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Abstract

TCP/IP can be interpreted as a distributed primal-dual algorithm to maximize aggregate utility

over source rates. It has recently been shown that an equilibrium of TCP/IP, if it exists, maximizes

the same aggregate utility function over both source rates and routes, provided pure congestion

prices are used as link costs in the shortest-path calculation of IP. Moreover, the utility functions

are delay-insensitive, i.e., they are functions of rates only. We extend this result in several ways.

First, we show that if utility functions are delay-insensitive, then there are networks for which

TCP/IP optimizes aggregate utility only if routing is based on pure congestion prices. Routing based

on the weighted sum apl + τl of congestion prices pl and propagation delays τl optimizes aggregate

utility for general networks only if the utility functions are not delay-insensitive. Moreover, we

identify a class of delay-sensitive utility functions that is implicitly optimized by TCP/IP. As for

the delay-insensitive case, we show for this class of utility functions, equilibrium of TCP/IP exists if

and only if the optimization problem has zero duality gap. In that case, there is no penalty for not

splitting the traffic. We exhibit some counter-intuitive properties of this class of utility functions.

We also prove that any class of delay-sensitive utility functions that are optimized by TCP/IP

necessarily possess some strange properties.

We prove that, for general networks, if the weight a is small enough, only minimum-propagation-

delay paths are selected. Hence if all source-destination pairs have unique minimum-propagation-

delay paths, then equilibrium of TCP/IP exists and is asymptotically stable. For general networks,

their equilibrium properties are the same as a modified network where paths with non-minimum

propagation delays are deleted and routing is based on pure congestion prices.

It is commonly believed that there is generally an inevitable tradeoff between utility maximization

and stability in TCP/IP networks. In particular, as the weight a increases, the routing will change

from stable to unstable. We exhibit a counterexample where routing changes from stable to unstable

and then to stable again, as the weight a increases. Moreover, one can construct a network with any

given utility profile as a function of the weight a.
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Chapter 1

Model and Overview

We use the same model as in [5]. In general, we use small letters to denote vectors, e.g., x with xi

as its ith component; capital letters to denote matrices, e.g., H, W, R, or constants, e.g., L, N, Ki;

and script letters to denote sets of vectors or matrices, e.g., Ws, Wm, Rs, Rm. Superscript is used

to denote vectors, matrices, or constants pertaining to source i, e.g., yi, wi, Hi, Ki.

1.1 Network

A network is modeled as a set of L uni-directional links shared by a set of N source-destination

pairs, indexed by i (we will also refer to the pair simply as “source i”). Each link l has a finite

capacity cl > 0 and a delay τl > 0 across the link, i.e., it takes τl to process and propagate a packet

from one end of the link to the other, excluding queueing delay. Let c = (cl, l = 1, . . . , L) and

τ = (τl, l = 1, . . . , L).

There are Ki acyclic paths for source i represented by a L × Ki 0-1 matrix Hi where

Hi
lj =







1, if path j of source i uses link l

0, otherwise.

Let Hi be the set of all columns of Hi that represents all the available paths to i under single-path

routing. Define the L × K matrix H as

H = [H1 . . . HN ]

where K :=
∑

i Ki. H defines the topology of the network.

Let wi be a Ki × 1 vector where the jth entry represents the fraction of i’s flow on its jth path

such that

wi
j ≥ 0 ∀j, and 1T wi = 1,
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where 1 is a vector of an appropriate dimension with the value 1 in every entry. We require

wi
j ∈ {0, 1} for single-path routing, and allow wi

j ∈ [0, 1] for multi-path routing. Collect the vectors

wi, i = 1, . . . , N , into a K × N block-diagonal matrix W . Let Ws be the set of all such matrices

corresponding to single path routing defined as

{W |W = diag(w1, . . . , wN ) ∈ {0, 1}K×N ,1T wi = 1 }.

Define the corresponding set Wm for multi-path routing as

{W | W = diag(w1, . . . , wN ) ∈ [0, 1]K×N , 1T wi = 1 }. (1.1)

As mentioned above, H defines the set of acyclic paths available to each source, and represents

the network topology. W defines how the sources load balance across these paths. Their product

defines a L × N routing matrix R = HW that specifies the fraction of i’s flow at each link l. The

set of all single-path routing matrices is

Rs = { R | R = HW, W ∈ Ws }, (1.2)

and the set of all multi-path routing matrices is

Rm = { R | R = HW, W ∈ Wm }. (1.3)

The difference between single-path routing and multi-path routing is the integer constraint on W

and R. A single-path routing matrix in Rs is an 0-1 matrix:

Rli =







1, if link l is in a path of source i

0, otherwise.

A multi-path routing matrix in Rm is one whose entries are in the range [0, 1]:

Rli







> 0, if link l is in a path of source i

= 0, otherwise.

The path of source i is denoted by ri = [R1i . . . RLi]
T , the ith column of the routing matrix R.

1.2 TCP–AQM/IP

We consider the situation where TCP–AQM operates at a faster timescale than routing updates.

We assume a single path is selected for each source-destination pair that minimizes the sum of the
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link costs in the path, for some appropriate definition of link cost. In particular, traffic is not split

across multiple paths from the source to the destination even if they are available. This models,

e.g., IP routing within an Autonomous System. We focus on the timescale of the route changes,

and assume TCP–AQM is stable and converges instantly to equilibrium after a route change. As

in [3], we will interpret the equilibria of various TCP and AQM algorithms as solutions of a utility

maximization problem defined in [2]. Different TCP algorithms solve the same prototypical problem

(1.4) with different utility functions [3, 4].

Specifically, suppose each source i has a utility function Ui(xi, di) which depends on both its (total

transmission) rate xi and the end-to-end propagation delay di. Here, we assume that di =
∑

l Rliτl

and hence the delay di depends only on routing R. Given R, Ui(xi, di) is a function only of rate

xi. We assume that utility functions are strictly concave for fixed di. We will also consider the

special case where the utility function Ui(xi) = Ui(xi, di) depends on its rate xi but not on the

delay di. We will call the first type of utility functions Ui(xi, di) delay-sensitive and the second

type Ui(xi) delay-insensitive. Delay-insensitive utility functions are studied in Chapter 2 and in [5];

delay-sensitive utility functions are studied in Chapter 3. Throughout this paper, we assume that a

network’s sources either all have delay-insensitive utility functions, or all have delay-sensitive utility

functions.

Let R(t) ∈ Rs be the (single-path) routing in period t. Given a R(t), let the equilibrium rates

x(t) = x(R(t)) and prices p(t) = p(R(t)) generated by TCP–AQM in period t, respectively, be the

optimal solutions of the constrained maximization problem

max
x≥0

∑

i

Ui(xi, di) s. t. R(t)x ≤ c, (1.4)

and its Lagrangian dual

min
p≥0

∑

i

max
xi≥0

(

Ui(xi, di) − xi

∑

l

Rli(t)pl

)

+
∑

l

clpl (1.5)

The prices pl(t), l = 1, . . . , L, are measures of congestion, such as queueing delays or loss probabilities

[3, 4]. We assume the link costs in period t are

zl(t) = apl(t) + bτl (1.6)

where a ≥ 0, b ≥ 0, and τl > 0 are constants. Based on these costs, each source computes its new

route ri(t + 1) ∈ Hi individually that minimizes the sum of link cost in its path:

ri(t + 1) = arg min
ri∈Hi

∑

l

zl(t)r
i
l . (1.7)
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In (1.6), τl are propagation delays across links l. If pl(t) represents the queueing delays at links

l and al = bl = 1, then zl(t) represent total delays across links l. The protocol parameters a and

b determine the responsiveness of routing to network traffic: a = 0 corresponds to static routing,

b = 0 corresponds to purely dynamic routing, and the larger the ratio of a/b, the more responsive

routing is to network traffic. They determine whether an equilibrium exists, whether it is stable,

and the achievable utility at equilibrium. The paper [5] focuses on the case of b = 0; we study the

general case here.

An equivalent way to specify the TCP–AQM/IP system as a dynamical system, at the timescale

of route changes, is to replace (1.4)–(1.5) by their optimality conditions. The routing is updated

according to

ri(t + 1) = arg min
ri∈Hi

∑

l

(apl(t) + bτl)r
i
l , for all i (1.8)

where p(t) and x(t) are given by

∑

l

Rli(t)pl(t) =

[

∂Ui

∂xi

(xi(t), di)

]+

for all i (1.9)

∑

i

Rli(t)xi(t)







≤ cl if pl(t) ≥ 0

= cl if pl(t) > 0
for all l (1.10)

x(t) ≥ 0, p(t) ≥ 0. (1.11)

This set of equations describe how the routing R(t), rates x(t), and prices p(t) evolve. Note that x(t)

and p(t) depend only on R(t) through (1.9)–(1.11), implicitly assuming that TCP–AQM converges

instantly to an equilibrium given the new routing R(t).

