is
quite large (n/h = 0.8). 1In comparison, the linear theory predicts a
somewhat smaller wave although certain gross features of the wave system
are retained. As mentioned, considering the effects of such a wave it is
probably important in this case to use the nonlinear theory to more
correctly predict the exact wave shape. After the second oscillation,
however, a marked discrepancy is noted between theories and experiments
for the negative part of the wave records. It is believed that problems
of experimental data reduction may be responsible for this. 1In the case
of the largest wave height, the wave record was taken in two steps,
following a procedure described in Chapter 4. It is quite possible that
an error was introduced when reducing the data related to the negative
part of the wave record causing some vertical shift in the data. This
explanation seems to be supported by the fact that, apart from the shift,

the shape of the oscillations agree well between experiments and nonlinear

theory.
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The efficiency of a breakwater at the mouth to reduce those
dramatic amplification effects is investigated next by considering the
incident waves which correspond to (H/h)inc = 0.17 in Fig. 6.4.5, and
the same harbor characteristics as previously described except that the
harbor entrance is partially closed. The variation of the relative water
surface displacement n/h with t/T at the backwall is presented in Fig.
6.4.6 for opening ratios: a/b = 0.5, 0.25, 0.125, and 0.0625, respectively.
The entrance loss coefficient, fe’ is set equal to 1.15 for the four
cases. It is noted first that the nonlinear dispersive numerical solution
agrees well with the experiments for all four cases. This agreement
demonstrates decisively the capability of the present numerical solution
in modeling the interaction effect of nonlinearities, dispersion and
entrance dissipation. The curves of Fig. 6.4.6 also show that the
breakwater becomes markedly efficient only for opening ratios less or
equal to 0.125. For values greater than this, the wave oscillations
are not markedly reduced for this harbor configuration. Therefore, in
practice, the resulting‘length of the breakwater required to protect a
trapezoidal bay efficiently may be rather substantial. (More attention

will be given to this feature in the discussions of Chapter 7.)

6.4.4 Summary

In summary, the transient study has shown that if the
incident waves are limited to a small number of oscillations, the overall
behavior of the wave dynamics in the harbor for the harbor configurations

investigated and for resonant excitation conditions remains reasonably

close to that predicted by the linear theory. In particular the effects

of linear resonance and geometric focusing can significantly enhance
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the wave height inside the harbor or bay even for a short duration of
the excitation. It appears that nonlinear effects and dispersion
effects change the wave form locally by inducing wave peaking and the
formation of small secondary oscillations, but they do not modify the
overall wave structure predicted by the linear theory. However, in
cases where a precise knowledge of the wave profile is desired a non-
linear solution must be used. In fact, it is difficult to estimate
the degree of agreement between the results of linear and nonlinear
theories based only on one Eulerian measurement. Probably a better

appreciation of the discrepancy would be obtained from comparing wave

profiles along the harbor as was done in Fig. 6.3.34. This figure showed

that a moderate discrepancy between experiments and theory for the Eulerian

wave records at the backwall could occur for completely different spatial

wave patterns inside the harbor.
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CHAPTER 7

APPLICATION OF THE RESULTS TC PROTOTYPE SITUATIONS

In Chapters 5 and 6 the discussion of the dynamics of waves in
closed basins and harbors in general was restricted to laboratory
conditions. Most of the conclusions inferred with regard to those
investigations would be expected to be valid in prototype harbors with
similar geometric characteristics. However, in this regard some
important differences with respect to the dissipation and the importance
of nonlinearities in the prototype compared to the laboratory case must
be given attention. These two aspects will be considered in Section 7.1
and 7.2, respectively. The numerical method developed in Section 3.4
has been applied to the response of Ofunato Bay (Japan) to the tsunami
of 16 May 1968 and this is treated in Section 7.3. Finally general

considerations for prototype harbors with arbitrary planform and variable

depth are presented in Section 7.4.

7.1 The Various Sources. of Dissipation in the Prototype

Several sources of dissipation are considered in the harbor
response study presented in Chapter 6. These include the effects of:
laminar boundary friction, leakage underneath the harbor walls, surface
tension, separation losses at constxictioﬁs and energy radiation to the
open sea. The second and third apply specifically to laboratory
conditions. Attention will be given in this section to the effects of
energy dissipation on the response of a prototype harbor. The effect of
turbulent friction at the boundary will be considered here compared to

laminar friction which was incorporated in the laboratory arrangement
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discussed in Chapter 6. In addition to the boundary friction
dissipation, radiation damping and the separation loss at the entrance
are discussed; these later two have been treated previously. Two
other forms of dissipation are presented here which pertain primarily
to prototype situations. The first deals with partially absorbing
lateral boundaries, i.e., the effect of imperfect reflections

from the harbor boundaries. The second is a possible way of limiting
the effects of resonance and it is associated with the construction of
submerged breakwaters to add to the interior dissipation. These will
be discussed individually herein. To obtain some quantitative estimates
the harbor planform is assumed to be rectangular with a small width

to length ratio, and the effectiveness of each dissipative source Si
is measured by computing the factor Ri which is associated with it.

(1) Radiation Damping

The amplification factor related to radiation damping has

been derived in Section 6.2.4 as:

1 _ b
Rr = (2n+l) T (7.1.1)

r
4
where b and L denote the width and the length, respectively, of the

harbor and n refers to a particular natural mode of oscillation of the

harbor.

(ii) Separation Loss at the Entrance

The amplification factor Rf related to the loss of energy
due to flow separation at the entrance of the harbor has also been

derived on Section 6.2.4 as:

1 _
R, " Ke R (7.1.2)
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where R denotes the overall amplification factor at the backwall

resulting from all sources of dissipation and Kf is defined by:

A 2
=4 L) (e
Ke = 3= £, (h) (a> | (7.1.3)

A
where fe is the separation loss coefficient, L is the relative wave

h
amplitude of the incident-reflected wave at the coastline, i.e., twice

the incident wave amplitude, a is the mouth width.

(iii) Turbulent Boundary Friction

The factor QT corresponding to turbulent boundary friction
has been computed in Appendix E. The expression for RT follows, using

Eq. (3.3.99) as:

1 _
_R_; = KTR (7.1.4)

A
- mfie 1 gl L
where K_E = (2n+1) A (9 1T3) Ce‘/;(h)T (7.1.5)

where g is the acceleration of gravity, T is the period of the wave
motion and Ce is the boundary friction coefficient. 1In general, the
coefficient Ce depends both on a local Reynolds number and the relative
roughness of the bottom. For a rough turbulent flow (which is likely
to be the case for most prototype situations), it is only a function

of the relative roughness ad/kr (according to Jonsson, 1978) where 36
denotes the water particle excursion outside the boundary layer and

kr is the Nikuradse roughness parameter. In most prototype tsunami
situations aélkr > 1000 which gives from Jonsson's diagram, Ce < 0.01.

In the subsequent consideration Ce is chosen somewhat less than this as:
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C =5x 10,
e

(iv) Partially Absorbing Lateral Boundaries

Imperfect reflection at a lateral boundary, e.g., a beach,
is characterized by a reflection coefficient T defined as the ratio
of the reflected wave to the incident wave which is less than unity. It
was shown, in Appendix C, that the resulting factor Q?.is the same as

that corresponding to the loss associated with leakage in the model

with the parameter ¢ replaced by L= f_ . Assuming that only the

1+

bay head is partially reflective the factor RE-can be derived from

Eq. (6.2.17), taking L/b = 0, as:

ol

r 1+

1_1-

= = (7.1.6)

|

It should be realized that dissipation at the boundaries of a
harbor can be related to different ﬁechanisms. The effectiveness of
this process in mitigating resonance can be characterized by a
reflection coefficient ;.only in an approximate way, since this form of
dissipation may result from complex wave interactions which cannot be
described simply. For example, this imperfect reflection may be
associated with wave runup on the sloping boundary which is highly
nonlinear and may be accompanied by a change in the wave shape during
the reflection process. Nevertheless, if from the runup mechanism it
is possible to define a reflection coefficient, Eq. (7.1.6) is useful
in estimating as a first approximation of this effect on the overall
magnitude of the response of a harbor or bay. As an example it will be

assumed in the following discussion that the reflection coefficient is 90%.
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{v) Submerged Breakwaters

As mentioned earlier one plausible way to increase interior
harbor dissipation may be to increase the roughness of the bottom of ‘a
harbor by constructing a series of submerged breakwaters perpendicular
to the direction of wave propagation. Neglecting other wave effects
which may be important in certain aspects of the problem it is interesting
to estimate the effect of such structures on reducing the effect of
resonance. It should be noted that this discussion is presented here
only to suggest there may be other types of dissipation which can be
introduced (if feasible from an engineering viewpoint) to reduce the
effects of long waves in a harbor. If a submerged breakwater is
considered, the mean power dissipated by a single breakwater can be

given as:

T

= 1/1 2 N

W =hyb sz p €, uful at (7.1.7)
o

where hb denotes the height of the submerging breakwater,b is the width
of the bay, u is the wave particle velocity along the bay, T is the
characteristic wave period and CS is the drag coefficient of order
unity. If a series of such breakwaters are built and spaced a distance

X, apart, the calculations show that the resulting quantity WTS is

b
given by Eq. (7.1.7) with the boundary friction coefficient replaced

by an effective skin friction coefficient CeS such that:

h
(7.1.8)

]
0]
93]
a
o o

In the following discussion CS is chosen equal to unity.
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The relative importance of the five dissipative sources mentioned
can be estimated using the simplified method presented in Section 6.2.4
for the following four cases:

(i) First resonant mode, fully open harbor

(ii) First resonant mode, partially closed harbor
(iii) Second resonant mode, fully open harbor

(iv) Second resonant mode, partially closed harbor.