We say that (R∗, x∗, p∗) is an equilibrium of TCP/IP if it is a fixed point of (1.4)–(1.7), or

equivalently, (1.8)–(1.11), i.e., starting from routing R∗ and associated (x∗, p∗), the above iterations

yield (R∗, x∗, p∗) in the subsequent periods.

1.3 Overview of results

TCP/IP can be interpreted as a distributed primal-dual algorithm to maximize aggregate utility

over source rates. It has recently been shown that an equilibrium of TCP/IP, if it exists, maximizes

the same aggregate utility function over both source rates and routes, provided pure congestion

prices are used as link costs in the shortest-path calculation of IP. Moreover, the utility functions

are delay-insensitive, i.e., they are functions of rates only. We extend this result in several ways.

First, we show that if utility functions are delay-insensitive, then there are networks for which

TCP/IP optimizes aggregate utility only if routing is based on pure congestion prices. Routing based
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on the weighted sum apl + τl of congestion prices pl and propagation delays τl optimizes aggregate

utility for general networks only if the utility functions are not delay-insensitive. Moreover, we

identify a class of delay-sensitive utility functions that is implicitly optimized by TCP/IP. As for

the delay-insensitive case, we show for this class of utility functions, equilibrium of TCP/IP exists if

and only if the optimization problem has zero duality gap. In that case, there is no penalty for not

splitting the traffic. We exhibit some counter-intuitive properties of this class of utility functions.

We also prove that any class of delay-sensitive utility functions that are optimized by TCP/IP

necessarily possess some strange properties.

We prove that, for general networks, if the weight a is small enough, only minimum-propagation-

delay paths are selected. Hence if all source-destination pairs have unique minimum-propagation-

delay paths, then equilibrium of TCP/IP exists and is asymptotically stable. For general networks,

their equilibrium properties are the same as a modified network where paths with non-minimum

propagation delays are deleted and routing is based on pure congestion prices.

It is commonly believed that there is generally an inevitable tradeoff between utility maximization

and stability in TCP/IP networks. In particular, as the weight a increases, the routing will change

from stable to unstable. We exhibit a counterexample where routing changes from stable to unstable

and then to stable again, as the weight a increases. Moreover, one can construct a network with any

given utility profile as a function of the weight a.
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Chapter 2

Delay-Insensitive Network
Optimization

In this chapter, we consider the special case where the utility functions Ui(xi) depend only on rates

xi and not on propagation delays di. It is shown in [5] that TCP/IP maximizes aggregate utility

over both rates and routing when an equilibrium exists, provided that pure price is used as the link

cost in shortest-path routing, i.e., b = 0 in (1.8). We now argue that in the other case (b > 0 for

all l in (1.8)), TCP/IP in general does not maximize aggregate utility. In the next chapter, we will

show that TCP/IP turns out to maximize a class of delay-sensitive utility functions when b > 0.

2.1 The optimization problem

Definition 1 A delay-insensitive utility function is a strictly concave increasing, continuously dif-

ferentiable function Ui(xi) from [0,∞) to [−∞,∞].

In this chapter, we restrict ourselves to delay-insensitive utility functions.

Consider the single-path network optimization problem from [5]:

max
R∈Rs,x≥0

N
∑

i=1

Ui(xi) s.t. Rx ≤ c (2.1)

and its Lagrangian dual:

min
p≥0

N
∑

i=1

max
xi≥0

(

Ui(xi) − xi min
ri∈Hi

L
∑

l=1

Rlipl

)

+
L
∑

l=1

clpl (2.2)

where ri is the ith column of R with ri
l = Rli. This problem maximizes utility over both rates and

routes.
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Define the Lagrangian [1]:

L(R, x, p) =

N
∑

i=1

(

Ui(xi) − xi min
ri∈Hi

L
∑

l=1

Rlipl

)

+

L
∑

l=1

clpl

Then we can express the primal and dual problems respectively as:

Vsp = max
R∈Rs

max
x≥0

min
p≥0

L(R, x, p)

Vsd = min
p≥0

max
R∈Rs

max
x≥0

L(R, x, p)

If we allow sources to use multiple paths, the corresponding problems are:

Vmp = max
R∈Rs

max
x≥0

min
p≥0

L(R, x, p)

Vmd = min
p≥0

max
R∈Rs

max
x≥0

L(R, x, p)

The TCP/IP dynamical system is described by (1.4)–(1.7), or equivalently, (1.8)–(1.11) with

Ui(xi, di) replaced by Ui(xi) and ∂Ui/∂xi by U ′
i(xi).

2.2 Optimization with link cost pl (b = 0)

In this section, we assume that IP uses the congestion prices pl generated by TCP-AQM as link

costs, i.e., a > 0 and b = 0 in (1.8).

From [5], we know the following:

Theorem 1 Suppose a > 0 and b = 0 in (1.8). Then:

1. An equilibrium (R∗, x∗, p∗) of TCP/IP exists if and only if there is no duality gap between

(2.1) and (2.2).

2. In this case, the equilibrium (R∗, x∗, p∗) is a solution of (2.1) and (2.2).

Moreover,

Theorem 2

Vsp ≤ Vsd = Vmp = Vmd.

2.3 Optimization with link cost τl (a = 0)

In this section, we assume that IP uses the propagation delays τl as link costs, i.e., a = 0 and b > 0

in (1.8).



8

Theorem 3 Suppose a = 0 and b > 0 in (1.8). Then for any delay-insensitive utility function U(x),

there exists a network with sources using this utility function, where TCP/IP equilibrium exists but

does not solve (2.1) and (2.2).

Proof. Suppose c2 > c1 > 0 and τ2 > τ1 > 0. Consider the following network.

Network 1:

Source Destination

L1: Capacity: c1, Delay: τ1

L2: Capacity: c2, Delay: τ2

Network Routes

Route Path

R1 L1

R2 L2

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1, R2 R1 U(x)

Flow 1 achieves rate c1 with utility U(c1).

The route costs are:

Route Costs

Route Cost

R1 bτ1

R2 bτ2

The initial routing is an equilibrium routing, since all flows are using minimal cost routes.

Suppose Flow 1 had instead used route R2. Then it would achieve rate c2, with utility U(c2).

But c1 < c2, so U(c1) < U(c2).

So there exists a TCP/IP equilibrium that does not solve (2.1) and (2.2). �

2.4 Optimization with link cost apl + τl

In this section, we assume that IP uses apl + τl as link cost, i.e., a > 0 and b = 1 in (1.8).

Theorem 4 Suppose a > 0 and b = 0 in (1.8). Then for any delay-insensitive utility function U(x),

there exists a network with sources using this utility function, where TCP/IP equilibrium exists but

does not solve (2.1) and (2.2).
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Proof. Suppose c2 > c1 > 0, and τ > 0. Consider the following network.

Network 2:

Source Destination

L1: Capacity: c1, Delay: τ

L2: Capacity: c2, Delay: aU ′(c1) + τ

Network Routes

Route Path

R1 L1

R2 L2

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1, R2 R1 U(x)

Flow 1 achieves rate c1 with utility U(c1).

The route costs are then:

Route Costs

Route Cost

R1 aU ′(c1) + τ

R2 aU ′(c1) + τ

The initial routing is an equilibrium routing, since all flows are using minimal cost routes.

Suppose Flow 1 had instead used route R2. Then it would achieve rate c2, with utility U(c2).

But c1 < c2, so U(c1) < U(c2).

So there exists a TCP/IP equilibrium that does not solve (2.1) and (2.2). �
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Chapter 3

Delay-Sensitive Network
Optimization

In this chapter, we consider the case where the utility functions Ui(xi, di) depend only both on rates

xi and on propagation delays di. We identify a class C of utility functions for which TCP/IP, with

a > 0 and b = 1 in (1.8), does maximize aggregate utility at equilibrium, when equilibrium exists.

We argue that for the other cases, a = 0 or b = 0, TCP/IP in general does not maximize aggregate

utility at equilibrium. We analyze properties of C, and then derive properties that any class of utility

functions that TCP/IP implicitly maximizes at equilibrium must possess.

3.1 The optimization problem

Definition 2 A delay-sensitive utility function is a continuously differentiable function U(x, d) from

[0,∞) × [0,∞) to [−∞,∞), that satisfies the following properties:

1. ∀ fixed d > 0, U(x, d) is strictly concave in x.

2. ∀d > 0, x > 0, U(x, d) and ∂U
∂x

(x, d) are finite.

3. (∀x > 0), (∀d1, d2 s.t. 0 < d1 < d2) : U(x, d1) > U(x, d2)

4. (∃D > 0), (∀0 < d < D), (∃X(d) > 0), (∀x < X(d)) : ∂U
∂x

(x, d) > 0

Essentially, a delay-sensitive utility function is defined so that the source always gains utility from

reducing propagation delay. If propagation delay is too high, the source can choose not to transmit.

Otherwise, for fixed delay, the source’s utility increases with transmission rate, possibly up to some

limit. This may seem like an unusually permissive definition, but we will show that it provides some

useful results.

Theorem 5 For every delay-sensitive function U(x, d), (∃D > 0), (∀0 < d < D), (∃X(d) > 0),

(∀x1, x2 s.t. 0 < x1 < x2 < X(d)): U(x1, d) < U(x2, d) and ∂U
∂x

(x1, d) > ∂U
∂x

(x2, d) > 0.
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Proof. The definition of delay-sensitive function guarantees that:

(∃D > 0), (∀0 < d < D), (∃X(d) > 0) : ∂U
∂x

(X(d), d) > 0.

But then the rest follows since U(x, d) is continuously differentiable and strictly concave for fixed

d. �

We assume all sources on the network have delay-sensitive utility functions Ui(xi, di) where xi is

its transmission rate and di is its path delay, given by

di =

L
∑

l=1

Rliτl,

where the routing matrix R is in Rs for single-path routing and in Rm for multi-path routing. Note

that in the multi-path case, di is the traffic weighted average of propagation delays along its paths.

We adapt the single-path delay-insensitive network optimization problem from [5] to a delay-

sensitive network optimization problem:

max
R∈Rs,x≥0

N
∑

i=1

Ui

(

xi,

L
∑

l=1

Rliτl

)

s.t. Rx ≤ c, (3.1)

Its Lagrangian dual is:

min
p≥0

N
∑

i=1

max
xi≥0

max
ri∈Hi

(

Ui(xi, di) − xi

L
∑

l=1

Rlipl

)

+
L
∑

l=1

clpl, (3.2)

where ri is the ith column of R with ri
l = Rli. This problem maximizes utility over both rates and

routes.

Define the Lagrangian [1]:

L(R, x, p) =

N
∑

i=1

(

Ui(xi, di) − xi

L
∑

l=1

Rlipl

)

+

L
∑

l=1

clpl.

Then we can express the primal and dual problems respectively as:

Vsp = max
R∈Rs

max
x≥0

min
p≥0

L(R, x, p)

Vsd = min
p≥0

max
R∈Rs

max
x≥0

L(R, x, p)
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If we allow sources to use multiple paths, the corresponding problems are:

Vmp = max
R∈Rs

max
x≥0

min
p≥0

L(R, x, p)

Vmd = min
p≥0

max
R∈Rs

max
x≥0

L(R, x, p)

The TCP/IP dynamical system is described by (1.4)–(1.7), or equivalently, (1.8)–(1.11).

3.2 Optimization with link cost pl (b = 0)

In this section, we assume that IP uses the congestion prices pl generated by TCP-AQM as link

costs, i.e., a > 0 and b = 0 in (1.8).

Theorem 6 Suppose a > 0 and b = 0 in (1.8). Then for every delay-sensitive utility function

U(x, d), there exists a network with sources using this utility function, where TCP/IP equilibrium

exists but does not solve (3.1) and (3.2).

Proof. Suppose we have a delay-sensitive utility function U(x, d). From Theorem 5, there exist

τ2 > τ1 > 0, c > 0 so that ∂U
∂x

(c, τ1) > 0 and ∂U
∂x

(c, τ2) > 0. Consider the following network.

Network 3:

Source Destination

L1: (2c, τ2 −
τ1

2 )

L2: (2c, τ1

2 )

L3: (c, τ1

2 )

Network Routes

Route Path

R1 L1, L3

R2 L2, L3

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1, R2 R1 U(x, d)

Flow 1 is constrained by L3 and achieves rate c with propagation delay τ2 and utility U(c, τ2).

The route costs are then:

Route Costs

Route Cost

R1 a∂U
∂x

(c, τ2)

R2 a∂U
∂x

(c, τ2)
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The initial routing is an equilibrium routing, since all flows are using minimal cost routes.

Suppose Flow 1 had instead used route R2. Then it would achieve rate c with propagation delay

τ1 and utility U(c, τ1). But U(c, τ2) < U(c, τ1).

So there exists a TCP/IP equilibrium that does not solve (3.1) and (3.2). �

3.3 Optimization with link cost τl (a = 0)

In this section, we assume that IP uses the propagation delays τl as link costs, i.e., a = 0 and b > 0

in (1.8).

Theorem 7 Suppose a = 0 and b > 0 in (1.8). Then for any delay-sensitive utility function U(x, d),

there exists a network with sources using this utility function, where TCP/IP equilibrium exists but

does not solve (3.1) and (3.2).

Proof. Suppose we have a delay-sensitive utility function U(x, d). From Theorem 5, there exist

τ > 0, c2 > c1 > 0 so that:

1. U(c1, τ) < U(c2, τ)

2. ∂U
∂x

(c1, τ) > ∂U
∂x

(c2, τ) > 0.

But since U(x, d) is continuously differentiable, there exists ǫ > 0 so that:

1. U(c1, τ) < U(c2, τ + ǫ)

2. ∂U
∂x

(c2, τ + ǫ) > 0.

Consider the following network.

Network 4:

Source Destination

L1: Capacity: c1, Delay: τ

L2: Capacity: c2, Delay: τ + ǫ

Network Routes

Route Path

R1 L1

R2 L2

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1, R2 R1 U(x, d)
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Flow 1 achieves rate c1 with propagation delay τ and utility U(c1, τ). The route costs are:

Route Costs

Route Cost

R1 bτ

R2 bτ + bǫ

The initial routing is an equilibrium routing, since all flows are using minimal cost routes.

Suppose Flow 1 had instead used route R2. Then it would achieve rate c2 with propagation

delay τ + ǫ and utility U(c2, τ + ǫ). But U(c1, τ) < U(c2, τ + ǫ).

So there exists a TCP/IP equilibrium that does not solve (3.1) and (3.2). �

3.4 Optimization with link cost apl + τl

In this section, we assume that IP uses apl + τl as link cost, i.e., a > 0 and b = 1 in (1.8). We

show that there is a class of delay-sensitive utility functions that TCP/IP implicitly maximizes at

equilibrium, when equilibrium exists. Moreover, it seems unlikely that other classes have the same

property.

3.4.1 A class of delay-sensitive utility functions

Consider the class C of functions U(x, d) that can be written as:

U(x, d) = V (x) − a−1xd

where V (x) is a continuously differentiable function from [0,∞) to [−∞,∞) so that V (x) is strictly

concave, and ∀x > 0, V (x) and V ′(x) are finite.

We first show that functions in C are delay-sensitive utility functions.

Lemma 1 Every function U(x, d) ∈ C, for fixed d > 0, is strictly concave in x.

Proof. This is clear. �

Lemma 2 ∀d > 0, x > 0, U(x, d) and ∂U
∂x

(x, d) are finite.

Proof. This is clear. �

Lemma 3 (∀U(x, d) ∈ C), (∀x > 0), (∀d1, d2 s.t. 0 < d1 < d2) : U(x, d1) > U(x, d2).
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Proof. Suppose U(x, d) ∈ C, x > 0, d2 > d1 > 0. Then

U(x, d1) − U(x, d2) = (V (x) − a−1d1x) − (V (x) − a−1d2x)

= a−1d2x − a−1d1x

= a−1(d2 − d1)x

> 0

So U(x, d1) > U(x, d2) as desired. �

Lemma 4 (∀U(x, d) ∈ C), (∃D > 0), (∀0 < d < D), (∃X(d) > 0), (∀x < X(d)) : ∂U
∂x

(x, d) > 0

Proof. Suppose U(x, d) ∈ C. Then U(x, d) = V (x) − a−1xd, where V (x) is continuously differen-

tiable and strictly concave increasing. Choose D so that 0 < D < aV ′(0). This is possible since

V (x) is strictly increasing, so that V ′(0) > 0. Suppose 0 < d < D. Since V (x) is continuously

differentiable, ∃X > 0 so that V ′(X) > a−1d. Suppose x < X . Then:

∂U

∂x
(x, d) = V ′(x) − a−1d > a−1d − a−1d = 0,

where the inequality holds since V is strictly concave increasing, so that V ′(x) > V ′(X) > a−1d. �

Theorem 8 Every function U(x, d) ∈ C is a delay-sensitive utility function.