The value of the inverse amplification factor corresponding to each
dissipative source is shown in Fig. 7.1.1 for each of the four cases.
The prototype parameters from which the parameters l/Ri were computed
are indicated in the figure; they correspond to typical prototype
conditions with a fairly large incident tsunami.

Comparison between Fig. 7.1.1 and Fig. 6.2.9 indicates an overall
rate of energy dissipation in the harbor which is larger in the proto-
type than in a laboratory model, at least for the conditions of
Figs. 7.1.1 and 6.2.9. (It is recalled that the total rate of energy
dissipation is proportioﬁal to the sum of the inverse of the amplifi-
cation factors related to each source.) This difference is mainly due
to the presence, in prototype, of one additional highly dissipative
source, namely the postulated use of submerged breakwatefs. Turbulent
boundary friction and partial reflection at the bay head are of least
importance as dissipation mechanisms for the first resonant mode and
for the conditions of Fig. 7.1.1. At the second mode they dissipate
more energy than entrance separation only for a fully open harbor.

For the conditions of Fig. 7.1.1 submerged breakwaters for three

out of four cases appear even more efficient than separation losses at
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the entrance. This suggests their potential usefulness. They could
conceivably be used for bays which may not be completely protected

by breakwaters at the bay entrance. 1In particular it was seen that a
trapezoidal bay required a very small opening ratio to be effectively
protected from tsunamis. An alternative would be to allow a wider
entrance and to build submerged breakwaters regularly spaced from the

mouth to the head of the bay.

7.2 Manifestation of Nonlinear Oscillations in Prototype: Case of Long
and Narrow Bays

This discussion is limited to long narrow bays with constant depth
so that the wave motion inside the bay remains essentially one-dimensional,
The extension to more general harbor shapes will be discussed in
Section 7.4.
Results from Chapter 5 have shown that some of the nonlinear
features associated with wave oscillations in closed narrow basins can

be conveniently characterized by the Stokes parameter equal to:

= B r/om2
U, = 73 (T/gh) (7.2.1)

where H denotes half the wave height at the end walls, h is the still
water deoth and T is the period of the oscillation motion. It was

found (Section 5.2.4) that in the absence of strong dissipation and

for Es > 0(10) the main oscillation usually decomposed into a number

of secondary oscillations proportional to fﬁ;. This feature constituted
one of the most important manifestations of the interaction of non-
linearities with frequency dispersion. Also, when the front face of the
wave steepened nonlinearities tended to transform a standing wave

pattern into a moving wave pattern inside the closed basin.
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From the results of Chapter 6 two situations must be considered
when the effect of nonlinearities must be estimated in a long narrow

harbor. Each of these two cases is presented next.

7.2.1 Case of a Harbor Length Much Smaller Than the Incident
Wave Length

For a small harbor length to wave length ratio, i.e.,
L/X < 0.25, convective nonlinearities do not have space enough to
develop so that linear theory can be used for the complete range of
relative wave height, H/h, and depth to wave length, h/A. The harbor
does not perceive the nonlinear nature of the incident wave and tends
to act as a linear transducer. As a result the significance of the
Stokes number in characterizing the importance of the nonlinear effects

becomes irrelevant in this case.

7.2.2 Case of a Harbor Length of the Same Order as the Incident
Wave Length

When the harbor length becomes of comparable magnitude

to the incident wave length (i.e., L/} > 0.25) convective nonlinearities
have enough space to be realized. The resulting nonlinear character-
istics induced near resonance by the buildup of wave energy in the

harbor were found to be qualitatively similar to those which developed in
the closed basin. However, these effects are reduced somewhat because

of the comparatively stronger effects of dissipation in the harbor. 1In
prototype situations the dispersion parameter, which can be measured

by (h/T/gE)z is typically smaller by two orders of magnitude than in
laboratory conditions. Two conclusions regarding prototype situations
can be drawn from this. First, the Stokes parameter Eg is likely to

be much greater than 10 (which is the upper limit at which the wave
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oscillations can be considered as linear). Therefore, if resonant
conditions develop, the resulting wave interactions will tend to be
governed by a nonlinear theory. Second, the large number of emerging
secondary oscillations, which is an increasing function of the parameter
U , becomes at the same time very much affected by dissipation (this

was seen in Chapters 5 and 6); in particular the transient experiments
with the closed basin in Section 5.2.4, showed that for the same

value of the dissipation coefficient Yq the damping effects on the
secondary oscillation increased with the number of these oscillations.
Therefore, in the prototype secondary oscillations may not be observed
at all, and resonant conditions are likely to be characterized by a
steepening of the front face of the oscillations and the evolution with
time of the advancing wave towards a shape which has a trisngular finite
bore-like profile somewhat smoothed by damping effects.

Based on the results of Fig. 6.3.29 dispersion can be neglected

and a nonlinear nondispersive theory can be used if:
U, 2 0(10%)

An important question not addressed so far is the time required
for nonlinearities to develop in the harbor (or basin) near resonant
conditions. Physically, at resonance, the wave system can be
considered as traveling back and forth between the end and the entrance
of the harbor or bay. One way to estimate the time required for the
nonlinearities to develop is to compute the corresponding propagation
distance for a wave traveling in one direction only required for the

effects of nonlinearities to become important. Goring (1978) computed
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height (adapted from Goring, 1978).
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such a distance X for a wave with a hump-~like shape defined by a
characteristic frequency Q and its relative height H/h. The distance X
was determined such that a local Ursell number associated with the front
face of the wave differed by 10% between the values computed from the
linear nondispersive theory and the nonlinear nondispersive theory.
These results can be directly appliéd to the present problem by assuming
¢ = Q. The variation of 2ﬂtn/T with H/h is presented in Fig. 7.2.1
where tn indicates the time after which nonlinear effects cannot be
neglected for a wave trapped in the harbor at resonance. From this
graph it is seen that for all harbor experiments presented in Chapter 6,
nonlinear effects must be considered after the first oscillation. It

is important to emphasize at this point that the degree to which non-
linear effects affect harbor oscillations remains fairly small in

most cases, as seen from the results obtained in Chapter 6. For
engineering purposes these effects may possibly be ignored; their

appreciation depends on the application being considered.

7.3 The Response of Ofunato Bay to the Tsunami of 16 May 1968

As an example of the application of this research to a prototype
harbor, the numerical scheme presented in Section 3.4 is used to
determine the effect of tsunamis in Ofunato Bay located in Japan along
the northeast coast of Honshu Island, Iwate Prefecture. The feature
which makes this bay of particular interest is that a breakwater was
constructed there in 1967 to reduce the effect of tsunamis. It is
useful to use the analysis developed in this study to investigate its

effectiveness.
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A map of this bay (extracted from the Bulletin of the Earthquake
Research Institute, Tokyo Imperial University, 1934) is presented in
Fig. 7.3.1. Ofunato Bay is 1.7 km wide at the mouth and has a length
of about 7.7 km. 1Its bathymetry is rather complicated, as shown on
Fig. 7.3.1, with a water depth varying from 50 meters at the mouth to
less than 10 meters at the bay head.

On May 16, 1968 an earthquake of magnitude 7.8 (the Tokachi-Oki
earthquake) occurred off the Pacific coast of northeast Japan and a
tsunami was generated and reached the coast. Actual wave records were
obtained at Nagasaki and Ofunato located near the bay mouth and the bay
head, respectively (see locations on Fig. 7.3.2). A breakwater had been
constructed after the Chilean tsunami of 1960 and had been completed
in 1967. 1t has a width opening of 200 m and its location across the
bay is indicated in Fig. 7.3.2 by the letters I and J.

Ito (1970) performed a series of numerical calculations to examine
the efficiency of the newly constructed breakwater in dissipating the
wave energy of the incoming tsunami and protecting the town of Ofunato.
These computations were performed with a finite difference model based
on the linearized long wave equations except for across from the
breakwater opening where a quadratic form for the head loss was
incorporated in the equations of motion. In his calculations the
outer sea was replaced by a long channel slightly wider than the bay
mouth. To reconstruct the incident wave Ito obtained the transfer
function of the bay at Nagasaki from his numerical scheme and divided
each of the first 30 Fourier components of the wave record at Nagasaki
by the magnitude of the transfer function at each corresponding

frequency. In the present study, the same incident wave as determined by

Ito was used as input for the numerical calculations.
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Fig. 7.3.1 Map of Ofunato Bay (from the Bulletin of the Earthquake
Research Institute, Tokyo Imperial University, 1934).
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For the calculations presented in this study the bay region and
the outside region were represented as shown in Fig. 7.3.2. Beyond
points A and B the coastline was taken to be straight. The bay region
is delineated by the curve ADBG with depths obtained from Fig. 7.3.1.
(The water depth was set to a minimum of 10 meters along the lateral
boundaries.) The exterior region is delineated by the curve EAGBF
and the semicircle FR with a depth assumed constant and equal to 50 m.
The plane incident wave used was the same as determined by Ito (1970).

The incident wave has a dominant period of about 15-20 min. and

hence, the characteristic wave length can be computed as:
AxvVeh T = 20 km

The ratio of the mouth width (without breakwater) to the wave
length is about 0.1. Therefore, from the analysis of Section 3.4 the
radiated wave is correctly transmitted through the radiative boundary

FR with the present numerical scheme:
Rr/A =~ 0.6
This gives: R~ 12 km.