Proof. We use the preceding lemmas. �

3.4.2 Initial analysis

Specializing to utility functions in C, the optimization problem (3.1) reduces to:

max
R∈Rs,x≥0

N
∑

i=1

[Vi(xi) − a−1xi

L
∑

l=1

Rliτl] s.t. Rx ≤ c

Consider the Lagrangian

L(R, x, p) =

N
∑

i

[Vi(xi) − a−1xi

L
∑

l

Rliτl)] −
L
∑

l

[pl((

N
∑

i

Rlixi) − cl)]

=
N
∑

i

[Vi(xi) − a−1xi

L
∑

l=1

Rliτl − xi

L
∑

l=1

Rlipl] +
L
∑

l=1

plcl

=
N
∑

i

[Vi(xi) − xi

L
∑

l=1

Rli(pl + a−1τl)] +
L
∑

l=1

plcl
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and the dual problem

D(p) = max
R∈Rs,x≥0

L(R, x, p)

= max
R∈Rs,x≥0

N
∑

i

[Vi(xi) − xi

L
∑

l=1

Rli(pl + a−1τl)] +

L
∑

l=1

plcl

= max
x≥0

N
∑

i=1

[Vi(xi) − xi min
ri∈Hi

L
∑

l=1

Rli(pl + a−1τl)] +

L
∑

l=1

plcl

Lemma 5 Ri minimizes
∑L

l=1 Rli(pl + a−1τl) if and only if Ri minimizes
∑L

l=1 Rli(apl + τl).

Proof. This is obvious. �

The minimization over R in the dual problem appears to involve minimal-cost routing using

pl + a−1τl as route cost. But this is the same as minimal-cost routing using apl + τl as route cost.

This suggests that TCP/IP might solve the optimization problem, with utility functions in C.

3.4.3 TCP/IP solves the cross-layer optimization problem

In this section we prove a result analogous to Theorem 1.

Lemma 6 If utility functions are in C, then if (R̃, x̃, p̃) is an equilibrium of TCP/IP, then (R̃, x̃, p̃)

solves (3.1) and (3.2).

Proof. Suppose (R̃, x̃, p̃) is an equilibrium of TCP/IP, so that:

(ap̃ + τ)T r̃i = min
ri∈Hi

(ap̃ + τ)T ri for all i, (3.3)

(p̃, x̃) = arg min
p≥0

max
x≥0

(

N
∑

i

V (xi) − (p + a−1τ)T R̃x

)

+ pT c (3.4)

Note that from Lemma 5, Equation 3.3 implies

(p̃ + a−1τ)T r̃i = min
ri∈Hi

(p̃ + a−1τ)T ri for all i.

Consider the dual optimal solution

(p∗, x∗, R∗) = arg min
p≥0

max
x≥0

(

N
∑

i

V (xi) − min
R∈Rs

(p + a−1τ)T Rx

)

+ pT c
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Let:

f(p) := max
x≥0

(

N
∑

i

V (xi) − (p + a−1τ)T R̃x

)

+ pT c

g(p) := max
x≥0

(

N
∑

i

V (xi) − min
R∈Rs

(p + a−1τ)T Rx

)

+ pT c

Note that f(p̃) = minp≥0 f(p) and g(p∗) = minp≥0 g(p). Also, since R̃ ∈ Rs, we have

f(p) ≤ g(p) for all p ≥ 0

and so

f(p̃) = min
p≥0

f(p) ≤ min
p≥0

g(p) = g(p∗)

But

f(p̃) = max
x≥0

N
∑

i

V (xi) − (p̃ + a−1τ)T R̃x + p̃T c

= max
x≥0

N
∑

i

V (xi) −
N
∑

i

xi

(

(p̃ + a−1τ)r̃i
)

+ p̃T c

= max
x≥0

N
∑

i

V (xi) −
N
∑

i

xi

(

min
ri∈Hi

(p̃ + a−1τ)ri

)

+ p̃T c

= g(p̃)

≥ g(p∗)

So f(p̃) = g(p∗) = g(p̃), L(R̃, x̃, p̃) = L(R∗, x∗, p∗), and (R̃, x̃, p̃) solves the dual problem. Further,

(R̃, x̃, p̃) is primal feasible, and so solves the primal problem. �

Lemma 7 If utility functions are in C, then if (R∗, x∗, p∗) solves (3.1) and (3.2) with zero duality

gap, then (R∗, x∗, p∗) is an equilibrium of TCP/IP.

Proof. Assuming that there is no duality gap and (R∗, x∗, p∗) is an optimal solution, then we want

to show that it is also an equilibrium, so that

(ap∗ + τ)T r∗i = min
ri∈Hi

(ap∗ + τ)T ri (3.5)

(p∗, x∗) = arg min
p≥0

max
x≥0

L(R∗, x, p)

= arg max
x≥0

min
p≥0

L(R∗, x, p) (3.6)
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(3.5) follows from the Saddle-Point Theorem [1] and Lemma 5. (3.6) holds since (p∗, x∗) solves the

dual of the optimization problem with fixed R∗. �

Theorem 9 If utility functions are in C:

1. An equilibrium (R∗, x∗, p∗) of TCP/IP exists if and only if there is no duality gap between

(2.1) and (2.2).

2. In this case, the equilibrium (R∗, x∗, p∗) is a solution of (2.1) and (2.2).

Proof. We use the preceding lemmas. �

3.4.4 Zero duality gap implies no splitting advantage

In this section we prove a result analogous to Theorem 2.

Lemma 8 If utility functions are in C, Vsp ≤ Vsd.

Proof. This follows from the weak duality theorem [1]. �

Lemma 9 If utility functions are in C, Vmd = Vsd.

Proof. Here we show that the utility of the dual optimal solution is the same for both multi-path

and single-path problems.

Vsd = min
p≥0

max
R∈Rs,x≥0

N
∑

i=1

Vi(xi) − [(p + a−1τ)T Rx] +

L
∑

l=1

[plcl]

Vsd = min
p≥0

max
x≥0

N
∑

i=1

Vi(xi) − min
W∈Ws

[(p + a−1τ)T HWx] +

L
∑

l=1

[plcl]

Vmd = min
p≥0

max
x≥0

N
∑

i=1

Vi(xi) − min
W∈Wm

[(p + a−1τ)T HWx] +

L
∑

l=1

[plcl]

Define fs(x, p) and fm(x, p) as:

fs(x, p) := min
W∈Ws

[(p + a−1τ)T HWx]

fm(x, p) := min
W∈Wm

[(p + a−1τ)T HWx]

Then:
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fm(x, p) = min
W∈Wm

[(p + a−1τ)T HWx] s.t. 1T wi = 1, 0 ≤ wi
j ≤ 1.

This is a linear optimization problem, so there is an optimal W on the boundary (in Ws). So we

can conclude Vmd = Vsd. �

Lemma 10 If utility functions are in C, Vmd = Vmp.

Proof. Here we show that the multi-path problem has no duality gap.

Vmp = max
R∈Rm,x≥0

N
∑

i=1

Vi(xi) − a−1xi

L
∑

l=1

Rliτl s.t. Rx ≤ c

Define the Ki × 1 vector yi, for each source i, as follows:

yi := xiw
i

The mapping from (xi, w
i) to yi is one to one: xi = 1T yi, and wi = yi/xi.

Define the Ki × 1 path propagation delay vector di, for each source i, so that:

di
j :=

L
∑

l=1

Hi
ljτl

This vector contains the total propagation delays for source i’s paths.

Then, we observe:

xi

L
∑

l=1

Rliτl = xi

L
∑

l=1

Ki
∑

j=1

Hi
ljw

i
jτl

= xi

Ki
∑

j=1

L
∑

l=1

Hi
ljw

i
jτl

= xi

Ki
∑

j=1

wi
j

L
∑

l=1

Hi
ljτl

= xi(w
i · di)

= yi · di

And also:

Rx = HWx = Hy

Then we can reformulate the optimization problem as this equivalent problem:
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max
y≥0

N
∑

i=1

Vi(1
T yi) − a−1(yi · di) s.t. Hy ≤ c

This is a convex program with linear constraint and therefore has no duality gap. So we conclude

Vmp = Vmd. �

Theorem 10 If utility functions are in C, Vsp ≤ Vsd = Vmp = Vmd.

Proof. We simply use the lemmas from this section. �

3.4.5 Properties of class C

3.4.5.1 Partial utilization

Theorem 11 Given any utility function in C, there exists a network where TCP/IP underutilizes

links.

Proof. We will prove this by explicit construction.

Consider:

U(x, d) = V (x) − a−1xd

∂U

∂x
(x, d) = V ′

i (xi) − a−1d

If V ′(x)−a−1d = 0, then x is the rate that maximizes U(x, d) for fixed d, since U(x, d) is strictly

concave for fixed d.

Choose any c > 0 and set τ = aV ′(c). Note that τ > 0, since V (x) is strictly increasing. Consider

the following network.
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Network 5:

Source Destination
Capacity: 2c, Delay: τ

Network Routes

Route Path

R1 L1

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1 R1 U(x, d)

Evidently, ∂U
∂x

(x, d) = V ′(c)− a−1τ = V ′(c)− V ′(c) = 0, so c is the optimal rate for Flow 1, and

therefore the equilibrium rate. But this leaves the link underutilized, since the link has capacity 2c.

�

3.4.5.2 Non-utilization of extra routes

Consider any U(x, d) ∈ C, so that U(x, d) = V (x) − a−1xd. From Theorem 5, there exist τ > 0,

c > 0 so that ∂U
∂x

(c, τ) > 0. Consider the following network.