The finite element grid corresponding to Rr = 11 km is presented
in Fig. 7.3.3 without breakwater. To check how much error would be
introduced in the time records inside the harbor if Rr was reduced,
computations were also carried with the mesh presented in Fig. 7.3.4,
which corresponds to Rr = 7 km. The numerical wave records obtained
with these two mesh configurations, using linear nondispersive theory
with no viscous dissipation, are compared in Fig. 7.3.5 at four different

locations, L1 (Nagasaki), L2, L3, and L4 (Ofunato) indicated in
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Fig. 7.3.3 Finite element grid without breakwater, Rr = 11km,
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Fig. 7.3.2. Surprisingly, virtually no difference is noted between
the two sets of results. This indicates that, in practice. the radiative
boundary can be located at a smaller distance from the mouth than the
analysis indicates which results in increased computational efficiency.
This probably introduces an error in the radiative wave pattern in region
QL but this error does not appear to propagate back into the interior
region, at least for the incident wave shown in Fig. 7.3.5.

The nonlinear effects were investigated by comparing the results
of the linear nondispersive theory to those of the nonlinear dispersive
theory and the results are presented in Fig. 7.3.6. In this case where the
ratio of the bay length to wavelength i1s about 0.25 the linear theory agrees
well with the nonlinear theory. From the results of Chapter 6, with
such a small ratio, nonlinear effects do not have space to develop and
the linear theory should apply. This is confirmed by the results in
Fig. 7.3.6.

The effects of the breakwater.on the tsunami were finally investi-
gated. The finite elemeﬁt mesh with the breakwater in place is shown
in Fig. 7.3.7 and the results of the computations with and without
the breakwater are shown in Fig. 7.3.8 at each of the four locations.
Fairly small differences are noted between the two sets of results
except at Ofunato where the peak amplitudes are reduced a maximum of
407% by the breakwater. When the breakwater is in place little amplifi-
cation is obtained between Nagasaki and Ofunato which agrees with Ito's
results. However, Ito's results predict at Ofunato wave amplitudes
without breakwater which are twice as large as those resulting from

the presence of the breakwater (compared to only a maximum of 40% difference
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the peak values with the present results). Such a discrepancy possibly can
be explained by the fact that open sea conditions are not simulated in
Ito's model, therefore the characteristics of the wave response inside
the harbor may be affected by this. Also the wave records computed from this
present study exhibit larger amplitudes by more than 50% of the
measured wave records presented in Ito's paper. This is probably
because the transfer function at Nagasaki used for the determination
of the incident wave would have been different if computed with the
present model. Therefore, a quantitative comparison between the
present computation and the measured wave records at Ofunato would be
meaningful only if the incident wave was computed from the transfer
function derived with the present finite element model.

It is difficult from the wave records in Fig. 7.3.8 to
derive any quantitative reliable information on the steady state
response characteristics of the Ofunato Bay with and without break-
water because of the short time duration of these records. Neverthe-
less certain features of the response can be seen in Fig. 7.3.9(a)
which represent the normalized energy density spectra for the
two computed wave records at Ofunato with and without breakwater, which
are shown in Fig. 7.3.8. The spectra are normalized by the mean square
of the amplitude for the case without breakwater so that the area under
the curve for the case without breakwater is unity. Two peaks are
apparent on each spectrum. The peak corresponding to the 40 min period
is almost wiped out by the action of the breakwater while that
corresponding to the 17min period remains largely unaffected. Two
computed response curves of the bay at Ofunato are presented in

Fig. 7.3.9(b). They were obtained by taking the ratio of the square
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Fig. 7.3.8 Computed wave records at four locations inside the
Ofunato Bay from the linear nondispersive solution,
with and without breakwater.
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root of energy density at Ofunato to that of the incident-reflected wave.
The two peaks on each curve correspond to the lowest resonant modes
of Ofunato Bay. It is apparent from Fig. 7.3.9(b) that the lowest
mode has about a 40min period while the second mode has about a 15 min
period. The breakwater is most efficient in reducing the bay response
at the lowest méde by a factor of about 2.5 but it does not affect
significantly the amplitude of the second mode. These features agree
with the field data presented by Horikawa and Nishimura (1970).

The reason why the breakwater is efficient at the lowest mode and
inefficient at the second mode can be understood by considering the values
of the length parameter GL//EE , where L denotes the distance between
the bay head and the breakwater, h is the average depth of the bay
between the bay head and the breakwater and o is the circular frequency

associated with the incident wave. At the first mode oL/vgh =~ 1,2

(based on L = 6500 m and h 20 m) which from the results of Section 3.3
indicates the existence of a node around the breakwater location;
therefore the amplitude éf the wave velocity is maximum at that location
and this, in turn , maximizes the efficiency of the breakwater in
dissipating energy. At the second mode, UL//EE}u 3.2, which indicates the
existence of an antinode at the breakwater location; the wave velocity

is therefore small near that location and the breakwater is inefficient

in dissipating energy.

7.4 General Considerations for Prototype Harbors with
Arbitrary Planforms and Variable Depths

Most of the present investigation has been limited to long and
narrow harbors with constant depth. However, the results obtained for

this rather restrictive geometry can reasonably be extended to fully
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three-dimensional harbor shapes as follows, in the case where no
significant runup takes place at the lateral boundaries.

(i) If L/} < 0(1) where L denotes a characteristic length for the
harbor or bay, nonlinear effects are expected to remain small or
negligible. The Helmholtz mode, which is the most susceptible to
be excited by the long period tsunamis, falls generally in that
category.

(ii1) If L/Ax 2 0(1), nonlinear theory should, in general, be
used if the Stokes number defined by Eq. (7.2.1) is much larger than
ten. The manifestation of nonlinear effects cannot be described in
general terms and must depend on the bathymetric conditions as well as
the specific shape of each particular harbor. A study of nonlinear
effects in each case can be carried out using the nonlinear program
presented in Section 3.3 which proved adequate for the harbor situations
investigated in this study.

If significant runup takes place at the lateral boundaries, the
conclusions stated above do not hold anymore. Since the runup is a
nonlinear process in itself it can induce a different overall wave
pattern inside the harbor or bay and the characteristics of the

subsequent wave oscillations may be drastically modified in some cases.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES

8.1 Conclusions

The major objective of this study has been to investigate,
experimentally and theoretically, the response of an arbitrary shaped
harbor (or bay) with variable depth to transient nonlinear incident
long waves, resulting in possible nonlinear oscillations. First, in
Chapter 5 the wave dynamics of a closed rectangular basin were
investigated in the shallow water wave range. Some of the dissipative
and nonlinear effects which applied to oscillations in the basin could
also be applied to the waves induced in harbors. Thus, this preliminary
study helped clarify several features pertaining to harbor oscillations.
The results from the second part of the investigation dealing with the
continuous and transient excitations of a harbor were presented in
Chapter 6. A detailed study of the nonlinear and dispersive effects and
dissipative effects has been conducted for a long and narrow rectangular
harbor with constant depth for the case of a continuous excitation. This
study has been extended to other harbor shapes for the case of a
transient excitation. The results of this investigation have been
applied to prototype situations and this is discussed in Chapter 7.
In particular the general theory has been used to compute the response
of Ofunato Bay to the tsunami resulting from the Tokachi-Oki earthquake

of May 16, 1968.
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For convenience, the major conclusions drawn from this study are
arranged in the order in which the results have been presented in

Chapters 5,6, and 7.

Energy Dissipation in Standing Waves in a Closed Rectangular Basin

1. The major sources of energy dissipation for waves induced
in a closed rectangular basin in the laboratory are bottom,
wall and - surface viscous laminar friction, and dissipation

associated with surface tension effects.

2. TFor a narrow basin (b < 8 cm) and for a basin not wetted by
the liquid inside it (e.g., lucite and distilled water) the most
significant source of dissipation is dry friction of the meniscus

against the wall.

Rectangular Closed Basin Excitation in the Shallow Water Wave Range

3. For a continuously excited basin and for shallow water waves the
linear theory becomes inadequate at resonance. The nonlinear-
dispersive~dissipative solution developed in Section 3.2.1 shows
good agreement with the experiments for all cases investigated

in this study.

4. The wave shape, for a continuously excited basin near

resonance is very sensitive to the frequency of excitation; a
cnoidal wave shape which can be predicted analytically develops

near the main bifurcation frequency, provided the dispersion
parameter is not too small and a "hump-like" wave travels to and fro
between the basin walls. For small dispersion as the excitation
frequency is decreased the main wave divides into a number of

secondary oscillations.
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5. The nonlinear standing wave solution presented in Section 3.2.3
agrees reasonably well with the experiments if the dispersion
parameter h/X is not larger than about 0.03; no cnoidal wave profile

could be obtained experimentally for smaller values of h/).

6. For the transient excitation of a closed rectangular basin
the importance of the Stokes number in defining the range of
applicability of the linear theory and in predicting some of the
waves features which develop with time (e.g., the number of
secondary oscillations) has been demonstrated. The Stokes number
also has been found useful in the case of the waves generated by

a continuous basin excitation.

The Generation and Propagation of Long Waves of Permanent Shape in the

Wave Basin
7. All the waves generated experimentally had a wave height of
25% to 30% smaller than predicted by the generation relationships.
Some of this discrepancy may be attributed to leakage between

the wave plate and the bottom and guide walls of the wave basin.

8. If the guide walls are extended for the whole basin length
and if leakage effects are minimized, the solitary wave profile
obtained at the coastline agrees reasonably well with

that obtained from the theory of Boussinesq. However, the dif-
fraction of a solitary wave into the wave absorbers along the

sides of the basin alters the solitary wave shape significantly.

9. The shape of cnoidal waves at the coastline agrees reasonably

well with the cnoidal wave theory. The effect of diffraction
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of the waves due to the wave absorbers mounted along the walls
of the basin somewhat modifies the experimental profiles but

not as much as for solitary waves.

Effect of Dissipation in a Long and Narrow Rectangular Harbor

10. Leakage losses, caused by the presence of a small gap
underneath the walls for a harbor just sitting on the basin floor

have been found to be significant.

11. Flow separation at the entrance of the harbor is very
efficient in dissipating wave energy and thus in reducing the
effects of resonance in the harbor. This source of dissipation
increases for smaller relative openings, a/b, and for larger

relative incident wave heights, H/h.

12. Experiments indicate that the head loss coefficient fe
varies linearly with the parameter U,/ao if Ug/ac <1l. If U./ac>1,
this coefficient remains approximately constant; for this range
good comparison between the theory and the experiments has been
obtained if f, is taken equal to 0.8 for a fully open harbor and

1.15 for a partially closed entrance (a/b < 0.8).

13. Among the four sources of dissipation investigated
experimentally, entrance dissipation appears to be the most
efficient in reducing the effect of resonance. Leakage comes

next, followed by viscous laminar friction and surface tension.



419

The Excitation of a Narrow Rectangular Harbor by a Continuous Train of

Periodic Long Waves

14. For the first resonant mode, for which L/} < 0.25, non-
linearities can be neglected even for large relative wave
amplitudes inside the harbor. It appears that a linear dissipative
theory is sufficient to describe the wave evolution in the harbor

for this condition.

15. For a ratio of the harbor length to the wave length, L/X
larger than 0.25, a nonlinear-dispersive-dissipative theory
generally must be used at or near resonance. Secondary resonant
peaks not predicted by the linear theory have been obtained

using the nonlinear solution develdped in Section 3.4 and confirmed
experimentally. Near the second resonant mode the main oscillation
separates into several secondary oscillations and the number of

these increases as the dispersion parameter decreases.

Transient Excitation of Harbors
16. For the three shapes investigated (a narrow rectangular
harbor with a constant depth, a narrow rectangular harbor with a
linearly decreasing depth and a trapezoidal harbor with a constant
depth) nonlinear effects have been found to remain negligible
near the first mode and small near the second mode. They tend
to affect the wave shape locally but the overall wave pattern

appears to be predicted reasonably well by a linear theory.

17. The effect of the converging sidewalls on the wave for the

trapezoidal harbor is significant. This can be mitigated by a
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breakwater only for very small opening ratios, e.g., a/b < 0.125,
for the harbor with the trapezoidal shape which was investigated

here.

18. For almost all the cases investigated in the harbor studies
good agreement has been found between the numerical solution
developed in Section 3.4 and the experiments. This suggests

that this solution could be used with some confidence in prototype
situations if the corresponding dissipation sources can be

accurately evaluated.

Application to Prototype Situations

19. Some additional sources of dissipation have been investigated
analytically as a means to reduce further the effects of resonance
in prototype harbors or bays. It has been found that submerged
breakwaters (if feasible from an engineering point of view)

yield a degree of efficiency comparable to the usual breakwaters

at a harbor entrance in dissipating wave energy.

20. The response of Ofunato Bay to the tsunami caused by the
Tokachi-Oki earthquake of May 16, 1968 has been obtained
numerically. The numerical solution has shown that the nonlinear
convective effects must have remained very small in the Ofunato
Bay for this tsunami. It has also shown that the breakwater
constructed across the Ofunato Bay operates selectively, in the
sense that it is efficient in dissipating wave energy at a period

corresponding to the fundamental resonant mode of the bay but it
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does not reduce resonant effects corresponding to the second

natural mode of oscillation.

8.2 Recommendations for Future Studies

The numerical model on transient harbor oscillations presented in
this study allows us to handle fairly general situations. However,
some uncertainties remain and some important aspects related to harbor

and bay oscillations need further investigation:

1. The present experimental investigation should be extended to
more general harbor geometries and compared to the present

model to carefully investigate under which conditions a simple
linear analytical model can be used to describe the harbor

oscillation for these geometries.

2. It has been realized that flow separation at a sudden
contraction and expansion constitutes a particularly efficient
means of dissipating wave energy in harbors and bays in some
situations. Howevér, some doubt still remains on the value of
the head loss coefficient f, for a wider range of parameters
than those investigated in this study. Experiments which
investigate this loss directly without working from the harbor

response ''backwards" are suggested.

3. An important effect not considered in this study is the run-up
and run-down of waves on the sloping boundaries around the bay
or harbor. More work is needed to understand the nature of this

process. Then it may be possible, in a subsequent step, to
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couple the run-up process to the numerical program developed in
this study in order to treat the total problem of the interaction
between wave oscillations inside the harbor and the run-up along

the boundaries.

4. Of interest to seismologists and geophysicists is the knowledge
of the deep-water signature of the tsunami which would hopefully
lead to a better knowledgé of the tectonic generation mechanism.
However, most of the tide gages are placed in bays or harbors
where the oscillations induced by tsunamis are very much

affected by the local response characteristics. Once the
importance of the factors affecting the wave oscillations (e.g.,
nonlinearities, dispersion, dissipation) have been evaluated,
using, for instance, the present numerical program, a strategy
should be investigated to determine the signature of the incident
wave outside the bay, from tide gage records inside. This
constitutes what can be termed the "inverse harbor problem."

It is relatively simple when the oscillations in the harbor are
governed by the linear inviscid theory. It becomes much more
involved when the effects of convective nonlinearities or nonlinear
viscous dissipation (e.g., due to the effect of breakwaters)

become significant.

5. It has been assumed throughout this study that the outer
region has a constant depth. However, in prototype situations

it usually has a variable depth. 1In addition there may be an
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interaction between the continental shelf and the harbor or
bay which should be investigated. Neither of these would
introduce an unusual complication to the present numerical

treatment of the harbor problem.
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LIST OF SYMBOLS

Wave amplitude

Characteristic acceleration of the basin motion
Wave amplitude of incident-reflected wave system
Mouth width

Water particle excursion outside the boundary layer
Harbor (basin) width

Harbor width at backwall for trapezoidal harbor
Wave celerity

Turbulent boundary friction factor

Effective skin friction coefficient for submerged breakwater
Linear wave celerity (linear dispersive theory)
Drag coefficient for a submerged breakwater

Surface contamination factor

Complete elliptic integral of the second kind

Mean wave energy in harbor (basin)

Equivalent wave amplitude for a periodic wave containing
several harmonies

Decay coefficient

Entrance friction coefficient

Acceleration due to gravity

Wave height

Mean negative wave height of the trailing wave
5till water depth

Helight of submerged breakwater

Characteristic still water depth
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Still water depth at backwall of the harbor for a linearly
decreasing depth

Imaginary number v-1

Complete elliptic integral of the first kind

Constant related to residual surface tension dissipation

Wave number

Nikuradse

roughness parameter

Basin length or characteristic harbor length

Characteristic length of a wave

Elliptic parameter

Number of emerging secondary waves

Shape functions

Number of oscillations required to reach steady state

Number of oscillations required to achieve maximum transient
oscillations

Static pressure

Dynamic pressure

" QH
" Q"
"Q,"
HQ"
" Q"
" Q"
HQ"
"Q"
I'Q"

"Q”

factor

factor

factor

factor

factor

factor

factor

factor

factor

factor

assbciated
associated
associated
associated
associated
associated
associated
associated

associated

with

with

with

with

with

with

with

with

with

dry damping of meniscus against the wall
separation losses

residual surface tension dissipation
partial reflection

laminar boundary friction

leakage losses

radiation damping

turbulent boundary friction

dissipation from submerged breakwater
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Overall amplification factor (The subscript notation for the
amplification factor related to a particular source is the
same as that used for the corresponding Q factor)

Distance of radiation boundary from the harbor mouth

1
(x° + y2)2

Reflection coefficient

Radius of curvature of the corners at the harbor entrance
Particular source of dissipation

Shape factor of the entrance

Stroke of wave plate motion

complex variable

Wave period

Time

Width of the harbor walls

Time required for non-linearities to become important
Amplitude of veloeity at the mouth

Amplitude of the component of the velocity in X direction
Ursell number

Stokes number

Same as ul

Horizontal component of leakage velocity in the gap underneath

the wall

Velocity component in %, direction (i = 1,2)

Velocity component in x, direction (i = 1,2) inside boundary

layer
Average velocity component in X direction (i = 1,2)

Outward normal velocity

Translational velocity component of frame of reference in
X, direction (i = 1,2)



x. (or x)

x, (or y)

434

Same as u2

Overall energy dissipated in one periocd (The subscript notation

for the energy dissipated by a particular source is the same
as that used for the corresponding Q factor)

Velocity component in vertical direction
Vertical component of velocity in the gap underneath the wall
Basin motion in the Xi direction

Distance between two submerged breakwaters

Distance required for nonlinear effects to become important
Co-~ordinate distance in the first horizontal direction

Co-ordinate distance in the second horizontal direction

Co-ordinate distance in the first horizontal direction in a
Newtonian frame of reference

Co-ordinate distance in the second horizontal horizontal
direction in a Newtonian frame of reference

Co-ordinate distance in vertical direction

Co-ordinate distance in vertical direction in a Newtonian
frame of reference

£t + x variable

t - x variable.