Network 6:

Source Destination

L1: Capacity: c, Delay: τ

L2: Capacity: ∞, Delay: τ + a∂U
∂x

(c, τ)

Network Routes

Route Path

R1 L1

R2 L2

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1, R2 R1 U(x, d)

Flow 1 achieves rate c with propagation delay τ and utility U(c, τ). The route costs are then:
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Route Costs

Route Cost

R1 τ + a∂U
∂x

(c, τ)

R2 τ + a∂U
∂x

(c, τ)

The initial routing is an equilibrium routing, since all flows are using minimal cost routes.

Theorem 9 and Theorem 10 imply that there is no duality gap, and therefore there is no benefit

in multi-path routing, and therefore no benefit in utilizing route R2. This seems counterintuitive –

with all delay-insensitive networks, there is always a benefit in utilizing previously unutilized routes.

However, utilizing an extra route can increase the average propagation delay experienced by the

flow, which, depending on the utility function, could be suboptimal, regardless of the amount of

extra throughput.

We can show this directly.

Remark 1 Assuming utility functions in C, it is suboptimal to use route R2, even when the flow is

allowed to distribute its traffic over multiple paths.

Proof. Let kc specify the throughput on link L2, so that k
k+1 specifies the fraction of traffic sent

over link L2 (where the rest is sent over link L1). Then the total throughput is given by kc+ c, and

the weighted average propagation delay is:

k
[

τ + a∂U
∂x

(c, τ)
]

+ τ

k + 1
.

So for every k > 0, we must have:

U(c, τ) ≥ U

(

kc + c,
k
[

τ + a∂U
∂x

(c, τ)
]

+ τ

k + 1

)

Plugging in our utility function yields:
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V (x) − a−1cτ ≥ U

(

kc + c,
k
(

τ + a∂U
∂x

(c, τ)
)

+ τ

k + 1

)

≥ V (kc + c) − a−1

(

(kc + c)
(

k
(

a(V ′(c) − a−1τ) + τ
)

+ τ
)

k + 1

)

≥ V (kc + c) − a−1

(

(k + 1)c (kaV ′(c) + τ)

k + 1

)

≥ V (kc + c) − a−1c (kaV ′(c) + τ)

≥ V (kc + x) − kcV ′(x) − a−1cτ

V (c) ≥ V (kc + c) − kcV ′(c)

V ′(c) ≥
V (kc + c) − V (c)

kc

Substituting y = kc, we end up with:

V ′(c) ≥
V (c + y) − V (c)

y

But this is true since V (x) is concave. �

3.4.6 Alternative classes

In this section, we analyze properties of classes of delay-sensitive utility functions that TCP/IP

implicitly optimizes at equilibrium, using apl + τl as link cost. In particular, we do not restrict our

analysis to class C.

Class C seems unusual in some respects. Here are two of them:

1. ∃U(x, d) ∈ C, d > 0 so that U(x, d) is not strictly increasing in x.

2. ∀U1(x, d) ∈ C, ǫ > 0: U2 := U1(x + ǫ) is not in C.

We will show that any class of delay-sensitive utility functions that TCP/IP implicitly maximizes

at equilibrium cannot avoid both of these unusual properties without introducing another unusual

property.

Throughout this section, we use the following function:

M(U, d) := lim
c→∞

U(c, d), (3.7)

which computes the maximum possible utility at each delay d for a delay-sensitive utility function

U(x, d).



24

Lemma 11 Suppose that for all fixed d > 0, a delay-sensitive utility function U(x, d) is strictly

increasing in x. Further suppose that on all networks with sources using this utility function, if

TCP/IP equilibrium exists, the equilibrium solves (3.1) and (3.2). Then ∀x > 0, d > 0 : U(x, d) ≥

M(U, a∂U
∂x

(x, d) + d).

Proof. Consider any delay-sensitive utility function U(x, d) that is strictly increasing in x for fixed

d. Note that this implies ∀x > 0, d > 0 : ∂U
∂x

(x, d) > 0.

Suppose for some c1 > 0, τ > 0,

U(c1, τ) < lim
c2→∞

U(c2, a
∂U

∂x
(c1, τ) + τ) (3.8)

Then in particular, for some c1 > 0, c2 > 0, τ > 0,

U(c1, τ) < U(c2, a
∂U

∂x
(c1, τ) + τ) (3.9)

Consider the following network.

Network 7:

Source Destination

L1: Capacity: c1, Delay: τ

L2: Capacity: c2, Delay: a∂U
∂x

(c1, τ) + τ

Network Routes

Route Path

R1 L1

R2 L2

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1, R2 R1 U(x, d)

Flow 1 achieves rate c1 with propagation delay τ and utility U(c1, τ). The route costs are then:

Route Costs

Route Cost

R1 a∂U
∂x

(c1, τ) + τ

R2 a∂U
∂x

(c1, τ) + τ

The initial routing is an equilibrium routing, since all flows are using minimal cost routes.
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Suppose Flow 1 had instead used route R2. Then it would achieve rate c2 with propagation

delay a∂U
∂x

(c2, τ) + τ and utility U(c2, a
∂U
∂x

(c2, τ) + τ).

From (3.9), we conclude that the equilibrium routing is suboptimal. �

Lemma 12 Suppose that for all fixed d > 0, a delay-sensitive utility function U(x, d) is strictly

increasing in x. Further suppose that on all networks with sources using this utility function, if

TCP/IP equilibrium exists, the equilibrium solves (3.1) and (3.2). Then ∀x > 0, d > 0 : U(x, d) >

M(U, a∂U
∂x

(x, d) + d).

Proof. Consider any delay-sensitive utility function U(x, d) that is strictly increasing in x for fixed

d. Note that this implies ∀x > 0, d > 0 : ∂U
∂x

(x, d) > 0.

After using the previous lemma, we only have to show that U(x, d) 6= M(U, a∂U
∂x

(x, d) + d).

Suppose for some c1 > 0, τ > 0,

U(c1, τ) = lim
c2→∞

U(c2, a
∂U

∂x
(c1, τ) + τ) (3.10)

Since U(x, d) is strictly increasing for fixed d:

U(2c1, τ) > U(c1, τ)

Then for some c2 > 0,

U(2c1, τ) − U(c1, τ) > U(c1, τ) − U(c2, a
∂U

∂x
(c1, τ) + τ) (3.11)

Consider the following network.

Network 8:

Source Destination

L1: Capacity: 2c1, Delay: τ

L2: Capacity: c2, Delay: a∂U
∂x

(c1, τ) + τ

Network Routes

Route Path

R1 L1

R2 L2

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1 R1 U(x, d)

Flow 2 R1, R2 R1 U(x, d)
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Flow 1 and Flow 2 share link L1 equally, both achieving rate c1 with propagation delay τ and

utility U(c1, τ). Then the aggregate utility is 2U(c1, τ).

The route costs are then:

Route Costs

Route Cost

R1 a∂U
∂x

(c1, τ) + τ

R2 a∂U
∂x

(c1, τ) + τ

The initial routing is an equilibrium routing, since all flows are using minimal cost routes.

Suppose Flow 2 instead chose route R2. Flow 2 would achieve rate c2 with propagation delay

a∂U
∂x

(c1, τ) + τ and utility U(c2, a
∂U
∂x

(c1, τ) + τ). Flow 1 would achieve rate 2c1 with propagation

delay τ and utility U(2c1, τ). The aggregate utility achieved by this routing is:

U(2c1, τ) + U(c2, a
∂U

∂x
(c1, τ) + τ)

From (3.11), we conclude that the equilibrium routing is suboptimal. �

Lemma 13 Suppose that for all fixed d > 0, a delay-sensitive utility function U(x, d) is strictly

increasing in x, and U(0, d) and ∂U
∂x

(0, d) are both finite. Further suppose that on all networks with

sources using this utility function, if TCP/IP equilibrium exists, the equilibrium solves (3.1) and

(3.2). Then for all τ > 0 so that f(d) := M(U, d) is finite and continuous at d = a∂U
∂x

(0, τ) + τ :

U(0, τ) ≤ M(U, a∂U
∂x

(0, τ) + τ).

Proof. Consider any delay-sensitive utility function U(x, d) that is strictly increasing in x for fixed

d. Note that this implies ∀x > 0, d > 0 : ∂U
∂x

(x, d) > 0.

Suppose there exists τ > 0 so that f(d) := M(U, d) is finite and continuous at d = ∂U
∂x

(0, τ) + τ ,

and:

U(0, τ) > lim
c2→∞

U

(

c2, a
∂U

∂x
(0, τ) + τ

)

By continuity of f(d) at a∂U
∂x

(0, τ) + τ and continuous differentiability of U(x, d), ∃c1 > 0 so

that:

2U(
3

8
c1, τ) > lim

c2→∞
U

(

c2, a
∂U

∂x
(c1, τ) + τ

)

+ U(
3

4
c1, τ)

For every c2 > 0,
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2U(
3

8
c1, τ) > U

(

c2, a
∂U

∂x
(c1, τ) + τ

)

+ U(
3

4
c1, τ) (3.12)

Also, we must have:

lim
c2→∞

∂U

∂x

(

c2, a
∂U

∂x
(c1, τ) + τ

)

≥ 0

since the expression is monotonically decreasing in c2 and bounded below by 0.