Nonlinear parameter

Decay coefficient

Correction factor for kinetic energy
Dispersion parameter

Numerical parameters

Surface tension

Dissipation parameter

Dissipation parameter for a sinusoidal motion
Frequency parameter

Boundary layer thickness
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€ Leakage parameter
© Small number compared to unity

Equivalent leakage parameter

e
z Distance from the boundary in direction normal to boundary
n Wave elevation
u Wave elevation of the incident reflected wave system
g Wave elevation of the radiated wave system
K Nondimensionalized wave number
K Coefficient of Coulomb frictional force
A Wavelength for a periodic wave
Ay Penalty parameter in finite element solution
ubs Laminar boundary friction factor associated with bottom and
surface friction

My Laminar boundary friction factor associated with bottom, .
side walls and surface friction

u£ Lgminar boundary friction factor associgted with bottom,
side walls, end walls and surface friction

v Kinematic viscosity

El Distance in fifst direction parallel to boundary

52 Distance in second direction parallel to boundary

E- Wave plate displacement

T The constant 3.14159

0 Fluid density

o} Characteristic frequency of the forcing motion

GO Resonant frequency for the linear, slightly dispersive model

T Boundary shear stress

o Potential function

3 Averaged potential function over the depth
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Potential function for the incident-reflected wave system

Shape function

Dissipation parameter
Dissipation parameter
Dissipation parameter

Dissipation parameter

assoclated

assoclated

associated

associated

with radiation damping
with separation losses
with leakage losses

with laminar boundary friction

Characteristic frequency of a wave with a hump-like shape

Potential function for the radiated wave

SPECIAL SYMBOLS

Modulus or absolute wvalue

Averaged value

Amplitude of harmonic function

Gradient operator

Proportional to

Approximately equal to

Partial derivative

Order of magnitude of guantity between brackets

Integer indices

Scalar product
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APPENDIX A

THE UNSTEADY BOUNDARY LAYER EQUATIONS AND SOLUTION

Consider a slightly viscous three-dimensional flow near a flat

solid surface. The coordinate system is shown in Figure Al.

£, —"

A
2
Ser Ui

Fig. Al Definition sketch for the local
coordinate system of the boundary
layer equatioms.
r denotes the coordinate in the direction normal to the boundary,

El and 52 are the coordinates in the plane normal to the [ direction,
Q}El,ﬁz) is the boundary layer thickness, ui(gl’€2’6e’t) is the velocity
component in the direction gi (i=1,2) just outside the boundary layer
and uiz(gl,gz,c,t) is the velocity component in the direction Ei inside

the boundary layer. The unsteady laminar boundary layer equations are

given by Schlichting (1960) as:

B“ig 3 3“12 2 3“12 1 ap 32“12
TRIY o, tv STt % ) YT i=1,2 (a.1)

where p is the pressure impressed in the boundary layer by the external
flow;vflthe velocity component in the g direction, v the kinematic

viscosity and p the fluid density. Just outside the boundary layer the
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momentum equations in the direction parallel to the boundary are:

Bui Bui aui 1 3
EERE R T T 1=1,2 -2

Neglecting convective terms and subtracting Eq. A.2 from Eq. A.l yields

the linearized boundary layer equations in unsteady flow:

—t—-= - i=1,2 (A.3)

L, . ,
u, is a function of El,Ez,; whereas uy only depends on El and 52.

Equivalently Eq. (A.3) can be written as:

3(u, - u.l) 32(u, - u.z)
i i i i .
Y = v N (A.4)
14
with the boundary conditions:
u, - u - u z =0 (A.5)
i i i ’
u, - u . 0 g = o (A.6)
i i

Eq. (A.5) expresses the zero slip condition at the boundary.
Eq. (A.6) is justified by performing a formal matching procedure
between the exterior and the boundary layer regions, valid as long as
6e remains small compared to a characteristic horizontal length.
Equation (A.4) is solved wusing the Laplace transform technique.
Define:

2

fi(El,Ez,C,t) = ui - ui (A'7)
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The Laplace transform of f is defined as:

%i(‘gl:Ez,CsS) =/e_St fi(gl’EZ’E’t) dt » (A.8)

(o}

Assume the following initial condition:

£, =0 t=20 (A.9)

Multiplying both sides of Eq. (A.4) by e“St » integrating with respect

to t and using Eq. (A.9) yields a differential equation for Ei:

I_gf =90 (A.10)

Ei =0 = (A.11)
fi /ui e dt z =0 (A.12)
o}
The solution for Ei is:
: s -st
fi = exp [—‘/: C]/ui e dt (A.13)
o
fi is obtained from the inversion integral for the Laplace transform:
£ (E,,8,,0,t) = == | &St F (£, .5 ,£,8) ds (A.14)
i l’ 2’ t] 211_7: i l! 2, s
Br

where / is the Bromwich contour defined as:
Br
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p+irl

= lim (A.15)
-/[ T o ./f

Br u-1il

where u is a positive constant. Of special interest is the expression

for the shear stress T in the Ei direction at the wall, defined as:
i

. 3u ¥
T3 Yy
—_— =y -= =0 A.16
5 Y 4 ( )
Buf
The expression for-gz at ¢ = 0 can be derived from Eq. (A.13) and one in-
tegration by parts (assuming the fluid motion starts from rest at t=0) as:
R, o0
du, of st ou.,
i i 1 e i -st =
-2 L [ e_| 1 £ =0 .
3c 3¢ Im /Br ) e © dt ds (A.17)

Using the following relatioms:

sV TVt

co

g(s) h(s) 3 /h(t‘)g(t—t')dt'

o}

where the sign 7] denotes the correspondence between a function and its
du,

i
oL

31
T et ot
(o]

The laminar shear stress component Ty at the boundary is given by:

2’ 0
. du, du, (t-t")
T
4,1 =,[2 1 1 dt’ £ =0 (A.19)
o 2C T JET ot
o

is obtained at € = 0 as:

Laplace transform, a final expression for

Bu,z

a-’g (A.18)

]
(o]
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Specializing to a sinusoidal flow defined by

u, =U; cosot (A.20)

Equation (A.19) becomes:

m

T
-Bi=f\7EUi COS(Gt +4) =20 (A.21)

The energy dissipated in one period per unit area is computed as:

p [vo 2 2 _
- = F X2 + = A.22
W J Tkukdt 5 (U U)T T ( )
o

T,
. . . i
The same value for W is achieved from an expression for 77 at gz =0

given by

T,
i_ fvo _ ¥
5 = ) UiCOSIGt > ui (A.23)

Equation (A.23) can then be considered equivalent to Eq. (A.21); its
big advantage lies in the fact that the shear stress at the boundary
is simply related to the velocity component us, which brings considerable

simplification for the numerical treatment of Equation (3.1.35).
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APPENDIX B

DERIVATION OF THE EXPLICIT FORM OF THE LINEAR SOLUTION

OF THE CLOSED BASIN EXCITATION PROBLEM

The expression for the wave amplitude n(x,t) has been derived in
integral form in Eq. (3.2.56) of Section (3.2.2) and is rewritten

for clarity:

1
sinhg (x -3)
nGx,t) = - ZL./‘ Y o lexp(st) + (-D™ lexp(s(t - 2T)Jas
1_S KOCOSh(E)

(B.1)

sl/z(s +YS)

o B 1/2 1/2

The notations are the same as in Subsection (3.2.2): B,YS,G are fixed

1/2

with (B.2)

parameters, ¢ is the imaginary number /:I, m is an integer and Br
denotes the Bromwich contour. In order to render the function KO(S)
analytical almost everywhere in the s plane, branch cuts must be
defined along with the range of variation of the various angles
associated with them. With the choice indicated on Fig. Bl it can

be checked that KO(S) is single valued and analytical everywhere in this
plane, except along the branch cuts indicated by hatched lines. The
problem is to find an explicit expression for n(x,t) in a series form.
Two cases must be considered according to the sign of (t - %gﬁ.

. . mn
(i) First case: ¢t >-7;
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)
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_m 37
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&

Fig. Bl Location of the branch cuts (hatched lines) and range
of variatdon of the various angles associated with them.
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Defining G(s) as the integrand under the integral sign in Eq. (B.1l)
the Residue theorem is applied inside the integral contour Cll" indicated on

Fig. B2 , and the following equation is obtained:

ut+il
/ G(s)ds +/ G(s)ds +/ G(s)ds +/ G(s)ds

u~zT C
1r Z Br'i_ Z Cri

- zm(ZRes.G(ysn)) (8.3)
n

where Cll" denotes the path on the big circle with radius F,ZBri is the
path along all the branch cuts,Z the path along all the small circles
of radius r around the branch poii];:is, and s, @ singular point inside

the contour. After calculations it turns out that the sum of the
integrals along the branch cuts and each integral around a branch point
tend to zero as r, tends to zero. Alsof G(s)ds - 0 as T » = , therefore

C
1ir
an explicit expression for n(x,t) is given as:

n(x,t) = —Zaes G(s=s ) (B.4)

n
An examination of G(s) shows that three removable singularities exist
as s=0, +i§ ,~28 : the residue of G(s) at those points is therefore zero.
The only isolated singularities of G(s) are given by:

K K
cosh 50= 0 <=> % -7f-’= (2n+1) = n=0,+1,+2 (8.5)

Neglecting terms of order O(YZ) the solution of Eq. (B.5) is:
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Fig. B2 Definition sketch for the integral contours Cyp and Cor

(the hatched lines represent the branch cuts and the
dots indicate the position of the poles).
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_ _ _8_ 2 1/2
Yq 7,2an(1+3 a )
8 2
2(l+3 an )
s = (B.6)

1/2

ifn> 0

- : B2
Yo + 7,2an(,1+3 a )

ifn< 0

B _ 2
2(1+3 a )

with a = (2n+l) 7.