Suppose:

lim
c2→∞

∂U

∂x

(

c2, a
∂U

∂x
(c1, τ) + τ

)

> 0

Then:

lim
c2→∞

U

(

c2, a
∂U

∂x
(c1, τ) + τ

)

= ∞

But then U(c1, τ) satisfies condition (3.8), and we can get a contradiction. So we assume:

lim
c2→∞

∂U

∂x

(

c2, a
∂U

∂x
(c1, τ) + τ

)

= 0.

Since U(x, d) is strictly concave increasing in x for fixed d,

∂U

∂x
(c1, τ) <

∂U

∂x
(
3

4
c1, τ)

Combining these two facts, there exists c2 > 0 so that:

a
∂U

∂x
(c1, τ) + a

∂U

∂x

(

c2, a
∂U

∂x
(c1, τ) + τ

)

+ τ < a
∂U

∂x
(
3

4
c1, τ) + τ

Consider the following network.
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Network 9:

Source Destination

L1: Capacity: 3
4c1, Delay: τ

L2: Capacity: c2, Delay: a∂U
∂x

(c1, τ) + τ

Network Routes

Route Path

R1 L1

R2 L2

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1 R1 U(x, d)

Flow 2 R1, R2 R2 U(x, d)

Flow 1 achieves rate 3
4c1 with propagation delay τ and utility U(3

4c1, τ). Flow 2 achieves a rate

of c2 with propagation delay a∂U
∂x

(c1, τ) + τ and utility U(c2, a
∂U
∂x

(c1, τ) + τ).

The aggregate utility is:

U(c2,
∂U

∂x
(c1, τ) + τ) + U(

3

4
c1, τ)

The route costs are then:

Route Costs

Route Cost

R1 a∂U
∂x

(3
4c1, τ) + τ

R2 a∂U
∂x

(c1, τ) + a∂U
∂x

(

c2, a
∂U
∂x

(c1, τ) + τ
)

+ τ

The initial routing is an equilibrium routing, since all flows are using minimal cost routes.

Consider the alternative routing where the second flow chooses route R1. Then both flows would

share L1 equally, and both would achieve rate 3
8c1 with utility U(3

8c1, τ).

The aggregate utility of this alternative routing is:

2U(
3

8
c1, τ)

From (3.12), we conclude that the equilibrium routing is suboptimal. �

Theorem 12 Any class of delay-sensitive utility functions B such that when TCP/IP equilibrium

exists, the equilibrium solves (3.1) and (3.2) for those utility functions, must have at least one of the

following three properties:
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1. ∃U(x, d) ∈ B, d > 0 so that U(x, d) is not strictly increasing in x.

2. ∀U1(x, d) ∈ B, ∀ǫ > 0: U2(x, d) := U1(x + ǫ, d) is not in B.

3. ∃U(x, d) ∈ B, D > 0: f(d) := M(U, d) is finite and discontinuous for all d > D.

Proof. Suppose none of the properties hold. Then:

1. ∀U(x, d) ∈ B, d > 0: U(x, d) is strictly increasing in x.

2. ∃U1(x, d) ∈ B, U2(x, d) ∈ B, ǫ > 0: U2(x, d) ≡ U1(x + ǫ, d).

3. ∀U(x, d) ∈ B, D > 0: f(d) := M(U, d) is either infinite or continuous for some d > D.

Note that for all d > 0, U2(0, d) and ∂U2

∂x
(0, d) are finite, since U1(ǫ, d) and ∂U1

∂x
(ǫ, d) must be

finite.

Consider:

g(d) = a
∂U2

∂x
(0, d) + d

Choose any d1 > 0, and any D > g(d1). By assumption, there exists d2 > D so that f(d) :=

M(U2, d) is infinite or continuous at d = d2. But by inspection, there exists d3 so that g(d3) > d2.

So g(d1) < d2 < g(d3). But g(d) is continuous, so there exists d4 so that g(d4) = d2. Lemma 12

implies that:

U1(ǫ, d4) > M(U1, a
∂U1

∂x
(ǫ, d4) + d4)

U2(0, d4) > M(U2, a
∂U2

∂x
(0, d4) + d4) (3.13)

> M(U2, g(d4))

> f(d2)

The first line follows from Lemma 12. The second line follows from the fact that ∂U2

∂x
(x, d) =

∂U1

∂x
(x + ǫ, d), and M(U1, d) = M(U2, d).

So f(d) is finite at d2. By assumption, f(d) must also be continuous at d2, i.e. finite and

continuous at d2 = g(d4) = a∂U2

∂x
(0, d4) + d4. But this, combined with (3.13), contradicts Lemma

13. �

Remark 2 We know that in some sense, we cannot improve on C by too much, and the proof

techniques used to prove analogues of Theorem 1 and Theorem 2 do not seem to work for functions

outside of C. This suggests that C is likely to be the only full class of functions that TCP/IP optimizes.
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Chapter 4

Stability and Utility of Routing
Policies

In this chapter, we analyze the effects on stability and utility that result from adjusting routing

policy.

4.1 Stability

4.1.1 Definitions

Denote the set of paths Gi ⊆ Hi with minimal propagation delay for flow i by:

Gi :=

{

ri ∈ Hi : τT ri = min
si∈Hi

τT si

}

Denote the set of paths F i ⊆ Hi without minimal propagation delay for flow i by:

F i := Hi − Gi

Define q(R), a function that computes the equilibrium congestion price vector for a given

routing matrix R ∈ Rs. We assume that it implicitly depends on an arbitrary, fixed network

(L, N,F i,Gi,Hi,Rs, K
i, Ui, τ, c):

q(R) = arg min
p≥0

max
x≥0

(

N
∑

i

Ui(xi, di) − pT Rx

)

+ pT c

4.1.2 Mostly-static-cost routing on networks

4.1.2.1 Effect of small a on path choices

In this section, we show that with sufficiently small a, all flows will choose only minimal propagation

delay paths.
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Define h(x, y), a function that will be used to simplify notation:

h(x, y) =











x
y

if y > 0

∞ if y ≤ 0

For notational simplicity, all of the following functions, lemmas, and theorems in this section

implicitly depend on an arbitrary, fixed network (L, N,F i,Gi,Hi,Rs, K
i, Ui, τ, c).

Define a# as follows:

a# = min
R∈Rs

min
0<i≤N











max
mi∈Gi

min
ri∈Fi

h
(

τT (ri − mi), q(R)T (mi − ri)
)

if F i 6= ∅

∞ if F i = ∅

Lemma 14 a# is strictly positive.

Proof. This is clear by inspection. �

Theorem 13 Suppose a < a#. Then:

∀R ∈ Rs, ∀0 < i ≤ N, ∃mi ∈ Gi, ∀ri ∈ F i : (aq(R) + τ)T mi < (aq(R) + τ)T ri. (4.1)

In other words, all flows on the network will choose a path with minimal propagation delay in

the next iteration.

Proof. We manipulate the right hand side of (4.1).

(aq(R) + τ)T mi < (aq(R) + τ)T ri

aq(R)T mi + τT mi < aq(R)T ri + τT ri

aq(R)T mi − aq(R)T ri < τT ri − τT mi

aq(R)T (mi − ri) < τT (ri − mi)

But by inspecting the definition of h(x, y), this inequality holds if

a < h
(

τT (ri − mi), q(R)T (mi − ri)
)

,

since τT (ri − mi) > 0 if mi ∈ Gi and ri ∈ F i.

The formal part of the theorem is then easy to see. It implies that for any current routing, and

for every flow, a path with minimal propagation delay has strictly lower cost than any path without



32

minimal propagation delay. Therefore no flow will select any path without minimal propagation

delay. Therefore every flow will select a path with minimal propagation delay. �

4.1.2.2 Networks with unique minimal propagation delay paths

Theorem 14 Suppose all source-destination pairs on a network have unique minimum-propagation-

delay paths. Then if a < a#, TCP/IP has an asymptotically stable equilibrium.

Proof. Each flow only has one path with minimal propagation delay. Applying Theorem 13, each

flow will always select the same path, and it will always do this from any routing. �

Corollary 1 Suppose every path in a network has different propagation delay. Then if a < a#,

TCP/IP has an asymptotically stable equilibrium.

Proof. If every path in the network has different propagation delay, every source-destination pair

on a network has a unique minimum-propagation-delay path, so the result of Theorem 14 applies.

�

4.1.2.3 Networks without unique minimal propagation delay paths

Not all networks can be stabilized by decreasing a. Consider the following network, assuming that

all sources use an arbitrary delay-insensitive utility function U(x).

Network 10:

Source Destination

L1: Capacity: c, Delay: τ

L2: Capacity: c, Delay: τ

Network Routes

Route Path

R1 L1

R2 L2

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1, R2 R1 U(x)

Remark 3 For all a > 0, the above network has no equilibrium.
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Proof. Flow 1 achieves rate c, with utility U(c). The route costs are then:

Route Costs

Route Cost

R1 aU ′(c) + τ

R2 τ

For every a > 0, Flow 1 will choose R2 in the next iteration.

But then Flow 1 achieves rate c with utility U(c). The route costs are then:

Route Costs

Route Cost

R1 τ

R2 aU ′(c) + τ

For every a > 0, Flow 1 will choose R1 in the next iteration.

So the routing will oscillate between R1 and R2. It is also easy to see that this would happen

even if the flow was initially on route R2. Therefore this network has no equilibrium. �

We now generalize this example. We know that ∃a# so that if a < a#, all flows choose between

paths with minimal propagation delay. When there are multiple such paths available, there may or

may not be an equilibrium.

Lemma 15 Suppose we have some network, and routing policy on this network is such that a < a#.

Then for any attainable price vectors p so that p = q(R) for some R ∈ Rs, and for all 0 < i ≤ N ,

pT ri = min
si∈Gi

pT si, where ri ∈ Gi (4.2)

if and only if

(ap + τ)T ri = min
si∈Hi

(ap + τ)T si, where ri ∈ Hi (4.3)

Proof. First, suppose (4.3) holds.

From Theorem 14, we know that:

∃mi ∈ Gi, ∀ri ∈ (Hi − Gi) : (ap + τ)T mi < (ap + τ)T ri.

So:
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(ap + τ)T ri = min
si∈Gi

(ap + τ)T si

and ri must be in Gi. But since every path in Gi has minimal propagation delay:

∀ri ∈ Gi, si ∈ Gi : τT ri = τT si

So:

(ap)T ri = min
si∈Gi

(ap)T si,

But then:

pT ri = min
si∈Gi

pT si,

as desired. For the reverse case, we use the above argument backwards, and note that Gi ⊆ Hi.

�

Theorem 15 Suppose we have some network, and routing policy on this network is such that a <

a#. Consider the modified network obtained by deleting all paths without minimal propagation delay

from the original network. Then the original network with routing based on apl + dl has the same

equilibrium and stability properties as the modified network with routing based on pl.

Proof. Consider the TCP/IP dynamical system on the modified network when link costs are pl:

(p(t))T ri(t + 1) = min
ri∈Gi

(p(t))T ri, for all i. (∀i, t: ri(t) ∈ Gi)

(p(t), x(t)) = arg min
p≥0

max
x≥0

(

N
∑

i

Ui(xi, di) − pT R(t)x

)

+ pT c

Consider the TCP/IP dynamical system on the original network when link costs are apl + τl:

(ap(t) + τ)T ri(t + 1) = min
ri∈Hi

(ap(t) + τ)T ri, for all i. (∀i, t: ri(t) ∈ Hi)

(p(t), x(t)) = arg min
p≥0

max
x≥0

(

N
∑

i

Ui(xi, di) − pT R(t)x

)

+ pT c

But the previous lemma implies that these dynamical systems are equivalent. Since they are

equivalent, they share the same equilibrium and stability properties. �
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4.1.3 Destabilization from increased static component in link cost

In this section, we will show that it is possible to destabilize a network by increasing the static

component in link cost. This seems counterintuitive, but is true.

Suppose U(x, d) is an arbitrary delay-sensitive or delay-insensitive function.

Consider the following inequalities:

∂U

∂x
(c1, τ1) >

∂U

∂x
(c2, τ2) > 0 (4.4)

c2 > c1 > 0 (4.5)

τ2 > τ1 > 0 (4.6)

Lemma 16 If U(x, d) is delay-insensitive, it is possible to choose c1, c2, τ1, τ2 so that they satisfy

equations (4.4) through (4.6).

Proof. Suppose we have a delay-insensitive utility function U(x, d) ≡ U(x). Choose any c2 > c1 > 0,

and any τ2 > τ1 > 0. Then we need to show that U ′(c1) > U ′(c2) > 0. But this is true since U(x)

is strictly concave increasing. �

Lemma 17 If U(x, d) is delay-sensitive, it is possible to choose c1, c2, τ1, τ2 so that they satisfy

equations (4.4) through (4.6).

Proof.

Suppose we have a delay-sensitive utility function U(x, d). From Theorem 5, there exist τ1 >

0, c2 > c1 > 0 so that:
∂U

∂x
(c1, τ1) >

∂U

∂x
(c2, τ1) > 0.

But since U(x, d) is continuously differentiable, there exists ǫ > 0 so that:

∂U

∂x
(c1, τ1) >

∂U

∂x
(c2, τ1 + ǫ) > 0.

Choose τ2 = τ1 + ǫ. Evidently, equations (4.4) through (4.6) hold with this choice of c1, τ1, c2, τ2

as desired. �

Suppose c1, τ1, c2, τ2 are chosen so that they satisfy equations (4.4) through (4.6). Consider the

following network.
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Network 11:

Source Destination

L1: Capacity: c1, Delay: τ1

L2: Capacity: c2, Delay: τ2

Network Routes

Route Path

R1 L1

R2 L2

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1 R1 U(x, d)

Flow 2 R1, R2 U(x, d)

Define function A3(U, c1, τ1, c2, τ2), where U is a delay-insensitive or delay-sensitive utility func-

tion and the rest of the parameters are in R as follows:

A3(U, c1, τ1, c2, τ2) =
τ2 − τ1

∂U
∂x

(c1, τ1) −
∂U
∂x

(c2, τ2)

Lemma 18 Consider any delay-sensitive or delay-insensitive utility function U(x, d). Suppose

c1, τ1, c2, τ2 satisfy (4.4) through (4.6) with U(x, d). Network 11 with all sources using U(x, d) is

stable for all a > A3(U, c1, τ1, c2, τ2).

Proof. We show that routing converges from every possible initial condition.

Suppose Flow 2 is on route R1. Then Flow 1 and Flow 2 share L1 equally, and both achieve

rate c1

2 with propagation delay τ1 and utility U( c1

2 , τ1).

The route costs are then:

Route Costs

Route Cost

R1 a∂U
∂x

( c1

2 , τ1) + τ1

R2 τ2

We verify that if a > A3(U, c1, τ1, c2, τ2), then R2 is a lower cost route than R1:
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a
∂U

∂x
(
c1

2
, τ1) + τ1 >

τ2 − τ1

∂U
∂x

(c1, τ1) −
∂U
∂x

(c2, τ2)

∂U

∂x
(
c1

2
, τ1) + τ1

>
τ2 − τ1

∂U
∂x

(c1, τ1)

∂U

∂x
(
c1

2
, τ1) + τ1

>
τ2 − τ1

∂U
∂x

( c1

2 , τ1)

∂U

∂x
(
c1

2
, τ1) + τ1

> τ2 − τ1 + τ1

> τ2

To show asymptotic stability, it is then sufficient to show that the routing where Flow 2 is on

R2 is an equilibrium.

Suppose Flow 2 is on R2. Then Flow 1 achieves rate c1 with propagation delay τ1 and utility

U(c1, τ1), and Flow 2 achieves rate c2 with propagation delay τ2 and utility U(c2, τ2). The route

costs are then:

Route Costs

Route Cost

R1 a∂U
∂x

(c1, τ1) + τ1

R2 a∂U
∂x

(c2, τ2) + τ2

Consider Flow 2’s route choice at the next routing iteration.

We verify that if a > A3(U, c1, τ1, c2, τ2), then R2 is a lower cost route than R1:

a >
τ2 − τ1

∂U
∂x

(c1, τ1) −
∂U
∂x

(c2, τ2)

a(
∂U

∂x
(c1, τ1) −

∂U

∂x
(c2, τ2)) > τ2 − τ1

a
∂U

∂x
(c1, τ1) + τ1 > a

∂U

∂x
(c2, τ2) + τ2

Therefore R2 is minimal cost, and so this routing is an equilibrium routing. �

Define function A2(U, c1, τ1, c2, τ2), where U is a delay-insensitive or delay-sensitive utility func-

tion and the rest of the parameters are in R as follows:

A2(U, c1, τ1, c2, τ2) =
τ2 − τ1

∂U
∂x

( c1

2 , τ1)



38

Lemma 19 Consider any delay-sensitive or delay-insensitive utility function U(x, d). Suppose

c1, τ1, c2, τ2 satisfy (4.4) through (4.6) with U(x, d). Then A2(U, c1, τ1, c2, τ2) < A3(U, c1, τ1, c2, τ2).

Proof.