The residue of G(s) at s=s_ can then be computed. The result is:

s_t
Res G(s=s ) = (-1)" sin[an(x--zl-)] £le” (B.7)
. ' mtl Sn
with fn = fn[l+ (-1) exp (-mm T)] (B.8)
4 s, 1+—36- Sn2
S SN T (8.9)
(sn + 8%) [25n+ys(l—3 s, )]

It can be noticed that'Res G(s=s_) is conjugate of Res Gls=s___,J>
n=0,1,2..., so that
E Res G(s=s ) = 2 E Re{Res G(s=s___.) } (B.10)
n=-e n=0

The complete solution follows directly from Eqs. (B.4), (b.7) and (B.10).

mn
Second case: t g e

The integrand G(s) must be separated into two functions:

G(s) = Gl(s) + Gz(s) where: (B.11)
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1
sinhKo(x—z) st

G,(s) = (B.12)
1 2502 . g
86 cosh (»<___(2))
o
S sinh Ko = —%IZ:) mt1 mm
G,(s) = (-1)" “exp[s(t -] (B.13)
2 2462 0 S
k. cosh (=)
o} 2
so that:
nx,t) = - == [ 6 (s)ds - ==+ [ c.(s)ds (B.14)
’ 277 B 1 2wt 5 2 :
T T

Applying the Residue theory inside the integral contour CZF indicated in

Fig. B2 the following equation is obtained:

/ Gz(s)ds +/ Gz(s)ds = -2ﬂiZResG2(3=sn) (B.15)
B C
T ' 2T

No singularities exist inside this contour. Furthermore,

f Gz(s)ds +0as T » o (B.16)
CZF

Therefore, the value of the second integral in Eq. (B.14) is zero.

For the first integral of Eq. (B.14) the same contour ClI‘ as in the case

where t > mTﬂ is considered. In addition to the singularities already

found, two poles are located as s=t*768. It is assumed that 6 < V/3/8 so

that the poles do not lie on a branch cut.

The residues of Gl(s) at s=t18 are obtained as:

, 1
sin k (x~ —2-)‘ e'-tidt

=+78) = L
Res Gl(s—i'ié) =3 (B.17)

K ¢Oos ha
2

where ¢k is defined as:

.Ys
§(1 F 2=2)
¢ = 28 (B.18)
(1_%852)1/2

where it is understood that ys<<l.
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The expression for the Residue of Gl(s) at §=s_ is the same as before

except that in Eq. (B.7) fn' must be replaced by fn' The solution

n(x,t) for this case is then:
nx,t) = -2 E Re{Res Gl(s=sn)} - 2Re{Res Gl(s=+i5)} (8.19)
n=1

This completes the derivation of the explicit solution for the linear

basin excitation problem.
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APPENDIX C
EQUIVALENT LEAKAGE LOSS COEFFICIENT ASSOCIATED

WITH A PARTIALLY REFLECTIVE BOUNDARY

Consider a linear harmonic plane wave in shallow water which is

normally incident to a beach or any wave absorber located at x = 0.
The wave system can be decomposed into an incident wave nl(x,t) and a

reflected wave nz(x,t) such that:
n = Al sin(ot - kx) (C.1)
”2 = A2 sin(ot + kx) (C.2)

where the wave number k is related to the frequency O by:

(C.3)

1l

where h and g denote the depth and the acceleration of gravity, respec-
tively. The effectiveness of the absorbing boundary is measured by
the reflection coefficient r defined as the ratio of the reflected wave

amplitude A, to the incident wave amplitude Al'

2
In order to estimate the effectiveness of this source of dissipa-

tion in reducing resonance in harbors, an equivalent leakage velocity

u is sought in the form:

Yn T EeV'§ (nl * n2) (C.4)

where > is an equivalent leakage coefficient to be determined.
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energy by unit width dissipated in one period by partial

The wave
reflection is equal to:
0T 0T
W= = J f uy pdl dtdz-—f J u, pd2 dtdz (C.5)
-h 0 -h O

where, in shallow water the dynamic pressure pdand the horizontal

velocity u are given, respectively, by:

Py = P8 R u = nvg/h (C.6)
Substituting Eq. (C.6) into Eq. (C.5) one obtains:
Ai-—Ag Ai _
T=pg vVgh ?T-(l -r)T (c.7)

Wo = pg /gh —5—*

The wave energy by unit width dissipated in one period by leakage

is:

T
f_u (pd1+pd2) dt dz (C.8)
0

or, using Eq. (C.4),
2

A LA
(A1+42)
W = pg vgh € =57 = pg Vgh ¢

A2
7; L+ (€.9)

e
Equating expressions (C.7) and (C.9), the equivalent leakage velocity

is found as:
(C.10)

=
I
il

o
o
+
all
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This result is used in Chapter 7 to compare the effectiveness of
the various sources of dissipation in prototype harbors, including

dissipation related to partial reflection.
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APPENDIX D

DERIVATION OF THE BOUNDARY CONDITION AT A WALL
WITH A SMALL GAP BETWEEN THE WALL AND THE BOTTOM

The problem is illustrated by the definition sketch of Fig. DI1.
A small gap, e, exists underneath a vertical wall with to
separating a region where wave action takes place from a quiescent
semi-infinite region. The presence of the wave in region A creates a
pressure difference between A and B, inducing a flow underneath the
wall. Three steps are successively considered in this development:
the computation of the velocity profile in the gap, the relation
between the pressure difference between A and B and the wave parameters,
and the derivation of an equivalent leakage velocity to be used as a

boundary condition at the walls.

(i) Computation of the velocity profile in the gap

The velocity vector consists of the horizontal velocity
component ug(xn,z,t) and ‘the vertical velocity component wg(xn,z,t),
where X refers to the normal horizontal outward direction to the wall.
Assuming the flow is unidirectional (wg = 0), the continuity equation

and the momentum equation in the z direction yield:

ug(xn,z,t) = ug(z,t) (0.1)

p(x »2z,t) = p(x ,t) (D.2)

where p is the static pressure.

The momentum equation in the X direction yields:
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ou 32u
_B__1l3 . _8
5% > Bx +v 2 (D.3)

where p and v are the density and the kinematic viscosity of the fluid,
respectively. The order of magnitude of the unsteady term can be

compared to that of the viscous term in the following:

du /ot e2
of —&—) == (D.4)
Bzug/Bz2 VT

where T refers to the typical period of the motion in typical laboratory

conditions e< .3mm, Tw 1 sec and v = 10" 2cm?/sec so that
e
5T < .05 (D.5)

The unsteady term can consequently be neglected and the momentum

equation becomes:

o Py
= pv D.6
X P 3z ( )
n
The boundary conditions are:
-h) = ~h+e) = 0 (D- 7)
ug( ) ug( )

Since %? does not depend on z, Eq. (D.6) can be integrated readily:

11 —e) 2B
ug(z,t) = o 2 (z+h) (z+h-e) axn (D.8)

The mean velocity is obtained as:

-hte
Tyt [uge=--Le2op
ug (t) = e ugdz =~ 30 13 0% (D.9)

-h
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3p
From Eq. (D'g)’%x does not depend on x, therefore:

p_PBT P

(D.10)
axn te

where Py and P, denote the pressure at B and A.

(ii) Relation between the pressure difference between O and B
and the wave parameters

The Bernouilli equation can be applied between the points P

and A, A and B, B and C:

- p
P u
P_, &2 . A
=q + — D.11
Pg ¢ 25  pg ( )
where o, is a correction factor for the kinetic energy (ac = 0(1))
_2 W T2 .
o u P ) u
_CZ,E.J,_A - B, te . & (0.12)
g Pg pg 2g rg
p R ou ?
B ‘
a.Pg 28 2g

where Eg is the head loss due to laminar friction along the gap. The

pressure p, can be derived from the inviscid irrotational wave theory as:

p
2___n
Sz = cosh WL + h (D.14)

where n is the wave elevation at A and k is the wave number.

Combining Eqg, (D.11) to (D.14) the following is obtained:
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n Géz Eg
cosh kh & 2g + g (D.15)

n Egz 12vt
cosh kh _eT2g T Vg o2 (D.16)
Eq. (D.16) can be written in the form:
_ _ 2
X = eo(l aCX ) (0.17)
) 1/2
=_¢ &7
where ®o= T2ve_ \ Zcosh kh) (0.18)
u,
X = —— (D.19)
2gn
cosh kh
The solution of Eq. (D.17) is:
= 2
X et O(eo) (D.20)

Typical values corresponding to the experimental conditions are
e=.3mm, n= 10 mm, v = 0.01 cm2/sec, te = 1 cm, kh << 1 so that

e <.l.
)

Thus, neglecting the quadratic velocity term induces a relative
error less than 10%Z. Therefore, as a reasonable approximation, the
leakage velocity is considered as a linear function of the wave ampli-

tude at the wall, such that:
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2
- &% .
% ~ T2vt_ cosh kh (0.21)

(iii) Derivation of the boundary condition at the wall

The expressions for the horizontal components of the
velocity vector and the dynamic pressure are assumed to be of the

form:

= # coshk(zth) —ioc}
up (Xy5%5,2,t) = Re{un(xl’XZ) cosh kh  °©

Re{ ogn Sosh k(zth) e—wt} (D.22)

Py (x15%5,2,t) cosh kh

~ -0t
n(xl,xz,t) = Re{ n(xl,xz) e }

where u denotes the outward normal component of the horizontal velocity
vector at the wall.

The idea consists of deriving an expression for Gn such that the
energy flux caused by the "equivalent" leakage velocity u is equal to
the energy flux caused by the actual leakage. ﬁn is thus determined

by the equation:

T .o T
//unpd dzdt = e/ ugPddt z = =h (D.23)
0 ~-h ]
After calculations Gn is found as:
3 ~
i = _¢© gk (D.24)

n = 3vt_ 2kh+sinh 2kh n
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Eq. (D.24) expresses the boundary condition to be used in case of

a leakage through a small gap at the bottom.
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APPENDIX E

COMPUTATION OF THE Q FACTORS CORRESPONDING TO

VARIOUS SOURCES OF DISSIPATION IN A NARROW RECTANGULAR

HARBOR AND IN A RECTANGULAR BASIN

E.1 Case of a Narrow Rectangular Harbor

A definition sketch for the coordinate system and the notation
are the same as presented in Section 3.3.2. Combining Eqs. (3.3.20) to
(3.3.23), (3.3.33), (3.3.34) and (3.3.35) and the relations (3.3.87) and
(3.3.88) corresponding to the resomant condition for a narrow rectangular

harbor induced oscillations leads to the resonant mode shapes defined by:

Re; 7 éfk'ggfggkéﬁihl sin k(x+L) e—th; , X< 0

u(x,z,t) = (E.1)

; b Agk cosh k(z+h)

a o cosh kh. sin kL e

s X=0

Re -1i0t %

where the expression for u at the harbor entrance is derived from

continuity considerations

_ _» Agk sinh k(z+h) -0t
w(x,z,t)-—Re; = cosh kn  ¢os k(x+L) e (E.2)

og A cos k(x+L) Sosh k(zth) e"wtg (E.3)

Pd(x,z,t) = Re cosh kb

n(x,t) = Reg A cos k(x+L) e_iUt (E.4)
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KL = (nt+l) -2"- n=0,1,2... (E.5)

D
"

kg tanh kh (E.6)

The total mean energy in the harbor is given by (Ippen, 1966):

En = l-pg A%Lb (E.7)

g

At this point each source of dissipation must be considered individually:

(i) Loss due to separation at the entrance

A consistent head loss equation can be written as:

cosh kh

cosh k(h+z) (E.8)

Ap
d{0,z,t) 1
T, S Rt osl” S
\pg -5 felu(o,z,t)] u(0,z,t)

where Ap is the pressure difference across x=0.

In order to check the consistency of Eq. (E.8), Eqs. (E.1) and (E.3)

can be substituted into Eq. (E.8) to give:

An(O,t) = E];g_ £_|u(0,0,8)| u(0,0,8) (E.9)

No dependence in z appears for An(0,t) as expected. Furthermore,
the expression for the wave amplitude discontinuity is the same as for
shallow water waves with the horizontal component of the velocity
evaluated at the surface.

The mean power dissipated by flow separation at the entrance is

given by:
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dwf . T o
—a?-:T/A Apd(O,z,t) u(0,z,t)dz dt (E.10)
o —

The Qf factor is defined as:

de
t

1
cE d
n

1
Y

After some algebraic manipulations Qf is found as:

£
Lo (b d) (P2 kham) (L, i) (E.11)
Qf T (2n+l) a 23r0a o 2 sinh2kh
The quantity Qf can also be expressed as:
1 _4_1 b (l __L>
Qf T 20+l a *f 2 sinh2kh

where X¢ is defined by Eq. (3.3.83), by noting that the quantity ﬁ3(0,y)

appearing in Eq. (3.3.78), from its definition becomes equal in the

Ak

b
present case to 2 G5 ¢

(ii) Laminar Boundary Friction

The mean power dissipated in the harbor is given

by (see Appendix A):
T 1/2

dwu 1 Vo °2 2
e TI’-/ p(—z—-) ﬁ(u + w4)ds dt (E.14)
) s

where s is the total surface wetted by the fluid. The Qu factor is

defined as:
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=1 _u (E.15)

After calculations Qu is found as:

S ’_‘_’_ [_23 2kh kh kh /, _ _ 2kh ]
Q 50 L> *simh 2kh * CTanh kR w (1 sinh 2kn )] (E-16)

=g 12

The terms between brackets result from side walls, bottom, surface and
backwall friction respectively.

The parameter Qu can be written also as:

1 _4_1 b (l,_ ¥ _
Q7 2o+l a X (2 + Sinh 2%h (E.17)

where X is given by Eq. (3.3.81) andlﬂ:is given by Eq. (3.3.37) except
u
for the friction term at the backwall which was not considered when

Eq. (3.3.37) was derived. A heuristic way to account for this term

would consist in replacing the expression for W, in Eq. (3.3.81) by:

v _1f v % 2sinh2kh 2kh C kh _2kh
M TR ('2_0) (2kh+sinh2kh) [ e i S (1 sinh2kh )]
(E.18)
However, in practice, the correction term can be neglected when
compared with the other friction terms either in the case of a narrow
basin (kb << 1) or in shallow water which corresponds to the range of

the present harbor experiments.
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(iii) Leakage Losses

The mean power dissipated in the harbor in one period is

given by:
dWE 1 T o
I =T/e; bEg(t) p(-L,~h,t) + 2‘/1: I{g(t) p(x,-h,t)dx { dt (E.19)
(o] —

where u is the fluid velocity underneath the gap in the outward normal
g
direction to the boundary;from the results of Appendix D u_ is related

to Pd by:

T ‘(t) -1 e P,(x,-h,t) (E.20)
g vp 12te a7

where e and te denote the gap and the wall thicknesses. The Q c factor

is defined as:

dw
LI e (E.21)
Q. OB,
After calculations Qe: is found as:
3 1/2
1 _4_ 1 e L kg ) 1
Q_ T ™ oD 12ty (1 + b')(tanh kh/ Cosh? kn (E.22)
Equation (E.21) can be written as:
1 4 1 b 1 kh '
—_—— 2 _2 B = R .. S )
Q, 1r(2n+1)axe(2+sinh Zkh) (E.23)

where Xe is defined by Eq. (3.3.82).
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(iv) Radiation Damping

The mean power lost by radiation is given by:

dwr a ! °
Tl -Ef/Pdr(O,z,t) u(0,z,t)dz dt (E.24)
o -h

where Pdr is the pressure associated with the radiated wave and given by:

cosh k(z+h)

Pdr(x,z,t) = pg n_ “osh kh (E. 25)
The expression for the radiated wave amplitude N, at the harbor
entrance can be derived from Eq. (3.3.73) as:
U ~ 3 ""
n,0,£) = Re {5 (0,0) all + 2% 40 (0.1987 ka)] e %%} (E.26)
where 4(0,0) = © g-‘%& (E.27)
The Qr factor is defined as:
dy
1 _ 1 T
o " oE . (E.28)
T n
After calculations Qr is found as:
1 _ 4 1 b 1 kh
Q"7 @D a Xr @ F I 2w (£.29)

where x _ is defined by Eq. (3.3.80).
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(v) Rough Turbulent Boundary Friction

This type of friction is likely to occur in actual harbors
and it is of interest to compute the associated Q factor in order to
estimate its wave attenuating effect as compared with the other sources
of dissipation.

For simplification purposes the analysis is restricted to bottom
friction in shallow water. The turbulent shear stress for oscillating

flows is usually considered in the form:

T =%pce|u|u (E.30)

where Ce denotes the average boundary friction factor. Experiments
by Kamphuis (1975) showed that Ce depends on both a Reynolds number
and a relative roughness parameter and its usual range lies between

103 and 10~!. The mean power dissipated in the harbor is given by:

dWT . ‘T o
Tl T//Tudx dt (E.31)
o -L

QT is defined as:

dw_/dt
1 _ 7'
T n

After calculation QT is found as:

1 16 'g A
— = - C ‘} —T .
QT on 3 T ; (E.33)
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(vi) Dry friction from meniscus action

The vertical force per unit length on the fluid at the liquid-

lucite-air interface is given by Eq. (3.3.3) as:

T dn/dt

F =T, TE;7EET (E.34)

where Fe denotes the surface tension at the air-liquid interface and «

a constant. The resulting mean power dissipated in the harbor is

given by:
daw T t
—c_1 dn dn
- T/[bF dn 4 Z/F 4 dx]dt (E.35)
o o}
QC is defined as:
dw /dt
1 c
S (E.36)
Qc OEn
After calculation Qc is found as:
32T
1 e 1 T b
— = ={1+ = E.37
QC ﬂngA b 4 L) ( )

(vii) Residual _ surface tension dissipation

It has been conjectured in Section 3.3.1 that there exists
a dissipative source related to surface tension but independent of dry
friction from meniscus action. It has been assumed that it could be
expressed mathematically by a vertical force applied on the water surface
at equi-distance between the walls, as:

Pen
F o = (E.38)
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Assuming further a slight phase shift between F and n, the resulting

mean power dissipated in the harbor can be expressed by:

T L
dw
ob 1 dn
=T f/F or dxdt (E.39)
)

which gives:

dw
2 =2
at ob FeA B (E.L0)

[
=

where Kob is a constant to be found from experiments. Qob is defined as:
aw __ /dt
Ql = gg (E.41)
ob n
After calculations, Qob is given by:
K.,T
21 “obe (E.42)

1
2
QOb T b pg

E.2 Case of a Closed Rectangular Basin

The mode shapes are the same as for the narrow rectangular harbor

except that the resonant values of kL are given by:

kL = (2n+l)7 n=0,1,2... (E.43)

for a rigid basin excited back and forth.

Five sources of dissipation must be considered in this case:
laminar bottom friction, laminar wall friction, laminar surface friction,
dry friction from meniscus action, residual dissipation from surface

tension.
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After calculations, it turns out that the expression for the Qu
factor associated with the laminar boundary friction forces is the
same as in the case of the harbor except that friction is exerted in

the basin case on two end walls, not only one. Thus the Qu factor is

given by:
1 _14v r2n 2kh kh 2kh ., _ _ 2kh
o, " hJ 5 *smn om® Crammm T - smmomm)) (B4

The Qc factor associated with dry friction from meniscus actions
can be derived similarly from the harbor results by noticing that

friction is exerted on the end walls, not only one:

3%kTe 1 1_b_>
c-"pgAb(l 72 (E.45)

The expression for the Qob factor corresponding to the residual
source of dissipation associated with surface tension is identical to
the expression found in the case of the harbor and is therefore given
by Eq. (E.42).