A3(. . .) − A2(. . .) =
τ2 − τ1

∂U
∂x

(c1, τ1) −
∂U
∂x

(c2, τ2)
−

τ2 − τ1

∂U
∂x

( c1

2 , τ1)

= (τ2 − τ1)

(

1
∂U
∂x

(c1, τ1) −
∂U
∂x

(c2, τ2)
−

1
∂U
∂x

( c1

2 , τ1)

)

> (τ2 − τ1)

(

1
∂U
∂x

(c1, τ1)
−

1
∂U
∂x

( c1

2 , τ1)

)

> (τ2 − τ1)

(

∂U
∂x

( c1

2 , τ1) −
∂U
∂x

(c1, τ1)
∂U
∂x

(c1, τ1)
∂U
∂x

(c2, τ2)

)

> 0

�

Lemma 20 Consider any delay-sensitive or delay-insensitive utility function U(x, d). Suppose

c1, τ1, c2, τ2 satisfy (4.4) through (4.6) with U(x, d). Network 11 with all sources using U(x, d) is

unstable for all a satisfying A2(U, c1, τ1, c2, τ2) < a < A3(U, c1, τ1, c2, τ2).

Proof. Suppose Flow 2 is on R2. Then Flow 1 achieves rate c1 with propagation delay τ1 and

utility U(c1, τ1), and Flow 2 achieves rate c2 with propagation delay τ2 and utility U(c2, τ2). The

route costs are then:

Route Costs

Route Cost

R1 a∂U
∂x

(c1, τ1) + τ1

R2 a∂U
∂x

(c2, τ2) + τ2

Consider Flow 2’s route decision at the next routing iteration.

a < A3(U, c1, τ1, c2, τ2)

a <
τ2 − τ1

∂U
∂x

(c1, τ1) −
∂U
∂x

(c2, τ2)

a(
∂U

∂x
(c1, τ1) −

∂U

∂x
(c2, τ2)) < τ2 − τ1

a
∂U

∂x
(c1, τ1) + τ1 < a

∂U

∂x
(c2, τ2) + τ2
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So Flow 2 next chooses route R1. Then Flow 1 and Flow 2 share L1 equally, and both achieve

rate c1

2 with delay τ1 and utility U( c1

2 , τ1). The route costs are then:

Route Costs

Route Cost

R1 a∂U
∂x

( c1

2 , τ1) + τ1

R2 τ2

But:

a > A2(U, c1, τ1, c2, τ2)

a
∂U

∂x
(
c1

2
, τ1) + τ1 >

τ2 − τ1

∂U
∂x

( c1

2 , τ1)

∂U

∂x
(
c1

2
, c1) + τ1

> τ2

So Flow 2 next chooses route R2.

This implies that Flow 2’s routing oscillates between R1 and R2, so the network is unstable. �

Theorem 16 Consider any delay-sensitive or delay-insensitive utility function U(x, d). There exist

a network with sources using this utility function, and constants a3 > a2 ≥ a1 > 0 so that:

1. The network is stable for a ∈ (0, a1).

2. The network is unstable for a ∈ (a2, a3).

3. The network is stable for a ∈ (a3,∞).

Proof. We choose c1, τ1, c2, τ2 so that they satisfy (4.4) through (4.6). Then consider Network 11

with all sources using U(x, d). Set a1 = a# for this network. Theorem 13 implies that for a < a1, the

network is stable. We then set a2 = A2(U, c1, τ1, c2, τ2) and a3 = A3(U, c1, τ1, c2, τ2). The lemmas

in this section then establish the desired result. �

4.2 Utility

[5] analyzed the effects of increasing a on time-averaged aggregate utility for a ring network, and a

randomly generated network.
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On the ring network, time-averaged aggregate utility approached the maximum possible time-

averaged aggregate utility for any a, as a increased. On the generated network, time-averaged

aggregate utility increased until routing stability set in, and then decreased.

In this section, we show that the effects of increasing a on time-averaged aggregate utility are

extremely network dependent.

In particular, we show how to construct a network with any given utility profile as a function of

the weight a.

4.2.1 Effect of increasing a on utility

For every delay-insensitive U(x), there exist k+ > k∗ > k− > 0 and g > 0 so that g = U(k+) −

U(k∗) = U(k∗)−U(k−). Also, for every z ∈ [−1, 1], there exists k ∈ [k−, k+] so that U(k)−U(k∗) =

zg, that is given by k(z) := U−1(U(k∗) + zg). This is easy to see since U(x) is strictly monotone

increasing.

Consider the following network N(j, z), parameterized by j > 0, and z ∈ [−1, 1]:

Network 12:

Source Destination

L1: Capacity: k∗, Delay: jU ′(k∗)

L2: Capacity: k(z), Delay: 2jU ′(k∗)

Network Routes

Route Path

R1 L1

R2 L2

Flows

Flow Possible Routes Initial Route Utility Function

Flow 1 R1, R2 U(x)

Denote the time-averaged utility of the network under routing policy apl + dl by T (N, a).

Lemma 21 For every j > 0, z ∈ [−1, 1], network N(j, z) has the following properties:

1. ∀a1 ∈ [0, j], a2 ∈ [0, j]: T (N, a1) = T (N, a2)

2. ∀a1 ∈ (j,∞), a2 ∈ (j,∞): T (N, a1) = T (N, a2)

3. ∀a1 ∈ (0, j], a2 ∈ (j,∞): T (N, a2) = T (N, a1) + zg
2

Proof. Suppose current routing is R2. Then the route costs are:
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Route Costs

Route Cost

R1 jU ′(k∗)

R2 2jU ′(k∗) + aU ′(k(z))

By inspection, for every a ≥ 0, R1 has less cost than R2. Therefore routing on the next iteration

will be R1.

Suppose current routing is R1. Then the route costs are:

Route Costs

Route Cost

R1 jU ′(k∗) + aU ′(k∗)

R2 2jU ′(k∗)

By inspection, if a ≤ j then R1 is a lower cost route than R2, and if a > j, then R2 is a strictly

lower cost route than R1.

Flow 1’s utility on route R1 between routing changes is U(k∗). Flow 1’s utility on route R2

between routing changes is U(kz).

If a ≤ j, then the network is stable with Flow 1 on R1 and the aggregate utility is U(k∗). If a > j,

then the network oscillates between R1 and R2 and achieves time-averaged utility U(k(z))+U(k∗)
2 .

The excess utility gained by increasing a from less than j to more than j is given by:

U(k(z)) + U(k∗)

2
− U(k∗) =

U(k(z)) − U(k∗)

2
=

zg

2

�

Definition 3 A utility-versus-a profile is a pair of vectors (x, y) such that |x| = |y| > 0, ∀i: xi > 0,

and ∀i < |x|: xi < xi+1.

Definition 4 A network N matches a utility-versus-a profile (x, y) if there exists c > 0 so that:

If |x| > 1,

1. ∀1 < i < |x|, ∀a1 s.t. xi−1 < a1 ≤ xi, ∀a2 s.t. xi < a2 < xi+1: T (N, a2) − T (N, a1) = cyi.

2. ∀a1 s.t. 0 < a1 ≤ x1, ∀a2 s.t. x1 < a2 < x2: T (N, a2) − T (N, a1) = cy1.

3. ∀a1 s.t. x|x|−1 < a1 ≤ x|x|, ∀a2 s.t. x|x| < a2 < ∞: T (N, a2) − T (N, a1) = cy|x|.
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If |x| = 1, ∀a1 s.t. 0 < a1 ≤ x1, ∀a2 s.t. x1 < a2 < ∞: T (N, a2) − T (N, a1) = cy1.

In other words, for all i, the time-averaged aggregate utility of the network increases by cyi at

a = xi.

Theorem 17 For every utility-versus-a profile (x, y), there exists a network with sources using

delay-insensitive utility functions that matches this profile.

Proof. Consider any utility-versus-a profile (x, y). Define the normalized y as y∗ := |maxi yi|−1y.

Construct the network N∗ given by taking the union of networks N1 . . . N|y| where ∀i, Ni :=

N(xi, y
∗
i ). (The subnetworks are entirely disjoint in the union network).

It is easy to see that the network N∗ matches profile (x, y) with c = g
2|maxi vi|

. �
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Chapter 5

Conclusion and Future Work

In this thesis, we analyzed whether or not TCP/IP implicitly maximizes delay-sensitive or delay-

insensitive utility functions with different link cost definitions. We identified a class of delay-sensitive

utility functions C that TCP/IP does implicitly maximize with link cost apl + dl, and proved some

general results about any class that has the same property.

We further analyzed path choice and stability properties when the weight on the congestion price

is sufficiently small. We also showed that one can construct a network with any given utility profile

as a function of the weight a.

Our results have not completely established that there are no other classes of utility functions B

that TCP/IP implicitly maximizes with link cost apl + dl. Further, our results do not fully explain

the stability and utility properties of general a on general networks. We plan further study in these

directions.
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