One important application of these results is the possibility of
uncoupling the experimental investigation of dissipation caused by
laminar boundary friction and surface tension from the investigation of
the other sources of dissipation present in the harbor. One can just
conduct this investigation in a closed rectangular basin since there
exists almost a one to one correspondence between the Qi factors corres-
ponding to those sources for the harbor, and for the closed basin.
Indeed, these considerations are applied in Section 5.1 in the experi-

mental study of boundary friction and surface tension dissipation.
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APPENDIX F

Fl. DERIVATION OF A TIME DEPENDENT RADIATIVE BOUNDARY CONDITION FOR

RADIALLY SPREADING LINEAR NONDISPERSIVE WAVES

This derivation is based on the approach taken by Mungall and Reid
(1978). Consider the fluid domain bounded on the left by a straight
coastline indented by a harbor (see Fig. Fl).

In Region QL (delineated by AGC, I'_, BA, CD in Fig. F1, the wave

R’
system characterized by the potential wave function ¢ consists of two
parts: the incident-reflected wave, @I, and the radiated wave { .
Region QL is assumed to be located sufficiently far away from the harbor
entrance so that the nonlinearities in the radiated wave due to harbor

oscillations become negligible. The potential function associated with

the radiated wave satisfies the linear nondispersive wave equation:

1 3%
VY = = —& F.1l
v gh 3t2 (F.1)
where h is the still water depth (assumed uniform throuéhout the fluid
domain) and g is the acceleration of gravity. Since the coastline is
perfectly reflective ¥ must satisfy the following boundary condition:

§£-= 0 on AB,CD (F.2)

A general solution of Eq. (F.l) satisfying Eq. (F.2) can be found

in polar coordinates as:
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Region 3

Fig. F1 Definition sketch for radiated wave away from the harbor.

Fig. F2 Definition skktch for a straight coastline all the way
to the harbor entrance.
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-0t

P(r,0,t) = Rerlpn(k)Hnl (kr) e cosnd dk (F.3)

where H;' denotes the Hankel function of the first kind, of nth order,
= k/gﬁ and wn(k) are functions of k depending on the geometry of
the radiative disturbance. In principle, any Bessel function would be
suitable but only the Hankel function H; satisfieg the requirement that
waves originating from the harbor entrance are outgoing.
The next step is to evaluate é%g at a large distance from the origin.

From Eq. (F.3):

[--}

d[H (kr)] —iot
Rerk\P (k) ——m— a0k e cosnb dk (F.4)
n=0

for large values of z = kr (Abramowitz and Stegun (1972), p. 364) the

Hankel function H;lbecomes:

_ _2_ 1+ 7 (4112_1) (4112-—1) (4n2_9) . _3 7 (z-(2n+1)7/4)
Hé(z) -\/ s l: 7/82 - 3 (82) 2 + 20(z27°) e

(F.5)

and,

di ! (2) : 2 _ Z(z-(2n+1)w/4)
_n Iﬂz_z [7, _ (n%43) . (4n -1) (4n #15) 0(2_3)] .

dz 8z
2(8z)2
(F.6)
dH;’(z)
A relationship between Hﬁl(z) and ——E;—~—-of the following form is inves-

tigated:
dH ! (2)
1 3 é l -3 =__I_1__.
Hn.(z)[$+z+7’22+o(z )] iz (F.7)
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The unknown coefficients A and B can be evaluated by identification

using Eqs. (F.5) and (F¥.6):

2_
A= _%. s B = —(———--—-Lin8 1) (F.S)
If the approximation is made that
1
_d_H_n_(f.)_ = [{ - i] H(z) (F.9)
dz 2z n
Then, Eq. (F.4) becomes:
© © ~-72.0t
EL ReE ! flpn(k) B (k) (ik - 55) e cosnd dk (F.10)
n=0 . ©
Or:
Ny __ 1 9 1
3r o 3t 2r v (F.11)
gh

Eq. (F.11l) is the time dependent boundary condition for a radially
spreading wave.far away from the source region. This condition is
incorporated in the numerical scheme presented in Section 3.4 to force
the radiated wave to be transmitted according to Eq. (F.1ll) through a
radiative boundary which is a semicircle located at some distance from
the harbor mouth. (It is noted a perfectly reflective boundary would
correspond to %%>= 0). Actually Eq. (F.1ll) is exactly satisfied
mathematically only for an infinite distance from the mouth. Therefore
its use in the numerical scheme at some finite distance r induces
reflection of a small percentage of the radiated wave energy back towards
the harbor mouth. The amount of reflection depends on the distance r

at which the radiative boundary is placed and an estimate of this

will be made presently. Egq. (F.ll) can also be written as:



d;dt- (rl/zw) =0 on — = /é—l; (F.12)

In other words, the quantity (rl/2

) is conserved along an outward-
directed characteristic. One obvious question is: how close to

the source can the radiation condition (F.1ll) be used within a few
percent error? As the approximation made in Eq. (F.9) shows, it
depends both on the size of the source and the characteristic wave
length, reflected in the importance of the neglected terms 0(n?/k%r?)
or rather 0(¢nn2/k2r2). For a point source wn =0 for n > 1, and thus
the minimum distance from the mouth beyond which Eq. (F.11l) applies
reasonably well only depends on the wave length. However, if the source
has a finite size, this distance is increased due to the presence of
the term wnnz which grows with the source size.

To get an estimate of the minimum radius Rr for which the radiation
condition (F.1l1l) can be used within a few percent error, consider the
simplified case of a straight coastline all the way to the harbor en-
trance (Fig. F2). Assﬁme, in addition, that the radiated wave
satisfies the linear mondispersive wave equation even near the harbor

mouth. The solution for  is expressed in the harmonic case as (Lamb,

1932, Art. 305):

a

Y =f % Hol (kr')dn (F.13)

o

where a is the mouth width and r'the distance between a field point

M(x,y) and a source point (0,n) located along the entrance:

r' = (x2+(y-n)2)1/2 (F.14)
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For a small value of a/r,where r is the distance between M and

the origin,r' is given by:

: 2
r' =r(1 - ﬂ§%§§ + O(éf)) (F.15)
r

Restricting the analysis to small values of ka a Taylor expansion

of H;(kr') around L' = r yields:

(F.16)

dH!(kr) 2.2 a?a?! (kr)
Hi(kr') = H!(kr) - knsin® —= + KON o’
o ) d (kr) 2 d (kr)2

2
Assume that %% can be approximated by a constant value Sﬁ-along the

mouth. The expression for y{ becomes:

(r.,6) (ka) Gay? . [47R Ger)
V(.0 _ m a 8 H? (kr) + 0 -0 (F.17)
o Ho(kr) + 2 sin 1( r) 3 A cke)?
a on
For large values of z = kr
d HI(Z) . 2_
s~ ('” -3 - 7’(4: 21)) H @ (F.18)
Z
! 2 (z - &L - 7 F.19
H(2) ~ — exp [1(z - 5 4)] ( )

Differentiating Eq. (F.17) with respect to r and using Eq. (F.18) and (F.19)

it is found that g gi 8) can be approximated by:
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WD -y y(r,0) - 52 ¥(x,0) (F.20)

with a relative error:

2
Er x( 1 ka 0[(1‘:) ]) (F.21)

8(kr)2 ~ 4(kr)2

Eq. (F.20) corresponds to the radiation condition (F.11) for the harmonic
case for large values of r. The relative error in Eq. (F.21) can also

be interpreted as a reflection coefficient for the radiated wave

at the radiative boundary.

For values of ka less than 0.5, Eq. (F.20) is verified within a
few percent according to Eq. (F.21) if the radiative boundary is located
at a distance from the origih equal to 0.6} where A denotes the wave
length. As ka increases, the value of kr should be increased accord-
ingly to keep the relative error small as seen from the second term of
Eq. (F.21). If ka is lérger than 0.5, Eq. (F.21) becomes inadequate to
estimate the relative error and new terms should be considered in the
Taylor expression of Eq. (F.16). But the trend for larger values of ka
can be inferred from Eq. (F.21): As ka increases, kr must also increase
for a given relative error, until eventually it reaches a value for
which the radiative condition is no longer economical to use because of

the large region to discretize outside the harbor.

As a concluding remark it can be noticed that the region from which

the radiated wave propagates need not be centered at the origin as long
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as the order of magnitude of the product kd (where d denotes the dis-
tance between the origin and the center of the source) remains smaller

than unity.

F2. ESTIMATION OF THE RADIATED WAVE HEIGHT OUTSIDE A NARROW MOUTHED

HARBOR

The potential function of a linear wave radiated from the entrance
of a harbor is expressed by Eq. (F.13). Specializing to the case of a

narrow mouth, i.e., ka << 1, Eq. (F.13) can be approximated by:

¥ooy) = a2 [Hl (ko) | + oka) (F.22)

where r denotes the distance between the field point and the center of

the mouth. 03Y/dn represents the flow velocity associated with the

radiated wave at the entrance and is estimated by

oy

5 (F.23)

|

where A denotes a typical wave amplitude inside the harbor. Since
the magnitude of A depends on and is usually of the same order as the
amplitude AI of the incident-reflected wave system, expression (F.23)
can also be approximated by:

N . o, Yeh
Lo o 1B (F.24)

The potential function Y is related to the amplitude As of the

radiated wave by:
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~ &
Yy = 5 AS (F.25)

Substituting Eqs. (¥.25) and (F.24) into Eq. (F.22) yields:
aA;v/gh
h

A E=
9]

1
s IHO(kr) |

Noting that ¢ = kvVgh in shallow water the following relationship

follows:

— = (ka) Hcl)(kr) (F.26)

Eq. (F.26) provides an order of magnitude for the radiated wave rela-
tive to the incident-reflected wave system. If for a given distance r,
O[ka H;(kr)] < 0(1), nonlinear interaction between the radiated and

the incident wave system can be neglected beyond that distance. This

result is used in the analytical formulation presented in Section 3.4.



